]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Swap two sentences in the Pretty Printing API node
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
210@findex gdb.PYTHONDIR
211@defvar gdb.PYTHONDIR
212A string containing the python directory (@pxref{Python}).
213@end defvar
214
215@findex gdb.execute
216@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
217Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
218If a GDB exception happens while @var{command} runs, it is
219translated as described in @ref{Exception Handling,,Exception Handling}.
220
697aa1b7 221The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
222command as having originated from the user invoking it interactively.
223It must be a boolean value. If omitted, it defaults to @code{False}.
224
225By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
226@value{GDBN}'s standard output (and to the log output if logging is
227turned on). If the @var{to_string} parameter is
329baa95
DE
228@code{True}, then output will be collected by @code{gdb.execute} and
229returned as a string. The default is @code{False}, in which case the
230return value is @code{None}. If @var{to_string} is @code{True}, the
231@value{GDBN} virtual terminal will be temporarily set to unlimited width
232and height, and its pagination will be disabled; @pxref{Screen Size}.
233@end defun
234
235@findex gdb.breakpoints
236@defun gdb.breakpoints ()
237Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
238@xref{Breakpoints In Python}, for more information. In @value{GDBN}
239version 7.11 and earlier, this function returned @code{None} if there
240were no breakpoints. This peculiarity was subsequently fixed, and now
241@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
242@end defun
243
d8ae99a7
PM
244@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
245Return a Python list holding a collection of newly set
246@code{gdb.Breakpoint} objects matching function names defined by the
247@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
248system functions (those not explicitly defined in the inferior) will
249also be included in the match. The @var{throttle} keyword takes an
250integer that defines the maximum number of pattern matches for
251functions matched by the @var{regex} pattern. If the number of
252matches exceeds the integer value of @var{throttle}, a
253@code{RuntimeError} will be raised and no breakpoints will be created.
254If @var{throttle} is not defined then there is no imposed limit on the
255maximum number of matches and breakpoints to be created. The
256@var{symtabs} keyword takes a Python iterable that yields a collection
257of @code{gdb.Symtab} objects and will restrict the search to those
258functions only contained within the @code{gdb.Symtab} objects.
259@end defun
260
329baa95
DE
261@findex gdb.parameter
262@defun gdb.parameter (parameter)
697aa1b7
EZ
263Return the value of a @value{GDBN} @var{parameter} given by its name,
264a string; the parameter name string may contain spaces if the parameter has a
265multi-part name. For example, @samp{print object} is a valid
266parameter name.
329baa95
DE
267
268If the named parameter does not exist, this function throws a
269@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
270parameter's value is converted to a Python value of the appropriate
271type, and returned.
272@end defun
273
274@findex gdb.history
275@defun gdb.history (number)
276Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 277History}). The @var{number} argument indicates which history element to return.
329baa95
DE
278If @var{number} is negative, then @value{GDBN} will take its absolute value
279and count backward from the last element (i.e., the most recent element) to
280find the value to return. If @var{number} is zero, then @value{GDBN} will
281return the most recent element. If the element specified by @var{number}
282doesn't exist in the value history, a @code{gdb.error} exception will be
283raised.
284
285If no exception is raised, the return value is always an instance of
286@code{gdb.Value} (@pxref{Values From Inferior}).
287@end defun
288
7729052b
TT
289@findex gdb.convenience_variable
290@defun gdb.convenience_variable (name)
291Return the value of the convenience variable (@pxref{Convenience
292Vars}) named @var{name}. @var{name} must be a string. The name
293should not include the @samp{$} that is used to mark a convenience
294variable in an expression. If the convenience variable does not
295exist, then @code{None} is returned.
296@end defun
297
298@findex gdb.set_convenience_variable
299@defun gdb.set_convenience_variable (name, value)
300Set the value of the convenience variable (@pxref{Convenience Vars})
301named @var{name}. @var{name} must be a string. The name should not
302include the @samp{$} that is used to mark a convenience variable in an
303expression. If @var{value} is @code{None}, then the convenience
304variable is removed. Otherwise, if @var{value} is not a
305@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
306using the @code{gdb.Value} constructor.
307@end defun
308
329baa95
DE
309@findex gdb.parse_and_eval
310@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
311Parse @var{expression}, which must be a string, as an expression in
312the current language, evaluate it, and return the result as a
313@code{gdb.Value}.
329baa95
DE
314
315This function can be useful when implementing a new command
316(@pxref{Commands In Python}), as it provides a way to parse the
317command's argument as an expression. It is also useful simply to
7729052b 318compute values.
329baa95
DE
319@end defun
320
321@findex gdb.find_pc_line
322@defun gdb.find_pc_line (pc)
323Return the @code{gdb.Symtab_and_line} object corresponding to the
324@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
325value of @var{pc} is passed as an argument, then the @code{symtab} and
326@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
327will be @code{None} and 0 respectively.
328@end defun
329
330@findex gdb.post_event
331@defun gdb.post_event (event)
332Put @var{event}, a callable object taking no arguments, into
333@value{GDBN}'s internal event queue. This callable will be invoked at
334some later point, during @value{GDBN}'s event processing. Events
335posted using @code{post_event} will be run in the order in which they
336were posted; however, there is no way to know when they will be
337processed relative to other events inside @value{GDBN}.
338
339@value{GDBN} is not thread-safe. If your Python program uses multiple
340threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 341functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
342this. For example:
343
344@smallexample
345(@value{GDBP}) python
346>import threading
347>
348>class Writer():
349> def __init__(self, message):
350> self.message = message;
351> def __call__(self):
352> gdb.write(self.message)
353>
354>class MyThread1 (threading.Thread):
355> def run (self):
356> gdb.post_event(Writer("Hello "))
357>
358>class MyThread2 (threading.Thread):
359> def run (self):
360> gdb.post_event(Writer("World\n"))
361>
362>MyThread1().start()
363>MyThread2().start()
364>end
365(@value{GDBP}) Hello World
366@end smallexample
367@end defun
368
369@findex gdb.write
370@defun gdb.write (string @r{[}, stream{]})
371Print a string to @value{GDBN}'s paginated output stream. The
372optional @var{stream} determines the stream to print to. The default
373stream is @value{GDBN}'s standard output stream. Possible stream
374values are:
375
376@table @code
377@findex STDOUT
378@findex gdb.STDOUT
379@item gdb.STDOUT
380@value{GDBN}'s standard output stream.
381
382@findex STDERR
383@findex gdb.STDERR
384@item gdb.STDERR
385@value{GDBN}'s standard error stream.
386
387@findex STDLOG
388@findex gdb.STDLOG
389@item gdb.STDLOG
390@value{GDBN}'s log stream (@pxref{Logging Output}).
391@end table
392
393Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
394call this function and will automatically direct the output to the
395relevant stream.
396@end defun
397
398@findex gdb.flush
399@defun gdb.flush ()
400Flush the buffer of a @value{GDBN} paginated stream so that the
401contents are displayed immediately. @value{GDBN} will flush the
402contents of a stream automatically when it encounters a newline in the
403buffer. The optional @var{stream} determines the stream to flush. The
404default stream is @value{GDBN}'s standard output stream. Possible
405stream values are:
406
407@table @code
408@findex STDOUT
409@findex gdb.STDOUT
410@item gdb.STDOUT
411@value{GDBN}'s standard output stream.
412
413@findex STDERR
414@findex gdb.STDERR
415@item gdb.STDERR
416@value{GDBN}'s standard error stream.
417
418@findex STDLOG
419@findex gdb.STDLOG
420@item gdb.STDLOG
421@value{GDBN}'s log stream (@pxref{Logging Output}).
422
423@end table
424
425Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
426call this function for the relevant stream.
427@end defun
428
429@findex gdb.target_charset
430@defun gdb.target_charset ()
431Return the name of the current target character set (@pxref{Character
432Sets}). This differs from @code{gdb.parameter('target-charset')} in
433that @samp{auto} is never returned.
434@end defun
435
436@findex gdb.target_wide_charset
437@defun gdb.target_wide_charset ()
438Return the name of the current target wide character set
439(@pxref{Character Sets}). This differs from
440@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
441never returned.
442@end defun
443
444@findex gdb.solib_name
445@defun gdb.solib_name (address)
446Return the name of the shared library holding the given @var{address}
447as a string, or @code{None}.
448@end defun
449
450@findex gdb.decode_line
0d2a5839 451@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
452Return locations of the line specified by @var{expression}, or of the
453current line if no argument was given. This function returns a Python
454tuple containing two elements. The first element contains a string
455holding any unparsed section of @var{expression} (or @code{None} if
456the expression has been fully parsed). The second element contains
457either @code{None} or another tuple that contains all the locations
458that match the expression represented as @code{gdb.Symtab_and_line}
459objects (@pxref{Symbol Tables In Python}). If @var{expression} is
460provided, it is decoded the way that @value{GDBN}'s inbuilt
461@code{break} or @code{edit} commands do (@pxref{Specify Location}).
462@end defun
463
464@defun gdb.prompt_hook (current_prompt)
465@anchor{prompt_hook}
466
467If @var{prompt_hook} is callable, @value{GDBN} will call the method
468assigned to this operation before a prompt is displayed by
469@value{GDBN}.
470
471The parameter @code{current_prompt} contains the current @value{GDBN}
472prompt. This method must return a Python string, or @code{None}. If
473a string is returned, the @value{GDBN} prompt will be set to that
474string. If @code{None} is returned, @value{GDBN} will continue to use
475the current prompt.
476
477Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
478such as those used by readline for command input, and annotation
479related prompts are prohibited from being changed.
480@end defun
481
482@node Exception Handling
483@subsubsection Exception Handling
484@cindex python exceptions
485@cindex exceptions, python
486
487When executing the @code{python} command, Python exceptions
488uncaught within the Python code are translated to calls to
489@value{GDBN} error-reporting mechanism. If the command that called
490@code{python} does not handle the error, @value{GDBN} will
491terminate it and print an error message containing the Python
492exception name, the associated value, and the Python call stack
493backtrace at the point where the exception was raised. Example:
494
495@smallexample
496(@value{GDBP}) python print foo
497Traceback (most recent call last):
498 File "<string>", line 1, in <module>
499NameError: name 'foo' is not defined
500@end smallexample
501
502@value{GDBN} errors that happen in @value{GDBN} commands invoked by
503Python code are converted to Python exceptions. The type of the
504Python exception depends on the error.
505
506@ftable @code
507@item gdb.error
508This is the base class for most exceptions generated by @value{GDBN}.
509It is derived from @code{RuntimeError}, for compatibility with earlier
510versions of @value{GDBN}.
511
512If an error occurring in @value{GDBN} does not fit into some more
513specific category, then the generated exception will have this type.
514
515@item gdb.MemoryError
516This is a subclass of @code{gdb.error} which is thrown when an
517operation tried to access invalid memory in the inferior.
518
519@item KeyboardInterrupt
520User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
521prompt) is translated to a Python @code{KeyboardInterrupt} exception.
522@end ftable
523
524In all cases, your exception handler will see the @value{GDBN} error
525message as its value and the Python call stack backtrace at the Python
526statement closest to where the @value{GDBN} error occured as the
527traceback.
528
4a5a194a
TT
529
530When implementing @value{GDBN} commands in Python via
531@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
532to be able to throw an exception that doesn't cause a traceback to be
533printed. For example, the user may have invoked the command
534incorrectly. @value{GDBN} provides a special exception class that can
535be used for this purpose.
536
537@ftable @code
538@item gdb.GdbError
539When thrown from a command or function, this exception will cause the
540command or function to fail, but the Python stack will not be
541displayed. @value{GDBN} does not throw this exception itself, but
542rather recognizes it when thrown from user Python code. Example:
329baa95
DE
543
544@smallexample
545(gdb) python
546>class HelloWorld (gdb.Command):
547> """Greet the whole world."""
548> def __init__ (self):
549> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
550> def invoke (self, args, from_tty):
551> argv = gdb.string_to_argv (args)
552> if len (argv) != 0:
553> raise gdb.GdbError ("hello-world takes no arguments")
554> print "Hello, World!"
555>HelloWorld ()
556>end
557(gdb) hello-world 42
558hello-world takes no arguments
559@end smallexample
4a5a194a 560@end ftable
329baa95
DE
561
562@node Values From Inferior
563@subsubsection Values From Inferior
564@cindex values from inferior, with Python
565@cindex python, working with values from inferior
566
567@cindex @code{gdb.Value}
568@value{GDBN} provides values it obtains from the inferior program in
569an object of type @code{gdb.Value}. @value{GDBN} uses this object
570for its internal bookkeeping of the inferior's values, and for
571fetching values when necessary.
572
573Inferior values that are simple scalars can be used directly in
574Python expressions that are valid for the value's data type. Here's
575an example for an integer or floating-point value @code{some_val}:
576
577@smallexample
578bar = some_val + 2
579@end smallexample
580
581@noindent
582As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
583whose values are of the same type as those of @code{some_val}. Valid
584Python operations can also be performed on @code{gdb.Value} objects
585representing a @code{struct} or @code{class} object. For such cases,
586the overloaded operator (if present), is used to perform the operation.
587For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
588representing instances of a @code{class} which overloads the @code{+}
589operator, then one can use the @code{+} operator in their Python script
590as follows:
591
592@smallexample
593val3 = val1 + val2
594@end smallexample
595
596@noindent
597The result of the operation @code{val3} is also a @code{gdb.Value}
598object corresponding to the value returned by the overloaded @code{+}
599operator. In general, overloaded operators are invoked for the
600following operations: @code{+} (binary addition), @code{-} (binary
601subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
602@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
603
604Inferior values that are structures or instances of some class can
605be accessed using the Python @dfn{dictionary syntax}. For example, if
606@code{some_val} is a @code{gdb.Value} instance holding a structure, you
607can access its @code{foo} element with:
608
609@smallexample
610bar = some_val['foo']
611@end smallexample
612
613@cindex getting structure elements using gdb.Field objects as subscripts
614Again, @code{bar} will also be a @code{gdb.Value} object. Structure
615elements can also be accessed by using @code{gdb.Field} objects as
616subscripts (@pxref{Types In Python}, for more information on
617@code{gdb.Field} objects). For example, if @code{foo_field} is a
618@code{gdb.Field} object corresponding to element @code{foo} of the above
619structure, then @code{bar} can also be accessed as follows:
620
621@smallexample
622bar = some_val[foo_field]
623@end smallexample
624
625A @code{gdb.Value} that represents a function can be executed via
626inferior function call. Any arguments provided to the call must match
627the function's prototype, and must be provided in the order specified
628by that prototype.
629
630For example, @code{some_val} is a @code{gdb.Value} instance
631representing a function that takes two integers as arguments. To
632execute this function, call it like so:
633
634@smallexample
635result = some_val (10,20)
636@end smallexample
637
638Any values returned from a function call will be stored as a
639@code{gdb.Value}.
640
641The following attributes are provided:
642
643@defvar Value.address
644If this object is addressable, this read-only attribute holds a
645@code{gdb.Value} object representing the address. Otherwise,
646this attribute holds @code{None}.
647@end defvar
648
649@cindex optimized out value in Python
650@defvar Value.is_optimized_out
651This read-only boolean attribute is true if the compiler optimized out
652this value, thus it is not available for fetching from the inferior.
653@end defvar
654
655@defvar Value.type
656The type of this @code{gdb.Value}. The value of this attribute is a
657@code{gdb.Type} object (@pxref{Types In Python}).
658@end defvar
659
660@defvar Value.dynamic_type
9da10427
TT
661The dynamic type of this @code{gdb.Value}. This uses the object's
662virtual table and the C@t{++} run-time type information
663(@acronym{RTTI}) to determine the dynamic type of the value. If this
664value is of class type, it will return the class in which the value is
665embedded, if any. If this value is of pointer or reference to a class
666type, it will compute the dynamic type of the referenced object, and
667return a pointer or reference to that type, respectively. In all
668other cases, it will return the value's static type.
329baa95
DE
669
670Note that this feature will only work when debugging a C@t{++} program
671that includes @acronym{RTTI} for the object in question. Otherwise,
672it will just return the static type of the value as in @kbd{ptype foo}
673(@pxref{Symbols, ptype}).
674@end defvar
675
676@defvar Value.is_lazy
677The value of this read-only boolean attribute is @code{True} if this
678@code{gdb.Value} has not yet been fetched from the inferior.
679@value{GDBN} does not fetch values until necessary, for efficiency.
680For example:
681
682@smallexample
683myval = gdb.parse_and_eval ('somevar')
684@end smallexample
685
686The value of @code{somevar} is not fetched at this time. It will be
687fetched when the value is needed, or when the @code{fetch_lazy}
688method is invoked.
689@end defvar
690
691The following methods are provided:
692
693@defun Value.__init__ (@var{val})
694Many Python values can be converted directly to a @code{gdb.Value} via
695this object initializer. Specifically:
696
697@table @asis
698@item Python boolean
699A Python boolean is converted to the boolean type from the current
700language.
701
702@item Python integer
703A Python integer is converted to the C @code{long} type for the
704current architecture.
705
706@item Python long
707A Python long is converted to the C @code{long long} type for the
708current architecture.
709
710@item Python float
711A Python float is converted to the C @code{double} type for the
712current architecture.
713
714@item Python string
b3ce5e5f
DE
715A Python string is converted to a target string in the current target
716language using the current target encoding.
717If a character cannot be represented in the current target encoding,
718then an exception is thrown.
329baa95
DE
719
720@item @code{gdb.Value}
721If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
722
723@item @code{gdb.LazyString}
724If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
725Python}), then the lazy string's @code{value} method is called, and
726its result is used.
727@end table
728@end defun
729
730@defun Value.cast (type)
731Return a new instance of @code{gdb.Value} that is the result of
732casting this instance to the type described by @var{type}, which must
733be a @code{gdb.Type} object. If the cast cannot be performed for some
734reason, this method throws an exception.
735@end defun
736
737@defun Value.dereference ()
738For pointer data types, this method returns a new @code{gdb.Value} object
739whose contents is the object pointed to by the pointer. For example, if
740@code{foo} is a C pointer to an @code{int}, declared in your C program as
741
742@smallexample
743int *foo;
744@end smallexample
745
746@noindent
747then you can use the corresponding @code{gdb.Value} to access what
748@code{foo} points to like this:
749
750@smallexample
751bar = foo.dereference ()
752@end smallexample
753
754The result @code{bar} will be a @code{gdb.Value} object holding the
755value pointed to by @code{foo}.
756
757A similar function @code{Value.referenced_value} exists which also
758returns @code{gdb.Value} objects corresonding to the values pointed to
759by pointer values (and additionally, values referenced by reference
760values). However, the behavior of @code{Value.dereference}
761differs from @code{Value.referenced_value} by the fact that the
762behavior of @code{Value.dereference} is identical to applying the C
763unary operator @code{*} on a given value. For example, consider a
764reference to a pointer @code{ptrref}, declared in your C@t{++} program
765as
766
767@smallexample
768typedef int *intptr;
769...
770int val = 10;
771intptr ptr = &val;
772intptr &ptrref = ptr;
773@end smallexample
774
775Though @code{ptrref} is a reference value, one can apply the method
776@code{Value.dereference} to the @code{gdb.Value} object corresponding
777to it and obtain a @code{gdb.Value} which is identical to that
778corresponding to @code{val}. However, if you apply the method
779@code{Value.referenced_value}, the result would be a @code{gdb.Value}
780object identical to that corresponding to @code{ptr}.
781
782@smallexample
783py_ptrref = gdb.parse_and_eval ("ptrref")
784py_val = py_ptrref.dereference ()
785py_ptr = py_ptrref.referenced_value ()
786@end smallexample
787
788The @code{gdb.Value} object @code{py_val} is identical to that
789corresponding to @code{val}, and @code{py_ptr} is identical to that
790corresponding to @code{ptr}. In general, @code{Value.dereference} can
791be applied whenever the C unary operator @code{*} can be applied
792to the corresponding C value. For those cases where applying both
793@code{Value.dereference} and @code{Value.referenced_value} is allowed,
794the results obtained need not be identical (as we have seen in the above
795example). The results are however identical when applied on
796@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
797objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
798@end defun
799
800@defun Value.referenced_value ()
801For pointer or reference data types, this method returns a new
802@code{gdb.Value} object corresponding to the value referenced by the
803pointer/reference value. For pointer data types,
804@code{Value.dereference} and @code{Value.referenced_value} produce
805identical results. The difference between these methods is that
806@code{Value.dereference} cannot get the values referenced by reference
807values. For example, consider a reference to an @code{int}, declared
808in your C@t{++} program as
809
810@smallexample
811int val = 10;
812int &ref = val;
813@end smallexample
814
815@noindent
816then applying @code{Value.dereference} to the @code{gdb.Value} object
817corresponding to @code{ref} will result in an error, while applying
818@code{Value.referenced_value} will result in a @code{gdb.Value} object
819identical to that corresponding to @code{val}.
820
821@smallexample
822py_ref = gdb.parse_and_eval ("ref")
823er_ref = py_ref.dereference () # Results in error
824py_val = py_ref.referenced_value () # Returns the referenced value
825@end smallexample
826
827The @code{gdb.Value} object @code{py_val} is identical to that
828corresponding to @code{val}.
829@end defun
830
4c082a81
SC
831@defun Value.reference_value ()
832Return a @code{gdb.Value} object which is a reference to the value
833encapsulated by this instance.
834@end defun
835
836@defun Value.const_value ()
837Return a @code{gdb.Value} object which is a @code{const} version of the
838value encapsulated by this instance.
839@end defun
840
329baa95
DE
841@defun Value.dynamic_cast (type)
842Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
843operator were used. Consult a C@t{++} reference for details.
844@end defun
845
846@defun Value.reinterpret_cast (type)
847Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
848operator were used. Consult a C@t{++} reference for details.
849@end defun
850
851@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
852If this @code{gdb.Value} represents a string, then this method
853converts the contents to a Python string. Otherwise, this method will
854throw an exception.
855
b3ce5e5f
DE
856Values are interpreted as strings according to the rules of the
857current language. If the optional length argument is given, the
858string will be converted to that length, and will include any embedded
859zeroes that the string may contain. Otherwise, for languages
860where the string is zero-terminated, the entire string will be
861converted.
329baa95 862
b3ce5e5f
DE
863For example, in C-like languages, a value is a string if it is a pointer
864to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
865or @code{char32_t}.
329baa95
DE
866
867If the optional @var{encoding} argument is given, it must be a string
868naming the encoding of the string in the @code{gdb.Value}, such as
869@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
870the same encodings as the corresponding argument to Python's
871@code{string.decode} method, and the Python codec machinery will be used
872to convert the string. If @var{encoding} is not given, or if
873@var{encoding} is the empty string, then either the @code{target-charset}
874(@pxref{Character Sets}) will be used, or a language-specific encoding
875will be used, if the current language is able to supply one.
876
877The optional @var{errors} argument is the same as the corresponding
878argument to Python's @code{string.decode} method.
879
880If the optional @var{length} argument is given, the string will be
881fetched and converted to the given length.
882@end defun
883
884@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
885If this @code{gdb.Value} represents a string, then this method
886converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
887In Python}). Otherwise, this method will throw an exception.
888
889If the optional @var{encoding} argument is given, it must be a string
890naming the encoding of the @code{gdb.LazyString}. Some examples are:
891@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
892@var{encoding} argument is an encoding that @value{GDBN} does
893recognize, @value{GDBN} will raise an error.
894
895When a lazy string is printed, the @value{GDBN} encoding machinery is
896used to convert the string during printing. If the optional
897@var{encoding} argument is not provided, or is an empty string,
898@value{GDBN} will automatically select the encoding most suitable for
899the string type. For further information on encoding in @value{GDBN}
900please see @ref{Character Sets}.
901
902If the optional @var{length} argument is given, the string will be
903fetched and encoded to the length of characters specified. If
904the @var{length} argument is not provided, the string will be fetched
905and encoded until a null of appropriate width is found.
906@end defun
907
908@defun Value.fetch_lazy ()
909If the @code{gdb.Value} object is currently a lazy value
910(@code{gdb.Value.is_lazy} is @code{True}), then the value is
911fetched from the inferior. Any errors that occur in the process
912will produce a Python exception.
913
914If the @code{gdb.Value} object is not a lazy value, this method
915has no effect.
916
917This method does not return a value.
918@end defun
919
920
921@node Types In Python
922@subsubsection Types In Python
923@cindex types in Python
924@cindex Python, working with types
925
926@tindex gdb.Type
927@value{GDBN} represents types from the inferior using the class
928@code{gdb.Type}.
929
930The following type-related functions are available in the @code{gdb}
931module:
932
933@findex gdb.lookup_type
934@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 935This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
936
937If @var{block} is given, then @var{name} is looked up in that scope.
938Otherwise, it is searched for globally.
939
940Ordinarily, this function will return an instance of @code{gdb.Type}.
941If the named type cannot be found, it will throw an exception.
942@end defun
943
944If the type is a structure or class type, or an enum type, the fields
945of that type can be accessed using the Python @dfn{dictionary syntax}.
946For example, if @code{some_type} is a @code{gdb.Type} instance holding
947a structure type, you can access its @code{foo} field with:
948
949@smallexample
950bar = some_type['foo']
951@end smallexample
952
953@code{bar} will be a @code{gdb.Field} object; see below under the
954description of the @code{Type.fields} method for a description of the
955@code{gdb.Field} class.
956
957An instance of @code{Type} has the following attributes:
958
6d7bb824
TT
959@defvar Type.alignof
960The alignment of this type, in bytes. Type alignment comes from the
961debugging information; if it was not specified, then @value{GDBN} will
962use the relevant ABI to try to determine the alignment. In some
963cases, even this is not possible, and zero will be returned.
964@end defvar
965
329baa95
DE
966@defvar Type.code
967The type code for this type. The type code will be one of the
968@code{TYPE_CODE_} constants defined below.
969@end defvar
970
971@defvar Type.name
972The name of this type. If this type has no name, then @code{None}
973is returned.
974@end defvar
975
976@defvar Type.sizeof
977The size of this type, in target @code{char} units. Usually, a
978target's @code{char} type will be an 8-bit byte. However, on some
979unusual platforms, this type may have a different size.
980@end defvar
981
982@defvar Type.tag
983The tag name for this type. The tag name is the name after
984@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
985languages have this concept. If this type has no tag name, then
986@code{None} is returned.
987@end defvar
988
989The following methods are provided:
990
991@defun Type.fields ()
992For structure and union types, this method returns the fields. Range
993types have two fields, the minimum and maximum values. Enum types
994have one field per enum constant. Function and method types have one
995field per parameter. The base types of C@t{++} classes are also
996represented as fields. If the type has no fields, or does not fit
997into one of these categories, an empty sequence will be returned.
998
999Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1000@table @code
1001@item bitpos
1002This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1003(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1004in bits, from the start of the containing type.
1005
1006@item enumval
1007This attribute is only available for @code{enum} fields, and its value
1008is the enumeration member's integer representation.
1009
1010@item name
1011The name of the field, or @code{None} for anonymous fields.
1012
1013@item artificial
1014This is @code{True} if the field is artificial, usually meaning that
1015it was provided by the compiler and not the user. This attribute is
1016always provided, and is @code{False} if the field is not artificial.
1017
1018@item is_base_class
1019This is @code{True} if the field represents a base class of a C@t{++}
1020structure. This attribute is always provided, and is @code{False}
1021if the field is not a base class of the type that is the argument of
1022@code{fields}, or if that type was not a C@t{++} class.
1023
1024@item bitsize
1025If the field is packed, or is a bitfield, then this will have a
1026non-zero value, which is the size of the field in bits. Otherwise,
1027this will be zero; in this case the field's size is given by its type.
1028
1029@item type
1030The type of the field. This is usually an instance of @code{Type},
1031but it can be @code{None} in some situations.
1032
1033@item parent_type
1034The type which contains this field. This is an instance of
1035@code{gdb.Type}.
1036@end table
1037@end defun
1038
1039@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1040Return a new @code{gdb.Type} object which represents an array of this
1041type. If one argument is given, it is the inclusive upper bound of
1042the array; in this case the lower bound is zero. If two arguments are
1043given, the first argument is the lower bound of the array, and the
1044second argument is the upper bound of the array. An array's length
1045must not be negative, but the bounds can be.
1046@end defun
1047
1048@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1049Return a new @code{gdb.Type} object which represents a vector of this
1050type. If one argument is given, it is the inclusive upper bound of
1051the vector; in this case the lower bound is zero. If two arguments are
1052given, the first argument is the lower bound of the vector, and the
1053second argument is the upper bound of the vector. A vector's length
1054must not be negative, but the bounds can be.
1055
1056The difference between an @code{array} and a @code{vector} is that
1057arrays behave like in C: when used in expressions they decay to a pointer
1058to the first element whereas vectors are treated as first class values.
1059@end defun
1060
1061@defun Type.const ()
1062Return a new @code{gdb.Type} object which represents a
1063@code{const}-qualified variant of this type.
1064@end defun
1065
1066@defun Type.volatile ()
1067Return a new @code{gdb.Type} object which represents a
1068@code{volatile}-qualified variant of this type.
1069@end defun
1070
1071@defun Type.unqualified ()
1072Return a new @code{gdb.Type} object which represents an unqualified
1073variant of this type. That is, the result is neither @code{const} nor
1074@code{volatile}.
1075@end defun
1076
1077@defun Type.range ()
1078Return a Python @code{Tuple} object that contains two elements: the
1079low bound of the argument type and the high bound of that type. If
1080the type does not have a range, @value{GDBN} will raise a
1081@code{gdb.error} exception (@pxref{Exception Handling}).
1082@end defun
1083
1084@defun Type.reference ()
1085Return a new @code{gdb.Type} object which represents a reference to this
1086type.
1087@end defun
1088
1089@defun Type.pointer ()
1090Return a new @code{gdb.Type} object which represents a pointer to this
1091type.
1092@end defun
1093
1094@defun Type.strip_typedefs ()
1095Return a new @code{gdb.Type} that represents the real type,
1096after removing all layers of typedefs.
1097@end defun
1098
1099@defun Type.target ()
1100Return a new @code{gdb.Type} object which represents the target type
1101of this type.
1102
1103For a pointer type, the target type is the type of the pointed-to
1104object. For an array type (meaning C-like arrays), the target type is
1105the type of the elements of the array. For a function or method type,
1106the target type is the type of the return value. For a complex type,
1107the target type is the type of the elements. For a typedef, the
1108target type is the aliased type.
1109
1110If the type does not have a target, this method will throw an
1111exception.
1112@end defun
1113
1114@defun Type.template_argument (n @r{[}, block@r{]})
1115If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1116return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1117value of the @var{n}th template argument (indexed starting at 0).
329baa95 1118
1a6a384b
JL
1119If this @code{gdb.Type} is not a template type, or if the type has fewer
1120than @var{n} template arguments, this will throw an exception.
1121Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1122
1123If @var{block} is given, then @var{name} is looked up in that scope.
1124Otherwise, it is searched for globally.
1125@end defun
1126
59fb7612
SS
1127@defun Type.optimized_out ()
1128Return @code{gdb.Value} instance of this type whose value is optimized
1129out. This allows a frame decorator to indicate that the value of an
1130argument or a local variable is not known.
1131@end defun
329baa95
DE
1132
1133Each type has a code, which indicates what category this type falls
1134into. The available type categories are represented by constants
1135defined in the @code{gdb} module:
1136
b3ce5e5f
DE
1137@vtable @code
1138@vindex TYPE_CODE_PTR
329baa95
DE
1139@item gdb.TYPE_CODE_PTR
1140The type is a pointer.
1141
b3ce5e5f 1142@vindex TYPE_CODE_ARRAY
329baa95
DE
1143@item gdb.TYPE_CODE_ARRAY
1144The type is an array.
1145
b3ce5e5f 1146@vindex TYPE_CODE_STRUCT
329baa95
DE
1147@item gdb.TYPE_CODE_STRUCT
1148The type is a structure.
1149
b3ce5e5f 1150@vindex TYPE_CODE_UNION
329baa95
DE
1151@item gdb.TYPE_CODE_UNION
1152The type is a union.
1153
b3ce5e5f 1154@vindex TYPE_CODE_ENUM
329baa95
DE
1155@item gdb.TYPE_CODE_ENUM
1156The type is an enum.
1157
b3ce5e5f 1158@vindex TYPE_CODE_FLAGS
329baa95
DE
1159@item gdb.TYPE_CODE_FLAGS
1160A bit flags type, used for things such as status registers.
1161
b3ce5e5f 1162@vindex TYPE_CODE_FUNC
329baa95
DE
1163@item gdb.TYPE_CODE_FUNC
1164The type is a function.
1165
b3ce5e5f 1166@vindex TYPE_CODE_INT
329baa95
DE
1167@item gdb.TYPE_CODE_INT
1168The type is an integer type.
1169
b3ce5e5f 1170@vindex TYPE_CODE_FLT
329baa95
DE
1171@item gdb.TYPE_CODE_FLT
1172A floating point type.
1173
b3ce5e5f 1174@vindex TYPE_CODE_VOID
329baa95
DE
1175@item gdb.TYPE_CODE_VOID
1176The special type @code{void}.
1177
b3ce5e5f 1178@vindex TYPE_CODE_SET
329baa95
DE
1179@item gdb.TYPE_CODE_SET
1180A Pascal set type.
1181
b3ce5e5f 1182@vindex TYPE_CODE_RANGE
329baa95
DE
1183@item gdb.TYPE_CODE_RANGE
1184A range type, that is, an integer type with bounds.
1185
b3ce5e5f 1186@vindex TYPE_CODE_STRING
329baa95
DE
1187@item gdb.TYPE_CODE_STRING
1188A string type. Note that this is only used for certain languages with
1189language-defined string types; C strings are not represented this way.
1190
b3ce5e5f 1191@vindex TYPE_CODE_BITSTRING
329baa95
DE
1192@item gdb.TYPE_CODE_BITSTRING
1193A string of bits. It is deprecated.
1194
b3ce5e5f 1195@vindex TYPE_CODE_ERROR
329baa95
DE
1196@item gdb.TYPE_CODE_ERROR
1197An unknown or erroneous type.
1198
b3ce5e5f 1199@vindex TYPE_CODE_METHOD
329baa95 1200@item gdb.TYPE_CODE_METHOD
9c37b5ae 1201A method type, as found in C@t{++}.
329baa95 1202
b3ce5e5f 1203@vindex TYPE_CODE_METHODPTR
329baa95
DE
1204@item gdb.TYPE_CODE_METHODPTR
1205A pointer-to-member-function.
1206
b3ce5e5f 1207@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1208@item gdb.TYPE_CODE_MEMBERPTR
1209A pointer-to-member.
1210
b3ce5e5f 1211@vindex TYPE_CODE_REF
329baa95
DE
1212@item gdb.TYPE_CODE_REF
1213A reference type.
1214
3fcf899d
AV
1215@vindex TYPE_CODE_RVALUE_REF
1216@item gdb.TYPE_CODE_RVALUE_REF
1217A C@t{++}11 rvalue reference type.
1218
b3ce5e5f 1219@vindex TYPE_CODE_CHAR
329baa95
DE
1220@item gdb.TYPE_CODE_CHAR
1221A character type.
1222
b3ce5e5f 1223@vindex TYPE_CODE_BOOL
329baa95
DE
1224@item gdb.TYPE_CODE_BOOL
1225A boolean type.
1226
b3ce5e5f 1227@vindex TYPE_CODE_COMPLEX
329baa95
DE
1228@item gdb.TYPE_CODE_COMPLEX
1229A complex float type.
1230
b3ce5e5f 1231@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1232@item gdb.TYPE_CODE_TYPEDEF
1233A typedef to some other type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1236@item gdb.TYPE_CODE_NAMESPACE
1237A C@t{++} namespace.
1238
b3ce5e5f 1239@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1240@item gdb.TYPE_CODE_DECFLOAT
1241A decimal floating point type.
1242
b3ce5e5f 1243@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1244@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1245A function internal to @value{GDBN}. This is the type used to represent
1246convenience functions.
b3ce5e5f 1247@end vtable
329baa95
DE
1248
1249Further support for types is provided in the @code{gdb.types}
1250Python module (@pxref{gdb.types}).
1251
1252@node Pretty Printing API
1253@subsubsection Pretty Printing API
b3ce5e5f 1254@cindex python pretty printing api
329baa95 1255
329baa95 1256A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1257specific interface, defined here. An example output is provided
1258(@pxref{Pretty Printing}).
329baa95
DE
1259
1260@defun pretty_printer.children (self)
1261@value{GDBN} will call this method on a pretty-printer to compute the
1262children of the pretty-printer's value.
1263
1264This method must return an object conforming to the Python iterator
1265protocol. Each item returned by the iterator must be a tuple holding
1266two elements. The first element is the ``name'' of the child; the
1267second element is the child's value. The value can be any Python
1268object which is convertible to a @value{GDBN} value.
1269
1270This method is optional. If it does not exist, @value{GDBN} will act
1271as though the value has no children.
1272@end defun
1273
1274@defun pretty_printer.display_hint (self)
1275The CLI may call this method and use its result to change the
1276formatting of a value. The result will also be supplied to an MI
1277consumer as a @samp{displayhint} attribute of the variable being
1278printed.
1279
1280This method is optional. If it does exist, this method must return a
1281string.
1282
1283Some display hints are predefined by @value{GDBN}:
1284
1285@table @samp
1286@item array
1287Indicate that the object being printed is ``array-like''. The CLI
1288uses this to respect parameters such as @code{set print elements} and
1289@code{set print array}.
1290
1291@item map
1292Indicate that the object being printed is ``map-like'', and that the
1293children of this value can be assumed to alternate between keys and
1294values.
1295
1296@item string
1297Indicate that the object being printed is ``string-like''. If the
1298printer's @code{to_string} method returns a Python string of some
1299kind, then @value{GDBN} will call its internal language-specific
1300string-printing function to format the string. For the CLI this means
1301adding quotation marks, possibly escaping some characters, respecting
1302@code{set print elements}, and the like.
1303@end table
1304@end defun
1305
1306@defun pretty_printer.to_string (self)
1307@value{GDBN} will call this method to display the string
1308representation of the value passed to the object's constructor.
1309
1310When printing from the CLI, if the @code{to_string} method exists,
1311then @value{GDBN} will prepend its result to the values returned by
1312@code{children}. Exactly how this formatting is done is dependent on
1313the display hint, and may change as more hints are added. Also,
1314depending on the print settings (@pxref{Print Settings}), the CLI may
1315print just the result of @code{to_string} in a stack trace, omitting
1316the result of @code{children}.
1317
1318If this method returns a string, it is printed verbatim.
1319
1320Otherwise, if this method returns an instance of @code{gdb.Value},
1321then @value{GDBN} prints this value. This may result in a call to
1322another pretty-printer.
1323
1324If instead the method returns a Python value which is convertible to a
1325@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1326the resulting value. Again, this may result in a call to another
1327pretty-printer. Python scalars (integers, floats, and booleans) and
1328strings are convertible to @code{gdb.Value}; other types are not.
1329
1330Finally, if this method returns @code{None} then no further operations
1331are peformed in this method and nothing is printed.
1332
1333If the result is not one of these types, an exception is raised.
1334@end defun
1335
1336@value{GDBN} provides a function which can be used to look up the
1337default pretty-printer for a @code{gdb.Value}:
1338
1339@findex gdb.default_visualizer
1340@defun gdb.default_visualizer (value)
1341This function takes a @code{gdb.Value} object as an argument. If a
1342pretty-printer for this value exists, then it is returned. If no such
1343printer exists, then this returns @code{None}.
1344@end defun
1345
1346@node Selecting Pretty-Printers
1347@subsubsection Selecting Pretty-Printers
b3ce5e5f 1348@cindex selecting python pretty-printers
329baa95
DE
1349
1350The Python list @code{gdb.pretty_printers} contains an array of
1351functions or callable objects that have been registered via addition
1352as a pretty-printer. Printers in this list are called @code{global}
1353printers, they're available when debugging all inferiors.
1354Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1355Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1356attribute.
1357
1358Each function on these lists is passed a single @code{gdb.Value}
1359argument and should return a pretty-printer object conforming to the
1360interface definition above (@pxref{Pretty Printing API}). If a function
1361cannot create a pretty-printer for the value, it should return
1362@code{None}.
1363
1364@value{GDBN} first checks the @code{pretty_printers} attribute of each
1365@code{gdb.Objfile} in the current program space and iteratively calls
1366each enabled lookup routine in the list for that @code{gdb.Objfile}
1367until it receives a pretty-printer object.
1368If no pretty-printer is found in the objfile lists, @value{GDBN} then
1369searches the pretty-printer list of the current program space,
1370calling each enabled function until an object is returned.
1371After these lists have been exhausted, it tries the global
1372@code{gdb.pretty_printers} list, again calling each enabled function until an
1373object is returned.
1374
1375The order in which the objfiles are searched is not specified. For a
1376given list, functions are always invoked from the head of the list,
1377and iterated over sequentially until the end of the list, or a printer
1378object is returned.
1379
1380For various reasons a pretty-printer may not work.
1381For example, the underlying data structure may have changed and
1382the pretty-printer is out of date.
1383
1384The consequences of a broken pretty-printer are severe enough that
1385@value{GDBN} provides support for enabling and disabling individual
1386printers. For example, if @code{print frame-arguments} is on,
1387a backtrace can become highly illegible if any argument is printed
1388with a broken printer.
1389
1390Pretty-printers are enabled and disabled by attaching an @code{enabled}
1391attribute to the registered function or callable object. If this attribute
1392is present and its value is @code{False}, the printer is disabled, otherwise
1393the printer is enabled.
1394
1395@node Writing a Pretty-Printer
1396@subsubsection Writing a Pretty-Printer
1397@cindex writing a pretty-printer
1398
1399A pretty-printer consists of two parts: a lookup function to detect
1400if the type is supported, and the printer itself.
1401
1402Here is an example showing how a @code{std::string} printer might be
1403written. @xref{Pretty Printing API}, for details on the API this class
1404must provide.
1405
1406@smallexample
1407class StdStringPrinter(object):
1408 "Print a std::string"
1409
1410 def __init__(self, val):
1411 self.val = val
1412
1413 def to_string(self):
1414 return self.val['_M_dataplus']['_M_p']
1415
1416 def display_hint(self):
1417 return 'string'
1418@end smallexample
1419
1420And here is an example showing how a lookup function for the printer
1421example above might be written.
1422
1423@smallexample
1424def str_lookup_function(val):
1425 lookup_tag = val.type.tag
1426 if lookup_tag == None:
1427 return None
1428 regex = re.compile("^std::basic_string<char,.*>$")
1429 if regex.match(lookup_tag):
1430 return StdStringPrinter(val)
1431 return None
1432@end smallexample
1433
1434The example lookup function extracts the value's type, and attempts to
1435match it to a type that it can pretty-print. If it is a type the
1436printer can pretty-print, it will return a printer object. If not, it
1437returns @code{None}.
1438
1439We recommend that you put your core pretty-printers into a Python
1440package. If your pretty-printers are for use with a library, we
1441further recommend embedding a version number into the package name.
1442This practice will enable @value{GDBN} to load multiple versions of
1443your pretty-printers at the same time, because they will have
1444different names.
1445
1446You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1447can be evaluated multiple times without changing its meaning. An
1448ideal auto-load file will consist solely of @code{import}s of your
1449printer modules, followed by a call to a register pretty-printers with
1450the current objfile.
1451
1452Taken as a whole, this approach will scale nicely to multiple
1453inferiors, each potentially using a different library version.
1454Embedding a version number in the Python package name will ensure that
1455@value{GDBN} is able to load both sets of printers simultaneously.
1456Then, because the search for pretty-printers is done by objfile, and
1457because your auto-loaded code took care to register your library's
1458printers with a specific objfile, @value{GDBN} will find the correct
1459printers for the specific version of the library used by each
1460inferior.
1461
1462To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1463this code might appear in @code{gdb.libstdcxx.v6}:
1464
1465@smallexample
1466def register_printers(objfile):
1467 objfile.pretty_printers.append(str_lookup_function)
1468@end smallexample
1469
1470@noindent
1471And then the corresponding contents of the auto-load file would be:
1472
1473@smallexample
1474import gdb.libstdcxx.v6
1475gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1476@end smallexample
1477
1478The previous example illustrates a basic pretty-printer.
1479There are a few things that can be improved on.
1480The printer doesn't have a name, making it hard to identify in a
1481list of installed printers. The lookup function has a name, but
1482lookup functions can have arbitrary, even identical, names.
1483
1484Second, the printer only handles one type, whereas a library typically has
1485several types. One could install a lookup function for each desired type
1486in the library, but one could also have a single lookup function recognize
1487several types. The latter is the conventional way this is handled.
1488If a pretty-printer can handle multiple data types, then its
1489@dfn{subprinters} are the printers for the individual data types.
1490
1491The @code{gdb.printing} module provides a formal way of solving these
1492problems (@pxref{gdb.printing}).
1493Here is another example that handles multiple types.
1494
1495These are the types we are going to pretty-print:
1496
1497@smallexample
1498struct foo @{ int a, b; @};
1499struct bar @{ struct foo x, y; @};
1500@end smallexample
1501
1502Here are the printers:
1503
1504@smallexample
1505class fooPrinter:
1506 """Print a foo object."""
1507
1508 def __init__(self, val):
1509 self.val = val
1510
1511 def to_string(self):
1512 return ("a=<" + str(self.val["a"]) +
1513 "> b=<" + str(self.val["b"]) + ">")
1514
1515class barPrinter:
1516 """Print a bar object."""
1517
1518 def __init__(self, val):
1519 self.val = val
1520
1521 def to_string(self):
1522 return ("x=<" + str(self.val["x"]) +
1523 "> y=<" + str(self.val["y"]) + ">")
1524@end smallexample
1525
1526This example doesn't need a lookup function, that is handled by the
1527@code{gdb.printing} module. Instead a function is provided to build up
1528the object that handles the lookup.
1529
1530@smallexample
1531import gdb.printing
1532
1533def build_pretty_printer():
1534 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1535 "my_library")
1536 pp.add_printer('foo', '^foo$', fooPrinter)
1537 pp.add_printer('bar', '^bar$', barPrinter)
1538 return pp
1539@end smallexample
1540
1541And here is the autoload support:
1542
1543@smallexample
1544import gdb.printing
1545import my_library
1546gdb.printing.register_pretty_printer(
1547 gdb.current_objfile(),
1548 my_library.build_pretty_printer())
1549@end smallexample
1550
1551Finally, when this printer is loaded into @value{GDBN}, here is the
1552corresponding output of @samp{info pretty-printer}:
1553
1554@smallexample
1555(gdb) info pretty-printer
1556my_library.so:
1557 my_library
1558 foo
1559 bar
1560@end smallexample
1561
1562@node Type Printing API
1563@subsubsection Type Printing API
1564@cindex type printing API for Python
1565
1566@value{GDBN} provides a way for Python code to customize type display.
1567This is mainly useful for substituting canonical typedef names for
1568types.
1569
1570@cindex type printer
1571A @dfn{type printer} is just a Python object conforming to a certain
1572protocol. A simple base class implementing the protocol is provided;
1573see @ref{gdb.types}. A type printer must supply at least:
1574
1575@defivar type_printer enabled
1576A boolean which is True if the printer is enabled, and False
1577otherwise. This is manipulated by the @code{enable type-printer}
1578and @code{disable type-printer} commands.
1579@end defivar
1580
1581@defivar type_printer name
1582The name of the type printer. This must be a string. This is used by
1583the @code{enable type-printer} and @code{disable type-printer}
1584commands.
1585@end defivar
1586
1587@defmethod type_printer instantiate (self)
1588This is called by @value{GDBN} at the start of type-printing. It is
1589only called if the type printer is enabled. This method must return a
1590new object that supplies a @code{recognize} method, as described below.
1591@end defmethod
1592
1593
1594When displaying a type, say via the @code{ptype} command, @value{GDBN}
1595will compute a list of type recognizers. This is done by iterating
1596first over the per-objfile type printers (@pxref{Objfiles In Python}),
1597followed by the per-progspace type printers (@pxref{Progspaces In
1598Python}), and finally the global type printers.
1599
1600@value{GDBN} will call the @code{instantiate} method of each enabled
1601type printer. If this method returns @code{None}, then the result is
1602ignored; otherwise, it is appended to the list of recognizers.
1603
1604Then, when @value{GDBN} is going to display a type name, it iterates
1605over the list of recognizers. For each one, it calls the recognition
1606function, stopping if the function returns a non-@code{None} value.
1607The recognition function is defined as:
1608
1609@defmethod type_recognizer recognize (self, type)
1610If @var{type} is not recognized, return @code{None}. Otherwise,
1611return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1612The @var{type} argument will be an instance of @code{gdb.Type}
1613(@pxref{Types In Python}).
329baa95
DE
1614@end defmethod
1615
1616@value{GDBN} uses this two-pass approach so that type printers can
1617efficiently cache information without holding on to it too long. For
1618example, it can be convenient to look up type information in a type
1619printer and hold it for a recognizer's lifetime; if a single pass were
1620done then type printers would have to make use of the event system in
1621order to avoid holding information that could become stale as the
1622inferior changed.
1623
1624@node Frame Filter API
521b499b 1625@subsubsection Filtering Frames
329baa95
DE
1626@cindex frame filters api
1627
1628Frame filters are Python objects that manipulate the visibility of a
1629frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1630@value{GDBN}.
1631
1632Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1633commands (@pxref{GDB/MI}), those that return a collection of frames
1634are affected. The commands that work with frame filters are:
1635
1636@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1637@code{-stack-list-frames}
1638(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1639@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1640-stack-list-variables command}), @code{-stack-list-arguments}
1641@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1642@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1643-stack-list-locals command}).
1644
1645A frame filter works by taking an iterator as an argument, applying
1646actions to the contents of that iterator, and returning another
1647iterator (or, possibly, the same iterator it was provided in the case
1648where the filter does not perform any operations). Typically, frame
1649filters utilize tools such as the Python's @code{itertools} module to
1650work with and create new iterators from the source iterator.
1651Regardless of how a filter chooses to apply actions, it must not alter
1652the underlying @value{GDBN} frame or frames, or attempt to alter the
1653call-stack within @value{GDBN}. This preserves data integrity within
1654@value{GDBN}. Frame filters are executed on a priority basis and care
1655should be taken that some frame filters may have been executed before,
1656and that some frame filters will be executed after.
1657
1658An important consideration when designing frame filters, and well
1659worth reflecting upon, is that frame filters should avoid unwinding
1660the call stack if possible. Some stacks can run very deep, into the
1661tens of thousands in some cases. To search every frame when a frame
1662filter executes may be too expensive at that step. The frame filter
1663cannot know how many frames it has to iterate over, and it may have to
1664iterate through them all. This ends up duplicating effort as
1665@value{GDBN} performs this iteration when it prints the frames. If
1666the filter can defer unwinding frames until frame decorators are
1667executed, after the last filter has executed, it should. @xref{Frame
1668Decorator API}, for more information on decorators. Also, there are
1669examples for both frame decorators and filters in later chapters.
1670@xref{Writing a Frame Filter}, for more information.
1671
1672The Python dictionary @code{gdb.frame_filters} contains key/object
1673pairings that comprise a frame filter. Frame filters in this
1674dictionary are called @code{global} frame filters, and they are
1675available when debugging all inferiors. These frame filters must
1676register with the dictionary directly. In addition to the
1677@code{global} dictionary, there are other dictionaries that are loaded
1678with different inferiors via auto-loading (@pxref{Python
1679Auto-loading}). The two other areas where frame filter dictionaries
1680can be found are: @code{gdb.Progspace} which contains a
1681@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1682object which also contains a @code{frame_filters} dictionary
1683attribute.
1684
1685When a command is executed from @value{GDBN} that is compatible with
1686frame filters, @value{GDBN} combines the @code{global},
1687@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1688loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1689several frames, and thus several object files, might be in use.
1690@value{GDBN} then prunes any frame filter whose @code{enabled}
1691attribute is @code{False}. This pruned list is then sorted according
1692to the @code{priority} attribute in each filter.
1693
1694Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1695creates an iterator which wraps each frame in the call stack in a
1696@code{FrameDecorator} object, and calls each filter in order. The
1697output from the previous filter will always be the input to the next
1698filter, and so on.
1699
1700Frame filters have a mandatory interface which each frame filter must
1701implement, defined here:
1702
1703@defun FrameFilter.filter (iterator)
1704@value{GDBN} will call this method on a frame filter when it has
1705reached the order in the priority list for that filter.
1706
1707For example, if there are four frame filters:
1708
1709@smallexample
1710Name Priority
1711
1712Filter1 5
1713Filter2 10
1714Filter3 100
1715Filter4 1
1716@end smallexample
1717
1718The order that the frame filters will be called is:
1719
1720@smallexample
1721Filter3 -> Filter2 -> Filter1 -> Filter4
1722@end smallexample
1723
1724Note that the output from @code{Filter3} is passed to the input of
1725@code{Filter2}, and so on.
1726
1727This @code{filter} method is passed a Python iterator. This iterator
1728contains a sequence of frame decorators that wrap each
1729@code{gdb.Frame}, or a frame decorator that wraps another frame
1730decorator. The first filter that is executed in the sequence of frame
1731filters will receive an iterator entirely comprised of default
1732@code{FrameDecorator} objects. However, after each frame filter is
1733executed, the previous frame filter may have wrapped some or all of
1734the frame decorators with their own frame decorator. As frame
1735decorators must also conform to a mandatory interface, these
1736decorators can be assumed to act in a uniform manner (@pxref{Frame
1737Decorator API}).
1738
1739This method must return an object conforming to the Python iterator
1740protocol. Each item in the iterator must be an object conforming to
1741the frame decorator interface. If a frame filter does not wish to
1742perform any operations on this iterator, it should return that
1743iterator untouched.
1744
1745This method is not optional. If it does not exist, @value{GDBN} will
1746raise and print an error.
1747@end defun
1748
1749@defvar FrameFilter.name
1750The @code{name} attribute must be Python string which contains the
1751name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1752Management}). This attribute may contain any combination of letters
1753or numbers. Care should be taken to ensure that it is unique. This
1754attribute is mandatory.
1755@end defvar
1756
1757@defvar FrameFilter.enabled
1758The @code{enabled} attribute must be Python boolean. This attribute
1759indicates to @value{GDBN} whether the frame filter is enabled, and
1760should be considered when frame filters are executed. If
1761@code{enabled} is @code{True}, then the frame filter will be executed
1762when any of the backtrace commands detailed earlier in this chapter
1763are executed. If @code{enabled} is @code{False}, then the frame
1764filter will not be executed. This attribute is mandatory.
1765@end defvar
1766
1767@defvar FrameFilter.priority
1768The @code{priority} attribute must be Python integer. This attribute
1769controls the order of execution in relation to other frame filters.
1770There are no imposed limits on the range of @code{priority} other than
1771it must be a valid integer. The higher the @code{priority} attribute,
1772the sooner the frame filter will be executed in relation to other
1773frame filters. Although @code{priority} can be negative, it is
1774recommended practice to assume zero is the lowest priority that a
1775frame filter can be assigned. Frame filters that have the same
1776priority are executed in unsorted order in that priority slot. This
521b499b 1777attribute is mandatory. 100 is a good default priority.
329baa95
DE
1778@end defvar
1779
1780@node Frame Decorator API
521b499b 1781@subsubsection Decorating Frames
329baa95
DE
1782@cindex frame decorator api
1783
1784Frame decorators are sister objects to frame filters (@pxref{Frame
1785Filter API}). Frame decorators are applied by a frame filter and can
1786only be used in conjunction with frame filters.
1787
1788The purpose of a frame decorator is to customize the printed content
1789of each @code{gdb.Frame} in commands where frame filters are executed.
1790This concept is called decorating a frame. Frame decorators decorate
1791a @code{gdb.Frame} with Python code contained within each API call.
1792This separates the actual data contained in a @code{gdb.Frame} from
1793the decorated data produced by a frame decorator. This abstraction is
1794necessary to maintain integrity of the data contained in each
1795@code{gdb.Frame}.
1796
1797Frame decorators have a mandatory interface, defined below.
1798
1799@value{GDBN} already contains a frame decorator called
1800@code{FrameDecorator}. This contains substantial amounts of
1801boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1802recommended that other frame decorators inherit and extend this
1803object, and only to override the methods needed.
1804
521b499b
TT
1805@tindex gdb.FrameDecorator
1806@code{FrameDecorator} is defined in the Python module
1807@code{gdb.FrameDecorator}, so your code can import it like:
1808@smallexample
1809from gdb.FrameDecorator import FrameDecorator
1810@end smallexample
1811
329baa95
DE
1812@defun FrameDecorator.elided (self)
1813
1814The @code{elided} method groups frames together in a hierarchical
1815system. An example would be an interpreter, where multiple low-level
1816frames make up a single call in the interpreted language. In this
1817example, the frame filter would elide the low-level frames and present
1818a single high-level frame, representing the call in the interpreted
1819language, to the user.
1820
1821The @code{elided} function must return an iterable and this iterable
1822must contain the frames that are being elided wrapped in a suitable
1823frame decorator. If no frames are being elided this function may
1824return an empty iterable, or @code{None}. Elided frames are indented
1825from normal frames in a @code{CLI} backtrace, or in the case of
1826@code{GDB/MI}, are placed in the @code{children} field of the eliding
1827frame.
1828
1829It is the frame filter's task to also filter out the elided frames from
1830the source iterator. This will avoid printing the frame twice.
1831@end defun
1832
1833@defun FrameDecorator.function (self)
1834
1835This method returns the name of the function in the frame that is to
1836be printed.
1837
1838This method must return a Python string describing the function, or
1839@code{None}.
1840
1841If this function returns @code{None}, @value{GDBN} will not print any
1842data for this field.
1843@end defun
1844
1845@defun FrameDecorator.address (self)
1846
1847This method returns the address of the frame that is to be printed.
1848
1849This method must return a Python numeric integer type of sufficient
1850size to describe the address of the frame, or @code{None}.
1851
1852If this function returns a @code{None}, @value{GDBN} will not print
1853any data for this field.
1854@end defun
1855
1856@defun FrameDecorator.filename (self)
1857
1858This method returns the filename and path associated with this frame.
1859
1860This method must return a Python string containing the filename and
1861the path to the object file backing the frame, or @code{None}.
1862
1863If this function returns a @code{None}, @value{GDBN} will not print
1864any data for this field.
1865@end defun
1866
1867@defun FrameDecorator.line (self):
1868
1869This method returns the line number associated with the current
1870position within the function addressed by this frame.
1871
1872This method must return a Python integer type, or @code{None}.
1873
1874If this function returns a @code{None}, @value{GDBN} will not print
1875any data for this field.
1876@end defun
1877
1878@defun FrameDecorator.frame_args (self)
1879@anchor{frame_args}
1880
1881This method must return an iterable, or @code{None}. Returning an
1882empty iterable, or @code{None} means frame arguments will not be
1883printed for this frame. This iterable must contain objects that
1884implement two methods, described here.
1885
1886This object must implement a @code{argument} method which takes a
1887single @code{self} parameter and must return a @code{gdb.Symbol}
1888(@pxref{Symbols In Python}), or a Python string. The object must also
1889implement a @code{value} method which takes a single @code{self}
1890parameter and must return a @code{gdb.Value} (@pxref{Values From
1891Inferior}), a Python value, or @code{None}. If the @code{value}
1892method returns @code{None}, and the @code{argument} method returns a
1893@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1894the @code{gdb.Symbol} automatically.
1895
1896A brief example:
1897
1898@smallexample
1899class SymValueWrapper():
1900
1901 def __init__(self, symbol, value):
1902 self.sym = symbol
1903 self.val = value
1904
1905 def value(self):
1906 return self.val
1907
1908 def symbol(self):
1909 return self.sym
1910
1911class SomeFrameDecorator()
1912...
1913...
1914 def frame_args(self):
1915 args = []
1916 try:
1917 block = self.inferior_frame.block()
1918 except:
1919 return None
1920
1921 # Iterate over all symbols in a block. Only add
1922 # symbols that are arguments.
1923 for sym in block:
1924 if not sym.is_argument:
1925 continue
1926 args.append(SymValueWrapper(sym,None))
1927
1928 # Add example synthetic argument.
1929 args.append(SymValueWrapper(``foo'', 42))
1930
1931 return args
1932@end smallexample
1933@end defun
1934
1935@defun FrameDecorator.frame_locals (self)
1936
1937This method must return an iterable or @code{None}. Returning an
1938empty iterable, or @code{None} means frame local arguments will not be
1939printed for this frame.
1940
1941The object interface, the description of the various strategies for
1942reading frame locals, and the example are largely similar to those
1943described in the @code{frame_args} function, (@pxref{frame_args,,The
1944frame filter frame_args function}). Below is a modified example:
1945
1946@smallexample
1947class SomeFrameDecorator()
1948...
1949...
1950 def frame_locals(self):
1951 vars = []
1952 try:
1953 block = self.inferior_frame.block()
1954 except:
1955 return None
1956
1957 # Iterate over all symbols in a block. Add all
1958 # symbols, except arguments.
1959 for sym in block:
1960 if sym.is_argument:
1961 continue
1962 vars.append(SymValueWrapper(sym,None))
1963
1964 # Add an example of a synthetic local variable.
1965 vars.append(SymValueWrapper(``bar'', 99))
1966
1967 return vars
1968@end smallexample
1969@end defun
1970
1971@defun FrameDecorator.inferior_frame (self):
1972
1973This method must return the underlying @code{gdb.Frame} that this
1974frame decorator is decorating. @value{GDBN} requires the underlying
1975frame for internal frame information to determine how to print certain
1976values when printing a frame.
1977@end defun
1978
1979@node Writing a Frame Filter
1980@subsubsection Writing a Frame Filter
1981@cindex writing a frame filter
1982
1983There are three basic elements that a frame filter must implement: it
1984must correctly implement the documented interface (@pxref{Frame Filter
1985API}), it must register itself with @value{GDBN}, and finally, it must
1986decide if it is to work on the data provided by @value{GDBN}. In all
1987cases, whether it works on the iterator or not, each frame filter must
1988return an iterator. A bare-bones frame filter follows the pattern in
1989the following example.
1990
1991@smallexample
1992import gdb
1993
1994class FrameFilter():
1995
1996 def __init__(self):
1997 # Frame filter attribute creation.
1998 #
1999 # 'name' is the name of the filter that GDB will display.
2000 #
2001 # 'priority' is the priority of the filter relative to other
2002 # filters.
2003 #
2004 # 'enabled' is a boolean that indicates whether this filter is
2005 # enabled and should be executed.
2006
2007 self.name = "Foo"
2008 self.priority = 100
2009 self.enabled = True
2010
2011 # Register this frame filter with the global frame_filters
2012 # dictionary.
2013 gdb.frame_filters[self.name] = self
2014
2015 def filter(self, frame_iter):
2016 # Just return the iterator.
2017 return frame_iter
2018@end smallexample
2019
2020The frame filter in the example above implements the three
2021requirements for all frame filters. It implements the API, self
2022registers, and makes a decision on the iterator (in this case, it just
2023returns the iterator untouched).
2024
2025The first step is attribute creation and assignment, and as shown in
2026the comments the filter assigns the following attributes: @code{name},
2027@code{priority} and whether the filter should be enabled with the
2028@code{enabled} attribute.
2029
2030The second step is registering the frame filter with the dictionary or
2031dictionaries that the frame filter has interest in. As shown in the
2032comments, this filter just registers itself with the global dictionary
2033@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2034is a dictionary that is initialized in the @code{gdb} module when
2035@value{GDBN} starts. What dictionary a filter registers with is an
2036important consideration. Generally, if a filter is specific to a set
2037of code, it should be registered either in the @code{objfile} or
2038@code{progspace} dictionaries as they are specific to the program
2039currently loaded in @value{GDBN}. The global dictionary is always
2040present in @value{GDBN} and is never unloaded. Any filters registered
2041with the global dictionary will exist until @value{GDBN} exits. To
2042avoid filters that may conflict, it is generally better to register
2043frame filters against the dictionaries that more closely align with
2044the usage of the filter currently in question. @xref{Python
2045Auto-loading}, for further information on auto-loading Python scripts.
2046
2047@value{GDBN} takes a hands-off approach to frame filter registration,
2048therefore it is the frame filter's responsibility to ensure
2049registration has occurred, and that any exceptions are handled
2050appropriately. In particular, you may wish to handle exceptions
2051relating to Python dictionary key uniqueness. It is mandatory that
2052the dictionary key is the same as frame filter's @code{name}
2053attribute. When a user manages frame filters (@pxref{Frame Filter
2054Management}), the names @value{GDBN} will display are those contained
2055in the @code{name} attribute.
2056
2057The final step of this example is the implementation of the
2058@code{filter} method. As shown in the example comments, we define the
2059@code{filter} method and note that the method must take an iterator,
2060and also must return an iterator. In this bare-bones example, the
2061frame filter is not very useful as it just returns the iterator
2062untouched. However this is a valid operation for frame filters that
2063have the @code{enabled} attribute set, but decide not to operate on
2064any frames.
2065
2066In the next example, the frame filter operates on all frames and
2067utilizes a frame decorator to perform some work on the frames.
2068@xref{Frame Decorator API}, for further information on the frame
2069decorator interface.
2070
2071This example works on inlined frames. It highlights frames which are
2072inlined by tagging them with an ``[inlined]'' tag. By applying a
2073frame decorator to all frames with the Python @code{itertools imap}
2074method, the example defers actions to the frame decorator. Frame
2075decorators are only processed when @value{GDBN} prints the backtrace.
2076
2077This introduces a new decision making topic: whether to perform
2078decision making operations at the filtering step, or at the printing
2079step. In this example's approach, it does not perform any filtering
2080decisions at the filtering step beyond mapping a frame decorator to
2081each frame. This allows the actual decision making to be performed
2082when each frame is printed. This is an important consideration, and
2083well worth reflecting upon when designing a frame filter. An issue
2084that frame filters should avoid is unwinding the stack if possible.
2085Some stacks can run very deep, into the tens of thousands in some
2086cases. To search every frame to determine if it is inlined ahead of
2087time may be too expensive at the filtering step. The frame filter
2088cannot know how many frames it has to iterate over, and it would have
2089to iterate through them all. This ends up duplicating effort as
2090@value{GDBN} performs this iteration when it prints the frames.
2091
2092In this example decision making can be deferred to the printing step.
2093As each frame is printed, the frame decorator can examine each frame
2094in turn when @value{GDBN} iterates. From a performance viewpoint,
2095this is the most appropriate decision to make as it avoids duplicating
2096the effort that the printing step would undertake anyway. Also, if
2097there are many frame filters unwinding the stack during filtering, it
2098can substantially delay the printing of the backtrace which will
2099result in large memory usage, and a poor user experience.
2100
2101@smallexample
2102class InlineFilter():
2103
2104 def __init__(self):
2105 self.name = "InlinedFrameFilter"
2106 self.priority = 100
2107 self.enabled = True
2108 gdb.frame_filters[self.name] = self
2109
2110 def filter(self, frame_iter):
2111 frame_iter = itertools.imap(InlinedFrameDecorator,
2112 frame_iter)
2113 return frame_iter
2114@end smallexample
2115
2116This frame filter is somewhat similar to the earlier example, except
2117that the @code{filter} method applies a frame decorator object called
2118@code{InlinedFrameDecorator} to each element in the iterator. The
2119@code{imap} Python method is light-weight. It does not proactively
2120iterate over the iterator, but rather creates a new iterator which
2121wraps the existing one.
2122
2123Below is the frame decorator for this example.
2124
2125@smallexample
2126class InlinedFrameDecorator(FrameDecorator):
2127
2128 def __init__(self, fobj):
2129 super(InlinedFrameDecorator, self).__init__(fobj)
2130
2131 def function(self):
2132 frame = fobj.inferior_frame()
2133 name = str(frame.name())
2134
2135 if frame.type() == gdb.INLINE_FRAME:
2136 name = name + " [inlined]"
2137
2138 return name
2139@end smallexample
2140
2141This frame decorator only defines and overrides the @code{function}
2142method. It lets the supplied @code{FrameDecorator}, which is shipped
2143with @value{GDBN}, perform the other work associated with printing
2144this frame.
2145
2146The combination of these two objects create this output from a
2147backtrace:
2148
2149@smallexample
2150#0 0x004004e0 in bar () at inline.c:11
2151#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2152#2 0x00400566 in main () at inline.c:31
2153@end smallexample
2154
2155So in the case of this example, a frame decorator is applied to all
2156frames, regardless of whether they may be inlined or not. As
2157@value{GDBN} iterates over the iterator produced by the frame filters,
2158@value{GDBN} executes each frame decorator which then makes a decision
2159on what to print in the @code{function} callback. Using a strategy
2160like this is a way to defer decisions on the frame content to printing
2161time.
2162
2163@subheading Eliding Frames
2164
2165It might be that the above example is not desirable for representing
2166inlined frames, and a hierarchical approach may be preferred. If we
2167want to hierarchically represent frames, the @code{elided} frame
2168decorator interface might be preferable.
2169
2170This example approaches the issue with the @code{elided} method. This
2171example is quite long, but very simplistic. It is out-of-scope for
2172this section to write a complete example that comprehensively covers
2173all approaches of finding and printing inlined frames. However, this
2174example illustrates the approach an author might use.
2175
2176This example comprises of three sections.
2177
2178@smallexample
2179class InlineFrameFilter():
2180
2181 def __init__(self):
2182 self.name = "InlinedFrameFilter"
2183 self.priority = 100
2184 self.enabled = True
2185 gdb.frame_filters[self.name] = self
2186
2187 def filter(self, frame_iter):
2188 return ElidingInlineIterator(frame_iter)
2189@end smallexample
2190
2191This frame filter is very similar to the other examples. The only
2192difference is this frame filter is wrapping the iterator provided to
2193it (@code{frame_iter}) with a custom iterator called
2194@code{ElidingInlineIterator}. This again defers actions to when
2195@value{GDBN} prints the backtrace, as the iterator is not traversed
2196until printing.
2197
2198The iterator for this example is as follows. It is in this section of
2199the example where decisions are made on the content of the backtrace.
2200
2201@smallexample
2202class ElidingInlineIterator:
2203 def __init__(self, ii):
2204 self.input_iterator = ii
2205
2206 def __iter__(self):
2207 return self
2208
2209 def next(self):
2210 frame = next(self.input_iterator)
2211
2212 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2213 return frame
2214
2215 try:
2216 eliding_frame = next(self.input_iterator)
2217 except StopIteration:
2218 return frame
2219 return ElidingFrameDecorator(eliding_frame, [frame])
2220@end smallexample
2221
2222This iterator implements the Python iterator protocol. When the
2223@code{next} function is called (when @value{GDBN} prints each frame),
2224the iterator checks if this frame decorator, @code{frame}, is wrapping
2225an inlined frame. If it is not, it returns the existing frame decorator
2226untouched. If it is wrapping an inlined frame, it assumes that the
2227inlined frame was contained within the next oldest frame,
2228@code{eliding_frame}, which it fetches. It then creates and returns a
2229frame decorator, @code{ElidingFrameDecorator}, which contains both the
2230elided frame, and the eliding frame.
2231
2232@smallexample
2233class ElidingInlineDecorator(FrameDecorator):
2234
2235 def __init__(self, frame, elided_frames):
2236 super(ElidingInlineDecorator, self).__init__(frame)
2237 self.frame = frame
2238 self.elided_frames = elided_frames
2239
2240 def elided(self):
2241 return iter(self.elided_frames)
2242@end smallexample
2243
2244This frame decorator overrides one function and returns the inlined
2245frame in the @code{elided} method. As before it lets
2246@code{FrameDecorator} do the rest of the work involved in printing
2247this frame. This produces the following output.
2248
2249@smallexample
2250#0 0x004004e0 in bar () at inline.c:11
2251#2 0x00400529 in main () at inline.c:25
2252 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2253@end smallexample
2254
2255In that output, @code{max} which has been inlined into @code{main} is
2256printed hierarchically. Another approach would be to combine the
2257@code{function} method, and the @code{elided} method to both print a
2258marker in the inlined frame, and also show the hierarchical
2259relationship.
2260
d11916aa
SS
2261@node Unwinding Frames in Python
2262@subsubsection Unwinding Frames in Python
2263@cindex unwinding frames in Python
2264
2265In @value{GDBN} terminology ``unwinding'' is the process of finding
2266the previous frame (that is, caller's) from the current one. An
2267unwinder has three methods. The first one checks if it can handle
2268given frame (``sniff'' it). For the frames it can sniff an unwinder
2269provides two additional methods: it can return frame's ID, and it can
2270fetch registers from the previous frame. A running @value{GDBN}
2271mantains a list of the unwinders and calls each unwinder's sniffer in
2272turn until it finds the one that recognizes the current frame. There
2273is an API to register an unwinder.
2274
2275The unwinders that come with @value{GDBN} handle standard frames.
2276However, mixed language applications (for example, an application
2277running Java Virtual Machine) sometimes use frame layouts that cannot
2278be handled by the @value{GDBN} unwinders. You can write Python code
2279that can handle such custom frames.
2280
2281You implement a frame unwinder in Python as a class with which has two
2282attributes, @code{name} and @code{enabled}, with obvious meanings, and
2283a single method @code{__call__}, which examines a given frame and
2284returns an object (an instance of @code{gdb.UnwindInfo class)}
2285describing it. If an unwinder does not recognize a frame, it should
2286return @code{None}. The code in @value{GDBN} that enables writing
2287unwinders in Python uses this object to return frame's ID and previous
2288frame registers when @value{GDBN} core asks for them.
2289
e7b5068c
TT
2290An unwinder should do as little work as possible. Some otherwise
2291innocuous operations can cause problems (even crashes, as this code is
2292not not well-hardened yet). For example, making an inferior call from
2293an unwinder is unadvisable, as an inferior call will reset
2294@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2295unwinding.
2296
d11916aa
SS
2297@subheading Unwinder Input
2298
2299An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2300provides a method to read frame's registers:
2301
2302@defun PendingFrame.read_register (reg)
e7b5068c 2303This method returns the contents of the register @var{reg} in the
d11916aa
SS
2304frame as a @code{gdb.Value} object. @var{reg} can be either a
2305register number or a register name; the values are platform-specific.
2306They are usually found in the corresponding
e7b5068c
TT
2307@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2308@var{reg} does not name a register for the current architecture, this
2309method will throw an exception.
2310
2311Note that this method will always return a @code{gdb.Value} for a
2312valid register name. This does not mean that the value will be valid.
2313For example, you may request a register that an earlier unwinder could
2314not unwind---the value will be unavailable. Instead, the
2315@code{gdb.Value} returned from this method will be lazy; that is, its
2316underlying bits will not be fetched until it is first used. So,
2317attempting to use such a value will cause an exception at the point of
2318use.
2319
2320The type of the returned @code{gdb.Value} depends on the register and
2321the architecture. It is common for registers to have a scalar type,
2322like @code{long long}; but many other types are possible, such as
2323pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2324@end defun
2325
2326It also provides a factory method to create a @code{gdb.UnwindInfo}
2327instance to be returned to @value{GDBN}:
2328
2329@defun PendingFrame.create_unwind_info (frame_id)
2330Returns a new @code{gdb.UnwindInfo} instance identified by given
2331@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2332using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2333determine which function will be used, as follows:
2334
2335@table @code
d11916aa 2336@item sp, pc
e7b5068c
TT
2337The frame is identified by the given stack address and PC. The stack
2338address must be chosen so that it is constant throughout the lifetime
2339of the frame, so a typical choice is the value of the stack pointer at
2340the start of the function---in the DWARF standard, this would be the
2341``Call Frame Address''.
d11916aa 2342
e7b5068c
TT
2343This is the most common case by far. The other cases are documented
2344for completeness but are only useful in specialized situations.
2345
2346@item sp, pc, special
2347The frame is identified by the stack address, the PC, and a
2348``special'' address. The special address is used on architectures
2349that can have frames that do not change the stack, but which are still
2350distinct, for example the IA-64, which has a second stack for
2351registers. Both @var{sp} and @var{special} must be constant
2352throughout the lifetime of the frame.
d11916aa
SS
2353
2354@item sp
e7b5068c
TT
2355The frame is identified by the stack address only. Any other stack
2356frame with a matching @var{sp} will be considered to match this frame.
2357Inside gdb, this is called a ``wild frame''. You will never need
2358this.
d11916aa 2359@end table
e7b5068c
TT
2360
2361Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2362
2363@end defun
2364
2365@subheading Unwinder Output: UnwindInfo
2366
2367Use @code{PendingFrame.create_unwind_info} method described above to
2368create a @code{gdb.UnwindInfo} instance. Use the following method to
2369specify caller registers that have been saved in this frame:
2370
2371@defun gdb.UnwindInfo.add_saved_register (reg, value)
2372@var{reg} identifies the register. It can be a number or a name, just
2373as for the @code{PendingFrame.read_register} method above.
2374@var{value} is a register value (a @code{gdb.Value} object).
2375@end defun
2376
2377@subheading Unwinder Skeleton Code
2378
2379@value{GDBN} comes with the module containing the base @code{Unwinder}
2380class. Derive your unwinder class from it and structure the code as
2381follows:
2382
2383@smallexample
2384from gdb.unwinders import Unwinder
2385
2386class FrameId(object):
2387 def __init__(self, sp, pc):
2388 self.sp = sp
2389 self.pc = pc
2390
2391
2392class MyUnwinder(Unwinder):
2393 def __init__(....):
2394 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2395
2396 def __call__(pending_frame):
2397 if not <we recognize frame>:
2398 return None
2399 # Create UnwindInfo. Usually the frame is identified by the stack
2400 # pointer and the program counter.
2401 sp = pending_frame.read_register(<SP number>)
2402 pc = pending_frame.read_register(<PC number>)
2403 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2404
2405 # Find the values of the registers in the caller's frame and
2406 # save them in the result:
2407 unwind_info.add_saved_register(<register>, <value>)
2408 ....
2409
2410 # Return the result:
2411 return unwind_info
2412
2413@end smallexample
2414
2415@subheading Registering a Unwinder
2416
2417An object file, a program space, and the @value{GDBN} proper can have
2418unwinders registered with it.
2419
2420The @code{gdb.unwinders} module provides the function to register a
2421unwinder:
2422
2423@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2424@var{locus} is specifies an object file or a program space to which
2425@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2426@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2427added @var{unwinder} will be called before any other unwinder from the
2428same locus. Two unwinders in the same locus cannot have the same
2429name. An attempt to add a unwinder with already existing name raises
2430an exception unless @var{replace} is @code{True}, in which case the
2431old unwinder is deleted.
2432@end defun
2433
2434@subheading Unwinder Precedence
2435
2436@value{GDBN} first calls the unwinders from all the object files in no
2437particular order, then the unwinders from the current program space,
2438and finally the unwinders from @value{GDBN}.
2439
0c6e92a5
SC
2440@node Xmethods In Python
2441@subsubsection Xmethods In Python
2442@cindex xmethods in Python
2443
2444@dfn{Xmethods} are additional methods or replacements for existing
2445methods of a C@t{++} class. This feature is useful for those cases
2446where a method defined in C@t{++} source code could be inlined or
2447optimized out by the compiler, making it unavailable to @value{GDBN}.
2448For such cases, one can define an xmethod to serve as a replacement
2449for the method defined in the C@t{++} source code. @value{GDBN} will
2450then invoke the xmethod, instead of the C@t{++} method, to
2451evaluate expressions. One can also use xmethods when debugging
2452with core files. Moreover, when debugging live programs, invoking an
2453xmethod need not involve running the inferior (which can potentially
2454perturb its state). Hence, even if the C@t{++} method is available, it
2455is better to use its replacement xmethod if one is defined.
2456
2457The xmethods feature in Python is available via the concepts of an
2458@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2459implement an xmethod, one has to implement a matcher and a
2460corresponding worker for it (more than one worker can be
2461implemented, each catering to a different overloaded instance of the
2462method). Internally, @value{GDBN} invokes the @code{match} method of a
2463matcher to match the class type and method name. On a match, the
2464@code{match} method returns a list of matching @emph{worker} objects.
2465Each worker object typically corresponds to an overloaded instance of
2466the xmethod. They implement a @code{get_arg_types} method which
2467returns a sequence of types corresponding to the arguments the xmethod
2468requires. @value{GDBN} uses this sequence of types to perform
2469overload resolution and picks a winning xmethod worker. A winner
2470is also selected from among the methods @value{GDBN} finds in the
2471C@t{++} source code. Next, the winning xmethod worker and the
2472winning C@t{++} method are compared to select an overall winner. In
2473case of a tie between a xmethod worker and a C@t{++} method, the
2474xmethod worker is selected as the winner. That is, if a winning
2475xmethod worker is found to be equivalent to the winning C@t{++}
2476method, then the xmethod worker is treated as a replacement for
2477the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2478method. If the winning xmethod worker is the overall winner, then
897c3d32 2479the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2480of the worker object.
2481
2482If one wants to implement an xmethod as a replacement for an
2483existing C@t{++} method, then they have to implement an equivalent
2484xmethod which has exactly the same name and takes arguments of
2485exactly the same type as the C@t{++} method. If the user wants to
2486invoke the C@t{++} method even though a replacement xmethod is
2487available for that method, then they can disable the xmethod.
2488
2489@xref{Xmethod API}, for API to implement xmethods in Python.
2490@xref{Writing an Xmethod}, for implementing xmethods in Python.
2491
2492@node Xmethod API
2493@subsubsection Xmethod API
2494@cindex xmethod API
2495
2496The @value{GDBN} Python API provides classes, interfaces and functions
2497to implement, register and manipulate xmethods.
2498@xref{Xmethods In Python}.
2499
2500An xmethod matcher should be an instance of a class derived from
2501@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2502object with similar interface and attributes. An instance of
2503@code{XMethodMatcher} has the following attributes:
2504
2505@defvar name
2506The name of the matcher.
2507@end defvar
2508
2509@defvar enabled
2510A boolean value indicating whether the matcher is enabled or disabled.
2511@end defvar
2512
2513@defvar methods
2514A list of named methods managed by the matcher. Each object in the list
2515is an instance of the class @code{XMethod} defined in the module
2516@code{gdb.xmethod}, or any object with the following attributes:
2517
2518@table @code
2519
2520@item name
2521Name of the xmethod which should be unique for each xmethod
2522managed by the matcher.
2523
2524@item enabled
2525A boolean value indicating whether the xmethod is enabled or
2526disabled.
2527
2528@end table
2529
2530The class @code{XMethod} is a convenience class with same
2531attributes as above along with the following constructor:
2532
dd5d5494 2533@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2534Constructs an enabled xmethod with name @var{name}.
2535@end defun
2536@end defvar
2537
2538@noindent
2539The @code{XMethodMatcher} class has the following methods:
2540
dd5d5494 2541@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2542Constructs an enabled xmethod matcher with name @var{name}. The
2543@code{methods} attribute is initialized to @code{None}.
2544@end defun
2545
dd5d5494 2546@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2547Derived classes should override this method. It should return a
2548xmethod worker object (or a sequence of xmethod worker
2549objects) matching the @var{class_type} and @var{method_name}.
2550@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2551is a string value. If the matcher manages named methods as listed in
2552its @code{methods} attribute, then only those worker objects whose
2553corresponding entries in the @code{methods} list are enabled should be
2554returned.
2555@end defun
2556
2557An xmethod worker should be an instance of a class derived from
2558@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2559or support the following interface:
2560
dd5d5494 2561@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2562This method returns a sequence of @code{gdb.Type} objects corresponding
2563to the arguments that the xmethod takes. It can return an empty
2564sequence or @code{None} if the xmethod does not take any arguments.
2565If the xmethod takes a single argument, then a single
2566@code{gdb.Type} object corresponding to it can be returned.
2567@end defun
2568
2ce1cdbf
DE
2569@defun XMethodWorker.get_result_type (self, *args)
2570This method returns a @code{gdb.Type} object representing the type
2571of the result of invoking this xmethod.
2572The @var{args} argument is the same tuple of arguments that would be
2573passed to the @code{__call__} method of this worker.
2574@end defun
2575
dd5d5494 2576@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2577This is the method which does the @emph{work} of the xmethod. The
2578@var{args} arguments is the tuple of arguments to the xmethod. Each
2579element in this tuple is a gdb.Value object. The first element is
2580always the @code{this} pointer value.
2581@end defun
2582
2583For @value{GDBN} to lookup xmethods, the xmethod matchers
2584should be registered using the following function defined in the module
2585@code{gdb.xmethod}:
2586
dd5d5494 2587@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2588The @code{matcher} is registered with @code{locus}, replacing an
2589existing matcher with the same name as @code{matcher} if
2590@code{replace} is @code{True}. @code{locus} can be a
2591@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2592@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2593@code{None}. If it is @code{None}, then @code{matcher} is registered
2594globally.
2595@end defun
2596
2597@node Writing an Xmethod
2598@subsubsection Writing an Xmethod
2599@cindex writing xmethods in Python
2600
2601Implementing xmethods in Python will require implementing xmethod
2602matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2603the following C@t{++} class:
2604
2605@smallexample
2606class MyClass
2607@{
2608public:
2609 MyClass (int a) : a_(a) @{ @}
2610
2611 int geta (void) @{ return a_; @}
2612 int operator+ (int b);
2613
2614private:
2615 int a_;
2616@};
2617
2618int
2619MyClass::operator+ (int b)
2620@{
2621 return a_ + b;
2622@}
2623@end smallexample
2624
2625@noindent
2626Let us define two xmethods for the class @code{MyClass}, one
2627replacing the method @code{geta}, and another adding an overloaded
2628flavor of @code{operator+} which takes a @code{MyClass} argument (the
2629C@t{++} code above already has an overloaded @code{operator+}
2630which takes an @code{int} argument). The xmethod matcher can be
2631defined as follows:
2632
2633@smallexample
2634class MyClass_geta(gdb.xmethod.XMethod):
2635 def __init__(self):
2636 gdb.xmethod.XMethod.__init__(self, 'geta')
2637
2638 def get_worker(self, method_name):
2639 if method_name == 'geta':
2640 return MyClassWorker_geta()
2641
2642
2643class MyClass_sum(gdb.xmethod.XMethod):
2644 def __init__(self):
2645 gdb.xmethod.XMethod.__init__(self, 'sum')
2646
2647 def get_worker(self, method_name):
2648 if method_name == 'operator+':
2649 return MyClassWorker_plus()
2650
2651
2652class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2653 def __init__(self):
2654 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2655 # List of methods 'managed' by this matcher
2656 self.methods = [MyClass_geta(), MyClass_sum()]
2657
2658 def match(self, class_type, method_name):
2659 if class_type.tag != 'MyClass':
2660 return None
2661 workers = []
2662 for method in self.methods:
2663 if method.enabled:
2664 worker = method.get_worker(method_name)
2665 if worker:
2666 workers.append(worker)
2667
2668 return workers
2669@end smallexample
2670
2671@noindent
2672Notice that the @code{match} method of @code{MyClassMatcher} returns
2673a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2674method, and a worker object of type @code{MyClassWorker_plus} for the
2675@code{operator+} method. This is done indirectly via helper classes
2676derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2677@code{methods} attribute in a matcher as it is optional. However, if a
2678matcher manages more than one xmethod, it is a good practice to list the
2679xmethods in the @code{methods} attribute of the matcher. This will then
2680facilitate enabling and disabling individual xmethods via the
2681@code{enable/disable} commands. Notice also that a worker object is
2682returned only if the corresponding entry in the @code{methods} attribute
2683of the matcher is enabled.
2684
2685The implementation of the worker classes returned by the matcher setup
2686above is as follows:
2687
2688@smallexample
2689class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2690 def get_arg_types(self):
2691 return None
2ce1cdbf
DE
2692
2693 def get_result_type(self, obj):
2694 return gdb.lookup_type('int')
0c6e92a5
SC
2695
2696 def __call__(self, obj):
2697 return obj['a_']
2698
2699
2700class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2701 def get_arg_types(self):
2702 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2703
2704 def get_result_type(self, obj):
2705 return gdb.lookup_type('int')
0c6e92a5
SC
2706
2707 def __call__(self, obj, other):
2708 return obj['a_'] + other['a_']
2709@end smallexample
2710
2711For @value{GDBN} to actually lookup a xmethod, it has to be
2712registered with it. The matcher defined above is registered with
2713@value{GDBN} globally as follows:
2714
2715@smallexample
2716gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2717@end smallexample
2718
2719If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2720code as follows:
2721
2722@smallexample
2723MyClass obj(5);
2724@end smallexample
2725
2726@noindent
2727then, after loading the Python script defining the xmethod matchers
2728and workers into @code{GDBN}, invoking the method @code{geta} or using
2729the operator @code{+} on @code{obj} will invoke the xmethods
2730defined above:
2731
2732@smallexample
2733(gdb) p obj.geta()
2734$1 = 5
2735
2736(gdb) p obj + obj
2737$2 = 10
2738@end smallexample
2739
2740Consider another example with a C++ template class:
2741
2742@smallexample
2743template <class T>
2744class MyTemplate
2745@{
2746public:
2747 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2748 ~MyTemplate () @{ delete [] data_; @}
2749
2750 int footprint (void)
2751 @{
2752 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2753 @}
2754
2755private:
2756 int dsize_;
2757 T *data_;
2758@};
2759@end smallexample
2760
2761Let us implement an xmethod for the above class which serves as a
2762replacement for the @code{footprint} method. The full code listing
2763of the xmethod workers and xmethod matchers is as follows:
2764
2765@smallexample
2766class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2767 def __init__(self, class_type):
2768 self.class_type = class_type
2ce1cdbf 2769
0c6e92a5
SC
2770 def get_arg_types(self):
2771 return None
2ce1cdbf
DE
2772
2773 def get_result_type(self):
2774 return gdb.lookup_type('int')
2775
0c6e92a5
SC
2776 def __call__(self, obj):
2777 return (self.class_type.sizeof +
2778 obj['dsize_'] *
2779 self.class_type.template_argument(0).sizeof)
2780
2781
2782class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2783 def __init__(self):
2784 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2785
2786 def match(self, class_type, method_name):
2787 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2788 class_type.tag) and
2789 method_name == 'footprint'):
2790 return MyTemplateWorker_footprint(class_type)
2791@end smallexample
2792
2793Notice that, in this example, we have not used the @code{methods}
2794attribute of the matcher as the matcher manages only one xmethod. The
2795user can enable/disable this xmethod by enabling/disabling the matcher
2796itself.
2797
329baa95
DE
2798@node Inferiors In Python
2799@subsubsection Inferiors In Python
2800@cindex inferiors in Python
2801
2802@findex gdb.Inferior
2803Programs which are being run under @value{GDBN} are called inferiors
2804(@pxref{Inferiors and Programs}). Python scripts can access
2805information about and manipulate inferiors controlled by @value{GDBN}
2806via objects of the @code{gdb.Inferior} class.
2807
2808The following inferior-related functions are available in the @code{gdb}
2809module:
2810
2811@defun gdb.inferiors ()
2812Return a tuple containing all inferior objects.
2813@end defun
2814
2815@defun gdb.selected_inferior ()
2816Return an object representing the current inferior.
2817@end defun
2818
2819A @code{gdb.Inferior} object has the following attributes:
2820
2821@defvar Inferior.num
2822ID of inferior, as assigned by GDB.
2823@end defvar
2824
2825@defvar Inferior.pid
2826Process ID of the inferior, as assigned by the underlying operating
2827system.
2828@end defvar
2829
2830@defvar Inferior.was_attached
2831Boolean signaling whether the inferior was created using `attach', or
2832started by @value{GDBN} itself.
2833@end defvar
2834
2835A @code{gdb.Inferior} object has the following methods:
2836
2837@defun Inferior.is_valid ()
2838Returns @code{True} if the @code{gdb.Inferior} object is valid,
2839@code{False} if not. A @code{gdb.Inferior} object will become invalid
2840if the inferior no longer exists within @value{GDBN}. All other
2841@code{gdb.Inferior} methods will throw an exception if it is invalid
2842at the time the method is called.
2843@end defun
2844
2845@defun Inferior.threads ()
2846This method returns a tuple holding all the threads which are valid
2847when it is called. If there are no valid threads, the method will
2848return an empty tuple.
2849@end defun
2850
2851@findex Inferior.read_memory
2852@defun Inferior.read_memory (address, length)
a86c90e6 2853Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2854@var{address}. Returns a buffer object, which behaves much like an array
2855or a string. It can be modified and given to the
79778b30 2856@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2857value is a @code{memoryview} object.
2858@end defun
2859
2860@findex Inferior.write_memory
2861@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2862Write the contents of @var{buffer} to the inferior, starting at
2863@var{address}. The @var{buffer} parameter must be a Python object
2864which supports the buffer protocol, i.e., a string, an array or the
2865object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2866determines the number of addressable memory units from @var{buffer} to be
2867written.
329baa95
DE
2868@end defun
2869
2870@findex gdb.search_memory
2871@defun Inferior.search_memory (address, length, pattern)
2872Search a region of the inferior memory starting at @var{address} with
2873the given @var{length} using the search pattern supplied in
2874@var{pattern}. The @var{pattern} parameter must be a Python object
2875which supports the buffer protocol, i.e., a string, an array or the
2876object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2877containing the address where the pattern was found, or @code{None} if
2878the pattern could not be found.
2879@end defun
2880
da2c323b
KB
2881@findex Inferior.thread_from_thread_handle
2882@defun Inferior.thread_from_thread_handle (thread_handle)
2883Return the thread object corresponding to @var{thread_handle}, a thread
2884library specific data structure such as @code{pthread_t} for pthreads
2885library implementations.
2886@end defun
2887
329baa95
DE
2888@node Events In Python
2889@subsubsection Events In Python
2890@cindex inferior events in Python
2891
2892@value{GDBN} provides a general event facility so that Python code can be
2893notified of various state changes, particularly changes that occur in
2894the inferior.
2895
2896An @dfn{event} is just an object that describes some state change. The
2897type of the object and its attributes will vary depending on the details
2898of the change. All the existing events are described below.
2899
2900In order to be notified of an event, you must register an event handler
2901with an @dfn{event registry}. An event registry is an object in the
2902@code{gdb.events} module which dispatches particular events. A registry
2903provides methods to register and unregister event handlers:
2904
2905@defun EventRegistry.connect (object)
2906Add the given callable @var{object} to the registry. This object will be
2907called when an event corresponding to this registry occurs.
2908@end defun
2909
2910@defun EventRegistry.disconnect (object)
2911Remove the given @var{object} from the registry. Once removed, the object
2912will no longer receive notifications of events.
2913@end defun
2914
2915Here is an example:
2916
2917@smallexample
2918def exit_handler (event):
2919 print "event type: exit"
2920 print "exit code: %d" % (event.exit_code)
2921
2922gdb.events.exited.connect (exit_handler)
2923@end smallexample
2924
2925In the above example we connect our handler @code{exit_handler} to the
2926registry @code{events.exited}. Once connected, @code{exit_handler} gets
2927called when the inferior exits. The argument @dfn{event} in this example is
2928of type @code{gdb.ExitedEvent}. As you can see in the example the
2929@code{ExitedEvent} object has an attribute which indicates the exit code of
2930the inferior.
2931
2932The following is a listing of the event registries that are available and
2933details of the events they emit:
2934
2935@table @code
2936
2937@item events.cont
2938Emits @code{gdb.ThreadEvent}.
2939
2940Some events can be thread specific when @value{GDBN} is running in non-stop
2941mode. When represented in Python, these events all extend
2942@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2943events which are emitted by this or other modules might extend this event.
2944Examples of these events are @code{gdb.BreakpointEvent} and
2945@code{gdb.ContinueEvent}.
2946
2947@defvar ThreadEvent.inferior_thread
2948In non-stop mode this attribute will be set to the specific thread which was
2949involved in the emitted event. Otherwise, it will be set to @code{None}.
2950@end defvar
2951
2952Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2953
2954This event indicates that the inferior has been continued after a stop. For
2955inherited attribute refer to @code{gdb.ThreadEvent} above.
2956
2957@item events.exited
2958Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2959@code{events.ExitedEvent} has two attributes:
2960@defvar ExitedEvent.exit_code
2961An integer representing the exit code, if available, which the inferior
2962has returned. (The exit code could be unavailable if, for example,
2963@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2964the attribute does not exist.
2965@end defvar
373832b6 2966@defvar ExitedEvent.inferior
329baa95
DE
2967A reference to the inferior which triggered the @code{exited} event.
2968@end defvar
2969
2970@item events.stop
2971Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2972
2973Indicates that the inferior has stopped. All events emitted by this registry
2974extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2975will indicate the stopped thread when @value{GDBN} is running in non-stop
2976mode. Refer to @code{gdb.ThreadEvent} above for more details.
2977
2978Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2979
2980This event indicates that the inferior or one of its threads has received as
2981signal. @code{gdb.SignalEvent} has the following attributes:
2982
2983@defvar SignalEvent.stop_signal
2984A string representing the signal received by the inferior. A list of possible
2985signal values can be obtained by running the command @code{info signals} in
2986the @value{GDBN} command prompt.
2987@end defvar
2988
2989Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2990
2991@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2992been hit, and has the following attributes:
2993
2994@defvar BreakpointEvent.breakpoints
2995A sequence containing references to all the breakpoints (type
2996@code{gdb.Breakpoint}) that were hit.
2997@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2998@end defvar
2999@defvar BreakpointEvent.breakpoint
3000A reference to the first breakpoint that was hit.
3001This function is maintained for backward compatibility and is now deprecated
3002in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3003@end defvar
3004
3005@item events.new_objfile
3006Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3007been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3008
3009@defvar NewObjFileEvent.new_objfile
3010A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3011@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3012@end defvar
3013
4ffbba72
DE
3014@item events.clear_objfiles
3015Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3016files for a program space has been reset.
3017@code{gdb.ClearObjFilesEvent} has one attribute:
3018
3019@defvar ClearObjFilesEvent.progspace
3020A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3021been cleared. @xref{Progspaces In Python}.
3022@end defvar
3023
fb5af5e3
TT
3024@item events.inferior_call
3025Emits events just before and after a function in the inferior is
3026called by @value{GDBN}. Before an inferior call, this emits an event
3027of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3028this emits an event of type @code{gdb.InferiorCallPostEvent}.
3029
3030@table @code
3031@tindex gdb.InferiorCallPreEvent
3032@item @code{gdb.InferiorCallPreEvent}
3033Indicates that a function in the inferior is about to be called.
162078c8
NB
3034
3035@defvar InferiorCallPreEvent.ptid
3036The thread in which the call will be run.
3037@end defvar
3038
3039@defvar InferiorCallPreEvent.address
3040The location of the function to be called.
3041@end defvar
3042
fb5af5e3
TT
3043@tindex gdb.InferiorCallPostEvent
3044@item @code{gdb.InferiorCallPostEvent}
3045Indicates that a function in the inferior has just been called.
162078c8
NB
3046
3047@defvar InferiorCallPostEvent.ptid
3048The thread in which the call was run.
3049@end defvar
3050
3051@defvar InferiorCallPostEvent.address
3052The location of the function that was called.
3053@end defvar
fb5af5e3 3054@end table
162078c8
NB
3055
3056@item events.memory_changed
3057Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3058inferior has been modified by the @value{GDBN} user, for instance via a
3059command like @w{@code{set *addr = value}}. The event has the following
3060attributes:
3061
3062@defvar MemoryChangedEvent.address
3063The start address of the changed region.
3064@end defvar
3065
3066@defvar MemoryChangedEvent.length
3067Length in bytes of the changed region.
3068@end defvar
3069
3070@item events.register_changed
3071Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3072inferior has been modified by the @value{GDBN} user.
3073
3074@defvar RegisterChangedEvent.frame
3075A gdb.Frame object representing the frame in which the register was modified.
3076@end defvar
3077@defvar RegisterChangedEvent.regnum
3078Denotes which register was modified.
3079@end defvar
3080
dac790e1
TT
3081@item events.breakpoint_created
3082This is emitted when a new breakpoint has been created. The argument
3083that is passed is the new @code{gdb.Breakpoint} object.
3084
3085@item events.breakpoint_modified
3086This is emitted when a breakpoint has been modified in some way. The
3087argument that is passed is the new @code{gdb.Breakpoint} object.
3088
3089@item events.breakpoint_deleted
3090This is emitted when a breakpoint has been deleted. The argument that
3091is passed is the @code{gdb.Breakpoint} object. When this event is
3092emitted, the @code{gdb.Breakpoint} object will already be in its
3093invalid state; that is, the @code{is_valid} method will return
3094@code{False}.
3095
3f77c769
TT
3096@item events.before_prompt
3097This event carries no payload. It is emitted each time @value{GDBN}
3098presents a prompt to the user.
3099
7c96f8c1
TT
3100@item events.new_inferior
3101This is emitted when a new inferior is created. Note that the
3102inferior is not necessarily running; in fact, it may not even have an
3103associated executable.
3104
3105The event is of type @code{gdb.NewInferiorEvent}. This has a single
3106attribute:
3107
3108@defvar NewInferiorEvent.inferior
3109The new inferior, a @code{gdb.Inferior} object.
3110@end defvar
3111
3112@item events.inferior_deleted
3113This is emitted when an inferior has been deleted. Note that this is
3114not the same as process exit; it is notified when the inferior itself
3115is removed, say via @code{remove-inferiors}.
3116
3117The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3118attribute:
3119
3120@defvar NewInferiorEvent.inferior
3121The inferior that is being removed, a @code{gdb.Inferior} object.
3122@end defvar
3123
3124@item events.new_thread
3125This is emitted when @value{GDBN} notices a new thread. The event is of
3126type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3127This has a single attribute:
3128
3129@defvar NewThreadEvent.inferior_thread
3130The new thread.
3131@end defvar
3132
329baa95
DE
3133@end table
3134
3135@node Threads In Python
3136@subsubsection Threads In Python
3137@cindex threads in python
3138
3139@findex gdb.InferiorThread
3140Python scripts can access information about, and manipulate inferior threads
3141controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3142
3143The following thread-related functions are available in the @code{gdb}
3144module:
3145
3146@findex gdb.selected_thread
3147@defun gdb.selected_thread ()
3148This function returns the thread object for the selected thread. If there
3149is no selected thread, this will return @code{None}.
3150@end defun
3151
3152A @code{gdb.InferiorThread} object has the following attributes:
3153
3154@defvar InferiorThread.name
3155The name of the thread. If the user specified a name using
3156@code{thread name}, then this returns that name. Otherwise, if an
3157OS-supplied name is available, then it is returned. Otherwise, this
3158returns @code{None}.
3159
3160This attribute can be assigned to. The new value must be a string
3161object, which sets the new name, or @code{None}, which removes any
3162user-specified thread name.
3163@end defvar
3164
3165@defvar InferiorThread.num
5d5658a1 3166The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3167@end defvar
3168
22a02324
PA
3169@defvar InferiorThread.global_num
3170The global ID of the thread, as assigned by GDB. You can use this to
3171make Python breakpoints thread-specific, for example
3172(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3173@end defvar
3174
329baa95
DE
3175@defvar InferiorThread.ptid
3176ID of the thread, as assigned by the operating system. This attribute is a
3177tuple containing three integers. The first is the Process ID (PID); the second
3178is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3179Either the LWPID or TID may be 0, which indicates that the operating system
3180does not use that identifier.
3181@end defvar
3182
84654457
PA
3183@defvar InferiorThread.inferior
3184The inferior this thread belongs to. This attribute is represented as
3185a @code{gdb.Inferior} object. This attribute is not writable.
3186@end defvar
3187
329baa95
DE
3188A @code{gdb.InferiorThread} object has the following methods:
3189
3190@defun InferiorThread.is_valid ()
3191Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3192@code{False} if not. A @code{gdb.InferiorThread} object will become
3193invalid if the thread exits, or the inferior that the thread belongs
3194is deleted. All other @code{gdb.InferiorThread} methods will throw an
3195exception if it is invalid at the time the method is called.
3196@end defun
3197
3198@defun InferiorThread.switch ()
3199This changes @value{GDBN}'s currently selected thread to the one represented
3200by this object.
3201@end defun
3202
3203@defun InferiorThread.is_stopped ()
3204Return a Boolean indicating whether the thread is stopped.
3205@end defun
3206
3207@defun InferiorThread.is_running ()
3208Return a Boolean indicating whether the thread is running.
3209@end defun
3210
3211@defun InferiorThread.is_exited ()
3212Return a Boolean indicating whether the thread is exited.
3213@end defun
3214
0a0faf9f
TW
3215@node Recordings In Python
3216@subsubsection Recordings In Python
3217@cindex recordings in python
3218
3219The following recordings-related functions
3220(@pxref{Process Record and Replay}) are available in the @code{gdb}
3221module:
3222
3223@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3224Start a recording using the given @var{method} and @var{format}. If
3225no @var{format} is given, the default format for the recording method
3226is used. If no @var{method} is given, the default method will be used.
3227Returns a @code{gdb.Record} object on success. Throw an exception on
3228failure.
3229
3230The following strings can be passed as @var{method}:
3231
3232@itemize @bullet
3233@item
3234@code{"full"}
3235@item
3236@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3237@code{"bts"} or leave out for default format.
3238@end itemize
3239@end defun
3240
3241@defun gdb.current_recording ()
3242Access a currently running recording. Return a @code{gdb.Record}
3243object on success. Return @code{None} if no recording is currently
3244active.
3245@end defun
3246
3247@defun gdb.stop_recording ()
3248Stop the current recording. Throw an exception if no recording is
3249currently active. All record objects become invalid after this call.
3250@end defun
3251
3252A @code{gdb.Record} object has the following attributes:
3253
0a0faf9f
TW
3254@defvar Record.method
3255A string with the current recording method, e.g.@: @code{full} or
3256@code{btrace}.
3257@end defvar
3258
3259@defvar Record.format
3260A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3261@code{None}.
3262@end defvar
3263
3264@defvar Record.begin
3265A method specific instruction object representing the first instruction
3266in this recording.
3267@end defvar
3268
3269@defvar Record.end
3270A method specific instruction object representing the current
3271instruction, that is not actually part of the recording.
3272@end defvar
3273
3274@defvar Record.replay_position
3275The instruction representing the current replay position. If there is
3276no replay active, this will be @code{None}.
3277@end defvar
3278
3279@defvar Record.instruction_history
3280A list with all recorded instructions.
3281@end defvar
3282
3283@defvar Record.function_call_history
3284A list with all recorded function call segments.
3285@end defvar
3286
3287A @code{gdb.Record} object has the following methods:
3288
3289@defun Record.goto (instruction)
3290Move the replay position to the given @var{instruction}.
3291@end defun
3292
d050f7d7
TW
3293The common @code{gdb.Instruction} class that recording method specific
3294instruction objects inherit from, has the following attributes:
0a0faf9f 3295
d050f7d7 3296@defvar Instruction.pc
913aeadd 3297An integer representing this instruction's address.
0a0faf9f
TW
3298@end defvar
3299
d050f7d7 3300@defvar Instruction.data
913aeadd
TW
3301A buffer with the raw instruction data. In Python 3, the return value is a
3302@code{memoryview} object.
0a0faf9f
TW
3303@end defvar
3304
d050f7d7 3305@defvar Instruction.decoded
913aeadd 3306A human readable string with the disassembled instruction.
0a0faf9f
TW
3307@end defvar
3308
d050f7d7 3309@defvar Instruction.size
913aeadd 3310The size of the instruction in bytes.
0a0faf9f
TW
3311@end defvar
3312
d050f7d7
TW
3313Additionally @code{gdb.RecordInstruction} has the following attributes:
3314
3315@defvar RecordInstruction.number
3316An integer identifying this instruction. @code{number} corresponds to
3317the numbers seen in @code{record instruction-history}
3318(@pxref{Process Record and Replay}).
3319@end defvar
3320
3321@defvar RecordInstruction.sal
3322A @code{gdb.Symtab_and_line} object representing the associated symtab
3323and line of this instruction. May be @code{None} if no debug information is
3324available.
3325@end defvar
3326
0ed5da75 3327@defvar RecordInstruction.is_speculative
d050f7d7 3328A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3329@end defvar
3330
3331If an error occured during recording or decoding a recording, this error is
3332represented by a @code{gdb.RecordGap} object in the instruction list. It has
3333the following attributes:
3334
3335@defvar RecordGap.number
3336An integer identifying this gap. @code{number} corresponds to the numbers seen
3337in @code{record instruction-history} (@pxref{Process Record and Replay}).
3338@end defvar
3339
3340@defvar RecordGap.error_code
3341A numerical representation of the reason for the gap. The value is specific to
3342the current recording method.
3343@end defvar
3344
3345@defvar RecordGap.error_string
3346A human readable string with the reason for the gap.
0a0faf9f
TW
3347@end defvar
3348
14f819c8 3349A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3350
14f819c8
TW
3351@defvar RecordFunctionSegment.number
3352An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3353the numbers seen in @code{record function-call-history}
3354(@pxref{Process Record and Replay}).
3355@end defvar
3356
14f819c8 3357@defvar RecordFunctionSegment.symbol
0a0faf9f 3358A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3359@code{None} if no debug information is available.
0a0faf9f
TW
3360@end defvar
3361
14f819c8 3362@defvar RecordFunctionSegment.level
0a0faf9f
TW
3363An integer representing the function call's stack level. May be
3364@code{None} if the function call is a gap.
3365@end defvar
3366
14f819c8 3367@defvar RecordFunctionSegment.instructions
0ed5da75 3368A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3369associated with this function call.
0a0faf9f
TW
3370@end defvar
3371
14f819c8
TW
3372@defvar RecordFunctionSegment.up
3373A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3374function segment. If the call has not been recorded, this will be the
3375function segment to which control returns. If neither the call nor the
3376return have been recorded, this will be @code{None}.
3377@end defvar
3378
14f819c8
TW
3379@defvar RecordFunctionSegment.prev
3380A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3381segment of this function call. May be @code{None}.
3382@end defvar
3383
14f819c8
TW
3384@defvar RecordFunctionSegment.next
3385A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3386this function call. May be @code{None}.
3387@end defvar
3388
3389The following example demonstrates the usage of these objects and
3390functions to create a function that will rewind a record to the last
3391time a function in a different file was executed. This would typically
3392be used to track the execution of user provided callback functions in a
3393library which typically are not visible in a back trace.
3394
3395@smallexample
3396def bringback ():
3397 rec = gdb.current_recording ()
3398 if not rec:
3399 return
3400
3401 insn = rec.instruction_history
3402 if len (insn) == 0:
3403 return
3404
3405 try:
3406 position = insn.index (rec.replay_position)
3407 except:
3408 position = -1
3409 try:
3410 filename = insn[position].sal.symtab.fullname ()
3411 except:
3412 filename = None
3413
3414 for i in reversed (insn[:position]):
3415 try:
3416 current = i.sal.symtab.fullname ()
3417 except:
3418 current = None
3419
3420 if filename == current:
3421 continue
3422
3423 rec.goto (i)
3424 return
3425@end smallexample
3426
3427Another possible application is to write a function that counts the
3428number of code executions in a given line range. This line range can
3429contain parts of functions or span across several functions and is not
3430limited to be contiguous.
3431
3432@smallexample
3433def countrange (filename, linerange):
3434 count = 0
3435
3436 def filter_only (file_name):
3437 for call in gdb.current_recording ().function_call_history:
3438 try:
3439 if file_name in call.symbol.symtab.fullname ():
3440 yield call
3441 except:
3442 pass
3443
3444 for c in filter_only (filename):
3445 for i in c.instructions:
3446 try:
3447 if i.sal.line in linerange:
3448 count += 1
3449 break;
3450 except:
3451 pass
3452
3453 return count
3454@end smallexample
3455
329baa95
DE
3456@node Commands In Python
3457@subsubsection Commands In Python
3458
3459@cindex commands in python
3460@cindex python commands
3461You can implement new @value{GDBN} CLI commands in Python. A CLI
3462command is implemented using an instance of the @code{gdb.Command}
3463class, most commonly using a subclass.
3464
3465@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3466The object initializer for @code{Command} registers the new command
3467with @value{GDBN}. This initializer is normally invoked from the
3468subclass' own @code{__init__} method.
3469
3470@var{name} is the name of the command. If @var{name} consists of
3471multiple words, then the initial words are looked for as prefix
3472commands. In this case, if one of the prefix commands does not exist,
3473an exception is raised.
3474
3475There is no support for multi-line commands.
3476
3477@var{command_class} should be one of the @samp{COMMAND_} constants
3478defined below. This argument tells @value{GDBN} how to categorize the
3479new command in the help system.
3480
3481@var{completer_class} is an optional argument. If given, it should be
3482one of the @samp{COMPLETE_} constants defined below. This argument
3483tells @value{GDBN} how to perform completion for this command. If not
3484given, @value{GDBN} will attempt to complete using the object's
3485@code{complete} method (see below); if no such method is found, an
3486error will occur when completion is attempted.
3487
3488@var{prefix} is an optional argument. If @code{True}, then the new
3489command is a prefix command; sub-commands of this command may be
3490registered.
3491
3492The help text for the new command is taken from the Python
3493documentation string for the command's class, if there is one. If no
3494documentation string is provided, the default value ``This command is
3495not documented.'' is used.
3496@end defun
3497
3498@cindex don't repeat Python command
3499@defun Command.dont_repeat ()
3500By default, a @value{GDBN} command is repeated when the user enters a
3501blank line at the command prompt. A command can suppress this
3502behavior by invoking the @code{dont_repeat} method. This is similar
3503to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3504@end defun
3505
3506@defun Command.invoke (argument, from_tty)
3507This method is called by @value{GDBN} when this command is invoked.
3508
3509@var{argument} is a string. It is the argument to the command, after
3510leading and trailing whitespace has been stripped.
3511
3512@var{from_tty} is a boolean argument. When true, this means that the
3513command was entered by the user at the terminal; when false it means
3514that the command came from elsewhere.
3515
3516If this method throws an exception, it is turned into a @value{GDBN}
3517@code{error} call. Otherwise, the return value is ignored.
3518
3519@findex gdb.string_to_argv
3520To break @var{argument} up into an argv-like string use
3521@code{gdb.string_to_argv}. This function behaves identically to
3522@value{GDBN}'s internal argument lexer @code{buildargv}.
3523It is recommended to use this for consistency.
3524Arguments are separated by spaces and may be quoted.
3525Example:
3526
3527@smallexample
3528print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3529['1', '2 "3', '4 "5', "6 '7"]
3530@end smallexample
3531
3532@end defun
3533
3534@cindex completion of Python commands
3535@defun Command.complete (text, word)
3536This method is called by @value{GDBN} when the user attempts
3537completion on this command. All forms of completion are handled by
3538this method, that is, the @key{TAB} and @key{M-?} key bindings
3539(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3540complete}).
3541
697aa1b7
EZ
3542The arguments @var{text} and @var{word} are both strings; @var{text}
3543holds the complete command line up to the cursor's location, while
329baa95
DE
3544@var{word} holds the last word of the command line; this is computed
3545using a word-breaking heuristic.
3546
3547The @code{complete} method can return several values:
3548@itemize @bullet
3549@item
3550If the return value is a sequence, the contents of the sequence are
3551used as the completions. It is up to @code{complete} to ensure that the
3552contents actually do complete the word. A zero-length sequence is
3553allowed, it means that there were no completions available. Only
3554string elements of the sequence are used; other elements in the
3555sequence are ignored.
3556
3557@item
3558If the return value is one of the @samp{COMPLETE_} constants defined
3559below, then the corresponding @value{GDBN}-internal completion
3560function is invoked, and its result is used.
3561
3562@item
3563All other results are treated as though there were no available
3564completions.
3565@end itemize
3566@end defun
3567
3568When a new command is registered, it must be declared as a member of
3569some general class of commands. This is used to classify top-level
3570commands in the on-line help system; note that prefix commands are not
3571listed under their own category but rather that of their top-level
3572command. The available classifications are represented by constants
3573defined in the @code{gdb} module:
3574
3575@table @code
3576@findex COMMAND_NONE
3577@findex gdb.COMMAND_NONE
3578@item gdb.COMMAND_NONE
3579The command does not belong to any particular class. A command in
3580this category will not be displayed in any of the help categories.
3581
3582@findex COMMAND_RUNNING
3583@findex gdb.COMMAND_RUNNING
3584@item gdb.COMMAND_RUNNING
3585The command is related to running the inferior. For example,
3586@code{start}, @code{step}, and @code{continue} are in this category.
3587Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3588commands in this category.
3589
3590@findex COMMAND_DATA
3591@findex gdb.COMMAND_DATA
3592@item gdb.COMMAND_DATA
3593The command is related to data or variables. For example,
3594@code{call}, @code{find}, and @code{print} are in this category. Type
3595@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3596in this category.
3597
3598@findex COMMAND_STACK
3599@findex gdb.COMMAND_STACK
3600@item gdb.COMMAND_STACK
3601The command has to do with manipulation of the stack. For example,
3602@code{backtrace}, @code{frame}, and @code{return} are in this
3603category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3604list of commands in this category.
3605
3606@findex COMMAND_FILES
3607@findex gdb.COMMAND_FILES
3608@item gdb.COMMAND_FILES
3609This class is used for file-related commands. For example,
3610@code{file}, @code{list} and @code{section} are in this category.
3611Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3612commands in this category.
3613
3614@findex COMMAND_SUPPORT
3615@findex gdb.COMMAND_SUPPORT
3616@item gdb.COMMAND_SUPPORT
3617This should be used for ``support facilities'', generally meaning
3618things that are useful to the user when interacting with @value{GDBN},
3619but not related to the state of the inferior. For example,
3620@code{help}, @code{make}, and @code{shell} are in this category. Type
3621@kbd{help support} at the @value{GDBN} prompt to see a list of
3622commands in this category.
3623
3624@findex COMMAND_STATUS
3625@findex gdb.COMMAND_STATUS
3626@item gdb.COMMAND_STATUS
3627The command is an @samp{info}-related command, that is, related to the
3628state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3629and @code{show} are in this category. Type @kbd{help status} at the
3630@value{GDBN} prompt to see a list of commands in this category.
3631
3632@findex COMMAND_BREAKPOINTS
3633@findex gdb.COMMAND_BREAKPOINTS
3634@item gdb.COMMAND_BREAKPOINTS
3635The command has to do with breakpoints. For example, @code{break},
3636@code{clear}, and @code{delete} are in this category. Type @kbd{help
3637breakpoints} at the @value{GDBN} prompt to see a list of commands in
3638this category.
3639
3640@findex COMMAND_TRACEPOINTS
3641@findex gdb.COMMAND_TRACEPOINTS
3642@item gdb.COMMAND_TRACEPOINTS
3643The command has to do with tracepoints. For example, @code{trace},
3644@code{actions}, and @code{tfind} are in this category. Type
3645@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3646commands in this category.
3647
3648@findex COMMAND_USER
3649@findex gdb.COMMAND_USER
3650@item gdb.COMMAND_USER
3651The command is a general purpose command for the user, and typically
3652does not fit in one of the other categories.
3653Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3654a list of commands in this category, as well as the list of gdb macros
3655(@pxref{Sequences}).
3656
3657@findex COMMAND_OBSCURE
3658@findex gdb.COMMAND_OBSCURE
3659@item gdb.COMMAND_OBSCURE
3660The command is only used in unusual circumstances, or is not of
3661general interest to users. For example, @code{checkpoint},
3662@code{fork}, and @code{stop} are in this category. Type @kbd{help
3663obscure} at the @value{GDBN} prompt to see a list of commands in this
3664category.
3665
3666@findex COMMAND_MAINTENANCE
3667@findex gdb.COMMAND_MAINTENANCE
3668@item gdb.COMMAND_MAINTENANCE
3669The command is only useful to @value{GDBN} maintainers. The
3670@code{maintenance} and @code{flushregs} commands are in this category.
3671Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3672commands in this category.
3673@end table
3674
3675A new command can use a predefined completion function, either by
3676specifying it via an argument at initialization, or by returning it
3677from the @code{complete} method. These predefined completion
3678constants are all defined in the @code{gdb} module:
3679
b3ce5e5f
DE
3680@vtable @code
3681@vindex COMPLETE_NONE
329baa95
DE
3682@item gdb.COMPLETE_NONE
3683This constant means that no completion should be done.
3684
b3ce5e5f 3685@vindex COMPLETE_FILENAME
329baa95
DE
3686@item gdb.COMPLETE_FILENAME
3687This constant means that filename completion should be performed.
3688
b3ce5e5f 3689@vindex COMPLETE_LOCATION
329baa95
DE
3690@item gdb.COMPLETE_LOCATION
3691This constant means that location completion should be done.
3692@xref{Specify Location}.
3693
b3ce5e5f 3694@vindex COMPLETE_COMMAND
329baa95
DE
3695@item gdb.COMPLETE_COMMAND
3696This constant means that completion should examine @value{GDBN}
3697command names.
3698
b3ce5e5f 3699@vindex COMPLETE_SYMBOL
329baa95
DE
3700@item gdb.COMPLETE_SYMBOL
3701This constant means that completion should be done using symbol names
3702as the source.
3703
b3ce5e5f 3704@vindex COMPLETE_EXPRESSION
329baa95
DE
3705@item gdb.COMPLETE_EXPRESSION
3706This constant means that completion should be done on expressions.
3707Often this means completing on symbol names, but some language
3708parsers also have support for completing on field names.
b3ce5e5f 3709@end vtable
329baa95
DE
3710
3711The following code snippet shows how a trivial CLI command can be
3712implemented in Python:
3713
3714@smallexample
3715class HelloWorld (gdb.Command):
3716 """Greet the whole world."""
3717
3718 def __init__ (self):
3719 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3720
3721 def invoke (self, arg, from_tty):
3722 print "Hello, World!"
3723
3724HelloWorld ()
3725@end smallexample
3726
3727The last line instantiates the class, and is necessary to trigger the
3728registration of the command with @value{GDBN}. Depending on how the
3729Python code is read into @value{GDBN}, you may need to import the
3730@code{gdb} module explicitly.
3731
3732@node Parameters In Python
3733@subsubsection Parameters In Python
3734
3735@cindex parameters in python
3736@cindex python parameters
3737@tindex gdb.Parameter
3738@tindex Parameter
3739You can implement new @value{GDBN} parameters using Python. A new
3740parameter is implemented as an instance of the @code{gdb.Parameter}
3741class.
3742
3743Parameters are exposed to the user via the @code{set} and
3744@code{show} commands. @xref{Help}.
3745
3746There are many parameters that already exist and can be set in
3747@value{GDBN}. Two examples are: @code{set follow fork} and
3748@code{set charset}. Setting these parameters influences certain
3749behavior in @value{GDBN}. Similarly, you can define parameters that
3750can be used to influence behavior in custom Python scripts and commands.
3751
3752@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3753The object initializer for @code{Parameter} registers the new
3754parameter with @value{GDBN}. This initializer is normally invoked
3755from the subclass' own @code{__init__} method.
3756
3757@var{name} is the name of the new parameter. If @var{name} consists
3758of multiple words, then the initial words are looked for as prefix
3759parameters. An example of this can be illustrated with the
3760@code{set print} set of parameters. If @var{name} is
3761@code{print foo}, then @code{print} will be searched as the prefix
3762parameter. In this case the parameter can subsequently be accessed in
3763@value{GDBN} as @code{set print foo}.
3764
3765If @var{name} consists of multiple words, and no prefix parameter group
3766can be found, an exception is raised.
3767
3768@var{command-class} should be one of the @samp{COMMAND_} constants
3769(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3770categorize the new parameter in the help system.
3771
3772@var{parameter-class} should be one of the @samp{PARAM_} constants
3773defined below. This argument tells @value{GDBN} the type of the new
3774parameter; this information is used for input validation and
3775completion.
3776
3777If @var{parameter-class} is @code{PARAM_ENUM}, then
3778@var{enum-sequence} must be a sequence of strings. These strings
3779represent the possible values for the parameter.
3780
3781If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3782of a fourth argument will cause an exception to be thrown.
3783
3784The help text for the new parameter is taken from the Python
3785documentation string for the parameter's class, if there is one. If
3786there is no documentation string, a default value is used.
3787@end defun
3788
3789@defvar Parameter.set_doc
3790If this attribute exists, and is a string, then its value is used as
3791the help text for this parameter's @code{set} command. The value is
3792examined when @code{Parameter.__init__} is invoked; subsequent changes
3793have no effect.
3794@end defvar
3795
3796@defvar Parameter.show_doc
3797If this attribute exists, and is a string, then its value is used as
3798the help text for this parameter's @code{show} command. The value is
3799examined when @code{Parameter.__init__} is invoked; subsequent changes
3800have no effect.
3801@end defvar
3802
3803@defvar Parameter.value
3804The @code{value} attribute holds the underlying value of the
3805parameter. It can be read and assigned to just as any other
3806attribute. @value{GDBN} does validation when assignments are made.
3807@end defvar
3808
984ee559
TT
3809There are two methods that may be implemented in any @code{Parameter}
3810class. These are:
329baa95
DE
3811
3812@defun Parameter.get_set_string (self)
984ee559
TT
3813If this method exists, @value{GDBN} will call it when a
3814@var{parameter}'s value has been changed via the @code{set} API (for
3815example, @kbd{set foo off}). The @code{value} attribute has already
3816been populated with the new value and may be used in output. This
3817method must return a string. If the returned string is not empty,
3818@value{GDBN} will present it to the user.
329baa95
DE
3819@end defun
3820
3821@defun Parameter.get_show_string (self, svalue)
3822@value{GDBN} will call this method when a @var{parameter}'s
3823@code{show} API has been invoked (for example, @kbd{show foo}). The
3824argument @code{svalue} receives the string representation of the
3825current value. This method must return a string.
3826@end defun
3827
3828When a new parameter is defined, its type must be specified. The
3829available types are represented by constants defined in the @code{gdb}
3830module:
3831
3832@table @code
3833@findex PARAM_BOOLEAN
3834@findex gdb.PARAM_BOOLEAN
3835@item gdb.PARAM_BOOLEAN
3836The value is a plain boolean. The Python boolean values, @code{True}
3837and @code{False} are the only valid values.
3838
3839@findex PARAM_AUTO_BOOLEAN
3840@findex gdb.PARAM_AUTO_BOOLEAN
3841@item gdb.PARAM_AUTO_BOOLEAN
3842The value has three possible states: true, false, and @samp{auto}. In
3843Python, true and false are represented using boolean constants, and
3844@samp{auto} is represented using @code{None}.
3845
3846@findex PARAM_UINTEGER
3847@findex gdb.PARAM_UINTEGER
3848@item gdb.PARAM_UINTEGER
3849The value is an unsigned integer. The value of 0 should be
3850interpreted to mean ``unlimited''.
3851
3852@findex PARAM_INTEGER
3853@findex gdb.PARAM_INTEGER
3854@item gdb.PARAM_INTEGER
3855The value is a signed integer. The value of 0 should be interpreted
3856to mean ``unlimited''.
3857
3858@findex PARAM_STRING
3859@findex gdb.PARAM_STRING
3860@item gdb.PARAM_STRING
3861The value is a string. When the user modifies the string, any escape
3862sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3863translated into corresponding characters and encoded into the current
3864host charset.
3865
3866@findex PARAM_STRING_NOESCAPE
3867@findex gdb.PARAM_STRING_NOESCAPE
3868@item gdb.PARAM_STRING_NOESCAPE
3869The value is a string. When the user modifies the string, escapes are
3870passed through untranslated.
3871
3872@findex PARAM_OPTIONAL_FILENAME
3873@findex gdb.PARAM_OPTIONAL_FILENAME
3874@item gdb.PARAM_OPTIONAL_FILENAME
3875The value is a either a filename (a string), or @code{None}.
3876
3877@findex PARAM_FILENAME
3878@findex gdb.PARAM_FILENAME
3879@item gdb.PARAM_FILENAME
3880The value is a filename. This is just like
3881@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3882
3883@findex PARAM_ZINTEGER
3884@findex gdb.PARAM_ZINTEGER
3885@item gdb.PARAM_ZINTEGER
3886The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3887is interpreted as itself.
3888
0489430a
TT
3889@findex PARAM_ZUINTEGER
3890@findex gdb.PARAM_ZUINTEGER
3891@item gdb.PARAM_ZUINTEGER
3892The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3893except 0 is interpreted as itself, and the value cannot be negative.
3894
3895@findex PARAM_ZUINTEGER_UNLIMITED
3896@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3897@item gdb.PARAM_ZUINTEGER_UNLIMITED
3898The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3899except the special value -1 should be interpreted to mean
3900``unlimited''. Other negative values are not allowed.
3901
329baa95
DE
3902@findex PARAM_ENUM
3903@findex gdb.PARAM_ENUM
3904@item gdb.PARAM_ENUM
3905The value is a string, which must be one of a collection string
3906constants provided when the parameter is created.
3907@end table
3908
3909@node Functions In Python
3910@subsubsection Writing new convenience functions
3911
3912@cindex writing convenience functions
3913@cindex convenience functions in python
3914@cindex python convenience functions
3915@tindex gdb.Function
3916@tindex Function
3917You can implement new convenience functions (@pxref{Convenience Vars})
3918in Python. A convenience function is an instance of a subclass of the
3919class @code{gdb.Function}.
3920
3921@defun Function.__init__ (name)
3922The initializer for @code{Function} registers the new function with
3923@value{GDBN}. The argument @var{name} is the name of the function,
3924a string. The function will be visible to the user as a convenience
3925variable of type @code{internal function}, whose name is the same as
3926the given @var{name}.
3927
3928The documentation for the new function is taken from the documentation
3929string for the new class.
3930@end defun
3931
3932@defun Function.invoke (@var{*args})
3933When a convenience function is evaluated, its arguments are converted
3934to instances of @code{gdb.Value}, and then the function's
3935@code{invoke} method is called. Note that @value{GDBN} does not
3936predetermine the arity of convenience functions. Instead, all
3937available arguments are passed to @code{invoke}, following the
3938standard Python calling convention. In particular, a convenience
3939function can have default values for parameters without ill effect.
3940
3941The return value of this method is used as its value in the enclosing
3942expression. If an ordinary Python value is returned, it is converted
3943to a @code{gdb.Value} following the usual rules.
3944@end defun
3945
3946The following code snippet shows how a trivial convenience function can
3947be implemented in Python:
3948
3949@smallexample
3950class Greet (gdb.Function):
3951 """Return string to greet someone.
3952Takes a name as argument."""
3953
3954 def __init__ (self):
3955 super (Greet, self).__init__ ("greet")
3956
3957 def invoke (self, name):
3958 return "Hello, %s!" % name.string ()
3959
3960Greet ()
3961@end smallexample
3962
3963The last line instantiates the class, and is necessary to trigger the
3964registration of the function with @value{GDBN}. Depending on how the
3965Python code is read into @value{GDBN}, you may need to import the
3966@code{gdb} module explicitly.
3967
3968Now you can use the function in an expression:
3969
3970@smallexample
3971(gdb) print $greet("Bob")
3972$1 = "Hello, Bob!"
3973@end smallexample
3974
3975@node Progspaces In Python
3976@subsubsection Program Spaces In Python
3977
3978@cindex progspaces in python
3979@tindex gdb.Progspace
3980@tindex Progspace
3981A program space, or @dfn{progspace}, represents a symbolic view
3982of an address space.
3983It consists of all of the objfiles of the program.
3984@xref{Objfiles In Python}.
3985@xref{Inferiors and Programs, program spaces}, for more details
3986about program spaces.
3987
3988The following progspace-related functions are available in the
3989@code{gdb} module:
3990
3991@findex gdb.current_progspace
3992@defun gdb.current_progspace ()
3993This function returns the program space of the currently selected inferior.
3994@xref{Inferiors and Programs}.
3995@end defun
3996
3997@findex gdb.progspaces
3998@defun gdb.progspaces ()
3999Return a sequence of all the progspaces currently known to @value{GDBN}.
4000@end defun
4001
4002Each progspace is represented by an instance of the @code{gdb.Progspace}
4003class.
4004
4005@defvar Progspace.filename
4006The file name of the progspace as a string.
4007@end defvar
4008
4009@defvar Progspace.pretty_printers
4010The @code{pretty_printers} attribute is a list of functions. It is
4011used to look up pretty-printers. A @code{Value} is passed to each
4012function in order; if the function returns @code{None}, then the
4013search continues. Otherwise, the return value should be an object
4014which is used to format the value. @xref{Pretty Printing API}, for more
4015information.
4016@end defvar
4017
4018@defvar Progspace.type_printers
4019The @code{type_printers} attribute is a list of type printer objects.
4020@xref{Type Printing API}, for more information.
4021@end defvar
4022
4023@defvar Progspace.frame_filters
4024The @code{frame_filters} attribute is a dictionary of frame filter
4025objects. @xref{Frame Filter API}, for more information.
4026@end defvar
4027
02be9a71
DE
4028One may add arbitrary attributes to @code{gdb.Progspace} objects
4029in the usual Python way.
4030This is useful if, for example, one needs to do some extra record keeping
4031associated with the program space.
4032
4033In this contrived example, we want to perform some processing when
4034an objfile with a certain symbol is loaded, but we only want to do
4035this once because it is expensive. To achieve this we record the results
4036with the program space because we can't predict when the desired objfile
4037will be loaded.
4038
4039@smallexample
4040(gdb) python
4041def clear_objfiles_handler(event):
4042 event.progspace.expensive_computation = None
4043def expensive(symbol):
4044 """A mock routine to perform an "expensive" computation on symbol."""
4045 print "Computing the answer to the ultimate question ..."
4046 return 42
4047def new_objfile_handler(event):
4048 objfile = event.new_objfile
4049 progspace = objfile.progspace
4050 if not hasattr(progspace, 'expensive_computation') or \
4051 progspace.expensive_computation is None:
4052 # We use 'main' for the symbol to keep the example simple.
4053 # Note: There's no current way to constrain the lookup
4054 # to one objfile.
4055 symbol = gdb.lookup_global_symbol('main')
4056 if symbol is not None:
4057 progspace.expensive_computation = expensive(symbol)
4058gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4059gdb.events.new_objfile.connect(new_objfile_handler)
4060end
4061(gdb) file /tmp/hello
4062Reading symbols from /tmp/hello...done.
4063Computing the answer to the ultimate question ...
4064(gdb) python print gdb.current_progspace().expensive_computation
406542
4066(gdb) run
4067Starting program: /tmp/hello
4068Hello.
4069[Inferior 1 (process 4242) exited normally]
4070@end smallexample
4071
329baa95
DE
4072@node Objfiles In Python
4073@subsubsection Objfiles In Python
4074
4075@cindex objfiles in python
4076@tindex gdb.Objfile
4077@tindex Objfile
4078@value{GDBN} loads symbols for an inferior from various
4079symbol-containing files (@pxref{Files}). These include the primary
4080executable file, any shared libraries used by the inferior, and any
4081separate debug info files (@pxref{Separate Debug Files}).
4082@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4083
4084The following objfile-related functions are available in the
4085@code{gdb} module:
4086
4087@findex gdb.current_objfile
4088@defun gdb.current_objfile ()
4089When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4090sets the ``current objfile'' to the corresponding objfile. This
4091function returns the current objfile. If there is no current objfile,
4092this function returns @code{None}.
4093@end defun
4094
4095@findex gdb.objfiles
4096@defun gdb.objfiles ()
4097Return a sequence of all the objfiles current known to @value{GDBN}.
4098@xref{Objfiles In Python}.
4099@end defun
4100
6dddd6a5
DE
4101@findex gdb.lookup_objfile
4102@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4103Look up @var{name}, a file name or build ID, in the list of objfiles
4104for the current program space (@pxref{Progspaces In Python}).
4105If the objfile is not found throw the Python @code{ValueError} exception.
4106
4107If @var{name} is a relative file name, then it will match any
4108source file name with the same trailing components. For example, if
4109@var{name} is @samp{gcc/expr.c}, then it will match source file
4110name of @file{/build/trunk/gcc/expr.c}, but not
4111@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4112
4113If @var{by_build_id} is provided and is @code{True} then @var{name}
4114is the build ID of the objfile. Otherwise, @var{name} is a file name.
4115This is supported only on some operating systems, notably those which use
4116the ELF format for binary files and the @sc{gnu} Binutils. For more details
4117about this feature, see the description of the @option{--build-id}
f5a476a7 4118command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4119The GNU Linker}.
4120@end defun
4121
329baa95
DE
4122Each objfile is represented by an instance of the @code{gdb.Objfile}
4123class.
4124
4125@defvar Objfile.filename
1b549396
DE
4126The file name of the objfile as a string, with symbolic links resolved.
4127
4128The value is @code{None} if the objfile is no longer valid.
4129See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4130@end defvar
4131
3a8b707a
DE
4132@defvar Objfile.username
4133The file name of the objfile as specified by the user as a string.
4134
4135The value is @code{None} if the objfile is no longer valid.
4136See the @code{gdb.Objfile.is_valid} method, described below.
4137@end defvar
4138
a0be3e44
DE
4139@defvar Objfile.owner
4140For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4141object that debug info is being provided for.
4142Otherwise this is @code{None}.
4143Separate debug info objfiles are added with the
4144@code{gdb.Objfile.add_separate_debug_file} method, described below.
4145@end defvar
4146
7c50a931
DE
4147@defvar Objfile.build_id
4148The build ID of the objfile as a string.
4149If the objfile does not have a build ID then the value is @code{None}.
4150
4151This is supported only on some operating systems, notably those which use
4152the ELF format for binary files and the @sc{gnu} Binutils. For more details
4153about this feature, see the description of the @option{--build-id}
f5a476a7 4154command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4155The GNU Linker}.
4156@end defvar
4157
d096d8c1
DE
4158@defvar Objfile.progspace
4159The containing program space of the objfile as a @code{gdb.Progspace}
4160object. @xref{Progspaces In Python}.
4161@end defvar
4162
329baa95
DE
4163@defvar Objfile.pretty_printers
4164The @code{pretty_printers} attribute is a list of functions. It is
4165used to look up pretty-printers. A @code{Value} is passed to each
4166function in order; if the function returns @code{None}, then the
4167search continues. Otherwise, the return value should be an object
4168which is used to format the value. @xref{Pretty Printing API}, for more
4169information.
4170@end defvar
4171
4172@defvar Objfile.type_printers
4173The @code{type_printers} attribute is a list of type printer objects.
4174@xref{Type Printing API}, for more information.
4175@end defvar
4176
4177@defvar Objfile.frame_filters
4178The @code{frame_filters} attribute is a dictionary of frame filter
4179objects. @xref{Frame Filter API}, for more information.
4180@end defvar
4181
02be9a71
DE
4182One may add arbitrary attributes to @code{gdb.Objfile} objects
4183in the usual Python way.
4184This is useful if, for example, one needs to do some extra record keeping
4185associated with the objfile.
4186
4187In this contrived example we record the time when @value{GDBN}
4188loaded the objfile.
4189
4190@smallexample
4191(gdb) python
4192import datetime
4193def new_objfile_handler(event):
4194 # Set the time_loaded attribute of the new objfile.
4195 event.new_objfile.time_loaded = datetime.datetime.today()
4196gdb.events.new_objfile.connect(new_objfile_handler)
4197end
4198(gdb) file ./hello
4199Reading symbols from ./hello...done.
4200(gdb) python print gdb.objfiles()[0].time_loaded
42012014-10-09 11:41:36.770345
4202@end smallexample
4203
329baa95
DE
4204A @code{gdb.Objfile} object has the following methods:
4205
4206@defun Objfile.is_valid ()
4207Returns @code{True} if the @code{gdb.Objfile} object is valid,
4208@code{False} if not. A @code{gdb.Objfile} object can become invalid
4209if the object file it refers to is not loaded in @value{GDBN} any
4210longer. All other @code{gdb.Objfile} methods will throw an exception
4211if it is invalid at the time the method is called.
4212@end defun
4213
86e4ed39
DE
4214@defun Objfile.add_separate_debug_file (file)
4215Add @var{file} to the list of files that @value{GDBN} will search for
4216debug information for the objfile.
4217This is useful when the debug info has been removed from the program
4218and stored in a separate file. @value{GDBN} has built-in support for
4219finding separate debug info files (@pxref{Separate Debug Files}), but if
4220the file doesn't live in one of the standard places that @value{GDBN}
4221searches then this function can be used to add a debug info file
4222from a different place.
4223@end defun
4224
329baa95
DE
4225@node Frames In Python
4226@subsubsection Accessing inferior stack frames from Python.
4227
4228@cindex frames in python
4229When the debugged program stops, @value{GDBN} is able to analyze its call
4230stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4231represents a frame in the stack. A @code{gdb.Frame} object is only valid
4232while its corresponding frame exists in the inferior's stack. If you try
4233to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4234exception (@pxref{Exception Handling}).
4235
4236Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4237operator, like:
4238
4239@smallexample
4240(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4241True
4242@end smallexample
4243
4244The following frame-related functions are available in the @code{gdb} module:
4245
4246@findex gdb.selected_frame
4247@defun gdb.selected_frame ()
4248Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4249@end defun
4250
4251@findex gdb.newest_frame
4252@defun gdb.newest_frame ()
4253Return the newest frame object for the selected thread.
4254@end defun
4255
4256@defun gdb.frame_stop_reason_string (reason)
4257Return a string explaining the reason why @value{GDBN} stopped unwinding
4258frames, as expressed by the given @var{reason} code (an integer, see the
4259@code{unwind_stop_reason} method further down in this section).
4260@end defun
4261
e0f3fd7c
TT
4262@findex gdb.invalidate_cached_frames
4263@defun gdb.invalidate_cached_frames
4264@value{GDBN} internally keeps a cache of the frames that have been
4265unwound. This function invalidates this cache.
4266
4267This function should not generally be called by ordinary Python code.
4268It is documented for the sake of completeness.
4269@end defun
4270
329baa95
DE
4271A @code{gdb.Frame} object has the following methods:
4272
4273@defun Frame.is_valid ()
4274Returns true if the @code{gdb.Frame} object is valid, false if not.
4275A frame object can become invalid if the frame it refers to doesn't
4276exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4277an exception if it is invalid at the time the method is called.
4278@end defun
4279
4280@defun Frame.name ()
4281Returns the function name of the frame, or @code{None} if it can't be
4282obtained.
4283@end defun
4284
4285@defun Frame.architecture ()
4286Returns the @code{gdb.Architecture} object corresponding to the frame's
4287architecture. @xref{Architectures In Python}.
4288@end defun
4289
4290@defun Frame.type ()
4291Returns the type of the frame. The value can be one of:
4292@table @code
4293@item gdb.NORMAL_FRAME
4294An ordinary stack frame.
4295
4296@item gdb.DUMMY_FRAME
4297A fake stack frame that was created by @value{GDBN} when performing an
4298inferior function call.
4299
4300@item gdb.INLINE_FRAME
4301A frame representing an inlined function. The function was inlined
4302into a @code{gdb.NORMAL_FRAME} that is older than this one.
4303
4304@item gdb.TAILCALL_FRAME
4305A frame representing a tail call. @xref{Tail Call Frames}.
4306
4307@item gdb.SIGTRAMP_FRAME
4308A signal trampoline frame. This is the frame created by the OS when
4309it calls into a signal handler.
4310
4311@item gdb.ARCH_FRAME
4312A fake stack frame representing a cross-architecture call.
4313
4314@item gdb.SENTINEL_FRAME
4315This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4316newest frame.
4317@end table
4318@end defun
4319
4320@defun Frame.unwind_stop_reason ()
4321Return an integer representing the reason why it's not possible to find
4322more frames toward the outermost frame. Use
4323@code{gdb.frame_stop_reason_string} to convert the value returned by this
4324function to a string. The value can be one of:
4325
4326@table @code
4327@item gdb.FRAME_UNWIND_NO_REASON
4328No particular reason (older frames should be available).
4329
4330@item gdb.FRAME_UNWIND_NULL_ID
4331The previous frame's analyzer returns an invalid result. This is no
4332longer used by @value{GDBN}, and is kept only for backward
4333compatibility.
4334
4335@item gdb.FRAME_UNWIND_OUTERMOST
4336This frame is the outermost.
4337
4338@item gdb.FRAME_UNWIND_UNAVAILABLE
4339Cannot unwind further, because that would require knowing the
4340values of registers or memory that have not been collected.
4341
4342@item gdb.FRAME_UNWIND_INNER_ID
4343This frame ID looks like it ought to belong to a NEXT frame,
4344but we got it for a PREV frame. Normally, this is a sign of
4345unwinder failure. It could also indicate stack corruption.
4346
4347@item gdb.FRAME_UNWIND_SAME_ID
4348This frame has the same ID as the previous one. That means
4349that unwinding further would almost certainly give us another
4350frame with exactly the same ID, so break the chain. Normally,
4351this is a sign of unwinder failure. It could also indicate
4352stack corruption.
4353
4354@item gdb.FRAME_UNWIND_NO_SAVED_PC
4355The frame unwinder did not find any saved PC, but we needed
4356one to unwind further.
4357
53e8a631
AB
4358@item gdb.FRAME_UNWIND_MEMORY_ERROR
4359The frame unwinder caused an error while trying to access memory.
4360
329baa95
DE
4361@item gdb.FRAME_UNWIND_FIRST_ERROR
4362Any stop reason greater or equal to this value indicates some kind
4363of error. This special value facilitates writing code that tests
4364for errors in unwinding in a way that will work correctly even if
4365the list of the other values is modified in future @value{GDBN}
4366versions. Using it, you could write:
4367@smallexample
4368reason = gdb.selected_frame().unwind_stop_reason ()
4369reason_str = gdb.frame_stop_reason_string (reason)
4370if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4371 print "An error occured: %s" % reason_str
4372@end smallexample
4373@end table
4374
4375@end defun
4376
4377@defun Frame.pc ()
4378Returns the frame's resume address.
4379@end defun
4380
4381@defun Frame.block ()
60c0454d
TT
4382Return the frame's code block. @xref{Blocks In Python}. If the frame
4383does not have a block -- for example, if there is no debugging
4384information for the code in question -- then this will throw an
4385exception.
329baa95
DE
4386@end defun
4387
4388@defun Frame.function ()
4389Return the symbol for the function corresponding to this frame.
4390@xref{Symbols In Python}.
4391@end defun
4392
4393@defun Frame.older ()
4394Return the frame that called this frame.
4395@end defun
4396
4397@defun Frame.newer ()
4398Return the frame called by this frame.
4399@end defun
4400
4401@defun Frame.find_sal ()
4402Return the frame's symtab and line object.
4403@xref{Symbol Tables In Python}.
4404@end defun
4405
5f3b99cf
SS
4406@defun Frame.read_register (register)
4407Return the value of @var{register} in this frame. The @var{register}
4408argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4409Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4410does not exist.
4411@end defun
4412
329baa95
DE
4413@defun Frame.read_var (variable @r{[}, block@r{]})
4414Return the value of @var{variable} in this frame. If the optional
4415argument @var{block} is provided, search for the variable from that
4416block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4417determined by the frame's current program counter). The @var{variable}
4418argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4419@code{gdb.Block} object.
4420@end defun
4421
4422@defun Frame.select ()
4423Set this frame to be the selected frame. @xref{Stack, ,Examining the
4424Stack}.
4425@end defun
4426
4427@node Blocks In Python
4428@subsubsection Accessing blocks from Python.
4429
4430@cindex blocks in python
4431@tindex gdb.Block
4432
4433In @value{GDBN}, symbols are stored in blocks. A block corresponds
4434roughly to a scope in the source code. Blocks are organized
4435hierarchically, and are represented individually in Python as a
4436@code{gdb.Block}. Blocks rely on debugging information being
4437available.
4438
4439A frame has a block. Please see @ref{Frames In Python}, for a more
4440in-depth discussion of frames.
4441
4442The outermost block is known as the @dfn{global block}. The global
4443block typically holds public global variables and functions.
4444
4445The block nested just inside the global block is the @dfn{static
4446block}. The static block typically holds file-scoped variables and
4447functions.
4448
4449@value{GDBN} provides a method to get a block's superblock, but there
4450is currently no way to examine the sub-blocks of a block, or to
4451iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4452Python}).
4453
4454Here is a short example that should help explain blocks:
4455
4456@smallexample
4457/* This is in the global block. */
4458int global;
4459
4460/* This is in the static block. */
4461static int file_scope;
4462
4463/* 'function' is in the global block, and 'argument' is
4464 in a block nested inside of 'function'. */
4465int function (int argument)
4466@{
4467 /* 'local' is in a block inside 'function'. It may or may
4468 not be in the same block as 'argument'. */
4469 int local;
4470
4471 @{
4472 /* 'inner' is in a block whose superblock is the one holding
4473 'local'. */
4474 int inner;
4475
4476 /* If this call is expanded by the compiler, you may see
4477 a nested block here whose function is 'inline_function'
4478 and whose superblock is the one holding 'inner'. */
4479 inline_function ();
4480 @}
4481@}
4482@end smallexample
4483
4484A @code{gdb.Block} is iterable. The iterator returns the symbols
4485(@pxref{Symbols In Python}) local to the block. Python programs
4486should not assume that a specific block object will always contain a
4487given symbol, since changes in @value{GDBN} features and
4488infrastructure may cause symbols move across blocks in a symbol
4489table.
4490
4491The following block-related functions are available in the @code{gdb}
4492module:
4493
4494@findex gdb.block_for_pc
4495@defun gdb.block_for_pc (pc)
4496Return the innermost @code{gdb.Block} containing the given @var{pc}
4497value. If the block cannot be found for the @var{pc} value specified,
4498the function will return @code{None}.
4499@end defun
4500
4501A @code{gdb.Block} object has the following methods:
4502
4503@defun Block.is_valid ()
4504Returns @code{True} if the @code{gdb.Block} object is valid,
4505@code{False} if not. A block object can become invalid if the block it
4506refers to doesn't exist anymore in the inferior. All other
4507@code{gdb.Block} methods will throw an exception if it is invalid at
4508the time the method is called. The block's validity is also checked
4509during iteration over symbols of the block.
4510@end defun
4511
4512A @code{gdb.Block} object has the following attributes:
4513
4514@defvar Block.start
4515The start address of the block. This attribute is not writable.
4516@end defvar
4517
4518@defvar Block.end
22eb9e92
TT
4519One past the last address that appears in the block. This attribute
4520is not writable.
329baa95
DE
4521@end defvar
4522
4523@defvar Block.function
4524The name of the block represented as a @code{gdb.Symbol}. If the
4525block is not named, then this attribute holds @code{None}. This
4526attribute is not writable.
4527
4528For ordinary function blocks, the superblock is the static block.
4529However, you should note that it is possible for a function block to
4530have a superblock that is not the static block -- for instance this
4531happens for an inlined function.
4532@end defvar
4533
4534@defvar Block.superblock
4535The block containing this block. If this parent block does not exist,
4536this attribute holds @code{None}. This attribute is not writable.
4537@end defvar
4538
4539@defvar Block.global_block
4540The global block associated with this block. This attribute is not
4541writable.
4542@end defvar
4543
4544@defvar Block.static_block
4545The static block associated with this block. This attribute is not
4546writable.
4547@end defvar
4548
4549@defvar Block.is_global
4550@code{True} if the @code{gdb.Block} object is a global block,
4551@code{False} if not. This attribute is not
4552writable.
4553@end defvar
4554
4555@defvar Block.is_static
4556@code{True} if the @code{gdb.Block} object is a static block,
4557@code{False} if not. This attribute is not writable.
4558@end defvar
4559
4560@node Symbols In Python
4561@subsubsection Python representation of Symbols.
4562
4563@cindex symbols in python
4564@tindex gdb.Symbol
4565
4566@value{GDBN} represents every variable, function and type as an
4567entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4568Similarly, Python represents these symbols in @value{GDBN} with the
4569@code{gdb.Symbol} object.
4570
4571The following symbol-related functions are available in the @code{gdb}
4572module:
4573
4574@findex gdb.lookup_symbol
4575@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4576This function searches for a symbol by name. The search scope can be
4577restricted to the parameters defined in the optional domain and block
4578arguments.
4579
4580@var{name} is the name of the symbol. It must be a string. The
4581optional @var{block} argument restricts the search to symbols visible
4582in that @var{block}. The @var{block} argument must be a
4583@code{gdb.Block} object. If omitted, the block for the current frame
4584is used. The optional @var{domain} argument restricts
4585the search to the domain type. The @var{domain} argument must be a
4586domain constant defined in the @code{gdb} module and described later
4587in this chapter.
4588
4589The result is a tuple of two elements.
4590The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4591is not found.
4592If the symbol is found, the second element is @code{True} if the symbol
4593is a field of a method's object (e.g., @code{this} in C@t{++}),
4594otherwise it is @code{False}.
4595If the symbol is not found, the second element is @code{False}.
4596@end defun
4597
4598@findex gdb.lookup_global_symbol
4599@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4600This function searches for a global symbol by name.
4601The search scope can be restricted to by the domain argument.
4602
4603@var{name} is the name of the symbol. It must be a string.
4604The optional @var{domain} argument restricts the search to the domain type.
4605The @var{domain} argument must be a domain constant defined in the @code{gdb}
4606module and described later in this chapter.
4607
4608The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4609is not found.
4610@end defun
4611
4612A @code{gdb.Symbol} object has the following attributes:
4613
4614@defvar Symbol.type
4615The type of the symbol or @code{None} if no type is recorded.
4616This attribute is represented as a @code{gdb.Type} object.
4617@xref{Types In Python}. This attribute is not writable.
4618@end defvar
4619
4620@defvar Symbol.symtab
4621The symbol table in which the symbol appears. This attribute is
4622represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4623Python}. This attribute is not writable.
4624@end defvar
4625
4626@defvar Symbol.line
4627The line number in the source code at which the symbol was defined.
4628This is an integer.
4629@end defvar
4630
4631@defvar Symbol.name
4632The name of the symbol as a string. This attribute is not writable.
4633@end defvar
4634
4635@defvar Symbol.linkage_name
4636The name of the symbol, as used by the linker (i.e., may be mangled).
4637This attribute is not writable.
4638@end defvar
4639
4640@defvar Symbol.print_name
4641The name of the symbol in a form suitable for output. This is either
4642@code{name} or @code{linkage_name}, depending on whether the user
4643asked @value{GDBN} to display demangled or mangled names.
4644@end defvar
4645
4646@defvar Symbol.addr_class
4647The address class of the symbol. This classifies how to find the value
4648of a symbol. Each address class is a constant defined in the
4649@code{gdb} module and described later in this chapter.
4650@end defvar
4651
4652@defvar Symbol.needs_frame
4653This is @code{True} if evaluating this symbol's value requires a frame
4654(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4655local variables will require a frame, but other symbols will not.
4656@end defvar
4657
4658@defvar Symbol.is_argument
4659@code{True} if the symbol is an argument of a function.
4660@end defvar
4661
4662@defvar Symbol.is_constant
4663@code{True} if the symbol is a constant.
4664@end defvar
4665
4666@defvar Symbol.is_function
4667@code{True} if the symbol is a function or a method.
4668@end defvar
4669
4670@defvar Symbol.is_variable
4671@code{True} if the symbol is a variable.
4672@end defvar
4673
4674A @code{gdb.Symbol} object has the following methods:
4675
4676@defun Symbol.is_valid ()
4677Returns @code{True} if the @code{gdb.Symbol} object is valid,
4678@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4679the symbol it refers to does not exist in @value{GDBN} any longer.
4680All other @code{gdb.Symbol} methods will throw an exception if it is
4681invalid at the time the method is called.
4682@end defun
4683
4684@defun Symbol.value (@r{[}frame@r{]})
4685Compute the value of the symbol, as a @code{gdb.Value}. For
4686functions, this computes the address of the function, cast to the
4687appropriate type. If the symbol requires a frame in order to compute
4688its value, then @var{frame} must be given. If @var{frame} is not
4689given, or if @var{frame} is invalid, then this method will throw an
4690exception.
4691@end defun
4692
4693The available domain categories in @code{gdb.Symbol} are represented
4694as constants in the @code{gdb} module:
4695
b3ce5e5f
DE
4696@vtable @code
4697@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4698@item gdb.SYMBOL_UNDEF_DOMAIN
4699This is used when a domain has not been discovered or none of the
4700following domains apply. This usually indicates an error either
4701in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4702
4703@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4704@item gdb.SYMBOL_VAR_DOMAIN
4705This domain contains variables, function names, typedef names and enum
4706type values.
b3ce5e5f
DE
4707
4708@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4709@item gdb.SYMBOL_STRUCT_DOMAIN
4710This domain holds struct, union and enum type names.
b3ce5e5f
DE
4711
4712@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4713@item gdb.SYMBOL_LABEL_DOMAIN
4714This domain contains names of labels (for gotos).
b3ce5e5f
DE
4715
4716@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4717@item gdb.SYMBOL_VARIABLES_DOMAIN
4718This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4719contains everything minus functions and types.
b3ce5e5f
DE
4720
4721@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4722@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4723This domain contains all functions.
b3ce5e5f
DE
4724
4725@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4726@item gdb.SYMBOL_TYPES_DOMAIN
4727This domain contains all types.
b3ce5e5f 4728@end vtable
329baa95
DE
4729
4730The available address class categories in @code{gdb.Symbol} are represented
4731as constants in the @code{gdb} module:
4732
b3ce5e5f
DE
4733@vtable @code
4734@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4735@item gdb.SYMBOL_LOC_UNDEF
4736If this is returned by address class, it indicates an error either in
4737the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4738
4739@vindex SYMBOL_LOC_CONST
329baa95
DE
4740@item gdb.SYMBOL_LOC_CONST
4741Value is constant int.
b3ce5e5f
DE
4742
4743@vindex SYMBOL_LOC_STATIC
329baa95
DE
4744@item gdb.SYMBOL_LOC_STATIC
4745Value is at a fixed address.
b3ce5e5f
DE
4746
4747@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4748@item gdb.SYMBOL_LOC_REGISTER
4749Value is in a register.
b3ce5e5f
DE
4750
4751@vindex SYMBOL_LOC_ARG
329baa95
DE
4752@item gdb.SYMBOL_LOC_ARG
4753Value is an argument. This value is at the offset stored within the
4754symbol inside the frame's argument list.
b3ce5e5f
DE
4755
4756@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4757@item gdb.SYMBOL_LOC_REF_ARG
4758Value address is stored in the frame's argument list. Just like
4759@code{LOC_ARG} except that the value's address is stored at the
4760offset, not the value itself.
b3ce5e5f
DE
4761
4762@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4763@item gdb.SYMBOL_LOC_REGPARM_ADDR
4764Value is a specified register. Just like @code{LOC_REGISTER} except
4765the register holds the address of the argument instead of the argument
4766itself.
b3ce5e5f
DE
4767
4768@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4769@item gdb.SYMBOL_LOC_LOCAL
4770Value is a local variable.
b3ce5e5f
DE
4771
4772@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4773@item gdb.SYMBOL_LOC_TYPEDEF
4774Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4775have this class.
b3ce5e5f
DE
4776
4777@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4778@item gdb.SYMBOL_LOC_BLOCK
4779Value is a block.
b3ce5e5f
DE
4780
4781@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4782@item gdb.SYMBOL_LOC_CONST_BYTES
4783Value is a byte-sequence.
b3ce5e5f
DE
4784
4785@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4786@item gdb.SYMBOL_LOC_UNRESOLVED
4787Value is at a fixed address, but the address of the variable has to be
4788determined from the minimal symbol table whenever the variable is
4789referenced.
b3ce5e5f
DE
4790
4791@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4792@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4793The value does not actually exist in the program.
b3ce5e5f
DE
4794
4795@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4796@item gdb.SYMBOL_LOC_COMPUTED
4797The value's address is a computed location.
b3ce5e5f 4798@end vtable
329baa95
DE
4799
4800@node Symbol Tables In Python
4801@subsubsection Symbol table representation in Python.
4802
4803@cindex symbol tables in python
4804@tindex gdb.Symtab
4805@tindex gdb.Symtab_and_line
4806
4807Access to symbol table data maintained by @value{GDBN} on the inferior
4808is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4809@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4810from the @code{find_sal} method in @code{gdb.Frame} object.
4811@xref{Frames In Python}.
4812
4813For more information on @value{GDBN}'s symbol table management, see
4814@ref{Symbols, ,Examining the Symbol Table}, for more information.
4815
4816A @code{gdb.Symtab_and_line} object has the following attributes:
4817
4818@defvar Symtab_and_line.symtab
4819The symbol table object (@code{gdb.Symtab}) for this frame.
4820This attribute is not writable.
4821@end defvar
4822
4823@defvar Symtab_and_line.pc
4824Indicates the start of the address range occupied by code for the
4825current source line. This attribute is not writable.
4826@end defvar
4827
4828@defvar Symtab_and_line.last
4829Indicates the end of the address range occupied by code for the current
4830source line. This attribute is not writable.
4831@end defvar
4832
4833@defvar Symtab_and_line.line
4834Indicates the current line number for this object. This
4835attribute is not writable.
4836@end defvar
4837
4838A @code{gdb.Symtab_and_line} object has the following methods:
4839
4840@defun Symtab_and_line.is_valid ()
4841Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4842@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4843invalid if the Symbol table and line object it refers to does not
4844exist in @value{GDBN} any longer. All other
4845@code{gdb.Symtab_and_line} methods will throw an exception if it is
4846invalid at the time the method is called.
4847@end defun
4848
4849A @code{gdb.Symtab} object has the following attributes:
4850
4851@defvar Symtab.filename
4852The symbol table's source filename. This attribute is not writable.
4853@end defvar
4854
4855@defvar Symtab.objfile
4856The symbol table's backing object file. @xref{Objfiles In Python}.
4857This attribute is not writable.
4858@end defvar
4859
2b4fd423
DE
4860@defvar Symtab.producer
4861The name and possibly version number of the program that
4862compiled the code in the symbol table.
4863The contents of this string is up to the compiler.
4864If no producer information is available then @code{None} is returned.
4865This attribute is not writable.
4866@end defvar
4867
329baa95
DE
4868A @code{gdb.Symtab} object has the following methods:
4869
4870@defun Symtab.is_valid ()
4871Returns @code{True} if the @code{gdb.Symtab} object is valid,
4872@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4873the symbol table it refers to does not exist in @value{GDBN} any
4874longer. All other @code{gdb.Symtab} methods will throw an exception
4875if it is invalid at the time the method is called.
4876@end defun
4877
4878@defun Symtab.fullname ()
4879Return the symbol table's source absolute file name.
4880@end defun
4881
4882@defun Symtab.global_block ()
4883Return the global block of the underlying symbol table.
4884@xref{Blocks In Python}.
4885@end defun
4886
4887@defun Symtab.static_block ()
4888Return the static block of the underlying symbol table.
4889@xref{Blocks In Python}.
4890@end defun
4891
4892@defun Symtab.linetable ()
4893Return the line table associated with the symbol table.
4894@xref{Line Tables In Python}.
4895@end defun
4896
4897@node Line Tables In Python
4898@subsubsection Manipulating line tables using Python
4899
4900@cindex line tables in python
4901@tindex gdb.LineTable
4902
4903Python code can request and inspect line table information from a
4904symbol table that is loaded in @value{GDBN}. A line table is a
4905mapping of source lines to their executable locations in memory. To
4906acquire the line table information for a particular symbol table, use
4907the @code{linetable} function (@pxref{Symbol Tables In Python}).
4908
4909A @code{gdb.LineTable} is iterable. The iterator returns
4910@code{LineTableEntry} objects that correspond to the source line and
4911address for each line table entry. @code{LineTableEntry} objects have
4912the following attributes:
4913
4914@defvar LineTableEntry.line
4915The source line number for this line table entry. This number
4916corresponds to the actual line of source. This attribute is not
4917writable.
4918@end defvar
4919
4920@defvar LineTableEntry.pc
4921The address that is associated with the line table entry where the
4922executable code for that source line resides in memory. This
4923attribute is not writable.
4924@end defvar
4925
4926As there can be multiple addresses for a single source line, you may
4927receive multiple @code{LineTableEntry} objects with matching
4928@code{line} attributes, but with different @code{pc} attributes. The
4929iterator is sorted in ascending @code{pc} order. Here is a small
4930example illustrating iterating over a line table.
4931
4932@smallexample
4933symtab = gdb.selected_frame().find_sal().symtab
4934linetable = symtab.linetable()
4935for line in linetable:
4936 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4937@end smallexample
4938
4939This will have the following output:
4940
4941@smallexample
4942Line: 33 Address: 0x4005c8L
4943Line: 37 Address: 0x4005caL
4944Line: 39 Address: 0x4005d2L
4945Line: 40 Address: 0x4005f8L
4946Line: 42 Address: 0x4005ffL
4947Line: 44 Address: 0x400608L
4948Line: 42 Address: 0x40060cL
4949Line: 45 Address: 0x400615L
4950@end smallexample
4951
4952In addition to being able to iterate over a @code{LineTable}, it also
4953has the following direct access methods:
4954
4955@defun LineTable.line (line)
4956Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4957entries in the line table for the given @var{line}, which specifies
4958the source code line. If there are no entries for that source code
329baa95
DE
4959@var{line}, the Python @code{None} is returned.
4960@end defun
4961
4962@defun LineTable.has_line (line)
4963Return a Python @code{Boolean} indicating whether there is an entry in
4964the line table for this source line. Return @code{True} if an entry
4965is found, or @code{False} if not.
4966@end defun
4967
4968@defun LineTable.source_lines ()
4969Return a Python @code{List} of the source line numbers in the symbol
4970table. Only lines with executable code locations are returned. The
4971contents of the @code{List} will just be the source line entries
4972represented as Python @code{Long} values.
4973@end defun
4974
4975@node Breakpoints In Python
4976@subsubsection Manipulating breakpoints using Python
4977
4978@cindex breakpoints in python
4979@tindex gdb.Breakpoint
4980
4981Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4982class.
4983
0b982d68
SM
4984A breakpoint can be created using one of the two forms of the
4985@code{gdb.Breakpoint} constructor. The first one accepts a string
4986like one would pass to the @code{break}
4987(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4988(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4989create both breakpoints and watchpoints. The second accepts separate Python
4990arguments similar to @ref{Explicit Locations}, and can only be used to create
4991breakpoints.
4992
b89641ba 4993@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4994Create a new breakpoint according to @var{spec}, which is a string naming the
4995location of a breakpoint, or an expression that defines a watchpoint. The
4996string should describe a location in a format recognized by the @code{break}
4997command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
4998watchpoint, by the @code{watch} command
4999(@pxref{Set Watchpoints, , Setting Watchpoints}).
5000
5001The optional @var{type} argument specifies the type of the breakpoint to create,
5002as defined below.
5003
5004The optional @var{wp_class} argument defines the class of watchpoint to create,
5005if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5006defaults to @code{gdb.WP_WRITE}.
5007
5008The optional @var{internal} argument allows the breakpoint to become invisible
5009to the user. The breakpoint will neither be reported when created, nor will it
5010be listed in the output from @code{info breakpoints} (but will be listed with
5011the @code{maint info breakpoints} command).
5012
5013The optional @var{temporary} argument makes the breakpoint a temporary
5014breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5015further access to the Python breakpoint after it has been hit will result in a
5016runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5017
5018The optional @var{qualified} argument is a boolean that allows interpreting
5019the function passed in @code{spec} as a fully-qualified name. It is equivalent
5020to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5021@ref{Explicit Locations}).
5022
0b982d68
SM
5023@end defun
5024
b89641ba 5025@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5026This second form of creating a new breakpoint specifies the explicit
5027location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5028be created in the specified source file @var{source}, at the specified
5029@var{function}, @var{label} and @var{line}.
5030
b89641ba
SM
5031@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5032explained previously.
329baa95
DE
5033@end defun
5034
cda75e70
TT
5035The available types are represented by constants defined in the @code{gdb}
5036module:
5037
5038@vtable @code
5039@vindex BP_BREAKPOINT
5040@item gdb.BP_BREAKPOINT
5041Normal code breakpoint.
5042
5043@vindex BP_WATCHPOINT
5044@item gdb.BP_WATCHPOINT
5045Watchpoint breakpoint.
5046
5047@vindex BP_HARDWARE_WATCHPOINT
5048@item gdb.BP_HARDWARE_WATCHPOINT
5049Hardware assisted watchpoint.
5050
5051@vindex BP_READ_WATCHPOINT
5052@item gdb.BP_READ_WATCHPOINT
5053Hardware assisted read watchpoint.
5054
5055@vindex BP_ACCESS_WATCHPOINT
5056@item gdb.BP_ACCESS_WATCHPOINT
5057Hardware assisted access watchpoint.
5058@end vtable
5059
5060The available watchpoint types represented by constants are defined in the
5061@code{gdb} module:
5062
5063@vtable @code
5064@vindex WP_READ
5065@item gdb.WP_READ
5066Read only watchpoint.
5067
5068@vindex WP_WRITE
5069@item gdb.WP_WRITE
5070Write only watchpoint.
5071
5072@vindex WP_ACCESS
5073@item gdb.WP_ACCESS
5074Read/Write watchpoint.
5075@end vtable
5076
329baa95
DE
5077@defun Breakpoint.stop (self)
5078The @code{gdb.Breakpoint} class can be sub-classed and, in
5079particular, you may choose to implement the @code{stop} method.
5080If this method is defined in a sub-class of @code{gdb.Breakpoint},
5081it will be called when the inferior reaches any location of a
5082breakpoint which instantiates that sub-class. If the method returns
5083@code{True}, the inferior will be stopped at the location of the
5084breakpoint, otherwise the inferior will continue.
5085
5086If there are multiple breakpoints at the same location with a
5087@code{stop} method, each one will be called regardless of the
5088return status of the previous. This ensures that all @code{stop}
5089methods have a chance to execute at that location. In this scenario
5090if one of the methods returns @code{True} but the others return
5091@code{False}, the inferior will still be stopped.
5092
5093You should not alter the execution state of the inferior (i.e.@:, step,
5094next, etc.), alter the current frame context (i.e.@:, change the current
5095active frame), or alter, add or delete any breakpoint. As a general
5096rule, you should not alter any data within @value{GDBN} or the inferior
5097at this time.
5098
5099Example @code{stop} implementation:
5100
5101@smallexample
5102class MyBreakpoint (gdb.Breakpoint):
5103 def stop (self):
5104 inf_val = gdb.parse_and_eval("foo")
5105 if inf_val == 3:
5106 return True
5107 return False
5108@end smallexample
5109@end defun
5110
329baa95
DE
5111@defun Breakpoint.is_valid ()
5112Return @code{True} if this @code{Breakpoint} object is valid,
5113@code{False} otherwise. A @code{Breakpoint} object can become invalid
5114if the user deletes the breakpoint. In this case, the object still
5115exists, but the underlying breakpoint does not. In the cases of
5116watchpoint scope, the watchpoint remains valid even if execution of the
5117inferior leaves the scope of that watchpoint.
5118@end defun
5119
fab3a15d 5120@defun Breakpoint.delete ()
329baa95
DE
5121Permanently deletes the @value{GDBN} breakpoint. This also
5122invalidates the Python @code{Breakpoint} object. Any further access
5123to this object's attributes or methods will raise an error.
5124@end defun
5125
5126@defvar Breakpoint.enabled
5127This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5128@code{False} otherwise. This attribute is writable. You can use it to enable
5129or disable the breakpoint.
329baa95
DE
5130@end defvar
5131
5132@defvar Breakpoint.silent
5133This attribute is @code{True} if the breakpoint is silent, and
5134@code{False} otherwise. This attribute is writable.
5135
5136Note that a breakpoint can also be silent if it has commands and the
5137first command is @code{silent}. This is not reported by the
5138@code{silent} attribute.
5139@end defvar
5140
93daf339
TT
5141@defvar Breakpoint.pending
5142This attribute is @code{True} if the breakpoint is pending, and
5143@code{False} otherwise. @xref{Set Breaks}. This attribute is
5144read-only.
5145@end defvar
5146
22a02324 5147@anchor{python_breakpoint_thread}
329baa95 5148@defvar Breakpoint.thread
5d5658a1
PA
5149If the breakpoint is thread-specific, this attribute holds the
5150thread's global id. If the breakpoint is not thread-specific, this
5151attribute is @code{None}. This attribute is writable.
329baa95
DE
5152@end defvar
5153
5154@defvar Breakpoint.task
5155If the breakpoint is Ada task-specific, this attribute holds the Ada task
5156id. If the breakpoint is not task-specific (or the underlying
5157language is not Ada), this attribute is @code{None}. This attribute
5158is writable.
5159@end defvar
5160
5161@defvar Breakpoint.ignore_count
5162This attribute holds the ignore count for the breakpoint, an integer.
5163This attribute is writable.
5164@end defvar
5165
5166@defvar Breakpoint.number
5167This attribute holds the breakpoint's number --- the identifier used by
5168the user to manipulate the breakpoint. This attribute is not writable.
5169@end defvar
5170
5171@defvar Breakpoint.type
5172This attribute holds the breakpoint's type --- the identifier used to
5173determine the actual breakpoint type or use-case. This attribute is not
5174writable.
5175@end defvar
5176
5177@defvar Breakpoint.visible
5178This attribute tells whether the breakpoint is visible to the user
5179when set, or when the @samp{info breakpoints} command is run. This
5180attribute is not writable.
5181@end defvar
5182
5183@defvar Breakpoint.temporary
5184This attribute indicates whether the breakpoint was created as a
5185temporary breakpoint. Temporary breakpoints are automatically deleted
5186after that breakpoint has been hit. Access to this attribute, and all
5187other attributes and functions other than the @code{is_valid}
5188function, will result in an error after the breakpoint has been hit
5189(as it has been automatically deleted). This attribute is not
5190writable.
5191@end defvar
5192
329baa95
DE
5193@defvar Breakpoint.hit_count
5194This attribute holds the hit count for the breakpoint, an integer.
5195This attribute is writable, but currently it can only be set to zero.
5196@end defvar
5197
5198@defvar Breakpoint.location
5199This attribute holds the location of the breakpoint, as specified by
5200the user. It is a string. If the breakpoint does not have a location
5201(that is, it is a watchpoint) the attribute's value is @code{None}. This
5202attribute is not writable.
5203@end defvar
5204
5205@defvar Breakpoint.expression
5206This attribute holds a breakpoint expression, as specified by
5207the user. It is a string. If the breakpoint does not have an
5208expression (the breakpoint is not a watchpoint) the attribute's value
5209is @code{None}. This attribute is not writable.
5210@end defvar
5211
5212@defvar Breakpoint.condition
5213This attribute holds the condition of the breakpoint, as specified by
5214the user. It is a string. If there is no condition, this attribute's
5215value is @code{None}. This attribute is writable.
5216@end defvar
5217
5218@defvar Breakpoint.commands
5219This attribute holds the commands attached to the breakpoint. If
5220there are commands, this attribute's value is a string holding all the
5221commands, separated by newlines. If there are no commands, this
a913fffb 5222attribute is @code{None}. This attribute is writable.
329baa95
DE
5223@end defvar
5224
5225@node Finish Breakpoints in Python
5226@subsubsection Finish Breakpoints
5227
5228@cindex python finish breakpoints
5229@tindex gdb.FinishBreakpoint
5230
5231A finish breakpoint is a temporary breakpoint set at the return address of
5232a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5233extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5234and deleted when the execution will run out of the breakpoint scope (i.e.@:
5235@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5236Finish breakpoints are thread specific and must be create with the right
5237thread selected.
5238
5239@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5240Create a finish breakpoint at the return address of the @code{gdb.Frame}
5241object @var{frame}. If @var{frame} is not provided, this defaults to the
5242newest frame. The optional @var{internal} argument allows the breakpoint to
5243become invisible to the user. @xref{Breakpoints In Python}, for further
5244details about this argument.
5245@end defun
5246
5247@defun FinishBreakpoint.out_of_scope (self)
5248In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5249@code{return} command, @dots{}), a function may not properly terminate, and
5250thus never hit the finish breakpoint. When @value{GDBN} notices such a
5251situation, the @code{out_of_scope} callback will be triggered.
5252
5253You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5254method:
5255
5256@smallexample
5257class MyFinishBreakpoint (gdb.FinishBreakpoint)
5258 def stop (self):
5259 print "normal finish"
5260 return True
5261
5262 def out_of_scope ():
5263 print "abnormal finish"
5264@end smallexample
5265@end defun
5266
5267@defvar FinishBreakpoint.return_value
5268When @value{GDBN} is stopped at a finish breakpoint and the frame
5269used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5270attribute will contain a @code{gdb.Value} object corresponding to the return
5271value of the function. The value will be @code{None} if the function return
5272type is @code{void} or if the return value was not computable. This attribute
5273is not writable.
5274@end defvar
5275
5276@node Lazy Strings In Python
5277@subsubsection Python representation of lazy strings.
5278
5279@cindex lazy strings in python
5280@tindex gdb.LazyString
5281
5282A @dfn{lazy string} is a string whose contents is not retrieved or
5283encoded until it is needed.
5284
5285A @code{gdb.LazyString} is represented in @value{GDBN} as an
5286@code{address} that points to a region of memory, an @code{encoding}
5287that will be used to encode that region of memory, and a @code{length}
5288to delimit the region of memory that represents the string. The
5289difference between a @code{gdb.LazyString} and a string wrapped within
5290a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5291differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5292retrieved and encoded during printing, while a @code{gdb.Value}
5293wrapping a string is immediately retrieved and encoded on creation.
5294
5295A @code{gdb.LazyString} object has the following functions:
5296
5297@defun LazyString.value ()
5298Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5299will point to the string in memory, but will lose all the delayed
5300retrieval, encoding and handling that @value{GDBN} applies to a
5301@code{gdb.LazyString}.
5302@end defun
5303
5304@defvar LazyString.address
5305This attribute holds the address of the string. This attribute is not
5306writable.
5307@end defvar
5308
5309@defvar LazyString.length
5310This attribute holds the length of the string in characters. If the
5311length is -1, then the string will be fetched and encoded up to the
5312first null of appropriate width. This attribute is not writable.
5313@end defvar
5314
5315@defvar LazyString.encoding
5316This attribute holds the encoding that will be applied to the string
5317when the string is printed by @value{GDBN}. If the encoding is not
5318set, or contains an empty string, then @value{GDBN} will select the
5319most appropriate encoding when the string is printed. This attribute
5320is not writable.
5321@end defvar
5322
5323@defvar LazyString.type
5324This attribute holds the type that is represented by the lazy string's
f8d99587 5325type. For a lazy string this is a pointer or array type. To
329baa95
DE
5326resolve this to the lazy string's character type, use the type's
5327@code{target} method. @xref{Types In Python}. This attribute is not
5328writable.
5329@end defvar
5330
5331@node Architectures In Python
5332@subsubsection Python representation of architectures
5333@cindex Python architectures
5334
5335@value{GDBN} uses architecture specific parameters and artifacts in a
5336number of its various computations. An architecture is represented
5337by an instance of the @code{gdb.Architecture} class.
5338
5339A @code{gdb.Architecture} class has the following methods:
5340
5341@defun Architecture.name ()
5342Return the name (string value) of the architecture.
5343@end defun
5344
5345@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5346Return a list of disassembled instructions starting from the memory
5347address @var{start_pc}. The optional arguments @var{end_pc} and
5348@var{count} determine the number of instructions in the returned list.
5349If both the optional arguments @var{end_pc} and @var{count} are
5350specified, then a list of at most @var{count} disassembled instructions
5351whose start address falls in the closed memory address interval from
5352@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5353specified, but @var{count} is specified, then @var{count} number of
5354instructions starting from the address @var{start_pc} are returned. If
5355@var{count} is not specified but @var{end_pc} is specified, then all
5356instructions whose start address falls in the closed memory address
5357interval from @var{start_pc} to @var{end_pc} are returned. If neither
5358@var{end_pc} nor @var{count} are specified, then a single instruction at
5359@var{start_pc} is returned. For all of these cases, each element of the
5360returned list is a Python @code{dict} with the following string keys:
5361
5362@table @code
5363
5364@item addr
5365The value corresponding to this key is a Python long integer capturing
5366the memory address of the instruction.
5367
5368@item asm
5369The value corresponding to this key is a string value which represents
5370the instruction with assembly language mnemonics. The assembly
5371language flavor used is the same as that specified by the current CLI
5372variable @code{disassembly-flavor}. @xref{Machine Code}.
5373
5374@item length
5375The value corresponding to this key is the length (integer value) of the
5376instruction in bytes.
5377
5378@end table
5379@end defun
5380
5381@node Python Auto-loading
5382@subsection Python Auto-loading
5383@cindex Python auto-loading
5384
5385When a new object file is read (for example, due to the @code{file}
5386command, or because the inferior has loaded a shared library),
5387@value{GDBN} will look for Python support scripts in several ways:
5388@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5389@xref{Auto-loading extensions}.
5390
5391The auto-loading feature is useful for supplying application-specific
5392debugging commands and scripts.
5393
5394Auto-loading can be enabled or disabled,
5395and the list of auto-loaded scripts can be printed.
5396
5397@table @code
5398@anchor{set auto-load python-scripts}
5399@kindex set auto-load python-scripts
5400@item set auto-load python-scripts [on|off]
5401Enable or disable the auto-loading of Python scripts.
5402
5403@anchor{show auto-load python-scripts}
5404@kindex show auto-load python-scripts
5405@item show auto-load python-scripts
5406Show whether auto-loading of Python scripts is enabled or disabled.
5407
5408@anchor{info auto-load python-scripts}
5409@kindex info auto-load python-scripts
5410@cindex print list of auto-loaded Python scripts
5411@item info auto-load python-scripts [@var{regexp}]
5412Print the list of all Python scripts that @value{GDBN} auto-loaded.
5413
5414Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5415the @code{.debug_gdb_scripts} section and were either not found
5416(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5417@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5418This is useful because their names are not printed when @value{GDBN}
5419tries to load them and fails. There may be many of them, and printing
5420an error message for each one is problematic.
5421
5422If @var{regexp} is supplied only Python scripts with matching names are printed.
5423
5424Example:
5425
5426@smallexample
5427(gdb) info auto-load python-scripts
5428Loaded Script
5429Yes py-section-script.py
5430 full name: /tmp/py-section-script.py
5431No my-foo-pretty-printers.py
5432@end smallexample
5433@end table
5434
9f050062 5435When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5436@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5437function (@pxref{Objfiles In Python}). This can be useful for
5438registering objfile-specific pretty-printers and frame-filters.
5439
5440@node Python modules
5441@subsection Python modules
5442@cindex python modules
5443
5444@value{GDBN} comes with several modules to assist writing Python code.
5445
5446@menu
5447* gdb.printing:: Building and registering pretty-printers.
5448* gdb.types:: Utilities for working with types.
5449* gdb.prompt:: Utilities for prompt value substitution.
5450@end menu
5451
5452@node gdb.printing
5453@subsubsection gdb.printing
5454@cindex gdb.printing
5455
5456This module provides a collection of utilities for working with
5457pretty-printers.
5458
5459@table @code
5460@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5461This class specifies the API that makes @samp{info pretty-printer},
5462@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5463Pretty-printers should generally inherit from this class.
5464
5465@item SubPrettyPrinter (@var{name})
5466For printers that handle multiple types, this class specifies the
5467corresponding API for the subprinters.
5468
5469@item RegexpCollectionPrettyPrinter (@var{name})
5470Utility class for handling multiple printers, all recognized via
5471regular expressions.
5472@xref{Writing a Pretty-Printer}, for an example.
5473
5474@item FlagEnumerationPrinter (@var{name})
5475A pretty-printer which handles printing of @code{enum} values. Unlike
5476@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5477work properly when there is some overlap between the enumeration
697aa1b7
EZ
5478constants. The argument @var{name} is the name of the printer and
5479also the name of the @code{enum} type to look up.
329baa95
DE
5480
5481@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5482Register @var{printer} with the pretty-printer list of @var{obj}.
5483If @var{replace} is @code{True} then any existing copy of the printer
5484is replaced. Otherwise a @code{RuntimeError} exception is raised
5485if a printer with the same name already exists.
5486@end table
5487
5488@node gdb.types
5489@subsubsection gdb.types
5490@cindex gdb.types
5491
5492This module provides a collection of utilities for working with
5493@code{gdb.Type} objects.
5494
5495@table @code
5496@item get_basic_type (@var{type})
5497Return @var{type} with const and volatile qualifiers stripped,
5498and with typedefs and C@t{++} references converted to the underlying type.
5499
5500C@t{++} example:
5501
5502@smallexample
5503typedef const int const_int;
5504const_int foo (3);
5505const_int& foo_ref (foo);
5506int main () @{ return 0; @}
5507@end smallexample
5508
5509Then in gdb:
5510
5511@smallexample
5512(gdb) start
5513(gdb) python import gdb.types
5514(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5515(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5516int
5517@end smallexample
5518
5519@item has_field (@var{type}, @var{field})
5520Return @code{True} if @var{type}, assumed to be a type with fields
5521(e.g., a structure or union), has field @var{field}.
5522
5523@item make_enum_dict (@var{enum_type})
5524Return a Python @code{dictionary} type produced from @var{enum_type}.
5525
5526@item deep_items (@var{type})
5527Returns a Python iterator similar to the standard
5528@code{gdb.Type.iteritems} method, except that the iterator returned
5529by @code{deep_items} will recursively traverse anonymous struct or
5530union fields. For example:
5531
5532@smallexample
5533struct A
5534@{
5535 int a;
5536 union @{
5537 int b0;
5538 int b1;
5539 @};
5540@};
5541@end smallexample
5542
5543@noindent
5544Then in @value{GDBN}:
5545@smallexample
5546(@value{GDBP}) python import gdb.types
5547(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5548(@value{GDBP}) python print struct_a.keys ()
5549@{['a', '']@}
5550(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5551@{['a', 'b0', 'b1']@}
5552@end smallexample
5553
5554@item get_type_recognizers ()
5555Return a list of the enabled type recognizers for the current context.
5556This is called by @value{GDBN} during the type-printing process
5557(@pxref{Type Printing API}).
5558
5559@item apply_type_recognizers (recognizers, type_obj)
5560Apply the type recognizers, @var{recognizers}, to the type object
5561@var{type_obj}. If any recognizer returns a string, return that
5562string. Otherwise, return @code{None}. This is called by
5563@value{GDBN} during the type-printing process (@pxref{Type Printing
5564API}).
5565
5566@item register_type_printer (locus, printer)
697aa1b7
EZ
5567This is a convenience function to register a type printer
5568@var{printer}. The printer must implement the type printer protocol.
5569The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5570the printer is registered with that objfile; a @code{gdb.Progspace},
5571in which case the printer is registered with that progspace; or
5572@code{None}, in which case the printer is registered globally.
329baa95
DE
5573
5574@item TypePrinter
5575This is a base class that implements the type printer protocol. Type
5576printers are encouraged, but not required, to derive from this class.
5577It defines a constructor:
5578
5579@defmethod TypePrinter __init__ (self, name)
5580Initialize the type printer with the given name. The new printer
5581starts in the enabled state.
5582@end defmethod
5583
5584@end table
5585
5586@node gdb.prompt
5587@subsubsection gdb.prompt
5588@cindex gdb.prompt
5589
5590This module provides a method for prompt value-substitution.
5591
5592@table @code
5593@item substitute_prompt (@var{string})
5594Return @var{string} with escape sequences substituted by values. Some
5595escape sequences take arguments. You can specify arguments inside
5596``@{@}'' immediately following the escape sequence.
5597
5598The escape sequences you can pass to this function are:
5599
5600@table @code
5601@item \\
5602Substitute a backslash.
5603@item \e
5604Substitute an ESC character.
5605@item \f
5606Substitute the selected frame; an argument names a frame parameter.
5607@item \n
5608Substitute a newline.
5609@item \p
5610Substitute a parameter's value; the argument names the parameter.
5611@item \r
5612Substitute a carriage return.
5613@item \t
5614Substitute the selected thread; an argument names a thread parameter.
5615@item \v
5616Substitute the version of GDB.
5617@item \w
5618Substitute the current working directory.
5619@item \[
5620Begin a sequence of non-printing characters. These sequences are
5621typically used with the ESC character, and are not counted in the string
5622length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5623blue-colored ``(gdb)'' prompt where the length is five.
5624@item \]
5625End a sequence of non-printing characters.
5626@end table
5627
5628For example:
5629
5630@smallexample
5631substitute_prompt (``frame: \f,
5632 print arguments: \p@{print frame-arguments@}'')
5633@end smallexample
5634
5635@exdent will return the string:
5636
5637@smallexample
5638"frame: main, print arguments: scalars"
5639@end smallexample
5640@end table