]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Update copyright year range in all GDB files.
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
738@defun Value.cast (type)
739Return a new instance of @code{gdb.Value} that is the result of
740casting this instance to the type described by @var{type}, which must
741be a @code{gdb.Type} object. If the cast cannot be performed for some
742reason, this method throws an exception.
743@end defun
744
745@defun Value.dereference ()
746For pointer data types, this method returns a new @code{gdb.Value} object
747whose contents is the object pointed to by the pointer. For example, if
748@code{foo} is a C pointer to an @code{int}, declared in your C program as
749
750@smallexample
751int *foo;
752@end smallexample
753
754@noindent
755then you can use the corresponding @code{gdb.Value} to access what
756@code{foo} points to like this:
757
758@smallexample
759bar = foo.dereference ()
760@end smallexample
761
762The result @code{bar} will be a @code{gdb.Value} object holding the
763value pointed to by @code{foo}.
764
765A similar function @code{Value.referenced_value} exists which also
766returns @code{gdb.Value} objects corresonding to the values pointed to
767by pointer values (and additionally, values referenced by reference
768values). However, the behavior of @code{Value.dereference}
769differs from @code{Value.referenced_value} by the fact that the
770behavior of @code{Value.dereference} is identical to applying the C
771unary operator @code{*} on a given value. For example, consider a
772reference to a pointer @code{ptrref}, declared in your C@t{++} program
773as
774
775@smallexample
776typedef int *intptr;
777...
778int val = 10;
779intptr ptr = &val;
780intptr &ptrref = ptr;
781@end smallexample
782
783Though @code{ptrref} is a reference value, one can apply the method
784@code{Value.dereference} to the @code{gdb.Value} object corresponding
785to it and obtain a @code{gdb.Value} which is identical to that
786corresponding to @code{val}. However, if you apply the method
787@code{Value.referenced_value}, the result would be a @code{gdb.Value}
788object identical to that corresponding to @code{ptr}.
789
790@smallexample
791py_ptrref = gdb.parse_and_eval ("ptrref")
792py_val = py_ptrref.dereference ()
793py_ptr = py_ptrref.referenced_value ()
794@end smallexample
795
796The @code{gdb.Value} object @code{py_val} is identical to that
797corresponding to @code{val}, and @code{py_ptr} is identical to that
798corresponding to @code{ptr}. In general, @code{Value.dereference} can
799be applied whenever the C unary operator @code{*} can be applied
800to the corresponding C value. For those cases where applying both
801@code{Value.dereference} and @code{Value.referenced_value} is allowed,
802the results obtained need not be identical (as we have seen in the above
803example). The results are however identical when applied on
804@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
805objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
806@end defun
807
808@defun Value.referenced_value ()
809For pointer or reference data types, this method returns a new
810@code{gdb.Value} object corresponding to the value referenced by the
811pointer/reference value. For pointer data types,
812@code{Value.dereference} and @code{Value.referenced_value} produce
813identical results. The difference between these methods is that
814@code{Value.dereference} cannot get the values referenced by reference
815values. For example, consider a reference to an @code{int}, declared
816in your C@t{++} program as
817
818@smallexample
819int val = 10;
820int &ref = val;
821@end smallexample
822
823@noindent
824then applying @code{Value.dereference} to the @code{gdb.Value} object
825corresponding to @code{ref} will result in an error, while applying
826@code{Value.referenced_value} will result in a @code{gdb.Value} object
827identical to that corresponding to @code{val}.
828
829@smallexample
830py_ref = gdb.parse_and_eval ("ref")
831er_ref = py_ref.dereference () # Results in error
832py_val = py_ref.referenced_value () # Returns the referenced value
833@end smallexample
834
835The @code{gdb.Value} object @code{py_val} is identical to that
836corresponding to @code{val}.
837@end defun
838
4c082a81
SC
839@defun Value.reference_value ()
840Return a @code{gdb.Value} object which is a reference to the value
841encapsulated by this instance.
842@end defun
843
844@defun Value.const_value ()
845Return a @code{gdb.Value} object which is a @code{const} version of the
846value encapsulated by this instance.
847@end defun
848
329baa95
DE
849@defun Value.dynamic_cast (type)
850Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
851operator were used. Consult a C@t{++} reference for details.
852@end defun
853
854@defun Value.reinterpret_cast (type)
855Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
856operator were used. Consult a C@t{++} reference for details.
857@end defun
858
859@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
860If this @code{gdb.Value} represents a string, then this method
861converts the contents to a Python string. Otherwise, this method will
862throw an exception.
863
b3ce5e5f
DE
864Values are interpreted as strings according to the rules of the
865current language. If the optional length argument is given, the
866string will be converted to that length, and will include any embedded
867zeroes that the string may contain. Otherwise, for languages
868where the string is zero-terminated, the entire string will be
869converted.
329baa95 870
b3ce5e5f
DE
871For example, in C-like languages, a value is a string if it is a pointer
872to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
873or @code{char32_t}.
329baa95
DE
874
875If the optional @var{encoding} argument is given, it must be a string
876naming the encoding of the string in the @code{gdb.Value}, such as
877@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
878the same encodings as the corresponding argument to Python's
879@code{string.decode} method, and the Python codec machinery will be used
880to convert the string. If @var{encoding} is not given, or if
881@var{encoding} is the empty string, then either the @code{target-charset}
882(@pxref{Character Sets}) will be used, or a language-specific encoding
883will be used, if the current language is able to supply one.
884
885The optional @var{errors} argument is the same as the corresponding
886argument to Python's @code{string.decode} method.
887
888If the optional @var{length} argument is given, the string will be
889fetched and converted to the given length.
890@end defun
891
892@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
893If this @code{gdb.Value} represents a string, then this method
894converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
895In Python}). Otherwise, this method will throw an exception.
896
897If the optional @var{encoding} argument is given, it must be a string
898naming the encoding of the @code{gdb.LazyString}. Some examples are:
899@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
900@var{encoding} argument is an encoding that @value{GDBN} does
901recognize, @value{GDBN} will raise an error.
902
903When a lazy string is printed, the @value{GDBN} encoding machinery is
904used to convert the string during printing. If the optional
905@var{encoding} argument is not provided, or is an empty string,
906@value{GDBN} will automatically select the encoding most suitable for
907the string type. For further information on encoding in @value{GDBN}
908please see @ref{Character Sets}.
909
910If the optional @var{length} argument is given, the string will be
911fetched and encoded to the length of characters specified. If
912the @var{length} argument is not provided, the string will be fetched
913and encoded until a null of appropriate width is found.
914@end defun
915
916@defun Value.fetch_lazy ()
917If the @code{gdb.Value} object is currently a lazy value
918(@code{gdb.Value.is_lazy} is @code{True}), then the value is
919fetched from the inferior. Any errors that occur in the process
920will produce a Python exception.
921
922If the @code{gdb.Value} object is not a lazy value, this method
923has no effect.
924
925This method does not return a value.
926@end defun
927
928
929@node Types In Python
930@subsubsection Types In Python
931@cindex types in Python
932@cindex Python, working with types
933
934@tindex gdb.Type
935@value{GDBN} represents types from the inferior using the class
936@code{gdb.Type}.
937
938The following type-related functions are available in the @code{gdb}
939module:
940
941@findex gdb.lookup_type
942@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 943This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
944
945If @var{block} is given, then @var{name} is looked up in that scope.
946Otherwise, it is searched for globally.
947
948Ordinarily, this function will return an instance of @code{gdb.Type}.
949If the named type cannot be found, it will throw an exception.
950@end defun
951
952If the type is a structure or class type, or an enum type, the fields
953of that type can be accessed using the Python @dfn{dictionary syntax}.
954For example, if @code{some_type} is a @code{gdb.Type} instance holding
955a structure type, you can access its @code{foo} field with:
956
957@smallexample
958bar = some_type['foo']
959@end smallexample
960
961@code{bar} will be a @code{gdb.Field} object; see below under the
962description of the @code{Type.fields} method for a description of the
963@code{gdb.Field} class.
964
965An instance of @code{Type} has the following attributes:
966
6d7bb824
TT
967@defvar Type.alignof
968The alignment of this type, in bytes. Type alignment comes from the
969debugging information; if it was not specified, then @value{GDBN} will
970use the relevant ABI to try to determine the alignment. In some
971cases, even this is not possible, and zero will be returned.
972@end defvar
973
329baa95
DE
974@defvar Type.code
975The type code for this type. The type code will be one of the
976@code{TYPE_CODE_} constants defined below.
977@end defvar
978
979@defvar Type.name
980The name of this type. If this type has no name, then @code{None}
981is returned.
982@end defvar
983
984@defvar Type.sizeof
985The size of this type, in target @code{char} units. Usually, a
986target's @code{char} type will be an 8-bit byte. However, on some
987unusual platforms, this type may have a different size.
988@end defvar
989
990@defvar Type.tag
991The tag name for this type. The tag name is the name after
992@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
993languages have this concept. If this type has no tag name, then
994@code{None} is returned.
995@end defvar
996
997The following methods are provided:
998
999@defun Type.fields ()
1000For structure and union types, this method returns the fields. Range
1001types have two fields, the minimum and maximum values. Enum types
1002have one field per enum constant. Function and method types have one
1003field per parameter. The base types of C@t{++} classes are also
1004represented as fields. If the type has no fields, or does not fit
1005into one of these categories, an empty sequence will be returned.
1006
1007Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1008@table @code
1009@item bitpos
1010This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1011(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1012in bits, from the start of the containing type.
1013
1014@item enumval
1015This attribute is only available for @code{enum} fields, and its value
1016is the enumeration member's integer representation.
1017
1018@item name
1019The name of the field, or @code{None} for anonymous fields.
1020
1021@item artificial
1022This is @code{True} if the field is artificial, usually meaning that
1023it was provided by the compiler and not the user. This attribute is
1024always provided, and is @code{False} if the field is not artificial.
1025
1026@item is_base_class
1027This is @code{True} if the field represents a base class of a C@t{++}
1028structure. This attribute is always provided, and is @code{False}
1029if the field is not a base class of the type that is the argument of
1030@code{fields}, or if that type was not a C@t{++} class.
1031
1032@item bitsize
1033If the field is packed, or is a bitfield, then this will have a
1034non-zero value, which is the size of the field in bits. Otherwise,
1035this will be zero; in this case the field's size is given by its type.
1036
1037@item type
1038The type of the field. This is usually an instance of @code{Type},
1039but it can be @code{None} in some situations.
1040
1041@item parent_type
1042The type which contains this field. This is an instance of
1043@code{gdb.Type}.
1044@end table
1045@end defun
1046
1047@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1048Return a new @code{gdb.Type} object which represents an array of this
1049type. If one argument is given, it is the inclusive upper bound of
1050the array; in this case the lower bound is zero. If two arguments are
1051given, the first argument is the lower bound of the array, and the
1052second argument is the upper bound of the array. An array's length
1053must not be negative, but the bounds can be.
1054@end defun
1055
1056@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1057Return a new @code{gdb.Type} object which represents a vector of this
1058type. If one argument is given, it is the inclusive upper bound of
1059the vector; in this case the lower bound is zero. If two arguments are
1060given, the first argument is the lower bound of the vector, and the
1061second argument is the upper bound of the vector. A vector's length
1062must not be negative, but the bounds can be.
1063
1064The difference between an @code{array} and a @code{vector} is that
1065arrays behave like in C: when used in expressions they decay to a pointer
1066to the first element whereas vectors are treated as first class values.
1067@end defun
1068
1069@defun Type.const ()
1070Return a new @code{gdb.Type} object which represents a
1071@code{const}-qualified variant of this type.
1072@end defun
1073
1074@defun Type.volatile ()
1075Return a new @code{gdb.Type} object which represents a
1076@code{volatile}-qualified variant of this type.
1077@end defun
1078
1079@defun Type.unqualified ()
1080Return a new @code{gdb.Type} object which represents an unqualified
1081variant of this type. That is, the result is neither @code{const} nor
1082@code{volatile}.
1083@end defun
1084
1085@defun Type.range ()
1086Return a Python @code{Tuple} object that contains two elements: the
1087low bound of the argument type and the high bound of that type. If
1088the type does not have a range, @value{GDBN} will raise a
1089@code{gdb.error} exception (@pxref{Exception Handling}).
1090@end defun
1091
1092@defun Type.reference ()
1093Return a new @code{gdb.Type} object which represents a reference to this
1094type.
1095@end defun
1096
1097@defun Type.pointer ()
1098Return a new @code{gdb.Type} object which represents a pointer to this
1099type.
1100@end defun
1101
1102@defun Type.strip_typedefs ()
1103Return a new @code{gdb.Type} that represents the real type,
1104after removing all layers of typedefs.
1105@end defun
1106
1107@defun Type.target ()
1108Return a new @code{gdb.Type} object which represents the target type
1109of this type.
1110
1111For a pointer type, the target type is the type of the pointed-to
1112object. For an array type (meaning C-like arrays), the target type is
1113the type of the elements of the array. For a function or method type,
1114the target type is the type of the return value. For a complex type,
1115the target type is the type of the elements. For a typedef, the
1116target type is the aliased type.
1117
1118If the type does not have a target, this method will throw an
1119exception.
1120@end defun
1121
1122@defun Type.template_argument (n @r{[}, block@r{]})
1123If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1124return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1125value of the @var{n}th template argument (indexed starting at 0).
329baa95 1126
1a6a384b
JL
1127If this @code{gdb.Type} is not a template type, or if the type has fewer
1128than @var{n} template arguments, this will throw an exception.
1129Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1130
1131If @var{block} is given, then @var{name} is looked up in that scope.
1132Otherwise, it is searched for globally.
1133@end defun
1134
59fb7612
SS
1135@defun Type.optimized_out ()
1136Return @code{gdb.Value} instance of this type whose value is optimized
1137out. This allows a frame decorator to indicate that the value of an
1138argument or a local variable is not known.
1139@end defun
329baa95
DE
1140
1141Each type has a code, which indicates what category this type falls
1142into. The available type categories are represented by constants
1143defined in the @code{gdb} module:
1144
b3ce5e5f
DE
1145@vtable @code
1146@vindex TYPE_CODE_PTR
329baa95
DE
1147@item gdb.TYPE_CODE_PTR
1148The type is a pointer.
1149
b3ce5e5f 1150@vindex TYPE_CODE_ARRAY
329baa95
DE
1151@item gdb.TYPE_CODE_ARRAY
1152The type is an array.
1153
b3ce5e5f 1154@vindex TYPE_CODE_STRUCT
329baa95
DE
1155@item gdb.TYPE_CODE_STRUCT
1156The type is a structure.
1157
b3ce5e5f 1158@vindex TYPE_CODE_UNION
329baa95
DE
1159@item gdb.TYPE_CODE_UNION
1160The type is a union.
1161
b3ce5e5f 1162@vindex TYPE_CODE_ENUM
329baa95
DE
1163@item gdb.TYPE_CODE_ENUM
1164The type is an enum.
1165
b3ce5e5f 1166@vindex TYPE_CODE_FLAGS
329baa95
DE
1167@item gdb.TYPE_CODE_FLAGS
1168A bit flags type, used for things such as status registers.
1169
b3ce5e5f 1170@vindex TYPE_CODE_FUNC
329baa95
DE
1171@item gdb.TYPE_CODE_FUNC
1172The type is a function.
1173
b3ce5e5f 1174@vindex TYPE_CODE_INT
329baa95
DE
1175@item gdb.TYPE_CODE_INT
1176The type is an integer type.
1177
b3ce5e5f 1178@vindex TYPE_CODE_FLT
329baa95
DE
1179@item gdb.TYPE_CODE_FLT
1180A floating point type.
1181
b3ce5e5f 1182@vindex TYPE_CODE_VOID
329baa95
DE
1183@item gdb.TYPE_CODE_VOID
1184The special type @code{void}.
1185
b3ce5e5f 1186@vindex TYPE_CODE_SET
329baa95
DE
1187@item gdb.TYPE_CODE_SET
1188A Pascal set type.
1189
b3ce5e5f 1190@vindex TYPE_CODE_RANGE
329baa95
DE
1191@item gdb.TYPE_CODE_RANGE
1192A range type, that is, an integer type with bounds.
1193
b3ce5e5f 1194@vindex TYPE_CODE_STRING
329baa95
DE
1195@item gdb.TYPE_CODE_STRING
1196A string type. Note that this is only used for certain languages with
1197language-defined string types; C strings are not represented this way.
1198
b3ce5e5f 1199@vindex TYPE_CODE_BITSTRING
329baa95
DE
1200@item gdb.TYPE_CODE_BITSTRING
1201A string of bits. It is deprecated.
1202
b3ce5e5f 1203@vindex TYPE_CODE_ERROR
329baa95
DE
1204@item gdb.TYPE_CODE_ERROR
1205An unknown or erroneous type.
1206
b3ce5e5f 1207@vindex TYPE_CODE_METHOD
329baa95 1208@item gdb.TYPE_CODE_METHOD
9c37b5ae 1209A method type, as found in C@t{++}.
329baa95 1210
b3ce5e5f 1211@vindex TYPE_CODE_METHODPTR
329baa95
DE
1212@item gdb.TYPE_CODE_METHODPTR
1213A pointer-to-member-function.
1214
b3ce5e5f 1215@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1216@item gdb.TYPE_CODE_MEMBERPTR
1217A pointer-to-member.
1218
b3ce5e5f 1219@vindex TYPE_CODE_REF
329baa95
DE
1220@item gdb.TYPE_CODE_REF
1221A reference type.
1222
3fcf899d
AV
1223@vindex TYPE_CODE_RVALUE_REF
1224@item gdb.TYPE_CODE_RVALUE_REF
1225A C@t{++}11 rvalue reference type.
1226
b3ce5e5f 1227@vindex TYPE_CODE_CHAR
329baa95
DE
1228@item gdb.TYPE_CODE_CHAR
1229A character type.
1230
b3ce5e5f 1231@vindex TYPE_CODE_BOOL
329baa95
DE
1232@item gdb.TYPE_CODE_BOOL
1233A boolean type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_COMPLEX
329baa95
DE
1236@item gdb.TYPE_CODE_COMPLEX
1237A complex float type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1240@item gdb.TYPE_CODE_TYPEDEF
1241A typedef to some other type.
1242
b3ce5e5f 1243@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1244@item gdb.TYPE_CODE_NAMESPACE
1245A C@t{++} namespace.
1246
b3ce5e5f 1247@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1248@item gdb.TYPE_CODE_DECFLOAT
1249A decimal floating point type.
1250
b3ce5e5f 1251@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1252@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1253A function internal to @value{GDBN}. This is the type used to represent
1254convenience functions.
b3ce5e5f 1255@end vtable
329baa95
DE
1256
1257Further support for types is provided in the @code{gdb.types}
1258Python module (@pxref{gdb.types}).
1259
1260@node Pretty Printing API
1261@subsubsection Pretty Printing API
b3ce5e5f 1262@cindex python pretty printing api
329baa95 1263
329baa95 1264A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1265specific interface, defined here. An example output is provided
1266(@pxref{Pretty Printing}).
329baa95
DE
1267
1268@defun pretty_printer.children (self)
1269@value{GDBN} will call this method on a pretty-printer to compute the
1270children of the pretty-printer's value.
1271
1272This method must return an object conforming to the Python iterator
1273protocol. Each item returned by the iterator must be a tuple holding
1274two elements. The first element is the ``name'' of the child; the
1275second element is the child's value. The value can be any Python
1276object which is convertible to a @value{GDBN} value.
1277
1278This method is optional. If it does not exist, @value{GDBN} will act
1279as though the value has no children.
1280@end defun
1281
1282@defun pretty_printer.display_hint (self)
1283The CLI may call this method and use its result to change the
1284formatting of a value. The result will also be supplied to an MI
1285consumer as a @samp{displayhint} attribute of the variable being
1286printed.
1287
1288This method is optional. If it does exist, this method must return a
1289string.
1290
1291Some display hints are predefined by @value{GDBN}:
1292
1293@table @samp
1294@item array
1295Indicate that the object being printed is ``array-like''. The CLI
1296uses this to respect parameters such as @code{set print elements} and
1297@code{set print array}.
1298
1299@item map
1300Indicate that the object being printed is ``map-like'', and that the
1301children of this value can be assumed to alternate between keys and
1302values.
1303
1304@item string
1305Indicate that the object being printed is ``string-like''. If the
1306printer's @code{to_string} method returns a Python string of some
1307kind, then @value{GDBN} will call its internal language-specific
1308string-printing function to format the string. For the CLI this means
1309adding quotation marks, possibly escaping some characters, respecting
1310@code{set print elements}, and the like.
1311@end table
1312@end defun
1313
1314@defun pretty_printer.to_string (self)
1315@value{GDBN} will call this method to display the string
1316representation of the value passed to the object's constructor.
1317
1318When printing from the CLI, if the @code{to_string} method exists,
1319then @value{GDBN} will prepend its result to the values returned by
1320@code{children}. Exactly how this formatting is done is dependent on
1321the display hint, and may change as more hints are added. Also,
1322depending on the print settings (@pxref{Print Settings}), the CLI may
1323print just the result of @code{to_string} in a stack trace, omitting
1324the result of @code{children}.
1325
1326If this method returns a string, it is printed verbatim.
1327
1328Otherwise, if this method returns an instance of @code{gdb.Value},
1329then @value{GDBN} prints this value. This may result in a call to
1330another pretty-printer.
1331
1332If instead the method returns a Python value which is convertible to a
1333@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1334the resulting value. Again, this may result in a call to another
1335pretty-printer. Python scalars (integers, floats, and booleans) and
1336strings are convertible to @code{gdb.Value}; other types are not.
1337
1338Finally, if this method returns @code{None} then no further operations
1339are peformed in this method and nothing is printed.
1340
1341If the result is not one of these types, an exception is raised.
1342@end defun
1343
1344@value{GDBN} provides a function which can be used to look up the
1345default pretty-printer for a @code{gdb.Value}:
1346
1347@findex gdb.default_visualizer
1348@defun gdb.default_visualizer (value)
1349This function takes a @code{gdb.Value} object as an argument. If a
1350pretty-printer for this value exists, then it is returned. If no such
1351printer exists, then this returns @code{None}.
1352@end defun
1353
1354@node Selecting Pretty-Printers
1355@subsubsection Selecting Pretty-Printers
b3ce5e5f 1356@cindex selecting python pretty-printers
329baa95
DE
1357
1358The Python list @code{gdb.pretty_printers} contains an array of
1359functions or callable objects that have been registered via addition
1360as a pretty-printer. Printers in this list are called @code{global}
1361printers, they're available when debugging all inferiors.
1362Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1363Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1364attribute.
1365
1366Each function on these lists is passed a single @code{gdb.Value}
1367argument and should return a pretty-printer object conforming to the
1368interface definition above (@pxref{Pretty Printing API}). If a function
1369cannot create a pretty-printer for the value, it should return
1370@code{None}.
1371
1372@value{GDBN} first checks the @code{pretty_printers} attribute of each
1373@code{gdb.Objfile} in the current program space and iteratively calls
1374each enabled lookup routine in the list for that @code{gdb.Objfile}
1375until it receives a pretty-printer object.
1376If no pretty-printer is found in the objfile lists, @value{GDBN} then
1377searches the pretty-printer list of the current program space,
1378calling each enabled function until an object is returned.
1379After these lists have been exhausted, it tries the global
1380@code{gdb.pretty_printers} list, again calling each enabled function until an
1381object is returned.
1382
1383The order in which the objfiles are searched is not specified. For a
1384given list, functions are always invoked from the head of the list,
1385and iterated over sequentially until the end of the list, or a printer
1386object is returned.
1387
1388For various reasons a pretty-printer may not work.
1389For example, the underlying data structure may have changed and
1390the pretty-printer is out of date.
1391
1392The consequences of a broken pretty-printer are severe enough that
1393@value{GDBN} provides support for enabling and disabling individual
1394printers. For example, if @code{print frame-arguments} is on,
1395a backtrace can become highly illegible if any argument is printed
1396with a broken printer.
1397
1398Pretty-printers are enabled and disabled by attaching an @code{enabled}
1399attribute to the registered function or callable object. If this attribute
1400is present and its value is @code{False}, the printer is disabled, otherwise
1401the printer is enabled.
1402
1403@node Writing a Pretty-Printer
1404@subsubsection Writing a Pretty-Printer
1405@cindex writing a pretty-printer
1406
1407A pretty-printer consists of two parts: a lookup function to detect
1408if the type is supported, and the printer itself.
1409
1410Here is an example showing how a @code{std::string} printer might be
1411written. @xref{Pretty Printing API}, for details on the API this class
1412must provide.
1413
1414@smallexample
1415class StdStringPrinter(object):
1416 "Print a std::string"
1417
1418 def __init__(self, val):
1419 self.val = val
1420
1421 def to_string(self):
1422 return self.val['_M_dataplus']['_M_p']
1423
1424 def display_hint(self):
1425 return 'string'
1426@end smallexample
1427
1428And here is an example showing how a lookup function for the printer
1429example above might be written.
1430
1431@smallexample
1432def str_lookup_function(val):
1433 lookup_tag = val.type.tag
1434 if lookup_tag == None:
1435 return None
1436 regex = re.compile("^std::basic_string<char,.*>$")
1437 if regex.match(lookup_tag):
1438 return StdStringPrinter(val)
1439 return None
1440@end smallexample
1441
1442The example lookup function extracts the value's type, and attempts to
1443match it to a type that it can pretty-print. If it is a type the
1444printer can pretty-print, it will return a printer object. If not, it
1445returns @code{None}.
1446
1447We recommend that you put your core pretty-printers into a Python
1448package. If your pretty-printers are for use with a library, we
1449further recommend embedding a version number into the package name.
1450This practice will enable @value{GDBN} to load multiple versions of
1451your pretty-printers at the same time, because they will have
1452different names.
1453
1454You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1455can be evaluated multiple times without changing its meaning. An
1456ideal auto-load file will consist solely of @code{import}s of your
1457printer modules, followed by a call to a register pretty-printers with
1458the current objfile.
1459
1460Taken as a whole, this approach will scale nicely to multiple
1461inferiors, each potentially using a different library version.
1462Embedding a version number in the Python package name will ensure that
1463@value{GDBN} is able to load both sets of printers simultaneously.
1464Then, because the search for pretty-printers is done by objfile, and
1465because your auto-loaded code took care to register your library's
1466printers with a specific objfile, @value{GDBN} will find the correct
1467printers for the specific version of the library used by each
1468inferior.
1469
1470To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1471this code might appear in @code{gdb.libstdcxx.v6}:
1472
1473@smallexample
1474def register_printers(objfile):
1475 objfile.pretty_printers.append(str_lookup_function)
1476@end smallexample
1477
1478@noindent
1479And then the corresponding contents of the auto-load file would be:
1480
1481@smallexample
1482import gdb.libstdcxx.v6
1483gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1484@end smallexample
1485
1486The previous example illustrates a basic pretty-printer.
1487There are a few things that can be improved on.
1488The printer doesn't have a name, making it hard to identify in a
1489list of installed printers. The lookup function has a name, but
1490lookup functions can have arbitrary, even identical, names.
1491
1492Second, the printer only handles one type, whereas a library typically has
1493several types. One could install a lookup function for each desired type
1494in the library, but one could also have a single lookup function recognize
1495several types. The latter is the conventional way this is handled.
1496If a pretty-printer can handle multiple data types, then its
1497@dfn{subprinters} are the printers for the individual data types.
1498
1499The @code{gdb.printing} module provides a formal way of solving these
1500problems (@pxref{gdb.printing}).
1501Here is another example that handles multiple types.
1502
1503These are the types we are going to pretty-print:
1504
1505@smallexample
1506struct foo @{ int a, b; @};
1507struct bar @{ struct foo x, y; @};
1508@end smallexample
1509
1510Here are the printers:
1511
1512@smallexample
1513class fooPrinter:
1514 """Print a foo object."""
1515
1516 def __init__(self, val):
1517 self.val = val
1518
1519 def to_string(self):
1520 return ("a=<" + str(self.val["a"]) +
1521 "> b=<" + str(self.val["b"]) + ">")
1522
1523class barPrinter:
1524 """Print a bar object."""
1525
1526 def __init__(self, val):
1527 self.val = val
1528
1529 def to_string(self):
1530 return ("x=<" + str(self.val["x"]) +
1531 "> y=<" + str(self.val["y"]) + ">")
1532@end smallexample
1533
1534This example doesn't need a lookup function, that is handled by the
1535@code{gdb.printing} module. Instead a function is provided to build up
1536the object that handles the lookup.
1537
1538@smallexample
1539import gdb.printing
1540
1541def build_pretty_printer():
1542 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1543 "my_library")
1544 pp.add_printer('foo', '^foo$', fooPrinter)
1545 pp.add_printer('bar', '^bar$', barPrinter)
1546 return pp
1547@end smallexample
1548
1549And here is the autoload support:
1550
1551@smallexample
1552import gdb.printing
1553import my_library
1554gdb.printing.register_pretty_printer(
1555 gdb.current_objfile(),
1556 my_library.build_pretty_printer())
1557@end smallexample
1558
1559Finally, when this printer is loaded into @value{GDBN}, here is the
1560corresponding output of @samp{info pretty-printer}:
1561
1562@smallexample
1563(gdb) info pretty-printer
1564my_library.so:
1565 my_library
1566 foo
1567 bar
1568@end smallexample
1569
1570@node Type Printing API
1571@subsubsection Type Printing API
1572@cindex type printing API for Python
1573
1574@value{GDBN} provides a way for Python code to customize type display.
1575This is mainly useful for substituting canonical typedef names for
1576types.
1577
1578@cindex type printer
1579A @dfn{type printer} is just a Python object conforming to a certain
1580protocol. A simple base class implementing the protocol is provided;
1581see @ref{gdb.types}. A type printer must supply at least:
1582
1583@defivar type_printer enabled
1584A boolean which is True if the printer is enabled, and False
1585otherwise. This is manipulated by the @code{enable type-printer}
1586and @code{disable type-printer} commands.
1587@end defivar
1588
1589@defivar type_printer name
1590The name of the type printer. This must be a string. This is used by
1591the @code{enable type-printer} and @code{disable type-printer}
1592commands.
1593@end defivar
1594
1595@defmethod type_printer instantiate (self)
1596This is called by @value{GDBN} at the start of type-printing. It is
1597only called if the type printer is enabled. This method must return a
1598new object that supplies a @code{recognize} method, as described below.
1599@end defmethod
1600
1601
1602When displaying a type, say via the @code{ptype} command, @value{GDBN}
1603will compute a list of type recognizers. This is done by iterating
1604first over the per-objfile type printers (@pxref{Objfiles In Python}),
1605followed by the per-progspace type printers (@pxref{Progspaces In
1606Python}), and finally the global type printers.
1607
1608@value{GDBN} will call the @code{instantiate} method of each enabled
1609type printer. If this method returns @code{None}, then the result is
1610ignored; otherwise, it is appended to the list of recognizers.
1611
1612Then, when @value{GDBN} is going to display a type name, it iterates
1613over the list of recognizers. For each one, it calls the recognition
1614function, stopping if the function returns a non-@code{None} value.
1615The recognition function is defined as:
1616
1617@defmethod type_recognizer recognize (self, type)
1618If @var{type} is not recognized, return @code{None}. Otherwise,
1619return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1620The @var{type} argument will be an instance of @code{gdb.Type}
1621(@pxref{Types In Python}).
329baa95
DE
1622@end defmethod
1623
1624@value{GDBN} uses this two-pass approach so that type printers can
1625efficiently cache information without holding on to it too long. For
1626example, it can be convenient to look up type information in a type
1627printer and hold it for a recognizer's lifetime; if a single pass were
1628done then type printers would have to make use of the event system in
1629order to avoid holding information that could become stale as the
1630inferior changed.
1631
1632@node Frame Filter API
521b499b 1633@subsubsection Filtering Frames
329baa95
DE
1634@cindex frame filters api
1635
1636Frame filters are Python objects that manipulate the visibility of a
1637frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1638@value{GDBN}.
1639
1640Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1641commands (@pxref{GDB/MI}), those that return a collection of frames
1642are affected. The commands that work with frame filters are:
1643
1644@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1645@code{-stack-list-frames}
1646(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1647@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1648-stack-list-variables command}), @code{-stack-list-arguments}
1649@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1650@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1651-stack-list-locals command}).
1652
1653A frame filter works by taking an iterator as an argument, applying
1654actions to the contents of that iterator, and returning another
1655iterator (or, possibly, the same iterator it was provided in the case
1656where the filter does not perform any operations). Typically, frame
1657filters utilize tools such as the Python's @code{itertools} module to
1658work with and create new iterators from the source iterator.
1659Regardless of how a filter chooses to apply actions, it must not alter
1660the underlying @value{GDBN} frame or frames, or attempt to alter the
1661call-stack within @value{GDBN}. This preserves data integrity within
1662@value{GDBN}. Frame filters are executed on a priority basis and care
1663should be taken that some frame filters may have been executed before,
1664and that some frame filters will be executed after.
1665
1666An important consideration when designing frame filters, and well
1667worth reflecting upon, is that frame filters should avoid unwinding
1668the call stack if possible. Some stacks can run very deep, into the
1669tens of thousands in some cases. To search every frame when a frame
1670filter executes may be too expensive at that step. The frame filter
1671cannot know how many frames it has to iterate over, and it may have to
1672iterate through them all. This ends up duplicating effort as
1673@value{GDBN} performs this iteration when it prints the frames. If
1674the filter can defer unwinding frames until frame decorators are
1675executed, after the last filter has executed, it should. @xref{Frame
1676Decorator API}, for more information on decorators. Also, there are
1677examples for both frame decorators and filters in later chapters.
1678@xref{Writing a Frame Filter}, for more information.
1679
1680The Python dictionary @code{gdb.frame_filters} contains key/object
1681pairings that comprise a frame filter. Frame filters in this
1682dictionary are called @code{global} frame filters, and they are
1683available when debugging all inferiors. These frame filters must
1684register with the dictionary directly. In addition to the
1685@code{global} dictionary, there are other dictionaries that are loaded
1686with different inferiors via auto-loading (@pxref{Python
1687Auto-loading}). The two other areas where frame filter dictionaries
1688can be found are: @code{gdb.Progspace} which contains a
1689@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1690object which also contains a @code{frame_filters} dictionary
1691attribute.
1692
1693When a command is executed from @value{GDBN} that is compatible with
1694frame filters, @value{GDBN} combines the @code{global},
1695@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1696loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1697several frames, and thus several object files, might be in use.
1698@value{GDBN} then prunes any frame filter whose @code{enabled}
1699attribute is @code{False}. This pruned list is then sorted according
1700to the @code{priority} attribute in each filter.
1701
1702Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1703creates an iterator which wraps each frame in the call stack in a
1704@code{FrameDecorator} object, and calls each filter in order. The
1705output from the previous filter will always be the input to the next
1706filter, and so on.
1707
1708Frame filters have a mandatory interface which each frame filter must
1709implement, defined here:
1710
1711@defun FrameFilter.filter (iterator)
1712@value{GDBN} will call this method on a frame filter when it has
1713reached the order in the priority list for that filter.
1714
1715For example, if there are four frame filters:
1716
1717@smallexample
1718Name Priority
1719
1720Filter1 5
1721Filter2 10
1722Filter3 100
1723Filter4 1
1724@end smallexample
1725
1726The order that the frame filters will be called is:
1727
1728@smallexample
1729Filter3 -> Filter2 -> Filter1 -> Filter4
1730@end smallexample
1731
1732Note that the output from @code{Filter3} is passed to the input of
1733@code{Filter2}, and so on.
1734
1735This @code{filter} method is passed a Python iterator. This iterator
1736contains a sequence of frame decorators that wrap each
1737@code{gdb.Frame}, or a frame decorator that wraps another frame
1738decorator. The first filter that is executed in the sequence of frame
1739filters will receive an iterator entirely comprised of default
1740@code{FrameDecorator} objects. However, after each frame filter is
1741executed, the previous frame filter may have wrapped some or all of
1742the frame decorators with their own frame decorator. As frame
1743decorators must also conform to a mandatory interface, these
1744decorators can be assumed to act in a uniform manner (@pxref{Frame
1745Decorator API}).
1746
1747This method must return an object conforming to the Python iterator
1748protocol. Each item in the iterator must be an object conforming to
1749the frame decorator interface. If a frame filter does not wish to
1750perform any operations on this iterator, it should return that
1751iterator untouched.
1752
1753This method is not optional. If it does not exist, @value{GDBN} will
1754raise and print an error.
1755@end defun
1756
1757@defvar FrameFilter.name
1758The @code{name} attribute must be Python string which contains the
1759name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1760Management}). This attribute may contain any combination of letters
1761or numbers. Care should be taken to ensure that it is unique. This
1762attribute is mandatory.
1763@end defvar
1764
1765@defvar FrameFilter.enabled
1766The @code{enabled} attribute must be Python boolean. This attribute
1767indicates to @value{GDBN} whether the frame filter is enabled, and
1768should be considered when frame filters are executed. If
1769@code{enabled} is @code{True}, then the frame filter will be executed
1770when any of the backtrace commands detailed earlier in this chapter
1771are executed. If @code{enabled} is @code{False}, then the frame
1772filter will not be executed. This attribute is mandatory.
1773@end defvar
1774
1775@defvar FrameFilter.priority
1776The @code{priority} attribute must be Python integer. This attribute
1777controls the order of execution in relation to other frame filters.
1778There are no imposed limits on the range of @code{priority} other than
1779it must be a valid integer. The higher the @code{priority} attribute,
1780the sooner the frame filter will be executed in relation to other
1781frame filters. Although @code{priority} can be negative, it is
1782recommended practice to assume zero is the lowest priority that a
1783frame filter can be assigned. Frame filters that have the same
1784priority are executed in unsorted order in that priority slot. This
521b499b 1785attribute is mandatory. 100 is a good default priority.
329baa95
DE
1786@end defvar
1787
1788@node Frame Decorator API
521b499b 1789@subsubsection Decorating Frames
329baa95
DE
1790@cindex frame decorator api
1791
1792Frame decorators are sister objects to frame filters (@pxref{Frame
1793Filter API}). Frame decorators are applied by a frame filter and can
1794only be used in conjunction with frame filters.
1795
1796The purpose of a frame decorator is to customize the printed content
1797of each @code{gdb.Frame} in commands where frame filters are executed.
1798This concept is called decorating a frame. Frame decorators decorate
1799a @code{gdb.Frame} with Python code contained within each API call.
1800This separates the actual data contained in a @code{gdb.Frame} from
1801the decorated data produced by a frame decorator. This abstraction is
1802necessary to maintain integrity of the data contained in each
1803@code{gdb.Frame}.
1804
1805Frame decorators have a mandatory interface, defined below.
1806
1807@value{GDBN} already contains a frame decorator called
1808@code{FrameDecorator}. This contains substantial amounts of
1809boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1810recommended that other frame decorators inherit and extend this
1811object, and only to override the methods needed.
1812
521b499b
TT
1813@tindex gdb.FrameDecorator
1814@code{FrameDecorator} is defined in the Python module
1815@code{gdb.FrameDecorator}, so your code can import it like:
1816@smallexample
1817from gdb.FrameDecorator import FrameDecorator
1818@end smallexample
1819
329baa95
DE
1820@defun FrameDecorator.elided (self)
1821
1822The @code{elided} method groups frames together in a hierarchical
1823system. An example would be an interpreter, where multiple low-level
1824frames make up a single call in the interpreted language. In this
1825example, the frame filter would elide the low-level frames and present
1826a single high-level frame, representing the call in the interpreted
1827language, to the user.
1828
1829The @code{elided} function must return an iterable and this iterable
1830must contain the frames that are being elided wrapped in a suitable
1831frame decorator. If no frames are being elided this function may
1832return an empty iterable, or @code{None}. Elided frames are indented
1833from normal frames in a @code{CLI} backtrace, or in the case of
1834@code{GDB/MI}, are placed in the @code{children} field of the eliding
1835frame.
1836
1837It is the frame filter's task to also filter out the elided frames from
1838the source iterator. This will avoid printing the frame twice.
1839@end defun
1840
1841@defun FrameDecorator.function (self)
1842
1843This method returns the name of the function in the frame that is to
1844be printed.
1845
1846This method must return a Python string describing the function, or
1847@code{None}.
1848
1849If this function returns @code{None}, @value{GDBN} will not print any
1850data for this field.
1851@end defun
1852
1853@defun FrameDecorator.address (self)
1854
1855This method returns the address of the frame that is to be printed.
1856
1857This method must return a Python numeric integer type of sufficient
1858size to describe the address of the frame, or @code{None}.
1859
1860If this function returns a @code{None}, @value{GDBN} will not print
1861any data for this field.
1862@end defun
1863
1864@defun FrameDecorator.filename (self)
1865
1866This method returns the filename and path associated with this frame.
1867
1868This method must return a Python string containing the filename and
1869the path to the object file backing the frame, or @code{None}.
1870
1871If this function returns a @code{None}, @value{GDBN} will not print
1872any data for this field.
1873@end defun
1874
1875@defun FrameDecorator.line (self):
1876
1877This method returns the line number associated with the current
1878position within the function addressed by this frame.
1879
1880This method must return a Python integer type, or @code{None}.
1881
1882If this function returns a @code{None}, @value{GDBN} will not print
1883any data for this field.
1884@end defun
1885
1886@defun FrameDecorator.frame_args (self)
1887@anchor{frame_args}
1888
1889This method must return an iterable, or @code{None}. Returning an
1890empty iterable, or @code{None} means frame arguments will not be
1891printed for this frame. This iterable must contain objects that
1892implement two methods, described here.
1893
1894This object must implement a @code{argument} method which takes a
1895single @code{self} parameter and must return a @code{gdb.Symbol}
1896(@pxref{Symbols In Python}), or a Python string. The object must also
1897implement a @code{value} method which takes a single @code{self}
1898parameter and must return a @code{gdb.Value} (@pxref{Values From
1899Inferior}), a Python value, or @code{None}. If the @code{value}
1900method returns @code{None}, and the @code{argument} method returns a
1901@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1902the @code{gdb.Symbol} automatically.
1903
1904A brief example:
1905
1906@smallexample
1907class SymValueWrapper():
1908
1909 def __init__(self, symbol, value):
1910 self.sym = symbol
1911 self.val = value
1912
1913 def value(self):
1914 return self.val
1915
1916 def symbol(self):
1917 return self.sym
1918
1919class SomeFrameDecorator()
1920...
1921...
1922 def frame_args(self):
1923 args = []
1924 try:
1925 block = self.inferior_frame.block()
1926 except:
1927 return None
1928
1929 # Iterate over all symbols in a block. Only add
1930 # symbols that are arguments.
1931 for sym in block:
1932 if not sym.is_argument:
1933 continue
1934 args.append(SymValueWrapper(sym,None))
1935
1936 # Add example synthetic argument.
1937 args.append(SymValueWrapper(``foo'', 42))
1938
1939 return args
1940@end smallexample
1941@end defun
1942
1943@defun FrameDecorator.frame_locals (self)
1944
1945This method must return an iterable or @code{None}. Returning an
1946empty iterable, or @code{None} means frame local arguments will not be
1947printed for this frame.
1948
1949The object interface, the description of the various strategies for
1950reading frame locals, and the example are largely similar to those
1951described in the @code{frame_args} function, (@pxref{frame_args,,The
1952frame filter frame_args function}). Below is a modified example:
1953
1954@smallexample
1955class SomeFrameDecorator()
1956...
1957...
1958 def frame_locals(self):
1959 vars = []
1960 try:
1961 block = self.inferior_frame.block()
1962 except:
1963 return None
1964
1965 # Iterate over all symbols in a block. Add all
1966 # symbols, except arguments.
1967 for sym in block:
1968 if sym.is_argument:
1969 continue
1970 vars.append(SymValueWrapper(sym,None))
1971
1972 # Add an example of a synthetic local variable.
1973 vars.append(SymValueWrapper(``bar'', 99))
1974
1975 return vars
1976@end smallexample
1977@end defun
1978
1979@defun FrameDecorator.inferior_frame (self):
1980
1981This method must return the underlying @code{gdb.Frame} that this
1982frame decorator is decorating. @value{GDBN} requires the underlying
1983frame for internal frame information to determine how to print certain
1984values when printing a frame.
1985@end defun
1986
1987@node Writing a Frame Filter
1988@subsubsection Writing a Frame Filter
1989@cindex writing a frame filter
1990
1991There are three basic elements that a frame filter must implement: it
1992must correctly implement the documented interface (@pxref{Frame Filter
1993API}), it must register itself with @value{GDBN}, and finally, it must
1994decide if it is to work on the data provided by @value{GDBN}. In all
1995cases, whether it works on the iterator or not, each frame filter must
1996return an iterator. A bare-bones frame filter follows the pattern in
1997the following example.
1998
1999@smallexample
2000import gdb
2001
2002class FrameFilter():
2003
2004 def __init__(self):
2005 # Frame filter attribute creation.
2006 #
2007 # 'name' is the name of the filter that GDB will display.
2008 #
2009 # 'priority' is the priority of the filter relative to other
2010 # filters.
2011 #
2012 # 'enabled' is a boolean that indicates whether this filter is
2013 # enabled and should be executed.
2014
2015 self.name = "Foo"
2016 self.priority = 100
2017 self.enabled = True
2018
2019 # Register this frame filter with the global frame_filters
2020 # dictionary.
2021 gdb.frame_filters[self.name] = self
2022
2023 def filter(self, frame_iter):
2024 # Just return the iterator.
2025 return frame_iter
2026@end smallexample
2027
2028The frame filter in the example above implements the three
2029requirements for all frame filters. It implements the API, self
2030registers, and makes a decision on the iterator (in this case, it just
2031returns the iterator untouched).
2032
2033The first step is attribute creation and assignment, and as shown in
2034the comments the filter assigns the following attributes: @code{name},
2035@code{priority} and whether the filter should be enabled with the
2036@code{enabled} attribute.
2037
2038The second step is registering the frame filter with the dictionary or
2039dictionaries that the frame filter has interest in. As shown in the
2040comments, this filter just registers itself with the global dictionary
2041@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2042is a dictionary that is initialized in the @code{gdb} module when
2043@value{GDBN} starts. What dictionary a filter registers with is an
2044important consideration. Generally, if a filter is specific to a set
2045of code, it should be registered either in the @code{objfile} or
2046@code{progspace} dictionaries as they are specific to the program
2047currently loaded in @value{GDBN}. The global dictionary is always
2048present in @value{GDBN} and is never unloaded. Any filters registered
2049with the global dictionary will exist until @value{GDBN} exits. To
2050avoid filters that may conflict, it is generally better to register
2051frame filters against the dictionaries that more closely align with
2052the usage of the filter currently in question. @xref{Python
2053Auto-loading}, for further information on auto-loading Python scripts.
2054
2055@value{GDBN} takes a hands-off approach to frame filter registration,
2056therefore it is the frame filter's responsibility to ensure
2057registration has occurred, and that any exceptions are handled
2058appropriately. In particular, you may wish to handle exceptions
2059relating to Python dictionary key uniqueness. It is mandatory that
2060the dictionary key is the same as frame filter's @code{name}
2061attribute. When a user manages frame filters (@pxref{Frame Filter
2062Management}), the names @value{GDBN} will display are those contained
2063in the @code{name} attribute.
2064
2065The final step of this example is the implementation of the
2066@code{filter} method. As shown in the example comments, we define the
2067@code{filter} method and note that the method must take an iterator,
2068and also must return an iterator. In this bare-bones example, the
2069frame filter is not very useful as it just returns the iterator
2070untouched. However this is a valid operation for frame filters that
2071have the @code{enabled} attribute set, but decide not to operate on
2072any frames.
2073
2074In the next example, the frame filter operates on all frames and
2075utilizes a frame decorator to perform some work on the frames.
2076@xref{Frame Decorator API}, for further information on the frame
2077decorator interface.
2078
2079This example works on inlined frames. It highlights frames which are
2080inlined by tagging them with an ``[inlined]'' tag. By applying a
2081frame decorator to all frames with the Python @code{itertools imap}
2082method, the example defers actions to the frame decorator. Frame
2083decorators are only processed when @value{GDBN} prints the backtrace.
2084
2085This introduces a new decision making topic: whether to perform
2086decision making operations at the filtering step, or at the printing
2087step. In this example's approach, it does not perform any filtering
2088decisions at the filtering step beyond mapping a frame decorator to
2089each frame. This allows the actual decision making to be performed
2090when each frame is printed. This is an important consideration, and
2091well worth reflecting upon when designing a frame filter. An issue
2092that frame filters should avoid is unwinding the stack if possible.
2093Some stacks can run very deep, into the tens of thousands in some
2094cases. To search every frame to determine if it is inlined ahead of
2095time may be too expensive at the filtering step. The frame filter
2096cannot know how many frames it has to iterate over, and it would have
2097to iterate through them all. This ends up duplicating effort as
2098@value{GDBN} performs this iteration when it prints the frames.
2099
2100In this example decision making can be deferred to the printing step.
2101As each frame is printed, the frame decorator can examine each frame
2102in turn when @value{GDBN} iterates. From a performance viewpoint,
2103this is the most appropriate decision to make as it avoids duplicating
2104the effort that the printing step would undertake anyway. Also, if
2105there are many frame filters unwinding the stack during filtering, it
2106can substantially delay the printing of the backtrace which will
2107result in large memory usage, and a poor user experience.
2108
2109@smallexample
2110class InlineFilter():
2111
2112 def __init__(self):
2113 self.name = "InlinedFrameFilter"
2114 self.priority = 100
2115 self.enabled = True
2116 gdb.frame_filters[self.name] = self
2117
2118 def filter(self, frame_iter):
2119 frame_iter = itertools.imap(InlinedFrameDecorator,
2120 frame_iter)
2121 return frame_iter
2122@end smallexample
2123
2124This frame filter is somewhat similar to the earlier example, except
2125that the @code{filter} method applies a frame decorator object called
2126@code{InlinedFrameDecorator} to each element in the iterator. The
2127@code{imap} Python method is light-weight. It does not proactively
2128iterate over the iterator, but rather creates a new iterator which
2129wraps the existing one.
2130
2131Below is the frame decorator for this example.
2132
2133@smallexample
2134class InlinedFrameDecorator(FrameDecorator):
2135
2136 def __init__(self, fobj):
2137 super(InlinedFrameDecorator, self).__init__(fobj)
2138
2139 def function(self):
2140 frame = fobj.inferior_frame()
2141 name = str(frame.name())
2142
2143 if frame.type() == gdb.INLINE_FRAME:
2144 name = name + " [inlined]"
2145
2146 return name
2147@end smallexample
2148
2149This frame decorator only defines and overrides the @code{function}
2150method. It lets the supplied @code{FrameDecorator}, which is shipped
2151with @value{GDBN}, perform the other work associated with printing
2152this frame.
2153
2154The combination of these two objects create this output from a
2155backtrace:
2156
2157@smallexample
2158#0 0x004004e0 in bar () at inline.c:11
2159#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2160#2 0x00400566 in main () at inline.c:31
2161@end smallexample
2162
2163So in the case of this example, a frame decorator is applied to all
2164frames, regardless of whether they may be inlined or not. As
2165@value{GDBN} iterates over the iterator produced by the frame filters,
2166@value{GDBN} executes each frame decorator which then makes a decision
2167on what to print in the @code{function} callback. Using a strategy
2168like this is a way to defer decisions on the frame content to printing
2169time.
2170
2171@subheading Eliding Frames
2172
2173It might be that the above example is not desirable for representing
2174inlined frames, and a hierarchical approach may be preferred. If we
2175want to hierarchically represent frames, the @code{elided} frame
2176decorator interface might be preferable.
2177
2178This example approaches the issue with the @code{elided} method. This
2179example is quite long, but very simplistic. It is out-of-scope for
2180this section to write a complete example that comprehensively covers
2181all approaches of finding and printing inlined frames. However, this
2182example illustrates the approach an author might use.
2183
2184This example comprises of three sections.
2185
2186@smallexample
2187class InlineFrameFilter():
2188
2189 def __init__(self):
2190 self.name = "InlinedFrameFilter"
2191 self.priority = 100
2192 self.enabled = True
2193 gdb.frame_filters[self.name] = self
2194
2195 def filter(self, frame_iter):
2196 return ElidingInlineIterator(frame_iter)
2197@end smallexample
2198
2199This frame filter is very similar to the other examples. The only
2200difference is this frame filter is wrapping the iterator provided to
2201it (@code{frame_iter}) with a custom iterator called
2202@code{ElidingInlineIterator}. This again defers actions to when
2203@value{GDBN} prints the backtrace, as the iterator is not traversed
2204until printing.
2205
2206The iterator for this example is as follows. It is in this section of
2207the example where decisions are made on the content of the backtrace.
2208
2209@smallexample
2210class ElidingInlineIterator:
2211 def __init__(self, ii):
2212 self.input_iterator = ii
2213
2214 def __iter__(self):
2215 return self
2216
2217 def next(self):
2218 frame = next(self.input_iterator)
2219
2220 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2221 return frame
2222
2223 try:
2224 eliding_frame = next(self.input_iterator)
2225 except StopIteration:
2226 return frame
2227 return ElidingFrameDecorator(eliding_frame, [frame])
2228@end smallexample
2229
2230This iterator implements the Python iterator protocol. When the
2231@code{next} function is called (when @value{GDBN} prints each frame),
2232the iterator checks if this frame decorator, @code{frame}, is wrapping
2233an inlined frame. If it is not, it returns the existing frame decorator
2234untouched. If it is wrapping an inlined frame, it assumes that the
2235inlined frame was contained within the next oldest frame,
2236@code{eliding_frame}, which it fetches. It then creates and returns a
2237frame decorator, @code{ElidingFrameDecorator}, which contains both the
2238elided frame, and the eliding frame.
2239
2240@smallexample
2241class ElidingInlineDecorator(FrameDecorator):
2242
2243 def __init__(self, frame, elided_frames):
2244 super(ElidingInlineDecorator, self).__init__(frame)
2245 self.frame = frame
2246 self.elided_frames = elided_frames
2247
2248 def elided(self):
2249 return iter(self.elided_frames)
2250@end smallexample
2251
2252This frame decorator overrides one function and returns the inlined
2253frame in the @code{elided} method. As before it lets
2254@code{FrameDecorator} do the rest of the work involved in printing
2255this frame. This produces the following output.
2256
2257@smallexample
2258#0 0x004004e0 in bar () at inline.c:11
2259#2 0x00400529 in main () at inline.c:25
2260 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2261@end smallexample
2262
2263In that output, @code{max} which has been inlined into @code{main} is
2264printed hierarchically. Another approach would be to combine the
2265@code{function} method, and the @code{elided} method to both print a
2266marker in the inlined frame, and also show the hierarchical
2267relationship.
2268
d11916aa
SS
2269@node Unwinding Frames in Python
2270@subsubsection Unwinding Frames in Python
2271@cindex unwinding frames in Python
2272
2273In @value{GDBN} terminology ``unwinding'' is the process of finding
2274the previous frame (that is, caller's) from the current one. An
2275unwinder has three methods. The first one checks if it can handle
2276given frame (``sniff'' it). For the frames it can sniff an unwinder
2277provides two additional methods: it can return frame's ID, and it can
2278fetch registers from the previous frame. A running @value{GDBN}
2279mantains a list of the unwinders and calls each unwinder's sniffer in
2280turn until it finds the one that recognizes the current frame. There
2281is an API to register an unwinder.
2282
2283The unwinders that come with @value{GDBN} handle standard frames.
2284However, mixed language applications (for example, an application
2285running Java Virtual Machine) sometimes use frame layouts that cannot
2286be handled by the @value{GDBN} unwinders. You can write Python code
2287that can handle such custom frames.
2288
2289You implement a frame unwinder in Python as a class with which has two
2290attributes, @code{name} and @code{enabled}, with obvious meanings, and
2291a single method @code{__call__}, which examines a given frame and
2292returns an object (an instance of @code{gdb.UnwindInfo class)}
2293describing it. If an unwinder does not recognize a frame, it should
2294return @code{None}. The code in @value{GDBN} that enables writing
2295unwinders in Python uses this object to return frame's ID and previous
2296frame registers when @value{GDBN} core asks for them.
2297
e7b5068c
TT
2298An unwinder should do as little work as possible. Some otherwise
2299innocuous operations can cause problems (even crashes, as this code is
2300not not well-hardened yet). For example, making an inferior call from
2301an unwinder is unadvisable, as an inferior call will reset
2302@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2303unwinding.
2304
d11916aa
SS
2305@subheading Unwinder Input
2306
2307An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2308provides a method to read frame's registers:
2309
2310@defun PendingFrame.read_register (reg)
e7b5068c 2311This method returns the contents of the register @var{reg} in the
d11916aa
SS
2312frame as a @code{gdb.Value} object. @var{reg} can be either a
2313register number or a register name; the values are platform-specific.
2314They are usually found in the corresponding
e7b5068c
TT
2315@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2316@var{reg} does not name a register for the current architecture, this
2317method will throw an exception.
2318
2319Note that this method will always return a @code{gdb.Value} for a
2320valid register name. This does not mean that the value will be valid.
2321For example, you may request a register that an earlier unwinder could
2322not unwind---the value will be unavailable. Instead, the
2323@code{gdb.Value} returned from this method will be lazy; that is, its
2324underlying bits will not be fetched until it is first used. So,
2325attempting to use such a value will cause an exception at the point of
2326use.
2327
2328The type of the returned @code{gdb.Value} depends on the register and
2329the architecture. It is common for registers to have a scalar type,
2330like @code{long long}; but many other types are possible, such as
2331pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2332@end defun
2333
2334It also provides a factory method to create a @code{gdb.UnwindInfo}
2335instance to be returned to @value{GDBN}:
2336
2337@defun PendingFrame.create_unwind_info (frame_id)
2338Returns a new @code{gdb.UnwindInfo} instance identified by given
2339@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2340using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2341determine which function will be used, as follows:
2342
2343@table @code
d11916aa 2344@item sp, pc
e7b5068c
TT
2345The frame is identified by the given stack address and PC. The stack
2346address must be chosen so that it is constant throughout the lifetime
2347of the frame, so a typical choice is the value of the stack pointer at
2348the start of the function---in the DWARF standard, this would be the
2349``Call Frame Address''.
d11916aa 2350
e7b5068c
TT
2351This is the most common case by far. The other cases are documented
2352for completeness but are only useful in specialized situations.
2353
2354@item sp, pc, special
2355The frame is identified by the stack address, the PC, and a
2356``special'' address. The special address is used on architectures
2357that can have frames that do not change the stack, but which are still
2358distinct, for example the IA-64, which has a second stack for
2359registers. Both @var{sp} and @var{special} must be constant
2360throughout the lifetime of the frame.
d11916aa
SS
2361
2362@item sp
e7b5068c
TT
2363The frame is identified by the stack address only. Any other stack
2364frame with a matching @var{sp} will be considered to match this frame.
2365Inside gdb, this is called a ``wild frame''. You will never need
2366this.
d11916aa 2367@end table
e7b5068c
TT
2368
2369Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2370
2371@end defun
2372
2373@subheading Unwinder Output: UnwindInfo
2374
2375Use @code{PendingFrame.create_unwind_info} method described above to
2376create a @code{gdb.UnwindInfo} instance. Use the following method to
2377specify caller registers that have been saved in this frame:
2378
2379@defun gdb.UnwindInfo.add_saved_register (reg, value)
2380@var{reg} identifies the register. It can be a number or a name, just
2381as for the @code{PendingFrame.read_register} method above.
2382@var{value} is a register value (a @code{gdb.Value} object).
2383@end defun
2384
2385@subheading Unwinder Skeleton Code
2386
2387@value{GDBN} comes with the module containing the base @code{Unwinder}
2388class. Derive your unwinder class from it and structure the code as
2389follows:
2390
2391@smallexample
2392from gdb.unwinders import Unwinder
2393
2394class FrameId(object):
2395 def __init__(self, sp, pc):
2396 self.sp = sp
2397 self.pc = pc
2398
2399
2400class MyUnwinder(Unwinder):
2401 def __init__(....):
2402 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2403
2404 def __call__(pending_frame):
2405 if not <we recognize frame>:
2406 return None
2407 # Create UnwindInfo. Usually the frame is identified by the stack
2408 # pointer and the program counter.
2409 sp = pending_frame.read_register(<SP number>)
2410 pc = pending_frame.read_register(<PC number>)
2411 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2412
2413 # Find the values of the registers in the caller's frame and
2414 # save them in the result:
2415 unwind_info.add_saved_register(<register>, <value>)
2416 ....
2417
2418 # Return the result:
2419 return unwind_info
2420
2421@end smallexample
2422
2423@subheading Registering a Unwinder
2424
2425An object file, a program space, and the @value{GDBN} proper can have
2426unwinders registered with it.
2427
2428The @code{gdb.unwinders} module provides the function to register a
2429unwinder:
2430
2431@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2432@var{locus} is specifies an object file or a program space to which
2433@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2434@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2435added @var{unwinder} will be called before any other unwinder from the
2436same locus. Two unwinders in the same locus cannot have the same
2437name. An attempt to add a unwinder with already existing name raises
2438an exception unless @var{replace} is @code{True}, in which case the
2439old unwinder is deleted.
2440@end defun
2441
2442@subheading Unwinder Precedence
2443
2444@value{GDBN} first calls the unwinders from all the object files in no
2445particular order, then the unwinders from the current program space,
2446and finally the unwinders from @value{GDBN}.
2447
0c6e92a5
SC
2448@node Xmethods In Python
2449@subsubsection Xmethods In Python
2450@cindex xmethods in Python
2451
2452@dfn{Xmethods} are additional methods or replacements for existing
2453methods of a C@t{++} class. This feature is useful for those cases
2454where a method defined in C@t{++} source code could be inlined or
2455optimized out by the compiler, making it unavailable to @value{GDBN}.
2456For such cases, one can define an xmethod to serve as a replacement
2457for the method defined in the C@t{++} source code. @value{GDBN} will
2458then invoke the xmethod, instead of the C@t{++} method, to
2459evaluate expressions. One can also use xmethods when debugging
2460with core files. Moreover, when debugging live programs, invoking an
2461xmethod need not involve running the inferior (which can potentially
2462perturb its state). Hence, even if the C@t{++} method is available, it
2463is better to use its replacement xmethod if one is defined.
2464
2465The xmethods feature in Python is available via the concepts of an
2466@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2467implement an xmethod, one has to implement a matcher and a
2468corresponding worker for it (more than one worker can be
2469implemented, each catering to a different overloaded instance of the
2470method). Internally, @value{GDBN} invokes the @code{match} method of a
2471matcher to match the class type and method name. On a match, the
2472@code{match} method returns a list of matching @emph{worker} objects.
2473Each worker object typically corresponds to an overloaded instance of
2474the xmethod. They implement a @code{get_arg_types} method which
2475returns a sequence of types corresponding to the arguments the xmethod
2476requires. @value{GDBN} uses this sequence of types to perform
2477overload resolution and picks a winning xmethod worker. A winner
2478is also selected from among the methods @value{GDBN} finds in the
2479C@t{++} source code. Next, the winning xmethod worker and the
2480winning C@t{++} method are compared to select an overall winner. In
2481case of a tie between a xmethod worker and a C@t{++} method, the
2482xmethod worker is selected as the winner. That is, if a winning
2483xmethod worker is found to be equivalent to the winning C@t{++}
2484method, then the xmethod worker is treated as a replacement for
2485the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2486method. If the winning xmethod worker is the overall winner, then
897c3d32 2487the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2488of the worker object.
2489
2490If one wants to implement an xmethod as a replacement for an
2491existing C@t{++} method, then they have to implement an equivalent
2492xmethod which has exactly the same name and takes arguments of
2493exactly the same type as the C@t{++} method. If the user wants to
2494invoke the C@t{++} method even though a replacement xmethod is
2495available for that method, then they can disable the xmethod.
2496
2497@xref{Xmethod API}, for API to implement xmethods in Python.
2498@xref{Writing an Xmethod}, for implementing xmethods in Python.
2499
2500@node Xmethod API
2501@subsubsection Xmethod API
2502@cindex xmethod API
2503
2504The @value{GDBN} Python API provides classes, interfaces and functions
2505to implement, register and manipulate xmethods.
2506@xref{Xmethods In Python}.
2507
2508An xmethod matcher should be an instance of a class derived from
2509@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2510object with similar interface and attributes. An instance of
2511@code{XMethodMatcher} has the following attributes:
2512
2513@defvar name
2514The name of the matcher.
2515@end defvar
2516
2517@defvar enabled
2518A boolean value indicating whether the matcher is enabled or disabled.
2519@end defvar
2520
2521@defvar methods
2522A list of named methods managed by the matcher. Each object in the list
2523is an instance of the class @code{XMethod} defined in the module
2524@code{gdb.xmethod}, or any object with the following attributes:
2525
2526@table @code
2527
2528@item name
2529Name of the xmethod which should be unique for each xmethod
2530managed by the matcher.
2531
2532@item enabled
2533A boolean value indicating whether the xmethod is enabled or
2534disabled.
2535
2536@end table
2537
2538The class @code{XMethod} is a convenience class with same
2539attributes as above along with the following constructor:
2540
dd5d5494 2541@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2542Constructs an enabled xmethod with name @var{name}.
2543@end defun
2544@end defvar
2545
2546@noindent
2547The @code{XMethodMatcher} class has the following methods:
2548
dd5d5494 2549@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2550Constructs an enabled xmethod matcher with name @var{name}. The
2551@code{methods} attribute is initialized to @code{None}.
2552@end defun
2553
dd5d5494 2554@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2555Derived classes should override this method. It should return a
2556xmethod worker object (or a sequence of xmethod worker
2557objects) matching the @var{class_type} and @var{method_name}.
2558@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2559is a string value. If the matcher manages named methods as listed in
2560its @code{methods} attribute, then only those worker objects whose
2561corresponding entries in the @code{methods} list are enabled should be
2562returned.
2563@end defun
2564
2565An xmethod worker should be an instance of a class derived from
2566@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2567or support the following interface:
2568
dd5d5494 2569@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2570This method returns a sequence of @code{gdb.Type} objects corresponding
2571to the arguments that the xmethod takes. It can return an empty
2572sequence or @code{None} if the xmethod does not take any arguments.
2573If the xmethod takes a single argument, then a single
2574@code{gdb.Type} object corresponding to it can be returned.
2575@end defun
2576
2ce1cdbf
DE
2577@defun XMethodWorker.get_result_type (self, *args)
2578This method returns a @code{gdb.Type} object representing the type
2579of the result of invoking this xmethod.
2580The @var{args} argument is the same tuple of arguments that would be
2581passed to the @code{__call__} method of this worker.
2582@end defun
2583
dd5d5494 2584@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2585This is the method which does the @emph{work} of the xmethod. The
2586@var{args} arguments is the tuple of arguments to the xmethod. Each
2587element in this tuple is a gdb.Value object. The first element is
2588always the @code{this} pointer value.
2589@end defun
2590
2591For @value{GDBN} to lookup xmethods, the xmethod matchers
2592should be registered using the following function defined in the module
2593@code{gdb.xmethod}:
2594
dd5d5494 2595@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2596The @code{matcher} is registered with @code{locus}, replacing an
2597existing matcher with the same name as @code{matcher} if
2598@code{replace} is @code{True}. @code{locus} can be a
2599@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2600@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2601@code{None}. If it is @code{None}, then @code{matcher} is registered
2602globally.
2603@end defun
2604
2605@node Writing an Xmethod
2606@subsubsection Writing an Xmethod
2607@cindex writing xmethods in Python
2608
2609Implementing xmethods in Python will require implementing xmethod
2610matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2611the following C@t{++} class:
2612
2613@smallexample
2614class MyClass
2615@{
2616public:
2617 MyClass (int a) : a_(a) @{ @}
2618
2619 int geta (void) @{ return a_; @}
2620 int operator+ (int b);
2621
2622private:
2623 int a_;
2624@};
2625
2626int
2627MyClass::operator+ (int b)
2628@{
2629 return a_ + b;
2630@}
2631@end smallexample
2632
2633@noindent
2634Let us define two xmethods for the class @code{MyClass}, one
2635replacing the method @code{geta}, and another adding an overloaded
2636flavor of @code{operator+} which takes a @code{MyClass} argument (the
2637C@t{++} code above already has an overloaded @code{operator+}
2638which takes an @code{int} argument). The xmethod matcher can be
2639defined as follows:
2640
2641@smallexample
2642class MyClass_geta(gdb.xmethod.XMethod):
2643 def __init__(self):
2644 gdb.xmethod.XMethod.__init__(self, 'geta')
2645
2646 def get_worker(self, method_name):
2647 if method_name == 'geta':
2648 return MyClassWorker_geta()
2649
2650
2651class MyClass_sum(gdb.xmethod.XMethod):
2652 def __init__(self):
2653 gdb.xmethod.XMethod.__init__(self, 'sum')
2654
2655 def get_worker(self, method_name):
2656 if method_name == 'operator+':
2657 return MyClassWorker_plus()
2658
2659
2660class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2661 def __init__(self):
2662 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2663 # List of methods 'managed' by this matcher
2664 self.methods = [MyClass_geta(), MyClass_sum()]
2665
2666 def match(self, class_type, method_name):
2667 if class_type.tag != 'MyClass':
2668 return None
2669 workers = []
2670 for method in self.methods:
2671 if method.enabled:
2672 worker = method.get_worker(method_name)
2673 if worker:
2674 workers.append(worker)
2675
2676 return workers
2677@end smallexample
2678
2679@noindent
2680Notice that the @code{match} method of @code{MyClassMatcher} returns
2681a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2682method, and a worker object of type @code{MyClassWorker_plus} for the
2683@code{operator+} method. This is done indirectly via helper classes
2684derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2685@code{methods} attribute in a matcher as it is optional. However, if a
2686matcher manages more than one xmethod, it is a good practice to list the
2687xmethods in the @code{methods} attribute of the matcher. This will then
2688facilitate enabling and disabling individual xmethods via the
2689@code{enable/disable} commands. Notice also that a worker object is
2690returned only if the corresponding entry in the @code{methods} attribute
2691of the matcher is enabled.
2692
2693The implementation of the worker classes returned by the matcher setup
2694above is as follows:
2695
2696@smallexample
2697class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2698 def get_arg_types(self):
2699 return None
2ce1cdbf
DE
2700
2701 def get_result_type(self, obj):
2702 return gdb.lookup_type('int')
0c6e92a5
SC
2703
2704 def __call__(self, obj):
2705 return obj['a_']
2706
2707
2708class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2709 def get_arg_types(self):
2710 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2711
2712 def get_result_type(self, obj):
2713 return gdb.lookup_type('int')
0c6e92a5
SC
2714
2715 def __call__(self, obj, other):
2716 return obj['a_'] + other['a_']
2717@end smallexample
2718
2719For @value{GDBN} to actually lookup a xmethod, it has to be
2720registered with it. The matcher defined above is registered with
2721@value{GDBN} globally as follows:
2722
2723@smallexample
2724gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2725@end smallexample
2726
2727If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2728code as follows:
2729
2730@smallexample
2731MyClass obj(5);
2732@end smallexample
2733
2734@noindent
2735then, after loading the Python script defining the xmethod matchers
2736and workers into @code{GDBN}, invoking the method @code{geta} or using
2737the operator @code{+} on @code{obj} will invoke the xmethods
2738defined above:
2739
2740@smallexample
2741(gdb) p obj.geta()
2742$1 = 5
2743
2744(gdb) p obj + obj
2745$2 = 10
2746@end smallexample
2747
2748Consider another example with a C++ template class:
2749
2750@smallexample
2751template <class T>
2752class MyTemplate
2753@{
2754public:
2755 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2756 ~MyTemplate () @{ delete [] data_; @}
2757
2758 int footprint (void)
2759 @{
2760 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2761 @}
2762
2763private:
2764 int dsize_;
2765 T *data_;
2766@};
2767@end smallexample
2768
2769Let us implement an xmethod for the above class which serves as a
2770replacement for the @code{footprint} method. The full code listing
2771of the xmethod workers and xmethod matchers is as follows:
2772
2773@smallexample
2774class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2775 def __init__(self, class_type):
2776 self.class_type = class_type
2ce1cdbf 2777
0c6e92a5
SC
2778 def get_arg_types(self):
2779 return None
2ce1cdbf
DE
2780
2781 def get_result_type(self):
2782 return gdb.lookup_type('int')
2783
0c6e92a5
SC
2784 def __call__(self, obj):
2785 return (self.class_type.sizeof +
2786 obj['dsize_'] *
2787 self.class_type.template_argument(0).sizeof)
2788
2789
2790class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2791 def __init__(self):
2792 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2793
2794 def match(self, class_type, method_name):
2795 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2796 class_type.tag) and
2797 method_name == 'footprint'):
2798 return MyTemplateWorker_footprint(class_type)
2799@end smallexample
2800
2801Notice that, in this example, we have not used the @code{methods}
2802attribute of the matcher as the matcher manages only one xmethod. The
2803user can enable/disable this xmethod by enabling/disabling the matcher
2804itself.
2805
329baa95
DE
2806@node Inferiors In Python
2807@subsubsection Inferiors In Python
2808@cindex inferiors in Python
2809
2810@findex gdb.Inferior
2811Programs which are being run under @value{GDBN} are called inferiors
2812(@pxref{Inferiors and Programs}). Python scripts can access
2813information about and manipulate inferiors controlled by @value{GDBN}
2814via objects of the @code{gdb.Inferior} class.
2815
2816The following inferior-related functions are available in the @code{gdb}
2817module:
2818
2819@defun gdb.inferiors ()
2820Return a tuple containing all inferior objects.
2821@end defun
2822
2823@defun gdb.selected_inferior ()
2824Return an object representing the current inferior.
2825@end defun
2826
2827A @code{gdb.Inferior} object has the following attributes:
2828
2829@defvar Inferior.num
2830ID of inferior, as assigned by GDB.
2831@end defvar
2832
2833@defvar Inferior.pid
2834Process ID of the inferior, as assigned by the underlying operating
2835system.
2836@end defvar
2837
2838@defvar Inferior.was_attached
2839Boolean signaling whether the inferior was created using `attach', or
2840started by @value{GDBN} itself.
2841@end defvar
2842
a40bf0c2
SM
2843@defvar Inferior.progspace
2844The inferior's program space. @xref{Progspaces In Python}.
2845@end defvar
2846
329baa95
DE
2847A @code{gdb.Inferior} object has the following methods:
2848
2849@defun Inferior.is_valid ()
2850Returns @code{True} if the @code{gdb.Inferior} object is valid,
2851@code{False} if not. A @code{gdb.Inferior} object will become invalid
2852if the inferior no longer exists within @value{GDBN}. All other
2853@code{gdb.Inferior} methods will throw an exception if it is invalid
2854at the time the method is called.
2855@end defun
2856
2857@defun Inferior.threads ()
2858This method returns a tuple holding all the threads which are valid
2859when it is called. If there are no valid threads, the method will
2860return an empty tuple.
2861@end defun
2862
add5ded5
TT
2863@defun Inferior.architecture ()
2864Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2865for this inferior. This represents the architecture of the inferior
2866as a whole. Some platforms can have multiple architectures in a
2867single address space, so this may not match the architecture of a
163cffef 2868particular frame (@pxref{Frames In Python}).
9e1698c6 2869@end defun
add5ded5 2870
329baa95
DE
2871@findex Inferior.read_memory
2872@defun Inferior.read_memory (address, length)
a86c90e6 2873Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2874@var{address}. Returns a buffer object, which behaves much like an array
2875or a string. It can be modified and given to the
79778b30 2876@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2877value is a @code{memoryview} object.
2878@end defun
2879
2880@findex Inferior.write_memory
2881@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2882Write the contents of @var{buffer} to the inferior, starting at
2883@var{address}. The @var{buffer} parameter must be a Python object
2884which supports the buffer protocol, i.e., a string, an array or the
2885object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2886determines the number of addressable memory units from @var{buffer} to be
2887written.
329baa95
DE
2888@end defun
2889
2890@findex gdb.search_memory
2891@defun Inferior.search_memory (address, length, pattern)
2892Search a region of the inferior memory starting at @var{address} with
2893the given @var{length} using the search pattern supplied in
2894@var{pattern}. The @var{pattern} parameter must be a Python object
2895which supports the buffer protocol, i.e., a string, an array or the
2896object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2897containing the address where the pattern was found, or @code{None} if
2898the pattern could not be found.
2899@end defun
2900
da2c323b
KB
2901@findex Inferior.thread_from_thread_handle
2902@defun Inferior.thread_from_thread_handle (thread_handle)
2903Return the thread object corresponding to @var{thread_handle}, a thread
2904library specific data structure such as @code{pthread_t} for pthreads
2905library implementations.
2906@end defun
2907
329baa95
DE
2908@node Events In Python
2909@subsubsection Events In Python
2910@cindex inferior events in Python
2911
2912@value{GDBN} provides a general event facility so that Python code can be
2913notified of various state changes, particularly changes that occur in
2914the inferior.
2915
2916An @dfn{event} is just an object that describes some state change. The
2917type of the object and its attributes will vary depending on the details
2918of the change. All the existing events are described below.
2919
2920In order to be notified of an event, you must register an event handler
2921with an @dfn{event registry}. An event registry is an object in the
2922@code{gdb.events} module which dispatches particular events. A registry
2923provides methods to register and unregister event handlers:
2924
2925@defun EventRegistry.connect (object)
2926Add the given callable @var{object} to the registry. This object will be
2927called when an event corresponding to this registry occurs.
2928@end defun
2929
2930@defun EventRegistry.disconnect (object)
2931Remove the given @var{object} from the registry. Once removed, the object
2932will no longer receive notifications of events.
2933@end defun
2934
2935Here is an example:
2936
2937@smallexample
2938def exit_handler (event):
2939 print "event type: exit"
2940 print "exit code: %d" % (event.exit_code)
2941
2942gdb.events.exited.connect (exit_handler)
2943@end smallexample
2944
2945In the above example we connect our handler @code{exit_handler} to the
2946registry @code{events.exited}. Once connected, @code{exit_handler} gets
2947called when the inferior exits. The argument @dfn{event} in this example is
2948of type @code{gdb.ExitedEvent}. As you can see in the example the
2949@code{ExitedEvent} object has an attribute which indicates the exit code of
2950the inferior.
2951
2952The following is a listing of the event registries that are available and
2953details of the events they emit:
2954
2955@table @code
2956
2957@item events.cont
2958Emits @code{gdb.ThreadEvent}.
2959
2960Some events can be thread specific when @value{GDBN} is running in non-stop
2961mode. When represented in Python, these events all extend
2962@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2963events which are emitted by this or other modules might extend this event.
2964Examples of these events are @code{gdb.BreakpointEvent} and
2965@code{gdb.ContinueEvent}.
2966
2967@defvar ThreadEvent.inferior_thread
2968In non-stop mode this attribute will be set to the specific thread which was
2969involved in the emitted event. Otherwise, it will be set to @code{None}.
2970@end defvar
2971
2972Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2973
2974This event indicates that the inferior has been continued after a stop. For
2975inherited attribute refer to @code{gdb.ThreadEvent} above.
2976
2977@item events.exited
2978Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2979@code{events.ExitedEvent} has two attributes:
2980@defvar ExitedEvent.exit_code
2981An integer representing the exit code, if available, which the inferior
2982has returned. (The exit code could be unavailable if, for example,
2983@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2984the attribute does not exist.
2985@end defvar
373832b6 2986@defvar ExitedEvent.inferior
329baa95
DE
2987A reference to the inferior which triggered the @code{exited} event.
2988@end defvar
2989
2990@item events.stop
2991Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2992
2993Indicates that the inferior has stopped. All events emitted by this registry
2994extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2995will indicate the stopped thread when @value{GDBN} is running in non-stop
2996mode. Refer to @code{gdb.ThreadEvent} above for more details.
2997
2998Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2999
3000This event indicates that the inferior or one of its threads has received as
3001signal. @code{gdb.SignalEvent} has the following attributes:
3002
3003@defvar SignalEvent.stop_signal
3004A string representing the signal received by the inferior. A list of possible
3005signal values can be obtained by running the command @code{info signals} in
3006the @value{GDBN} command prompt.
3007@end defvar
3008
3009Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3010
3011@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3012been hit, and has the following attributes:
3013
3014@defvar BreakpointEvent.breakpoints
3015A sequence containing references to all the breakpoints (type
3016@code{gdb.Breakpoint}) that were hit.
3017@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3018@end defvar
3019@defvar BreakpointEvent.breakpoint
3020A reference to the first breakpoint that was hit.
3021This function is maintained for backward compatibility and is now deprecated
3022in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3023@end defvar
3024
3025@item events.new_objfile
3026Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3027been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3028
3029@defvar NewObjFileEvent.new_objfile
3030A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3031@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3032@end defvar
3033
4ffbba72
DE
3034@item events.clear_objfiles
3035Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3036files for a program space has been reset.
3037@code{gdb.ClearObjFilesEvent} has one attribute:
3038
3039@defvar ClearObjFilesEvent.progspace
3040A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3041been cleared. @xref{Progspaces In Python}.
3042@end defvar
3043
fb5af5e3
TT
3044@item events.inferior_call
3045Emits events just before and after a function in the inferior is
3046called by @value{GDBN}. Before an inferior call, this emits an event
3047of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3048this emits an event of type @code{gdb.InferiorCallPostEvent}.
3049
3050@table @code
3051@tindex gdb.InferiorCallPreEvent
3052@item @code{gdb.InferiorCallPreEvent}
3053Indicates that a function in the inferior is about to be called.
162078c8
NB
3054
3055@defvar InferiorCallPreEvent.ptid
3056The thread in which the call will be run.
3057@end defvar
3058
3059@defvar InferiorCallPreEvent.address
3060The location of the function to be called.
3061@end defvar
3062
fb5af5e3
TT
3063@tindex gdb.InferiorCallPostEvent
3064@item @code{gdb.InferiorCallPostEvent}
3065Indicates that a function in the inferior has just been called.
162078c8
NB
3066
3067@defvar InferiorCallPostEvent.ptid
3068The thread in which the call was run.
3069@end defvar
3070
3071@defvar InferiorCallPostEvent.address
3072The location of the function that was called.
3073@end defvar
fb5af5e3 3074@end table
162078c8
NB
3075
3076@item events.memory_changed
3077Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3078inferior has been modified by the @value{GDBN} user, for instance via a
3079command like @w{@code{set *addr = value}}. The event has the following
3080attributes:
3081
3082@defvar MemoryChangedEvent.address
3083The start address of the changed region.
3084@end defvar
3085
3086@defvar MemoryChangedEvent.length
3087Length in bytes of the changed region.
3088@end defvar
3089
3090@item events.register_changed
3091Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3092inferior has been modified by the @value{GDBN} user.
3093
3094@defvar RegisterChangedEvent.frame
3095A gdb.Frame object representing the frame in which the register was modified.
3096@end defvar
3097@defvar RegisterChangedEvent.regnum
3098Denotes which register was modified.
3099@end defvar
3100
dac790e1
TT
3101@item events.breakpoint_created
3102This is emitted when a new breakpoint has been created. The argument
3103that is passed is the new @code{gdb.Breakpoint} object.
3104
3105@item events.breakpoint_modified
3106This is emitted when a breakpoint has been modified in some way. The
3107argument that is passed is the new @code{gdb.Breakpoint} object.
3108
3109@item events.breakpoint_deleted
3110This is emitted when a breakpoint has been deleted. The argument that
3111is passed is the @code{gdb.Breakpoint} object. When this event is
3112emitted, the @code{gdb.Breakpoint} object will already be in its
3113invalid state; that is, the @code{is_valid} method will return
3114@code{False}.
3115
3f77c769
TT
3116@item events.before_prompt
3117This event carries no payload. It is emitted each time @value{GDBN}
3118presents a prompt to the user.
3119
7c96f8c1
TT
3120@item events.new_inferior
3121This is emitted when a new inferior is created. Note that the
3122inferior is not necessarily running; in fact, it may not even have an
3123associated executable.
3124
3125The event is of type @code{gdb.NewInferiorEvent}. This has a single
3126attribute:
3127
3128@defvar NewInferiorEvent.inferior
3129The new inferior, a @code{gdb.Inferior} object.
3130@end defvar
3131
3132@item events.inferior_deleted
3133This is emitted when an inferior has been deleted. Note that this is
3134not the same as process exit; it is notified when the inferior itself
3135is removed, say via @code{remove-inferiors}.
3136
3137The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3138attribute:
3139
3140@defvar NewInferiorEvent.inferior
3141The inferior that is being removed, a @code{gdb.Inferior} object.
3142@end defvar
3143
3144@item events.new_thread
3145This is emitted when @value{GDBN} notices a new thread. The event is of
3146type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3147This has a single attribute:
3148
3149@defvar NewThreadEvent.inferior_thread
3150The new thread.
3151@end defvar
3152
329baa95
DE
3153@end table
3154
3155@node Threads In Python
3156@subsubsection Threads In Python
3157@cindex threads in python
3158
3159@findex gdb.InferiorThread
3160Python scripts can access information about, and manipulate inferior threads
3161controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3162
3163The following thread-related functions are available in the @code{gdb}
3164module:
3165
3166@findex gdb.selected_thread
3167@defun gdb.selected_thread ()
3168This function returns the thread object for the selected thread. If there
3169is no selected thread, this will return @code{None}.
3170@end defun
3171
3172A @code{gdb.InferiorThread} object has the following attributes:
3173
3174@defvar InferiorThread.name
3175The name of the thread. If the user specified a name using
3176@code{thread name}, then this returns that name. Otherwise, if an
3177OS-supplied name is available, then it is returned. Otherwise, this
3178returns @code{None}.
3179
3180This attribute can be assigned to. The new value must be a string
3181object, which sets the new name, or @code{None}, which removes any
3182user-specified thread name.
3183@end defvar
3184
3185@defvar InferiorThread.num
5d5658a1 3186The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3187@end defvar
3188
22a02324
PA
3189@defvar InferiorThread.global_num
3190The global ID of the thread, as assigned by GDB. You can use this to
3191make Python breakpoints thread-specific, for example
3192(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3193@end defvar
3194
329baa95
DE
3195@defvar InferiorThread.ptid
3196ID of the thread, as assigned by the operating system. This attribute is a
3197tuple containing three integers. The first is the Process ID (PID); the second
3198is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3199Either the LWPID or TID may be 0, which indicates that the operating system
3200does not use that identifier.
3201@end defvar
3202
84654457
PA
3203@defvar InferiorThread.inferior
3204The inferior this thread belongs to. This attribute is represented as
3205a @code{gdb.Inferior} object. This attribute is not writable.
3206@end defvar
3207
329baa95
DE
3208A @code{gdb.InferiorThread} object has the following methods:
3209
3210@defun InferiorThread.is_valid ()
3211Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3212@code{False} if not. A @code{gdb.InferiorThread} object will become
3213invalid if the thread exits, or the inferior that the thread belongs
3214is deleted. All other @code{gdb.InferiorThread} methods will throw an
3215exception if it is invalid at the time the method is called.
3216@end defun
3217
3218@defun InferiorThread.switch ()
3219This changes @value{GDBN}'s currently selected thread to the one represented
3220by this object.
3221@end defun
3222
3223@defun InferiorThread.is_stopped ()
3224Return a Boolean indicating whether the thread is stopped.
3225@end defun
3226
3227@defun InferiorThread.is_running ()
3228Return a Boolean indicating whether the thread is running.
3229@end defun
3230
3231@defun InferiorThread.is_exited ()
3232Return a Boolean indicating whether the thread is exited.
3233@end defun
3234
0a0faf9f
TW
3235@node Recordings In Python
3236@subsubsection Recordings In Python
3237@cindex recordings in python
3238
3239The following recordings-related functions
3240(@pxref{Process Record and Replay}) are available in the @code{gdb}
3241module:
3242
3243@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3244Start a recording using the given @var{method} and @var{format}. If
3245no @var{format} is given, the default format for the recording method
3246is used. If no @var{method} is given, the default method will be used.
3247Returns a @code{gdb.Record} object on success. Throw an exception on
3248failure.
3249
3250The following strings can be passed as @var{method}:
3251
3252@itemize @bullet
3253@item
3254@code{"full"}
3255@item
3256@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3257@code{"bts"} or leave out for default format.
3258@end itemize
3259@end defun
3260
3261@defun gdb.current_recording ()
3262Access a currently running recording. Return a @code{gdb.Record}
3263object on success. Return @code{None} if no recording is currently
3264active.
3265@end defun
3266
3267@defun gdb.stop_recording ()
3268Stop the current recording. Throw an exception if no recording is
3269currently active. All record objects become invalid after this call.
3270@end defun
3271
3272A @code{gdb.Record} object has the following attributes:
3273
0a0faf9f
TW
3274@defvar Record.method
3275A string with the current recording method, e.g.@: @code{full} or
3276@code{btrace}.
3277@end defvar
3278
3279@defvar Record.format
3280A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3281@code{None}.
3282@end defvar
3283
3284@defvar Record.begin
3285A method specific instruction object representing the first instruction
3286in this recording.
3287@end defvar
3288
3289@defvar Record.end
3290A method specific instruction object representing the current
3291instruction, that is not actually part of the recording.
3292@end defvar
3293
3294@defvar Record.replay_position
3295The instruction representing the current replay position. If there is
3296no replay active, this will be @code{None}.
3297@end defvar
3298
3299@defvar Record.instruction_history
3300A list with all recorded instructions.
3301@end defvar
3302
3303@defvar Record.function_call_history
3304A list with all recorded function call segments.
3305@end defvar
3306
3307A @code{gdb.Record} object has the following methods:
3308
3309@defun Record.goto (instruction)
3310Move the replay position to the given @var{instruction}.
3311@end defun
3312
d050f7d7
TW
3313The common @code{gdb.Instruction} class that recording method specific
3314instruction objects inherit from, has the following attributes:
0a0faf9f 3315
d050f7d7 3316@defvar Instruction.pc
913aeadd 3317An integer representing this instruction's address.
0a0faf9f
TW
3318@end defvar
3319
d050f7d7 3320@defvar Instruction.data
913aeadd
TW
3321A buffer with the raw instruction data. In Python 3, the return value is a
3322@code{memoryview} object.
0a0faf9f
TW
3323@end defvar
3324
d050f7d7 3325@defvar Instruction.decoded
913aeadd 3326A human readable string with the disassembled instruction.
0a0faf9f
TW
3327@end defvar
3328
d050f7d7 3329@defvar Instruction.size
913aeadd 3330The size of the instruction in bytes.
0a0faf9f
TW
3331@end defvar
3332
d050f7d7
TW
3333Additionally @code{gdb.RecordInstruction} has the following attributes:
3334
3335@defvar RecordInstruction.number
3336An integer identifying this instruction. @code{number} corresponds to
3337the numbers seen in @code{record instruction-history}
3338(@pxref{Process Record and Replay}).
3339@end defvar
3340
3341@defvar RecordInstruction.sal
3342A @code{gdb.Symtab_and_line} object representing the associated symtab
3343and line of this instruction. May be @code{None} if no debug information is
3344available.
3345@end defvar
3346
0ed5da75 3347@defvar RecordInstruction.is_speculative
d050f7d7 3348A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3349@end defvar
3350
3351If an error occured during recording or decoding a recording, this error is
3352represented by a @code{gdb.RecordGap} object in the instruction list. It has
3353the following attributes:
3354
3355@defvar RecordGap.number
3356An integer identifying this gap. @code{number} corresponds to the numbers seen
3357in @code{record instruction-history} (@pxref{Process Record and Replay}).
3358@end defvar
3359
3360@defvar RecordGap.error_code
3361A numerical representation of the reason for the gap. The value is specific to
3362the current recording method.
3363@end defvar
3364
3365@defvar RecordGap.error_string
3366A human readable string with the reason for the gap.
0a0faf9f
TW
3367@end defvar
3368
14f819c8 3369A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3370
14f819c8
TW
3371@defvar RecordFunctionSegment.number
3372An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3373the numbers seen in @code{record function-call-history}
3374(@pxref{Process Record and Replay}).
3375@end defvar
3376
14f819c8 3377@defvar RecordFunctionSegment.symbol
0a0faf9f 3378A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3379@code{None} if no debug information is available.
0a0faf9f
TW
3380@end defvar
3381
14f819c8 3382@defvar RecordFunctionSegment.level
0a0faf9f
TW
3383An integer representing the function call's stack level. May be
3384@code{None} if the function call is a gap.
3385@end defvar
3386
14f819c8 3387@defvar RecordFunctionSegment.instructions
0ed5da75 3388A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3389associated with this function call.
0a0faf9f
TW
3390@end defvar
3391
14f819c8
TW
3392@defvar RecordFunctionSegment.up
3393A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3394function segment. If the call has not been recorded, this will be the
3395function segment to which control returns. If neither the call nor the
3396return have been recorded, this will be @code{None}.
3397@end defvar
3398
14f819c8
TW
3399@defvar RecordFunctionSegment.prev
3400A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3401segment of this function call. May be @code{None}.
3402@end defvar
3403
14f819c8
TW
3404@defvar RecordFunctionSegment.next
3405A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3406this function call. May be @code{None}.
3407@end defvar
3408
3409The following example demonstrates the usage of these objects and
3410functions to create a function that will rewind a record to the last
3411time a function in a different file was executed. This would typically
3412be used to track the execution of user provided callback functions in a
3413library which typically are not visible in a back trace.
3414
3415@smallexample
3416def bringback ():
3417 rec = gdb.current_recording ()
3418 if not rec:
3419 return
3420
3421 insn = rec.instruction_history
3422 if len (insn) == 0:
3423 return
3424
3425 try:
3426 position = insn.index (rec.replay_position)
3427 except:
3428 position = -1
3429 try:
3430 filename = insn[position].sal.symtab.fullname ()
3431 except:
3432 filename = None
3433
3434 for i in reversed (insn[:position]):
3435 try:
3436 current = i.sal.symtab.fullname ()
3437 except:
3438 current = None
3439
3440 if filename == current:
3441 continue
3442
3443 rec.goto (i)
3444 return
3445@end smallexample
3446
3447Another possible application is to write a function that counts the
3448number of code executions in a given line range. This line range can
3449contain parts of functions or span across several functions and is not
3450limited to be contiguous.
3451
3452@smallexample
3453def countrange (filename, linerange):
3454 count = 0
3455
3456 def filter_only (file_name):
3457 for call in gdb.current_recording ().function_call_history:
3458 try:
3459 if file_name in call.symbol.symtab.fullname ():
3460 yield call
3461 except:
3462 pass
3463
3464 for c in filter_only (filename):
3465 for i in c.instructions:
3466 try:
3467 if i.sal.line in linerange:
3468 count += 1
3469 break;
3470 except:
3471 pass
3472
3473 return count
3474@end smallexample
3475
329baa95
DE
3476@node Commands In Python
3477@subsubsection Commands In Python
3478
3479@cindex commands in python
3480@cindex python commands
3481You can implement new @value{GDBN} CLI commands in Python. A CLI
3482command is implemented using an instance of the @code{gdb.Command}
3483class, most commonly using a subclass.
3484
3485@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3486The object initializer for @code{Command} registers the new command
3487with @value{GDBN}. This initializer is normally invoked from the
3488subclass' own @code{__init__} method.
3489
3490@var{name} is the name of the command. If @var{name} consists of
3491multiple words, then the initial words are looked for as prefix
3492commands. In this case, if one of the prefix commands does not exist,
3493an exception is raised.
3494
3495There is no support for multi-line commands.
3496
3497@var{command_class} should be one of the @samp{COMMAND_} constants
3498defined below. This argument tells @value{GDBN} how to categorize the
3499new command in the help system.
3500
3501@var{completer_class} is an optional argument. If given, it should be
3502one of the @samp{COMPLETE_} constants defined below. This argument
3503tells @value{GDBN} how to perform completion for this command. If not
3504given, @value{GDBN} will attempt to complete using the object's
3505@code{complete} method (see below); if no such method is found, an
3506error will occur when completion is attempted.
3507
3508@var{prefix} is an optional argument. If @code{True}, then the new
3509command is a prefix command; sub-commands of this command may be
3510registered.
3511
3512The help text for the new command is taken from the Python
3513documentation string for the command's class, if there is one. If no
3514documentation string is provided, the default value ``This command is
3515not documented.'' is used.
3516@end defun
3517
3518@cindex don't repeat Python command
3519@defun Command.dont_repeat ()
3520By default, a @value{GDBN} command is repeated when the user enters a
3521blank line at the command prompt. A command can suppress this
3522behavior by invoking the @code{dont_repeat} method. This is similar
3523to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3524@end defun
3525
3526@defun Command.invoke (argument, from_tty)
3527This method is called by @value{GDBN} when this command is invoked.
3528
3529@var{argument} is a string. It is the argument to the command, after
3530leading and trailing whitespace has been stripped.
3531
3532@var{from_tty} is a boolean argument. When true, this means that the
3533command was entered by the user at the terminal; when false it means
3534that the command came from elsewhere.
3535
3536If this method throws an exception, it is turned into a @value{GDBN}
3537@code{error} call. Otherwise, the return value is ignored.
3538
3539@findex gdb.string_to_argv
3540To break @var{argument} up into an argv-like string use
3541@code{gdb.string_to_argv}. This function behaves identically to
3542@value{GDBN}'s internal argument lexer @code{buildargv}.
3543It is recommended to use this for consistency.
3544Arguments are separated by spaces and may be quoted.
3545Example:
3546
3547@smallexample
3548print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3549['1', '2 "3', '4 "5', "6 '7"]
3550@end smallexample
3551
3552@end defun
3553
3554@cindex completion of Python commands
3555@defun Command.complete (text, word)
3556This method is called by @value{GDBN} when the user attempts
3557completion on this command. All forms of completion are handled by
3558this method, that is, the @key{TAB} and @key{M-?} key bindings
3559(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3560complete}).
3561
697aa1b7
EZ
3562The arguments @var{text} and @var{word} are both strings; @var{text}
3563holds the complete command line up to the cursor's location, while
329baa95
DE
3564@var{word} holds the last word of the command line; this is computed
3565using a word-breaking heuristic.
3566
3567The @code{complete} method can return several values:
3568@itemize @bullet
3569@item
3570If the return value is a sequence, the contents of the sequence are
3571used as the completions. It is up to @code{complete} to ensure that the
3572contents actually do complete the word. A zero-length sequence is
3573allowed, it means that there were no completions available. Only
3574string elements of the sequence are used; other elements in the
3575sequence are ignored.
3576
3577@item
3578If the return value is one of the @samp{COMPLETE_} constants defined
3579below, then the corresponding @value{GDBN}-internal completion
3580function is invoked, and its result is used.
3581
3582@item
3583All other results are treated as though there were no available
3584completions.
3585@end itemize
3586@end defun
3587
3588When a new command is registered, it must be declared as a member of
3589some general class of commands. This is used to classify top-level
3590commands in the on-line help system; note that prefix commands are not
3591listed under their own category but rather that of their top-level
3592command. The available classifications are represented by constants
3593defined in the @code{gdb} module:
3594
3595@table @code
3596@findex COMMAND_NONE
3597@findex gdb.COMMAND_NONE
3598@item gdb.COMMAND_NONE
3599The command does not belong to any particular class. A command in
3600this category will not be displayed in any of the help categories.
3601
3602@findex COMMAND_RUNNING
3603@findex gdb.COMMAND_RUNNING
3604@item gdb.COMMAND_RUNNING
3605The command is related to running the inferior. For example,
3606@code{start}, @code{step}, and @code{continue} are in this category.
3607Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3608commands in this category.
3609
3610@findex COMMAND_DATA
3611@findex gdb.COMMAND_DATA
3612@item gdb.COMMAND_DATA
3613The command is related to data or variables. For example,
3614@code{call}, @code{find}, and @code{print} are in this category. Type
3615@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3616in this category.
3617
3618@findex COMMAND_STACK
3619@findex gdb.COMMAND_STACK
3620@item gdb.COMMAND_STACK
3621The command has to do with manipulation of the stack. For example,
3622@code{backtrace}, @code{frame}, and @code{return} are in this
3623category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3624list of commands in this category.
3625
3626@findex COMMAND_FILES
3627@findex gdb.COMMAND_FILES
3628@item gdb.COMMAND_FILES
3629This class is used for file-related commands. For example,
3630@code{file}, @code{list} and @code{section} are in this category.
3631Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3632commands in this category.
3633
3634@findex COMMAND_SUPPORT
3635@findex gdb.COMMAND_SUPPORT
3636@item gdb.COMMAND_SUPPORT
3637This should be used for ``support facilities'', generally meaning
3638things that are useful to the user when interacting with @value{GDBN},
3639but not related to the state of the inferior. For example,
3640@code{help}, @code{make}, and @code{shell} are in this category. Type
3641@kbd{help support} at the @value{GDBN} prompt to see a list of
3642commands in this category.
3643
3644@findex COMMAND_STATUS
3645@findex gdb.COMMAND_STATUS
3646@item gdb.COMMAND_STATUS
3647The command is an @samp{info}-related command, that is, related to the
3648state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3649and @code{show} are in this category. Type @kbd{help status} at the
3650@value{GDBN} prompt to see a list of commands in this category.
3651
3652@findex COMMAND_BREAKPOINTS
3653@findex gdb.COMMAND_BREAKPOINTS
3654@item gdb.COMMAND_BREAKPOINTS
3655The command has to do with breakpoints. For example, @code{break},
3656@code{clear}, and @code{delete} are in this category. Type @kbd{help
3657breakpoints} at the @value{GDBN} prompt to see a list of commands in
3658this category.
3659
3660@findex COMMAND_TRACEPOINTS
3661@findex gdb.COMMAND_TRACEPOINTS
3662@item gdb.COMMAND_TRACEPOINTS
3663The command has to do with tracepoints. For example, @code{trace},
3664@code{actions}, and @code{tfind} are in this category. Type
3665@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3666commands in this category.
3667
3668@findex COMMAND_USER
3669@findex gdb.COMMAND_USER
3670@item gdb.COMMAND_USER
3671The command is a general purpose command for the user, and typically
3672does not fit in one of the other categories.
3673Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3674a list of commands in this category, as well as the list of gdb macros
3675(@pxref{Sequences}).
3676
3677@findex COMMAND_OBSCURE
3678@findex gdb.COMMAND_OBSCURE
3679@item gdb.COMMAND_OBSCURE
3680The command is only used in unusual circumstances, or is not of
3681general interest to users. For example, @code{checkpoint},
3682@code{fork}, and @code{stop} are in this category. Type @kbd{help
3683obscure} at the @value{GDBN} prompt to see a list of commands in this
3684category.
3685
3686@findex COMMAND_MAINTENANCE
3687@findex gdb.COMMAND_MAINTENANCE
3688@item gdb.COMMAND_MAINTENANCE
3689The command is only useful to @value{GDBN} maintainers. The
3690@code{maintenance} and @code{flushregs} commands are in this category.
3691Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3692commands in this category.
3693@end table
3694
3695A new command can use a predefined completion function, either by
3696specifying it via an argument at initialization, or by returning it
3697from the @code{complete} method. These predefined completion
3698constants are all defined in the @code{gdb} module:
3699
b3ce5e5f
DE
3700@vtable @code
3701@vindex COMPLETE_NONE
329baa95
DE
3702@item gdb.COMPLETE_NONE
3703This constant means that no completion should be done.
3704
b3ce5e5f 3705@vindex COMPLETE_FILENAME
329baa95
DE
3706@item gdb.COMPLETE_FILENAME
3707This constant means that filename completion should be performed.
3708
b3ce5e5f 3709@vindex COMPLETE_LOCATION
329baa95
DE
3710@item gdb.COMPLETE_LOCATION
3711This constant means that location completion should be done.
3712@xref{Specify Location}.
3713
b3ce5e5f 3714@vindex COMPLETE_COMMAND
329baa95
DE
3715@item gdb.COMPLETE_COMMAND
3716This constant means that completion should examine @value{GDBN}
3717command names.
3718
b3ce5e5f 3719@vindex COMPLETE_SYMBOL
329baa95
DE
3720@item gdb.COMPLETE_SYMBOL
3721This constant means that completion should be done using symbol names
3722as the source.
3723
b3ce5e5f 3724@vindex COMPLETE_EXPRESSION
329baa95
DE
3725@item gdb.COMPLETE_EXPRESSION
3726This constant means that completion should be done on expressions.
3727Often this means completing on symbol names, but some language
3728parsers also have support for completing on field names.
b3ce5e5f 3729@end vtable
329baa95
DE
3730
3731The following code snippet shows how a trivial CLI command can be
3732implemented in Python:
3733
3734@smallexample
3735class HelloWorld (gdb.Command):
3736 """Greet the whole world."""
3737
3738 def __init__ (self):
3739 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3740
3741 def invoke (self, arg, from_tty):
3742 print "Hello, World!"
3743
3744HelloWorld ()
3745@end smallexample
3746
3747The last line instantiates the class, and is necessary to trigger the
3748registration of the command with @value{GDBN}. Depending on how the
3749Python code is read into @value{GDBN}, you may need to import the
3750@code{gdb} module explicitly.
3751
3752@node Parameters In Python
3753@subsubsection Parameters In Python
3754
3755@cindex parameters in python
3756@cindex python parameters
3757@tindex gdb.Parameter
3758@tindex Parameter
3759You can implement new @value{GDBN} parameters using Python. A new
3760parameter is implemented as an instance of the @code{gdb.Parameter}
3761class.
3762
3763Parameters are exposed to the user via the @code{set} and
3764@code{show} commands. @xref{Help}.
3765
3766There are many parameters that already exist and can be set in
3767@value{GDBN}. Two examples are: @code{set follow fork} and
3768@code{set charset}. Setting these parameters influences certain
3769behavior in @value{GDBN}. Similarly, you can define parameters that
3770can be used to influence behavior in custom Python scripts and commands.
3771
3772@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3773The object initializer for @code{Parameter} registers the new
3774parameter with @value{GDBN}. This initializer is normally invoked
3775from the subclass' own @code{__init__} method.
3776
3777@var{name} is the name of the new parameter. If @var{name} consists
3778of multiple words, then the initial words are looked for as prefix
3779parameters. An example of this can be illustrated with the
3780@code{set print} set of parameters. If @var{name} is
3781@code{print foo}, then @code{print} will be searched as the prefix
3782parameter. In this case the parameter can subsequently be accessed in
3783@value{GDBN} as @code{set print foo}.
3784
3785If @var{name} consists of multiple words, and no prefix parameter group
3786can be found, an exception is raised.
3787
3788@var{command-class} should be one of the @samp{COMMAND_} constants
3789(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3790categorize the new parameter in the help system.
3791
3792@var{parameter-class} should be one of the @samp{PARAM_} constants
3793defined below. This argument tells @value{GDBN} the type of the new
3794parameter; this information is used for input validation and
3795completion.
3796
3797If @var{parameter-class} is @code{PARAM_ENUM}, then
3798@var{enum-sequence} must be a sequence of strings. These strings
3799represent the possible values for the parameter.
3800
3801If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3802of a fourth argument will cause an exception to be thrown.
3803
3804The help text for the new parameter is taken from the Python
3805documentation string for the parameter's class, if there is one. If
3806there is no documentation string, a default value is used.
3807@end defun
3808
3809@defvar Parameter.set_doc
3810If this attribute exists, and is a string, then its value is used as
3811the help text for this parameter's @code{set} command. The value is
3812examined when @code{Parameter.__init__} is invoked; subsequent changes
3813have no effect.
3814@end defvar
3815
3816@defvar Parameter.show_doc
3817If this attribute exists, and is a string, then its value is used as
3818the help text for this parameter's @code{show} command. The value is
3819examined when @code{Parameter.__init__} is invoked; subsequent changes
3820have no effect.
3821@end defvar
3822
3823@defvar Parameter.value
3824The @code{value} attribute holds the underlying value of the
3825parameter. It can be read and assigned to just as any other
3826attribute. @value{GDBN} does validation when assignments are made.
3827@end defvar
3828
984ee559
TT
3829There are two methods that may be implemented in any @code{Parameter}
3830class. These are:
329baa95
DE
3831
3832@defun Parameter.get_set_string (self)
984ee559
TT
3833If this method exists, @value{GDBN} will call it when a
3834@var{parameter}'s value has been changed via the @code{set} API (for
3835example, @kbd{set foo off}). The @code{value} attribute has already
3836been populated with the new value and may be used in output. This
3837method must return a string. If the returned string is not empty,
3838@value{GDBN} will present it to the user.
ae778caf
TT
3839
3840If this method raises the @code{gdb.GdbError} exception
3841(@pxref{Exception Handling}), then @value{GDBN} will print the
3842exception's string and the @code{set} command will fail. Note,
3843however, that the @code{value} attribute will not be reset in this
3844case. So, if your parameter must validate values, it should store the
3845old value internally and reset the exposed value, like so:
3846
3847@smallexample
3848class ExampleParam (gdb.Parameter):
3849 def __init__ (self, name):
3850 super (ExampleParam, self).__init__ (name,
3851 gdb.COMMAND_DATA,
3852 gdb.PARAM_BOOLEAN)
3853 self.value = True
3854 self.saved_value = True
3855 def validate(self):
3856 return False
3857 def get_set_string (self):
3858 if not self.validate():
3859 self.value = self.saved_value
3860 raise gdb.GdbError('Failed to validate')
3861 self.saved_value = self.value
3862@end smallexample
329baa95
DE
3863@end defun
3864
3865@defun Parameter.get_show_string (self, svalue)
3866@value{GDBN} will call this method when a @var{parameter}'s
3867@code{show} API has been invoked (for example, @kbd{show foo}). The
3868argument @code{svalue} receives the string representation of the
3869current value. This method must return a string.
3870@end defun
3871
3872When a new parameter is defined, its type must be specified. The
3873available types are represented by constants defined in the @code{gdb}
3874module:
3875
3876@table @code
3877@findex PARAM_BOOLEAN
3878@findex gdb.PARAM_BOOLEAN
3879@item gdb.PARAM_BOOLEAN
3880The value is a plain boolean. The Python boolean values, @code{True}
3881and @code{False} are the only valid values.
3882
3883@findex PARAM_AUTO_BOOLEAN
3884@findex gdb.PARAM_AUTO_BOOLEAN
3885@item gdb.PARAM_AUTO_BOOLEAN
3886The value has three possible states: true, false, and @samp{auto}. In
3887Python, true and false are represented using boolean constants, and
3888@samp{auto} is represented using @code{None}.
3889
3890@findex PARAM_UINTEGER
3891@findex gdb.PARAM_UINTEGER
3892@item gdb.PARAM_UINTEGER
3893The value is an unsigned integer. The value of 0 should be
3894interpreted to mean ``unlimited''.
3895
3896@findex PARAM_INTEGER
3897@findex gdb.PARAM_INTEGER
3898@item gdb.PARAM_INTEGER
3899The value is a signed integer. The value of 0 should be interpreted
3900to mean ``unlimited''.
3901
3902@findex PARAM_STRING
3903@findex gdb.PARAM_STRING
3904@item gdb.PARAM_STRING
3905The value is a string. When the user modifies the string, any escape
3906sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3907translated into corresponding characters and encoded into the current
3908host charset.
3909
3910@findex PARAM_STRING_NOESCAPE
3911@findex gdb.PARAM_STRING_NOESCAPE
3912@item gdb.PARAM_STRING_NOESCAPE
3913The value is a string. When the user modifies the string, escapes are
3914passed through untranslated.
3915
3916@findex PARAM_OPTIONAL_FILENAME
3917@findex gdb.PARAM_OPTIONAL_FILENAME
3918@item gdb.PARAM_OPTIONAL_FILENAME
3919The value is a either a filename (a string), or @code{None}.
3920
3921@findex PARAM_FILENAME
3922@findex gdb.PARAM_FILENAME
3923@item gdb.PARAM_FILENAME
3924The value is a filename. This is just like
3925@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3926
3927@findex PARAM_ZINTEGER
3928@findex gdb.PARAM_ZINTEGER
3929@item gdb.PARAM_ZINTEGER
3930The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3931is interpreted as itself.
3932
0489430a
TT
3933@findex PARAM_ZUINTEGER
3934@findex gdb.PARAM_ZUINTEGER
3935@item gdb.PARAM_ZUINTEGER
3936The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3937except 0 is interpreted as itself, and the value cannot be negative.
3938
3939@findex PARAM_ZUINTEGER_UNLIMITED
3940@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3941@item gdb.PARAM_ZUINTEGER_UNLIMITED
3942The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3943except the special value -1 should be interpreted to mean
3944``unlimited''. Other negative values are not allowed.
3945
329baa95
DE
3946@findex PARAM_ENUM
3947@findex gdb.PARAM_ENUM
3948@item gdb.PARAM_ENUM
3949The value is a string, which must be one of a collection string
3950constants provided when the parameter is created.
3951@end table
3952
3953@node Functions In Python
3954@subsubsection Writing new convenience functions
3955
3956@cindex writing convenience functions
3957@cindex convenience functions in python
3958@cindex python convenience functions
3959@tindex gdb.Function
3960@tindex Function
3961You can implement new convenience functions (@pxref{Convenience Vars})
3962in Python. A convenience function is an instance of a subclass of the
3963class @code{gdb.Function}.
3964
3965@defun Function.__init__ (name)
3966The initializer for @code{Function} registers the new function with
3967@value{GDBN}. The argument @var{name} is the name of the function,
3968a string. The function will be visible to the user as a convenience
3969variable of type @code{internal function}, whose name is the same as
3970the given @var{name}.
3971
3972The documentation for the new function is taken from the documentation
3973string for the new class.
3974@end defun
3975
3976@defun Function.invoke (@var{*args})
3977When a convenience function is evaluated, its arguments are converted
3978to instances of @code{gdb.Value}, and then the function's
3979@code{invoke} method is called. Note that @value{GDBN} does not
3980predetermine the arity of convenience functions. Instead, all
3981available arguments are passed to @code{invoke}, following the
3982standard Python calling convention. In particular, a convenience
3983function can have default values for parameters without ill effect.
3984
3985The return value of this method is used as its value in the enclosing
3986expression. If an ordinary Python value is returned, it is converted
3987to a @code{gdb.Value} following the usual rules.
3988@end defun
3989
3990The following code snippet shows how a trivial convenience function can
3991be implemented in Python:
3992
3993@smallexample
3994class Greet (gdb.Function):
3995 """Return string to greet someone.
3996Takes a name as argument."""
3997
3998 def __init__ (self):
3999 super (Greet, self).__init__ ("greet")
4000
4001 def invoke (self, name):
4002 return "Hello, %s!" % name.string ()
4003
4004Greet ()
4005@end smallexample
4006
4007The last line instantiates the class, and is necessary to trigger the
4008registration of the function with @value{GDBN}. Depending on how the
4009Python code is read into @value{GDBN}, you may need to import the
4010@code{gdb} module explicitly.
4011
4012Now you can use the function in an expression:
4013
4014@smallexample
4015(gdb) print $greet("Bob")
4016$1 = "Hello, Bob!"
4017@end smallexample
4018
4019@node Progspaces In Python
4020@subsubsection Program Spaces In Python
4021
4022@cindex progspaces in python
4023@tindex gdb.Progspace
4024@tindex Progspace
4025A program space, or @dfn{progspace}, represents a symbolic view
4026of an address space.
4027It consists of all of the objfiles of the program.
4028@xref{Objfiles In Python}.
4029@xref{Inferiors and Programs, program spaces}, for more details
4030about program spaces.
4031
4032The following progspace-related functions are available in the
4033@code{gdb} module:
4034
4035@findex gdb.current_progspace
4036@defun gdb.current_progspace ()
4037This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4038@xref{Inferiors and Programs}. This is identical to
4039@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4040included for historical compatibility.
329baa95
DE
4041@end defun
4042
4043@findex gdb.progspaces
4044@defun gdb.progspaces ()
4045Return a sequence of all the progspaces currently known to @value{GDBN}.
4046@end defun
4047
4048Each progspace is represented by an instance of the @code{gdb.Progspace}
4049class.
4050
4051@defvar Progspace.filename
4052The file name of the progspace as a string.
4053@end defvar
4054
4055@defvar Progspace.pretty_printers
4056The @code{pretty_printers} attribute is a list of functions. It is
4057used to look up pretty-printers. A @code{Value} is passed to each
4058function in order; if the function returns @code{None}, then the
4059search continues. Otherwise, the return value should be an object
4060which is used to format the value. @xref{Pretty Printing API}, for more
4061information.
4062@end defvar
4063
4064@defvar Progspace.type_printers
4065The @code{type_printers} attribute is a list of type printer objects.
4066@xref{Type Printing API}, for more information.
4067@end defvar
4068
4069@defvar Progspace.frame_filters
4070The @code{frame_filters} attribute is a dictionary of frame filter
4071objects. @xref{Frame Filter API}, for more information.
4072@end defvar
4073
8743a9cd
TT
4074A program space has the following methods:
4075
4076@findex Progspace.block_for_pc
4077@defun Progspace.block_for_pc (pc)
4078Return the innermost @code{gdb.Block} containing the given @var{pc}
4079value. If the block cannot be found for the @var{pc} value specified,
4080the function will return @code{None}.
4081@end defun
4082
4083@findex Progspace.find_pc_line
4084@defun Progspace.find_pc_line (pc)
4085Return the @code{gdb.Symtab_and_line} object corresponding to the
4086@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4087of @var{pc} is passed as an argument, then the @code{symtab} and
4088@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4089object will be @code{None} and 0 respectively.
4090@end defun
4091
4092@findex Progspace.is_valid
4093@defun Progspace.is_valid ()
4094Returns @code{True} if the @code{gdb.Progspace} object is valid,
4095@code{False} if not. A @code{gdb.Progspace} object can become invalid
4096if the program space file it refers to is not referenced by any
4097inferior. All other @code{gdb.Progspace} methods will throw an
4098exception if it is invalid at the time the method is called.
4099@end defun
4100
4101@findex Progspace.objfiles
4102@defun Progspace.objfiles ()
4103Return a sequence of all the objfiles referenced by this program
4104space. @xref{Objfiles In Python}.
4105@end defun
4106
4107@findex Progspace.solib_name
4108@defun Progspace.solib_name (address)
4109Return the name of the shared library holding the given @var{address}
4110as a string, or @code{None}.
4111@end defun
4112
02be9a71
DE
4113One may add arbitrary attributes to @code{gdb.Progspace} objects
4114in the usual Python way.
4115This is useful if, for example, one needs to do some extra record keeping
4116associated with the program space.
4117
4118In this contrived example, we want to perform some processing when
4119an objfile with a certain symbol is loaded, but we only want to do
4120this once because it is expensive. To achieve this we record the results
4121with the program space because we can't predict when the desired objfile
4122will be loaded.
4123
4124@smallexample
4125(gdb) python
4126def clear_objfiles_handler(event):
4127 event.progspace.expensive_computation = None
4128def expensive(symbol):
4129 """A mock routine to perform an "expensive" computation on symbol."""
4130 print "Computing the answer to the ultimate question ..."
4131 return 42
4132def new_objfile_handler(event):
4133 objfile = event.new_objfile
4134 progspace = objfile.progspace
4135 if not hasattr(progspace, 'expensive_computation') or \
4136 progspace.expensive_computation is None:
4137 # We use 'main' for the symbol to keep the example simple.
4138 # Note: There's no current way to constrain the lookup
4139 # to one objfile.
4140 symbol = gdb.lookup_global_symbol('main')
4141 if symbol is not None:
4142 progspace.expensive_computation = expensive(symbol)
4143gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4144gdb.events.new_objfile.connect(new_objfile_handler)
4145end
4146(gdb) file /tmp/hello
4147Reading symbols from /tmp/hello...done.
4148Computing the answer to the ultimate question ...
4149(gdb) python print gdb.current_progspace().expensive_computation
415042
4151(gdb) run
4152Starting program: /tmp/hello
4153Hello.
4154[Inferior 1 (process 4242) exited normally]
4155@end smallexample
4156
329baa95
DE
4157@node Objfiles In Python
4158@subsubsection Objfiles In Python
4159
4160@cindex objfiles in python
4161@tindex gdb.Objfile
4162@tindex Objfile
4163@value{GDBN} loads symbols for an inferior from various
4164symbol-containing files (@pxref{Files}). These include the primary
4165executable file, any shared libraries used by the inferior, and any
4166separate debug info files (@pxref{Separate Debug Files}).
4167@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4168
4169The following objfile-related functions are available in the
4170@code{gdb} module:
4171
4172@findex gdb.current_objfile
4173@defun gdb.current_objfile ()
4174When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4175sets the ``current objfile'' to the corresponding objfile. This
4176function returns the current objfile. If there is no current objfile,
4177this function returns @code{None}.
4178@end defun
4179
4180@findex gdb.objfiles
4181@defun gdb.objfiles ()
74d3fbbb
SM
4182Return a sequence of objfiles referenced by the current program space.
4183@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4184to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4185historical compatibility.
329baa95
DE
4186@end defun
4187
6dddd6a5
DE
4188@findex gdb.lookup_objfile
4189@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4190Look up @var{name}, a file name or build ID, in the list of objfiles
4191for the current program space (@pxref{Progspaces In Python}).
4192If the objfile is not found throw the Python @code{ValueError} exception.
4193
4194If @var{name} is a relative file name, then it will match any
4195source file name with the same trailing components. For example, if
4196@var{name} is @samp{gcc/expr.c}, then it will match source file
4197name of @file{/build/trunk/gcc/expr.c}, but not
4198@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4199
4200If @var{by_build_id} is provided and is @code{True} then @var{name}
4201is the build ID of the objfile. Otherwise, @var{name} is a file name.
4202This is supported only on some operating systems, notably those which use
4203the ELF format for binary files and the @sc{gnu} Binutils. For more details
4204about this feature, see the description of the @option{--build-id}
f5a476a7 4205command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4206The GNU Linker}.
4207@end defun
4208
329baa95
DE
4209Each objfile is represented by an instance of the @code{gdb.Objfile}
4210class.
4211
4212@defvar Objfile.filename
1b549396
DE
4213The file name of the objfile as a string, with symbolic links resolved.
4214
4215The value is @code{None} if the objfile is no longer valid.
4216See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4217@end defvar
4218
3a8b707a
DE
4219@defvar Objfile.username
4220The file name of the objfile as specified by the user as a string.
4221
4222The value is @code{None} if the objfile is no longer valid.
4223See the @code{gdb.Objfile.is_valid} method, described below.
4224@end defvar
4225
a0be3e44
DE
4226@defvar Objfile.owner
4227For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4228object that debug info is being provided for.
4229Otherwise this is @code{None}.
4230Separate debug info objfiles are added with the
4231@code{gdb.Objfile.add_separate_debug_file} method, described below.
4232@end defvar
4233
7c50a931
DE
4234@defvar Objfile.build_id
4235The build ID of the objfile as a string.
4236If the objfile does not have a build ID then the value is @code{None}.
4237
4238This is supported only on some operating systems, notably those which use
4239the ELF format for binary files and the @sc{gnu} Binutils. For more details
4240about this feature, see the description of the @option{--build-id}
f5a476a7 4241command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4242The GNU Linker}.
4243@end defvar
4244
d096d8c1
DE
4245@defvar Objfile.progspace
4246The containing program space of the objfile as a @code{gdb.Progspace}
4247object. @xref{Progspaces In Python}.
4248@end defvar
4249
329baa95
DE
4250@defvar Objfile.pretty_printers
4251The @code{pretty_printers} attribute is a list of functions. It is
4252used to look up pretty-printers. A @code{Value} is passed to each
4253function in order; if the function returns @code{None}, then the
4254search continues. Otherwise, the return value should be an object
4255which is used to format the value. @xref{Pretty Printing API}, for more
4256information.
4257@end defvar
4258
4259@defvar Objfile.type_printers
4260The @code{type_printers} attribute is a list of type printer objects.
4261@xref{Type Printing API}, for more information.
4262@end defvar
4263
4264@defvar Objfile.frame_filters
4265The @code{frame_filters} attribute is a dictionary of frame filter
4266objects. @xref{Frame Filter API}, for more information.
4267@end defvar
4268
02be9a71
DE
4269One may add arbitrary attributes to @code{gdb.Objfile} objects
4270in the usual Python way.
4271This is useful if, for example, one needs to do some extra record keeping
4272associated with the objfile.
4273
4274In this contrived example we record the time when @value{GDBN}
4275loaded the objfile.
4276
4277@smallexample
4278(gdb) python
4279import datetime
4280def new_objfile_handler(event):
4281 # Set the time_loaded attribute of the new objfile.
4282 event.new_objfile.time_loaded = datetime.datetime.today()
4283gdb.events.new_objfile.connect(new_objfile_handler)
4284end
4285(gdb) file ./hello
4286Reading symbols from ./hello...done.
4287(gdb) python print gdb.objfiles()[0].time_loaded
42882014-10-09 11:41:36.770345
4289@end smallexample
4290
329baa95
DE
4291A @code{gdb.Objfile} object has the following methods:
4292
4293@defun Objfile.is_valid ()
4294Returns @code{True} if the @code{gdb.Objfile} object is valid,
4295@code{False} if not. A @code{gdb.Objfile} object can become invalid
4296if the object file it refers to is not loaded in @value{GDBN} any
4297longer. All other @code{gdb.Objfile} methods will throw an exception
4298if it is invalid at the time the method is called.
4299@end defun
4300
86e4ed39
DE
4301@defun Objfile.add_separate_debug_file (file)
4302Add @var{file} to the list of files that @value{GDBN} will search for
4303debug information for the objfile.
4304This is useful when the debug info has been removed from the program
4305and stored in a separate file. @value{GDBN} has built-in support for
4306finding separate debug info files (@pxref{Separate Debug Files}), but if
4307the file doesn't live in one of the standard places that @value{GDBN}
4308searches then this function can be used to add a debug info file
4309from a different place.
4310@end defun
4311
329baa95 4312@node Frames In Python
849cba3b 4313@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4314
4315@cindex frames in python
4316When the debugged program stops, @value{GDBN} is able to analyze its call
4317stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4318represents a frame in the stack. A @code{gdb.Frame} object is only valid
4319while its corresponding frame exists in the inferior's stack. If you try
4320to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4321exception (@pxref{Exception Handling}).
4322
4323Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4324operator, like:
4325
4326@smallexample
4327(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4328True
4329@end smallexample
4330
4331The following frame-related functions are available in the @code{gdb} module:
4332
4333@findex gdb.selected_frame
4334@defun gdb.selected_frame ()
4335Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4336@end defun
4337
4338@findex gdb.newest_frame
4339@defun gdb.newest_frame ()
4340Return the newest frame object for the selected thread.
4341@end defun
4342
4343@defun gdb.frame_stop_reason_string (reason)
4344Return a string explaining the reason why @value{GDBN} stopped unwinding
4345frames, as expressed by the given @var{reason} code (an integer, see the
4346@code{unwind_stop_reason} method further down in this section).
4347@end defun
4348
e0f3fd7c
TT
4349@findex gdb.invalidate_cached_frames
4350@defun gdb.invalidate_cached_frames
4351@value{GDBN} internally keeps a cache of the frames that have been
4352unwound. This function invalidates this cache.
4353
4354This function should not generally be called by ordinary Python code.
4355It is documented for the sake of completeness.
4356@end defun
4357
329baa95
DE
4358A @code{gdb.Frame} object has the following methods:
4359
4360@defun Frame.is_valid ()
4361Returns true if the @code{gdb.Frame} object is valid, false if not.
4362A frame object can become invalid if the frame it refers to doesn't
4363exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4364an exception if it is invalid at the time the method is called.
4365@end defun
4366
4367@defun Frame.name ()
4368Returns the function name of the frame, or @code{None} if it can't be
4369obtained.
4370@end defun
4371
4372@defun Frame.architecture ()
4373Returns the @code{gdb.Architecture} object corresponding to the frame's
4374architecture. @xref{Architectures In Python}.
4375@end defun
4376
4377@defun Frame.type ()
4378Returns the type of the frame. The value can be one of:
4379@table @code
4380@item gdb.NORMAL_FRAME
4381An ordinary stack frame.
4382
4383@item gdb.DUMMY_FRAME
4384A fake stack frame that was created by @value{GDBN} when performing an
4385inferior function call.
4386
4387@item gdb.INLINE_FRAME
4388A frame representing an inlined function. The function was inlined
4389into a @code{gdb.NORMAL_FRAME} that is older than this one.
4390
4391@item gdb.TAILCALL_FRAME
4392A frame representing a tail call. @xref{Tail Call Frames}.
4393
4394@item gdb.SIGTRAMP_FRAME
4395A signal trampoline frame. This is the frame created by the OS when
4396it calls into a signal handler.
4397
4398@item gdb.ARCH_FRAME
4399A fake stack frame representing a cross-architecture call.
4400
4401@item gdb.SENTINEL_FRAME
4402This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4403newest frame.
4404@end table
4405@end defun
4406
4407@defun Frame.unwind_stop_reason ()
4408Return an integer representing the reason why it's not possible to find
4409more frames toward the outermost frame. Use
4410@code{gdb.frame_stop_reason_string} to convert the value returned by this
4411function to a string. The value can be one of:
4412
4413@table @code
4414@item gdb.FRAME_UNWIND_NO_REASON
4415No particular reason (older frames should be available).
4416
4417@item gdb.FRAME_UNWIND_NULL_ID
4418The previous frame's analyzer returns an invalid result. This is no
4419longer used by @value{GDBN}, and is kept only for backward
4420compatibility.
4421
4422@item gdb.FRAME_UNWIND_OUTERMOST
4423This frame is the outermost.
4424
4425@item gdb.FRAME_UNWIND_UNAVAILABLE
4426Cannot unwind further, because that would require knowing the
4427values of registers or memory that have not been collected.
4428
4429@item gdb.FRAME_UNWIND_INNER_ID
4430This frame ID looks like it ought to belong to a NEXT frame,
4431but we got it for a PREV frame. Normally, this is a sign of
4432unwinder failure. It could also indicate stack corruption.
4433
4434@item gdb.FRAME_UNWIND_SAME_ID
4435This frame has the same ID as the previous one. That means
4436that unwinding further would almost certainly give us another
4437frame with exactly the same ID, so break the chain. Normally,
4438this is a sign of unwinder failure. It could also indicate
4439stack corruption.
4440
4441@item gdb.FRAME_UNWIND_NO_SAVED_PC
4442The frame unwinder did not find any saved PC, but we needed
4443one to unwind further.
4444
53e8a631
AB
4445@item gdb.FRAME_UNWIND_MEMORY_ERROR
4446The frame unwinder caused an error while trying to access memory.
4447
329baa95
DE
4448@item gdb.FRAME_UNWIND_FIRST_ERROR
4449Any stop reason greater or equal to this value indicates some kind
4450of error. This special value facilitates writing code that tests
4451for errors in unwinding in a way that will work correctly even if
4452the list of the other values is modified in future @value{GDBN}
4453versions. Using it, you could write:
4454@smallexample
4455reason = gdb.selected_frame().unwind_stop_reason ()
4456reason_str = gdb.frame_stop_reason_string (reason)
4457if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4458 print "An error occured: %s" % reason_str
4459@end smallexample
4460@end table
4461
4462@end defun
4463
4464@defun Frame.pc ()
4465Returns the frame's resume address.
4466@end defun
4467
4468@defun Frame.block ()
60c0454d
TT
4469Return the frame's code block. @xref{Blocks In Python}. If the frame
4470does not have a block -- for example, if there is no debugging
4471information for the code in question -- then this will throw an
4472exception.
329baa95
DE
4473@end defun
4474
4475@defun Frame.function ()
4476Return the symbol for the function corresponding to this frame.
4477@xref{Symbols In Python}.
4478@end defun
4479
4480@defun Frame.older ()
4481Return the frame that called this frame.
4482@end defun
4483
4484@defun Frame.newer ()
4485Return the frame called by this frame.
4486@end defun
4487
4488@defun Frame.find_sal ()
4489Return the frame's symtab and line object.
4490@xref{Symbol Tables In Python}.
4491@end defun
4492
5f3b99cf
SS
4493@defun Frame.read_register (register)
4494Return the value of @var{register} in this frame. The @var{register}
4495argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4496Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4497does not exist.
4498@end defun
4499
329baa95
DE
4500@defun Frame.read_var (variable @r{[}, block@r{]})
4501Return the value of @var{variable} in this frame. If the optional
4502argument @var{block} is provided, search for the variable from that
4503block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4504determined by the frame's current program counter). The @var{variable}
4505argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4506@code{gdb.Block} object.
4507@end defun
4508
4509@defun Frame.select ()
4510Set this frame to be the selected frame. @xref{Stack, ,Examining the
4511Stack}.
4512@end defun
4513
4514@node Blocks In Python
849cba3b 4515@subsubsection Accessing blocks from Python
329baa95
DE
4516
4517@cindex blocks in python
4518@tindex gdb.Block
4519
4520In @value{GDBN}, symbols are stored in blocks. A block corresponds
4521roughly to a scope in the source code. Blocks are organized
4522hierarchically, and are represented individually in Python as a
4523@code{gdb.Block}. Blocks rely on debugging information being
4524available.
4525
4526A frame has a block. Please see @ref{Frames In Python}, for a more
4527in-depth discussion of frames.
4528
4529The outermost block is known as the @dfn{global block}. The global
4530block typically holds public global variables and functions.
4531
4532The block nested just inside the global block is the @dfn{static
4533block}. The static block typically holds file-scoped variables and
4534functions.
4535
4536@value{GDBN} provides a method to get a block's superblock, but there
4537is currently no way to examine the sub-blocks of a block, or to
4538iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4539Python}).
4540
4541Here is a short example that should help explain blocks:
4542
4543@smallexample
4544/* This is in the global block. */
4545int global;
4546
4547/* This is in the static block. */
4548static int file_scope;
4549
4550/* 'function' is in the global block, and 'argument' is
4551 in a block nested inside of 'function'. */
4552int function (int argument)
4553@{
4554 /* 'local' is in a block inside 'function'. It may or may
4555 not be in the same block as 'argument'. */
4556 int local;
4557
4558 @{
4559 /* 'inner' is in a block whose superblock is the one holding
4560 'local'. */
4561 int inner;
4562
4563 /* If this call is expanded by the compiler, you may see
4564 a nested block here whose function is 'inline_function'
4565 and whose superblock is the one holding 'inner'. */
4566 inline_function ();
4567 @}
4568@}
4569@end smallexample
4570
4571A @code{gdb.Block} is iterable. The iterator returns the symbols
4572(@pxref{Symbols In Python}) local to the block. Python programs
4573should not assume that a specific block object will always contain a
4574given symbol, since changes in @value{GDBN} features and
4575infrastructure may cause symbols move across blocks in a symbol
4576table.
4577
4578The following block-related functions are available in the @code{gdb}
4579module:
4580
4581@findex gdb.block_for_pc
4582@defun gdb.block_for_pc (pc)
4583Return the innermost @code{gdb.Block} containing the given @var{pc}
4584value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4585the function will return @code{None}. This is identical to
4586@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4587historical compatibility.
329baa95
DE
4588@end defun
4589
4590A @code{gdb.Block} object has the following methods:
4591
4592@defun Block.is_valid ()
4593Returns @code{True} if the @code{gdb.Block} object is valid,
4594@code{False} if not. A block object can become invalid if the block it
4595refers to doesn't exist anymore in the inferior. All other
4596@code{gdb.Block} methods will throw an exception if it is invalid at
4597the time the method is called. The block's validity is also checked
4598during iteration over symbols of the block.
4599@end defun
4600
4601A @code{gdb.Block} object has the following attributes:
4602
4603@defvar Block.start
4604The start address of the block. This attribute is not writable.
4605@end defvar
4606
4607@defvar Block.end
22eb9e92
TT
4608One past the last address that appears in the block. This attribute
4609is not writable.
329baa95
DE
4610@end defvar
4611
4612@defvar Block.function
4613The name of the block represented as a @code{gdb.Symbol}. If the
4614block is not named, then this attribute holds @code{None}. This
4615attribute is not writable.
4616
4617For ordinary function blocks, the superblock is the static block.
4618However, you should note that it is possible for a function block to
4619have a superblock that is not the static block -- for instance this
4620happens for an inlined function.
4621@end defvar
4622
4623@defvar Block.superblock
4624The block containing this block. If this parent block does not exist,
4625this attribute holds @code{None}. This attribute is not writable.
4626@end defvar
4627
4628@defvar Block.global_block
4629The global block associated with this block. This attribute is not
4630writable.
4631@end defvar
4632
4633@defvar Block.static_block
4634The static block associated with this block. This attribute is not
4635writable.
4636@end defvar
4637
4638@defvar Block.is_global
4639@code{True} if the @code{gdb.Block} object is a global block,
4640@code{False} if not. This attribute is not
4641writable.
4642@end defvar
4643
4644@defvar Block.is_static
4645@code{True} if the @code{gdb.Block} object is a static block,
4646@code{False} if not. This attribute is not writable.
4647@end defvar
4648
4649@node Symbols In Python
849cba3b 4650@subsubsection Python representation of Symbols
329baa95
DE
4651
4652@cindex symbols in python
4653@tindex gdb.Symbol
4654
4655@value{GDBN} represents every variable, function and type as an
4656entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4657Similarly, Python represents these symbols in @value{GDBN} with the
4658@code{gdb.Symbol} object.
4659
4660The following symbol-related functions are available in the @code{gdb}
4661module:
4662
4663@findex gdb.lookup_symbol
4664@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4665This function searches for a symbol by name. The search scope can be
4666restricted to the parameters defined in the optional domain and block
4667arguments.
4668
4669@var{name} is the name of the symbol. It must be a string. The
4670optional @var{block} argument restricts the search to symbols visible
4671in that @var{block}. The @var{block} argument must be a
4672@code{gdb.Block} object. If omitted, the block for the current frame
4673is used. The optional @var{domain} argument restricts
4674the search to the domain type. The @var{domain} argument must be a
4675domain constant defined in the @code{gdb} module and described later
4676in this chapter.
4677
4678The result is a tuple of two elements.
4679The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4680is not found.
4681If the symbol is found, the second element is @code{True} if the symbol
4682is a field of a method's object (e.g., @code{this} in C@t{++}),
4683otherwise it is @code{False}.
4684If the symbol is not found, the second element is @code{False}.
4685@end defun
4686
4687@findex gdb.lookup_global_symbol
4688@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4689This function searches for a global symbol by name.
4690The search scope can be restricted to by the domain argument.
4691
4692@var{name} is the name of the symbol. It must be a string.
4693The optional @var{domain} argument restricts the search to the domain type.
4694The @var{domain} argument must be a domain constant defined in the @code{gdb}
4695module and described later in this chapter.
4696
4697The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4698is not found.
4699@end defun
4700
4701A @code{gdb.Symbol} object has the following attributes:
4702
4703@defvar Symbol.type
4704The type of the symbol or @code{None} if no type is recorded.
4705This attribute is represented as a @code{gdb.Type} object.
4706@xref{Types In Python}. This attribute is not writable.
4707@end defvar
4708
4709@defvar Symbol.symtab
4710The symbol table in which the symbol appears. This attribute is
4711represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4712Python}. This attribute is not writable.
4713@end defvar
4714
4715@defvar Symbol.line
4716The line number in the source code at which the symbol was defined.
4717This is an integer.
4718@end defvar
4719
4720@defvar Symbol.name
4721The name of the symbol as a string. This attribute is not writable.
4722@end defvar
4723
4724@defvar Symbol.linkage_name
4725The name of the symbol, as used by the linker (i.e., may be mangled).
4726This attribute is not writable.
4727@end defvar
4728
4729@defvar Symbol.print_name
4730The name of the symbol in a form suitable for output. This is either
4731@code{name} or @code{linkage_name}, depending on whether the user
4732asked @value{GDBN} to display demangled or mangled names.
4733@end defvar
4734
4735@defvar Symbol.addr_class
4736The address class of the symbol. This classifies how to find the value
4737of a symbol. Each address class is a constant defined in the
4738@code{gdb} module and described later in this chapter.
4739@end defvar
4740
4741@defvar Symbol.needs_frame
4742This is @code{True} if evaluating this symbol's value requires a frame
4743(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4744local variables will require a frame, but other symbols will not.
4745@end defvar
4746
4747@defvar Symbol.is_argument
4748@code{True} if the symbol is an argument of a function.
4749@end defvar
4750
4751@defvar Symbol.is_constant
4752@code{True} if the symbol is a constant.
4753@end defvar
4754
4755@defvar Symbol.is_function
4756@code{True} if the symbol is a function or a method.
4757@end defvar
4758
4759@defvar Symbol.is_variable
4760@code{True} if the symbol is a variable.
4761@end defvar
4762
4763A @code{gdb.Symbol} object has the following methods:
4764
4765@defun Symbol.is_valid ()
4766Returns @code{True} if the @code{gdb.Symbol} object is valid,
4767@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4768the symbol it refers to does not exist in @value{GDBN} any longer.
4769All other @code{gdb.Symbol} methods will throw an exception if it is
4770invalid at the time the method is called.
4771@end defun
4772
4773@defun Symbol.value (@r{[}frame@r{]})
4774Compute the value of the symbol, as a @code{gdb.Value}. For
4775functions, this computes the address of the function, cast to the
4776appropriate type. If the symbol requires a frame in order to compute
4777its value, then @var{frame} must be given. If @var{frame} is not
4778given, or if @var{frame} is invalid, then this method will throw an
4779exception.
4780@end defun
4781
4782The available domain categories in @code{gdb.Symbol} are represented
4783as constants in the @code{gdb} module:
4784
b3ce5e5f
DE
4785@vtable @code
4786@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4787@item gdb.SYMBOL_UNDEF_DOMAIN
4788This is used when a domain has not been discovered or none of the
4789following domains apply. This usually indicates an error either
4790in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4791
4792@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4793@item gdb.SYMBOL_VAR_DOMAIN
4794This domain contains variables, function names, typedef names and enum
4795type values.
b3ce5e5f
DE
4796
4797@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4798@item gdb.SYMBOL_STRUCT_DOMAIN
4799This domain holds struct, union and enum type names.
b3ce5e5f
DE
4800
4801@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4802@item gdb.SYMBOL_LABEL_DOMAIN
4803This domain contains names of labels (for gotos).
b3ce5e5f 4804
51e78fc5
TT
4805@vindex SYMBOL_MODULE_DOMAIN
4806@item gdb.SYMBOL_MODULE_DOMAIN
4807This domain contains names of Fortran module types.
4808
4809@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4810@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4811This domain contains names of Fortran common blocks.
b3ce5e5f 4812@end vtable
329baa95
DE
4813
4814The available address class categories in @code{gdb.Symbol} are represented
4815as constants in the @code{gdb} module:
4816
b3ce5e5f
DE
4817@vtable @code
4818@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4819@item gdb.SYMBOL_LOC_UNDEF
4820If this is returned by address class, it indicates an error either in
4821the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4822
4823@vindex SYMBOL_LOC_CONST
329baa95
DE
4824@item gdb.SYMBOL_LOC_CONST
4825Value is constant int.
b3ce5e5f
DE
4826
4827@vindex SYMBOL_LOC_STATIC
329baa95
DE
4828@item gdb.SYMBOL_LOC_STATIC
4829Value is at a fixed address.
b3ce5e5f
DE
4830
4831@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4832@item gdb.SYMBOL_LOC_REGISTER
4833Value is in a register.
b3ce5e5f
DE
4834
4835@vindex SYMBOL_LOC_ARG
329baa95
DE
4836@item gdb.SYMBOL_LOC_ARG
4837Value is an argument. This value is at the offset stored within the
4838symbol inside the frame's argument list.
b3ce5e5f
DE
4839
4840@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4841@item gdb.SYMBOL_LOC_REF_ARG
4842Value address is stored in the frame's argument list. Just like
4843@code{LOC_ARG} except that the value's address is stored at the
4844offset, not the value itself.
b3ce5e5f
DE
4845
4846@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4847@item gdb.SYMBOL_LOC_REGPARM_ADDR
4848Value is a specified register. Just like @code{LOC_REGISTER} except
4849the register holds the address of the argument instead of the argument
4850itself.
b3ce5e5f
DE
4851
4852@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4853@item gdb.SYMBOL_LOC_LOCAL
4854Value is a local variable.
b3ce5e5f
DE
4855
4856@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4857@item gdb.SYMBOL_LOC_TYPEDEF
4858Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4859have this class.
b3ce5e5f
DE
4860
4861@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4862@item gdb.SYMBOL_LOC_BLOCK
4863Value is a block.
b3ce5e5f
DE
4864
4865@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4866@item gdb.SYMBOL_LOC_CONST_BYTES
4867Value is a byte-sequence.
b3ce5e5f
DE
4868
4869@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4870@item gdb.SYMBOL_LOC_UNRESOLVED
4871Value is at a fixed address, but the address of the variable has to be
4872determined from the minimal symbol table whenever the variable is
4873referenced.
b3ce5e5f
DE
4874
4875@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4876@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4877The value does not actually exist in the program.
b3ce5e5f
DE
4878
4879@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4880@item gdb.SYMBOL_LOC_COMPUTED
4881The value's address is a computed location.
51e78fc5
TT
4882
4883@vindex SYMBOL_LOC_COMPUTED
4884@item gdb.SYMBOL_LOC_COMPUTED
4885The value's address is a symbol. This is only used for Fortran common
4886blocks.
b3ce5e5f 4887@end vtable
329baa95
DE
4888
4889@node Symbol Tables In Python
849cba3b 4890@subsubsection Symbol table representation in Python
329baa95
DE
4891
4892@cindex symbol tables in python
4893@tindex gdb.Symtab
4894@tindex gdb.Symtab_and_line
4895
4896Access to symbol table data maintained by @value{GDBN} on the inferior
4897is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4898@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4899from the @code{find_sal} method in @code{gdb.Frame} object.
4900@xref{Frames In Python}.
4901
4902For more information on @value{GDBN}'s symbol table management, see
4903@ref{Symbols, ,Examining the Symbol Table}, for more information.
4904
4905A @code{gdb.Symtab_and_line} object has the following attributes:
4906
4907@defvar Symtab_and_line.symtab
4908The symbol table object (@code{gdb.Symtab}) for this frame.
4909This attribute is not writable.
4910@end defvar
4911
4912@defvar Symtab_and_line.pc
4913Indicates the start of the address range occupied by code for the
4914current source line. This attribute is not writable.
4915@end defvar
4916
4917@defvar Symtab_and_line.last
4918Indicates the end of the address range occupied by code for the current
4919source line. This attribute is not writable.
4920@end defvar
4921
4922@defvar Symtab_and_line.line
4923Indicates the current line number for this object. This
4924attribute is not writable.
4925@end defvar
4926
4927A @code{gdb.Symtab_and_line} object has the following methods:
4928
4929@defun Symtab_and_line.is_valid ()
4930Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4931@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4932invalid if the Symbol table and line object it refers to does not
4933exist in @value{GDBN} any longer. All other
4934@code{gdb.Symtab_and_line} methods will throw an exception if it is
4935invalid at the time the method is called.
4936@end defun
4937
4938A @code{gdb.Symtab} object has the following attributes:
4939
4940@defvar Symtab.filename
4941The symbol table's source filename. This attribute is not writable.
4942@end defvar
4943
4944@defvar Symtab.objfile
4945The symbol table's backing object file. @xref{Objfiles In Python}.
4946This attribute is not writable.
4947@end defvar
4948
2b4fd423
DE
4949@defvar Symtab.producer
4950The name and possibly version number of the program that
4951compiled the code in the symbol table.
4952The contents of this string is up to the compiler.
4953If no producer information is available then @code{None} is returned.
4954This attribute is not writable.
4955@end defvar
4956
329baa95
DE
4957A @code{gdb.Symtab} object has the following methods:
4958
4959@defun Symtab.is_valid ()
4960Returns @code{True} if the @code{gdb.Symtab} object is valid,
4961@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4962the symbol table it refers to does not exist in @value{GDBN} any
4963longer. All other @code{gdb.Symtab} methods will throw an exception
4964if it is invalid at the time the method is called.
4965@end defun
4966
4967@defun Symtab.fullname ()
4968Return the symbol table's source absolute file name.
4969@end defun
4970
4971@defun Symtab.global_block ()
4972Return the global block of the underlying symbol table.
4973@xref{Blocks In Python}.
4974@end defun
4975
4976@defun Symtab.static_block ()
4977Return the static block of the underlying symbol table.
4978@xref{Blocks In Python}.
4979@end defun
4980
4981@defun Symtab.linetable ()
4982Return the line table associated with the symbol table.
4983@xref{Line Tables In Python}.
4984@end defun
4985
4986@node Line Tables In Python
4987@subsubsection Manipulating line tables using Python
4988
4989@cindex line tables in python
4990@tindex gdb.LineTable
4991
4992Python code can request and inspect line table information from a
4993symbol table that is loaded in @value{GDBN}. A line table is a
4994mapping of source lines to their executable locations in memory. To
4995acquire the line table information for a particular symbol table, use
4996the @code{linetable} function (@pxref{Symbol Tables In Python}).
4997
4998A @code{gdb.LineTable} is iterable. The iterator returns
4999@code{LineTableEntry} objects that correspond to the source line and
5000address for each line table entry. @code{LineTableEntry} objects have
5001the following attributes:
5002
5003@defvar LineTableEntry.line
5004The source line number for this line table entry. This number
5005corresponds to the actual line of source. This attribute is not
5006writable.
5007@end defvar
5008
5009@defvar LineTableEntry.pc
5010The address that is associated with the line table entry where the
5011executable code for that source line resides in memory. This
5012attribute is not writable.
5013@end defvar
5014
5015As there can be multiple addresses for a single source line, you may
5016receive multiple @code{LineTableEntry} objects with matching
5017@code{line} attributes, but with different @code{pc} attributes. The
5018iterator is sorted in ascending @code{pc} order. Here is a small
5019example illustrating iterating over a line table.
5020
5021@smallexample
5022symtab = gdb.selected_frame().find_sal().symtab
5023linetable = symtab.linetable()
5024for line in linetable:
5025 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5026@end smallexample
5027
5028This will have the following output:
5029
5030@smallexample
5031Line: 33 Address: 0x4005c8L
5032Line: 37 Address: 0x4005caL
5033Line: 39 Address: 0x4005d2L
5034Line: 40 Address: 0x4005f8L
5035Line: 42 Address: 0x4005ffL
5036Line: 44 Address: 0x400608L
5037Line: 42 Address: 0x40060cL
5038Line: 45 Address: 0x400615L
5039@end smallexample
5040
5041In addition to being able to iterate over a @code{LineTable}, it also
5042has the following direct access methods:
5043
5044@defun LineTable.line (line)
5045Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5046entries in the line table for the given @var{line}, which specifies
5047the source code line. If there are no entries for that source code
329baa95
DE
5048@var{line}, the Python @code{None} is returned.
5049@end defun
5050
5051@defun LineTable.has_line (line)
5052Return a Python @code{Boolean} indicating whether there is an entry in
5053the line table for this source line. Return @code{True} if an entry
5054is found, or @code{False} if not.
5055@end defun
5056
5057@defun LineTable.source_lines ()
5058Return a Python @code{List} of the source line numbers in the symbol
5059table. Only lines with executable code locations are returned. The
5060contents of the @code{List} will just be the source line entries
5061represented as Python @code{Long} values.
5062@end defun
5063
5064@node Breakpoints In Python
5065@subsubsection Manipulating breakpoints using Python
5066
5067@cindex breakpoints in python
5068@tindex gdb.Breakpoint
5069
5070Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5071class.
5072
0b982d68
SM
5073A breakpoint can be created using one of the two forms of the
5074@code{gdb.Breakpoint} constructor. The first one accepts a string
5075like one would pass to the @code{break}
5076(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5077(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5078create both breakpoints and watchpoints. The second accepts separate Python
5079arguments similar to @ref{Explicit Locations}, and can only be used to create
5080breakpoints.
5081
b89641ba 5082@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5083Create a new breakpoint according to @var{spec}, which is a string naming the
5084location of a breakpoint, or an expression that defines a watchpoint. The
5085string should describe a location in a format recognized by the @code{break}
5086command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5087watchpoint, by the @code{watch} command
5088(@pxref{Set Watchpoints, , Setting Watchpoints}).
5089
5090The optional @var{type} argument specifies the type of the breakpoint to create,
5091as defined below.
5092
5093The optional @var{wp_class} argument defines the class of watchpoint to create,
5094if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5095defaults to @code{gdb.WP_WRITE}.
5096
5097The optional @var{internal} argument allows the breakpoint to become invisible
5098to the user. The breakpoint will neither be reported when created, nor will it
5099be listed in the output from @code{info breakpoints} (but will be listed with
5100the @code{maint info breakpoints} command).
5101
5102The optional @var{temporary} argument makes the breakpoint a temporary
5103breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5104further access to the Python breakpoint after it has been hit will result in a
5105runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5106
5107The optional @var{qualified} argument is a boolean that allows interpreting
5108the function passed in @code{spec} as a fully-qualified name. It is equivalent
5109to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5110@ref{Explicit Locations}).
5111
0b982d68
SM
5112@end defun
5113
b89641ba 5114@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5115This second form of creating a new breakpoint specifies the explicit
5116location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5117be created in the specified source file @var{source}, at the specified
5118@var{function}, @var{label} and @var{line}.
5119
b89641ba
SM
5120@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5121explained previously.
329baa95
DE
5122@end defun
5123
cda75e70
TT
5124The available types are represented by constants defined in the @code{gdb}
5125module:
5126
5127@vtable @code
5128@vindex BP_BREAKPOINT
5129@item gdb.BP_BREAKPOINT
5130Normal code breakpoint.
5131
5132@vindex BP_WATCHPOINT
5133@item gdb.BP_WATCHPOINT
5134Watchpoint breakpoint.
5135
5136@vindex BP_HARDWARE_WATCHPOINT
5137@item gdb.BP_HARDWARE_WATCHPOINT
5138Hardware assisted watchpoint.
5139
5140@vindex BP_READ_WATCHPOINT
5141@item gdb.BP_READ_WATCHPOINT
5142Hardware assisted read watchpoint.
5143
5144@vindex BP_ACCESS_WATCHPOINT
5145@item gdb.BP_ACCESS_WATCHPOINT
5146Hardware assisted access watchpoint.
5147@end vtable
5148
5149The available watchpoint types represented by constants are defined in the
5150@code{gdb} module:
5151
5152@vtable @code
5153@vindex WP_READ
5154@item gdb.WP_READ
5155Read only watchpoint.
5156
5157@vindex WP_WRITE
5158@item gdb.WP_WRITE
5159Write only watchpoint.
5160
5161@vindex WP_ACCESS
5162@item gdb.WP_ACCESS
5163Read/Write watchpoint.
5164@end vtable
5165
329baa95
DE
5166@defun Breakpoint.stop (self)
5167The @code{gdb.Breakpoint} class can be sub-classed and, in
5168particular, you may choose to implement the @code{stop} method.
5169If this method is defined in a sub-class of @code{gdb.Breakpoint},
5170it will be called when the inferior reaches any location of a
5171breakpoint which instantiates that sub-class. If the method returns
5172@code{True}, the inferior will be stopped at the location of the
5173breakpoint, otherwise the inferior will continue.
5174
5175If there are multiple breakpoints at the same location with a
5176@code{stop} method, each one will be called regardless of the
5177return status of the previous. This ensures that all @code{stop}
5178methods have a chance to execute at that location. In this scenario
5179if one of the methods returns @code{True} but the others return
5180@code{False}, the inferior will still be stopped.
5181
5182You should not alter the execution state of the inferior (i.e.@:, step,
5183next, etc.), alter the current frame context (i.e.@:, change the current
5184active frame), or alter, add or delete any breakpoint. As a general
5185rule, you should not alter any data within @value{GDBN} or the inferior
5186at this time.
5187
5188Example @code{stop} implementation:
5189
5190@smallexample
5191class MyBreakpoint (gdb.Breakpoint):
5192 def stop (self):
5193 inf_val = gdb.parse_and_eval("foo")
5194 if inf_val == 3:
5195 return True
5196 return False
5197@end smallexample
5198@end defun
5199
329baa95
DE
5200@defun Breakpoint.is_valid ()
5201Return @code{True} if this @code{Breakpoint} object is valid,
5202@code{False} otherwise. A @code{Breakpoint} object can become invalid
5203if the user deletes the breakpoint. In this case, the object still
5204exists, but the underlying breakpoint does not. In the cases of
5205watchpoint scope, the watchpoint remains valid even if execution of the
5206inferior leaves the scope of that watchpoint.
5207@end defun
5208
fab3a15d 5209@defun Breakpoint.delete ()
329baa95
DE
5210Permanently deletes the @value{GDBN} breakpoint. This also
5211invalidates the Python @code{Breakpoint} object. Any further access
5212to this object's attributes or methods will raise an error.
5213@end defun
5214
5215@defvar Breakpoint.enabled
5216This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5217@code{False} otherwise. This attribute is writable. You can use it to enable
5218or disable the breakpoint.
329baa95
DE
5219@end defvar
5220
5221@defvar Breakpoint.silent
5222This attribute is @code{True} if the breakpoint is silent, and
5223@code{False} otherwise. This attribute is writable.
5224
5225Note that a breakpoint can also be silent if it has commands and the
5226first command is @code{silent}. This is not reported by the
5227@code{silent} attribute.
5228@end defvar
5229
93daf339
TT
5230@defvar Breakpoint.pending
5231This attribute is @code{True} if the breakpoint is pending, and
5232@code{False} otherwise. @xref{Set Breaks}. This attribute is
5233read-only.
5234@end defvar
5235
22a02324 5236@anchor{python_breakpoint_thread}
329baa95 5237@defvar Breakpoint.thread
5d5658a1
PA
5238If the breakpoint is thread-specific, this attribute holds the
5239thread's global id. If the breakpoint is not thread-specific, this
5240attribute is @code{None}. This attribute is writable.
329baa95
DE
5241@end defvar
5242
5243@defvar Breakpoint.task
5244If the breakpoint is Ada task-specific, this attribute holds the Ada task
5245id. If the breakpoint is not task-specific (or the underlying
5246language is not Ada), this attribute is @code{None}. This attribute
5247is writable.
5248@end defvar
5249
5250@defvar Breakpoint.ignore_count
5251This attribute holds the ignore count for the breakpoint, an integer.
5252This attribute is writable.
5253@end defvar
5254
5255@defvar Breakpoint.number
5256This attribute holds the breakpoint's number --- the identifier used by
5257the user to manipulate the breakpoint. This attribute is not writable.
5258@end defvar
5259
5260@defvar Breakpoint.type
5261This attribute holds the breakpoint's type --- the identifier used to
5262determine the actual breakpoint type or use-case. This attribute is not
5263writable.
5264@end defvar
5265
5266@defvar Breakpoint.visible
5267This attribute tells whether the breakpoint is visible to the user
5268when set, or when the @samp{info breakpoints} command is run. This
5269attribute is not writable.
5270@end defvar
5271
5272@defvar Breakpoint.temporary
5273This attribute indicates whether the breakpoint was created as a
5274temporary breakpoint. Temporary breakpoints are automatically deleted
5275after that breakpoint has been hit. Access to this attribute, and all
5276other attributes and functions other than the @code{is_valid}
5277function, will result in an error after the breakpoint has been hit
5278(as it has been automatically deleted). This attribute is not
5279writable.
5280@end defvar
5281
329baa95
DE
5282@defvar Breakpoint.hit_count
5283This attribute holds the hit count for the breakpoint, an integer.
5284This attribute is writable, but currently it can only be set to zero.
5285@end defvar
5286
5287@defvar Breakpoint.location
5288This attribute holds the location of the breakpoint, as specified by
5289the user. It is a string. If the breakpoint does not have a location
5290(that is, it is a watchpoint) the attribute's value is @code{None}. This
5291attribute is not writable.
5292@end defvar
5293
5294@defvar Breakpoint.expression
5295This attribute holds a breakpoint expression, as specified by
5296the user. It is a string. If the breakpoint does not have an
5297expression (the breakpoint is not a watchpoint) the attribute's value
5298is @code{None}. This attribute is not writable.
5299@end defvar
5300
5301@defvar Breakpoint.condition
5302This attribute holds the condition of the breakpoint, as specified by
5303the user. It is a string. If there is no condition, this attribute's
5304value is @code{None}. This attribute is writable.
5305@end defvar
5306
5307@defvar Breakpoint.commands
5308This attribute holds the commands attached to the breakpoint. If
5309there are commands, this attribute's value is a string holding all the
5310commands, separated by newlines. If there are no commands, this
a913fffb 5311attribute is @code{None}. This attribute is writable.
329baa95
DE
5312@end defvar
5313
5314@node Finish Breakpoints in Python
5315@subsubsection Finish Breakpoints
5316
5317@cindex python finish breakpoints
5318@tindex gdb.FinishBreakpoint
5319
5320A finish breakpoint is a temporary breakpoint set at the return address of
5321a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5322extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5323and deleted when the execution will run out of the breakpoint scope (i.e.@:
5324@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5325Finish breakpoints are thread specific and must be create with the right
5326thread selected.
5327
5328@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5329Create a finish breakpoint at the return address of the @code{gdb.Frame}
5330object @var{frame}. If @var{frame} is not provided, this defaults to the
5331newest frame. The optional @var{internal} argument allows the breakpoint to
5332become invisible to the user. @xref{Breakpoints In Python}, for further
5333details about this argument.
5334@end defun
5335
5336@defun FinishBreakpoint.out_of_scope (self)
5337In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5338@code{return} command, @dots{}), a function may not properly terminate, and
5339thus never hit the finish breakpoint. When @value{GDBN} notices such a
5340situation, the @code{out_of_scope} callback will be triggered.
5341
5342You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5343method:
5344
5345@smallexample
5346class MyFinishBreakpoint (gdb.FinishBreakpoint)
5347 def stop (self):
5348 print "normal finish"
5349 return True
5350
5351 def out_of_scope ():
5352 print "abnormal finish"
5353@end smallexample
5354@end defun
5355
5356@defvar FinishBreakpoint.return_value
5357When @value{GDBN} is stopped at a finish breakpoint and the frame
5358used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5359attribute will contain a @code{gdb.Value} object corresponding to the return
5360value of the function. The value will be @code{None} if the function return
5361type is @code{void} or if the return value was not computable. This attribute
5362is not writable.
5363@end defvar
5364
5365@node Lazy Strings In Python
849cba3b 5366@subsubsection Python representation of lazy strings
329baa95
DE
5367
5368@cindex lazy strings in python
5369@tindex gdb.LazyString
5370
5371A @dfn{lazy string} is a string whose contents is not retrieved or
5372encoded until it is needed.
5373
5374A @code{gdb.LazyString} is represented in @value{GDBN} as an
5375@code{address} that points to a region of memory, an @code{encoding}
5376that will be used to encode that region of memory, and a @code{length}
5377to delimit the region of memory that represents the string. The
5378difference between a @code{gdb.LazyString} and a string wrapped within
5379a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5380differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5381retrieved and encoded during printing, while a @code{gdb.Value}
5382wrapping a string is immediately retrieved and encoded on creation.
5383
5384A @code{gdb.LazyString} object has the following functions:
5385
5386@defun LazyString.value ()
5387Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5388will point to the string in memory, but will lose all the delayed
5389retrieval, encoding and handling that @value{GDBN} applies to a
5390@code{gdb.LazyString}.
5391@end defun
5392
5393@defvar LazyString.address
5394This attribute holds the address of the string. This attribute is not
5395writable.
5396@end defvar
5397
5398@defvar LazyString.length
5399This attribute holds the length of the string in characters. If the
5400length is -1, then the string will be fetched and encoded up to the
5401first null of appropriate width. This attribute is not writable.
5402@end defvar
5403
5404@defvar LazyString.encoding
5405This attribute holds the encoding that will be applied to the string
5406when the string is printed by @value{GDBN}. If the encoding is not
5407set, or contains an empty string, then @value{GDBN} will select the
5408most appropriate encoding when the string is printed. This attribute
5409is not writable.
5410@end defvar
5411
5412@defvar LazyString.type
5413This attribute holds the type that is represented by the lazy string's
f8d99587 5414type. For a lazy string this is a pointer or array type. To
329baa95
DE
5415resolve this to the lazy string's character type, use the type's
5416@code{target} method. @xref{Types In Python}. This attribute is not
5417writable.
5418@end defvar
5419
5420@node Architectures In Python
5421@subsubsection Python representation of architectures
5422@cindex Python architectures
5423
5424@value{GDBN} uses architecture specific parameters and artifacts in a
5425number of its various computations. An architecture is represented
5426by an instance of the @code{gdb.Architecture} class.
5427
5428A @code{gdb.Architecture} class has the following methods:
5429
5430@defun Architecture.name ()
5431Return the name (string value) of the architecture.
5432@end defun
5433
5434@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5435Return a list of disassembled instructions starting from the memory
5436address @var{start_pc}. The optional arguments @var{end_pc} and
5437@var{count} determine the number of instructions in the returned list.
5438If both the optional arguments @var{end_pc} and @var{count} are
5439specified, then a list of at most @var{count} disassembled instructions
5440whose start address falls in the closed memory address interval from
5441@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5442specified, but @var{count} is specified, then @var{count} number of
5443instructions starting from the address @var{start_pc} are returned. If
5444@var{count} is not specified but @var{end_pc} is specified, then all
5445instructions whose start address falls in the closed memory address
5446interval from @var{start_pc} to @var{end_pc} are returned. If neither
5447@var{end_pc} nor @var{count} are specified, then a single instruction at
5448@var{start_pc} is returned. For all of these cases, each element of the
5449returned list is a Python @code{dict} with the following string keys:
5450
5451@table @code
5452
5453@item addr
5454The value corresponding to this key is a Python long integer capturing
5455the memory address of the instruction.
5456
5457@item asm
5458The value corresponding to this key is a string value which represents
5459the instruction with assembly language mnemonics. The assembly
5460language flavor used is the same as that specified by the current CLI
5461variable @code{disassembly-flavor}. @xref{Machine Code}.
5462
5463@item length
5464The value corresponding to this key is the length (integer value) of the
5465instruction in bytes.
5466
5467@end table
5468@end defun
5469
5470@node Python Auto-loading
5471@subsection Python Auto-loading
5472@cindex Python auto-loading
5473
5474When a new object file is read (for example, due to the @code{file}
5475command, or because the inferior has loaded a shared library),
5476@value{GDBN} will look for Python support scripts in several ways:
5477@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5478@xref{Auto-loading extensions}.
5479
5480The auto-loading feature is useful for supplying application-specific
5481debugging commands and scripts.
5482
5483Auto-loading can be enabled or disabled,
5484and the list of auto-loaded scripts can be printed.
5485
5486@table @code
5487@anchor{set auto-load python-scripts}
5488@kindex set auto-load python-scripts
5489@item set auto-load python-scripts [on|off]
5490Enable or disable the auto-loading of Python scripts.
5491
5492@anchor{show auto-load python-scripts}
5493@kindex show auto-load python-scripts
5494@item show auto-load python-scripts
5495Show whether auto-loading of Python scripts is enabled or disabled.
5496
5497@anchor{info auto-load python-scripts}
5498@kindex info auto-load python-scripts
5499@cindex print list of auto-loaded Python scripts
5500@item info auto-load python-scripts [@var{regexp}]
5501Print the list of all Python scripts that @value{GDBN} auto-loaded.
5502
5503Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5504the @code{.debug_gdb_scripts} section and were either not found
5505(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5506@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5507This is useful because their names are not printed when @value{GDBN}
5508tries to load them and fails. There may be many of them, and printing
5509an error message for each one is problematic.
5510
5511If @var{regexp} is supplied only Python scripts with matching names are printed.
5512
5513Example:
5514
5515@smallexample
5516(gdb) info auto-load python-scripts
5517Loaded Script
5518Yes py-section-script.py
5519 full name: /tmp/py-section-script.py
5520No my-foo-pretty-printers.py
5521@end smallexample
5522@end table
5523
9f050062 5524When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5525@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5526function (@pxref{Objfiles In Python}). This can be useful for
5527registering objfile-specific pretty-printers and frame-filters.
5528
5529@node Python modules
5530@subsection Python modules
5531@cindex python modules
5532
5533@value{GDBN} comes with several modules to assist writing Python code.
5534
5535@menu
5536* gdb.printing:: Building and registering pretty-printers.
5537* gdb.types:: Utilities for working with types.
5538* gdb.prompt:: Utilities for prompt value substitution.
5539@end menu
5540
5541@node gdb.printing
5542@subsubsection gdb.printing
5543@cindex gdb.printing
5544
5545This module provides a collection of utilities for working with
5546pretty-printers.
5547
5548@table @code
5549@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5550This class specifies the API that makes @samp{info pretty-printer},
5551@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5552Pretty-printers should generally inherit from this class.
5553
5554@item SubPrettyPrinter (@var{name})
5555For printers that handle multiple types, this class specifies the
5556corresponding API for the subprinters.
5557
5558@item RegexpCollectionPrettyPrinter (@var{name})
5559Utility class for handling multiple printers, all recognized via
5560regular expressions.
5561@xref{Writing a Pretty-Printer}, for an example.
5562
5563@item FlagEnumerationPrinter (@var{name})
5564A pretty-printer which handles printing of @code{enum} values. Unlike
5565@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5566work properly when there is some overlap between the enumeration
697aa1b7
EZ
5567constants. The argument @var{name} is the name of the printer and
5568also the name of the @code{enum} type to look up.
329baa95
DE
5569
5570@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5571Register @var{printer} with the pretty-printer list of @var{obj}.
5572If @var{replace} is @code{True} then any existing copy of the printer
5573is replaced. Otherwise a @code{RuntimeError} exception is raised
5574if a printer with the same name already exists.
5575@end table
5576
5577@node gdb.types
5578@subsubsection gdb.types
5579@cindex gdb.types
5580
5581This module provides a collection of utilities for working with
5582@code{gdb.Type} objects.
5583
5584@table @code
5585@item get_basic_type (@var{type})
5586Return @var{type} with const and volatile qualifiers stripped,
5587and with typedefs and C@t{++} references converted to the underlying type.
5588
5589C@t{++} example:
5590
5591@smallexample
5592typedef const int const_int;
5593const_int foo (3);
5594const_int& foo_ref (foo);
5595int main () @{ return 0; @}
5596@end smallexample
5597
5598Then in gdb:
5599
5600@smallexample
5601(gdb) start
5602(gdb) python import gdb.types
5603(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5604(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5605int
5606@end smallexample
5607
5608@item has_field (@var{type}, @var{field})
5609Return @code{True} if @var{type}, assumed to be a type with fields
5610(e.g., a structure or union), has field @var{field}.
5611
5612@item make_enum_dict (@var{enum_type})
5613Return a Python @code{dictionary} type produced from @var{enum_type}.
5614
5615@item deep_items (@var{type})
5616Returns a Python iterator similar to the standard
5617@code{gdb.Type.iteritems} method, except that the iterator returned
5618by @code{deep_items} will recursively traverse anonymous struct or
5619union fields. For example:
5620
5621@smallexample
5622struct A
5623@{
5624 int a;
5625 union @{
5626 int b0;
5627 int b1;
5628 @};
5629@};
5630@end smallexample
5631
5632@noindent
5633Then in @value{GDBN}:
5634@smallexample
5635(@value{GDBP}) python import gdb.types
5636(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5637(@value{GDBP}) python print struct_a.keys ()
5638@{['a', '']@}
5639(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5640@{['a', 'b0', 'b1']@}
5641@end smallexample
5642
5643@item get_type_recognizers ()
5644Return a list of the enabled type recognizers for the current context.
5645This is called by @value{GDBN} during the type-printing process
5646(@pxref{Type Printing API}).
5647
5648@item apply_type_recognizers (recognizers, type_obj)
5649Apply the type recognizers, @var{recognizers}, to the type object
5650@var{type_obj}. If any recognizer returns a string, return that
5651string. Otherwise, return @code{None}. This is called by
5652@value{GDBN} during the type-printing process (@pxref{Type Printing
5653API}).
5654
5655@item register_type_printer (locus, printer)
697aa1b7
EZ
5656This is a convenience function to register a type printer
5657@var{printer}. The printer must implement the type printer protocol.
5658The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5659the printer is registered with that objfile; a @code{gdb.Progspace},
5660in which case the printer is registered with that progspace; or
5661@code{None}, in which case the printer is registered globally.
329baa95
DE
5662
5663@item TypePrinter
5664This is a base class that implements the type printer protocol. Type
5665printers are encouraged, but not required, to derive from this class.
5666It defines a constructor:
5667
5668@defmethod TypePrinter __init__ (self, name)
5669Initialize the type printer with the given name. The new printer
5670starts in the enabled state.
5671@end defmethod
5672
5673@end table
5674
5675@node gdb.prompt
5676@subsubsection gdb.prompt
5677@cindex gdb.prompt
5678
5679This module provides a method for prompt value-substitution.
5680
5681@table @code
5682@item substitute_prompt (@var{string})
5683Return @var{string} with escape sequences substituted by values. Some
5684escape sequences take arguments. You can specify arguments inside
5685``@{@}'' immediately following the escape sequence.
5686
5687The escape sequences you can pass to this function are:
5688
5689@table @code
5690@item \\
5691Substitute a backslash.
5692@item \e
5693Substitute an ESC character.
5694@item \f
5695Substitute the selected frame; an argument names a frame parameter.
5696@item \n
5697Substitute a newline.
5698@item \p
5699Substitute a parameter's value; the argument names the parameter.
5700@item \r
5701Substitute a carriage return.
5702@item \t
5703Substitute the selected thread; an argument names a thread parameter.
5704@item \v
5705Substitute the version of GDB.
5706@item \w
5707Substitute the current working directory.
5708@item \[
5709Begin a sequence of non-printing characters. These sequences are
5710typically used with the ESC character, and are not counted in the string
5711length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5712blue-colored ``(gdb)'' prompt where the length is five.
5713@item \]
5714End a sequence of non-printing characters.
5715@end table
5716
5717For example:
5718
5719@smallexample
5720substitute_prompt (``frame: \f,
5721 print arguments: \p@{print frame-arguments@}'')
5722@end smallexample
5723
5724@exdent will return the string:
5725
5726@smallexample
5727"frame: main, print arguments: scalars"
5728@end smallexample
5729@end table