]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Update symbol domain and location values for Python
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
738@defun Value.cast (type)
739Return a new instance of @code{gdb.Value} that is the result of
740casting this instance to the type described by @var{type}, which must
741be a @code{gdb.Type} object. If the cast cannot be performed for some
742reason, this method throws an exception.
743@end defun
744
745@defun Value.dereference ()
746For pointer data types, this method returns a new @code{gdb.Value} object
747whose contents is the object pointed to by the pointer. For example, if
748@code{foo} is a C pointer to an @code{int}, declared in your C program as
749
750@smallexample
751int *foo;
752@end smallexample
753
754@noindent
755then you can use the corresponding @code{gdb.Value} to access what
756@code{foo} points to like this:
757
758@smallexample
759bar = foo.dereference ()
760@end smallexample
761
762The result @code{bar} will be a @code{gdb.Value} object holding the
763value pointed to by @code{foo}.
764
765A similar function @code{Value.referenced_value} exists which also
766returns @code{gdb.Value} objects corresonding to the values pointed to
767by pointer values (and additionally, values referenced by reference
768values). However, the behavior of @code{Value.dereference}
769differs from @code{Value.referenced_value} by the fact that the
770behavior of @code{Value.dereference} is identical to applying the C
771unary operator @code{*} on a given value. For example, consider a
772reference to a pointer @code{ptrref}, declared in your C@t{++} program
773as
774
775@smallexample
776typedef int *intptr;
777...
778int val = 10;
779intptr ptr = &val;
780intptr &ptrref = ptr;
781@end smallexample
782
783Though @code{ptrref} is a reference value, one can apply the method
784@code{Value.dereference} to the @code{gdb.Value} object corresponding
785to it and obtain a @code{gdb.Value} which is identical to that
786corresponding to @code{val}. However, if you apply the method
787@code{Value.referenced_value}, the result would be a @code{gdb.Value}
788object identical to that corresponding to @code{ptr}.
789
790@smallexample
791py_ptrref = gdb.parse_and_eval ("ptrref")
792py_val = py_ptrref.dereference ()
793py_ptr = py_ptrref.referenced_value ()
794@end smallexample
795
796The @code{gdb.Value} object @code{py_val} is identical to that
797corresponding to @code{val}, and @code{py_ptr} is identical to that
798corresponding to @code{ptr}. In general, @code{Value.dereference} can
799be applied whenever the C unary operator @code{*} can be applied
800to the corresponding C value. For those cases where applying both
801@code{Value.dereference} and @code{Value.referenced_value} is allowed,
802the results obtained need not be identical (as we have seen in the above
803example). The results are however identical when applied on
804@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
805objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
806@end defun
807
808@defun Value.referenced_value ()
809For pointer or reference data types, this method returns a new
810@code{gdb.Value} object corresponding to the value referenced by the
811pointer/reference value. For pointer data types,
812@code{Value.dereference} and @code{Value.referenced_value} produce
813identical results. The difference between these methods is that
814@code{Value.dereference} cannot get the values referenced by reference
815values. For example, consider a reference to an @code{int}, declared
816in your C@t{++} program as
817
818@smallexample
819int val = 10;
820int &ref = val;
821@end smallexample
822
823@noindent
824then applying @code{Value.dereference} to the @code{gdb.Value} object
825corresponding to @code{ref} will result in an error, while applying
826@code{Value.referenced_value} will result in a @code{gdb.Value} object
827identical to that corresponding to @code{val}.
828
829@smallexample
830py_ref = gdb.parse_and_eval ("ref")
831er_ref = py_ref.dereference () # Results in error
832py_val = py_ref.referenced_value () # Returns the referenced value
833@end smallexample
834
835The @code{gdb.Value} object @code{py_val} is identical to that
836corresponding to @code{val}.
837@end defun
838
4c082a81
SC
839@defun Value.reference_value ()
840Return a @code{gdb.Value} object which is a reference to the value
841encapsulated by this instance.
842@end defun
843
844@defun Value.const_value ()
845Return a @code{gdb.Value} object which is a @code{const} version of the
846value encapsulated by this instance.
847@end defun
848
329baa95
DE
849@defun Value.dynamic_cast (type)
850Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
851operator were used. Consult a C@t{++} reference for details.
852@end defun
853
854@defun Value.reinterpret_cast (type)
855Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
856operator were used. Consult a C@t{++} reference for details.
857@end defun
858
859@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
860If this @code{gdb.Value} represents a string, then this method
861converts the contents to a Python string. Otherwise, this method will
862throw an exception.
863
b3ce5e5f
DE
864Values are interpreted as strings according to the rules of the
865current language. If the optional length argument is given, the
866string will be converted to that length, and will include any embedded
867zeroes that the string may contain. Otherwise, for languages
868where the string is zero-terminated, the entire string will be
869converted.
329baa95 870
b3ce5e5f
DE
871For example, in C-like languages, a value is a string if it is a pointer
872to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
873or @code{char32_t}.
329baa95
DE
874
875If the optional @var{encoding} argument is given, it must be a string
876naming the encoding of the string in the @code{gdb.Value}, such as
877@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
878the same encodings as the corresponding argument to Python's
879@code{string.decode} method, and the Python codec machinery will be used
880to convert the string. If @var{encoding} is not given, or if
881@var{encoding} is the empty string, then either the @code{target-charset}
882(@pxref{Character Sets}) will be used, or a language-specific encoding
883will be used, if the current language is able to supply one.
884
885The optional @var{errors} argument is the same as the corresponding
886argument to Python's @code{string.decode} method.
887
888If the optional @var{length} argument is given, the string will be
889fetched and converted to the given length.
890@end defun
891
892@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
893If this @code{gdb.Value} represents a string, then this method
894converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
895In Python}). Otherwise, this method will throw an exception.
896
897If the optional @var{encoding} argument is given, it must be a string
898naming the encoding of the @code{gdb.LazyString}. Some examples are:
899@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
900@var{encoding} argument is an encoding that @value{GDBN} does
901recognize, @value{GDBN} will raise an error.
902
903When a lazy string is printed, the @value{GDBN} encoding machinery is
904used to convert the string during printing. If the optional
905@var{encoding} argument is not provided, or is an empty string,
906@value{GDBN} will automatically select the encoding most suitable for
907the string type. For further information on encoding in @value{GDBN}
908please see @ref{Character Sets}.
909
910If the optional @var{length} argument is given, the string will be
911fetched and encoded to the length of characters specified. If
912the @var{length} argument is not provided, the string will be fetched
913and encoded until a null of appropriate width is found.
914@end defun
915
916@defun Value.fetch_lazy ()
917If the @code{gdb.Value} object is currently a lazy value
918(@code{gdb.Value.is_lazy} is @code{True}), then the value is
919fetched from the inferior. Any errors that occur in the process
920will produce a Python exception.
921
922If the @code{gdb.Value} object is not a lazy value, this method
923has no effect.
924
925This method does not return a value.
926@end defun
927
928
929@node Types In Python
930@subsubsection Types In Python
931@cindex types in Python
932@cindex Python, working with types
933
934@tindex gdb.Type
935@value{GDBN} represents types from the inferior using the class
936@code{gdb.Type}.
937
938The following type-related functions are available in the @code{gdb}
939module:
940
941@findex gdb.lookup_type
942@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 943This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
944
945If @var{block} is given, then @var{name} is looked up in that scope.
946Otherwise, it is searched for globally.
947
948Ordinarily, this function will return an instance of @code{gdb.Type}.
949If the named type cannot be found, it will throw an exception.
950@end defun
951
952If the type is a structure or class type, or an enum type, the fields
953of that type can be accessed using the Python @dfn{dictionary syntax}.
954For example, if @code{some_type} is a @code{gdb.Type} instance holding
955a structure type, you can access its @code{foo} field with:
956
957@smallexample
958bar = some_type['foo']
959@end smallexample
960
961@code{bar} will be a @code{gdb.Field} object; see below under the
962description of the @code{Type.fields} method for a description of the
963@code{gdb.Field} class.
964
965An instance of @code{Type} has the following attributes:
966
6d7bb824
TT
967@defvar Type.alignof
968The alignment of this type, in bytes. Type alignment comes from the
969debugging information; if it was not specified, then @value{GDBN} will
970use the relevant ABI to try to determine the alignment. In some
971cases, even this is not possible, and zero will be returned.
972@end defvar
973
329baa95
DE
974@defvar Type.code
975The type code for this type. The type code will be one of the
976@code{TYPE_CODE_} constants defined below.
977@end defvar
978
979@defvar Type.name
980The name of this type. If this type has no name, then @code{None}
981is returned.
982@end defvar
983
984@defvar Type.sizeof
985The size of this type, in target @code{char} units. Usually, a
986target's @code{char} type will be an 8-bit byte. However, on some
987unusual platforms, this type may have a different size.
988@end defvar
989
990@defvar Type.tag
991The tag name for this type. The tag name is the name after
992@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
993languages have this concept. If this type has no tag name, then
994@code{None} is returned.
995@end defvar
996
997The following methods are provided:
998
999@defun Type.fields ()
1000For structure and union types, this method returns the fields. Range
1001types have two fields, the minimum and maximum values. Enum types
1002have one field per enum constant. Function and method types have one
1003field per parameter. The base types of C@t{++} classes are also
1004represented as fields. If the type has no fields, or does not fit
1005into one of these categories, an empty sequence will be returned.
1006
1007Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1008@table @code
1009@item bitpos
1010This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1011(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1012in bits, from the start of the containing type.
1013
1014@item enumval
1015This attribute is only available for @code{enum} fields, and its value
1016is the enumeration member's integer representation.
1017
1018@item name
1019The name of the field, or @code{None} for anonymous fields.
1020
1021@item artificial
1022This is @code{True} if the field is artificial, usually meaning that
1023it was provided by the compiler and not the user. This attribute is
1024always provided, and is @code{False} if the field is not artificial.
1025
1026@item is_base_class
1027This is @code{True} if the field represents a base class of a C@t{++}
1028structure. This attribute is always provided, and is @code{False}
1029if the field is not a base class of the type that is the argument of
1030@code{fields}, or if that type was not a C@t{++} class.
1031
1032@item bitsize
1033If the field is packed, or is a bitfield, then this will have a
1034non-zero value, which is the size of the field in bits. Otherwise,
1035this will be zero; in this case the field's size is given by its type.
1036
1037@item type
1038The type of the field. This is usually an instance of @code{Type},
1039but it can be @code{None} in some situations.
1040
1041@item parent_type
1042The type which contains this field. This is an instance of
1043@code{gdb.Type}.
1044@end table
1045@end defun
1046
1047@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1048Return a new @code{gdb.Type} object which represents an array of this
1049type. If one argument is given, it is the inclusive upper bound of
1050the array; in this case the lower bound is zero. If two arguments are
1051given, the first argument is the lower bound of the array, and the
1052second argument is the upper bound of the array. An array's length
1053must not be negative, but the bounds can be.
1054@end defun
1055
1056@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1057Return a new @code{gdb.Type} object which represents a vector of this
1058type. If one argument is given, it is the inclusive upper bound of
1059the vector; in this case the lower bound is zero. If two arguments are
1060given, the first argument is the lower bound of the vector, and the
1061second argument is the upper bound of the vector. A vector's length
1062must not be negative, but the bounds can be.
1063
1064The difference between an @code{array} and a @code{vector} is that
1065arrays behave like in C: when used in expressions they decay to a pointer
1066to the first element whereas vectors are treated as first class values.
1067@end defun
1068
1069@defun Type.const ()
1070Return a new @code{gdb.Type} object which represents a
1071@code{const}-qualified variant of this type.
1072@end defun
1073
1074@defun Type.volatile ()
1075Return a new @code{gdb.Type} object which represents a
1076@code{volatile}-qualified variant of this type.
1077@end defun
1078
1079@defun Type.unqualified ()
1080Return a new @code{gdb.Type} object which represents an unqualified
1081variant of this type. That is, the result is neither @code{const} nor
1082@code{volatile}.
1083@end defun
1084
1085@defun Type.range ()
1086Return a Python @code{Tuple} object that contains two elements: the
1087low bound of the argument type and the high bound of that type. If
1088the type does not have a range, @value{GDBN} will raise a
1089@code{gdb.error} exception (@pxref{Exception Handling}).
1090@end defun
1091
1092@defun Type.reference ()
1093Return a new @code{gdb.Type} object which represents a reference to this
1094type.
1095@end defun
1096
1097@defun Type.pointer ()
1098Return a new @code{gdb.Type} object which represents a pointer to this
1099type.
1100@end defun
1101
1102@defun Type.strip_typedefs ()
1103Return a new @code{gdb.Type} that represents the real type,
1104after removing all layers of typedefs.
1105@end defun
1106
1107@defun Type.target ()
1108Return a new @code{gdb.Type} object which represents the target type
1109of this type.
1110
1111For a pointer type, the target type is the type of the pointed-to
1112object. For an array type (meaning C-like arrays), the target type is
1113the type of the elements of the array. For a function or method type,
1114the target type is the type of the return value. For a complex type,
1115the target type is the type of the elements. For a typedef, the
1116target type is the aliased type.
1117
1118If the type does not have a target, this method will throw an
1119exception.
1120@end defun
1121
1122@defun Type.template_argument (n @r{[}, block@r{]})
1123If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1124return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1125value of the @var{n}th template argument (indexed starting at 0).
329baa95 1126
1a6a384b
JL
1127If this @code{gdb.Type} is not a template type, or if the type has fewer
1128than @var{n} template arguments, this will throw an exception.
1129Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1130
1131If @var{block} is given, then @var{name} is looked up in that scope.
1132Otherwise, it is searched for globally.
1133@end defun
1134
59fb7612
SS
1135@defun Type.optimized_out ()
1136Return @code{gdb.Value} instance of this type whose value is optimized
1137out. This allows a frame decorator to indicate that the value of an
1138argument or a local variable is not known.
1139@end defun
329baa95
DE
1140
1141Each type has a code, which indicates what category this type falls
1142into. The available type categories are represented by constants
1143defined in the @code{gdb} module:
1144
b3ce5e5f
DE
1145@vtable @code
1146@vindex TYPE_CODE_PTR
329baa95
DE
1147@item gdb.TYPE_CODE_PTR
1148The type is a pointer.
1149
b3ce5e5f 1150@vindex TYPE_CODE_ARRAY
329baa95
DE
1151@item gdb.TYPE_CODE_ARRAY
1152The type is an array.
1153
b3ce5e5f 1154@vindex TYPE_CODE_STRUCT
329baa95
DE
1155@item gdb.TYPE_CODE_STRUCT
1156The type is a structure.
1157
b3ce5e5f 1158@vindex TYPE_CODE_UNION
329baa95
DE
1159@item gdb.TYPE_CODE_UNION
1160The type is a union.
1161
b3ce5e5f 1162@vindex TYPE_CODE_ENUM
329baa95
DE
1163@item gdb.TYPE_CODE_ENUM
1164The type is an enum.
1165
b3ce5e5f 1166@vindex TYPE_CODE_FLAGS
329baa95
DE
1167@item gdb.TYPE_CODE_FLAGS
1168A bit flags type, used for things such as status registers.
1169
b3ce5e5f 1170@vindex TYPE_CODE_FUNC
329baa95
DE
1171@item gdb.TYPE_CODE_FUNC
1172The type is a function.
1173
b3ce5e5f 1174@vindex TYPE_CODE_INT
329baa95
DE
1175@item gdb.TYPE_CODE_INT
1176The type is an integer type.
1177
b3ce5e5f 1178@vindex TYPE_CODE_FLT
329baa95
DE
1179@item gdb.TYPE_CODE_FLT
1180A floating point type.
1181
b3ce5e5f 1182@vindex TYPE_CODE_VOID
329baa95
DE
1183@item gdb.TYPE_CODE_VOID
1184The special type @code{void}.
1185
b3ce5e5f 1186@vindex TYPE_CODE_SET
329baa95
DE
1187@item gdb.TYPE_CODE_SET
1188A Pascal set type.
1189
b3ce5e5f 1190@vindex TYPE_CODE_RANGE
329baa95
DE
1191@item gdb.TYPE_CODE_RANGE
1192A range type, that is, an integer type with bounds.
1193
b3ce5e5f 1194@vindex TYPE_CODE_STRING
329baa95
DE
1195@item gdb.TYPE_CODE_STRING
1196A string type. Note that this is only used for certain languages with
1197language-defined string types; C strings are not represented this way.
1198
b3ce5e5f 1199@vindex TYPE_CODE_BITSTRING
329baa95
DE
1200@item gdb.TYPE_CODE_BITSTRING
1201A string of bits. It is deprecated.
1202
b3ce5e5f 1203@vindex TYPE_CODE_ERROR
329baa95
DE
1204@item gdb.TYPE_CODE_ERROR
1205An unknown or erroneous type.
1206
b3ce5e5f 1207@vindex TYPE_CODE_METHOD
329baa95 1208@item gdb.TYPE_CODE_METHOD
9c37b5ae 1209A method type, as found in C@t{++}.
329baa95 1210
b3ce5e5f 1211@vindex TYPE_CODE_METHODPTR
329baa95
DE
1212@item gdb.TYPE_CODE_METHODPTR
1213A pointer-to-member-function.
1214
b3ce5e5f 1215@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1216@item gdb.TYPE_CODE_MEMBERPTR
1217A pointer-to-member.
1218
b3ce5e5f 1219@vindex TYPE_CODE_REF
329baa95
DE
1220@item gdb.TYPE_CODE_REF
1221A reference type.
1222
3fcf899d
AV
1223@vindex TYPE_CODE_RVALUE_REF
1224@item gdb.TYPE_CODE_RVALUE_REF
1225A C@t{++}11 rvalue reference type.
1226
b3ce5e5f 1227@vindex TYPE_CODE_CHAR
329baa95
DE
1228@item gdb.TYPE_CODE_CHAR
1229A character type.
1230
b3ce5e5f 1231@vindex TYPE_CODE_BOOL
329baa95
DE
1232@item gdb.TYPE_CODE_BOOL
1233A boolean type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_COMPLEX
329baa95
DE
1236@item gdb.TYPE_CODE_COMPLEX
1237A complex float type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1240@item gdb.TYPE_CODE_TYPEDEF
1241A typedef to some other type.
1242
b3ce5e5f 1243@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1244@item gdb.TYPE_CODE_NAMESPACE
1245A C@t{++} namespace.
1246
b3ce5e5f 1247@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1248@item gdb.TYPE_CODE_DECFLOAT
1249A decimal floating point type.
1250
b3ce5e5f 1251@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1252@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1253A function internal to @value{GDBN}. This is the type used to represent
1254convenience functions.
b3ce5e5f 1255@end vtable
329baa95
DE
1256
1257Further support for types is provided in the @code{gdb.types}
1258Python module (@pxref{gdb.types}).
1259
1260@node Pretty Printing API
1261@subsubsection Pretty Printing API
b3ce5e5f 1262@cindex python pretty printing api
329baa95 1263
329baa95 1264A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1265specific interface, defined here. An example output is provided
1266(@pxref{Pretty Printing}).
329baa95
DE
1267
1268@defun pretty_printer.children (self)
1269@value{GDBN} will call this method on a pretty-printer to compute the
1270children of the pretty-printer's value.
1271
1272This method must return an object conforming to the Python iterator
1273protocol. Each item returned by the iterator must be a tuple holding
1274two elements. The first element is the ``name'' of the child; the
1275second element is the child's value. The value can be any Python
1276object which is convertible to a @value{GDBN} value.
1277
1278This method is optional. If it does not exist, @value{GDBN} will act
1279as though the value has no children.
1280@end defun
1281
1282@defun pretty_printer.display_hint (self)
1283The CLI may call this method and use its result to change the
1284formatting of a value. The result will also be supplied to an MI
1285consumer as a @samp{displayhint} attribute of the variable being
1286printed.
1287
1288This method is optional. If it does exist, this method must return a
1289string.
1290
1291Some display hints are predefined by @value{GDBN}:
1292
1293@table @samp
1294@item array
1295Indicate that the object being printed is ``array-like''. The CLI
1296uses this to respect parameters such as @code{set print elements} and
1297@code{set print array}.
1298
1299@item map
1300Indicate that the object being printed is ``map-like'', and that the
1301children of this value can be assumed to alternate between keys and
1302values.
1303
1304@item string
1305Indicate that the object being printed is ``string-like''. If the
1306printer's @code{to_string} method returns a Python string of some
1307kind, then @value{GDBN} will call its internal language-specific
1308string-printing function to format the string. For the CLI this means
1309adding quotation marks, possibly escaping some characters, respecting
1310@code{set print elements}, and the like.
1311@end table
1312@end defun
1313
1314@defun pretty_printer.to_string (self)
1315@value{GDBN} will call this method to display the string
1316representation of the value passed to the object's constructor.
1317
1318When printing from the CLI, if the @code{to_string} method exists,
1319then @value{GDBN} will prepend its result to the values returned by
1320@code{children}. Exactly how this formatting is done is dependent on
1321the display hint, and may change as more hints are added. Also,
1322depending on the print settings (@pxref{Print Settings}), the CLI may
1323print just the result of @code{to_string} in a stack trace, omitting
1324the result of @code{children}.
1325
1326If this method returns a string, it is printed verbatim.
1327
1328Otherwise, if this method returns an instance of @code{gdb.Value},
1329then @value{GDBN} prints this value. This may result in a call to
1330another pretty-printer.
1331
1332If instead the method returns a Python value which is convertible to a
1333@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1334the resulting value. Again, this may result in a call to another
1335pretty-printer. Python scalars (integers, floats, and booleans) and
1336strings are convertible to @code{gdb.Value}; other types are not.
1337
1338Finally, if this method returns @code{None} then no further operations
1339are peformed in this method and nothing is printed.
1340
1341If the result is not one of these types, an exception is raised.
1342@end defun
1343
1344@value{GDBN} provides a function which can be used to look up the
1345default pretty-printer for a @code{gdb.Value}:
1346
1347@findex gdb.default_visualizer
1348@defun gdb.default_visualizer (value)
1349This function takes a @code{gdb.Value} object as an argument. If a
1350pretty-printer for this value exists, then it is returned. If no such
1351printer exists, then this returns @code{None}.
1352@end defun
1353
1354@node Selecting Pretty-Printers
1355@subsubsection Selecting Pretty-Printers
b3ce5e5f 1356@cindex selecting python pretty-printers
329baa95
DE
1357
1358The Python list @code{gdb.pretty_printers} contains an array of
1359functions or callable objects that have been registered via addition
1360as a pretty-printer. Printers in this list are called @code{global}
1361printers, they're available when debugging all inferiors.
1362Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1363Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1364attribute.
1365
1366Each function on these lists is passed a single @code{gdb.Value}
1367argument and should return a pretty-printer object conforming to the
1368interface definition above (@pxref{Pretty Printing API}). If a function
1369cannot create a pretty-printer for the value, it should return
1370@code{None}.
1371
1372@value{GDBN} first checks the @code{pretty_printers} attribute of each
1373@code{gdb.Objfile} in the current program space and iteratively calls
1374each enabled lookup routine in the list for that @code{gdb.Objfile}
1375until it receives a pretty-printer object.
1376If no pretty-printer is found in the objfile lists, @value{GDBN} then
1377searches the pretty-printer list of the current program space,
1378calling each enabled function until an object is returned.
1379After these lists have been exhausted, it tries the global
1380@code{gdb.pretty_printers} list, again calling each enabled function until an
1381object is returned.
1382
1383The order in which the objfiles are searched is not specified. For a
1384given list, functions are always invoked from the head of the list,
1385and iterated over sequentially until the end of the list, or a printer
1386object is returned.
1387
1388For various reasons a pretty-printer may not work.
1389For example, the underlying data structure may have changed and
1390the pretty-printer is out of date.
1391
1392The consequences of a broken pretty-printer are severe enough that
1393@value{GDBN} provides support for enabling and disabling individual
1394printers. For example, if @code{print frame-arguments} is on,
1395a backtrace can become highly illegible if any argument is printed
1396with a broken printer.
1397
1398Pretty-printers are enabled and disabled by attaching an @code{enabled}
1399attribute to the registered function or callable object. If this attribute
1400is present and its value is @code{False}, the printer is disabled, otherwise
1401the printer is enabled.
1402
1403@node Writing a Pretty-Printer
1404@subsubsection Writing a Pretty-Printer
1405@cindex writing a pretty-printer
1406
1407A pretty-printer consists of two parts: a lookup function to detect
1408if the type is supported, and the printer itself.
1409
1410Here is an example showing how a @code{std::string} printer might be
1411written. @xref{Pretty Printing API}, for details on the API this class
1412must provide.
1413
1414@smallexample
1415class StdStringPrinter(object):
1416 "Print a std::string"
1417
1418 def __init__(self, val):
1419 self.val = val
1420
1421 def to_string(self):
1422 return self.val['_M_dataplus']['_M_p']
1423
1424 def display_hint(self):
1425 return 'string'
1426@end smallexample
1427
1428And here is an example showing how a lookup function for the printer
1429example above might be written.
1430
1431@smallexample
1432def str_lookup_function(val):
1433 lookup_tag = val.type.tag
1434 if lookup_tag == None:
1435 return None
1436 regex = re.compile("^std::basic_string<char,.*>$")
1437 if regex.match(lookup_tag):
1438 return StdStringPrinter(val)
1439 return None
1440@end smallexample
1441
1442The example lookup function extracts the value's type, and attempts to
1443match it to a type that it can pretty-print. If it is a type the
1444printer can pretty-print, it will return a printer object. If not, it
1445returns @code{None}.
1446
1447We recommend that you put your core pretty-printers into a Python
1448package. If your pretty-printers are for use with a library, we
1449further recommend embedding a version number into the package name.
1450This practice will enable @value{GDBN} to load multiple versions of
1451your pretty-printers at the same time, because they will have
1452different names.
1453
1454You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1455can be evaluated multiple times without changing its meaning. An
1456ideal auto-load file will consist solely of @code{import}s of your
1457printer modules, followed by a call to a register pretty-printers with
1458the current objfile.
1459
1460Taken as a whole, this approach will scale nicely to multiple
1461inferiors, each potentially using a different library version.
1462Embedding a version number in the Python package name will ensure that
1463@value{GDBN} is able to load both sets of printers simultaneously.
1464Then, because the search for pretty-printers is done by objfile, and
1465because your auto-loaded code took care to register your library's
1466printers with a specific objfile, @value{GDBN} will find the correct
1467printers for the specific version of the library used by each
1468inferior.
1469
1470To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1471this code might appear in @code{gdb.libstdcxx.v6}:
1472
1473@smallexample
1474def register_printers(objfile):
1475 objfile.pretty_printers.append(str_lookup_function)
1476@end smallexample
1477
1478@noindent
1479And then the corresponding contents of the auto-load file would be:
1480
1481@smallexample
1482import gdb.libstdcxx.v6
1483gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1484@end smallexample
1485
1486The previous example illustrates a basic pretty-printer.
1487There are a few things that can be improved on.
1488The printer doesn't have a name, making it hard to identify in a
1489list of installed printers. The lookup function has a name, but
1490lookup functions can have arbitrary, even identical, names.
1491
1492Second, the printer only handles one type, whereas a library typically has
1493several types. One could install a lookup function for each desired type
1494in the library, but one could also have a single lookup function recognize
1495several types. The latter is the conventional way this is handled.
1496If a pretty-printer can handle multiple data types, then its
1497@dfn{subprinters} are the printers for the individual data types.
1498
1499The @code{gdb.printing} module provides a formal way of solving these
1500problems (@pxref{gdb.printing}).
1501Here is another example that handles multiple types.
1502
1503These are the types we are going to pretty-print:
1504
1505@smallexample
1506struct foo @{ int a, b; @};
1507struct bar @{ struct foo x, y; @};
1508@end smallexample
1509
1510Here are the printers:
1511
1512@smallexample
1513class fooPrinter:
1514 """Print a foo object."""
1515
1516 def __init__(self, val):
1517 self.val = val
1518
1519 def to_string(self):
1520 return ("a=<" + str(self.val["a"]) +
1521 "> b=<" + str(self.val["b"]) + ">")
1522
1523class barPrinter:
1524 """Print a bar object."""
1525
1526 def __init__(self, val):
1527 self.val = val
1528
1529 def to_string(self):
1530 return ("x=<" + str(self.val["x"]) +
1531 "> y=<" + str(self.val["y"]) + ">")
1532@end smallexample
1533
1534This example doesn't need a lookup function, that is handled by the
1535@code{gdb.printing} module. Instead a function is provided to build up
1536the object that handles the lookup.
1537
1538@smallexample
1539import gdb.printing
1540
1541def build_pretty_printer():
1542 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1543 "my_library")
1544 pp.add_printer('foo', '^foo$', fooPrinter)
1545 pp.add_printer('bar', '^bar$', barPrinter)
1546 return pp
1547@end smallexample
1548
1549And here is the autoload support:
1550
1551@smallexample
1552import gdb.printing
1553import my_library
1554gdb.printing.register_pretty_printer(
1555 gdb.current_objfile(),
1556 my_library.build_pretty_printer())
1557@end smallexample
1558
1559Finally, when this printer is loaded into @value{GDBN}, here is the
1560corresponding output of @samp{info pretty-printer}:
1561
1562@smallexample
1563(gdb) info pretty-printer
1564my_library.so:
1565 my_library
1566 foo
1567 bar
1568@end smallexample
1569
1570@node Type Printing API
1571@subsubsection Type Printing API
1572@cindex type printing API for Python
1573
1574@value{GDBN} provides a way for Python code to customize type display.
1575This is mainly useful for substituting canonical typedef names for
1576types.
1577
1578@cindex type printer
1579A @dfn{type printer} is just a Python object conforming to a certain
1580protocol. A simple base class implementing the protocol is provided;
1581see @ref{gdb.types}. A type printer must supply at least:
1582
1583@defivar type_printer enabled
1584A boolean which is True if the printer is enabled, and False
1585otherwise. This is manipulated by the @code{enable type-printer}
1586and @code{disable type-printer} commands.
1587@end defivar
1588
1589@defivar type_printer name
1590The name of the type printer. This must be a string. This is used by
1591the @code{enable type-printer} and @code{disable type-printer}
1592commands.
1593@end defivar
1594
1595@defmethod type_printer instantiate (self)
1596This is called by @value{GDBN} at the start of type-printing. It is
1597only called if the type printer is enabled. This method must return a
1598new object that supplies a @code{recognize} method, as described below.
1599@end defmethod
1600
1601
1602When displaying a type, say via the @code{ptype} command, @value{GDBN}
1603will compute a list of type recognizers. This is done by iterating
1604first over the per-objfile type printers (@pxref{Objfiles In Python}),
1605followed by the per-progspace type printers (@pxref{Progspaces In
1606Python}), and finally the global type printers.
1607
1608@value{GDBN} will call the @code{instantiate} method of each enabled
1609type printer. If this method returns @code{None}, then the result is
1610ignored; otherwise, it is appended to the list of recognizers.
1611
1612Then, when @value{GDBN} is going to display a type name, it iterates
1613over the list of recognizers. For each one, it calls the recognition
1614function, stopping if the function returns a non-@code{None} value.
1615The recognition function is defined as:
1616
1617@defmethod type_recognizer recognize (self, type)
1618If @var{type} is not recognized, return @code{None}. Otherwise,
1619return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1620The @var{type} argument will be an instance of @code{gdb.Type}
1621(@pxref{Types In Python}).
329baa95
DE
1622@end defmethod
1623
1624@value{GDBN} uses this two-pass approach so that type printers can
1625efficiently cache information without holding on to it too long. For
1626example, it can be convenient to look up type information in a type
1627printer and hold it for a recognizer's lifetime; if a single pass were
1628done then type printers would have to make use of the event system in
1629order to avoid holding information that could become stale as the
1630inferior changed.
1631
1632@node Frame Filter API
521b499b 1633@subsubsection Filtering Frames
329baa95
DE
1634@cindex frame filters api
1635
1636Frame filters are Python objects that manipulate the visibility of a
1637frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1638@value{GDBN}.
1639
1640Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1641commands (@pxref{GDB/MI}), those that return a collection of frames
1642are affected. The commands that work with frame filters are:
1643
1644@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1645@code{-stack-list-frames}
1646(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1647@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1648-stack-list-variables command}), @code{-stack-list-arguments}
1649@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1650@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1651-stack-list-locals command}).
1652
1653A frame filter works by taking an iterator as an argument, applying
1654actions to the contents of that iterator, and returning another
1655iterator (or, possibly, the same iterator it was provided in the case
1656where the filter does not perform any operations). Typically, frame
1657filters utilize tools such as the Python's @code{itertools} module to
1658work with and create new iterators from the source iterator.
1659Regardless of how a filter chooses to apply actions, it must not alter
1660the underlying @value{GDBN} frame or frames, or attempt to alter the
1661call-stack within @value{GDBN}. This preserves data integrity within
1662@value{GDBN}. Frame filters are executed on a priority basis and care
1663should be taken that some frame filters may have been executed before,
1664and that some frame filters will be executed after.
1665
1666An important consideration when designing frame filters, and well
1667worth reflecting upon, is that frame filters should avoid unwinding
1668the call stack if possible. Some stacks can run very deep, into the
1669tens of thousands in some cases. To search every frame when a frame
1670filter executes may be too expensive at that step. The frame filter
1671cannot know how many frames it has to iterate over, and it may have to
1672iterate through them all. This ends up duplicating effort as
1673@value{GDBN} performs this iteration when it prints the frames. If
1674the filter can defer unwinding frames until frame decorators are
1675executed, after the last filter has executed, it should. @xref{Frame
1676Decorator API}, for more information on decorators. Also, there are
1677examples for both frame decorators and filters in later chapters.
1678@xref{Writing a Frame Filter}, for more information.
1679
1680The Python dictionary @code{gdb.frame_filters} contains key/object
1681pairings that comprise a frame filter. Frame filters in this
1682dictionary are called @code{global} frame filters, and they are
1683available when debugging all inferiors. These frame filters must
1684register with the dictionary directly. In addition to the
1685@code{global} dictionary, there are other dictionaries that are loaded
1686with different inferiors via auto-loading (@pxref{Python
1687Auto-loading}). The two other areas where frame filter dictionaries
1688can be found are: @code{gdb.Progspace} which contains a
1689@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1690object which also contains a @code{frame_filters} dictionary
1691attribute.
1692
1693When a command is executed from @value{GDBN} that is compatible with
1694frame filters, @value{GDBN} combines the @code{global},
1695@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1696loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1697several frames, and thus several object files, might be in use.
1698@value{GDBN} then prunes any frame filter whose @code{enabled}
1699attribute is @code{False}. This pruned list is then sorted according
1700to the @code{priority} attribute in each filter.
1701
1702Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1703creates an iterator which wraps each frame in the call stack in a
1704@code{FrameDecorator} object, and calls each filter in order. The
1705output from the previous filter will always be the input to the next
1706filter, and so on.
1707
1708Frame filters have a mandatory interface which each frame filter must
1709implement, defined here:
1710
1711@defun FrameFilter.filter (iterator)
1712@value{GDBN} will call this method on a frame filter when it has
1713reached the order in the priority list for that filter.
1714
1715For example, if there are four frame filters:
1716
1717@smallexample
1718Name Priority
1719
1720Filter1 5
1721Filter2 10
1722Filter3 100
1723Filter4 1
1724@end smallexample
1725
1726The order that the frame filters will be called is:
1727
1728@smallexample
1729Filter3 -> Filter2 -> Filter1 -> Filter4
1730@end smallexample
1731
1732Note that the output from @code{Filter3} is passed to the input of
1733@code{Filter2}, and so on.
1734
1735This @code{filter} method is passed a Python iterator. This iterator
1736contains a sequence of frame decorators that wrap each
1737@code{gdb.Frame}, or a frame decorator that wraps another frame
1738decorator. The first filter that is executed in the sequence of frame
1739filters will receive an iterator entirely comprised of default
1740@code{FrameDecorator} objects. However, after each frame filter is
1741executed, the previous frame filter may have wrapped some or all of
1742the frame decorators with their own frame decorator. As frame
1743decorators must also conform to a mandatory interface, these
1744decorators can be assumed to act in a uniform manner (@pxref{Frame
1745Decorator API}).
1746
1747This method must return an object conforming to the Python iterator
1748protocol. Each item in the iterator must be an object conforming to
1749the frame decorator interface. If a frame filter does not wish to
1750perform any operations on this iterator, it should return that
1751iterator untouched.
1752
1753This method is not optional. If it does not exist, @value{GDBN} will
1754raise and print an error.
1755@end defun
1756
1757@defvar FrameFilter.name
1758The @code{name} attribute must be Python string which contains the
1759name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1760Management}). This attribute may contain any combination of letters
1761or numbers. Care should be taken to ensure that it is unique. This
1762attribute is mandatory.
1763@end defvar
1764
1765@defvar FrameFilter.enabled
1766The @code{enabled} attribute must be Python boolean. This attribute
1767indicates to @value{GDBN} whether the frame filter is enabled, and
1768should be considered when frame filters are executed. If
1769@code{enabled} is @code{True}, then the frame filter will be executed
1770when any of the backtrace commands detailed earlier in this chapter
1771are executed. If @code{enabled} is @code{False}, then the frame
1772filter will not be executed. This attribute is mandatory.
1773@end defvar
1774
1775@defvar FrameFilter.priority
1776The @code{priority} attribute must be Python integer. This attribute
1777controls the order of execution in relation to other frame filters.
1778There are no imposed limits on the range of @code{priority} other than
1779it must be a valid integer. The higher the @code{priority} attribute,
1780the sooner the frame filter will be executed in relation to other
1781frame filters. Although @code{priority} can be negative, it is
1782recommended practice to assume zero is the lowest priority that a
1783frame filter can be assigned. Frame filters that have the same
1784priority are executed in unsorted order in that priority slot. This
521b499b 1785attribute is mandatory. 100 is a good default priority.
329baa95
DE
1786@end defvar
1787
1788@node Frame Decorator API
521b499b 1789@subsubsection Decorating Frames
329baa95
DE
1790@cindex frame decorator api
1791
1792Frame decorators are sister objects to frame filters (@pxref{Frame
1793Filter API}). Frame decorators are applied by a frame filter and can
1794only be used in conjunction with frame filters.
1795
1796The purpose of a frame decorator is to customize the printed content
1797of each @code{gdb.Frame} in commands where frame filters are executed.
1798This concept is called decorating a frame. Frame decorators decorate
1799a @code{gdb.Frame} with Python code contained within each API call.
1800This separates the actual data contained in a @code{gdb.Frame} from
1801the decorated data produced by a frame decorator. This abstraction is
1802necessary to maintain integrity of the data contained in each
1803@code{gdb.Frame}.
1804
1805Frame decorators have a mandatory interface, defined below.
1806
1807@value{GDBN} already contains a frame decorator called
1808@code{FrameDecorator}. This contains substantial amounts of
1809boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1810recommended that other frame decorators inherit and extend this
1811object, and only to override the methods needed.
1812
521b499b
TT
1813@tindex gdb.FrameDecorator
1814@code{FrameDecorator} is defined in the Python module
1815@code{gdb.FrameDecorator}, so your code can import it like:
1816@smallexample
1817from gdb.FrameDecorator import FrameDecorator
1818@end smallexample
1819
329baa95
DE
1820@defun FrameDecorator.elided (self)
1821
1822The @code{elided} method groups frames together in a hierarchical
1823system. An example would be an interpreter, where multiple low-level
1824frames make up a single call in the interpreted language. In this
1825example, the frame filter would elide the low-level frames and present
1826a single high-level frame, representing the call in the interpreted
1827language, to the user.
1828
1829The @code{elided} function must return an iterable and this iterable
1830must contain the frames that are being elided wrapped in a suitable
1831frame decorator. If no frames are being elided this function may
1832return an empty iterable, or @code{None}. Elided frames are indented
1833from normal frames in a @code{CLI} backtrace, or in the case of
1834@code{GDB/MI}, are placed in the @code{children} field of the eliding
1835frame.
1836
1837It is the frame filter's task to also filter out the elided frames from
1838the source iterator. This will avoid printing the frame twice.
1839@end defun
1840
1841@defun FrameDecorator.function (self)
1842
1843This method returns the name of the function in the frame that is to
1844be printed.
1845
1846This method must return a Python string describing the function, or
1847@code{None}.
1848
1849If this function returns @code{None}, @value{GDBN} will not print any
1850data for this field.
1851@end defun
1852
1853@defun FrameDecorator.address (self)
1854
1855This method returns the address of the frame that is to be printed.
1856
1857This method must return a Python numeric integer type of sufficient
1858size to describe the address of the frame, or @code{None}.
1859
1860If this function returns a @code{None}, @value{GDBN} will not print
1861any data for this field.
1862@end defun
1863
1864@defun FrameDecorator.filename (self)
1865
1866This method returns the filename and path associated with this frame.
1867
1868This method must return a Python string containing the filename and
1869the path to the object file backing the frame, or @code{None}.
1870
1871If this function returns a @code{None}, @value{GDBN} will not print
1872any data for this field.
1873@end defun
1874
1875@defun FrameDecorator.line (self):
1876
1877This method returns the line number associated with the current
1878position within the function addressed by this frame.
1879
1880This method must return a Python integer type, or @code{None}.
1881
1882If this function returns a @code{None}, @value{GDBN} will not print
1883any data for this field.
1884@end defun
1885
1886@defun FrameDecorator.frame_args (self)
1887@anchor{frame_args}
1888
1889This method must return an iterable, or @code{None}. Returning an
1890empty iterable, or @code{None} means frame arguments will not be
1891printed for this frame. This iterable must contain objects that
1892implement two methods, described here.
1893
1894This object must implement a @code{argument} method which takes a
1895single @code{self} parameter and must return a @code{gdb.Symbol}
1896(@pxref{Symbols In Python}), or a Python string. The object must also
1897implement a @code{value} method which takes a single @code{self}
1898parameter and must return a @code{gdb.Value} (@pxref{Values From
1899Inferior}), a Python value, or @code{None}. If the @code{value}
1900method returns @code{None}, and the @code{argument} method returns a
1901@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1902the @code{gdb.Symbol} automatically.
1903
1904A brief example:
1905
1906@smallexample
1907class SymValueWrapper():
1908
1909 def __init__(self, symbol, value):
1910 self.sym = symbol
1911 self.val = value
1912
1913 def value(self):
1914 return self.val
1915
1916 def symbol(self):
1917 return self.sym
1918
1919class SomeFrameDecorator()
1920...
1921...
1922 def frame_args(self):
1923 args = []
1924 try:
1925 block = self.inferior_frame.block()
1926 except:
1927 return None
1928
1929 # Iterate over all symbols in a block. Only add
1930 # symbols that are arguments.
1931 for sym in block:
1932 if not sym.is_argument:
1933 continue
1934 args.append(SymValueWrapper(sym,None))
1935
1936 # Add example synthetic argument.
1937 args.append(SymValueWrapper(``foo'', 42))
1938
1939 return args
1940@end smallexample
1941@end defun
1942
1943@defun FrameDecorator.frame_locals (self)
1944
1945This method must return an iterable or @code{None}. Returning an
1946empty iterable, or @code{None} means frame local arguments will not be
1947printed for this frame.
1948
1949The object interface, the description of the various strategies for
1950reading frame locals, and the example are largely similar to those
1951described in the @code{frame_args} function, (@pxref{frame_args,,The
1952frame filter frame_args function}). Below is a modified example:
1953
1954@smallexample
1955class SomeFrameDecorator()
1956...
1957...
1958 def frame_locals(self):
1959 vars = []
1960 try:
1961 block = self.inferior_frame.block()
1962 except:
1963 return None
1964
1965 # Iterate over all symbols in a block. Add all
1966 # symbols, except arguments.
1967 for sym in block:
1968 if sym.is_argument:
1969 continue
1970 vars.append(SymValueWrapper(sym,None))
1971
1972 # Add an example of a synthetic local variable.
1973 vars.append(SymValueWrapper(``bar'', 99))
1974
1975 return vars
1976@end smallexample
1977@end defun
1978
1979@defun FrameDecorator.inferior_frame (self):
1980
1981This method must return the underlying @code{gdb.Frame} that this
1982frame decorator is decorating. @value{GDBN} requires the underlying
1983frame for internal frame information to determine how to print certain
1984values when printing a frame.
1985@end defun
1986
1987@node Writing a Frame Filter
1988@subsubsection Writing a Frame Filter
1989@cindex writing a frame filter
1990
1991There are three basic elements that a frame filter must implement: it
1992must correctly implement the documented interface (@pxref{Frame Filter
1993API}), it must register itself with @value{GDBN}, and finally, it must
1994decide if it is to work on the data provided by @value{GDBN}. In all
1995cases, whether it works on the iterator or not, each frame filter must
1996return an iterator. A bare-bones frame filter follows the pattern in
1997the following example.
1998
1999@smallexample
2000import gdb
2001
2002class FrameFilter():
2003
2004 def __init__(self):
2005 # Frame filter attribute creation.
2006 #
2007 # 'name' is the name of the filter that GDB will display.
2008 #
2009 # 'priority' is the priority of the filter relative to other
2010 # filters.
2011 #
2012 # 'enabled' is a boolean that indicates whether this filter is
2013 # enabled and should be executed.
2014
2015 self.name = "Foo"
2016 self.priority = 100
2017 self.enabled = True
2018
2019 # Register this frame filter with the global frame_filters
2020 # dictionary.
2021 gdb.frame_filters[self.name] = self
2022
2023 def filter(self, frame_iter):
2024 # Just return the iterator.
2025 return frame_iter
2026@end smallexample
2027
2028The frame filter in the example above implements the three
2029requirements for all frame filters. It implements the API, self
2030registers, and makes a decision on the iterator (in this case, it just
2031returns the iterator untouched).
2032
2033The first step is attribute creation and assignment, and as shown in
2034the comments the filter assigns the following attributes: @code{name},
2035@code{priority} and whether the filter should be enabled with the
2036@code{enabled} attribute.
2037
2038The second step is registering the frame filter with the dictionary or
2039dictionaries that the frame filter has interest in. As shown in the
2040comments, this filter just registers itself with the global dictionary
2041@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2042is a dictionary that is initialized in the @code{gdb} module when
2043@value{GDBN} starts. What dictionary a filter registers with is an
2044important consideration. Generally, if a filter is specific to a set
2045of code, it should be registered either in the @code{objfile} or
2046@code{progspace} dictionaries as they are specific to the program
2047currently loaded in @value{GDBN}. The global dictionary is always
2048present in @value{GDBN} and is never unloaded. Any filters registered
2049with the global dictionary will exist until @value{GDBN} exits. To
2050avoid filters that may conflict, it is generally better to register
2051frame filters against the dictionaries that more closely align with
2052the usage of the filter currently in question. @xref{Python
2053Auto-loading}, for further information on auto-loading Python scripts.
2054
2055@value{GDBN} takes a hands-off approach to frame filter registration,
2056therefore it is the frame filter's responsibility to ensure
2057registration has occurred, and that any exceptions are handled
2058appropriately. In particular, you may wish to handle exceptions
2059relating to Python dictionary key uniqueness. It is mandatory that
2060the dictionary key is the same as frame filter's @code{name}
2061attribute. When a user manages frame filters (@pxref{Frame Filter
2062Management}), the names @value{GDBN} will display are those contained
2063in the @code{name} attribute.
2064
2065The final step of this example is the implementation of the
2066@code{filter} method. As shown in the example comments, we define the
2067@code{filter} method and note that the method must take an iterator,
2068and also must return an iterator. In this bare-bones example, the
2069frame filter is not very useful as it just returns the iterator
2070untouched. However this is a valid operation for frame filters that
2071have the @code{enabled} attribute set, but decide not to operate on
2072any frames.
2073
2074In the next example, the frame filter operates on all frames and
2075utilizes a frame decorator to perform some work on the frames.
2076@xref{Frame Decorator API}, for further information on the frame
2077decorator interface.
2078
2079This example works on inlined frames. It highlights frames which are
2080inlined by tagging them with an ``[inlined]'' tag. By applying a
2081frame decorator to all frames with the Python @code{itertools imap}
2082method, the example defers actions to the frame decorator. Frame
2083decorators are only processed when @value{GDBN} prints the backtrace.
2084
2085This introduces a new decision making topic: whether to perform
2086decision making operations at the filtering step, or at the printing
2087step. In this example's approach, it does not perform any filtering
2088decisions at the filtering step beyond mapping a frame decorator to
2089each frame. This allows the actual decision making to be performed
2090when each frame is printed. This is an important consideration, and
2091well worth reflecting upon when designing a frame filter. An issue
2092that frame filters should avoid is unwinding the stack if possible.
2093Some stacks can run very deep, into the tens of thousands in some
2094cases. To search every frame to determine if it is inlined ahead of
2095time may be too expensive at the filtering step. The frame filter
2096cannot know how many frames it has to iterate over, and it would have
2097to iterate through them all. This ends up duplicating effort as
2098@value{GDBN} performs this iteration when it prints the frames.
2099
2100In this example decision making can be deferred to the printing step.
2101As each frame is printed, the frame decorator can examine each frame
2102in turn when @value{GDBN} iterates. From a performance viewpoint,
2103this is the most appropriate decision to make as it avoids duplicating
2104the effort that the printing step would undertake anyway. Also, if
2105there are many frame filters unwinding the stack during filtering, it
2106can substantially delay the printing of the backtrace which will
2107result in large memory usage, and a poor user experience.
2108
2109@smallexample
2110class InlineFilter():
2111
2112 def __init__(self):
2113 self.name = "InlinedFrameFilter"
2114 self.priority = 100
2115 self.enabled = True
2116 gdb.frame_filters[self.name] = self
2117
2118 def filter(self, frame_iter):
2119 frame_iter = itertools.imap(InlinedFrameDecorator,
2120 frame_iter)
2121 return frame_iter
2122@end smallexample
2123
2124This frame filter is somewhat similar to the earlier example, except
2125that the @code{filter} method applies a frame decorator object called
2126@code{InlinedFrameDecorator} to each element in the iterator. The
2127@code{imap} Python method is light-weight. It does not proactively
2128iterate over the iterator, but rather creates a new iterator which
2129wraps the existing one.
2130
2131Below is the frame decorator for this example.
2132
2133@smallexample
2134class InlinedFrameDecorator(FrameDecorator):
2135
2136 def __init__(self, fobj):
2137 super(InlinedFrameDecorator, self).__init__(fobj)
2138
2139 def function(self):
2140 frame = fobj.inferior_frame()
2141 name = str(frame.name())
2142
2143 if frame.type() == gdb.INLINE_FRAME:
2144 name = name + " [inlined]"
2145
2146 return name
2147@end smallexample
2148
2149This frame decorator only defines and overrides the @code{function}
2150method. It lets the supplied @code{FrameDecorator}, which is shipped
2151with @value{GDBN}, perform the other work associated with printing
2152this frame.
2153
2154The combination of these two objects create this output from a
2155backtrace:
2156
2157@smallexample
2158#0 0x004004e0 in bar () at inline.c:11
2159#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2160#2 0x00400566 in main () at inline.c:31
2161@end smallexample
2162
2163So in the case of this example, a frame decorator is applied to all
2164frames, regardless of whether they may be inlined or not. As
2165@value{GDBN} iterates over the iterator produced by the frame filters,
2166@value{GDBN} executes each frame decorator which then makes a decision
2167on what to print in the @code{function} callback. Using a strategy
2168like this is a way to defer decisions on the frame content to printing
2169time.
2170
2171@subheading Eliding Frames
2172
2173It might be that the above example is not desirable for representing
2174inlined frames, and a hierarchical approach may be preferred. If we
2175want to hierarchically represent frames, the @code{elided} frame
2176decorator interface might be preferable.
2177
2178This example approaches the issue with the @code{elided} method. This
2179example is quite long, but very simplistic. It is out-of-scope for
2180this section to write a complete example that comprehensively covers
2181all approaches of finding and printing inlined frames. However, this
2182example illustrates the approach an author might use.
2183
2184This example comprises of three sections.
2185
2186@smallexample
2187class InlineFrameFilter():
2188
2189 def __init__(self):
2190 self.name = "InlinedFrameFilter"
2191 self.priority = 100
2192 self.enabled = True
2193 gdb.frame_filters[self.name] = self
2194
2195 def filter(self, frame_iter):
2196 return ElidingInlineIterator(frame_iter)
2197@end smallexample
2198
2199This frame filter is very similar to the other examples. The only
2200difference is this frame filter is wrapping the iterator provided to
2201it (@code{frame_iter}) with a custom iterator called
2202@code{ElidingInlineIterator}. This again defers actions to when
2203@value{GDBN} prints the backtrace, as the iterator is not traversed
2204until printing.
2205
2206The iterator for this example is as follows. It is in this section of
2207the example where decisions are made on the content of the backtrace.
2208
2209@smallexample
2210class ElidingInlineIterator:
2211 def __init__(self, ii):
2212 self.input_iterator = ii
2213
2214 def __iter__(self):
2215 return self
2216
2217 def next(self):
2218 frame = next(self.input_iterator)
2219
2220 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2221 return frame
2222
2223 try:
2224 eliding_frame = next(self.input_iterator)
2225 except StopIteration:
2226 return frame
2227 return ElidingFrameDecorator(eliding_frame, [frame])
2228@end smallexample
2229
2230This iterator implements the Python iterator protocol. When the
2231@code{next} function is called (when @value{GDBN} prints each frame),
2232the iterator checks if this frame decorator, @code{frame}, is wrapping
2233an inlined frame. If it is not, it returns the existing frame decorator
2234untouched. If it is wrapping an inlined frame, it assumes that the
2235inlined frame was contained within the next oldest frame,
2236@code{eliding_frame}, which it fetches. It then creates and returns a
2237frame decorator, @code{ElidingFrameDecorator}, which contains both the
2238elided frame, and the eliding frame.
2239
2240@smallexample
2241class ElidingInlineDecorator(FrameDecorator):
2242
2243 def __init__(self, frame, elided_frames):
2244 super(ElidingInlineDecorator, self).__init__(frame)
2245 self.frame = frame
2246 self.elided_frames = elided_frames
2247
2248 def elided(self):
2249 return iter(self.elided_frames)
2250@end smallexample
2251
2252This frame decorator overrides one function and returns the inlined
2253frame in the @code{elided} method. As before it lets
2254@code{FrameDecorator} do the rest of the work involved in printing
2255this frame. This produces the following output.
2256
2257@smallexample
2258#0 0x004004e0 in bar () at inline.c:11
2259#2 0x00400529 in main () at inline.c:25
2260 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2261@end smallexample
2262
2263In that output, @code{max} which has been inlined into @code{main} is
2264printed hierarchically. Another approach would be to combine the
2265@code{function} method, and the @code{elided} method to both print a
2266marker in the inlined frame, and also show the hierarchical
2267relationship.
2268
d11916aa
SS
2269@node Unwinding Frames in Python
2270@subsubsection Unwinding Frames in Python
2271@cindex unwinding frames in Python
2272
2273In @value{GDBN} terminology ``unwinding'' is the process of finding
2274the previous frame (that is, caller's) from the current one. An
2275unwinder has three methods. The first one checks if it can handle
2276given frame (``sniff'' it). For the frames it can sniff an unwinder
2277provides two additional methods: it can return frame's ID, and it can
2278fetch registers from the previous frame. A running @value{GDBN}
2279mantains a list of the unwinders and calls each unwinder's sniffer in
2280turn until it finds the one that recognizes the current frame. There
2281is an API to register an unwinder.
2282
2283The unwinders that come with @value{GDBN} handle standard frames.
2284However, mixed language applications (for example, an application
2285running Java Virtual Machine) sometimes use frame layouts that cannot
2286be handled by the @value{GDBN} unwinders. You can write Python code
2287that can handle such custom frames.
2288
2289You implement a frame unwinder in Python as a class with which has two
2290attributes, @code{name} and @code{enabled}, with obvious meanings, and
2291a single method @code{__call__}, which examines a given frame and
2292returns an object (an instance of @code{gdb.UnwindInfo class)}
2293describing it. If an unwinder does not recognize a frame, it should
2294return @code{None}. The code in @value{GDBN} that enables writing
2295unwinders in Python uses this object to return frame's ID and previous
2296frame registers when @value{GDBN} core asks for them.
2297
e7b5068c
TT
2298An unwinder should do as little work as possible. Some otherwise
2299innocuous operations can cause problems (even crashes, as this code is
2300not not well-hardened yet). For example, making an inferior call from
2301an unwinder is unadvisable, as an inferior call will reset
2302@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2303unwinding.
2304
d11916aa
SS
2305@subheading Unwinder Input
2306
2307An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2308provides a method to read frame's registers:
2309
2310@defun PendingFrame.read_register (reg)
e7b5068c 2311This method returns the contents of the register @var{reg} in the
d11916aa
SS
2312frame as a @code{gdb.Value} object. @var{reg} can be either a
2313register number or a register name; the values are platform-specific.
2314They are usually found in the corresponding
e7b5068c
TT
2315@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2316@var{reg} does not name a register for the current architecture, this
2317method will throw an exception.
2318
2319Note that this method will always return a @code{gdb.Value} for a
2320valid register name. This does not mean that the value will be valid.
2321For example, you may request a register that an earlier unwinder could
2322not unwind---the value will be unavailable. Instead, the
2323@code{gdb.Value} returned from this method will be lazy; that is, its
2324underlying bits will not be fetched until it is first used. So,
2325attempting to use such a value will cause an exception at the point of
2326use.
2327
2328The type of the returned @code{gdb.Value} depends on the register and
2329the architecture. It is common for registers to have a scalar type,
2330like @code{long long}; but many other types are possible, such as
2331pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2332@end defun
2333
2334It also provides a factory method to create a @code{gdb.UnwindInfo}
2335instance to be returned to @value{GDBN}:
2336
2337@defun PendingFrame.create_unwind_info (frame_id)
2338Returns a new @code{gdb.UnwindInfo} instance identified by given
2339@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2340using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2341determine which function will be used, as follows:
2342
2343@table @code
d11916aa 2344@item sp, pc
e7b5068c
TT
2345The frame is identified by the given stack address and PC. The stack
2346address must be chosen so that it is constant throughout the lifetime
2347of the frame, so a typical choice is the value of the stack pointer at
2348the start of the function---in the DWARF standard, this would be the
2349``Call Frame Address''.
d11916aa 2350
e7b5068c
TT
2351This is the most common case by far. The other cases are documented
2352for completeness but are only useful in specialized situations.
2353
2354@item sp, pc, special
2355The frame is identified by the stack address, the PC, and a
2356``special'' address. The special address is used on architectures
2357that can have frames that do not change the stack, but which are still
2358distinct, for example the IA-64, which has a second stack for
2359registers. Both @var{sp} and @var{special} must be constant
2360throughout the lifetime of the frame.
d11916aa
SS
2361
2362@item sp
e7b5068c
TT
2363The frame is identified by the stack address only. Any other stack
2364frame with a matching @var{sp} will be considered to match this frame.
2365Inside gdb, this is called a ``wild frame''. You will never need
2366this.
d11916aa 2367@end table
e7b5068c
TT
2368
2369Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2370
2371@end defun
2372
2373@subheading Unwinder Output: UnwindInfo
2374
2375Use @code{PendingFrame.create_unwind_info} method described above to
2376create a @code{gdb.UnwindInfo} instance. Use the following method to
2377specify caller registers that have been saved in this frame:
2378
2379@defun gdb.UnwindInfo.add_saved_register (reg, value)
2380@var{reg} identifies the register. It can be a number or a name, just
2381as for the @code{PendingFrame.read_register} method above.
2382@var{value} is a register value (a @code{gdb.Value} object).
2383@end defun
2384
2385@subheading Unwinder Skeleton Code
2386
2387@value{GDBN} comes with the module containing the base @code{Unwinder}
2388class. Derive your unwinder class from it and structure the code as
2389follows:
2390
2391@smallexample
2392from gdb.unwinders import Unwinder
2393
2394class FrameId(object):
2395 def __init__(self, sp, pc):
2396 self.sp = sp
2397 self.pc = pc
2398
2399
2400class MyUnwinder(Unwinder):
2401 def __init__(....):
2402 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2403
2404 def __call__(pending_frame):
2405 if not <we recognize frame>:
2406 return None
2407 # Create UnwindInfo. Usually the frame is identified by the stack
2408 # pointer and the program counter.
2409 sp = pending_frame.read_register(<SP number>)
2410 pc = pending_frame.read_register(<PC number>)
2411 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2412
2413 # Find the values of the registers in the caller's frame and
2414 # save them in the result:
2415 unwind_info.add_saved_register(<register>, <value>)
2416 ....
2417
2418 # Return the result:
2419 return unwind_info
2420
2421@end smallexample
2422
2423@subheading Registering a Unwinder
2424
2425An object file, a program space, and the @value{GDBN} proper can have
2426unwinders registered with it.
2427
2428The @code{gdb.unwinders} module provides the function to register a
2429unwinder:
2430
2431@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2432@var{locus} is specifies an object file or a program space to which
2433@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2434@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2435added @var{unwinder} will be called before any other unwinder from the
2436same locus. Two unwinders in the same locus cannot have the same
2437name. An attempt to add a unwinder with already existing name raises
2438an exception unless @var{replace} is @code{True}, in which case the
2439old unwinder is deleted.
2440@end defun
2441
2442@subheading Unwinder Precedence
2443
2444@value{GDBN} first calls the unwinders from all the object files in no
2445particular order, then the unwinders from the current program space,
2446and finally the unwinders from @value{GDBN}.
2447
0c6e92a5
SC
2448@node Xmethods In Python
2449@subsubsection Xmethods In Python
2450@cindex xmethods in Python
2451
2452@dfn{Xmethods} are additional methods or replacements for existing
2453methods of a C@t{++} class. This feature is useful for those cases
2454where a method defined in C@t{++} source code could be inlined or
2455optimized out by the compiler, making it unavailable to @value{GDBN}.
2456For such cases, one can define an xmethod to serve as a replacement
2457for the method defined in the C@t{++} source code. @value{GDBN} will
2458then invoke the xmethod, instead of the C@t{++} method, to
2459evaluate expressions. One can also use xmethods when debugging
2460with core files. Moreover, when debugging live programs, invoking an
2461xmethod need not involve running the inferior (which can potentially
2462perturb its state). Hence, even if the C@t{++} method is available, it
2463is better to use its replacement xmethod if one is defined.
2464
2465The xmethods feature in Python is available via the concepts of an
2466@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2467implement an xmethod, one has to implement a matcher and a
2468corresponding worker for it (more than one worker can be
2469implemented, each catering to a different overloaded instance of the
2470method). Internally, @value{GDBN} invokes the @code{match} method of a
2471matcher to match the class type and method name. On a match, the
2472@code{match} method returns a list of matching @emph{worker} objects.
2473Each worker object typically corresponds to an overloaded instance of
2474the xmethod. They implement a @code{get_arg_types} method which
2475returns a sequence of types corresponding to the arguments the xmethod
2476requires. @value{GDBN} uses this sequence of types to perform
2477overload resolution and picks a winning xmethod worker. A winner
2478is also selected from among the methods @value{GDBN} finds in the
2479C@t{++} source code. Next, the winning xmethod worker and the
2480winning C@t{++} method are compared to select an overall winner. In
2481case of a tie between a xmethod worker and a C@t{++} method, the
2482xmethod worker is selected as the winner. That is, if a winning
2483xmethod worker is found to be equivalent to the winning C@t{++}
2484method, then the xmethod worker is treated as a replacement for
2485the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2486method. If the winning xmethod worker is the overall winner, then
897c3d32 2487the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2488of the worker object.
2489
2490If one wants to implement an xmethod as a replacement for an
2491existing C@t{++} method, then they have to implement an equivalent
2492xmethod which has exactly the same name and takes arguments of
2493exactly the same type as the C@t{++} method. If the user wants to
2494invoke the C@t{++} method even though a replacement xmethod is
2495available for that method, then they can disable the xmethod.
2496
2497@xref{Xmethod API}, for API to implement xmethods in Python.
2498@xref{Writing an Xmethod}, for implementing xmethods in Python.
2499
2500@node Xmethod API
2501@subsubsection Xmethod API
2502@cindex xmethod API
2503
2504The @value{GDBN} Python API provides classes, interfaces and functions
2505to implement, register and manipulate xmethods.
2506@xref{Xmethods In Python}.
2507
2508An xmethod matcher should be an instance of a class derived from
2509@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2510object with similar interface and attributes. An instance of
2511@code{XMethodMatcher} has the following attributes:
2512
2513@defvar name
2514The name of the matcher.
2515@end defvar
2516
2517@defvar enabled
2518A boolean value indicating whether the matcher is enabled or disabled.
2519@end defvar
2520
2521@defvar methods
2522A list of named methods managed by the matcher. Each object in the list
2523is an instance of the class @code{XMethod} defined in the module
2524@code{gdb.xmethod}, or any object with the following attributes:
2525
2526@table @code
2527
2528@item name
2529Name of the xmethod which should be unique for each xmethod
2530managed by the matcher.
2531
2532@item enabled
2533A boolean value indicating whether the xmethod is enabled or
2534disabled.
2535
2536@end table
2537
2538The class @code{XMethod} is a convenience class with same
2539attributes as above along with the following constructor:
2540
dd5d5494 2541@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2542Constructs an enabled xmethod with name @var{name}.
2543@end defun
2544@end defvar
2545
2546@noindent
2547The @code{XMethodMatcher} class has the following methods:
2548
dd5d5494 2549@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2550Constructs an enabled xmethod matcher with name @var{name}. The
2551@code{methods} attribute is initialized to @code{None}.
2552@end defun
2553
dd5d5494 2554@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2555Derived classes should override this method. It should return a
2556xmethod worker object (or a sequence of xmethod worker
2557objects) matching the @var{class_type} and @var{method_name}.
2558@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2559is a string value. If the matcher manages named methods as listed in
2560its @code{methods} attribute, then only those worker objects whose
2561corresponding entries in the @code{methods} list are enabled should be
2562returned.
2563@end defun
2564
2565An xmethod worker should be an instance of a class derived from
2566@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2567or support the following interface:
2568
dd5d5494 2569@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2570This method returns a sequence of @code{gdb.Type} objects corresponding
2571to the arguments that the xmethod takes. It can return an empty
2572sequence or @code{None} if the xmethod does not take any arguments.
2573If the xmethod takes a single argument, then a single
2574@code{gdb.Type} object corresponding to it can be returned.
2575@end defun
2576
2ce1cdbf
DE
2577@defun XMethodWorker.get_result_type (self, *args)
2578This method returns a @code{gdb.Type} object representing the type
2579of the result of invoking this xmethod.
2580The @var{args} argument is the same tuple of arguments that would be
2581passed to the @code{__call__} method of this worker.
2582@end defun
2583
dd5d5494 2584@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2585This is the method which does the @emph{work} of the xmethod. The
2586@var{args} arguments is the tuple of arguments to the xmethod. Each
2587element in this tuple is a gdb.Value object. The first element is
2588always the @code{this} pointer value.
2589@end defun
2590
2591For @value{GDBN} to lookup xmethods, the xmethod matchers
2592should be registered using the following function defined in the module
2593@code{gdb.xmethod}:
2594
dd5d5494 2595@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2596The @code{matcher} is registered with @code{locus}, replacing an
2597existing matcher with the same name as @code{matcher} if
2598@code{replace} is @code{True}. @code{locus} can be a
2599@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2600@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2601@code{None}. If it is @code{None}, then @code{matcher} is registered
2602globally.
2603@end defun
2604
2605@node Writing an Xmethod
2606@subsubsection Writing an Xmethod
2607@cindex writing xmethods in Python
2608
2609Implementing xmethods in Python will require implementing xmethod
2610matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2611the following C@t{++} class:
2612
2613@smallexample
2614class MyClass
2615@{
2616public:
2617 MyClass (int a) : a_(a) @{ @}
2618
2619 int geta (void) @{ return a_; @}
2620 int operator+ (int b);
2621
2622private:
2623 int a_;
2624@};
2625
2626int
2627MyClass::operator+ (int b)
2628@{
2629 return a_ + b;
2630@}
2631@end smallexample
2632
2633@noindent
2634Let us define two xmethods for the class @code{MyClass}, one
2635replacing the method @code{geta}, and another adding an overloaded
2636flavor of @code{operator+} which takes a @code{MyClass} argument (the
2637C@t{++} code above already has an overloaded @code{operator+}
2638which takes an @code{int} argument). The xmethod matcher can be
2639defined as follows:
2640
2641@smallexample
2642class MyClass_geta(gdb.xmethod.XMethod):
2643 def __init__(self):
2644 gdb.xmethod.XMethod.__init__(self, 'geta')
2645
2646 def get_worker(self, method_name):
2647 if method_name == 'geta':
2648 return MyClassWorker_geta()
2649
2650
2651class MyClass_sum(gdb.xmethod.XMethod):
2652 def __init__(self):
2653 gdb.xmethod.XMethod.__init__(self, 'sum')
2654
2655 def get_worker(self, method_name):
2656 if method_name == 'operator+':
2657 return MyClassWorker_plus()
2658
2659
2660class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2661 def __init__(self):
2662 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2663 # List of methods 'managed' by this matcher
2664 self.methods = [MyClass_geta(), MyClass_sum()]
2665
2666 def match(self, class_type, method_name):
2667 if class_type.tag != 'MyClass':
2668 return None
2669 workers = []
2670 for method in self.methods:
2671 if method.enabled:
2672 worker = method.get_worker(method_name)
2673 if worker:
2674 workers.append(worker)
2675
2676 return workers
2677@end smallexample
2678
2679@noindent
2680Notice that the @code{match} method of @code{MyClassMatcher} returns
2681a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2682method, and a worker object of type @code{MyClassWorker_plus} for the
2683@code{operator+} method. This is done indirectly via helper classes
2684derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2685@code{methods} attribute in a matcher as it is optional. However, if a
2686matcher manages more than one xmethod, it is a good practice to list the
2687xmethods in the @code{methods} attribute of the matcher. This will then
2688facilitate enabling and disabling individual xmethods via the
2689@code{enable/disable} commands. Notice also that a worker object is
2690returned only if the corresponding entry in the @code{methods} attribute
2691of the matcher is enabled.
2692
2693The implementation of the worker classes returned by the matcher setup
2694above is as follows:
2695
2696@smallexample
2697class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2698 def get_arg_types(self):
2699 return None
2ce1cdbf
DE
2700
2701 def get_result_type(self, obj):
2702 return gdb.lookup_type('int')
0c6e92a5
SC
2703
2704 def __call__(self, obj):
2705 return obj['a_']
2706
2707
2708class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2709 def get_arg_types(self):
2710 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2711
2712 def get_result_type(self, obj):
2713 return gdb.lookup_type('int')
0c6e92a5
SC
2714
2715 def __call__(self, obj, other):
2716 return obj['a_'] + other['a_']
2717@end smallexample
2718
2719For @value{GDBN} to actually lookup a xmethod, it has to be
2720registered with it. The matcher defined above is registered with
2721@value{GDBN} globally as follows:
2722
2723@smallexample
2724gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2725@end smallexample
2726
2727If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2728code as follows:
2729
2730@smallexample
2731MyClass obj(5);
2732@end smallexample
2733
2734@noindent
2735then, after loading the Python script defining the xmethod matchers
2736and workers into @code{GDBN}, invoking the method @code{geta} or using
2737the operator @code{+} on @code{obj} will invoke the xmethods
2738defined above:
2739
2740@smallexample
2741(gdb) p obj.geta()
2742$1 = 5
2743
2744(gdb) p obj + obj
2745$2 = 10
2746@end smallexample
2747
2748Consider another example with a C++ template class:
2749
2750@smallexample
2751template <class T>
2752class MyTemplate
2753@{
2754public:
2755 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2756 ~MyTemplate () @{ delete [] data_; @}
2757
2758 int footprint (void)
2759 @{
2760 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2761 @}
2762
2763private:
2764 int dsize_;
2765 T *data_;
2766@};
2767@end smallexample
2768
2769Let us implement an xmethod for the above class which serves as a
2770replacement for the @code{footprint} method. The full code listing
2771of the xmethod workers and xmethod matchers is as follows:
2772
2773@smallexample
2774class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2775 def __init__(self, class_type):
2776 self.class_type = class_type
2ce1cdbf 2777
0c6e92a5
SC
2778 def get_arg_types(self):
2779 return None
2ce1cdbf
DE
2780
2781 def get_result_type(self):
2782 return gdb.lookup_type('int')
2783
0c6e92a5
SC
2784 def __call__(self, obj):
2785 return (self.class_type.sizeof +
2786 obj['dsize_'] *
2787 self.class_type.template_argument(0).sizeof)
2788
2789
2790class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2791 def __init__(self):
2792 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2793
2794 def match(self, class_type, method_name):
2795 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2796 class_type.tag) and
2797 method_name == 'footprint'):
2798 return MyTemplateWorker_footprint(class_type)
2799@end smallexample
2800
2801Notice that, in this example, we have not used the @code{methods}
2802attribute of the matcher as the matcher manages only one xmethod. The
2803user can enable/disable this xmethod by enabling/disabling the matcher
2804itself.
2805
329baa95
DE
2806@node Inferiors In Python
2807@subsubsection Inferiors In Python
2808@cindex inferiors in Python
2809
2810@findex gdb.Inferior
2811Programs which are being run under @value{GDBN} are called inferiors
2812(@pxref{Inferiors and Programs}). Python scripts can access
2813information about and manipulate inferiors controlled by @value{GDBN}
2814via objects of the @code{gdb.Inferior} class.
2815
2816The following inferior-related functions are available in the @code{gdb}
2817module:
2818
2819@defun gdb.inferiors ()
2820Return a tuple containing all inferior objects.
2821@end defun
2822
2823@defun gdb.selected_inferior ()
2824Return an object representing the current inferior.
2825@end defun
2826
2827A @code{gdb.Inferior} object has the following attributes:
2828
2829@defvar Inferior.num
2830ID of inferior, as assigned by GDB.
2831@end defvar
2832
2833@defvar Inferior.pid
2834Process ID of the inferior, as assigned by the underlying operating
2835system.
2836@end defvar
2837
2838@defvar Inferior.was_attached
2839Boolean signaling whether the inferior was created using `attach', or
2840started by @value{GDBN} itself.
2841@end defvar
2842
a40bf0c2
SM
2843@defvar Inferior.progspace
2844The inferior's program space. @xref{Progspaces In Python}.
2845@end defvar
2846
329baa95
DE
2847A @code{gdb.Inferior} object has the following methods:
2848
2849@defun Inferior.is_valid ()
2850Returns @code{True} if the @code{gdb.Inferior} object is valid,
2851@code{False} if not. A @code{gdb.Inferior} object will become invalid
2852if the inferior no longer exists within @value{GDBN}. All other
2853@code{gdb.Inferior} methods will throw an exception if it is invalid
2854at the time the method is called.
2855@end defun
2856
2857@defun Inferior.threads ()
2858This method returns a tuple holding all the threads which are valid
2859when it is called. If there are no valid threads, the method will
2860return an empty tuple.
2861@end defun
2862
2863@findex Inferior.read_memory
2864@defun Inferior.read_memory (address, length)
a86c90e6 2865Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2866@var{address}. Returns a buffer object, which behaves much like an array
2867or a string. It can be modified and given to the
79778b30 2868@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2869value is a @code{memoryview} object.
2870@end defun
2871
2872@findex Inferior.write_memory
2873@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2874Write the contents of @var{buffer} to the inferior, starting at
2875@var{address}. The @var{buffer} parameter must be a Python object
2876which supports the buffer protocol, i.e., a string, an array or the
2877object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2878determines the number of addressable memory units from @var{buffer} to be
2879written.
329baa95
DE
2880@end defun
2881
2882@findex gdb.search_memory
2883@defun Inferior.search_memory (address, length, pattern)
2884Search a region of the inferior memory starting at @var{address} with
2885the given @var{length} using the search pattern supplied in
2886@var{pattern}. The @var{pattern} parameter must be a Python object
2887which supports the buffer protocol, i.e., a string, an array or the
2888object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2889containing the address where the pattern was found, or @code{None} if
2890the pattern could not be found.
2891@end defun
2892
da2c323b
KB
2893@findex Inferior.thread_from_thread_handle
2894@defun Inferior.thread_from_thread_handle (thread_handle)
2895Return the thread object corresponding to @var{thread_handle}, a thread
2896library specific data structure such as @code{pthread_t} for pthreads
2897library implementations.
2898@end defun
2899
329baa95
DE
2900@node Events In Python
2901@subsubsection Events In Python
2902@cindex inferior events in Python
2903
2904@value{GDBN} provides a general event facility so that Python code can be
2905notified of various state changes, particularly changes that occur in
2906the inferior.
2907
2908An @dfn{event} is just an object that describes some state change. The
2909type of the object and its attributes will vary depending on the details
2910of the change. All the existing events are described below.
2911
2912In order to be notified of an event, you must register an event handler
2913with an @dfn{event registry}. An event registry is an object in the
2914@code{gdb.events} module which dispatches particular events. A registry
2915provides methods to register and unregister event handlers:
2916
2917@defun EventRegistry.connect (object)
2918Add the given callable @var{object} to the registry. This object will be
2919called when an event corresponding to this registry occurs.
2920@end defun
2921
2922@defun EventRegistry.disconnect (object)
2923Remove the given @var{object} from the registry. Once removed, the object
2924will no longer receive notifications of events.
2925@end defun
2926
2927Here is an example:
2928
2929@smallexample
2930def exit_handler (event):
2931 print "event type: exit"
2932 print "exit code: %d" % (event.exit_code)
2933
2934gdb.events.exited.connect (exit_handler)
2935@end smallexample
2936
2937In the above example we connect our handler @code{exit_handler} to the
2938registry @code{events.exited}. Once connected, @code{exit_handler} gets
2939called when the inferior exits. The argument @dfn{event} in this example is
2940of type @code{gdb.ExitedEvent}. As you can see in the example the
2941@code{ExitedEvent} object has an attribute which indicates the exit code of
2942the inferior.
2943
2944The following is a listing of the event registries that are available and
2945details of the events they emit:
2946
2947@table @code
2948
2949@item events.cont
2950Emits @code{gdb.ThreadEvent}.
2951
2952Some events can be thread specific when @value{GDBN} is running in non-stop
2953mode. When represented in Python, these events all extend
2954@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2955events which are emitted by this or other modules might extend this event.
2956Examples of these events are @code{gdb.BreakpointEvent} and
2957@code{gdb.ContinueEvent}.
2958
2959@defvar ThreadEvent.inferior_thread
2960In non-stop mode this attribute will be set to the specific thread which was
2961involved in the emitted event. Otherwise, it will be set to @code{None}.
2962@end defvar
2963
2964Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2965
2966This event indicates that the inferior has been continued after a stop. For
2967inherited attribute refer to @code{gdb.ThreadEvent} above.
2968
2969@item events.exited
2970Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2971@code{events.ExitedEvent} has two attributes:
2972@defvar ExitedEvent.exit_code
2973An integer representing the exit code, if available, which the inferior
2974has returned. (The exit code could be unavailable if, for example,
2975@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2976the attribute does not exist.
2977@end defvar
373832b6 2978@defvar ExitedEvent.inferior
329baa95
DE
2979A reference to the inferior which triggered the @code{exited} event.
2980@end defvar
2981
2982@item events.stop
2983Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2984
2985Indicates that the inferior has stopped. All events emitted by this registry
2986extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2987will indicate the stopped thread when @value{GDBN} is running in non-stop
2988mode. Refer to @code{gdb.ThreadEvent} above for more details.
2989
2990Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2991
2992This event indicates that the inferior or one of its threads has received as
2993signal. @code{gdb.SignalEvent} has the following attributes:
2994
2995@defvar SignalEvent.stop_signal
2996A string representing the signal received by the inferior. A list of possible
2997signal values can be obtained by running the command @code{info signals} in
2998the @value{GDBN} command prompt.
2999@end defvar
3000
3001Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3002
3003@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3004been hit, and has the following attributes:
3005
3006@defvar BreakpointEvent.breakpoints
3007A sequence containing references to all the breakpoints (type
3008@code{gdb.Breakpoint}) that were hit.
3009@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3010@end defvar
3011@defvar BreakpointEvent.breakpoint
3012A reference to the first breakpoint that was hit.
3013This function is maintained for backward compatibility and is now deprecated
3014in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3015@end defvar
3016
3017@item events.new_objfile
3018Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3019been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3020
3021@defvar NewObjFileEvent.new_objfile
3022A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3023@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3024@end defvar
3025
4ffbba72
DE
3026@item events.clear_objfiles
3027Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3028files for a program space has been reset.
3029@code{gdb.ClearObjFilesEvent} has one attribute:
3030
3031@defvar ClearObjFilesEvent.progspace
3032A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3033been cleared. @xref{Progspaces In Python}.
3034@end defvar
3035
fb5af5e3
TT
3036@item events.inferior_call
3037Emits events just before and after a function in the inferior is
3038called by @value{GDBN}. Before an inferior call, this emits an event
3039of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3040this emits an event of type @code{gdb.InferiorCallPostEvent}.
3041
3042@table @code
3043@tindex gdb.InferiorCallPreEvent
3044@item @code{gdb.InferiorCallPreEvent}
3045Indicates that a function in the inferior is about to be called.
162078c8
NB
3046
3047@defvar InferiorCallPreEvent.ptid
3048The thread in which the call will be run.
3049@end defvar
3050
3051@defvar InferiorCallPreEvent.address
3052The location of the function to be called.
3053@end defvar
3054
fb5af5e3
TT
3055@tindex gdb.InferiorCallPostEvent
3056@item @code{gdb.InferiorCallPostEvent}
3057Indicates that a function in the inferior has just been called.
162078c8
NB
3058
3059@defvar InferiorCallPostEvent.ptid
3060The thread in which the call was run.
3061@end defvar
3062
3063@defvar InferiorCallPostEvent.address
3064The location of the function that was called.
3065@end defvar
fb5af5e3 3066@end table
162078c8
NB
3067
3068@item events.memory_changed
3069Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3070inferior has been modified by the @value{GDBN} user, for instance via a
3071command like @w{@code{set *addr = value}}. The event has the following
3072attributes:
3073
3074@defvar MemoryChangedEvent.address
3075The start address of the changed region.
3076@end defvar
3077
3078@defvar MemoryChangedEvent.length
3079Length in bytes of the changed region.
3080@end defvar
3081
3082@item events.register_changed
3083Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3084inferior has been modified by the @value{GDBN} user.
3085
3086@defvar RegisterChangedEvent.frame
3087A gdb.Frame object representing the frame in which the register was modified.
3088@end defvar
3089@defvar RegisterChangedEvent.regnum
3090Denotes which register was modified.
3091@end defvar
3092
dac790e1
TT
3093@item events.breakpoint_created
3094This is emitted when a new breakpoint has been created. The argument
3095that is passed is the new @code{gdb.Breakpoint} object.
3096
3097@item events.breakpoint_modified
3098This is emitted when a breakpoint has been modified in some way. The
3099argument that is passed is the new @code{gdb.Breakpoint} object.
3100
3101@item events.breakpoint_deleted
3102This is emitted when a breakpoint has been deleted. The argument that
3103is passed is the @code{gdb.Breakpoint} object. When this event is
3104emitted, the @code{gdb.Breakpoint} object will already be in its
3105invalid state; that is, the @code{is_valid} method will return
3106@code{False}.
3107
3f77c769
TT
3108@item events.before_prompt
3109This event carries no payload. It is emitted each time @value{GDBN}
3110presents a prompt to the user.
3111
7c96f8c1
TT
3112@item events.new_inferior
3113This is emitted when a new inferior is created. Note that the
3114inferior is not necessarily running; in fact, it may not even have an
3115associated executable.
3116
3117The event is of type @code{gdb.NewInferiorEvent}. This has a single
3118attribute:
3119
3120@defvar NewInferiorEvent.inferior
3121The new inferior, a @code{gdb.Inferior} object.
3122@end defvar
3123
3124@item events.inferior_deleted
3125This is emitted when an inferior has been deleted. Note that this is
3126not the same as process exit; it is notified when the inferior itself
3127is removed, say via @code{remove-inferiors}.
3128
3129The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3130attribute:
3131
3132@defvar NewInferiorEvent.inferior
3133The inferior that is being removed, a @code{gdb.Inferior} object.
3134@end defvar
3135
3136@item events.new_thread
3137This is emitted when @value{GDBN} notices a new thread. The event is of
3138type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3139This has a single attribute:
3140
3141@defvar NewThreadEvent.inferior_thread
3142The new thread.
3143@end defvar
3144
329baa95
DE
3145@end table
3146
3147@node Threads In Python
3148@subsubsection Threads In Python
3149@cindex threads in python
3150
3151@findex gdb.InferiorThread
3152Python scripts can access information about, and manipulate inferior threads
3153controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3154
3155The following thread-related functions are available in the @code{gdb}
3156module:
3157
3158@findex gdb.selected_thread
3159@defun gdb.selected_thread ()
3160This function returns the thread object for the selected thread. If there
3161is no selected thread, this will return @code{None}.
3162@end defun
3163
3164A @code{gdb.InferiorThread} object has the following attributes:
3165
3166@defvar InferiorThread.name
3167The name of the thread. If the user specified a name using
3168@code{thread name}, then this returns that name. Otherwise, if an
3169OS-supplied name is available, then it is returned. Otherwise, this
3170returns @code{None}.
3171
3172This attribute can be assigned to. The new value must be a string
3173object, which sets the new name, or @code{None}, which removes any
3174user-specified thread name.
3175@end defvar
3176
3177@defvar InferiorThread.num
5d5658a1 3178The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3179@end defvar
3180
22a02324
PA
3181@defvar InferiorThread.global_num
3182The global ID of the thread, as assigned by GDB. You can use this to
3183make Python breakpoints thread-specific, for example
3184(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3185@end defvar
3186
329baa95
DE
3187@defvar InferiorThread.ptid
3188ID of the thread, as assigned by the operating system. This attribute is a
3189tuple containing three integers. The first is the Process ID (PID); the second
3190is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3191Either the LWPID or TID may be 0, which indicates that the operating system
3192does not use that identifier.
3193@end defvar
3194
84654457
PA
3195@defvar InferiorThread.inferior
3196The inferior this thread belongs to. This attribute is represented as
3197a @code{gdb.Inferior} object. This attribute is not writable.
3198@end defvar
3199
329baa95
DE
3200A @code{gdb.InferiorThread} object has the following methods:
3201
3202@defun InferiorThread.is_valid ()
3203Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3204@code{False} if not. A @code{gdb.InferiorThread} object will become
3205invalid if the thread exits, or the inferior that the thread belongs
3206is deleted. All other @code{gdb.InferiorThread} methods will throw an
3207exception if it is invalid at the time the method is called.
3208@end defun
3209
3210@defun InferiorThread.switch ()
3211This changes @value{GDBN}'s currently selected thread to the one represented
3212by this object.
3213@end defun
3214
3215@defun InferiorThread.is_stopped ()
3216Return a Boolean indicating whether the thread is stopped.
3217@end defun
3218
3219@defun InferiorThread.is_running ()
3220Return a Boolean indicating whether the thread is running.
3221@end defun
3222
3223@defun InferiorThread.is_exited ()
3224Return a Boolean indicating whether the thread is exited.
3225@end defun
3226
0a0faf9f
TW
3227@node Recordings In Python
3228@subsubsection Recordings In Python
3229@cindex recordings in python
3230
3231The following recordings-related functions
3232(@pxref{Process Record and Replay}) are available in the @code{gdb}
3233module:
3234
3235@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3236Start a recording using the given @var{method} and @var{format}. If
3237no @var{format} is given, the default format for the recording method
3238is used. If no @var{method} is given, the default method will be used.
3239Returns a @code{gdb.Record} object on success. Throw an exception on
3240failure.
3241
3242The following strings can be passed as @var{method}:
3243
3244@itemize @bullet
3245@item
3246@code{"full"}
3247@item
3248@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3249@code{"bts"} or leave out for default format.
3250@end itemize
3251@end defun
3252
3253@defun gdb.current_recording ()
3254Access a currently running recording. Return a @code{gdb.Record}
3255object on success. Return @code{None} if no recording is currently
3256active.
3257@end defun
3258
3259@defun gdb.stop_recording ()
3260Stop the current recording. Throw an exception if no recording is
3261currently active. All record objects become invalid after this call.
3262@end defun
3263
3264A @code{gdb.Record} object has the following attributes:
3265
0a0faf9f
TW
3266@defvar Record.method
3267A string with the current recording method, e.g.@: @code{full} or
3268@code{btrace}.
3269@end defvar
3270
3271@defvar Record.format
3272A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3273@code{None}.
3274@end defvar
3275
3276@defvar Record.begin
3277A method specific instruction object representing the first instruction
3278in this recording.
3279@end defvar
3280
3281@defvar Record.end
3282A method specific instruction object representing the current
3283instruction, that is not actually part of the recording.
3284@end defvar
3285
3286@defvar Record.replay_position
3287The instruction representing the current replay position. If there is
3288no replay active, this will be @code{None}.
3289@end defvar
3290
3291@defvar Record.instruction_history
3292A list with all recorded instructions.
3293@end defvar
3294
3295@defvar Record.function_call_history
3296A list with all recorded function call segments.
3297@end defvar
3298
3299A @code{gdb.Record} object has the following methods:
3300
3301@defun Record.goto (instruction)
3302Move the replay position to the given @var{instruction}.
3303@end defun
3304
d050f7d7
TW
3305The common @code{gdb.Instruction} class that recording method specific
3306instruction objects inherit from, has the following attributes:
0a0faf9f 3307
d050f7d7 3308@defvar Instruction.pc
913aeadd 3309An integer representing this instruction's address.
0a0faf9f
TW
3310@end defvar
3311
d050f7d7 3312@defvar Instruction.data
913aeadd
TW
3313A buffer with the raw instruction data. In Python 3, the return value is a
3314@code{memoryview} object.
0a0faf9f
TW
3315@end defvar
3316
d050f7d7 3317@defvar Instruction.decoded
913aeadd 3318A human readable string with the disassembled instruction.
0a0faf9f
TW
3319@end defvar
3320
d050f7d7 3321@defvar Instruction.size
913aeadd 3322The size of the instruction in bytes.
0a0faf9f
TW
3323@end defvar
3324
d050f7d7
TW
3325Additionally @code{gdb.RecordInstruction} has the following attributes:
3326
3327@defvar RecordInstruction.number
3328An integer identifying this instruction. @code{number} corresponds to
3329the numbers seen in @code{record instruction-history}
3330(@pxref{Process Record and Replay}).
3331@end defvar
3332
3333@defvar RecordInstruction.sal
3334A @code{gdb.Symtab_and_line} object representing the associated symtab
3335and line of this instruction. May be @code{None} if no debug information is
3336available.
3337@end defvar
3338
0ed5da75 3339@defvar RecordInstruction.is_speculative
d050f7d7 3340A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3341@end defvar
3342
3343If an error occured during recording or decoding a recording, this error is
3344represented by a @code{gdb.RecordGap} object in the instruction list. It has
3345the following attributes:
3346
3347@defvar RecordGap.number
3348An integer identifying this gap. @code{number} corresponds to the numbers seen
3349in @code{record instruction-history} (@pxref{Process Record and Replay}).
3350@end defvar
3351
3352@defvar RecordGap.error_code
3353A numerical representation of the reason for the gap. The value is specific to
3354the current recording method.
3355@end defvar
3356
3357@defvar RecordGap.error_string
3358A human readable string with the reason for the gap.
0a0faf9f
TW
3359@end defvar
3360
14f819c8 3361A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3362
14f819c8
TW
3363@defvar RecordFunctionSegment.number
3364An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3365the numbers seen in @code{record function-call-history}
3366(@pxref{Process Record and Replay}).
3367@end defvar
3368
14f819c8 3369@defvar RecordFunctionSegment.symbol
0a0faf9f 3370A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3371@code{None} if no debug information is available.
0a0faf9f
TW
3372@end defvar
3373
14f819c8 3374@defvar RecordFunctionSegment.level
0a0faf9f
TW
3375An integer representing the function call's stack level. May be
3376@code{None} if the function call is a gap.
3377@end defvar
3378
14f819c8 3379@defvar RecordFunctionSegment.instructions
0ed5da75 3380A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3381associated with this function call.
0a0faf9f
TW
3382@end defvar
3383
14f819c8
TW
3384@defvar RecordFunctionSegment.up
3385A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3386function segment. If the call has not been recorded, this will be the
3387function segment to which control returns. If neither the call nor the
3388return have been recorded, this will be @code{None}.
3389@end defvar
3390
14f819c8
TW
3391@defvar RecordFunctionSegment.prev
3392A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3393segment of this function call. May be @code{None}.
3394@end defvar
3395
14f819c8
TW
3396@defvar RecordFunctionSegment.next
3397A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3398this function call. May be @code{None}.
3399@end defvar
3400
3401The following example demonstrates the usage of these objects and
3402functions to create a function that will rewind a record to the last
3403time a function in a different file was executed. This would typically
3404be used to track the execution of user provided callback functions in a
3405library which typically are not visible in a back trace.
3406
3407@smallexample
3408def bringback ():
3409 rec = gdb.current_recording ()
3410 if not rec:
3411 return
3412
3413 insn = rec.instruction_history
3414 if len (insn) == 0:
3415 return
3416
3417 try:
3418 position = insn.index (rec.replay_position)
3419 except:
3420 position = -1
3421 try:
3422 filename = insn[position].sal.symtab.fullname ()
3423 except:
3424 filename = None
3425
3426 for i in reversed (insn[:position]):
3427 try:
3428 current = i.sal.symtab.fullname ()
3429 except:
3430 current = None
3431
3432 if filename == current:
3433 continue
3434
3435 rec.goto (i)
3436 return
3437@end smallexample
3438
3439Another possible application is to write a function that counts the
3440number of code executions in a given line range. This line range can
3441contain parts of functions or span across several functions and is not
3442limited to be contiguous.
3443
3444@smallexample
3445def countrange (filename, linerange):
3446 count = 0
3447
3448 def filter_only (file_name):
3449 for call in gdb.current_recording ().function_call_history:
3450 try:
3451 if file_name in call.symbol.symtab.fullname ():
3452 yield call
3453 except:
3454 pass
3455
3456 for c in filter_only (filename):
3457 for i in c.instructions:
3458 try:
3459 if i.sal.line in linerange:
3460 count += 1
3461 break;
3462 except:
3463 pass
3464
3465 return count
3466@end smallexample
3467
329baa95
DE
3468@node Commands In Python
3469@subsubsection Commands In Python
3470
3471@cindex commands in python
3472@cindex python commands
3473You can implement new @value{GDBN} CLI commands in Python. A CLI
3474command is implemented using an instance of the @code{gdb.Command}
3475class, most commonly using a subclass.
3476
3477@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3478The object initializer for @code{Command} registers the new command
3479with @value{GDBN}. This initializer is normally invoked from the
3480subclass' own @code{__init__} method.
3481
3482@var{name} is the name of the command. If @var{name} consists of
3483multiple words, then the initial words are looked for as prefix
3484commands. In this case, if one of the prefix commands does not exist,
3485an exception is raised.
3486
3487There is no support for multi-line commands.
3488
3489@var{command_class} should be one of the @samp{COMMAND_} constants
3490defined below. This argument tells @value{GDBN} how to categorize the
3491new command in the help system.
3492
3493@var{completer_class} is an optional argument. If given, it should be
3494one of the @samp{COMPLETE_} constants defined below. This argument
3495tells @value{GDBN} how to perform completion for this command. If not
3496given, @value{GDBN} will attempt to complete using the object's
3497@code{complete} method (see below); if no such method is found, an
3498error will occur when completion is attempted.
3499
3500@var{prefix} is an optional argument. If @code{True}, then the new
3501command is a prefix command; sub-commands of this command may be
3502registered.
3503
3504The help text for the new command is taken from the Python
3505documentation string for the command's class, if there is one. If no
3506documentation string is provided, the default value ``This command is
3507not documented.'' is used.
3508@end defun
3509
3510@cindex don't repeat Python command
3511@defun Command.dont_repeat ()
3512By default, a @value{GDBN} command is repeated when the user enters a
3513blank line at the command prompt. A command can suppress this
3514behavior by invoking the @code{dont_repeat} method. This is similar
3515to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3516@end defun
3517
3518@defun Command.invoke (argument, from_tty)
3519This method is called by @value{GDBN} when this command is invoked.
3520
3521@var{argument} is a string. It is the argument to the command, after
3522leading and trailing whitespace has been stripped.
3523
3524@var{from_tty} is a boolean argument. When true, this means that the
3525command was entered by the user at the terminal; when false it means
3526that the command came from elsewhere.
3527
3528If this method throws an exception, it is turned into a @value{GDBN}
3529@code{error} call. Otherwise, the return value is ignored.
3530
3531@findex gdb.string_to_argv
3532To break @var{argument} up into an argv-like string use
3533@code{gdb.string_to_argv}. This function behaves identically to
3534@value{GDBN}'s internal argument lexer @code{buildargv}.
3535It is recommended to use this for consistency.
3536Arguments are separated by spaces and may be quoted.
3537Example:
3538
3539@smallexample
3540print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3541['1', '2 "3', '4 "5', "6 '7"]
3542@end smallexample
3543
3544@end defun
3545
3546@cindex completion of Python commands
3547@defun Command.complete (text, word)
3548This method is called by @value{GDBN} when the user attempts
3549completion on this command. All forms of completion are handled by
3550this method, that is, the @key{TAB} and @key{M-?} key bindings
3551(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3552complete}).
3553
697aa1b7
EZ
3554The arguments @var{text} and @var{word} are both strings; @var{text}
3555holds the complete command line up to the cursor's location, while
329baa95
DE
3556@var{word} holds the last word of the command line; this is computed
3557using a word-breaking heuristic.
3558
3559The @code{complete} method can return several values:
3560@itemize @bullet
3561@item
3562If the return value is a sequence, the contents of the sequence are
3563used as the completions. It is up to @code{complete} to ensure that the
3564contents actually do complete the word. A zero-length sequence is
3565allowed, it means that there were no completions available. Only
3566string elements of the sequence are used; other elements in the
3567sequence are ignored.
3568
3569@item
3570If the return value is one of the @samp{COMPLETE_} constants defined
3571below, then the corresponding @value{GDBN}-internal completion
3572function is invoked, and its result is used.
3573
3574@item
3575All other results are treated as though there were no available
3576completions.
3577@end itemize
3578@end defun
3579
3580When a new command is registered, it must be declared as a member of
3581some general class of commands. This is used to classify top-level
3582commands in the on-line help system; note that prefix commands are not
3583listed under their own category but rather that of their top-level
3584command. The available classifications are represented by constants
3585defined in the @code{gdb} module:
3586
3587@table @code
3588@findex COMMAND_NONE
3589@findex gdb.COMMAND_NONE
3590@item gdb.COMMAND_NONE
3591The command does not belong to any particular class. A command in
3592this category will not be displayed in any of the help categories.
3593
3594@findex COMMAND_RUNNING
3595@findex gdb.COMMAND_RUNNING
3596@item gdb.COMMAND_RUNNING
3597The command is related to running the inferior. For example,
3598@code{start}, @code{step}, and @code{continue} are in this category.
3599Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3600commands in this category.
3601
3602@findex COMMAND_DATA
3603@findex gdb.COMMAND_DATA
3604@item gdb.COMMAND_DATA
3605The command is related to data or variables. For example,
3606@code{call}, @code{find}, and @code{print} are in this category. Type
3607@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3608in this category.
3609
3610@findex COMMAND_STACK
3611@findex gdb.COMMAND_STACK
3612@item gdb.COMMAND_STACK
3613The command has to do with manipulation of the stack. For example,
3614@code{backtrace}, @code{frame}, and @code{return} are in this
3615category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3616list of commands in this category.
3617
3618@findex COMMAND_FILES
3619@findex gdb.COMMAND_FILES
3620@item gdb.COMMAND_FILES
3621This class is used for file-related commands. For example,
3622@code{file}, @code{list} and @code{section} are in this category.
3623Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3624commands in this category.
3625
3626@findex COMMAND_SUPPORT
3627@findex gdb.COMMAND_SUPPORT
3628@item gdb.COMMAND_SUPPORT
3629This should be used for ``support facilities'', generally meaning
3630things that are useful to the user when interacting with @value{GDBN},
3631but not related to the state of the inferior. For example,
3632@code{help}, @code{make}, and @code{shell} are in this category. Type
3633@kbd{help support} at the @value{GDBN} prompt to see a list of
3634commands in this category.
3635
3636@findex COMMAND_STATUS
3637@findex gdb.COMMAND_STATUS
3638@item gdb.COMMAND_STATUS
3639The command is an @samp{info}-related command, that is, related to the
3640state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3641and @code{show} are in this category. Type @kbd{help status} at the
3642@value{GDBN} prompt to see a list of commands in this category.
3643
3644@findex COMMAND_BREAKPOINTS
3645@findex gdb.COMMAND_BREAKPOINTS
3646@item gdb.COMMAND_BREAKPOINTS
3647The command has to do with breakpoints. For example, @code{break},
3648@code{clear}, and @code{delete} are in this category. Type @kbd{help
3649breakpoints} at the @value{GDBN} prompt to see a list of commands in
3650this category.
3651
3652@findex COMMAND_TRACEPOINTS
3653@findex gdb.COMMAND_TRACEPOINTS
3654@item gdb.COMMAND_TRACEPOINTS
3655The command has to do with tracepoints. For example, @code{trace},
3656@code{actions}, and @code{tfind} are in this category. Type
3657@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3658commands in this category.
3659
3660@findex COMMAND_USER
3661@findex gdb.COMMAND_USER
3662@item gdb.COMMAND_USER
3663The command is a general purpose command for the user, and typically
3664does not fit in one of the other categories.
3665Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3666a list of commands in this category, as well as the list of gdb macros
3667(@pxref{Sequences}).
3668
3669@findex COMMAND_OBSCURE
3670@findex gdb.COMMAND_OBSCURE
3671@item gdb.COMMAND_OBSCURE
3672The command is only used in unusual circumstances, or is not of
3673general interest to users. For example, @code{checkpoint},
3674@code{fork}, and @code{stop} are in this category. Type @kbd{help
3675obscure} at the @value{GDBN} prompt to see a list of commands in this
3676category.
3677
3678@findex COMMAND_MAINTENANCE
3679@findex gdb.COMMAND_MAINTENANCE
3680@item gdb.COMMAND_MAINTENANCE
3681The command is only useful to @value{GDBN} maintainers. The
3682@code{maintenance} and @code{flushregs} commands are in this category.
3683Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3684commands in this category.
3685@end table
3686
3687A new command can use a predefined completion function, either by
3688specifying it via an argument at initialization, or by returning it
3689from the @code{complete} method. These predefined completion
3690constants are all defined in the @code{gdb} module:
3691
b3ce5e5f
DE
3692@vtable @code
3693@vindex COMPLETE_NONE
329baa95
DE
3694@item gdb.COMPLETE_NONE
3695This constant means that no completion should be done.
3696
b3ce5e5f 3697@vindex COMPLETE_FILENAME
329baa95
DE
3698@item gdb.COMPLETE_FILENAME
3699This constant means that filename completion should be performed.
3700
b3ce5e5f 3701@vindex COMPLETE_LOCATION
329baa95
DE
3702@item gdb.COMPLETE_LOCATION
3703This constant means that location completion should be done.
3704@xref{Specify Location}.
3705
b3ce5e5f 3706@vindex COMPLETE_COMMAND
329baa95
DE
3707@item gdb.COMPLETE_COMMAND
3708This constant means that completion should examine @value{GDBN}
3709command names.
3710
b3ce5e5f 3711@vindex COMPLETE_SYMBOL
329baa95
DE
3712@item gdb.COMPLETE_SYMBOL
3713This constant means that completion should be done using symbol names
3714as the source.
3715
b3ce5e5f 3716@vindex COMPLETE_EXPRESSION
329baa95
DE
3717@item gdb.COMPLETE_EXPRESSION
3718This constant means that completion should be done on expressions.
3719Often this means completing on symbol names, but some language
3720parsers also have support for completing on field names.
b3ce5e5f 3721@end vtable
329baa95
DE
3722
3723The following code snippet shows how a trivial CLI command can be
3724implemented in Python:
3725
3726@smallexample
3727class HelloWorld (gdb.Command):
3728 """Greet the whole world."""
3729
3730 def __init__ (self):
3731 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3732
3733 def invoke (self, arg, from_tty):
3734 print "Hello, World!"
3735
3736HelloWorld ()
3737@end smallexample
3738
3739The last line instantiates the class, and is necessary to trigger the
3740registration of the command with @value{GDBN}. Depending on how the
3741Python code is read into @value{GDBN}, you may need to import the
3742@code{gdb} module explicitly.
3743
3744@node Parameters In Python
3745@subsubsection Parameters In Python
3746
3747@cindex parameters in python
3748@cindex python parameters
3749@tindex gdb.Parameter
3750@tindex Parameter
3751You can implement new @value{GDBN} parameters using Python. A new
3752parameter is implemented as an instance of the @code{gdb.Parameter}
3753class.
3754
3755Parameters are exposed to the user via the @code{set} and
3756@code{show} commands. @xref{Help}.
3757
3758There are many parameters that already exist and can be set in
3759@value{GDBN}. Two examples are: @code{set follow fork} and
3760@code{set charset}. Setting these parameters influences certain
3761behavior in @value{GDBN}. Similarly, you can define parameters that
3762can be used to influence behavior in custom Python scripts and commands.
3763
3764@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3765The object initializer for @code{Parameter} registers the new
3766parameter with @value{GDBN}. This initializer is normally invoked
3767from the subclass' own @code{__init__} method.
3768
3769@var{name} is the name of the new parameter. If @var{name} consists
3770of multiple words, then the initial words are looked for as prefix
3771parameters. An example of this can be illustrated with the
3772@code{set print} set of parameters. If @var{name} is
3773@code{print foo}, then @code{print} will be searched as the prefix
3774parameter. In this case the parameter can subsequently be accessed in
3775@value{GDBN} as @code{set print foo}.
3776
3777If @var{name} consists of multiple words, and no prefix parameter group
3778can be found, an exception is raised.
3779
3780@var{command-class} should be one of the @samp{COMMAND_} constants
3781(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3782categorize the new parameter in the help system.
3783
3784@var{parameter-class} should be one of the @samp{PARAM_} constants
3785defined below. This argument tells @value{GDBN} the type of the new
3786parameter; this information is used for input validation and
3787completion.
3788
3789If @var{parameter-class} is @code{PARAM_ENUM}, then
3790@var{enum-sequence} must be a sequence of strings. These strings
3791represent the possible values for the parameter.
3792
3793If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3794of a fourth argument will cause an exception to be thrown.
3795
3796The help text for the new parameter is taken from the Python
3797documentation string for the parameter's class, if there is one. If
3798there is no documentation string, a default value is used.
3799@end defun
3800
3801@defvar Parameter.set_doc
3802If this attribute exists, and is a string, then its value is used as
3803the help text for this parameter's @code{set} command. The value is
3804examined when @code{Parameter.__init__} is invoked; subsequent changes
3805have no effect.
3806@end defvar
3807
3808@defvar Parameter.show_doc
3809If this attribute exists, and is a string, then its value is used as
3810the help text for this parameter's @code{show} command. The value is
3811examined when @code{Parameter.__init__} is invoked; subsequent changes
3812have no effect.
3813@end defvar
3814
3815@defvar Parameter.value
3816The @code{value} attribute holds the underlying value of the
3817parameter. It can be read and assigned to just as any other
3818attribute. @value{GDBN} does validation when assignments are made.
3819@end defvar
3820
984ee559
TT
3821There are two methods that may be implemented in any @code{Parameter}
3822class. These are:
329baa95
DE
3823
3824@defun Parameter.get_set_string (self)
984ee559
TT
3825If this method exists, @value{GDBN} will call it when a
3826@var{parameter}'s value has been changed via the @code{set} API (for
3827example, @kbd{set foo off}). The @code{value} attribute has already
3828been populated with the new value and may be used in output. This
3829method must return a string. If the returned string is not empty,
3830@value{GDBN} will present it to the user.
ae778caf
TT
3831
3832If this method raises the @code{gdb.GdbError} exception
3833(@pxref{Exception Handling}), then @value{GDBN} will print the
3834exception's string and the @code{set} command will fail. Note,
3835however, that the @code{value} attribute will not be reset in this
3836case. So, if your parameter must validate values, it should store the
3837old value internally and reset the exposed value, like so:
3838
3839@smallexample
3840class ExampleParam (gdb.Parameter):
3841 def __init__ (self, name):
3842 super (ExampleParam, self).__init__ (name,
3843 gdb.COMMAND_DATA,
3844 gdb.PARAM_BOOLEAN)
3845 self.value = True
3846 self.saved_value = True
3847 def validate(self):
3848 return False
3849 def get_set_string (self):
3850 if not self.validate():
3851 self.value = self.saved_value
3852 raise gdb.GdbError('Failed to validate')
3853 self.saved_value = self.value
3854@end smallexample
329baa95
DE
3855@end defun
3856
3857@defun Parameter.get_show_string (self, svalue)
3858@value{GDBN} will call this method when a @var{parameter}'s
3859@code{show} API has been invoked (for example, @kbd{show foo}). The
3860argument @code{svalue} receives the string representation of the
3861current value. This method must return a string.
3862@end defun
3863
3864When a new parameter is defined, its type must be specified. The
3865available types are represented by constants defined in the @code{gdb}
3866module:
3867
3868@table @code
3869@findex PARAM_BOOLEAN
3870@findex gdb.PARAM_BOOLEAN
3871@item gdb.PARAM_BOOLEAN
3872The value is a plain boolean. The Python boolean values, @code{True}
3873and @code{False} are the only valid values.
3874
3875@findex PARAM_AUTO_BOOLEAN
3876@findex gdb.PARAM_AUTO_BOOLEAN
3877@item gdb.PARAM_AUTO_BOOLEAN
3878The value has three possible states: true, false, and @samp{auto}. In
3879Python, true and false are represented using boolean constants, and
3880@samp{auto} is represented using @code{None}.
3881
3882@findex PARAM_UINTEGER
3883@findex gdb.PARAM_UINTEGER
3884@item gdb.PARAM_UINTEGER
3885The value is an unsigned integer. The value of 0 should be
3886interpreted to mean ``unlimited''.
3887
3888@findex PARAM_INTEGER
3889@findex gdb.PARAM_INTEGER
3890@item gdb.PARAM_INTEGER
3891The value is a signed integer. The value of 0 should be interpreted
3892to mean ``unlimited''.
3893
3894@findex PARAM_STRING
3895@findex gdb.PARAM_STRING
3896@item gdb.PARAM_STRING
3897The value is a string. When the user modifies the string, any escape
3898sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3899translated into corresponding characters and encoded into the current
3900host charset.
3901
3902@findex PARAM_STRING_NOESCAPE
3903@findex gdb.PARAM_STRING_NOESCAPE
3904@item gdb.PARAM_STRING_NOESCAPE
3905The value is a string. When the user modifies the string, escapes are
3906passed through untranslated.
3907
3908@findex PARAM_OPTIONAL_FILENAME
3909@findex gdb.PARAM_OPTIONAL_FILENAME
3910@item gdb.PARAM_OPTIONAL_FILENAME
3911The value is a either a filename (a string), or @code{None}.
3912
3913@findex PARAM_FILENAME
3914@findex gdb.PARAM_FILENAME
3915@item gdb.PARAM_FILENAME
3916The value is a filename. This is just like
3917@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3918
3919@findex PARAM_ZINTEGER
3920@findex gdb.PARAM_ZINTEGER
3921@item gdb.PARAM_ZINTEGER
3922The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3923is interpreted as itself.
3924
0489430a
TT
3925@findex PARAM_ZUINTEGER
3926@findex gdb.PARAM_ZUINTEGER
3927@item gdb.PARAM_ZUINTEGER
3928The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3929except 0 is interpreted as itself, and the value cannot be negative.
3930
3931@findex PARAM_ZUINTEGER_UNLIMITED
3932@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3933@item gdb.PARAM_ZUINTEGER_UNLIMITED
3934The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3935except the special value -1 should be interpreted to mean
3936``unlimited''. Other negative values are not allowed.
3937
329baa95
DE
3938@findex PARAM_ENUM
3939@findex gdb.PARAM_ENUM
3940@item gdb.PARAM_ENUM
3941The value is a string, which must be one of a collection string
3942constants provided when the parameter is created.
3943@end table
3944
3945@node Functions In Python
3946@subsubsection Writing new convenience functions
3947
3948@cindex writing convenience functions
3949@cindex convenience functions in python
3950@cindex python convenience functions
3951@tindex gdb.Function
3952@tindex Function
3953You can implement new convenience functions (@pxref{Convenience Vars})
3954in Python. A convenience function is an instance of a subclass of the
3955class @code{gdb.Function}.
3956
3957@defun Function.__init__ (name)
3958The initializer for @code{Function} registers the new function with
3959@value{GDBN}. The argument @var{name} is the name of the function,
3960a string. The function will be visible to the user as a convenience
3961variable of type @code{internal function}, whose name is the same as
3962the given @var{name}.
3963
3964The documentation for the new function is taken from the documentation
3965string for the new class.
3966@end defun
3967
3968@defun Function.invoke (@var{*args})
3969When a convenience function is evaluated, its arguments are converted
3970to instances of @code{gdb.Value}, and then the function's
3971@code{invoke} method is called. Note that @value{GDBN} does not
3972predetermine the arity of convenience functions. Instead, all
3973available arguments are passed to @code{invoke}, following the
3974standard Python calling convention. In particular, a convenience
3975function can have default values for parameters without ill effect.
3976
3977The return value of this method is used as its value in the enclosing
3978expression. If an ordinary Python value is returned, it is converted
3979to a @code{gdb.Value} following the usual rules.
3980@end defun
3981
3982The following code snippet shows how a trivial convenience function can
3983be implemented in Python:
3984
3985@smallexample
3986class Greet (gdb.Function):
3987 """Return string to greet someone.
3988Takes a name as argument."""
3989
3990 def __init__ (self):
3991 super (Greet, self).__init__ ("greet")
3992
3993 def invoke (self, name):
3994 return "Hello, %s!" % name.string ()
3995
3996Greet ()
3997@end smallexample
3998
3999The last line instantiates the class, and is necessary to trigger the
4000registration of the function with @value{GDBN}. Depending on how the
4001Python code is read into @value{GDBN}, you may need to import the
4002@code{gdb} module explicitly.
4003
4004Now you can use the function in an expression:
4005
4006@smallexample
4007(gdb) print $greet("Bob")
4008$1 = "Hello, Bob!"
4009@end smallexample
4010
4011@node Progspaces In Python
4012@subsubsection Program Spaces In Python
4013
4014@cindex progspaces in python
4015@tindex gdb.Progspace
4016@tindex Progspace
4017A program space, or @dfn{progspace}, represents a symbolic view
4018of an address space.
4019It consists of all of the objfiles of the program.
4020@xref{Objfiles In Python}.
4021@xref{Inferiors and Programs, program spaces}, for more details
4022about program spaces.
4023
4024The following progspace-related functions are available in the
4025@code{gdb} module:
4026
4027@findex gdb.current_progspace
4028@defun gdb.current_progspace ()
4029This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4030@xref{Inferiors and Programs}. This is identical to
4031@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4032included for historical compatibility.
329baa95
DE
4033@end defun
4034
4035@findex gdb.progspaces
4036@defun gdb.progspaces ()
4037Return a sequence of all the progspaces currently known to @value{GDBN}.
4038@end defun
4039
4040Each progspace is represented by an instance of the @code{gdb.Progspace}
4041class.
4042
4043@defvar Progspace.filename
4044The file name of the progspace as a string.
4045@end defvar
4046
4047@defvar Progspace.pretty_printers
4048The @code{pretty_printers} attribute is a list of functions. It is
4049used to look up pretty-printers. A @code{Value} is passed to each
4050function in order; if the function returns @code{None}, then the
4051search continues. Otherwise, the return value should be an object
4052which is used to format the value. @xref{Pretty Printing API}, for more
4053information.
4054@end defvar
4055
4056@defvar Progspace.type_printers
4057The @code{type_printers} attribute is a list of type printer objects.
4058@xref{Type Printing API}, for more information.
4059@end defvar
4060
4061@defvar Progspace.frame_filters
4062The @code{frame_filters} attribute is a dictionary of frame filter
4063objects. @xref{Frame Filter API}, for more information.
4064@end defvar
4065
8743a9cd
TT
4066A program space has the following methods:
4067
4068@findex Progspace.block_for_pc
4069@defun Progspace.block_for_pc (pc)
4070Return the innermost @code{gdb.Block} containing the given @var{pc}
4071value. If the block cannot be found for the @var{pc} value specified,
4072the function will return @code{None}.
4073@end defun
4074
4075@findex Progspace.find_pc_line
4076@defun Progspace.find_pc_line (pc)
4077Return the @code{gdb.Symtab_and_line} object corresponding to the
4078@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4079of @var{pc} is passed as an argument, then the @code{symtab} and
4080@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4081object will be @code{None} and 0 respectively.
4082@end defun
4083
4084@findex Progspace.is_valid
4085@defun Progspace.is_valid ()
4086Returns @code{True} if the @code{gdb.Progspace} object is valid,
4087@code{False} if not. A @code{gdb.Progspace} object can become invalid
4088if the program space file it refers to is not referenced by any
4089inferior. All other @code{gdb.Progspace} methods will throw an
4090exception if it is invalid at the time the method is called.
4091@end defun
4092
4093@findex Progspace.objfiles
4094@defun Progspace.objfiles ()
4095Return a sequence of all the objfiles referenced by this program
4096space. @xref{Objfiles In Python}.
4097@end defun
4098
4099@findex Progspace.solib_name
4100@defun Progspace.solib_name (address)
4101Return the name of the shared library holding the given @var{address}
4102as a string, or @code{None}.
4103@end defun
4104
02be9a71
DE
4105One may add arbitrary attributes to @code{gdb.Progspace} objects
4106in the usual Python way.
4107This is useful if, for example, one needs to do some extra record keeping
4108associated with the program space.
4109
4110In this contrived example, we want to perform some processing when
4111an objfile with a certain symbol is loaded, but we only want to do
4112this once because it is expensive. To achieve this we record the results
4113with the program space because we can't predict when the desired objfile
4114will be loaded.
4115
4116@smallexample
4117(gdb) python
4118def clear_objfiles_handler(event):
4119 event.progspace.expensive_computation = None
4120def expensive(symbol):
4121 """A mock routine to perform an "expensive" computation on symbol."""
4122 print "Computing the answer to the ultimate question ..."
4123 return 42
4124def new_objfile_handler(event):
4125 objfile = event.new_objfile
4126 progspace = objfile.progspace
4127 if not hasattr(progspace, 'expensive_computation') or \
4128 progspace.expensive_computation is None:
4129 # We use 'main' for the symbol to keep the example simple.
4130 # Note: There's no current way to constrain the lookup
4131 # to one objfile.
4132 symbol = gdb.lookup_global_symbol('main')
4133 if symbol is not None:
4134 progspace.expensive_computation = expensive(symbol)
4135gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4136gdb.events.new_objfile.connect(new_objfile_handler)
4137end
4138(gdb) file /tmp/hello
4139Reading symbols from /tmp/hello...done.
4140Computing the answer to the ultimate question ...
4141(gdb) python print gdb.current_progspace().expensive_computation
414242
4143(gdb) run
4144Starting program: /tmp/hello
4145Hello.
4146[Inferior 1 (process 4242) exited normally]
4147@end smallexample
4148
329baa95
DE
4149@node Objfiles In Python
4150@subsubsection Objfiles In Python
4151
4152@cindex objfiles in python
4153@tindex gdb.Objfile
4154@tindex Objfile
4155@value{GDBN} loads symbols for an inferior from various
4156symbol-containing files (@pxref{Files}). These include the primary
4157executable file, any shared libraries used by the inferior, and any
4158separate debug info files (@pxref{Separate Debug Files}).
4159@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4160
4161The following objfile-related functions are available in the
4162@code{gdb} module:
4163
4164@findex gdb.current_objfile
4165@defun gdb.current_objfile ()
4166When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4167sets the ``current objfile'' to the corresponding objfile. This
4168function returns the current objfile. If there is no current objfile,
4169this function returns @code{None}.
4170@end defun
4171
4172@findex gdb.objfiles
4173@defun gdb.objfiles ()
74d3fbbb
SM
4174Return a sequence of objfiles referenced by the current program space.
4175@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4176to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4177historical compatibility.
329baa95
DE
4178@end defun
4179
6dddd6a5
DE
4180@findex gdb.lookup_objfile
4181@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4182Look up @var{name}, a file name or build ID, in the list of objfiles
4183for the current program space (@pxref{Progspaces In Python}).
4184If the objfile is not found throw the Python @code{ValueError} exception.
4185
4186If @var{name} is a relative file name, then it will match any
4187source file name with the same trailing components. For example, if
4188@var{name} is @samp{gcc/expr.c}, then it will match source file
4189name of @file{/build/trunk/gcc/expr.c}, but not
4190@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4191
4192If @var{by_build_id} is provided and is @code{True} then @var{name}
4193is the build ID of the objfile. Otherwise, @var{name} is a file name.
4194This is supported only on some operating systems, notably those which use
4195the ELF format for binary files and the @sc{gnu} Binutils. For more details
4196about this feature, see the description of the @option{--build-id}
f5a476a7 4197command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4198The GNU Linker}.
4199@end defun
4200
329baa95
DE
4201Each objfile is represented by an instance of the @code{gdb.Objfile}
4202class.
4203
4204@defvar Objfile.filename
1b549396
DE
4205The file name of the objfile as a string, with symbolic links resolved.
4206
4207The value is @code{None} if the objfile is no longer valid.
4208See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4209@end defvar
4210
3a8b707a
DE
4211@defvar Objfile.username
4212The file name of the objfile as specified by the user as a string.
4213
4214The value is @code{None} if the objfile is no longer valid.
4215See the @code{gdb.Objfile.is_valid} method, described below.
4216@end defvar
4217
a0be3e44
DE
4218@defvar Objfile.owner
4219For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4220object that debug info is being provided for.
4221Otherwise this is @code{None}.
4222Separate debug info objfiles are added with the
4223@code{gdb.Objfile.add_separate_debug_file} method, described below.
4224@end defvar
4225
7c50a931
DE
4226@defvar Objfile.build_id
4227The build ID of the objfile as a string.
4228If the objfile does not have a build ID then the value is @code{None}.
4229
4230This is supported only on some operating systems, notably those which use
4231the ELF format for binary files and the @sc{gnu} Binutils. For more details
4232about this feature, see the description of the @option{--build-id}
f5a476a7 4233command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4234The GNU Linker}.
4235@end defvar
4236
d096d8c1
DE
4237@defvar Objfile.progspace
4238The containing program space of the objfile as a @code{gdb.Progspace}
4239object. @xref{Progspaces In Python}.
4240@end defvar
4241
329baa95
DE
4242@defvar Objfile.pretty_printers
4243The @code{pretty_printers} attribute is a list of functions. It is
4244used to look up pretty-printers. A @code{Value} is passed to each
4245function in order; if the function returns @code{None}, then the
4246search continues. Otherwise, the return value should be an object
4247which is used to format the value. @xref{Pretty Printing API}, for more
4248information.
4249@end defvar
4250
4251@defvar Objfile.type_printers
4252The @code{type_printers} attribute is a list of type printer objects.
4253@xref{Type Printing API}, for more information.
4254@end defvar
4255
4256@defvar Objfile.frame_filters
4257The @code{frame_filters} attribute is a dictionary of frame filter
4258objects. @xref{Frame Filter API}, for more information.
4259@end defvar
4260
02be9a71
DE
4261One may add arbitrary attributes to @code{gdb.Objfile} objects
4262in the usual Python way.
4263This is useful if, for example, one needs to do some extra record keeping
4264associated with the objfile.
4265
4266In this contrived example we record the time when @value{GDBN}
4267loaded the objfile.
4268
4269@smallexample
4270(gdb) python
4271import datetime
4272def new_objfile_handler(event):
4273 # Set the time_loaded attribute of the new objfile.
4274 event.new_objfile.time_loaded = datetime.datetime.today()
4275gdb.events.new_objfile.connect(new_objfile_handler)
4276end
4277(gdb) file ./hello
4278Reading symbols from ./hello...done.
4279(gdb) python print gdb.objfiles()[0].time_loaded
42802014-10-09 11:41:36.770345
4281@end smallexample
4282
329baa95
DE
4283A @code{gdb.Objfile} object has the following methods:
4284
4285@defun Objfile.is_valid ()
4286Returns @code{True} if the @code{gdb.Objfile} object is valid,
4287@code{False} if not. A @code{gdb.Objfile} object can become invalid
4288if the object file it refers to is not loaded in @value{GDBN} any
4289longer. All other @code{gdb.Objfile} methods will throw an exception
4290if it is invalid at the time the method is called.
4291@end defun
4292
86e4ed39
DE
4293@defun Objfile.add_separate_debug_file (file)
4294Add @var{file} to the list of files that @value{GDBN} will search for
4295debug information for the objfile.
4296This is useful when the debug info has been removed from the program
4297and stored in a separate file. @value{GDBN} has built-in support for
4298finding separate debug info files (@pxref{Separate Debug Files}), but if
4299the file doesn't live in one of the standard places that @value{GDBN}
4300searches then this function can be used to add a debug info file
4301from a different place.
4302@end defun
4303
329baa95 4304@node Frames In Python
849cba3b 4305@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4306
4307@cindex frames in python
4308When the debugged program stops, @value{GDBN} is able to analyze its call
4309stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4310represents a frame in the stack. A @code{gdb.Frame} object is only valid
4311while its corresponding frame exists in the inferior's stack. If you try
4312to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4313exception (@pxref{Exception Handling}).
4314
4315Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4316operator, like:
4317
4318@smallexample
4319(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4320True
4321@end smallexample
4322
4323The following frame-related functions are available in the @code{gdb} module:
4324
4325@findex gdb.selected_frame
4326@defun gdb.selected_frame ()
4327Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4328@end defun
4329
4330@findex gdb.newest_frame
4331@defun gdb.newest_frame ()
4332Return the newest frame object for the selected thread.
4333@end defun
4334
4335@defun gdb.frame_stop_reason_string (reason)
4336Return a string explaining the reason why @value{GDBN} stopped unwinding
4337frames, as expressed by the given @var{reason} code (an integer, see the
4338@code{unwind_stop_reason} method further down in this section).
4339@end defun
4340
e0f3fd7c
TT
4341@findex gdb.invalidate_cached_frames
4342@defun gdb.invalidate_cached_frames
4343@value{GDBN} internally keeps a cache of the frames that have been
4344unwound. This function invalidates this cache.
4345
4346This function should not generally be called by ordinary Python code.
4347It is documented for the sake of completeness.
4348@end defun
4349
329baa95
DE
4350A @code{gdb.Frame} object has the following methods:
4351
4352@defun Frame.is_valid ()
4353Returns true if the @code{gdb.Frame} object is valid, false if not.
4354A frame object can become invalid if the frame it refers to doesn't
4355exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4356an exception if it is invalid at the time the method is called.
4357@end defun
4358
4359@defun Frame.name ()
4360Returns the function name of the frame, or @code{None} if it can't be
4361obtained.
4362@end defun
4363
4364@defun Frame.architecture ()
4365Returns the @code{gdb.Architecture} object corresponding to the frame's
4366architecture. @xref{Architectures In Python}.
4367@end defun
4368
4369@defun Frame.type ()
4370Returns the type of the frame. The value can be one of:
4371@table @code
4372@item gdb.NORMAL_FRAME
4373An ordinary stack frame.
4374
4375@item gdb.DUMMY_FRAME
4376A fake stack frame that was created by @value{GDBN} when performing an
4377inferior function call.
4378
4379@item gdb.INLINE_FRAME
4380A frame representing an inlined function. The function was inlined
4381into a @code{gdb.NORMAL_FRAME} that is older than this one.
4382
4383@item gdb.TAILCALL_FRAME
4384A frame representing a tail call. @xref{Tail Call Frames}.
4385
4386@item gdb.SIGTRAMP_FRAME
4387A signal trampoline frame. This is the frame created by the OS when
4388it calls into a signal handler.
4389
4390@item gdb.ARCH_FRAME
4391A fake stack frame representing a cross-architecture call.
4392
4393@item gdb.SENTINEL_FRAME
4394This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4395newest frame.
4396@end table
4397@end defun
4398
4399@defun Frame.unwind_stop_reason ()
4400Return an integer representing the reason why it's not possible to find
4401more frames toward the outermost frame. Use
4402@code{gdb.frame_stop_reason_string} to convert the value returned by this
4403function to a string. The value can be one of:
4404
4405@table @code
4406@item gdb.FRAME_UNWIND_NO_REASON
4407No particular reason (older frames should be available).
4408
4409@item gdb.FRAME_UNWIND_NULL_ID
4410The previous frame's analyzer returns an invalid result. This is no
4411longer used by @value{GDBN}, and is kept only for backward
4412compatibility.
4413
4414@item gdb.FRAME_UNWIND_OUTERMOST
4415This frame is the outermost.
4416
4417@item gdb.FRAME_UNWIND_UNAVAILABLE
4418Cannot unwind further, because that would require knowing the
4419values of registers or memory that have not been collected.
4420
4421@item gdb.FRAME_UNWIND_INNER_ID
4422This frame ID looks like it ought to belong to a NEXT frame,
4423but we got it for a PREV frame. Normally, this is a sign of
4424unwinder failure. It could also indicate stack corruption.
4425
4426@item gdb.FRAME_UNWIND_SAME_ID
4427This frame has the same ID as the previous one. That means
4428that unwinding further would almost certainly give us another
4429frame with exactly the same ID, so break the chain. Normally,
4430this is a sign of unwinder failure. It could also indicate
4431stack corruption.
4432
4433@item gdb.FRAME_UNWIND_NO_SAVED_PC
4434The frame unwinder did not find any saved PC, but we needed
4435one to unwind further.
4436
53e8a631
AB
4437@item gdb.FRAME_UNWIND_MEMORY_ERROR
4438The frame unwinder caused an error while trying to access memory.
4439
329baa95
DE
4440@item gdb.FRAME_UNWIND_FIRST_ERROR
4441Any stop reason greater or equal to this value indicates some kind
4442of error. This special value facilitates writing code that tests
4443for errors in unwinding in a way that will work correctly even if
4444the list of the other values is modified in future @value{GDBN}
4445versions. Using it, you could write:
4446@smallexample
4447reason = gdb.selected_frame().unwind_stop_reason ()
4448reason_str = gdb.frame_stop_reason_string (reason)
4449if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4450 print "An error occured: %s" % reason_str
4451@end smallexample
4452@end table
4453
4454@end defun
4455
4456@defun Frame.pc ()
4457Returns the frame's resume address.
4458@end defun
4459
4460@defun Frame.block ()
60c0454d
TT
4461Return the frame's code block. @xref{Blocks In Python}. If the frame
4462does not have a block -- for example, if there is no debugging
4463information for the code in question -- then this will throw an
4464exception.
329baa95
DE
4465@end defun
4466
4467@defun Frame.function ()
4468Return the symbol for the function corresponding to this frame.
4469@xref{Symbols In Python}.
4470@end defun
4471
4472@defun Frame.older ()
4473Return the frame that called this frame.
4474@end defun
4475
4476@defun Frame.newer ()
4477Return the frame called by this frame.
4478@end defun
4479
4480@defun Frame.find_sal ()
4481Return the frame's symtab and line object.
4482@xref{Symbol Tables In Python}.
4483@end defun
4484
5f3b99cf
SS
4485@defun Frame.read_register (register)
4486Return the value of @var{register} in this frame. The @var{register}
4487argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4488Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4489does not exist.
4490@end defun
4491
329baa95
DE
4492@defun Frame.read_var (variable @r{[}, block@r{]})
4493Return the value of @var{variable} in this frame. If the optional
4494argument @var{block} is provided, search for the variable from that
4495block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4496determined by the frame's current program counter). The @var{variable}
4497argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4498@code{gdb.Block} object.
4499@end defun
4500
4501@defun Frame.select ()
4502Set this frame to be the selected frame. @xref{Stack, ,Examining the
4503Stack}.
4504@end defun
4505
4506@node Blocks In Python
849cba3b 4507@subsubsection Accessing blocks from Python
329baa95
DE
4508
4509@cindex blocks in python
4510@tindex gdb.Block
4511
4512In @value{GDBN}, symbols are stored in blocks. A block corresponds
4513roughly to a scope in the source code. Blocks are organized
4514hierarchically, and are represented individually in Python as a
4515@code{gdb.Block}. Blocks rely on debugging information being
4516available.
4517
4518A frame has a block. Please see @ref{Frames In Python}, for a more
4519in-depth discussion of frames.
4520
4521The outermost block is known as the @dfn{global block}. The global
4522block typically holds public global variables and functions.
4523
4524The block nested just inside the global block is the @dfn{static
4525block}. The static block typically holds file-scoped variables and
4526functions.
4527
4528@value{GDBN} provides a method to get a block's superblock, but there
4529is currently no way to examine the sub-blocks of a block, or to
4530iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4531Python}).
4532
4533Here is a short example that should help explain blocks:
4534
4535@smallexample
4536/* This is in the global block. */
4537int global;
4538
4539/* This is in the static block. */
4540static int file_scope;
4541
4542/* 'function' is in the global block, and 'argument' is
4543 in a block nested inside of 'function'. */
4544int function (int argument)
4545@{
4546 /* 'local' is in a block inside 'function'. It may or may
4547 not be in the same block as 'argument'. */
4548 int local;
4549
4550 @{
4551 /* 'inner' is in a block whose superblock is the one holding
4552 'local'. */
4553 int inner;
4554
4555 /* If this call is expanded by the compiler, you may see
4556 a nested block here whose function is 'inline_function'
4557 and whose superblock is the one holding 'inner'. */
4558 inline_function ();
4559 @}
4560@}
4561@end smallexample
4562
4563A @code{gdb.Block} is iterable. The iterator returns the symbols
4564(@pxref{Symbols In Python}) local to the block. Python programs
4565should not assume that a specific block object will always contain a
4566given symbol, since changes in @value{GDBN} features and
4567infrastructure may cause symbols move across blocks in a symbol
4568table.
4569
4570The following block-related functions are available in the @code{gdb}
4571module:
4572
4573@findex gdb.block_for_pc
4574@defun gdb.block_for_pc (pc)
4575Return the innermost @code{gdb.Block} containing the given @var{pc}
4576value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4577the function will return @code{None}. This is identical to
4578@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4579historical compatibility.
329baa95
DE
4580@end defun
4581
4582A @code{gdb.Block} object has the following methods:
4583
4584@defun Block.is_valid ()
4585Returns @code{True} if the @code{gdb.Block} object is valid,
4586@code{False} if not. A block object can become invalid if the block it
4587refers to doesn't exist anymore in the inferior. All other
4588@code{gdb.Block} methods will throw an exception if it is invalid at
4589the time the method is called. The block's validity is also checked
4590during iteration over symbols of the block.
4591@end defun
4592
4593A @code{gdb.Block} object has the following attributes:
4594
4595@defvar Block.start
4596The start address of the block. This attribute is not writable.
4597@end defvar
4598
4599@defvar Block.end
22eb9e92
TT
4600One past the last address that appears in the block. This attribute
4601is not writable.
329baa95
DE
4602@end defvar
4603
4604@defvar Block.function
4605The name of the block represented as a @code{gdb.Symbol}. If the
4606block is not named, then this attribute holds @code{None}. This
4607attribute is not writable.
4608
4609For ordinary function blocks, the superblock is the static block.
4610However, you should note that it is possible for a function block to
4611have a superblock that is not the static block -- for instance this
4612happens for an inlined function.
4613@end defvar
4614
4615@defvar Block.superblock
4616The block containing this block. If this parent block does not exist,
4617this attribute holds @code{None}. This attribute is not writable.
4618@end defvar
4619
4620@defvar Block.global_block
4621The global block associated with this block. This attribute is not
4622writable.
4623@end defvar
4624
4625@defvar Block.static_block
4626The static block associated with this block. This attribute is not
4627writable.
4628@end defvar
4629
4630@defvar Block.is_global
4631@code{True} if the @code{gdb.Block} object is a global block,
4632@code{False} if not. This attribute is not
4633writable.
4634@end defvar
4635
4636@defvar Block.is_static
4637@code{True} if the @code{gdb.Block} object is a static block,
4638@code{False} if not. This attribute is not writable.
4639@end defvar
4640
4641@node Symbols In Python
849cba3b 4642@subsubsection Python representation of Symbols
329baa95
DE
4643
4644@cindex symbols in python
4645@tindex gdb.Symbol
4646
4647@value{GDBN} represents every variable, function and type as an
4648entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4649Similarly, Python represents these symbols in @value{GDBN} with the
4650@code{gdb.Symbol} object.
4651
4652The following symbol-related functions are available in the @code{gdb}
4653module:
4654
4655@findex gdb.lookup_symbol
4656@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4657This function searches for a symbol by name. The search scope can be
4658restricted to the parameters defined in the optional domain and block
4659arguments.
4660
4661@var{name} is the name of the symbol. It must be a string. The
4662optional @var{block} argument restricts the search to symbols visible
4663in that @var{block}. The @var{block} argument must be a
4664@code{gdb.Block} object. If omitted, the block for the current frame
4665is used. The optional @var{domain} argument restricts
4666the search to the domain type. The @var{domain} argument must be a
4667domain constant defined in the @code{gdb} module and described later
4668in this chapter.
4669
4670The result is a tuple of two elements.
4671The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4672is not found.
4673If the symbol is found, the second element is @code{True} if the symbol
4674is a field of a method's object (e.g., @code{this} in C@t{++}),
4675otherwise it is @code{False}.
4676If the symbol is not found, the second element is @code{False}.
4677@end defun
4678
4679@findex gdb.lookup_global_symbol
4680@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4681This function searches for a global symbol by name.
4682The search scope can be restricted to by the domain argument.
4683
4684@var{name} is the name of the symbol. It must be a string.
4685The optional @var{domain} argument restricts the search to the domain type.
4686The @var{domain} argument must be a domain constant defined in the @code{gdb}
4687module and described later in this chapter.
4688
4689The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4690is not found.
4691@end defun
4692
4693A @code{gdb.Symbol} object has the following attributes:
4694
4695@defvar Symbol.type
4696The type of the symbol or @code{None} if no type is recorded.
4697This attribute is represented as a @code{gdb.Type} object.
4698@xref{Types In Python}. This attribute is not writable.
4699@end defvar
4700
4701@defvar Symbol.symtab
4702The symbol table in which the symbol appears. This attribute is
4703represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4704Python}. This attribute is not writable.
4705@end defvar
4706
4707@defvar Symbol.line
4708The line number in the source code at which the symbol was defined.
4709This is an integer.
4710@end defvar
4711
4712@defvar Symbol.name
4713The name of the symbol as a string. This attribute is not writable.
4714@end defvar
4715
4716@defvar Symbol.linkage_name
4717The name of the symbol, as used by the linker (i.e., may be mangled).
4718This attribute is not writable.
4719@end defvar
4720
4721@defvar Symbol.print_name
4722The name of the symbol in a form suitable for output. This is either
4723@code{name} or @code{linkage_name}, depending on whether the user
4724asked @value{GDBN} to display demangled or mangled names.
4725@end defvar
4726
4727@defvar Symbol.addr_class
4728The address class of the symbol. This classifies how to find the value
4729of a symbol. Each address class is a constant defined in the
4730@code{gdb} module and described later in this chapter.
4731@end defvar
4732
4733@defvar Symbol.needs_frame
4734This is @code{True} if evaluating this symbol's value requires a frame
4735(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4736local variables will require a frame, but other symbols will not.
4737@end defvar
4738
4739@defvar Symbol.is_argument
4740@code{True} if the symbol is an argument of a function.
4741@end defvar
4742
4743@defvar Symbol.is_constant
4744@code{True} if the symbol is a constant.
4745@end defvar
4746
4747@defvar Symbol.is_function
4748@code{True} if the symbol is a function or a method.
4749@end defvar
4750
4751@defvar Symbol.is_variable
4752@code{True} if the symbol is a variable.
4753@end defvar
4754
4755A @code{gdb.Symbol} object has the following methods:
4756
4757@defun Symbol.is_valid ()
4758Returns @code{True} if the @code{gdb.Symbol} object is valid,
4759@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4760the symbol it refers to does not exist in @value{GDBN} any longer.
4761All other @code{gdb.Symbol} methods will throw an exception if it is
4762invalid at the time the method is called.
4763@end defun
4764
4765@defun Symbol.value (@r{[}frame@r{]})
4766Compute the value of the symbol, as a @code{gdb.Value}. For
4767functions, this computes the address of the function, cast to the
4768appropriate type. If the symbol requires a frame in order to compute
4769its value, then @var{frame} must be given. If @var{frame} is not
4770given, or if @var{frame} is invalid, then this method will throw an
4771exception.
4772@end defun
4773
4774The available domain categories in @code{gdb.Symbol} are represented
4775as constants in the @code{gdb} module:
4776
b3ce5e5f
DE
4777@vtable @code
4778@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4779@item gdb.SYMBOL_UNDEF_DOMAIN
4780This is used when a domain has not been discovered or none of the
4781following domains apply. This usually indicates an error either
4782in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4783
4784@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4785@item gdb.SYMBOL_VAR_DOMAIN
4786This domain contains variables, function names, typedef names and enum
4787type values.
b3ce5e5f
DE
4788
4789@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4790@item gdb.SYMBOL_STRUCT_DOMAIN
4791This domain holds struct, union and enum type names.
b3ce5e5f
DE
4792
4793@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4794@item gdb.SYMBOL_LABEL_DOMAIN
4795This domain contains names of labels (for gotos).
b3ce5e5f 4796
51e78fc5
TT
4797@vindex SYMBOL_MODULE_DOMAIN
4798@item gdb.SYMBOL_MODULE_DOMAIN
4799This domain contains names of Fortran module types.
4800
4801@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4802@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4803This domain contains names of Fortran common blocks.
b3ce5e5f 4804@end vtable
329baa95
DE
4805
4806The available address class categories in @code{gdb.Symbol} are represented
4807as constants in the @code{gdb} module:
4808
b3ce5e5f
DE
4809@vtable @code
4810@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4811@item gdb.SYMBOL_LOC_UNDEF
4812If this is returned by address class, it indicates an error either in
4813the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4814
4815@vindex SYMBOL_LOC_CONST
329baa95
DE
4816@item gdb.SYMBOL_LOC_CONST
4817Value is constant int.
b3ce5e5f
DE
4818
4819@vindex SYMBOL_LOC_STATIC
329baa95
DE
4820@item gdb.SYMBOL_LOC_STATIC
4821Value is at a fixed address.
b3ce5e5f
DE
4822
4823@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4824@item gdb.SYMBOL_LOC_REGISTER
4825Value is in a register.
b3ce5e5f
DE
4826
4827@vindex SYMBOL_LOC_ARG
329baa95
DE
4828@item gdb.SYMBOL_LOC_ARG
4829Value is an argument. This value is at the offset stored within the
4830symbol inside the frame's argument list.
b3ce5e5f
DE
4831
4832@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4833@item gdb.SYMBOL_LOC_REF_ARG
4834Value address is stored in the frame's argument list. Just like
4835@code{LOC_ARG} except that the value's address is stored at the
4836offset, not the value itself.
b3ce5e5f
DE
4837
4838@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4839@item gdb.SYMBOL_LOC_REGPARM_ADDR
4840Value is a specified register. Just like @code{LOC_REGISTER} except
4841the register holds the address of the argument instead of the argument
4842itself.
b3ce5e5f
DE
4843
4844@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4845@item gdb.SYMBOL_LOC_LOCAL
4846Value is a local variable.
b3ce5e5f
DE
4847
4848@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4849@item gdb.SYMBOL_LOC_TYPEDEF
4850Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4851have this class.
b3ce5e5f
DE
4852
4853@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4854@item gdb.SYMBOL_LOC_BLOCK
4855Value is a block.
b3ce5e5f
DE
4856
4857@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4858@item gdb.SYMBOL_LOC_CONST_BYTES
4859Value is a byte-sequence.
b3ce5e5f
DE
4860
4861@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4862@item gdb.SYMBOL_LOC_UNRESOLVED
4863Value is at a fixed address, but the address of the variable has to be
4864determined from the minimal symbol table whenever the variable is
4865referenced.
b3ce5e5f
DE
4866
4867@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4868@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4869The value does not actually exist in the program.
b3ce5e5f
DE
4870
4871@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4872@item gdb.SYMBOL_LOC_COMPUTED
4873The value's address is a computed location.
51e78fc5
TT
4874
4875@vindex SYMBOL_LOC_COMPUTED
4876@item gdb.SYMBOL_LOC_COMPUTED
4877The value's address is a symbol. This is only used for Fortran common
4878blocks.
b3ce5e5f 4879@end vtable
329baa95
DE
4880
4881@node Symbol Tables In Python
849cba3b 4882@subsubsection Symbol table representation in Python
329baa95
DE
4883
4884@cindex symbol tables in python
4885@tindex gdb.Symtab
4886@tindex gdb.Symtab_and_line
4887
4888Access to symbol table data maintained by @value{GDBN} on the inferior
4889is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4890@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4891from the @code{find_sal} method in @code{gdb.Frame} object.
4892@xref{Frames In Python}.
4893
4894For more information on @value{GDBN}'s symbol table management, see
4895@ref{Symbols, ,Examining the Symbol Table}, for more information.
4896
4897A @code{gdb.Symtab_and_line} object has the following attributes:
4898
4899@defvar Symtab_and_line.symtab
4900The symbol table object (@code{gdb.Symtab}) for this frame.
4901This attribute is not writable.
4902@end defvar
4903
4904@defvar Symtab_and_line.pc
4905Indicates the start of the address range occupied by code for the
4906current source line. This attribute is not writable.
4907@end defvar
4908
4909@defvar Symtab_and_line.last
4910Indicates the end of the address range occupied by code for the current
4911source line. This attribute is not writable.
4912@end defvar
4913
4914@defvar Symtab_and_line.line
4915Indicates the current line number for this object. This
4916attribute is not writable.
4917@end defvar
4918
4919A @code{gdb.Symtab_and_line} object has the following methods:
4920
4921@defun Symtab_and_line.is_valid ()
4922Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4923@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4924invalid if the Symbol table and line object it refers to does not
4925exist in @value{GDBN} any longer. All other
4926@code{gdb.Symtab_and_line} methods will throw an exception if it is
4927invalid at the time the method is called.
4928@end defun
4929
4930A @code{gdb.Symtab} object has the following attributes:
4931
4932@defvar Symtab.filename
4933The symbol table's source filename. This attribute is not writable.
4934@end defvar
4935
4936@defvar Symtab.objfile
4937The symbol table's backing object file. @xref{Objfiles In Python}.
4938This attribute is not writable.
4939@end defvar
4940
2b4fd423
DE
4941@defvar Symtab.producer
4942The name and possibly version number of the program that
4943compiled the code in the symbol table.
4944The contents of this string is up to the compiler.
4945If no producer information is available then @code{None} is returned.
4946This attribute is not writable.
4947@end defvar
4948
329baa95
DE
4949A @code{gdb.Symtab} object has the following methods:
4950
4951@defun Symtab.is_valid ()
4952Returns @code{True} if the @code{gdb.Symtab} object is valid,
4953@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4954the symbol table it refers to does not exist in @value{GDBN} any
4955longer. All other @code{gdb.Symtab} methods will throw an exception
4956if it is invalid at the time the method is called.
4957@end defun
4958
4959@defun Symtab.fullname ()
4960Return the symbol table's source absolute file name.
4961@end defun
4962
4963@defun Symtab.global_block ()
4964Return the global block of the underlying symbol table.
4965@xref{Blocks In Python}.
4966@end defun
4967
4968@defun Symtab.static_block ()
4969Return the static block of the underlying symbol table.
4970@xref{Blocks In Python}.
4971@end defun
4972
4973@defun Symtab.linetable ()
4974Return the line table associated with the symbol table.
4975@xref{Line Tables In Python}.
4976@end defun
4977
4978@node Line Tables In Python
4979@subsubsection Manipulating line tables using Python
4980
4981@cindex line tables in python
4982@tindex gdb.LineTable
4983
4984Python code can request and inspect line table information from a
4985symbol table that is loaded in @value{GDBN}. A line table is a
4986mapping of source lines to their executable locations in memory. To
4987acquire the line table information for a particular symbol table, use
4988the @code{linetable} function (@pxref{Symbol Tables In Python}).
4989
4990A @code{gdb.LineTable} is iterable. The iterator returns
4991@code{LineTableEntry} objects that correspond to the source line and
4992address for each line table entry. @code{LineTableEntry} objects have
4993the following attributes:
4994
4995@defvar LineTableEntry.line
4996The source line number for this line table entry. This number
4997corresponds to the actual line of source. This attribute is not
4998writable.
4999@end defvar
5000
5001@defvar LineTableEntry.pc
5002The address that is associated with the line table entry where the
5003executable code for that source line resides in memory. This
5004attribute is not writable.
5005@end defvar
5006
5007As there can be multiple addresses for a single source line, you may
5008receive multiple @code{LineTableEntry} objects with matching
5009@code{line} attributes, but with different @code{pc} attributes. The
5010iterator is sorted in ascending @code{pc} order. Here is a small
5011example illustrating iterating over a line table.
5012
5013@smallexample
5014symtab = gdb.selected_frame().find_sal().symtab
5015linetable = symtab.linetable()
5016for line in linetable:
5017 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5018@end smallexample
5019
5020This will have the following output:
5021
5022@smallexample
5023Line: 33 Address: 0x4005c8L
5024Line: 37 Address: 0x4005caL
5025Line: 39 Address: 0x4005d2L
5026Line: 40 Address: 0x4005f8L
5027Line: 42 Address: 0x4005ffL
5028Line: 44 Address: 0x400608L
5029Line: 42 Address: 0x40060cL
5030Line: 45 Address: 0x400615L
5031@end smallexample
5032
5033In addition to being able to iterate over a @code{LineTable}, it also
5034has the following direct access methods:
5035
5036@defun LineTable.line (line)
5037Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5038entries in the line table for the given @var{line}, which specifies
5039the source code line. If there are no entries for that source code
329baa95
DE
5040@var{line}, the Python @code{None} is returned.
5041@end defun
5042
5043@defun LineTable.has_line (line)
5044Return a Python @code{Boolean} indicating whether there is an entry in
5045the line table for this source line. Return @code{True} if an entry
5046is found, or @code{False} if not.
5047@end defun
5048
5049@defun LineTable.source_lines ()
5050Return a Python @code{List} of the source line numbers in the symbol
5051table. Only lines with executable code locations are returned. The
5052contents of the @code{List} will just be the source line entries
5053represented as Python @code{Long} values.
5054@end defun
5055
5056@node Breakpoints In Python
5057@subsubsection Manipulating breakpoints using Python
5058
5059@cindex breakpoints in python
5060@tindex gdb.Breakpoint
5061
5062Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5063class.
5064
0b982d68
SM
5065A breakpoint can be created using one of the two forms of the
5066@code{gdb.Breakpoint} constructor. The first one accepts a string
5067like one would pass to the @code{break}
5068(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5069(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5070create both breakpoints and watchpoints. The second accepts separate Python
5071arguments similar to @ref{Explicit Locations}, and can only be used to create
5072breakpoints.
5073
b89641ba 5074@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5075Create a new breakpoint according to @var{spec}, which is a string naming the
5076location of a breakpoint, or an expression that defines a watchpoint. The
5077string should describe a location in a format recognized by the @code{break}
5078command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5079watchpoint, by the @code{watch} command
5080(@pxref{Set Watchpoints, , Setting Watchpoints}).
5081
5082The optional @var{type} argument specifies the type of the breakpoint to create,
5083as defined below.
5084
5085The optional @var{wp_class} argument defines the class of watchpoint to create,
5086if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5087defaults to @code{gdb.WP_WRITE}.
5088
5089The optional @var{internal} argument allows the breakpoint to become invisible
5090to the user. The breakpoint will neither be reported when created, nor will it
5091be listed in the output from @code{info breakpoints} (but will be listed with
5092the @code{maint info breakpoints} command).
5093
5094The optional @var{temporary} argument makes the breakpoint a temporary
5095breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5096further access to the Python breakpoint after it has been hit will result in a
5097runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5098
5099The optional @var{qualified} argument is a boolean that allows interpreting
5100the function passed in @code{spec} as a fully-qualified name. It is equivalent
5101to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5102@ref{Explicit Locations}).
5103
0b982d68
SM
5104@end defun
5105
b89641ba 5106@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5107This second form of creating a new breakpoint specifies the explicit
5108location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5109be created in the specified source file @var{source}, at the specified
5110@var{function}, @var{label} and @var{line}.
5111
b89641ba
SM
5112@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5113explained previously.
329baa95
DE
5114@end defun
5115
cda75e70
TT
5116The available types are represented by constants defined in the @code{gdb}
5117module:
5118
5119@vtable @code
5120@vindex BP_BREAKPOINT
5121@item gdb.BP_BREAKPOINT
5122Normal code breakpoint.
5123
5124@vindex BP_WATCHPOINT
5125@item gdb.BP_WATCHPOINT
5126Watchpoint breakpoint.
5127
5128@vindex BP_HARDWARE_WATCHPOINT
5129@item gdb.BP_HARDWARE_WATCHPOINT
5130Hardware assisted watchpoint.
5131
5132@vindex BP_READ_WATCHPOINT
5133@item gdb.BP_READ_WATCHPOINT
5134Hardware assisted read watchpoint.
5135
5136@vindex BP_ACCESS_WATCHPOINT
5137@item gdb.BP_ACCESS_WATCHPOINT
5138Hardware assisted access watchpoint.
5139@end vtable
5140
5141The available watchpoint types represented by constants are defined in the
5142@code{gdb} module:
5143
5144@vtable @code
5145@vindex WP_READ
5146@item gdb.WP_READ
5147Read only watchpoint.
5148
5149@vindex WP_WRITE
5150@item gdb.WP_WRITE
5151Write only watchpoint.
5152
5153@vindex WP_ACCESS
5154@item gdb.WP_ACCESS
5155Read/Write watchpoint.
5156@end vtable
5157
329baa95
DE
5158@defun Breakpoint.stop (self)
5159The @code{gdb.Breakpoint} class can be sub-classed and, in
5160particular, you may choose to implement the @code{stop} method.
5161If this method is defined in a sub-class of @code{gdb.Breakpoint},
5162it will be called when the inferior reaches any location of a
5163breakpoint which instantiates that sub-class. If the method returns
5164@code{True}, the inferior will be stopped at the location of the
5165breakpoint, otherwise the inferior will continue.
5166
5167If there are multiple breakpoints at the same location with a
5168@code{stop} method, each one will be called regardless of the
5169return status of the previous. This ensures that all @code{stop}
5170methods have a chance to execute at that location. In this scenario
5171if one of the methods returns @code{True} but the others return
5172@code{False}, the inferior will still be stopped.
5173
5174You should not alter the execution state of the inferior (i.e.@:, step,
5175next, etc.), alter the current frame context (i.e.@:, change the current
5176active frame), or alter, add or delete any breakpoint. As a general
5177rule, you should not alter any data within @value{GDBN} or the inferior
5178at this time.
5179
5180Example @code{stop} implementation:
5181
5182@smallexample
5183class MyBreakpoint (gdb.Breakpoint):
5184 def stop (self):
5185 inf_val = gdb.parse_and_eval("foo")
5186 if inf_val == 3:
5187 return True
5188 return False
5189@end smallexample
5190@end defun
5191
329baa95
DE
5192@defun Breakpoint.is_valid ()
5193Return @code{True} if this @code{Breakpoint} object is valid,
5194@code{False} otherwise. A @code{Breakpoint} object can become invalid
5195if the user deletes the breakpoint. In this case, the object still
5196exists, but the underlying breakpoint does not. In the cases of
5197watchpoint scope, the watchpoint remains valid even if execution of the
5198inferior leaves the scope of that watchpoint.
5199@end defun
5200
fab3a15d 5201@defun Breakpoint.delete ()
329baa95
DE
5202Permanently deletes the @value{GDBN} breakpoint. This also
5203invalidates the Python @code{Breakpoint} object. Any further access
5204to this object's attributes or methods will raise an error.
5205@end defun
5206
5207@defvar Breakpoint.enabled
5208This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5209@code{False} otherwise. This attribute is writable. You can use it to enable
5210or disable the breakpoint.
329baa95
DE
5211@end defvar
5212
5213@defvar Breakpoint.silent
5214This attribute is @code{True} if the breakpoint is silent, and
5215@code{False} otherwise. This attribute is writable.
5216
5217Note that a breakpoint can also be silent if it has commands and the
5218first command is @code{silent}. This is not reported by the
5219@code{silent} attribute.
5220@end defvar
5221
93daf339
TT
5222@defvar Breakpoint.pending
5223This attribute is @code{True} if the breakpoint is pending, and
5224@code{False} otherwise. @xref{Set Breaks}. This attribute is
5225read-only.
5226@end defvar
5227
22a02324 5228@anchor{python_breakpoint_thread}
329baa95 5229@defvar Breakpoint.thread
5d5658a1
PA
5230If the breakpoint is thread-specific, this attribute holds the
5231thread's global id. If the breakpoint is not thread-specific, this
5232attribute is @code{None}. This attribute is writable.
329baa95
DE
5233@end defvar
5234
5235@defvar Breakpoint.task
5236If the breakpoint is Ada task-specific, this attribute holds the Ada task
5237id. If the breakpoint is not task-specific (or the underlying
5238language is not Ada), this attribute is @code{None}. This attribute
5239is writable.
5240@end defvar
5241
5242@defvar Breakpoint.ignore_count
5243This attribute holds the ignore count for the breakpoint, an integer.
5244This attribute is writable.
5245@end defvar
5246
5247@defvar Breakpoint.number
5248This attribute holds the breakpoint's number --- the identifier used by
5249the user to manipulate the breakpoint. This attribute is not writable.
5250@end defvar
5251
5252@defvar Breakpoint.type
5253This attribute holds the breakpoint's type --- the identifier used to
5254determine the actual breakpoint type or use-case. This attribute is not
5255writable.
5256@end defvar
5257
5258@defvar Breakpoint.visible
5259This attribute tells whether the breakpoint is visible to the user
5260when set, or when the @samp{info breakpoints} command is run. This
5261attribute is not writable.
5262@end defvar
5263
5264@defvar Breakpoint.temporary
5265This attribute indicates whether the breakpoint was created as a
5266temporary breakpoint. Temporary breakpoints are automatically deleted
5267after that breakpoint has been hit. Access to this attribute, and all
5268other attributes and functions other than the @code{is_valid}
5269function, will result in an error after the breakpoint has been hit
5270(as it has been automatically deleted). This attribute is not
5271writable.
5272@end defvar
5273
329baa95
DE
5274@defvar Breakpoint.hit_count
5275This attribute holds the hit count for the breakpoint, an integer.
5276This attribute is writable, but currently it can only be set to zero.
5277@end defvar
5278
5279@defvar Breakpoint.location
5280This attribute holds the location of the breakpoint, as specified by
5281the user. It is a string. If the breakpoint does not have a location
5282(that is, it is a watchpoint) the attribute's value is @code{None}. This
5283attribute is not writable.
5284@end defvar
5285
5286@defvar Breakpoint.expression
5287This attribute holds a breakpoint expression, as specified by
5288the user. It is a string. If the breakpoint does not have an
5289expression (the breakpoint is not a watchpoint) the attribute's value
5290is @code{None}. This attribute is not writable.
5291@end defvar
5292
5293@defvar Breakpoint.condition
5294This attribute holds the condition of the breakpoint, as specified by
5295the user. It is a string. If there is no condition, this attribute's
5296value is @code{None}. This attribute is writable.
5297@end defvar
5298
5299@defvar Breakpoint.commands
5300This attribute holds the commands attached to the breakpoint. If
5301there are commands, this attribute's value is a string holding all the
5302commands, separated by newlines. If there are no commands, this
a913fffb 5303attribute is @code{None}. This attribute is writable.
329baa95
DE
5304@end defvar
5305
5306@node Finish Breakpoints in Python
5307@subsubsection Finish Breakpoints
5308
5309@cindex python finish breakpoints
5310@tindex gdb.FinishBreakpoint
5311
5312A finish breakpoint is a temporary breakpoint set at the return address of
5313a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5314extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5315and deleted when the execution will run out of the breakpoint scope (i.e.@:
5316@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5317Finish breakpoints are thread specific and must be create with the right
5318thread selected.
5319
5320@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5321Create a finish breakpoint at the return address of the @code{gdb.Frame}
5322object @var{frame}. If @var{frame} is not provided, this defaults to the
5323newest frame. The optional @var{internal} argument allows the breakpoint to
5324become invisible to the user. @xref{Breakpoints In Python}, for further
5325details about this argument.
5326@end defun
5327
5328@defun FinishBreakpoint.out_of_scope (self)
5329In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5330@code{return} command, @dots{}), a function may not properly terminate, and
5331thus never hit the finish breakpoint. When @value{GDBN} notices such a
5332situation, the @code{out_of_scope} callback will be triggered.
5333
5334You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5335method:
5336
5337@smallexample
5338class MyFinishBreakpoint (gdb.FinishBreakpoint)
5339 def stop (self):
5340 print "normal finish"
5341 return True
5342
5343 def out_of_scope ():
5344 print "abnormal finish"
5345@end smallexample
5346@end defun
5347
5348@defvar FinishBreakpoint.return_value
5349When @value{GDBN} is stopped at a finish breakpoint and the frame
5350used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5351attribute will contain a @code{gdb.Value} object corresponding to the return
5352value of the function. The value will be @code{None} if the function return
5353type is @code{void} or if the return value was not computable. This attribute
5354is not writable.
5355@end defvar
5356
5357@node Lazy Strings In Python
849cba3b 5358@subsubsection Python representation of lazy strings
329baa95
DE
5359
5360@cindex lazy strings in python
5361@tindex gdb.LazyString
5362
5363A @dfn{lazy string} is a string whose contents is not retrieved or
5364encoded until it is needed.
5365
5366A @code{gdb.LazyString} is represented in @value{GDBN} as an
5367@code{address} that points to a region of memory, an @code{encoding}
5368that will be used to encode that region of memory, and a @code{length}
5369to delimit the region of memory that represents the string. The
5370difference between a @code{gdb.LazyString} and a string wrapped within
5371a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5372differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5373retrieved and encoded during printing, while a @code{gdb.Value}
5374wrapping a string is immediately retrieved and encoded on creation.
5375
5376A @code{gdb.LazyString} object has the following functions:
5377
5378@defun LazyString.value ()
5379Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5380will point to the string in memory, but will lose all the delayed
5381retrieval, encoding and handling that @value{GDBN} applies to a
5382@code{gdb.LazyString}.
5383@end defun
5384
5385@defvar LazyString.address
5386This attribute holds the address of the string. This attribute is not
5387writable.
5388@end defvar
5389
5390@defvar LazyString.length
5391This attribute holds the length of the string in characters. If the
5392length is -1, then the string will be fetched and encoded up to the
5393first null of appropriate width. This attribute is not writable.
5394@end defvar
5395
5396@defvar LazyString.encoding
5397This attribute holds the encoding that will be applied to the string
5398when the string is printed by @value{GDBN}. If the encoding is not
5399set, or contains an empty string, then @value{GDBN} will select the
5400most appropriate encoding when the string is printed. This attribute
5401is not writable.
5402@end defvar
5403
5404@defvar LazyString.type
5405This attribute holds the type that is represented by the lazy string's
f8d99587 5406type. For a lazy string this is a pointer or array type. To
329baa95
DE
5407resolve this to the lazy string's character type, use the type's
5408@code{target} method. @xref{Types In Python}. This attribute is not
5409writable.
5410@end defvar
5411
5412@node Architectures In Python
5413@subsubsection Python representation of architectures
5414@cindex Python architectures
5415
5416@value{GDBN} uses architecture specific parameters and artifacts in a
5417number of its various computations. An architecture is represented
5418by an instance of the @code{gdb.Architecture} class.
5419
5420A @code{gdb.Architecture} class has the following methods:
5421
5422@defun Architecture.name ()
5423Return the name (string value) of the architecture.
5424@end defun
5425
5426@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5427Return a list of disassembled instructions starting from the memory
5428address @var{start_pc}. The optional arguments @var{end_pc} and
5429@var{count} determine the number of instructions in the returned list.
5430If both the optional arguments @var{end_pc} and @var{count} are
5431specified, then a list of at most @var{count} disassembled instructions
5432whose start address falls in the closed memory address interval from
5433@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5434specified, but @var{count} is specified, then @var{count} number of
5435instructions starting from the address @var{start_pc} are returned. If
5436@var{count} is not specified but @var{end_pc} is specified, then all
5437instructions whose start address falls in the closed memory address
5438interval from @var{start_pc} to @var{end_pc} are returned. If neither
5439@var{end_pc} nor @var{count} are specified, then a single instruction at
5440@var{start_pc} is returned. For all of these cases, each element of the
5441returned list is a Python @code{dict} with the following string keys:
5442
5443@table @code
5444
5445@item addr
5446The value corresponding to this key is a Python long integer capturing
5447the memory address of the instruction.
5448
5449@item asm
5450The value corresponding to this key is a string value which represents
5451the instruction with assembly language mnemonics. The assembly
5452language flavor used is the same as that specified by the current CLI
5453variable @code{disassembly-flavor}. @xref{Machine Code}.
5454
5455@item length
5456The value corresponding to this key is the length (integer value) of the
5457instruction in bytes.
5458
5459@end table
5460@end defun
5461
5462@node Python Auto-loading
5463@subsection Python Auto-loading
5464@cindex Python auto-loading
5465
5466When a new object file is read (for example, due to the @code{file}
5467command, or because the inferior has loaded a shared library),
5468@value{GDBN} will look for Python support scripts in several ways:
5469@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5470@xref{Auto-loading extensions}.
5471
5472The auto-loading feature is useful for supplying application-specific
5473debugging commands and scripts.
5474
5475Auto-loading can be enabled or disabled,
5476and the list of auto-loaded scripts can be printed.
5477
5478@table @code
5479@anchor{set auto-load python-scripts}
5480@kindex set auto-load python-scripts
5481@item set auto-load python-scripts [on|off]
5482Enable or disable the auto-loading of Python scripts.
5483
5484@anchor{show auto-load python-scripts}
5485@kindex show auto-load python-scripts
5486@item show auto-load python-scripts
5487Show whether auto-loading of Python scripts is enabled or disabled.
5488
5489@anchor{info auto-load python-scripts}
5490@kindex info auto-load python-scripts
5491@cindex print list of auto-loaded Python scripts
5492@item info auto-load python-scripts [@var{regexp}]
5493Print the list of all Python scripts that @value{GDBN} auto-loaded.
5494
5495Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5496the @code{.debug_gdb_scripts} section and were either not found
5497(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5498@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5499This is useful because their names are not printed when @value{GDBN}
5500tries to load them and fails. There may be many of them, and printing
5501an error message for each one is problematic.
5502
5503If @var{regexp} is supplied only Python scripts with matching names are printed.
5504
5505Example:
5506
5507@smallexample
5508(gdb) info auto-load python-scripts
5509Loaded Script
5510Yes py-section-script.py
5511 full name: /tmp/py-section-script.py
5512No my-foo-pretty-printers.py
5513@end smallexample
5514@end table
5515
9f050062 5516When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5517@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5518function (@pxref{Objfiles In Python}). This can be useful for
5519registering objfile-specific pretty-printers and frame-filters.
5520
5521@node Python modules
5522@subsection Python modules
5523@cindex python modules
5524
5525@value{GDBN} comes with several modules to assist writing Python code.
5526
5527@menu
5528* gdb.printing:: Building and registering pretty-printers.
5529* gdb.types:: Utilities for working with types.
5530* gdb.prompt:: Utilities for prompt value substitution.
5531@end menu
5532
5533@node gdb.printing
5534@subsubsection gdb.printing
5535@cindex gdb.printing
5536
5537This module provides a collection of utilities for working with
5538pretty-printers.
5539
5540@table @code
5541@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5542This class specifies the API that makes @samp{info pretty-printer},
5543@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5544Pretty-printers should generally inherit from this class.
5545
5546@item SubPrettyPrinter (@var{name})
5547For printers that handle multiple types, this class specifies the
5548corresponding API for the subprinters.
5549
5550@item RegexpCollectionPrettyPrinter (@var{name})
5551Utility class for handling multiple printers, all recognized via
5552regular expressions.
5553@xref{Writing a Pretty-Printer}, for an example.
5554
5555@item FlagEnumerationPrinter (@var{name})
5556A pretty-printer which handles printing of @code{enum} values. Unlike
5557@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5558work properly when there is some overlap between the enumeration
697aa1b7
EZ
5559constants. The argument @var{name} is the name of the printer and
5560also the name of the @code{enum} type to look up.
329baa95
DE
5561
5562@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5563Register @var{printer} with the pretty-printer list of @var{obj}.
5564If @var{replace} is @code{True} then any existing copy of the printer
5565is replaced. Otherwise a @code{RuntimeError} exception is raised
5566if a printer with the same name already exists.
5567@end table
5568
5569@node gdb.types
5570@subsubsection gdb.types
5571@cindex gdb.types
5572
5573This module provides a collection of utilities for working with
5574@code{gdb.Type} objects.
5575
5576@table @code
5577@item get_basic_type (@var{type})
5578Return @var{type} with const and volatile qualifiers stripped,
5579and with typedefs and C@t{++} references converted to the underlying type.
5580
5581C@t{++} example:
5582
5583@smallexample
5584typedef const int const_int;
5585const_int foo (3);
5586const_int& foo_ref (foo);
5587int main () @{ return 0; @}
5588@end smallexample
5589
5590Then in gdb:
5591
5592@smallexample
5593(gdb) start
5594(gdb) python import gdb.types
5595(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5596(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5597int
5598@end smallexample
5599
5600@item has_field (@var{type}, @var{field})
5601Return @code{True} if @var{type}, assumed to be a type with fields
5602(e.g., a structure or union), has field @var{field}.
5603
5604@item make_enum_dict (@var{enum_type})
5605Return a Python @code{dictionary} type produced from @var{enum_type}.
5606
5607@item deep_items (@var{type})
5608Returns a Python iterator similar to the standard
5609@code{gdb.Type.iteritems} method, except that the iterator returned
5610by @code{deep_items} will recursively traverse anonymous struct or
5611union fields. For example:
5612
5613@smallexample
5614struct A
5615@{
5616 int a;
5617 union @{
5618 int b0;
5619 int b1;
5620 @};
5621@};
5622@end smallexample
5623
5624@noindent
5625Then in @value{GDBN}:
5626@smallexample
5627(@value{GDBP}) python import gdb.types
5628(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5629(@value{GDBP}) python print struct_a.keys ()
5630@{['a', '']@}
5631(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5632@{['a', 'b0', 'b1']@}
5633@end smallexample
5634
5635@item get_type_recognizers ()
5636Return a list of the enabled type recognizers for the current context.
5637This is called by @value{GDBN} during the type-printing process
5638(@pxref{Type Printing API}).
5639
5640@item apply_type_recognizers (recognizers, type_obj)
5641Apply the type recognizers, @var{recognizers}, to the type object
5642@var{type_obj}. If any recognizer returns a string, return that
5643string. Otherwise, return @code{None}. This is called by
5644@value{GDBN} during the type-printing process (@pxref{Type Printing
5645API}).
5646
5647@item register_type_printer (locus, printer)
697aa1b7
EZ
5648This is a convenience function to register a type printer
5649@var{printer}. The printer must implement the type printer protocol.
5650The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5651the printer is registered with that objfile; a @code{gdb.Progspace},
5652in which case the printer is registered with that progspace; or
5653@code{None}, in which case the printer is registered globally.
329baa95
DE
5654
5655@item TypePrinter
5656This is a base class that implements the type printer protocol. Type
5657printers are encouraged, but not required, to derive from this class.
5658It defines a constructor:
5659
5660@defmethod TypePrinter __init__ (self, name)
5661Initialize the type printer with the given name. The new printer
5662starts in the enabled state.
5663@end defmethod
5664
5665@end table
5666
5667@node gdb.prompt
5668@subsubsection gdb.prompt
5669@cindex gdb.prompt
5670
5671This module provides a method for prompt value-substitution.
5672
5673@table @code
5674@item substitute_prompt (@var{string})
5675Return @var{string} with escape sequences substituted by values. Some
5676escape sequences take arguments. You can specify arguments inside
5677``@{@}'' immediately following the escape sequence.
5678
5679The escape sequences you can pass to this function are:
5680
5681@table @code
5682@item \\
5683Substitute a backslash.
5684@item \e
5685Substitute an ESC character.
5686@item \f
5687Substitute the selected frame; an argument names a frame parameter.
5688@item \n
5689Substitute a newline.
5690@item \p
5691Substitute a parameter's value; the argument names the parameter.
5692@item \r
5693Substitute a carriage return.
5694@item \t
5695Substitute the selected thread; an argument names a thread parameter.
5696@item \v
5697Substitute the version of GDB.
5698@item \w
5699Substitute the current working directory.
5700@item \[
5701Begin a sequence of non-printing characters. These sequences are
5702typically used with the ESC character, and are not counted in the string
5703length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5704blue-colored ``(gdb)'' prompt where the length is five.
5705@item \]
5706End a sequence of non-printing characters.
5707@end table
5708
5709For example:
5710
5711@smallexample
5712substitute_prompt (``frame: \f,
5713 print arguments: \p@{print frame-arguments@}'')
5714@end smallexample
5715
5716@exdent will return the string:
5717
5718@smallexample
5719"frame: main, print arguments: scalars"
5720@end smallexample
5721@end table