]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Python: Introduce gdb.RecordGap class
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
61baf725 1@c Copyright (C) 2008-2017 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
246@findex gdb.parameter
247@defun gdb.parameter (parameter)
697aa1b7
EZ
248Return the value of a @value{GDBN} @var{parameter} given by its name,
249a string; the parameter name string may contain spaces if the parameter has a
250multi-part name. For example, @samp{print object} is a valid
251parameter name.
329baa95
DE
252
253If the named parameter does not exist, this function throws a
254@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
255parameter's value is converted to a Python value of the appropriate
256type, and returned.
257@end defun
258
259@findex gdb.history
260@defun gdb.history (number)
261Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 262History}). The @var{number} argument indicates which history element to return.
329baa95
DE
263If @var{number} is negative, then @value{GDBN} will take its absolute value
264and count backward from the last element (i.e., the most recent element) to
265find the value to return. If @var{number} is zero, then @value{GDBN} will
266return the most recent element. If the element specified by @var{number}
267doesn't exist in the value history, a @code{gdb.error} exception will be
268raised.
269
270If no exception is raised, the return value is always an instance of
271@code{gdb.Value} (@pxref{Values From Inferior}).
272@end defun
273
274@findex gdb.parse_and_eval
275@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
276Parse @var{expression}, which must be a string, as an expression in
277the current language, evaluate it, and return the result as a
278@code{gdb.Value}.
329baa95
DE
279
280This function can be useful when implementing a new command
281(@pxref{Commands In Python}), as it provides a way to parse the
282command's argument as an expression. It is also useful simply to
283compute values, for example, it is the only way to get the value of a
284convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
285@end defun
286
287@findex gdb.find_pc_line
288@defun gdb.find_pc_line (pc)
289Return the @code{gdb.Symtab_and_line} object corresponding to the
290@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
291value of @var{pc} is passed as an argument, then the @code{symtab} and
292@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
293will be @code{None} and 0 respectively.
294@end defun
295
296@findex gdb.post_event
297@defun gdb.post_event (event)
298Put @var{event}, a callable object taking no arguments, into
299@value{GDBN}'s internal event queue. This callable will be invoked at
300some later point, during @value{GDBN}'s event processing. Events
301posted using @code{post_event} will be run in the order in which they
302were posted; however, there is no way to know when they will be
303processed relative to other events inside @value{GDBN}.
304
305@value{GDBN} is not thread-safe. If your Python program uses multiple
306threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 307functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
308this. For example:
309
310@smallexample
311(@value{GDBP}) python
312>import threading
313>
314>class Writer():
315> def __init__(self, message):
316> self.message = message;
317> def __call__(self):
318> gdb.write(self.message)
319>
320>class MyThread1 (threading.Thread):
321> def run (self):
322> gdb.post_event(Writer("Hello "))
323>
324>class MyThread2 (threading.Thread):
325> def run (self):
326> gdb.post_event(Writer("World\n"))
327>
328>MyThread1().start()
329>MyThread2().start()
330>end
331(@value{GDBP}) Hello World
332@end smallexample
333@end defun
334
335@findex gdb.write
336@defun gdb.write (string @r{[}, stream{]})
337Print a string to @value{GDBN}'s paginated output stream. The
338optional @var{stream} determines the stream to print to. The default
339stream is @value{GDBN}'s standard output stream. Possible stream
340values are:
341
342@table @code
343@findex STDOUT
344@findex gdb.STDOUT
345@item gdb.STDOUT
346@value{GDBN}'s standard output stream.
347
348@findex STDERR
349@findex gdb.STDERR
350@item gdb.STDERR
351@value{GDBN}'s standard error stream.
352
353@findex STDLOG
354@findex gdb.STDLOG
355@item gdb.STDLOG
356@value{GDBN}'s log stream (@pxref{Logging Output}).
357@end table
358
359Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
360call this function and will automatically direct the output to the
361relevant stream.
362@end defun
363
364@findex gdb.flush
365@defun gdb.flush ()
366Flush the buffer of a @value{GDBN} paginated stream so that the
367contents are displayed immediately. @value{GDBN} will flush the
368contents of a stream automatically when it encounters a newline in the
369buffer. The optional @var{stream} determines the stream to flush. The
370default stream is @value{GDBN}'s standard output stream. Possible
371stream values are:
372
373@table @code
374@findex STDOUT
375@findex gdb.STDOUT
376@item gdb.STDOUT
377@value{GDBN}'s standard output stream.
378
379@findex STDERR
380@findex gdb.STDERR
381@item gdb.STDERR
382@value{GDBN}'s standard error stream.
383
384@findex STDLOG
385@findex gdb.STDLOG
386@item gdb.STDLOG
387@value{GDBN}'s log stream (@pxref{Logging Output}).
388
389@end table
390
391Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
392call this function for the relevant stream.
393@end defun
394
395@findex gdb.target_charset
396@defun gdb.target_charset ()
397Return the name of the current target character set (@pxref{Character
398Sets}). This differs from @code{gdb.parameter('target-charset')} in
399that @samp{auto} is never returned.
400@end defun
401
402@findex gdb.target_wide_charset
403@defun gdb.target_wide_charset ()
404Return the name of the current target wide character set
405(@pxref{Character Sets}). This differs from
406@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
407never returned.
408@end defun
409
410@findex gdb.solib_name
411@defun gdb.solib_name (address)
412Return the name of the shared library holding the given @var{address}
413as a string, or @code{None}.
414@end defun
415
416@findex gdb.decode_line
417@defun gdb.decode_line @r{[}expression@r{]}
418Return locations of the line specified by @var{expression}, or of the
419current line if no argument was given. This function returns a Python
420tuple containing two elements. The first element contains a string
421holding any unparsed section of @var{expression} (or @code{None} if
422the expression has been fully parsed). The second element contains
423either @code{None} or another tuple that contains all the locations
424that match the expression represented as @code{gdb.Symtab_and_line}
425objects (@pxref{Symbol Tables In Python}). If @var{expression} is
426provided, it is decoded the way that @value{GDBN}'s inbuilt
427@code{break} or @code{edit} commands do (@pxref{Specify Location}).
428@end defun
429
430@defun gdb.prompt_hook (current_prompt)
431@anchor{prompt_hook}
432
433If @var{prompt_hook} is callable, @value{GDBN} will call the method
434assigned to this operation before a prompt is displayed by
435@value{GDBN}.
436
437The parameter @code{current_prompt} contains the current @value{GDBN}
438prompt. This method must return a Python string, or @code{None}. If
439a string is returned, the @value{GDBN} prompt will be set to that
440string. If @code{None} is returned, @value{GDBN} will continue to use
441the current prompt.
442
443Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
444such as those used by readline for command input, and annotation
445related prompts are prohibited from being changed.
446@end defun
447
448@node Exception Handling
449@subsubsection Exception Handling
450@cindex python exceptions
451@cindex exceptions, python
452
453When executing the @code{python} command, Python exceptions
454uncaught within the Python code are translated to calls to
455@value{GDBN} error-reporting mechanism. If the command that called
456@code{python} does not handle the error, @value{GDBN} will
457terminate it and print an error message containing the Python
458exception name, the associated value, and the Python call stack
459backtrace at the point where the exception was raised. Example:
460
461@smallexample
462(@value{GDBP}) python print foo
463Traceback (most recent call last):
464 File "<string>", line 1, in <module>
465NameError: name 'foo' is not defined
466@end smallexample
467
468@value{GDBN} errors that happen in @value{GDBN} commands invoked by
469Python code are converted to Python exceptions. The type of the
470Python exception depends on the error.
471
472@ftable @code
473@item gdb.error
474This is the base class for most exceptions generated by @value{GDBN}.
475It is derived from @code{RuntimeError}, for compatibility with earlier
476versions of @value{GDBN}.
477
478If an error occurring in @value{GDBN} does not fit into some more
479specific category, then the generated exception will have this type.
480
481@item gdb.MemoryError
482This is a subclass of @code{gdb.error} which is thrown when an
483operation tried to access invalid memory in the inferior.
484
485@item KeyboardInterrupt
486User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
487prompt) is translated to a Python @code{KeyboardInterrupt} exception.
488@end ftable
489
490In all cases, your exception handler will see the @value{GDBN} error
491message as its value and the Python call stack backtrace at the Python
492statement closest to where the @value{GDBN} error occured as the
493traceback.
494
495@findex gdb.GdbError
496When implementing @value{GDBN} commands in Python via @code{gdb.Command},
497it is useful to be able to throw an exception that doesn't cause a
498traceback to be printed. For example, the user may have invoked the
499command incorrectly. Use the @code{gdb.GdbError} exception
500to handle this case. Example:
501
502@smallexample
503(gdb) python
504>class HelloWorld (gdb.Command):
505> """Greet the whole world."""
506> def __init__ (self):
507> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
508> def invoke (self, args, from_tty):
509> argv = gdb.string_to_argv (args)
510> if len (argv) != 0:
511> raise gdb.GdbError ("hello-world takes no arguments")
512> print "Hello, World!"
513>HelloWorld ()
514>end
515(gdb) hello-world 42
516hello-world takes no arguments
517@end smallexample
518
519@node Values From Inferior
520@subsubsection Values From Inferior
521@cindex values from inferior, with Python
522@cindex python, working with values from inferior
523
524@cindex @code{gdb.Value}
525@value{GDBN} provides values it obtains from the inferior program in
526an object of type @code{gdb.Value}. @value{GDBN} uses this object
527for its internal bookkeeping of the inferior's values, and for
528fetching values when necessary.
529
530Inferior values that are simple scalars can be used directly in
531Python expressions that are valid for the value's data type. Here's
532an example for an integer or floating-point value @code{some_val}:
533
534@smallexample
535bar = some_val + 2
536@end smallexample
537
538@noindent
539As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
540whose values are of the same type as those of @code{some_val}. Valid
541Python operations can also be performed on @code{gdb.Value} objects
542representing a @code{struct} or @code{class} object. For such cases,
543the overloaded operator (if present), is used to perform the operation.
544For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
545representing instances of a @code{class} which overloads the @code{+}
546operator, then one can use the @code{+} operator in their Python script
547as follows:
548
549@smallexample
550val3 = val1 + val2
551@end smallexample
552
553@noindent
554The result of the operation @code{val3} is also a @code{gdb.Value}
555object corresponding to the value returned by the overloaded @code{+}
556operator. In general, overloaded operators are invoked for the
557following operations: @code{+} (binary addition), @code{-} (binary
558subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
559@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
560
561Inferior values that are structures or instances of some class can
562be accessed using the Python @dfn{dictionary syntax}. For example, if
563@code{some_val} is a @code{gdb.Value} instance holding a structure, you
564can access its @code{foo} element with:
565
566@smallexample
567bar = some_val['foo']
568@end smallexample
569
570@cindex getting structure elements using gdb.Field objects as subscripts
571Again, @code{bar} will also be a @code{gdb.Value} object. Structure
572elements can also be accessed by using @code{gdb.Field} objects as
573subscripts (@pxref{Types In Python}, for more information on
574@code{gdb.Field} objects). For example, if @code{foo_field} is a
575@code{gdb.Field} object corresponding to element @code{foo} of the above
576structure, then @code{bar} can also be accessed as follows:
577
578@smallexample
579bar = some_val[foo_field]
580@end smallexample
581
582A @code{gdb.Value} that represents a function can be executed via
583inferior function call. Any arguments provided to the call must match
584the function's prototype, and must be provided in the order specified
585by that prototype.
586
587For example, @code{some_val} is a @code{gdb.Value} instance
588representing a function that takes two integers as arguments. To
589execute this function, call it like so:
590
591@smallexample
592result = some_val (10,20)
593@end smallexample
594
595Any values returned from a function call will be stored as a
596@code{gdb.Value}.
597
598The following attributes are provided:
599
600@defvar Value.address
601If this object is addressable, this read-only attribute holds a
602@code{gdb.Value} object representing the address. Otherwise,
603this attribute holds @code{None}.
604@end defvar
605
606@cindex optimized out value in Python
607@defvar Value.is_optimized_out
608This read-only boolean attribute is true if the compiler optimized out
609this value, thus it is not available for fetching from the inferior.
610@end defvar
611
612@defvar Value.type
613The type of this @code{gdb.Value}. The value of this attribute is a
614@code{gdb.Type} object (@pxref{Types In Python}).
615@end defvar
616
617@defvar Value.dynamic_type
618The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
619type information (@acronym{RTTI}) to determine the dynamic type of the
620value. If this value is of class type, it will return the class in
621which the value is embedded, if any. If this value is of pointer or
622reference to a class type, it will compute the dynamic type of the
623referenced object, and return a pointer or reference to that type,
624respectively. In all other cases, it will return the value's static
625type.
626
627Note that this feature will only work when debugging a C@t{++} program
628that includes @acronym{RTTI} for the object in question. Otherwise,
629it will just return the static type of the value as in @kbd{ptype foo}
630(@pxref{Symbols, ptype}).
631@end defvar
632
633@defvar Value.is_lazy
634The value of this read-only boolean attribute is @code{True} if this
635@code{gdb.Value} has not yet been fetched from the inferior.
636@value{GDBN} does not fetch values until necessary, for efficiency.
637For example:
638
639@smallexample
640myval = gdb.parse_and_eval ('somevar')
641@end smallexample
642
643The value of @code{somevar} is not fetched at this time. It will be
644fetched when the value is needed, or when the @code{fetch_lazy}
645method is invoked.
646@end defvar
647
648The following methods are provided:
649
650@defun Value.__init__ (@var{val})
651Many Python values can be converted directly to a @code{gdb.Value} via
652this object initializer. Specifically:
653
654@table @asis
655@item Python boolean
656A Python boolean is converted to the boolean type from the current
657language.
658
659@item Python integer
660A Python integer is converted to the C @code{long} type for the
661current architecture.
662
663@item Python long
664A Python long is converted to the C @code{long long} type for the
665current architecture.
666
667@item Python float
668A Python float is converted to the C @code{double} type for the
669current architecture.
670
671@item Python string
b3ce5e5f
DE
672A Python string is converted to a target string in the current target
673language using the current target encoding.
674If a character cannot be represented in the current target encoding,
675then an exception is thrown.
329baa95
DE
676
677@item @code{gdb.Value}
678If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
679
680@item @code{gdb.LazyString}
681If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
682Python}), then the lazy string's @code{value} method is called, and
683its result is used.
684@end table
685@end defun
686
687@defun Value.cast (type)
688Return a new instance of @code{gdb.Value} that is the result of
689casting this instance to the type described by @var{type}, which must
690be a @code{gdb.Type} object. If the cast cannot be performed for some
691reason, this method throws an exception.
692@end defun
693
694@defun Value.dereference ()
695For pointer data types, this method returns a new @code{gdb.Value} object
696whose contents is the object pointed to by the pointer. For example, if
697@code{foo} is a C pointer to an @code{int}, declared in your C program as
698
699@smallexample
700int *foo;
701@end smallexample
702
703@noindent
704then you can use the corresponding @code{gdb.Value} to access what
705@code{foo} points to like this:
706
707@smallexample
708bar = foo.dereference ()
709@end smallexample
710
711The result @code{bar} will be a @code{gdb.Value} object holding the
712value pointed to by @code{foo}.
713
714A similar function @code{Value.referenced_value} exists which also
715returns @code{gdb.Value} objects corresonding to the values pointed to
716by pointer values (and additionally, values referenced by reference
717values). However, the behavior of @code{Value.dereference}
718differs from @code{Value.referenced_value} by the fact that the
719behavior of @code{Value.dereference} is identical to applying the C
720unary operator @code{*} on a given value. For example, consider a
721reference to a pointer @code{ptrref}, declared in your C@t{++} program
722as
723
724@smallexample
725typedef int *intptr;
726...
727int val = 10;
728intptr ptr = &val;
729intptr &ptrref = ptr;
730@end smallexample
731
732Though @code{ptrref} is a reference value, one can apply the method
733@code{Value.dereference} to the @code{gdb.Value} object corresponding
734to it and obtain a @code{gdb.Value} which is identical to that
735corresponding to @code{val}. However, if you apply the method
736@code{Value.referenced_value}, the result would be a @code{gdb.Value}
737object identical to that corresponding to @code{ptr}.
738
739@smallexample
740py_ptrref = gdb.parse_and_eval ("ptrref")
741py_val = py_ptrref.dereference ()
742py_ptr = py_ptrref.referenced_value ()
743@end smallexample
744
745The @code{gdb.Value} object @code{py_val} is identical to that
746corresponding to @code{val}, and @code{py_ptr} is identical to that
747corresponding to @code{ptr}. In general, @code{Value.dereference} can
748be applied whenever the C unary operator @code{*} can be applied
749to the corresponding C value. For those cases where applying both
750@code{Value.dereference} and @code{Value.referenced_value} is allowed,
751the results obtained need not be identical (as we have seen in the above
752example). The results are however identical when applied on
753@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
754objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
755@end defun
756
757@defun Value.referenced_value ()
758For pointer or reference data types, this method returns a new
759@code{gdb.Value} object corresponding to the value referenced by the
760pointer/reference value. For pointer data types,
761@code{Value.dereference} and @code{Value.referenced_value} produce
762identical results. The difference between these methods is that
763@code{Value.dereference} cannot get the values referenced by reference
764values. For example, consider a reference to an @code{int}, declared
765in your C@t{++} program as
766
767@smallexample
768int val = 10;
769int &ref = val;
770@end smallexample
771
772@noindent
773then applying @code{Value.dereference} to the @code{gdb.Value} object
774corresponding to @code{ref} will result in an error, while applying
775@code{Value.referenced_value} will result in a @code{gdb.Value} object
776identical to that corresponding to @code{val}.
777
778@smallexample
779py_ref = gdb.parse_and_eval ("ref")
780er_ref = py_ref.dereference () # Results in error
781py_val = py_ref.referenced_value () # Returns the referenced value
782@end smallexample
783
784The @code{gdb.Value} object @code{py_val} is identical to that
785corresponding to @code{val}.
786@end defun
787
4c082a81
SC
788@defun Value.reference_value ()
789Return a @code{gdb.Value} object which is a reference to the value
790encapsulated by this instance.
791@end defun
792
793@defun Value.const_value ()
794Return a @code{gdb.Value} object which is a @code{const} version of the
795value encapsulated by this instance.
796@end defun
797
329baa95
DE
798@defun Value.dynamic_cast (type)
799Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
800operator were used. Consult a C@t{++} reference for details.
801@end defun
802
803@defun Value.reinterpret_cast (type)
804Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
805operator were used. Consult a C@t{++} reference for details.
806@end defun
807
808@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
809If this @code{gdb.Value} represents a string, then this method
810converts the contents to a Python string. Otherwise, this method will
811throw an exception.
812
b3ce5e5f
DE
813Values are interpreted as strings according to the rules of the
814current language. If the optional length argument is given, the
815string will be converted to that length, and will include any embedded
816zeroes that the string may contain. Otherwise, for languages
817where the string is zero-terminated, the entire string will be
818converted.
329baa95 819
b3ce5e5f
DE
820For example, in C-like languages, a value is a string if it is a pointer
821to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
822or @code{char32_t}.
329baa95
DE
823
824If the optional @var{encoding} argument is given, it must be a string
825naming the encoding of the string in the @code{gdb.Value}, such as
826@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
827the same encodings as the corresponding argument to Python's
828@code{string.decode} method, and the Python codec machinery will be used
829to convert the string. If @var{encoding} is not given, or if
830@var{encoding} is the empty string, then either the @code{target-charset}
831(@pxref{Character Sets}) will be used, or a language-specific encoding
832will be used, if the current language is able to supply one.
833
834The optional @var{errors} argument is the same as the corresponding
835argument to Python's @code{string.decode} method.
836
837If the optional @var{length} argument is given, the string will be
838fetched and converted to the given length.
839@end defun
840
841@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
842If this @code{gdb.Value} represents a string, then this method
843converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
844In Python}). Otherwise, this method will throw an exception.
845
846If the optional @var{encoding} argument is given, it must be a string
847naming the encoding of the @code{gdb.LazyString}. Some examples are:
848@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
849@var{encoding} argument is an encoding that @value{GDBN} does
850recognize, @value{GDBN} will raise an error.
851
852When a lazy string is printed, the @value{GDBN} encoding machinery is
853used to convert the string during printing. If the optional
854@var{encoding} argument is not provided, or is an empty string,
855@value{GDBN} will automatically select the encoding most suitable for
856the string type. For further information on encoding in @value{GDBN}
857please see @ref{Character Sets}.
858
859If the optional @var{length} argument is given, the string will be
860fetched and encoded to the length of characters specified. If
861the @var{length} argument is not provided, the string will be fetched
862and encoded until a null of appropriate width is found.
863@end defun
864
865@defun Value.fetch_lazy ()
866If the @code{gdb.Value} object is currently a lazy value
867(@code{gdb.Value.is_lazy} is @code{True}), then the value is
868fetched from the inferior. Any errors that occur in the process
869will produce a Python exception.
870
871If the @code{gdb.Value} object is not a lazy value, this method
872has no effect.
873
874This method does not return a value.
875@end defun
876
877
878@node Types In Python
879@subsubsection Types In Python
880@cindex types in Python
881@cindex Python, working with types
882
883@tindex gdb.Type
884@value{GDBN} represents types from the inferior using the class
885@code{gdb.Type}.
886
887The following type-related functions are available in the @code{gdb}
888module:
889
890@findex gdb.lookup_type
891@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 892This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
893
894If @var{block} is given, then @var{name} is looked up in that scope.
895Otherwise, it is searched for globally.
896
897Ordinarily, this function will return an instance of @code{gdb.Type}.
898If the named type cannot be found, it will throw an exception.
899@end defun
900
901If the type is a structure or class type, or an enum type, the fields
902of that type can be accessed using the Python @dfn{dictionary syntax}.
903For example, if @code{some_type} is a @code{gdb.Type} instance holding
904a structure type, you can access its @code{foo} field with:
905
906@smallexample
907bar = some_type['foo']
908@end smallexample
909
910@code{bar} will be a @code{gdb.Field} object; see below under the
911description of the @code{Type.fields} method for a description of the
912@code{gdb.Field} class.
913
914An instance of @code{Type} has the following attributes:
915
916@defvar Type.code
917The type code for this type. The type code will be one of the
918@code{TYPE_CODE_} constants defined below.
919@end defvar
920
921@defvar Type.name
922The name of this type. If this type has no name, then @code{None}
923is returned.
924@end defvar
925
926@defvar Type.sizeof
927The size of this type, in target @code{char} units. Usually, a
928target's @code{char} type will be an 8-bit byte. However, on some
929unusual platforms, this type may have a different size.
930@end defvar
931
932@defvar Type.tag
933The tag name for this type. The tag name is the name after
934@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
935languages have this concept. If this type has no tag name, then
936@code{None} is returned.
937@end defvar
938
939The following methods are provided:
940
941@defun Type.fields ()
942For structure and union types, this method returns the fields. Range
943types have two fields, the minimum and maximum values. Enum types
944have one field per enum constant. Function and method types have one
945field per parameter. The base types of C@t{++} classes are also
946represented as fields. If the type has no fields, or does not fit
947into one of these categories, an empty sequence will be returned.
948
949Each field is a @code{gdb.Field} object, with some pre-defined attributes:
950@table @code
951@item bitpos
952This attribute is not available for @code{enum} or @code{static}
9c37b5ae 953(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
954in bits, from the start of the containing type.
955
956@item enumval
957This attribute is only available for @code{enum} fields, and its value
958is the enumeration member's integer representation.
959
960@item name
961The name of the field, or @code{None} for anonymous fields.
962
963@item artificial
964This is @code{True} if the field is artificial, usually meaning that
965it was provided by the compiler and not the user. This attribute is
966always provided, and is @code{False} if the field is not artificial.
967
968@item is_base_class
969This is @code{True} if the field represents a base class of a C@t{++}
970structure. This attribute is always provided, and is @code{False}
971if the field is not a base class of the type that is the argument of
972@code{fields}, or if that type was not a C@t{++} class.
973
974@item bitsize
975If the field is packed, or is a bitfield, then this will have a
976non-zero value, which is the size of the field in bits. Otherwise,
977this will be zero; in this case the field's size is given by its type.
978
979@item type
980The type of the field. This is usually an instance of @code{Type},
981but it can be @code{None} in some situations.
982
983@item parent_type
984The type which contains this field. This is an instance of
985@code{gdb.Type}.
986@end table
987@end defun
988
989@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
990Return a new @code{gdb.Type} object which represents an array of this
991type. If one argument is given, it is the inclusive upper bound of
992the array; in this case the lower bound is zero. If two arguments are
993given, the first argument is the lower bound of the array, and the
994second argument is the upper bound of the array. An array's length
995must not be negative, but the bounds can be.
996@end defun
997
998@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
999Return a new @code{gdb.Type} object which represents a vector of this
1000type. If one argument is given, it is the inclusive upper bound of
1001the vector; in this case the lower bound is zero. If two arguments are
1002given, the first argument is the lower bound of the vector, and the
1003second argument is the upper bound of the vector. A vector's length
1004must not be negative, but the bounds can be.
1005
1006The difference between an @code{array} and a @code{vector} is that
1007arrays behave like in C: when used in expressions they decay to a pointer
1008to the first element whereas vectors are treated as first class values.
1009@end defun
1010
1011@defun Type.const ()
1012Return a new @code{gdb.Type} object which represents a
1013@code{const}-qualified variant of this type.
1014@end defun
1015
1016@defun Type.volatile ()
1017Return a new @code{gdb.Type} object which represents a
1018@code{volatile}-qualified variant of this type.
1019@end defun
1020
1021@defun Type.unqualified ()
1022Return a new @code{gdb.Type} object which represents an unqualified
1023variant of this type. That is, the result is neither @code{const} nor
1024@code{volatile}.
1025@end defun
1026
1027@defun Type.range ()
1028Return a Python @code{Tuple} object that contains two elements: the
1029low bound of the argument type and the high bound of that type. If
1030the type does not have a range, @value{GDBN} will raise a
1031@code{gdb.error} exception (@pxref{Exception Handling}).
1032@end defun
1033
1034@defun Type.reference ()
1035Return a new @code{gdb.Type} object which represents a reference to this
1036type.
1037@end defun
1038
1039@defun Type.pointer ()
1040Return a new @code{gdb.Type} object which represents a pointer to this
1041type.
1042@end defun
1043
1044@defun Type.strip_typedefs ()
1045Return a new @code{gdb.Type} that represents the real type,
1046after removing all layers of typedefs.
1047@end defun
1048
1049@defun Type.target ()
1050Return a new @code{gdb.Type} object which represents the target type
1051of this type.
1052
1053For a pointer type, the target type is the type of the pointed-to
1054object. For an array type (meaning C-like arrays), the target type is
1055the type of the elements of the array. For a function or method type,
1056the target type is the type of the return value. For a complex type,
1057the target type is the type of the elements. For a typedef, the
1058target type is the aliased type.
1059
1060If the type does not have a target, this method will throw an
1061exception.
1062@end defun
1063
1064@defun Type.template_argument (n @r{[}, block@r{]})
1065If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1066return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1067value of the @var{n}th template argument (indexed starting at 0).
329baa95 1068
1a6a384b
JL
1069If this @code{gdb.Type} is not a template type, or if the type has fewer
1070than @var{n} template arguments, this will throw an exception.
1071Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1072
1073If @var{block} is given, then @var{name} is looked up in that scope.
1074Otherwise, it is searched for globally.
1075@end defun
1076
59fb7612
SS
1077@defun Type.optimized_out ()
1078Return @code{gdb.Value} instance of this type whose value is optimized
1079out. This allows a frame decorator to indicate that the value of an
1080argument or a local variable is not known.
1081@end defun
329baa95
DE
1082
1083Each type has a code, which indicates what category this type falls
1084into. The available type categories are represented by constants
1085defined in the @code{gdb} module:
1086
b3ce5e5f
DE
1087@vtable @code
1088@vindex TYPE_CODE_PTR
329baa95
DE
1089@item gdb.TYPE_CODE_PTR
1090The type is a pointer.
1091
b3ce5e5f 1092@vindex TYPE_CODE_ARRAY
329baa95
DE
1093@item gdb.TYPE_CODE_ARRAY
1094The type is an array.
1095
b3ce5e5f 1096@vindex TYPE_CODE_STRUCT
329baa95
DE
1097@item gdb.TYPE_CODE_STRUCT
1098The type is a structure.
1099
b3ce5e5f 1100@vindex TYPE_CODE_UNION
329baa95
DE
1101@item gdb.TYPE_CODE_UNION
1102The type is a union.
1103
b3ce5e5f 1104@vindex TYPE_CODE_ENUM
329baa95
DE
1105@item gdb.TYPE_CODE_ENUM
1106The type is an enum.
1107
b3ce5e5f 1108@vindex TYPE_CODE_FLAGS
329baa95
DE
1109@item gdb.TYPE_CODE_FLAGS
1110A bit flags type, used for things such as status registers.
1111
b3ce5e5f 1112@vindex TYPE_CODE_FUNC
329baa95
DE
1113@item gdb.TYPE_CODE_FUNC
1114The type is a function.
1115
b3ce5e5f 1116@vindex TYPE_CODE_INT
329baa95
DE
1117@item gdb.TYPE_CODE_INT
1118The type is an integer type.
1119
b3ce5e5f 1120@vindex TYPE_CODE_FLT
329baa95
DE
1121@item gdb.TYPE_CODE_FLT
1122A floating point type.
1123
b3ce5e5f 1124@vindex TYPE_CODE_VOID
329baa95
DE
1125@item gdb.TYPE_CODE_VOID
1126The special type @code{void}.
1127
b3ce5e5f 1128@vindex TYPE_CODE_SET
329baa95
DE
1129@item gdb.TYPE_CODE_SET
1130A Pascal set type.
1131
b3ce5e5f 1132@vindex TYPE_CODE_RANGE
329baa95
DE
1133@item gdb.TYPE_CODE_RANGE
1134A range type, that is, an integer type with bounds.
1135
b3ce5e5f 1136@vindex TYPE_CODE_STRING
329baa95
DE
1137@item gdb.TYPE_CODE_STRING
1138A string type. Note that this is only used for certain languages with
1139language-defined string types; C strings are not represented this way.
1140
b3ce5e5f 1141@vindex TYPE_CODE_BITSTRING
329baa95
DE
1142@item gdb.TYPE_CODE_BITSTRING
1143A string of bits. It is deprecated.
1144
b3ce5e5f 1145@vindex TYPE_CODE_ERROR
329baa95
DE
1146@item gdb.TYPE_CODE_ERROR
1147An unknown or erroneous type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_METHOD
329baa95 1150@item gdb.TYPE_CODE_METHOD
9c37b5ae 1151A method type, as found in C@t{++}.
329baa95 1152
b3ce5e5f 1153@vindex TYPE_CODE_METHODPTR
329baa95
DE
1154@item gdb.TYPE_CODE_METHODPTR
1155A pointer-to-member-function.
1156
b3ce5e5f 1157@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1158@item gdb.TYPE_CODE_MEMBERPTR
1159A pointer-to-member.
1160
b3ce5e5f 1161@vindex TYPE_CODE_REF
329baa95
DE
1162@item gdb.TYPE_CODE_REF
1163A reference type.
1164
3fcf899d
AV
1165@vindex TYPE_CODE_RVALUE_REF
1166@item gdb.TYPE_CODE_RVALUE_REF
1167A C@t{++}11 rvalue reference type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_CHAR
329baa95
DE
1170@item gdb.TYPE_CODE_CHAR
1171A character type.
1172
b3ce5e5f 1173@vindex TYPE_CODE_BOOL
329baa95
DE
1174@item gdb.TYPE_CODE_BOOL
1175A boolean type.
1176
b3ce5e5f 1177@vindex TYPE_CODE_COMPLEX
329baa95
DE
1178@item gdb.TYPE_CODE_COMPLEX
1179A complex float type.
1180
b3ce5e5f 1181@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1182@item gdb.TYPE_CODE_TYPEDEF
1183A typedef to some other type.
1184
b3ce5e5f 1185@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1186@item gdb.TYPE_CODE_NAMESPACE
1187A C@t{++} namespace.
1188
b3ce5e5f 1189@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1190@item gdb.TYPE_CODE_DECFLOAT
1191A decimal floating point type.
1192
b3ce5e5f 1193@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1194@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1195A function internal to @value{GDBN}. This is the type used to represent
1196convenience functions.
b3ce5e5f 1197@end vtable
329baa95
DE
1198
1199Further support for types is provided in the @code{gdb.types}
1200Python module (@pxref{gdb.types}).
1201
1202@node Pretty Printing API
1203@subsubsection Pretty Printing API
b3ce5e5f 1204@cindex python pretty printing api
329baa95
DE
1205
1206An example output is provided (@pxref{Pretty Printing}).
1207
1208A pretty-printer is just an object that holds a value and implements a
1209specific interface, defined here.
1210
1211@defun pretty_printer.children (self)
1212@value{GDBN} will call this method on a pretty-printer to compute the
1213children of the pretty-printer's value.
1214
1215This method must return an object conforming to the Python iterator
1216protocol. Each item returned by the iterator must be a tuple holding
1217two elements. The first element is the ``name'' of the child; the
1218second element is the child's value. The value can be any Python
1219object which is convertible to a @value{GDBN} value.
1220
1221This method is optional. If it does not exist, @value{GDBN} will act
1222as though the value has no children.
1223@end defun
1224
1225@defun pretty_printer.display_hint (self)
1226The CLI may call this method and use its result to change the
1227formatting of a value. The result will also be supplied to an MI
1228consumer as a @samp{displayhint} attribute of the variable being
1229printed.
1230
1231This method is optional. If it does exist, this method must return a
1232string.
1233
1234Some display hints are predefined by @value{GDBN}:
1235
1236@table @samp
1237@item array
1238Indicate that the object being printed is ``array-like''. The CLI
1239uses this to respect parameters such as @code{set print elements} and
1240@code{set print array}.
1241
1242@item map
1243Indicate that the object being printed is ``map-like'', and that the
1244children of this value can be assumed to alternate between keys and
1245values.
1246
1247@item string
1248Indicate that the object being printed is ``string-like''. If the
1249printer's @code{to_string} method returns a Python string of some
1250kind, then @value{GDBN} will call its internal language-specific
1251string-printing function to format the string. For the CLI this means
1252adding quotation marks, possibly escaping some characters, respecting
1253@code{set print elements}, and the like.
1254@end table
1255@end defun
1256
1257@defun pretty_printer.to_string (self)
1258@value{GDBN} will call this method to display the string
1259representation of the value passed to the object's constructor.
1260
1261When printing from the CLI, if the @code{to_string} method exists,
1262then @value{GDBN} will prepend its result to the values returned by
1263@code{children}. Exactly how this formatting is done is dependent on
1264the display hint, and may change as more hints are added. Also,
1265depending on the print settings (@pxref{Print Settings}), the CLI may
1266print just the result of @code{to_string} in a stack trace, omitting
1267the result of @code{children}.
1268
1269If this method returns a string, it is printed verbatim.
1270
1271Otherwise, if this method returns an instance of @code{gdb.Value},
1272then @value{GDBN} prints this value. This may result in a call to
1273another pretty-printer.
1274
1275If instead the method returns a Python value which is convertible to a
1276@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1277the resulting value. Again, this may result in a call to another
1278pretty-printer. Python scalars (integers, floats, and booleans) and
1279strings are convertible to @code{gdb.Value}; other types are not.
1280
1281Finally, if this method returns @code{None} then no further operations
1282are peformed in this method and nothing is printed.
1283
1284If the result is not one of these types, an exception is raised.
1285@end defun
1286
1287@value{GDBN} provides a function which can be used to look up the
1288default pretty-printer for a @code{gdb.Value}:
1289
1290@findex gdb.default_visualizer
1291@defun gdb.default_visualizer (value)
1292This function takes a @code{gdb.Value} object as an argument. If a
1293pretty-printer for this value exists, then it is returned. If no such
1294printer exists, then this returns @code{None}.
1295@end defun
1296
1297@node Selecting Pretty-Printers
1298@subsubsection Selecting Pretty-Printers
b3ce5e5f 1299@cindex selecting python pretty-printers
329baa95
DE
1300
1301The Python list @code{gdb.pretty_printers} contains an array of
1302functions or callable objects that have been registered via addition
1303as a pretty-printer. Printers in this list are called @code{global}
1304printers, they're available when debugging all inferiors.
1305Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1306Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1307attribute.
1308
1309Each function on these lists is passed a single @code{gdb.Value}
1310argument and should return a pretty-printer object conforming to the
1311interface definition above (@pxref{Pretty Printing API}). If a function
1312cannot create a pretty-printer for the value, it should return
1313@code{None}.
1314
1315@value{GDBN} first checks the @code{pretty_printers} attribute of each
1316@code{gdb.Objfile} in the current program space and iteratively calls
1317each enabled lookup routine in the list for that @code{gdb.Objfile}
1318until it receives a pretty-printer object.
1319If no pretty-printer is found in the objfile lists, @value{GDBN} then
1320searches the pretty-printer list of the current program space,
1321calling each enabled function until an object is returned.
1322After these lists have been exhausted, it tries the global
1323@code{gdb.pretty_printers} list, again calling each enabled function until an
1324object is returned.
1325
1326The order in which the objfiles are searched is not specified. For a
1327given list, functions are always invoked from the head of the list,
1328and iterated over sequentially until the end of the list, or a printer
1329object is returned.
1330
1331For various reasons a pretty-printer may not work.
1332For example, the underlying data structure may have changed and
1333the pretty-printer is out of date.
1334
1335The consequences of a broken pretty-printer are severe enough that
1336@value{GDBN} provides support for enabling and disabling individual
1337printers. For example, if @code{print frame-arguments} is on,
1338a backtrace can become highly illegible if any argument is printed
1339with a broken printer.
1340
1341Pretty-printers are enabled and disabled by attaching an @code{enabled}
1342attribute to the registered function or callable object. If this attribute
1343is present and its value is @code{False}, the printer is disabled, otherwise
1344the printer is enabled.
1345
1346@node Writing a Pretty-Printer
1347@subsubsection Writing a Pretty-Printer
1348@cindex writing a pretty-printer
1349
1350A pretty-printer consists of two parts: a lookup function to detect
1351if the type is supported, and the printer itself.
1352
1353Here is an example showing how a @code{std::string} printer might be
1354written. @xref{Pretty Printing API}, for details on the API this class
1355must provide.
1356
1357@smallexample
1358class StdStringPrinter(object):
1359 "Print a std::string"
1360
1361 def __init__(self, val):
1362 self.val = val
1363
1364 def to_string(self):
1365 return self.val['_M_dataplus']['_M_p']
1366
1367 def display_hint(self):
1368 return 'string'
1369@end smallexample
1370
1371And here is an example showing how a lookup function for the printer
1372example above might be written.
1373
1374@smallexample
1375def str_lookup_function(val):
1376 lookup_tag = val.type.tag
1377 if lookup_tag == None:
1378 return None
1379 regex = re.compile("^std::basic_string<char,.*>$")
1380 if regex.match(lookup_tag):
1381 return StdStringPrinter(val)
1382 return None
1383@end smallexample
1384
1385The example lookup function extracts the value's type, and attempts to
1386match it to a type that it can pretty-print. If it is a type the
1387printer can pretty-print, it will return a printer object. If not, it
1388returns @code{None}.
1389
1390We recommend that you put your core pretty-printers into a Python
1391package. If your pretty-printers are for use with a library, we
1392further recommend embedding a version number into the package name.
1393This practice will enable @value{GDBN} to load multiple versions of
1394your pretty-printers at the same time, because they will have
1395different names.
1396
1397You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1398can be evaluated multiple times without changing its meaning. An
1399ideal auto-load file will consist solely of @code{import}s of your
1400printer modules, followed by a call to a register pretty-printers with
1401the current objfile.
1402
1403Taken as a whole, this approach will scale nicely to multiple
1404inferiors, each potentially using a different library version.
1405Embedding a version number in the Python package name will ensure that
1406@value{GDBN} is able to load both sets of printers simultaneously.
1407Then, because the search for pretty-printers is done by objfile, and
1408because your auto-loaded code took care to register your library's
1409printers with a specific objfile, @value{GDBN} will find the correct
1410printers for the specific version of the library used by each
1411inferior.
1412
1413To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1414this code might appear in @code{gdb.libstdcxx.v6}:
1415
1416@smallexample
1417def register_printers(objfile):
1418 objfile.pretty_printers.append(str_lookup_function)
1419@end smallexample
1420
1421@noindent
1422And then the corresponding contents of the auto-load file would be:
1423
1424@smallexample
1425import gdb.libstdcxx.v6
1426gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1427@end smallexample
1428
1429The previous example illustrates a basic pretty-printer.
1430There are a few things that can be improved on.
1431The printer doesn't have a name, making it hard to identify in a
1432list of installed printers. The lookup function has a name, but
1433lookup functions can have arbitrary, even identical, names.
1434
1435Second, the printer only handles one type, whereas a library typically has
1436several types. One could install a lookup function for each desired type
1437in the library, but one could also have a single lookup function recognize
1438several types. The latter is the conventional way this is handled.
1439If a pretty-printer can handle multiple data types, then its
1440@dfn{subprinters} are the printers for the individual data types.
1441
1442The @code{gdb.printing} module provides a formal way of solving these
1443problems (@pxref{gdb.printing}).
1444Here is another example that handles multiple types.
1445
1446These are the types we are going to pretty-print:
1447
1448@smallexample
1449struct foo @{ int a, b; @};
1450struct bar @{ struct foo x, y; @};
1451@end smallexample
1452
1453Here are the printers:
1454
1455@smallexample
1456class fooPrinter:
1457 """Print a foo object."""
1458
1459 def __init__(self, val):
1460 self.val = val
1461
1462 def to_string(self):
1463 return ("a=<" + str(self.val["a"]) +
1464 "> b=<" + str(self.val["b"]) + ">")
1465
1466class barPrinter:
1467 """Print a bar object."""
1468
1469 def __init__(self, val):
1470 self.val = val
1471
1472 def to_string(self):
1473 return ("x=<" + str(self.val["x"]) +
1474 "> y=<" + str(self.val["y"]) + ">")
1475@end smallexample
1476
1477This example doesn't need a lookup function, that is handled by the
1478@code{gdb.printing} module. Instead a function is provided to build up
1479the object that handles the lookup.
1480
1481@smallexample
1482import gdb.printing
1483
1484def build_pretty_printer():
1485 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1486 "my_library")
1487 pp.add_printer('foo', '^foo$', fooPrinter)
1488 pp.add_printer('bar', '^bar$', barPrinter)
1489 return pp
1490@end smallexample
1491
1492And here is the autoload support:
1493
1494@smallexample
1495import gdb.printing
1496import my_library
1497gdb.printing.register_pretty_printer(
1498 gdb.current_objfile(),
1499 my_library.build_pretty_printer())
1500@end smallexample
1501
1502Finally, when this printer is loaded into @value{GDBN}, here is the
1503corresponding output of @samp{info pretty-printer}:
1504
1505@smallexample
1506(gdb) info pretty-printer
1507my_library.so:
1508 my_library
1509 foo
1510 bar
1511@end smallexample
1512
1513@node Type Printing API
1514@subsubsection Type Printing API
1515@cindex type printing API for Python
1516
1517@value{GDBN} provides a way for Python code to customize type display.
1518This is mainly useful for substituting canonical typedef names for
1519types.
1520
1521@cindex type printer
1522A @dfn{type printer} is just a Python object conforming to a certain
1523protocol. A simple base class implementing the protocol is provided;
1524see @ref{gdb.types}. A type printer must supply at least:
1525
1526@defivar type_printer enabled
1527A boolean which is True if the printer is enabled, and False
1528otherwise. This is manipulated by the @code{enable type-printer}
1529and @code{disable type-printer} commands.
1530@end defivar
1531
1532@defivar type_printer name
1533The name of the type printer. This must be a string. This is used by
1534the @code{enable type-printer} and @code{disable type-printer}
1535commands.
1536@end defivar
1537
1538@defmethod type_printer instantiate (self)
1539This is called by @value{GDBN} at the start of type-printing. It is
1540only called if the type printer is enabled. This method must return a
1541new object that supplies a @code{recognize} method, as described below.
1542@end defmethod
1543
1544
1545When displaying a type, say via the @code{ptype} command, @value{GDBN}
1546will compute a list of type recognizers. This is done by iterating
1547first over the per-objfile type printers (@pxref{Objfiles In Python}),
1548followed by the per-progspace type printers (@pxref{Progspaces In
1549Python}), and finally the global type printers.
1550
1551@value{GDBN} will call the @code{instantiate} method of each enabled
1552type printer. If this method returns @code{None}, then the result is
1553ignored; otherwise, it is appended to the list of recognizers.
1554
1555Then, when @value{GDBN} is going to display a type name, it iterates
1556over the list of recognizers. For each one, it calls the recognition
1557function, stopping if the function returns a non-@code{None} value.
1558The recognition function is defined as:
1559
1560@defmethod type_recognizer recognize (self, type)
1561If @var{type} is not recognized, return @code{None}. Otherwise,
1562return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1563The @var{type} argument will be an instance of @code{gdb.Type}
1564(@pxref{Types In Python}).
329baa95
DE
1565@end defmethod
1566
1567@value{GDBN} uses this two-pass approach so that type printers can
1568efficiently cache information without holding on to it too long. For
1569example, it can be convenient to look up type information in a type
1570printer and hold it for a recognizer's lifetime; if a single pass were
1571done then type printers would have to make use of the event system in
1572order to avoid holding information that could become stale as the
1573inferior changed.
1574
1575@node Frame Filter API
1576@subsubsection Filtering Frames.
1577@cindex frame filters api
1578
1579Frame filters are Python objects that manipulate the visibility of a
1580frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1581@value{GDBN}.
1582
1583Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1584commands (@pxref{GDB/MI}), those that return a collection of frames
1585are affected. The commands that work with frame filters are:
1586
1587@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1588@code{-stack-list-frames}
1589(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1590@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1591-stack-list-variables command}), @code{-stack-list-arguments}
1592@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1593@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1594-stack-list-locals command}).
1595
1596A frame filter works by taking an iterator as an argument, applying
1597actions to the contents of that iterator, and returning another
1598iterator (or, possibly, the same iterator it was provided in the case
1599where the filter does not perform any operations). Typically, frame
1600filters utilize tools such as the Python's @code{itertools} module to
1601work with and create new iterators from the source iterator.
1602Regardless of how a filter chooses to apply actions, it must not alter
1603the underlying @value{GDBN} frame or frames, or attempt to alter the
1604call-stack within @value{GDBN}. This preserves data integrity within
1605@value{GDBN}. Frame filters are executed on a priority basis and care
1606should be taken that some frame filters may have been executed before,
1607and that some frame filters will be executed after.
1608
1609An important consideration when designing frame filters, and well
1610worth reflecting upon, is that frame filters should avoid unwinding
1611the call stack if possible. Some stacks can run very deep, into the
1612tens of thousands in some cases. To search every frame when a frame
1613filter executes may be too expensive at that step. The frame filter
1614cannot know how many frames it has to iterate over, and it may have to
1615iterate through them all. This ends up duplicating effort as
1616@value{GDBN} performs this iteration when it prints the frames. If
1617the filter can defer unwinding frames until frame decorators are
1618executed, after the last filter has executed, it should. @xref{Frame
1619Decorator API}, for more information on decorators. Also, there are
1620examples for both frame decorators and filters in later chapters.
1621@xref{Writing a Frame Filter}, for more information.
1622
1623The Python dictionary @code{gdb.frame_filters} contains key/object
1624pairings that comprise a frame filter. Frame filters in this
1625dictionary are called @code{global} frame filters, and they are
1626available when debugging all inferiors. These frame filters must
1627register with the dictionary directly. In addition to the
1628@code{global} dictionary, there are other dictionaries that are loaded
1629with different inferiors via auto-loading (@pxref{Python
1630Auto-loading}). The two other areas where frame filter dictionaries
1631can be found are: @code{gdb.Progspace} which contains a
1632@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1633object which also contains a @code{frame_filters} dictionary
1634attribute.
1635
1636When a command is executed from @value{GDBN} that is compatible with
1637frame filters, @value{GDBN} combines the @code{global},
1638@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1639loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1640several frames, and thus several object files, might be in use.
1641@value{GDBN} then prunes any frame filter whose @code{enabled}
1642attribute is @code{False}. This pruned list is then sorted according
1643to the @code{priority} attribute in each filter.
1644
1645Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1646creates an iterator which wraps each frame in the call stack in a
1647@code{FrameDecorator} object, and calls each filter in order. The
1648output from the previous filter will always be the input to the next
1649filter, and so on.
1650
1651Frame filters have a mandatory interface which each frame filter must
1652implement, defined here:
1653
1654@defun FrameFilter.filter (iterator)
1655@value{GDBN} will call this method on a frame filter when it has
1656reached the order in the priority list for that filter.
1657
1658For example, if there are four frame filters:
1659
1660@smallexample
1661Name Priority
1662
1663Filter1 5
1664Filter2 10
1665Filter3 100
1666Filter4 1
1667@end smallexample
1668
1669The order that the frame filters will be called is:
1670
1671@smallexample
1672Filter3 -> Filter2 -> Filter1 -> Filter4
1673@end smallexample
1674
1675Note that the output from @code{Filter3} is passed to the input of
1676@code{Filter2}, and so on.
1677
1678This @code{filter} method is passed a Python iterator. This iterator
1679contains a sequence of frame decorators that wrap each
1680@code{gdb.Frame}, or a frame decorator that wraps another frame
1681decorator. The first filter that is executed in the sequence of frame
1682filters will receive an iterator entirely comprised of default
1683@code{FrameDecorator} objects. However, after each frame filter is
1684executed, the previous frame filter may have wrapped some or all of
1685the frame decorators with their own frame decorator. As frame
1686decorators must also conform to a mandatory interface, these
1687decorators can be assumed to act in a uniform manner (@pxref{Frame
1688Decorator API}).
1689
1690This method must return an object conforming to the Python iterator
1691protocol. Each item in the iterator must be an object conforming to
1692the frame decorator interface. If a frame filter does not wish to
1693perform any operations on this iterator, it should return that
1694iterator untouched.
1695
1696This method is not optional. If it does not exist, @value{GDBN} will
1697raise and print an error.
1698@end defun
1699
1700@defvar FrameFilter.name
1701The @code{name} attribute must be Python string which contains the
1702name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1703Management}). This attribute may contain any combination of letters
1704or numbers. Care should be taken to ensure that it is unique. This
1705attribute is mandatory.
1706@end defvar
1707
1708@defvar FrameFilter.enabled
1709The @code{enabled} attribute must be Python boolean. This attribute
1710indicates to @value{GDBN} whether the frame filter is enabled, and
1711should be considered when frame filters are executed. If
1712@code{enabled} is @code{True}, then the frame filter will be executed
1713when any of the backtrace commands detailed earlier in this chapter
1714are executed. If @code{enabled} is @code{False}, then the frame
1715filter will not be executed. This attribute is mandatory.
1716@end defvar
1717
1718@defvar FrameFilter.priority
1719The @code{priority} attribute must be Python integer. This attribute
1720controls the order of execution in relation to other frame filters.
1721There are no imposed limits on the range of @code{priority} other than
1722it must be a valid integer. The higher the @code{priority} attribute,
1723the sooner the frame filter will be executed in relation to other
1724frame filters. Although @code{priority} can be negative, it is
1725recommended practice to assume zero is the lowest priority that a
1726frame filter can be assigned. Frame filters that have the same
1727priority are executed in unsorted order in that priority slot. This
1728attribute is mandatory.
1729@end defvar
1730
1731@node Frame Decorator API
1732@subsubsection Decorating Frames.
1733@cindex frame decorator api
1734
1735Frame decorators are sister objects to frame filters (@pxref{Frame
1736Filter API}). Frame decorators are applied by a frame filter and can
1737only be used in conjunction with frame filters.
1738
1739The purpose of a frame decorator is to customize the printed content
1740of each @code{gdb.Frame} in commands where frame filters are executed.
1741This concept is called decorating a frame. Frame decorators decorate
1742a @code{gdb.Frame} with Python code contained within each API call.
1743This separates the actual data contained in a @code{gdb.Frame} from
1744the decorated data produced by a frame decorator. This abstraction is
1745necessary to maintain integrity of the data contained in each
1746@code{gdb.Frame}.
1747
1748Frame decorators have a mandatory interface, defined below.
1749
1750@value{GDBN} already contains a frame decorator called
1751@code{FrameDecorator}. This contains substantial amounts of
1752boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1753recommended that other frame decorators inherit and extend this
1754object, and only to override the methods needed.
1755
1756@defun FrameDecorator.elided (self)
1757
1758The @code{elided} method groups frames together in a hierarchical
1759system. An example would be an interpreter, where multiple low-level
1760frames make up a single call in the interpreted language. In this
1761example, the frame filter would elide the low-level frames and present
1762a single high-level frame, representing the call in the interpreted
1763language, to the user.
1764
1765The @code{elided} function must return an iterable and this iterable
1766must contain the frames that are being elided wrapped in a suitable
1767frame decorator. If no frames are being elided this function may
1768return an empty iterable, or @code{None}. Elided frames are indented
1769from normal frames in a @code{CLI} backtrace, or in the case of
1770@code{GDB/MI}, are placed in the @code{children} field of the eliding
1771frame.
1772
1773It is the frame filter's task to also filter out the elided frames from
1774the source iterator. This will avoid printing the frame twice.
1775@end defun
1776
1777@defun FrameDecorator.function (self)
1778
1779This method returns the name of the function in the frame that is to
1780be printed.
1781
1782This method must return a Python string describing the function, or
1783@code{None}.
1784
1785If this function returns @code{None}, @value{GDBN} will not print any
1786data for this field.
1787@end defun
1788
1789@defun FrameDecorator.address (self)
1790
1791This method returns the address of the frame that is to be printed.
1792
1793This method must return a Python numeric integer type of sufficient
1794size to describe the address of the frame, or @code{None}.
1795
1796If this function returns a @code{None}, @value{GDBN} will not print
1797any data for this field.
1798@end defun
1799
1800@defun FrameDecorator.filename (self)
1801
1802This method returns the filename and path associated with this frame.
1803
1804This method must return a Python string containing the filename and
1805the path to the object file backing the frame, or @code{None}.
1806
1807If this function returns a @code{None}, @value{GDBN} will not print
1808any data for this field.
1809@end defun
1810
1811@defun FrameDecorator.line (self):
1812
1813This method returns the line number associated with the current
1814position within the function addressed by this frame.
1815
1816This method must return a Python integer type, or @code{None}.
1817
1818If this function returns a @code{None}, @value{GDBN} will not print
1819any data for this field.
1820@end defun
1821
1822@defun FrameDecorator.frame_args (self)
1823@anchor{frame_args}
1824
1825This method must return an iterable, or @code{None}. Returning an
1826empty iterable, or @code{None} means frame arguments will not be
1827printed for this frame. This iterable must contain objects that
1828implement two methods, described here.
1829
1830This object must implement a @code{argument} method which takes a
1831single @code{self} parameter and must return a @code{gdb.Symbol}
1832(@pxref{Symbols In Python}), or a Python string. The object must also
1833implement a @code{value} method which takes a single @code{self}
1834parameter and must return a @code{gdb.Value} (@pxref{Values From
1835Inferior}), a Python value, or @code{None}. If the @code{value}
1836method returns @code{None}, and the @code{argument} method returns a
1837@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1838the @code{gdb.Symbol} automatically.
1839
1840A brief example:
1841
1842@smallexample
1843class SymValueWrapper():
1844
1845 def __init__(self, symbol, value):
1846 self.sym = symbol
1847 self.val = value
1848
1849 def value(self):
1850 return self.val
1851
1852 def symbol(self):
1853 return self.sym
1854
1855class SomeFrameDecorator()
1856...
1857...
1858 def frame_args(self):
1859 args = []
1860 try:
1861 block = self.inferior_frame.block()
1862 except:
1863 return None
1864
1865 # Iterate over all symbols in a block. Only add
1866 # symbols that are arguments.
1867 for sym in block:
1868 if not sym.is_argument:
1869 continue
1870 args.append(SymValueWrapper(sym,None))
1871
1872 # Add example synthetic argument.
1873 args.append(SymValueWrapper(``foo'', 42))
1874
1875 return args
1876@end smallexample
1877@end defun
1878
1879@defun FrameDecorator.frame_locals (self)
1880
1881This method must return an iterable or @code{None}. Returning an
1882empty iterable, or @code{None} means frame local arguments will not be
1883printed for this frame.
1884
1885The object interface, the description of the various strategies for
1886reading frame locals, and the example are largely similar to those
1887described in the @code{frame_args} function, (@pxref{frame_args,,The
1888frame filter frame_args function}). Below is a modified example:
1889
1890@smallexample
1891class SomeFrameDecorator()
1892...
1893...
1894 def frame_locals(self):
1895 vars = []
1896 try:
1897 block = self.inferior_frame.block()
1898 except:
1899 return None
1900
1901 # Iterate over all symbols in a block. Add all
1902 # symbols, except arguments.
1903 for sym in block:
1904 if sym.is_argument:
1905 continue
1906 vars.append(SymValueWrapper(sym,None))
1907
1908 # Add an example of a synthetic local variable.
1909 vars.append(SymValueWrapper(``bar'', 99))
1910
1911 return vars
1912@end smallexample
1913@end defun
1914
1915@defun FrameDecorator.inferior_frame (self):
1916
1917This method must return the underlying @code{gdb.Frame} that this
1918frame decorator is decorating. @value{GDBN} requires the underlying
1919frame for internal frame information to determine how to print certain
1920values when printing a frame.
1921@end defun
1922
1923@node Writing a Frame Filter
1924@subsubsection Writing a Frame Filter
1925@cindex writing a frame filter
1926
1927There are three basic elements that a frame filter must implement: it
1928must correctly implement the documented interface (@pxref{Frame Filter
1929API}), it must register itself with @value{GDBN}, and finally, it must
1930decide if it is to work on the data provided by @value{GDBN}. In all
1931cases, whether it works on the iterator or not, each frame filter must
1932return an iterator. A bare-bones frame filter follows the pattern in
1933the following example.
1934
1935@smallexample
1936import gdb
1937
1938class FrameFilter():
1939
1940 def __init__(self):
1941 # Frame filter attribute creation.
1942 #
1943 # 'name' is the name of the filter that GDB will display.
1944 #
1945 # 'priority' is the priority of the filter relative to other
1946 # filters.
1947 #
1948 # 'enabled' is a boolean that indicates whether this filter is
1949 # enabled and should be executed.
1950
1951 self.name = "Foo"
1952 self.priority = 100
1953 self.enabled = True
1954
1955 # Register this frame filter with the global frame_filters
1956 # dictionary.
1957 gdb.frame_filters[self.name] = self
1958
1959 def filter(self, frame_iter):
1960 # Just return the iterator.
1961 return frame_iter
1962@end smallexample
1963
1964The frame filter in the example above implements the three
1965requirements for all frame filters. It implements the API, self
1966registers, and makes a decision on the iterator (in this case, it just
1967returns the iterator untouched).
1968
1969The first step is attribute creation and assignment, and as shown in
1970the comments the filter assigns the following attributes: @code{name},
1971@code{priority} and whether the filter should be enabled with the
1972@code{enabled} attribute.
1973
1974The second step is registering the frame filter with the dictionary or
1975dictionaries that the frame filter has interest in. As shown in the
1976comments, this filter just registers itself with the global dictionary
1977@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1978is a dictionary that is initialized in the @code{gdb} module when
1979@value{GDBN} starts. What dictionary a filter registers with is an
1980important consideration. Generally, if a filter is specific to a set
1981of code, it should be registered either in the @code{objfile} or
1982@code{progspace} dictionaries as they are specific to the program
1983currently loaded in @value{GDBN}. The global dictionary is always
1984present in @value{GDBN} and is never unloaded. Any filters registered
1985with the global dictionary will exist until @value{GDBN} exits. To
1986avoid filters that may conflict, it is generally better to register
1987frame filters against the dictionaries that more closely align with
1988the usage of the filter currently in question. @xref{Python
1989Auto-loading}, for further information on auto-loading Python scripts.
1990
1991@value{GDBN} takes a hands-off approach to frame filter registration,
1992therefore it is the frame filter's responsibility to ensure
1993registration has occurred, and that any exceptions are handled
1994appropriately. In particular, you may wish to handle exceptions
1995relating to Python dictionary key uniqueness. It is mandatory that
1996the dictionary key is the same as frame filter's @code{name}
1997attribute. When a user manages frame filters (@pxref{Frame Filter
1998Management}), the names @value{GDBN} will display are those contained
1999in the @code{name} attribute.
2000
2001The final step of this example is the implementation of the
2002@code{filter} method. As shown in the example comments, we define the
2003@code{filter} method and note that the method must take an iterator,
2004and also must return an iterator. In this bare-bones example, the
2005frame filter is not very useful as it just returns the iterator
2006untouched. However this is a valid operation for frame filters that
2007have the @code{enabled} attribute set, but decide not to operate on
2008any frames.
2009
2010In the next example, the frame filter operates on all frames and
2011utilizes a frame decorator to perform some work on the frames.
2012@xref{Frame Decorator API}, for further information on the frame
2013decorator interface.
2014
2015This example works on inlined frames. It highlights frames which are
2016inlined by tagging them with an ``[inlined]'' tag. By applying a
2017frame decorator to all frames with the Python @code{itertools imap}
2018method, the example defers actions to the frame decorator. Frame
2019decorators are only processed when @value{GDBN} prints the backtrace.
2020
2021This introduces a new decision making topic: whether to perform
2022decision making operations at the filtering step, or at the printing
2023step. In this example's approach, it does not perform any filtering
2024decisions at the filtering step beyond mapping a frame decorator to
2025each frame. This allows the actual decision making to be performed
2026when each frame is printed. This is an important consideration, and
2027well worth reflecting upon when designing a frame filter. An issue
2028that frame filters should avoid is unwinding the stack if possible.
2029Some stacks can run very deep, into the tens of thousands in some
2030cases. To search every frame to determine if it is inlined ahead of
2031time may be too expensive at the filtering step. The frame filter
2032cannot know how many frames it has to iterate over, and it would have
2033to iterate through them all. This ends up duplicating effort as
2034@value{GDBN} performs this iteration when it prints the frames.
2035
2036In this example decision making can be deferred to the printing step.
2037As each frame is printed, the frame decorator can examine each frame
2038in turn when @value{GDBN} iterates. From a performance viewpoint,
2039this is the most appropriate decision to make as it avoids duplicating
2040the effort that the printing step would undertake anyway. Also, if
2041there are many frame filters unwinding the stack during filtering, it
2042can substantially delay the printing of the backtrace which will
2043result in large memory usage, and a poor user experience.
2044
2045@smallexample
2046class InlineFilter():
2047
2048 def __init__(self):
2049 self.name = "InlinedFrameFilter"
2050 self.priority = 100
2051 self.enabled = True
2052 gdb.frame_filters[self.name] = self
2053
2054 def filter(self, frame_iter):
2055 frame_iter = itertools.imap(InlinedFrameDecorator,
2056 frame_iter)
2057 return frame_iter
2058@end smallexample
2059
2060This frame filter is somewhat similar to the earlier example, except
2061that the @code{filter} method applies a frame decorator object called
2062@code{InlinedFrameDecorator} to each element in the iterator. The
2063@code{imap} Python method is light-weight. It does not proactively
2064iterate over the iterator, but rather creates a new iterator which
2065wraps the existing one.
2066
2067Below is the frame decorator for this example.
2068
2069@smallexample
2070class InlinedFrameDecorator(FrameDecorator):
2071
2072 def __init__(self, fobj):
2073 super(InlinedFrameDecorator, self).__init__(fobj)
2074
2075 def function(self):
2076 frame = fobj.inferior_frame()
2077 name = str(frame.name())
2078
2079 if frame.type() == gdb.INLINE_FRAME:
2080 name = name + " [inlined]"
2081
2082 return name
2083@end smallexample
2084
2085This frame decorator only defines and overrides the @code{function}
2086method. It lets the supplied @code{FrameDecorator}, which is shipped
2087with @value{GDBN}, perform the other work associated with printing
2088this frame.
2089
2090The combination of these two objects create this output from a
2091backtrace:
2092
2093@smallexample
2094#0 0x004004e0 in bar () at inline.c:11
2095#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2096#2 0x00400566 in main () at inline.c:31
2097@end smallexample
2098
2099So in the case of this example, a frame decorator is applied to all
2100frames, regardless of whether they may be inlined or not. As
2101@value{GDBN} iterates over the iterator produced by the frame filters,
2102@value{GDBN} executes each frame decorator which then makes a decision
2103on what to print in the @code{function} callback. Using a strategy
2104like this is a way to defer decisions on the frame content to printing
2105time.
2106
2107@subheading Eliding Frames
2108
2109It might be that the above example is not desirable for representing
2110inlined frames, and a hierarchical approach may be preferred. If we
2111want to hierarchically represent frames, the @code{elided} frame
2112decorator interface might be preferable.
2113
2114This example approaches the issue with the @code{elided} method. This
2115example is quite long, but very simplistic. It is out-of-scope for
2116this section to write a complete example that comprehensively covers
2117all approaches of finding and printing inlined frames. However, this
2118example illustrates the approach an author might use.
2119
2120This example comprises of three sections.
2121
2122@smallexample
2123class InlineFrameFilter():
2124
2125 def __init__(self):
2126 self.name = "InlinedFrameFilter"
2127 self.priority = 100
2128 self.enabled = True
2129 gdb.frame_filters[self.name] = self
2130
2131 def filter(self, frame_iter):
2132 return ElidingInlineIterator(frame_iter)
2133@end smallexample
2134
2135This frame filter is very similar to the other examples. The only
2136difference is this frame filter is wrapping the iterator provided to
2137it (@code{frame_iter}) with a custom iterator called
2138@code{ElidingInlineIterator}. This again defers actions to when
2139@value{GDBN} prints the backtrace, as the iterator is not traversed
2140until printing.
2141
2142The iterator for this example is as follows. It is in this section of
2143the example where decisions are made on the content of the backtrace.
2144
2145@smallexample
2146class ElidingInlineIterator:
2147 def __init__(self, ii):
2148 self.input_iterator = ii
2149
2150 def __iter__(self):
2151 return self
2152
2153 def next(self):
2154 frame = next(self.input_iterator)
2155
2156 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2157 return frame
2158
2159 try:
2160 eliding_frame = next(self.input_iterator)
2161 except StopIteration:
2162 return frame
2163 return ElidingFrameDecorator(eliding_frame, [frame])
2164@end smallexample
2165
2166This iterator implements the Python iterator protocol. When the
2167@code{next} function is called (when @value{GDBN} prints each frame),
2168the iterator checks if this frame decorator, @code{frame}, is wrapping
2169an inlined frame. If it is not, it returns the existing frame decorator
2170untouched. If it is wrapping an inlined frame, it assumes that the
2171inlined frame was contained within the next oldest frame,
2172@code{eliding_frame}, which it fetches. It then creates and returns a
2173frame decorator, @code{ElidingFrameDecorator}, which contains both the
2174elided frame, and the eliding frame.
2175
2176@smallexample
2177class ElidingInlineDecorator(FrameDecorator):
2178
2179 def __init__(self, frame, elided_frames):
2180 super(ElidingInlineDecorator, self).__init__(frame)
2181 self.frame = frame
2182 self.elided_frames = elided_frames
2183
2184 def elided(self):
2185 return iter(self.elided_frames)
2186@end smallexample
2187
2188This frame decorator overrides one function and returns the inlined
2189frame in the @code{elided} method. As before it lets
2190@code{FrameDecorator} do the rest of the work involved in printing
2191this frame. This produces the following output.
2192
2193@smallexample
2194#0 0x004004e0 in bar () at inline.c:11
2195#2 0x00400529 in main () at inline.c:25
2196 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2197@end smallexample
2198
2199In that output, @code{max} which has been inlined into @code{main} is
2200printed hierarchically. Another approach would be to combine the
2201@code{function} method, and the @code{elided} method to both print a
2202marker in the inlined frame, and also show the hierarchical
2203relationship.
2204
d11916aa
SS
2205@node Unwinding Frames in Python
2206@subsubsection Unwinding Frames in Python
2207@cindex unwinding frames in Python
2208
2209In @value{GDBN} terminology ``unwinding'' is the process of finding
2210the previous frame (that is, caller's) from the current one. An
2211unwinder has three methods. The first one checks if it can handle
2212given frame (``sniff'' it). For the frames it can sniff an unwinder
2213provides two additional methods: it can return frame's ID, and it can
2214fetch registers from the previous frame. A running @value{GDBN}
2215mantains a list of the unwinders and calls each unwinder's sniffer in
2216turn until it finds the one that recognizes the current frame. There
2217is an API to register an unwinder.
2218
2219The unwinders that come with @value{GDBN} handle standard frames.
2220However, mixed language applications (for example, an application
2221running Java Virtual Machine) sometimes use frame layouts that cannot
2222be handled by the @value{GDBN} unwinders. You can write Python code
2223that can handle such custom frames.
2224
2225You implement a frame unwinder in Python as a class with which has two
2226attributes, @code{name} and @code{enabled}, with obvious meanings, and
2227a single method @code{__call__}, which examines a given frame and
2228returns an object (an instance of @code{gdb.UnwindInfo class)}
2229describing it. If an unwinder does not recognize a frame, it should
2230return @code{None}. The code in @value{GDBN} that enables writing
2231unwinders in Python uses this object to return frame's ID and previous
2232frame registers when @value{GDBN} core asks for them.
2233
2234@subheading Unwinder Input
2235
2236An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2237provides a method to read frame's registers:
2238
2239@defun PendingFrame.read_register (reg)
2240This method returns the contents of the register @var{regn} in the
2241frame as a @code{gdb.Value} object. @var{reg} can be either a
2242register number or a register name; the values are platform-specific.
2243They are usually found in the corresponding
2244@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2245@end defun
2246
2247It also provides a factory method to create a @code{gdb.UnwindInfo}
2248instance to be returned to @value{GDBN}:
2249
2250@defun PendingFrame.create_unwind_info (frame_id)
2251Returns a new @code{gdb.UnwindInfo} instance identified by given
2252@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2253using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2254determine which function will be used, as follows:
2255
2256@table @code
2257@item sp, pc, special
2258@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2259
2260@item sp, pc
2261@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2262
2263This is the most common case.
2264
2265@item sp
2266@code{frame_id_build_wild (@var{frame_id}.sp)}
2267@end table
2268The attribute values should be @code{gdb.Value}
2269
2270@end defun
2271
2272@subheading Unwinder Output: UnwindInfo
2273
2274Use @code{PendingFrame.create_unwind_info} method described above to
2275create a @code{gdb.UnwindInfo} instance. Use the following method to
2276specify caller registers that have been saved in this frame:
2277
2278@defun gdb.UnwindInfo.add_saved_register (reg, value)
2279@var{reg} identifies the register. It can be a number or a name, just
2280as for the @code{PendingFrame.read_register} method above.
2281@var{value} is a register value (a @code{gdb.Value} object).
2282@end defun
2283
2284@subheading Unwinder Skeleton Code
2285
2286@value{GDBN} comes with the module containing the base @code{Unwinder}
2287class. Derive your unwinder class from it and structure the code as
2288follows:
2289
2290@smallexample
2291from gdb.unwinders import Unwinder
2292
2293class FrameId(object):
2294 def __init__(self, sp, pc):
2295 self.sp = sp
2296 self.pc = pc
2297
2298
2299class MyUnwinder(Unwinder):
2300 def __init__(....):
2301 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2302
2303 def __call__(pending_frame):
2304 if not <we recognize frame>:
2305 return None
2306 # Create UnwindInfo. Usually the frame is identified by the stack
2307 # pointer and the program counter.
2308 sp = pending_frame.read_register(<SP number>)
2309 pc = pending_frame.read_register(<PC number>)
2310 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2311
2312 # Find the values of the registers in the caller's frame and
2313 # save them in the result:
2314 unwind_info.add_saved_register(<register>, <value>)
2315 ....
2316
2317 # Return the result:
2318 return unwind_info
2319
2320@end smallexample
2321
2322@subheading Registering a Unwinder
2323
2324An object file, a program space, and the @value{GDBN} proper can have
2325unwinders registered with it.
2326
2327The @code{gdb.unwinders} module provides the function to register a
2328unwinder:
2329
2330@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2331@var{locus} is specifies an object file or a program space to which
2332@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2333@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2334added @var{unwinder} will be called before any other unwinder from the
2335same locus. Two unwinders in the same locus cannot have the same
2336name. An attempt to add a unwinder with already existing name raises
2337an exception unless @var{replace} is @code{True}, in which case the
2338old unwinder is deleted.
2339@end defun
2340
2341@subheading Unwinder Precedence
2342
2343@value{GDBN} first calls the unwinders from all the object files in no
2344particular order, then the unwinders from the current program space,
2345and finally the unwinders from @value{GDBN}.
2346
0c6e92a5
SC
2347@node Xmethods In Python
2348@subsubsection Xmethods In Python
2349@cindex xmethods in Python
2350
2351@dfn{Xmethods} are additional methods or replacements for existing
2352methods of a C@t{++} class. This feature is useful for those cases
2353where a method defined in C@t{++} source code could be inlined or
2354optimized out by the compiler, making it unavailable to @value{GDBN}.
2355For such cases, one can define an xmethod to serve as a replacement
2356for the method defined in the C@t{++} source code. @value{GDBN} will
2357then invoke the xmethod, instead of the C@t{++} method, to
2358evaluate expressions. One can also use xmethods when debugging
2359with core files. Moreover, when debugging live programs, invoking an
2360xmethod need not involve running the inferior (which can potentially
2361perturb its state). Hence, even if the C@t{++} method is available, it
2362is better to use its replacement xmethod if one is defined.
2363
2364The xmethods feature in Python is available via the concepts of an
2365@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2366implement an xmethod, one has to implement a matcher and a
2367corresponding worker for it (more than one worker can be
2368implemented, each catering to a different overloaded instance of the
2369method). Internally, @value{GDBN} invokes the @code{match} method of a
2370matcher to match the class type and method name. On a match, the
2371@code{match} method returns a list of matching @emph{worker} objects.
2372Each worker object typically corresponds to an overloaded instance of
2373the xmethod. They implement a @code{get_arg_types} method which
2374returns a sequence of types corresponding to the arguments the xmethod
2375requires. @value{GDBN} uses this sequence of types to perform
2376overload resolution and picks a winning xmethod worker. A winner
2377is also selected from among the methods @value{GDBN} finds in the
2378C@t{++} source code. Next, the winning xmethod worker and the
2379winning C@t{++} method are compared to select an overall winner. In
2380case of a tie between a xmethod worker and a C@t{++} method, the
2381xmethod worker is selected as the winner. That is, if a winning
2382xmethod worker is found to be equivalent to the winning C@t{++}
2383method, then the xmethod worker is treated as a replacement for
2384the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2385method. If the winning xmethod worker is the overall winner, then
897c3d32 2386the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2387of the worker object.
2388
2389If one wants to implement an xmethod as a replacement for an
2390existing C@t{++} method, then they have to implement an equivalent
2391xmethod which has exactly the same name and takes arguments of
2392exactly the same type as the C@t{++} method. If the user wants to
2393invoke the C@t{++} method even though a replacement xmethod is
2394available for that method, then they can disable the xmethod.
2395
2396@xref{Xmethod API}, for API to implement xmethods in Python.
2397@xref{Writing an Xmethod}, for implementing xmethods in Python.
2398
2399@node Xmethod API
2400@subsubsection Xmethod API
2401@cindex xmethod API
2402
2403The @value{GDBN} Python API provides classes, interfaces and functions
2404to implement, register and manipulate xmethods.
2405@xref{Xmethods In Python}.
2406
2407An xmethod matcher should be an instance of a class derived from
2408@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2409object with similar interface and attributes. An instance of
2410@code{XMethodMatcher} has the following attributes:
2411
2412@defvar name
2413The name of the matcher.
2414@end defvar
2415
2416@defvar enabled
2417A boolean value indicating whether the matcher is enabled or disabled.
2418@end defvar
2419
2420@defvar methods
2421A list of named methods managed by the matcher. Each object in the list
2422is an instance of the class @code{XMethod} defined in the module
2423@code{gdb.xmethod}, or any object with the following attributes:
2424
2425@table @code
2426
2427@item name
2428Name of the xmethod which should be unique for each xmethod
2429managed by the matcher.
2430
2431@item enabled
2432A boolean value indicating whether the xmethod is enabled or
2433disabled.
2434
2435@end table
2436
2437The class @code{XMethod} is a convenience class with same
2438attributes as above along with the following constructor:
2439
dd5d5494 2440@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2441Constructs an enabled xmethod with name @var{name}.
2442@end defun
2443@end defvar
2444
2445@noindent
2446The @code{XMethodMatcher} class has the following methods:
2447
dd5d5494 2448@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2449Constructs an enabled xmethod matcher with name @var{name}. The
2450@code{methods} attribute is initialized to @code{None}.
2451@end defun
2452
dd5d5494 2453@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2454Derived classes should override this method. It should return a
2455xmethod worker object (or a sequence of xmethod worker
2456objects) matching the @var{class_type} and @var{method_name}.
2457@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2458is a string value. If the matcher manages named methods as listed in
2459its @code{methods} attribute, then only those worker objects whose
2460corresponding entries in the @code{methods} list are enabled should be
2461returned.
2462@end defun
2463
2464An xmethod worker should be an instance of a class derived from
2465@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2466or support the following interface:
2467
dd5d5494 2468@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2469This method returns a sequence of @code{gdb.Type} objects corresponding
2470to the arguments that the xmethod takes. It can return an empty
2471sequence or @code{None} if the xmethod does not take any arguments.
2472If the xmethod takes a single argument, then a single
2473@code{gdb.Type} object corresponding to it can be returned.
2474@end defun
2475
2ce1cdbf
DE
2476@defun XMethodWorker.get_result_type (self, *args)
2477This method returns a @code{gdb.Type} object representing the type
2478of the result of invoking this xmethod.
2479The @var{args} argument is the same tuple of arguments that would be
2480passed to the @code{__call__} method of this worker.
2481@end defun
2482
dd5d5494 2483@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2484This is the method which does the @emph{work} of the xmethod. The
2485@var{args} arguments is the tuple of arguments to the xmethod. Each
2486element in this tuple is a gdb.Value object. The first element is
2487always the @code{this} pointer value.
2488@end defun
2489
2490For @value{GDBN} to lookup xmethods, the xmethod matchers
2491should be registered using the following function defined in the module
2492@code{gdb.xmethod}:
2493
dd5d5494 2494@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2495The @code{matcher} is registered with @code{locus}, replacing an
2496existing matcher with the same name as @code{matcher} if
2497@code{replace} is @code{True}. @code{locus} can be a
2498@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2499@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2500@code{None}. If it is @code{None}, then @code{matcher} is registered
2501globally.
2502@end defun
2503
2504@node Writing an Xmethod
2505@subsubsection Writing an Xmethod
2506@cindex writing xmethods in Python
2507
2508Implementing xmethods in Python will require implementing xmethod
2509matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2510the following C@t{++} class:
2511
2512@smallexample
2513class MyClass
2514@{
2515public:
2516 MyClass (int a) : a_(a) @{ @}
2517
2518 int geta (void) @{ return a_; @}
2519 int operator+ (int b);
2520
2521private:
2522 int a_;
2523@};
2524
2525int
2526MyClass::operator+ (int b)
2527@{
2528 return a_ + b;
2529@}
2530@end smallexample
2531
2532@noindent
2533Let us define two xmethods for the class @code{MyClass}, one
2534replacing the method @code{geta}, and another adding an overloaded
2535flavor of @code{operator+} which takes a @code{MyClass} argument (the
2536C@t{++} code above already has an overloaded @code{operator+}
2537which takes an @code{int} argument). The xmethod matcher can be
2538defined as follows:
2539
2540@smallexample
2541class MyClass_geta(gdb.xmethod.XMethod):
2542 def __init__(self):
2543 gdb.xmethod.XMethod.__init__(self, 'geta')
2544
2545 def get_worker(self, method_name):
2546 if method_name == 'geta':
2547 return MyClassWorker_geta()
2548
2549
2550class MyClass_sum(gdb.xmethod.XMethod):
2551 def __init__(self):
2552 gdb.xmethod.XMethod.__init__(self, 'sum')
2553
2554 def get_worker(self, method_name):
2555 if method_name == 'operator+':
2556 return MyClassWorker_plus()
2557
2558
2559class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2560 def __init__(self):
2561 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2562 # List of methods 'managed' by this matcher
2563 self.methods = [MyClass_geta(), MyClass_sum()]
2564
2565 def match(self, class_type, method_name):
2566 if class_type.tag != 'MyClass':
2567 return None
2568 workers = []
2569 for method in self.methods:
2570 if method.enabled:
2571 worker = method.get_worker(method_name)
2572 if worker:
2573 workers.append(worker)
2574
2575 return workers
2576@end smallexample
2577
2578@noindent
2579Notice that the @code{match} method of @code{MyClassMatcher} returns
2580a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2581method, and a worker object of type @code{MyClassWorker_plus} for the
2582@code{operator+} method. This is done indirectly via helper classes
2583derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2584@code{methods} attribute in a matcher as it is optional. However, if a
2585matcher manages more than one xmethod, it is a good practice to list the
2586xmethods in the @code{methods} attribute of the matcher. This will then
2587facilitate enabling and disabling individual xmethods via the
2588@code{enable/disable} commands. Notice also that a worker object is
2589returned only if the corresponding entry in the @code{methods} attribute
2590of the matcher is enabled.
2591
2592The implementation of the worker classes returned by the matcher setup
2593above is as follows:
2594
2595@smallexample
2596class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2597 def get_arg_types(self):
2598 return None
2ce1cdbf
DE
2599
2600 def get_result_type(self, obj):
2601 return gdb.lookup_type('int')
0c6e92a5
SC
2602
2603 def __call__(self, obj):
2604 return obj['a_']
2605
2606
2607class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2608 def get_arg_types(self):
2609 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2610
2611 def get_result_type(self, obj):
2612 return gdb.lookup_type('int')
0c6e92a5
SC
2613
2614 def __call__(self, obj, other):
2615 return obj['a_'] + other['a_']
2616@end smallexample
2617
2618For @value{GDBN} to actually lookup a xmethod, it has to be
2619registered with it. The matcher defined above is registered with
2620@value{GDBN} globally as follows:
2621
2622@smallexample
2623gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2624@end smallexample
2625
2626If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2627code as follows:
2628
2629@smallexample
2630MyClass obj(5);
2631@end smallexample
2632
2633@noindent
2634then, after loading the Python script defining the xmethod matchers
2635and workers into @code{GDBN}, invoking the method @code{geta} or using
2636the operator @code{+} on @code{obj} will invoke the xmethods
2637defined above:
2638
2639@smallexample
2640(gdb) p obj.geta()
2641$1 = 5
2642
2643(gdb) p obj + obj
2644$2 = 10
2645@end smallexample
2646
2647Consider another example with a C++ template class:
2648
2649@smallexample
2650template <class T>
2651class MyTemplate
2652@{
2653public:
2654 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2655 ~MyTemplate () @{ delete [] data_; @}
2656
2657 int footprint (void)
2658 @{
2659 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2660 @}
2661
2662private:
2663 int dsize_;
2664 T *data_;
2665@};
2666@end smallexample
2667
2668Let us implement an xmethod for the above class which serves as a
2669replacement for the @code{footprint} method. The full code listing
2670of the xmethod workers and xmethod matchers is as follows:
2671
2672@smallexample
2673class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2674 def __init__(self, class_type):
2675 self.class_type = class_type
2ce1cdbf 2676
0c6e92a5
SC
2677 def get_arg_types(self):
2678 return None
2ce1cdbf
DE
2679
2680 def get_result_type(self):
2681 return gdb.lookup_type('int')
2682
0c6e92a5
SC
2683 def __call__(self, obj):
2684 return (self.class_type.sizeof +
2685 obj['dsize_'] *
2686 self.class_type.template_argument(0).sizeof)
2687
2688
2689class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2690 def __init__(self):
2691 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2692
2693 def match(self, class_type, method_name):
2694 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2695 class_type.tag) and
2696 method_name == 'footprint'):
2697 return MyTemplateWorker_footprint(class_type)
2698@end smallexample
2699
2700Notice that, in this example, we have not used the @code{methods}
2701attribute of the matcher as the matcher manages only one xmethod. The
2702user can enable/disable this xmethod by enabling/disabling the matcher
2703itself.
2704
329baa95
DE
2705@node Inferiors In Python
2706@subsubsection Inferiors In Python
2707@cindex inferiors in Python
2708
2709@findex gdb.Inferior
2710Programs which are being run under @value{GDBN} are called inferiors
2711(@pxref{Inferiors and Programs}). Python scripts can access
2712information about and manipulate inferiors controlled by @value{GDBN}
2713via objects of the @code{gdb.Inferior} class.
2714
2715The following inferior-related functions are available in the @code{gdb}
2716module:
2717
2718@defun gdb.inferiors ()
2719Return a tuple containing all inferior objects.
2720@end defun
2721
2722@defun gdb.selected_inferior ()
2723Return an object representing the current inferior.
2724@end defun
2725
2726A @code{gdb.Inferior} object has the following attributes:
2727
2728@defvar Inferior.num
2729ID of inferior, as assigned by GDB.
2730@end defvar
2731
2732@defvar Inferior.pid
2733Process ID of the inferior, as assigned by the underlying operating
2734system.
2735@end defvar
2736
2737@defvar Inferior.was_attached
2738Boolean signaling whether the inferior was created using `attach', or
2739started by @value{GDBN} itself.
2740@end defvar
2741
2742A @code{gdb.Inferior} object has the following methods:
2743
2744@defun Inferior.is_valid ()
2745Returns @code{True} if the @code{gdb.Inferior} object is valid,
2746@code{False} if not. A @code{gdb.Inferior} object will become invalid
2747if the inferior no longer exists within @value{GDBN}. All other
2748@code{gdb.Inferior} methods will throw an exception if it is invalid
2749at the time the method is called.
2750@end defun
2751
2752@defun Inferior.threads ()
2753This method returns a tuple holding all the threads which are valid
2754when it is called. If there are no valid threads, the method will
2755return an empty tuple.
2756@end defun
2757
2758@findex Inferior.read_memory
2759@defun Inferior.read_memory (address, length)
a86c90e6 2760Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2761@var{address}. Returns a buffer object, which behaves much like an array
2762or a string. It can be modified and given to the
79778b30 2763@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2764value is a @code{memoryview} object.
2765@end defun
2766
2767@findex Inferior.write_memory
2768@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2769Write the contents of @var{buffer} to the inferior, starting at
2770@var{address}. The @var{buffer} parameter must be a Python object
2771which supports the buffer protocol, i.e., a string, an array or the
2772object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2773determines the number of addressable memory units from @var{buffer} to be
2774written.
329baa95
DE
2775@end defun
2776
2777@findex gdb.search_memory
2778@defun Inferior.search_memory (address, length, pattern)
2779Search a region of the inferior memory starting at @var{address} with
2780the given @var{length} using the search pattern supplied in
2781@var{pattern}. The @var{pattern} parameter must be a Python object
2782which supports the buffer protocol, i.e., a string, an array or the
2783object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2784containing the address where the pattern was found, or @code{None} if
2785the pattern could not be found.
2786@end defun
2787
2788@node Events In Python
2789@subsubsection Events In Python
2790@cindex inferior events in Python
2791
2792@value{GDBN} provides a general event facility so that Python code can be
2793notified of various state changes, particularly changes that occur in
2794the inferior.
2795
2796An @dfn{event} is just an object that describes some state change. The
2797type of the object and its attributes will vary depending on the details
2798of the change. All the existing events are described below.
2799
2800In order to be notified of an event, you must register an event handler
2801with an @dfn{event registry}. An event registry is an object in the
2802@code{gdb.events} module which dispatches particular events. A registry
2803provides methods to register and unregister event handlers:
2804
2805@defun EventRegistry.connect (object)
2806Add the given callable @var{object} to the registry. This object will be
2807called when an event corresponding to this registry occurs.
2808@end defun
2809
2810@defun EventRegistry.disconnect (object)
2811Remove the given @var{object} from the registry. Once removed, the object
2812will no longer receive notifications of events.
2813@end defun
2814
2815Here is an example:
2816
2817@smallexample
2818def exit_handler (event):
2819 print "event type: exit"
2820 print "exit code: %d" % (event.exit_code)
2821
2822gdb.events.exited.connect (exit_handler)
2823@end smallexample
2824
2825In the above example we connect our handler @code{exit_handler} to the
2826registry @code{events.exited}. Once connected, @code{exit_handler} gets
2827called when the inferior exits. The argument @dfn{event} in this example is
2828of type @code{gdb.ExitedEvent}. As you can see in the example the
2829@code{ExitedEvent} object has an attribute which indicates the exit code of
2830the inferior.
2831
2832The following is a listing of the event registries that are available and
2833details of the events they emit:
2834
2835@table @code
2836
2837@item events.cont
2838Emits @code{gdb.ThreadEvent}.
2839
2840Some events can be thread specific when @value{GDBN} is running in non-stop
2841mode. When represented in Python, these events all extend
2842@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2843events which are emitted by this or other modules might extend this event.
2844Examples of these events are @code{gdb.BreakpointEvent} and
2845@code{gdb.ContinueEvent}.
2846
2847@defvar ThreadEvent.inferior_thread
2848In non-stop mode this attribute will be set to the specific thread which was
2849involved in the emitted event. Otherwise, it will be set to @code{None}.
2850@end defvar
2851
2852Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2853
2854This event indicates that the inferior has been continued after a stop. For
2855inherited attribute refer to @code{gdb.ThreadEvent} above.
2856
2857@item events.exited
2858Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2859@code{events.ExitedEvent} has two attributes:
2860@defvar ExitedEvent.exit_code
2861An integer representing the exit code, if available, which the inferior
2862has returned. (The exit code could be unavailable if, for example,
2863@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2864the attribute does not exist.
2865@end defvar
373832b6 2866@defvar ExitedEvent.inferior
329baa95
DE
2867A reference to the inferior which triggered the @code{exited} event.
2868@end defvar
2869
2870@item events.stop
2871Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2872
2873Indicates that the inferior has stopped. All events emitted by this registry
2874extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2875will indicate the stopped thread when @value{GDBN} is running in non-stop
2876mode. Refer to @code{gdb.ThreadEvent} above for more details.
2877
2878Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2879
2880This event indicates that the inferior or one of its threads has received as
2881signal. @code{gdb.SignalEvent} has the following attributes:
2882
2883@defvar SignalEvent.stop_signal
2884A string representing the signal received by the inferior. A list of possible
2885signal values can be obtained by running the command @code{info signals} in
2886the @value{GDBN} command prompt.
2887@end defvar
2888
2889Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2890
2891@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2892been hit, and has the following attributes:
2893
2894@defvar BreakpointEvent.breakpoints
2895A sequence containing references to all the breakpoints (type
2896@code{gdb.Breakpoint}) that were hit.
2897@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2898@end defvar
2899@defvar BreakpointEvent.breakpoint
2900A reference to the first breakpoint that was hit.
2901This function is maintained for backward compatibility and is now deprecated
2902in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2903@end defvar
2904
2905@item events.new_objfile
2906Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2907been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2908
2909@defvar NewObjFileEvent.new_objfile
2910A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2911@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2912@end defvar
2913
4ffbba72
DE
2914@item events.clear_objfiles
2915Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2916files for a program space has been reset.
2917@code{gdb.ClearObjFilesEvent} has one attribute:
2918
2919@defvar ClearObjFilesEvent.progspace
2920A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2921been cleared. @xref{Progspaces In Python}.
2922@end defvar
2923
162078c8
NB
2924@item events.inferior_call_pre
2925Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2926the inferior is about to be called.
2927
2928@defvar InferiorCallPreEvent.ptid
2929The thread in which the call will be run.
2930@end defvar
2931
2932@defvar InferiorCallPreEvent.address
2933The location of the function to be called.
2934@end defvar
2935
2936@item events.inferior_call_post
2937Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2938the inferior has returned.
2939
2940@defvar InferiorCallPostEvent.ptid
2941The thread in which the call was run.
2942@end defvar
2943
2944@defvar InferiorCallPostEvent.address
2945The location of the function that was called.
2946@end defvar
2947
2948@item events.memory_changed
2949Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
2950inferior has been modified by the @value{GDBN} user, for instance via a
2951command like @w{@code{set *addr = value}}. The event has the following
2952attributes:
2953
2954@defvar MemoryChangedEvent.address
2955The start address of the changed region.
2956@end defvar
2957
2958@defvar MemoryChangedEvent.length
2959Length in bytes of the changed region.
2960@end defvar
2961
2962@item events.register_changed
2963Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
2964inferior has been modified by the @value{GDBN} user.
2965
2966@defvar RegisterChangedEvent.frame
2967A gdb.Frame object representing the frame in which the register was modified.
2968@end defvar
2969@defvar RegisterChangedEvent.regnum
2970Denotes which register was modified.
2971@end defvar
2972
dac790e1
TT
2973@item events.breakpoint_created
2974This is emitted when a new breakpoint has been created. The argument
2975that is passed is the new @code{gdb.Breakpoint} object.
2976
2977@item events.breakpoint_modified
2978This is emitted when a breakpoint has been modified in some way. The
2979argument that is passed is the new @code{gdb.Breakpoint} object.
2980
2981@item events.breakpoint_deleted
2982This is emitted when a breakpoint has been deleted. The argument that
2983is passed is the @code{gdb.Breakpoint} object. When this event is
2984emitted, the @code{gdb.Breakpoint} object will already be in its
2985invalid state; that is, the @code{is_valid} method will return
2986@code{False}.
2987
3f77c769
TT
2988@item events.before_prompt
2989This event carries no payload. It is emitted each time @value{GDBN}
2990presents a prompt to the user.
2991
329baa95
DE
2992@end table
2993
2994@node Threads In Python
2995@subsubsection Threads In Python
2996@cindex threads in python
2997
2998@findex gdb.InferiorThread
2999Python scripts can access information about, and manipulate inferior threads
3000controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3001
3002The following thread-related functions are available in the @code{gdb}
3003module:
3004
3005@findex gdb.selected_thread
3006@defun gdb.selected_thread ()
3007This function returns the thread object for the selected thread. If there
3008is no selected thread, this will return @code{None}.
3009@end defun
3010
3011A @code{gdb.InferiorThread} object has the following attributes:
3012
3013@defvar InferiorThread.name
3014The name of the thread. If the user specified a name using
3015@code{thread name}, then this returns that name. Otherwise, if an
3016OS-supplied name is available, then it is returned. Otherwise, this
3017returns @code{None}.
3018
3019This attribute can be assigned to. The new value must be a string
3020object, which sets the new name, or @code{None}, which removes any
3021user-specified thread name.
3022@end defvar
3023
3024@defvar InferiorThread.num
5d5658a1 3025The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3026@end defvar
3027
22a02324
PA
3028@defvar InferiorThread.global_num
3029The global ID of the thread, as assigned by GDB. You can use this to
3030make Python breakpoints thread-specific, for example
3031(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3032@end defvar
3033
329baa95
DE
3034@defvar InferiorThread.ptid
3035ID of the thread, as assigned by the operating system. This attribute is a
3036tuple containing three integers. The first is the Process ID (PID); the second
3037is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3038Either the LWPID or TID may be 0, which indicates that the operating system
3039does not use that identifier.
3040@end defvar
3041
84654457
PA
3042@defvar InferiorThread.inferior
3043The inferior this thread belongs to. This attribute is represented as
3044a @code{gdb.Inferior} object. This attribute is not writable.
3045@end defvar
3046
329baa95
DE
3047A @code{gdb.InferiorThread} object has the following methods:
3048
3049@defun InferiorThread.is_valid ()
3050Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3051@code{False} if not. A @code{gdb.InferiorThread} object will become
3052invalid if the thread exits, or the inferior that the thread belongs
3053is deleted. All other @code{gdb.InferiorThread} methods will throw an
3054exception if it is invalid at the time the method is called.
3055@end defun
3056
3057@defun InferiorThread.switch ()
3058This changes @value{GDBN}'s currently selected thread to the one represented
3059by this object.
3060@end defun
3061
3062@defun InferiorThread.is_stopped ()
3063Return a Boolean indicating whether the thread is stopped.
3064@end defun
3065
3066@defun InferiorThread.is_running ()
3067Return a Boolean indicating whether the thread is running.
3068@end defun
3069
3070@defun InferiorThread.is_exited ()
3071Return a Boolean indicating whether the thread is exited.
3072@end defun
3073
0a0faf9f
TW
3074@node Recordings In Python
3075@subsubsection Recordings In Python
3076@cindex recordings in python
3077
3078The following recordings-related functions
3079(@pxref{Process Record and Replay}) are available in the @code{gdb}
3080module:
3081
3082@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3083Start a recording using the given @var{method} and @var{format}. If
3084no @var{format} is given, the default format for the recording method
3085is used. If no @var{method} is given, the default method will be used.
3086Returns a @code{gdb.Record} object on success. Throw an exception on
3087failure.
3088
3089The following strings can be passed as @var{method}:
3090
3091@itemize @bullet
3092@item
3093@code{"full"}
3094@item
3095@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3096@code{"bts"} or leave out for default format.
3097@end itemize
3098@end defun
3099
3100@defun gdb.current_recording ()
3101Access a currently running recording. Return a @code{gdb.Record}
3102object on success. Return @code{None} if no recording is currently
3103active.
3104@end defun
3105
3106@defun gdb.stop_recording ()
3107Stop the current recording. Throw an exception if no recording is
3108currently active. All record objects become invalid after this call.
3109@end defun
3110
3111A @code{gdb.Record} object has the following attributes:
3112
0a0faf9f
TW
3113@defvar Record.method
3114A string with the current recording method, e.g.@: @code{full} or
3115@code{btrace}.
3116@end defvar
3117
3118@defvar Record.format
3119A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3120@code{None}.
3121@end defvar
3122
3123@defvar Record.begin
3124A method specific instruction object representing the first instruction
3125in this recording.
3126@end defvar
3127
3128@defvar Record.end
3129A method specific instruction object representing the current
3130instruction, that is not actually part of the recording.
3131@end defvar
3132
3133@defvar Record.replay_position
3134The instruction representing the current replay position. If there is
3135no replay active, this will be @code{None}.
3136@end defvar
3137
3138@defvar Record.instruction_history
3139A list with all recorded instructions.
3140@end defvar
3141
3142@defvar Record.function_call_history
3143A list with all recorded function call segments.
3144@end defvar
3145
3146A @code{gdb.Record} object has the following methods:
3147
3148@defun Record.goto (instruction)
3149Move the replay position to the given @var{instruction}.
3150@end defun
3151
3152The attributes and methods of instruction objects depend on the current
3153recording method. Currently, only btrace instructions are supported.
3154
3155A @code{gdb.BtraceInstruction} object has the following attributes:
3156
3157@defvar BtraceInstruction.number
3158An integer identifying this instruction. @var{number} corresponds to
3159the numbers seen in @code{record instruction-history}
3160(@pxref{Process Record and Replay}).
3161@end defvar
3162
0a0faf9f
TW
3163@defvar BtraceInstruction.sal
3164A @code{gdb.Symtab_and_line} object representing the associated symtab
913aeadd
TW
3165and line of this instruction. May be @code{None} if no debug information is
3166available.
0a0faf9f
TW
3167@end defvar
3168
3169@defvar BtraceInstruction.pc
913aeadd 3170An integer representing this instruction's address.
0a0faf9f
TW
3171@end defvar
3172
3173@defvar BtraceInstruction.data
913aeadd
TW
3174A buffer with the raw instruction data. In Python 3, the return value is a
3175@code{memoryview} object.
0a0faf9f
TW
3176@end defvar
3177
3178@defvar BtraceInstruction.decoded
913aeadd 3179A human readable string with the disassembled instruction.
0a0faf9f
TW
3180@end defvar
3181
3182@defvar BtraceInstruction.size
913aeadd 3183The size of the instruction in bytes.
0a0faf9f
TW
3184@end defvar
3185
3186@defvar BtraceInstruction.is_speculative
3187A boolean indicating whether the instruction was executed
913aeadd
TW
3188speculatively.
3189@end defvar
3190
3191If an error occured during recording or decoding a recording, this error is
3192represented by a @code{gdb.RecordGap} object in the instruction list. It has
3193the following attributes:
3194
3195@defvar RecordGap.number
3196An integer identifying this gap. @code{number} corresponds to the numbers seen
3197in @code{record instruction-history} (@pxref{Process Record and Replay}).
3198@end defvar
3199
3200@defvar RecordGap.error_code
3201A numerical representation of the reason for the gap. The value is specific to
3202the current recording method.
3203@end defvar
3204
3205@defvar RecordGap.error_string
3206A human readable string with the reason for the gap.
0a0faf9f
TW
3207@end defvar
3208
3209The attributes and methods of function call objects depend on the
3210current recording format. Currently, only btrace function calls are
3211supported.
3212
3213A @code{gdb.BtraceFunctionCall} object has the following attributes:
3214
3215@defvar BtraceFunctionCall.number
3216An integer identifying this function call. @var{number} corresponds to
3217the numbers seen in @code{record function-call-history}
3218(@pxref{Process Record and Replay}).
3219@end defvar
3220
3221@defvar BtraceFunctionCall.symbol
3222A @code{gdb.Symbol} object representing the associated symbol. May be
3223@code{None} if the function call is a gap or the debug symbols could
3224not be read.
3225@end defvar
3226
3227@defvar BtraceFunctionCall.level
3228An integer representing the function call's stack level. May be
3229@code{None} if the function call is a gap.
3230@end defvar
3231
3232@defvar BtraceFunctionCall.instructions
913aeadd
TW
3233A list of @code{gdb.BtraceInstruction} or @code{gdb.RecordGap} objects
3234associated with this function call.
0a0faf9f
TW
3235@end defvar
3236
3237@defvar BtraceFunctionCall.up
3238A @code{gdb.BtraceFunctionCall} object representing the caller's
3239function segment. If the call has not been recorded, this will be the
3240function segment to which control returns. If neither the call nor the
3241return have been recorded, this will be @code{None}.
3242@end defvar
3243
3244@defvar BtraceFunctionCall.prev_sibling
3245A @code{gdb.BtraceFunctionCall} object representing the previous
3246segment of this function call. May be @code{None}.
3247@end defvar
3248
3249@defvar BtraceFunctionCall.next_sibling
3250A @code{gdb.BtraceFunctionCall} object representing the next segment of
3251this function call. May be @code{None}.
3252@end defvar
3253
3254The following example demonstrates the usage of these objects and
3255functions to create a function that will rewind a record to the last
3256time a function in a different file was executed. This would typically
3257be used to track the execution of user provided callback functions in a
3258library which typically are not visible in a back trace.
3259
3260@smallexample
3261def bringback ():
3262 rec = gdb.current_recording ()
3263 if not rec:
3264 return
3265
3266 insn = rec.instruction_history
3267 if len (insn) == 0:
3268 return
3269
3270 try:
3271 position = insn.index (rec.replay_position)
3272 except:
3273 position = -1
3274 try:
3275 filename = insn[position].sal.symtab.fullname ()
3276 except:
3277 filename = None
3278
3279 for i in reversed (insn[:position]):
3280 try:
3281 current = i.sal.symtab.fullname ()
3282 except:
3283 current = None
3284
3285 if filename == current:
3286 continue
3287
3288 rec.goto (i)
3289 return
3290@end smallexample
3291
3292Another possible application is to write a function that counts the
3293number of code executions in a given line range. This line range can
3294contain parts of functions or span across several functions and is not
3295limited to be contiguous.
3296
3297@smallexample
3298def countrange (filename, linerange):
3299 count = 0
3300
3301 def filter_only (file_name):
3302 for call in gdb.current_recording ().function_call_history:
3303 try:
3304 if file_name in call.symbol.symtab.fullname ():
3305 yield call
3306 except:
3307 pass
3308
3309 for c in filter_only (filename):
3310 for i in c.instructions:
3311 try:
3312 if i.sal.line in linerange:
3313 count += 1
3314 break;
3315 except:
3316 pass
3317
3318 return count
3319@end smallexample
3320
329baa95
DE
3321@node Commands In Python
3322@subsubsection Commands In Python
3323
3324@cindex commands in python
3325@cindex python commands
3326You can implement new @value{GDBN} CLI commands in Python. A CLI
3327command is implemented using an instance of the @code{gdb.Command}
3328class, most commonly using a subclass.
3329
3330@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3331The object initializer for @code{Command} registers the new command
3332with @value{GDBN}. This initializer is normally invoked from the
3333subclass' own @code{__init__} method.
3334
3335@var{name} is the name of the command. If @var{name} consists of
3336multiple words, then the initial words are looked for as prefix
3337commands. In this case, if one of the prefix commands does not exist,
3338an exception is raised.
3339
3340There is no support for multi-line commands.
3341
3342@var{command_class} should be one of the @samp{COMMAND_} constants
3343defined below. This argument tells @value{GDBN} how to categorize the
3344new command in the help system.
3345
3346@var{completer_class} is an optional argument. If given, it should be
3347one of the @samp{COMPLETE_} constants defined below. This argument
3348tells @value{GDBN} how to perform completion for this command. If not
3349given, @value{GDBN} will attempt to complete using the object's
3350@code{complete} method (see below); if no such method is found, an
3351error will occur when completion is attempted.
3352
3353@var{prefix} is an optional argument. If @code{True}, then the new
3354command is a prefix command; sub-commands of this command may be
3355registered.
3356
3357The help text for the new command is taken from the Python
3358documentation string for the command's class, if there is one. If no
3359documentation string is provided, the default value ``This command is
3360not documented.'' is used.
3361@end defun
3362
3363@cindex don't repeat Python command
3364@defun Command.dont_repeat ()
3365By default, a @value{GDBN} command is repeated when the user enters a
3366blank line at the command prompt. A command can suppress this
3367behavior by invoking the @code{dont_repeat} method. This is similar
3368to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3369@end defun
3370
3371@defun Command.invoke (argument, from_tty)
3372This method is called by @value{GDBN} when this command is invoked.
3373
3374@var{argument} is a string. It is the argument to the command, after
3375leading and trailing whitespace has been stripped.
3376
3377@var{from_tty} is a boolean argument. When true, this means that the
3378command was entered by the user at the terminal; when false it means
3379that the command came from elsewhere.
3380
3381If this method throws an exception, it is turned into a @value{GDBN}
3382@code{error} call. Otherwise, the return value is ignored.
3383
3384@findex gdb.string_to_argv
3385To break @var{argument} up into an argv-like string use
3386@code{gdb.string_to_argv}. This function behaves identically to
3387@value{GDBN}'s internal argument lexer @code{buildargv}.
3388It is recommended to use this for consistency.
3389Arguments are separated by spaces and may be quoted.
3390Example:
3391
3392@smallexample
3393print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3394['1', '2 "3', '4 "5', "6 '7"]
3395@end smallexample
3396
3397@end defun
3398
3399@cindex completion of Python commands
3400@defun Command.complete (text, word)
3401This method is called by @value{GDBN} when the user attempts
3402completion on this command. All forms of completion are handled by
3403this method, that is, the @key{TAB} and @key{M-?} key bindings
3404(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3405complete}).
3406
697aa1b7
EZ
3407The arguments @var{text} and @var{word} are both strings; @var{text}
3408holds the complete command line up to the cursor's location, while
329baa95
DE
3409@var{word} holds the last word of the command line; this is computed
3410using a word-breaking heuristic.
3411
3412The @code{complete} method can return several values:
3413@itemize @bullet
3414@item
3415If the return value is a sequence, the contents of the sequence are
3416used as the completions. It is up to @code{complete} to ensure that the
3417contents actually do complete the word. A zero-length sequence is
3418allowed, it means that there were no completions available. Only
3419string elements of the sequence are used; other elements in the
3420sequence are ignored.
3421
3422@item
3423If the return value is one of the @samp{COMPLETE_} constants defined
3424below, then the corresponding @value{GDBN}-internal completion
3425function is invoked, and its result is used.
3426
3427@item
3428All other results are treated as though there were no available
3429completions.
3430@end itemize
3431@end defun
3432
3433When a new command is registered, it must be declared as a member of
3434some general class of commands. This is used to classify top-level
3435commands in the on-line help system; note that prefix commands are not
3436listed under their own category but rather that of their top-level
3437command. The available classifications are represented by constants
3438defined in the @code{gdb} module:
3439
3440@table @code
3441@findex COMMAND_NONE
3442@findex gdb.COMMAND_NONE
3443@item gdb.COMMAND_NONE
3444The command does not belong to any particular class. A command in
3445this category will not be displayed in any of the help categories.
3446
3447@findex COMMAND_RUNNING
3448@findex gdb.COMMAND_RUNNING
3449@item gdb.COMMAND_RUNNING
3450The command is related to running the inferior. For example,
3451@code{start}, @code{step}, and @code{continue} are in this category.
3452Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3453commands in this category.
3454
3455@findex COMMAND_DATA
3456@findex gdb.COMMAND_DATA
3457@item gdb.COMMAND_DATA
3458The command is related to data or variables. For example,
3459@code{call}, @code{find}, and @code{print} are in this category. Type
3460@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3461in this category.
3462
3463@findex COMMAND_STACK
3464@findex gdb.COMMAND_STACK
3465@item gdb.COMMAND_STACK
3466The command has to do with manipulation of the stack. For example,
3467@code{backtrace}, @code{frame}, and @code{return} are in this
3468category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3469list of commands in this category.
3470
3471@findex COMMAND_FILES
3472@findex gdb.COMMAND_FILES
3473@item gdb.COMMAND_FILES
3474This class is used for file-related commands. For example,
3475@code{file}, @code{list} and @code{section} are in this category.
3476Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3477commands in this category.
3478
3479@findex COMMAND_SUPPORT
3480@findex gdb.COMMAND_SUPPORT
3481@item gdb.COMMAND_SUPPORT
3482This should be used for ``support facilities'', generally meaning
3483things that are useful to the user when interacting with @value{GDBN},
3484but not related to the state of the inferior. For example,
3485@code{help}, @code{make}, and @code{shell} are in this category. Type
3486@kbd{help support} at the @value{GDBN} prompt to see a list of
3487commands in this category.
3488
3489@findex COMMAND_STATUS
3490@findex gdb.COMMAND_STATUS
3491@item gdb.COMMAND_STATUS
3492The command is an @samp{info}-related command, that is, related to the
3493state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3494and @code{show} are in this category. Type @kbd{help status} at the
3495@value{GDBN} prompt to see a list of commands in this category.
3496
3497@findex COMMAND_BREAKPOINTS
3498@findex gdb.COMMAND_BREAKPOINTS
3499@item gdb.COMMAND_BREAKPOINTS
3500The command has to do with breakpoints. For example, @code{break},
3501@code{clear}, and @code{delete} are in this category. Type @kbd{help
3502breakpoints} at the @value{GDBN} prompt to see a list of commands in
3503this category.
3504
3505@findex COMMAND_TRACEPOINTS
3506@findex gdb.COMMAND_TRACEPOINTS
3507@item gdb.COMMAND_TRACEPOINTS
3508The command has to do with tracepoints. For example, @code{trace},
3509@code{actions}, and @code{tfind} are in this category. Type
3510@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3511commands in this category.
3512
3513@findex COMMAND_USER
3514@findex gdb.COMMAND_USER
3515@item gdb.COMMAND_USER
3516The command is a general purpose command for the user, and typically
3517does not fit in one of the other categories.
3518Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3519a list of commands in this category, as well as the list of gdb macros
3520(@pxref{Sequences}).
3521
3522@findex COMMAND_OBSCURE
3523@findex gdb.COMMAND_OBSCURE
3524@item gdb.COMMAND_OBSCURE
3525The command is only used in unusual circumstances, or is not of
3526general interest to users. For example, @code{checkpoint},
3527@code{fork}, and @code{stop} are in this category. Type @kbd{help
3528obscure} at the @value{GDBN} prompt to see a list of commands in this
3529category.
3530
3531@findex COMMAND_MAINTENANCE
3532@findex gdb.COMMAND_MAINTENANCE
3533@item gdb.COMMAND_MAINTENANCE
3534The command is only useful to @value{GDBN} maintainers. The
3535@code{maintenance} and @code{flushregs} commands are in this category.
3536Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3537commands in this category.
3538@end table
3539
3540A new command can use a predefined completion function, either by
3541specifying it via an argument at initialization, or by returning it
3542from the @code{complete} method. These predefined completion
3543constants are all defined in the @code{gdb} module:
3544
b3ce5e5f
DE
3545@vtable @code
3546@vindex COMPLETE_NONE
329baa95
DE
3547@item gdb.COMPLETE_NONE
3548This constant means that no completion should be done.
3549
b3ce5e5f 3550@vindex COMPLETE_FILENAME
329baa95
DE
3551@item gdb.COMPLETE_FILENAME
3552This constant means that filename completion should be performed.
3553
b3ce5e5f 3554@vindex COMPLETE_LOCATION
329baa95
DE
3555@item gdb.COMPLETE_LOCATION
3556This constant means that location completion should be done.
3557@xref{Specify Location}.
3558
b3ce5e5f 3559@vindex COMPLETE_COMMAND
329baa95
DE
3560@item gdb.COMPLETE_COMMAND
3561This constant means that completion should examine @value{GDBN}
3562command names.
3563
b3ce5e5f 3564@vindex COMPLETE_SYMBOL
329baa95
DE
3565@item gdb.COMPLETE_SYMBOL
3566This constant means that completion should be done using symbol names
3567as the source.
3568
b3ce5e5f 3569@vindex COMPLETE_EXPRESSION
329baa95
DE
3570@item gdb.COMPLETE_EXPRESSION
3571This constant means that completion should be done on expressions.
3572Often this means completing on symbol names, but some language
3573parsers also have support for completing on field names.
b3ce5e5f 3574@end vtable
329baa95
DE
3575
3576The following code snippet shows how a trivial CLI command can be
3577implemented in Python:
3578
3579@smallexample
3580class HelloWorld (gdb.Command):
3581 """Greet the whole world."""
3582
3583 def __init__ (self):
3584 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3585
3586 def invoke (self, arg, from_tty):
3587 print "Hello, World!"
3588
3589HelloWorld ()
3590@end smallexample
3591
3592The last line instantiates the class, and is necessary to trigger the
3593registration of the command with @value{GDBN}. Depending on how the
3594Python code is read into @value{GDBN}, you may need to import the
3595@code{gdb} module explicitly.
3596
3597@node Parameters In Python
3598@subsubsection Parameters In Python
3599
3600@cindex parameters in python
3601@cindex python parameters
3602@tindex gdb.Parameter
3603@tindex Parameter
3604You can implement new @value{GDBN} parameters using Python. A new
3605parameter is implemented as an instance of the @code{gdb.Parameter}
3606class.
3607
3608Parameters are exposed to the user via the @code{set} and
3609@code{show} commands. @xref{Help}.
3610
3611There are many parameters that already exist and can be set in
3612@value{GDBN}. Two examples are: @code{set follow fork} and
3613@code{set charset}. Setting these parameters influences certain
3614behavior in @value{GDBN}. Similarly, you can define parameters that
3615can be used to influence behavior in custom Python scripts and commands.
3616
3617@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3618The object initializer for @code{Parameter} registers the new
3619parameter with @value{GDBN}. This initializer is normally invoked
3620from the subclass' own @code{__init__} method.
3621
3622@var{name} is the name of the new parameter. If @var{name} consists
3623of multiple words, then the initial words are looked for as prefix
3624parameters. An example of this can be illustrated with the
3625@code{set print} set of parameters. If @var{name} is
3626@code{print foo}, then @code{print} will be searched as the prefix
3627parameter. In this case the parameter can subsequently be accessed in
3628@value{GDBN} as @code{set print foo}.
3629
3630If @var{name} consists of multiple words, and no prefix parameter group
3631can be found, an exception is raised.
3632
3633@var{command-class} should be one of the @samp{COMMAND_} constants
3634(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3635categorize the new parameter in the help system.
3636
3637@var{parameter-class} should be one of the @samp{PARAM_} constants
3638defined below. This argument tells @value{GDBN} the type of the new
3639parameter; this information is used for input validation and
3640completion.
3641
3642If @var{parameter-class} is @code{PARAM_ENUM}, then
3643@var{enum-sequence} must be a sequence of strings. These strings
3644represent the possible values for the parameter.
3645
3646If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3647of a fourth argument will cause an exception to be thrown.
3648
3649The help text for the new parameter is taken from the Python
3650documentation string for the parameter's class, if there is one. If
3651there is no documentation string, a default value is used.
3652@end defun
3653
3654@defvar Parameter.set_doc
3655If this attribute exists, and is a string, then its value is used as
3656the help text for this parameter's @code{set} command. The value is
3657examined when @code{Parameter.__init__} is invoked; subsequent changes
3658have no effect.
3659@end defvar
3660
3661@defvar Parameter.show_doc
3662If this attribute exists, and is a string, then its value is used as
3663the help text for this parameter's @code{show} command. The value is
3664examined when @code{Parameter.__init__} is invoked; subsequent changes
3665have no effect.
3666@end defvar
3667
3668@defvar Parameter.value
3669The @code{value} attribute holds the underlying value of the
3670parameter. It can be read and assigned to just as any other
3671attribute. @value{GDBN} does validation when assignments are made.
3672@end defvar
3673
3674There are two methods that should be implemented in any
3675@code{Parameter} class. These are:
3676
3677@defun Parameter.get_set_string (self)
3678@value{GDBN} will call this method when a @var{parameter}'s value has
3679been changed via the @code{set} API (for example, @kbd{set foo off}).
3680The @code{value} attribute has already been populated with the new
3681value and may be used in output. This method must return a string.
3682@end defun
3683
3684@defun Parameter.get_show_string (self, svalue)
3685@value{GDBN} will call this method when a @var{parameter}'s
3686@code{show} API has been invoked (for example, @kbd{show foo}). The
3687argument @code{svalue} receives the string representation of the
3688current value. This method must return a string.
3689@end defun
3690
3691When a new parameter is defined, its type must be specified. The
3692available types are represented by constants defined in the @code{gdb}
3693module:
3694
3695@table @code
3696@findex PARAM_BOOLEAN
3697@findex gdb.PARAM_BOOLEAN
3698@item gdb.PARAM_BOOLEAN
3699The value is a plain boolean. The Python boolean values, @code{True}
3700and @code{False} are the only valid values.
3701
3702@findex PARAM_AUTO_BOOLEAN
3703@findex gdb.PARAM_AUTO_BOOLEAN
3704@item gdb.PARAM_AUTO_BOOLEAN
3705The value has three possible states: true, false, and @samp{auto}. In
3706Python, true and false are represented using boolean constants, and
3707@samp{auto} is represented using @code{None}.
3708
3709@findex PARAM_UINTEGER
3710@findex gdb.PARAM_UINTEGER
3711@item gdb.PARAM_UINTEGER
3712The value is an unsigned integer. The value of 0 should be
3713interpreted to mean ``unlimited''.
3714
3715@findex PARAM_INTEGER
3716@findex gdb.PARAM_INTEGER
3717@item gdb.PARAM_INTEGER
3718The value is a signed integer. The value of 0 should be interpreted
3719to mean ``unlimited''.
3720
3721@findex PARAM_STRING
3722@findex gdb.PARAM_STRING
3723@item gdb.PARAM_STRING
3724The value is a string. When the user modifies the string, any escape
3725sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3726translated into corresponding characters and encoded into the current
3727host charset.
3728
3729@findex PARAM_STRING_NOESCAPE
3730@findex gdb.PARAM_STRING_NOESCAPE
3731@item gdb.PARAM_STRING_NOESCAPE
3732The value is a string. When the user modifies the string, escapes are
3733passed through untranslated.
3734
3735@findex PARAM_OPTIONAL_FILENAME
3736@findex gdb.PARAM_OPTIONAL_FILENAME
3737@item gdb.PARAM_OPTIONAL_FILENAME
3738The value is a either a filename (a string), or @code{None}.
3739
3740@findex PARAM_FILENAME
3741@findex gdb.PARAM_FILENAME
3742@item gdb.PARAM_FILENAME
3743The value is a filename. This is just like
3744@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3745
3746@findex PARAM_ZINTEGER
3747@findex gdb.PARAM_ZINTEGER
3748@item gdb.PARAM_ZINTEGER
3749The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3750is interpreted as itself.
3751
3752@findex PARAM_ENUM
3753@findex gdb.PARAM_ENUM
3754@item gdb.PARAM_ENUM
3755The value is a string, which must be one of a collection string
3756constants provided when the parameter is created.
3757@end table
3758
3759@node Functions In Python
3760@subsubsection Writing new convenience functions
3761
3762@cindex writing convenience functions
3763@cindex convenience functions in python
3764@cindex python convenience functions
3765@tindex gdb.Function
3766@tindex Function
3767You can implement new convenience functions (@pxref{Convenience Vars})
3768in Python. A convenience function is an instance of a subclass of the
3769class @code{gdb.Function}.
3770
3771@defun Function.__init__ (name)
3772The initializer for @code{Function} registers the new function with
3773@value{GDBN}. The argument @var{name} is the name of the function,
3774a string. The function will be visible to the user as a convenience
3775variable of type @code{internal function}, whose name is the same as
3776the given @var{name}.
3777
3778The documentation for the new function is taken from the documentation
3779string for the new class.
3780@end defun
3781
3782@defun Function.invoke (@var{*args})
3783When a convenience function is evaluated, its arguments are converted
3784to instances of @code{gdb.Value}, and then the function's
3785@code{invoke} method is called. Note that @value{GDBN} does not
3786predetermine the arity of convenience functions. Instead, all
3787available arguments are passed to @code{invoke}, following the
3788standard Python calling convention. In particular, a convenience
3789function can have default values for parameters without ill effect.
3790
3791The return value of this method is used as its value in the enclosing
3792expression. If an ordinary Python value is returned, it is converted
3793to a @code{gdb.Value} following the usual rules.
3794@end defun
3795
3796The following code snippet shows how a trivial convenience function can
3797be implemented in Python:
3798
3799@smallexample
3800class Greet (gdb.Function):
3801 """Return string to greet someone.
3802Takes a name as argument."""
3803
3804 def __init__ (self):
3805 super (Greet, self).__init__ ("greet")
3806
3807 def invoke (self, name):
3808 return "Hello, %s!" % name.string ()
3809
3810Greet ()
3811@end smallexample
3812
3813The last line instantiates the class, and is necessary to trigger the
3814registration of the function with @value{GDBN}. Depending on how the
3815Python code is read into @value{GDBN}, you may need to import the
3816@code{gdb} module explicitly.
3817
3818Now you can use the function in an expression:
3819
3820@smallexample
3821(gdb) print $greet("Bob")
3822$1 = "Hello, Bob!"
3823@end smallexample
3824
3825@node Progspaces In Python
3826@subsubsection Program Spaces In Python
3827
3828@cindex progspaces in python
3829@tindex gdb.Progspace
3830@tindex Progspace
3831A program space, or @dfn{progspace}, represents a symbolic view
3832of an address space.
3833It consists of all of the objfiles of the program.
3834@xref{Objfiles In Python}.
3835@xref{Inferiors and Programs, program spaces}, for more details
3836about program spaces.
3837
3838The following progspace-related functions are available in the
3839@code{gdb} module:
3840
3841@findex gdb.current_progspace
3842@defun gdb.current_progspace ()
3843This function returns the program space of the currently selected inferior.
3844@xref{Inferiors and Programs}.
3845@end defun
3846
3847@findex gdb.progspaces
3848@defun gdb.progspaces ()
3849Return a sequence of all the progspaces currently known to @value{GDBN}.
3850@end defun
3851
3852Each progspace is represented by an instance of the @code{gdb.Progspace}
3853class.
3854
3855@defvar Progspace.filename
3856The file name of the progspace as a string.
3857@end defvar
3858
3859@defvar Progspace.pretty_printers
3860The @code{pretty_printers} attribute is a list of functions. It is
3861used to look up pretty-printers. A @code{Value} is passed to each
3862function in order; if the function returns @code{None}, then the
3863search continues. Otherwise, the return value should be an object
3864which is used to format the value. @xref{Pretty Printing API}, for more
3865information.
3866@end defvar
3867
3868@defvar Progspace.type_printers
3869The @code{type_printers} attribute is a list of type printer objects.
3870@xref{Type Printing API}, for more information.
3871@end defvar
3872
3873@defvar Progspace.frame_filters
3874The @code{frame_filters} attribute is a dictionary of frame filter
3875objects. @xref{Frame Filter API}, for more information.
3876@end defvar
3877
02be9a71
DE
3878One may add arbitrary attributes to @code{gdb.Progspace} objects
3879in the usual Python way.
3880This is useful if, for example, one needs to do some extra record keeping
3881associated with the program space.
3882
3883In this contrived example, we want to perform some processing when
3884an objfile with a certain symbol is loaded, but we only want to do
3885this once because it is expensive. To achieve this we record the results
3886with the program space because we can't predict when the desired objfile
3887will be loaded.
3888
3889@smallexample
3890(gdb) python
3891def clear_objfiles_handler(event):
3892 event.progspace.expensive_computation = None
3893def expensive(symbol):
3894 """A mock routine to perform an "expensive" computation on symbol."""
3895 print "Computing the answer to the ultimate question ..."
3896 return 42
3897def new_objfile_handler(event):
3898 objfile = event.new_objfile
3899 progspace = objfile.progspace
3900 if not hasattr(progspace, 'expensive_computation') or \
3901 progspace.expensive_computation is None:
3902 # We use 'main' for the symbol to keep the example simple.
3903 # Note: There's no current way to constrain the lookup
3904 # to one objfile.
3905 symbol = gdb.lookup_global_symbol('main')
3906 if symbol is not None:
3907 progspace.expensive_computation = expensive(symbol)
3908gdb.events.clear_objfiles.connect(clear_objfiles_handler)
3909gdb.events.new_objfile.connect(new_objfile_handler)
3910end
3911(gdb) file /tmp/hello
3912Reading symbols from /tmp/hello...done.
3913Computing the answer to the ultimate question ...
3914(gdb) python print gdb.current_progspace().expensive_computation
391542
3916(gdb) run
3917Starting program: /tmp/hello
3918Hello.
3919[Inferior 1 (process 4242) exited normally]
3920@end smallexample
3921
329baa95
DE
3922@node Objfiles In Python
3923@subsubsection Objfiles In Python
3924
3925@cindex objfiles in python
3926@tindex gdb.Objfile
3927@tindex Objfile
3928@value{GDBN} loads symbols for an inferior from various
3929symbol-containing files (@pxref{Files}). These include the primary
3930executable file, any shared libraries used by the inferior, and any
3931separate debug info files (@pxref{Separate Debug Files}).
3932@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3933
3934The following objfile-related functions are available in the
3935@code{gdb} module:
3936
3937@findex gdb.current_objfile
3938@defun gdb.current_objfile ()
3939When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3940sets the ``current objfile'' to the corresponding objfile. This
3941function returns the current objfile. If there is no current objfile,
3942this function returns @code{None}.
3943@end defun
3944
3945@findex gdb.objfiles
3946@defun gdb.objfiles ()
3947Return a sequence of all the objfiles current known to @value{GDBN}.
3948@xref{Objfiles In Python}.
3949@end defun
3950
6dddd6a5
DE
3951@findex gdb.lookup_objfile
3952@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
3953Look up @var{name}, a file name or build ID, in the list of objfiles
3954for the current program space (@pxref{Progspaces In Python}).
3955If the objfile is not found throw the Python @code{ValueError} exception.
3956
3957If @var{name} is a relative file name, then it will match any
3958source file name with the same trailing components. For example, if
3959@var{name} is @samp{gcc/expr.c}, then it will match source file
3960name of @file{/build/trunk/gcc/expr.c}, but not
3961@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
3962
3963If @var{by_build_id} is provided and is @code{True} then @var{name}
3964is the build ID of the objfile. Otherwise, @var{name} is a file name.
3965This is supported only on some operating systems, notably those which use
3966the ELF format for binary files and the @sc{gnu} Binutils. For more details
3967about this feature, see the description of the @option{--build-id}
3968command-line option in @ref{Options, , Command Line Options, ld.info,
3969The GNU Linker}.
3970@end defun
3971
329baa95
DE
3972Each objfile is represented by an instance of the @code{gdb.Objfile}
3973class.
3974
3975@defvar Objfile.filename
1b549396
DE
3976The file name of the objfile as a string, with symbolic links resolved.
3977
3978The value is @code{None} if the objfile is no longer valid.
3979See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
3980@end defvar
3981
3a8b707a
DE
3982@defvar Objfile.username
3983The file name of the objfile as specified by the user as a string.
3984
3985The value is @code{None} if the objfile is no longer valid.
3986See the @code{gdb.Objfile.is_valid} method, described below.
3987@end defvar
3988
a0be3e44
DE
3989@defvar Objfile.owner
3990For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
3991object that debug info is being provided for.
3992Otherwise this is @code{None}.
3993Separate debug info objfiles are added with the
3994@code{gdb.Objfile.add_separate_debug_file} method, described below.
3995@end defvar
3996
7c50a931
DE
3997@defvar Objfile.build_id
3998The build ID of the objfile as a string.
3999If the objfile does not have a build ID then the value is @code{None}.
4000
4001This is supported only on some operating systems, notably those which use
4002the ELF format for binary files and the @sc{gnu} Binutils. For more details
4003about this feature, see the description of the @option{--build-id}
4004command-line option in @ref{Options, , Command Line Options, ld.info,
4005The GNU Linker}.
4006@end defvar
4007
d096d8c1
DE
4008@defvar Objfile.progspace
4009The containing program space of the objfile as a @code{gdb.Progspace}
4010object. @xref{Progspaces In Python}.
4011@end defvar
4012
329baa95
DE
4013@defvar Objfile.pretty_printers
4014The @code{pretty_printers} attribute is a list of functions. It is
4015used to look up pretty-printers. A @code{Value} is passed to each
4016function in order; if the function returns @code{None}, then the
4017search continues. Otherwise, the return value should be an object
4018which is used to format the value. @xref{Pretty Printing API}, for more
4019information.
4020@end defvar
4021
4022@defvar Objfile.type_printers
4023The @code{type_printers} attribute is a list of type printer objects.
4024@xref{Type Printing API}, for more information.
4025@end defvar
4026
4027@defvar Objfile.frame_filters
4028The @code{frame_filters} attribute is a dictionary of frame filter
4029objects. @xref{Frame Filter API}, for more information.
4030@end defvar
4031
02be9a71
DE
4032One may add arbitrary attributes to @code{gdb.Objfile} objects
4033in the usual Python way.
4034This is useful if, for example, one needs to do some extra record keeping
4035associated with the objfile.
4036
4037In this contrived example we record the time when @value{GDBN}
4038loaded the objfile.
4039
4040@smallexample
4041(gdb) python
4042import datetime
4043def new_objfile_handler(event):
4044 # Set the time_loaded attribute of the new objfile.
4045 event.new_objfile.time_loaded = datetime.datetime.today()
4046gdb.events.new_objfile.connect(new_objfile_handler)
4047end
4048(gdb) file ./hello
4049Reading symbols from ./hello...done.
4050(gdb) python print gdb.objfiles()[0].time_loaded
40512014-10-09 11:41:36.770345
4052@end smallexample
4053
329baa95
DE
4054A @code{gdb.Objfile} object has the following methods:
4055
4056@defun Objfile.is_valid ()
4057Returns @code{True} if the @code{gdb.Objfile} object is valid,
4058@code{False} if not. A @code{gdb.Objfile} object can become invalid
4059if the object file it refers to is not loaded in @value{GDBN} any
4060longer. All other @code{gdb.Objfile} methods will throw an exception
4061if it is invalid at the time the method is called.
4062@end defun
4063
86e4ed39
DE
4064@defun Objfile.add_separate_debug_file (file)
4065Add @var{file} to the list of files that @value{GDBN} will search for
4066debug information for the objfile.
4067This is useful when the debug info has been removed from the program
4068and stored in a separate file. @value{GDBN} has built-in support for
4069finding separate debug info files (@pxref{Separate Debug Files}), but if
4070the file doesn't live in one of the standard places that @value{GDBN}
4071searches then this function can be used to add a debug info file
4072from a different place.
4073@end defun
4074
329baa95
DE
4075@node Frames In Python
4076@subsubsection Accessing inferior stack frames from Python.
4077
4078@cindex frames in python
4079When the debugged program stops, @value{GDBN} is able to analyze its call
4080stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4081represents a frame in the stack. A @code{gdb.Frame} object is only valid
4082while its corresponding frame exists in the inferior's stack. If you try
4083to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4084exception (@pxref{Exception Handling}).
4085
4086Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4087operator, like:
4088
4089@smallexample
4090(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4091True
4092@end smallexample
4093
4094The following frame-related functions are available in the @code{gdb} module:
4095
4096@findex gdb.selected_frame
4097@defun gdb.selected_frame ()
4098Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4099@end defun
4100
4101@findex gdb.newest_frame
4102@defun gdb.newest_frame ()
4103Return the newest frame object for the selected thread.
4104@end defun
4105
4106@defun gdb.frame_stop_reason_string (reason)
4107Return a string explaining the reason why @value{GDBN} stopped unwinding
4108frames, as expressed by the given @var{reason} code (an integer, see the
4109@code{unwind_stop_reason} method further down in this section).
4110@end defun
4111
e0f3fd7c
TT
4112@findex gdb.invalidate_cached_frames
4113@defun gdb.invalidate_cached_frames
4114@value{GDBN} internally keeps a cache of the frames that have been
4115unwound. This function invalidates this cache.
4116
4117This function should not generally be called by ordinary Python code.
4118It is documented for the sake of completeness.
4119@end defun
4120
329baa95
DE
4121A @code{gdb.Frame} object has the following methods:
4122
4123@defun Frame.is_valid ()
4124Returns true if the @code{gdb.Frame} object is valid, false if not.
4125A frame object can become invalid if the frame it refers to doesn't
4126exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4127an exception if it is invalid at the time the method is called.
4128@end defun
4129
4130@defun Frame.name ()
4131Returns the function name of the frame, or @code{None} if it can't be
4132obtained.
4133@end defun
4134
4135@defun Frame.architecture ()
4136Returns the @code{gdb.Architecture} object corresponding to the frame's
4137architecture. @xref{Architectures In Python}.
4138@end defun
4139
4140@defun Frame.type ()
4141Returns the type of the frame. The value can be one of:
4142@table @code
4143@item gdb.NORMAL_FRAME
4144An ordinary stack frame.
4145
4146@item gdb.DUMMY_FRAME
4147A fake stack frame that was created by @value{GDBN} when performing an
4148inferior function call.
4149
4150@item gdb.INLINE_FRAME
4151A frame representing an inlined function. The function was inlined
4152into a @code{gdb.NORMAL_FRAME} that is older than this one.
4153
4154@item gdb.TAILCALL_FRAME
4155A frame representing a tail call. @xref{Tail Call Frames}.
4156
4157@item gdb.SIGTRAMP_FRAME
4158A signal trampoline frame. This is the frame created by the OS when
4159it calls into a signal handler.
4160
4161@item gdb.ARCH_FRAME
4162A fake stack frame representing a cross-architecture call.
4163
4164@item gdb.SENTINEL_FRAME
4165This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4166newest frame.
4167@end table
4168@end defun
4169
4170@defun Frame.unwind_stop_reason ()
4171Return an integer representing the reason why it's not possible to find
4172more frames toward the outermost frame. Use
4173@code{gdb.frame_stop_reason_string} to convert the value returned by this
4174function to a string. The value can be one of:
4175
4176@table @code
4177@item gdb.FRAME_UNWIND_NO_REASON
4178No particular reason (older frames should be available).
4179
4180@item gdb.FRAME_UNWIND_NULL_ID
4181The previous frame's analyzer returns an invalid result. This is no
4182longer used by @value{GDBN}, and is kept only for backward
4183compatibility.
4184
4185@item gdb.FRAME_UNWIND_OUTERMOST
4186This frame is the outermost.
4187
4188@item gdb.FRAME_UNWIND_UNAVAILABLE
4189Cannot unwind further, because that would require knowing the
4190values of registers or memory that have not been collected.
4191
4192@item gdb.FRAME_UNWIND_INNER_ID
4193This frame ID looks like it ought to belong to a NEXT frame,
4194but we got it for a PREV frame. Normally, this is a sign of
4195unwinder failure. It could also indicate stack corruption.
4196
4197@item gdb.FRAME_UNWIND_SAME_ID
4198This frame has the same ID as the previous one. That means
4199that unwinding further would almost certainly give us another
4200frame with exactly the same ID, so break the chain. Normally,
4201this is a sign of unwinder failure. It could also indicate
4202stack corruption.
4203
4204@item gdb.FRAME_UNWIND_NO_SAVED_PC
4205The frame unwinder did not find any saved PC, but we needed
4206one to unwind further.
4207
53e8a631
AB
4208@item gdb.FRAME_UNWIND_MEMORY_ERROR
4209The frame unwinder caused an error while trying to access memory.
4210
329baa95
DE
4211@item gdb.FRAME_UNWIND_FIRST_ERROR
4212Any stop reason greater or equal to this value indicates some kind
4213of error. This special value facilitates writing code that tests
4214for errors in unwinding in a way that will work correctly even if
4215the list of the other values is modified in future @value{GDBN}
4216versions. Using it, you could write:
4217@smallexample
4218reason = gdb.selected_frame().unwind_stop_reason ()
4219reason_str = gdb.frame_stop_reason_string (reason)
4220if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4221 print "An error occured: %s" % reason_str
4222@end smallexample
4223@end table
4224
4225@end defun
4226
4227@defun Frame.pc ()
4228Returns the frame's resume address.
4229@end defun
4230
4231@defun Frame.block ()
4232Return the frame's code block. @xref{Blocks In Python}.
4233@end defun
4234
4235@defun Frame.function ()
4236Return the symbol for the function corresponding to this frame.
4237@xref{Symbols In Python}.
4238@end defun
4239
4240@defun Frame.older ()
4241Return the frame that called this frame.
4242@end defun
4243
4244@defun Frame.newer ()
4245Return the frame called by this frame.
4246@end defun
4247
4248@defun Frame.find_sal ()
4249Return the frame's symtab and line object.
4250@xref{Symbol Tables In Python}.
4251@end defun
4252
5f3b99cf
SS
4253@defun Frame.read_register (register)
4254Return the value of @var{register} in this frame. The @var{register}
4255argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4256Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4257does not exist.
4258@end defun
4259
329baa95
DE
4260@defun Frame.read_var (variable @r{[}, block@r{]})
4261Return the value of @var{variable} in this frame. If the optional
4262argument @var{block} is provided, search for the variable from that
4263block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4264determined by the frame's current program counter). The @var{variable}
4265argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4266@code{gdb.Block} object.
4267@end defun
4268
4269@defun Frame.select ()
4270Set this frame to be the selected frame. @xref{Stack, ,Examining the
4271Stack}.
4272@end defun
4273
4274@node Blocks In Python
4275@subsubsection Accessing blocks from Python.
4276
4277@cindex blocks in python
4278@tindex gdb.Block
4279
4280In @value{GDBN}, symbols are stored in blocks. A block corresponds
4281roughly to a scope in the source code. Blocks are organized
4282hierarchically, and are represented individually in Python as a
4283@code{gdb.Block}. Blocks rely on debugging information being
4284available.
4285
4286A frame has a block. Please see @ref{Frames In Python}, for a more
4287in-depth discussion of frames.
4288
4289The outermost block is known as the @dfn{global block}. The global
4290block typically holds public global variables and functions.
4291
4292The block nested just inside the global block is the @dfn{static
4293block}. The static block typically holds file-scoped variables and
4294functions.
4295
4296@value{GDBN} provides a method to get a block's superblock, but there
4297is currently no way to examine the sub-blocks of a block, or to
4298iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4299Python}).
4300
4301Here is a short example that should help explain blocks:
4302
4303@smallexample
4304/* This is in the global block. */
4305int global;
4306
4307/* This is in the static block. */
4308static int file_scope;
4309
4310/* 'function' is in the global block, and 'argument' is
4311 in a block nested inside of 'function'. */
4312int function (int argument)
4313@{
4314 /* 'local' is in a block inside 'function'. It may or may
4315 not be in the same block as 'argument'. */
4316 int local;
4317
4318 @{
4319 /* 'inner' is in a block whose superblock is the one holding
4320 'local'. */
4321 int inner;
4322
4323 /* If this call is expanded by the compiler, you may see
4324 a nested block here whose function is 'inline_function'
4325 and whose superblock is the one holding 'inner'. */
4326 inline_function ();
4327 @}
4328@}
4329@end smallexample
4330
4331A @code{gdb.Block} is iterable. The iterator returns the symbols
4332(@pxref{Symbols In Python}) local to the block. Python programs
4333should not assume that a specific block object will always contain a
4334given symbol, since changes in @value{GDBN} features and
4335infrastructure may cause symbols move across blocks in a symbol
4336table.
4337
4338The following block-related functions are available in the @code{gdb}
4339module:
4340
4341@findex gdb.block_for_pc
4342@defun gdb.block_for_pc (pc)
4343Return the innermost @code{gdb.Block} containing the given @var{pc}
4344value. If the block cannot be found for the @var{pc} value specified,
4345the function will return @code{None}.
4346@end defun
4347
4348A @code{gdb.Block} object has the following methods:
4349
4350@defun Block.is_valid ()
4351Returns @code{True} if the @code{gdb.Block} object is valid,
4352@code{False} if not. A block object can become invalid if the block it
4353refers to doesn't exist anymore in the inferior. All other
4354@code{gdb.Block} methods will throw an exception if it is invalid at
4355the time the method is called. The block's validity is also checked
4356during iteration over symbols of the block.
4357@end defun
4358
4359A @code{gdb.Block} object has the following attributes:
4360
4361@defvar Block.start
4362The start address of the block. This attribute is not writable.
4363@end defvar
4364
4365@defvar Block.end
4366The end address of the block. This attribute is not writable.
4367@end defvar
4368
4369@defvar Block.function
4370The name of the block represented as a @code{gdb.Symbol}. If the
4371block is not named, then this attribute holds @code{None}. This
4372attribute is not writable.
4373
4374For ordinary function blocks, the superblock is the static block.
4375However, you should note that it is possible for a function block to
4376have a superblock that is not the static block -- for instance this
4377happens for an inlined function.
4378@end defvar
4379
4380@defvar Block.superblock
4381The block containing this block. If this parent block does not exist,
4382this attribute holds @code{None}. This attribute is not writable.
4383@end defvar
4384
4385@defvar Block.global_block
4386The global block associated with this block. This attribute is not
4387writable.
4388@end defvar
4389
4390@defvar Block.static_block
4391The static block associated with this block. This attribute is not
4392writable.
4393@end defvar
4394
4395@defvar Block.is_global
4396@code{True} if the @code{gdb.Block} object is a global block,
4397@code{False} if not. This attribute is not
4398writable.
4399@end defvar
4400
4401@defvar Block.is_static
4402@code{True} if the @code{gdb.Block} object is a static block,
4403@code{False} if not. This attribute is not writable.
4404@end defvar
4405
4406@node Symbols In Python
4407@subsubsection Python representation of Symbols.
4408
4409@cindex symbols in python
4410@tindex gdb.Symbol
4411
4412@value{GDBN} represents every variable, function and type as an
4413entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4414Similarly, Python represents these symbols in @value{GDBN} with the
4415@code{gdb.Symbol} object.
4416
4417The following symbol-related functions are available in the @code{gdb}
4418module:
4419
4420@findex gdb.lookup_symbol
4421@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4422This function searches for a symbol by name. The search scope can be
4423restricted to the parameters defined in the optional domain and block
4424arguments.
4425
4426@var{name} is the name of the symbol. It must be a string. The
4427optional @var{block} argument restricts the search to symbols visible
4428in that @var{block}. The @var{block} argument must be a
4429@code{gdb.Block} object. If omitted, the block for the current frame
4430is used. The optional @var{domain} argument restricts
4431the search to the domain type. The @var{domain} argument must be a
4432domain constant defined in the @code{gdb} module and described later
4433in this chapter.
4434
4435The result is a tuple of two elements.
4436The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4437is not found.
4438If the symbol is found, the second element is @code{True} if the symbol
4439is a field of a method's object (e.g., @code{this} in C@t{++}),
4440otherwise it is @code{False}.
4441If the symbol is not found, the second element is @code{False}.
4442@end defun
4443
4444@findex gdb.lookup_global_symbol
4445@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4446This function searches for a global symbol by name.
4447The search scope can be restricted to by the domain argument.
4448
4449@var{name} is the name of the symbol. It must be a string.
4450The optional @var{domain} argument restricts the search to the domain type.
4451The @var{domain} argument must be a domain constant defined in the @code{gdb}
4452module and described later in this chapter.
4453
4454The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4455is not found.
4456@end defun
4457
4458A @code{gdb.Symbol} object has the following attributes:
4459
4460@defvar Symbol.type
4461The type of the symbol or @code{None} if no type is recorded.
4462This attribute is represented as a @code{gdb.Type} object.
4463@xref{Types In Python}. This attribute is not writable.
4464@end defvar
4465
4466@defvar Symbol.symtab
4467The symbol table in which the symbol appears. This attribute is
4468represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4469Python}. This attribute is not writable.
4470@end defvar
4471
4472@defvar Symbol.line
4473The line number in the source code at which the symbol was defined.
4474This is an integer.
4475@end defvar
4476
4477@defvar Symbol.name
4478The name of the symbol as a string. This attribute is not writable.
4479@end defvar
4480
4481@defvar Symbol.linkage_name
4482The name of the symbol, as used by the linker (i.e., may be mangled).
4483This attribute is not writable.
4484@end defvar
4485
4486@defvar Symbol.print_name
4487The name of the symbol in a form suitable for output. This is either
4488@code{name} or @code{linkage_name}, depending on whether the user
4489asked @value{GDBN} to display demangled or mangled names.
4490@end defvar
4491
4492@defvar Symbol.addr_class
4493The address class of the symbol. This classifies how to find the value
4494of a symbol. Each address class is a constant defined in the
4495@code{gdb} module and described later in this chapter.
4496@end defvar
4497
4498@defvar Symbol.needs_frame
4499This is @code{True} if evaluating this symbol's value requires a frame
4500(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4501local variables will require a frame, but other symbols will not.
4502@end defvar
4503
4504@defvar Symbol.is_argument
4505@code{True} if the symbol is an argument of a function.
4506@end defvar
4507
4508@defvar Symbol.is_constant
4509@code{True} if the symbol is a constant.
4510@end defvar
4511
4512@defvar Symbol.is_function
4513@code{True} if the symbol is a function or a method.
4514@end defvar
4515
4516@defvar Symbol.is_variable
4517@code{True} if the symbol is a variable.
4518@end defvar
4519
4520A @code{gdb.Symbol} object has the following methods:
4521
4522@defun Symbol.is_valid ()
4523Returns @code{True} if the @code{gdb.Symbol} object is valid,
4524@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4525the symbol it refers to does not exist in @value{GDBN} any longer.
4526All other @code{gdb.Symbol} methods will throw an exception if it is
4527invalid at the time the method is called.
4528@end defun
4529
4530@defun Symbol.value (@r{[}frame@r{]})
4531Compute the value of the symbol, as a @code{gdb.Value}. For
4532functions, this computes the address of the function, cast to the
4533appropriate type. If the symbol requires a frame in order to compute
4534its value, then @var{frame} must be given. If @var{frame} is not
4535given, or if @var{frame} is invalid, then this method will throw an
4536exception.
4537@end defun
4538
4539The available domain categories in @code{gdb.Symbol} are represented
4540as constants in the @code{gdb} module:
4541
b3ce5e5f
DE
4542@vtable @code
4543@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4544@item gdb.SYMBOL_UNDEF_DOMAIN
4545This is used when a domain has not been discovered or none of the
4546following domains apply. This usually indicates an error either
4547in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4548
4549@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4550@item gdb.SYMBOL_VAR_DOMAIN
4551This domain contains variables, function names, typedef names and enum
4552type values.
b3ce5e5f
DE
4553
4554@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4555@item gdb.SYMBOL_STRUCT_DOMAIN
4556This domain holds struct, union and enum type names.
b3ce5e5f
DE
4557
4558@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4559@item gdb.SYMBOL_LABEL_DOMAIN
4560This domain contains names of labels (for gotos).
b3ce5e5f
DE
4561
4562@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4563@item gdb.SYMBOL_VARIABLES_DOMAIN
4564This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4565contains everything minus functions and types.
b3ce5e5f
DE
4566
4567@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
4568@item gdb.SYMBOL_FUNCTION_DOMAIN
4569This domain contains all functions.
b3ce5e5f
DE
4570
4571@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4572@item gdb.SYMBOL_TYPES_DOMAIN
4573This domain contains all types.
b3ce5e5f 4574@end vtable
329baa95
DE
4575
4576The available address class categories in @code{gdb.Symbol} are represented
4577as constants in the @code{gdb} module:
4578
b3ce5e5f
DE
4579@vtable @code
4580@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4581@item gdb.SYMBOL_LOC_UNDEF
4582If this is returned by address class, it indicates an error either in
4583the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4584
4585@vindex SYMBOL_LOC_CONST
329baa95
DE
4586@item gdb.SYMBOL_LOC_CONST
4587Value is constant int.
b3ce5e5f
DE
4588
4589@vindex SYMBOL_LOC_STATIC
329baa95
DE
4590@item gdb.SYMBOL_LOC_STATIC
4591Value is at a fixed address.
b3ce5e5f
DE
4592
4593@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4594@item gdb.SYMBOL_LOC_REGISTER
4595Value is in a register.
b3ce5e5f
DE
4596
4597@vindex SYMBOL_LOC_ARG
329baa95
DE
4598@item gdb.SYMBOL_LOC_ARG
4599Value is an argument. This value is at the offset stored within the
4600symbol inside the frame's argument list.
b3ce5e5f
DE
4601
4602@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4603@item gdb.SYMBOL_LOC_REF_ARG
4604Value address is stored in the frame's argument list. Just like
4605@code{LOC_ARG} except that the value's address is stored at the
4606offset, not the value itself.
b3ce5e5f
DE
4607
4608@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4609@item gdb.SYMBOL_LOC_REGPARM_ADDR
4610Value is a specified register. Just like @code{LOC_REGISTER} except
4611the register holds the address of the argument instead of the argument
4612itself.
b3ce5e5f
DE
4613
4614@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4615@item gdb.SYMBOL_LOC_LOCAL
4616Value is a local variable.
b3ce5e5f
DE
4617
4618@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4619@item gdb.SYMBOL_LOC_TYPEDEF
4620Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4621have this class.
b3ce5e5f
DE
4622
4623@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4624@item gdb.SYMBOL_LOC_BLOCK
4625Value is a block.
b3ce5e5f
DE
4626
4627@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4628@item gdb.SYMBOL_LOC_CONST_BYTES
4629Value is a byte-sequence.
b3ce5e5f
DE
4630
4631@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4632@item gdb.SYMBOL_LOC_UNRESOLVED
4633Value is at a fixed address, but the address of the variable has to be
4634determined from the minimal symbol table whenever the variable is
4635referenced.
b3ce5e5f
DE
4636
4637@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4638@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4639The value does not actually exist in the program.
b3ce5e5f
DE
4640
4641@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4642@item gdb.SYMBOL_LOC_COMPUTED
4643The value's address is a computed location.
b3ce5e5f 4644@end vtable
329baa95
DE
4645
4646@node Symbol Tables In Python
4647@subsubsection Symbol table representation in Python.
4648
4649@cindex symbol tables in python
4650@tindex gdb.Symtab
4651@tindex gdb.Symtab_and_line
4652
4653Access to symbol table data maintained by @value{GDBN} on the inferior
4654is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4655@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4656from the @code{find_sal} method in @code{gdb.Frame} object.
4657@xref{Frames In Python}.
4658
4659For more information on @value{GDBN}'s symbol table management, see
4660@ref{Symbols, ,Examining the Symbol Table}, for more information.
4661
4662A @code{gdb.Symtab_and_line} object has the following attributes:
4663
4664@defvar Symtab_and_line.symtab
4665The symbol table object (@code{gdb.Symtab}) for this frame.
4666This attribute is not writable.
4667@end defvar
4668
4669@defvar Symtab_and_line.pc
4670Indicates the start of the address range occupied by code for the
4671current source line. This attribute is not writable.
4672@end defvar
4673
4674@defvar Symtab_and_line.last
4675Indicates the end of the address range occupied by code for the current
4676source line. This attribute is not writable.
4677@end defvar
4678
4679@defvar Symtab_and_line.line
4680Indicates the current line number for this object. This
4681attribute is not writable.
4682@end defvar
4683
4684A @code{gdb.Symtab_and_line} object has the following methods:
4685
4686@defun Symtab_and_line.is_valid ()
4687Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4688@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4689invalid if the Symbol table and line object it refers to does not
4690exist in @value{GDBN} any longer. All other
4691@code{gdb.Symtab_and_line} methods will throw an exception if it is
4692invalid at the time the method is called.
4693@end defun
4694
4695A @code{gdb.Symtab} object has the following attributes:
4696
4697@defvar Symtab.filename
4698The symbol table's source filename. This attribute is not writable.
4699@end defvar
4700
4701@defvar Symtab.objfile
4702The symbol table's backing object file. @xref{Objfiles In Python}.
4703This attribute is not writable.
4704@end defvar
4705
2b4fd423
DE
4706@defvar Symtab.producer
4707The name and possibly version number of the program that
4708compiled the code in the symbol table.
4709The contents of this string is up to the compiler.
4710If no producer information is available then @code{None} is returned.
4711This attribute is not writable.
4712@end defvar
4713
329baa95
DE
4714A @code{gdb.Symtab} object has the following methods:
4715
4716@defun Symtab.is_valid ()
4717Returns @code{True} if the @code{gdb.Symtab} object is valid,
4718@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4719the symbol table it refers to does not exist in @value{GDBN} any
4720longer. All other @code{gdb.Symtab} methods will throw an exception
4721if it is invalid at the time the method is called.
4722@end defun
4723
4724@defun Symtab.fullname ()
4725Return the symbol table's source absolute file name.
4726@end defun
4727
4728@defun Symtab.global_block ()
4729Return the global block of the underlying symbol table.
4730@xref{Blocks In Python}.
4731@end defun
4732
4733@defun Symtab.static_block ()
4734Return the static block of the underlying symbol table.
4735@xref{Blocks In Python}.
4736@end defun
4737
4738@defun Symtab.linetable ()
4739Return the line table associated with the symbol table.
4740@xref{Line Tables In Python}.
4741@end defun
4742
4743@node Line Tables In Python
4744@subsubsection Manipulating line tables using Python
4745
4746@cindex line tables in python
4747@tindex gdb.LineTable
4748
4749Python code can request and inspect line table information from a
4750symbol table that is loaded in @value{GDBN}. A line table is a
4751mapping of source lines to their executable locations in memory. To
4752acquire the line table information for a particular symbol table, use
4753the @code{linetable} function (@pxref{Symbol Tables In Python}).
4754
4755A @code{gdb.LineTable} is iterable. The iterator returns
4756@code{LineTableEntry} objects that correspond to the source line and
4757address for each line table entry. @code{LineTableEntry} objects have
4758the following attributes:
4759
4760@defvar LineTableEntry.line
4761The source line number for this line table entry. This number
4762corresponds to the actual line of source. This attribute is not
4763writable.
4764@end defvar
4765
4766@defvar LineTableEntry.pc
4767The address that is associated with the line table entry where the
4768executable code for that source line resides in memory. This
4769attribute is not writable.
4770@end defvar
4771
4772As there can be multiple addresses for a single source line, you may
4773receive multiple @code{LineTableEntry} objects with matching
4774@code{line} attributes, but with different @code{pc} attributes. The
4775iterator is sorted in ascending @code{pc} order. Here is a small
4776example illustrating iterating over a line table.
4777
4778@smallexample
4779symtab = gdb.selected_frame().find_sal().symtab
4780linetable = symtab.linetable()
4781for line in linetable:
4782 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4783@end smallexample
4784
4785This will have the following output:
4786
4787@smallexample
4788Line: 33 Address: 0x4005c8L
4789Line: 37 Address: 0x4005caL
4790Line: 39 Address: 0x4005d2L
4791Line: 40 Address: 0x4005f8L
4792Line: 42 Address: 0x4005ffL
4793Line: 44 Address: 0x400608L
4794Line: 42 Address: 0x40060cL
4795Line: 45 Address: 0x400615L
4796@end smallexample
4797
4798In addition to being able to iterate over a @code{LineTable}, it also
4799has the following direct access methods:
4800
4801@defun LineTable.line (line)
4802Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4803entries in the line table for the given @var{line}, which specifies
4804the source code line. If there are no entries for that source code
329baa95
DE
4805@var{line}, the Python @code{None} is returned.
4806@end defun
4807
4808@defun LineTable.has_line (line)
4809Return a Python @code{Boolean} indicating whether there is an entry in
4810the line table for this source line. Return @code{True} if an entry
4811is found, or @code{False} if not.
4812@end defun
4813
4814@defun LineTable.source_lines ()
4815Return a Python @code{List} of the source line numbers in the symbol
4816table. Only lines with executable code locations are returned. The
4817contents of the @code{List} will just be the source line entries
4818represented as Python @code{Long} values.
4819@end defun
4820
4821@node Breakpoints In Python
4822@subsubsection Manipulating breakpoints using Python
4823
4824@cindex breakpoints in python
4825@tindex gdb.Breakpoint
4826
4827Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4828class.
4829
4830@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4831Create a new breakpoint according to @var{spec}, which is a string
4832naming the location of the breakpoint, or an expression that defines a
4833watchpoint. The contents can be any location recognized by the
4834@code{break} command, or in the case of a watchpoint, by the
4835@code{watch} command. The optional @var{type} denotes the breakpoint
4836to create from the types defined later in this chapter. This argument
4837can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4838defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4839argument allows the breakpoint to become invisible to the user. The
4840breakpoint will neither be reported when created, nor will it be
4841listed in the output from @code{info breakpoints} (but will be listed
4842with the @code{maint info breakpoints} command). The optional
4843@var{temporary} argument makes the breakpoint a temporary breakpoint.
4844Temporary breakpoints are deleted after they have been hit. Any
4845further access to the Python breakpoint after it has been hit will
4846result in a runtime error (as that breakpoint has now been
4847automatically deleted). The optional @var{wp_class} argument defines
4848the class of watchpoint to create, if @var{type} is
4849@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4850is assumed to be a @code{gdb.WP_WRITE} class.
4851@end defun
4852
cda75e70
TT
4853The available types are represented by constants defined in the @code{gdb}
4854module:
4855
4856@vtable @code
4857@vindex BP_BREAKPOINT
4858@item gdb.BP_BREAKPOINT
4859Normal code breakpoint.
4860
4861@vindex BP_WATCHPOINT
4862@item gdb.BP_WATCHPOINT
4863Watchpoint breakpoint.
4864
4865@vindex BP_HARDWARE_WATCHPOINT
4866@item gdb.BP_HARDWARE_WATCHPOINT
4867Hardware assisted watchpoint.
4868
4869@vindex BP_READ_WATCHPOINT
4870@item gdb.BP_READ_WATCHPOINT
4871Hardware assisted read watchpoint.
4872
4873@vindex BP_ACCESS_WATCHPOINT
4874@item gdb.BP_ACCESS_WATCHPOINT
4875Hardware assisted access watchpoint.
4876@end vtable
4877
4878The available watchpoint types represented by constants are defined in the
4879@code{gdb} module:
4880
4881@vtable @code
4882@vindex WP_READ
4883@item gdb.WP_READ
4884Read only watchpoint.
4885
4886@vindex WP_WRITE
4887@item gdb.WP_WRITE
4888Write only watchpoint.
4889
4890@vindex WP_ACCESS
4891@item gdb.WP_ACCESS
4892Read/Write watchpoint.
4893@end vtable
4894
329baa95
DE
4895@defun Breakpoint.stop (self)
4896The @code{gdb.Breakpoint} class can be sub-classed and, in
4897particular, you may choose to implement the @code{stop} method.
4898If this method is defined in a sub-class of @code{gdb.Breakpoint},
4899it will be called when the inferior reaches any location of a
4900breakpoint which instantiates that sub-class. If the method returns
4901@code{True}, the inferior will be stopped at the location of the
4902breakpoint, otherwise the inferior will continue.
4903
4904If there are multiple breakpoints at the same location with a
4905@code{stop} method, each one will be called regardless of the
4906return status of the previous. This ensures that all @code{stop}
4907methods have a chance to execute at that location. In this scenario
4908if one of the methods returns @code{True} but the others return
4909@code{False}, the inferior will still be stopped.
4910
4911You should not alter the execution state of the inferior (i.e.@:, step,
4912next, etc.), alter the current frame context (i.e.@:, change the current
4913active frame), or alter, add or delete any breakpoint. As a general
4914rule, you should not alter any data within @value{GDBN} or the inferior
4915at this time.
4916
4917Example @code{stop} implementation:
4918
4919@smallexample
4920class MyBreakpoint (gdb.Breakpoint):
4921 def stop (self):
4922 inf_val = gdb.parse_and_eval("foo")
4923 if inf_val == 3:
4924 return True
4925 return False
4926@end smallexample
4927@end defun
4928
329baa95
DE
4929@defun Breakpoint.is_valid ()
4930Return @code{True} if this @code{Breakpoint} object is valid,
4931@code{False} otherwise. A @code{Breakpoint} object can become invalid
4932if the user deletes the breakpoint. In this case, the object still
4933exists, but the underlying breakpoint does not. In the cases of
4934watchpoint scope, the watchpoint remains valid even if execution of the
4935inferior leaves the scope of that watchpoint.
4936@end defun
4937
fab3a15d 4938@defun Breakpoint.delete ()
329baa95
DE
4939Permanently deletes the @value{GDBN} breakpoint. This also
4940invalidates the Python @code{Breakpoint} object. Any further access
4941to this object's attributes or methods will raise an error.
4942@end defun
4943
4944@defvar Breakpoint.enabled
4945This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4946@code{False} otherwise. This attribute is writable. You can use it to enable
4947or disable the breakpoint.
329baa95
DE
4948@end defvar
4949
4950@defvar Breakpoint.silent
4951This attribute is @code{True} if the breakpoint is silent, and
4952@code{False} otherwise. This attribute is writable.
4953
4954Note that a breakpoint can also be silent if it has commands and the
4955first command is @code{silent}. This is not reported by the
4956@code{silent} attribute.
4957@end defvar
4958
93daf339
TT
4959@defvar Breakpoint.pending
4960This attribute is @code{True} if the breakpoint is pending, and
4961@code{False} otherwise. @xref{Set Breaks}. This attribute is
4962read-only.
4963@end defvar
4964
22a02324 4965@anchor{python_breakpoint_thread}
329baa95 4966@defvar Breakpoint.thread
5d5658a1
PA
4967If the breakpoint is thread-specific, this attribute holds the
4968thread's global id. If the breakpoint is not thread-specific, this
4969attribute is @code{None}. This attribute is writable.
329baa95
DE
4970@end defvar
4971
4972@defvar Breakpoint.task
4973If the breakpoint is Ada task-specific, this attribute holds the Ada task
4974id. If the breakpoint is not task-specific (or the underlying
4975language is not Ada), this attribute is @code{None}. This attribute
4976is writable.
4977@end defvar
4978
4979@defvar Breakpoint.ignore_count
4980This attribute holds the ignore count for the breakpoint, an integer.
4981This attribute is writable.
4982@end defvar
4983
4984@defvar Breakpoint.number
4985This attribute holds the breakpoint's number --- the identifier used by
4986the user to manipulate the breakpoint. This attribute is not writable.
4987@end defvar
4988
4989@defvar Breakpoint.type
4990This attribute holds the breakpoint's type --- the identifier used to
4991determine the actual breakpoint type or use-case. This attribute is not
4992writable.
4993@end defvar
4994
4995@defvar Breakpoint.visible
4996This attribute tells whether the breakpoint is visible to the user
4997when set, or when the @samp{info breakpoints} command is run. This
4998attribute is not writable.
4999@end defvar
5000
5001@defvar Breakpoint.temporary
5002This attribute indicates whether the breakpoint was created as a
5003temporary breakpoint. Temporary breakpoints are automatically deleted
5004after that breakpoint has been hit. Access to this attribute, and all
5005other attributes and functions other than the @code{is_valid}
5006function, will result in an error after the breakpoint has been hit
5007(as it has been automatically deleted). This attribute is not
5008writable.
5009@end defvar
5010
329baa95
DE
5011@defvar Breakpoint.hit_count
5012This attribute holds the hit count for the breakpoint, an integer.
5013This attribute is writable, but currently it can only be set to zero.
5014@end defvar
5015
5016@defvar Breakpoint.location
5017This attribute holds the location of the breakpoint, as specified by
5018the user. It is a string. If the breakpoint does not have a location
5019(that is, it is a watchpoint) the attribute's value is @code{None}. This
5020attribute is not writable.
5021@end defvar
5022
5023@defvar Breakpoint.expression
5024This attribute holds a breakpoint expression, as specified by
5025the user. It is a string. If the breakpoint does not have an
5026expression (the breakpoint is not a watchpoint) the attribute's value
5027is @code{None}. This attribute is not writable.
5028@end defvar
5029
5030@defvar Breakpoint.condition
5031This attribute holds the condition of the breakpoint, as specified by
5032the user. It is a string. If there is no condition, this attribute's
5033value is @code{None}. This attribute is writable.
5034@end defvar
5035
5036@defvar Breakpoint.commands
5037This attribute holds the commands attached to the breakpoint. If
5038there are commands, this attribute's value is a string holding all the
5039commands, separated by newlines. If there are no commands, this
5040attribute is @code{None}. This attribute is not writable.
5041@end defvar
5042
5043@node Finish Breakpoints in Python
5044@subsubsection Finish Breakpoints
5045
5046@cindex python finish breakpoints
5047@tindex gdb.FinishBreakpoint
5048
5049A finish breakpoint is a temporary breakpoint set at the return address of
5050a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5051extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5052and deleted when the execution will run out of the breakpoint scope (i.e.@:
5053@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5054Finish breakpoints are thread specific and must be create with the right
5055thread selected.
5056
5057@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5058Create a finish breakpoint at the return address of the @code{gdb.Frame}
5059object @var{frame}. If @var{frame} is not provided, this defaults to the
5060newest frame. The optional @var{internal} argument allows the breakpoint to
5061become invisible to the user. @xref{Breakpoints In Python}, for further
5062details about this argument.
5063@end defun
5064
5065@defun FinishBreakpoint.out_of_scope (self)
5066In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5067@code{return} command, @dots{}), a function may not properly terminate, and
5068thus never hit the finish breakpoint. When @value{GDBN} notices such a
5069situation, the @code{out_of_scope} callback will be triggered.
5070
5071You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5072method:
5073
5074@smallexample
5075class MyFinishBreakpoint (gdb.FinishBreakpoint)
5076 def stop (self):
5077 print "normal finish"
5078 return True
5079
5080 def out_of_scope ():
5081 print "abnormal finish"
5082@end smallexample
5083@end defun
5084
5085@defvar FinishBreakpoint.return_value
5086When @value{GDBN} is stopped at a finish breakpoint and the frame
5087used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5088attribute will contain a @code{gdb.Value} object corresponding to the return
5089value of the function. The value will be @code{None} if the function return
5090type is @code{void} or if the return value was not computable. This attribute
5091is not writable.
5092@end defvar
5093
5094@node Lazy Strings In Python
5095@subsubsection Python representation of lazy strings.
5096
5097@cindex lazy strings in python
5098@tindex gdb.LazyString
5099
5100A @dfn{lazy string} is a string whose contents is not retrieved or
5101encoded until it is needed.
5102
5103A @code{gdb.LazyString} is represented in @value{GDBN} as an
5104@code{address} that points to a region of memory, an @code{encoding}
5105that will be used to encode that region of memory, and a @code{length}
5106to delimit the region of memory that represents the string. The
5107difference between a @code{gdb.LazyString} and a string wrapped within
5108a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5109differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5110retrieved and encoded during printing, while a @code{gdb.Value}
5111wrapping a string is immediately retrieved and encoded on creation.
5112
5113A @code{gdb.LazyString} object has the following functions:
5114
5115@defun LazyString.value ()
5116Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5117will point to the string in memory, but will lose all the delayed
5118retrieval, encoding and handling that @value{GDBN} applies to a
5119@code{gdb.LazyString}.
5120@end defun
5121
5122@defvar LazyString.address
5123This attribute holds the address of the string. This attribute is not
5124writable.
5125@end defvar
5126
5127@defvar LazyString.length
5128This attribute holds the length of the string in characters. If the
5129length is -1, then the string will be fetched and encoded up to the
5130first null of appropriate width. This attribute is not writable.
5131@end defvar
5132
5133@defvar LazyString.encoding
5134This attribute holds the encoding that will be applied to the string
5135when the string is printed by @value{GDBN}. If the encoding is not
5136set, or contains an empty string, then @value{GDBN} will select the
5137most appropriate encoding when the string is printed. This attribute
5138is not writable.
5139@end defvar
5140
5141@defvar LazyString.type
5142This attribute holds the type that is represented by the lazy string's
f8d99587 5143type. For a lazy string this is a pointer or array type. To
329baa95
DE
5144resolve this to the lazy string's character type, use the type's
5145@code{target} method. @xref{Types In Python}. This attribute is not
5146writable.
5147@end defvar
5148
5149@node Architectures In Python
5150@subsubsection Python representation of architectures
5151@cindex Python architectures
5152
5153@value{GDBN} uses architecture specific parameters and artifacts in a
5154number of its various computations. An architecture is represented
5155by an instance of the @code{gdb.Architecture} class.
5156
5157A @code{gdb.Architecture} class has the following methods:
5158
5159@defun Architecture.name ()
5160Return the name (string value) of the architecture.
5161@end defun
5162
5163@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5164Return a list of disassembled instructions starting from the memory
5165address @var{start_pc}. The optional arguments @var{end_pc} and
5166@var{count} determine the number of instructions in the returned list.
5167If both the optional arguments @var{end_pc} and @var{count} are
5168specified, then a list of at most @var{count} disassembled instructions
5169whose start address falls in the closed memory address interval from
5170@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5171specified, but @var{count} is specified, then @var{count} number of
5172instructions starting from the address @var{start_pc} are returned. If
5173@var{count} is not specified but @var{end_pc} is specified, then all
5174instructions whose start address falls in the closed memory address
5175interval from @var{start_pc} to @var{end_pc} are returned. If neither
5176@var{end_pc} nor @var{count} are specified, then a single instruction at
5177@var{start_pc} is returned. For all of these cases, each element of the
5178returned list is a Python @code{dict} with the following string keys:
5179
5180@table @code
5181
5182@item addr
5183The value corresponding to this key is a Python long integer capturing
5184the memory address of the instruction.
5185
5186@item asm
5187The value corresponding to this key is a string value which represents
5188the instruction with assembly language mnemonics. The assembly
5189language flavor used is the same as that specified by the current CLI
5190variable @code{disassembly-flavor}. @xref{Machine Code}.
5191
5192@item length
5193The value corresponding to this key is the length (integer value) of the
5194instruction in bytes.
5195
5196@end table
5197@end defun
5198
5199@node Python Auto-loading
5200@subsection Python Auto-loading
5201@cindex Python auto-loading
5202
5203When a new object file is read (for example, due to the @code{file}
5204command, or because the inferior has loaded a shared library),
5205@value{GDBN} will look for Python support scripts in several ways:
5206@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5207@xref{Auto-loading extensions}.
5208
5209The auto-loading feature is useful for supplying application-specific
5210debugging commands and scripts.
5211
5212Auto-loading can be enabled or disabled,
5213and the list of auto-loaded scripts can be printed.
5214
5215@table @code
5216@anchor{set auto-load python-scripts}
5217@kindex set auto-load python-scripts
5218@item set auto-load python-scripts [on|off]
5219Enable or disable the auto-loading of Python scripts.
5220
5221@anchor{show auto-load python-scripts}
5222@kindex show auto-load python-scripts
5223@item show auto-load python-scripts
5224Show whether auto-loading of Python scripts is enabled or disabled.
5225
5226@anchor{info auto-load python-scripts}
5227@kindex info auto-load python-scripts
5228@cindex print list of auto-loaded Python scripts
5229@item info auto-load python-scripts [@var{regexp}]
5230Print the list of all Python scripts that @value{GDBN} auto-loaded.
5231
5232Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5233the @code{.debug_gdb_scripts} section and were either not found
5234(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5235@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5236This is useful because their names are not printed when @value{GDBN}
5237tries to load them and fails. There may be many of them, and printing
5238an error message for each one is problematic.
5239
5240If @var{regexp} is supplied only Python scripts with matching names are printed.
5241
5242Example:
5243
5244@smallexample
5245(gdb) info auto-load python-scripts
5246Loaded Script
5247Yes py-section-script.py
5248 full name: /tmp/py-section-script.py
5249No my-foo-pretty-printers.py
5250@end smallexample
5251@end table
5252
9f050062 5253When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5254@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5255function (@pxref{Objfiles In Python}). This can be useful for
5256registering objfile-specific pretty-printers and frame-filters.
5257
5258@node Python modules
5259@subsection Python modules
5260@cindex python modules
5261
5262@value{GDBN} comes with several modules to assist writing Python code.
5263
5264@menu
5265* gdb.printing:: Building and registering pretty-printers.
5266* gdb.types:: Utilities for working with types.
5267* gdb.prompt:: Utilities for prompt value substitution.
5268@end menu
5269
5270@node gdb.printing
5271@subsubsection gdb.printing
5272@cindex gdb.printing
5273
5274This module provides a collection of utilities for working with
5275pretty-printers.
5276
5277@table @code
5278@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5279This class specifies the API that makes @samp{info pretty-printer},
5280@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5281Pretty-printers should generally inherit from this class.
5282
5283@item SubPrettyPrinter (@var{name})
5284For printers that handle multiple types, this class specifies the
5285corresponding API for the subprinters.
5286
5287@item RegexpCollectionPrettyPrinter (@var{name})
5288Utility class for handling multiple printers, all recognized via
5289regular expressions.
5290@xref{Writing a Pretty-Printer}, for an example.
5291
5292@item FlagEnumerationPrinter (@var{name})
5293A pretty-printer which handles printing of @code{enum} values. Unlike
5294@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5295work properly when there is some overlap between the enumeration
697aa1b7
EZ
5296constants. The argument @var{name} is the name of the printer and
5297also the name of the @code{enum} type to look up.
329baa95
DE
5298
5299@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5300Register @var{printer} with the pretty-printer list of @var{obj}.
5301If @var{replace} is @code{True} then any existing copy of the printer
5302is replaced. Otherwise a @code{RuntimeError} exception is raised
5303if a printer with the same name already exists.
5304@end table
5305
5306@node gdb.types
5307@subsubsection gdb.types
5308@cindex gdb.types
5309
5310This module provides a collection of utilities for working with
5311@code{gdb.Type} objects.
5312
5313@table @code
5314@item get_basic_type (@var{type})
5315Return @var{type} with const and volatile qualifiers stripped,
5316and with typedefs and C@t{++} references converted to the underlying type.
5317
5318C@t{++} example:
5319
5320@smallexample
5321typedef const int const_int;
5322const_int foo (3);
5323const_int& foo_ref (foo);
5324int main () @{ return 0; @}
5325@end smallexample
5326
5327Then in gdb:
5328
5329@smallexample
5330(gdb) start
5331(gdb) python import gdb.types
5332(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5333(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5334int
5335@end smallexample
5336
5337@item has_field (@var{type}, @var{field})
5338Return @code{True} if @var{type}, assumed to be a type with fields
5339(e.g., a structure or union), has field @var{field}.
5340
5341@item make_enum_dict (@var{enum_type})
5342Return a Python @code{dictionary} type produced from @var{enum_type}.
5343
5344@item deep_items (@var{type})
5345Returns a Python iterator similar to the standard
5346@code{gdb.Type.iteritems} method, except that the iterator returned
5347by @code{deep_items} will recursively traverse anonymous struct or
5348union fields. For example:
5349
5350@smallexample
5351struct A
5352@{
5353 int a;
5354 union @{
5355 int b0;
5356 int b1;
5357 @};
5358@};
5359@end smallexample
5360
5361@noindent
5362Then in @value{GDBN}:
5363@smallexample
5364(@value{GDBP}) python import gdb.types
5365(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5366(@value{GDBP}) python print struct_a.keys ()
5367@{['a', '']@}
5368(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5369@{['a', 'b0', 'b1']@}
5370@end smallexample
5371
5372@item get_type_recognizers ()
5373Return a list of the enabled type recognizers for the current context.
5374This is called by @value{GDBN} during the type-printing process
5375(@pxref{Type Printing API}).
5376
5377@item apply_type_recognizers (recognizers, type_obj)
5378Apply the type recognizers, @var{recognizers}, to the type object
5379@var{type_obj}. If any recognizer returns a string, return that
5380string. Otherwise, return @code{None}. This is called by
5381@value{GDBN} during the type-printing process (@pxref{Type Printing
5382API}).
5383
5384@item register_type_printer (locus, printer)
697aa1b7
EZ
5385This is a convenience function to register a type printer
5386@var{printer}. The printer must implement the type printer protocol.
5387The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5388the printer is registered with that objfile; a @code{gdb.Progspace},
5389in which case the printer is registered with that progspace; or
5390@code{None}, in which case the printer is registered globally.
329baa95
DE
5391
5392@item TypePrinter
5393This is a base class that implements the type printer protocol. Type
5394printers are encouraged, but not required, to derive from this class.
5395It defines a constructor:
5396
5397@defmethod TypePrinter __init__ (self, name)
5398Initialize the type printer with the given name. The new printer
5399starts in the enabled state.
5400@end defmethod
5401
5402@end table
5403
5404@node gdb.prompt
5405@subsubsection gdb.prompt
5406@cindex gdb.prompt
5407
5408This module provides a method for prompt value-substitution.
5409
5410@table @code
5411@item substitute_prompt (@var{string})
5412Return @var{string} with escape sequences substituted by values. Some
5413escape sequences take arguments. You can specify arguments inside
5414``@{@}'' immediately following the escape sequence.
5415
5416The escape sequences you can pass to this function are:
5417
5418@table @code
5419@item \\
5420Substitute a backslash.
5421@item \e
5422Substitute an ESC character.
5423@item \f
5424Substitute the selected frame; an argument names a frame parameter.
5425@item \n
5426Substitute a newline.
5427@item \p
5428Substitute a parameter's value; the argument names the parameter.
5429@item \r
5430Substitute a carriage return.
5431@item \t
5432Substitute the selected thread; an argument names a thread parameter.
5433@item \v
5434Substitute the version of GDB.
5435@item \w
5436Substitute the current working directory.
5437@item \[
5438Begin a sequence of non-printing characters. These sequences are
5439typically used with the ESC character, and are not counted in the string
5440length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5441blue-colored ``(gdb)'' prompt where the length is five.
5442@item \]
5443End a sequence of non-printing characters.
5444@end table
5445
5446For example:
5447
5448@smallexample
5449substitute_prompt (``frame: \f,
5450 print arguments: \p@{print frame-arguments@}'')
5451@end smallexample
5452
5453@exdent will return the string:
5454
5455@smallexample
5456"frame: main, print arguments: scalars"
5457@end smallexample
5458@end table