]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
daily update
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
329baa95
DE
1@c Copyright (C) 2008-2014 Free Software Foundation, Inc.
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
0c6e92a5
SC
147* Xmethods In Python:: Adding and replacing methods of C++ classes.
148* Xmethod API:: Xmethod types.
149* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
150* Inferiors In Python:: Python representation of inferiors (processes)
151* Events In Python:: Listening for events from @value{GDBN}.
152* Threads In Python:: Accessing inferior threads from Python.
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
210@findex gdb.PYTHONDIR
211@defvar gdb.PYTHONDIR
212A string containing the python directory (@pxref{Python}).
213@end defvar
214
215@findex gdb.execute
216@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
217Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
218If a GDB exception happens while @var{command} runs, it is
219translated as described in @ref{Exception Handling,,Exception Handling}.
220
697aa1b7 221The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
222command as having originated from the user invoking it interactively.
223It must be a boolean value. If omitted, it defaults to @code{False}.
224
225By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
226@value{GDBN}'s standard output (and to the log output if logging is
227turned on). If the @var{to_string} parameter is
329baa95
DE
228@code{True}, then output will be collected by @code{gdb.execute} and
229returned as a string. The default is @code{False}, in which case the
230return value is @code{None}. If @var{to_string} is @code{True}, the
231@value{GDBN} virtual terminal will be temporarily set to unlimited width
232and height, and its pagination will be disabled; @pxref{Screen Size}.
233@end defun
234
235@findex gdb.breakpoints
236@defun gdb.breakpoints ()
237Return a sequence holding all of @value{GDBN}'s breakpoints.
238@xref{Breakpoints In Python}, for more information.
239@end defun
240
241@findex gdb.parameter
242@defun gdb.parameter (parameter)
697aa1b7
EZ
243Return the value of a @value{GDBN} @var{parameter} given by its name,
244a string; the parameter name string may contain spaces if the parameter has a
245multi-part name. For example, @samp{print object} is a valid
246parameter name.
329baa95
DE
247
248If the named parameter does not exist, this function throws a
249@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
250parameter's value is converted to a Python value of the appropriate
251type, and returned.
252@end defun
253
254@findex gdb.history
255@defun gdb.history (number)
256Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 257History}). The @var{number} argument indicates which history element to return.
329baa95
DE
258If @var{number} is negative, then @value{GDBN} will take its absolute value
259and count backward from the last element (i.e., the most recent element) to
260find the value to return. If @var{number} is zero, then @value{GDBN} will
261return the most recent element. If the element specified by @var{number}
262doesn't exist in the value history, a @code{gdb.error} exception will be
263raised.
264
265If no exception is raised, the return value is always an instance of
266@code{gdb.Value} (@pxref{Values From Inferior}).
267@end defun
268
269@findex gdb.parse_and_eval
270@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
271Parse @var{expression}, which must be a string, as an expression in
272the current language, evaluate it, and return the result as a
273@code{gdb.Value}.
329baa95
DE
274
275This function can be useful when implementing a new command
276(@pxref{Commands In Python}), as it provides a way to parse the
277command's argument as an expression. It is also useful simply to
278compute values, for example, it is the only way to get the value of a
279convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
280@end defun
281
282@findex gdb.find_pc_line
283@defun gdb.find_pc_line (pc)
284Return the @code{gdb.Symtab_and_line} object corresponding to the
285@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
286value of @var{pc} is passed as an argument, then the @code{symtab} and
287@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
288will be @code{None} and 0 respectively.
289@end defun
290
291@findex gdb.post_event
292@defun gdb.post_event (event)
293Put @var{event}, a callable object taking no arguments, into
294@value{GDBN}'s internal event queue. This callable will be invoked at
295some later point, during @value{GDBN}'s event processing. Events
296posted using @code{post_event} will be run in the order in which they
297were posted; however, there is no way to know when they will be
298processed relative to other events inside @value{GDBN}.
299
300@value{GDBN} is not thread-safe. If your Python program uses multiple
301threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 302functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
303this. For example:
304
305@smallexample
306(@value{GDBP}) python
307>import threading
308>
309>class Writer():
310> def __init__(self, message):
311> self.message = message;
312> def __call__(self):
313> gdb.write(self.message)
314>
315>class MyThread1 (threading.Thread):
316> def run (self):
317> gdb.post_event(Writer("Hello "))
318>
319>class MyThread2 (threading.Thread):
320> def run (self):
321> gdb.post_event(Writer("World\n"))
322>
323>MyThread1().start()
324>MyThread2().start()
325>end
326(@value{GDBP}) Hello World
327@end smallexample
328@end defun
329
330@findex gdb.write
331@defun gdb.write (string @r{[}, stream{]})
332Print a string to @value{GDBN}'s paginated output stream. The
333optional @var{stream} determines the stream to print to. The default
334stream is @value{GDBN}'s standard output stream. Possible stream
335values are:
336
337@table @code
338@findex STDOUT
339@findex gdb.STDOUT
340@item gdb.STDOUT
341@value{GDBN}'s standard output stream.
342
343@findex STDERR
344@findex gdb.STDERR
345@item gdb.STDERR
346@value{GDBN}'s standard error stream.
347
348@findex STDLOG
349@findex gdb.STDLOG
350@item gdb.STDLOG
351@value{GDBN}'s log stream (@pxref{Logging Output}).
352@end table
353
354Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
355call this function and will automatically direct the output to the
356relevant stream.
357@end defun
358
359@findex gdb.flush
360@defun gdb.flush ()
361Flush the buffer of a @value{GDBN} paginated stream so that the
362contents are displayed immediately. @value{GDBN} will flush the
363contents of a stream automatically when it encounters a newline in the
364buffer. The optional @var{stream} determines the stream to flush. The
365default stream is @value{GDBN}'s standard output stream. Possible
366stream values are:
367
368@table @code
369@findex STDOUT
370@findex gdb.STDOUT
371@item gdb.STDOUT
372@value{GDBN}'s standard output stream.
373
374@findex STDERR
375@findex gdb.STDERR
376@item gdb.STDERR
377@value{GDBN}'s standard error stream.
378
379@findex STDLOG
380@findex gdb.STDLOG
381@item gdb.STDLOG
382@value{GDBN}'s log stream (@pxref{Logging Output}).
383
384@end table
385
386Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
387call this function for the relevant stream.
388@end defun
389
390@findex gdb.target_charset
391@defun gdb.target_charset ()
392Return the name of the current target character set (@pxref{Character
393Sets}). This differs from @code{gdb.parameter('target-charset')} in
394that @samp{auto} is never returned.
395@end defun
396
397@findex gdb.target_wide_charset
398@defun gdb.target_wide_charset ()
399Return the name of the current target wide character set
400(@pxref{Character Sets}). This differs from
401@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
402never returned.
403@end defun
404
405@findex gdb.solib_name
406@defun gdb.solib_name (address)
407Return the name of the shared library holding the given @var{address}
408as a string, or @code{None}.
409@end defun
410
411@findex gdb.decode_line
412@defun gdb.decode_line @r{[}expression@r{]}
413Return locations of the line specified by @var{expression}, or of the
414current line if no argument was given. This function returns a Python
415tuple containing two elements. The first element contains a string
416holding any unparsed section of @var{expression} (or @code{None} if
417the expression has been fully parsed). The second element contains
418either @code{None} or another tuple that contains all the locations
419that match the expression represented as @code{gdb.Symtab_and_line}
420objects (@pxref{Symbol Tables In Python}). If @var{expression} is
421provided, it is decoded the way that @value{GDBN}'s inbuilt
422@code{break} or @code{edit} commands do (@pxref{Specify Location}).
423@end defun
424
425@defun gdb.prompt_hook (current_prompt)
426@anchor{prompt_hook}
427
428If @var{prompt_hook} is callable, @value{GDBN} will call the method
429assigned to this operation before a prompt is displayed by
430@value{GDBN}.
431
432The parameter @code{current_prompt} contains the current @value{GDBN}
433prompt. This method must return a Python string, or @code{None}. If
434a string is returned, the @value{GDBN} prompt will be set to that
435string. If @code{None} is returned, @value{GDBN} will continue to use
436the current prompt.
437
438Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
439such as those used by readline for command input, and annotation
440related prompts are prohibited from being changed.
441@end defun
442
443@node Exception Handling
444@subsubsection Exception Handling
445@cindex python exceptions
446@cindex exceptions, python
447
448When executing the @code{python} command, Python exceptions
449uncaught within the Python code are translated to calls to
450@value{GDBN} error-reporting mechanism. If the command that called
451@code{python} does not handle the error, @value{GDBN} will
452terminate it and print an error message containing the Python
453exception name, the associated value, and the Python call stack
454backtrace at the point where the exception was raised. Example:
455
456@smallexample
457(@value{GDBP}) python print foo
458Traceback (most recent call last):
459 File "<string>", line 1, in <module>
460NameError: name 'foo' is not defined
461@end smallexample
462
463@value{GDBN} errors that happen in @value{GDBN} commands invoked by
464Python code are converted to Python exceptions. The type of the
465Python exception depends on the error.
466
467@ftable @code
468@item gdb.error
469This is the base class for most exceptions generated by @value{GDBN}.
470It is derived from @code{RuntimeError}, for compatibility with earlier
471versions of @value{GDBN}.
472
473If an error occurring in @value{GDBN} does not fit into some more
474specific category, then the generated exception will have this type.
475
476@item gdb.MemoryError
477This is a subclass of @code{gdb.error} which is thrown when an
478operation tried to access invalid memory in the inferior.
479
480@item KeyboardInterrupt
481User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
482prompt) is translated to a Python @code{KeyboardInterrupt} exception.
483@end ftable
484
485In all cases, your exception handler will see the @value{GDBN} error
486message as its value and the Python call stack backtrace at the Python
487statement closest to where the @value{GDBN} error occured as the
488traceback.
489
490@findex gdb.GdbError
491When implementing @value{GDBN} commands in Python via @code{gdb.Command},
492it is useful to be able to throw an exception that doesn't cause a
493traceback to be printed. For example, the user may have invoked the
494command incorrectly. Use the @code{gdb.GdbError} exception
495to handle this case. Example:
496
497@smallexample
498(gdb) python
499>class HelloWorld (gdb.Command):
500> """Greet the whole world."""
501> def __init__ (self):
502> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
503> def invoke (self, args, from_tty):
504> argv = gdb.string_to_argv (args)
505> if len (argv) != 0:
506> raise gdb.GdbError ("hello-world takes no arguments")
507> print "Hello, World!"
508>HelloWorld ()
509>end
510(gdb) hello-world 42
511hello-world takes no arguments
512@end smallexample
513
514@node Values From Inferior
515@subsubsection Values From Inferior
516@cindex values from inferior, with Python
517@cindex python, working with values from inferior
518
519@cindex @code{gdb.Value}
520@value{GDBN} provides values it obtains from the inferior program in
521an object of type @code{gdb.Value}. @value{GDBN} uses this object
522for its internal bookkeeping of the inferior's values, and for
523fetching values when necessary.
524
525Inferior values that are simple scalars can be used directly in
526Python expressions that are valid for the value's data type. Here's
527an example for an integer or floating-point value @code{some_val}:
528
529@smallexample
530bar = some_val + 2
531@end smallexample
532
533@noindent
534As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
535whose values are of the same type as those of @code{some_val}. Valid
536Python operations can also be performed on @code{gdb.Value} objects
537representing a @code{struct} or @code{class} object. For such cases,
538the overloaded operator (if present), is used to perform the operation.
539For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
540representing instances of a @code{class} which overloads the @code{+}
541operator, then one can use the @code{+} operator in their Python script
542as follows:
543
544@smallexample
545val3 = val1 + val2
546@end smallexample
547
548@noindent
549The result of the operation @code{val3} is also a @code{gdb.Value}
550object corresponding to the value returned by the overloaded @code{+}
551operator. In general, overloaded operators are invoked for the
552following operations: @code{+} (binary addition), @code{-} (binary
553subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
554@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
555
556Inferior values that are structures or instances of some class can
557be accessed using the Python @dfn{dictionary syntax}. For example, if
558@code{some_val} is a @code{gdb.Value} instance holding a structure, you
559can access its @code{foo} element with:
560
561@smallexample
562bar = some_val['foo']
563@end smallexample
564
565@cindex getting structure elements using gdb.Field objects as subscripts
566Again, @code{bar} will also be a @code{gdb.Value} object. Structure
567elements can also be accessed by using @code{gdb.Field} objects as
568subscripts (@pxref{Types In Python}, for more information on
569@code{gdb.Field} objects). For example, if @code{foo_field} is a
570@code{gdb.Field} object corresponding to element @code{foo} of the above
571structure, then @code{bar} can also be accessed as follows:
572
573@smallexample
574bar = some_val[foo_field]
575@end smallexample
576
577A @code{gdb.Value} that represents a function can be executed via
578inferior function call. Any arguments provided to the call must match
579the function's prototype, and must be provided in the order specified
580by that prototype.
581
582For example, @code{some_val} is a @code{gdb.Value} instance
583representing a function that takes two integers as arguments. To
584execute this function, call it like so:
585
586@smallexample
587result = some_val (10,20)
588@end smallexample
589
590Any values returned from a function call will be stored as a
591@code{gdb.Value}.
592
593The following attributes are provided:
594
595@defvar Value.address
596If this object is addressable, this read-only attribute holds a
597@code{gdb.Value} object representing the address. Otherwise,
598this attribute holds @code{None}.
599@end defvar
600
601@cindex optimized out value in Python
602@defvar Value.is_optimized_out
603This read-only boolean attribute is true if the compiler optimized out
604this value, thus it is not available for fetching from the inferior.
605@end defvar
606
607@defvar Value.type
608The type of this @code{gdb.Value}. The value of this attribute is a
609@code{gdb.Type} object (@pxref{Types In Python}).
610@end defvar
611
612@defvar Value.dynamic_type
613The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
614type information (@acronym{RTTI}) to determine the dynamic type of the
615value. If this value is of class type, it will return the class in
616which the value is embedded, if any. If this value is of pointer or
617reference to a class type, it will compute the dynamic type of the
618referenced object, and return a pointer or reference to that type,
619respectively. In all other cases, it will return the value's static
620type.
621
622Note that this feature will only work when debugging a C@t{++} program
623that includes @acronym{RTTI} for the object in question. Otherwise,
624it will just return the static type of the value as in @kbd{ptype foo}
625(@pxref{Symbols, ptype}).
626@end defvar
627
628@defvar Value.is_lazy
629The value of this read-only boolean attribute is @code{True} if this
630@code{gdb.Value} has not yet been fetched from the inferior.
631@value{GDBN} does not fetch values until necessary, for efficiency.
632For example:
633
634@smallexample
635myval = gdb.parse_and_eval ('somevar')
636@end smallexample
637
638The value of @code{somevar} is not fetched at this time. It will be
639fetched when the value is needed, or when the @code{fetch_lazy}
640method is invoked.
641@end defvar
642
643The following methods are provided:
644
645@defun Value.__init__ (@var{val})
646Many Python values can be converted directly to a @code{gdb.Value} via
647this object initializer. Specifically:
648
649@table @asis
650@item Python boolean
651A Python boolean is converted to the boolean type from the current
652language.
653
654@item Python integer
655A Python integer is converted to the C @code{long} type for the
656current architecture.
657
658@item Python long
659A Python long is converted to the C @code{long long} type for the
660current architecture.
661
662@item Python float
663A Python float is converted to the C @code{double} type for the
664current architecture.
665
666@item Python string
b3ce5e5f
DE
667A Python string is converted to a target string in the current target
668language using the current target encoding.
669If a character cannot be represented in the current target encoding,
670then an exception is thrown.
329baa95
DE
671
672@item @code{gdb.Value}
673If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
674
675@item @code{gdb.LazyString}
676If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
677Python}), then the lazy string's @code{value} method is called, and
678its result is used.
679@end table
680@end defun
681
682@defun Value.cast (type)
683Return a new instance of @code{gdb.Value} that is the result of
684casting this instance to the type described by @var{type}, which must
685be a @code{gdb.Type} object. If the cast cannot be performed for some
686reason, this method throws an exception.
687@end defun
688
689@defun Value.dereference ()
690For pointer data types, this method returns a new @code{gdb.Value} object
691whose contents is the object pointed to by the pointer. For example, if
692@code{foo} is a C pointer to an @code{int}, declared in your C program as
693
694@smallexample
695int *foo;
696@end smallexample
697
698@noindent
699then you can use the corresponding @code{gdb.Value} to access what
700@code{foo} points to like this:
701
702@smallexample
703bar = foo.dereference ()
704@end smallexample
705
706The result @code{bar} will be a @code{gdb.Value} object holding the
707value pointed to by @code{foo}.
708
709A similar function @code{Value.referenced_value} exists which also
710returns @code{gdb.Value} objects corresonding to the values pointed to
711by pointer values (and additionally, values referenced by reference
712values). However, the behavior of @code{Value.dereference}
713differs from @code{Value.referenced_value} by the fact that the
714behavior of @code{Value.dereference} is identical to applying the C
715unary operator @code{*} on a given value. For example, consider a
716reference to a pointer @code{ptrref}, declared in your C@t{++} program
717as
718
719@smallexample
720typedef int *intptr;
721...
722int val = 10;
723intptr ptr = &val;
724intptr &ptrref = ptr;
725@end smallexample
726
727Though @code{ptrref} is a reference value, one can apply the method
728@code{Value.dereference} to the @code{gdb.Value} object corresponding
729to it and obtain a @code{gdb.Value} which is identical to that
730corresponding to @code{val}. However, if you apply the method
731@code{Value.referenced_value}, the result would be a @code{gdb.Value}
732object identical to that corresponding to @code{ptr}.
733
734@smallexample
735py_ptrref = gdb.parse_and_eval ("ptrref")
736py_val = py_ptrref.dereference ()
737py_ptr = py_ptrref.referenced_value ()
738@end smallexample
739
740The @code{gdb.Value} object @code{py_val} is identical to that
741corresponding to @code{val}, and @code{py_ptr} is identical to that
742corresponding to @code{ptr}. In general, @code{Value.dereference} can
743be applied whenever the C unary operator @code{*} can be applied
744to the corresponding C value. For those cases where applying both
745@code{Value.dereference} and @code{Value.referenced_value} is allowed,
746the results obtained need not be identical (as we have seen in the above
747example). The results are however identical when applied on
748@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
749objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
750@end defun
751
752@defun Value.referenced_value ()
753For pointer or reference data types, this method returns a new
754@code{gdb.Value} object corresponding to the value referenced by the
755pointer/reference value. For pointer data types,
756@code{Value.dereference} and @code{Value.referenced_value} produce
757identical results. The difference between these methods is that
758@code{Value.dereference} cannot get the values referenced by reference
759values. For example, consider a reference to an @code{int}, declared
760in your C@t{++} program as
761
762@smallexample
763int val = 10;
764int &ref = val;
765@end smallexample
766
767@noindent
768then applying @code{Value.dereference} to the @code{gdb.Value} object
769corresponding to @code{ref} will result in an error, while applying
770@code{Value.referenced_value} will result in a @code{gdb.Value} object
771identical to that corresponding to @code{val}.
772
773@smallexample
774py_ref = gdb.parse_and_eval ("ref")
775er_ref = py_ref.dereference () # Results in error
776py_val = py_ref.referenced_value () # Returns the referenced value
777@end smallexample
778
779The @code{gdb.Value} object @code{py_val} is identical to that
780corresponding to @code{val}.
781@end defun
782
783@defun Value.dynamic_cast (type)
784Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
785operator were used. Consult a C@t{++} reference for details.
786@end defun
787
788@defun Value.reinterpret_cast (type)
789Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
790operator were used. Consult a C@t{++} reference for details.
791@end defun
792
793@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
794If this @code{gdb.Value} represents a string, then this method
795converts the contents to a Python string. Otherwise, this method will
796throw an exception.
797
b3ce5e5f
DE
798Values are interpreted as strings according to the rules of the
799current language. If the optional length argument is given, the
800string will be converted to that length, and will include any embedded
801zeroes that the string may contain. Otherwise, for languages
802where the string is zero-terminated, the entire string will be
803converted.
329baa95 804
b3ce5e5f
DE
805For example, in C-like languages, a value is a string if it is a pointer
806to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
807or @code{char32_t}.
329baa95
DE
808
809If the optional @var{encoding} argument is given, it must be a string
810naming the encoding of the string in the @code{gdb.Value}, such as
811@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
812the same encodings as the corresponding argument to Python's
813@code{string.decode} method, and the Python codec machinery will be used
814to convert the string. If @var{encoding} is not given, or if
815@var{encoding} is the empty string, then either the @code{target-charset}
816(@pxref{Character Sets}) will be used, or a language-specific encoding
817will be used, if the current language is able to supply one.
818
819The optional @var{errors} argument is the same as the corresponding
820argument to Python's @code{string.decode} method.
821
822If the optional @var{length} argument is given, the string will be
823fetched and converted to the given length.
824@end defun
825
826@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
827If this @code{gdb.Value} represents a string, then this method
828converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
829In Python}). Otherwise, this method will throw an exception.
830
831If the optional @var{encoding} argument is given, it must be a string
832naming the encoding of the @code{gdb.LazyString}. Some examples are:
833@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
834@var{encoding} argument is an encoding that @value{GDBN} does
835recognize, @value{GDBN} will raise an error.
836
837When a lazy string is printed, the @value{GDBN} encoding machinery is
838used to convert the string during printing. If the optional
839@var{encoding} argument is not provided, or is an empty string,
840@value{GDBN} will automatically select the encoding most suitable for
841the string type. For further information on encoding in @value{GDBN}
842please see @ref{Character Sets}.
843
844If the optional @var{length} argument is given, the string will be
845fetched and encoded to the length of characters specified. If
846the @var{length} argument is not provided, the string will be fetched
847and encoded until a null of appropriate width is found.
848@end defun
849
850@defun Value.fetch_lazy ()
851If the @code{gdb.Value} object is currently a lazy value
852(@code{gdb.Value.is_lazy} is @code{True}), then the value is
853fetched from the inferior. Any errors that occur in the process
854will produce a Python exception.
855
856If the @code{gdb.Value} object is not a lazy value, this method
857has no effect.
858
859This method does not return a value.
860@end defun
861
862
863@node Types In Python
864@subsubsection Types In Python
865@cindex types in Python
866@cindex Python, working with types
867
868@tindex gdb.Type
869@value{GDBN} represents types from the inferior using the class
870@code{gdb.Type}.
871
872The following type-related functions are available in the @code{gdb}
873module:
874
875@findex gdb.lookup_type
876@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 877This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
878
879If @var{block} is given, then @var{name} is looked up in that scope.
880Otherwise, it is searched for globally.
881
882Ordinarily, this function will return an instance of @code{gdb.Type}.
883If the named type cannot be found, it will throw an exception.
884@end defun
885
886If the type is a structure or class type, or an enum type, the fields
887of that type can be accessed using the Python @dfn{dictionary syntax}.
888For example, if @code{some_type} is a @code{gdb.Type} instance holding
889a structure type, you can access its @code{foo} field with:
890
891@smallexample
892bar = some_type['foo']
893@end smallexample
894
895@code{bar} will be a @code{gdb.Field} object; see below under the
896description of the @code{Type.fields} method for a description of the
897@code{gdb.Field} class.
898
899An instance of @code{Type} has the following attributes:
900
901@defvar Type.code
902The type code for this type. The type code will be one of the
903@code{TYPE_CODE_} constants defined below.
904@end defvar
905
906@defvar Type.name
907The name of this type. If this type has no name, then @code{None}
908is returned.
909@end defvar
910
911@defvar Type.sizeof
912The size of this type, in target @code{char} units. Usually, a
913target's @code{char} type will be an 8-bit byte. However, on some
914unusual platforms, this type may have a different size.
915@end defvar
916
917@defvar Type.tag
918The tag name for this type. The tag name is the name after
919@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
920languages have this concept. If this type has no tag name, then
921@code{None} is returned.
922@end defvar
923
924The following methods are provided:
925
926@defun Type.fields ()
927For structure and union types, this method returns the fields. Range
928types have two fields, the minimum and maximum values. Enum types
929have one field per enum constant. Function and method types have one
930field per parameter. The base types of C@t{++} classes are also
931represented as fields. If the type has no fields, or does not fit
932into one of these categories, an empty sequence will be returned.
933
934Each field is a @code{gdb.Field} object, with some pre-defined attributes:
935@table @code
936@item bitpos
937This attribute is not available for @code{enum} or @code{static}
938(as in C@t{++} or Java) fields. The value is the position, counting
939in bits, from the start of the containing type.
940
941@item enumval
942This attribute is only available for @code{enum} fields, and its value
943is the enumeration member's integer representation.
944
945@item name
946The name of the field, or @code{None} for anonymous fields.
947
948@item artificial
949This is @code{True} if the field is artificial, usually meaning that
950it was provided by the compiler and not the user. This attribute is
951always provided, and is @code{False} if the field is not artificial.
952
953@item is_base_class
954This is @code{True} if the field represents a base class of a C@t{++}
955structure. This attribute is always provided, and is @code{False}
956if the field is not a base class of the type that is the argument of
957@code{fields}, or if that type was not a C@t{++} class.
958
959@item bitsize
960If the field is packed, or is a bitfield, then this will have a
961non-zero value, which is the size of the field in bits. Otherwise,
962this will be zero; in this case the field's size is given by its type.
963
964@item type
965The type of the field. This is usually an instance of @code{Type},
966but it can be @code{None} in some situations.
967
968@item parent_type
969The type which contains this field. This is an instance of
970@code{gdb.Type}.
971@end table
972@end defun
973
974@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
975Return a new @code{gdb.Type} object which represents an array of this
976type. If one argument is given, it is the inclusive upper bound of
977the array; in this case the lower bound is zero. If two arguments are
978given, the first argument is the lower bound of the array, and the
979second argument is the upper bound of the array. An array's length
980must not be negative, but the bounds can be.
981@end defun
982
983@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
984Return a new @code{gdb.Type} object which represents a vector of this
985type. If one argument is given, it is the inclusive upper bound of
986the vector; in this case the lower bound is zero. If two arguments are
987given, the first argument is the lower bound of the vector, and the
988second argument is the upper bound of the vector. A vector's length
989must not be negative, but the bounds can be.
990
991The difference between an @code{array} and a @code{vector} is that
992arrays behave like in C: when used in expressions they decay to a pointer
993to the first element whereas vectors are treated as first class values.
994@end defun
995
996@defun Type.const ()
997Return a new @code{gdb.Type} object which represents a
998@code{const}-qualified variant of this type.
999@end defun
1000
1001@defun Type.volatile ()
1002Return a new @code{gdb.Type} object which represents a
1003@code{volatile}-qualified variant of this type.
1004@end defun
1005
1006@defun Type.unqualified ()
1007Return a new @code{gdb.Type} object which represents an unqualified
1008variant of this type. That is, the result is neither @code{const} nor
1009@code{volatile}.
1010@end defun
1011
1012@defun Type.range ()
1013Return a Python @code{Tuple} object that contains two elements: the
1014low bound of the argument type and the high bound of that type. If
1015the type does not have a range, @value{GDBN} will raise a
1016@code{gdb.error} exception (@pxref{Exception Handling}).
1017@end defun
1018
1019@defun Type.reference ()
1020Return a new @code{gdb.Type} object which represents a reference to this
1021type.
1022@end defun
1023
1024@defun Type.pointer ()
1025Return a new @code{gdb.Type} object which represents a pointer to this
1026type.
1027@end defun
1028
1029@defun Type.strip_typedefs ()
1030Return a new @code{gdb.Type} that represents the real type,
1031after removing all layers of typedefs.
1032@end defun
1033
1034@defun Type.target ()
1035Return a new @code{gdb.Type} object which represents the target type
1036of this type.
1037
1038For a pointer type, the target type is the type of the pointed-to
1039object. For an array type (meaning C-like arrays), the target type is
1040the type of the elements of the array. For a function or method type,
1041the target type is the type of the return value. For a complex type,
1042the target type is the type of the elements. For a typedef, the
1043target type is the aliased type.
1044
1045If the type does not have a target, this method will throw an
1046exception.
1047@end defun
1048
1049@defun Type.template_argument (n @r{[}, block@r{]})
1050If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1051return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1052value of the @var{n}th template argument (indexed starting at 0).
329baa95 1053
1a6a384b
JL
1054If this @code{gdb.Type} is not a template type, or if the type has fewer
1055than @var{n} template arguments, this will throw an exception.
1056Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1057
1058If @var{block} is given, then @var{name} is looked up in that scope.
1059Otherwise, it is searched for globally.
1060@end defun
1061
1062
1063Each type has a code, which indicates what category this type falls
1064into. The available type categories are represented by constants
1065defined in the @code{gdb} module:
1066
b3ce5e5f
DE
1067@vtable @code
1068@vindex TYPE_CODE_PTR
329baa95
DE
1069@item gdb.TYPE_CODE_PTR
1070The type is a pointer.
1071
b3ce5e5f 1072@vindex TYPE_CODE_ARRAY
329baa95
DE
1073@item gdb.TYPE_CODE_ARRAY
1074The type is an array.
1075
b3ce5e5f 1076@vindex TYPE_CODE_STRUCT
329baa95
DE
1077@item gdb.TYPE_CODE_STRUCT
1078The type is a structure.
1079
b3ce5e5f 1080@vindex TYPE_CODE_UNION
329baa95
DE
1081@item gdb.TYPE_CODE_UNION
1082The type is a union.
1083
b3ce5e5f 1084@vindex TYPE_CODE_ENUM
329baa95
DE
1085@item gdb.TYPE_CODE_ENUM
1086The type is an enum.
1087
b3ce5e5f 1088@vindex TYPE_CODE_FLAGS
329baa95
DE
1089@item gdb.TYPE_CODE_FLAGS
1090A bit flags type, used for things such as status registers.
1091
b3ce5e5f 1092@vindex TYPE_CODE_FUNC
329baa95
DE
1093@item gdb.TYPE_CODE_FUNC
1094The type is a function.
1095
b3ce5e5f 1096@vindex TYPE_CODE_INT
329baa95
DE
1097@item gdb.TYPE_CODE_INT
1098The type is an integer type.
1099
b3ce5e5f 1100@vindex TYPE_CODE_FLT
329baa95
DE
1101@item gdb.TYPE_CODE_FLT
1102A floating point type.
1103
b3ce5e5f 1104@vindex TYPE_CODE_VOID
329baa95
DE
1105@item gdb.TYPE_CODE_VOID
1106The special type @code{void}.
1107
b3ce5e5f 1108@vindex TYPE_CODE_SET
329baa95
DE
1109@item gdb.TYPE_CODE_SET
1110A Pascal set type.
1111
b3ce5e5f 1112@vindex TYPE_CODE_RANGE
329baa95
DE
1113@item gdb.TYPE_CODE_RANGE
1114A range type, that is, an integer type with bounds.
1115
b3ce5e5f 1116@vindex TYPE_CODE_STRING
329baa95
DE
1117@item gdb.TYPE_CODE_STRING
1118A string type. Note that this is only used for certain languages with
1119language-defined string types; C strings are not represented this way.
1120
b3ce5e5f 1121@vindex TYPE_CODE_BITSTRING
329baa95
DE
1122@item gdb.TYPE_CODE_BITSTRING
1123A string of bits. It is deprecated.
1124
b3ce5e5f 1125@vindex TYPE_CODE_ERROR
329baa95
DE
1126@item gdb.TYPE_CODE_ERROR
1127An unknown or erroneous type.
1128
b3ce5e5f 1129@vindex TYPE_CODE_METHOD
329baa95
DE
1130@item gdb.TYPE_CODE_METHOD
1131A method type, as found in C@t{++} or Java.
1132
b3ce5e5f 1133@vindex TYPE_CODE_METHODPTR
329baa95
DE
1134@item gdb.TYPE_CODE_METHODPTR
1135A pointer-to-member-function.
1136
b3ce5e5f 1137@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1138@item gdb.TYPE_CODE_MEMBERPTR
1139A pointer-to-member.
1140
b3ce5e5f 1141@vindex TYPE_CODE_REF
329baa95
DE
1142@item gdb.TYPE_CODE_REF
1143A reference type.
1144
b3ce5e5f 1145@vindex TYPE_CODE_CHAR
329baa95
DE
1146@item gdb.TYPE_CODE_CHAR
1147A character type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_BOOL
329baa95
DE
1150@item gdb.TYPE_CODE_BOOL
1151A boolean type.
1152
b3ce5e5f 1153@vindex TYPE_CODE_COMPLEX
329baa95
DE
1154@item gdb.TYPE_CODE_COMPLEX
1155A complex float type.
1156
b3ce5e5f 1157@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1158@item gdb.TYPE_CODE_TYPEDEF
1159A typedef to some other type.
1160
b3ce5e5f 1161@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1162@item gdb.TYPE_CODE_NAMESPACE
1163A C@t{++} namespace.
1164
b3ce5e5f 1165@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1166@item gdb.TYPE_CODE_DECFLOAT
1167A decimal floating point type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1170@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1171A function internal to @value{GDBN}. This is the type used to represent
1172convenience functions.
b3ce5e5f 1173@end vtable
329baa95
DE
1174
1175Further support for types is provided in the @code{gdb.types}
1176Python module (@pxref{gdb.types}).
1177
1178@node Pretty Printing API
1179@subsubsection Pretty Printing API
b3ce5e5f 1180@cindex python pretty printing api
329baa95
DE
1181
1182An example output is provided (@pxref{Pretty Printing}).
1183
1184A pretty-printer is just an object that holds a value and implements a
1185specific interface, defined here.
1186
1187@defun pretty_printer.children (self)
1188@value{GDBN} will call this method on a pretty-printer to compute the
1189children of the pretty-printer's value.
1190
1191This method must return an object conforming to the Python iterator
1192protocol. Each item returned by the iterator must be a tuple holding
1193two elements. The first element is the ``name'' of the child; the
1194second element is the child's value. The value can be any Python
1195object which is convertible to a @value{GDBN} value.
1196
1197This method is optional. If it does not exist, @value{GDBN} will act
1198as though the value has no children.
1199@end defun
1200
1201@defun pretty_printer.display_hint (self)
1202The CLI may call this method and use its result to change the
1203formatting of a value. The result will also be supplied to an MI
1204consumer as a @samp{displayhint} attribute of the variable being
1205printed.
1206
1207This method is optional. If it does exist, this method must return a
1208string.
1209
1210Some display hints are predefined by @value{GDBN}:
1211
1212@table @samp
1213@item array
1214Indicate that the object being printed is ``array-like''. The CLI
1215uses this to respect parameters such as @code{set print elements} and
1216@code{set print array}.
1217
1218@item map
1219Indicate that the object being printed is ``map-like'', and that the
1220children of this value can be assumed to alternate between keys and
1221values.
1222
1223@item string
1224Indicate that the object being printed is ``string-like''. If the
1225printer's @code{to_string} method returns a Python string of some
1226kind, then @value{GDBN} will call its internal language-specific
1227string-printing function to format the string. For the CLI this means
1228adding quotation marks, possibly escaping some characters, respecting
1229@code{set print elements}, and the like.
1230@end table
1231@end defun
1232
1233@defun pretty_printer.to_string (self)
1234@value{GDBN} will call this method to display the string
1235representation of the value passed to the object's constructor.
1236
1237When printing from the CLI, if the @code{to_string} method exists,
1238then @value{GDBN} will prepend its result to the values returned by
1239@code{children}. Exactly how this formatting is done is dependent on
1240the display hint, and may change as more hints are added. Also,
1241depending on the print settings (@pxref{Print Settings}), the CLI may
1242print just the result of @code{to_string} in a stack trace, omitting
1243the result of @code{children}.
1244
1245If this method returns a string, it is printed verbatim.
1246
1247Otherwise, if this method returns an instance of @code{gdb.Value},
1248then @value{GDBN} prints this value. This may result in a call to
1249another pretty-printer.
1250
1251If instead the method returns a Python value which is convertible to a
1252@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1253the resulting value. Again, this may result in a call to another
1254pretty-printer. Python scalars (integers, floats, and booleans) and
1255strings are convertible to @code{gdb.Value}; other types are not.
1256
1257Finally, if this method returns @code{None} then no further operations
1258are peformed in this method and nothing is printed.
1259
1260If the result is not one of these types, an exception is raised.
1261@end defun
1262
1263@value{GDBN} provides a function which can be used to look up the
1264default pretty-printer for a @code{gdb.Value}:
1265
1266@findex gdb.default_visualizer
1267@defun gdb.default_visualizer (value)
1268This function takes a @code{gdb.Value} object as an argument. If a
1269pretty-printer for this value exists, then it is returned. If no such
1270printer exists, then this returns @code{None}.
1271@end defun
1272
1273@node Selecting Pretty-Printers
1274@subsubsection Selecting Pretty-Printers
b3ce5e5f 1275@cindex selecting python pretty-printers
329baa95
DE
1276
1277The Python list @code{gdb.pretty_printers} contains an array of
1278functions or callable objects that have been registered via addition
1279as a pretty-printer. Printers in this list are called @code{global}
1280printers, they're available when debugging all inferiors.
1281Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1282Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1283attribute.
1284
1285Each function on these lists is passed a single @code{gdb.Value}
1286argument and should return a pretty-printer object conforming to the
1287interface definition above (@pxref{Pretty Printing API}). If a function
1288cannot create a pretty-printer for the value, it should return
1289@code{None}.
1290
1291@value{GDBN} first checks the @code{pretty_printers} attribute of each
1292@code{gdb.Objfile} in the current program space and iteratively calls
1293each enabled lookup routine in the list for that @code{gdb.Objfile}
1294until it receives a pretty-printer object.
1295If no pretty-printer is found in the objfile lists, @value{GDBN} then
1296searches the pretty-printer list of the current program space,
1297calling each enabled function until an object is returned.
1298After these lists have been exhausted, it tries the global
1299@code{gdb.pretty_printers} list, again calling each enabled function until an
1300object is returned.
1301
1302The order in which the objfiles are searched is not specified. For a
1303given list, functions are always invoked from the head of the list,
1304and iterated over sequentially until the end of the list, or a printer
1305object is returned.
1306
1307For various reasons a pretty-printer may not work.
1308For example, the underlying data structure may have changed and
1309the pretty-printer is out of date.
1310
1311The consequences of a broken pretty-printer are severe enough that
1312@value{GDBN} provides support for enabling and disabling individual
1313printers. For example, if @code{print frame-arguments} is on,
1314a backtrace can become highly illegible if any argument is printed
1315with a broken printer.
1316
1317Pretty-printers are enabled and disabled by attaching an @code{enabled}
1318attribute to the registered function or callable object. If this attribute
1319is present and its value is @code{False}, the printer is disabled, otherwise
1320the printer is enabled.
1321
1322@node Writing a Pretty-Printer
1323@subsubsection Writing a Pretty-Printer
1324@cindex writing a pretty-printer
1325
1326A pretty-printer consists of two parts: a lookup function to detect
1327if the type is supported, and the printer itself.
1328
1329Here is an example showing how a @code{std::string} printer might be
1330written. @xref{Pretty Printing API}, for details on the API this class
1331must provide.
1332
1333@smallexample
1334class StdStringPrinter(object):
1335 "Print a std::string"
1336
1337 def __init__(self, val):
1338 self.val = val
1339
1340 def to_string(self):
1341 return self.val['_M_dataplus']['_M_p']
1342
1343 def display_hint(self):
1344 return 'string'
1345@end smallexample
1346
1347And here is an example showing how a lookup function for the printer
1348example above might be written.
1349
1350@smallexample
1351def str_lookup_function(val):
1352 lookup_tag = val.type.tag
1353 if lookup_tag == None:
1354 return None
1355 regex = re.compile("^std::basic_string<char,.*>$")
1356 if regex.match(lookup_tag):
1357 return StdStringPrinter(val)
1358 return None
1359@end smallexample
1360
1361The example lookup function extracts the value's type, and attempts to
1362match it to a type that it can pretty-print. If it is a type the
1363printer can pretty-print, it will return a printer object. If not, it
1364returns @code{None}.
1365
1366We recommend that you put your core pretty-printers into a Python
1367package. If your pretty-printers are for use with a library, we
1368further recommend embedding a version number into the package name.
1369This practice will enable @value{GDBN} to load multiple versions of
1370your pretty-printers at the same time, because they will have
1371different names.
1372
1373You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1374can be evaluated multiple times without changing its meaning. An
1375ideal auto-load file will consist solely of @code{import}s of your
1376printer modules, followed by a call to a register pretty-printers with
1377the current objfile.
1378
1379Taken as a whole, this approach will scale nicely to multiple
1380inferiors, each potentially using a different library version.
1381Embedding a version number in the Python package name will ensure that
1382@value{GDBN} is able to load both sets of printers simultaneously.
1383Then, because the search for pretty-printers is done by objfile, and
1384because your auto-loaded code took care to register your library's
1385printers with a specific objfile, @value{GDBN} will find the correct
1386printers for the specific version of the library used by each
1387inferior.
1388
1389To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1390this code might appear in @code{gdb.libstdcxx.v6}:
1391
1392@smallexample
1393def register_printers(objfile):
1394 objfile.pretty_printers.append(str_lookup_function)
1395@end smallexample
1396
1397@noindent
1398And then the corresponding contents of the auto-load file would be:
1399
1400@smallexample
1401import gdb.libstdcxx.v6
1402gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1403@end smallexample
1404
1405The previous example illustrates a basic pretty-printer.
1406There are a few things that can be improved on.
1407The printer doesn't have a name, making it hard to identify in a
1408list of installed printers. The lookup function has a name, but
1409lookup functions can have arbitrary, even identical, names.
1410
1411Second, the printer only handles one type, whereas a library typically has
1412several types. One could install a lookup function for each desired type
1413in the library, but one could also have a single lookup function recognize
1414several types. The latter is the conventional way this is handled.
1415If a pretty-printer can handle multiple data types, then its
1416@dfn{subprinters} are the printers for the individual data types.
1417
1418The @code{gdb.printing} module provides a formal way of solving these
1419problems (@pxref{gdb.printing}).
1420Here is another example that handles multiple types.
1421
1422These are the types we are going to pretty-print:
1423
1424@smallexample
1425struct foo @{ int a, b; @};
1426struct bar @{ struct foo x, y; @};
1427@end smallexample
1428
1429Here are the printers:
1430
1431@smallexample
1432class fooPrinter:
1433 """Print a foo object."""
1434
1435 def __init__(self, val):
1436 self.val = val
1437
1438 def to_string(self):
1439 return ("a=<" + str(self.val["a"]) +
1440 "> b=<" + str(self.val["b"]) + ">")
1441
1442class barPrinter:
1443 """Print a bar object."""
1444
1445 def __init__(self, val):
1446 self.val = val
1447
1448 def to_string(self):
1449 return ("x=<" + str(self.val["x"]) +
1450 "> y=<" + str(self.val["y"]) + ">")
1451@end smallexample
1452
1453This example doesn't need a lookup function, that is handled by the
1454@code{gdb.printing} module. Instead a function is provided to build up
1455the object that handles the lookup.
1456
1457@smallexample
1458import gdb.printing
1459
1460def build_pretty_printer():
1461 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1462 "my_library")
1463 pp.add_printer('foo', '^foo$', fooPrinter)
1464 pp.add_printer('bar', '^bar$', barPrinter)
1465 return pp
1466@end smallexample
1467
1468And here is the autoload support:
1469
1470@smallexample
1471import gdb.printing
1472import my_library
1473gdb.printing.register_pretty_printer(
1474 gdb.current_objfile(),
1475 my_library.build_pretty_printer())
1476@end smallexample
1477
1478Finally, when this printer is loaded into @value{GDBN}, here is the
1479corresponding output of @samp{info pretty-printer}:
1480
1481@smallexample
1482(gdb) info pretty-printer
1483my_library.so:
1484 my_library
1485 foo
1486 bar
1487@end smallexample
1488
1489@node Type Printing API
1490@subsubsection Type Printing API
1491@cindex type printing API for Python
1492
1493@value{GDBN} provides a way for Python code to customize type display.
1494This is mainly useful for substituting canonical typedef names for
1495types.
1496
1497@cindex type printer
1498A @dfn{type printer} is just a Python object conforming to a certain
1499protocol. A simple base class implementing the protocol is provided;
1500see @ref{gdb.types}. A type printer must supply at least:
1501
1502@defivar type_printer enabled
1503A boolean which is True if the printer is enabled, and False
1504otherwise. This is manipulated by the @code{enable type-printer}
1505and @code{disable type-printer} commands.
1506@end defivar
1507
1508@defivar type_printer name
1509The name of the type printer. This must be a string. This is used by
1510the @code{enable type-printer} and @code{disable type-printer}
1511commands.
1512@end defivar
1513
1514@defmethod type_printer instantiate (self)
1515This is called by @value{GDBN} at the start of type-printing. It is
1516only called if the type printer is enabled. This method must return a
1517new object that supplies a @code{recognize} method, as described below.
1518@end defmethod
1519
1520
1521When displaying a type, say via the @code{ptype} command, @value{GDBN}
1522will compute a list of type recognizers. This is done by iterating
1523first over the per-objfile type printers (@pxref{Objfiles In Python}),
1524followed by the per-progspace type printers (@pxref{Progspaces In
1525Python}), and finally the global type printers.
1526
1527@value{GDBN} will call the @code{instantiate} method of each enabled
1528type printer. If this method returns @code{None}, then the result is
1529ignored; otherwise, it is appended to the list of recognizers.
1530
1531Then, when @value{GDBN} is going to display a type name, it iterates
1532over the list of recognizers. For each one, it calls the recognition
1533function, stopping if the function returns a non-@code{None} value.
1534The recognition function is defined as:
1535
1536@defmethod type_recognizer recognize (self, type)
1537If @var{type} is not recognized, return @code{None}. Otherwise,
1538return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1539The @var{type} argument will be an instance of @code{gdb.Type}
1540(@pxref{Types In Python}).
329baa95
DE
1541@end defmethod
1542
1543@value{GDBN} uses this two-pass approach so that type printers can
1544efficiently cache information without holding on to it too long. For
1545example, it can be convenient to look up type information in a type
1546printer and hold it for a recognizer's lifetime; if a single pass were
1547done then type printers would have to make use of the event system in
1548order to avoid holding information that could become stale as the
1549inferior changed.
1550
1551@node Frame Filter API
1552@subsubsection Filtering Frames.
1553@cindex frame filters api
1554
1555Frame filters are Python objects that manipulate the visibility of a
1556frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1557@value{GDBN}.
1558
1559Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1560commands (@pxref{GDB/MI}), those that return a collection of frames
1561are affected. The commands that work with frame filters are:
1562
1563@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1564@code{-stack-list-frames}
1565(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1566@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1567-stack-list-variables command}), @code{-stack-list-arguments}
1568@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1569@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1570-stack-list-locals command}).
1571
1572A frame filter works by taking an iterator as an argument, applying
1573actions to the contents of that iterator, and returning another
1574iterator (or, possibly, the same iterator it was provided in the case
1575where the filter does not perform any operations). Typically, frame
1576filters utilize tools such as the Python's @code{itertools} module to
1577work with and create new iterators from the source iterator.
1578Regardless of how a filter chooses to apply actions, it must not alter
1579the underlying @value{GDBN} frame or frames, or attempt to alter the
1580call-stack within @value{GDBN}. This preserves data integrity within
1581@value{GDBN}. Frame filters are executed on a priority basis and care
1582should be taken that some frame filters may have been executed before,
1583and that some frame filters will be executed after.
1584
1585An important consideration when designing frame filters, and well
1586worth reflecting upon, is that frame filters should avoid unwinding
1587the call stack if possible. Some stacks can run very deep, into the
1588tens of thousands in some cases. To search every frame when a frame
1589filter executes may be too expensive at that step. The frame filter
1590cannot know how many frames it has to iterate over, and it may have to
1591iterate through them all. This ends up duplicating effort as
1592@value{GDBN} performs this iteration when it prints the frames. If
1593the filter can defer unwinding frames until frame decorators are
1594executed, after the last filter has executed, it should. @xref{Frame
1595Decorator API}, for more information on decorators. Also, there are
1596examples for both frame decorators and filters in later chapters.
1597@xref{Writing a Frame Filter}, for more information.
1598
1599The Python dictionary @code{gdb.frame_filters} contains key/object
1600pairings that comprise a frame filter. Frame filters in this
1601dictionary are called @code{global} frame filters, and they are
1602available when debugging all inferiors. These frame filters must
1603register with the dictionary directly. In addition to the
1604@code{global} dictionary, there are other dictionaries that are loaded
1605with different inferiors via auto-loading (@pxref{Python
1606Auto-loading}). The two other areas where frame filter dictionaries
1607can be found are: @code{gdb.Progspace} which contains a
1608@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1609object which also contains a @code{frame_filters} dictionary
1610attribute.
1611
1612When a command is executed from @value{GDBN} that is compatible with
1613frame filters, @value{GDBN} combines the @code{global},
1614@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1615loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1616several frames, and thus several object files, might be in use.
1617@value{GDBN} then prunes any frame filter whose @code{enabled}
1618attribute is @code{False}. This pruned list is then sorted according
1619to the @code{priority} attribute in each filter.
1620
1621Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1622creates an iterator which wraps each frame in the call stack in a
1623@code{FrameDecorator} object, and calls each filter in order. The
1624output from the previous filter will always be the input to the next
1625filter, and so on.
1626
1627Frame filters have a mandatory interface which each frame filter must
1628implement, defined here:
1629
1630@defun FrameFilter.filter (iterator)
1631@value{GDBN} will call this method on a frame filter when it has
1632reached the order in the priority list for that filter.
1633
1634For example, if there are four frame filters:
1635
1636@smallexample
1637Name Priority
1638
1639Filter1 5
1640Filter2 10
1641Filter3 100
1642Filter4 1
1643@end smallexample
1644
1645The order that the frame filters will be called is:
1646
1647@smallexample
1648Filter3 -> Filter2 -> Filter1 -> Filter4
1649@end smallexample
1650
1651Note that the output from @code{Filter3} is passed to the input of
1652@code{Filter2}, and so on.
1653
1654This @code{filter} method is passed a Python iterator. This iterator
1655contains a sequence of frame decorators that wrap each
1656@code{gdb.Frame}, or a frame decorator that wraps another frame
1657decorator. The first filter that is executed in the sequence of frame
1658filters will receive an iterator entirely comprised of default
1659@code{FrameDecorator} objects. However, after each frame filter is
1660executed, the previous frame filter may have wrapped some or all of
1661the frame decorators with their own frame decorator. As frame
1662decorators must also conform to a mandatory interface, these
1663decorators can be assumed to act in a uniform manner (@pxref{Frame
1664Decorator API}).
1665
1666This method must return an object conforming to the Python iterator
1667protocol. Each item in the iterator must be an object conforming to
1668the frame decorator interface. If a frame filter does not wish to
1669perform any operations on this iterator, it should return that
1670iterator untouched.
1671
1672This method is not optional. If it does not exist, @value{GDBN} will
1673raise and print an error.
1674@end defun
1675
1676@defvar FrameFilter.name
1677The @code{name} attribute must be Python string which contains the
1678name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1679Management}). This attribute may contain any combination of letters
1680or numbers. Care should be taken to ensure that it is unique. This
1681attribute is mandatory.
1682@end defvar
1683
1684@defvar FrameFilter.enabled
1685The @code{enabled} attribute must be Python boolean. This attribute
1686indicates to @value{GDBN} whether the frame filter is enabled, and
1687should be considered when frame filters are executed. If
1688@code{enabled} is @code{True}, then the frame filter will be executed
1689when any of the backtrace commands detailed earlier in this chapter
1690are executed. If @code{enabled} is @code{False}, then the frame
1691filter will not be executed. This attribute is mandatory.
1692@end defvar
1693
1694@defvar FrameFilter.priority
1695The @code{priority} attribute must be Python integer. This attribute
1696controls the order of execution in relation to other frame filters.
1697There are no imposed limits on the range of @code{priority} other than
1698it must be a valid integer. The higher the @code{priority} attribute,
1699the sooner the frame filter will be executed in relation to other
1700frame filters. Although @code{priority} can be negative, it is
1701recommended practice to assume zero is the lowest priority that a
1702frame filter can be assigned. Frame filters that have the same
1703priority are executed in unsorted order in that priority slot. This
1704attribute is mandatory.
1705@end defvar
1706
1707@node Frame Decorator API
1708@subsubsection Decorating Frames.
1709@cindex frame decorator api
1710
1711Frame decorators are sister objects to frame filters (@pxref{Frame
1712Filter API}). Frame decorators are applied by a frame filter and can
1713only be used in conjunction with frame filters.
1714
1715The purpose of a frame decorator is to customize the printed content
1716of each @code{gdb.Frame} in commands where frame filters are executed.
1717This concept is called decorating a frame. Frame decorators decorate
1718a @code{gdb.Frame} with Python code contained within each API call.
1719This separates the actual data contained in a @code{gdb.Frame} from
1720the decorated data produced by a frame decorator. This abstraction is
1721necessary to maintain integrity of the data contained in each
1722@code{gdb.Frame}.
1723
1724Frame decorators have a mandatory interface, defined below.
1725
1726@value{GDBN} already contains a frame decorator called
1727@code{FrameDecorator}. This contains substantial amounts of
1728boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1729recommended that other frame decorators inherit and extend this
1730object, and only to override the methods needed.
1731
1732@defun FrameDecorator.elided (self)
1733
1734The @code{elided} method groups frames together in a hierarchical
1735system. An example would be an interpreter, where multiple low-level
1736frames make up a single call in the interpreted language. In this
1737example, the frame filter would elide the low-level frames and present
1738a single high-level frame, representing the call in the interpreted
1739language, to the user.
1740
1741The @code{elided} function must return an iterable and this iterable
1742must contain the frames that are being elided wrapped in a suitable
1743frame decorator. If no frames are being elided this function may
1744return an empty iterable, or @code{None}. Elided frames are indented
1745from normal frames in a @code{CLI} backtrace, or in the case of
1746@code{GDB/MI}, are placed in the @code{children} field of the eliding
1747frame.
1748
1749It is the frame filter's task to also filter out the elided frames from
1750the source iterator. This will avoid printing the frame twice.
1751@end defun
1752
1753@defun FrameDecorator.function (self)
1754
1755This method returns the name of the function in the frame that is to
1756be printed.
1757
1758This method must return a Python string describing the function, or
1759@code{None}.
1760
1761If this function returns @code{None}, @value{GDBN} will not print any
1762data for this field.
1763@end defun
1764
1765@defun FrameDecorator.address (self)
1766
1767This method returns the address of the frame that is to be printed.
1768
1769This method must return a Python numeric integer type of sufficient
1770size to describe the address of the frame, or @code{None}.
1771
1772If this function returns a @code{None}, @value{GDBN} will not print
1773any data for this field.
1774@end defun
1775
1776@defun FrameDecorator.filename (self)
1777
1778This method returns the filename and path associated with this frame.
1779
1780This method must return a Python string containing the filename and
1781the path to the object file backing the frame, or @code{None}.
1782
1783If this function returns a @code{None}, @value{GDBN} will not print
1784any data for this field.
1785@end defun
1786
1787@defun FrameDecorator.line (self):
1788
1789This method returns the line number associated with the current
1790position within the function addressed by this frame.
1791
1792This method must return a Python integer type, or @code{None}.
1793
1794If this function returns a @code{None}, @value{GDBN} will not print
1795any data for this field.
1796@end defun
1797
1798@defun FrameDecorator.frame_args (self)
1799@anchor{frame_args}
1800
1801This method must return an iterable, or @code{None}. Returning an
1802empty iterable, or @code{None} means frame arguments will not be
1803printed for this frame. This iterable must contain objects that
1804implement two methods, described here.
1805
1806This object must implement a @code{argument} method which takes a
1807single @code{self} parameter and must return a @code{gdb.Symbol}
1808(@pxref{Symbols In Python}), or a Python string. The object must also
1809implement a @code{value} method which takes a single @code{self}
1810parameter and must return a @code{gdb.Value} (@pxref{Values From
1811Inferior}), a Python value, or @code{None}. If the @code{value}
1812method returns @code{None}, and the @code{argument} method returns a
1813@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1814the @code{gdb.Symbol} automatically.
1815
1816A brief example:
1817
1818@smallexample
1819class SymValueWrapper():
1820
1821 def __init__(self, symbol, value):
1822 self.sym = symbol
1823 self.val = value
1824
1825 def value(self):
1826 return self.val
1827
1828 def symbol(self):
1829 return self.sym
1830
1831class SomeFrameDecorator()
1832...
1833...
1834 def frame_args(self):
1835 args = []
1836 try:
1837 block = self.inferior_frame.block()
1838 except:
1839 return None
1840
1841 # Iterate over all symbols in a block. Only add
1842 # symbols that are arguments.
1843 for sym in block:
1844 if not sym.is_argument:
1845 continue
1846 args.append(SymValueWrapper(sym,None))
1847
1848 # Add example synthetic argument.
1849 args.append(SymValueWrapper(``foo'', 42))
1850
1851 return args
1852@end smallexample
1853@end defun
1854
1855@defun FrameDecorator.frame_locals (self)
1856
1857This method must return an iterable or @code{None}. Returning an
1858empty iterable, or @code{None} means frame local arguments will not be
1859printed for this frame.
1860
1861The object interface, the description of the various strategies for
1862reading frame locals, and the example are largely similar to those
1863described in the @code{frame_args} function, (@pxref{frame_args,,The
1864frame filter frame_args function}). Below is a modified example:
1865
1866@smallexample
1867class SomeFrameDecorator()
1868...
1869...
1870 def frame_locals(self):
1871 vars = []
1872 try:
1873 block = self.inferior_frame.block()
1874 except:
1875 return None
1876
1877 # Iterate over all symbols in a block. Add all
1878 # symbols, except arguments.
1879 for sym in block:
1880 if sym.is_argument:
1881 continue
1882 vars.append(SymValueWrapper(sym,None))
1883
1884 # Add an example of a synthetic local variable.
1885 vars.append(SymValueWrapper(``bar'', 99))
1886
1887 return vars
1888@end smallexample
1889@end defun
1890
1891@defun FrameDecorator.inferior_frame (self):
1892
1893This method must return the underlying @code{gdb.Frame} that this
1894frame decorator is decorating. @value{GDBN} requires the underlying
1895frame for internal frame information to determine how to print certain
1896values when printing a frame.
1897@end defun
1898
1899@node Writing a Frame Filter
1900@subsubsection Writing a Frame Filter
1901@cindex writing a frame filter
1902
1903There are three basic elements that a frame filter must implement: it
1904must correctly implement the documented interface (@pxref{Frame Filter
1905API}), it must register itself with @value{GDBN}, and finally, it must
1906decide if it is to work on the data provided by @value{GDBN}. In all
1907cases, whether it works on the iterator or not, each frame filter must
1908return an iterator. A bare-bones frame filter follows the pattern in
1909the following example.
1910
1911@smallexample
1912import gdb
1913
1914class FrameFilter():
1915
1916 def __init__(self):
1917 # Frame filter attribute creation.
1918 #
1919 # 'name' is the name of the filter that GDB will display.
1920 #
1921 # 'priority' is the priority of the filter relative to other
1922 # filters.
1923 #
1924 # 'enabled' is a boolean that indicates whether this filter is
1925 # enabled and should be executed.
1926
1927 self.name = "Foo"
1928 self.priority = 100
1929 self.enabled = True
1930
1931 # Register this frame filter with the global frame_filters
1932 # dictionary.
1933 gdb.frame_filters[self.name] = self
1934
1935 def filter(self, frame_iter):
1936 # Just return the iterator.
1937 return frame_iter
1938@end smallexample
1939
1940The frame filter in the example above implements the three
1941requirements for all frame filters. It implements the API, self
1942registers, and makes a decision on the iterator (in this case, it just
1943returns the iterator untouched).
1944
1945The first step is attribute creation and assignment, and as shown in
1946the comments the filter assigns the following attributes: @code{name},
1947@code{priority} and whether the filter should be enabled with the
1948@code{enabled} attribute.
1949
1950The second step is registering the frame filter with the dictionary or
1951dictionaries that the frame filter has interest in. As shown in the
1952comments, this filter just registers itself with the global dictionary
1953@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1954is a dictionary that is initialized in the @code{gdb} module when
1955@value{GDBN} starts. What dictionary a filter registers with is an
1956important consideration. Generally, if a filter is specific to a set
1957of code, it should be registered either in the @code{objfile} or
1958@code{progspace} dictionaries as they are specific to the program
1959currently loaded in @value{GDBN}. The global dictionary is always
1960present in @value{GDBN} and is never unloaded. Any filters registered
1961with the global dictionary will exist until @value{GDBN} exits. To
1962avoid filters that may conflict, it is generally better to register
1963frame filters against the dictionaries that more closely align with
1964the usage of the filter currently in question. @xref{Python
1965Auto-loading}, for further information on auto-loading Python scripts.
1966
1967@value{GDBN} takes a hands-off approach to frame filter registration,
1968therefore it is the frame filter's responsibility to ensure
1969registration has occurred, and that any exceptions are handled
1970appropriately. In particular, you may wish to handle exceptions
1971relating to Python dictionary key uniqueness. It is mandatory that
1972the dictionary key is the same as frame filter's @code{name}
1973attribute. When a user manages frame filters (@pxref{Frame Filter
1974Management}), the names @value{GDBN} will display are those contained
1975in the @code{name} attribute.
1976
1977The final step of this example is the implementation of the
1978@code{filter} method. As shown in the example comments, we define the
1979@code{filter} method and note that the method must take an iterator,
1980and also must return an iterator. In this bare-bones example, the
1981frame filter is not very useful as it just returns the iterator
1982untouched. However this is a valid operation for frame filters that
1983have the @code{enabled} attribute set, but decide not to operate on
1984any frames.
1985
1986In the next example, the frame filter operates on all frames and
1987utilizes a frame decorator to perform some work on the frames.
1988@xref{Frame Decorator API}, for further information on the frame
1989decorator interface.
1990
1991This example works on inlined frames. It highlights frames which are
1992inlined by tagging them with an ``[inlined]'' tag. By applying a
1993frame decorator to all frames with the Python @code{itertools imap}
1994method, the example defers actions to the frame decorator. Frame
1995decorators are only processed when @value{GDBN} prints the backtrace.
1996
1997This introduces a new decision making topic: whether to perform
1998decision making operations at the filtering step, or at the printing
1999step. In this example's approach, it does not perform any filtering
2000decisions at the filtering step beyond mapping a frame decorator to
2001each frame. This allows the actual decision making to be performed
2002when each frame is printed. This is an important consideration, and
2003well worth reflecting upon when designing a frame filter. An issue
2004that frame filters should avoid is unwinding the stack if possible.
2005Some stacks can run very deep, into the tens of thousands in some
2006cases. To search every frame to determine if it is inlined ahead of
2007time may be too expensive at the filtering step. The frame filter
2008cannot know how many frames it has to iterate over, and it would have
2009to iterate through them all. This ends up duplicating effort as
2010@value{GDBN} performs this iteration when it prints the frames.
2011
2012In this example decision making can be deferred to the printing step.
2013As each frame is printed, the frame decorator can examine each frame
2014in turn when @value{GDBN} iterates. From a performance viewpoint,
2015this is the most appropriate decision to make as it avoids duplicating
2016the effort that the printing step would undertake anyway. Also, if
2017there are many frame filters unwinding the stack during filtering, it
2018can substantially delay the printing of the backtrace which will
2019result in large memory usage, and a poor user experience.
2020
2021@smallexample
2022class InlineFilter():
2023
2024 def __init__(self):
2025 self.name = "InlinedFrameFilter"
2026 self.priority = 100
2027 self.enabled = True
2028 gdb.frame_filters[self.name] = self
2029
2030 def filter(self, frame_iter):
2031 frame_iter = itertools.imap(InlinedFrameDecorator,
2032 frame_iter)
2033 return frame_iter
2034@end smallexample
2035
2036This frame filter is somewhat similar to the earlier example, except
2037that the @code{filter} method applies a frame decorator object called
2038@code{InlinedFrameDecorator} to each element in the iterator. The
2039@code{imap} Python method is light-weight. It does not proactively
2040iterate over the iterator, but rather creates a new iterator which
2041wraps the existing one.
2042
2043Below is the frame decorator for this example.
2044
2045@smallexample
2046class InlinedFrameDecorator(FrameDecorator):
2047
2048 def __init__(self, fobj):
2049 super(InlinedFrameDecorator, self).__init__(fobj)
2050
2051 def function(self):
2052 frame = fobj.inferior_frame()
2053 name = str(frame.name())
2054
2055 if frame.type() == gdb.INLINE_FRAME:
2056 name = name + " [inlined]"
2057
2058 return name
2059@end smallexample
2060
2061This frame decorator only defines and overrides the @code{function}
2062method. It lets the supplied @code{FrameDecorator}, which is shipped
2063with @value{GDBN}, perform the other work associated with printing
2064this frame.
2065
2066The combination of these two objects create this output from a
2067backtrace:
2068
2069@smallexample
2070#0 0x004004e0 in bar () at inline.c:11
2071#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2072#2 0x00400566 in main () at inline.c:31
2073@end smallexample
2074
2075So in the case of this example, a frame decorator is applied to all
2076frames, regardless of whether they may be inlined or not. As
2077@value{GDBN} iterates over the iterator produced by the frame filters,
2078@value{GDBN} executes each frame decorator which then makes a decision
2079on what to print in the @code{function} callback. Using a strategy
2080like this is a way to defer decisions on the frame content to printing
2081time.
2082
2083@subheading Eliding Frames
2084
2085It might be that the above example is not desirable for representing
2086inlined frames, and a hierarchical approach may be preferred. If we
2087want to hierarchically represent frames, the @code{elided} frame
2088decorator interface might be preferable.
2089
2090This example approaches the issue with the @code{elided} method. This
2091example is quite long, but very simplistic. It is out-of-scope for
2092this section to write a complete example that comprehensively covers
2093all approaches of finding and printing inlined frames. However, this
2094example illustrates the approach an author might use.
2095
2096This example comprises of three sections.
2097
2098@smallexample
2099class InlineFrameFilter():
2100
2101 def __init__(self):
2102 self.name = "InlinedFrameFilter"
2103 self.priority = 100
2104 self.enabled = True
2105 gdb.frame_filters[self.name] = self
2106
2107 def filter(self, frame_iter):
2108 return ElidingInlineIterator(frame_iter)
2109@end smallexample
2110
2111This frame filter is very similar to the other examples. The only
2112difference is this frame filter is wrapping the iterator provided to
2113it (@code{frame_iter}) with a custom iterator called
2114@code{ElidingInlineIterator}. This again defers actions to when
2115@value{GDBN} prints the backtrace, as the iterator is not traversed
2116until printing.
2117
2118The iterator for this example is as follows. It is in this section of
2119the example where decisions are made on the content of the backtrace.
2120
2121@smallexample
2122class ElidingInlineIterator:
2123 def __init__(self, ii):
2124 self.input_iterator = ii
2125
2126 def __iter__(self):
2127 return self
2128
2129 def next(self):
2130 frame = next(self.input_iterator)
2131
2132 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2133 return frame
2134
2135 try:
2136 eliding_frame = next(self.input_iterator)
2137 except StopIteration:
2138 return frame
2139 return ElidingFrameDecorator(eliding_frame, [frame])
2140@end smallexample
2141
2142This iterator implements the Python iterator protocol. When the
2143@code{next} function is called (when @value{GDBN} prints each frame),
2144the iterator checks if this frame decorator, @code{frame}, is wrapping
2145an inlined frame. If it is not, it returns the existing frame decorator
2146untouched. If it is wrapping an inlined frame, it assumes that the
2147inlined frame was contained within the next oldest frame,
2148@code{eliding_frame}, which it fetches. It then creates and returns a
2149frame decorator, @code{ElidingFrameDecorator}, which contains both the
2150elided frame, and the eliding frame.
2151
2152@smallexample
2153class ElidingInlineDecorator(FrameDecorator):
2154
2155 def __init__(self, frame, elided_frames):
2156 super(ElidingInlineDecorator, self).__init__(frame)
2157 self.frame = frame
2158 self.elided_frames = elided_frames
2159
2160 def elided(self):
2161 return iter(self.elided_frames)
2162@end smallexample
2163
2164This frame decorator overrides one function and returns the inlined
2165frame in the @code{elided} method. As before it lets
2166@code{FrameDecorator} do the rest of the work involved in printing
2167this frame. This produces the following output.
2168
2169@smallexample
2170#0 0x004004e0 in bar () at inline.c:11
2171#2 0x00400529 in main () at inline.c:25
2172 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2173@end smallexample
2174
2175In that output, @code{max} which has been inlined into @code{main} is
2176printed hierarchically. Another approach would be to combine the
2177@code{function} method, and the @code{elided} method to both print a
2178marker in the inlined frame, and also show the hierarchical
2179relationship.
2180
0c6e92a5
SC
2181@node Xmethods In Python
2182@subsubsection Xmethods In Python
2183@cindex xmethods in Python
2184
2185@dfn{Xmethods} are additional methods or replacements for existing
2186methods of a C@t{++} class. This feature is useful for those cases
2187where a method defined in C@t{++} source code could be inlined or
2188optimized out by the compiler, making it unavailable to @value{GDBN}.
2189For such cases, one can define an xmethod to serve as a replacement
2190for the method defined in the C@t{++} source code. @value{GDBN} will
2191then invoke the xmethod, instead of the C@t{++} method, to
2192evaluate expressions. One can also use xmethods when debugging
2193with core files. Moreover, when debugging live programs, invoking an
2194xmethod need not involve running the inferior (which can potentially
2195perturb its state). Hence, even if the C@t{++} method is available, it
2196is better to use its replacement xmethod if one is defined.
2197
2198The xmethods feature in Python is available via the concepts of an
2199@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2200implement an xmethod, one has to implement a matcher and a
2201corresponding worker for it (more than one worker can be
2202implemented, each catering to a different overloaded instance of the
2203method). Internally, @value{GDBN} invokes the @code{match} method of a
2204matcher to match the class type and method name. On a match, the
2205@code{match} method returns a list of matching @emph{worker} objects.
2206Each worker object typically corresponds to an overloaded instance of
2207the xmethod. They implement a @code{get_arg_types} method which
2208returns a sequence of types corresponding to the arguments the xmethod
2209requires. @value{GDBN} uses this sequence of types to perform
2210overload resolution and picks a winning xmethod worker. A winner
2211is also selected from among the methods @value{GDBN} finds in the
2212C@t{++} source code. Next, the winning xmethod worker and the
2213winning C@t{++} method are compared to select an overall winner. In
2214case of a tie between a xmethod worker and a C@t{++} method, the
2215xmethod worker is selected as the winner. That is, if a winning
2216xmethod worker is found to be equivalent to the winning C@t{++}
2217method, then the xmethod worker is treated as a replacement for
2218the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2219method. If the winning xmethod worker is the overall winner, then
2220the corresponding xmethod is invoked via the @code{invoke} method
2221of the worker object.
2222
2223If one wants to implement an xmethod as a replacement for an
2224existing C@t{++} method, then they have to implement an equivalent
2225xmethod which has exactly the same name and takes arguments of
2226exactly the same type as the C@t{++} method. If the user wants to
2227invoke the C@t{++} method even though a replacement xmethod is
2228available for that method, then they can disable the xmethod.
2229
2230@xref{Xmethod API}, for API to implement xmethods in Python.
2231@xref{Writing an Xmethod}, for implementing xmethods in Python.
2232
2233@node Xmethod API
2234@subsubsection Xmethod API
2235@cindex xmethod API
2236
2237The @value{GDBN} Python API provides classes, interfaces and functions
2238to implement, register and manipulate xmethods.
2239@xref{Xmethods In Python}.
2240
2241An xmethod matcher should be an instance of a class derived from
2242@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2243object with similar interface and attributes. An instance of
2244@code{XMethodMatcher} has the following attributes:
2245
2246@defvar name
2247The name of the matcher.
2248@end defvar
2249
2250@defvar enabled
2251A boolean value indicating whether the matcher is enabled or disabled.
2252@end defvar
2253
2254@defvar methods
2255A list of named methods managed by the matcher. Each object in the list
2256is an instance of the class @code{XMethod} defined in the module
2257@code{gdb.xmethod}, or any object with the following attributes:
2258
2259@table @code
2260
2261@item name
2262Name of the xmethod which should be unique for each xmethod
2263managed by the matcher.
2264
2265@item enabled
2266A boolean value indicating whether the xmethod is enabled or
2267disabled.
2268
2269@end table
2270
2271The class @code{XMethod} is a convenience class with same
2272attributes as above along with the following constructor:
2273
dd5d5494 2274@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2275Constructs an enabled xmethod with name @var{name}.
2276@end defun
2277@end defvar
2278
2279@noindent
2280The @code{XMethodMatcher} class has the following methods:
2281
dd5d5494 2282@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2283Constructs an enabled xmethod matcher with name @var{name}. The
2284@code{methods} attribute is initialized to @code{None}.
2285@end defun
2286
dd5d5494 2287@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2288Derived classes should override this method. It should return a
2289xmethod worker object (or a sequence of xmethod worker
2290objects) matching the @var{class_type} and @var{method_name}.
2291@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2292is a string value. If the matcher manages named methods as listed in
2293its @code{methods} attribute, then only those worker objects whose
2294corresponding entries in the @code{methods} list are enabled should be
2295returned.
2296@end defun
2297
2298An xmethod worker should be an instance of a class derived from
2299@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2300or support the following interface:
2301
dd5d5494 2302@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2303This method returns a sequence of @code{gdb.Type} objects corresponding
2304to the arguments that the xmethod takes. It can return an empty
2305sequence or @code{None} if the xmethod does not take any arguments.
2306If the xmethod takes a single argument, then a single
2307@code{gdb.Type} object corresponding to it can be returned.
2308@end defun
2309
dd5d5494 2310@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2311This is the method which does the @emph{work} of the xmethod. The
2312@var{args} arguments is the tuple of arguments to the xmethod. Each
2313element in this tuple is a gdb.Value object. The first element is
2314always the @code{this} pointer value.
2315@end defun
2316
2317For @value{GDBN} to lookup xmethods, the xmethod matchers
2318should be registered using the following function defined in the module
2319@code{gdb.xmethod}:
2320
dd5d5494 2321@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2322The @code{matcher} is registered with @code{locus}, replacing an
2323existing matcher with the same name as @code{matcher} if
2324@code{replace} is @code{True}. @code{locus} can be a
2325@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2326@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2327@code{None}. If it is @code{None}, then @code{matcher} is registered
2328globally.
2329@end defun
2330
2331@node Writing an Xmethod
2332@subsubsection Writing an Xmethod
2333@cindex writing xmethods in Python
2334
2335Implementing xmethods in Python will require implementing xmethod
2336matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2337the following C@t{++} class:
2338
2339@smallexample
2340class MyClass
2341@{
2342public:
2343 MyClass (int a) : a_(a) @{ @}
2344
2345 int geta (void) @{ return a_; @}
2346 int operator+ (int b);
2347
2348private:
2349 int a_;
2350@};
2351
2352int
2353MyClass::operator+ (int b)
2354@{
2355 return a_ + b;
2356@}
2357@end smallexample
2358
2359@noindent
2360Let us define two xmethods for the class @code{MyClass}, one
2361replacing the method @code{geta}, and another adding an overloaded
2362flavor of @code{operator+} which takes a @code{MyClass} argument (the
2363C@t{++} code above already has an overloaded @code{operator+}
2364which takes an @code{int} argument). The xmethod matcher can be
2365defined as follows:
2366
2367@smallexample
2368class MyClass_geta(gdb.xmethod.XMethod):
2369 def __init__(self):
2370 gdb.xmethod.XMethod.__init__(self, 'geta')
2371
2372 def get_worker(self, method_name):
2373 if method_name == 'geta':
2374 return MyClassWorker_geta()
2375
2376
2377class MyClass_sum(gdb.xmethod.XMethod):
2378 def __init__(self):
2379 gdb.xmethod.XMethod.__init__(self, 'sum')
2380
2381 def get_worker(self, method_name):
2382 if method_name == 'operator+':
2383 return MyClassWorker_plus()
2384
2385
2386class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2387 def __init__(self):
2388 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2389 # List of methods 'managed' by this matcher
2390 self.methods = [MyClass_geta(), MyClass_sum()]
2391
2392 def match(self, class_type, method_name):
2393 if class_type.tag != 'MyClass':
2394 return None
2395 workers = []
2396 for method in self.methods:
2397 if method.enabled:
2398 worker = method.get_worker(method_name)
2399 if worker:
2400 workers.append(worker)
2401
2402 return workers
2403@end smallexample
2404
2405@noindent
2406Notice that the @code{match} method of @code{MyClassMatcher} returns
2407a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2408method, and a worker object of type @code{MyClassWorker_plus} for the
2409@code{operator+} method. This is done indirectly via helper classes
2410derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2411@code{methods} attribute in a matcher as it is optional. However, if a
2412matcher manages more than one xmethod, it is a good practice to list the
2413xmethods in the @code{methods} attribute of the matcher. This will then
2414facilitate enabling and disabling individual xmethods via the
2415@code{enable/disable} commands. Notice also that a worker object is
2416returned only if the corresponding entry in the @code{methods} attribute
2417of the matcher is enabled.
2418
2419The implementation of the worker classes returned by the matcher setup
2420above is as follows:
2421
2422@smallexample
2423class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2424 def get_arg_types(self):
2425 return None
2426
2427 def __call__(self, obj):
2428 return obj['a_']
2429
2430
2431class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2432 def get_arg_types(self):
2433 return gdb.lookup_type('MyClass')
2434
2435 def __call__(self, obj, other):
2436 return obj['a_'] + other['a_']
2437@end smallexample
2438
2439For @value{GDBN} to actually lookup a xmethod, it has to be
2440registered with it. The matcher defined above is registered with
2441@value{GDBN} globally as follows:
2442
2443@smallexample
2444gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2445@end smallexample
2446
2447If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2448code as follows:
2449
2450@smallexample
2451MyClass obj(5);
2452@end smallexample
2453
2454@noindent
2455then, after loading the Python script defining the xmethod matchers
2456and workers into @code{GDBN}, invoking the method @code{geta} or using
2457the operator @code{+} on @code{obj} will invoke the xmethods
2458defined above:
2459
2460@smallexample
2461(gdb) p obj.geta()
2462$1 = 5
2463
2464(gdb) p obj + obj
2465$2 = 10
2466@end smallexample
2467
2468Consider another example with a C++ template class:
2469
2470@smallexample
2471template <class T>
2472class MyTemplate
2473@{
2474public:
2475 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2476 ~MyTemplate () @{ delete [] data_; @}
2477
2478 int footprint (void)
2479 @{
2480 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2481 @}
2482
2483private:
2484 int dsize_;
2485 T *data_;
2486@};
2487@end smallexample
2488
2489Let us implement an xmethod for the above class which serves as a
2490replacement for the @code{footprint} method. The full code listing
2491of the xmethod workers and xmethod matchers is as follows:
2492
2493@smallexample
2494class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2495 def __init__(self, class_type):
2496 self.class_type = class_type
2497
2498 def get_arg_types(self):
2499 return None
2500
2501 def __call__(self, obj):
2502 return (self.class_type.sizeof +
2503 obj['dsize_'] *
2504 self.class_type.template_argument(0).sizeof)
2505
2506
2507class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2508 def __init__(self):
2509 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2510
2511 def match(self, class_type, method_name):
2512 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2513 class_type.tag) and
2514 method_name == 'footprint'):
2515 return MyTemplateWorker_footprint(class_type)
2516@end smallexample
2517
2518Notice that, in this example, we have not used the @code{methods}
2519attribute of the matcher as the matcher manages only one xmethod. The
2520user can enable/disable this xmethod by enabling/disabling the matcher
2521itself.
2522
329baa95
DE
2523@node Inferiors In Python
2524@subsubsection Inferiors In Python
2525@cindex inferiors in Python
2526
2527@findex gdb.Inferior
2528Programs which are being run under @value{GDBN} are called inferiors
2529(@pxref{Inferiors and Programs}). Python scripts can access
2530information about and manipulate inferiors controlled by @value{GDBN}
2531via objects of the @code{gdb.Inferior} class.
2532
2533The following inferior-related functions are available in the @code{gdb}
2534module:
2535
2536@defun gdb.inferiors ()
2537Return a tuple containing all inferior objects.
2538@end defun
2539
2540@defun gdb.selected_inferior ()
2541Return an object representing the current inferior.
2542@end defun
2543
2544A @code{gdb.Inferior} object has the following attributes:
2545
2546@defvar Inferior.num
2547ID of inferior, as assigned by GDB.
2548@end defvar
2549
2550@defvar Inferior.pid
2551Process ID of the inferior, as assigned by the underlying operating
2552system.
2553@end defvar
2554
2555@defvar Inferior.was_attached
2556Boolean signaling whether the inferior was created using `attach', or
2557started by @value{GDBN} itself.
2558@end defvar
2559
2560A @code{gdb.Inferior} object has the following methods:
2561
2562@defun Inferior.is_valid ()
2563Returns @code{True} if the @code{gdb.Inferior} object is valid,
2564@code{False} if not. A @code{gdb.Inferior} object will become invalid
2565if the inferior no longer exists within @value{GDBN}. All other
2566@code{gdb.Inferior} methods will throw an exception if it is invalid
2567at the time the method is called.
2568@end defun
2569
2570@defun Inferior.threads ()
2571This method returns a tuple holding all the threads which are valid
2572when it is called. If there are no valid threads, the method will
2573return an empty tuple.
2574@end defun
2575
2576@findex Inferior.read_memory
2577@defun Inferior.read_memory (address, length)
2578Read @var{length} bytes of memory from the inferior, starting at
2579@var{address}. Returns a buffer object, which behaves much like an array
2580or a string. It can be modified and given to the
2581@code{Inferior.write_memory} function. In @code{Python} 3, the return
2582value is a @code{memoryview} object.
2583@end defun
2584
2585@findex Inferior.write_memory
2586@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2587Write the contents of @var{buffer} to the inferior, starting at
2588@var{address}. The @var{buffer} parameter must be a Python object
2589which supports the buffer protocol, i.e., a string, an array or the
2590object returned from @code{Inferior.read_memory}. If given, @var{length}
2591determines the number of bytes from @var{buffer} to be written.
2592@end defun
2593
2594@findex gdb.search_memory
2595@defun Inferior.search_memory (address, length, pattern)
2596Search a region of the inferior memory starting at @var{address} with
2597the given @var{length} using the search pattern supplied in
2598@var{pattern}. The @var{pattern} parameter must be a Python object
2599which supports the buffer protocol, i.e., a string, an array or the
2600object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2601containing the address where the pattern was found, or @code{None} if
2602the pattern could not be found.
2603@end defun
2604
2605@node Events In Python
2606@subsubsection Events In Python
2607@cindex inferior events in Python
2608
2609@value{GDBN} provides a general event facility so that Python code can be
2610notified of various state changes, particularly changes that occur in
2611the inferior.
2612
2613An @dfn{event} is just an object that describes some state change. The
2614type of the object and its attributes will vary depending on the details
2615of the change. All the existing events are described below.
2616
2617In order to be notified of an event, you must register an event handler
2618with an @dfn{event registry}. An event registry is an object in the
2619@code{gdb.events} module which dispatches particular events. A registry
2620provides methods to register and unregister event handlers:
2621
2622@defun EventRegistry.connect (object)
2623Add the given callable @var{object} to the registry. This object will be
2624called when an event corresponding to this registry occurs.
2625@end defun
2626
2627@defun EventRegistry.disconnect (object)
2628Remove the given @var{object} from the registry. Once removed, the object
2629will no longer receive notifications of events.
2630@end defun
2631
2632Here is an example:
2633
2634@smallexample
2635def exit_handler (event):
2636 print "event type: exit"
2637 print "exit code: %d" % (event.exit_code)
2638
2639gdb.events.exited.connect (exit_handler)
2640@end smallexample
2641
2642In the above example we connect our handler @code{exit_handler} to the
2643registry @code{events.exited}. Once connected, @code{exit_handler} gets
2644called when the inferior exits. The argument @dfn{event} in this example is
2645of type @code{gdb.ExitedEvent}. As you can see in the example the
2646@code{ExitedEvent} object has an attribute which indicates the exit code of
2647the inferior.
2648
2649The following is a listing of the event registries that are available and
2650details of the events they emit:
2651
2652@table @code
2653
2654@item events.cont
2655Emits @code{gdb.ThreadEvent}.
2656
2657Some events can be thread specific when @value{GDBN} is running in non-stop
2658mode. When represented in Python, these events all extend
2659@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2660events which are emitted by this or other modules might extend this event.
2661Examples of these events are @code{gdb.BreakpointEvent} and
2662@code{gdb.ContinueEvent}.
2663
2664@defvar ThreadEvent.inferior_thread
2665In non-stop mode this attribute will be set to the specific thread which was
2666involved in the emitted event. Otherwise, it will be set to @code{None}.
2667@end defvar
2668
2669Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2670
2671This event indicates that the inferior has been continued after a stop. For
2672inherited attribute refer to @code{gdb.ThreadEvent} above.
2673
2674@item events.exited
2675Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2676@code{events.ExitedEvent} has two attributes:
2677@defvar ExitedEvent.exit_code
2678An integer representing the exit code, if available, which the inferior
2679has returned. (The exit code could be unavailable if, for example,
2680@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2681the attribute does not exist.
2682@end defvar
2683@defvar ExitedEvent inferior
2684A reference to the inferior which triggered the @code{exited} event.
2685@end defvar
2686
2687@item events.stop
2688Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2689
2690Indicates that the inferior has stopped. All events emitted by this registry
2691extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2692will indicate the stopped thread when @value{GDBN} is running in non-stop
2693mode. Refer to @code{gdb.ThreadEvent} above for more details.
2694
2695Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2696
2697This event indicates that the inferior or one of its threads has received as
2698signal. @code{gdb.SignalEvent} has the following attributes:
2699
2700@defvar SignalEvent.stop_signal
2701A string representing the signal received by the inferior. A list of possible
2702signal values can be obtained by running the command @code{info signals} in
2703the @value{GDBN} command prompt.
2704@end defvar
2705
2706Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2707
2708@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2709been hit, and has the following attributes:
2710
2711@defvar BreakpointEvent.breakpoints
2712A sequence containing references to all the breakpoints (type
2713@code{gdb.Breakpoint}) that were hit.
2714@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2715@end defvar
2716@defvar BreakpointEvent.breakpoint
2717A reference to the first breakpoint that was hit.
2718This function is maintained for backward compatibility and is now deprecated
2719in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2720@end defvar
2721
2722@item events.new_objfile
2723Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2724been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2725
2726@defvar NewObjFileEvent.new_objfile
2727A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2728@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2729@end defvar
2730
4ffbba72
DE
2731@item events.clear_objfiles
2732Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2733files for a program space has been reset.
2734@code{gdb.ClearObjFilesEvent} has one attribute:
2735
2736@defvar ClearObjFilesEvent.progspace
2737A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2738been cleared. @xref{Progspaces In Python}.
2739@end defvar
2740
329baa95
DE
2741@end table
2742
2743@node Threads In Python
2744@subsubsection Threads In Python
2745@cindex threads in python
2746
2747@findex gdb.InferiorThread
2748Python scripts can access information about, and manipulate inferior threads
2749controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2750
2751The following thread-related functions are available in the @code{gdb}
2752module:
2753
2754@findex gdb.selected_thread
2755@defun gdb.selected_thread ()
2756This function returns the thread object for the selected thread. If there
2757is no selected thread, this will return @code{None}.
2758@end defun
2759
2760A @code{gdb.InferiorThread} object has the following attributes:
2761
2762@defvar InferiorThread.name
2763The name of the thread. If the user specified a name using
2764@code{thread name}, then this returns that name. Otherwise, if an
2765OS-supplied name is available, then it is returned. Otherwise, this
2766returns @code{None}.
2767
2768This attribute can be assigned to. The new value must be a string
2769object, which sets the new name, or @code{None}, which removes any
2770user-specified thread name.
2771@end defvar
2772
2773@defvar InferiorThread.num
2774ID of the thread, as assigned by GDB.
2775@end defvar
2776
2777@defvar InferiorThread.ptid
2778ID of the thread, as assigned by the operating system. This attribute is a
2779tuple containing three integers. The first is the Process ID (PID); the second
2780is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
2781Either the LWPID or TID may be 0, which indicates that the operating system
2782does not use that identifier.
2783@end defvar
2784
2785A @code{gdb.InferiorThread} object has the following methods:
2786
2787@defun InferiorThread.is_valid ()
2788Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
2789@code{False} if not. A @code{gdb.InferiorThread} object will become
2790invalid if the thread exits, or the inferior that the thread belongs
2791is deleted. All other @code{gdb.InferiorThread} methods will throw an
2792exception if it is invalid at the time the method is called.
2793@end defun
2794
2795@defun InferiorThread.switch ()
2796This changes @value{GDBN}'s currently selected thread to the one represented
2797by this object.
2798@end defun
2799
2800@defun InferiorThread.is_stopped ()
2801Return a Boolean indicating whether the thread is stopped.
2802@end defun
2803
2804@defun InferiorThread.is_running ()
2805Return a Boolean indicating whether the thread is running.
2806@end defun
2807
2808@defun InferiorThread.is_exited ()
2809Return a Boolean indicating whether the thread is exited.
2810@end defun
2811
2812@node Commands In Python
2813@subsubsection Commands In Python
2814
2815@cindex commands in python
2816@cindex python commands
2817You can implement new @value{GDBN} CLI commands in Python. A CLI
2818command is implemented using an instance of the @code{gdb.Command}
2819class, most commonly using a subclass.
2820
2821@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
2822The object initializer for @code{Command} registers the new command
2823with @value{GDBN}. This initializer is normally invoked from the
2824subclass' own @code{__init__} method.
2825
2826@var{name} is the name of the command. If @var{name} consists of
2827multiple words, then the initial words are looked for as prefix
2828commands. In this case, if one of the prefix commands does not exist,
2829an exception is raised.
2830
2831There is no support for multi-line commands.
2832
2833@var{command_class} should be one of the @samp{COMMAND_} constants
2834defined below. This argument tells @value{GDBN} how to categorize the
2835new command in the help system.
2836
2837@var{completer_class} is an optional argument. If given, it should be
2838one of the @samp{COMPLETE_} constants defined below. This argument
2839tells @value{GDBN} how to perform completion for this command. If not
2840given, @value{GDBN} will attempt to complete using the object's
2841@code{complete} method (see below); if no such method is found, an
2842error will occur when completion is attempted.
2843
2844@var{prefix} is an optional argument. If @code{True}, then the new
2845command is a prefix command; sub-commands of this command may be
2846registered.
2847
2848The help text for the new command is taken from the Python
2849documentation string for the command's class, if there is one. If no
2850documentation string is provided, the default value ``This command is
2851not documented.'' is used.
2852@end defun
2853
2854@cindex don't repeat Python command
2855@defun Command.dont_repeat ()
2856By default, a @value{GDBN} command is repeated when the user enters a
2857blank line at the command prompt. A command can suppress this
2858behavior by invoking the @code{dont_repeat} method. This is similar
2859to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
2860@end defun
2861
2862@defun Command.invoke (argument, from_tty)
2863This method is called by @value{GDBN} when this command is invoked.
2864
2865@var{argument} is a string. It is the argument to the command, after
2866leading and trailing whitespace has been stripped.
2867
2868@var{from_tty} is a boolean argument. When true, this means that the
2869command was entered by the user at the terminal; when false it means
2870that the command came from elsewhere.
2871
2872If this method throws an exception, it is turned into a @value{GDBN}
2873@code{error} call. Otherwise, the return value is ignored.
2874
2875@findex gdb.string_to_argv
2876To break @var{argument} up into an argv-like string use
2877@code{gdb.string_to_argv}. This function behaves identically to
2878@value{GDBN}'s internal argument lexer @code{buildargv}.
2879It is recommended to use this for consistency.
2880Arguments are separated by spaces and may be quoted.
2881Example:
2882
2883@smallexample
2884print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
2885['1', '2 "3', '4 "5', "6 '7"]
2886@end smallexample
2887
2888@end defun
2889
2890@cindex completion of Python commands
2891@defun Command.complete (text, word)
2892This method is called by @value{GDBN} when the user attempts
2893completion on this command. All forms of completion are handled by
2894this method, that is, the @key{TAB} and @key{M-?} key bindings
2895(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
2896complete}).
2897
697aa1b7
EZ
2898The arguments @var{text} and @var{word} are both strings; @var{text}
2899holds the complete command line up to the cursor's location, while
329baa95
DE
2900@var{word} holds the last word of the command line; this is computed
2901using a word-breaking heuristic.
2902
2903The @code{complete} method can return several values:
2904@itemize @bullet
2905@item
2906If the return value is a sequence, the contents of the sequence are
2907used as the completions. It is up to @code{complete} to ensure that the
2908contents actually do complete the word. A zero-length sequence is
2909allowed, it means that there were no completions available. Only
2910string elements of the sequence are used; other elements in the
2911sequence are ignored.
2912
2913@item
2914If the return value is one of the @samp{COMPLETE_} constants defined
2915below, then the corresponding @value{GDBN}-internal completion
2916function is invoked, and its result is used.
2917
2918@item
2919All other results are treated as though there were no available
2920completions.
2921@end itemize
2922@end defun
2923
2924When a new command is registered, it must be declared as a member of
2925some general class of commands. This is used to classify top-level
2926commands in the on-line help system; note that prefix commands are not
2927listed under their own category but rather that of their top-level
2928command. The available classifications are represented by constants
2929defined in the @code{gdb} module:
2930
2931@table @code
2932@findex COMMAND_NONE
2933@findex gdb.COMMAND_NONE
2934@item gdb.COMMAND_NONE
2935The command does not belong to any particular class. A command in
2936this category will not be displayed in any of the help categories.
2937
2938@findex COMMAND_RUNNING
2939@findex gdb.COMMAND_RUNNING
2940@item gdb.COMMAND_RUNNING
2941The command is related to running the inferior. For example,
2942@code{start}, @code{step}, and @code{continue} are in this category.
2943Type @kbd{help running} at the @value{GDBN} prompt to see a list of
2944commands in this category.
2945
2946@findex COMMAND_DATA
2947@findex gdb.COMMAND_DATA
2948@item gdb.COMMAND_DATA
2949The command is related to data or variables. For example,
2950@code{call}, @code{find}, and @code{print} are in this category. Type
2951@kbd{help data} at the @value{GDBN} prompt to see a list of commands
2952in this category.
2953
2954@findex COMMAND_STACK
2955@findex gdb.COMMAND_STACK
2956@item gdb.COMMAND_STACK
2957The command has to do with manipulation of the stack. For example,
2958@code{backtrace}, @code{frame}, and @code{return} are in this
2959category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
2960list of commands in this category.
2961
2962@findex COMMAND_FILES
2963@findex gdb.COMMAND_FILES
2964@item gdb.COMMAND_FILES
2965This class is used for file-related commands. For example,
2966@code{file}, @code{list} and @code{section} are in this category.
2967Type @kbd{help files} at the @value{GDBN} prompt to see a list of
2968commands in this category.
2969
2970@findex COMMAND_SUPPORT
2971@findex gdb.COMMAND_SUPPORT
2972@item gdb.COMMAND_SUPPORT
2973This should be used for ``support facilities'', generally meaning
2974things that are useful to the user when interacting with @value{GDBN},
2975but not related to the state of the inferior. For example,
2976@code{help}, @code{make}, and @code{shell} are in this category. Type
2977@kbd{help support} at the @value{GDBN} prompt to see a list of
2978commands in this category.
2979
2980@findex COMMAND_STATUS
2981@findex gdb.COMMAND_STATUS
2982@item gdb.COMMAND_STATUS
2983The command is an @samp{info}-related command, that is, related to the
2984state of @value{GDBN} itself. For example, @code{info}, @code{macro},
2985and @code{show} are in this category. Type @kbd{help status} at the
2986@value{GDBN} prompt to see a list of commands in this category.
2987
2988@findex COMMAND_BREAKPOINTS
2989@findex gdb.COMMAND_BREAKPOINTS
2990@item gdb.COMMAND_BREAKPOINTS
2991The command has to do with breakpoints. For example, @code{break},
2992@code{clear}, and @code{delete} are in this category. Type @kbd{help
2993breakpoints} at the @value{GDBN} prompt to see a list of commands in
2994this category.
2995
2996@findex COMMAND_TRACEPOINTS
2997@findex gdb.COMMAND_TRACEPOINTS
2998@item gdb.COMMAND_TRACEPOINTS
2999The command has to do with tracepoints. For example, @code{trace},
3000@code{actions}, and @code{tfind} are in this category. Type
3001@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3002commands in this category.
3003
3004@findex COMMAND_USER
3005@findex gdb.COMMAND_USER
3006@item gdb.COMMAND_USER
3007The command is a general purpose command for the user, and typically
3008does not fit in one of the other categories.
3009Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3010a list of commands in this category, as well as the list of gdb macros
3011(@pxref{Sequences}).
3012
3013@findex COMMAND_OBSCURE
3014@findex gdb.COMMAND_OBSCURE
3015@item gdb.COMMAND_OBSCURE
3016The command is only used in unusual circumstances, or is not of
3017general interest to users. For example, @code{checkpoint},
3018@code{fork}, and @code{stop} are in this category. Type @kbd{help
3019obscure} at the @value{GDBN} prompt to see a list of commands in this
3020category.
3021
3022@findex COMMAND_MAINTENANCE
3023@findex gdb.COMMAND_MAINTENANCE
3024@item gdb.COMMAND_MAINTENANCE
3025The command is only useful to @value{GDBN} maintainers. The
3026@code{maintenance} and @code{flushregs} commands are in this category.
3027Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3028commands in this category.
3029@end table
3030
3031A new command can use a predefined completion function, either by
3032specifying it via an argument at initialization, or by returning it
3033from the @code{complete} method. These predefined completion
3034constants are all defined in the @code{gdb} module:
3035
b3ce5e5f
DE
3036@vtable @code
3037@vindex COMPLETE_NONE
329baa95
DE
3038@item gdb.COMPLETE_NONE
3039This constant means that no completion should be done.
3040
b3ce5e5f 3041@vindex COMPLETE_FILENAME
329baa95
DE
3042@item gdb.COMPLETE_FILENAME
3043This constant means that filename completion should be performed.
3044
b3ce5e5f 3045@vindex COMPLETE_LOCATION
329baa95
DE
3046@item gdb.COMPLETE_LOCATION
3047This constant means that location completion should be done.
3048@xref{Specify Location}.
3049
b3ce5e5f 3050@vindex COMPLETE_COMMAND
329baa95
DE
3051@item gdb.COMPLETE_COMMAND
3052This constant means that completion should examine @value{GDBN}
3053command names.
3054
b3ce5e5f 3055@vindex COMPLETE_SYMBOL
329baa95
DE
3056@item gdb.COMPLETE_SYMBOL
3057This constant means that completion should be done using symbol names
3058as the source.
3059
b3ce5e5f 3060@vindex COMPLETE_EXPRESSION
329baa95
DE
3061@item gdb.COMPLETE_EXPRESSION
3062This constant means that completion should be done on expressions.
3063Often this means completing on symbol names, but some language
3064parsers also have support for completing on field names.
b3ce5e5f 3065@end vtable
329baa95
DE
3066
3067The following code snippet shows how a trivial CLI command can be
3068implemented in Python:
3069
3070@smallexample
3071class HelloWorld (gdb.Command):
3072 """Greet the whole world."""
3073
3074 def __init__ (self):
3075 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3076
3077 def invoke (self, arg, from_tty):
3078 print "Hello, World!"
3079
3080HelloWorld ()
3081@end smallexample
3082
3083The last line instantiates the class, and is necessary to trigger the
3084registration of the command with @value{GDBN}. Depending on how the
3085Python code is read into @value{GDBN}, you may need to import the
3086@code{gdb} module explicitly.
3087
3088@node Parameters In Python
3089@subsubsection Parameters In Python
3090
3091@cindex parameters in python
3092@cindex python parameters
3093@tindex gdb.Parameter
3094@tindex Parameter
3095You can implement new @value{GDBN} parameters using Python. A new
3096parameter is implemented as an instance of the @code{gdb.Parameter}
3097class.
3098
3099Parameters are exposed to the user via the @code{set} and
3100@code{show} commands. @xref{Help}.
3101
3102There are many parameters that already exist and can be set in
3103@value{GDBN}. Two examples are: @code{set follow fork} and
3104@code{set charset}. Setting these parameters influences certain
3105behavior in @value{GDBN}. Similarly, you can define parameters that
3106can be used to influence behavior in custom Python scripts and commands.
3107
3108@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3109The object initializer for @code{Parameter} registers the new
3110parameter with @value{GDBN}. This initializer is normally invoked
3111from the subclass' own @code{__init__} method.
3112
3113@var{name} is the name of the new parameter. If @var{name} consists
3114of multiple words, then the initial words are looked for as prefix
3115parameters. An example of this can be illustrated with the
3116@code{set print} set of parameters. If @var{name} is
3117@code{print foo}, then @code{print} will be searched as the prefix
3118parameter. In this case the parameter can subsequently be accessed in
3119@value{GDBN} as @code{set print foo}.
3120
3121If @var{name} consists of multiple words, and no prefix parameter group
3122can be found, an exception is raised.
3123
3124@var{command-class} should be one of the @samp{COMMAND_} constants
3125(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3126categorize the new parameter in the help system.
3127
3128@var{parameter-class} should be one of the @samp{PARAM_} constants
3129defined below. This argument tells @value{GDBN} the type of the new
3130parameter; this information is used for input validation and
3131completion.
3132
3133If @var{parameter-class} is @code{PARAM_ENUM}, then
3134@var{enum-sequence} must be a sequence of strings. These strings
3135represent the possible values for the parameter.
3136
3137If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3138of a fourth argument will cause an exception to be thrown.
3139
3140The help text for the new parameter is taken from the Python
3141documentation string for the parameter's class, if there is one. If
3142there is no documentation string, a default value is used.
3143@end defun
3144
3145@defvar Parameter.set_doc
3146If this attribute exists, and is a string, then its value is used as
3147the help text for this parameter's @code{set} command. The value is
3148examined when @code{Parameter.__init__} is invoked; subsequent changes
3149have no effect.
3150@end defvar
3151
3152@defvar Parameter.show_doc
3153If this attribute exists, and is a string, then its value is used as
3154the help text for this parameter's @code{show} command. The value is
3155examined when @code{Parameter.__init__} is invoked; subsequent changes
3156have no effect.
3157@end defvar
3158
3159@defvar Parameter.value
3160The @code{value} attribute holds the underlying value of the
3161parameter. It can be read and assigned to just as any other
3162attribute. @value{GDBN} does validation when assignments are made.
3163@end defvar
3164
3165There are two methods that should be implemented in any
3166@code{Parameter} class. These are:
3167
3168@defun Parameter.get_set_string (self)
3169@value{GDBN} will call this method when a @var{parameter}'s value has
3170been changed via the @code{set} API (for example, @kbd{set foo off}).
3171The @code{value} attribute has already been populated with the new
3172value and may be used in output. This method must return a string.
3173@end defun
3174
3175@defun Parameter.get_show_string (self, svalue)
3176@value{GDBN} will call this method when a @var{parameter}'s
3177@code{show} API has been invoked (for example, @kbd{show foo}). The
3178argument @code{svalue} receives the string representation of the
3179current value. This method must return a string.
3180@end defun
3181
3182When a new parameter is defined, its type must be specified. The
3183available types are represented by constants defined in the @code{gdb}
3184module:
3185
3186@table @code
3187@findex PARAM_BOOLEAN
3188@findex gdb.PARAM_BOOLEAN
3189@item gdb.PARAM_BOOLEAN
3190The value is a plain boolean. The Python boolean values, @code{True}
3191and @code{False} are the only valid values.
3192
3193@findex PARAM_AUTO_BOOLEAN
3194@findex gdb.PARAM_AUTO_BOOLEAN
3195@item gdb.PARAM_AUTO_BOOLEAN
3196The value has three possible states: true, false, and @samp{auto}. In
3197Python, true and false are represented using boolean constants, and
3198@samp{auto} is represented using @code{None}.
3199
3200@findex PARAM_UINTEGER
3201@findex gdb.PARAM_UINTEGER
3202@item gdb.PARAM_UINTEGER
3203The value is an unsigned integer. The value of 0 should be
3204interpreted to mean ``unlimited''.
3205
3206@findex PARAM_INTEGER
3207@findex gdb.PARAM_INTEGER
3208@item gdb.PARAM_INTEGER
3209The value is a signed integer. The value of 0 should be interpreted
3210to mean ``unlimited''.
3211
3212@findex PARAM_STRING
3213@findex gdb.PARAM_STRING
3214@item gdb.PARAM_STRING
3215The value is a string. When the user modifies the string, any escape
3216sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3217translated into corresponding characters and encoded into the current
3218host charset.
3219
3220@findex PARAM_STRING_NOESCAPE
3221@findex gdb.PARAM_STRING_NOESCAPE
3222@item gdb.PARAM_STRING_NOESCAPE
3223The value is a string. When the user modifies the string, escapes are
3224passed through untranslated.
3225
3226@findex PARAM_OPTIONAL_FILENAME
3227@findex gdb.PARAM_OPTIONAL_FILENAME
3228@item gdb.PARAM_OPTIONAL_FILENAME
3229The value is a either a filename (a string), or @code{None}.
3230
3231@findex PARAM_FILENAME
3232@findex gdb.PARAM_FILENAME
3233@item gdb.PARAM_FILENAME
3234The value is a filename. This is just like
3235@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3236
3237@findex PARAM_ZINTEGER
3238@findex gdb.PARAM_ZINTEGER
3239@item gdb.PARAM_ZINTEGER
3240The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3241is interpreted as itself.
3242
3243@findex PARAM_ENUM
3244@findex gdb.PARAM_ENUM
3245@item gdb.PARAM_ENUM
3246The value is a string, which must be one of a collection string
3247constants provided when the parameter is created.
3248@end table
3249
3250@node Functions In Python
3251@subsubsection Writing new convenience functions
3252
3253@cindex writing convenience functions
3254@cindex convenience functions in python
3255@cindex python convenience functions
3256@tindex gdb.Function
3257@tindex Function
3258You can implement new convenience functions (@pxref{Convenience Vars})
3259in Python. A convenience function is an instance of a subclass of the
3260class @code{gdb.Function}.
3261
3262@defun Function.__init__ (name)
3263The initializer for @code{Function} registers the new function with
3264@value{GDBN}. The argument @var{name} is the name of the function,
3265a string. The function will be visible to the user as a convenience
3266variable of type @code{internal function}, whose name is the same as
3267the given @var{name}.
3268
3269The documentation for the new function is taken from the documentation
3270string for the new class.
3271@end defun
3272
3273@defun Function.invoke (@var{*args})
3274When a convenience function is evaluated, its arguments are converted
3275to instances of @code{gdb.Value}, and then the function's
3276@code{invoke} method is called. Note that @value{GDBN} does not
3277predetermine the arity of convenience functions. Instead, all
3278available arguments are passed to @code{invoke}, following the
3279standard Python calling convention. In particular, a convenience
3280function can have default values for parameters without ill effect.
3281
3282The return value of this method is used as its value in the enclosing
3283expression. If an ordinary Python value is returned, it is converted
3284to a @code{gdb.Value} following the usual rules.
3285@end defun
3286
3287The following code snippet shows how a trivial convenience function can
3288be implemented in Python:
3289
3290@smallexample
3291class Greet (gdb.Function):
3292 """Return string to greet someone.
3293Takes a name as argument."""
3294
3295 def __init__ (self):
3296 super (Greet, self).__init__ ("greet")
3297
3298 def invoke (self, name):
3299 return "Hello, %s!" % name.string ()
3300
3301Greet ()
3302@end smallexample
3303
3304The last line instantiates the class, and is necessary to trigger the
3305registration of the function with @value{GDBN}. Depending on how the
3306Python code is read into @value{GDBN}, you may need to import the
3307@code{gdb} module explicitly.
3308
3309Now you can use the function in an expression:
3310
3311@smallexample
3312(gdb) print $greet("Bob")
3313$1 = "Hello, Bob!"
3314@end smallexample
3315
3316@node Progspaces In Python
3317@subsubsection Program Spaces In Python
3318
3319@cindex progspaces in python
3320@tindex gdb.Progspace
3321@tindex Progspace
3322A program space, or @dfn{progspace}, represents a symbolic view
3323of an address space.
3324It consists of all of the objfiles of the program.
3325@xref{Objfiles In Python}.
3326@xref{Inferiors and Programs, program spaces}, for more details
3327about program spaces.
3328
3329The following progspace-related functions are available in the
3330@code{gdb} module:
3331
3332@findex gdb.current_progspace
3333@defun gdb.current_progspace ()
3334This function returns the program space of the currently selected inferior.
3335@xref{Inferiors and Programs}.
3336@end defun
3337
3338@findex gdb.progspaces
3339@defun gdb.progspaces ()
3340Return a sequence of all the progspaces currently known to @value{GDBN}.
3341@end defun
3342
3343Each progspace is represented by an instance of the @code{gdb.Progspace}
3344class.
3345
3346@defvar Progspace.filename
3347The file name of the progspace as a string.
3348@end defvar
3349
3350@defvar Progspace.pretty_printers
3351The @code{pretty_printers} attribute is a list of functions. It is
3352used to look up pretty-printers. A @code{Value} is passed to each
3353function in order; if the function returns @code{None}, then the
3354search continues. Otherwise, the return value should be an object
3355which is used to format the value. @xref{Pretty Printing API}, for more
3356information.
3357@end defvar
3358
3359@defvar Progspace.type_printers
3360The @code{type_printers} attribute is a list of type printer objects.
3361@xref{Type Printing API}, for more information.
3362@end defvar
3363
3364@defvar Progspace.frame_filters
3365The @code{frame_filters} attribute is a dictionary of frame filter
3366objects. @xref{Frame Filter API}, for more information.
3367@end defvar
3368
3369@node Objfiles In Python
3370@subsubsection Objfiles In Python
3371
3372@cindex objfiles in python
3373@tindex gdb.Objfile
3374@tindex Objfile
3375@value{GDBN} loads symbols for an inferior from various
3376symbol-containing files (@pxref{Files}). These include the primary
3377executable file, any shared libraries used by the inferior, and any
3378separate debug info files (@pxref{Separate Debug Files}).
3379@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3380
3381The following objfile-related functions are available in the
3382@code{gdb} module:
3383
3384@findex gdb.current_objfile
3385@defun gdb.current_objfile ()
3386When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3387sets the ``current objfile'' to the corresponding objfile. This
3388function returns the current objfile. If there is no current objfile,
3389this function returns @code{None}.
3390@end defun
3391
3392@findex gdb.objfiles
3393@defun gdb.objfiles ()
3394Return a sequence of all the objfiles current known to @value{GDBN}.
3395@xref{Objfiles In Python}.
3396@end defun
3397
3398Each objfile is represented by an instance of the @code{gdb.Objfile}
3399class.
3400
3401@defvar Objfile.filename
3402The file name of the objfile as a string.
3403@end defvar
3404
d096d8c1
DE
3405@defvar Objfile.progspace
3406The containing program space of the objfile as a @code{gdb.Progspace}
3407object. @xref{Progspaces In Python}.
3408@end defvar
3409
329baa95
DE
3410@defvar Objfile.pretty_printers
3411The @code{pretty_printers} attribute is a list of functions. It is
3412used to look up pretty-printers. A @code{Value} is passed to each
3413function in order; if the function returns @code{None}, then the
3414search continues. Otherwise, the return value should be an object
3415which is used to format the value. @xref{Pretty Printing API}, for more
3416information.
3417@end defvar
3418
3419@defvar Objfile.type_printers
3420The @code{type_printers} attribute is a list of type printer objects.
3421@xref{Type Printing API}, for more information.
3422@end defvar
3423
3424@defvar Objfile.frame_filters
3425The @code{frame_filters} attribute is a dictionary of frame filter
3426objects. @xref{Frame Filter API}, for more information.
3427@end defvar
3428
3429A @code{gdb.Objfile} object has the following methods:
3430
3431@defun Objfile.is_valid ()
3432Returns @code{True} if the @code{gdb.Objfile} object is valid,
3433@code{False} if not. A @code{gdb.Objfile} object can become invalid
3434if the object file it refers to is not loaded in @value{GDBN} any
3435longer. All other @code{gdb.Objfile} methods will throw an exception
3436if it is invalid at the time the method is called.
3437@end defun
3438
3439@node Frames In Python
3440@subsubsection Accessing inferior stack frames from Python.
3441
3442@cindex frames in python
3443When the debugged program stops, @value{GDBN} is able to analyze its call
3444stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3445represents a frame in the stack. A @code{gdb.Frame} object is only valid
3446while its corresponding frame exists in the inferior's stack. If you try
3447to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3448exception (@pxref{Exception Handling}).
3449
3450Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3451operator, like:
3452
3453@smallexample
3454(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3455True
3456@end smallexample
3457
3458The following frame-related functions are available in the @code{gdb} module:
3459
3460@findex gdb.selected_frame
3461@defun gdb.selected_frame ()
3462Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3463@end defun
3464
3465@findex gdb.newest_frame
3466@defun gdb.newest_frame ()
3467Return the newest frame object for the selected thread.
3468@end defun
3469
3470@defun gdb.frame_stop_reason_string (reason)
3471Return a string explaining the reason why @value{GDBN} stopped unwinding
3472frames, as expressed by the given @var{reason} code (an integer, see the
3473@code{unwind_stop_reason} method further down in this section).
3474@end defun
3475
3476A @code{gdb.Frame} object has the following methods:
3477
3478@defun Frame.is_valid ()
3479Returns true if the @code{gdb.Frame} object is valid, false if not.
3480A frame object can become invalid if the frame it refers to doesn't
3481exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3482an exception if it is invalid at the time the method is called.
3483@end defun
3484
3485@defun Frame.name ()
3486Returns the function name of the frame, or @code{None} if it can't be
3487obtained.
3488@end defun
3489
3490@defun Frame.architecture ()
3491Returns the @code{gdb.Architecture} object corresponding to the frame's
3492architecture. @xref{Architectures In Python}.
3493@end defun
3494
3495@defun Frame.type ()
3496Returns the type of the frame. The value can be one of:
3497@table @code
3498@item gdb.NORMAL_FRAME
3499An ordinary stack frame.
3500
3501@item gdb.DUMMY_FRAME
3502A fake stack frame that was created by @value{GDBN} when performing an
3503inferior function call.
3504
3505@item gdb.INLINE_FRAME
3506A frame representing an inlined function. The function was inlined
3507into a @code{gdb.NORMAL_FRAME} that is older than this one.
3508
3509@item gdb.TAILCALL_FRAME
3510A frame representing a tail call. @xref{Tail Call Frames}.
3511
3512@item gdb.SIGTRAMP_FRAME
3513A signal trampoline frame. This is the frame created by the OS when
3514it calls into a signal handler.
3515
3516@item gdb.ARCH_FRAME
3517A fake stack frame representing a cross-architecture call.
3518
3519@item gdb.SENTINEL_FRAME
3520This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3521newest frame.
3522@end table
3523@end defun
3524
3525@defun Frame.unwind_stop_reason ()
3526Return an integer representing the reason why it's not possible to find
3527more frames toward the outermost frame. Use
3528@code{gdb.frame_stop_reason_string} to convert the value returned by this
3529function to a string. The value can be one of:
3530
3531@table @code
3532@item gdb.FRAME_UNWIND_NO_REASON
3533No particular reason (older frames should be available).
3534
3535@item gdb.FRAME_UNWIND_NULL_ID
3536The previous frame's analyzer returns an invalid result. This is no
3537longer used by @value{GDBN}, and is kept only for backward
3538compatibility.
3539
3540@item gdb.FRAME_UNWIND_OUTERMOST
3541This frame is the outermost.
3542
3543@item gdb.FRAME_UNWIND_UNAVAILABLE
3544Cannot unwind further, because that would require knowing the
3545values of registers or memory that have not been collected.
3546
3547@item gdb.FRAME_UNWIND_INNER_ID
3548This frame ID looks like it ought to belong to a NEXT frame,
3549but we got it for a PREV frame. Normally, this is a sign of
3550unwinder failure. It could also indicate stack corruption.
3551
3552@item gdb.FRAME_UNWIND_SAME_ID
3553This frame has the same ID as the previous one. That means
3554that unwinding further would almost certainly give us another
3555frame with exactly the same ID, so break the chain. Normally,
3556this is a sign of unwinder failure. It could also indicate
3557stack corruption.
3558
3559@item gdb.FRAME_UNWIND_NO_SAVED_PC
3560The frame unwinder did not find any saved PC, but we needed
3561one to unwind further.
3562
53e8a631
AB
3563@item gdb.FRAME_UNWIND_MEMORY_ERROR
3564The frame unwinder caused an error while trying to access memory.
3565
329baa95
DE
3566@item gdb.FRAME_UNWIND_FIRST_ERROR
3567Any stop reason greater or equal to this value indicates some kind
3568of error. This special value facilitates writing code that tests
3569for errors in unwinding in a way that will work correctly even if
3570the list of the other values is modified in future @value{GDBN}
3571versions. Using it, you could write:
3572@smallexample
3573reason = gdb.selected_frame().unwind_stop_reason ()
3574reason_str = gdb.frame_stop_reason_string (reason)
3575if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3576 print "An error occured: %s" % reason_str
3577@end smallexample
3578@end table
3579
3580@end defun
3581
3582@defun Frame.pc ()
3583Returns the frame's resume address.
3584@end defun
3585
3586@defun Frame.block ()
3587Return the frame's code block. @xref{Blocks In Python}.
3588@end defun
3589
3590@defun Frame.function ()
3591Return the symbol for the function corresponding to this frame.
3592@xref{Symbols In Python}.
3593@end defun
3594
3595@defun Frame.older ()
3596Return the frame that called this frame.
3597@end defun
3598
3599@defun Frame.newer ()
3600Return the frame called by this frame.
3601@end defun
3602
3603@defun Frame.find_sal ()
3604Return the frame's symtab and line object.
3605@xref{Symbol Tables In Python}.
3606@end defun
3607
5f3b99cf
SS
3608@defun Frame.read_register (register)
3609Return the value of @var{register} in this frame. The @var{register}
3610argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
3611Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
3612does not exist.
3613@end defun
3614
329baa95
DE
3615@defun Frame.read_var (variable @r{[}, block@r{]})
3616Return the value of @var{variable} in this frame. If the optional
3617argument @var{block} is provided, search for the variable from that
3618block; otherwise start at the frame's current block (which is
697aa1b7
EZ
3619determined by the frame's current program counter). The @var{variable}
3620argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
3621@code{gdb.Block} object.
3622@end defun
3623
3624@defun Frame.select ()
3625Set this frame to be the selected frame. @xref{Stack, ,Examining the
3626Stack}.
3627@end defun
3628
3629@node Blocks In Python
3630@subsubsection Accessing blocks from Python.
3631
3632@cindex blocks in python
3633@tindex gdb.Block
3634
3635In @value{GDBN}, symbols are stored in blocks. A block corresponds
3636roughly to a scope in the source code. Blocks are organized
3637hierarchically, and are represented individually in Python as a
3638@code{gdb.Block}. Blocks rely on debugging information being
3639available.
3640
3641A frame has a block. Please see @ref{Frames In Python}, for a more
3642in-depth discussion of frames.
3643
3644The outermost block is known as the @dfn{global block}. The global
3645block typically holds public global variables and functions.
3646
3647The block nested just inside the global block is the @dfn{static
3648block}. The static block typically holds file-scoped variables and
3649functions.
3650
3651@value{GDBN} provides a method to get a block's superblock, but there
3652is currently no way to examine the sub-blocks of a block, or to
3653iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
3654Python}).
3655
3656Here is a short example that should help explain blocks:
3657
3658@smallexample
3659/* This is in the global block. */
3660int global;
3661
3662/* This is in the static block. */
3663static int file_scope;
3664
3665/* 'function' is in the global block, and 'argument' is
3666 in a block nested inside of 'function'. */
3667int function (int argument)
3668@{
3669 /* 'local' is in a block inside 'function'. It may or may
3670 not be in the same block as 'argument'. */
3671 int local;
3672
3673 @{
3674 /* 'inner' is in a block whose superblock is the one holding
3675 'local'. */
3676 int inner;
3677
3678 /* If this call is expanded by the compiler, you may see
3679 a nested block here whose function is 'inline_function'
3680 and whose superblock is the one holding 'inner'. */
3681 inline_function ();
3682 @}
3683@}
3684@end smallexample
3685
3686A @code{gdb.Block} is iterable. The iterator returns the symbols
3687(@pxref{Symbols In Python}) local to the block. Python programs
3688should not assume that a specific block object will always contain a
3689given symbol, since changes in @value{GDBN} features and
3690infrastructure may cause symbols move across blocks in a symbol
3691table.
3692
3693The following block-related functions are available in the @code{gdb}
3694module:
3695
3696@findex gdb.block_for_pc
3697@defun gdb.block_for_pc (pc)
3698Return the innermost @code{gdb.Block} containing the given @var{pc}
3699value. If the block cannot be found for the @var{pc} value specified,
3700the function will return @code{None}.
3701@end defun
3702
3703A @code{gdb.Block} object has the following methods:
3704
3705@defun Block.is_valid ()
3706Returns @code{True} if the @code{gdb.Block} object is valid,
3707@code{False} if not. A block object can become invalid if the block it
3708refers to doesn't exist anymore in the inferior. All other
3709@code{gdb.Block} methods will throw an exception if it is invalid at
3710the time the method is called. The block's validity is also checked
3711during iteration over symbols of the block.
3712@end defun
3713
3714A @code{gdb.Block} object has the following attributes:
3715
3716@defvar Block.start
3717The start address of the block. This attribute is not writable.
3718@end defvar
3719
3720@defvar Block.end
3721The end address of the block. This attribute is not writable.
3722@end defvar
3723
3724@defvar Block.function
3725The name of the block represented as a @code{gdb.Symbol}. If the
3726block is not named, then this attribute holds @code{None}. This
3727attribute is not writable.
3728
3729For ordinary function blocks, the superblock is the static block.
3730However, you should note that it is possible for a function block to
3731have a superblock that is not the static block -- for instance this
3732happens for an inlined function.
3733@end defvar
3734
3735@defvar Block.superblock
3736The block containing this block. If this parent block does not exist,
3737this attribute holds @code{None}. This attribute is not writable.
3738@end defvar
3739
3740@defvar Block.global_block
3741The global block associated with this block. This attribute is not
3742writable.
3743@end defvar
3744
3745@defvar Block.static_block
3746The static block associated with this block. This attribute is not
3747writable.
3748@end defvar
3749
3750@defvar Block.is_global
3751@code{True} if the @code{gdb.Block} object is a global block,
3752@code{False} if not. This attribute is not
3753writable.
3754@end defvar
3755
3756@defvar Block.is_static
3757@code{True} if the @code{gdb.Block} object is a static block,
3758@code{False} if not. This attribute is not writable.
3759@end defvar
3760
3761@node Symbols In Python
3762@subsubsection Python representation of Symbols.
3763
3764@cindex symbols in python
3765@tindex gdb.Symbol
3766
3767@value{GDBN} represents every variable, function and type as an
3768entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
3769Similarly, Python represents these symbols in @value{GDBN} with the
3770@code{gdb.Symbol} object.
3771
3772The following symbol-related functions are available in the @code{gdb}
3773module:
3774
3775@findex gdb.lookup_symbol
3776@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
3777This function searches for a symbol by name. The search scope can be
3778restricted to the parameters defined in the optional domain and block
3779arguments.
3780
3781@var{name} is the name of the symbol. It must be a string. The
3782optional @var{block} argument restricts the search to symbols visible
3783in that @var{block}. The @var{block} argument must be a
3784@code{gdb.Block} object. If omitted, the block for the current frame
3785is used. The optional @var{domain} argument restricts
3786the search to the domain type. The @var{domain} argument must be a
3787domain constant defined in the @code{gdb} module and described later
3788in this chapter.
3789
3790The result is a tuple of two elements.
3791The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
3792is not found.
3793If the symbol is found, the second element is @code{True} if the symbol
3794is a field of a method's object (e.g., @code{this} in C@t{++}),
3795otherwise it is @code{False}.
3796If the symbol is not found, the second element is @code{False}.
3797@end defun
3798
3799@findex gdb.lookup_global_symbol
3800@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
3801This function searches for a global symbol by name.
3802The search scope can be restricted to by the domain argument.
3803
3804@var{name} is the name of the symbol. It must be a string.
3805The optional @var{domain} argument restricts the search to the domain type.
3806The @var{domain} argument must be a domain constant defined in the @code{gdb}
3807module and described later in this chapter.
3808
3809The result is a @code{gdb.Symbol} object or @code{None} if the symbol
3810is not found.
3811@end defun
3812
3813A @code{gdb.Symbol} object has the following attributes:
3814
3815@defvar Symbol.type
3816The type of the symbol or @code{None} if no type is recorded.
3817This attribute is represented as a @code{gdb.Type} object.
3818@xref{Types In Python}. This attribute is not writable.
3819@end defvar
3820
3821@defvar Symbol.symtab
3822The symbol table in which the symbol appears. This attribute is
3823represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
3824Python}. This attribute is not writable.
3825@end defvar
3826
3827@defvar Symbol.line
3828The line number in the source code at which the symbol was defined.
3829This is an integer.
3830@end defvar
3831
3832@defvar Symbol.name
3833The name of the symbol as a string. This attribute is not writable.
3834@end defvar
3835
3836@defvar Symbol.linkage_name
3837The name of the symbol, as used by the linker (i.e., may be mangled).
3838This attribute is not writable.
3839@end defvar
3840
3841@defvar Symbol.print_name
3842The name of the symbol in a form suitable for output. This is either
3843@code{name} or @code{linkage_name}, depending on whether the user
3844asked @value{GDBN} to display demangled or mangled names.
3845@end defvar
3846
3847@defvar Symbol.addr_class
3848The address class of the symbol. This classifies how to find the value
3849of a symbol. Each address class is a constant defined in the
3850@code{gdb} module and described later in this chapter.
3851@end defvar
3852
3853@defvar Symbol.needs_frame
3854This is @code{True} if evaluating this symbol's value requires a frame
3855(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
3856local variables will require a frame, but other symbols will not.
3857@end defvar
3858
3859@defvar Symbol.is_argument
3860@code{True} if the symbol is an argument of a function.
3861@end defvar
3862
3863@defvar Symbol.is_constant
3864@code{True} if the symbol is a constant.
3865@end defvar
3866
3867@defvar Symbol.is_function
3868@code{True} if the symbol is a function or a method.
3869@end defvar
3870
3871@defvar Symbol.is_variable
3872@code{True} if the symbol is a variable.
3873@end defvar
3874
3875A @code{gdb.Symbol} object has the following methods:
3876
3877@defun Symbol.is_valid ()
3878Returns @code{True} if the @code{gdb.Symbol} object is valid,
3879@code{False} if not. A @code{gdb.Symbol} object can become invalid if
3880the symbol it refers to does not exist in @value{GDBN} any longer.
3881All other @code{gdb.Symbol} methods will throw an exception if it is
3882invalid at the time the method is called.
3883@end defun
3884
3885@defun Symbol.value (@r{[}frame@r{]})
3886Compute the value of the symbol, as a @code{gdb.Value}. For
3887functions, this computes the address of the function, cast to the
3888appropriate type. If the symbol requires a frame in order to compute
3889its value, then @var{frame} must be given. If @var{frame} is not
3890given, or if @var{frame} is invalid, then this method will throw an
3891exception.
3892@end defun
3893
3894The available domain categories in @code{gdb.Symbol} are represented
3895as constants in the @code{gdb} module:
3896
b3ce5e5f
DE
3897@vtable @code
3898@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
3899@item gdb.SYMBOL_UNDEF_DOMAIN
3900This is used when a domain has not been discovered or none of the
3901following domains apply. This usually indicates an error either
3902in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
3903
3904@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
3905@item gdb.SYMBOL_VAR_DOMAIN
3906This domain contains variables, function names, typedef names and enum
3907type values.
b3ce5e5f
DE
3908
3909@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
3910@item gdb.SYMBOL_STRUCT_DOMAIN
3911This domain holds struct, union and enum type names.
b3ce5e5f
DE
3912
3913@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
3914@item gdb.SYMBOL_LABEL_DOMAIN
3915This domain contains names of labels (for gotos).
b3ce5e5f
DE
3916
3917@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
3918@item gdb.SYMBOL_VARIABLES_DOMAIN
3919This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
3920contains everything minus functions and types.
b3ce5e5f
DE
3921
3922@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
3923@item gdb.SYMBOL_FUNCTION_DOMAIN
3924This domain contains all functions.
b3ce5e5f
DE
3925
3926@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
3927@item gdb.SYMBOL_TYPES_DOMAIN
3928This domain contains all types.
b3ce5e5f 3929@end vtable
329baa95
DE
3930
3931The available address class categories in @code{gdb.Symbol} are represented
3932as constants in the @code{gdb} module:
3933
b3ce5e5f
DE
3934@vtable @code
3935@vindex SYMBOL_LOC_UNDEF
329baa95
DE
3936@item gdb.SYMBOL_LOC_UNDEF
3937If this is returned by address class, it indicates an error either in
3938the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
3939
3940@vindex SYMBOL_LOC_CONST
329baa95
DE
3941@item gdb.SYMBOL_LOC_CONST
3942Value is constant int.
b3ce5e5f
DE
3943
3944@vindex SYMBOL_LOC_STATIC
329baa95
DE
3945@item gdb.SYMBOL_LOC_STATIC
3946Value is at a fixed address.
b3ce5e5f
DE
3947
3948@vindex SYMBOL_LOC_REGISTER
329baa95
DE
3949@item gdb.SYMBOL_LOC_REGISTER
3950Value is in a register.
b3ce5e5f
DE
3951
3952@vindex SYMBOL_LOC_ARG
329baa95
DE
3953@item gdb.SYMBOL_LOC_ARG
3954Value is an argument. This value is at the offset stored within the
3955symbol inside the frame's argument list.
b3ce5e5f
DE
3956
3957@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
3958@item gdb.SYMBOL_LOC_REF_ARG
3959Value address is stored in the frame's argument list. Just like
3960@code{LOC_ARG} except that the value's address is stored at the
3961offset, not the value itself.
b3ce5e5f
DE
3962
3963@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
3964@item gdb.SYMBOL_LOC_REGPARM_ADDR
3965Value is a specified register. Just like @code{LOC_REGISTER} except
3966the register holds the address of the argument instead of the argument
3967itself.
b3ce5e5f
DE
3968
3969@vindex SYMBOL_LOC_LOCAL
329baa95
DE
3970@item gdb.SYMBOL_LOC_LOCAL
3971Value is a local variable.
b3ce5e5f
DE
3972
3973@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
3974@item gdb.SYMBOL_LOC_TYPEDEF
3975Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
3976have this class.
b3ce5e5f
DE
3977
3978@vindex SYMBOL_LOC_BLOCK
329baa95
DE
3979@item gdb.SYMBOL_LOC_BLOCK
3980Value is a block.
b3ce5e5f
DE
3981
3982@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
3983@item gdb.SYMBOL_LOC_CONST_BYTES
3984Value is a byte-sequence.
b3ce5e5f
DE
3985
3986@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
3987@item gdb.SYMBOL_LOC_UNRESOLVED
3988Value is at a fixed address, but the address of the variable has to be
3989determined from the minimal symbol table whenever the variable is
3990referenced.
b3ce5e5f
DE
3991
3992@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
3993@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
3994The value does not actually exist in the program.
b3ce5e5f
DE
3995
3996@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
3997@item gdb.SYMBOL_LOC_COMPUTED
3998The value's address is a computed location.
b3ce5e5f 3999@end vtable
329baa95
DE
4000
4001@node Symbol Tables In Python
4002@subsubsection Symbol table representation in Python.
4003
4004@cindex symbol tables in python
4005@tindex gdb.Symtab
4006@tindex gdb.Symtab_and_line
4007
4008Access to symbol table data maintained by @value{GDBN} on the inferior
4009is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4010@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4011from the @code{find_sal} method in @code{gdb.Frame} object.
4012@xref{Frames In Python}.
4013
4014For more information on @value{GDBN}'s symbol table management, see
4015@ref{Symbols, ,Examining the Symbol Table}, for more information.
4016
4017A @code{gdb.Symtab_and_line} object has the following attributes:
4018
4019@defvar Symtab_and_line.symtab
4020The symbol table object (@code{gdb.Symtab}) for this frame.
4021This attribute is not writable.
4022@end defvar
4023
4024@defvar Symtab_and_line.pc
4025Indicates the start of the address range occupied by code for the
4026current source line. This attribute is not writable.
4027@end defvar
4028
4029@defvar Symtab_and_line.last
4030Indicates the end of the address range occupied by code for the current
4031source line. This attribute is not writable.
4032@end defvar
4033
4034@defvar Symtab_and_line.line
4035Indicates the current line number for this object. This
4036attribute is not writable.
4037@end defvar
4038
4039A @code{gdb.Symtab_and_line} object has the following methods:
4040
4041@defun Symtab_and_line.is_valid ()
4042Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4043@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4044invalid if the Symbol table and line object it refers to does not
4045exist in @value{GDBN} any longer. All other
4046@code{gdb.Symtab_and_line} methods will throw an exception if it is
4047invalid at the time the method is called.
4048@end defun
4049
4050A @code{gdb.Symtab} object has the following attributes:
4051
4052@defvar Symtab.filename
4053The symbol table's source filename. This attribute is not writable.
4054@end defvar
4055
4056@defvar Symtab.objfile
4057The symbol table's backing object file. @xref{Objfiles In Python}.
4058This attribute is not writable.
4059@end defvar
4060
2b4fd423
DE
4061@defvar Symtab.producer
4062The name and possibly version number of the program that
4063compiled the code in the symbol table.
4064The contents of this string is up to the compiler.
4065If no producer information is available then @code{None} is returned.
4066This attribute is not writable.
4067@end defvar
4068
329baa95
DE
4069A @code{gdb.Symtab} object has the following methods:
4070
4071@defun Symtab.is_valid ()
4072Returns @code{True} if the @code{gdb.Symtab} object is valid,
4073@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4074the symbol table it refers to does not exist in @value{GDBN} any
4075longer. All other @code{gdb.Symtab} methods will throw an exception
4076if it is invalid at the time the method is called.
4077@end defun
4078
4079@defun Symtab.fullname ()
4080Return the symbol table's source absolute file name.
4081@end defun
4082
4083@defun Symtab.global_block ()
4084Return the global block of the underlying symbol table.
4085@xref{Blocks In Python}.
4086@end defun
4087
4088@defun Symtab.static_block ()
4089Return the static block of the underlying symbol table.
4090@xref{Blocks In Python}.
4091@end defun
4092
4093@defun Symtab.linetable ()
4094Return the line table associated with the symbol table.
4095@xref{Line Tables In Python}.
4096@end defun
4097
4098@node Line Tables In Python
4099@subsubsection Manipulating line tables using Python
4100
4101@cindex line tables in python
4102@tindex gdb.LineTable
4103
4104Python code can request and inspect line table information from a
4105symbol table that is loaded in @value{GDBN}. A line table is a
4106mapping of source lines to their executable locations in memory. To
4107acquire the line table information for a particular symbol table, use
4108the @code{linetable} function (@pxref{Symbol Tables In Python}).
4109
4110A @code{gdb.LineTable} is iterable. The iterator returns
4111@code{LineTableEntry} objects that correspond to the source line and
4112address for each line table entry. @code{LineTableEntry} objects have
4113the following attributes:
4114
4115@defvar LineTableEntry.line
4116The source line number for this line table entry. This number
4117corresponds to the actual line of source. This attribute is not
4118writable.
4119@end defvar
4120
4121@defvar LineTableEntry.pc
4122The address that is associated with the line table entry where the
4123executable code for that source line resides in memory. This
4124attribute is not writable.
4125@end defvar
4126
4127As there can be multiple addresses for a single source line, you may
4128receive multiple @code{LineTableEntry} objects with matching
4129@code{line} attributes, but with different @code{pc} attributes. The
4130iterator is sorted in ascending @code{pc} order. Here is a small
4131example illustrating iterating over a line table.
4132
4133@smallexample
4134symtab = gdb.selected_frame().find_sal().symtab
4135linetable = symtab.linetable()
4136for line in linetable:
4137 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4138@end smallexample
4139
4140This will have the following output:
4141
4142@smallexample
4143Line: 33 Address: 0x4005c8L
4144Line: 37 Address: 0x4005caL
4145Line: 39 Address: 0x4005d2L
4146Line: 40 Address: 0x4005f8L
4147Line: 42 Address: 0x4005ffL
4148Line: 44 Address: 0x400608L
4149Line: 42 Address: 0x40060cL
4150Line: 45 Address: 0x400615L
4151@end smallexample
4152
4153In addition to being able to iterate over a @code{LineTable}, it also
4154has the following direct access methods:
4155
4156@defun LineTable.line (line)
4157Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4158entries in the line table for the given @var{line}, which specifies
4159the source code line. If there are no entries for that source code
329baa95
DE
4160@var{line}, the Python @code{None} is returned.
4161@end defun
4162
4163@defun LineTable.has_line (line)
4164Return a Python @code{Boolean} indicating whether there is an entry in
4165the line table for this source line. Return @code{True} if an entry
4166is found, or @code{False} if not.
4167@end defun
4168
4169@defun LineTable.source_lines ()
4170Return a Python @code{List} of the source line numbers in the symbol
4171table. Only lines with executable code locations are returned. The
4172contents of the @code{List} will just be the source line entries
4173represented as Python @code{Long} values.
4174@end defun
4175
4176@node Breakpoints In Python
4177@subsubsection Manipulating breakpoints using Python
4178
4179@cindex breakpoints in python
4180@tindex gdb.Breakpoint
4181
4182Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4183class.
4184
4185@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4186Create a new breakpoint according to @var{spec}, which is a string
4187naming the location of the breakpoint, or an expression that defines a
4188watchpoint. The contents can be any location recognized by the
4189@code{break} command, or in the case of a watchpoint, by the
4190@code{watch} command. The optional @var{type} denotes the breakpoint
4191to create from the types defined later in this chapter. This argument
4192can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4193defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4194argument allows the breakpoint to become invisible to the user. The
4195breakpoint will neither be reported when created, nor will it be
4196listed in the output from @code{info breakpoints} (but will be listed
4197with the @code{maint info breakpoints} command). The optional
4198@var{temporary} argument makes the breakpoint a temporary breakpoint.
4199Temporary breakpoints are deleted after they have been hit. Any
4200further access to the Python breakpoint after it has been hit will
4201result in a runtime error (as that breakpoint has now been
4202automatically deleted). The optional @var{wp_class} argument defines
4203the class of watchpoint to create, if @var{type} is
4204@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4205is assumed to be a @code{gdb.WP_WRITE} class.
4206@end defun
4207
4208@defun Breakpoint.stop (self)
4209The @code{gdb.Breakpoint} class can be sub-classed and, in
4210particular, you may choose to implement the @code{stop} method.
4211If this method is defined in a sub-class of @code{gdb.Breakpoint},
4212it will be called when the inferior reaches any location of a
4213breakpoint which instantiates that sub-class. If the method returns
4214@code{True}, the inferior will be stopped at the location of the
4215breakpoint, otherwise the inferior will continue.
4216
4217If there are multiple breakpoints at the same location with a
4218@code{stop} method, each one will be called regardless of the
4219return status of the previous. This ensures that all @code{stop}
4220methods have a chance to execute at that location. In this scenario
4221if one of the methods returns @code{True} but the others return
4222@code{False}, the inferior will still be stopped.
4223
4224You should not alter the execution state of the inferior (i.e.@:, step,
4225next, etc.), alter the current frame context (i.e.@:, change the current
4226active frame), or alter, add or delete any breakpoint. As a general
4227rule, you should not alter any data within @value{GDBN} or the inferior
4228at this time.
4229
4230Example @code{stop} implementation:
4231
4232@smallexample
4233class MyBreakpoint (gdb.Breakpoint):
4234 def stop (self):
4235 inf_val = gdb.parse_and_eval("foo")
4236 if inf_val == 3:
4237 return True
4238 return False
4239@end smallexample
4240@end defun
4241
4242The available watchpoint types represented by constants are defined in the
4243@code{gdb} module:
4244
b3ce5e5f
DE
4245@vtable @code
4246@vindex WP_READ
329baa95
DE
4247@item gdb.WP_READ
4248Read only watchpoint.
4249
b3ce5e5f 4250@vindex WP_WRITE
329baa95
DE
4251@item gdb.WP_WRITE
4252Write only watchpoint.
4253
b3ce5e5f 4254@vindex WP_ACCESS
329baa95
DE
4255@item gdb.WP_ACCESS
4256Read/Write watchpoint.
b3ce5e5f 4257@end vtable
329baa95
DE
4258
4259@defun Breakpoint.is_valid ()
4260Return @code{True} if this @code{Breakpoint} object is valid,
4261@code{False} otherwise. A @code{Breakpoint} object can become invalid
4262if the user deletes the breakpoint. In this case, the object still
4263exists, but the underlying breakpoint does not. In the cases of
4264watchpoint scope, the watchpoint remains valid even if execution of the
4265inferior leaves the scope of that watchpoint.
4266@end defun
4267
fab3a15d 4268@defun Breakpoint.delete ()
329baa95
DE
4269Permanently deletes the @value{GDBN} breakpoint. This also
4270invalidates the Python @code{Breakpoint} object. Any further access
4271to this object's attributes or methods will raise an error.
4272@end defun
4273
4274@defvar Breakpoint.enabled
4275This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
4276@code{False} otherwise. This attribute is writable. You can use it to enable
4277or disable the breakpoint.
329baa95
DE
4278@end defvar
4279
4280@defvar Breakpoint.silent
4281This attribute is @code{True} if the breakpoint is silent, and
4282@code{False} otherwise. This attribute is writable.
4283
4284Note that a breakpoint can also be silent if it has commands and the
4285first command is @code{silent}. This is not reported by the
4286@code{silent} attribute.
4287@end defvar
4288
4289@defvar Breakpoint.thread
4290If the breakpoint is thread-specific, this attribute holds the thread
4291id. If the breakpoint is not thread-specific, this attribute is
4292@code{None}. This attribute is writable.
4293@end defvar
4294
4295@defvar Breakpoint.task
4296If the breakpoint is Ada task-specific, this attribute holds the Ada task
4297id. If the breakpoint is not task-specific (or the underlying
4298language is not Ada), this attribute is @code{None}. This attribute
4299is writable.
4300@end defvar
4301
4302@defvar Breakpoint.ignore_count
4303This attribute holds the ignore count for the breakpoint, an integer.
4304This attribute is writable.
4305@end defvar
4306
4307@defvar Breakpoint.number
4308This attribute holds the breakpoint's number --- the identifier used by
4309the user to manipulate the breakpoint. This attribute is not writable.
4310@end defvar
4311
4312@defvar Breakpoint.type
4313This attribute holds the breakpoint's type --- the identifier used to
4314determine the actual breakpoint type or use-case. This attribute is not
4315writable.
4316@end defvar
4317
4318@defvar Breakpoint.visible
4319This attribute tells whether the breakpoint is visible to the user
4320when set, or when the @samp{info breakpoints} command is run. This
4321attribute is not writable.
4322@end defvar
4323
4324@defvar Breakpoint.temporary
4325This attribute indicates whether the breakpoint was created as a
4326temporary breakpoint. Temporary breakpoints are automatically deleted
4327after that breakpoint has been hit. Access to this attribute, and all
4328other attributes and functions other than the @code{is_valid}
4329function, will result in an error after the breakpoint has been hit
4330(as it has been automatically deleted). This attribute is not
4331writable.
4332@end defvar
4333
4334The available types are represented by constants defined in the @code{gdb}
4335module:
4336
b3ce5e5f
DE
4337@vtable @code
4338@vindex BP_BREAKPOINT
329baa95
DE
4339@item gdb.BP_BREAKPOINT
4340Normal code breakpoint.
4341
b3ce5e5f 4342@vindex BP_WATCHPOINT
329baa95
DE
4343@item gdb.BP_WATCHPOINT
4344Watchpoint breakpoint.
4345
b3ce5e5f 4346@vindex BP_HARDWARE_WATCHPOINT
329baa95
DE
4347@item gdb.BP_HARDWARE_WATCHPOINT
4348Hardware assisted watchpoint.
4349
b3ce5e5f 4350@vindex BP_READ_WATCHPOINT
329baa95
DE
4351@item gdb.BP_READ_WATCHPOINT
4352Hardware assisted read watchpoint.
4353
b3ce5e5f 4354@vindex BP_ACCESS_WATCHPOINT
329baa95
DE
4355@item gdb.BP_ACCESS_WATCHPOINT
4356Hardware assisted access watchpoint.
b3ce5e5f 4357@end vtable
329baa95
DE
4358
4359@defvar Breakpoint.hit_count
4360This attribute holds the hit count for the breakpoint, an integer.
4361This attribute is writable, but currently it can only be set to zero.
4362@end defvar
4363
4364@defvar Breakpoint.location
4365This attribute holds the location of the breakpoint, as specified by
4366the user. It is a string. If the breakpoint does not have a location
4367(that is, it is a watchpoint) the attribute's value is @code{None}. This
4368attribute is not writable.
4369@end defvar
4370
4371@defvar Breakpoint.expression
4372This attribute holds a breakpoint expression, as specified by
4373the user. It is a string. If the breakpoint does not have an
4374expression (the breakpoint is not a watchpoint) the attribute's value
4375is @code{None}. This attribute is not writable.
4376@end defvar
4377
4378@defvar Breakpoint.condition
4379This attribute holds the condition of the breakpoint, as specified by
4380the user. It is a string. If there is no condition, this attribute's
4381value is @code{None}. This attribute is writable.
4382@end defvar
4383
4384@defvar Breakpoint.commands
4385This attribute holds the commands attached to the breakpoint. If
4386there are commands, this attribute's value is a string holding all the
4387commands, separated by newlines. If there are no commands, this
4388attribute is @code{None}. This attribute is not writable.
4389@end defvar
4390
4391@node Finish Breakpoints in Python
4392@subsubsection Finish Breakpoints
4393
4394@cindex python finish breakpoints
4395@tindex gdb.FinishBreakpoint
4396
4397A finish breakpoint is a temporary breakpoint set at the return address of
4398a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4399extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4400and deleted when the execution will run out of the breakpoint scope (i.e.@:
4401@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4402Finish breakpoints are thread specific and must be create with the right
4403thread selected.
4404
4405@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4406Create a finish breakpoint at the return address of the @code{gdb.Frame}
4407object @var{frame}. If @var{frame} is not provided, this defaults to the
4408newest frame. The optional @var{internal} argument allows the breakpoint to
4409become invisible to the user. @xref{Breakpoints In Python}, for further
4410details about this argument.
4411@end defun
4412
4413@defun FinishBreakpoint.out_of_scope (self)
4414In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4415@code{return} command, @dots{}), a function may not properly terminate, and
4416thus never hit the finish breakpoint. When @value{GDBN} notices such a
4417situation, the @code{out_of_scope} callback will be triggered.
4418
4419You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4420method:
4421
4422@smallexample
4423class MyFinishBreakpoint (gdb.FinishBreakpoint)
4424 def stop (self):
4425 print "normal finish"
4426 return True
4427
4428 def out_of_scope ():
4429 print "abnormal finish"
4430@end smallexample
4431@end defun
4432
4433@defvar FinishBreakpoint.return_value
4434When @value{GDBN} is stopped at a finish breakpoint and the frame
4435used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4436attribute will contain a @code{gdb.Value} object corresponding to the return
4437value of the function. The value will be @code{None} if the function return
4438type is @code{void} or if the return value was not computable. This attribute
4439is not writable.
4440@end defvar
4441
4442@node Lazy Strings In Python
4443@subsubsection Python representation of lazy strings.
4444
4445@cindex lazy strings in python
4446@tindex gdb.LazyString
4447
4448A @dfn{lazy string} is a string whose contents is not retrieved or
4449encoded until it is needed.
4450
4451A @code{gdb.LazyString} is represented in @value{GDBN} as an
4452@code{address} that points to a region of memory, an @code{encoding}
4453that will be used to encode that region of memory, and a @code{length}
4454to delimit the region of memory that represents the string. The
4455difference between a @code{gdb.LazyString} and a string wrapped within
4456a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4457differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4458retrieved and encoded during printing, while a @code{gdb.Value}
4459wrapping a string is immediately retrieved and encoded on creation.
4460
4461A @code{gdb.LazyString} object has the following functions:
4462
4463@defun LazyString.value ()
4464Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4465will point to the string in memory, but will lose all the delayed
4466retrieval, encoding and handling that @value{GDBN} applies to a
4467@code{gdb.LazyString}.
4468@end defun
4469
4470@defvar LazyString.address
4471This attribute holds the address of the string. This attribute is not
4472writable.
4473@end defvar
4474
4475@defvar LazyString.length
4476This attribute holds the length of the string in characters. If the
4477length is -1, then the string will be fetched and encoded up to the
4478first null of appropriate width. This attribute is not writable.
4479@end defvar
4480
4481@defvar LazyString.encoding
4482This attribute holds the encoding that will be applied to the string
4483when the string is printed by @value{GDBN}. If the encoding is not
4484set, or contains an empty string, then @value{GDBN} will select the
4485most appropriate encoding when the string is printed. This attribute
4486is not writable.
4487@end defvar
4488
4489@defvar LazyString.type
4490This attribute holds the type that is represented by the lazy string's
4491type. For a lazy string this will always be a pointer type. To
4492resolve this to the lazy string's character type, use the type's
4493@code{target} method. @xref{Types In Python}. This attribute is not
4494writable.
4495@end defvar
4496
4497@node Architectures In Python
4498@subsubsection Python representation of architectures
4499@cindex Python architectures
4500
4501@value{GDBN} uses architecture specific parameters and artifacts in a
4502number of its various computations. An architecture is represented
4503by an instance of the @code{gdb.Architecture} class.
4504
4505A @code{gdb.Architecture} class has the following methods:
4506
4507@defun Architecture.name ()
4508Return the name (string value) of the architecture.
4509@end defun
4510
4511@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4512Return a list of disassembled instructions starting from the memory
4513address @var{start_pc}. The optional arguments @var{end_pc} and
4514@var{count} determine the number of instructions in the returned list.
4515If both the optional arguments @var{end_pc} and @var{count} are
4516specified, then a list of at most @var{count} disassembled instructions
4517whose start address falls in the closed memory address interval from
4518@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4519specified, but @var{count} is specified, then @var{count} number of
4520instructions starting from the address @var{start_pc} are returned. If
4521@var{count} is not specified but @var{end_pc} is specified, then all
4522instructions whose start address falls in the closed memory address
4523interval from @var{start_pc} to @var{end_pc} are returned. If neither
4524@var{end_pc} nor @var{count} are specified, then a single instruction at
4525@var{start_pc} is returned. For all of these cases, each element of the
4526returned list is a Python @code{dict} with the following string keys:
4527
4528@table @code
4529
4530@item addr
4531The value corresponding to this key is a Python long integer capturing
4532the memory address of the instruction.
4533
4534@item asm
4535The value corresponding to this key is a string value which represents
4536the instruction with assembly language mnemonics. The assembly
4537language flavor used is the same as that specified by the current CLI
4538variable @code{disassembly-flavor}. @xref{Machine Code}.
4539
4540@item length
4541The value corresponding to this key is the length (integer value) of the
4542instruction in bytes.
4543
4544@end table
4545@end defun
4546
4547@node Python Auto-loading
4548@subsection Python Auto-loading
4549@cindex Python auto-loading
4550
4551When a new object file is read (for example, due to the @code{file}
4552command, or because the inferior has loaded a shared library),
4553@value{GDBN} will look for Python support scripts in several ways:
4554@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4555@xref{Auto-loading extensions}.
4556
4557The auto-loading feature is useful for supplying application-specific
4558debugging commands and scripts.
4559
4560Auto-loading can be enabled or disabled,
4561and the list of auto-loaded scripts can be printed.
4562
4563@table @code
4564@anchor{set auto-load python-scripts}
4565@kindex set auto-load python-scripts
4566@item set auto-load python-scripts [on|off]
4567Enable or disable the auto-loading of Python scripts.
4568
4569@anchor{show auto-load python-scripts}
4570@kindex show auto-load python-scripts
4571@item show auto-load python-scripts
4572Show whether auto-loading of Python scripts is enabled or disabled.
4573
4574@anchor{info auto-load python-scripts}
4575@kindex info auto-load python-scripts
4576@cindex print list of auto-loaded Python scripts
4577@item info auto-load python-scripts [@var{regexp}]
4578Print the list of all Python scripts that @value{GDBN} auto-loaded.
4579
4580Also printed is the list of Python scripts that were mentioned in
4581the @code{.debug_gdb_scripts} section and were not found
4582(@pxref{dotdebug_gdb_scripts section}).
4583This is useful because their names are not printed when @value{GDBN}
4584tries to load them and fails. There may be many of them, and printing
4585an error message for each one is problematic.
4586
4587If @var{regexp} is supplied only Python scripts with matching names are printed.
4588
4589Example:
4590
4591@smallexample
4592(gdb) info auto-load python-scripts
4593Loaded Script
4594Yes py-section-script.py
4595 full name: /tmp/py-section-script.py
4596No my-foo-pretty-printers.py
4597@end smallexample
4598@end table
4599
4600When reading an auto-loaded file, @value{GDBN} sets the
4601@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4602function (@pxref{Objfiles In Python}). This can be useful for
4603registering objfile-specific pretty-printers and frame-filters.
4604
4605@node Python modules
4606@subsection Python modules
4607@cindex python modules
4608
4609@value{GDBN} comes with several modules to assist writing Python code.
4610
4611@menu
4612* gdb.printing:: Building and registering pretty-printers.
4613* gdb.types:: Utilities for working with types.
4614* gdb.prompt:: Utilities for prompt value substitution.
4615@end menu
4616
4617@node gdb.printing
4618@subsubsection gdb.printing
4619@cindex gdb.printing
4620
4621This module provides a collection of utilities for working with
4622pretty-printers.
4623
4624@table @code
4625@item PrettyPrinter (@var{name}, @var{subprinters}=None)
4626This class specifies the API that makes @samp{info pretty-printer},
4627@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
4628Pretty-printers should generally inherit from this class.
4629
4630@item SubPrettyPrinter (@var{name})
4631For printers that handle multiple types, this class specifies the
4632corresponding API for the subprinters.
4633
4634@item RegexpCollectionPrettyPrinter (@var{name})
4635Utility class for handling multiple printers, all recognized via
4636regular expressions.
4637@xref{Writing a Pretty-Printer}, for an example.
4638
4639@item FlagEnumerationPrinter (@var{name})
4640A pretty-printer which handles printing of @code{enum} values. Unlike
4641@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
4642work properly when there is some overlap between the enumeration
697aa1b7
EZ
4643constants. The argument @var{name} is the name of the printer and
4644also the name of the @code{enum} type to look up.
329baa95
DE
4645
4646@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
4647Register @var{printer} with the pretty-printer list of @var{obj}.
4648If @var{replace} is @code{True} then any existing copy of the printer
4649is replaced. Otherwise a @code{RuntimeError} exception is raised
4650if a printer with the same name already exists.
4651@end table
4652
4653@node gdb.types
4654@subsubsection gdb.types
4655@cindex gdb.types
4656
4657This module provides a collection of utilities for working with
4658@code{gdb.Type} objects.
4659
4660@table @code
4661@item get_basic_type (@var{type})
4662Return @var{type} with const and volatile qualifiers stripped,
4663and with typedefs and C@t{++} references converted to the underlying type.
4664
4665C@t{++} example:
4666
4667@smallexample
4668typedef const int const_int;
4669const_int foo (3);
4670const_int& foo_ref (foo);
4671int main () @{ return 0; @}
4672@end smallexample
4673
4674Then in gdb:
4675
4676@smallexample
4677(gdb) start
4678(gdb) python import gdb.types
4679(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
4680(gdb) python print gdb.types.get_basic_type(foo_ref.type)
4681int
4682@end smallexample
4683
4684@item has_field (@var{type}, @var{field})
4685Return @code{True} if @var{type}, assumed to be a type with fields
4686(e.g., a structure or union), has field @var{field}.
4687
4688@item make_enum_dict (@var{enum_type})
4689Return a Python @code{dictionary} type produced from @var{enum_type}.
4690
4691@item deep_items (@var{type})
4692Returns a Python iterator similar to the standard
4693@code{gdb.Type.iteritems} method, except that the iterator returned
4694by @code{deep_items} will recursively traverse anonymous struct or
4695union fields. For example:
4696
4697@smallexample
4698struct A
4699@{
4700 int a;
4701 union @{
4702 int b0;
4703 int b1;
4704 @};
4705@};
4706@end smallexample
4707
4708@noindent
4709Then in @value{GDBN}:
4710@smallexample
4711(@value{GDBP}) python import gdb.types
4712(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
4713(@value{GDBP}) python print struct_a.keys ()
4714@{['a', '']@}
4715(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
4716@{['a', 'b0', 'b1']@}
4717@end smallexample
4718
4719@item get_type_recognizers ()
4720Return a list of the enabled type recognizers for the current context.
4721This is called by @value{GDBN} during the type-printing process
4722(@pxref{Type Printing API}).
4723
4724@item apply_type_recognizers (recognizers, type_obj)
4725Apply the type recognizers, @var{recognizers}, to the type object
4726@var{type_obj}. If any recognizer returns a string, return that
4727string. Otherwise, return @code{None}. This is called by
4728@value{GDBN} during the type-printing process (@pxref{Type Printing
4729API}).
4730
4731@item register_type_printer (locus, printer)
697aa1b7
EZ
4732This is a convenience function to register a type printer
4733@var{printer}. The printer must implement the type printer protocol.
4734The @var{locus} argument is either a @code{gdb.Objfile}, in which case
4735the printer is registered with that objfile; a @code{gdb.Progspace},
4736in which case the printer is registered with that progspace; or
4737@code{None}, in which case the printer is registered globally.
329baa95
DE
4738
4739@item TypePrinter
4740This is a base class that implements the type printer protocol. Type
4741printers are encouraged, but not required, to derive from this class.
4742It defines a constructor:
4743
4744@defmethod TypePrinter __init__ (self, name)
4745Initialize the type printer with the given name. The new printer
4746starts in the enabled state.
4747@end defmethod
4748
4749@end table
4750
4751@node gdb.prompt
4752@subsubsection gdb.prompt
4753@cindex gdb.prompt
4754
4755This module provides a method for prompt value-substitution.
4756
4757@table @code
4758@item substitute_prompt (@var{string})
4759Return @var{string} with escape sequences substituted by values. Some
4760escape sequences take arguments. You can specify arguments inside
4761``@{@}'' immediately following the escape sequence.
4762
4763The escape sequences you can pass to this function are:
4764
4765@table @code
4766@item \\
4767Substitute a backslash.
4768@item \e
4769Substitute an ESC character.
4770@item \f
4771Substitute the selected frame; an argument names a frame parameter.
4772@item \n
4773Substitute a newline.
4774@item \p
4775Substitute a parameter's value; the argument names the parameter.
4776@item \r
4777Substitute a carriage return.
4778@item \t
4779Substitute the selected thread; an argument names a thread parameter.
4780@item \v
4781Substitute the version of GDB.
4782@item \w
4783Substitute the current working directory.
4784@item \[
4785Begin a sequence of non-printing characters. These sequences are
4786typically used with the ESC character, and are not counted in the string
4787length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
4788blue-colored ``(gdb)'' prompt where the length is five.
4789@item \]
4790End a sequence of non-printing characters.
4791@end table
4792
4793For example:
4794
4795@smallexample
4796substitute_prompt (``frame: \f,
4797 print arguments: \p@{print frame-arguments@}'')
4798@end smallexample
4799
4800@exdent will return the string:
4801
4802@smallexample
4803"frame: main, print arguments: scalars"
4804@end smallexample
4805@end table