]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Arm: Fix forward thumb references [PR gas/25235]
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
3666a048 1@c Copyright (C) 2008--2021 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
329baa95
DE
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
edeaceda
AB
106
107@kindex set python ignore-environment
108@item set python ignore-environment @r{[}on@r{|}off@r{]}
109By default this option is @samp{off}, and, when @value{GDBN}
110initializes its internal Python interpreter, the Python interpreter
111will check the environment for variables that will effect how it
112behaves, for example @env{PYTHONHOME}, and
113@env{PYTHONPATH}@footnote{See the ENVIRONMENT VARIABLES section of
114@command{man 1 python} for a comprehensive list.}.
115
116If this option is set to @samp{on} before Python is initialized then
117Python will ignore all such environment variables. As Python is
118initialized early during @value{GDBN}'s startup process, then this
119option must be placed into the early initialization file
120(@pxref{Initialization Files}) to have the desired effect.
121
122This option is equivalent to passing @option{-E} to the real
123@command{python} executable.
124
125@kindex set python dont-write-bytecode
126@item set python dont-write-bytecode @r{[}auto@r{|}on@r{|}off@r{]}
127When this option is @samp{off}, then, once @value{GDBN} has
128initialized the Python interpreter, the interpreter will byte-compile
129any Python modules that it imports and write the byte code to disk in
130@file{.pyc} files.
131
132If this option is set to @samp{on} before Python is initialized then
133Python will no longer write the byte code to disk. As Python is
134initialized early during @value{GDBN}'s startup process, then this
135option must be placed into the early initialization file
136(@pxref{Initialization Files}) to have the desired effect.
137
138By default this option is set to @samp{auto}, in this mode Python will
139check the environment variable @env{PYTHONDONTWRITEBYTECODE} to see
140if it should write out byte-code or not.
141
142This option is equivalent to passing @option{-B} to the real
143@command{python} executable.
329baa95
DE
144@end table
145
146It is also possible to execute a Python script from the @value{GDBN}
147interpreter:
148
149@table @code
150@item source @file{script-name}
151The script name must end with @samp{.py} and @value{GDBN} must be configured
152to recognize the script language based on filename extension using
153the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
154@end table
155
75140e3b
AB
156The following commands are intended to help debug @value{GDBN} itself:
157
158@table @code
159@kindex set debug py-breakpoint
160@kindex show debug py-breakpoint
161@item set debug py-breakpoint on@r{|}off
162@itemx show debug py-breakpoint
163When @samp{on}, @value{GDBN} prints debug messages related to the
164Python breakpoint API. This is @samp{off} by default.
9dffa1aa
AB
165
166@kindex set debug py-unwind
167@kindex show debug py-unwind
168@item set debug py-unwind on@r{|}off
169@itemx show debug py-unwind
170When @samp{on}, @value{GDBN} prints debug messages related to the
171Python unwinder API. This is @samp{off} by default.
75140e3b
AB
172@end table
173
329baa95
DE
174@node Python API
175@subsection Python API
176@cindex python api
177@cindex programming in python
178
179You can get quick online help for @value{GDBN}'s Python API by issuing
180the command @w{@kbd{python help (gdb)}}.
181
182Functions and methods which have two or more optional arguments allow
183them to be specified using keyword syntax. This allows passing some
184optional arguments while skipping others. Example:
185@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
186
187@menu
188* Basic Python:: Basic Python Functions.
189* Exception Handling:: How Python exceptions are translated.
190* Values From Inferior:: Python representation of values.
191* Types In Python:: Python representation of types.
192* Pretty Printing API:: Pretty-printing values.
193* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
194* Writing a Pretty-Printer:: Writing a Pretty-Printer.
195* Type Printing API:: Pretty-printing types.
196* Frame Filter API:: Filtering Frames.
197* Frame Decorator API:: Decorating Frames.
198* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 199* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
200* Xmethods In Python:: Adding and replacing methods of C++ classes.
201* Xmethod API:: Xmethod types.
202* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
203* Inferiors In Python:: Python representation of inferiors (processes)
204* Events In Python:: Listening for events from @value{GDBN}.
205* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 206* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
207* Commands In Python:: Implementing new commands in Python.
208* Parameters In Python:: Adding new @value{GDBN} parameters.
209* Functions In Python:: Writing new convenience functions.
210* Progspaces In Python:: Program spaces.
211* Objfiles In Python:: Object files.
212* Frames In Python:: Accessing inferior stack frames from Python.
213* Blocks In Python:: Accessing blocks from Python.
214* Symbols In Python:: Python representation of symbols.
215* Symbol Tables In Python:: Python representation of symbol tables.
216* Line Tables In Python:: Python representation of line tables.
217* Breakpoints In Python:: Manipulating breakpoints using Python.
218* Finish Breakpoints in Python:: Setting Breakpoints on function return
219 using Python.
220* Lazy Strings In Python:: Python representation of lazy strings.
221* Architectures In Python:: Python representation of architectures.
0f767f94 222* Registers In Python:: Python representation of registers.
01b1af32 223* TUI Windows In Python:: Implementing new TUI windows.
329baa95
DE
224@end menu
225
226@node Basic Python
227@subsubsection Basic Python
228
229@cindex python stdout
230@cindex python pagination
231At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
232@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
233A Python program which outputs to one of these streams may have its
234output interrupted by the user (@pxref{Screen Size}). In this
235situation, a Python @code{KeyboardInterrupt} exception is thrown.
236
237Some care must be taken when writing Python code to run in
238@value{GDBN}. Two things worth noting in particular:
239
240@itemize @bullet
241@item
242@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
243Python code must not override these, or even change the options using
244@code{sigaction}. If your program changes the handling of these
245signals, @value{GDBN} will most likely stop working correctly. Note
246that it is unfortunately common for GUI toolkits to install a
247@code{SIGCHLD} handler.
248
249@item
250@value{GDBN} takes care to mark its internal file descriptors as
251close-on-exec. However, this cannot be done in a thread-safe way on
252all platforms. Your Python programs should be aware of this and
253should both create new file descriptors with the close-on-exec flag
254set and arrange to close unneeded file descriptors before starting a
255child process.
256@end itemize
257
258@cindex python functions
259@cindex python module
260@cindex gdb module
261@value{GDBN} introduces a new Python module, named @code{gdb}. All
262methods and classes added by @value{GDBN} are placed in this module.
263@value{GDBN} automatically @code{import}s the @code{gdb} module for
264use in all scripts evaluated by the @code{python} command.
265
1256af7d
SM
266Some types of the @code{gdb} module come with a textual representation
267(accessible through the @code{repr} or @code{str} functions). These are
268offered for debugging purposes only, expect them to change over time.
269
329baa95
DE
270@findex gdb.PYTHONDIR
271@defvar gdb.PYTHONDIR
272A string containing the python directory (@pxref{Python}).
273@end defvar
274
275@findex gdb.execute
276@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
277Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
278If a GDB exception happens while @var{command} runs, it is
279translated as described in @ref{Exception Handling,,Exception Handling}.
280
697aa1b7 281The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
282command as having originated from the user invoking it interactively.
283It must be a boolean value. If omitted, it defaults to @code{False}.
284
285By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
286@value{GDBN}'s standard output (and to the log output if logging is
287turned on). If the @var{to_string} parameter is
329baa95
DE
288@code{True}, then output will be collected by @code{gdb.execute} and
289returned as a string. The default is @code{False}, in which case the
290return value is @code{None}. If @var{to_string} is @code{True}, the
291@value{GDBN} virtual terminal will be temporarily set to unlimited width
292and height, and its pagination will be disabled; @pxref{Screen Size}.
293@end defun
294
295@findex gdb.breakpoints
296@defun gdb.breakpoints ()
297Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
298@xref{Breakpoints In Python}, for more information. In @value{GDBN}
299version 7.11 and earlier, this function returned @code{None} if there
300were no breakpoints. This peculiarity was subsequently fixed, and now
301@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
302@end defun
303
d8ae99a7
PM
304@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
305Return a Python list holding a collection of newly set
306@code{gdb.Breakpoint} objects matching function names defined by the
307@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
308system functions (those not explicitly defined in the inferior) will
309also be included in the match. The @var{throttle} keyword takes an
310integer that defines the maximum number of pattern matches for
311functions matched by the @var{regex} pattern. If the number of
312matches exceeds the integer value of @var{throttle}, a
313@code{RuntimeError} will be raised and no breakpoints will be created.
314If @var{throttle} is not defined then there is no imposed limit on the
315maximum number of matches and breakpoints to be created. The
316@var{symtabs} keyword takes a Python iterable that yields a collection
317of @code{gdb.Symtab} objects and will restrict the search to those
318functions only contained within the @code{gdb.Symtab} objects.
319@end defun
320
329baa95
DE
321@findex gdb.parameter
322@defun gdb.parameter (parameter)
697aa1b7
EZ
323Return the value of a @value{GDBN} @var{parameter} given by its name,
324a string; the parameter name string may contain spaces if the parameter has a
325multi-part name. For example, @samp{print object} is a valid
326parameter name.
329baa95
DE
327
328If the named parameter does not exist, this function throws a
329@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
330parameter's value is converted to a Python value of the appropriate
331type, and returned.
332@end defun
333
334@findex gdb.history
335@defun gdb.history (number)
336Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 337History}). The @var{number} argument indicates which history element to return.
329baa95
DE
338If @var{number} is negative, then @value{GDBN} will take its absolute value
339and count backward from the last element (i.e., the most recent element) to
340find the value to return. If @var{number} is zero, then @value{GDBN} will
341return the most recent element. If the element specified by @var{number}
342doesn't exist in the value history, a @code{gdb.error} exception will be
343raised.
344
345If no exception is raised, the return value is always an instance of
346@code{gdb.Value} (@pxref{Values From Inferior}).
347@end defun
348
7729052b
TT
349@findex gdb.convenience_variable
350@defun gdb.convenience_variable (name)
351Return the value of the convenience variable (@pxref{Convenience
352Vars}) named @var{name}. @var{name} must be a string. The name
353should not include the @samp{$} that is used to mark a convenience
354variable in an expression. If the convenience variable does not
355exist, then @code{None} is returned.
356@end defun
357
358@findex gdb.set_convenience_variable
359@defun gdb.set_convenience_variable (name, value)
360Set the value of the convenience variable (@pxref{Convenience Vars})
361named @var{name}. @var{name} must be a string. The name should not
362include the @samp{$} that is used to mark a convenience variable in an
363expression. If @var{value} is @code{None}, then the convenience
364variable is removed. Otherwise, if @var{value} is not a
365@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
366using the @code{gdb.Value} constructor.
367@end defun
368
329baa95
DE
369@findex gdb.parse_and_eval
370@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
371Parse @var{expression}, which must be a string, as an expression in
372the current language, evaluate it, and return the result as a
373@code{gdb.Value}.
329baa95
DE
374
375This function can be useful when implementing a new command
376(@pxref{Commands In Python}), as it provides a way to parse the
377command's argument as an expression. It is also useful simply to
7729052b 378compute values.
329baa95
DE
379@end defun
380
381@findex gdb.find_pc_line
382@defun gdb.find_pc_line (pc)
383Return the @code{gdb.Symtab_and_line} object corresponding to the
384@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
385value of @var{pc} is passed as an argument, then the @code{symtab} and
386@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
387will be @code{None} and 0 respectively. This is identical to
388@code{gdb.current_progspace().find_pc_line(pc)} and is included for
389historical compatibility.
329baa95
DE
390@end defun
391
392@findex gdb.post_event
393@defun gdb.post_event (event)
394Put @var{event}, a callable object taking no arguments, into
395@value{GDBN}'s internal event queue. This callable will be invoked at
396some later point, during @value{GDBN}'s event processing. Events
397posted using @code{post_event} will be run in the order in which they
398were posted; however, there is no way to know when they will be
399processed relative to other events inside @value{GDBN}.
400
401@value{GDBN} is not thread-safe. If your Python program uses multiple
402threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 403functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
404this. For example:
405
406@smallexample
407(@value{GDBP}) python
408>import threading
409>
410>class Writer():
411> def __init__(self, message):
412> self.message = message;
413> def __call__(self):
414> gdb.write(self.message)
415>
416>class MyThread1 (threading.Thread):
417> def run (self):
418> gdb.post_event(Writer("Hello "))
419>
420>class MyThread2 (threading.Thread):
421> def run (self):
422> gdb.post_event(Writer("World\n"))
423>
424>MyThread1().start()
425>MyThread2().start()
426>end
427(@value{GDBP}) Hello World
428@end smallexample
429@end defun
430
431@findex gdb.write
432@defun gdb.write (string @r{[}, stream{]})
433Print a string to @value{GDBN}'s paginated output stream. The
434optional @var{stream} determines the stream to print to. The default
435stream is @value{GDBN}'s standard output stream. Possible stream
436values are:
437
438@table @code
439@findex STDOUT
440@findex gdb.STDOUT
441@item gdb.STDOUT
442@value{GDBN}'s standard output stream.
443
444@findex STDERR
445@findex gdb.STDERR
446@item gdb.STDERR
447@value{GDBN}'s standard error stream.
448
449@findex STDLOG
450@findex gdb.STDLOG
451@item gdb.STDLOG
452@value{GDBN}'s log stream (@pxref{Logging Output}).
453@end table
454
455Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
456call this function and will automatically direct the output to the
457relevant stream.
458@end defun
459
460@findex gdb.flush
461@defun gdb.flush ()
462Flush the buffer of a @value{GDBN} paginated stream so that the
463contents are displayed immediately. @value{GDBN} will flush the
464contents of a stream automatically when it encounters a newline in the
465buffer. The optional @var{stream} determines the stream to flush. The
466default stream is @value{GDBN}'s standard output stream. Possible
467stream values are:
468
469@table @code
470@findex STDOUT
471@findex gdb.STDOUT
472@item gdb.STDOUT
473@value{GDBN}'s standard output stream.
474
475@findex STDERR
476@findex gdb.STDERR
477@item gdb.STDERR
478@value{GDBN}'s standard error stream.
479
480@findex STDLOG
481@findex gdb.STDLOG
482@item gdb.STDLOG
483@value{GDBN}'s log stream (@pxref{Logging Output}).
484
485@end table
486
487Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
488call this function for the relevant stream.
489@end defun
490
491@findex gdb.target_charset
492@defun gdb.target_charset ()
493Return the name of the current target character set (@pxref{Character
494Sets}). This differs from @code{gdb.parameter('target-charset')} in
495that @samp{auto} is never returned.
496@end defun
497
498@findex gdb.target_wide_charset
499@defun gdb.target_wide_charset ()
500Return the name of the current target wide character set
501(@pxref{Character Sets}). This differs from
502@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
503never returned.
504@end defun
505
506@findex gdb.solib_name
507@defun gdb.solib_name (address)
508Return the name of the shared library holding the given @var{address}
8743a9cd
TT
509as a string, or @code{None}. This is identical to
510@code{gdb.current_progspace().solib_name(address)} and is included for
511historical compatibility.
329baa95
DE
512@end defun
513
514@findex gdb.decode_line
0d2a5839 515@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
516Return locations of the line specified by @var{expression}, or of the
517current line if no argument was given. This function returns a Python
518tuple containing two elements. The first element contains a string
519holding any unparsed section of @var{expression} (or @code{None} if
520the expression has been fully parsed). The second element contains
521either @code{None} or another tuple that contains all the locations
522that match the expression represented as @code{gdb.Symtab_and_line}
523objects (@pxref{Symbol Tables In Python}). If @var{expression} is
524provided, it is decoded the way that @value{GDBN}'s inbuilt
525@code{break} or @code{edit} commands do (@pxref{Specify Location}).
526@end defun
527
528@defun gdb.prompt_hook (current_prompt)
529@anchor{prompt_hook}
530
531If @var{prompt_hook} is callable, @value{GDBN} will call the method
532assigned to this operation before a prompt is displayed by
533@value{GDBN}.
534
535The parameter @code{current_prompt} contains the current @value{GDBN}
536prompt. This method must return a Python string, or @code{None}. If
537a string is returned, the @value{GDBN} prompt will be set to that
538string. If @code{None} is returned, @value{GDBN} will continue to use
539the current prompt.
540
541Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
542such as those used by readline for command input, and annotation
543related prompts are prohibited from being changed.
544@end defun
545
546@node Exception Handling
547@subsubsection Exception Handling
548@cindex python exceptions
549@cindex exceptions, python
550
551When executing the @code{python} command, Python exceptions
552uncaught within the Python code are translated to calls to
553@value{GDBN} error-reporting mechanism. If the command that called
554@code{python} does not handle the error, @value{GDBN} will
555terminate it and print an error message containing the Python
556exception name, the associated value, and the Python call stack
557backtrace at the point where the exception was raised. Example:
558
559@smallexample
560(@value{GDBP}) python print foo
561Traceback (most recent call last):
562 File "<string>", line 1, in <module>
563NameError: name 'foo' is not defined
564@end smallexample
565
566@value{GDBN} errors that happen in @value{GDBN} commands invoked by
567Python code are converted to Python exceptions. The type of the
568Python exception depends on the error.
569
570@ftable @code
571@item gdb.error
572This is the base class for most exceptions generated by @value{GDBN}.
573It is derived from @code{RuntimeError}, for compatibility with earlier
574versions of @value{GDBN}.
575
576If an error occurring in @value{GDBN} does not fit into some more
577specific category, then the generated exception will have this type.
578
579@item gdb.MemoryError
580This is a subclass of @code{gdb.error} which is thrown when an
581operation tried to access invalid memory in the inferior.
582
583@item KeyboardInterrupt
584User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
585prompt) is translated to a Python @code{KeyboardInterrupt} exception.
586@end ftable
587
588In all cases, your exception handler will see the @value{GDBN} error
589message as its value and the Python call stack backtrace at the Python
590statement closest to where the @value{GDBN} error occured as the
591traceback.
592
4a5a194a
TT
593
594When implementing @value{GDBN} commands in Python via
595@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
596to be able to throw an exception that doesn't cause a traceback to be
597printed. For example, the user may have invoked the command
598incorrectly. @value{GDBN} provides a special exception class that can
599be used for this purpose.
600
601@ftable @code
602@item gdb.GdbError
603When thrown from a command or function, this exception will cause the
604command or function to fail, but the Python stack will not be
605displayed. @value{GDBN} does not throw this exception itself, but
606rather recognizes it when thrown from user Python code. Example:
329baa95
DE
607
608@smallexample
609(gdb) python
610>class HelloWorld (gdb.Command):
611> """Greet the whole world."""
612> def __init__ (self):
613> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
614> def invoke (self, args, from_tty):
615> argv = gdb.string_to_argv (args)
616> if len (argv) != 0:
617> raise gdb.GdbError ("hello-world takes no arguments")
f3bdc2db 618> print ("Hello, World!")
329baa95
DE
619>HelloWorld ()
620>end
621(gdb) hello-world 42
622hello-world takes no arguments
623@end smallexample
4a5a194a 624@end ftable
329baa95
DE
625
626@node Values From Inferior
627@subsubsection Values From Inferior
628@cindex values from inferior, with Python
629@cindex python, working with values from inferior
630
631@cindex @code{gdb.Value}
632@value{GDBN} provides values it obtains from the inferior program in
633an object of type @code{gdb.Value}. @value{GDBN} uses this object
634for its internal bookkeeping of the inferior's values, and for
635fetching values when necessary.
636
637Inferior values that are simple scalars can be used directly in
638Python expressions that are valid for the value's data type. Here's
639an example for an integer or floating-point value @code{some_val}:
640
641@smallexample
642bar = some_val + 2
643@end smallexample
644
645@noindent
646As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
647whose values are of the same type as those of @code{some_val}. Valid
648Python operations can also be performed on @code{gdb.Value} objects
649representing a @code{struct} or @code{class} object. For such cases,
650the overloaded operator (if present), is used to perform the operation.
651For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
652representing instances of a @code{class} which overloads the @code{+}
653operator, then one can use the @code{+} operator in their Python script
654as follows:
655
656@smallexample
657val3 = val1 + val2
658@end smallexample
659
660@noindent
661The result of the operation @code{val3} is also a @code{gdb.Value}
662object corresponding to the value returned by the overloaded @code{+}
663operator. In general, overloaded operators are invoked for the
664following operations: @code{+} (binary addition), @code{-} (binary
665subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
666@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
667
668Inferior values that are structures or instances of some class can
669be accessed using the Python @dfn{dictionary syntax}. For example, if
670@code{some_val} is a @code{gdb.Value} instance holding a structure, you
671can access its @code{foo} element with:
672
673@smallexample
674bar = some_val['foo']
675@end smallexample
676
677@cindex getting structure elements using gdb.Field objects as subscripts
678Again, @code{bar} will also be a @code{gdb.Value} object. Structure
679elements can also be accessed by using @code{gdb.Field} objects as
680subscripts (@pxref{Types In Python}, for more information on
681@code{gdb.Field} objects). For example, if @code{foo_field} is a
682@code{gdb.Field} object corresponding to element @code{foo} of the above
683structure, then @code{bar} can also be accessed as follows:
684
685@smallexample
686bar = some_val[foo_field]
687@end smallexample
688
689A @code{gdb.Value} that represents a function can be executed via
690inferior function call. Any arguments provided to the call must match
691the function's prototype, and must be provided in the order specified
692by that prototype.
693
694For example, @code{some_val} is a @code{gdb.Value} instance
695representing a function that takes two integers as arguments. To
696execute this function, call it like so:
697
698@smallexample
699result = some_val (10,20)
700@end smallexample
701
702Any values returned from a function call will be stored as a
703@code{gdb.Value}.
704
705The following attributes are provided:
706
707@defvar Value.address
708If this object is addressable, this read-only attribute holds a
709@code{gdb.Value} object representing the address. Otherwise,
710this attribute holds @code{None}.
711@end defvar
712
713@cindex optimized out value in Python
714@defvar Value.is_optimized_out
715This read-only boolean attribute is true if the compiler optimized out
716this value, thus it is not available for fetching from the inferior.
717@end defvar
718
719@defvar Value.type
720The type of this @code{gdb.Value}. The value of this attribute is a
721@code{gdb.Type} object (@pxref{Types In Python}).
722@end defvar
723
724@defvar Value.dynamic_type
9da10427
TT
725The dynamic type of this @code{gdb.Value}. This uses the object's
726virtual table and the C@t{++} run-time type information
727(@acronym{RTTI}) to determine the dynamic type of the value. If this
728value is of class type, it will return the class in which the value is
729embedded, if any. If this value is of pointer or reference to a class
730type, it will compute the dynamic type of the referenced object, and
731return a pointer or reference to that type, respectively. In all
732other cases, it will return the value's static type.
329baa95
DE
733
734Note that this feature will only work when debugging a C@t{++} program
735that includes @acronym{RTTI} for the object in question. Otherwise,
736it will just return the static type of the value as in @kbd{ptype foo}
737(@pxref{Symbols, ptype}).
738@end defvar
739
740@defvar Value.is_lazy
741The value of this read-only boolean attribute is @code{True} if this
742@code{gdb.Value} has not yet been fetched from the inferior.
743@value{GDBN} does not fetch values until necessary, for efficiency.
744For example:
745
746@smallexample
747myval = gdb.parse_and_eval ('somevar')
748@end smallexample
749
750The value of @code{somevar} is not fetched at this time. It will be
751fetched when the value is needed, or when the @code{fetch_lazy}
752method is invoked.
753@end defvar
754
755The following methods are provided:
756
757@defun Value.__init__ (@var{val})
758Many Python values can be converted directly to a @code{gdb.Value} via
759this object initializer. Specifically:
760
761@table @asis
762@item Python boolean
763A Python boolean is converted to the boolean type from the current
764language.
765
766@item Python integer
767A Python integer is converted to the C @code{long} type for the
768current architecture.
769
770@item Python long
771A Python long is converted to the C @code{long long} type for the
772current architecture.
773
774@item Python float
775A Python float is converted to the C @code{double} type for the
776current architecture.
777
778@item Python string
b3ce5e5f
DE
779A Python string is converted to a target string in the current target
780language using the current target encoding.
781If a character cannot be represented in the current target encoding,
782then an exception is thrown.
329baa95
DE
783
784@item @code{gdb.Value}
785If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
786
787@item @code{gdb.LazyString}
788If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
789Python}), then the lazy string's @code{value} method is called, and
790its result is used.
791@end table
792@end defun
793
ff6c8b35 794@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
795This second form of the @code{gdb.Value} constructor returns a
796@code{gdb.Value} of type @var{type} where the value contents are taken
797from the Python buffer object specified by @var{val}. The number of
798bytes in the Python buffer object must be greater than or equal to the
799size of @var{type}.
800@end defun
801
329baa95
DE
802@defun Value.cast (type)
803Return a new instance of @code{gdb.Value} that is the result of
804casting this instance to the type described by @var{type}, which must
805be a @code{gdb.Type} object. If the cast cannot be performed for some
806reason, this method throws an exception.
807@end defun
808
809@defun Value.dereference ()
810For pointer data types, this method returns a new @code{gdb.Value} object
811whose contents is the object pointed to by the pointer. For example, if
812@code{foo} is a C pointer to an @code{int}, declared in your C program as
813
814@smallexample
815int *foo;
816@end smallexample
817
818@noindent
819then you can use the corresponding @code{gdb.Value} to access what
820@code{foo} points to like this:
821
822@smallexample
823bar = foo.dereference ()
824@end smallexample
825
826The result @code{bar} will be a @code{gdb.Value} object holding the
827value pointed to by @code{foo}.
828
829A similar function @code{Value.referenced_value} exists which also
760f7560 830returns @code{gdb.Value} objects corresponding to the values pointed to
329baa95
DE
831by pointer values (and additionally, values referenced by reference
832values). However, the behavior of @code{Value.dereference}
833differs from @code{Value.referenced_value} by the fact that the
834behavior of @code{Value.dereference} is identical to applying the C
835unary operator @code{*} on a given value. For example, consider a
836reference to a pointer @code{ptrref}, declared in your C@t{++} program
837as
838
839@smallexample
840typedef int *intptr;
841...
842int val = 10;
843intptr ptr = &val;
844intptr &ptrref = ptr;
845@end smallexample
846
847Though @code{ptrref} is a reference value, one can apply the method
848@code{Value.dereference} to the @code{gdb.Value} object corresponding
849to it and obtain a @code{gdb.Value} which is identical to that
850corresponding to @code{val}. However, if you apply the method
851@code{Value.referenced_value}, the result would be a @code{gdb.Value}
852object identical to that corresponding to @code{ptr}.
853
854@smallexample
855py_ptrref = gdb.parse_and_eval ("ptrref")
856py_val = py_ptrref.dereference ()
857py_ptr = py_ptrref.referenced_value ()
858@end smallexample
859
860The @code{gdb.Value} object @code{py_val} is identical to that
861corresponding to @code{val}, and @code{py_ptr} is identical to that
862corresponding to @code{ptr}. In general, @code{Value.dereference} can
863be applied whenever the C unary operator @code{*} can be applied
864to the corresponding C value. For those cases where applying both
865@code{Value.dereference} and @code{Value.referenced_value} is allowed,
866the results obtained need not be identical (as we have seen in the above
867example). The results are however identical when applied on
868@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
869objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
870@end defun
871
872@defun Value.referenced_value ()
873For pointer or reference data types, this method returns a new
874@code{gdb.Value} object corresponding to the value referenced by the
875pointer/reference value. For pointer data types,
876@code{Value.dereference} and @code{Value.referenced_value} produce
877identical results. The difference between these methods is that
878@code{Value.dereference} cannot get the values referenced by reference
879values. For example, consider a reference to an @code{int}, declared
880in your C@t{++} program as
881
882@smallexample
883int val = 10;
884int &ref = val;
885@end smallexample
886
887@noindent
888then applying @code{Value.dereference} to the @code{gdb.Value} object
889corresponding to @code{ref} will result in an error, while applying
890@code{Value.referenced_value} will result in a @code{gdb.Value} object
891identical to that corresponding to @code{val}.
892
893@smallexample
894py_ref = gdb.parse_and_eval ("ref")
895er_ref = py_ref.dereference () # Results in error
896py_val = py_ref.referenced_value () # Returns the referenced value
897@end smallexample
898
899The @code{gdb.Value} object @code{py_val} is identical to that
900corresponding to @code{val}.
901@end defun
902
4c082a81
SC
903@defun Value.reference_value ()
904Return a @code{gdb.Value} object which is a reference to the value
905encapsulated by this instance.
906@end defun
907
908@defun Value.const_value ()
909Return a @code{gdb.Value} object which is a @code{const} version of the
910value encapsulated by this instance.
911@end defun
912
329baa95
DE
913@defun Value.dynamic_cast (type)
914Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
915operator were used. Consult a C@t{++} reference for details.
916@end defun
917
918@defun Value.reinterpret_cast (type)
919Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
920operator were used. Consult a C@t{++} reference for details.
921@end defun
922
52093e1b
MB
923@defun Value.format_string (...)
924Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
925command does. Invoked with no arguments, this is equivalent to calling
926the @code{str} function on the @code{gdb.Value}. The representation of
927the same value may change across different versions of @value{GDBN}, so
928you shouldn't, for instance, parse the strings returned by this method.
929
930All the arguments are keyword only. If an argument is not specified, the
931current global default setting is used.
932
933@table @code
934@item raw
935@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
936used to format the value. @code{False} if enabled pretty-printers
937matching the type represented by the @code{gdb.Value} should be used to
938format it.
939
940@item pretty_arrays
941@code{True} if arrays should be pretty printed to be more convenient to
942read, @code{False} if they shouldn't (see @code{set print array} in
943@ref{Print Settings}).
944
945@item pretty_structs
946@code{True} if structs should be pretty printed to be more convenient to
947read, @code{False} if they shouldn't (see @code{set print pretty} in
948@ref{Print Settings}).
949
950@item array_indexes
951@code{True} if array indexes should be included in the string
952representation of arrays, @code{False} if they shouldn't (see @code{set
953print array-indexes} in @ref{Print Settings}).
954
955@item symbols
956@code{True} if the string representation of a pointer should include the
957corresponding symbol name (if one exists), @code{False} if it shouldn't
958(see @code{set print symbol} in @ref{Print Settings}).
959
960@item unions
961@code{True} if unions which are contained in other structures or unions
962should be expanded, @code{False} if they shouldn't (see @code{set print
963union} in @ref{Print Settings}).
964
4aea001f
HD
965@item address
966@code{True} if the string representation of a pointer should include the
967address, @code{False} if it shouldn't (see @code{set print address} in
968@ref{Print Settings}).
969
52093e1b
MB
970@item deref_refs
971@code{True} if C@t{++} references should be resolved to the value they
972refer to, @code{False} (the default) if they shouldn't. Note that, unlike
973for the @code{print} command, references are not automatically expanded
974when using the @code{format_string} method or the @code{str}
975function. There is no global @code{print} setting to change the default
976behaviour.
977
978@item actual_objects
979@code{True} if the representation of a pointer to an object should
980identify the @emph{actual} (derived) type of the object rather than the
981@emph{declared} type, using the virtual function table. @code{False} if
982the @emph{declared} type should be used. (See @code{set print object} in
983@ref{Print Settings}).
984
9f121239 985@item static_members
52093e1b
MB
986@code{True} if static members should be included in the string
987representation of a C@t{++} object, @code{False} if they shouldn't (see
988@code{set print static-members} in @ref{Print Settings}).
989
990@item max_elements
991Number of array elements to print, or @code{0} to print an unlimited
992number of elements (see @code{set print elements} in @ref{Print
993Settings}).
994
2e62ab40
AB
995@item max_depth
996The maximum depth to print for nested structs and unions, or @code{-1}
997to print an unlimited number of elements (see @code{set print
998max-depth} in @ref{Print Settings}).
999
52093e1b
MB
1000@item repeat_threshold
1001Set the threshold for suppressing display of repeated array elements, or
1002@code{0} to represent all elements, even if repeated. (See @code{set
1003print repeats} in @ref{Print Settings}).
1004
1005@item format
1006A string containing a single character representing the format to use for
1007the returned string. For instance, @code{'x'} is equivalent to using the
1008@value{GDBN} command @code{print} with the @code{/x} option and formats
1009the value as a hexadecimal number.
1010@end table
1011@end defun
1012
329baa95
DE
1013@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
1014If this @code{gdb.Value} represents a string, then this method
1015converts the contents to a Python string. Otherwise, this method will
1016throw an exception.
1017
b3ce5e5f
DE
1018Values are interpreted as strings according to the rules of the
1019current language. If the optional length argument is given, the
1020string will be converted to that length, and will include any embedded
1021zeroes that the string may contain. Otherwise, for languages
1022where the string is zero-terminated, the entire string will be
1023converted.
329baa95 1024
b3ce5e5f
DE
1025For example, in C-like languages, a value is a string if it is a pointer
1026to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
1027or @code{char32_t}.
329baa95
DE
1028
1029If the optional @var{encoding} argument is given, it must be a string
1030naming the encoding of the string in the @code{gdb.Value}, such as
1031@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
1032the same encodings as the corresponding argument to Python's
1033@code{string.decode} method, and the Python codec machinery will be used
1034to convert the string. If @var{encoding} is not given, or if
1035@var{encoding} is the empty string, then either the @code{target-charset}
1036(@pxref{Character Sets}) will be used, or a language-specific encoding
1037will be used, if the current language is able to supply one.
1038
1039The optional @var{errors} argument is the same as the corresponding
1040argument to Python's @code{string.decode} method.
1041
1042If the optional @var{length} argument is given, the string will be
1043fetched and converted to the given length.
1044@end defun
1045
1046@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
1047If this @code{gdb.Value} represents a string, then this method
1048converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
1049In Python}). Otherwise, this method will throw an exception.
1050
1051If the optional @var{encoding} argument is given, it must be a string
1052naming the encoding of the @code{gdb.LazyString}. Some examples are:
1053@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
1054@var{encoding} argument is an encoding that @value{GDBN} does
1055recognize, @value{GDBN} will raise an error.
1056
1057When a lazy string is printed, the @value{GDBN} encoding machinery is
1058used to convert the string during printing. If the optional
1059@var{encoding} argument is not provided, or is an empty string,
1060@value{GDBN} will automatically select the encoding most suitable for
1061the string type. For further information on encoding in @value{GDBN}
1062please see @ref{Character Sets}.
1063
1064If the optional @var{length} argument is given, the string will be
1065fetched and encoded to the length of characters specified. If
1066the @var{length} argument is not provided, the string will be fetched
1067and encoded until a null of appropriate width is found.
1068@end defun
1069
1070@defun Value.fetch_lazy ()
1071If the @code{gdb.Value} object is currently a lazy value
1072(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1073fetched from the inferior. Any errors that occur in the process
1074will produce a Python exception.
1075
1076If the @code{gdb.Value} object is not a lazy value, this method
1077has no effect.
1078
1079This method does not return a value.
1080@end defun
1081
1082
1083@node Types In Python
1084@subsubsection Types In Python
1085@cindex types in Python
1086@cindex Python, working with types
1087
1088@tindex gdb.Type
1089@value{GDBN} represents types from the inferior using the class
1090@code{gdb.Type}.
1091
1092The following type-related functions are available in the @code{gdb}
1093module:
1094
1095@findex gdb.lookup_type
1096@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1097This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1098
1099If @var{block} is given, then @var{name} is looked up in that scope.
1100Otherwise, it is searched for globally.
1101
1102Ordinarily, this function will return an instance of @code{gdb.Type}.
1103If the named type cannot be found, it will throw an exception.
1104@end defun
1105
1106If the type is a structure or class type, or an enum type, the fields
1107of that type can be accessed using the Python @dfn{dictionary syntax}.
1108For example, if @code{some_type} is a @code{gdb.Type} instance holding
1109a structure type, you can access its @code{foo} field with:
1110
1111@smallexample
1112bar = some_type['foo']
1113@end smallexample
1114
1115@code{bar} will be a @code{gdb.Field} object; see below under the
1116description of the @code{Type.fields} method for a description of the
1117@code{gdb.Field} class.
1118
1119An instance of @code{Type} has the following attributes:
1120
6d7bb824
TT
1121@defvar Type.alignof
1122The alignment of this type, in bytes. Type alignment comes from the
1123debugging information; if it was not specified, then @value{GDBN} will
1124use the relevant ABI to try to determine the alignment. In some
1125cases, even this is not possible, and zero will be returned.
1126@end defvar
1127
329baa95
DE
1128@defvar Type.code
1129The type code for this type. The type code will be one of the
1130@code{TYPE_CODE_} constants defined below.
1131@end defvar
1132
1acda803
TT
1133@defvar Type.dynamic
1134A boolean indicating whether this type is dynamic. In some
1135situations, such as Rust @code{enum} types or Ada variant records, the
45fc7c99
TT
1136concrete type of a value may vary depending on its contents. That is,
1137the declared type of a variable, or the type returned by
1138@code{gdb.lookup_type} may be dynamic; while the type of the
1139variable's value will be a concrete instance of that dynamic type.
1140
1141For example, consider this code:
1142@smallexample
1143int n;
1144int array[n];
1145@end smallexample
1146
1147Here, at least conceptually (whether your compiler actually does this
1148is a separate issue), examining @w{@code{gdb.lookup_symbol("array", ...).type}}
1149could yield a @code{gdb.Type} which reports a size of @code{None}.
1150This is the dynamic type.
1151
1152However, examining @code{gdb.parse_and_eval("array").type} would yield
1153a concrete type, whose length would be known.
1acda803
TT
1154@end defvar
1155
329baa95
DE
1156@defvar Type.name
1157The name of this type. If this type has no name, then @code{None}
1158is returned.
1159@end defvar
1160
1161@defvar Type.sizeof
1162The size of this type, in target @code{char} units. Usually, a
1163target's @code{char} type will be an 8-bit byte. However, on some
1acda803
TT
1164unusual platforms, this type may have a different size. A dynamic
1165type may not have a fixed size; in this case, this attribute's value
1166will be @code{None}.
329baa95
DE
1167@end defvar
1168
1169@defvar Type.tag
1170The tag name for this type. The tag name is the name after
1171@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1172languages have this concept. If this type has no tag name, then
1173@code{None} is returned.
1174@end defvar
1175
e1f2e1a2
CB
1176@defvar Type.objfile
1177The @code{gdb.Objfile} that this type was defined in, or @code{None} if
1178there is no associated objfile.
1179@end defvar
1180
329baa95
DE
1181The following methods are provided:
1182
1183@defun Type.fields ()
fa94b3a7
SM
1184
1185Return the fields of this type. The behavior depends on the type code:
1186
1187@itemize @bullet
1188
1189@item
1190For structure and union types, this method returns the fields.
1191
1192@item
1193Range types have two fields, the minimum and maximum values.
1194
1195@item
1196Enum types have one field per enum constant.
1197
1198@item
1199Function and method types have one field per parameter. The base types of
1200C@t{++} classes are also represented as fields.
1201
1202@item
1203Array types have one field representing the array's range.
1204
1205@item
1206If the type does not fit into one of these categories, a @code{TypeError}
1207is raised.
1208
1209@end itemize
329baa95
DE
1210
1211Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1212@table @code
1213@item bitpos
1214This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1215(as in C@t{++}) fields. The value is the position, counting
1acda803
TT
1216in bits, from the start of the containing type. Note that, in a
1217dynamic type, the position of a field may not be constant. In this
45fc7c99
TT
1218case, the value will be @code{None}. Also, a dynamic type may have
1219fields that do not appear in a corresponding concrete type.
329baa95
DE
1220
1221@item enumval
1222This attribute is only available for @code{enum} fields, and its value
1223is the enumeration member's integer representation.
1224
1225@item name
1226The name of the field, or @code{None} for anonymous fields.
1227
1228@item artificial
1229This is @code{True} if the field is artificial, usually meaning that
1230it was provided by the compiler and not the user. This attribute is
1231always provided, and is @code{False} if the field is not artificial.
1232
1233@item is_base_class
1234This is @code{True} if the field represents a base class of a C@t{++}
1235structure. This attribute is always provided, and is @code{False}
1236if the field is not a base class of the type that is the argument of
1237@code{fields}, or if that type was not a C@t{++} class.
1238
1239@item bitsize
1240If the field is packed, or is a bitfield, then this will have a
1241non-zero value, which is the size of the field in bits. Otherwise,
1242this will be zero; in this case the field's size is given by its type.
1243
1244@item type
1245The type of the field. This is usually an instance of @code{Type},
1246but it can be @code{None} in some situations.
1247
1248@item parent_type
1249The type which contains this field. This is an instance of
1250@code{gdb.Type}.
1251@end table
1252@end defun
1253
1254@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1255Return a new @code{gdb.Type} object which represents an array of this
1256type. If one argument is given, it is the inclusive upper bound of
1257the array; in this case the lower bound is zero. If two arguments are
1258given, the first argument is the lower bound of the array, and the
1259second argument is the upper bound of the array. An array's length
1260must not be negative, but the bounds can be.
1261@end defun
1262
1263@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1264Return a new @code{gdb.Type} object which represents a vector of this
1265type. If one argument is given, it is the inclusive upper bound of
1266the vector; in this case the lower bound is zero. If two arguments are
1267given, the first argument is the lower bound of the vector, and the
1268second argument is the upper bound of the vector. A vector's length
1269must not be negative, but the bounds can be.
1270
1271The difference between an @code{array} and a @code{vector} is that
1272arrays behave like in C: when used in expressions they decay to a pointer
1273to the first element whereas vectors are treated as first class values.
1274@end defun
1275
1276@defun Type.const ()
1277Return a new @code{gdb.Type} object which represents a
1278@code{const}-qualified variant of this type.
1279@end defun
1280
1281@defun Type.volatile ()
1282Return a new @code{gdb.Type} object which represents a
1283@code{volatile}-qualified variant of this type.
1284@end defun
1285
1286@defun Type.unqualified ()
1287Return a new @code{gdb.Type} object which represents an unqualified
1288variant of this type. That is, the result is neither @code{const} nor
1289@code{volatile}.
1290@end defun
1291
1292@defun Type.range ()
1293Return a Python @code{Tuple} object that contains two elements: the
1294low bound of the argument type and the high bound of that type. If
1295the type does not have a range, @value{GDBN} will raise a
1296@code{gdb.error} exception (@pxref{Exception Handling}).
1297@end defun
1298
1299@defun Type.reference ()
1300Return a new @code{gdb.Type} object which represents a reference to this
1301type.
1302@end defun
1303
1304@defun Type.pointer ()
1305Return a new @code{gdb.Type} object which represents a pointer to this
1306type.
1307@end defun
1308
1309@defun Type.strip_typedefs ()
1310Return a new @code{gdb.Type} that represents the real type,
1311after removing all layers of typedefs.
1312@end defun
1313
1314@defun Type.target ()
1315Return a new @code{gdb.Type} object which represents the target type
1316of this type.
1317
1318For a pointer type, the target type is the type of the pointed-to
1319object. For an array type (meaning C-like arrays), the target type is
1320the type of the elements of the array. For a function or method type,
1321the target type is the type of the return value. For a complex type,
1322the target type is the type of the elements. For a typedef, the
1323target type is the aliased type.
1324
1325If the type does not have a target, this method will throw an
1326exception.
1327@end defun
1328
1329@defun Type.template_argument (n @r{[}, block@r{]})
1330If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1331return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1332value of the @var{n}th template argument (indexed starting at 0).
329baa95 1333
1a6a384b
JL
1334If this @code{gdb.Type} is not a template type, or if the type has fewer
1335than @var{n} template arguments, this will throw an exception.
1336Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1337
1338If @var{block} is given, then @var{name} is looked up in that scope.
1339Otherwise, it is searched for globally.
1340@end defun
1341
59fb7612
SS
1342@defun Type.optimized_out ()
1343Return @code{gdb.Value} instance of this type whose value is optimized
1344out. This allows a frame decorator to indicate that the value of an
1345argument or a local variable is not known.
1346@end defun
329baa95
DE
1347
1348Each type has a code, which indicates what category this type falls
1349into. The available type categories are represented by constants
1350defined in the @code{gdb} module:
1351
b3ce5e5f
DE
1352@vtable @code
1353@vindex TYPE_CODE_PTR
329baa95
DE
1354@item gdb.TYPE_CODE_PTR
1355The type is a pointer.
1356
b3ce5e5f 1357@vindex TYPE_CODE_ARRAY
329baa95
DE
1358@item gdb.TYPE_CODE_ARRAY
1359The type is an array.
1360
b3ce5e5f 1361@vindex TYPE_CODE_STRUCT
329baa95
DE
1362@item gdb.TYPE_CODE_STRUCT
1363The type is a structure.
1364
b3ce5e5f 1365@vindex TYPE_CODE_UNION
329baa95
DE
1366@item gdb.TYPE_CODE_UNION
1367The type is a union.
1368
b3ce5e5f 1369@vindex TYPE_CODE_ENUM
329baa95
DE
1370@item gdb.TYPE_CODE_ENUM
1371The type is an enum.
1372
b3ce5e5f 1373@vindex TYPE_CODE_FLAGS
329baa95
DE
1374@item gdb.TYPE_CODE_FLAGS
1375A bit flags type, used for things such as status registers.
1376
b3ce5e5f 1377@vindex TYPE_CODE_FUNC
329baa95
DE
1378@item gdb.TYPE_CODE_FUNC
1379The type is a function.
1380
b3ce5e5f 1381@vindex TYPE_CODE_INT
329baa95
DE
1382@item gdb.TYPE_CODE_INT
1383The type is an integer type.
1384
b3ce5e5f 1385@vindex TYPE_CODE_FLT
329baa95
DE
1386@item gdb.TYPE_CODE_FLT
1387A floating point type.
1388
b3ce5e5f 1389@vindex TYPE_CODE_VOID
329baa95
DE
1390@item gdb.TYPE_CODE_VOID
1391The special type @code{void}.
1392
b3ce5e5f 1393@vindex TYPE_CODE_SET
329baa95
DE
1394@item gdb.TYPE_CODE_SET
1395A Pascal set type.
1396
b3ce5e5f 1397@vindex TYPE_CODE_RANGE
329baa95
DE
1398@item gdb.TYPE_CODE_RANGE
1399A range type, that is, an integer type with bounds.
1400
b3ce5e5f 1401@vindex TYPE_CODE_STRING
329baa95
DE
1402@item gdb.TYPE_CODE_STRING
1403A string type. Note that this is only used for certain languages with
1404language-defined string types; C strings are not represented this way.
1405
b3ce5e5f 1406@vindex TYPE_CODE_BITSTRING
329baa95
DE
1407@item gdb.TYPE_CODE_BITSTRING
1408A string of bits. It is deprecated.
1409
b3ce5e5f 1410@vindex TYPE_CODE_ERROR
329baa95
DE
1411@item gdb.TYPE_CODE_ERROR
1412An unknown or erroneous type.
1413
b3ce5e5f 1414@vindex TYPE_CODE_METHOD
329baa95 1415@item gdb.TYPE_CODE_METHOD
9c37b5ae 1416A method type, as found in C@t{++}.
329baa95 1417
b3ce5e5f 1418@vindex TYPE_CODE_METHODPTR
329baa95
DE
1419@item gdb.TYPE_CODE_METHODPTR
1420A pointer-to-member-function.
1421
b3ce5e5f 1422@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1423@item gdb.TYPE_CODE_MEMBERPTR
1424A pointer-to-member.
1425
b3ce5e5f 1426@vindex TYPE_CODE_REF
329baa95
DE
1427@item gdb.TYPE_CODE_REF
1428A reference type.
1429
3fcf899d
AV
1430@vindex TYPE_CODE_RVALUE_REF
1431@item gdb.TYPE_CODE_RVALUE_REF
1432A C@t{++}11 rvalue reference type.
1433
b3ce5e5f 1434@vindex TYPE_CODE_CHAR
329baa95
DE
1435@item gdb.TYPE_CODE_CHAR
1436A character type.
1437
b3ce5e5f 1438@vindex TYPE_CODE_BOOL
329baa95
DE
1439@item gdb.TYPE_CODE_BOOL
1440A boolean type.
1441
b3ce5e5f 1442@vindex TYPE_CODE_COMPLEX
329baa95
DE
1443@item gdb.TYPE_CODE_COMPLEX
1444A complex float type.
1445
b3ce5e5f 1446@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1447@item gdb.TYPE_CODE_TYPEDEF
1448A typedef to some other type.
1449
b3ce5e5f 1450@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1451@item gdb.TYPE_CODE_NAMESPACE
1452A C@t{++} namespace.
1453
b3ce5e5f 1454@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1455@item gdb.TYPE_CODE_DECFLOAT
1456A decimal floating point type.
1457
b3ce5e5f 1458@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1459@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1460A function internal to @value{GDBN}. This is the type used to represent
1461convenience functions.
b3ce5e5f 1462@end vtable
329baa95
DE
1463
1464Further support for types is provided in the @code{gdb.types}
1465Python module (@pxref{gdb.types}).
1466
1467@node Pretty Printing API
1468@subsubsection Pretty Printing API
b3ce5e5f 1469@cindex python pretty printing api
329baa95 1470
329baa95 1471A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1472specific interface, defined here. An example output is provided
1473(@pxref{Pretty Printing}).
329baa95
DE
1474
1475@defun pretty_printer.children (self)
1476@value{GDBN} will call this method on a pretty-printer to compute the
1477children of the pretty-printer's value.
1478
1479This method must return an object conforming to the Python iterator
1480protocol. Each item returned by the iterator must be a tuple holding
1481two elements. The first element is the ``name'' of the child; the
1482second element is the child's value. The value can be any Python
1483object which is convertible to a @value{GDBN} value.
1484
1485This method is optional. If it does not exist, @value{GDBN} will act
1486as though the value has no children.
2e62ab40 1487
a97c8e56
TT
1488For efficiency, the @code{children} method should lazily compute its
1489results. This will let @value{GDBN} read as few elements as
1490necessary, for example when various print settings (@pxref{Print
1491Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1492Objects}) limit the number of elements to be displayed.
1493
2e62ab40
AB
1494Children may be hidden from display based on the value of @samp{set
1495print max-depth} (@pxref{Print Settings}).
329baa95
DE
1496@end defun
1497
1498@defun pretty_printer.display_hint (self)
1499The CLI may call this method and use its result to change the
1500formatting of a value. The result will also be supplied to an MI
1501consumer as a @samp{displayhint} attribute of the variable being
1502printed.
1503
1504This method is optional. If it does exist, this method must return a
9f9aa852 1505string or the special value @code{None}.
329baa95
DE
1506
1507Some display hints are predefined by @value{GDBN}:
1508
1509@table @samp
1510@item array
1511Indicate that the object being printed is ``array-like''. The CLI
1512uses this to respect parameters such as @code{set print elements} and
1513@code{set print array}.
1514
1515@item map
1516Indicate that the object being printed is ``map-like'', and that the
1517children of this value can be assumed to alternate between keys and
1518values.
1519
1520@item string
1521Indicate that the object being printed is ``string-like''. If the
1522printer's @code{to_string} method returns a Python string of some
1523kind, then @value{GDBN} will call its internal language-specific
1524string-printing function to format the string. For the CLI this means
1525adding quotation marks, possibly escaping some characters, respecting
1526@code{set print elements}, and the like.
1527@end table
9f9aa852
AB
1528
1529The special value @code{None} causes @value{GDBN} to apply the default
1530display rules.
329baa95
DE
1531@end defun
1532
1533@defun pretty_printer.to_string (self)
1534@value{GDBN} will call this method to display the string
1535representation of the value passed to the object's constructor.
1536
1537When printing from the CLI, if the @code{to_string} method exists,
1538then @value{GDBN} will prepend its result to the values returned by
1539@code{children}. Exactly how this formatting is done is dependent on
1540the display hint, and may change as more hints are added. Also,
1541depending on the print settings (@pxref{Print Settings}), the CLI may
1542print just the result of @code{to_string} in a stack trace, omitting
1543the result of @code{children}.
1544
1545If this method returns a string, it is printed verbatim.
1546
1547Otherwise, if this method returns an instance of @code{gdb.Value},
1548then @value{GDBN} prints this value. This may result in a call to
1549another pretty-printer.
1550
1551If instead the method returns a Python value which is convertible to a
1552@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1553the resulting value. Again, this may result in a call to another
1554pretty-printer. Python scalars (integers, floats, and booleans) and
1555strings are convertible to @code{gdb.Value}; other types are not.
1556
1557Finally, if this method returns @code{None} then no further operations
1558are peformed in this method and nothing is printed.
1559
1560If the result is not one of these types, an exception is raised.
1561@end defun
1562
1563@value{GDBN} provides a function which can be used to look up the
1564default pretty-printer for a @code{gdb.Value}:
1565
1566@findex gdb.default_visualizer
1567@defun gdb.default_visualizer (value)
1568This function takes a @code{gdb.Value} object as an argument. If a
1569pretty-printer for this value exists, then it is returned. If no such
1570printer exists, then this returns @code{None}.
1571@end defun
1572
1573@node Selecting Pretty-Printers
1574@subsubsection Selecting Pretty-Printers
b3ce5e5f 1575@cindex selecting python pretty-printers
329baa95 1576
48869a5f
TT
1577@value{GDBN} provides several ways to register a pretty-printer:
1578globally, per program space, and per objfile. When choosing how to
1579register your pretty-printer, a good rule is to register it with the
1580smallest scope possible: that is prefer a specific objfile first, then
1581a program space, and only register a printer globally as a last
1582resort.
1583
1584@findex gdb.pretty_printers
1585@defvar gdb.pretty_printers
329baa95
DE
1586The Python list @code{gdb.pretty_printers} contains an array of
1587functions or callable objects that have been registered via addition
1588as a pretty-printer. Printers in this list are called @code{global}
1589printers, they're available when debugging all inferiors.
48869a5f
TT
1590@end defvar
1591
329baa95
DE
1592Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1593Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1594attribute.
1595
1596Each function on these lists is passed a single @code{gdb.Value}
1597argument and should return a pretty-printer object conforming to the
1598interface definition above (@pxref{Pretty Printing API}). If a function
1599cannot create a pretty-printer for the value, it should return
1600@code{None}.
1601
1602@value{GDBN} first checks the @code{pretty_printers} attribute of each
1603@code{gdb.Objfile} in the current program space and iteratively calls
1604each enabled lookup routine in the list for that @code{gdb.Objfile}
1605until it receives a pretty-printer object.
1606If no pretty-printer is found in the objfile lists, @value{GDBN} then
1607searches the pretty-printer list of the current program space,
1608calling each enabled function until an object is returned.
1609After these lists have been exhausted, it tries the global
1610@code{gdb.pretty_printers} list, again calling each enabled function until an
1611object is returned.
1612
1613The order in which the objfiles are searched is not specified. For a
1614given list, functions are always invoked from the head of the list,
1615and iterated over sequentially until the end of the list, or a printer
1616object is returned.
1617
1618For various reasons a pretty-printer may not work.
1619For example, the underlying data structure may have changed and
1620the pretty-printer is out of date.
1621
1622The consequences of a broken pretty-printer are severe enough that
1623@value{GDBN} provides support for enabling and disabling individual
1624printers. For example, if @code{print frame-arguments} is on,
1625a backtrace can become highly illegible if any argument is printed
1626with a broken printer.
1627
1628Pretty-printers are enabled and disabled by attaching an @code{enabled}
1629attribute to the registered function or callable object. If this attribute
1630is present and its value is @code{False}, the printer is disabled, otherwise
1631the printer is enabled.
1632
1633@node Writing a Pretty-Printer
1634@subsubsection Writing a Pretty-Printer
1635@cindex writing a pretty-printer
1636
1637A pretty-printer consists of two parts: a lookup function to detect
1638if the type is supported, and the printer itself.
1639
1640Here is an example showing how a @code{std::string} printer might be
1641written. @xref{Pretty Printing API}, for details on the API this class
1642must provide.
1643
1644@smallexample
1645class StdStringPrinter(object):
1646 "Print a std::string"
1647
1648 def __init__(self, val):
1649 self.val = val
1650
1651 def to_string(self):
1652 return self.val['_M_dataplus']['_M_p']
1653
1654 def display_hint(self):
1655 return 'string'
1656@end smallexample
1657
1658And here is an example showing how a lookup function for the printer
1659example above might be written.
1660
1661@smallexample
1662def str_lookup_function(val):
1663 lookup_tag = val.type.tag
1664 if lookup_tag == None:
1665 return None
1666 regex = re.compile("^std::basic_string<char,.*>$")
1667 if regex.match(lookup_tag):
1668 return StdStringPrinter(val)
1669 return None
1670@end smallexample
1671
1672The example lookup function extracts the value's type, and attempts to
1673match it to a type that it can pretty-print. If it is a type the
1674printer can pretty-print, it will return a printer object. If not, it
1675returns @code{None}.
1676
1677We recommend that you put your core pretty-printers into a Python
1678package. If your pretty-printers are for use with a library, we
1679further recommend embedding a version number into the package name.
1680This practice will enable @value{GDBN} to load multiple versions of
1681your pretty-printers at the same time, because they will have
1682different names.
1683
1684You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1685can be evaluated multiple times without changing its meaning. An
1686ideal auto-load file will consist solely of @code{import}s of your
1687printer modules, followed by a call to a register pretty-printers with
1688the current objfile.
1689
1690Taken as a whole, this approach will scale nicely to multiple
1691inferiors, each potentially using a different library version.
1692Embedding a version number in the Python package name will ensure that
1693@value{GDBN} is able to load both sets of printers simultaneously.
1694Then, because the search for pretty-printers is done by objfile, and
1695because your auto-loaded code took care to register your library's
1696printers with a specific objfile, @value{GDBN} will find the correct
1697printers for the specific version of the library used by each
1698inferior.
1699
1700To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1701this code might appear in @code{gdb.libstdcxx.v6}:
1702
1703@smallexample
1704def register_printers(objfile):
1705 objfile.pretty_printers.append(str_lookup_function)
1706@end smallexample
1707
1708@noindent
1709And then the corresponding contents of the auto-load file would be:
1710
1711@smallexample
1712import gdb.libstdcxx.v6
1713gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1714@end smallexample
1715
1716The previous example illustrates a basic pretty-printer.
1717There are a few things that can be improved on.
1718The printer doesn't have a name, making it hard to identify in a
1719list of installed printers. The lookup function has a name, but
1720lookup functions can have arbitrary, even identical, names.
1721
1722Second, the printer only handles one type, whereas a library typically has
1723several types. One could install a lookup function for each desired type
1724in the library, but one could also have a single lookup function recognize
1725several types. The latter is the conventional way this is handled.
1726If a pretty-printer can handle multiple data types, then its
1727@dfn{subprinters} are the printers for the individual data types.
1728
1729The @code{gdb.printing} module provides a formal way of solving these
1730problems (@pxref{gdb.printing}).
1731Here is another example that handles multiple types.
1732
1733These are the types we are going to pretty-print:
1734
1735@smallexample
1736struct foo @{ int a, b; @};
1737struct bar @{ struct foo x, y; @};
1738@end smallexample
1739
1740Here are the printers:
1741
1742@smallexample
1743class fooPrinter:
1744 """Print a foo object."""
1745
1746 def __init__(self, val):
1747 self.val = val
1748
1749 def to_string(self):
1750 return ("a=<" + str(self.val["a"]) +
1751 "> b=<" + str(self.val["b"]) + ">")
1752
1753class barPrinter:
1754 """Print a bar object."""
1755
1756 def __init__(self, val):
1757 self.val = val
1758
1759 def to_string(self):
1760 return ("x=<" + str(self.val["x"]) +
1761 "> y=<" + str(self.val["y"]) + ">")
1762@end smallexample
1763
1764This example doesn't need a lookup function, that is handled by the
1765@code{gdb.printing} module. Instead a function is provided to build up
1766the object that handles the lookup.
1767
1768@smallexample
1769import gdb.printing
1770
1771def build_pretty_printer():
1772 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1773 "my_library")
1774 pp.add_printer('foo', '^foo$', fooPrinter)
1775 pp.add_printer('bar', '^bar$', barPrinter)
1776 return pp
1777@end smallexample
1778
1779And here is the autoload support:
1780
1781@smallexample
1782import gdb.printing
1783import my_library
1784gdb.printing.register_pretty_printer(
1785 gdb.current_objfile(),
1786 my_library.build_pretty_printer())
1787@end smallexample
1788
1789Finally, when this printer is loaded into @value{GDBN}, here is the
1790corresponding output of @samp{info pretty-printer}:
1791
1792@smallexample
1793(gdb) info pretty-printer
1794my_library.so:
1795 my_library
1796 foo
1797 bar
1798@end smallexample
1799
1800@node Type Printing API
1801@subsubsection Type Printing API
1802@cindex type printing API for Python
1803
1804@value{GDBN} provides a way for Python code to customize type display.
1805This is mainly useful for substituting canonical typedef names for
1806types.
1807
1808@cindex type printer
1809A @dfn{type printer} is just a Python object conforming to a certain
1810protocol. A simple base class implementing the protocol is provided;
1811see @ref{gdb.types}. A type printer must supply at least:
1812
1813@defivar type_printer enabled
1814A boolean which is True if the printer is enabled, and False
1815otherwise. This is manipulated by the @code{enable type-printer}
1816and @code{disable type-printer} commands.
1817@end defivar
1818
1819@defivar type_printer name
1820The name of the type printer. This must be a string. This is used by
1821the @code{enable type-printer} and @code{disable type-printer}
1822commands.
1823@end defivar
1824
1825@defmethod type_printer instantiate (self)
1826This is called by @value{GDBN} at the start of type-printing. It is
1827only called if the type printer is enabled. This method must return a
1828new object that supplies a @code{recognize} method, as described below.
1829@end defmethod
1830
1831
1832When displaying a type, say via the @code{ptype} command, @value{GDBN}
1833will compute a list of type recognizers. This is done by iterating
1834first over the per-objfile type printers (@pxref{Objfiles In Python}),
1835followed by the per-progspace type printers (@pxref{Progspaces In
1836Python}), and finally the global type printers.
1837
1838@value{GDBN} will call the @code{instantiate} method of each enabled
1839type printer. If this method returns @code{None}, then the result is
1840ignored; otherwise, it is appended to the list of recognizers.
1841
1842Then, when @value{GDBN} is going to display a type name, it iterates
1843over the list of recognizers. For each one, it calls the recognition
1844function, stopping if the function returns a non-@code{None} value.
1845The recognition function is defined as:
1846
1847@defmethod type_recognizer recognize (self, type)
1848If @var{type} is not recognized, return @code{None}. Otherwise,
1849return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1850The @var{type} argument will be an instance of @code{gdb.Type}
1851(@pxref{Types In Python}).
329baa95
DE
1852@end defmethod
1853
1854@value{GDBN} uses this two-pass approach so that type printers can
1855efficiently cache information without holding on to it too long. For
1856example, it can be convenient to look up type information in a type
1857printer and hold it for a recognizer's lifetime; if a single pass were
1858done then type printers would have to make use of the event system in
1859order to avoid holding information that could become stale as the
1860inferior changed.
1861
1862@node Frame Filter API
521b499b 1863@subsubsection Filtering Frames
329baa95
DE
1864@cindex frame filters api
1865
1866Frame filters are Python objects that manipulate the visibility of a
1867frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1868@value{GDBN}.
1869
1870Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1871commands (@pxref{GDB/MI}), those that return a collection of frames
1872are affected. The commands that work with frame filters are:
1873
1874@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1875@code{-stack-list-frames}
1876(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1877@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1878-stack-list-variables command}), @code{-stack-list-arguments}
1879@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1880@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1881-stack-list-locals command}).
1882
1883A frame filter works by taking an iterator as an argument, applying
1884actions to the contents of that iterator, and returning another
1885iterator (or, possibly, the same iterator it was provided in the case
1886where the filter does not perform any operations). Typically, frame
1887filters utilize tools such as the Python's @code{itertools} module to
1888work with and create new iterators from the source iterator.
1889Regardless of how a filter chooses to apply actions, it must not alter
1890the underlying @value{GDBN} frame or frames, or attempt to alter the
1891call-stack within @value{GDBN}. This preserves data integrity within
1892@value{GDBN}. Frame filters are executed on a priority basis and care
1893should be taken that some frame filters may have been executed before,
1894and that some frame filters will be executed after.
1895
1896An important consideration when designing frame filters, and well
1897worth reflecting upon, is that frame filters should avoid unwinding
1898the call stack if possible. Some stacks can run very deep, into the
1899tens of thousands in some cases. To search every frame when a frame
1900filter executes may be too expensive at that step. The frame filter
1901cannot know how many frames it has to iterate over, and it may have to
1902iterate through them all. This ends up duplicating effort as
1903@value{GDBN} performs this iteration when it prints the frames. If
1904the filter can defer unwinding frames until frame decorators are
1905executed, after the last filter has executed, it should. @xref{Frame
1906Decorator API}, for more information on decorators. Also, there are
1907examples for both frame decorators and filters in later chapters.
1908@xref{Writing a Frame Filter}, for more information.
1909
1910The Python dictionary @code{gdb.frame_filters} contains key/object
1911pairings that comprise a frame filter. Frame filters in this
1912dictionary are called @code{global} frame filters, and they are
1913available when debugging all inferiors. These frame filters must
1914register with the dictionary directly. In addition to the
1915@code{global} dictionary, there are other dictionaries that are loaded
1916with different inferiors via auto-loading (@pxref{Python
1917Auto-loading}). The two other areas where frame filter dictionaries
1918can be found are: @code{gdb.Progspace} which contains a
1919@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1920object which also contains a @code{frame_filters} dictionary
1921attribute.
1922
1923When a command is executed from @value{GDBN} that is compatible with
1924frame filters, @value{GDBN} combines the @code{global},
1925@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1926loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1927several frames, and thus several object files, might be in use.
1928@value{GDBN} then prunes any frame filter whose @code{enabled}
1929attribute is @code{False}. This pruned list is then sorted according
1930to the @code{priority} attribute in each filter.
1931
1932Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1933creates an iterator which wraps each frame in the call stack in a
1934@code{FrameDecorator} object, and calls each filter in order. The
1935output from the previous filter will always be the input to the next
1936filter, and so on.
1937
1938Frame filters have a mandatory interface which each frame filter must
1939implement, defined here:
1940
1941@defun FrameFilter.filter (iterator)
1942@value{GDBN} will call this method on a frame filter when it has
1943reached the order in the priority list for that filter.
1944
1945For example, if there are four frame filters:
1946
1947@smallexample
1948Name Priority
1949
1950Filter1 5
1951Filter2 10
1952Filter3 100
1953Filter4 1
1954@end smallexample
1955
1956The order that the frame filters will be called is:
1957
1958@smallexample
1959Filter3 -> Filter2 -> Filter1 -> Filter4
1960@end smallexample
1961
1962Note that the output from @code{Filter3} is passed to the input of
1963@code{Filter2}, and so on.
1964
1965This @code{filter} method is passed a Python iterator. This iterator
1966contains a sequence of frame decorators that wrap each
1967@code{gdb.Frame}, or a frame decorator that wraps another frame
1968decorator. The first filter that is executed in the sequence of frame
1969filters will receive an iterator entirely comprised of default
1970@code{FrameDecorator} objects. However, after each frame filter is
1971executed, the previous frame filter may have wrapped some or all of
1972the frame decorators with their own frame decorator. As frame
1973decorators must also conform to a mandatory interface, these
1974decorators can be assumed to act in a uniform manner (@pxref{Frame
1975Decorator API}).
1976
1977This method must return an object conforming to the Python iterator
1978protocol. Each item in the iterator must be an object conforming to
1979the frame decorator interface. If a frame filter does not wish to
1980perform any operations on this iterator, it should return that
1981iterator untouched.
1982
1983This method is not optional. If it does not exist, @value{GDBN} will
1984raise and print an error.
1985@end defun
1986
1987@defvar FrameFilter.name
1988The @code{name} attribute must be Python string which contains the
1989name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1990Management}). This attribute may contain any combination of letters
1991or numbers. Care should be taken to ensure that it is unique. This
1992attribute is mandatory.
1993@end defvar
1994
1995@defvar FrameFilter.enabled
1996The @code{enabled} attribute must be Python boolean. This attribute
1997indicates to @value{GDBN} whether the frame filter is enabled, and
1998should be considered when frame filters are executed. If
1999@code{enabled} is @code{True}, then the frame filter will be executed
2000when any of the backtrace commands detailed earlier in this chapter
2001are executed. If @code{enabled} is @code{False}, then the frame
2002filter will not be executed. This attribute is mandatory.
2003@end defvar
2004
2005@defvar FrameFilter.priority
2006The @code{priority} attribute must be Python integer. This attribute
2007controls the order of execution in relation to other frame filters.
2008There are no imposed limits on the range of @code{priority} other than
2009it must be a valid integer. The higher the @code{priority} attribute,
2010the sooner the frame filter will be executed in relation to other
2011frame filters. Although @code{priority} can be negative, it is
2012recommended practice to assume zero is the lowest priority that a
2013frame filter can be assigned. Frame filters that have the same
2014priority are executed in unsorted order in that priority slot. This
521b499b 2015attribute is mandatory. 100 is a good default priority.
329baa95
DE
2016@end defvar
2017
2018@node Frame Decorator API
521b499b 2019@subsubsection Decorating Frames
329baa95
DE
2020@cindex frame decorator api
2021
2022Frame decorators are sister objects to frame filters (@pxref{Frame
2023Filter API}). Frame decorators are applied by a frame filter and can
2024only be used in conjunction with frame filters.
2025
2026The purpose of a frame decorator is to customize the printed content
2027of each @code{gdb.Frame} in commands where frame filters are executed.
2028This concept is called decorating a frame. Frame decorators decorate
2029a @code{gdb.Frame} with Python code contained within each API call.
2030This separates the actual data contained in a @code{gdb.Frame} from
2031the decorated data produced by a frame decorator. This abstraction is
2032necessary to maintain integrity of the data contained in each
2033@code{gdb.Frame}.
2034
2035Frame decorators have a mandatory interface, defined below.
2036
2037@value{GDBN} already contains a frame decorator called
2038@code{FrameDecorator}. This contains substantial amounts of
2039boilerplate code to decorate the content of a @code{gdb.Frame}. It is
2040recommended that other frame decorators inherit and extend this
2041object, and only to override the methods needed.
2042
521b499b
TT
2043@tindex gdb.FrameDecorator
2044@code{FrameDecorator} is defined in the Python module
2045@code{gdb.FrameDecorator}, so your code can import it like:
2046@smallexample
2047from gdb.FrameDecorator import FrameDecorator
2048@end smallexample
2049
329baa95
DE
2050@defun FrameDecorator.elided (self)
2051
2052The @code{elided} method groups frames together in a hierarchical
2053system. An example would be an interpreter, where multiple low-level
2054frames make up a single call in the interpreted language. In this
2055example, the frame filter would elide the low-level frames and present
2056a single high-level frame, representing the call in the interpreted
2057language, to the user.
2058
2059The @code{elided} function must return an iterable and this iterable
2060must contain the frames that are being elided wrapped in a suitable
2061frame decorator. If no frames are being elided this function may
2062return an empty iterable, or @code{None}. Elided frames are indented
2063from normal frames in a @code{CLI} backtrace, or in the case of
2064@code{GDB/MI}, are placed in the @code{children} field of the eliding
2065frame.
2066
2067It is the frame filter's task to also filter out the elided frames from
2068the source iterator. This will avoid printing the frame twice.
2069@end defun
2070
2071@defun FrameDecorator.function (self)
2072
2073This method returns the name of the function in the frame that is to
2074be printed.
2075
2076This method must return a Python string describing the function, or
2077@code{None}.
2078
2079If this function returns @code{None}, @value{GDBN} will not print any
2080data for this field.
2081@end defun
2082
2083@defun FrameDecorator.address (self)
2084
2085This method returns the address of the frame that is to be printed.
2086
2087This method must return a Python numeric integer type of sufficient
2088size to describe the address of the frame, or @code{None}.
2089
2090If this function returns a @code{None}, @value{GDBN} will not print
2091any data for this field.
2092@end defun
2093
2094@defun FrameDecorator.filename (self)
2095
2096This method returns the filename and path associated with this frame.
2097
2098This method must return a Python string containing the filename and
2099the path to the object file backing the frame, or @code{None}.
2100
2101If this function returns a @code{None}, @value{GDBN} will not print
2102any data for this field.
2103@end defun
2104
2105@defun FrameDecorator.line (self):
2106
2107This method returns the line number associated with the current
2108position within the function addressed by this frame.
2109
2110This method must return a Python integer type, or @code{None}.
2111
2112If this function returns a @code{None}, @value{GDBN} will not print
2113any data for this field.
2114@end defun
2115
2116@defun FrameDecorator.frame_args (self)
2117@anchor{frame_args}
2118
2119This method must return an iterable, or @code{None}. Returning an
2120empty iterable, or @code{None} means frame arguments will not be
2121printed for this frame. This iterable must contain objects that
2122implement two methods, described here.
2123
6596a5d4 2124This object must implement a @code{symbol} method which takes a
329baa95
DE
2125single @code{self} parameter and must return a @code{gdb.Symbol}
2126(@pxref{Symbols In Python}), or a Python string. The object must also
2127implement a @code{value} method which takes a single @code{self}
2128parameter and must return a @code{gdb.Value} (@pxref{Values From
2129Inferior}), a Python value, or @code{None}. If the @code{value}
2130method returns @code{None}, and the @code{argument} method returns a
2131@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2132the @code{gdb.Symbol} automatically.
2133
2134A brief example:
2135
2136@smallexample
2137class SymValueWrapper():
2138
2139 def __init__(self, symbol, value):
2140 self.sym = symbol
2141 self.val = value
2142
2143 def value(self):
2144 return self.val
2145
2146 def symbol(self):
2147 return self.sym
2148
2149class SomeFrameDecorator()
2150...
2151...
2152 def frame_args(self):
2153 args = []
2154 try:
2155 block = self.inferior_frame.block()
2156 except:
2157 return None
2158
2159 # Iterate over all symbols in a block. Only add
2160 # symbols that are arguments.
2161 for sym in block:
2162 if not sym.is_argument:
2163 continue
2164 args.append(SymValueWrapper(sym,None))
2165
2166 # Add example synthetic argument.
2167 args.append(SymValueWrapper(``foo'', 42))
2168
2169 return args
2170@end smallexample
2171@end defun
2172
2173@defun FrameDecorator.frame_locals (self)
2174
2175This method must return an iterable or @code{None}. Returning an
2176empty iterable, or @code{None} means frame local arguments will not be
2177printed for this frame.
2178
2179The object interface, the description of the various strategies for
2180reading frame locals, and the example are largely similar to those
2181described in the @code{frame_args} function, (@pxref{frame_args,,The
2182frame filter frame_args function}). Below is a modified example:
2183
2184@smallexample
2185class SomeFrameDecorator()
2186...
2187...
2188 def frame_locals(self):
2189 vars = []
2190 try:
2191 block = self.inferior_frame.block()
2192 except:
2193 return None
2194
2195 # Iterate over all symbols in a block. Add all
2196 # symbols, except arguments.
2197 for sym in block:
2198 if sym.is_argument:
2199 continue
2200 vars.append(SymValueWrapper(sym,None))
2201
2202 # Add an example of a synthetic local variable.
2203 vars.append(SymValueWrapper(``bar'', 99))
2204
2205 return vars
2206@end smallexample
2207@end defun
2208
2209@defun FrameDecorator.inferior_frame (self):
2210
2211This method must return the underlying @code{gdb.Frame} that this
2212frame decorator is decorating. @value{GDBN} requires the underlying
2213frame for internal frame information to determine how to print certain
2214values when printing a frame.
2215@end defun
2216
2217@node Writing a Frame Filter
2218@subsubsection Writing a Frame Filter
2219@cindex writing a frame filter
2220
2221There are three basic elements that a frame filter must implement: it
2222must correctly implement the documented interface (@pxref{Frame Filter
2223API}), it must register itself with @value{GDBN}, and finally, it must
2224decide if it is to work on the data provided by @value{GDBN}. In all
2225cases, whether it works on the iterator or not, each frame filter must
2226return an iterator. A bare-bones frame filter follows the pattern in
2227the following example.
2228
2229@smallexample
2230import gdb
2231
2232class FrameFilter():
2233
2234 def __init__(self):
2235 # Frame filter attribute creation.
2236 #
2237 # 'name' is the name of the filter that GDB will display.
2238 #
2239 # 'priority' is the priority of the filter relative to other
2240 # filters.
2241 #
2242 # 'enabled' is a boolean that indicates whether this filter is
2243 # enabled and should be executed.
2244
2245 self.name = "Foo"
2246 self.priority = 100
2247 self.enabled = True
2248
2249 # Register this frame filter with the global frame_filters
2250 # dictionary.
2251 gdb.frame_filters[self.name] = self
2252
2253 def filter(self, frame_iter):
2254 # Just return the iterator.
2255 return frame_iter
2256@end smallexample
2257
2258The frame filter in the example above implements the three
2259requirements for all frame filters. It implements the API, self
2260registers, and makes a decision on the iterator (in this case, it just
2261returns the iterator untouched).
2262
2263The first step is attribute creation and assignment, and as shown in
2264the comments the filter assigns the following attributes: @code{name},
2265@code{priority} and whether the filter should be enabled with the
2266@code{enabled} attribute.
2267
2268The second step is registering the frame filter with the dictionary or
2269dictionaries that the frame filter has interest in. As shown in the
2270comments, this filter just registers itself with the global dictionary
2271@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2272is a dictionary that is initialized in the @code{gdb} module when
2273@value{GDBN} starts. What dictionary a filter registers with is an
2274important consideration. Generally, if a filter is specific to a set
2275of code, it should be registered either in the @code{objfile} or
2276@code{progspace} dictionaries as they are specific to the program
2277currently loaded in @value{GDBN}. The global dictionary is always
2278present in @value{GDBN} and is never unloaded. Any filters registered
2279with the global dictionary will exist until @value{GDBN} exits. To
2280avoid filters that may conflict, it is generally better to register
2281frame filters against the dictionaries that more closely align with
2282the usage of the filter currently in question. @xref{Python
2283Auto-loading}, for further information on auto-loading Python scripts.
2284
2285@value{GDBN} takes a hands-off approach to frame filter registration,
2286therefore it is the frame filter's responsibility to ensure
2287registration has occurred, and that any exceptions are handled
2288appropriately. In particular, you may wish to handle exceptions
2289relating to Python dictionary key uniqueness. It is mandatory that
2290the dictionary key is the same as frame filter's @code{name}
2291attribute. When a user manages frame filters (@pxref{Frame Filter
2292Management}), the names @value{GDBN} will display are those contained
2293in the @code{name} attribute.
2294
2295The final step of this example is the implementation of the
2296@code{filter} method. As shown in the example comments, we define the
2297@code{filter} method and note that the method must take an iterator,
2298and also must return an iterator. In this bare-bones example, the
2299frame filter is not very useful as it just returns the iterator
2300untouched. However this is a valid operation for frame filters that
2301have the @code{enabled} attribute set, but decide not to operate on
2302any frames.
2303
2304In the next example, the frame filter operates on all frames and
2305utilizes a frame decorator to perform some work on the frames.
2306@xref{Frame Decorator API}, for further information on the frame
2307decorator interface.
2308
2309This example works on inlined frames. It highlights frames which are
2310inlined by tagging them with an ``[inlined]'' tag. By applying a
2311frame decorator to all frames with the Python @code{itertools imap}
2312method, the example defers actions to the frame decorator. Frame
2313decorators are only processed when @value{GDBN} prints the backtrace.
2314
2315This introduces a new decision making topic: whether to perform
2316decision making operations at the filtering step, or at the printing
2317step. In this example's approach, it does not perform any filtering
2318decisions at the filtering step beyond mapping a frame decorator to
2319each frame. This allows the actual decision making to be performed
2320when each frame is printed. This is an important consideration, and
2321well worth reflecting upon when designing a frame filter. An issue
2322that frame filters should avoid is unwinding the stack if possible.
2323Some stacks can run very deep, into the tens of thousands in some
2324cases. To search every frame to determine if it is inlined ahead of
2325time may be too expensive at the filtering step. The frame filter
2326cannot know how many frames it has to iterate over, and it would have
2327to iterate through them all. This ends up duplicating effort as
2328@value{GDBN} performs this iteration when it prints the frames.
2329
2330In this example decision making can be deferred to the printing step.
2331As each frame is printed, the frame decorator can examine each frame
2332in turn when @value{GDBN} iterates. From a performance viewpoint,
2333this is the most appropriate decision to make as it avoids duplicating
2334the effort that the printing step would undertake anyway. Also, if
2335there are many frame filters unwinding the stack during filtering, it
2336can substantially delay the printing of the backtrace which will
2337result in large memory usage, and a poor user experience.
2338
2339@smallexample
2340class InlineFilter():
2341
2342 def __init__(self):
2343 self.name = "InlinedFrameFilter"
2344 self.priority = 100
2345 self.enabled = True
2346 gdb.frame_filters[self.name] = self
2347
2348 def filter(self, frame_iter):
2349 frame_iter = itertools.imap(InlinedFrameDecorator,
2350 frame_iter)
2351 return frame_iter
2352@end smallexample
2353
2354This frame filter is somewhat similar to the earlier example, except
2355that the @code{filter} method applies a frame decorator object called
2356@code{InlinedFrameDecorator} to each element in the iterator. The
2357@code{imap} Python method is light-weight. It does not proactively
2358iterate over the iterator, but rather creates a new iterator which
2359wraps the existing one.
2360
2361Below is the frame decorator for this example.
2362
2363@smallexample
2364class InlinedFrameDecorator(FrameDecorator):
2365
2366 def __init__(self, fobj):
2367 super(InlinedFrameDecorator, self).__init__(fobj)
2368
2369 def function(self):
2370 frame = fobj.inferior_frame()
2371 name = str(frame.name())
2372
2373 if frame.type() == gdb.INLINE_FRAME:
2374 name = name + " [inlined]"
2375
2376 return name
2377@end smallexample
2378
2379This frame decorator only defines and overrides the @code{function}
2380method. It lets the supplied @code{FrameDecorator}, which is shipped
2381with @value{GDBN}, perform the other work associated with printing
2382this frame.
2383
2384The combination of these two objects create this output from a
2385backtrace:
2386
2387@smallexample
2388#0 0x004004e0 in bar () at inline.c:11
2389#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2390#2 0x00400566 in main () at inline.c:31
2391@end smallexample
2392
2393So in the case of this example, a frame decorator is applied to all
2394frames, regardless of whether they may be inlined or not. As
2395@value{GDBN} iterates over the iterator produced by the frame filters,
2396@value{GDBN} executes each frame decorator which then makes a decision
2397on what to print in the @code{function} callback. Using a strategy
2398like this is a way to defer decisions on the frame content to printing
2399time.
2400
2401@subheading Eliding Frames
2402
2403It might be that the above example is not desirable for representing
2404inlined frames, and a hierarchical approach may be preferred. If we
2405want to hierarchically represent frames, the @code{elided} frame
2406decorator interface might be preferable.
2407
2408This example approaches the issue with the @code{elided} method. This
2409example is quite long, but very simplistic. It is out-of-scope for
2410this section to write a complete example that comprehensively covers
2411all approaches of finding and printing inlined frames. However, this
2412example illustrates the approach an author might use.
2413
2414This example comprises of three sections.
2415
2416@smallexample
2417class InlineFrameFilter():
2418
2419 def __init__(self):
2420 self.name = "InlinedFrameFilter"
2421 self.priority = 100
2422 self.enabled = True
2423 gdb.frame_filters[self.name] = self
2424
2425 def filter(self, frame_iter):
2426 return ElidingInlineIterator(frame_iter)
2427@end smallexample
2428
2429This frame filter is very similar to the other examples. The only
2430difference is this frame filter is wrapping the iterator provided to
2431it (@code{frame_iter}) with a custom iterator called
2432@code{ElidingInlineIterator}. This again defers actions to when
2433@value{GDBN} prints the backtrace, as the iterator is not traversed
2434until printing.
2435
2436The iterator for this example is as follows. It is in this section of
2437the example where decisions are made on the content of the backtrace.
2438
2439@smallexample
2440class ElidingInlineIterator:
2441 def __init__(self, ii):
2442 self.input_iterator = ii
2443
2444 def __iter__(self):
2445 return self
2446
2447 def next(self):
2448 frame = next(self.input_iterator)
2449
2450 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2451 return frame
2452
2453 try:
2454 eliding_frame = next(self.input_iterator)
2455 except StopIteration:
2456 return frame
2457 return ElidingFrameDecorator(eliding_frame, [frame])
2458@end smallexample
2459
2460This iterator implements the Python iterator protocol. When the
2461@code{next} function is called (when @value{GDBN} prints each frame),
2462the iterator checks if this frame decorator, @code{frame}, is wrapping
2463an inlined frame. If it is not, it returns the existing frame decorator
2464untouched. If it is wrapping an inlined frame, it assumes that the
2465inlined frame was contained within the next oldest frame,
2466@code{eliding_frame}, which it fetches. It then creates and returns a
2467frame decorator, @code{ElidingFrameDecorator}, which contains both the
2468elided frame, and the eliding frame.
2469
2470@smallexample
2471class ElidingInlineDecorator(FrameDecorator):
2472
2473 def __init__(self, frame, elided_frames):
2474 super(ElidingInlineDecorator, self).__init__(frame)
2475 self.frame = frame
2476 self.elided_frames = elided_frames
2477
2478 def elided(self):
2479 return iter(self.elided_frames)
2480@end smallexample
2481
2482This frame decorator overrides one function and returns the inlined
2483frame in the @code{elided} method. As before it lets
2484@code{FrameDecorator} do the rest of the work involved in printing
2485this frame. This produces the following output.
2486
2487@smallexample
2488#0 0x004004e0 in bar () at inline.c:11
2489#2 0x00400529 in main () at inline.c:25
2490 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2491@end smallexample
2492
2493In that output, @code{max} which has been inlined into @code{main} is
2494printed hierarchically. Another approach would be to combine the
2495@code{function} method, and the @code{elided} method to both print a
2496marker in the inlined frame, and also show the hierarchical
2497relationship.
2498
d11916aa
SS
2499@node Unwinding Frames in Python
2500@subsubsection Unwinding Frames in Python
2501@cindex unwinding frames in Python
2502
2503In @value{GDBN} terminology ``unwinding'' is the process of finding
2504the previous frame (that is, caller's) from the current one. An
2505unwinder has three methods. The first one checks if it can handle
2506given frame (``sniff'' it). For the frames it can sniff an unwinder
2507provides two additional methods: it can return frame's ID, and it can
2508fetch registers from the previous frame. A running @value{GDBN}
2509mantains a list of the unwinders and calls each unwinder's sniffer in
2510turn until it finds the one that recognizes the current frame. There
2511is an API to register an unwinder.
2512
2513The unwinders that come with @value{GDBN} handle standard frames.
2514However, mixed language applications (for example, an application
2515running Java Virtual Machine) sometimes use frame layouts that cannot
2516be handled by the @value{GDBN} unwinders. You can write Python code
2517that can handle such custom frames.
2518
2519You implement a frame unwinder in Python as a class with which has two
2520attributes, @code{name} and @code{enabled}, with obvious meanings, and
2521a single method @code{__call__}, which examines a given frame and
2522returns an object (an instance of @code{gdb.UnwindInfo class)}
2523describing it. If an unwinder does not recognize a frame, it should
2524return @code{None}. The code in @value{GDBN} that enables writing
2525unwinders in Python uses this object to return frame's ID and previous
2526frame registers when @value{GDBN} core asks for them.
2527
e7b5068c
TT
2528An unwinder should do as little work as possible. Some otherwise
2529innocuous operations can cause problems (even crashes, as this code is
2530not not well-hardened yet). For example, making an inferior call from
2531an unwinder is unadvisable, as an inferior call will reset
2532@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2533unwinding.
2534
d11916aa
SS
2535@subheading Unwinder Input
2536
2537An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2538provides a method to read frame's registers:
2539
2540@defun PendingFrame.read_register (reg)
e7b5068c 2541This method returns the contents of the register @var{reg} in the
43d5901d
AB
2542frame as a @code{gdb.Value} object. For a description of the
2543acceptable values of @var{reg} see
2544@ref{gdbpy_frame_read_register,,Frame.read_register}. If @var{reg}
2545does not name a register for the current architecture, this method
2546will throw an exception.
e7b5068c
TT
2547
2548Note that this method will always return a @code{gdb.Value} for a
2549valid register name. This does not mean that the value will be valid.
2550For example, you may request a register that an earlier unwinder could
2551not unwind---the value will be unavailable. Instead, the
2552@code{gdb.Value} returned from this method will be lazy; that is, its
2553underlying bits will not be fetched until it is first used. So,
2554attempting to use such a value will cause an exception at the point of
2555use.
2556
2557The type of the returned @code{gdb.Value} depends on the register and
2558the architecture. It is common for registers to have a scalar type,
2559like @code{long long}; but many other types are possible, such as
2560pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2561@end defun
2562
2563It also provides a factory method to create a @code{gdb.UnwindInfo}
2564instance to be returned to @value{GDBN}:
2565
2566@defun PendingFrame.create_unwind_info (frame_id)
2567Returns a new @code{gdb.UnwindInfo} instance identified by given
2568@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2569using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2570determine which function will be used, as follows:
2571
2572@table @code
d11916aa 2573@item sp, pc
e7b5068c
TT
2574The frame is identified by the given stack address and PC. The stack
2575address must be chosen so that it is constant throughout the lifetime
2576of the frame, so a typical choice is the value of the stack pointer at
2577the start of the function---in the DWARF standard, this would be the
2578``Call Frame Address''.
d11916aa 2579
e7b5068c
TT
2580This is the most common case by far. The other cases are documented
2581for completeness but are only useful in specialized situations.
2582
2583@item sp, pc, special
2584The frame is identified by the stack address, the PC, and a
2585``special'' address. The special address is used on architectures
2586that can have frames that do not change the stack, but which are still
2587distinct, for example the IA-64, which has a second stack for
2588registers. Both @var{sp} and @var{special} must be constant
2589throughout the lifetime of the frame.
d11916aa
SS
2590
2591@item sp
e7b5068c
TT
2592The frame is identified by the stack address only. Any other stack
2593frame with a matching @var{sp} will be considered to match this frame.
2594Inside gdb, this is called a ``wild frame''. You will never need
2595this.
d11916aa 2596@end table
e7b5068c
TT
2597
2598Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2599
2600@end defun
2601
87dbc774
AB
2602@defun PendingFrame.architecture ()
2603Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2604for this @code{gdb.PendingFrame}. This represents the architecture of
2605the particular frame being unwound.
2606@end defun
2607
d11916aa
SS
2608@subheading Unwinder Output: UnwindInfo
2609
2610Use @code{PendingFrame.create_unwind_info} method described above to
2611create a @code{gdb.UnwindInfo} instance. Use the following method to
2612specify caller registers that have been saved in this frame:
2613
2614@defun gdb.UnwindInfo.add_saved_register (reg, value)
43d5901d
AB
2615@var{reg} identifies the register, for a description of the acceptable
2616values see @ref{gdbpy_frame_read_register,,Frame.read_register}.
d11916aa
SS
2617@var{value} is a register value (a @code{gdb.Value} object).
2618@end defun
2619
2620@subheading Unwinder Skeleton Code
2621
2622@value{GDBN} comes with the module containing the base @code{Unwinder}
2623class. Derive your unwinder class from it and structure the code as
2624follows:
2625
2626@smallexample
2627from gdb.unwinders import Unwinder
2628
2629class FrameId(object):
2630 def __init__(self, sp, pc):
2631 self.sp = sp
2632 self.pc = pc
2633
2634
2635class MyUnwinder(Unwinder):
2636 def __init__(....):
6b92c0d3 2637 super(MyUnwinder, self).__init___(<expects unwinder name argument>)
d11916aa
SS
2638
2639 def __call__(pending_frame):
2640 if not <we recognize frame>:
2641 return None
2642 # Create UnwindInfo. Usually the frame is identified by the stack
2643 # pointer and the program counter.
2644 sp = pending_frame.read_register(<SP number>)
2645 pc = pending_frame.read_register(<PC number>)
2646 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2647
2648 # Find the values of the registers in the caller's frame and
2649 # save them in the result:
2650 unwind_info.add_saved_register(<register>, <value>)
2651 ....
2652
2653 # Return the result:
2654 return unwind_info
2655
2656@end smallexample
2657
2658@subheading Registering a Unwinder
2659
2660An object file, a program space, and the @value{GDBN} proper can have
2661unwinders registered with it.
2662
2663The @code{gdb.unwinders} module provides the function to register a
2664unwinder:
2665
2666@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2667@var{locus} is specifies an object file or a program space to which
2668@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2669@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2670added @var{unwinder} will be called before any other unwinder from the
2671same locus. Two unwinders in the same locus cannot have the same
2672name. An attempt to add a unwinder with already existing name raises
2673an exception unless @var{replace} is @code{True}, in which case the
2674old unwinder is deleted.
2675@end defun
2676
2677@subheading Unwinder Precedence
2678
2679@value{GDBN} first calls the unwinders from all the object files in no
2680particular order, then the unwinders from the current program space,
2681and finally the unwinders from @value{GDBN}.
2682
0c6e92a5
SC
2683@node Xmethods In Python
2684@subsubsection Xmethods In Python
2685@cindex xmethods in Python
2686
2687@dfn{Xmethods} are additional methods or replacements for existing
2688methods of a C@t{++} class. This feature is useful for those cases
2689where a method defined in C@t{++} source code could be inlined or
2690optimized out by the compiler, making it unavailable to @value{GDBN}.
2691For such cases, one can define an xmethod to serve as a replacement
2692for the method defined in the C@t{++} source code. @value{GDBN} will
2693then invoke the xmethod, instead of the C@t{++} method, to
2694evaluate expressions. One can also use xmethods when debugging
2695with core files. Moreover, when debugging live programs, invoking an
2696xmethod need not involve running the inferior (which can potentially
2697perturb its state). Hence, even if the C@t{++} method is available, it
2698is better to use its replacement xmethod if one is defined.
2699
2700The xmethods feature in Python is available via the concepts of an
2701@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2702implement an xmethod, one has to implement a matcher and a
2703corresponding worker for it (more than one worker can be
2704implemented, each catering to a different overloaded instance of the
2705method). Internally, @value{GDBN} invokes the @code{match} method of a
2706matcher to match the class type and method name. On a match, the
2707@code{match} method returns a list of matching @emph{worker} objects.
2708Each worker object typically corresponds to an overloaded instance of
2709the xmethod. They implement a @code{get_arg_types} method which
2710returns a sequence of types corresponding to the arguments the xmethod
2711requires. @value{GDBN} uses this sequence of types to perform
2712overload resolution and picks a winning xmethod worker. A winner
2713is also selected from among the methods @value{GDBN} finds in the
2714C@t{++} source code. Next, the winning xmethod worker and the
2715winning C@t{++} method are compared to select an overall winner. In
2716case of a tie between a xmethod worker and a C@t{++} method, the
2717xmethod worker is selected as the winner. That is, if a winning
2718xmethod worker is found to be equivalent to the winning C@t{++}
2719method, then the xmethod worker is treated as a replacement for
2720the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2721method. If the winning xmethod worker is the overall winner, then
897c3d32 2722the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2723of the worker object.
2724
2725If one wants to implement an xmethod as a replacement for an
2726existing C@t{++} method, then they have to implement an equivalent
2727xmethod which has exactly the same name and takes arguments of
2728exactly the same type as the C@t{++} method. If the user wants to
2729invoke the C@t{++} method even though a replacement xmethod is
2730available for that method, then they can disable the xmethod.
2731
2732@xref{Xmethod API}, for API to implement xmethods in Python.
2733@xref{Writing an Xmethod}, for implementing xmethods in Python.
2734
2735@node Xmethod API
2736@subsubsection Xmethod API
2737@cindex xmethod API
2738
2739The @value{GDBN} Python API provides classes, interfaces and functions
2740to implement, register and manipulate xmethods.
2741@xref{Xmethods In Python}.
2742
2743An xmethod matcher should be an instance of a class derived from
2744@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2745object with similar interface and attributes. An instance of
2746@code{XMethodMatcher} has the following attributes:
2747
2748@defvar name
2749The name of the matcher.
2750@end defvar
2751
2752@defvar enabled
2753A boolean value indicating whether the matcher is enabled or disabled.
2754@end defvar
2755
2756@defvar methods
2757A list of named methods managed by the matcher. Each object in the list
2758is an instance of the class @code{XMethod} defined in the module
2759@code{gdb.xmethod}, or any object with the following attributes:
2760
2761@table @code
2762
2763@item name
2764Name of the xmethod which should be unique for each xmethod
2765managed by the matcher.
2766
2767@item enabled
2768A boolean value indicating whether the xmethod is enabled or
2769disabled.
2770
2771@end table
2772
2773The class @code{XMethod} is a convenience class with same
2774attributes as above along with the following constructor:
2775
dd5d5494 2776@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2777Constructs an enabled xmethod with name @var{name}.
2778@end defun
2779@end defvar
2780
2781@noindent
2782The @code{XMethodMatcher} class has the following methods:
2783
dd5d5494 2784@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2785Constructs an enabled xmethod matcher with name @var{name}. The
2786@code{methods} attribute is initialized to @code{None}.
2787@end defun
2788
dd5d5494 2789@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2790Derived classes should override this method. It should return a
2791xmethod worker object (or a sequence of xmethod worker
2792objects) matching the @var{class_type} and @var{method_name}.
2793@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2794is a string value. If the matcher manages named methods as listed in
2795its @code{methods} attribute, then only those worker objects whose
2796corresponding entries in the @code{methods} list are enabled should be
2797returned.
2798@end defun
2799
2800An xmethod worker should be an instance of a class derived from
2801@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2802or support the following interface:
2803
dd5d5494 2804@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2805This method returns a sequence of @code{gdb.Type} objects corresponding
2806to the arguments that the xmethod takes. It can return an empty
2807sequence or @code{None} if the xmethod does not take any arguments.
2808If the xmethod takes a single argument, then a single
2809@code{gdb.Type} object corresponding to it can be returned.
2810@end defun
2811
2ce1cdbf
DE
2812@defun XMethodWorker.get_result_type (self, *args)
2813This method returns a @code{gdb.Type} object representing the type
2814of the result of invoking this xmethod.
2815The @var{args} argument is the same tuple of arguments that would be
2816passed to the @code{__call__} method of this worker.
2817@end defun
2818
dd5d5494 2819@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2820This is the method which does the @emph{work} of the xmethod. The
2821@var{args} arguments is the tuple of arguments to the xmethod. Each
2822element in this tuple is a gdb.Value object. The first element is
2823always the @code{this} pointer value.
2824@end defun
2825
2826For @value{GDBN} to lookup xmethods, the xmethod matchers
2827should be registered using the following function defined in the module
2828@code{gdb.xmethod}:
2829
dd5d5494 2830@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2831The @code{matcher} is registered with @code{locus}, replacing an
2832existing matcher with the same name as @code{matcher} if
2833@code{replace} is @code{True}. @code{locus} can be a
2834@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2835@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2836@code{None}. If it is @code{None}, then @code{matcher} is registered
2837globally.
2838@end defun
2839
2840@node Writing an Xmethod
2841@subsubsection Writing an Xmethod
2842@cindex writing xmethods in Python
2843
2844Implementing xmethods in Python will require implementing xmethod
2845matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2846the following C@t{++} class:
2847
2848@smallexample
2849class MyClass
2850@{
2851public:
2852 MyClass (int a) : a_(a) @{ @}
2853
2854 int geta (void) @{ return a_; @}
2855 int operator+ (int b);
2856
2857private:
2858 int a_;
2859@};
2860
2861int
2862MyClass::operator+ (int b)
2863@{
2864 return a_ + b;
2865@}
2866@end smallexample
2867
2868@noindent
2869Let us define two xmethods for the class @code{MyClass}, one
2870replacing the method @code{geta}, and another adding an overloaded
2871flavor of @code{operator+} which takes a @code{MyClass} argument (the
2872C@t{++} code above already has an overloaded @code{operator+}
2873which takes an @code{int} argument). The xmethod matcher can be
2874defined as follows:
2875
2876@smallexample
2877class MyClass_geta(gdb.xmethod.XMethod):
2878 def __init__(self):
2879 gdb.xmethod.XMethod.__init__(self, 'geta')
2880
2881 def get_worker(self, method_name):
2882 if method_name == 'geta':
2883 return MyClassWorker_geta()
2884
2885
2886class MyClass_sum(gdb.xmethod.XMethod):
2887 def __init__(self):
2888 gdb.xmethod.XMethod.__init__(self, 'sum')
2889
2890 def get_worker(self, method_name):
2891 if method_name == 'operator+':
2892 return MyClassWorker_plus()
2893
2894
2895class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2896 def __init__(self):
2897 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2898 # List of methods 'managed' by this matcher
2899 self.methods = [MyClass_geta(), MyClass_sum()]
2900
2901 def match(self, class_type, method_name):
2902 if class_type.tag != 'MyClass':
2903 return None
2904 workers = []
2905 for method in self.methods:
2906 if method.enabled:
2907 worker = method.get_worker(method_name)
2908 if worker:
2909 workers.append(worker)
2910
2911 return workers
2912@end smallexample
2913
2914@noindent
2915Notice that the @code{match} method of @code{MyClassMatcher} returns
2916a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2917method, and a worker object of type @code{MyClassWorker_plus} for the
2918@code{operator+} method. This is done indirectly via helper classes
2919derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2920@code{methods} attribute in a matcher as it is optional. However, if a
2921matcher manages more than one xmethod, it is a good practice to list the
2922xmethods in the @code{methods} attribute of the matcher. This will then
2923facilitate enabling and disabling individual xmethods via the
2924@code{enable/disable} commands. Notice also that a worker object is
2925returned only if the corresponding entry in the @code{methods} attribute
2926of the matcher is enabled.
2927
2928The implementation of the worker classes returned by the matcher setup
2929above is as follows:
2930
2931@smallexample
2932class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2933 def get_arg_types(self):
2934 return None
2ce1cdbf
DE
2935
2936 def get_result_type(self, obj):
2937 return gdb.lookup_type('int')
0c6e92a5
SC
2938
2939 def __call__(self, obj):
2940 return obj['a_']
2941
2942
2943class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2944 def get_arg_types(self):
2945 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2946
2947 def get_result_type(self, obj):
2948 return gdb.lookup_type('int')
0c6e92a5
SC
2949
2950 def __call__(self, obj, other):
2951 return obj['a_'] + other['a_']
2952@end smallexample
2953
2954For @value{GDBN} to actually lookup a xmethod, it has to be
2955registered with it. The matcher defined above is registered with
2956@value{GDBN} globally as follows:
2957
2958@smallexample
2959gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2960@end smallexample
2961
2962If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2963code as follows:
2964
2965@smallexample
2966MyClass obj(5);
2967@end smallexample
2968
2969@noindent
2970then, after loading the Python script defining the xmethod matchers
2971and workers into @code{GDBN}, invoking the method @code{geta} or using
2972the operator @code{+} on @code{obj} will invoke the xmethods
2973defined above:
2974
2975@smallexample
2976(gdb) p obj.geta()
2977$1 = 5
2978
2979(gdb) p obj + obj
2980$2 = 10
2981@end smallexample
2982
2983Consider another example with a C++ template class:
2984
2985@smallexample
2986template <class T>
2987class MyTemplate
2988@{
2989public:
2990 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2991 ~MyTemplate () @{ delete [] data_; @}
2992
2993 int footprint (void)
2994 @{
2995 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2996 @}
2997
2998private:
2999 int dsize_;
3000 T *data_;
3001@};
3002@end smallexample
3003
3004Let us implement an xmethod for the above class which serves as a
3005replacement for the @code{footprint} method. The full code listing
3006of the xmethod workers and xmethod matchers is as follows:
3007
3008@smallexample
3009class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
3010 def __init__(self, class_type):
3011 self.class_type = class_type
2ce1cdbf 3012
0c6e92a5
SC
3013 def get_arg_types(self):
3014 return None
2ce1cdbf
DE
3015
3016 def get_result_type(self):
3017 return gdb.lookup_type('int')
3018
0c6e92a5
SC
3019 def __call__(self, obj):
3020 return (self.class_type.sizeof +
3021 obj['dsize_'] *
3022 self.class_type.template_argument(0).sizeof)
3023
3024
3025class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
3026 def __init__(self):
3027 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
3028
3029 def match(self, class_type, method_name):
3030 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
3031 class_type.tag) and
3032 method_name == 'footprint'):
3033 return MyTemplateWorker_footprint(class_type)
3034@end smallexample
3035
3036Notice that, in this example, we have not used the @code{methods}
3037attribute of the matcher as the matcher manages only one xmethod. The
3038user can enable/disable this xmethod by enabling/disabling the matcher
3039itself.
3040
329baa95
DE
3041@node Inferiors In Python
3042@subsubsection Inferiors In Python
3043@cindex inferiors in Python
3044
3045@findex gdb.Inferior
3046Programs which are being run under @value{GDBN} are called inferiors
65c574f6 3047(@pxref{Inferiors Connections and Programs}). Python scripts can access
329baa95
DE
3048information about and manipulate inferiors controlled by @value{GDBN}
3049via objects of the @code{gdb.Inferior} class.
3050
3051The following inferior-related functions are available in the @code{gdb}
3052module:
3053
3054@defun gdb.inferiors ()
3055Return a tuple containing all inferior objects.
3056@end defun
3057
3058@defun gdb.selected_inferior ()
3059Return an object representing the current inferior.
3060@end defun
3061
3062A @code{gdb.Inferior} object has the following attributes:
3063
3064@defvar Inferior.num
3065ID of inferior, as assigned by GDB.
3066@end defvar
3067
55789354
TBA
3068@defvar Inferior.connection_num
3069ID of inferior's connection as assigned by @value{GDBN}, or None if
3070the inferior is not connected to a target.
3071@xref{Inferiors Connections and Programs}.
3072@end defvar
3073
329baa95
DE
3074@defvar Inferior.pid
3075Process ID of the inferior, as assigned by the underlying operating
3076system.
3077@end defvar
3078
3079@defvar Inferior.was_attached
3080Boolean signaling whether the inferior was created using `attach', or
3081started by @value{GDBN} itself.
3082@end defvar
3083
a40bf0c2
SM
3084@defvar Inferior.progspace
3085The inferior's program space. @xref{Progspaces In Python}.
3086@end defvar
3087
329baa95
DE
3088A @code{gdb.Inferior} object has the following methods:
3089
3090@defun Inferior.is_valid ()
3091Returns @code{True} if the @code{gdb.Inferior} object is valid,
3092@code{False} if not. A @code{gdb.Inferior} object will become invalid
3093if the inferior no longer exists within @value{GDBN}. All other
3094@code{gdb.Inferior} methods will throw an exception if it is invalid
3095at the time the method is called.
3096@end defun
3097
3098@defun Inferior.threads ()
3099This method returns a tuple holding all the threads which are valid
3100when it is called. If there are no valid threads, the method will
3101return an empty tuple.
3102@end defun
3103
add5ded5
TT
3104@defun Inferior.architecture ()
3105Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
3106for this inferior. This represents the architecture of the inferior
3107as a whole. Some platforms can have multiple architectures in a
3108single address space, so this may not match the architecture of a
163cffef 3109particular frame (@pxref{Frames In Python}).
9e1698c6 3110@end defun
add5ded5 3111
329baa95
DE
3112@findex Inferior.read_memory
3113@defun Inferior.read_memory (address, length)
a86c90e6 3114Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
3115@var{address}. Returns a buffer object, which behaves much like an array
3116or a string. It can be modified and given to the
79778b30 3117@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
3118value is a @code{memoryview} object.
3119@end defun
3120
3121@findex Inferior.write_memory
3122@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
3123Write the contents of @var{buffer} to the inferior, starting at
3124@var{address}. The @var{buffer} parameter must be a Python object
3125which supports the buffer protocol, i.e., a string, an array or the
3126object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3127determines the number of addressable memory units from @var{buffer} to be
3128written.
329baa95
DE
3129@end defun
3130
3131@findex gdb.search_memory
3132@defun Inferior.search_memory (address, length, pattern)
3133Search a region of the inferior memory starting at @var{address} with
3134the given @var{length} using the search pattern supplied in
3135@var{pattern}. The @var{pattern} parameter must be a Python object
3136which supports the buffer protocol, i.e., a string, an array or the
3137object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3138containing the address where the pattern was found, or @code{None} if
3139the pattern could not be found.
3140@end defun
3141
2b0c8b01 3142@findex Inferior.thread_from_handle
da2c323b 3143@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3144@defun Inferior.thread_from_handle (handle)
3145Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3146library specific data structure such as @code{pthread_t} for pthreads
3147library implementations.
2b0c8b01
KB
3148
3149The function @code{Inferior.thread_from_thread_handle} provides
3150the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3151is deprecated.
da2c323b
KB
3152@end defun
3153
329baa95
DE
3154@node Events In Python
3155@subsubsection Events In Python
3156@cindex inferior events in Python
3157
3158@value{GDBN} provides a general event facility so that Python code can be
3159notified of various state changes, particularly changes that occur in
3160the inferior.
3161
3162An @dfn{event} is just an object that describes some state change. The
3163type of the object and its attributes will vary depending on the details
3164of the change. All the existing events are described below.
3165
3166In order to be notified of an event, you must register an event handler
3167with an @dfn{event registry}. An event registry is an object in the
3168@code{gdb.events} module which dispatches particular events. A registry
3169provides methods to register and unregister event handlers:
3170
3171@defun EventRegistry.connect (object)
3172Add the given callable @var{object} to the registry. This object will be
3173called when an event corresponding to this registry occurs.
3174@end defun
3175
3176@defun EventRegistry.disconnect (object)
3177Remove the given @var{object} from the registry. Once removed, the object
3178will no longer receive notifications of events.
3179@end defun
3180
3181Here is an example:
3182
3183@smallexample
3184def exit_handler (event):
f3bdc2db
MB
3185 print ("event type: exit")
3186 print ("exit code: %d" % (event.exit_code))
329baa95
DE
3187
3188gdb.events.exited.connect (exit_handler)
3189@end smallexample
3190
3191In the above example we connect our handler @code{exit_handler} to the
3192registry @code{events.exited}. Once connected, @code{exit_handler} gets
3193called when the inferior exits. The argument @dfn{event} in this example is
3194of type @code{gdb.ExitedEvent}. As you can see in the example the
3195@code{ExitedEvent} object has an attribute which indicates the exit code of
3196the inferior.
3197
3198The following is a listing of the event registries that are available and
3199details of the events they emit:
3200
3201@table @code
3202
3203@item events.cont
3204Emits @code{gdb.ThreadEvent}.
3205
3206Some events can be thread specific when @value{GDBN} is running in non-stop
3207mode. When represented in Python, these events all extend
3208@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3209events which are emitted by this or other modules might extend this event.
3210Examples of these events are @code{gdb.BreakpointEvent} and
3211@code{gdb.ContinueEvent}.
3212
3213@defvar ThreadEvent.inferior_thread
3214In non-stop mode this attribute will be set to the specific thread which was
3215involved in the emitted event. Otherwise, it will be set to @code{None}.
3216@end defvar
3217
3218Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3219
3220This event indicates that the inferior has been continued after a stop. For
3221inherited attribute refer to @code{gdb.ThreadEvent} above.
3222
3223@item events.exited
3224Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3225@code{events.ExitedEvent} has two attributes:
3226@defvar ExitedEvent.exit_code
3227An integer representing the exit code, if available, which the inferior
3228has returned. (The exit code could be unavailable if, for example,
3229@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3230the attribute does not exist.
3231@end defvar
373832b6 3232@defvar ExitedEvent.inferior
329baa95
DE
3233A reference to the inferior which triggered the @code{exited} event.
3234@end defvar
3235
3236@item events.stop
3237Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3238
3239Indicates that the inferior has stopped. All events emitted by this registry
3240extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3241will indicate the stopped thread when @value{GDBN} is running in non-stop
3242mode. Refer to @code{gdb.ThreadEvent} above for more details.
3243
3244Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3245
3246This event indicates that the inferior or one of its threads has received as
3247signal. @code{gdb.SignalEvent} has the following attributes:
3248
3249@defvar SignalEvent.stop_signal
3250A string representing the signal received by the inferior. A list of possible
3251signal values can be obtained by running the command @code{info signals} in
3252the @value{GDBN} command prompt.
3253@end defvar
3254
3255Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3256
3257@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3258been hit, and has the following attributes:
3259
3260@defvar BreakpointEvent.breakpoints
3261A sequence containing references to all the breakpoints (type
3262@code{gdb.Breakpoint}) that were hit.
3263@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3264@end defvar
3265@defvar BreakpointEvent.breakpoint
3266A reference to the first breakpoint that was hit.
3267This function is maintained for backward compatibility and is now deprecated
3268in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3269@end defvar
3270
3271@item events.new_objfile
3272Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3273been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3274
3275@defvar NewObjFileEvent.new_objfile
3276A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3277@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3278@end defvar
3279
4ffbba72
DE
3280@item events.clear_objfiles
3281Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3282files for a program space has been reset.
3283@code{gdb.ClearObjFilesEvent} has one attribute:
3284
3285@defvar ClearObjFilesEvent.progspace
3286A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3287been cleared. @xref{Progspaces In Python}.
3288@end defvar
3289
fb5af5e3
TT
3290@item events.inferior_call
3291Emits events just before and after a function in the inferior is
3292called by @value{GDBN}. Before an inferior call, this emits an event
3293of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3294this emits an event of type @code{gdb.InferiorCallPostEvent}.
3295
3296@table @code
3297@tindex gdb.InferiorCallPreEvent
3298@item @code{gdb.InferiorCallPreEvent}
3299Indicates that a function in the inferior is about to be called.
162078c8
NB
3300
3301@defvar InferiorCallPreEvent.ptid
3302The thread in which the call will be run.
3303@end defvar
3304
3305@defvar InferiorCallPreEvent.address
3306The location of the function to be called.
3307@end defvar
3308
fb5af5e3
TT
3309@tindex gdb.InferiorCallPostEvent
3310@item @code{gdb.InferiorCallPostEvent}
3311Indicates that a function in the inferior has just been called.
162078c8
NB
3312
3313@defvar InferiorCallPostEvent.ptid
3314The thread in which the call was run.
3315@end defvar
3316
3317@defvar InferiorCallPostEvent.address
3318The location of the function that was called.
3319@end defvar
fb5af5e3 3320@end table
162078c8
NB
3321
3322@item events.memory_changed
3323Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3324inferior has been modified by the @value{GDBN} user, for instance via a
3325command like @w{@code{set *addr = value}}. The event has the following
3326attributes:
3327
3328@defvar MemoryChangedEvent.address
3329The start address of the changed region.
3330@end defvar
3331
3332@defvar MemoryChangedEvent.length
3333Length in bytes of the changed region.
3334@end defvar
3335
3336@item events.register_changed
3337Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3338inferior has been modified by the @value{GDBN} user.
3339
3340@defvar RegisterChangedEvent.frame
3341A gdb.Frame object representing the frame in which the register was modified.
3342@end defvar
3343@defvar RegisterChangedEvent.regnum
3344Denotes which register was modified.
3345@end defvar
3346
dac790e1
TT
3347@item events.breakpoint_created
3348This is emitted when a new breakpoint has been created. The argument
3349that is passed is the new @code{gdb.Breakpoint} object.
3350
3351@item events.breakpoint_modified
3352This is emitted when a breakpoint has been modified in some way. The
3353argument that is passed is the new @code{gdb.Breakpoint} object.
3354
3355@item events.breakpoint_deleted
3356This is emitted when a breakpoint has been deleted. The argument that
3357is passed is the @code{gdb.Breakpoint} object. When this event is
3358emitted, the @code{gdb.Breakpoint} object will already be in its
3359invalid state; that is, the @code{is_valid} method will return
3360@code{False}.
3361
3f77c769
TT
3362@item events.before_prompt
3363This event carries no payload. It is emitted each time @value{GDBN}
3364presents a prompt to the user.
3365
7c96f8c1
TT
3366@item events.new_inferior
3367This is emitted when a new inferior is created. Note that the
3368inferior is not necessarily running; in fact, it may not even have an
3369associated executable.
3370
3371The event is of type @code{gdb.NewInferiorEvent}. This has a single
3372attribute:
3373
3374@defvar NewInferiorEvent.inferior
3375The new inferior, a @code{gdb.Inferior} object.
3376@end defvar
3377
3378@item events.inferior_deleted
3379This is emitted when an inferior has been deleted. Note that this is
3380not the same as process exit; it is notified when the inferior itself
3381is removed, say via @code{remove-inferiors}.
3382
3383The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3384attribute:
3385
3386@defvar NewInferiorEvent.inferior
3387The inferior that is being removed, a @code{gdb.Inferior} object.
3388@end defvar
3389
3390@item events.new_thread
3391This is emitted when @value{GDBN} notices a new thread. The event is of
3392type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3393This has a single attribute:
3394
3395@defvar NewThreadEvent.inferior_thread
3396The new thread.
3397@end defvar
3398
329baa95
DE
3399@end table
3400
3401@node Threads In Python
3402@subsubsection Threads In Python
3403@cindex threads in python
3404
3405@findex gdb.InferiorThread
3406Python scripts can access information about, and manipulate inferior threads
3407controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3408
3409The following thread-related functions are available in the @code{gdb}
3410module:
3411
3412@findex gdb.selected_thread
3413@defun gdb.selected_thread ()
3414This function returns the thread object for the selected thread. If there
3415is no selected thread, this will return @code{None}.
3416@end defun
3417
14796d29 3418To get the list of threads for an inferior, use the @code{Inferior.threads()}
0ca4866a 3419method. @xref{Inferiors In Python}.
14796d29 3420
329baa95
DE
3421A @code{gdb.InferiorThread} object has the following attributes:
3422
3423@defvar InferiorThread.name
3424The name of the thread. If the user specified a name using
3425@code{thread name}, then this returns that name. Otherwise, if an
3426OS-supplied name is available, then it is returned. Otherwise, this
3427returns @code{None}.
3428
3429This attribute can be assigned to. The new value must be a string
3430object, which sets the new name, or @code{None}, which removes any
3431user-specified thread name.
3432@end defvar
3433
3434@defvar InferiorThread.num
5d5658a1 3435The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3436@end defvar
3437
22a02324
PA
3438@defvar InferiorThread.global_num
3439The global ID of the thread, as assigned by GDB. You can use this to
3440make Python breakpoints thread-specific, for example
3441(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3442@end defvar
3443
329baa95
DE
3444@defvar InferiorThread.ptid
3445ID of the thread, as assigned by the operating system. This attribute is a
3446tuple containing three integers. The first is the Process ID (PID); the second
3447is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3448Either the LWPID or TID may be 0, which indicates that the operating system
3449does not use that identifier.
3450@end defvar
3451
84654457
PA
3452@defvar InferiorThread.inferior
3453The inferior this thread belongs to. This attribute is represented as
3454a @code{gdb.Inferior} object. This attribute is not writable.
3455@end defvar
3456
329baa95
DE
3457A @code{gdb.InferiorThread} object has the following methods:
3458
3459@defun InferiorThread.is_valid ()
3460Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3461@code{False} if not. A @code{gdb.InferiorThread} object will become
3462invalid if the thread exits, or the inferior that the thread belongs
3463is deleted. All other @code{gdb.InferiorThread} methods will throw an
3464exception if it is invalid at the time the method is called.
3465@end defun
3466
3467@defun InferiorThread.switch ()
3468This changes @value{GDBN}'s currently selected thread to the one represented
3469by this object.
3470@end defun
3471
3472@defun InferiorThread.is_stopped ()
3473Return a Boolean indicating whether the thread is stopped.
3474@end defun
3475
3476@defun InferiorThread.is_running ()
3477Return a Boolean indicating whether the thread is running.
3478@end defun
3479
3480@defun InferiorThread.is_exited ()
3481Return a Boolean indicating whether the thread is exited.
3482@end defun
3483
c369f8f0
KB
3484@defun InferiorThread.handle ()
3485Return the thread object's handle, represented as a Python @code{bytes}
3486object. A @code{gdb.Value} representation of the handle may be
3487constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3488the Python @code{bytes} representation of the handle and @var{type} is
3489a @code{gdb.Type} for the handle type.
3490@end defun
3491
0a0faf9f
TW
3492@node Recordings In Python
3493@subsubsection Recordings In Python
3494@cindex recordings in python
3495
3496The following recordings-related functions
3497(@pxref{Process Record and Replay}) are available in the @code{gdb}
3498module:
3499
3500@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3501Start a recording using the given @var{method} and @var{format}. If
3502no @var{format} is given, the default format for the recording method
3503is used. If no @var{method} is given, the default method will be used.
3504Returns a @code{gdb.Record} object on success. Throw an exception on
3505failure.
3506
3507The following strings can be passed as @var{method}:
3508
3509@itemize @bullet
3510@item
3511@code{"full"}
3512@item
3513@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3514@code{"bts"} or leave out for default format.
3515@end itemize
3516@end defun
3517
3518@defun gdb.current_recording ()
3519Access a currently running recording. Return a @code{gdb.Record}
3520object on success. Return @code{None} if no recording is currently
3521active.
3522@end defun
3523
3524@defun gdb.stop_recording ()
3525Stop the current recording. Throw an exception if no recording is
3526currently active. All record objects become invalid after this call.
3527@end defun
3528
3529A @code{gdb.Record} object has the following attributes:
3530
0a0faf9f
TW
3531@defvar Record.method
3532A string with the current recording method, e.g.@: @code{full} or
3533@code{btrace}.
3534@end defvar
3535
3536@defvar Record.format
3537A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3538@code{None}.
3539@end defvar
3540
3541@defvar Record.begin
3542A method specific instruction object representing the first instruction
3543in this recording.
3544@end defvar
3545
3546@defvar Record.end
3547A method specific instruction object representing the current
3548instruction, that is not actually part of the recording.
3549@end defvar
3550
3551@defvar Record.replay_position
3552The instruction representing the current replay position. If there is
3553no replay active, this will be @code{None}.
3554@end defvar
3555
3556@defvar Record.instruction_history
3557A list with all recorded instructions.
3558@end defvar
3559
3560@defvar Record.function_call_history
3561A list with all recorded function call segments.
3562@end defvar
3563
3564A @code{gdb.Record} object has the following methods:
3565
3566@defun Record.goto (instruction)
3567Move the replay position to the given @var{instruction}.
3568@end defun
3569
d050f7d7
TW
3570The common @code{gdb.Instruction} class that recording method specific
3571instruction objects inherit from, has the following attributes:
0a0faf9f 3572
d050f7d7 3573@defvar Instruction.pc
913aeadd 3574An integer representing this instruction's address.
0a0faf9f
TW
3575@end defvar
3576
d050f7d7 3577@defvar Instruction.data
913aeadd
TW
3578A buffer with the raw instruction data. In Python 3, the return value is a
3579@code{memoryview} object.
0a0faf9f
TW
3580@end defvar
3581
d050f7d7 3582@defvar Instruction.decoded
913aeadd 3583A human readable string with the disassembled instruction.
0a0faf9f
TW
3584@end defvar
3585
d050f7d7 3586@defvar Instruction.size
913aeadd 3587The size of the instruction in bytes.
0a0faf9f
TW
3588@end defvar
3589
d050f7d7
TW
3590Additionally @code{gdb.RecordInstruction} has the following attributes:
3591
3592@defvar RecordInstruction.number
3593An integer identifying this instruction. @code{number} corresponds to
3594the numbers seen in @code{record instruction-history}
3595(@pxref{Process Record and Replay}).
3596@end defvar
3597
3598@defvar RecordInstruction.sal
3599A @code{gdb.Symtab_and_line} object representing the associated symtab
3600and line of this instruction. May be @code{None} if no debug information is
3601available.
3602@end defvar
3603
0ed5da75 3604@defvar RecordInstruction.is_speculative
d050f7d7 3605A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3606@end defvar
3607
3608If an error occured during recording or decoding a recording, this error is
3609represented by a @code{gdb.RecordGap} object in the instruction list. It has
3610the following attributes:
3611
3612@defvar RecordGap.number
3613An integer identifying this gap. @code{number} corresponds to the numbers seen
3614in @code{record instruction-history} (@pxref{Process Record and Replay}).
3615@end defvar
3616
3617@defvar RecordGap.error_code
3618A numerical representation of the reason for the gap. The value is specific to
3619the current recording method.
3620@end defvar
3621
3622@defvar RecordGap.error_string
3623A human readable string with the reason for the gap.
0a0faf9f
TW
3624@end defvar
3625
14f819c8 3626A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3627
14f819c8
TW
3628@defvar RecordFunctionSegment.number
3629An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3630the numbers seen in @code{record function-call-history}
3631(@pxref{Process Record and Replay}).
3632@end defvar
3633
14f819c8 3634@defvar RecordFunctionSegment.symbol
0a0faf9f 3635A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3636@code{None} if no debug information is available.
0a0faf9f
TW
3637@end defvar
3638
14f819c8 3639@defvar RecordFunctionSegment.level
0a0faf9f
TW
3640An integer representing the function call's stack level. May be
3641@code{None} if the function call is a gap.
3642@end defvar
3643
14f819c8 3644@defvar RecordFunctionSegment.instructions
0ed5da75 3645A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3646associated with this function call.
0a0faf9f
TW
3647@end defvar
3648
14f819c8
TW
3649@defvar RecordFunctionSegment.up
3650A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3651function segment. If the call has not been recorded, this will be the
3652function segment to which control returns. If neither the call nor the
3653return have been recorded, this will be @code{None}.
3654@end defvar
3655
14f819c8
TW
3656@defvar RecordFunctionSegment.prev
3657A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3658segment of this function call. May be @code{None}.
3659@end defvar
3660
14f819c8
TW
3661@defvar RecordFunctionSegment.next
3662A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3663this function call. May be @code{None}.
3664@end defvar
3665
3666The following example demonstrates the usage of these objects and
3667functions to create a function that will rewind a record to the last
3668time a function in a different file was executed. This would typically
3669be used to track the execution of user provided callback functions in a
3670library which typically are not visible in a back trace.
3671
3672@smallexample
3673def bringback ():
3674 rec = gdb.current_recording ()
3675 if not rec:
3676 return
3677
3678 insn = rec.instruction_history
3679 if len (insn) == 0:
3680 return
3681
3682 try:
3683 position = insn.index (rec.replay_position)
3684 except:
3685 position = -1
3686 try:
3687 filename = insn[position].sal.symtab.fullname ()
3688 except:
3689 filename = None
3690
3691 for i in reversed (insn[:position]):
3692 try:
3693 current = i.sal.symtab.fullname ()
3694 except:
3695 current = None
3696
3697 if filename == current:
3698 continue
3699
3700 rec.goto (i)
3701 return
3702@end smallexample
3703
3704Another possible application is to write a function that counts the
3705number of code executions in a given line range. This line range can
3706contain parts of functions or span across several functions and is not
3707limited to be contiguous.
3708
3709@smallexample
3710def countrange (filename, linerange):
3711 count = 0
3712
3713 def filter_only (file_name):
3714 for call in gdb.current_recording ().function_call_history:
3715 try:
3716 if file_name in call.symbol.symtab.fullname ():
3717 yield call
3718 except:
3719 pass
3720
3721 for c in filter_only (filename):
3722 for i in c.instructions:
3723 try:
3724 if i.sal.line in linerange:
3725 count += 1
3726 break;
3727 except:
3728 pass
3729
3730 return count
3731@end smallexample
3732
329baa95
DE
3733@node Commands In Python
3734@subsubsection Commands In Python
3735
3736@cindex commands in python
3737@cindex python commands
3738You can implement new @value{GDBN} CLI commands in Python. A CLI
3739command is implemented using an instance of the @code{gdb.Command}
3740class, most commonly using a subclass.
3741
3742@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3743The object initializer for @code{Command} registers the new command
3744with @value{GDBN}. This initializer is normally invoked from the
3745subclass' own @code{__init__} method.
3746
3747@var{name} is the name of the command. If @var{name} consists of
3748multiple words, then the initial words are looked for as prefix
3749commands. In this case, if one of the prefix commands does not exist,
3750an exception is raised.
3751
3752There is no support for multi-line commands.
3753
3754@var{command_class} should be one of the @samp{COMMAND_} constants
3755defined below. This argument tells @value{GDBN} how to categorize the
3756new command in the help system.
3757
3758@var{completer_class} is an optional argument. If given, it should be
3759one of the @samp{COMPLETE_} constants defined below. This argument
3760tells @value{GDBN} how to perform completion for this command. If not
3761given, @value{GDBN} will attempt to complete using the object's
3762@code{complete} method (see below); if no such method is found, an
3763error will occur when completion is attempted.
3764
3765@var{prefix} is an optional argument. If @code{True}, then the new
3766command is a prefix command; sub-commands of this command may be
3767registered.
3768
3769The help text for the new command is taken from the Python
3770documentation string for the command's class, if there is one. If no
3771documentation string is provided, the default value ``This command is
3772not documented.'' is used.
3773@end defun
3774
3775@cindex don't repeat Python command
3776@defun Command.dont_repeat ()
3777By default, a @value{GDBN} command is repeated when the user enters a
3778blank line at the command prompt. A command can suppress this
3779behavior by invoking the @code{dont_repeat} method. This is similar
3780to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3781@end defun
3782
3783@defun Command.invoke (argument, from_tty)
3784This method is called by @value{GDBN} when this command is invoked.
3785
3786@var{argument} is a string. It is the argument to the command, after
3787leading and trailing whitespace has been stripped.
3788
3789@var{from_tty} is a boolean argument. When true, this means that the
3790command was entered by the user at the terminal; when false it means
3791that the command came from elsewhere.
3792
3793If this method throws an exception, it is turned into a @value{GDBN}
3794@code{error} call. Otherwise, the return value is ignored.
3795
3796@findex gdb.string_to_argv
3797To break @var{argument} up into an argv-like string use
3798@code{gdb.string_to_argv}. This function behaves identically to
3799@value{GDBN}'s internal argument lexer @code{buildargv}.
3800It is recommended to use this for consistency.
3801Arguments are separated by spaces and may be quoted.
3802Example:
3803
3804@smallexample
3805print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3806['1', '2 "3', '4 "5', "6 '7"]
3807@end smallexample
3808
3809@end defun
3810
3811@cindex completion of Python commands
3812@defun Command.complete (text, word)
3813This method is called by @value{GDBN} when the user attempts
3814completion on this command. All forms of completion are handled by
3815this method, that is, the @key{TAB} and @key{M-?} key bindings
3816(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3817complete}).
3818
697aa1b7
EZ
3819The arguments @var{text} and @var{word} are both strings; @var{text}
3820holds the complete command line up to the cursor's location, while
329baa95
DE
3821@var{word} holds the last word of the command line; this is computed
3822using a word-breaking heuristic.
3823
3824The @code{complete} method can return several values:
3825@itemize @bullet
3826@item
3827If the return value is a sequence, the contents of the sequence are
3828used as the completions. It is up to @code{complete} to ensure that the
3829contents actually do complete the word. A zero-length sequence is
3830allowed, it means that there were no completions available. Only
3831string elements of the sequence are used; other elements in the
3832sequence are ignored.
3833
3834@item
3835If the return value is one of the @samp{COMPLETE_} constants defined
3836below, then the corresponding @value{GDBN}-internal completion
3837function is invoked, and its result is used.
3838
3839@item
3840All other results are treated as though there were no available
3841completions.
3842@end itemize
3843@end defun
3844
3845When a new command is registered, it must be declared as a member of
3846some general class of commands. This is used to classify top-level
3847commands in the on-line help system; note that prefix commands are not
3848listed under their own category but rather that of their top-level
3849command. The available classifications are represented by constants
3850defined in the @code{gdb} module:
3851
3852@table @code
3853@findex COMMAND_NONE
3854@findex gdb.COMMAND_NONE
3855@item gdb.COMMAND_NONE
3856The command does not belong to any particular class. A command in
3857this category will not be displayed in any of the help categories.
3858
3859@findex COMMAND_RUNNING
3860@findex gdb.COMMAND_RUNNING
3861@item gdb.COMMAND_RUNNING
3862The command is related to running the inferior. For example,
3863@code{start}, @code{step}, and @code{continue} are in this category.
3864Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3865commands in this category.
3866
3867@findex COMMAND_DATA
3868@findex gdb.COMMAND_DATA
3869@item gdb.COMMAND_DATA
3870The command is related to data or variables. For example,
3871@code{call}, @code{find}, and @code{print} are in this category. Type
3872@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3873in this category.
3874
3875@findex COMMAND_STACK
3876@findex gdb.COMMAND_STACK
3877@item gdb.COMMAND_STACK
3878The command has to do with manipulation of the stack. For example,
3879@code{backtrace}, @code{frame}, and @code{return} are in this
3880category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3881list of commands in this category.
3882
3883@findex COMMAND_FILES
3884@findex gdb.COMMAND_FILES
3885@item gdb.COMMAND_FILES
3886This class is used for file-related commands. For example,
3887@code{file}, @code{list} and @code{section} are in this category.
3888Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3889commands in this category.
3890
3891@findex COMMAND_SUPPORT
3892@findex gdb.COMMAND_SUPPORT
3893@item gdb.COMMAND_SUPPORT
3894This should be used for ``support facilities'', generally meaning
3895things that are useful to the user when interacting with @value{GDBN},
3896but not related to the state of the inferior. For example,
3897@code{help}, @code{make}, and @code{shell} are in this category. Type
3898@kbd{help support} at the @value{GDBN} prompt to see a list of
3899commands in this category.
3900
3901@findex COMMAND_STATUS
3902@findex gdb.COMMAND_STATUS
3903@item gdb.COMMAND_STATUS
3904The command is an @samp{info}-related command, that is, related to the
3905state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3906and @code{show} are in this category. Type @kbd{help status} at the
3907@value{GDBN} prompt to see a list of commands in this category.
3908
3909@findex COMMAND_BREAKPOINTS
3910@findex gdb.COMMAND_BREAKPOINTS
3911@item gdb.COMMAND_BREAKPOINTS
3912The command has to do with breakpoints. For example, @code{break},
3913@code{clear}, and @code{delete} are in this category. Type @kbd{help
3914breakpoints} at the @value{GDBN} prompt to see a list of commands in
3915this category.
3916
3917@findex COMMAND_TRACEPOINTS
3918@findex gdb.COMMAND_TRACEPOINTS
3919@item gdb.COMMAND_TRACEPOINTS
3920The command has to do with tracepoints. For example, @code{trace},
3921@code{actions}, and @code{tfind} are in this category. Type
3922@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3923commands in this category.
3924
2b2fbab8
TT
3925@findex COMMAND_TUI
3926@findex gdb.COMMAND_TUI
3927@item gdb.COMMAND_TUI
3928The command has to do with the text user interface (@pxref{TUI}).
3929Type @kbd{help tui} at the @value{GDBN} prompt to see a list of
3930commands in this category.
3931
329baa95
DE
3932@findex COMMAND_USER
3933@findex gdb.COMMAND_USER
3934@item gdb.COMMAND_USER
3935The command is a general purpose command for the user, and typically
3936does not fit in one of the other categories.
3937Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3938a list of commands in this category, as well as the list of gdb macros
3939(@pxref{Sequences}).
3940
3941@findex COMMAND_OBSCURE
3942@findex gdb.COMMAND_OBSCURE
3943@item gdb.COMMAND_OBSCURE
3944The command is only used in unusual circumstances, or is not of
3945general interest to users. For example, @code{checkpoint},
3946@code{fork}, and @code{stop} are in this category. Type @kbd{help
3947obscure} at the @value{GDBN} prompt to see a list of commands in this
3948category.
3949
3950@findex COMMAND_MAINTENANCE
3951@findex gdb.COMMAND_MAINTENANCE
3952@item gdb.COMMAND_MAINTENANCE
3953The command is only useful to @value{GDBN} maintainers. The
3954@code{maintenance} and @code{flushregs} commands are in this category.
3955Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3956commands in this category.
3957@end table
3958
3959A new command can use a predefined completion function, either by
3960specifying it via an argument at initialization, or by returning it
3961from the @code{complete} method. These predefined completion
3962constants are all defined in the @code{gdb} module:
3963
b3ce5e5f
DE
3964@vtable @code
3965@vindex COMPLETE_NONE
329baa95
DE
3966@item gdb.COMPLETE_NONE
3967This constant means that no completion should be done.
3968
b3ce5e5f 3969@vindex COMPLETE_FILENAME
329baa95
DE
3970@item gdb.COMPLETE_FILENAME
3971This constant means that filename completion should be performed.
3972
b3ce5e5f 3973@vindex COMPLETE_LOCATION
329baa95
DE
3974@item gdb.COMPLETE_LOCATION
3975This constant means that location completion should be done.
3976@xref{Specify Location}.
3977
b3ce5e5f 3978@vindex COMPLETE_COMMAND
329baa95
DE
3979@item gdb.COMPLETE_COMMAND
3980This constant means that completion should examine @value{GDBN}
3981command names.
3982
b3ce5e5f 3983@vindex COMPLETE_SYMBOL
329baa95
DE
3984@item gdb.COMPLETE_SYMBOL
3985This constant means that completion should be done using symbol names
3986as the source.
3987
b3ce5e5f 3988@vindex COMPLETE_EXPRESSION
329baa95
DE
3989@item gdb.COMPLETE_EXPRESSION
3990This constant means that completion should be done on expressions.
3991Often this means completing on symbol names, but some language
3992parsers also have support for completing on field names.
b3ce5e5f 3993@end vtable
329baa95
DE
3994
3995The following code snippet shows how a trivial CLI command can be
3996implemented in Python:
3997
3998@smallexample
3999class HelloWorld (gdb.Command):
4000 """Greet the whole world."""
4001
4002 def __init__ (self):
4003 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
4004
4005 def invoke (self, arg, from_tty):
f3bdc2db 4006 print ("Hello, World!")
329baa95
DE
4007
4008HelloWorld ()
4009@end smallexample
4010
4011The last line instantiates the class, and is necessary to trigger the
4012registration of the command with @value{GDBN}. Depending on how the
4013Python code is read into @value{GDBN}, you may need to import the
4014@code{gdb} module explicitly.
4015
4016@node Parameters In Python
4017@subsubsection Parameters In Python
4018
4019@cindex parameters in python
4020@cindex python parameters
4021@tindex gdb.Parameter
4022@tindex Parameter
4023You can implement new @value{GDBN} parameters using Python. A new
4024parameter is implemented as an instance of the @code{gdb.Parameter}
4025class.
4026
4027Parameters are exposed to the user via the @code{set} and
4028@code{show} commands. @xref{Help}.
4029
4030There are many parameters that already exist and can be set in
4031@value{GDBN}. Two examples are: @code{set follow fork} and
4032@code{set charset}. Setting these parameters influences certain
4033behavior in @value{GDBN}. Similarly, you can define parameters that
4034can be used to influence behavior in custom Python scripts and commands.
4035
4036@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
4037The object initializer for @code{Parameter} registers the new
4038parameter with @value{GDBN}. This initializer is normally invoked
4039from the subclass' own @code{__init__} method.
4040
4041@var{name} is the name of the new parameter. If @var{name} consists
4042of multiple words, then the initial words are looked for as prefix
4043parameters. An example of this can be illustrated with the
4044@code{set print} set of parameters. If @var{name} is
4045@code{print foo}, then @code{print} will be searched as the prefix
4046parameter. In this case the parameter can subsequently be accessed in
4047@value{GDBN} as @code{set print foo}.
4048
4049If @var{name} consists of multiple words, and no prefix parameter group
4050can be found, an exception is raised.
4051
4052@var{command-class} should be one of the @samp{COMMAND_} constants
4053(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
4054categorize the new parameter in the help system.
4055
4056@var{parameter-class} should be one of the @samp{PARAM_} constants
4057defined below. This argument tells @value{GDBN} the type of the new
4058parameter; this information is used for input validation and
4059completion.
4060
4061If @var{parameter-class} is @code{PARAM_ENUM}, then
4062@var{enum-sequence} must be a sequence of strings. These strings
4063represent the possible values for the parameter.
4064
4065If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
4066of a fourth argument will cause an exception to be thrown.
4067
4068The help text for the new parameter is taken from the Python
4069documentation string for the parameter's class, if there is one. If
4070there is no documentation string, a default value is used.
4071@end defun
4072
4073@defvar Parameter.set_doc
4074If this attribute exists, and is a string, then its value is used as
4075the help text for this parameter's @code{set} command. The value is
4076examined when @code{Parameter.__init__} is invoked; subsequent changes
4077have no effect.
4078@end defvar
4079
4080@defvar Parameter.show_doc
4081If this attribute exists, and is a string, then its value is used as
4082the help text for this parameter's @code{show} command. The value is
4083examined when @code{Parameter.__init__} is invoked; subsequent changes
4084have no effect.
4085@end defvar
4086
4087@defvar Parameter.value
4088The @code{value} attribute holds the underlying value of the
4089parameter. It can be read and assigned to just as any other
4090attribute. @value{GDBN} does validation when assignments are made.
4091@end defvar
4092
984ee559
TT
4093There are two methods that may be implemented in any @code{Parameter}
4094class. These are:
329baa95
DE
4095
4096@defun Parameter.get_set_string (self)
984ee559
TT
4097If this method exists, @value{GDBN} will call it when a
4098@var{parameter}'s value has been changed via the @code{set} API (for
4099example, @kbd{set foo off}). The @code{value} attribute has already
4100been populated with the new value and may be used in output. This
4101method must return a string. If the returned string is not empty,
4102@value{GDBN} will present it to the user.
ae778caf
TT
4103
4104If this method raises the @code{gdb.GdbError} exception
4105(@pxref{Exception Handling}), then @value{GDBN} will print the
4106exception's string and the @code{set} command will fail. Note,
4107however, that the @code{value} attribute will not be reset in this
4108case. So, if your parameter must validate values, it should store the
4109old value internally and reset the exposed value, like so:
4110
4111@smallexample
4112class ExampleParam (gdb.Parameter):
4113 def __init__ (self, name):
4114 super (ExampleParam, self).__init__ (name,
4115 gdb.COMMAND_DATA,
4116 gdb.PARAM_BOOLEAN)
4117 self.value = True
4118 self.saved_value = True
4119 def validate(self):
4120 return False
4121 def get_set_string (self):
4122 if not self.validate():
4123 self.value = self.saved_value
4124 raise gdb.GdbError('Failed to validate')
4125 self.saved_value = self.value
763b8efd 4126 return ""
ae778caf 4127@end smallexample
329baa95
DE
4128@end defun
4129
4130@defun Parameter.get_show_string (self, svalue)
4131@value{GDBN} will call this method when a @var{parameter}'s
4132@code{show} API has been invoked (for example, @kbd{show foo}). The
4133argument @code{svalue} receives the string representation of the
4134current value. This method must return a string.
4135@end defun
4136
4137When a new parameter is defined, its type must be specified. The
4138available types are represented by constants defined in the @code{gdb}
4139module:
4140
4141@table @code
4142@findex PARAM_BOOLEAN
4143@findex gdb.PARAM_BOOLEAN
4144@item gdb.PARAM_BOOLEAN
4145The value is a plain boolean. The Python boolean values, @code{True}
4146and @code{False} are the only valid values.
4147
4148@findex PARAM_AUTO_BOOLEAN
4149@findex gdb.PARAM_AUTO_BOOLEAN
4150@item gdb.PARAM_AUTO_BOOLEAN
4151The value has three possible states: true, false, and @samp{auto}. In
4152Python, true and false are represented using boolean constants, and
4153@samp{auto} is represented using @code{None}.
4154
4155@findex PARAM_UINTEGER
4156@findex gdb.PARAM_UINTEGER
4157@item gdb.PARAM_UINTEGER
4158The value is an unsigned integer. The value of 0 should be
4159interpreted to mean ``unlimited''.
4160
4161@findex PARAM_INTEGER
4162@findex gdb.PARAM_INTEGER
4163@item gdb.PARAM_INTEGER
4164The value is a signed integer. The value of 0 should be interpreted
4165to mean ``unlimited''.
4166
4167@findex PARAM_STRING
4168@findex gdb.PARAM_STRING
4169@item gdb.PARAM_STRING
4170The value is a string. When the user modifies the string, any escape
4171sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4172translated into corresponding characters and encoded into the current
4173host charset.
4174
4175@findex PARAM_STRING_NOESCAPE
4176@findex gdb.PARAM_STRING_NOESCAPE
4177@item gdb.PARAM_STRING_NOESCAPE
4178The value is a string. When the user modifies the string, escapes are
4179passed through untranslated.
4180
4181@findex PARAM_OPTIONAL_FILENAME
4182@findex gdb.PARAM_OPTIONAL_FILENAME
4183@item gdb.PARAM_OPTIONAL_FILENAME
4184The value is a either a filename (a string), or @code{None}.
4185
4186@findex PARAM_FILENAME
4187@findex gdb.PARAM_FILENAME
4188@item gdb.PARAM_FILENAME
4189The value is a filename. This is just like
4190@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4191
4192@findex PARAM_ZINTEGER
4193@findex gdb.PARAM_ZINTEGER
4194@item gdb.PARAM_ZINTEGER
4195The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4196is interpreted as itself.
4197
0489430a
TT
4198@findex PARAM_ZUINTEGER
4199@findex gdb.PARAM_ZUINTEGER
4200@item gdb.PARAM_ZUINTEGER
4201The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4202except 0 is interpreted as itself, and the value cannot be negative.
4203
4204@findex PARAM_ZUINTEGER_UNLIMITED
4205@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4206@item gdb.PARAM_ZUINTEGER_UNLIMITED
4207The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4208except the special value -1 should be interpreted to mean
4209``unlimited''. Other negative values are not allowed.
4210
329baa95
DE
4211@findex PARAM_ENUM
4212@findex gdb.PARAM_ENUM
4213@item gdb.PARAM_ENUM
4214The value is a string, which must be one of a collection string
4215constants provided when the parameter is created.
4216@end table
4217
4218@node Functions In Python
4219@subsubsection Writing new convenience functions
4220
4221@cindex writing convenience functions
4222@cindex convenience functions in python
4223@cindex python convenience functions
4224@tindex gdb.Function
4225@tindex Function
4226You can implement new convenience functions (@pxref{Convenience Vars})
4227in Python. A convenience function is an instance of a subclass of the
4228class @code{gdb.Function}.
4229
4230@defun Function.__init__ (name)
4231The initializer for @code{Function} registers the new function with
4232@value{GDBN}. The argument @var{name} is the name of the function,
4233a string. The function will be visible to the user as a convenience
4234variable of type @code{internal function}, whose name is the same as
4235the given @var{name}.
4236
4237The documentation for the new function is taken from the documentation
4238string for the new class.
4239@end defun
4240
4241@defun Function.invoke (@var{*args})
4242When a convenience function is evaluated, its arguments are converted
4243to instances of @code{gdb.Value}, and then the function's
4244@code{invoke} method is called. Note that @value{GDBN} does not
4245predetermine the arity of convenience functions. Instead, all
4246available arguments are passed to @code{invoke}, following the
4247standard Python calling convention. In particular, a convenience
4248function can have default values for parameters without ill effect.
4249
4250The return value of this method is used as its value in the enclosing
4251expression. If an ordinary Python value is returned, it is converted
4252to a @code{gdb.Value} following the usual rules.
4253@end defun
4254
4255The following code snippet shows how a trivial convenience function can
4256be implemented in Python:
4257
4258@smallexample
4259class Greet (gdb.Function):
4260 """Return string to greet someone.
4261Takes a name as argument."""
4262
4263 def __init__ (self):
4264 super (Greet, self).__init__ ("greet")
4265
4266 def invoke (self, name):
4267 return "Hello, %s!" % name.string ()
4268
4269Greet ()
4270@end smallexample
4271
4272The last line instantiates the class, and is necessary to trigger the
4273registration of the function with @value{GDBN}. Depending on how the
4274Python code is read into @value{GDBN}, you may need to import the
4275@code{gdb} module explicitly.
4276
4277Now you can use the function in an expression:
4278
4279@smallexample
4280(gdb) print $greet("Bob")
4281$1 = "Hello, Bob!"
4282@end smallexample
4283
4284@node Progspaces In Python
4285@subsubsection Program Spaces In Python
4286
4287@cindex progspaces in python
4288@tindex gdb.Progspace
4289@tindex Progspace
4290A program space, or @dfn{progspace}, represents a symbolic view
4291of an address space.
4292It consists of all of the objfiles of the program.
4293@xref{Objfiles In Python}.
65c574f6 4294@xref{Inferiors Connections and Programs, program spaces}, for more details
329baa95
DE
4295about program spaces.
4296
4297The following progspace-related functions are available in the
4298@code{gdb} module:
4299
4300@findex gdb.current_progspace
4301@defun gdb.current_progspace ()
4302This function returns the program space of the currently selected inferior.
65c574f6 4303@xref{Inferiors Connections and Programs}. This is identical to
a40bf0c2
SM
4304@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4305included for historical compatibility.
329baa95
DE
4306@end defun
4307
4308@findex gdb.progspaces
4309@defun gdb.progspaces ()
4310Return a sequence of all the progspaces currently known to @value{GDBN}.
4311@end defun
4312
4313Each progspace is represented by an instance of the @code{gdb.Progspace}
4314class.
4315
4316@defvar Progspace.filename
4317The file name of the progspace as a string.
4318@end defvar
4319
4320@defvar Progspace.pretty_printers
4321The @code{pretty_printers} attribute is a list of functions. It is
4322used to look up pretty-printers. A @code{Value} is passed to each
4323function in order; if the function returns @code{None}, then the
4324search continues. Otherwise, the return value should be an object
4325which is used to format the value. @xref{Pretty Printing API}, for more
4326information.
4327@end defvar
4328
4329@defvar Progspace.type_printers
4330The @code{type_printers} attribute is a list of type printer objects.
4331@xref{Type Printing API}, for more information.
4332@end defvar
4333
4334@defvar Progspace.frame_filters
4335The @code{frame_filters} attribute is a dictionary of frame filter
4336objects. @xref{Frame Filter API}, for more information.
4337@end defvar
4338
8743a9cd
TT
4339A program space has the following methods:
4340
4341@findex Progspace.block_for_pc
4342@defun Progspace.block_for_pc (pc)
4343Return the innermost @code{gdb.Block} containing the given @var{pc}
4344value. If the block cannot be found for the @var{pc} value specified,
4345the function will return @code{None}.
4346@end defun
4347
4348@findex Progspace.find_pc_line
4349@defun Progspace.find_pc_line (pc)
4350Return the @code{gdb.Symtab_and_line} object corresponding to the
4351@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4352of @var{pc} is passed as an argument, then the @code{symtab} and
4353@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4354object will be @code{None} and 0 respectively.
4355@end defun
4356
4357@findex Progspace.is_valid
4358@defun Progspace.is_valid ()
4359Returns @code{True} if the @code{gdb.Progspace} object is valid,
4360@code{False} if not. A @code{gdb.Progspace} object can become invalid
4361if the program space file it refers to is not referenced by any
4362inferior. All other @code{gdb.Progspace} methods will throw an
4363exception if it is invalid at the time the method is called.
4364@end defun
4365
4366@findex Progspace.objfiles
4367@defun Progspace.objfiles ()
4368Return a sequence of all the objfiles referenced by this program
4369space. @xref{Objfiles In Python}.
4370@end defun
4371
4372@findex Progspace.solib_name
4373@defun Progspace.solib_name (address)
4374Return the name of the shared library holding the given @var{address}
4375as a string, or @code{None}.
4376@end defun
4377
02be9a71
DE
4378One may add arbitrary attributes to @code{gdb.Progspace} objects
4379in the usual Python way.
4380This is useful if, for example, one needs to do some extra record keeping
4381associated with the program space.
4382
4383In this contrived example, we want to perform some processing when
4384an objfile with a certain symbol is loaded, but we only want to do
4385this once because it is expensive. To achieve this we record the results
4386with the program space because we can't predict when the desired objfile
4387will be loaded.
4388
4389@smallexample
4390(gdb) python
4391def clear_objfiles_handler(event):
4392 event.progspace.expensive_computation = None
4393def expensive(symbol):
4394 """A mock routine to perform an "expensive" computation on symbol."""
f3bdc2db 4395 print ("Computing the answer to the ultimate question ...")
02be9a71
DE
4396 return 42
4397def new_objfile_handler(event):
4398 objfile = event.new_objfile
4399 progspace = objfile.progspace
4400 if not hasattr(progspace, 'expensive_computation') or \
4401 progspace.expensive_computation is None:
4402 # We use 'main' for the symbol to keep the example simple.
4403 # Note: There's no current way to constrain the lookup
4404 # to one objfile.
4405 symbol = gdb.lookup_global_symbol('main')
4406 if symbol is not None:
4407 progspace.expensive_computation = expensive(symbol)
4408gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4409gdb.events.new_objfile.connect(new_objfile_handler)
4410end
4411(gdb) file /tmp/hello
0bab6cf1 4412Reading symbols from /tmp/hello...
02be9a71
DE
4413Computing the answer to the ultimate question ...
4414(gdb) python print gdb.current_progspace().expensive_computation
441542
4416(gdb) run
4417Starting program: /tmp/hello
4418Hello.
4419[Inferior 1 (process 4242) exited normally]
4420@end smallexample
4421
329baa95
DE
4422@node Objfiles In Python
4423@subsubsection Objfiles In Python
4424
4425@cindex objfiles in python
4426@tindex gdb.Objfile
4427@tindex Objfile
4428@value{GDBN} loads symbols for an inferior from various
4429symbol-containing files (@pxref{Files}). These include the primary
4430executable file, any shared libraries used by the inferior, and any
4431separate debug info files (@pxref{Separate Debug Files}).
4432@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4433
4434The following objfile-related functions are available in the
4435@code{gdb} module:
4436
4437@findex gdb.current_objfile
4438@defun gdb.current_objfile ()
4439When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4440sets the ``current objfile'' to the corresponding objfile. This
4441function returns the current objfile. If there is no current objfile,
4442this function returns @code{None}.
4443@end defun
4444
4445@findex gdb.objfiles
4446@defun gdb.objfiles ()
74d3fbbb
SM
4447Return a sequence of objfiles referenced by the current program space.
4448@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4449to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4450historical compatibility.
329baa95
DE
4451@end defun
4452
6dddd6a5
DE
4453@findex gdb.lookup_objfile
4454@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4455Look up @var{name}, a file name or build ID, in the list of objfiles
4456for the current program space (@pxref{Progspaces In Python}).
4457If the objfile is not found throw the Python @code{ValueError} exception.
4458
4459If @var{name} is a relative file name, then it will match any
4460source file name with the same trailing components. For example, if
4461@var{name} is @samp{gcc/expr.c}, then it will match source file
4462name of @file{/build/trunk/gcc/expr.c}, but not
4463@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4464
4465If @var{by_build_id} is provided and is @code{True} then @var{name}
4466is the build ID of the objfile. Otherwise, @var{name} is a file name.
4467This is supported only on some operating systems, notably those which use
4468the ELF format for binary files and the @sc{gnu} Binutils. For more details
4469about this feature, see the description of the @option{--build-id}
f5a476a7 4470command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4471The GNU Linker}.
4472@end defun
4473
329baa95
DE
4474Each objfile is represented by an instance of the @code{gdb.Objfile}
4475class.
4476
4477@defvar Objfile.filename
1b549396
DE
4478The file name of the objfile as a string, with symbolic links resolved.
4479
4480The value is @code{None} if the objfile is no longer valid.
4481See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4482@end defvar
4483
3a8b707a
DE
4484@defvar Objfile.username
4485The file name of the objfile as specified by the user as a string.
4486
4487The value is @code{None} if the objfile is no longer valid.
4488See the @code{gdb.Objfile.is_valid} method, described below.
4489@end defvar
4490
a0be3e44
DE
4491@defvar Objfile.owner
4492For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4493object that debug info is being provided for.
4494Otherwise this is @code{None}.
4495Separate debug info objfiles are added with the
4496@code{gdb.Objfile.add_separate_debug_file} method, described below.
4497@end defvar
4498
7c50a931
DE
4499@defvar Objfile.build_id
4500The build ID of the objfile as a string.
4501If the objfile does not have a build ID then the value is @code{None}.
4502
4503This is supported only on some operating systems, notably those which use
4504the ELF format for binary files and the @sc{gnu} Binutils. For more details
4505about this feature, see the description of the @option{--build-id}
f5a476a7 4506command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4507The GNU Linker}.
4508@end defvar
4509
d096d8c1
DE
4510@defvar Objfile.progspace
4511The containing program space of the objfile as a @code{gdb.Progspace}
4512object. @xref{Progspaces In Python}.
4513@end defvar
4514
329baa95
DE
4515@defvar Objfile.pretty_printers
4516The @code{pretty_printers} attribute is a list of functions. It is
4517used to look up pretty-printers. A @code{Value} is passed to each
4518function in order; if the function returns @code{None}, then the
4519search continues. Otherwise, the return value should be an object
4520which is used to format the value. @xref{Pretty Printing API}, for more
4521information.
4522@end defvar
4523
4524@defvar Objfile.type_printers
4525The @code{type_printers} attribute is a list of type printer objects.
4526@xref{Type Printing API}, for more information.
4527@end defvar
4528
4529@defvar Objfile.frame_filters
4530The @code{frame_filters} attribute is a dictionary of frame filter
4531objects. @xref{Frame Filter API}, for more information.
4532@end defvar
4533
02be9a71
DE
4534One may add arbitrary attributes to @code{gdb.Objfile} objects
4535in the usual Python way.
4536This is useful if, for example, one needs to do some extra record keeping
4537associated with the objfile.
4538
4539In this contrived example we record the time when @value{GDBN}
4540loaded the objfile.
4541
4542@smallexample
4543(gdb) python
4544import datetime
4545def new_objfile_handler(event):
4546 # Set the time_loaded attribute of the new objfile.
4547 event.new_objfile.time_loaded = datetime.datetime.today()
4548gdb.events.new_objfile.connect(new_objfile_handler)
4549end
4550(gdb) file ./hello
0bab6cf1 4551Reading symbols from ./hello...
02be9a71
DE
4552(gdb) python print gdb.objfiles()[0].time_loaded
45532014-10-09 11:41:36.770345
4554@end smallexample
4555
329baa95
DE
4556A @code{gdb.Objfile} object has the following methods:
4557
4558@defun Objfile.is_valid ()
4559Returns @code{True} if the @code{gdb.Objfile} object is valid,
4560@code{False} if not. A @code{gdb.Objfile} object can become invalid
4561if the object file it refers to is not loaded in @value{GDBN} any
4562longer. All other @code{gdb.Objfile} methods will throw an exception
4563if it is invalid at the time the method is called.
4564@end defun
4565
86e4ed39
DE
4566@defun Objfile.add_separate_debug_file (file)
4567Add @var{file} to the list of files that @value{GDBN} will search for
4568debug information for the objfile.
4569This is useful when the debug info has been removed from the program
4570and stored in a separate file. @value{GDBN} has built-in support for
4571finding separate debug info files (@pxref{Separate Debug Files}), but if
4572the file doesn't live in one of the standard places that @value{GDBN}
4573searches then this function can be used to add a debug info file
4574from a different place.
4575@end defun
4576
c620ed88
CB
4577@defun Objfile.lookup_global_symbol (name @r{[}, domain@r{]})
4578Search for a global symbol named @var{name} in this objfile. Optionally, the
4579search scope can be restricted with the @var{domain} argument.
4580The @var{domain} argument must be a domain constant defined in the @code{gdb}
4581module and described in @ref{Symbols In Python}. This function is similar to
4582@code{gdb.lookup_global_symbol}, except that the search is limited to this
4583objfile.
4584
4585The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4586is not found.
4587@end defun
4588
4589@defun Objfile.lookup_static_symbol (name @r{[}, domain@r{]})
4590Like @code{Objfile.lookup_global_symbol}, but searches for a global
4591symbol with static linkage named @var{name} in this objfile.
4592@end defun
4593
329baa95 4594@node Frames In Python
849cba3b 4595@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4596
4597@cindex frames in python
4598When the debugged program stops, @value{GDBN} is able to analyze its call
4599stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4600represents a frame in the stack. A @code{gdb.Frame} object is only valid
4601while its corresponding frame exists in the inferior's stack. If you try
4602to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4603exception (@pxref{Exception Handling}).
4604
4605Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4606operator, like:
4607
4608@smallexample
4609(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4610True
4611@end smallexample
4612
4613The following frame-related functions are available in the @code{gdb} module:
4614
4615@findex gdb.selected_frame
4616@defun gdb.selected_frame ()
4617Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4618@end defun
4619
4620@findex gdb.newest_frame
4621@defun gdb.newest_frame ()
4622Return the newest frame object for the selected thread.
4623@end defun
4624
4625@defun gdb.frame_stop_reason_string (reason)
4626Return a string explaining the reason why @value{GDBN} stopped unwinding
4627frames, as expressed by the given @var{reason} code (an integer, see the
4628@code{unwind_stop_reason} method further down in this section).
4629@end defun
4630
e0f3fd7c
TT
4631@findex gdb.invalidate_cached_frames
4632@defun gdb.invalidate_cached_frames
4633@value{GDBN} internally keeps a cache of the frames that have been
4634unwound. This function invalidates this cache.
4635
4636This function should not generally be called by ordinary Python code.
4637It is documented for the sake of completeness.
4638@end defun
4639
329baa95
DE
4640A @code{gdb.Frame} object has the following methods:
4641
4642@defun Frame.is_valid ()
4643Returns true if the @code{gdb.Frame} object is valid, false if not.
4644A frame object can become invalid if the frame it refers to doesn't
4645exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4646an exception if it is invalid at the time the method is called.
4647@end defun
4648
4649@defun Frame.name ()
4650Returns the function name of the frame, or @code{None} if it can't be
4651obtained.
4652@end defun
4653
4654@defun Frame.architecture ()
4655Returns the @code{gdb.Architecture} object corresponding to the frame's
4656architecture. @xref{Architectures In Python}.
4657@end defun
4658
4659@defun Frame.type ()
4660Returns the type of the frame. The value can be one of:
4661@table @code
4662@item gdb.NORMAL_FRAME
4663An ordinary stack frame.
4664
4665@item gdb.DUMMY_FRAME
4666A fake stack frame that was created by @value{GDBN} when performing an
4667inferior function call.
4668
4669@item gdb.INLINE_FRAME
4670A frame representing an inlined function. The function was inlined
4671into a @code{gdb.NORMAL_FRAME} that is older than this one.
4672
4673@item gdb.TAILCALL_FRAME
4674A frame representing a tail call. @xref{Tail Call Frames}.
4675
4676@item gdb.SIGTRAMP_FRAME
4677A signal trampoline frame. This is the frame created by the OS when
4678it calls into a signal handler.
4679
4680@item gdb.ARCH_FRAME
4681A fake stack frame representing a cross-architecture call.
4682
4683@item gdb.SENTINEL_FRAME
4684This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4685newest frame.
4686@end table
4687@end defun
4688
4689@defun Frame.unwind_stop_reason ()
4690Return an integer representing the reason why it's not possible to find
4691more frames toward the outermost frame. Use
4692@code{gdb.frame_stop_reason_string} to convert the value returned by this
4693function to a string. The value can be one of:
4694
4695@table @code
4696@item gdb.FRAME_UNWIND_NO_REASON
4697No particular reason (older frames should be available).
4698
4699@item gdb.FRAME_UNWIND_NULL_ID
4700The previous frame's analyzer returns an invalid result. This is no
4701longer used by @value{GDBN}, and is kept only for backward
4702compatibility.
4703
4704@item gdb.FRAME_UNWIND_OUTERMOST
4705This frame is the outermost.
4706
4707@item gdb.FRAME_UNWIND_UNAVAILABLE
4708Cannot unwind further, because that would require knowing the
4709values of registers or memory that have not been collected.
4710
4711@item gdb.FRAME_UNWIND_INNER_ID
4712This frame ID looks like it ought to belong to a NEXT frame,
4713but we got it for a PREV frame. Normally, this is a sign of
4714unwinder failure. It could also indicate stack corruption.
4715
4716@item gdb.FRAME_UNWIND_SAME_ID
4717This frame has the same ID as the previous one. That means
4718that unwinding further would almost certainly give us another
4719frame with exactly the same ID, so break the chain. Normally,
4720this is a sign of unwinder failure. It could also indicate
4721stack corruption.
4722
4723@item gdb.FRAME_UNWIND_NO_SAVED_PC
4724The frame unwinder did not find any saved PC, but we needed
4725one to unwind further.
4726
53e8a631
AB
4727@item gdb.FRAME_UNWIND_MEMORY_ERROR
4728The frame unwinder caused an error while trying to access memory.
4729
329baa95
DE
4730@item gdb.FRAME_UNWIND_FIRST_ERROR
4731Any stop reason greater or equal to this value indicates some kind
4732of error. This special value facilitates writing code that tests
4733for errors in unwinding in a way that will work correctly even if
4734the list of the other values is modified in future @value{GDBN}
4735versions. Using it, you could write:
4736@smallexample
4737reason = gdb.selected_frame().unwind_stop_reason ()
4738reason_str = gdb.frame_stop_reason_string (reason)
4739if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
f3bdc2db 4740 print ("An error occured: %s" % reason_str)
329baa95
DE
4741@end smallexample
4742@end table
4743
4744@end defun
4745
4746@defun Frame.pc ()
4747Returns the frame's resume address.
4748@end defun
4749
4750@defun Frame.block ()
60c0454d
TT
4751Return the frame's code block. @xref{Blocks In Python}. If the frame
4752does not have a block -- for example, if there is no debugging
4753information for the code in question -- then this will throw an
4754exception.
329baa95
DE
4755@end defun
4756
4757@defun Frame.function ()
4758Return the symbol for the function corresponding to this frame.
4759@xref{Symbols In Python}.
4760@end defun
4761
4762@defun Frame.older ()
4763Return the frame that called this frame.
4764@end defun
4765
4766@defun Frame.newer ()
4767Return the frame called by this frame.
4768@end defun
4769
4770@defun Frame.find_sal ()
4771Return the frame's symtab and line object.
4772@xref{Symbol Tables In Python}.
4773@end defun
4774
0f767f94 4775@anchor{gdbpy_frame_read_register}
5f3b99cf 4776@defun Frame.read_register (register)
43d5901d
AB
4777Return the value of @var{register} in this frame. Returns a
4778@code{Gdb.Value} object. Throws an exception if @var{register} does
4779not exist. The @var{register} argument must be one of the following:
4780@enumerate
4781@item
4782A string that is the name of a valid register (e.g., @code{'sp'} or
4783@code{'rax'}).
4784@item
4785A @code{gdb.RegisterDescriptor} object (@pxref{Registers In Python}).
4786@item
4787A @value{GDBN} internal, platform specific number. Using these
4788numbers is supported for historic reasons, but is not recommended as
4789future changes to @value{GDBN} could change the mapping between
4790numbers and the registers they represent, breaking any Python code
4791that uses the platform-specific numbers. The numbers are usually
4792found in the corresponding @file{@var{platform}-tdep.h} file in the
4793@value{GDBN} source tree.
4794@end enumerate
4795Using a string to access registers will be slightly slower than the
4796other two methods as @value{GDBN} must look up the mapping between
4797name and internal register number. If performance is critical
4798consider looking up and caching a @code{gdb.RegisterDescriptor}
4799object.
5f3b99cf
SS
4800@end defun
4801
329baa95
DE
4802@defun Frame.read_var (variable @r{[}, block@r{]})
4803Return the value of @var{variable} in this frame. If the optional
4804argument @var{block} is provided, search for the variable from that
4805block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4806determined by the frame's current program counter). The @var{variable}
4807argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4808@code{gdb.Block} object.
4809@end defun
4810
4811@defun Frame.select ()
4812Set this frame to be the selected frame. @xref{Stack, ,Examining the
4813Stack}.
4814@end defun
4815
4816@node Blocks In Python
849cba3b 4817@subsubsection Accessing blocks from Python
329baa95
DE
4818
4819@cindex blocks in python
4820@tindex gdb.Block
4821
4822In @value{GDBN}, symbols are stored in blocks. A block corresponds
4823roughly to a scope in the source code. Blocks are organized
4824hierarchically, and are represented individually in Python as a
4825@code{gdb.Block}. Blocks rely on debugging information being
4826available.
4827
4828A frame has a block. Please see @ref{Frames In Python}, for a more
4829in-depth discussion of frames.
4830
4831The outermost block is known as the @dfn{global block}. The global
4832block typically holds public global variables and functions.
4833
4834The block nested just inside the global block is the @dfn{static
4835block}. The static block typically holds file-scoped variables and
4836functions.
4837
4838@value{GDBN} provides a method to get a block's superblock, but there
4839is currently no way to examine the sub-blocks of a block, or to
4840iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4841Python}).
4842
4843Here is a short example that should help explain blocks:
4844
4845@smallexample
4846/* This is in the global block. */
4847int global;
4848
4849/* This is in the static block. */
4850static int file_scope;
4851
4852/* 'function' is in the global block, and 'argument' is
4853 in a block nested inside of 'function'. */
4854int function (int argument)
4855@{
4856 /* 'local' is in a block inside 'function'. It may or may
4857 not be in the same block as 'argument'. */
4858 int local;
4859
4860 @{
4861 /* 'inner' is in a block whose superblock is the one holding
4862 'local'. */
4863 int inner;
4864
4865 /* If this call is expanded by the compiler, you may see
4866 a nested block here whose function is 'inline_function'
4867 and whose superblock is the one holding 'inner'. */
4868 inline_function ();
4869 @}
4870@}
4871@end smallexample
4872
4873A @code{gdb.Block} is iterable. The iterator returns the symbols
4874(@pxref{Symbols In Python}) local to the block. Python programs
4875should not assume that a specific block object will always contain a
4876given symbol, since changes in @value{GDBN} features and
4877infrastructure may cause symbols move across blocks in a symbol
0b27c27d
CB
4878table. You can also use Python's @dfn{dictionary syntax} to access
4879variables in this block, e.g.:
4880
4881@smallexample
4882symbol = some_block['variable'] # symbol is of type gdb.Symbol
4883@end smallexample
329baa95
DE
4884
4885The following block-related functions are available in the @code{gdb}
4886module:
4887
4888@findex gdb.block_for_pc
4889@defun gdb.block_for_pc (pc)
4890Return the innermost @code{gdb.Block} containing the given @var{pc}
4891value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4892the function will return @code{None}. This is identical to
4893@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4894historical compatibility.
329baa95
DE
4895@end defun
4896
4897A @code{gdb.Block} object has the following methods:
4898
4899@defun Block.is_valid ()
4900Returns @code{True} if the @code{gdb.Block} object is valid,
4901@code{False} if not. A block object can become invalid if the block it
4902refers to doesn't exist anymore in the inferior. All other
4903@code{gdb.Block} methods will throw an exception if it is invalid at
4904the time the method is called. The block's validity is also checked
4905during iteration over symbols of the block.
4906@end defun
4907
4908A @code{gdb.Block} object has the following attributes:
4909
4910@defvar Block.start
4911The start address of the block. This attribute is not writable.
4912@end defvar
4913
4914@defvar Block.end
22eb9e92
TT
4915One past the last address that appears in the block. This attribute
4916is not writable.
329baa95
DE
4917@end defvar
4918
4919@defvar Block.function
4920The name of the block represented as a @code{gdb.Symbol}. If the
4921block is not named, then this attribute holds @code{None}. This
4922attribute is not writable.
4923
4924For ordinary function blocks, the superblock is the static block.
4925However, you should note that it is possible for a function block to
4926have a superblock that is not the static block -- for instance this
4927happens for an inlined function.
4928@end defvar
4929
4930@defvar Block.superblock
4931The block containing this block. If this parent block does not exist,
4932this attribute holds @code{None}. This attribute is not writable.
4933@end defvar
4934
4935@defvar Block.global_block
4936The global block associated with this block. This attribute is not
4937writable.
4938@end defvar
4939
4940@defvar Block.static_block
4941The static block associated with this block. This attribute is not
4942writable.
4943@end defvar
4944
4945@defvar Block.is_global
4946@code{True} if the @code{gdb.Block} object is a global block,
4947@code{False} if not. This attribute is not
4948writable.
4949@end defvar
4950
4951@defvar Block.is_static
4952@code{True} if the @code{gdb.Block} object is a static block,
4953@code{False} if not. This attribute is not writable.
4954@end defvar
4955
4956@node Symbols In Python
849cba3b 4957@subsubsection Python representation of Symbols
329baa95
DE
4958
4959@cindex symbols in python
4960@tindex gdb.Symbol
4961
4962@value{GDBN} represents every variable, function and type as an
4963entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4964Similarly, Python represents these symbols in @value{GDBN} with the
4965@code{gdb.Symbol} object.
4966
4967The following symbol-related functions are available in the @code{gdb}
4968module:
4969
4970@findex gdb.lookup_symbol
4971@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4972This function searches for a symbol by name. The search scope can be
4973restricted to the parameters defined in the optional domain and block
4974arguments.
4975
4976@var{name} is the name of the symbol. It must be a string. The
4977optional @var{block} argument restricts the search to symbols visible
4978in that @var{block}. The @var{block} argument must be a
4979@code{gdb.Block} object. If omitted, the block for the current frame
4980is used. The optional @var{domain} argument restricts
4981the search to the domain type. The @var{domain} argument must be a
4982domain constant defined in the @code{gdb} module and described later
4983in this chapter.
4984
4985The result is a tuple of two elements.
4986The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4987is not found.
4988If the symbol is found, the second element is @code{True} if the symbol
4989is a field of a method's object (e.g., @code{this} in C@t{++}),
4990otherwise it is @code{False}.
4991If the symbol is not found, the second element is @code{False}.
4992@end defun
4993
4994@findex gdb.lookup_global_symbol
4995@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4996This function searches for a global symbol by name.
4997The search scope can be restricted to by the domain argument.
4998
4999@var{name} is the name of the symbol. It must be a string.
5000The optional @var{domain} argument restricts the search to the domain type.
5001The @var{domain} argument must be a domain constant defined in the @code{gdb}
5002module and described later in this chapter.
5003
5004The result is a @code{gdb.Symbol} object or @code{None} if the symbol
5005is not found.
5006@end defun
5007
2906593f
CB
5008@findex gdb.lookup_static_symbol
5009@defun gdb.lookup_static_symbol (name @r{[}, domain@r{]})
5010This function searches for a global symbol with static linkage by name.
5011The search scope can be restricted to by the domain argument.
5012
5013@var{name} is the name of the symbol. It must be a string.
5014The optional @var{domain} argument restricts the search to the domain type.
5015The @var{domain} argument must be a domain constant defined in the @code{gdb}
5016module and described later in this chapter.
5017
5018The result is a @code{gdb.Symbol} object or @code{None} if the symbol
5019is not found.
5020
5021Note that this function will not find function-scoped static variables. To look
5022up such variables, iterate over the variables of the function's
5023@code{gdb.Block} and check that @code{block.addr_class} is
5024@code{gdb.SYMBOL_LOC_STATIC}.
09ff83af
AB
5025
5026There can be multiple global symbols with static linkage with the same
5027name. This function will only return the first matching symbol that
5028it finds. Which symbol is found depends on where @value{GDBN} is
5029currently stopped, as @value{GDBN} will first search for matching
5030symbols in the current object file, and then search all other object
5031files. If the application is not yet running then @value{GDBN} will
5032search all object files in the order they appear in the debug
5033information.
2906593f
CB
5034@end defun
5035
086baaf1
AB
5036@findex gdb.lookup_static_symbols
5037@defun gdb.lookup_static_symbols (name @r{[}, domain@r{]})
5038Similar to @code{gdb.lookup_static_symbol}, this function searches for
5039global symbols with static linkage by name, and optionally restricted
5040by the domain argument. However, this function returns a list of all
5041matching symbols found, not just the first one.
5042
5043@var{name} is the name of the symbol. It must be a string.
5044The optional @var{domain} argument restricts the search to the domain type.
5045The @var{domain} argument must be a domain constant defined in the @code{gdb}
5046module and described later in this chapter.
5047
5048The result is a list of @code{gdb.Symbol} objects which could be empty
5049if no matching symbols were found.
5050
5051Note that this function will not find function-scoped static variables. To look
5052up such variables, iterate over the variables of the function's
5053@code{gdb.Block} and check that @code{block.addr_class} is
5054@code{gdb.SYMBOL_LOC_STATIC}.
5055@end defun
5056
329baa95
DE
5057A @code{gdb.Symbol} object has the following attributes:
5058
5059@defvar Symbol.type
5060The type of the symbol or @code{None} if no type is recorded.
5061This attribute is represented as a @code{gdb.Type} object.
5062@xref{Types In Python}. This attribute is not writable.
5063@end defvar
5064
5065@defvar Symbol.symtab
5066The symbol table in which the symbol appears. This attribute is
5067represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
5068Python}. This attribute is not writable.
5069@end defvar
5070
5071@defvar Symbol.line
5072The line number in the source code at which the symbol was defined.
5073This is an integer.
5074@end defvar
5075
5076@defvar Symbol.name
5077The name of the symbol as a string. This attribute is not writable.
5078@end defvar
5079
5080@defvar Symbol.linkage_name
5081The name of the symbol, as used by the linker (i.e., may be mangled).
5082This attribute is not writable.
5083@end defvar
5084
5085@defvar Symbol.print_name
5086The name of the symbol in a form suitable for output. This is either
5087@code{name} or @code{linkage_name}, depending on whether the user
5088asked @value{GDBN} to display demangled or mangled names.
5089@end defvar
5090
5091@defvar Symbol.addr_class
5092The address class of the symbol. This classifies how to find the value
5093of a symbol. Each address class is a constant defined in the
5094@code{gdb} module and described later in this chapter.
5095@end defvar
5096
5097@defvar Symbol.needs_frame
5098This is @code{True} if evaluating this symbol's value requires a frame
5099(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
5100local variables will require a frame, but other symbols will not.
5101@end defvar
5102
5103@defvar Symbol.is_argument
5104@code{True} if the symbol is an argument of a function.
5105@end defvar
5106
5107@defvar Symbol.is_constant
5108@code{True} if the symbol is a constant.
5109@end defvar
5110
5111@defvar Symbol.is_function
5112@code{True} if the symbol is a function or a method.
5113@end defvar
5114
5115@defvar Symbol.is_variable
5116@code{True} if the symbol is a variable.
5117@end defvar
5118
5119A @code{gdb.Symbol} object has the following methods:
5120
5121@defun Symbol.is_valid ()
5122Returns @code{True} if the @code{gdb.Symbol} object is valid,
5123@code{False} if not. A @code{gdb.Symbol} object can become invalid if
5124the symbol it refers to does not exist in @value{GDBN} any longer.
5125All other @code{gdb.Symbol} methods will throw an exception if it is
5126invalid at the time the method is called.
5127@end defun
5128
5129@defun Symbol.value (@r{[}frame@r{]})
5130Compute the value of the symbol, as a @code{gdb.Value}. For
5131functions, this computes the address of the function, cast to the
5132appropriate type. If the symbol requires a frame in order to compute
5133its value, then @var{frame} must be given. If @var{frame} is not
5134given, or if @var{frame} is invalid, then this method will throw an
5135exception.
5136@end defun
5137
5138The available domain categories in @code{gdb.Symbol} are represented
5139as constants in the @code{gdb} module:
5140
b3ce5e5f
DE
5141@vtable @code
5142@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
5143@item gdb.SYMBOL_UNDEF_DOMAIN
5144This is used when a domain has not been discovered or none of the
5145following domains apply. This usually indicates an error either
5146in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5147
5148@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
5149@item gdb.SYMBOL_VAR_DOMAIN
5150This domain contains variables, function names, typedef names and enum
5151type values.
b3ce5e5f
DE
5152
5153@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
5154@item gdb.SYMBOL_STRUCT_DOMAIN
5155This domain holds struct, union and enum type names.
b3ce5e5f
DE
5156
5157@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
5158@item gdb.SYMBOL_LABEL_DOMAIN
5159This domain contains names of labels (for gotos).
b3ce5e5f 5160
51e78fc5
TT
5161@vindex SYMBOL_MODULE_DOMAIN
5162@item gdb.SYMBOL_MODULE_DOMAIN
5163This domain contains names of Fortran module types.
5164
5165@vindex SYMBOL_COMMON_BLOCK_DOMAIN
5166@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
5167This domain contains names of Fortran common blocks.
b3ce5e5f 5168@end vtable
329baa95
DE
5169
5170The available address class categories in @code{gdb.Symbol} are represented
5171as constants in the @code{gdb} module:
5172
b3ce5e5f
DE
5173@vtable @code
5174@vindex SYMBOL_LOC_UNDEF
329baa95
DE
5175@item gdb.SYMBOL_LOC_UNDEF
5176If this is returned by address class, it indicates an error either in
5177the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5178
5179@vindex SYMBOL_LOC_CONST
329baa95
DE
5180@item gdb.SYMBOL_LOC_CONST
5181Value is constant int.
b3ce5e5f
DE
5182
5183@vindex SYMBOL_LOC_STATIC
329baa95
DE
5184@item gdb.SYMBOL_LOC_STATIC
5185Value is at a fixed address.
b3ce5e5f
DE
5186
5187@vindex SYMBOL_LOC_REGISTER
329baa95
DE
5188@item gdb.SYMBOL_LOC_REGISTER
5189Value is in a register.
b3ce5e5f
DE
5190
5191@vindex SYMBOL_LOC_ARG
329baa95
DE
5192@item gdb.SYMBOL_LOC_ARG
5193Value is an argument. This value is at the offset stored within the
5194symbol inside the frame's argument list.
b3ce5e5f
DE
5195
5196@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
5197@item gdb.SYMBOL_LOC_REF_ARG
5198Value address is stored in the frame's argument list. Just like
5199@code{LOC_ARG} except that the value's address is stored at the
5200offset, not the value itself.
b3ce5e5f
DE
5201
5202@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
5203@item gdb.SYMBOL_LOC_REGPARM_ADDR
5204Value is a specified register. Just like @code{LOC_REGISTER} except
5205the register holds the address of the argument instead of the argument
5206itself.
b3ce5e5f
DE
5207
5208@vindex SYMBOL_LOC_LOCAL
329baa95
DE
5209@item gdb.SYMBOL_LOC_LOCAL
5210Value is a local variable.
b3ce5e5f
DE
5211
5212@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
5213@item gdb.SYMBOL_LOC_TYPEDEF
5214Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
5215have this class.
b3ce5e5f
DE
5216
5217@vindex SYMBOL_LOC_BLOCK
329baa95
DE
5218@item gdb.SYMBOL_LOC_BLOCK
5219Value is a block.
b3ce5e5f
DE
5220
5221@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
5222@item gdb.SYMBOL_LOC_CONST_BYTES
5223Value is a byte-sequence.
b3ce5e5f
DE
5224
5225@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
5226@item gdb.SYMBOL_LOC_UNRESOLVED
5227Value is at a fixed address, but the address of the variable has to be
5228determined from the minimal symbol table whenever the variable is
5229referenced.
b3ce5e5f
DE
5230
5231@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5232@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5233The value does not actually exist in the program.
b3ce5e5f
DE
5234
5235@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5236@item gdb.SYMBOL_LOC_COMPUTED
5237The value's address is a computed location.
51e78fc5
TT
5238
5239@vindex SYMBOL_LOC_COMPUTED
5240@item gdb.SYMBOL_LOC_COMPUTED
5241The value's address is a symbol. This is only used for Fortran common
5242blocks.
b3ce5e5f 5243@end vtable
329baa95
DE
5244
5245@node Symbol Tables In Python
849cba3b 5246@subsubsection Symbol table representation in Python
329baa95
DE
5247
5248@cindex symbol tables in python
5249@tindex gdb.Symtab
5250@tindex gdb.Symtab_and_line
5251
5252Access to symbol table data maintained by @value{GDBN} on the inferior
5253is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5254@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5255from the @code{find_sal} method in @code{gdb.Frame} object.
5256@xref{Frames In Python}.
5257
5258For more information on @value{GDBN}'s symbol table management, see
5259@ref{Symbols, ,Examining the Symbol Table}, for more information.
5260
5261A @code{gdb.Symtab_and_line} object has the following attributes:
5262
5263@defvar Symtab_and_line.symtab
5264The symbol table object (@code{gdb.Symtab}) for this frame.
5265This attribute is not writable.
5266@end defvar
5267
5268@defvar Symtab_and_line.pc
5269Indicates the start of the address range occupied by code for the
5270current source line. This attribute is not writable.
5271@end defvar
5272
5273@defvar Symtab_and_line.last
5274Indicates the end of the address range occupied by code for the current
5275source line. This attribute is not writable.
5276@end defvar
5277
5278@defvar Symtab_and_line.line
5279Indicates the current line number for this object. This
5280attribute is not writable.
5281@end defvar
5282
5283A @code{gdb.Symtab_and_line} object has the following methods:
5284
5285@defun Symtab_and_line.is_valid ()
5286Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5287@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5288invalid if the Symbol table and line object it refers to does not
5289exist in @value{GDBN} any longer. All other
5290@code{gdb.Symtab_and_line} methods will throw an exception if it is
5291invalid at the time the method is called.
5292@end defun
5293
5294A @code{gdb.Symtab} object has the following attributes:
5295
5296@defvar Symtab.filename
5297The symbol table's source filename. This attribute is not writable.
5298@end defvar
5299
5300@defvar Symtab.objfile
5301The symbol table's backing object file. @xref{Objfiles In Python}.
5302This attribute is not writable.
5303@end defvar
5304
2b4fd423
DE
5305@defvar Symtab.producer
5306The name and possibly version number of the program that
5307compiled the code in the symbol table.
5308The contents of this string is up to the compiler.
5309If no producer information is available then @code{None} is returned.
5310This attribute is not writable.
5311@end defvar
5312
329baa95
DE
5313A @code{gdb.Symtab} object has the following methods:
5314
5315@defun Symtab.is_valid ()
5316Returns @code{True} if the @code{gdb.Symtab} object is valid,
5317@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5318the symbol table it refers to does not exist in @value{GDBN} any
5319longer. All other @code{gdb.Symtab} methods will throw an exception
5320if it is invalid at the time the method is called.
5321@end defun
5322
5323@defun Symtab.fullname ()
5324Return the symbol table's source absolute file name.
5325@end defun
5326
5327@defun Symtab.global_block ()
5328Return the global block of the underlying symbol table.
5329@xref{Blocks In Python}.
5330@end defun
5331
5332@defun Symtab.static_block ()
5333Return the static block of the underlying symbol table.
5334@xref{Blocks In Python}.
5335@end defun
5336
5337@defun Symtab.linetable ()
5338Return the line table associated with the symbol table.
5339@xref{Line Tables In Python}.
5340@end defun
5341
5342@node Line Tables In Python
5343@subsubsection Manipulating line tables using Python
5344
5345@cindex line tables in python
5346@tindex gdb.LineTable
5347
5348Python code can request and inspect line table information from a
5349symbol table that is loaded in @value{GDBN}. A line table is a
5350mapping of source lines to their executable locations in memory. To
5351acquire the line table information for a particular symbol table, use
5352the @code{linetable} function (@pxref{Symbol Tables In Python}).
5353
5354A @code{gdb.LineTable} is iterable. The iterator returns
5355@code{LineTableEntry} objects that correspond to the source line and
5356address for each line table entry. @code{LineTableEntry} objects have
5357the following attributes:
5358
5359@defvar LineTableEntry.line
5360The source line number for this line table entry. This number
5361corresponds to the actual line of source. This attribute is not
5362writable.
5363@end defvar
5364
5365@defvar LineTableEntry.pc
5366The address that is associated with the line table entry where the
5367executable code for that source line resides in memory. This
5368attribute is not writable.
5369@end defvar
5370
5371As there can be multiple addresses for a single source line, you may
5372receive multiple @code{LineTableEntry} objects with matching
5373@code{line} attributes, but with different @code{pc} attributes. The
5374iterator is sorted in ascending @code{pc} order. Here is a small
5375example illustrating iterating over a line table.
5376
5377@smallexample
5378symtab = gdb.selected_frame().find_sal().symtab
5379linetable = symtab.linetable()
5380for line in linetable:
f3bdc2db 5381 print ("Line: "+str(line.line)+" Address: "+hex(line.pc))
329baa95
DE
5382@end smallexample
5383
5384This will have the following output:
5385
5386@smallexample
5387Line: 33 Address: 0x4005c8L
5388Line: 37 Address: 0x4005caL
5389Line: 39 Address: 0x4005d2L
5390Line: 40 Address: 0x4005f8L
5391Line: 42 Address: 0x4005ffL
5392Line: 44 Address: 0x400608L
5393Line: 42 Address: 0x40060cL
5394Line: 45 Address: 0x400615L
5395@end smallexample
5396
5397In addition to being able to iterate over a @code{LineTable}, it also
5398has the following direct access methods:
5399
5400@defun LineTable.line (line)
5401Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5402entries in the line table for the given @var{line}, which specifies
5403the source code line. If there are no entries for that source code
329baa95
DE
5404@var{line}, the Python @code{None} is returned.
5405@end defun
5406
5407@defun LineTable.has_line (line)
5408Return a Python @code{Boolean} indicating whether there is an entry in
5409the line table for this source line. Return @code{True} if an entry
5410is found, or @code{False} if not.
5411@end defun
5412
5413@defun LineTable.source_lines ()
5414Return a Python @code{List} of the source line numbers in the symbol
5415table. Only lines with executable code locations are returned. The
5416contents of the @code{List} will just be the source line entries
5417represented as Python @code{Long} values.
5418@end defun
5419
5420@node Breakpoints In Python
5421@subsubsection Manipulating breakpoints using Python
5422
5423@cindex breakpoints in python
5424@tindex gdb.Breakpoint
5425
5426Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5427class.
5428
0b982d68
SM
5429A breakpoint can be created using one of the two forms of the
5430@code{gdb.Breakpoint} constructor. The first one accepts a string
5431like one would pass to the @code{break}
5432(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5433(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5434create both breakpoints and watchpoints. The second accepts separate Python
5435arguments similar to @ref{Explicit Locations}, and can only be used to create
5436breakpoints.
5437
b89641ba 5438@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5439Create a new breakpoint according to @var{spec}, which is a string naming the
5440location of a breakpoint, or an expression that defines a watchpoint. The
5441string should describe a location in a format recognized by the @code{break}
5442command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5443watchpoint, by the @code{watch} command
5444(@pxref{Set Watchpoints, , Setting Watchpoints}).
5445
5446The optional @var{type} argument specifies the type of the breakpoint to create,
5447as defined below.
5448
5449The optional @var{wp_class} argument defines the class of watchpoint to create,
5450if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5451defaults to @code{gdb.WP_WRITE}.
5452
5453The optional @var{internal} argument allows the breakpoint to become invisible
5454to the user. The breakpoint will neither be reported when created, nor will it
5455be listed in the output from @code{info breakpoints} (but will be listed with
5456the @code{maint info breakpoints} command).
5457
5458The optional @var{temporary} argument makes the breakpoint a temporary
5459breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5460further access to the Python breakpoint after it has been hit will result in a
5461runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5462
5463The optional @var{qualified} argument is a boolean that allows interpreting
5464the function passed in @code{spec} as a fully-qualified name. It is equivalent
5465to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5466@ref{Explicit Locations}).
5467
0b982d68
SM
5468@end defun
5469
b89641ba 5470@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5471This second form of creating a new breakpoint specifies the explicit
5472location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5473be created in the specified source file @var{source}, at the specified
5474@var{function}, @var{label} and @var{line}.
5475
b89641ba
SM
5476@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5477explained previously.
329baa95
DE
5478@end defun
5479
cda75e70
TT
5480The available types are represented by constants defined in the @code{gdb}
5481module:
5482
5483@vtable @code
5484@vindex BP_BREAKPOINT
5485@item gdb.BP_BREAKPOINT
5486Normal code breakpoint.
5487
325d39e4
HD
5488@vindex BP_HARDWARE_BREAKPOINT
5489@item gdb.BP_HARDWARE_BREAKPOINT
5490Hardware assisted code breakpoint.
5491
cda75e70
TT
5492@vindex BP_WATCHPOINT
5493@item gdb.BP_WATCHPOINT
5494Watchpoint breakpoint.
5495
5496@vindex BP_HARDWARE_WATCHPOINT
5497@item gdb.BP_HARDWARE_WATCHPOINT
5498Hardware assisted watchpoint.
5499
5500@vindex BP_READ_WATCHPOINT
5501@item gdb.BP_READ_WATCHPOINT
5502Hardware assisted read watchpoint.
5503
5504@vindex BP_ACCESS_WATCHPOINT
5505@item gdb.BP_ACCESS_WATCHPOINT
5506Hardware assisted access watchpoint.
5507@end vtable
5508
802021d4 5509The available watchpoint types are represented by constants defined in the
cda75e70
TT
5510@code{gdb} module:
5511
5512@vtable @code
5513@vindex WP_READ
5514@item gdb.WP_READ
5515Read only watchpoint.
5516
5517@vindex WP_WRITE
5518@item gdb.WP_WRITE
5519Write only watchpoint.
5520
5521@vindex WP_ACCESS
5522@item gdb.WP_ACCESS
5523Read/Write watchpoint.
5524@end vtable
5525
329baa95
DE
5526@defun Breakpoint.stop (self)
5527The @code{gdb.Breakpoint} class can be sub-classed and, in
5528particular, you may choose to implement the @code{stop} method.
5529If this method is defined in a sub-class of @code{gdb.Breakpoint},
5530it will be called when the inferior reaches any location of a
5531breakpoint which instantiates that sub-class. If the method returns
5532@code{True}, the inferior will be stopped at the location of the
5533breakpoint, otherwise the inferior will continue.
5534
5535If there are multiple breakpoints at the same location with a
5536@code{stop} method, each one will be called regardless of the
5537return status of the previous. This ensures that all @code{stop}
5538methods have a chance to execute at that location. In this scenario
5539if one of the methods returns @code{True} but the others return
5540@code{False}, the inferior will still be stopped.
5541
5542You should not alter the execution state of the inferior (i.e.@:, step,
5543next, etc.), alter the current frame context (i.e.@:, change the current
5544active frame), or alter, add or delete any breakpoint. As a general
5545rule, you should not alter any data within @value{GDBN} or the inferior
5546at this time.
5547
5548Example @code{stop} implementation:
5549
5550@smallexample
5551class MyBreakpoint (gdb.Breakpoint):
5552 def stop (self):
5553 inf_val = gdb.parse_and_eval("foo")
5554 if inf_val == 3:
5555 return True
5556 return False
5557@end smallexample
5558@end defun
5559
329baa95
DE
5560@defun Breakpoint.is_valid ()
5561Return @code{True} if this @code{Breakpoint} object is valid,
5562@code{False} otherwise. A @code{Breakpoint} object can become invalid
5563if the user deletes the breakpoint. In this case, the object still
5564exists, but the underlying breakpoint does not. In the cases of
5565watchpoint scope, the watchpoint remains valid even if execution of the
5566inferior leaves the scope of that watchpoint.
5567@end defun
5568
fab3a15d 5569@defun Breakpoint.delete ()
329baa95
DE
5570Permanently deletes the @value{GDBN} breakpoint. This also
5571invalidates the Python @code{Breakpoint} object. Any further access
5572to this object's attributes or methods will raise an error.
5573@end defun
5574
5575@defvar Breakpoint.enabled
5576This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5577@code{False} otherwise. This attribute is writable. You can use it to enable
5578or disable the breakpoint.
329baa95
DE
5579@end defvar
5580
5581@defvar Breakpoint.silent
5582This attribute is @code{True} if the breakpoint is silent, and
5583@code{False} otherwise. This attribute is writable.
5584
5585Note that a breakpoint can also be silent if it has commands and the
5586first command is @code{silent}. This is not reported by the
5587@code{silent} attribute.
5588@end defvar
5589
93daf339
TT
5590@defvar Breakpoint.pending
5591This attribute is @code{True} if the breakpoint is pending, and
5592@code{False} otherwise. @xref{Set Breaks}. This attribute is
5593read-only.
5594@end defvar
5595
22a02324 5596@anchor{python_breakpoint_thread}
329baa95 5597@defvar Breakpoint.thread
5d5658a1
PA
5598If the breakpoint is thread-specific, this attribute holds the
5599thread's global id. If the breakpoint is not thread-specific, this
5600attribute is @code{None}. This attribute is writable.
329baa95
DE
5601@end defvar
5602
5603@defvar Breakpoint.task
5604If the breakpoint is Ada task-specific, this attribute holds the Ada task
5605id. If the breakpoint is not task-specific (or the underlying
5606language is not Ada), this attribute is @code{None}. This attribute
5607is writable.
5608@end defvar
5609
5610@defvar Breakpoint.ignore_count
5611This attribute holds the ignore count for the breakpoint, an integer.
5612This attribute is writable.
5613@end defvar
5614
5615@defvar Breakpoint.number
5616This attribute holds the breakpoint's number --- the identifier used by
5617the user to manipulate the breakpoint. This attribute is not writable.
5618@end defvar
5619
5620@defvar Breakpoint.type
5621This attribute holds the breakpoint's type --- the identifier used to
5622determine the actual breakpoint type or use-case. This attribute is not
5623writable.
5624@end defvar
5625
5626@defvar Breakpoint.visible
5627This attribute tells whether the breakpoint is visible to the user
5628when set, or when the @samp{info breakpoints} command is run. This
5629attribute is not writable.
5630@end defvar
5631
5632@defvar Breakpoint.temporary
5633This attribute indicates whether the breakpoint was created as a
5634temporary breakpoint. Temporary breakpoints are automatically deleted
5635after that breakpoint has been hit. Access to this attribute, and all
5636other attributes and functions other than the @code{is_valid}
5637function, will result in an error after the breakpoint has been hit
5638(as it has been automatically deleted). This attribute is not
5639writable.
5640@end defvar
5641
329baa95
DE
5642@defvar Breakpoint.hit_count
5643This attribute holds the hit count for the breakpoint, an integer.
5644This attribute is writable, but currently it can only be set to zero.
5645@end defvar
5646
5647@defvar Breakpoint.location
5648This attribute holds the location of the breakpoint, as specified by
5649the user. It is a string. If the breakpoint does not have a location
5650(that is, it is a watchpoint) the attribute's value is @code{None}. This
5651attribute is not writable.
5652@end defvar
5653
5654@defvar Breakpoint.expression
5655This attribute holds a breakpoint expression, as specified by
5656the user. It is a string. If the breakpoint does not have an
5657expression (the breakpoint is not a watchpoint) the attribute's value
5658is @code{None}. This attribute is not writable.
5659@end defvar
5660
5661@defvar Breakpoint.condition
5662This attribute holds the condition of the breakpoint, as specified by
5663the user. It is a string. If there is no condition, this attribute's
5664value is @code{None}. This attribute is writable.
5665@end defvar
5666
5667@defvar Breakpoint.commands
5668This attribute holds the commands attached to the breakpoint. If
5669there are commands, this attribute's value is a string holding all the
5670commands, separated by newlines. If there are no commands, this
a913fffb 5671attribute is @code{None}. This attribute is writable.
329baa95
DE
5672@end defvar
5673
5674@node Finish Breakpoints in Python
5675@subsubsection Finish Breakpoints
5676
5677@cindex python finish breakpoints
5678@tindex gdb.FinishBreakpoint
5679
5680A finish breakpoint is a temporary breakpoint set at the return address of
5681a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5682extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5683and deleted when the execution will run out of the breakpoint scope (i.e.@:
5684@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5685Finish breakpoints are thread specific and must be create with the right
5686thread selected.
5687
5688@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5689Create a finish breakpoint at the return address of the @code{gdb.Frame}
5690object @var{frame}. If @var{frame} is not provided, this defaults to the
5691newest frame. The optional @var{internal} argument allows the breakpoint to
5692become invisible to the user. @xref{Breakpoints In Python}, for further
5693details about this argument.
5694@end defun
5695
5696@defun FinishBreakpoint.out_of_scope (self)
5697In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5698@code{return} command, @dots{}), a function may not properly terminate, and
5699thus never hit the finish breakpoint. When @value{GDBN} notices such a
5700situation, the @code{out_of_scope} callback will be triggered.
5701
5702You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5703method:
5704
5705@smallexample
5706class MyFinishBreakpoint (gdb.FinishBreakpoint)
5707 def stop (self):
f3bdc2db 5708 print ("normal finish")
329baa95
DE
5709 return True
5710
5711 def out_of_scope ():
f3bdc2db 5712 print ("abnormal finish")
329baa95
DE
5713@end smallexample
5714@end defun
5715
5716@defvar FinishBreakpoint.return_value
5717When @value{GDBN} is stopped at a finish breakpoint and the frame
5718used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5719attribute will contain a @code{gdb.Value} object corresponding to the return
5720value of the function. The value will be @code{None} if the function return
5721type is @code{void} or if the return value was not computable. This attribute
5722is not writable.
5723@end defvar
5724
5725@node Lazy Strings In Python
849cba3b 5726@subsubsection Python representation of lazy strings
329baa95
DE
5727
5728@cindex lazy strings in python
5729@tindex gdb.LazyString
5730
5731A @dfn{lazy string} is a string whose contents is not retrieved or
5732encoded until it is needed.
5733
5734A @code{gdb.LazyString} is represented in @value{GDBN} as an
5735@code{address} that points to a region of memory, an @code{encoding}
5736that will be used to encode that region of memory, and a @code{length}
5737to delimit the region of memory that represents the string. The
5738difference between a @code{gdb.LazyString} and a string wrapped within
5739a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5740differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5741retrieved and encoded during printing, while a @code{gdb.Value}
5742wrapping a string is immediately retrieved and encoded on creation.
5743
5744A @code{gdb.LazyString} object has the following functions:
5745
5746@defun LazyString.value ()
5747Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5748will point to the string in memory, but will lose all the delayed
5749retrieval, encoding and handling that @value{GDBN} applies to a
5750@code{gdb.LazyString}.
5751@end defun
5752
5753@defvar LazyString.address
5754This attribute holds the address of the string. This attribute is not
5755writable.
5756@end defvar
5757
5758@defvar LazyString.length
5759This attribute holds the length of the string in characters. If the
5760length is -1, then the string will be fetched and encoded up to the
5761first null of appropriate width. This attribute is not writable.
5762@end defvar
5763
5764@defvar LazyString.encoding
5765This attribute holds the encoding that will be applied to the string
5766when the string is printed by @value{GDBN}. If the encoding is not
5767set, or contains an empty string, then @value{GDBN} will select the
5768most appropriate encoding when the string is printed. This attribute
5769is not writable.
5770@end defvar
5771
5772@defvar LazyString.type
5773This attribute holds the type that is represented by the lazy string's
f8d99587 5774type. For a lazy string this is a pointer or array type. To
329baa95
DE
5775resolve this to the lazy string's character type, use the type's
5776@code{target} method. @xref{Types In Python}. This attribute is not
5777writable.
5778@end defvar
5779
5780@node Architectures In Python
5781@subsubsection Python representation of architectures
5782@cindex Python architectures
5783
5784@value{GDBN} uses architecture specific parameters and artifacts in a
5785number of its various computations. An architecture is represented
5786by an instance of the @code{gdb.Architecture} class.
5787
5788A @code{gdb.Architecture} class has the following methods:
5789
5790@defun Architecture.name ()
5791Return the name (string value) of the architecture.
5792@end defun
5793
5794@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5795Return a list of disassembled instructions starting from the memory
5796address @var{start_pc}. The optional arguments @var{end_pc} and
5797@var{count} determine the number of instructions in the returned list.
5798If both the optional arguments @var{end_pc} and @var{count} are
5799specified, then a list of at most @var{count} disassembled instructions
5800whose start address falls in the closed memory address interval from
5801@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5802specified, but @var{count} is specified, then @var{count} number of
5803instructions starting from the address @var{start_pc} are returned. If
5804@var{count} is not specified but @var{end_pc} is specified, then all
5805instructions whose start address falls in the closed memory address
5806interval from @var{start_pc} to @var{end_pc} are returned. If neither
5807@var{end_pc} nor @var{count} are specified, then a single instruction at
5808@var{start_pc} is returned. For all of these cases, each element of the
5809returned list is a Python @code{dict} with the following string keys:
5810
5811@table @code
5812
5813@item addr
5814The value corresponding to this key is a Python long integer capturing
5815the memory address of the instruction.
5816
5817@item asm
5818The value corresponding to this key is a string value which represents
5819the instruction with assembly language mnemonics. The assembly
5820language flavor used is the same as that specified by the current CLI
5821variable @code{disassembly-flavor}. @xref{Machine Code}.
5822
5823@item length
5824The value corresponding to this key is the length (integer value) of the
5825instruction in bytes.
5826
5827@end table
5828@end defun
5829
0f767f94
AB
5830@anchor{gdbpy_architecture_registers}
5831@defun Architecture.registers (@r{[} @var{reggroup} @r{]})
5832Return a @code{gdb.RegisterDescriptorIterator} (@pxref{Registers In
5833Python}) for all of the registers in @var{reggroup}, a string that is
5834the name of a register group. If @var{reggroup} is omitted, or is the
5835empty string, then the register group @samp{all} is assumed.
5836@end defun
5837
64cb3757
AB
5838@anchor{gdbpy_architecture_reggroups}
5839@defun Architecture.register_groups ()
5840Return a @code{gdb.RegisterGroupsIterator} (@pxref{Registers In
5841Python}) for all of the register groups available for the
5842@code{gdb.Architecture}.
5843@end defun
5844
0f767f94
AB
5845@node Registers In Python
5846@subsubsection Registers In Python
5847@cindex Registers In Python
5848
5849Python code can request from a @code{gdb.Architecture} information
5850about the set of registers available
5851(@pxref{gdbpy_architecture_registers,,@code{Architecture.registers}}).
5852The register information is returned as a
5853@code{gdb.RegisterDescriptorIterator}, which is an iterator that in
5854turn returns @code{gdb.RegisterDescriptor} objects.
5855
5856A @code{gdb.RegisterDescriptor} does not provide the value of a
5857register (@pxref{gdbpy_frame_read_register,,@code{Frame.read_register}}
5858for reading a register's value), instead the @code{RegisterDescriptor}
5859is a way to discover which registers are available for a particular
5860architecture.
5861
5862A @code{gdb.RegisterDescriptor} has the following read-only properties:
5863
5864@defvar RegisterDescriptor.name
5865The name of this register.
5866@end defvar
5867
14fa8fb3
AB
5868It is also possible to lookup a register descriptor based on its name
5869using the following @code{gdb.RegisterDescriptorIterator} function:
5870
5871@defun RegisterDescriptorIterator.find (@var{name})
5872Takes @var{name} as an argument, which must be a string, and returns a
5873@code{gdb.RegisterDescriptor} for the register with that name, or
5874@code{None} if there is no register with that name.
5875@end defun
5876
64cb3757
AB
5877Python code can also request from a @code{gdb.Architecture}
5878information about the set of register groups available on a given
5879architecture
5880(@pxref{gdbpy_architecture_reggroups,,@code{Architecture.register_groups}}).
5881
5882Every register can be a member of zero or more register groups. Some
5883register groups are used internally within @value{GDBN} to control
5884things like which registers must be saved when calling into the
5885program being debugged (@pxref{Calling,,Calling Program Functions}).
5886Other register groups exist to allow users to easily see related sets
5887of registers in commands like @code{info registers}
5888(@pxref{info_registers_reggroup,,@code{info registers
5889@var{reggroup}}}).
5890
5891The register groups information is returned as a
5892@code{gdb.RegisterGroupsIterator}, which is an iterator that in turn
5893returns @code{gdb.RegisterGroup} objects.
5894
5895A @code{gdb.RegisterGroup} object has the following read-only
5896properties:
5897
5898@defvar RegisterGroup.name
5899A string that is the name of this register group.
5900@end defvar
5901
01b1af32
TT
5902@node TUI Windows In Python
5903@subsubsection Implementing new TUI windows
5904@cindex Python TUI Windows
5905
5906New TUI (@pxref{TUI}) windows can be implemented in Python.
5907
5908@findex gdb.register_window_type
5909@defun gdb.register_window_type (@var{name}, @var{factory})
5910Because TUI windows are created and destroyed depending on the layout
5911the user chooses, new window types are implemented by registering a
5912factory function with @value{GDBN}.
5913
5914@var{name} is the name of the new window. It's an error to try to
5915replace one of the built-in windows, but other window types can be
5916replaced.
5917
5918@var{function} is a factory function that is called to create the TUI
5919window. This is called with a single argument of type
5920@code{gdb.TuiWindow}, described below. It should return an object
5921that implements the TUI window protocol, also described below.
5922@end defun
5923
e8460459 5924As mentioned above, when a factory function is called, it is passed
01b1af32
TT
5925an object of type @code{gdb.TuiWindow}. This object has these
5926methods and attributes:
5927
5928@defun TuiWindow.is_valid ()
5929This method returns @code{True} when this window is valid. When the
5930user changes the TUI layout, windows no longer visible in the new
5931layout will be destroyed. At this point, the @code{gdb.TuiWindow}
5932will no longer be valid, and methods (and attributes) other than
5933@code{is_valid} will throw an exception.
29db1eb3
AB
5934
5935When the TUI is disabled using @code{tui disable} (@pxref{TUI
5936Commands,,tui disable}) the window is hidden rather than destroyed,
5937but @code{is_valid} will still return @code{False} and other methods
5938(and attributes) will still throw an exception.
01b1af32
TT
5939@end defun
5940
5941@defvar TuiWindow.width
5942This attribute holds the width of the window. It is not writable.
5943@end defvar
5944
5945@defvar TuiWindow.height
5946This attribute holds the height of the window. It is not writable.
5947@end defvar
5948
5949@defvar TuiWindow.title
5950This attribute holds the window's title, a string. This is normally
5951displayed above the window. This attribute can be modified.
5952@end defvar
5953
5954@defun TuiWindow.erase ()
5955Remove all the contents of the window.
5956@end defun
5957
5958@defun TuiWindow.write (@var{string})
5959Write @var{string} to the window. @var{string} can contain ANSI
5960terminal escape styling sequences; @value{GDBN} will translate these
5961as appropriate for the terminal.
5962@end defun
5963
5964The factory function that you supply should return an object
5965conforming to the TUI window protocol. These are the method that can
5966be called on this object, which is referred to below as the ``window
5967object''. The methods documented below are optional; if the object
5968does not implement one of these methods, @value{GDBN} will not attempt
5969to call it. Additional new methods may be added to the window
5970protocol in the future. @value{GDBN} guarantees that they will begin
5971with a lower-case letter, so you can start implementation methods with
5972upper-case letters or underscore to avoid any future conflicts.
5973
5974@defun Window.close ()
5975When the TUI window is closed, the @code{gdb.TuiWindow} object will be
5976put into an invalid state. At this time, @value{GDBN} will call
5977@code{close} method on the window object.
5978
5979After this method is called, @value{GDBN} will discard any references
5980it holds on this window object, and will no longer call methods on
5981this object.
5982@end defun
5983
5984@defun Window.render ()
5985In some situations, a TUI window can change size. For example, this
5986can happen if the user resizes the terminal, or changes the layout.
5987When this happens, @value{GDBN} will call the @code{render} method on
5988the window object.
5989
5990If your window is intended to update in response to changes in the
5991inferior, you will probably also want to register event listeners and
5992send output to the @code{gdb.TuiWindow}.
5993@end defun
5994
5995@defun Window.hscroll (@var{num})
5996This is a request to scroll the window horizontally. @var{num} is the
5997amount by which to scroll, with negative numbers meaning to scroll
5998right. In the TUI model, it is the viewport that moves, not the
5999contents. A positive argument should cause the viewport to move
6000right, and so the content should appear to move to the left.
6001@end defun
6002
6003@defun Window.vscroll (@var{num})
6004This is a request to scroll the window vertically. @var{num} is the
6005amount by which to scroll, with negative numbers meaning to scroll
6006backward. In the TUI model, it is the viewport that moves, not the
6007contents. A positive argument should cause the viewport to move down,
6008and so the content should appear to move up.
6009@end defun
6010
329baa95
DE
6011@node Python Auto-loading
6012@subsection Python Auto-loading
6013@cindex Python auto-loading
6014
6015When a new object file is read (for example, due to the @code{file}
6016command, or because the inferior has loaded a shared library),
6017@value{GDBN} will look for Python support scripts in several ways:
6018@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
6019@xref{Auto-loading extensions}.
6020
6021The auto-loading feature is useful for supplying application-specific
6022debugging commands and scripts.
6023
6024Auto-loading can be enabled or disabled,
6025and the list of auto-loaded scripts can be printed.
6026
6027@table @code
6028@anchor{set auto-load python-scripts}
6029@kindex set auto-load python-scripts
6030@item set auto-load python-scripts [on|off]
6031Enable or disable the auto-loading of Python scripts.
6032
6033@anchor{show auto-load python-scripts}
6034@kindex show auto-load python-scripts
6035@item show auto-load python-scripts
6036Show whether auto-loading of Python scripts is enabled or disabled.
6037
6038@anchor{info auto-load python-scripts}
6039@kindex info auto-load python-scripts
6040@cindex print list of auto-loaded Python scripts
6041@item info auto-load python-scripts [@var{regexp}]
6042Print the list of all Python scripts that @value{GDBN} auto-loaded.
6043
6044Also printed is the list of Python scripts that were mentioned in
9f050062
DE
6045the @code{.debug_gdb_scripts} section and were either not found
6046(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
6047@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
6048This is useful because their names are not printed when @value{GDBN}
6049tries to load them and fails. There may be many of them, and printing
6050an error message for each one is problematic.
6051
6052If @var{regexp} is supplied only Python scripts with matching names are printed.
6053
6054Example:
6055
6056@smallexample
6057(gdb) info auto-load python-scripts
6058Loaded Script
6059Yes py-section-script.py
6060 full name: /tmp/py-section-script.py
6061No my-foo-pretty-printers.py
6062@end smallexample
6063@end table
6064
9f050062 6065When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
6066@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
6067function (@pxref{Objfiles In Python}). This can be useful for
6068registering objfile-specific pretty-printers and frame-filters.
6069
6070@node Python modules
6071@subsection Python modules
6072@cindex python modules
6073
6074@value{GDBN} comes with several modules to assist writing Python code.
6075
6076@menu
6077* gdb.printing:: Building and registering pretty-printers.
6078* gdb.types:: Utilities for working with types.
6079* gdb.prompt:: Utilities for prompt value substitution.
6080@end menu
6081
6082@node gdb.printing
6083@subsubsection gdb.printing
6084@cindex gdb.printing
6085
6086This module provides a collection of utilities for working with
6087pretty-printers.
6088
6089@table @code
6090@item PrettyPrinter (@var{name}, @var{subprinters}=None)
6091This class specifies the API that makes @samp{info pretty-printer},
6092@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
6093Pretty-printers should generally inherit from this class.
6094
6095@item SubPrettyPrinter (@var{name})
6096For printers that handle multiple types, this class specifies the
6097corresponding API for the subprinters.
6098
6099@item RegexpCollectionPrettyPrinter (@var{name})
6100Utility class for handling multiple printers, all recognized via
6101regular expressions.
6102@xref{Writing a Pretty-Printer}, for an example.
6103
6104@item FlagEnumerationPrinter (@var{name})
6105A pretty-printer which handles printing of @code{enum} values. Unlike
6106@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
6107work properly when there is some overlap between the enumeration
697aa1b7
EZ
6108constants. The argument @var{name} is the name of the printer and
6109also the name of the @code{enum} type to look up.
329baa95
DE
6110
6111@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
6112Register @var{printer} with the pretty-printer list of @var{obj}.
6113If @var{replace} is @code{True} then any existing copy of the printer
6114is replaced. Otherwise a @code{RuntimeError} exception is raised
6115if a printer with the same name already exists.
6116@end table
6117
6118@node gdb.types
6119@subsubsection gdb.types
6120@cindex gdb.types
6121
6122This module provides a collection of utilities for working with
6123@code{gdb.Type} objects.
6124
6125@table @code
6126@item get_basic_type (@var{type})
6127Return @var{type} with const and volatile qualifiers stripped,
6128and with typedefs and C@t{++} references converted to the underlying type.
6129
6130C@t{++} example:
6131
6132@smallexample
6133typedef const int const_int;
6134const_int foo (3);
6135const_int& foo_ref (foo);
6136int main () @{ return 0; @}
6137@end smallexample
6138
6139Then in gdb:
6140
6141@smallexample
6142(gdb) start
6143(gdb) python import gdb.types
6144(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
6145(gdb) python print gdb.types.get_basic_type(foo_ref.type)
6146int
6147@end smallexample
6148
6149@item has_field (@var{type}, @var{field})
6150Return @code{True} if @var{type}, assumed to be a type with fields
6151(e.g., a structure or union), has field @var{field}.
6152
6153@item make_enum_dict (@var{enum_type})
6154Return a Python @code{dictionary} type produced from @var{enum_type}.
6155
6156@item deep_items (@var{type})
6157Returns a Python iterator similar to the standard
6158@code{gdb.Type.iteritems} method, except that the iterator returned
6159by @code{deep_items} will recursively traverse anonymous struct or
6160union fields. For example:
6161
6162@smallexample
6163struct A
6164@{
6165 int a;
6166 union @{
6167 int b0;
6168 int b1;
6169 @};
6170@};
6171@end smallexample
6172
6173@noindent
6174Then in @value{GDBN}:
6175@smallexample
6176(@value{GDBP}) python import gdb.types
6177(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
6178(@value{GDBP}) python print struct_a.keys ()
6179@{['a', '']@}
6180(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
6181@{['a', 'b0', 'b1']@}
6182@end smallexample
6183
6184@item get_type_recognizers ()
6185Return a list of the enabled type recognizers for the current context.
6186This is called by @value{GDBN} during the type-printing process
6187(@pxref{Type Printing API}).
6188
6189@item apply_type_recognizers (recognizers, type_obj)
6190Apply the type recognizers, @var{recognizers}, to the type object
6191@var{type_obj}. If any recognizer returns a string, return that
6192string. Otherwise, return @code{None}. This is called by
6193@value{GDBN} during the type-printing process (@pxref{Type Printing
6194API}).
6195
6196@item register_type_printer (locus, printer)
697aa1b7
EZ
6197This is a convenience function to register a type printer
6198@var{printer}. The printer must implement the type printer protocol.
6199The @var{locus} argument is either a @code{gdb.Objfile}, in which case
6200the printer is registered with that objfile; a @code{gdb.Progspace},
6201in which case the printer is registered with that progspace; or
6202@code{None}, in which case the printer is registered globally.
329baa95
DE
6203
6204@item TypePrinter
6205This is a base class that implements the type printer protocol. Type
6206printers are encouraged, but not required, to derive from this class.
6207It defines a constructor:
6208
6209@defmethod TypePrinter __init__ (self, name)
6210Initialize the type printer with the given name. The new printer
6211starts in the enabled state.
6212@end defmethod
6213
6214@end table
6215
6216@node gdb.prompt
6217@subsubsection gdb.prompt
6218@cindex gdb.prompt
6219
6220This module provides a method for prompt value-substitution.
6221
6222@table @code
6223@item substitute_prompt (@var{string})
6224Return @var{string} with escape sequences substituted by values. Some
6225escape sequences take arguments. You can specify arguments inside
6226``@{@}'' immediately following the escape sequence.
6227
6228The escape sequences you can pass to this function are:
6229
6230@table @code
6231@item \\
6232Substitute a backslash.
6233@item \e
6234Substitute an ESC character.
6235@item \f
6236Substitute the selected frame; an argument names a frame parameter.
6237@item \n
6238Substitute a newline.
6239@item \p
6240Substitute a parameter's value; the argument names the parameter.
6241@item \r
6242Substitute a carriage return.
6243@item \t
6244Substitute the selected thread; an argument names a thread parameter.
6245@item \v
6246Substitute the version of GDB.
6247@item \w
6248Substitute the current working directory.
6249@item \[
6250Begin a sequence of non-printing characters. These sequences are
6251typically used with the ESC character, and are not counted in the string
6252length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
6253blue-colored ``(gdb)'' prompt where the length is five.
6254@item \]
6255End a sequence of non-printing characters.
6256@end table
6257
6258For example:
6259
6260@smallexample
77bb17b6 6261substitute_prompt ("frame: \f, args: \p@{print frame-arguments@}")
329baa95
DE
6262@end smallexample
6263
6264@exdent will return the string:
6265
6266@smallexample
77bb17b6 6267"frame: main, args: scalars"
329baa95
DE
6268@end smallexample
6269@end table