]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/python.texi
Fix gdb.events.inferior_call documentation
[thirdparty/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
d8ae99a7
PM
246@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
247Return a Python list holding a collection of newly set
248@code{gdb.Breakpoint} objects matching function names defined by the
249@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
250system functions (those not explicitly defined in the inferior) will
251also be included in the match. The @var{throttle} keyword takes an
252integer that defines the maximum number of pattern matches for
253functions matched by the @var{regex} pattern. If the number of
254matches exceeds the integer value of @var{throttle}, a
255@code{RuntimeError} will be raised and no breakpoints will be created.
256If @var{throttle} is not defined then there is no imposed limit on the
257maximum number of matches and breakpoints to be created. The
258@var{symtabs} keyword takes a Python iterable that yields a collection
259of @code{gdb.Symtab} objects and will restrict the search to those
260functions only contained within the @code{gdb.Symtab} objects.
261@end defun
262
329baa95
DE
263@findex gdb.parameter
264@defun gdb.parameter (parameter)
697aa1b7
EZ
265Return the value of a @value{GDBN} @var{parameter} given by its name,
266a string; the parameter name string may contain spaces if the parameter has a
267multi-part name. For example, @samp{print object} is a valid
268parameter name.
329baa95
DE
269
270If the named parameter does not exist, this function throws a
271@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
272parameter's value is converted to a Python value of the appropriate
273type, and returned.
274@end defun
275
276@findex gdb.history
277@defun gdb.history (number)
278Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 279History}). The @var{number} argument indicates which history element to return.
329baa95
DE
280If @var{number} is negative, then @value{GDBN} will take its absolute value
281and count backward from the last element (i.e., the most recent element) to
282find the value to return. If @var{number} is zero, then @value{GDBN} will
283return the most recent element. If the element specified by @var{number}
284doesn't exist in the value history, a @code{gdb.error} exception will be
285raised.
286
287If no exception is raised, the return value is always an instance of
288@code{gdb.Value} (@pxref{Values From Inferior}).
289@end defun
290
7729052b
TT
291@findex gdb.convenience_variable
292@defun gdb.convenience_variable (name)
293Return the value of the convenience variable (@pxref{Convenience
294Vars}) named @var{name}. @var{name} must be a string. The name
295should not include the @samp{$} that is used to mark a convenience
296variable in an expression. If the convenience variable does not
297exist, then @code{None} is returned.
298@end defun
299
300@findex gdb.set_convenience_variable
301@defun gdb.set_convenience_variable (name, value)
302Set the value of the convenience variable (@pxref{Convenience Vars})
303named @var{name}. @var{name} must be a string. The name should not
304include the @samp{$} that is used to mark a convenience variable in an
305expression. If @var{value} is @code{None}, then the convenience
306variable is removed. Otherwise, if @var{value} is not a
307@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
308using the @code{gdb.Value} constructor.
309@end defun
310
329baa95
DE
311@findex gdb.parse_and_eval
312@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
313Parse @var{expression}, which must be a string, as an expression in
314the current language, evaluate it, and return the result as a
315@code{gdb.Value}.
329baa95
DE
316
317This function can be useful when implementing a new command
318(@pxref{Commands In Python}), as it provides a way to parse the
319command's argument as an expression. It is also useful simply to
7729052b 320compute values.
329baa95
DE
321@end defun
322
323@findex gdb.find_pc_line
324@defun gdb.find_pc_line (pc)
325Return the @code{gdb.Symtab_and_line} object corresponding to the
326@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
327value of @var{pc} is passed as an argument, then the @code{symtab} and
328@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
329will be @code{None} and 0 respectively.
330@end defun
331
332@findex gdb.post_event
333@defun gdb.post_event (event)
334Put @var{event}, a callable object taking no arguments, into
335@value{GDBN}'s internal event queue. This callable will be invoked at
336some later point, during @value{GDBN}'s event processing. Events
337posted using @code{post_event} will be run in the order in which they
338were posted; however, there is no way to know when they will be
339processed relative to other events inside @value{GDBN}.
340
341@value{GDBN} is not thread-safe. If your Python program uses multiple
342threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 343functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
344this. For example:
345
346@smallexample
347(@value{GDBP}) python
348>import threading
349>
350>class Writer():
351> def __init__(self, message):
352> self.message = message;
353> def __call__(self):
354> gdb.write(self.message)
355>
356>class MyThread1 (threading.Thread):
357> def run (self):
358> gdb.post_event(Writer("Hello "))
359>
360>class MyThread2 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("World\n"))
363>
364>MyThread1().start()
365>MyThread2().start()
366>end
367(@value{GDBP}) Hello World
368@end smallexample
369@end defun
370
371@findex gdb.write
372@defun gdb.write (string @r{[}, stream{]})
373Print a string to @value{GDBN}'s paginated output stream. The
374optional @var{stream} determines the stream to print to. The default
375stream is @value{GDBN}'s standard output stream. Possible stream
376values are:
377
378@table @code
379@findex STDOUT
380@findex gdb.STDOUT
381@item gdb.STDOUT
382@value{GDBN}'s standard output stream.
383
384@findex STDERR
385@findex gdb.STDERR
386@item gdb.STDERR
387@value{GDBN}'s standard error stream.
388
389@findex STDLOG
390@findex gdb.STDLOG
391@item gdb.STDLOG
392@value{GDBN}'s log stream (@pxref{Logging Output}).
393@end table
394
395Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
396call this function and will automatically direct the output to the
397relevant stream.
398@end defun
399
400@findex gdb.flush
401@defun gdb.flush ()
402Flush the buffer of a @value{GDBN} paginated stream so that the
403contents are displayed immediately. @value{GDBN} will flush the
404contents of a stream automatically when it encounters a newline in the
405buffer. The optional @var{stream} determines the stream to flush. The
406default stream is @value{GDBN}'s standard output stream. Possible
407stream values are:
408
409@table @code
410@findex STDOUT
411@findex gdb.STDOUT
412@item gdb.STDOUT
413@value{GDBN}'s standard output stream.
414
415@findex STDERR
416@findex gdb.STDERR
417@item gdb.STDERR
418@value{GDBN}'s standard error stream.
419
420@findex STDLOG
421@findex gdb.STDLOG
422@item gdb.STDLOG
423@value{GDBN}'s log stream (@pxref{Logging Output}).
424
425@end table
426
427Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
428call this function for the relevant stream.
429@end defun
430
431@findex gdb.target_charset
432@defun gdb.target_charset ()
433Return the name of the current target character set (@pxref{Character
434Sets}). This differs from @code{gdb.parameter('target-charset')} in
435that @samp{auto} is never returned.
436@end defun
437
438@findex gdb.target_wide_charset
439@defun gdb.target_wide_charset ()
440Return the name of the current target wide character set
441(@pxref{Character Sets}). This differs from
442@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
443never returned.
444@end defun
445
446@findex gdb.solib_name
447@defun gdb.solib_name (address)
448Return the name of the shared library holding the given @var{address}
449as a string, or @code{None}.
450@end defun
451
452@findex gdb.decode_line
453@defun gdb.decode_line @r{[}expression@r{]}
454Return locations of the line specified by @var{expression}, or of the
455current line if no argument was given. This function returns a Python
456tuple containing two elements. The first element contains a string
457holding any unparsed section of @var{expression} (or @code{None} if
458the expression has been fully parsed). The second element contains
459either @code{None} or another tuple that contains all the locations
460that match the expression represented as @code{gdb.Symtab_and_line}
461objects (@pxref{Symbol Tables In Python}). If @var{expression} is
462provided, it is decoded the way that @value{GDBN}'s inbuilt
463@code{break} or @code{edit} commands do (@pxref{Specify Location}).
464@end defun
465
466@defun gdb.prompt_hook (current_prompt)
467@anchor{prompt_hook}
468
469If @var{prompt_hook} is callable, @value{GDBN} will call the method
470assigned to this operation before a prompt is displayed by
471@value{GDBN}.
472
473The parameter @code{current_prompt} contains the current @value{GDBN}
474prompt. This method must return a Python string, or @code{None}. If
475a string is returned, the @value{GDBN} prompt will be set to that
476string. If @code{None} is returned, @value{GDBN} will continue to use
477the current prompt.
478
479Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
480such as those used by readline for command input, and annotation
481related prompts are prohibited from being changed.
482@end defun
483
484@node Exception Handling
485@subsubsection Exception Handling
486@cindex python exceptions
487@cindex exceptions, python
488
489When executing the @code{python} command, Python exceptions
490uncaught within the Python code are translated to calls to
491@value{GDBN} error-reporting mechanism. If the command that called
492@code{python} does not handle the error, @value{GDBN} will
493terminate it and print an error message containing the Python
494exception name, the associated value, and the Python call stack
495backtrace at the point where the exception was raised. Example:
496
497@smallexample
498(@value{GDBP}) python print foo
499Traceback (most recent call last):
500 File "<string>", line 1, in <module>
501NameError: name 'foo' is not defined
502@end smallexample
503
504@value{GDBN} errors that happen in @value{GDBN} commands invoked by
505Python code are converted to Python exceptions. The type of the
506Python exception depends on the error.
507
508@ftable @code
509@item gdb.error
510This is the base class for most exceptions generated by @value{GDBN}.
511It is derived from @code{RuntimeError}, for compatibility with earlier
512versions of @value{GDBN}.
513
514If an error occurring in @value{GDBN} does not fit into some more
515specific category, then the generated exception will have this type.
516
517@item gdb.MemoryError
518This is a subclass of @code{gdb.error} which is thrown when an
519operation tried to access invalid memory in the inferior.
520
521@item KeyboardInterrupt
522User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
523prompt) is translated to a Python @code{KeyboardInterrupt} exception.
524@end ftable
525
526In all cases, your exception handler will see the @value{GDBN} error
527message as its value and the Python call stack backtrace at the Python
528statement closest to where the @value{GDBN} error occured as the
529traceback.
530
4a5a194a
TT
531
532When implementing @value{GDBN} commands in Python via
533@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
534to be able to throw an exception that doesn't cause a traceback to be
535printed. For example, the user may have invoked the command
536incorrectly. @value{GDBN} provides a special exception class that can
537be used for this purpose.
538
539@ftable @code
540@item gdb.GdbError
541When thrown from a command or function, this exception will cause the
542command or function to fail, but the Python stack will not be
543displayed. @value{GDBN} does not throw this exception itself, but
544rather recognizes it when thrown from user Python code. Example:
329baa95
DE
545
546@smallexample
547(gdb) python
548>class HelloWorld (gdb.Command):
549> """Greet the whole world."""
550> def __init__ (self):
551> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
552> def invoke (self, args, from_tty):
553> argv = gdb.string_to_argv (args)
554> if len (argv) != 0:
555> raise gdb.GdbError ("hello-world takes no arguments")
556> print "Hello, World!"
557>HelloWorld ()
558>end
559(gdb) hello-world 42
560hello-world takes no arguments
561@end smallexample
4a5a194a 562@end ftable
329baa95
DE
563
564@node Values From Inferior
565@subsubsection Values From Inferior
566@cindex values from inferior, with Python
567@cindex python, working with values from inferior
568
569@cindex @code{gdb.Value}
570@value{GDBN} provides values it obtains from the inferior program in
571an object of type @code{gdb.Value}. @value{GDBN} uses this object
572for its internal bookkeeping of the inferior's values, and for
573fetching values when necessary.
574
575Inferior values that are simple scalars can be used directly in
576Python expressions that are valid for the value's data type. Here's
577an example for an integer or floating-point value @code{some_val}:
578
579@smallexample
580bar = some_val + 2
581@end smallexample
582
583@noindent
584As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
585whose values are of the same type as those of @code{some_val}. Valid
586Python operations can also be performed on @code{gdb.Value} objects
587representing a @code{struct} or @code{class} object. For such cases,
588the overloaded operator (if present), is used to perform the operation.
589For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
590representing instances of a @code{class} which overloads the @code{+}
591operator, then one can use the @code{+} operator in their Python script
592as follows:
593
594@smallexample
595val3 = val1 + val2
596@end smallexample
597
598@noindent
599The result of the operation @code{val3} is also a @code{gdb.Value}
600object corresponding to the value returned by the overloaded @code{+}
601operator. In general, overloaded operators are invoked for the
602following operations: @code{+} (binary addition), @code{-} (binary
603subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
604@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
605
606Inferior values that are structures or instances of some class can
607be accessed using the Python @dfn{dictionary syntax}. For example, if
608@code{some_val} is a @code{gdb.Value} instance holding a structure, you
609can access its @code{foo} element with:
610
611@smallexample
612bar = some_val['foo']
613@end smallexample
614
615@cindex getting structure elements using gdb.Field objects as subscripts
616Again, @code{bar} will also be a @code{gdb.Value} object. Structure
617elements can also be accessed by using @code{gdb.Field} objects as
618subscripts (@pxref{Types In Python}, for more information on
619@code{gdb.Field} objects). For example, if @code{foo_field} is a
620@code{gdb.Field} object corresponding to element @code{foo} of the above
621structure, then @code{bar} can also be accessed as follows:
622
623@smallexample
624bar = some_val[foo_field]
625@end smallexample
626
627A @code{gdb.Value} that represents a function can be executed via
628inferior function call. Any arguments provided to the call must match
629the function's prototype, and must be provided in the order specified
630by that prototype.
631
632For example, @code{some_val} is a @code{gdb.Value} instance
633representing a function that takes two integers as arguments. To
634execute this function, call it like so:
635
636@smallexample
637result = some_val (10,20)
638@end smallexample
639
640Any values returned from a function call will be stored as a
641@code{gdb.Value}.
642
643The following attributes are provided:
644
645@defvar Value.address
646If this object is addressable, this read-only attribute holds a
647@code{gdb.Value} object representing the address. Otherwise,
648this attribute holds @code{None}.
649@end defvar
650
651@cindex optimized out value in Python
652@defvar Value.is_optimized_out
653This read-only boolean attribute is true if the compiler optimized out
654this value, thus it is not available for fetching from the inferior.
655@end defvar
656
657@defvar Value.type
658The type of this @code{gdb.Value}. The value of this attribute is a
659@code{gdb.Type} object (@pxref{Types In Python}).
660@end defvar
661
662@defvar Value.dynamic_type
663The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
664type information (@acronym{RTTI}) to determine the dynamic type of the
665value. If this value is of class type, it will return the class in
666which the value is embedded, if any. If this value is of pointer or
667reference to a class type, it will compute the dynamic type of the
668referenced object, and return a pointer or reference to that type,
669respectively. In all other cases, it will return the value's static
670type.
671
672Note that this feature will only work when debugging a C@t{++} program
673that includes @acronym{RTTI} for the object in question. Otherwise,
674it will just return the static type of the value as in @kbd{ptype foo}
675(@pxref{Symbols, ptype}).
676@end defvar
677
678@defvar Value.is_lazy
679The value of this read-only boolean attribute is @code{True} if this
680@code{gdb.Value} has not yet been fetched from the inferior.
681@value{GDBN} does not fetch values until necessary, for efficiency.
682For example:
683
684@smallexample
685myval = gdb.parse_and_eval ('somevar')
686@end smallexample
687
688The value of @code{somevar} is not fetched at this time. It will be
689fetched when the value is needed, or when the @code{fetch_lazy}
690method is invoked.
691@end defvar
692
693The following methods are provided:
694
695@defun Value.__init__ (@var{val})
696Many Python values can be converted directly to a @code{gdb.Value} via
697this object initializer. Specifically:
698
699@table @asis
700@item Python boolean
701A Python boolean is converted to the boolean type from the current
702language.
703
704@item Python integer
705A Python integer is converted to the C @code{long} type for the
706current architecture.
707
708@item Python long
709A Python long is converted to the C @code{long long} type for the
710current architecture.
711
712@item Python float
713A Python float is converted to the C @code{double} type for the
714current architecture.
715
716@item Python string
b3ce5e5f
DE
717A Python string is converted to a target string in the current target
718language using the current target encoding.
719If a character cannot be represented in the current target encoding,
720then an exception is thrown.
329baa95
DE
721
722@item @code{gdb.Value}
723If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
724
725@item @code{gdb.LazyString}
726If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
727Python}), then the lazy string's @code{value} method is called, and
728its result is used.
729@end table
730@end defun
731
732@defun Value.cast (type)
733Return a new instance of @code{gdb.Value} that is the result of
734casting this instance to the type described by @var{type}, which must
735be a @code{gdb.Type} object. If the cast cannot be performed for some
736reason, this method throws an exception.
737@end defun
738
739@defun Value.dereference ()
740For pointer data types, this method returns a new @code{gdb.Value} object
741whose contents is the object pointed to by the pointer. For example, if
742@code{foo} is a C pointer to an @code{int}, declared in your C program as
743
744@smallexample
745int *foo;
746@end smallexample
747
748@noindent
749then you can use the corresponding @code{gdb.Value} to access what
750@code{foo} points to like this:
751
752@smallexample
753bar = foo.dereference ()
754@end smallexample
755
756The result @code{bar} will be a @code{gdb.Value} object holding the
757value pointed to by @code{foo}.
758
759A similar function @code{Value.referenced_value} exists which also
760returns @code{gdb.Value} objects corresonding to the values pointed to
761by pointer values (and additionally, values referenced by reference
762values). However, the behavior of @code{Value.dereference}
763differs from @code{Value.referenced_value} by the fact that the
764behavior of @code{Value.dereference} is identical to applying the C
765unary operator @code{*} on a given value. For example, consider a
766reference to a pointer @code{ptrref}, declared in your C@t{++} program
767as
768
769@smallexample
770typedef int *intptr;
771...
772int val = 10;
773intptr ptr = &val;
774intptr &ptrref = ptr;
775@end smallexample
776
777Though @code{ptrref} is a reference value, one can apply the method
778@code{Value.dereference} to the @code{gdb.Value} object corresponding
779to it and obtain a @code{gdb.Value} which is identical to that
780corresponding to @code{val}. However, if you apply the method
781@code{Value.referenced_value}, the result would be a @code{gdb.Value}
782object identical to that corresponding to @code{ptr}.
783
784@smallexample
785py_ptrref = gdb.parse_and_eval ("ptrref")
786py_val = py_ptrref.dereference ()
787py_ptr = py_ptrref.referenced_value ()
788@end smallexample
789
790The @code{gdb.Value} object @code{py_val} is identical to that
791corresponding to @code{val}, and @code{py_ptr} is identical to that
792corresponding to @code{ptr}. In general, @code{Value.dereference} can
793be applied whenever the C unary operator @code{*} can be applied
794to the corresponding C value. For those cases where applying both
795@code{Value.dereference} and @code{Value.referenced_value} is allowed,
796the results obtained need not be identical (as we have seen in the above
797example). The results are however identical when applied on
798@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
799objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
800@end defun
801
802@defun Value.referenced_value ()
803For pointer or reference data types, this method returns a new
804@code{gdb.Value} object corresponding to the value referenced by the
805pointer/reference value. For pointer data types,
806@code{Value.dereference} and @code{Value.referenced_value} produce
807identical results. The difference between these methods is that
808@code{Value.dereference} cannot get the values referenced by reference
809values. For example, consider a reference to an @code{int}, declared
810in your C@t{++} program as
811
812@smallexample
813int val = 10;
814int &ref = val;
815@end smallexample
816
817@noindent
818then applying @code{Value.dereference} to the @code{gdb.Value} object
819corresponding to @code{ref} will result in an error, while applying
820@code{Value.referenced_value} will result in a @code{gdb.Value} object
821identical to that corresponding to @code{val}.
822
823@smallexample
824py_ref = gdb.parse_and_eval ("ref")
825er_ref = py_ref.dereference () # Results in error
826py_val = py_ref.referenced_value () # Returns the referenced value
827@end smallexample
828
829The @code{gdb.Value} object @code{py_val} is identical to that
830corresponding to @code{val}.
831@end defun
832
4c082a81
SC
833@defun Value.reference_value ()
834Return a @code{gdb.Value} object which is a reference to the value
835encapsulated by this instance.
836@end defun
837
838@defun Value.const_value ()
839Return a @code{gdb.Value} object which is a @code{const} version of the
840value encapsulated by this instance.
841@end defun
842
329baa95
DE
843@defun Value.dynamic_cast (type)
844Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
845operator were used. Consult a C@t{++} reference for details.
846@end defun
847
848@defun Value.reinterpret_cast (type)
849Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
850operator were used. Consult a C@t{++} reference for details.
851@end defun
852
853@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
854If this @code{gdb.Value} represents a string, then this method
855converts the contents to a Python string. Otherwise, this method will
856throw an exception.
857
b3ce5e5f
DE
858Values are interpreted as strings according to the rules of the
859current language. If the optional length argument is given, the
860string will be converted to that length, and will include any embedded
861zeroes that the string may contain. Otherwise, for languages
862where the string is zero-terminated, the entire string will be
863converted.
329baa95 864
b3ce5e5f
DE
865For example, in C-like languages, a value is a string if it is a pointer
866to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
867or @code{char32_t}.
329baa95
DE
868
869If the optional @var{encoding} argument is given, it must be a string
870naming the encoding of the string in the @code{gdb.Value}, such as
871@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
872the same encodings as the corresponding argument to Python's
873@code{string.decode} method, and the Python codec machinery will be used
874to convert the string. If @var{encoding} is not given, or if
875@var{encoding} is the empty string, then either the @code{target-charset}
876(@pxref{Character Sets}) will be used, or a language-specific encoding
877will be used, if the current language is able to supply one.
878
879The optional @var{errors} argument is the same as the corresponding
880argument to Python's @code{string.decode} method.
881
882If the optional @var{length} argument is given, the string will be
883fetched and converted to the given length.
884@end defun
885
886@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
887If this @code{gdb.Value} represents a string, then this method
888converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
889In Python}). Otherwise, this method will throw an exception.
890
891If the optional @var{encoding} argument is given, it must be a string
892naming the encoding of the @code{gdb.LazyString}. Some examples are:
893@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
894@var{encoding} argument is an encoding that @value{GDBN} does
895recognize, @value{GDBN} will raise an error.
896
897When a lazy string is printed, the @value{GDBN} encoding machinery is
898used to convert the string during printing. If the optional
899@var{encoding} argument is not provided, or is an empty string,
900@value{GDBN} will automatically select the encoding most suitable for
901the string type. For further information on encoding in @value{GDBN}
902please see @ref{Character Sets}.
903
904If the optional @var{length} argument is given, the string will be
905fetched and encoded to the length of characters specified. If
906the @var{length} argument is not provided, the string will be fetched
907and encoded until a null of appropriate width is found.
908@end defun
909
910@defun Value.fetch_lazy ()
911If the @code{gdb.Value} object is currently a lazy value
912(@code{gdb.Value.is_lazy} is @code{True}), then the value is
913fetched from the inferior. Any errors that occur in the process
914will produce a Python exception.
915
916If the @code{gdb.Value} object is not a lazy value, this method
917has no effect.
918
919This method does not return a value.
920@end defun
921
922
923@node Types In Python
924@subsubsection Types In Python
925@cindex types in Python
926@cindex Python, working with types
927
928@tindex gdb.Type
929@value{GDBN} represents types from the inferior using the class
930@code{gdb.Type}.
931
932The following type-related functions are available in the @code{gdb}
933module:
934
935@findex gdb.lookup_type
936@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 937This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
938
939If @var{block} is given, then @var{name} is looked up in that scope.
940Otherwise, it is searched for globally.
941
942Ordinarily, this function will return an instance of @code{gdb.Type}.
943If the named type cannot be found, it will throw an exception.
944@end defun
945
946If the type is a structure or class type, or an enum type, the fields
947of that type can be accessed using the Python @dfn{dictionary syntax}.
948For example, if @code{some_type} is a @code{gdb.Type} instance holding
949a structure type, you can access its @code{foo} field with:
950
951@smallexample
952bar = some_type['foo']
953@end smallexample
954
955@code{bar} will be a @code{gdb.Field} object; see below under the
956description of the @code{Type.fields} method for a description of the
957@code{gdb.Field} class.
958
959An instance of @code{Type} has the following attributes:
960
6d7bb824
TT
961@defvar Type.alignof
962The alignment of this type, in bytes. Type alignment comes from the
963debugging information; if it was not specified, then @value{GDBN} will
964use the relevant ABI to try to determine the alignment. In some
965cases, even this is not possible, and zero will be returned.
966@end defvar
967
329baa95
DE
968@defvar Type.code
969The type code for this type. The type code will be one of the
970@code{TYPE_CODE_} constants defined below.
971@end defvar
972
973@defvar Type.name
974The name of this type. If this type has no name, then @code{None}
975is returned.
976@end defvar
977
978@defvar Type.sizeof
979The size of this type, in target @code{char} units. Usually, a
980target's @code{char} type will be an 8-bit byte. However, on some
981unusual platforms, this type may have a different size.
982@end defvar
983
984@defvar Type.tag
985The tag name for this type. The tag name is the name after
986@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
987languages have this concept. If this type has no tag name, then
988@code{None} is returned.
989@end defvar
990
991The following methods are provided:
992
993@defun Type.fields ()
994For structure and union types, this method returns the fields. Range
995types have two fields, the minimum and maximum values. Enum types
996have one field per enum constant. Function and method types have one
997field per parameter. The base types of C@t{++} classes are also
998represented as fields. If the type has no fields, or does not fit
999into one of these categories, an empty sequence will be returned.
1000
1001Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1002@table @code
1003@item bitpos
1004This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1005(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1006in bits, from the start of the containing type.
1007
1008@item enumval
1009This attribute is only available for @code{enum} fields, and its value
1010is the enumeration member's integer representation.
1011
1012@item name
1013The name of the field, or @code{None} for anonymous fields.
1014
1015@item artificial
1016This is @code{True} if the field is artificial, usually meaning that
1017it was provided by the compiler and not the user. This attribute is
1018always provided, and is @code{False} if the field is not artificial.
1019
1020@item is_base_class
1021This is @code{True} if the field represents a base class of a C@t{++}
1022structure. This attribute is always provided, and is @code{False}
1023if the field is not a base class of the type that is the argument of
1024@code{fields}, or if that type was not a C@t{++} class.
1025
1026@item bitsize
1027If the field is packed, or is a bitfield, then this will have a
1028non-zero value, which is the size of the field in bits. Otherwise,
1029this will be zero; in this case the field's size is given by its type.
1030
1031@item type
1032The type of the field. This is usually an instance of @code{Type},
1033but it can be @code{None} in some situations.
1034
1035@item parent_type
1036The type which contains this field. This is an instance of
1037@code{gdb.Type}.
1038@end table
1039@end defun
1040
1041@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1042Return a new @code{gdb.Type} object which represents an array of this
1043type. If one argument is given, it is the inclusive upper bound of
1044the array; in this case the lower bound is zero. If two arguments are
1045given, the first argument is the lower bound of the array, and the
1046second argument is the upper bound of the array. An array's length
1047must not be negative, but the bounds can be.
1048@end defun
1049
1050@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1051Return a new @code{gdb.Type} object which represents a vector of this
1052type. If one argument is given, it is the inclusive upper bound of
1053the vector; in this case the lower bound is zero. If two arguments are
1054given, the first argument is the lower bound of the vector, and the
1055second argument is the upper bound of the vector. A vector's length
1056must not be negative, but the bounds can be.
1057
1058The difference between an @code{array} and a @code{vector} is that
1059arrays behave like in C: when used in expressions they decay to a pointer
1060to the first element whereas vectors are treated as first class values.
1061@end defun
1062
1063@defun Type.const ()
1064Return a new @code{gdb.Type} object which represents a
1065@code{const}-qualified variant of this type.
1066@end defun
1067
1068@defun Type.volatile ()
1069Return a new @code{gdb.Type} object which represents a
1070@code{volatile}-qualified variant of this type.
1071@end defun
1072
1073@defun Type.unqualified ()
1074Return a new @code{gdb.Type} object which represents an unqualified
1075variant of this type. That is, the result is neither @code{const} nor
1076@code{volatile}.
1077@end defun
1078
1079@defun Type.range ()
1080Return a Python @code{Tuple} object that contains two elements: the
1081low bound of the argument type and the high bound of that type. If
1082the type does not have a range, @value{GDBN} will raise a
1083@code{gdb.error} exception (@pxref{Exception Handling}).
1084@end defun
1085
1086@defun Type.reference ()
1087Return a new @code{gdb.Type} object which represents a reference to this
1088type.
1089@end defun
1090
1091@defun Type.pointer ()
1092Return a new @code{gdb.Type} object which represents a pointer to this
1093type.
1094@end defun
1095
1096@defun Type.strip_typedefs ()
1097Return a new @code{gdb.Type} that represents the real type,
1098after removing all layers of typedefs.
1099@end defun
1100
1101@defun Type.target ()
1102Return a new @code{gdb.Type} object which represents the target type
1103of this type.
1104
1105For a pointer type, the target type is the type of the pointed-to
1106object. For an array type (meaning C-like arrays), the target type is
1107the type of the elements of the array. For a function or method type,
1108the target type is the type of the return value. For a complex type,
1109the target type is the type of the elements. For a typedef, the
1110target type is the aliased type.
1111
1112If the type does not have a target, this method will throw an
1113exception.
1114@end defun
1115
1116@defun Type.template_argument (n @r{[}, block@r{]})
1117If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1118return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1119value of the @var{n}th template argument (indexed starting at 0).
329baa95 1120
1a6a384b
JL
1121If this @code{gdb.Type} is not a template type, or if the type has fewer
1122than @var{n} template arguments, this will throw an exception.
1123Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1124
1125If @var{block} is given, then @var{name} is looked up in that scope.
1126Otherwise, it is searched for globally.
1127@end defun
1128
59fb7612
SS
1129@defun Type.optimized_out ()
1130Return @code{gdb.Value} instance of this type whose value is optimized
1131out. This allows a frame decorator to indicate that the value of an
1132argument or a local variable is not known.
1133@end defun
329baa95
DE
1134
1135Each type has a code, which indicates what category this type falls
1136into. The available type categories are represented by constants
1137defined in the @code{gdb} module:
1138
b3ce5e5f
DE
1139@vtable @code
1140@vindex TYPE_CODE_PTR
329baa95
DE
1141@item gdb.TYPE_CODE_PTR
1142The type is a pointer.
1143
b3ce5e5f 1144@vindex TYPE_CODE_ARRAY
329baa95
DE
1145@item gdb.TYPE_CODE_ARRAY
1146The type is an array.
1147
b3ce5e5f 1148@vindex TYPE_CODE_STRUCT
329baa95
DE
1149@item gdb.TYPE_CODE_STRUCT
1150The type is a structure.
1151
b3ce5e5f 1152@vindex TYPE_CODE_UNION
329baa95
DE
1153@item gdb.TYPE_CODE_UNION
1154The type is a union.
1155
b3ce5e5f 1156@vindex TYPE_CODE_ENUM
329baa95
DE
1157@item gdb.TYPE_CODE_ENUM
1158The type is an enum.
1159
b3ce5e5f 1160@vindex TYPE_CODE_FLAGS
329baa95
DE
1161@item gdb.TYPE_CODE_FLAGS
1162A bit flags type, used for things such as status registers.
1163
b3ce5e5f 1164@vindex TYPE_CODE_FUNC
329baa95
DE
1165@item gdb.TYPE_CODE_FUNC
1166The type is a function.
1167
b3ce5e5f 1168@vindex TYPE_CODE_INT
329baa95
DE
1169@item gdb.TYPE_CODE_INT
1170The type is an integer type.
1171
b3ce5e5f 1172@vindex TYPE_CODE_FLT
329baa95
DE
1173@item gdb.TYPE_CODE_FLT
1174A floating point type.
1175
b3ce5e5f 1176@vindex TYPE_CODE_VOID
329baa95
DE
1177@item gdb.TYPE_CODE_VOID
1178The special type @code{void}.
1179
b3ce5e5f 1180@vindex TYPE_CODE_SET
329baa95
DE
1181@item gdb.TYPE_CODE_SET
1182A Pascal set type.
1183
b3ce5e5f 1184@vindex TYPE_CODE_RANGE
329baa95
DE
1185@item gdb.TYPE_CODE_RANGE
1186A range type, that is, an integer type with bounds.
1187
b3ce5e5f 1188@vindex TYPE_CODE_STRING
329baa95
DE
1189@item gdb.TYPE_CODE_STRING
1190A string type. Note that this is only used for certain languages with
1191language-defined string types; C strings are not represented this way.
1192
b3ce5e5f 1193@vindex TYPE_CODE_BITSTRING
329baa95
DE
1194@item gdb.TYPE_CODE_BITSTRING
1195A string of bits. It is deprecated.
1196
b3ce5e5f 1197@vindex TYPE_CODE_ERROR
329baa95
DE
1198@item gdb.TYPE_CODE_ERROR
1199An unknown or erroneous type.
1200
b3ce5e5f 1201@vindex TYPE_CODE_METHOD
329baa95 1202@item gdb.TYPE_CODE_METHOD
9c37b5ae 1203A method type, as found in C@t{++}.
329baa95 1204
b3ce5e5f 1205@vindex TYPE_CODE_METHODPTR
329baa95
DE
1206@item gdb.TYPE_CODE_METHODPTR
1207A pointer-to-member-function.
1208
b3ce5e5f 1209@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1210@item gdb.TYPE_CODE_MEMBERPTR
1211A pointer-to-member.
1212
b3ce5e5f 1213@vindex TYPE_CODE_REF
329baa95
DE
1214@item gdb.TYPE_CODE_REF
1215A reference type.
1216
3fcf899d
AV
1217@vindex TYPE_CODE_RVALUE_REF
1218@item gdb.TYPE_CODE_RVALUE_REF
1219A C@t{++}11 rvalue reference type.
1220
b3ce5e5f 1221@vindex TYPE_CODE_CHAR
329baa95
DE
1222@item gdb.TYPE_CODE_CHAR
1223A character type.
1224
b3ce5e5f 1225@vindex TYPE_CODE_BOOL
329baa95
DE
1226@item gdb.TYPE_CODE_BOOL
1227A boolean type.
1228
b3ce5e5f 1229@vindex TYPE_CODE_COMPLEX
329baa95
DE
1230@item gdb.TYPE_CODE_COMPLEX
1231A complex float type.
1232
b3ce5e5f 1233@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1234@item gdb.TYPE_CODE_TYPEDEF
1235A typedef to some other type.
1236
b3ce5e5f 1237@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1238@item gdb.TYPE_CODE_NAMESPACE
1239A C@t{++} namespace.
1240
b3ce5e5f 1241@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1242@item gdb.TYPE_CODE_DECFLOAT
1243A decimal floating point type.
1244
b3ce5e5f 1245@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1246@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1247A function internal to @value{GDBN}. This is the type used to represent
1248convenience functions.
b3ce5e5f 1249@end vtable
329baa95
DE
1250
1251Further support for types is provided in the @code{gdb.types}
1252Python module (@pxref{gdb.types}).
1253
1254@node Pretty Printing API
1255@subsubsection Pretty Printing API
b3ce5e5f 1256@cindex python pretty printing api
329baa95
DE
1257
1258An example output is provided (@pxref{Pretty Printing}).
1259
1260A pretty-printer is just an object that holds a value and implements a
1261specific interface, defined here.
1262
1263@defun pretty_printer.children (self)
1264@value{GDBN} will call this method on a pretty-printer to compute the
1265children of the pretty-printer's value.
1266
1267This method must return an object conforming to the Python iterator
1268protocol. Each item returned by the iterator must be a tuple holding
1269two elements. The first element is the ``name'' of the child; the
1270second element is the child's value. The value can be any Python
1271object which is convertible to a @value{GDBN} value.
1272
1273This method is optional. If it does not exist, @value{GDBN} will act
1274as though the value has no children.
1275@end defun
1276
1277@defun pretty_printer.display_hint (self)
1278The CLI may call this method and use its result to change the
1279formatting of a value. The result will also be supplied to an MI
1280consumer as a @samp{displayhint} attribute of the variable being
1281printed.
1282
1283This method is optional. If it does exist, this method must return a
1284string.
1285
1286Some display hints are predefined by @value{GDBN}:
1287
1288@table @samp
1289@item array
1290Indicate that the object being printed is ``array-like''. The CLI
1291uses this to respect parameters such as @code{set print elements} and
1292@code{set print array}.
1293
1294@item map
1295Indicate that the object being printed is ``map-like'', and that the
1296children of this value can be assumed to alternate between keys and
1297values.
1298
1299@item string
1300Indicate that the object being printed is ``string-like''. If the
1301printer's @code{to_string} method returns a Python string of some
1302kind, then @value{GDBN} will call its internal language-specific
1303string-printing function to format the string. For the CLI this means
1304adding quotation marks, possibly escaping some characters, respecting
1305@code{set print elements}, and the like.
1306@end table
1307@end defun
1308
1309@defun pretty_printer.to_string (self)
1310@value{GDBN} will call this method to display the string
1311representation of the value passed to the object's constructor.
1312
1313When printing from the CLI, if the @code{to_string} method exists,
1314then @value{GDBN} will prepend its result to the values returned by
1315@code{children}. Exactly how this formatting is done is dependent on
1316the display hint, and may change as more hints are added. Also,
1317depending on the print settings (@pxref{Print Settings}), the CLI may
1318print just the result of @code{to_string} in a stack trace, omitting
1319the result of @code{children}.
1320
1321If this method returns a string, it is printed verbatim.
1322
1323Otherwise, if this method returns an instance of @code{gdb.Value},
1324then @value{GDBN} prints this value. This may result in a call to
1325another pretty-printer.
1326
1327If instead the method returns a Python value which is convertible to a
1328@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1329the resulting value. Again, this may result in a call to another
1330pretty-printer. Python scalars (integers, floats, and booleans) and
1331strings are convertible to @code{gdb.Value}; other types are not.
1332
1333Finally, if this method returns @code{None} then no further operations
1334are peformed in this method and nothing is printed.
1335
1336If the result is not one of these types, an exception is raised.
1337@end defun
1338
1339@value{GDBN} provides a function which can be used to look up the
1340default pretty-printer for a @code{gdb.Value}:
1341
1342@findex gdb.default_visualizer
1343@defun gdb.default_visualizer (value)
1344This function takes a @code{gdb.Value} object as an argument. If a
1345pretty-printer for this value exists, then it is returned. If no such
1346printer exists, then this returns @code{None}.
1347@end defun
1348
1349@node Selecting Pretty-Printers
1350@subsubsection Selecting Pretty-Printers
b3ce5e5f 1351@cindex selecting python pretty-printers
329baa95
DE
1352
1353The Python list @code{gdb.pretty_printers} contains an array of
1354functions or callable objects that have been registered via addition
1355as a pretty-printer. Printers in this list are called @code{global}
1356printers, they're available when debugging all inferiors.
1357Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1358Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1359attribute.
1360
1361Each function on these lists is passed a single @code{gdb.Value}
1362argument and should return a pretty-printer object conforming to the
1363interface definition above (@pxref{Pretty Printing API}). If a function
1364cannot create a pretty-printer for the value, it should return
1365@code{None}.
1366
1367@value{GDBN} first checks the @code{pretty_printers} attribute of each
1368@code{gdb.Objfile} in the current program space and iteratively calls
1369each enabled lookup routine in the list for that @code{gdb.Objfile}
1370until it receives a pretty-printer object.
1371If no pretty-printer is found in the objfile lists, @value{GDBN} then
1372searches the pretty-printer list of the current program space,
1373calling each enabled function until an object is returned.
1374After these lists have been exhausted, it tries the global
1375@code{gdb.pretty_printers} list, again calling each enabled function until an
1376object is returned.
1377
1378The order in which the objfiles are searched is not specified. For a
1379given list, functions are always invoked from the head of the list,
1380and iterated over sequentially until the end of the list, or a printer
1381object is returned.
1382
1383For various reasons a pretty-printer may not work.
1384For example, the underlying data structure may have changed and
1385the pretty-printer is out of date.
1386
1387The consequences of a broken pretty-printer are severe enough that
1388@value{GDBN} provides support for enabling and disabling individual
1389printers. For example, if @code{print frame-arguments} is on,
1390a backtrace can become highly illegible if any argument is printed
1391with a broken printer.
1392
1393Pretty-printers are enabled and disabled by attaching an @code{enabled}
1394attribute to the registered function or callable object. If this attribute
1395is present and its value is @code{False}, the printer is disabled, otherwise
1396the printer is enabled.
1397
1398@node Writing a Pretty-Printer
1399@subsubsection Writing a Pretty-Printer
1400@cindex writing a pretty-printer
1401
1402A pretty-printer consists of two parts: a lookup function to detect
1403if the type is supported, and the printer itself.
1404
1405Here is an example showing how a @code{std::string} printer might be
1406written. @xref{Pretty Printing API}, for details on the API this class
1407must provide.
1408
1409@smallexample
1410class StdStringPrinter(object):
1411 "Print a std::string"
1412
1413 def __init__(self, val):
1414 self.val = val
1415
1416 def to_string(self):
1417 return self.val['_M_dataplus']['_M_p']
1418
1419 def display_hint(self):
1420 return 'string'
1421@end smallexample
1422
1423And here is an example showing how a lookup function for the printer
1424example above might be written.
1425
1426@smallexample
1427def str_lookup_function(val):
1428 lookup_tag = val.type.tag
1429 if lookup_tag == None:
1430 return None
1431 regex = re.compile("^std::basic_string<char,.*>$")
1432 if regex.match(lookup_tag):
1433 return StdStringPrinter(val)
1434 return None
1435@end smallexample
1436
1437The example lookup function extracts the value's type, and attempts to
1438match it to a type that it can pretty-print. If it is a type the
1439printer can pretty-print, it will return a printer object. If not, it
1440returns @code{None}.
1441
1442We recommend that you put your core pretty-printers into a Python
1443package. If your pretty-printers are for use with a library, we
1444further recommend embedding a version number into the package name.
1445This practice will enable @value{GDBN} to load multiple versions of
1446your pretty-printers at the same time, because they will have
1447different names.
1448
1449You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1450can be evaluated multiple times without changing its meaning. An
1451ideal auto-load file will consist solely of @code{import}s of your
1452printer modules, followed by a call to a register pretty-printers with
1453the current objfile.
1454
1455Taken as a whole, this approach will scale nicely to multiple
1456inferiors, each potentially using a different library version.
1457Embedding a version number in the Python package name will ensure that
1458@value{GDBN} is able to load both sets of printers simultaneously.
1459Then, because the search for pretty-printers is done by objfile, and
1460because your auto-loaded code took care to register your library's
1461printers with a specific objfile, @value{GDBN} will find the correct
1462printers for the specific version of the library used by each
1463inferior.
1464
1465To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1466this code might appear in @code{gdb.libstdcxx.v6}:
1467
1468@smallexample
1469def register_printers(objfile):
1470 objfile.pretty_printers.append(str_lookup_function)
1471@end smallexample
1472
1473@noindent
1474And then the corresponding contents of the auto-load file would be:
1475
1476@smallexample
1477import gdb.libstdcxx.v6
1478gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1479@end smallexample
1480
1481The previous example illustrates a basic pretty-printer.
1482There are a few things that can be improved on.
1483The printer doesn't have a name, making it hard to identify in a
1484list of installed printers. The lookup function has a name, but
1485lookup functions can have arbitrary, even identical, names.
1486
1487Second, the printer only handles one type, whereas a library typically has
1488several types. One could install a lookup function for each desired type
1489in the library, but one could also have a single lookup function recognize
1490several types. The latter is the conventional way this is handled.
1491If a pretty-printer can handle multiple data types, then its
1492@dfn{subprinters} are the printers for the individual data types.
1493
1494The @code{gdb.printing} module provides a formal way of solving these
1495problems (@pxref{gdb.printing}).
1496Here is another example that handles multiple types.
1497
1498These are the types we are going to pretty-print:
1499
1500@smallexample
1501struct foo @{ int a, b; @};
1502struct bar @{ struct foo x, y; @};
1503@end smallexample
1504
1505Here are the printers:
1506
1507@smallexample
1508class fooPrinter:
1509 """Print a foo object."""
1510
1511 def __init__(self, val):
1512 self.val = val
1513
1514 def to_string(self):
1515 return ("a=<" + str(self.val["a"]) +
1516 "> b=<" + str(self.val["b"]) + ">")
1517
1518class barPrinter:
1519 """Print a bar object."""
1520
1521 def __init__(self, val):
1522 self.val = val
1523
1524 def to_string(self):
1525 return ("x=<" + str(self.val["x"]) +
1526 "> y=<" + str(self.val["y"]) + ">")
1527@end smallexample
1528
1529This example doesn't need a lookup function, that is handled by the
1530@code{gdb.printing} module. Instead a function is provided to build up
1531the object that handles the lookup.
1532
1533@smallexample
1534import gdb.printing
1535
1536def build_pretty_printer():
1537 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1538 "my_library")
1539 pp.add_printer('foo', '^foo$', fooPrinter)
1540 pp.add_printer('bar', '^bar$', barPrinter)
1541 return pp
1542@end smallexample
1543
1544And here is the autoload support:
1545
1546@smallexample
1547import gdb.printing
1548import my_library
1549gdb.printing.register_pretty_printer(
1550 gdb.current_objfile(),
1551 my_library.build_pretty_printer())
1552@end smallexample
1553
1554Finally, when this printer is loaded into @value{GDBN}, here is the
1555corresponding output of @samp{info pretty-printer}:
1556
1557@smallexample
1558(gdb) info pretty-printer
1559my_library.so:
1560 my_library
1561 foo
1562 bar
1563@end smallexample
1564
1565@node Type Printing API
1566@subsubsection Type Printing API
1567@cindex type printing API for Python
1568
1569@value{GDBN} provides a way for Python code to customize type display.
1570This is mainly useful for substituting canonical typedef names for
1571types.
1572
1573@cindex type printer
1574A @dfn{type printer} is just a Python object conforming to a certain
1575protocol. A simple base class implementing the protocol is provided;
1576see @ref{gdb.types}. A type printer must supply at least:
1577
1578@defivar type_printer enabled
1579A boolean which is True if the printer is enabled, and False
1580otherwise. This is manipulated by the @code{enable type-printer}
1581and @code{disable type-printer} commands.
1582@end defivar
1583
1584@defivar type_printer name
1585The name of the type printer. This must be a string. This is used by
1586the @code{enable type-printer} and @code{disable type-printer}
1587commands.
1588@end defivar
1589
1590@defmethod type_printer instantiate (self)
1591This is called by @value{GDBN} at the start of type-printing. It is
1592only called if the type printer is enabled. This method must return a
1593new object that supplies a @code{recognize} method, as described below.
1594@end defmethod
1595
1596
1597When displaying a type, say via the @code{ptype} command, @value{GDBN}
1598will compute a list of type recognizers. This is done by iterating
1599first over the per-objfile type printers (@pxref{Objfiles In Python}),
1600followed by the per-progspace type printers (@pxref{Progspaces In
1601Python}), and finally the global type printers.
1602
1603@value{GDBN} will call the @code{instantiate} method of each enabled
1604type printer. If this method returns @code{None}, then the result is
1605ignored; otherwise, it is appended to the list of recognizers.
1606
1607Then, when @value{GDBN} is going to display a type name, it iterates
1608over the list of recognizers. For each one, it calls the recognition
1609function, stopping if the function returns a non-@code{None} value.
1610The recognition function is defined as:
1611
1612@defmethod type_recognizer recognize (self, type)
1613If @var{type} is not recognized, return @code{None}. Otherwise,
1614return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1615The @var{type} argument will be an instance of @code{gdb.Type}
1616(@pxref{Types In Python}).
329baa95
DE
1617@end defmethod
1618
1619@value{GDBN} uses this two-pass approach so that type printers can
1620efficiently cache information without holding on to it too long. For
1621example, it can be convenient to look up type information in a type
1622printer and hold it for a recognizer's lifetime; if a single pass were
1623done then type printers would have to make use of the event system in
1624order to avoid holding information that could become stale as the
1625inferior changed.
1626
1627@node Frame Filter API
521b499b 1628@subsubsection Filtering Frames
329baa95
DE
1629@cindex frame filters api
1630
1631Frame filters are Python objects that manipulate the visibility of a
1632frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1633@value{GDBN}.
1634
1635Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1636commands (@pxref{GDB/MI}), those that return a collection of frames
1637are affected. The commands that work with frame filters are:
1638
1639@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1640@code{-stack-list-frames}
1641(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1642@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1643-stack-list-variables command}), @code{-stack-list-arguments}
1644@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1645@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1646-stack-list-locals command}).
1647
1648A frame filter works by taking an iterator as an argument, applying
1649actions to the contents of that iterator, and returning another
1650iterator (or, possibly, the same iterator it was provided in the case
1651where the filter does not perform any operations). Typically, frame
1652filters utilize tools such as the Python's @code{itertools} module to
1653work with and create new iterators from the source iterator.
1654Regardless of how a filter chooses to apply actions, it must not alter
1655the underlying @value{GDBN} frame or frames, or attempt to alter the
1656call-stack within @value{GDBN}. This preserves data integrity within
1657@value{GDBN}. Frame filters are executed on a priority basis and care
1658should be taken that some frame filters may have been executed before,
1659and that some frame filters will be executed after.
1660
1661An important consideration when designing frame filters, and well
1662worth reflecting upon, is that frame filters should avoid unwinding
1663the call stack if possible. Some stacks can run very deep, into the
1664tens of thousands in some cases. To search every frame when a frame
1665filter executes may be too expensive at that step. The frame filter
1666cannot know how many frames it has to iterate over, and it may have to
1667iterate through them all. This ends up duplicating effort as
1668@value{GDBN} performs this iteration when it prints the frames. If
1669the filter can defer unwinding frames until frame decorators are
1670executed, after the last filter has executed, it should. @xref{Frame
1671Decorator API}, for more information on decorators. Also, there are
1672examples for both frame decorators and filters in later chapters.
1673@xref{Writing a Frame Filter}, for more information.
1674
1675The Python dictionary @code{gdb.frame_filters} contains key/object
1676pairings that comprise a frame filter. Frame filters in this
1677dictionary are called @code{global} frame filters, and they are
1678available when debugging all inferiors. These frame filters must
1679register with the dictionary directly. In addition to the
1680@code{global} dictionary, there are other dictionaries that are loaded
1681with different inferiors via auto-loading (@pxref{Python
1682Auto-loading}). The two other areas where frame filter dictionaries
1683can be found are: @code{gdb.Progspace} which contains a
1684@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1685object which also contains a @code{frame_filters} dictionary
1686attribute.
1687
1688When a command is executed from @value{GDBN} that is compatible with
1689frame filters, @value{GDBN} combines the @code{global},
1690@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1691loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1692several frames, and thus several object files, might be in use.
1693@value{GDBN} then prunes any frame filter whose @code{enabled}
1694attribute is @code{False}. This pruned list is then sorted according
1695to the @code{priority} attribute in each filter.
1696
1697Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1698creates an iterator which wraps each frame in the call stack in a
1699@code{FrameDecorator} object, and calls each filter in order. The
1700output from the previous filter will always be the input to the next
1701filter, and so on.
1702
1703Frame filters have a mandatory interface which each frame filter must
1704implement, defined here:
1705
1706@defun FrameFilter.filter (iterator)
1707@value{GDBN} will call this method on a frame filter when it has
1708reached the order in the priority list for that filter.
1709
1710For example, if there are four frame filters:
1711
1712@smallexample
1713Name Priority
1714
1715Filter1 5
1716Filter2 10
1717Filter3 100
1718Filter4 1
1719@end smallexample
1720
1721The order that the frame filters will be called is:
1722
1723@smallexample
1724Filter3 -> Filter2 -> Filter1 -> Filter4
1725@end smallexample
1726
1727Note that the output from @code{Filter3} is passed to the input of
1728@code{Filter2}, and so on.
1729
1730This @code{filter} method is passed a Python iterator. This iterator
1731contains a sequence of frame decorators that wrap each
1732@code{gdb.Frame}, or a frame decorator that wraps another frame
1733decorator. The first filter that is executed in the sequence of frame
1734filters will receive an iterator entirely comprised of default
1735@code{FrameDecorator} objects. However, after each frame filter is
1736executed, the previous frame filter may have wrapped some or all of
1737the frame decorators with their own frame decorator. As frame
1738decorators must also conform to a mandatory interface, these
1739decorators can be assumed to act in a uniform manner (@pxref{Frame
1740Decorator API}).
1741
1742This method must return an object conforming to the Python iterator
1743protocol. Each item in the iterator must be an object conforming to
1744the frame decorator interface. If a frame filter does not wish to
1745perform any operations on this iterator, it should return that
1746iterator untouched.
1747
1748This method is not optional. If it does not exist, @value{GDBN} will
1749raise and print an error.
1750@end defun
1751
1752@defvar FrameFilter.name
1753The @code{name} attribute must be Python string which contains the
1754name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1755Management}). This attribute may contain any combination of letters
1756or numbers. Care should be taken to ensure that it is unique. This
1757attribute is mandatory.
1758@end defvar
1759
1760@defvar FrameFilter.enabled
1761The @code{enabled} attribute must be Python boolean. This attribute
1762indicates to @value{GDBN} whether the frame filter is enabled, and
1763should be considered when frame filters are executed. If
1764@code{enabled} is @code{True}, then the frame filter will be executed
1765when any of the backtrace commands detailed earlier in this chapter
1766are executed. If @code{enabled} is @code{False}, then the frame
1767filter will not be executed. This attribute is mandatory.
1768@end defvar
1769
1770@defvar FrameFilter.priority
1771The @code{priority} attribute must be Python integer. This attribute
1772controls the order of execution in relation to other frame filters.
1773There are no imposed limits on the range of @code{priority} other than
1774it must be a valid integer. The higher the @code{priority} attribute,
1775the sooner the frame filter will be executed in relation to other
1776frame filters. Although @code{priority} can be negative, it is
1777recommended practice to assume zero is the lowest priority that a
1778frame filter can be assigned. Frame filters that have the same
1779priority are executed in unsorted order in that priority slot. This
521b499b 1780attribute is mandatory. 100 is a good default priority.
329baa95
DE
1781@end defvar
1782
1783@node Frame Decorator API
521b499b 1784@subsubsection Decorating Frames
329baa95
DE
1785@cindex frame decorator api
1786
1787Frame decorators are sister objects to frame filters (@pxref{Frame
1788Filter API}). Frame decorators are applied by a frame filter and can
1789only be used in conjunction with frame filters.
1790
1791The purpose of a frame decorator is to customize the printed content
1792of each @code{gdb.Frame} in commands where frame filters are executed.
1793This concept is called decorating a frame. Frame decorators decorate
1794a @code{gdb.Frame} with Python code contained within each API call.
1795This separates the actual data contained in a @code{gdb.Frame} from
1796the decorated data produced by a frame decorator. This abstraction is
1797necessary to maintain integrity of the data contained in each
1798@code{gdb.Frame}.
1799
1800Frame decorators have a mandatory interface, defined below.
1801
1802@value{GDBN} already contains a frame decorator called
1803@code{FrameDecorator}. This contains substantial amounts of
1804boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1805recommended that other frame decorators inherit and extend this
1806object, and only to override the methods needed.
1807
521b499b
TT
1808@tindex gdb.FrameDecorator
1809@code{FrameDecorator} is defined in the Python module
1810@code{gdb.FrameDecorator}, so your code can import it like:
1811@smallexample
1812from gdb.FrameDecorator import FrameDecorator
1813@end smallexample
1814
329baa95
DE
1815@defun FrameDecorator.elided (self)
1816
1817The @code{elided} method groups frames together in a hierarchical
1818system. An example would be an interpreter, where multiple low-level
1819frames make up a single call in the interpreted language. In this
1820example, the frame filter would elide the low-level frames and present
1821a single high-level frame, representing the call in the interpreted
1822language, to the user.
1823
1824The @code{elided} function must return an iterable and this iterable
1825must contain the frames that are being elided wrapped in a suitable
1826frame decorator. If no frames are being elided this function may
1827return an empty iterable, or @code{None}. Elided frames are indented
1828from normal frames in a @code{CLI} backtrace, or in the case of
1829@code{GDB/MI}, are placed in the @code{children} field of the eliding
1830frame.
1831
1832It is the frame filter's task to also filter out the elided frames from
1833the source iterator. This will avoid printing the frame twice.
1834@end defun
1835
1836@defun FrameDecorator.function (self)
1837
1838This method returns the name of the function in the frame that is to
1839be printed.
1840
1841This method must return a Python string describing the function, or
1842@code{None}.
1843
1844If this function returns @code{None}, @value{GDBN} will not print any
1845data for this field.
1846@end defun
1847
1848@defun FrameDecorator.address (self)
1849
1850This method returns the address of the frame that is to be printed.
1851
1852This method must return a Python numeric integer type of sufficient
1853size to describe the address of the frame, or @code{None}.
1854
1855If this function returns a @code{None}, @value{GDBN} will not print
1856any data for this field.
1857@end defun
1858
1859@defun FrameDecorator.filename (self)
1860
1861This method returns the filename and path associated with this frame.
1862
1863This method must return a Python string containing the filename and
1864the path to the object file backing the frame, or @code{None}.
1865
1866If this function returns a @code{None}, @value{GDBN} will not print
1867any data for this field.
1868@end defun
1869
1870@defun FrameDecorator.line (self):
1871
1872This method returns the line number associated with the current
1873position within the function addressed by this frame.
1874
1875This method must return a Python integer type, or @code{None}.
1876
1877If this function returns a @code{None}, @value{GDBN} will not print
1878any data for this field.
1879@end defun
1880
1881@defun FrameDecorator.frame_args (self)
1882@anchor{frame_args}
1883
1884This method must return an iterable, or @code{None}. Returning an
1885empty iterable, or @code{None} means frame arguments will not be
1886printed for this frame. This iterable must contain objects that
1887implement two methods, described here.
1888
1889This object must implement a @code{argument} method which takes a
1890single @code{self} parameter and must return a @code{gdb.Symbol}
1891(@pxref{Symbols In Python}), or a Python string. The object must also
1892implement a @code{value} method which takes a single @code{self}
1893parameter and must return a @code{gdb.Value} (@pxref{Values From
1894Inferior}), a Python value, or @code{None}. If the @code{value}
1895method returns @code{None}, and the @code{argument} method returns a
1896@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1897the @code{gdb.Symbol} automatically.
1898
1899A brief example:
1900
1901@smallexample
1902class SymValueWrapper():
1903
1904 def __init__(self, symbol, value):
1905 self.sym = symbol
1906 self.val = value
1907
1908 def value(self):
1909 return self.val
1910
1911 def symbol(self):
1912 return self.sym
1913
1914class SomeFrameDecorator()
1915...
1916...
1917 def frame_args(self):
1918 args = []
1919 try:
1920 block = self.inferior_frame.block()
1921 except:
1922 return None
1923
1924 # Iterate over all symbols in a block. Only add
1925 # symbols that are arguments.
1926 for sym in block:
1927 if not sym.is_argument:
1928 continue
1929 args.append(SymValueWrapper(sym,None))
1930
1931 # Add example synthetic argument.
1932 args.append(SymValueWrapper(``foo'', 42))
1933
1934 return args
1935@end smallexample
1936@end defun
1937
1938@defun FrameDecorator.frame_locals (self)
1939
1940This method must return an iterable or @code{None}. Returning an
1941empty iterable, or @code{None} means frame local arguments will not be
1942printed for this frame.
1943
1944The object interface, the description of the various strategies for
1945reading frame locals, and the example are largely similar to those
1946described in the @code{frame_args} function, (@pxref{frame_args,,The
1947frame filter frame_args function}). Below is a modified example:
1948
1949@smallexample
1950class SomeFrameDecorator()
1951...
1952...
1953 def frame_locals(self):
1954 vars = []
1955 try:
1956 block = self.inferior_frame.block()
1957 except:
1958 return None
1959
1960 # Iterate over all symbols in a block. Add all
1961 # symbols, except arguments.
1962 for sym in block:
1963 if sym.is_argument:
1964 continue
1965 vars.append(SymValueWrapper(sym,None))
1966
1967 # Add an example of a synthetic local variable.
1968 vars.append(SymValueWrapper(``bar'', 99))
1969
1970 return vars
1971@end smallexample
1972@end defun
1973
1974@defun FrameDecorator.inferior_frame (self):
1975
1976This method must return the underlying @code{gdb.Frame} that this
1977frame decorator is decorating. @value{GDBN} requires the underlying
1978frame for internal frame information to determine how to print certain
1979values when printing a frame.
1980@end defun
1981
1982@node Writing a Frame Filter
1983@subsubsection Writing a Frame Filter
1984@cindex writing a frame filter
1985
1986There are three basic elements that a frame filter must implement: it
1987must correctly implement the documented interface (@pxref{Frame Filter
1988API}), it must register itself with @value{GDBN}, and finally, it must
1989decide if it is to work on the data provided by @value{GDBN}. In all
1990cases, whether it works on the iterator or not, each frame filter must
1991return an iterator. A bare-bones frame filter follows the pattern in
1992the following example.
1993
1994@smallexample
1995import gdb
1996
1997class FrameFilter():
1998
1999 def __init__(self):
2000 # Frame filter attribute creation.
2001 #
2002 # 'name' is the name of the filter that GDB will display.
2003 #
2004 # 'priority' is the priority of the filter relative to other
2005 # filters.
2006 #
2007 # 'enabled' is a boolean that indicates whether this filter is
2008 # enabled and should be executed.
2009
2010 self.name = "Foo"
2011 self.priority = 100
2012 self.enabled = True
2013
2014 # Register this frame filter with the global frame_filters
2015 # dictionary.
2016 gdb.frame_filters[self.name] = self
2017
2018 def filter(self, frame_iter):
2019 # Just return the iterator.
2020 return frame_iter
2021@end smallexample
2022
2023The frame filter in the example above implements the three
2024requirements for all frame filters. It implements the API, self
2025registers, and makes a decision on the iterator (in this case, it just
2026returns the iterator untouched).
2027
2028The first step is attribute creation and assignment, and as shown in
2029the comments the filter assigns the following attributes: @code{name},
2030@code{priority} and whether the filter should be enabled with the
2031@code{enabled} attribute.
2032
2033The second step is registering the frame filter with the dictionary or
2034dictionaries that the frame filter has interest in. As shown in the
2035comments, this filter just registers itself with the global dictionary
2036@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2037is a dictionary that is initialized in the @code{gdb} module when
2038@value{GDBN} starts. What dictionary a filter registers with is an
2039important consideration. Generally, if a filter is specific to a set
2040of code, it should be registered either in the @code{objfile} or
2041@code{progspace} dictionaries as they are specific to the program
2042currently loaded in @value{GDBN}. The global dictionary is always
2043present in @value{GDBN} and is never unloaded. Any filters registered
2044with the global dictionary will exist until @value{GDBN} exits. To
2045avoid filters that may conflict, it is generally better to register
2046frame filters against the dictionaries that more closely align with
2047the usage of the filter currently in question. @xref{Python
2048Auto-loading}, for further information on auto-loading Python scripts.
2049
2050@value{GDBN} takes a hands-off approach to frame filter registration,
2051therefore it is the frame filter's responsibility to ensure
2052registration has occurred, and that any exceptions are handled
2053appropriately. In particular, you may wish to handle exceptions
2054relating to Python dictionary key uniqueness. It is mandatory that
2055the dictionary key is the same as frame filter's @code{name}
2056attribute. When a user manages frame filters (@pxref{Frame Filter
2057Management}), the names @value{GDBN} will display are those contained
2058in the @code{name} attribute.
2059
2060The final step of this example is the implementation of the
2061@code{filter} method. As shown in the example comments, we define the
2062@code{filter} method and note that the method must take an iterator,
2063and also must return an iterator. In this bare-bones example, the
2064frame filter is not very useful as it just returns the iterator
2065untouched. However this is a valid operation for frame filters that
2066have the @code{enabled} attribute set, but decide not to operate on
2067any frames.
2068
2069In the next example, the frame filter operates on all frames and
2070utilizes a frame decorator to perform some work on the frames.
2071@xref{Frame Decorator API}, for further information on the frame
2072decorator interface.
2073
2074This example works on inlined frames. It highlights frames which are
2075inlined by tagging them with an ``[inlined]'' tag. By applying a
2076frame decorator to all frames with the Python @code{itertools imap}
2077method, the example defers actions to the frame decorator. Frame
2078decorators are only processed when @value{GDBN} prints the backtrace.
2079
2080This introduces a new decision making topic: whether to perform
2081decision making operations at the filtering step, or at the printing
2082step. In this example's approach, it does not perform any filtering
2083decisions at the filtering step beyond mapping a frame decorator to
2084each frame. This allows the actual decision making to be performed
2085when each frame is printed. This is an important consideration, and
2086well worth reflecting upon when designing a frame filter. An issue
2087that frame filters should avoid is unwinding the stack if possible.
2088Some stacks can run very deep, into the tens of thousands in some
2089cases. To search every frame to determine if it is inlined ahead of
2090time may be too expensive at the filtering step. The frame filter
2091cannot know how many frames it has to iterate over, and it would have
2092to iterate through them all. This ends up duplicating effort as
2093@value{GDBN} performs this iteration when it prints the frames.
2094
2095In this example decision making can be deferred to the printing step.
2096As each frame is printed, the frame decorator can examine each frame
2097in turn when @value{GDBN} iterates. From a performance viewpoint,
2098this is the most appropriate decision to make as it avoids duplicating
2099the effort that the printing step would undertake anyway. Also, if
2100there are many frame filters unwinding the stack during filtering, it
2101can substantially delay the printing of the backtrace which will
2102result in large memory usage, and a poor user experience.
2103
2104@smallexample
2105class InlineFilter():
2106
2107 def __init__(self):
2108 self.name = "InlinedFrameFilter"
2109 self.priority = 100
2110 self.enabled = True
2111 gdb.frame_filters[self.name] = self
2112
2113 def filter(self, frame_iter):
2114 frame_iter = itertools.imap(InlinedFrameDecorator,
2115 frame_iter)
2116 return frame_iter
2117@end smallexample
2118
2119This frame filter is somewhat similar to the earlier example, except
2120that the @code{filter} method applies a frame decorator object called
2121@code{InlinedFrameDecorator} to each element in the iterator. The
2122@code{imap} Python method is light-weight. It does not proactively
2123iterate over the iterator, but rather creates a new iterator which
2124wraps the existing one.
2125
2126Below is the frame decorator for this example.
2127
2128@smallexample
2129class InlinedFrameDecorator(FrameDecorator):
2130
2131 def __init__(self, fobj):
2132 super(InlinedFrameDecorator, self).__init__(fobj)
2133
2134 def function(self):
2135 frame = fobj.inferior_frame()
2136 name = str(frame.name())
2137
2138 if frame.type() == gdb.INLINE_FRAME:
2139 name = name + " [inlined]"
2140
2141 return name
2142@end smallexample
2143
2144This frame decorator only defines and overrides the @code{function}
2145method. It lets the supplied @code{FrameDecorator}, which is shipped
2146with @value{GDBN}, perform the other work associated with printing
2147this frame.
2148
2149The combination of these two objects create this output from a
2150backtrace:
2151
2152@smallexample
2153#0 0x004004e0 in bar () at inline.c:11
2154#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2155#2 0x00400566 in main () at inline.c:31
2156@end smallexample
2157
2158So in the case of this example, a frame decorator is applied to all
2159frames, regardless of whether they may be inlined or not. As
2160@value{GDBN} iterates over the iterator produced by the frame filters,
2161@value{GDBN} executes each frame decorator which then makes a decision
2162on what to print in the @code{function} callback. Using a strategy
2163like this is a way to defer decisions on the frame content to printing
2164time.
2165
2166@subheading Eliding Frames
2167
2168It might be that the above example is not desirable for representing
2169inlined frames, and a hierarchical approach may be preferred. If we
2170want to hierarchically represent frames, the @code{elided} frame
2171decorator interface might be preferable.
2172
2173This example approaches the issue with the @code{elided} method. This
2174example is quite long, but very simplistic. It is out-of-scope for
2175this section to write a complete example that comprehensively covers
2176all approaches of finding and printing inlined frames. However, this
2177example illustrates the approach an author might use.
2178
2179This example comprises of three sections.
2180
2181@smallexample
2182class InlineFrameFilter():
2183
2184 def __init__(self):
2185 self.name = "InlinedFrameFilter"
2186 self.priority = 100
2187 self.enabled = True
2188 gdb.frame_filters[self.name] = self
2189
2190 def filter(self, frame_iter):
2191 return ElidingInlineIterator(frame_iter)
2192@end smallexample
2193
2194This frame filter is very similar to the other examples. The only
2195difference is this frame filter is wrapping the iterator provided to
2196it (@code{frame_iter}) with a custom iterator called
2197@code{ElidingInlineIterator}. This again defers actions to when
2198@value{GDBN} prints the backtrace, as the iterator is not traversed
2199until printing.
2200
2201The iterator for this example is as follows. It is in this section of
2202the example where decisions are made on the content of the backtrace.
2203
2204@smallexample
2205class ElidingInlineIterator:
2206 def __init__(self, ii):
2207 self.input_iterator = ii
2208
2209 def __iter__(self):
2210 return self
2211
2212 def next(self):
2213 frame = next(self.input_iterator)
2214
2215 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2216 return frame
2217
2218 try:
2219 eliding_frame = next(self.input_iterator)
2220 except StopIteration:
2221 return frame
2222 return ElidingFrameDecorator(eliding_frame, [frame])
2223@end smallexample
2224
2225This iterator implements the Python iterator protocol. When the
2226@code{next} function is called (when @value{GDBN} prints each frame),
2227the iterator checks if this frame decorator, @code{frame}, is wrapping
2228an inlined frame. If it is not, it returns the existing frame decorator
2229untouched. If it is wrapping an inlined frame, it assumes that the
2230inlined frame was contained within the next oldest frame,
2231@code{eliding_frame}, which it fetches. It then creates and returns a
2232frame decorator, @code{ElidingFrameDecorator}, which contains both the
2233elided frame, and the eliding frame.
2234
2235@smallexample
2236class ElidingInlineDecorator(FrameDecorator):
2237
2238 def __init__(self, frame, elided_frames):
2239 super(ElidingInlineDecorator, self).__init__(frame)
2240 self.frame = frame
2241 self.elided_frames = elided_frames
2242
2243 def elided(self):
2244 return iter(self.elided_frames)
2245@end smallexample
2246
2247This frame decorator overrides one function and returns the inlined
2248frame in the @code{elided} method. As before it lets
2249@code{FrameDecorator} do the rest of the work involved in printing
2250this frame. This produces the following output.
2251
2252@smallexample
2253#0 0x004004e0 in bar () at inline.c:11
2254#2 0x00400529 in main () at inline.c:25
2255 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2256@end smallexample
2257
2258In that output, @code{max} which has been inlined into @code{main} is
2259printed hierarchically. Another approach would be to combine the
2260@code{function} method, and the @code{elided} method to both print a
2261marker in the inlined frame, and also show the hierarchical
2262relationship.
2263
d11916aa
SS
2264@node Unwinding Frames in Python
2265@subsubsection Unwinding Frames in Python
2266@cindex unwinding frames in Python
2267
2268In @value{GDBN} terminology ``unwinding'' is the process of finding
2269the previous frame (that is, caller's) from the current one. An
2270unwinder has three methods. The first one checks if it can handle
2271given frame (``sniff'' it). For the frames it can sniff an unwinder
2272provides two additional methods: it can return frame's ID, and it can
2273fetch registers from the previous frame. A running @value{GDBN}
2274mantains a list of the unwinders and calls each unwinder's sniffer in
2275turn until it finds the one that recognizes the current frame. There
2276is an API to register an unwinder.
2277
2278The unwinders that come with @value{GDBN} handle standard frames.
2279However, mixed language applications (for example, an application
2280running Java Virtual Machine) sometimes use frame layouts that cannot
2281be handled by the @value{GDBN} unwinders. You can write Python code
2282that can handle such custom frames.
2283
2284You implement a frame unwinder in Python as a class with which has two
2285attributes, @code{name} and @code{enabled}, with obvious meanings, and
2286a single method @code{__call__}, which examines a given frame and
2287returns an object (an instance of @code{gdb.UnwindInfo class)}
2288describing it. If an unwinder does not recognize a frame, it should
2289return @code{None}. The code in @value{GDBN} that enables writing
2290unwinders in Python uses this object to return frame's ID and previous
2291frame registers when @value{GDBN} core asks for them.
2292
2293@subheading Unwinder Input
2294
2295An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2296provides a method to read frame's registers:
2297
2298@defun PendingFrame.read_register (reg)
2299This method returns the contents of the register @var{regn} in the
2300frame as a @code{gdb.Value} object. @var{reg} can be either a
2301register number or a register name; the values are platform-specific.
2302They are usually found in the corresponding
2303@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2304@end defun
2305
2306It also provides a factory method to create a @code{gdb.UnwindInfo}
2307instance to be returned to @value{GDBN}:
2308
2309@defun PendingFrame.create_unwind_info (frame_id)
2310Returns a new @code{gdb.UnwindInfo} instance identified by given
2311@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2312using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2313determine which function will be used, as follows:
2314
2315@table @code
2316@item sp, pc, special
2317@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2318
2319@item sp, pc
2320@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2321
2322This is the most common case.
2323
2324@item sp
2325@code{frame_id_build_wild (@var{frame_id}.sp)}
2326@end table
2327The attribute values should be @code{gdb.Value}
2328
2329@end defun
2330
2331@subheading Unwinder Output: UnwindInfo
2332
2333Use @code{PendingFrame.create_unwind_info} method described above to
2334create a @code{gdb.UnwindInfo} instance. Use the following method to
2335specify caller registers that have been saved in this frame:
2336
2337@defun gdb.UnwindInfo.add_saved_register (reg, value)
2338@var{reg} identifies the register. It can be a number or a name, just
2339as for the @code{PendingFrame.read_register} method above.
2340@var{value} is a register value (a @code{gdb.Value} object).
2341@end defun
2342
2343@subheading Unwinder Skeleton Code
2344
2345@value{GDBN} comes with the module containing the base @code{Unwinder}
2346class. Derive your unwinder class from it and structure the code as
2347follows:
2348
2349@smallexample
2350from gdb.unwinders import Unwinder
2351
2352class FrameId(object):
2353 def __init__(self, sp, pc):
2354 self.sp = sp
2355 self.pc = pc
2356
2357
2358class MyUnwinder(Unwinder):
2359 def __init__(....):
2360 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2361
2362 def __call__(pending_frame):
2363 if not <we recognize frame>:
2364 return None
2365 # Create UnwindInfo. Usually the frame is identified by the stack
2366 # pointer and the program counter.
2367 sp = pending_frame.read_register(<SP number>)
2368 pc = pending_frame.read_register(<PC number>)
2369 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2370
2371 # Find the values of the registers in the caller's frame and
2372 # save them in the result:
2373 unwind_info.add_saved_register(<register>, <value>)
2374 ....
2375
2376 # Return the result:
2377 return unwind_info
2378
2379@end smallexample
2380
2381@subheading Registering a Unwinder
2382
2383An object file, a program space, and the @value{GDBN} proper can have
2384unwinders registered with it.
2385
2386The @code{gdb.unwinders} module provides the function to register a
2387unwinder:
2388
2389@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2390@var{locus} is specifies an object file or a program space to which
2391@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2392@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2393added @var{unwinder} will be called before any other unwinder from the
2394same locus. Two unwinders in the same locus cannot have the same
2395name. An attempt to add a unwinder with already existing name raises
2396an exception unless @var{replace} is @code{True}, in which case the
2397old unwinder is deleted.
2398@end defun
2399
2400@subheading Unwinder Precedence
2401
2402@value{GDBN} first calls the unwinders from all the object files in no
2403particular order, then the unwinders from the current program space,
2404and finally the unwinders from @value{GDBN}.
2405
0c6e92a5
SC
2406@node Xmethods In Python
2407@subsubsection Xmethods In Python
2408@cindex xmethods in Python
2409
2410@dfn{Xmethods} are additional methods or replacements for existing
2411methods of a C@t{++} class. This feature is useful for those cases
2412where a method defined in C@t{++} source code could be inlined or
2413optimized out by the compiler, making it unavailable to @value{GDBN}.
2414For such cases, one can define an xmethod to serve as a replacement
2415for the method defined in the C@t{++} source code. @value{GDBN} will
2416then invoke the xmethod, instead of the C@t{++} method, to
2417evaluate expressions. One can also use xmethods when debugging
2418with core files. Moreover, when debugging live programs, invoking an
2419xmethod need not involve running the inferior (which can potentially
2420perturb its state). Hence, even if the C@t{++} method is available, it
2421is better to use its replacement xmethod if one is defined.
2422
2423The xmethods feature in Python is available via the concepts of an
2424@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2425implement an xmethod, one has to implement a matcher and a
2426corresponding worker for it (more than one worker can be
2427implemented, each catering to a different overloaded instance of the
2428method). Internally, @value{GDBN} invokes the @code{match} method of a
2429matcher to match the class type and method name. On a match, the
2430@code{match} method returns a list of matching @emph{worker} objects.
2431Each worker object typically corresponds to an overloaded instance of
2432the xmethod. They implement a @code{get_arg_types} method which
2433returns a sequence of types corresponding to the arguments the xmethod
2434requires. @value{GDBN} uses this sequence of types to perform
2435overload resolution and picks a winning xmethod worker. A winner
2436is also selected from among the methods @value{GDBN} finds in the
2437C@t{++} source code. Next, the winning xmethod worker and the
2438winning C@t{++} method are compared to select an overall winner. In
2439case of a tie between a xmethod worker and a C@t{++} method, the
2440xmethod worker is selected as the winner. That is, if a winning
2441xmethod worker is found to be equivalent to the winning C@t{++}
2442method, then the xmethod worker is treated as a replacement for
2443the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2444method. If the winning xmethod worker is the overall winner, then
897c3d32 2445the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2446of the worker object.
2447
2448If one wants to implement an xmethod as a replacement for an
2449existing C@t{++} method, then they have to implement an equivalent
2450xmethod which has exactly the same name and takes arguments of
2451exactly the same type as the C@t{++} method. If the user wants to
2452invoke the C@t{++} method even though a replacement xmethod is
2453available for that method, then they can disable the xmethod.
2454
2455@xref{Xmethod API}, for API to implement xmethods in Python.
2456@xref{Writing an Xmethod}, for implementing xmethods in Python.
2457
2458@node Xmethod API
2459@subsubsection Xmethod API
2460@cindex xmethod API
2461
2462The @value{GDBN} Python API provides classes, interfaces and functions
2463to implement, register and manipulate xmethods.
2464@xref{Xmethods In Python}.
2465
2466An xmethod matcher should be an instance of a class derived from
2467@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2468object with similar interface and attributes. An instance of
2469@code{XMethodMatcher} has the following attributes:
2470
2471@defvar name
2472The name of the matcher.
2473@end defvar
2474
2475@defvar enabled
2476A boolean value indicating whether the matcher is enabled or disabled.
2477@end defvar
2478
2479@defvar methods
2480A list of named methods managed by the matcher. Each object in the list
2481is an instance of the class @code{XMethod} defined in the module
2482@code{gdb.xmethod}, or any object with the following attributes:
2483
2484@table @code
2485
2486@item name
2487Name of the xmethod which should be unique for each xmethod
2488managed by the matcher.
2489
2490@item enabled
2491A boolean value indicating whether the xmethod is enabled or
2492disabled.
2493
2494@end table
2495
2496The class @code{XMethod} is a convenience class with same
2497attributes as above along with the following constructor:
2498
dd5d5494 2499@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2500Constructs an enabled xmethod with name @var{name}.
2501@end defun
2502@end defvar
2503
2504@noindent
2505The @code{XMethodMatcher} class has the following methods:
2506
dd5d5494 2507@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2508Constructs an enabled xmethod matcher with name @var{name}. The
2509@code{methods} attribute is initialized to @code{None}.
2510@end defun
2511
dd5d5494 2512@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2513Derived classes should override this method. It should return a
2514xmethod worker object (or a sequence of xmethod worker
2515objects) matching the @var{class_type} and @var{method_name}.
2516@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2517is a string value. If the matcher manages named methods as listed in
2518its @code{methods} attribute, then only those worker objects whose
2519corresponding entries in the @code{methods} list are enabled should be
2520returned.
2521@end defun
2522
2523An xmethod worker should be an instance of a class derived from
2524@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2525or support the following interface:
2526
dd5d5494 2527@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2528This method returns a sequence of @code{gdb.Type} objects corresponding
2529to the arguments that the xmethod takes. It can return an empty
2530sequence or @code{None} if the xmethod does not take any arguments.
2531If the xmethod takes a single argument, then a single
2532@code{gdb.Type} object corresponding to it can be returned.
2533@end defun
2534
2ce1cdbf
DE
2535@defun XMethodWorker.get_result_type (self, *args)
2536This method returns a @code{gdb.Type} object representing the type
2537of the result of invoking this xmethod.
2538The @var{args} argument is the same tuple of arguments that would be
2539passed to the @code{__call__} method of this worker.
2540@end defun
2541
dd5d5494 2542@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2543This is the method which does the @emph{work} of the xmethod. The
2544@var{args} arguments is the tuple of arguments to the xmethod. Each
2545element in this tuple is a gdb.Value object. The first element is
2546always the @code{this} pointer value.
2547@end defun
2548
2549For @value{GDBN} to lookup xmethods, the xmethod matchers
2550should be registered using the following function defined in the module
2551@code{gdb.xmethod}:
2552
dd5d5494 2553@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2554The @code{matcher} is registered with @code{locus}, replacing an
2555existing matcher with the same name as @code{matcher} if
2556@code{replace} is @code{True}. @code{locus} can be a
2557@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2558@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2559@code{None}. If it is @code{None}, then @code{matcher} is registered
2560globally.
2561@end defun
2562
2563@node Writing an Xmethod
2564@subsubsection Writing an Xmethod
2565@cindex writing xmethods in Python
2566
2567Implementing xmethods in Python will require implementing xmethod
2568matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2569the following C@t{++} class:
2570
2571@smallexample
2572class MyClass
2573@{
2574public:
2575 MyClass (int a) : a_(a) @{ @}
2576
2577 int geta (void) @{ return a_; @}
2578 int operator+ (int b);
2579
2580private:
2581 int a_;
2582@};
2583
2584int
2585MyClass::operator+ (int b)
2586@{
2587 return a_ + b;
2588@}
2589@end smallexample
2590
2591@noindent
2592Let us define two xmethods for the class @code{MyClass}, one
2593replacing the method @code{geta}, and another adding an overloaded
2594flavor of @code{operator+} which takes a @code{MyClass} argument (the
2595C@t{++} code above already has an overloaded @code{operator+}
2596which takes an @code{int} argument). The xmethod matcher can be
2597defined as follows:
2598
2599@smallexample
2600class MyClass_geta(gdb.xmethod.XMethod):
2601 def __init__(self):
2602 gdb.xmethod.XMethod.__init__(self, 'geta')
2603
2604 def get_worker(self, method_name):
2605 if method_name == 'geta':
2606 return MyClassWorker_geta()
2607
2608
2609class MyClass_sum(gdb.xmethod.XMethod):
2610 def __init__(self):
2611 gdb.xmethod.XMethod.__init__(self, 'sum')
2612
2613 def get_worker(self, method_name):
2614 if method_name == 'operator+':
2615 return MyClassWorker_plus()
2616
2617
2618class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2619 def __init__(self):
2620 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2621 # List of methods 'managed' by this matcher
2622 self.methods = [MyClass_geta(), MyClass_sum()]
2623
2624 def match(self, class_type, method_name):
2625 if class_type.tag != 'MyClass':
2626 return None
2627 workers = []
2628 for method in self.methods:
2629 if method.enabled:
2630 worker = method.get_worker(method_name)
2631 if worker:
2632 workers.append(worker)
2633
2634 return workers
2635@end smallexample
2636
2637@noindent
2638Notice that the @code{match} method of @code{MyClassMatcher} returns
2639a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2640method, and a worker object of type @code{MyClassWorker_plus} for the
2641@code{operator+} method. This is done indirectly via helper classes
2642derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2643@code{methods} attribute in a matcher as it is optional. However, if a
2644matcher manages more than one xmethod, it is a good practice to list the
2645xmethods in the @code{methods} attribute of the matcher. This will then
2646facilitate enabling and disabling individual xmethods via the
2647@code{enable/disable} commands. Notice also that a worker object is
2648returned only if the corresponding entry in the @code{methods} attribute
2649of the matcher is enabled.
2650
2651The implementation of the worker classes returned by the matcher setup
2652above is as follows:
2653
2654@smallexample
2655class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2656 def get_arg_types(self):
2657 return None
2ce1cdbf
DE
2658
2659 def get_result_type(self, obj):
2660 return gdb.lookup_type('int')
0c6e92a5
SC
2661
2662 def __call__(self, obj):
2663 return obj['a_']
2664
2665
2666class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2667 def get_arg_types(self):
2668 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2669
2670 def get_result_type(self, obj):
2671 return gdb.lookup_type('int')
0c6e92a5
SC
2672
2673 def __call__(self, obj, other):
2674 return obj['a_'] + other['a_']
2675@end smallexample
2676
2677For @value{GDBN} to actually lookup a xmethod, it has to be
2678registered with it. The matcher defined above is registered with
2679@value{GDBN} globally as follows:
2680
2681@smallexample
2682gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2683@end smallexample
2684
2685If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2686code as follows:
2687
2688@smallexample
2689MyClass obj(5);
2690@end smallexample
2691
2692@noindent
2693then, after loading the Python script defining the xmethod matchers
2694and workers into @code{GDBN}, invoking the method @code{geta} or using
2695the operator @code{+} on @code{obj} will invoke the xmethods
2696defined above:
2697
2698@smallexample
2699(gdb) p obj.geta()
2700$1 = 5
2701
2702(gdb) p obj + obj
2703$2 = 10
2704@end smallexample
2705
2706Consider another example with a C++ template class:
2707
2708@smallexample
2709template <class T>
2710class MyTemplate
2711@{
2712public:
2713 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2714 ~MyTemplate () @{ delete [] data_; @}
2715
2716 int footprint (void)
2717 @{
2718 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2719 @}
2720
2721private:
2722 int dsize_;
2723 T *data_;
2724@};
2725@end smallexample
2726
2727Let us implement an xmethod for the above class which serves as a
2728replacement for the @code{footprint} method. The full code listing
2729of the xmethod workers and xmethod matchers is as follows:
2730
2731@smallexample
2732class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2733 def __init__(self, class_type):
2734 self.class_type = class_type
2ce1cdbf 2735
0c6e92a5
SC
2736 def get_arg_types(self):
2737 return None
2ce1cdbf
DE
2738
2739 def get_result_type(self):
2740 return gdb.lookup_type('int')
2741
0c6e92a5
SC
2742 def __call__(self, obj):
2743 return (self.class_type.sizeof +
2744 obj['dsize_'] *
2745 self.class_type.template_argument(0).sizeof)
2746
2747
2748class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2749 def __init__(self):
2750 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2751
2752 def match(self, class_type, method_name):
2753 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2754 class_type.tag) and
2755 method_name == 'footprint'):
2756 return MyTemplateWorker_footprint(class_type)
2757@end smallexample
2758
2759Notice that, in this example, we have not used the @code{methods}
2760attribute of the matcher as the matcher manages only one xmethod. The
2761user can enable/disable this xmethod by enabling/disabling the matcher
2762itself.
2763
329baa95
DE
2764@node Inferiors In Python
2765@subsubsection Inferiors In Python
2766@cindex inferiors in Python
2767
2768@findex gdb.Inferior
2769Programs which are being run under @value{GDBN} are called inferiors
2770(@pxref{Inferiors and Programs}). Python scripts can access
2771information about and manipulate inferiors controlled by @value{GDBN}
2772via objects of the @code{gdb.Inferior} class.
2773
2774The following inferior-related functions are available in the @code{gdb}
2775module:
2776
2777@defun gdb.inferiors ()
2778Return a tuple containing all inferior objects.
2779@end defun
2780
2781@defun gdb.selected_inferior ()
2782Return an object representing the current inferior.
2783@end defun
2784
2785A @code{gdb.Inferior} object has the following attributes:
2786
2787@defvar Inferior.num
2788ID of inferior, as assigned by GDB.
2789@end defvar
2790
2791@defvar Inferior.pid
2792Process ID of the inferior, as assigned by the underlying operating
2793system.
2794@end defvar
2795
2796@defvar Inferior.was_attached
2797Boolean signaling whether the inferior was created using `attach', or
2798started by @value{GDBN} itself.
2799@end defvar
2800
2801A @code{gdb.Inferior} object has the following methods:
2802
2803@defun Inferior.is_valid ()
2804Returns @code{True} if the @code{gdb.Inferior} object is valid,
2805@code{False} if not. A @code{gdb.Inferior} object will become invalid
2806if the inferior no longer exists within @value{GDBN}. All other
2807@code{gdb.Inferior} methods will throw an exception if it is invalid
2808at the time the method is called.
2809@end defun
2810
2811@defun Inferior.threads ()
2812This method returns a tuple holding all the threads which are valid
2813when it is called. If there are no valid threads, the method will
2814return an empty tuple.
2815@end defun
2816
2817@findex Inferior.read_memory
2818@defun Inferior.read_memory (address, length)
a86c90e6 2819Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2820@var{address}. Returns a buffer object, which behaves much like an array
2821or a string. It can be modified and given to the
79778b30 2822@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2823value is a @code{memoryview} object.
2824@end defun
2825
2826@findex Inferior.write_memory
2827@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2828Write the contents of @var{buffer} to the inferior, starting at
2829@var{address}. The @var{buffer} parameter must be a Python object
2830which supports the buffer protocol, i.e., a string, an array or the
2831object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2832determines the number of addressable memory units from @var{buffer} to be
2833written.
329baa95
DE
2834@end defun
2835
2836@findex gdb.search_memory
2837@defun Inferior.search_memory (address, length, pattern)
2838Search a region of the inferior memory starting at @var{address} with
2839the given @var{length} using the search pattern supplied in
2840@var{pattern}. The @var{pattern} parameter must be a Python object
2841which supports the buffer protocol, i.e., a string, an array or the
2842object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2843containing the address where the pattern was found, or @code{None} if
2844the pattern could not be found.
2845@end defun
2846
da2c323b
KB
2847@findex Inferior.thread_from_thread_handle
2848@defun Inferior.thread_from_thread_handle (thread_handle)
2849Return the thread object corresponding to @var{thread_handle}, a thread
2850library specific data structure such as @code{pthread_t} for pthreads
2851library implementations.
2852@end defun
2853
329baa95
DE
2854@node Events In Python
2855@subsubsection Events In Python
2856@cindex inferior events in Python
2857
2858@value{GDBN} provides a general event facility so that Python code can be
2859notified of various state changes, particularly changes that occur in
2860the inferior.
2861
2862An @dfn{event} is just an object that describes some state change. The
2863type of the object and its attributes will vary depending on the details
2864of the change. All the existing events are described below.
2865
2866In order to be notified of an event, you must register an event handler
2867with an @dfn{event registry}. An event registry is an object in the
2868@code{gdb.events} module which dispatches particular events. A registry
2869provides methods to register and unregister event handlers:
2870
2871@defun EventRegistry.connect (object)
2872Add the given callable @var{object} to the registry. This object will be
2873called when an event corresponding to this registry occurs.
2874@end defun
2875
2876@defun EventRegistry.disconnect (object)
2877Remove the given @var{object} from the registry. Once removed, the object
2878will no longer receive notifications of events.
2879@end defun
2880
2881Here is an example:
2882
2883@smallexample
2884def exit_handler (event):
2885 print "event type: exit"
2886 print "exit code: %d" % (event.exit_code)
2887
2888gdb.events.exited.connect (exit_handler)
2889@end smallexample
2890
2891In the above example we connect our handler @code{exit_handler} to the
2892registry @code{events.exited}. Once connected, @code{exit_handler} gets
2893called when the inferior exits. The argument @dfn{event} in this example is
2894of type @code{gdb.ExitedEvent}. As you can see in the example the
2895@code{ExitedEvent} object has an attribute which indicates the exit code of
2896the inferior.
2897
2898The following is a listing of the event registries that are available and
2899details of the events they emit:
2900
2901@table @code
2902
2903@item events.cont
2904Emits @code{gdb.ThreadEvent}.
2905
2906Some events can be thread specific when @value{GDBN} is running in non-stop
2907mode. When represented in Python, these events all extend
2908@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2909events which are emitted by this or other modules might extend this event.
2910Examples of these events are @code{gdb.BreakpointEvent} and
2911@code{gdb.ContinueEvent}.
2912
2913@defvar ThreadEvent.inferior_thread
2914In non-stop mode this attribute will be set to the specific thread which was
2915involved in the emitted event. Otherwise, it will be set to @code{None}.
2916@end defvar
2917
2918Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2919
2920This event indicates that the inferior has been continued after a stop. For
2921inherited attribute refer to @code{gdb.ThreadEvent} above.
2922
2923@item events.exited
2924Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2925@code{events.ExitedEvent} has two attributes:
2926@defvar ExitedEvent.exit_code
2927An integer representing the exit code, if available, which the inferior
2928has returned. (The exit code could be unavailable if, for example,
2929@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2930the attribute does not exist.
2931@end defvar
373832b6 2932@defvar ExitedEvent.inferior
329baa95
DE
2933A reference to the inferior which triggered the @code{exited} event.
2934@end defvar
2935
2936@item events.stop
2937Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2938
2939Indicates that the inferior has stopped. All events emitted by this registry
2940extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2941will indicate the stopped thread when @value{GDBN} is running in non-stop
2942mode. Refer to @code{gdb.ThreadEvent} above for more details.
2943
2944Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2945
2946This event indicates that the inferior or one of its threads has received as
2947signal. @code{gdb.SignalEvent} has the following attributes:
2948
2949@defvar SignalEvent.stop_signal
2950A string representing the signal received by the inferior. A list of possible
2951signal values can be obtained by running the command @code{info signals} in
2952the @value{GDBN} command prompt.
2953@end defvar
2954
2955Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2956
2957@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2958been hit, and has the following attributes:
2959
2960@defvar BreakpointEvent.breakpoints
2961A sequence containing references to all the breakpoints (type
2962@code{gdb.Breakpoint}) that were hit.
2963@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2964@end defvar
2965@defvar BreakpointEvent.breakpoint
2966A reference to the first breakpoint that was hit.
2967This function is maintained for backward compatibility and is now deprecated
2968in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2969@end defvar
2970
2971@item events.new_objfile
2972Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2973been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2974
2975@defvar NewObjFileEvent.new_objfile
2976A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2977@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2978@end defvar
2979
4ffbba72
DE
2980@item events.clear_objfiles
2981Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2982files for a program space has been reset.
2983@code{gdb.ClearObjFilesEvent} has one attribute:
2984
2985@defvar ClearObjFilesEvent.progspace
2986A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2987been cleared. @xref{Progspaces In Python}.
2988@end defvar
2989
fb5af5e3
TT
2990@item events.inferior_call
2991Emits events just before and after a function in the inferior is
2992called by @value{GDBN}. Before an inferior call, this emits an event
2993of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
2994this emits an event of type @code{gdb.InferiorCallPostEvent}.
2995
2996@table @code
2997@tindex gdb.InferiorCallPreEvent
2998@item @code{gdb.InferiorCallPreEvent}
2999Indicates that a function in the inferior is about to be called.
162078c8
NB
3000
3001@defvar InferiorCallPreEvent.ptid
3002The thread in which the call will be run.
3003@end defvar
3004
3005@defvar InferiorCallPreEvent.address
3006The location of the function to be called.
3007@end defvar
3008
fb5af5e3
TT
3009@tindex gdb.InferiorCallPostEvent
3010@item @code{gdb.InferiorCallPostEvent}
3011Indicates that a function in the inferior has just been called.
162078c8
NB
3012
3013@defvar InferiorCallPostEvent.ptid
3014The thread in which the call was run.
3015@end defvar
3016
3017@defvar InferiorCallPostEvent.address
3018The location of the function that was called.
3019@end defvar
fb5af5e3 3020@end table
162078c8
NB
3021
3022@item events.memory_changed
3023Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3024inferior has been modified by the @value{GDBN} user, for instance via a
3025command like @w{@code{set *addr = value}}. The event has the following
3026attributes:
3027
3028@defvar MemoryChangedEvent.address
3029The start address of the changed region.
3030@end defvar
3031
3032@defvar MemoryChangedEvent.length
3033Length in bytes of the changed region.
3034@end defvar
3035
3036@item events.register_changed
3037Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3038inferior has been modified by the @value{GDBN} user.
3039
3040@defvar RegisterChangedEvent.frame
3041A gdb.Frame object representing the frame in which the register was modified.
3042@end defvar
3043@defvar RegisterChangedEvent.regnum
3044Denotes which register was modified.
3045@end defvar
3046
dac790e1
TT
3047@item events.breakpoint_created
3048This is emitted when a new breakpoint has been created. The argument
3049that is passed is the new @code{gdb.Breakpoint} object.
3050
3051@item events.breakpoint_modified
3052This is emitted when a breakpoint has been modified in some way. The
3053argument that is passed is the new @code{gdb.Breakpoint} object.
3054
3055@item events.breakpoint_deleted
3056This is emitted when a breakpoint has been deleted. The argument that
3057is passed is the @code{gdb.Breakpoint} object. When this event is
3058emitted, the @code{gdb.Breakpoint} object will already be in its
3059invalid state; that is, the @code{is_valid} method will return
3060@code{False}.
3061
3f77c769
TT
3062@item events.before_prompt
3063This event carries no payload. It is emitted each time @value{GDBN}
3064presents a prompt to the user.
3065
7c96f8c1
TT
3066@item events.new_inferior
3067This is emitted when a new inferior is created. Note that the
3068inferior is not necessarily running; in fact, it may not even have an
3069associated executable.
3070
3071The event is of type @code{gdb.NewInferiorEvent}. This has a single
3072attribute:
3073
3074@defvar NewInferiorEvent.inferior
3075The new inferior, a @code{gdb.Inferior} object.
3076@end defvar
3077
3078@item events.inferior_deleted
3079This is emitted when an inferior has been deleted. Note that this is
3080not the same as process exit; it is notified when the inferior itself
3081is removed, say via @code{remove-inferiors}.
3082
3083The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3084attribute:
3085
3086@defvar NewInferiorEvent.inferior
3087The inferior that is being removed, a @code{gdb.Inferior} object.
3088@end defvar
3089
3090@item events.new_thread
3091This is emitted when @value{GDBN} notices a new thread. The event is of
3092type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3093This has a single attribute:
3094
3095@defvar NewThreadEvent.inferior_thread
3096The new thread.
3097@end defvar
3098
329baa95
DE
3099@end table
3100
3101@node Threads In Python
3102@subsubsection Threads In Python
3103@cindex threads in python
3104
3105@findex gdb.InferiorThread
3106Python scripts can access information about, and manipulate inferior threads
3107controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3108
3109The following thread-related functions are available in the @code{gdb}
3110module:
3111
3112@findex gdb.selected_thread
3113@defun gdb.selected_thread ()
3114This function returns the thread object for the selected thread. If there
3115is no selected thread, this will return @code{None}.
3116@end defun
3117
3118A @code{gdb.InferiorThread} object has the following attributes:
3119
3120@defvar InferiorThread.name
3121The name of the thread. If the user specified a name using
3122@code{thread name}, then this returns that name. Otherwise, if an
3123OS-supplied name is available, then it is returned. Otherwise, this
3124returns @code{None}.
3125
3126This attribute can be assigned to. The new value must be a string
3127object, which sets the new name, or @code{None}, which removes any
3128user-specified thread name.
3129@end defvar
3130
3131@defvar InferiorThread.num
5d5658a1 3132The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3133@end defvar
3134
22a02324
PA
3135@defvar InferiorThread.global_num
3136The global ID of the thread, as assigned by GDB. You can use this to
3137make Python breakpoints thread-specific, for example
3138(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3139@end defvar
3140
329baa95
DE
3141@defvar InferiorThread.ptid
3142ID of the thread, as assigned by the operating system. This attribute is a
3143tuple containing three integers. The first is the Process ID (PID); the second
3144is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3145Either the LWPID or TID may be 0, which indicates that the operating system
3146does not use that identifier.
3147@end defvar
3148
84654457
PA
3149@defvar InferiorThread.inferior
3150The inferior this thread belongs to. This attribute is represented as
3151a @code{gdb.Inferior} object. This attribute is not writable.
3152@end defvar
3153
329baa95
DE
3154A @code{gdb.InferiorThread} object has the following methods:
3155
3156@defun InferiorThread.is_valid ()
3157Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3158@code{False} if not. A @code{gdb.InferiorThread} object will become
3159invalid if the thread exits, or the inferior that the thread belongs
3160is deleted. All other @code{gdb.InferiorThread} methods will throw an
3161exception if it is invalid at the time the method is called.
3162@end defun
3163
3164@defun InferiorThread.switch ()
3165This changes @value{GDBN}'s currently selected thread to the one represented
3166by this object.
3167@end defun
3168
3169@defun InferiorThread.is_stopped ()
3170Return a Boolean indicating whether the thread is stopped.
3171@end defun
3172
3173@defun InferiorThread.is_running ()
3174Return a Boolean indicating whether the thread is running.
3175@end defun
3176
3177@defun InferiorThread.is_exited ()
3178Return a Boolean indicating whether the thread is exited.
3179@end defun
3180
0a0faf9f
TW
3181@node Recordings In Python
3182@subsubsection Recordings In Python
3183@cindex recordings in python
3184
3185The following recordings-related functions
3186(@pxref{Process Record and Replay}) are available in the @code{gdb}
3187module:
3188
3189@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3190Start a recording using the given @var{method} and @var{format}. If
3191no @var{format} is given, the default format for the recording method
3192is used. If no @var{method} is given, the default method will be used.
3193Returns a @code{gdb.Record} object on success. Throw an exception on
3194failure.
3195
3196The following strings can be passed as @var{method}:
3197
3198@itemize @bullet
3199@item
3200@code{"full"}
3201@item
3202@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3203@code{"bts"} or leave out for default format.
3204@end itemize
3205@end defun
3206
3207@defun gdb.current_recording ()
3208Access a currently running recording. Return a @code{gdb.Record}
3209object on success. Return @code{None} if no recording is currently
3210active.
3211@end defun
3212
3213@defun gdb.stop_recording ()
3214Stop the current recording. Throw an exception if no recording is
3215currently active. All record objects become invalid after this call.
3216@end defun
3217
3218A @code{gdb.Record} object has the following attributes:
3219
0a0faf9f
TW
3220@defvar Record.method
3221A string with the current recording method, e.g.@: @code{full} or
3222@code{btrace}.
3223@end defvar
3224
3225@defvar Record.format
3226A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3227@code{None}.
3228@end defvar
3229
3230@defvar Record.begin
3231A method specific instruction object representing the first instruction
3232in this recording.
3233@end defvar
3234
3235@defvar Record.end
3236A method specific instruction object representing the current
3237instruction, that is not actually part of the recording.
3238@end defvar
3239
3240@defvar Record.replay_position
3241The instruction representing the current replay position. If there is
3242no replay active, this will be @code{None}.
3243@end defvar
3244
3245@defvar Record.instruction_history
3246A list with all recorded instructions.
3247@end defvar
3248
3249@defvar Record.function_call_history
3250A list with all recorded function call segments.
3251@end defvar
3252
3253A @code{gdb.Record} object has the following methods:
3254
3255@defun Record.goto (instruction)
3256Move the replay position to the given @var{instruction}.
3257@end defun
3258
d050f7d7
TW
3259The common @code{gdb.Instruction} class that recording method specific
3260instruction objects inherit from, has the following attributes:
0a0faf9f 3261
d050f7d7 3262@defvar Instruction.pc
913aeadd 3263An integer representing this instruction's address.
0a0faf9f
TW
3264@end defvar
3265
d050f7d7 3266@defvar Instruction.data
913aeadd
TW
3267A buffer with the raw instruction data. In Python 3, the return value is a
3268@code{memoryview} object.
0a0faf9f
TW
3269@end defvar
3270
d050f7d7 3271@defvar Instruction.decoded
913aeadd 3272A human readable string with the disassembled instruction.
0a0faf9f
TW
3273@end defvar
3274
d050f7d7 3275@defvar Instruction.size
913aeadd 3276The size of the instruction in bytes.
0a0faf9f
TW
3277@end defvar
3278
d050f7d7
TW
3279Additionally @code{gdb.RecordInstruction} has the following attributes:
3280
3281@defvar RecordInstruction.number
3282An integer identifying this instruction. @code{number} corresponds to
3283the numbers seen in @code{record instruction-history}
3284(@pxref{Process Record and Replay}).
3285@end defvar
3286
3287@defvar RecordInstruction.sal
3288A @code{gdb.Symtab_and_line} object representing the associated symtab
3289and line of this instruction. May be @code{None} if no debug information is
3290available.
3291@end defvar
3292
0ed5da75 3293@defvar RecordInstruction.is_speculative
d050f7d7 3294A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3295@end defvar
3296
3297If an error occured during recording or decoding a recording, this error is
3298represented by a @code{gdb.RecordGap} object in the instruction list. It has
3299the following attributes:
3300
3301@defvar RecordGap.number
3302An integer identifying this gap. @code{number} corresponds to the numbers seen
3303in @code{record instruction-history} (@pxref{Process Record and Replay}).
3304@end defvar
3305
3306@defvar RecordGap.error_code
3307A numerical representation of the reason for the gap. The value is specific to
3308the current recording method.
3309@end defvar
3310
3311@defvar RecordGap.error_string
3312A human readable string with the reason for the gap.
0a0faf9f
TW
3313@end defvar
3314
14f819c8 3315A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3316
14f819c8
TW
3317@defvar RecordFunctionSegment.number
3318An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3319the numbers seen in @code{record function-call-history}
3320(@pxref{Process Record and Replay}).
3321@end defvar
3322
14f819c8 3323@defvar RecordFunctionSegment.symbol
0a0faf9f 3324A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3325@code{None} if no debug information is available.
0a0faf9f
TW
3326@end defvar
3327
14f819c8 3328@defvar RecordFunctionSegment.level
0a0faf9f
TW
3329An integer representing the function call's stack level. May be
3330@code{None} if the function call is a gap.
3331@end defvar
3332
14f819c8 3333@defvar RecordFunctionSegment.instructions
0ed5da75 3334A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3335associated with this function call.
0a0faf9f
TW
3336@end defvar
3337
14f819c8
TW
3338@defvar RecordFunctionSegment.up
3339A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3340function segment. If the call has not been recorded, this will be the
3341function segment to which control returns. If neither the call nor the
3342return have been recorded, this will be @code{None}.
3343@end defvar
3344
14f819c8
TW
3345@defvar RecordFunctionSegment.prev
3346A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3347segment of this function call. May be @code{None}.
3348@end defvar
3349
14f819c8
TW
3350@defvar RecordFunctionSegment.next
3351A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3352this function call. May be @code{None}.
3353@end defvar
3354
3355The following example demonstrates the usage of these objects and
3356functions to create a function that will rewind a record to the last
3357time a function in a different file was executed. This would typically
3358be used to track the execution of user provided callback functions in a
3359library which typically are not visible in a back trace.
3360
3361@smallexample
3362def bringback ():
3363 rec = gdb.current_recording ()
3364 if not rec:
3365 return
3366
3367 insn = rec.instruction_history
3368 if len (insn) == 0:
3369 return
3370
3371 try:
3372 position = insn.index (rec.replay_position)
3373 except:
3374 position = -1
3375 try:
3376 filename = insn[position].sal.symtab.fullname ()
3377 except:
3378 filename = None
3379
3380 for i in reversed (insn[:position]):
3381 try:
3382 current = i.sal.symtab.fullname ()
3383 except:
3384 current = None
3385
3386 if filename == current:
3387 continue
3388
3389 rec.goto (i)
3390 return
3391@end smallexample
3392
3393Another possible application is to write a function that counts the
3394number of code executions in a given line range. This line range can
3395contain parts of functions or span across several functions and is not
3396limited to be contiguous.
3397
3398@smallexample
3399def countrange (filename, linerange):
3400 count = 0
3401
3402 def filter_only (file_name):
3403 for call in gdb.current_recording ().function_call_history:
3404 try:
3405 if file_name in call.symbol.symtab.fullname ():
3406 yield call
3407 except:
3408 pass
3409
3410 for c in filter_only (filename):
3411 for i in c.instructions:
3412 try:
3413 if i.sal.line in linerange:
3414 count += 1
3415 break;
3416 except:
3417 pass
3418
3419 return count
3420@end smallexample
3421
329baa95
DE
3422@node Commands In Python
3423@subsubsection Commands In Python
3424
3425@cindex commands in python
3426@cindex python commands
3427You can implement new @value{GDBN} CLI commands in Python. A CLI
3428command is implemented using an instance of the @code{gdb.Command}
3429class, most commonly using a subclass.
3430
3431@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3432The object initializer for @code{Command} registers the new command
3433with @value{GDBN}. This initializer is normally invoked from the
3434subclass' own @code{__init__} method.
3435
3436@var{name} is the name of the command. If @var{name} consists of
3437multiple words, then the initial words are looked for as prefix
3438commands. In this case, if one of the prefix commands does not exist,
3439an exception is raised.
3440
3441There is no support for multi-line commands.
3442
3443@var{command_class} should be one of the @samp{COMMAND_} constants
3444defined below. This argument tells @value{GDBN} how to categorize the
3445new command in the help system.
3446
3447@var{completer_class} is an optional argument. If given, it should be
3448one of the @samp{COMPLETE_} constants defined below. This argument
3449tells @value{GDBN} how to perform completion for this command. If not
3450given, @value{GDBN} will attempt to complete using the object's
3451@code{complete} method (see below); if no such method is found, an
3452error will occur when completion is attempted.
3453
3454@var{prefix} is an optional argument. If @code{True}, then the new
3455command is a prefix command; sub-commands of this command may be
3456registered.
3457
3458The help text for the new command is taken from the Python
3459documentation string for the command's class, if there is one. If no
3460documentation string is provided, the default value ``This command is
3461not documented.'' is used.
3462@end defun
3463
3464@cindex don't repeat Python command
3465@defun Command.dont_repeat ()
3466By default, a @value{GDBN} command is repeated when the user enters a
3467blank line at the command prompt. A command can suppress this
3468behavior by invoking the @code{dont_repeat} method. This is similar
3469to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3470@end defun
3471
3472@defun Command.invoke (argument, from_tty)
3473This method is called by @value{GDBN} when this command is invoked.
3474
3475@var{argument} is a string. It is the argument to the command, after
3476leading and trailing whitespace has been stripped.
3477
3478@var{from_tty} is a boolean argument. When true, this means that the
3479command was entered by the user at the terminal; when false it means
3480that the command came from elsewhere.
3481
3482If this method throws an exception, it is turned into a @value{GDBN}
3483@code{error} call. Otherwise, the return value is ignored.
3484
3485@findex gdb.string_to_argv
3486To break @var{argument} up into an argv-like string use
3487@code{gdb.string_to_argv}. This function behaves identically to
3488@value{GDBN}'s internal argument lexer @code{buildargv}.
3489It is recommended to use this for consistency.
3490Arguments are separated by spaces and may be quoted.
3491Example:
3492
3493@smallexample
3494print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3495['1', '2 "3', '4 "5', "6 '7"]
3496@end smallexample
3497
3498@end defun
3499
3500@cindex completion of Python commands
3501@defun Command.complete (text, word)
3502This method is called by @value{GDBN} when the user attempts
3503completion on this command. All forms of completion are handled by
3504this method, that is, the @key{TAB} and @key{M-?} key bindings
3505(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3506complete}).
3507
697aa1b7
EZ
3508The arguments @var{text} and @var{word} are both strings; @var{text}
3509holds the complete command line up to the cursor's location, while
329baa95
DE
3510@var{word} holds the last word of the command line; this is computed
3511using a word-breaking heuristic.
3512
3513The @code{complete} method can return several values:
3514@itemize @bullet
3515@item
3516If the return value is a sequence, the contents of the sequence are
3517used as the completions. It is up to @code{complete} to ensure that the
3518contents actually do complete the word. A zero-length sequence is
3519allowed, it means that there were no completions available. Only
3520string elements of the sequence are used; other elements in the
3521sequence are ignored.
3522
3523@item
3524If the return value is one of the @samp{COMPLETE_} constants defined
3525below, then the corresponding @value{GDBN}-internal completion
3526function is invoked, and its result is used.
3527
3528@item
3529All other results are treated as though there were no available
3530completions.
3531@end itemize
3532@end defun
3533
3534When a new command is registered, it must be declared as a member of
3535some general class of commands. This is used to classify top-level
3536commands in the on-line help system; note that prefix commands are not
3537listed under their own category but rather that of their top-level
3538command. The available classifications are represented by constants
3539defined in the @code{gdb} module:
3540
3541@table @code
3542@findex COMMAND_NONE
3543@findex gdb.COMMAND_NONE
3544@item gdb.COMMAND_NONE
3545The command does not belong to any particular class. A command in
3546this category will not be displayed in any of the help categories.
3547
3548@findex COMMAND_RUNNING
3549@findex gdb.COMMAND_RUNNING
3550@item gdb.COMMAND_RUNNING
3551The command is related to running the inferior. For example,
3552@code{start}, @code{step}, and @code{continue} are in this category.
3553Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3554commands in this category.
3555
3556@findex COMMAND_DATA
3557@findex gdb.COMMAND_DATA
3558@item gdb.COMMAND_DATA
3559The command is related to data or variables. For example,
3560@code{call}, @code{find}, and @code{print} are in this category. Type
3561@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3562in this category.
3563
3564@findex COMMAND_STACK
3565@findex gdb.COMMAND_STACK
3566@item gdb.COMMAND_STACK
3567The command has to do with manipulation of the stack. For example,
3568@code{backtrace}, @code{frame}, and @code{return} are in this
3569category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3570list of commands in this category.
3571
3572@findex COMMAND_FILES
3573@findex gdb.COMMAND_FILES
3574@item gdb.COMMAND_FILES
3575This class is used for file-related commands. For example,
3576@code{file}, @code{list} and @code{section} are in this category.
3577Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3578commands in this category.
3579
3580@findex COMMAND_SUPPORT
3581@findex gdb.COMMAND_SUPPORT
3582@item gdb.COMMAND_SUPPORT
3583This should be used for ``support facilities'', generally meaning
3584things that are useful to the user when interacting with @value{GDBN},
3585but not related to the state of the inferior. For example,
3586@code{help}, @code{make}, and @code{shell} are in this category. Type
3587@kbd{help support} at the @value{GDBN} prompt to see a list of
3588commands in this category.
3589
3590@findex COMMAND_STATUS
3591@findex gdb.COMMAND_STATUS
3592@item gdb.COMMAND_STATUS
3593The command is an @samp{info}-related command, that is, related to the
3594state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3595and @code{show} are in this category. Type @kbd{help status} at the
3596@value{GDBN} prompt to see a list of commands in this category.
3597
3598@findex COMMAND_BREAKPOINTS
3599@findex gdb.COMMAND_BREAKPOINTS
3600@item gdb.COMMAND_BREAKPOINTS
3601The command has to do with breakpoints. For example, @code{break},
3602@code{clear}, and @code{delete} are in this category. Type @kbd{help
3603breakpoints} at the @value{GDBN} prompt to see a list of commands in
3604this category.
3605
3606@findex COMMAND_TRACEPOINTS
3607@findex gdb.COMMAND_TRACEPOINTS
3608@item gdb.COMMAND_TRACEPOINTS
3609The command has to do with tracepoints. For example, @code{trace},
3610@code{actions}, and @code{tfind} are in this category. Type
3611@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3612commands in this category.
3613
3614@findex COMMAND_USER
3615@findex gdb.COMMAND_USER
3616@item gdb.COMMAND_USER
3617The command is a general purpose command for the user, and typically
3618does not fit in one of the other categories.
3619Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3620a list of commands in this category, as well as the list of gdb macros
3621(@pxref{Sequences}).
3622
3623@findex COMMAND_OBSCURE
3624@findex gdb.COMMAND_OBSCURE
3625@item gdb.COMMAND_OBSCURE
3626The command is only used in unusual circumstances, or is not of
3627general interest to users. For example, @code{checkpoint},
3628@code{fork}, and @code{stop} are in this category. Type @kbd{help
3629obscure} at the @value{GDBN} prompt to see a list of commands in this
3630category.
3631
3632@findex COMMAND_MAINTENANCE
3633@findex gdb.COMMAND_MAINTENANCE
3634@item gdb.COMMAND_MAINTENANCE
3635The command is only useful to @value{GDBN} maintainers. The
3636@code{maintenance} and @code{flushregs} commands are in this category.
3637Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3638commands in this category.
3639@end table
3640
3641A new command can use a predefined completion function, either by
3642specifying it via an argument at initialization, or by returning it
3643from the @code{complete} method. These predefined completion
3644constants are all defined in the @code{gdb} module:
3645
b3ce5e5f
DE
3646@vtable @code
3647@vindex COMPLETE_NONE
329baa95
DE
3648@item gdb.COMPLETE_NONE
3649This constant means that no completion should be done.
3650
b3ce5e5f 3651@vindex COMPLETE_FILENAME
329baa95
DE
3652@item gdb.COMPLETE_FILENAME
3653This constant means that filename completion should be performed.
3654
b3ce5e5f 3655@vindex COMPLETE_LOCATION
329baa95
DE
3656@item gdb.COMPLETE_LOCATION
3657This constant means that location completion should be done.
3658@xref{Specify Location}.
3659
b3ce5e5f 3660@vindex COMPLETE_COMMAND
329baa95
DE
3661@item gdb.COMPLETE_COMMAND
3662This constant means that completion should examine @value{GDBN}
3663command names.
3664
b3ce5e5f 3665@vindex COMPLETE_SYMBOL
329baa95
DE
3666@item gdb.COMPLETE_SYMBOL
3667This constant means that completion should be done using symbol names
3668as the source.
3669
b3ce5e5f 3670@vindex COMPLETE_EXPRESSION
329baa95
DE
3671@item gdb.COMPLETE_EXPRESSION
3672This constant means that completion should be done on expressions.
3673Often this means completing on symbol names, but some language
3674parsers also have support for completing on field names.
b3ce5e5f 3675@end vtable
329baa95
DE
3676
3677The following code snippet shows how a trivial CLI command can be
3678implemented in Python:
3679
3680@smallexample
3681class HelloWorld (gdb.Command):
3682 """Greet the whole world."""
3683
3684 def __init__ (self):
3685 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3686
3687 def invoke (self, arg, from_tty):
3688 print "Hello, World!"
3689
3690HelloWorld ()
3691@end smallexample
3692
3693The last line instantiates the class, and is necessary to trigger the
3694registration of the command with @value{GDBN}. Depending on how the
3695Python code is read into @value{GDBN}, you may need to import the
3696@code{gdb} module explicitly.
3697
3698@node Parameters In Python
3699@subsubsection Parameters In Python
3700
3701@cindex parameters in python
3702@cindex python parameters
3703@tindex gdb.Parameter
3704@tindex Parameter
3705You can implement new @value{GDBN} parameters using Python. A new
3706parameter is implemented as an instance of the @code{gdb.Parameter}
3707class.
3708
3709Parameters are exposed to the user via the @code{set} and
3710@code{show} commands. @xref{Help}.
3711
3712There are many parameters that already exist and can be set in
3713@value{GDBN}. Two examples are: @code{set follow fork} and
3714@code{set charset}. Setting these parameters influences certain
3715behavior in @value{GDBN}. Similarly, you can define parameters that
3716can be used to influence behavior in custom Python scripts and commands.
3717
3718@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3719The object initializer for @code{Parameter} registers the new
3720parameter with @value{GDBN}. This initializer is normally invoked
3721from the subclass' own @code{__init__} method.
3722
3723@var{name} is the name of the new parameter. If @var{name} consists
3724of multiple words, then the initial words are looked for as prefix
3725parameters. An example of this can be illustrated with the
3726@code{set print} set of parameters. If @var{name} is
3727@code{print foo}, then @code{print} will be searched as the prefix
3728parameter. In this case the parameter can subsequently be accessed in
3729@value{GDBN} as @code{set print foo}.
3730
3731If @var{name} consists of multiple words, and no prefix parameter group
3732can be found, an exception is raised.
3733
3734@var{command-class} should be one of the @samp{COMMAND_} constants
3735(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3736categorize the new parameter in the help system.
3737
3738@var{parameter-class} should be one of the @samp{PARAM_} constants
3739defined below. This argument tells @value{GDBN} the type of the new
3740parameter; this information is used for input validation and
3741completion.
3742
3743If @var{parameter-class} is @code{PARAM_ENUM}, then
3744@var{enum-sequence} must be a sequence of strings. These strings
3745represent the possible values for the parameter.
3746
3747If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3748of a fourth argument will cause an exception to be thrown.
3749
3750The help text for the new parameter is taken from the Python
3751documentation string for the parameter's class, if there is one. If
3752there is no documentation string, a default value is used.
3753@end defun
3754
3755@defvar Parameter.set_doc
3756If this attribute exists, and is a string, then its value is used as
3757the help text for this parameter's @code{set} command. The value is
3758examined when @code{Parameter.__init__} is invoked; subsequent changes
3759have no effect.
3760@end defvar
3761
3762@defvar Parameter.show_doc
3763If this attribute exists, and is a string, then its value is used as
3764the help text for this parameter's @code{show} command. The value is
3765examined when @code{Parameter.__init__} is invoked; subsequent changes
3766have no effect.
3767@end defvar
3768
3769@defvar Parameter.value
3770The @code{value} attribute holds the underlying value of the
3771parameter. It can be read and assigned to just as any other
3772attribute. @value{GDBN} does validation when assignments are made.
3773@end defvar
3774
984ee559
TT
3775There are two methods that may be implemented in any @code{Parameter}
3776class. These are:
329baa95
DE
3777
3778@defun Parameter.get_set_string (self)
984ee559
TT
3779If this method exists, @value{GDBN} will call it when a
3780@var{parameter}'s value has been changed via the @code{set} API (for
3781example, @kbd{set foo off}). The @code{value} attribute has already
3782been populated with the new value and may be used in output. This
3783method must return a string. If the returned string is not empty,
3784@value{GDBN} will present it to the user.
329baa95
DE
3785@end defun
3786
3787@defun Parameter.get_show_string (self, svalue)
3788@value{GDBN} will call this method when a @var{parameter}'s
3789@code{show} API has been invoked (for example, @kbd{show foo}). The
3790argument @code{svalue} receives the string representation of the
3791current value. This method must return a string.
3792@end defun
3793
3794When a new parameter is defined, its type must be specified. The
3795available types are represented by constants defined in the @code{gdb}
3796module:
3797
3798@table @code
3799@findex PARAM_BOOLEAN
3800@findex gdb.PARAM_BOOLEAN
3801@item gdb.PARAM_BOOLEAN
3802The value is a plain boolean. The Python boolean values, @code{True}
3803and @code{False} are the only valid values.
3804
3805@findex PARAM_AUTO_BOOLEAN
3806@findex gdb.PARAM_AUTO_BOOLEAN
3807@item gdb.PARAM_AUTO_BOOLEAN
3808The value has three possible states: true, false, and @samp{auto}. In
3809Python, true and false are represented using boolean constants, and
3810@samp{auto} is represented using @code{None}.
3811
3812@findex PARAM_UINTEGER
3813@findex gdb.PARAM_UINTEGER
3814@item gdb.PARAM_UINTEGER
3815The value is an unsigned integer. The value of 0 should be
3816interpreted to mean ``unlimited''.
3817
3818@findex PARAM_INTEGER
3819@findex gdb.PARAM_INTEGER
3820@item gdb.PARAM_INTEGER
3821The value is a signed integer. The value of 0 should be interpreted
3822to mean ``unlimited''.
3823
3824@findex PARAM_STRING
3825@findex gdb.PARAM_STRING
3826@item gdb.PARAM_STRING
3827The value is a string. When the user modifies the string, any escape
3828sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3829translated into corresponding characters and encoded into the current
3830host charset.
3831
3832@findex PARAM_STRING_NOESCAPE
3833@findex gdb.PARAM_STRING_NOESCAPE
3834@item gdb.PARAM_STRING_NOESCAPE
3835The value is a string. When the user modifies the string, escapes are
3836passed through untranslated.
3837
3838@findex PARAM_OPTIONAL_FILENAME
3839@findex gdb.PARAM_OPTIONAL_FILENAME
3840@item gdb.PARAM_OPTIONAL_FILENAME
3841The value is a either a filename (a string), or @code{None}.
3842
3843@findex PARAM_FILENAME
3844@findex gdb.PARAM_FILENAME
3845@item gdb.PARAM_FILENAME
3846The value is a filename. This is just like
3847@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3848
3849@findex PARAM_ZINTEGER
3850@findex gdb.PARAM_ZINTEGER
3851@item gdb.PARAM_ZINTEGER
3852The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3853is interpreted as itself.
3854
0489430a
TT
3855@findex PARAM_ZUINTEGER
3856@findex gdb.PARAM_ZUINTEGER
3857@item gdb.PARAM_ZUINTEGER
3858The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3859except 0 is interpreted as itself, and the value cannot be negative.
3860
3861@findex PARAM_ZUINTEGER_UNLIMITED
3862@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3863@item gdb.PARAM_ZUINTEGER_UNLIMITED
3864The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3865except the special value -1 should be interpreted to mean
3866``unlimited''. Other negative values are not allowed.
3867
329baa95
DE
3868@findex PARAM_ENUM
3869@findex gdb.PARAM_ENUM
3870@item gdb.PARAM_ENUM
3871The value is a string, which must be one of a collection string
3872constants provided when the parameter is created.
3873@end table
3874
3875@node Functions In Python
3876@subsubsection Writing new convenience functions
3877
3878@cindex writing convenience functions
3879@cindex convenience functions in python
3880@cindex python convenience functions
3881@tindex gdb.Function
3882@tindex Function
3883You can implement new convenience functions (@pxref{Convenience Vars})
3884in Python. A convenience function is an instance of a subclass of the
3885class @code{gdb.Function}.
3886
3887@defun Function.__init__ (name)
3888The initializer for @code{Function} registers the new function with
3889@value{GDBN}. The argument @var{name} is the name of the function,
3890a string. The function will be visible to the user as a convenience
3891variable of type @code{internal function}, whose name is the same as
3892the given @var{name}.
3893
3894The documentation for the new function is taken from the documentation
3895string for the new class.
3896@end defun
3897
3898@defun Function.invoke (@var{*args})
3899When a convenience function is evaluated, its arguments are converted
3900to instances of @code{gdb.Value}, and then the function's
3901@code{invoke} method is called. Note that @value{GDBN} does not
3902predetermine the arity of convenience functions. Instead, all
3903available arguments are passed to @code{invoke}, following the
3904standard Python calling convention. In particular, a convenience
3905function can have default values for parameters without ill effect.
3906
3907The return value of this method is used as its value in the enclosing
3908expression. If an ordinary Python value is returned, it is converted
3909to a @code{gdb.Value} following the usual rules.
3910@end defun
3911
3912The following code snippet shows how a trivial convenience function can
3913be implemented in Python:
3914
3915@smallexample
3916class Greet (gdb.Function):
3917 """Return string to greet someone.
3918Takes a name as argument."""
3919
3920 def __init__ (self):
3921 super (Greet, self).__init__ ("greet")
3922
3923 def invoke (self, name):
3924 return "Hello, %s!" % name.string ()
3925
3926Greet ()
3927@end smallexample
3928
3929The last line instantiates the class, and is necessary to trigger the
3930registration of the function with @value{GDBN}. Depending on how the
3931Python code is read into @value{GDBN}, you may need to import the
3932@code{gdb} module explicitly.
3933
3934Now you can use the function in an expression:
3935
3936@smallexample
3937(gdb) print $greet("Bob")
3938$1 = "Hello, Bob!"
3939@end smallexample
3940
3941@node Progspaces In Python
3942@subsubsection Program Spaces In Python
3943
3944@cindex progspaces in python
3945@tindex gdb.Progspace
3946@tindex Progspace
3947A program space, or @dfn{progspace}, represents a symbolic view
3948of an address space.
3949It consists of all of the objfiles of the program.
3950@xref{Objfiles In Python}.
3951@xref{Inferiors and Programs, program spaces}, for more details
3952about program spaces.
3953
3954The following progspace-related functions are available in the
3955@code{gdb} module:
3956
3957@findex gdb.current_progspace
3958@defun gdb.current_progspace ()
3959This function returns the program space of the currently selected inferior.
3960@xref{Inferiors and Programs}.
3961@end defun
3962
3963@findex gdb.progspaces
3964@defun gdb.progspaces ()
3965Return a sequence of all the progspaces currently known to @value{GDBN}.
3966@end defun
3967
3968Each progspace is represented by an instance of the @code{gdb.Progspace}
3969class.
3970
3971@defvar Progspace.filename
3972The file name of the progspace as a string.
3973@end defvar
3974
3975@defvar Progspace.pretty_printers
3976The @code{pretty_printers} attribute is a list of functions. It is
3977used to look up pretty-printers. A @code{Value} is passed to each
3978function in order; if the function returns @code{None}, then the
3979search continues. Otherwise, the return value should be an object
3980which is used to format the value. @xref{Pretty Printing API}, for more
3981information.
3982@end defvar
3983
3984@defvar Progspace.type_printers
3985The @code{type_printers} attribute is a list of type printer objects.
3986@xref{Type Printing API}, for more information.
3987@end defvar
3988
3989@defvar Progspace.frame_filters
3990The @code{frame_filters} attribute is a dictionary of frame filter
3991objects. @xref{Frame Filter API}, for more information.
3992@end defvar
3993
02be9a71
DE
3994One may add arbitrary attributes to @code{gdb.Progspace} objects
3995in the usual Python way.
3996This is useful if, for example, one needs to do some extra record keeping
3997associated with the program space.
3998
3999In this contrived example, we want to perform some processing when
4000an objfile with a certain symbol is loaded, but we only want to do
4001this once because it is expensive. To achieve this we record the results
4002with the program space because we can't predict when the desired objfile
4003will be loaded.
4004
4005@smallexample
4006(gdb) python
4007def clear_objfiles_handler(event):
4008 event.progspace.expensive_computation = None
4009def expensive(symbol):
4010 """A mock routine to perform an "expensive" computation on symbol."""
4011 print "Computing the answer to the ultimate question ..."
4012 return 42
4013def new_objfile_handler(event):
4014 objfile = event.new_objfile
4015 progspace = objfile.progspace
4016 if not hasattr(progspace, 'expensive_computation') or \
4017 progspace.expensive_computation is None:
4018 # We use 'main' for the symbol to keep the example simple.
4019 # Note: There's no current way to constrain the lookup
4020 # to one objfile.
4021 symbol = gdb.lookup_global_symbol('main')
4022 if symbol is not None:
4023 progspace.expensive_computation = expensive(symbol)
4024gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4025gdb.events.new_objfile.connect(new_objfile_handler)
4026end
4027(gdb) file /tmp/hello
4028Reading symbols from /tmp/hello...done.
4029Computing the answer to the ultimate question ...
4030(gdb) python print gdb.current_progspace().expensive_computation
403142
4032(gdb) run
4033Starting program: /tmp/hello
4034Hello.
4035[Inferior 1 (process 4242) exited normally]
4036@end smallexample
4037
329baa95
DE
4038@node Objfiles In Python
4039@subsubsection Objfiles In Python
4040
4041@cindex objfiles in python
4042@tindex gdb.Objfile
4043@tindex Objfile
4044@value{GDBN} loads symbols for an inferior from various
4045symbol-containing files (@pxref{Files}). These include the primary
4046executable file, any shared libraries used by the inferior, and any
4047separate debug info files (@pxref{Separate Debug Files}).
4048@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4049
4050The following objfile-related functions are available in the
4051@code{gdb} module:
4052
4053@findex gdb.current_objfile
4054@defun gdb.current_objfile ()
4055When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4056sets the ``current objfile'' to the corresponding objfile. This
4057function returns the current objfile. If there is no current objfile,
4058this function returns @code{None}.
4059@end defun
4060
4061@findex gdb.objfiles
4062@defun gdb.objfiles ()
4063Return a sequence of all the objfiles current known to @value{GDBN}.
4064@xref{Objfiles In Python}.
4065@end defun
4066
6dddd6a5
DE
4067@findex gdb.lookup_objfile
4068@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4069Look up @var{name}, a file name or build ID, in the list of objfiles
4070for the current program space (@pxref{Progspaces In Python}).
4071If the objfile is not found throw the Python @code{ValueError} exception.
4072
4073If @var{name} is a relative file name, then it will match any
4074source file name with the same trailing components. For example, if
4075@var{name} is @samp{gcc/expr.c}, then it will match source file
4076name of @file{/build/trunk/gcc/expr.c}, but not
4077@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4078
4079If @var{by_build_id} is provided and is @code{True} then @var{name}
4080is the build ID of the objfile. Otherwise, @var{name} is a file name.
4081This is supported only on some operating systems, notably those which use
4082the ELF format for binary files and the @sc{gnu} Binutils. For more details
4083about this feature, see the description of the @option{--build-id}
f5a476a7 4084command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4085The GNU Linker}.
4086@end defun
4087
329baa95
DE
4088Each objfile is represented by an instance of the @code{gdb.Objfile}
4089class.
4090
4091@defvar Objfile.filename
1b549396
DE
4092The file name of the objfile as a string, with symbolic links resolved.
4093
4094The value is @code{None} if the objfile is no longer valid.
4095See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4096@end defvar
4097
3a8b707a
DE
4098@defvar Objfile.username
4099The file name of the objfile as specified by the user as a string.
4100
4101The value is @code{None} if the objfile is no longer valid.
4102See the @code{gdb.Objfile.is_valid} method, described below.
4103@end defvar
4104
a0be3e44
DE
4105@defvar Objfile.owner
4106For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4107object that debug info is being provided for.
4108Otherwise this is @code{None}.
4109Separate debug info objfiles are added with the
4110@code{gdb.Objfile.add_separate_debug_file} method, described below.
4111@end defvar
4112
7c50a931
DE
4113@defvar Objfile.build_id
4114The build ID of the objfile as a string.
4115If the objfile does not have a build ID then the value is @code{None}.
4116
4117This is supported only on some operating systems, notably those which use
4118the ELF format for binary files and the @sc{gnu} Binutils. For more details
4119about this feature, see the description of the @option{--build-id}
f5a476a7 4120command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4121The GNU Linker}.
4122@end defvar
4123
d096d8c1
DE
4124@defvar Objfile.progspace
4125The containing program space of the objfile as a @code{gdb.Progspace}
4126object. @xref{Progspaces In Python}.
4127@end defvar
4128
329baa95
DE
4129@defvar Objfile.pretty_printers
4130The @code{pretty_printers} attribute is a list of functions. It is
4131used to look up pretty-printers. A @code{Value} is passed to each
4132function in order; if the function returns @code{None}, then the
4133search continues. Otherwise, the return value should be an object
4134which is used to format the value. @xref{Pretty Printing API}, for more
4135information.
4136@end defvar
4137
4138@defvar Objfile.type_printers
4139The @code{type_printers} attribute is a list of type printer objects.
4140@xref{Type Printing API}, for more information.
4141@end defvar
4142
4143@defvar Objfile.frame_filters
4144The @code{frame_filters} attribute is a dictionary of frame filter
4145objects. @xref{Frame Filter API}, for more information.
4146@end defvar
4147
02be9a71
DE
4148One may add arbitrary attributes to @code{gdb.Objfile} objects
4149in the usual Python way.
4150This is useful if, for example, one needs to do some extra record keeping
4151associated with the objfile.
4152
4153In this contrived example we record the time when @value{GDBN}
4154loaded the objfile.
4155
4156@smallexample
4157(gdb) python
4158import datetime
4159def new_objfile_handler(event):
4160 # Set the time_loaded attribute of the new objfile.
4161 event.new_objfile.time_loaded = datetime.datetime.today()
4162gdb.events.new_objfile.connect(new_objfile_handler)
4163end
4164(gdb) file ./hello
4165Reading symbols from ./hello...done.
4166(gdb) python print gdb.objfiles()[0].time_loaded
41672014-10-09 11:41:36.770345
4168@end smallexample
4169
329baa95
DE
4170A @code{gdb.Objfile} object has the following methods:
4171
4172@defun Objfile.is_valid ()
4173Returns @code{True} if the @code{gdb.Objfile} object is valid,
4174@code{False} if not. A @code{gdb.Objfile} object can become invalid
4175if the object file it refers to is not loaded in @value{GDBN} any
4176longer. All other @code{gdb.Objfile} methods will throw an exception
4177if it is invalid at the time the method is called.
4178@end defun
4179
86e4ed39
DE
4180@defun Objfile.add_separate_debug_file (file)
4181Add @var{file} to the list of files that @value{GDBN} will search for
4182debug information for the objfile.
4183This is useful when the debug info has been removed from the program
4184and stored in a separate file. @value{GDBN} has built-in support for
4185finding separate debug info files (@pxref{Separate Debug Files}), but if
4186the file doesn't live in one of the standard places that @value{GDBN}
4187searches then this function can be used to add a debug info file
4188from a different place.
4189@end defun
4190
329baa95
DE
4191@node Frames In Python
4192@subsubsection Accessing inferior stack frames from Python.
4193
4194@cindex frames in python
4195When the debugged program stops, @value{GDBN} is able to analyze its call
4196stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4197represents a frame in the stack. A @code{gdb.Frame} object is only valid
4198while its corresponding frame exists in the inferior's stack. If you try
4199to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4200exception (@pxref{Exception Handling}).
4201
4202Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4203operator, like:
4204
4205@smallexample
4206(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4207True
4208@end smallexample
4209
4210The following frame-related functions are available in the @code{gdb} module:
4211
4212@findex gdb.selected_frame
4213@defun gdb.selected_frame ()
4214Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4215@end defun
4216
4217@findex gdb.newest_frame
4218@defun gdb.newest_frame ()
4219Return the newest frame object for the selected thread.
4220@end defun
4221
4222@defun gdb.frame_stop_reason_string (reason)
4223Return a string explaining the reason why @value{GDBN} stopped unwinding
4224frames, as expressed by the given @var{reason} code (an integer, see the
4225@code{unwind_stop_reason} method further down in this section).
4226@end defun
4227
e0f3fd7c
TT
4228@findex gdb.invalidate_cached_frames
4229@defun gdb.invalidate_cached_frames
4230@value{GDBN} internally keeps a cache of the frames that have been
4231unwound. This function invalidates this cache.
4232
4233This function should not generally be called by ordinary Python code.
4234It is documented for the sake of completeness.
4235@end defun
4236
329baa95
DE
4237A @code{gdb.Frame} object has the following methods:
4238
4239@defun Frame.is_valid ()
4240Returns true if the @code{gdb.Frame} object is valid, false if not.
4241A frame object can become invalid if the frame it refers to doesn't
4242exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4243an exception if it is invalid at the time the method is called.
4244@end defun
4245
4246@defun Frame.name ()
4247Returns the function name of the frame, or @code{None} if it can't be
4248obtained.
4249@end defun
4250
4251@defun Frame.architecture ()
4252Returns the @code{gdb.Architecture} object corresponding to the frame's
4253architecture. @xref{Architectures In Python}.
4254@end defun
4255
4256@defun Frame.type ()
4257Returns the type of the frame. The value can be one of:
4258@table @code
4259@item gdb.NORMAL_FRAME
4260An ordinary stack frame.
4261
4262@item gdb.DUMMY_FRAME
4263A fake stack frame that was created by @value{GDBN} when performing an
4264inferior function call.
4265
4266@item gdb.INLINE_FRAME
4267A frame representing an inlined function. The function was inlined
4268into a @code{gdb.NORMAL_FRAME} that is older than this one.
4269
4270@item gdb.TAILCALL_FRAME
4271A frame representing a tail call. @xref{Tail Call Frames}.
4272
4273@item gdb.SIGTRAMP_FRAME
4274A signal trampoline frame. This is the frame created by the OS when
4275it calls into a signal handler.
4276
4277@item gdb.ARCH_FRAME
4278A fake stack frame representing a cross-architecture call.
4279
4280@item gdb.SENTINEL_FRAME
4281This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4282newest frame.
4283@end table
4284@end defun
4285
4286@defun Frame.unwind_stop_reason ()
4287Return an integer representing the reason why it's not possible to find
4288more frames toward the outermost frame. Use
4289@code{gdb.frame_stop_reason_string} to convert the value returned by this
4290function to a string. The value can be one of:
4291
4292@table @code
4293@item gdb.FRAME_UNWIND_NO_REASON
4294No particular reason (older frames should be available).
4295
4296@item gdb.FRAME_UNWIND_NULL_ID
4297The previous frame's analyzer returns an invalid result. This is no
4298longer used by @value{GDBN}, and is kept only for backward
4299compatibility.
4300
4301@item gdb.FRAME_UNWIND_OUTERMOST
4302This frame is the outermost.
4303
4304@item gdb.FRAME_UNWIND_UNAVAILABLE
4305Cannot unwind further, because that would require knowing the
4306values of registers or memory that have not been collected.
4307
4308@item gdb.FRAME_UNWIND_INNER_ID
4309This frame ID looks like it ought to belong to a NEXT frame,
4310but we got it for a PREV frame. Normally, this is a sign of
4311unwinder failure. It could also indicate stack corruption.
4312
4313@item gdb.FRAME_UNWIND_SAME_ID
4314This frame has the same ID as the previous one. That means
4315that unwinding further would almost certainly give us another
4316frame with exactly the same ID, so break the chain. Normally,
4317this is a sign of unwinder failure. It could also indicate
4318stack corruption.
4319
4320@item gdb.FRAME_UNWIND_NO_SAVED_PC
4321The frame unwinder did not find any saved PC, but we needed
4322one to unwind further.
4323
53e8a631
AB
4324@item gdb.FRAME_UNWIND_MEMORY_ERROR
4325The frame unwinder caused an error while trying to access memory.
4326
329baa95
DE
4327@item gdb.FRAME_UNWIND_FIRST_ERROR
4328Any stop reason greater or equal to this value indicates some kind
4329of error. This special value facilitates writing code that tests
4330for errors in unwinding in a way that will work correctly even if
4331the list of the other values is modified in future @value{GDBN}
4332versions. Using it, you could write:
4333@smallexample
4334reason = gdb.selected_frame().unwind_stop_reason ()
4335reason_str = gdb.frame_stop_reason_string (reason)
4336if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4337 print "An error occured: %s" % reason_str
4338@end smallexample
4339@end table
4340
4341@end defun
4342
4343@defun Frame.pc ()
4344Returns the frame's resume address.
4345@end defun
4346
4347@defun Frame.block ()
60c0454d
TT
4348Return the frame's code block. @xref{Blocks In Python}. If the frame
4349does not have a block -- for example, if there is no debugging
4350information for the code in question -- then this will throw an
4351exception.
329baa95
DE
4352@end defun
4353
4354@defun Frame.function ()
4355Return the symbol for the function corresponding to this frame.
4356@xref{Symbols In Python}.
4357@end defun
4358
4359@defun Frame.older ()
4360Return the frame that called this frame.
4361@end defun
4362
4363@defun Frame.newer ()
4364Return the frame called by this frame.
4365@end defun
4366
4367@defun Frame.find_sal ()
4368Return the frame's symtab and line object.
4369@xref{Symbol Tables In Python}.
4370@end defun
4371
5f3b99cf
SS
4372@defun Frame.read_register (register)
4373Return the value of @var{register} in this frame. The @var{register}
4374argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4375Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4376does not exist.
4377@end defun
4378
329baa95
DE
4379@defun Frame.read_var (variable @r{[}, block@r{]})
4380Return the value of @var{variable} in this frame. If the optional
4381argument @var{block} is provided, search for the variable from that
4382block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4383determined by the frame's current program counter). The @var{variable}
4384argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4385@code{gdb.Block} object.
4386@end defun
4387
4388@defun Frame.select ()
4389Set this frame to be the selected frame. @xref{Stack, ,Examining the
4390Stack}.
4391@end defun
4392
4393@node Blocks In Python
4394@subsubsection Accessing blocks from Python.
4395
4396@cindex blocks in python
4397@tindex gdb.Block
4398
4399In @value{GDBN}, symbols are stored in blocks. A block corresponds
4400roughly to a scope in the source code. Blocks are organized
4401hierarchically, and are represented individually in Python as a
4402@code{gdb.Block}. Blocks rely on debugging information being
4403available.
4404
4405A frame has a block. Please see @ref{Frames In Python}, for a more
4406in-depth discussion of frames.
4407
4408The outermost block is known as the @dfn{global block}. The global
4409block typically holds public global variables and functions.
4410
4411The block nested just inside the global block is the @dfn{static
4412block}. The static block typically holds file-scoped variables and
4413functions.
4414
4415@value{GDBN} provides a method to get a block's superblock, but there
4416is currently no way to examine the sub-blocks of a block, or to
4417iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4418Python}).
4419
4420Here is a short example that should help explain blocks:
4421
4422@smallexample
4423/* This is in the global block. */
4424int global;
4425
4426/* This is in the static block. */
4427static int file_scope;
4428
4429/* 'function' is in the global block, and 'argument' is
4430 in a block nested inside of 'function'. */
4431int function (int argument)
4432@{
4433 /* 'local' is in a block inside 'function'. It may or may
4434 not be in the same block as 'argument'. */
4435 int local;
4436
4437 @{
4438 /* 'inner' is in a block whose superblock is the one holding
4439 'local'. */
4440 int inner;
4441
4442 /* If this call is expanded by the compiler, you may see
4443 a nested block here whose function is 'inline_function'
4444 and whose superblock is the one holding 'inner'. */
4445 inline_function ();
4446 @}
4447@}
4448@end smallexample
4449
4450A @code{gdb.Block} is iterable. The iterator returns the symbols
4451(@pxref{Symbols In Python}) local to the block. Python programs
4452should not assume that a specific block object will always contain a
4453given symbol, since changes in @value{GDBN} features and
4454infrastructure may cause symbols move across blocks in a symbol
4455table.
4456
4457The following block-related functions are available in the @code{gdb}
4458module:
4459
4460@findex gdb.block_for_pc
4461@defun gdb.block_for_pc (pc)
4462Return the innermost @code{gdb.Block} containing the given @var{pc}
4463value. If the block cannot be found for the @var{pc} value specified,
4464the function will return @code{None}.
4465@end defun
4466
4467A @code{gdb.Block} object has the following methods:
4468
4469@defun Block.is_valid ()
4470Returns @code{True} if the @code{gdb.Block} object is valid,
4471@code{False} if not. A block object can become invalid if the block it
4472refers to doesn't exist anymore in the inferior. All other
4473@code{gdb.Block} methods will throw an exception if it is invalid at
4474the time the method is called. The block's validity is also checked
4475during iteration over symbols of the block.
4476@end defun
4477
4478A @code{gdb.Block} object has the following attributes:
4479
4480@defvar Block.start
4481The start address of the block. This attribute is not writable.
4482@end defvar
4483
4484@defvar Block.end
22eb9e92
TT
4485One past the last address that appears in the block. This attribute
4486is not writable.
329baa95
DE
4487@end defvar
4488
4489@defvar Block.function
4490The name of the block represented as a @code{gdb.Symbol}. If the
4491block is not named, then this attribute holds @code{None}. This
4492attribute is not writable.
4493
4494For ordinary function blocks, the superblock is the static block.
4495However, you should note that it is possible for a function block to
4496have a superblock that is not the static block -- for instance this
4497happens for an inlined function.
4498@end defvar
4499
4500@defvar Block.superblock
4501The block containing this block. If this parent block does not exist,
4502this attribute holds @code{None}. This attribute is not writable.
4503@end defvar
4504
4505@defvar Block.global_block
4506The global block associated with this block. This attribute is not
4507writable.
4508@end defvar
4509
4510@defvar Block.static_block
4511The static block associated with this block. This attribute is not
4512writable.
4513@end defvar
4514
4515@defvar Block.is_global
4516@code{True} if the @code{gdb.Block} object is a global block,
4517@code{False} if not. This attribute is not
4518writable.
4519@end defvar
4520
4521@defvar Block.is_static
4522@code{True} if the @code{gdb.Block} object is a static block,
4523@code{False} if not. This attribute is not writable.
4524@end defvar
4525
4526@node Symbols In Python
4527@subsubsection Python representation of Symbols.
4528
4529@cindex symbols in python
4530@tindex gdb.Symbol
4531
4532@value{GDBN} represents every variable, function and type as an
4533entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4534Similarly, Python represents these symbols in @value{GDBN} with the
4535@code{gdb.Symbol} object.
4536
4537The following symbol-related functions are available in the @code{gdb}
4538module:
4539
4540@findex gdb.lookup_symbol
4541@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4542This function searches for a symbol by name. The search scope can be
4543restricted to the parameters defined in the optional domain and block
4544arguments.
4545
4546@var{name} is the name of the symbol. It must be a string. The
4547optional @var{block} argument restricts the search to symbols visible
4548in that @var{block}. The @var{block} argument must be a
4549@code{gdb.Block} object. If omitted, the block for the current frame
4550is used. The optional @var{domain} argument restricts
4551the search to the domain type. The @var{domain} argument must be a
4552domain constant defined in the @code{gdb} module and described later
4553in this chapter.
4554
4555The result is a tuple of two elements.
4556The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4557is not found.
4558If the symbol is found, the second element is @code{True} if the symbol
4559is a field of a method's object (e.g., @code{this} in C@t{++}),
4560otherwise it is @code{False}.
4561If the symbol is not found, the second element is @code{False}.
4562@end defun
4563
4564@findex gdb.lookup_global_symbol
4565@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4566This function searches for a global symbol by name.
4567The search scope can be restricted to by the domain argument.
4568
4569@var{name} is the name of the symbol. It must be a string.
4570The optional @var{domain} argument restricts the search to the domain type.
4571The @var{domain} argument must be a domain constant defined in the @code{gdb}
4572module and described later in this chapter.
4573
4574The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4575is not found.
4576@end defun
4577
4578A @code{gdb.Symbol} object has the following attributes:
4579
4580@defvar Symbol.type
4581The type of the symbol or @code{None} if no type is recorded.
4582This attribute is represented as a @code{gdb.Type} object.
4583@xref{Types In Python}. This attribute is not writable.
4584@end defvar
4585
4586@defvar Symbol.symtab
4587The symbol table in which the symbol appears. This attribute is
4588represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4589Python}. This attribute is not writable.
4590@end defvar
4591
4592@defvar Symbol.line
4593The line number in the source code at which the symbol was defined.
4594This is an integer.
4595@end defvar
4596
4597@defvar Symbol.name
4598The name of the symbol as a string. This attribute is not writable.
4599@end defvar
4600
4601@defvar Symbol.linkage_name
4602The name of the symbol, as used by the linker (i.e., may be mangled).
4603This attribute is not writable.
4604@end defvar
4605
4606@defvar Symbol.print_name
4607The name of the symbol in a form suitable for output. This is either
4608@code{name} or @code{linkage_name}, depending on whether the user
4609asked @value{GDBN} to display demangled or mangled names.
4610@end defvar
4611
4612@defvar Symbol.addr_class
4613The address class of the symbol. This classifies how to find the value
4614of a symbol. Each address class is a constant defined in the
4615@code{gdb} module and described later in this chapter.
4616@end defvar
4617
4618@defvar Symbol.needs_frame
4619This is @code{True} if evaluating this symbol's value requires a frame
4620(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4621local variables will require a frame, but other symbols will not.
4622@end defvar
4623
4624@defvar Symbol.is_argument
4625@code{True} if the symbol is an argument of a function.
4626@end defvar
4627
4628@defvar Symbol.is_constant
4629@code{True} if the symbol is a constant.
4630@end defvar
4631
4632@defvar Symbol.is_function
4633@code{True} if the symbol is a function or a method.
4634@end defvar
4635
4636@defvar Symbol.is_variable
4637@code{True} if the symbol is a variable.
4638@end defvar
4639
4640A @code{gdb.Symbol} object has the following methods:
4641
4642@defun Symbol.is_valid ()
4643Returns @code{True} if the @code{gdb.Symbol} object is valid,
4644@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4645the symbol it refers to does not exist in @value{GDBN} any longer.
4646All other @code{gdb.Symbol} methods will throw an exception if it is
4647invalid at the time the method is called.
4648@end defun
4649
4650@defun Symbol.value (@r{[}frame@r{]})
4651Compute the value of the symbol, as a @code{gdb.Value}. For
4652functions, this computes the address of the function, cast to the
4653appropriate type. If the symbol requires a frame in order to compute
4654its value, then @var{frame} must be given. If @var{frame} is not
4655given, or if @var{frame} is invalid, then this method will throw an
4656exception.
4657@end defun
4658
4659The available domain categories in @code{gdb.Symbol} are represented
4660as constants in the @code{gdb} module:
4661
b3ce5e5f
DE
4662@vtable @code
4663@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4664@item gdb.SYMBOL_UNDEF_DOMAIN
4665This is used when a domain has not been discovered or none of the
4666following domains apply. This usually indicates an error either
4667in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4668
4669@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4670@item gdb.SYMBOL_VAR_DOMAIN
4671This domain contains variables, function names, typedef names and enum
4672type values.
b3ce5e5f
DE
4673
4674@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4675@item gdb.SYMBOL_STRUCT_DOMAIN
4676This domain holds struct, union and enum type names.
b3ce5e5f
DE
4677
4678@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4679@item gdb.SYMBOL_LABEL_DOMAIN
4680This domain contains names of labels (for gotos).
b3ce5e5f
DE
4681
4682@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4683@item gdb.SYMBOL_VARIABLES_DOMAIN
4684This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4685contains everything minus functions and types.
b3ce5e5f
DE
4686
4687@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4688@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4689This domain contains all functions.
b3ce5e5f
DE
4690
4691@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4692@item gdb.SYMBOL_TYPES_DOMAIN
4693This domain contains all types.
b3ce5e5f 4694@end vtable
329baa95
DE
4695
4696The available address class categories in @code{gdb.Symbol} are represented
4697as constants in the @code{gdb} module:
4698
b3ce5e5f
DE
4699@vtable @code
4700@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4701@item gdb.SYMBOL_LOC_UNDEF
4702If this is returned by address class, it indicates an error either in
4703the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4704
4705@vindex SYMBOL_LOC_CONST
329baa95
DE
4706@item gdb.SYMBOL_LOC_CONST
4707Value is constant int.
b3ce5e5f
DE
4708
4709@vindex SYMBOL_LOC_STATIC
329baa95
DE
4710@item gdb.SYMBOL_LOC_STATIC
4711Value is at a fixed address.
b3ce5e5f
DE
4712
4713@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4714@item gdb.SYMBOL_LOC_REGISTER
4715Value is in a register.
b3ce5e5f
DE
4716
4717@vindex SYMBOL_LOC_ARG
329baa95
DE
4718@item gdb.SYMBOL_LOC_ARG
4719Value is an argument. This value is at the offset stored within the
4720symbol inside the frame's argument list.
b3ce5e5f
DE
4721
4722@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4723@item gdb.SYMBOL_LOC_REF_ARG
4724Value address is stored in the frame's argument list. Just like
4725@code{LOC_ARG} except that the value's address is stored at the
4726offset, not the value itself.
b3ce5e5f
DE
4727
4728@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4729@item gdb.SYMBOL_LOC_REGPARM_ADDR
4730Value is a specified register. Just like @code{LOC_REGISTER} except
4731the register holds the address of the argument instead of the argument
4732itself.
b3ce5e5f
DE
4733
4734@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4735@item gdb.SYMBOL_LOC_LOCAL
4736Value is a local variable.
b3ce5e5f
DE
4737
4738@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4739@item gdb.SYMBOL_LOC_TYPEDEF
4740Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4741have this class.
b3ce5e5f
DE
4742
4743@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4744@item gdb.SYMBOL_LOC_BLOCK
4745Value is a block.
b3ce5e5f
DE
4746
4747@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4748@item gdb.SYMBOL_LOC_CONST_BYTES
4749Value is a byte-sequence.
b3ce5e5f
DE
4750
4751@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4752@item gdb.SYMBOL_LOC_UNRESOLVED
4753Value is at a fixed address, but the address of the variable has to be
4754determined from the minimal symbol table whenever the variable is
4755referenced.
b3ce5e5f
DE
4756
4757@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4758@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4759The value does not actually exist in the program.
b3ce5e5f
DE
4760
4761@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4762@item gdb.SYMBOL_LOC_COMPUTED
4763The value's address is a computed location.
b3ce5e5f 4764@end vtable
329baa95
DE
4765
4766@node Symbol Tables In Python
4767@subsubsection Symbol table representation in Python.
4768
4769@cindex symbol tables in python
4770@tindex gdb.Symtab
4771@tindex gdb.Symtab_and_line
4772
4773Access to symbol table data maintained by @value{GDBN} on the inferior
4774is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4775@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4776from the @code{find_sal} method in @code{gdb.Frame} object.
4777@xref{Frames In Python}.
4778
4779For more information on @value{GDBN}'s symbol table management, see
4780@ref{Symbols, ,Examining the Symbol Table}, for more information.
4781
4782A @code{gdb.Symtab_and_line} object has the following attributes:
4783
4784@defvar Symtab_and_line.symtab
4785The symbol table object (@code{gdb.Symtab}) for this frame.
4786This attribute is not writable.
4787@end defvar
4788
4789@defvar Symtab_and_line.pc
4790Indicates the start of the address range occupied by code for the
4791current source line. This attribute is not writable.
4792@end defvar
4793
4794@defvar Symtab_and_line.last
4795Indicates the end of the address range occupied by code for the current
4796source line. This attribute is not writable.
4797@end defvar
4798
4799@defvar Symtab_and_line.line
4800Indicates the current line number for this object. This
4801attribute is not writable.
4802@end defvar
4803
4804A @code{gdb.Symtab_and_line} object has the following methods:
4805
4806@defun Symtab_and_line.is_valid ()
4807Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4808@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4809invalid if the Symbol table and line object it refers to does not
4810exist in @value{GDBN} any longer. All other
4811@code{gdb.Symtab_and_line} methods will throw an exception if it is
4812invalid at the time the method is called.
4813@end defun
4814
4815A @code{gdb.Symtab} object has the following attributes:
4816
4817@defvar Symtab.filename
4818The symbol table's source filename. This attribute is not writable.
4819@end defvar
4820
4821@defvar Symtab.objfile
4822The symbol table's backing object file. @xref{Objfiles In Python}.
4823This attribute is not writable.
4824@end defvar
4825
2b4fd423
DE
4826@defvar Symtab.producer
4827The name and possibly version number of the program that
4828compiled the code in the symbol table.
4829The contents of this string is up to the compiler.
4830If no producer information is available then @code{None} is returned.
4831This attribute is not writable.
4832@end defvar
4833
329baa95
DE
4834A @code{gdb.Symtab} object has the following methods:
4835
4836@defun Symtab.is_valid ()
4837Returns @code{True} if the @code{gdb.Symtab} object is valid,
4838@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4839the symbol table it refers to does not exist in @value{GDBN} any
4840longer. All other @code{gdb.Symtab} methods will throw an exception
4841if it is invalid at the time the method is called.
4842@end defun
4843
4844@defun Symtab.fullname ()
4845Return the symbol table's source absolute file name.
4846@end defun
4847
4848@defun Symtab.global_block ()
4849Return the global block of the underlying symbol table.
4850@xref{Blocks In Python}.
4851@end defun
4852
4853@defun Symtab.static_block ()
4854Return the static block of the underlying symbol table.
4855@xref{Blocks In Python}.
4856@end defun
4857
4858@defun Symtab.linetable ()
4859Return the line table associated with the symbol table.
4860@xref{Line Tables In Python}.
4861@end defun
4862
4863@node Line Tables In Python
4864@subsubsection Manipulating line tables using Python
4865
4866@cindex line tables in python
4867@tindex gdb.LineTable
4868
4869Python code can request and inspect line table information from a
4870symbol table that is loaded in @value{GDBN}. A line table is a
4871mapping of source lines to their executable locations in memory. To
4872acquire the line table information for a particular symbol table, use
4873the @code{linetable} function (@pxref{Symbol Tables In Python}).
4874
4875A @code{gdb.LineTable} is iterable. The iterator returns
4876@code{LineTableEntry} objects that correspond to the source line and
4877address for each line table entry. @code{LineTableEntry} objects have
4878the following attributes:
4879
4880@defvar LineTableEntry.line
4881The source line number for this line table entry. This number
4882corresponds to the actual line of source. This attribute is not
4883writable.
4884@end defvar
4885
4886@defvar LineTableEntry.pc
4887The address that is associated with the line table entry where the
4888executable code for that source line resides in memory. This
4889attribute is not writable.
4890@end defvar
4891
4892As there can be multiple addresses for a single source line, you may
4893receive multiple @code{LineTableEntry} objects with matching
4894@code{line} attributes, but with different @code{pc} attributes. The
4895iterator is sorted in ascending @code{pc} order. Here is a small
4896example illustrating iterating over a line table.
4897
4898@smallexample
4899symtab = gdb.selected_frame().find_sal().symtab
4900linetable = symtab.linetable()
4901for line in linetable:
4902 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4903@end smallexample
4904
4905This will have the following output:
4906
4907@smallexample
4908Line: 33 Address: 0x4005c8L
4909Line: 37 Address: 0x4005caL
4910Line: 39 Address: 0x4005d2L
4911Line: 40 Address: 0x4005f8L
4912Line: 42 Address: 0x4005ffL
4913Line: 44 Address: 0x400608L
4914Line: 42 Address: 0x40060cL
4915Line: 45 Address: 0x400615L
4916@end smallexample
4917
4918In addition to being able to iterate over a @code{LineTable}, it also
4919has the following direct access methods:
4920
4921@defun LineTable.line (line)
4922Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4923entries in the line table for the given @var{line}, which specifies
4924the source code line. If there are no entries for that source code
329baa95
DE
4925@var{line}, the Python @code{None} is returned.
4926@end defun
4927
4928@defun LineTable.has_line (line)
4929Return a Python @code{Boolean} indicating whether there is an entry in
4930the line table for this source line. Return @code{True} if an entry
4931is found, or @code{False} if not.
4932@end defun
4933
4934@defun LineTable.source_lines ()
4935Return a Python @code{List} of the source line numbers in the symbol
4936table. Only lines with executable code locations are returned. The
4937contents of the @code{List} will just be the source line entries
4938represented as Python @code{Long} values.
4939@end defun
4940
4941@node Breakpoints In Python
4942@subsubsection Manipulating breakpoints using Python
4943
4944@cindex breakpoints in python
4945@tindex gdb.Breakpoint
4946
4947Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4948class.
4949
0b982d68
SM
4950A breakpoint can be created using one of the two forms of the
4951@code{gdb.Breakpoint} constructor. The first one accepts a string
4952like one would pass to the @code{break}
4953(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4954(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4955create both breakpoints and watchpoints. The second accepts separate Python
4956arguments similar to @ref{Explicit Locations}, and can only be used to create
4957breakpoints.
4958
b89641ba 4959@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4960Create a new breakpoint according to @var{spec}, which is a string naming the
4961location of a breakpoint, or an expression that defines a watchpoint. The
4962string should describe a location in a format recognized by the @code{break}
4963command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
4964watchpoint, by the @code{watch} command
4965(@pxref{Set Watchpoints, , Setting Watchpoints}).
4966
4967The optional @var{type} argument specifies the type of the breakpoint to create,
4968as defined below.
4969
4970The optional @var{wp_class} argument defines the class of watchpoint to create,
4971if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
4972defaults to @code{gdb.WP_WRITE}.
4973
4974The optional @var{internal} argument allows the breakpoint to become invisible
4975to the user. The breakpoint will neither be reported when created, nor will it
4976be listed in the output from @code{info breakpoints} (but will be listed with
4977the @code{maint info breakpoints} command).
4978
4979The optional @var{temporary} argument makes the breakpoint a temporary
4980breakpoint. Temporary breakpoints are deleted after they have been hit. Any
4981further access to the Python breakpoint after it has been hit will result in a
4982runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
4983
4984The optional @var{qualified} argument is a boolean that allows interpreting
4985the function passed in @code{spec} as a fully-qualified name. It is equivalent
4986to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
4987@ref{Explicit Locations}).
4988
0b982d68
SM
4989@end defun
4990
b89641ba 4991@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4992This second form of creating a new breakpoint specifies the explicit
4993location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
4994be created in the specified source file @var{source}, at the specified
4995@var{function}, @var{label} and @var{line}.
4996
b89641ba
SM
4997@var{internal}, @var{temporary} and @var{qualified} have the same usage as
4998explained previously.
329baa95
DE
4999@end defun
5000
cda75e70
TT
5001The available types are represented by constants defined in the @code{gdb}
5002module:
5003
5004@vtable @code
5005@vindex BP_BREAKPOINT
5006@item gdb.BP_BREAKPOINT
5007Normal code breakpoint.
5008
5009@vindex BP_WATCHPOINT
5010@item gdb.BP_WATCHPOINT
5011Watchpoint breakpoint.
5012
5013@vindex BP_HARDWARE_WATCHPOINT
5014@item gdb.BP_HARDWARE_WATCHPOINT
5015Hardware assisted watchpoint.
5016
5017@vindex BP_READ_WATCHPOINT
5018@item gdb.BP_READ_WATCHPOINT
5019Hardware assisted read watchpoint.
5020
5021@vindex BP_ACCESS_WATCHPOINT
5022@item gdb.BP_ACCESS_WATCHPOINT
5023Hardware assisted access watchpoint.
5024@end vtable
5025
5026The available watchpoint types represented by constants are defined in the
5027@code{gdb} module:
5028
5029@vtable @code
5030@vindex WP_READ
5031@item gdb.WP_READ
5032Read only watchpoint.
5033
5034@vindex WP_WRITE
5035@item gdb.WP_WRITE
5036Write only watchpoint.
5037
5038@vindex WP_ACCESS
5039@item gdb.WP_ACCESS
5040Read/Write watchpoint.
5041@end vtable
5042
329baa95
DE
5043@defun Breakpoint.stop (self)
5044The @code{gdb.Breakpoint} class can be sub-classed and, in
5045particular, you may choose to implement the @code{stop} method.
5046If this method is defined in a sub-class of @code{gdb.Breakpoint},
5047it will be called when the inferior reaches any location of a
5048breakpoint which instantiates that sub-class. If the method returns
5049@code{True}, the inferior will be stopped at the location of the
5050breakpoint, otherwise the inferior will continue.
5051
5052If there are multiple breakpoints at the same location with a
5053@code{stop} method, each one will be called regardless of the
5054return status of the previous. This ensures that all @code{stop}
5055methods have a chance to execute at that location. In this scenario
5056if one of the methods returns @code{True} but the others return
5057@code{False}, the inferior will still be stopped.
5058
5059You should not alter the execution state of the inferior (i.e.@:, step,
5060next, etc.), alter the current frame context (i.e.@:, change the current
5061active frame), or alter, add or delete any breakpoint. As a general
5062rule, you should not alter any data within @value{GDBN} or the inferior
5063at this time.
5064
5065Example @code{stop} implementation:
5066
5067@smallexample
5068class MyBreakpoint (gdb.Breakpoint):
5069 def stop (self):
5070 inf_val = gdb.parse_and_eval("foo")
5071 if inf_val == 3:
5072 return True
5073 return False
5074@end smallexample
5075@end defun
5076
329baa95
DE
5077@defun Breakpoint.is_valid ()
5078Return @code{True} if this @code{Breakpoint} object is valid,
5079@code{False} otherwise. A @code{Breakpoint} object can become invalid
5080if the user deletes the breakpoint. In this case, the object still
5081exists, but the underlying breakpoint does not. In the cases of
5082watchpoint scope, the watchpoint remains valid even if execution of the
5083inferior leaves the scope of that watchpoint.
5084@end defun
5085
fab3a15d 5086@defun Breakpoint.delete ()
329baa95
DE
5087Permanently deletes the @value{GDBN} breakpoint. This also
5088invalidates the Python @code{Breakpoint} object. Any further access
5089to this object's attributes or methods will raise an error.
5090@end defun
5091
5092@defvar Breakpoint.enabled
5093This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5094@code{False} otherwise. This attribute is writable. You can use it to enable
5095or disable the breakpoint.
329baa95
DE
5096@end defvar
5097
5098@defvar Breakpoint.silent
5099This attribute is @code{True} if the breakpoint is silent, and
5100@code{False} otherwise. This attribute is writable.
5101
5102Note that a breakpoint can also be silent if it has commands and the
5103first command is @code{silent}. This is not reported by the
5104@code{silent} attribute.
5105@end defvar
5106
93daf339
TT
5107@defvar Breakpoint.pending
5108This attribute is @code{True} if the breakpoint is pending, and
5109@code{False} otherwise. @xref{Set Breaks}. This attribute is
5110read-only.
5111@end defvar
5112
22a02324 5113@anchor{python_breakpoint_thread}
329baa95 5114@defvar Breakpoint.thread
5d5658a1
PA
5115If the breakpoint is thread-specific, this attribute holds the
5116thread's global id. If the breakpoint is not thread-specific, this
5117attribute is @code{None}. This attribute is writable.
329baa95
DE
5118@end defvar
5119
5120@defvar Breakpoint.task
5121If the breakpoint is Ada task-specific, this attribute holds the Ada task
5122id. If the breakpoint is not task-specific (or the underlying
5123language is not Ada), this attribute is @code{None}. This attribute
5124is writable.
5125@end defvar
5126
5127@defvar Breakpoint.ignore_count
5128This attribute holds the ignore count for the breakpoint, an integer.
5129This attribute is writable.
5130@end defvar
5131
5132@defvar Breakpoint.number
5133This attribute holds the breakpoint's number --- the identifier used by
5134the user to manipulate the breakpoint. This attribute is not writable.
5135@end defvar
5136
5137@defvar Breakpoint.type
5138This attribute holds the breakpoint's type --- the identifier used to
5139determine the actual breakpoint type or use-case. This attribute is not
5140writable.
5141@end defvar
5142
5143@defvar Breakpoint.visible
5144This attribute tells whether the breakpoint is visible to the user
5145when set, or when the @samp{info breakpoints} command is run. This
5146attribute is not writable.
5147@end defvar
5148
5149@defvar Breakpoint.temporary
5150This attribute indicates whether the breakpoint was created as a
5151temporary breakpoint. Temporary breakpoints are automatically deleted
5152after that breakpoint has been hit. Access to this attribute, and all
5153other attributes and functions other than the @code{is_valid}
5154function, will result in an error after the breakpoint has been hit
5155(as it has been automatically deleted). This attribute is not
5156writable.
5157@end defvar
5158
329baa95
DE
5159@defvar Breakpoint.hit_count
5160This attribute holds the hit count for the breakpoint, an integer.
5161This attribute is writable, but currently it can only be set to zero.
5162@end defvar
5163
5164@defvar Breakpoint.location
5165This attribute holds the location of the breakpoint, as specified by
5166the user. It is a string. If the breakpoint does not have a location
5167(that is, it is a watchpoint) the attribute's value is @code{None}. This
5168attribute is not writable.
5169@end defvar
5170
5171@defvar Breakpoint.expression
5172This attribute holds a breakpoint expression, as specified by
5173the user. It is a string. If the breakpoint does not have an
5174expression (the breakpoint is not a watchpoint) the attribute's value
5175is @code{None}. This attribute is not writable.
5176@end defvar
5177
5178@defvar Breakpoint.condition
5179This attribute holds the condition of the breakpoint, as specified by
5180the user. It is a string. If there is no condition, this attribute's
5181value is @code{None}. This attribute is writable.
5182@end defvar
5183
5184@defvar Breakpoint.commands
5185This attribute holds the commands attached to the breakpoint. If
5186there are commands, this attribute's value is a string holding all the
5187commands, separated by newlines. If there are no commands, this
a913fffb 5188attribute is @code{None}. This attribute is writable.
329baa95
DE
5189@end defvar
5190
5191@node Finish Breakpoints in Python
5192@subsubsection Finish Breakpoints
5193
5194@cindex python finish breakpoints
5195@tindex gdb.FinishBreakpoint
5196
5197A finish breakpoint is a temporary breakpoint set at the return address of
5198a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5199extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5200and deleted when the execution will run out of the breakpoint scope (i.e.@:
5201@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5202Finish breakpoints are thread specific and must be create with the right
5203thread selected.
5204
5205@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5206Create a finish breakpoint at the return address of the @code{gdb.Frame}
5207object @var{frame}. If @var{frame} is not provided, this defaults to the
5208newest frame. The optional @var{internal} argument allows the breakpoint to
5209become invisible to the user. @xref{Breakpoints In Python}, for further
5210details about this argument.
5211@end defun
5212
5213@defun FinishBreakpoint.out_of_scope (self)
5214In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5215@code{return} command, @dots{}), a function may not properly terminate, and
5216thus never hit the finish breakpoint. When @value{GDBN} notices such a
5217situation, the @code{out_of_scope} callback will be triggered.
5218
5219You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5220method:
5221
5222@smallexample
5223class MyFinishBreakpoint (gdb.FinishBreakpoint)
5224 def stop (self):
5225 print "normal finish"
5226 return True
5227
5228 def out_of_scope ():
5229 print "abnormal finish"
5230@end smallexample
5231@end defun
5232
5233@defvar FinishBreakpoint.return_value
5234When @value{GDBN} is stopped at a finish breakpoint and the frame
5235used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5236attribute will contain a @code{gdb.Value} object corresponding to the return
5237value of the function. The value will be @code{None} if the function return
5238type is @code{void} or if the return value was not computable. This attribute
5239is not writable.
5240@end defvar
5241
5242@node Lazy Strings In Python
5243@subsubsection Python representation of lazy strings.
5244
5245@cindex lazy strings in python
5246@tindex gdb.LazyString
5247
5248A @dfn{lazy string} is a string whose contents is not retrieved or
5249encoded until it is needed.
5250
5251A @code{gdb.LazyString} is represented in @value{GDBN} as an
5252@code{address} that points to a region of memory, an @code{encoding}
5253that will be used to encode that region of memory, and a @code{length}
5254to delimit the region of memory that represents the string. The
5255difference between a @code{gdb.LazyString} and a string wrapped within
5256a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5257differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5258retrieved and encoded during printing, while a @code{gdb.Value}
5259wrapping a string is immediately retrieved and encoded on creation.
5260
5261A @code{gdb.LazyString} object has the following functions:
5262
5263@defun LazyString.value ()
5264Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5265will point to the string in memory, but will lose all the delayed
5266retrieval, encoding and handling that @value{GDBN} applies to a
5267@code{gdb.LazyString}.
5268@end defun
5269
5270@defvar LazyString.address
5271This attribute holds the address of the string. This attribute is not
5272writable.
5273@end defvar
5274
5275@defvar LazyString.length
5276This attribute holds the length of the string in characters. If the
5277length is -1, then the string will be fetched and encoded up to the
5278first null of appropriate width. This attribute is not writable.
5279@end defvar
5280
5281@defvar LazyString.encoding
5282This attribute holds the encoding that will be applied to the string
5283when the string is printed by @value{GDBN}. If the encoding is not
5284set, or contains an empty string, then @value{GDBN} will select the
5285most appropriate encoding when the string is printed. This attribute
5286is not writable.
5287@end defvar
5288
5289@defvar LazyString.type
5290This attribute holds the type that is represented by the lazy string's
f8d99587 5291type. For a lazy string this is a pointer or array type. To
329baa95
DE
5292resolve this to the lazy string's character type, use the type's
5293@code{target} method. @xref{Types In Python}. This attribute is not
5294writable.
5295@end defvar
5296
5297@node Architectures In Python
5298@subsubsection Python representation of architectures
5299@cindex Python architectures
5300
5301@value{GDBN} uses architecture specific parameters and artifacts in a
5302number of its various computations. An architecture is represented
5303by an instance of the @code{gdb.Architecture} class.
5304
5305A @code{gdb.Architecture} class has the following methods:
5306
5307@defun Architecture.name ()
5308Return the name (string value) of the architecture.
5309@end defun
5310
5311@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5312Return a list of disassembled instructions starting from the memory
5313address @var{start_pc}. The optional arguments @var{end_pc} and
5314@var{count} determine the number of instructions in the returned list.
5315If both the optional arguments @var{end_pc} and @var{count} are
5316specified, then a list of at most @var{count} disassembled instructions
5317whose start address falls in the closed memory address interval from
5318@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5319specified, but @var{count} is specified, then @var{count} number of
5320instructions starting from the address @var{start_pc} are returned. If
5321@var{count} is not specified but @var{end_pc} is specified, then all
5322instructions whose start address falls in the closed memory address
5323interval from @var{start_pc} to @var{end_pc} are returned. If neither
5324@var{end_pc} nor @var{count} are specified, then a single instruction at
5325@var{start_pc} is returned. For all of these cases, each element of the
5326returned list is a Python @code{dict} with the following string keys:
5327
5328@table @code
5329
5330@item addr
5331The value corresponding to this key is a Python long integer capturing
5332the memory address of the instruction.
5333
5334@item asm
5335The value corresponding to this key is a string value which represents
5336the instruction with assembly language mnemonics. The assembly
5337language flavor used is the same as that specified by the current CLI
5338variable @code{disassembly-flavor}. @xref{Machine Code}.
5339
5340@item length
5341The value corresponding to this key is the length (integer value) of the
5342instruction in bytes.
5343
5344@end table
5345@end defun
5346
5347@node Python Auto-loading
5348@subsection Python Auto-loading
5349@cindex Python auto-loading
5350
5351When a new object file is read (for example, due to the @code{file}
5352command, or because the inferior has loaded a shared library),
5353@value{GDBN} will look for Python support scripts in several ways:
5354@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5355@xref{Auto-loading extensions}.
5356
5357The auto-loading feature is useful for supplying application-specific
5358debugging commands and scripts.
5359
5360Auto-loading can be enabled or disabled,
5361and the list of auto-loaded scripts can be printed.
5362
5363@table @code
5364@anchor{set auto-load python-scripts}
5365@kindex set auto-load python-scripts
5366@item set auto-load python-scripts [on|off]
5367Enable or disable the auto-loading of Python scripts.
5368
5369@anchor{show auto-load python-scripts}
5370@kindex show auto-load python-scripts
5371@item show auto-load python-scripts
5372Show whether auto-loading of Python scripts is enabled or disabled.
5373
5374@anchor{info auto-load python-scripts}
5375@kindex info auto-load python-scripts
5376@cindex print list of auto-loaded Python scripts
5377@item info auto-load python-scripts [@var{regexp}]
5378Print the list of all Python scripts that @value{GDBN} auto-loaded.
5379
5380Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5381the @code{.debug_gdb_scripts} section and were either not found
5382(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5383@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5384This is useful because their names are not printed when @value{GDBN}
5385tries to load them and fails. There may be many of them, and printing
5386an error message for each one is problematic.
5387
5388If @var{regexp} is supplied only Python scripts with matching names are printed.
5389
5390Example:
5391
5392@smallexample
5393(gdb) info auto-load python-scripts
5394Loaded Script
5395Yes py-section-script.py
5396 full name: /tmp/py-section-script.py
5397No my-foo-pretty-printers.py
5398@end smallexample
5399@end table
5400
9f050062 5401When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5402@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5403function (@pxref{Objfiles In Python}). This can be useful for
5404registering objfile-specific pretty-printers and frame-filters.
5405
5406@node Python modules
5407@subsection Python modules
5408@cindex python modules
5409
5410@value{GDBN} comes with several modules to assist writing Python code.
5411
5412@menu
5413* gdb.printing:: Building and registering pretty-printers.
5414* gdb.types:: Utilities for working with types.
5415* gdb.prompt:: Utilities for prompt value substitution.
5416@end menu
5417
5418@node gdb.printing
5419@subsubsection gdb.printing
5420@cindex gdb.printing
5421
5422This module provides a collection of utilities for working with
5423pretty-printers.
5424
5425@table @code
5426@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5427This class specifies the API that makes @samp{info pretty-printer},
5428@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5429Pretty-printers should generally inherit from this class.
5430
5431@item SubPrettyPrinter (@var{name})
5432For printers that handle multiple types, this class specifies the
5433corresponding API for the subprinters.
5434
5435@item RegexpCollectionPrettyPrinter (@var{name})
5436Utility class for handling multiple printers, all recognized via
5437regular expressions.
5438@xref{Writing a Pretty-Printer}, for an example.
5439
5440@item FlagEnumerationPrinter (@var{name})
5441A pretty-printer which handles printing of @code{enum} values. Unlike
5442@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5443work properly when there is some overlap between the enumeration
697aa1b7
EZ
5444constants. The argument @var{name} is the name of the printer and
5445also the name of the @code{enum} type to look up.
329baa95
DE
5446
5447@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5448Register @var{printer} with the pretty-printer list of @var{obj}.
5449If @var{replace} is @code{True} then any existing copy of the printer
5450is replaced. Otherwise a @code{RuntimeError} exception is raised
5451if a printer with the same name already exists.
5452@end table
5453
5454@node gdb.types
5455@subsubsection gdb.types
5456@cindex gdb.types
5457
5458This module provides a collection of utilities for working with
5459@code{gdb.Type} objects.
5460
5461@table @code
5462@item get_basic_type (@var{type})
5463Return @var{type} with const and volatile qualifiers stripped,
5464and with typedefs and C@t{++} references converted to the underlying type.
5465
5466C@t{++} example:
5467
5468@smallexample
5469typedef const int const_int;
5470const_int foo (3);
5471const_int& foo_ref (foo);
5472int main () @{ return 0; @}
5473@end smallexample
5474
5475Then in gdb:
5476
5477@smallexample
5478(gdb) start
5479(gdb) python import gdb.types
5480(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5481(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5482int
5483@end smallexample
5484
5485@item has_field (@var{type}, @var{field})
5486Return @code{True} if @var{type}, assumed to be a type with fields
5487(e.g., a structure or union), has field @var{field}.
5488
5489@item make_enum_dict (@var{enum_type})
5490Return a Python @code{dictionary} type produced from @var{enum_type}.
5491
5492@item deep_items (@var{type})
5493Returns a Python iterator similar to the standard
5494@code{gdb.Type.iteritems} method, except that the iterator returned
5495by @code{deep_items} will recursively traverse anonymous struct or
5496union fields. For example:
5497
5498@smallexample
5499struct A
5500@{
5501 int a;
5502 union @{
5503 int b0;
5504 int b1;
5505 @};
5506@};
5507@end smallexample
5508
5509@noindent
5510Then in @value{GDBN}:
5511@smallexample
5512(@value{GDBP}) python import gdb.types
5513(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5514(@value{GDBP}) python print struct_a.keys ()
5515@{['a', '']@}
5516(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5517@{['a', 'b0', 'b1']@}
5518@end smallexample
5519
5520@item get_type_recognizers ()
5521Return a list of the enabled type recognizers for the current context.
5522This is called by @value{GDBN} during the type-printing process
5523(@pxref{Type Printing API}).
5524
5525@item apply_type_recognizers (recognizers, type_obj)
5526Apply the type recognizers, @var{recognizers}, to the type object
5527@var{type_obj}. If any recognizer returns a string, return that
5528string. Otherwise, return @code{None}. This is called by
5529@value{GDBN} during the type-printing process (@pxref{Type Printing
5530API}).
5531
5532@item register_type_printer (locus, printer)
697aa1b7
EZ
5533This is a convenience function to register a type printer
5534@var{printer}. The printer must implement the type printer protocol.
5535The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5536the printer is registered with that objfile; a @code{gdb.Progspace},
5537in which case the printer is registered with that progspace; or
5538@code{None}, in which case the printer is registered globally.
329baa95
DE
5539
5540@item TypePrinter
5541This is a base class that implements the type printer protocol. Type
5542printers are encouraged, but not required, to derive from this class.
5543It defines a constructor:
5544
5545@defmethod TypePrinter __init__ (self, name)
5546Initialize the type printer with the given name. The new printer
5547starts in the enabled state.
5548@end defmethod
5549
5550@end table
5551
5552@node gdb.prompt
5553@subsubsection gdb.prompt
5554@cindex gdb.prompt
5555
5556This module provides a method for prompt value-substitution.
5557
5558@table @code
5559@item substitute_prompt (@var{string})
5560Return @var{string} with escape sequences substituted by values. Some
5561escape sequences take arguments. You can specify arguments inside
5562``@{@}'' immediately following the escape sequence.
5563
5564The escape sequences you can pass to this function are:
5565
5566@table @code
5567@item \\
5568Substitute a backslash.
5569@item \e
5570Substitute an ESC character.
5571@item \f
5572Substitute the selected frame; an argument names a frame parameter.
5573@item \n
5574Substitute a newline.
5575@item \p
5576Substitute a parameter's value; the argument names the parameter.
5577@item \r
5578Substitute a carriage return.
5579@item \t
5580Substitute the selected thread; an argument names a thread parameter.
5581@item \v
5582Substitute the version of GDB.
5583@item \w
5584Substitute the current working directory.
5585@item \[
5586Begin a sequence of non-printing characters. These sequences are
5587typically used with the ESC character, and are not counted in the string
5588length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5589blue-colored ``(gdb)'' prompt where the length is five.
5590@item \]
5591End a sequence of non-printing characters.
5592@end table
5593
5594For example:
5595
5596@smallexample
5597substitute_prompt (``frame: \f,
5598 print arguments: \p@{print frame-arguments@}'')
5599@end smallexample
5600
5601@exdent will return the string:
5602
5603@smallexample
5604"frame: main, print arguments: scalars"
5605@end smallexample
5606@end table