]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
72019c9c
GM
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006
8e65ff28 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
c906108c 20
c5aa993b
JM
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
c906108c 25
c5aa993b
JM
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
197e01b6
EZ
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
c906108c
SS
30
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c
SS
35#include "objfiles.h"
36#include "elf/dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "expression.h"
d5166ae1 40#include "filenames.h" /* for DOSish file names */
2e276125 41#include "macrotab.h"
c906108c
SS
42#include "language.h"
43#include "complaints.h"
357e46e7 44#include "bcache.h"
4c2df51b
DJ
45#include "dwarf2expr.h"
46#include "dwarf2loc.h"
9219021c 47#include "cp-support.h"
72bf9492 48#include "hashtab.h"
ae038cb0
DJ
49#include "command.h"
50#include "gdbcmd.h"
4c2df51b 51
c906108c
SS
52#include <fcntl.h>
53#include "gdb_string.h"
4bdf3d34 54#include "gdb_assert.h"
c906108c
SS
55#include <sys/types.h>
56
d8151005
DJ
57/* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
88496bb5
MS
71#ifndef DWARF2_REG_TO_REGNUM
72#define DWARF2_REG_TO_REGNUM(REG) (REG)
73#endif
74
107d2387 75#if 0
357e46e7 76/* .debug_info header for a compilation unit
c906108c
SS
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88_COMP_UNIT_HEADER;
89#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 90#endif
c906108c
SS
91
92/* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105_PUBNAMES_HEADER;
106#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108/* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121_ARANGES_HEADER;
122#define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124/* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145_STATEMENT_PROLOGUE;
146
6502dd73
DJ
147static const struct objfile_data *dwarf2_objfile_data_key;
148
149struct dwarf2_per_objfile
150{
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
fe1b8b76
JB
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
ae038cb0 172
10b3939b
DJ
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
ae038cb0
DJ
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
183
184 /* A flag indicating wether this objfile has a section loaded at a
185 VMA of 0. */
186 int has_section_at_zero;
6502dd73
DJ
187};
188
189static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 190
086df311
DJ
191static asection *dwarf_info_section;
192static asection *dwarf_abbrev_section;
193static asection *dwarf_line_section;
194static asection *dwarf_pubnames_section;
195static asection *dwarf_aranges_section;
196static asection *dwarf_loc_section;
197static asection *dwarf_macinfo_section;
198static asection *dwarf_str_section;
199static asection *dwarf_ranges_section;
200asection *dwarf_frame_section;
201asection *dwarf_eh_frame_section;
202
c906108c
SS
203/* names of the debugging sections */
204
205#define INFO_SECTION ".debug_info"
206#define ABBREV_SECTION ".debug_abbrev"
207#define LINE_SECTION ".debug_line"
208#define PUBNAMES_SECTION ".debug_pubnames"
209#define ARANGES_SECTION ".debug_aranges"
210#define LOC_SECTION ".debug_loc"
211#define MACINFO_SECTION ".debug_macinfo"
212#define STR_SECTION ".debug_str"
af34e669 213#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
214#define FRAME_SECTION ".debug_frame"
215#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
216
217/* local data types */
218
57349743
JB
219/* We hold several abbreviation tables in memory at the same time. */
220#ifndef ABBREV_HASH_SIZE
221#define ABBREV_HASH_SIZE 121
222#endif
223
107d2387
AC
224/* The data in a compilation unit header, after target2host
225 translation, looks like this. */
c906108c 226struct comp_unit_head
a738430d
MK
227{
228 unsigned long length;
229 short version;
230 unsigned int abbrev_offset;
231 unsigned char addr_size;
232 unsigned char signed_addr_p;
57349743 233
a738430d
MK
234 /* Size of file offsets; either 4 or 8. */
235 unsigned int offset_size;
57349743 236
a738430d
MK
237 /* Size of the length field; either 4 or 12. */
238 unsigned int initial_length_size;
57349743 239
a738430d
MK
240 /* Offset to the first byte of this compilation unit header in the
241 .debug_info section, for resolving relative reference dies. */
242 unsigned int offset;
57349743 243
a738430d
MK
244 /* Pointer to this compilation unit header in the .debug_info
245 section. */
fe1b8b76 246 gdb_byte *cu_head_ptr;
57349743 247
a738430d
MK
248 /* Pointer to the first die of this compilation unit. This will be
249 the first byte following the compilation unit header. */
fe1b8b76 250 gdb_byte *first_die_ptr;
af34e669 251
a738430d
MK
252 /* Pointer to the next compilation unit header in the program. */
253 struct comp_unit_head *next;
0d53c4c4 254
a738430d
MK
255 /* Base address of this compilation unit. */
256 CORE_ADDR base_address;
0d53c4c4 257
a738430d
MK
258 /* Non-zero if base_address has been set. */
259 int base_known;
260};
c906108c 261
10b3939b
DJ
262/* Fixed size for the DIE hash table. */
263#ifndef REF_HASH_SIZE
264#define REF_HASH_SIZE 1021
265#endif
266
e7c27a73
DJ
267/* Internal state when decoding a particular compilation unit. */
268struct dwarf2_cu
269{
270 /* The objfile containing this compilation unit. */
271 struct objfile *objfile;
272
273 /* The header of the compilation unit.
274
275 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 276 should logically be moved to the dwarf2_cu structure. */
e7c27a73 277 struct comp_unit_head header;
e142c38c
DJ
278
279 struct function_range *first_fn, *last_fn, *cached_fn;
280
281 /* The language we are debugging. */
282 enum language language;
283 const struct language_defn *language_defn;
284
b0f35d58
DL
285 const char *producer;
286
e142c38c
DJ
287 /* The generic symbol table building routines have separate lists for
288 file scope symbols and all all other scopes (local scopes). So
289 we need to select the right one to pass to add_symbol_to_list().
290 We do it by keeping a pointer to the correct list in list_in_scope.
291
292 FIXME: The original dwarf code just treated the file scope as the
293 first local scope, and all other local scopes as nested local
294 scopes, and worked fine. Check to see if we really need to
295 distinguish these in buildsym.c. */
296 struct pending **list_in_scope;
297
298 /* Maintain an array of referenced fundamental types for the current
299 compilation unit being read. For DWARF version 1, we have to construct
300 the fundamental types on the fly, since no information about the
301 fundamental types is supplied. Each such fundamental type is created by
302 calling a language dependent routine to create the type, and then a
303 pointer to that type is then placed in the array at the index specified
304 by it's FT_<TYPENAME> value. The array has a fixed size set by the
305 FT_NUM_MEMBERS compile time constant, which is the number of predefined
306 fundamental types gdb knows how to construct. */
307 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
308
309 /* DWARF abbreviation table associated with this compilation unit. */
310 struct abbrev_info **dwarf2_abbrevs;
311
312 /* Storage for the abbrev table. */
313 struct obstack abbrev_obstack;
72bf9492
DJ
314
315 /* Hash table holding all the loaded partial DIEs. */
316 htab_t partial_dies;
317
318 /* Storage for things with the same lifetime as this read-in compilation
319 unit, including partial DIEs. */
320 struct obstack comp_unit_obstack;
321
ae038cb0
DJ
322 /* When multiple dwarf2_cu structures are living in memory, this field
323 chains them all together, so that they can be released efficiently.
324 We will probably also want a generation counter so that most-recently-used
325 compilation units are cached... */
326 struct dwarf2_per_cu_data *read_in_chain;
327
328 /* Backchain to our per_cu entry if the tree has been built. */
329 struct dwarf2_per_cu_data *per_cu;
330
331 /* How many compilation units ago was this CU last referenced? */
332 int last_used;
333
10b3939b
DJ
334 /* A hash table of die offsets for following references. */
335 struct die_info *die_ref_table[REF_HASH_SIZE];
336
337 /* Full DIEs if read in. */
338 struct die_info *dies;
339
340 /* A set of pointers to dwarf2_per_cu_data objects for compilation
341 units referenced by this one. Only set during full symbol processing;
342 partial symbol tables do not have dependencies. */
343 htab_t dependencies;
344
ae038cb0
DJ
345 /* Mark used when releasing cached dies. */
346 unsigned int mark : 1;
347
348 /* This flag will be set if this compilation unit might include
349 inter-compilation-unit references. */
350 unsigned int has_form_ref_addr : 1;
351
72bf9492
DJ
352 /* This flag will be set if this compilation unit includes any
353 DW_TAG_namespace DIEs. If we know that there are explicit
354 DIEs for namespaces, we don't need to try to infer them
355 from mangled names. */
356 unsigned int has_namespace_info : 1;
e7c27a73
DJ
357};
358
10b3939b
DJ
359/* Persistent data held for a compilation unit, even when not
360 processing it. We put a pointer to this structure in the
361 read_symtab_private field of the psymtab. If we encounter
362 inter-compilation-unit references, we also maintain a sorted
363 list of all compilation units. */
364
ae038cb0
DJ
365struct dwarf2_per_cu_data
366{
5afb4e99 367 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
368 bytes should suffice to store the length of any compilation unit
369 - if it doesn't, GDB will fall over anyway. */
370 unsigned long offset;
5afb4e99 371 unsigned long length : 30;
ae038cb0
DJ
372
373 /* Flag indicating this compilation unit will be read in before
374 any of the current compilation units are processed. */
375 unsigned long queued : 1;
376
5afb4e99
DJ
377 /* This flag will be set if we need to load absolutely all DIEs
378 for this compilation unit, instead of just the ones we think
379 are interesting. It gets set if we look for a DIE in the
380 hash table and don't find it. */
381 unsigned int load_all_dies : 1;
382
ae038cb0
DJ
383 /* Set iff currently read in. */
384 struct dwarf2_cu *cu;
1c379e20
DJ
385
386 /* If full symbols for this CU have been read in, then this field
387 holds a map of DIE offsets to types. It isn't always possible
388 to reconstruct this information later, so we have to preserve
389 it. */
1c379e20 390 htab_t type_hash;
10b3939b
DJ
391
392 /* The partial symbol table associated with this compilation unit. */
393 struct partial_symtab *psymtab;
ae038cb0
DJ
394};
395
debd256d
JB
396/* The line number information for a compilation unit (found in the
397 .debug_line section) begins with a "statement program header",
398 which contains the following information. */
399struct line_header
400{
401 unsigned int total_length;
402 unsigned short version;
403 unsigned int header_length;
404 unsigned char minimum_instruction_length;
405 unsigned char default_is_stmt;
406 int line_base;
407 unsigned char line_range;
408 unsigned char opcode_base;
409
410 /* standard_opcode_lengths[i] is the number of operands for the
411 standard opcode whose value is i. This means that
412 standard_opcode_lengths[0] is unused, and the last meaningful
413 element is standard_opcode_lengths[opcode_base - 1]. */
414 unsigned char *standard_opcode_lengths;
415
416 /* The include_directories table. NOTE! These strings are not
417 allocated with xmalloc; instead, they are pointers into
418 debug_line_buffer. If you try to free them, `free' will get
419 indigestion. */
420 unsigned int num_include_dirs, include_dirs_size;
421 char **include_dirs;
422
423 /* The file_names table. NOTE! These strings are not allocated
424 with xmalloc; instead, they are pointers into debug_line_buffer.
425 Don't try to free them directly. */
426 unsigned int num_file_names, file_names_size;
427 struct file_entry
c906108c 428 {
debd256d
JB
429 char *name;
430 unsigned int dir_index;
431 unsigned int mod_time;
432 unsigned int length;
aaa75496 433 int included_p; /* Non-zero if referenced by the Line Number Program. */
debd256d
JB
434 } *file_names;
435
436 /* The start and end of the statement program following this
6502dd73 437 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 438 gdb_byte *statement_program_start, *statement_program_end;
debd256d 439};
c906108c
SS
440
441/* When we construct a partial symbol table entry we only
442 need this much information. */
443struct partial_die_info
444 {
72bf9492 445 /* Offset of this DIE. */
c906108c 446 unsigned int offset;
72bf9492
DJ
447
448 /* DWARF-2 tag for this DIE. */
449 ENUM_BITFIELD(dwarf_tag) tag : 16;
450
451 /* Language code associated with this DIE. This is only used
452 for the compilation unit DIE. */
453 unsigned int language : 8;
454
455 /* Assorted flags describing the data found in this DIE. */
456 unsigned int has_children : 1;
457 unsigned int is_external : 1;
458 unsigned int is_declaration : 1;
459 unsigned int has_type : 1;
460 unsigned int has_specification : 1;
aaa75496 461 unsigned int has_stmt_list : 1;
72bf9492
DJ
462 unsigned int has_pc_info : 1;
463
464 /* Flag set if the SCOPE field of this structure has been
465 computed. */
466 unsigned int scope_set : 1;
467
468 /* The name of this DIE. Normally the value of DW_AT_name, but
469 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
470 other fashion. */
c906108c 471 char *name;
57c22c6c 472 char *dirname;
72bf9492
DJ
473
474 /* The scope to prepend to our children. This is generally
475 allocated on the comp_unit_obstack, so will disappear
476 when this compilation unit leaves the cache. */
477 char *scope;
478
479 /* The location description associated with this DIE, if any. */
480 struct dwarf_block *locdesc;
481
482 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
483 CORE_ADDR lowpc;
484 CORE_ADDR highpc;
72bf9492
DJ
485
486 /* Pointer into the info_buffer pointing at the target of
487 DW_AT_sibling, if any. */
fe1b8b76 488 gdb_byte *sibling;
72bf9492
DJ
489
490 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
491 DW_AT_specification (or DW_AT_abstract_origin or
492 DW_AT_extension). */
493 unsigned int spec_offset;
494
aaa75496
JB
495 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
496 unsigned int line_offset;
497
72bf9492
DJ
498 /* Pointers to this DIE's parent, first child, and next sibling,
499 if any. */
500 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
501 };
502
503/* This data structure holds the information of an abbrev. */
504struct abbrev_info
505 {
506 unsigned int number; /* number identifying abbrev */
507 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
508 unsigned short has_children; /* boolean */
509 unsigned short num_attrs; /* number of attributes */
c906108c
SS
510 struct attr_abbrev *attrs; /* an array of attribute descriptions */
511 struct abbrev_info *next; /* next in chain */
512 };
513
514struct attr_abbrev
515 {
516 enum dwarf_attribute name;
517 enum dwarf_form form;
518 };
519
520/* This data structure holds a complete die structure. */
521struct die_info
522 {
c5aa993b 523 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
524 unsigned int abbrev; /* Abbrev number */
525 unsigned int offset; /* Offset in .debug_info section */
526 unsigned int num_attrs; /* Number of attributes */
527 struct attribute *attrs; /* An array of attributes */
528 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
529
530 /* The dies in a compilation unit form an n-ary tree. PARENT
531 points to this die's parent; CHILD points to the first child of
532 this node; and all the children of a given node are chained
533 together via their SIBLING fields, terminated by a die whose
534 tag is zero. */
639d11d3
DC
535 struct die_info *child; /* Its first child, if any. */
536 struct die_info *sibling; /* Its next sibling, if any. */
537 struct die_info *parent; /* Its parent, if any. */
78ba4af6 538
c5aa993b 539 struct type *type; /* Cached type information */
c906108c
SS
540 };
541
542/* Attributes have a name and a value */
543struct attribute
544 {
545 enum dwarf_attribute name;
546 enum dwarf_form form;
547 union
548 {
549 char *str;
550 struct dwarf_block *blk;
ce5d95e1
JB
551 unsigned long unsnd;
552 long int snd;
c906108c
SS
553 CORE_ADDR addr;
554 }
555 u;
556 };
557
5fb290d7
DJ
558struct function_range
559{
560 const char *name;
561 CORE_ADDR lowpc, highpc;
562 int seen_line;
563 struct function_range *next;
564};
565
c906108c
SS
566/* Get at parts of an attribute structure */
567
568#define DW_STRING(attr) ((attr)->u.str)
569#define DW_UNSND(attr) ((attr)->u.unsnd)
570#define DW_BLOCK(attr) ((attr)->u.blk)
571#define DW_SND(attr) ((attr)->u.snd)
572#define DW_ADDR(attr) ((attr)->u.addr)
573
574/* Blocks are a bunch of untyped bytes. */
575struct dwarf_block
576 {
577 unsigned int size;
fe1b8b76 578 gdb_byte *data;
c906108c
SS
579 };
580
c906108c
SS
581#ifndef ATTR_ALLOC_CHUNK
582#define ATTR_ALLOC_CHUNK 4
583#endif
584
c906108c
SS
585/* Allocate fields for structs, unions and enums in this size. */
586#ifndef DW_FIELD_ALLOC_CHUNK
587#define DW_FIELD_ALLOC_CHUNK 4
588#endif
589
c906108c
SS
590/* A zeroed version of a partial die for initialization purposes. */
591static struct partial_die_info zeroed_partial_die;
592
c906108c
SS
593/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
594 but this would require a corresponding change in unpack_field_as_long
595 and friends. */
596static int bits_per_byte = 8;
597
598/* The routines that read and process dies for a C struct or C++ class
599 pass lists of data member fields and lists of member function fields
600 in an instance of a field_info structure, as defined below. */
601struct field_info
c5aa993b
JM
602 {
603 /* List of data member and baseclasses fields. */
604 struct nextfield
605 {
606 struct nextfield *next;
607 int accessibility;
608 int virtuality;
609 struct field field;
610 }
611 *fields;
c906108c 612
c5aa993b
JM
613 /* Number of fields. */
614 int nfields;
c906108c 615
c5aa993b
JM
616 /* Number of baseclasses. */
617 int nbaseclasses;
c906108c 618
c5aa993b
JM
619 /* Set if the accesibility of one of the fields is not public. */
620 int non_public_fields;
c906108c 621
c5aa993b
JM
622 /* Member function fields array, entries are allocated in the order they
623 are encountered in the object file. */
624 struct nextfnfield
625 {
626 struct nextfnfield *next;
627 struct fn_field fnfield;
628 }
629 *fnfields;
c906108c 630
c5aa993b
JM
631 /* Member function fieldlist array, contains name of possibly overloaded
632 member function, number of overloaded member functions and a pointer
633 to the head of the member function field chain. */
634 struct fnfieldlist
635 {
636 char *name;
637 int length;
638 struct nextfnfield *head;
639 }
640 *fnfieldlists;
c906108c 641
c5aa993b
JM
642 /* Number of entries in the fnfieldlists array. */
643 int nfnfields;
644 };
c906108c 645
10b3939b
DJ
646/* One item on the queue of compilation units to read in full symbols
647 for. */
648struct dwarf2_queue_item
649{
650 struct dwarf2_per_cu_data *per_cu;
651 struct dwarf2_queue_item *next;
652};
653
654/* The current queue. */
655static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
656
ae038cb0
DJ
657/* Loaded secondary compilation units are kept in memory until they
658 have not been referenced for the processing of this many
659 compilation units. Set this to zero to disable caching. Cache
660 sizes of up to at least twenty will improve startup time for
661 typical inter-CU-reference binaries, at an obvious memory cost. */
662static int dwarf2_max_cache_age = 5;
920d2a44
AC
663static void
664show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
665 struct cmd_list_element *c, const char *value)
666{
667 fprintf_filtered (file, _("\
668The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
669 value);
670}
671
ae038cb0 672
c906108c
SS
673/* Various complaints about symbol reading that don't abort the process */
674
4d3c2250
KB
675static void
676dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 677{
4d3c2250 678 complaint (&symfile_complaints,
e2e0b3e5 679 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
680}
681
682static void
683dwarf2_complex_location_expr_complaint (void)
2e276125 684{
e2e0b3e5 685 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
686}
687
4d3c2250
KB
688static void
689dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
690 int arg3)
2e276125 691{
4d3c2250 692 complaint (&symfile_complaints,
e2e0b3e5 693 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
694 arg2, arg3);
695}
696
697static void
698dwarf2_macros_too_long_complaint (void)
2e276125 699{
4d3c2250 700 complaint (&symfile_complaints,
e2e0b3e5 701 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
702}
703
704static void
705dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 706{
4d3c2250 707 complaint (&symfile_complaints,
e2e0b3e5 708 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
709 arg1);
710}
711
712static void
713dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 714{
4d3c2250 715 complaint (&symfile_complaints,
e2e0b3e5 716 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 717}
c906108c 718
c906108c
SS
719/* local function prototypes */
720
4efb68b1 721static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
722
723#if 0
a14ed312 724static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
725#endif
726
aaa75496
JB
727static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
728 struct objfile *);
729
730static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
731 struct partial_die_info *,
732 struct partial_symtab *);
733
a14ed312 734static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 735
72bf9492
DJ
736static void scan_partial_symbols (struct partial_die_info *,
737 CORE_ADDR *, CORE_ADDR *,
738 struct dwarf2_cu *);
c906108c 739
72bf9492
DJ
740static void add_partial_symbol (struct partial_die_info *,
741 struct dwarf2_cu *);
63d06c5c 742
72bf9492 743static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 744
72bf9492
DJ
745static void add_partial_namespace (struct partial_die_info *pdi,
746 CORE_ADDR *lowpc, CORE_ADDR *highpc,
747 struct dwarf2_cu *cu);
63d06c5c 748
72bf9492
DJ
749static void add_partial_enumeration (struct partial_die_info *enum_pdi,
750 struct dwarf2_cu *cu);
91c24f0a 751
fe1b8b76
JB
752static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
753 gdb_byte *info_ptr,
754 bfd *abfd,
755 struct dwarf2_cu *cu);
91c24f0a 756
a14ed312 757static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 758
a14ed312 759static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 760
fe1b8b76 761gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 762
e7c27a73 763static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 764
f3dd6933 765static void dwarf2_free_abbrev_table (void *);
c906108c 766
fe1b8b76 767static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 768 struct dwarf2_cu *);
72bf9492 769
57349743 770static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 771 struct dwarf2_cu *);
c906108c 772
fe1b8b76 773static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
774 struct dwarf2_cu *);
775
fe1b8b76
JB
776static gdb_byte *read_partial_die (struct partial_die_info *,
777 struct abbrev_info *abbrev, unsigned int,
778 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 779
72bf9492 780static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 781 struct dwarf2_cu *);
72bf9492
DJ
782
783static void fixup_partial_die (struct partial_die_info *,
784 struct dwarf2_cu *);
785
fe1b8b76
JB
786static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
787 struct dwarf2_cu *, int *);
c906108c 788
fe1b8b76
JB
789static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
790 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 791
fe1b8b76
JB
792static gdb_byte *read_attribute_value (struct attribute *, unsigned,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 794
fe1b8b76 795static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 796
fe1b8b76 797static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 802
fe1b8b76 803static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 804
fe1b8b76 805static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 806 unsigned int *);
c906108c 807
fe1b8b76 808static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 809 struct comp_unit_head *, unsigned int *);
613e1657 810
fe1b8b76 811static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 812 unsigned int *);
613e1657 813
fe1b8b76 814static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 815
fe1b8b76 816static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 817
fe1b8b76
JB
818static char *read_indirect_string (bfd *, gdb_byte *,
819 const struct comp_unit_head *,
820 unsigned int *);
4bdf3d34 821
fe1b8b76 822static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 823
fe1b8b76 824static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 825
fe1b8b76 826static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 827
e142c38c 828static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 829
e142c38c
DJ
830static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
831 struct dwarf2_cu *);
c906108c 832
05cf31d1
JB
833static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
834 struct dwarf2_cu *cu);
835
e142c38c 836static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 837
e142c38c
DJ
838static struct die_info *die_specification (struct die_info *die,
839 struct dwarf2_cu *);
63d06c5c 840
debd256d
JB
841static void free_line_header (struct line_header *lh);
842
aaa75496
JB
843static void add_file_name (struct line_header *, char *, unsigned int,
844 unsigned int, unsigned int);
845
debd256d
JB
846static struct line_header *(dwarf_decode_line_header
847 (unsigned int offset,
e7c27a73 848 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
849
850static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 851 struct dwarf2_cu *, struct partial_symtab *);
c906108c 852
4f1520fb 853static void dwarf2_start_subfile (char *, char *, char *);
c906108c 854
a14ed312 855static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 856 struct dwarf2_cu *);
c906108c 857
a14ed312 858static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 859 struct dwarf2_cu *);
c906108c 860
2df3850c
JM
861static void dwarf2_const_value_data (struct attribute *attr,
862 struct symbol *sym,
863 int bits);
864
e7c27a73 865static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 866
e7c27a73
DJ
867static struct type *die_containing_type (struct die_info *,
868 struct dwarf2_cu *);
c906108c 869
e7c27a73 870static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 871
e7c27a73 872static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 873
086ed43d 874static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 875
fe1b8b76
JB
876static char *typename_concat (struct obstack *,
877 const char *prefix,
878 const char *suffix,
987504bb 879 struct dwarf2_cu *);
63d06c5c 880
e7c27a73 881static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 882
e7c27a73 883static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 884
a02abb62
JB
885static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
886
e7c27a73 887static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 888
e7c27a73 889static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 890
e7c27a73 891static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 892
a14ed312 893static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 894 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 895
fae299cd
DC
896static void get_scope_pc_bounds (struct die_info *,
897 CORE_ADDR *, CORE_ADDR *,
898 struct dwarf2_cu *);
899
a14ed312 900static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 901 struct dwarf2_cu *);
c906108c 902
a14ed312 903static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 904 struct type *, struct dwarf2_cu *);
c906108c 905
a14ed312 906static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 907 struct die_info *, struct type *,
e7c27a73 908 struct dwarf2_cu *);
c906108c 909
a14ed312 910static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 911 struct type *, struct dwarf2_cu *);
c906108c 912
134d01f1
DJ
913static void read_structure_type (struct die_info *, struct dwarf2_cu *);
914
915static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 916
8176b9b8
DC
917static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
918
e7c27a73 919static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 920
e7c27a73 921static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 922
38d518c9 923static const char *namespace_name (struct die_info *die,
e142c38c 924 int *is_anonymous, struct dwarf2_cu *);
38d518c9 925
134d01f1
DJ
926static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
927
928static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 929
e7c27a73 930static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 931
e7c27a73 932static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 933
e7c27a73 934static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 935
7ca2d3a3
DL
936static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
937 struct dwarf2_cu *);
938
e7c27a73 939static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 940
e7c27a73
DJ
941static void read_tag_ptr_to_member_type (struct die_info *,
942 struct dwarf2_cu *);
c906108c 943
e7c27a73 944static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 945
e7c27a73 946static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 947
e7c27a73 948static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73 950static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 951
e7c27a73 952static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 953
fe1b8b76 954static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 955
fe1b8b76 956static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 957 struct dwarf2_cu *,
fe1b8b76 958 gdb_byte **new_info_ptr,
639d11d3
DC
959 struct die_info *parent);
960
fe1b8b76 961static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 962 struct dwarf2_cu *,
fe1b8b76 963 gdb_byte **new_info_ptr,
639d11d3
DC
964 struct die_info *parent);
965
a14ed312 966static void free_die_list (struct die_info *);
c906108c 967
e7c27a73 968static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 969
e142c38c 970static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 971
e142c38c 972static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 973
e142c38c
DJ
974static struct die_info *dwarf2_extension (struct die_info *die,
975 struct dwarf2_cu *);
9219021c 976
a14ed312 977static char *dwarf_tag_name (unsigned int);
c906108c 978
a14ed312 979static char *dwarf_attr_name (unsigned int);
c906108c 980
a14ed312 981static char *dwarf_form_name (unsigned int);
c906108c 982
a14ed312 983static char *dwarf_stack_op_name (unsigned int);
c906108c 984
a14ed312 985static char *dwarf_bool_name (unsigned int);
c906108c 986
a14ed312 987static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
988
989#if 0
a14ed312 990static char *dwarf_cfi_name (unsigned int);
c906108c 991
a14ed312 992struct die_info *copy_die (struct die_info *);
c906108c
SS
993#endif
994
f9aca02d 995static struct die_info *sibling_die (struct die_info *);
c906108c 996
f9aca02d 997static void dump_die (struct die_info *);
c906108c 998
f9aca02d 999static void dump_die_list (struct die_info *);
c906108c 1000
10b3939b
DJ
1001static void store_in_ref_table (unsigned int, struct die_info *,
1002 struct dwarf2_cu *);
c906108c 1003
e142c38c
DJ
1004static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1005 struct dwarf2_cu *);
c906108c 1006
a02abb62
JB
1007static int dwarf2_get_attr_constant_value (struct attribute *, int);
1008
10b3939b
DJ
1009static struct die_info *follow_die_ref (struct die_info *,
1010 struct attribute *,
1011 struct dwarf2_cu *);
c906108c 1012
e142c38c
DJ
1013static struct type *dwarf2_fundamental_type (struct objfile *, int,
1014 struct dwarf2_cu *);
c906108c
SS
1015
1016/* memory allocation interface */
1017
7b5a2f43 1018static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1019
f3dd6933 1020static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1021
a14ed312 1022static struct die_info *dwarf_alloc_die (void);
c906108c 1023
e142c38c 1024static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1025
e142c38c
DJ
1026static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1027 struct dwarf2_cu *);
5fb290d7 1028
2e276125 1029static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1030 char *, bfd *, struct dwarf2_cu *);
2e276125 1031
8e19ed76
PS
1032static int attr_form_is_block (struct attribute *);
1033
4c2df51b
DJ
1034static void
1035dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 1036 struct dwarf2_cu *cu);
4c2df51b 1037
fe1b8b76
JB
1038static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
4bb7a0a7 1040
72bf9492
DJ
1041static void free_stack_comp_unit (void *);
1042
72bf9492
DJ
1043static hashval_t partial_die_hash (const void *item);
1044
1045static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
ae038cb0
DJ
1047static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053static void free_one_comp_unit (void *);
1054
1055static void free_cached_comp_units (void *);
1056
1057static void age_cached_comp_units (void);
1058
1059static void free_one_cached_comp_unit (void *);
1060
1c379e20
DJ
1061static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1c379e20
DJ
1064static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1c379e20 1066
ae038cb0
DJ
1067static void create_all_comp_units (struct objfile *);
1068
10b3939b
DJ
1069static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1070
1071static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1072
1073static void dwarf2_add_dependence (struct dwarf2_cu *,
1074 struct dwarf2_per_cu_data *);
1075
ae038cb0
DJ
1076static void dwarf2_mark (struct dwarf2_cu *);
1077
1078static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1079
72019c9c
GM
1080static void read_set_type (struct die_info *, struct dwarf2_cu *);
1081
1082
c906108c
SS
1083/* Try to locate the sections we need for DWARF 2 debugging
1084 information and return true if we have enough to do something. */
1085
1086int
6502dd73 1087dwarf2_has_info (struct objfile *objfile)
c906108c 1088{
6502dd73
DJ
1089 struct dwarf2_per_objfile *data;
1090
1091 /* Initialize per-objfile state. */
1092 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1093 memset (data, 0, sizeof (*data));
1094 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1095 dwarf2_per_objfile = data;
1096
188dd5d6
DJ
1097 dwarf_info_section = 0;
1098 dwarf_abbrev_section = 0;
1099 dwarf_line_section = 0;
1100 dwarf_str_section = 0;
1101 dwarf_macinfo_section = 0;
1102 dwarf_frame_section = 0;
1103 dwarf_eh_frame_section = 0;
1104 dwarf_ranges_section = 0;
1105 dwarf_loc_section = 0;
af34e669 1106
6502dd73 1107 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1108 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1109}
1110
1111/* This function is mapped across the sections and remembers the
1112 offset and size of each of the debugging sections we are interested
1113 in. */
1114
1115static void
72dca2f5 1116dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1117{
6314a349 1118 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1119 {
2c500098 1120 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1121 dwarf_info_section = sectp;
c906108c 1122 }
6314a349 1123 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1124 {
2c500098 1125 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1126 dwarf_abbrev_section = sectp;
c906108c 1127 }
6314a349 1128 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1129 {
2c500098 1130 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1131 dwarf_line_section = sectp;
c906108c 1132 }
6314a349 1133 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1134 {
2c500098 1135 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1136 dwarf_pubnames_section = sectp;
c906108c 1137 }
6314a349 1138 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1139 {
2c500098 1140 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1141 dwarf_aranges_section = sectp;
c906108c 1142 }
6314a349 1143 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1144 {
2c500098 1145 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1146 dwarf_loc_section = sectp;
c906108c 1147 }
6314a349 1148 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1149 {
2c500098 1150 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1151 dwarf_macinfo_section = sectp;
c906108c 1152 }
6314a349 1153 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1154 {
2c500098 1155 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1156 dwarf_str_section = sectp;
c906108c 1157 }
6314a349 1158 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1159 {
2c500098 1160 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1161 dwarf_frame_section = sectp;
b6af0555 1162 }
6314a349 1163 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1164 {
3799ccc6
EZ
1165 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1166 if (aflag & SEC_HAS_CONTENTS)
1167 {
2c500098 1168 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1169 dwarf_eh_frame_section = sectp;
1170 }
b6af0555 1171 }
6314a349 1172 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1173 {
2c500098 1174 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1175 dwarf_ranges_section = sectp;
af34e669 1176 }
72dca2f5
FR
1177
1178 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1179 && bfd_section_vma (abfd, sectp) == 0)
1180 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1181}
1182
1183/* Build a partial symbol table. */
1184
1185void
fba45db2 1186dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1187{
c906108c
SS
1188 /* We definitely need the .debug_info and .debug_abbrev sections */
1189
6502dd73
DJ
1190 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1191 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1192
1193 if (dwarf_line_section)
6502dd73 1194 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1195 else
6502dd73 1196 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1197
188dd5d6 1198 if (dwarf_str_section)
6502dd73 1199 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1200 else
6502dd73 1201 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1202
188dd5d6 1203 if (dwarf_macinfo_section)
6502dd73 1204 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1205 dwarf_macinfo_section);
2e276125 1206 else
6502dd73 1207 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1208
188dd5d6 1209 if (dwarf_ranges_section)
6502dd73 1210 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1211 else
6502dd73 1212 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1213
188dd5d6 1214 if (dwarf_loc_section)
6502dd73 1215 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1216 else
6502dd73 1217 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1218
ef96bde8
EZ
1219 if (mainline
1220 || (objfile->global_psymbols.size == 0
1221 && objfile->static_psymbols.size == 0))
c906108c
SS
1222 {
1223 init_psymbol_list (objfile, 1024);
1224 }
1225
1226#if 0
1227 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1228 {
d4f3574e 1229 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1230 .debug_pubnames sections */
1231
d4f3574e 1232 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1233 }
1234 else
1235#endif
1236 /* only test this case for now */
c5aa993b 1237 {
c906108c 1238 /* In this case we have to work a bit harder */
d4f3574e 1239 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1240 }
1241}
1242
1243#if 0
1244/* Build the partial symbol table from the information in the
1245 .debug_pubnames and .debug_aranges sections. */
1246
1247static void
fba45db2 1248dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1249{
1250 bfd *abfd = objfile->obfd;
1251 char *aranges_buffer, *pubnames_buffer;
1252 char *aranges_ptr, *pubnames_ptr;
1253 unsigned int entry_length, version, info_offset, info_size;
1254
1255 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1256 dwarf_pubnames_section);
c906108c 1257 pubnames_ptr = pubnames_buffer;
6502dd73 1258 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1259 {
613e1657 1260 struct comp_unit_head cu_header;
891d2f0b 1261 unsigned int bytes_read;
613e1657
KB
1262
1263 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1264 &bytes_read);
613e1657 1265 pubnames_ptr += bytes_read;
c906108c
SS
1266 version = read_1_byte (abfd, pubnames_ptr);
1267 pubnames_ptr += 1;
1268 info_offset = read_4_bytes (abfd, pubnames_ptr);
1269 pubnames_ptr += 4;
1270 info_size = read_4_bytes (abfd, pubnames_ptr);
1271 pubnames_ptr += 4;
1272 }
1273
1274 aranges_buffer = dwarf2_read_section (objfile,
086df311 1275 dwarf_aranges_section);
c906108c
SS
1276
1277}
1278#endif
1279
107d2387 1280/* Read in the comp unit header information from the debug_info at
917c78fc 1281 info_ptr. */
107d2387 1282
fe1b8b76 1283static gdb_byte *
107d2387 1284read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1285 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1286{
1287 int signed_addr;
891d2f0b 1288 unsigned int bytes_read;
613e1657
KB
1289 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1290 &bytes_read);
1291 info_ptr += bytes_read;
107d2387
AC
1292 cu_header->version = read_2_bytes (abfd, info_ptr);
1293 info_ptr += 2;
613e1657
KB
1294 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1295 &bytes_read);
1296 info_ptr += bytes_read;
107d2387
AC
1297 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1298 info_ptr += 1;
1299 signed_addr = bfd_get_sign_extend_vma (abfd);
1300 if (signed_addr < 0)
8e65ff28 1301 internal_error (__FILE__, __LINE__,
e2e0b3e5 1302 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1303 cu_header->signed_addr_p = signed_addr;
1304 return info_ptr;
1305}
1306
fe1b8b76
JB
1307static gdb_byte *
1308partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1309 bfd *abfd)
1310{
fe1b8b76 1311 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1312
1313 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1314
2b949cb6 1315 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1316 error (_("Dwarf Error: wrong version in compilation unit header "
1317 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1318 2, bfd_get_filename (abfd));
1319
1320 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1321 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1322 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1323 (long) header->abbrev_offset,
1324 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1325 bfd_get_filename (abfd));
1326
1327 if (beg_of_comp_unit + header->length + header->initial_length_size
1328 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1329 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1330 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1331 (long) header->length,
1332 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1333 bfd_get_filename (abfd));
1334
1335 return info_ptr;
1336}
1337
aaa75496
JB
1338/* Allocate a new partial symtab for file named NAME and mark this new
1339 partial symtab as being an include of PST. */
1340
1341static void
1342dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1343 struct objfile *objfile)
1344{
1345 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1346
1347 subpst->section_offsets = pst->section_offsets;
1348 subpst->textlow = 0;
1349 subpst->texthigh = 0;
1350
1351 subpst->dependencies = (struct partial_symtab **)
1352 obstack_alloc (&objfile->objfile_obstack,
1353 sizeof (struct partial_symtab *));
1354 subpst->dependencies[0] = pst;
1355 subpst->number_of_dependencies = 1;
1356
1357 subpst->globals_offset = 0;
1358 subpst->n_global_syms = 0;
1359 subpst->statics_offset = 0;
1360 subpst->n_static_syms = 0;
1361 subpst->symtab = NULL;
1362 subpst->read_symtab = pst->read_symtab;
1363 subpst->readin = 0;
1364
1365 /* No private part is necessary for include psymtabs. This property
1366 can be used to differentiate between such include psymtabs and
10b3939b 1367 the regular ones. */
58a9656e 1368 subpst->read_symtab_private = NULL;
aaa75496
JB
1369}
1370
1371/* Read the Line Number Program data and extract the list of files
1372 included by the source file represented by PST. Build an include
1373 partial symtab for each of these included files.
1374
1375 This procedure assumes that there *is* a Line Number Program in
1376 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1377 before calling this procedure. */
1378
1379static void
1380dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1381 struct partial_die_info *pdi,
1382 struct partial_symtab *pst)
1383{
1384 struct objfile *objfile = cu->objfile;
1385 bfd *abfd = objfile->obfd;
1386 struct line_header *lh;
1387
1388 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1389 if (lh == NULL)
1390 return; /* No linetable, so no includes. */
1391
1392 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1393
1394 free_line_header (lh);
1395}
1396
1397
c906108c
SS
1398/* Build the partial symbol table by doing a quick pass through the
1399 .debug_info and .debug_abbrev sections. */
1400
1401static void
fba45db2 1402dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1403{
1404 /* Instead of reading this into a big buffer, we should probably use
1405 mmap() on architectures that support it. (FIXME) */
1406 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1407 gdb_byte *info_ptr;
1408 gdb_byte *beg_of_comp_unit;
c906108c
SS
1409 struct partial_die_info comp_unit_die;
1410 struct partial_symtab *pst;
ae038cb0 1411 struct cleanup *back_to;
e142c38c 1412 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1413
6502dd73 1414 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1415
ae038cb0
DJ
1416 /* Any cached compilation units will be linked by the per-objfile
1417 read_in_chain. Make sure to free them when we're done. */
1418 back_to = make_cleanup (free_cached_comp_units, NULL);
1419
10b3939b
DJ
1420 create_all_comp_units (objfile);
1421
6502dd73 1422 /* Since the objects we're extracting from .debug_info vary in
af703f96 1423 length, only the individual functions to extract them (like
72bf9492 1424 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1425 the buffer is large enough to hold another complete object.
1426
6502dd73
DJ
1427 At the moment, they don't actually check that. If .debug_info
1428 holds just one extra byte after the last compilation unit's dies,
1429 then read_comp_unit_head will happily read off the end of the
1430 buffer. read_partial_die is similarly casual. Those functions
1431 should be fixed.
af703f96
JB
1432
1433 For this loop condition, simply checking whether there's any data
1434 left at all should be sufficient. */
6502dd73
DJ
1435 while (info_ptr < (dwarf2_per_objfile->info_buffer
1436 + dwarf2_per_objfile->info_size))
c906108c 1437 {
f3dd6933 1438 struct cleanup *back_to_inner;
e7c27a73 1439 struct dwarf2_cu cu;
72bf9492
DJ
1440 struct abbrev_info *abbrev;
1441 unsigned int bytes_read;
1442 struct dwarf2_per_cu_data *this_cu;
1443
c906108c 1444 beg_of_comp_unit = info_ptr;
c906108c 1445
72bf9492
DJ
1446 memset (&cu, 0, sizeof (cu));
1447
1448 obstack_init (&cu.comp_unit_obstack);
1449
1450 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1451
e7c27a73 1452 cu.objfile = objfile;
72bf9492 1453 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1454
57349743 1455 /* Complete the cu_header */
6502dd73 1456 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1457 cu.header.first_die_ptr = info_ptr;
1458 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1459
e142c38c
DJ
1460 cu.list_in_scope = &file_symbols;
1461
c906108c 1462 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1463 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1464 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1465
10b3939b 1466 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1467
c906108c 1468 /* Read the compilation unit die */
72bf9492
DJ
1469 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1470 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1471 abfd, info_ptr, &cu);
c906108c
SS
1472
1473 /* Set the language we're debugging */
e142c38c 1474 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1475
1476 /* Allocate a new partial symbol table structure */
d4f3574e 1477 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1478 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1479 comp_unit_die.lowpc,
1480 objfile->global_psymbols.next,
1481 objfile->static_psymbols.next);
1482
ae038cb0
DJ
1483 if (comp_unit_die.dirname)
1484 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1485
10b3939b
DJ
1486 pst->read_symtab_private = (char *) this_cu;
1487
613e1657 1488 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1489
1490 /* Store the function that reads in the rest of the symbol table */
1491 pst->read_symtab = dwarf2_psymtab_to_symtab;
1492
10b3939b
DJ
1493 /* If this compilation unit was already read in, free the
1494 cached copy in order to read it in again. This is
1495 necessary because we skipped some symbols when we first
1496 read in the compilation unit (see load_partial_dies).
1497 This problem could be avoided, but the benefit is
1498 unclear. */
1499 if (this_cu->cu != NULL)
1500 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1501
10b3939b 1502 cu.per_cu = this_cu;
ae038cb0 1503
10b3939b
DJ
1504 /* Note that this is a pointer to our stack frame, being
1505 added to a global data structure. It will be cleaned up
1506 in free_stack_comp_unit when we finish with this
1507 compilation unit. */
1508 this_cu->cu = &cu;
ae038cb0 1509
10b3939b 1510 this_cu->psymtab = pst;
ae038cb0 1511
c906108c
SS
1512 /* Check if comp unit has_children.
1513 If so, read the rest of the partial symbols from this comp unit.
1514 If not, there's no more debug_info for this comp unit. */
1515 if (comp_unit_die.has_children)
1516 {
72bf9492
DJ
1517 struct partial_die_info *first_die;
1518
91c24f0a
DC
1519 lowpc = ((CORE_ADDR) -1);
1520 highpc = ((CORE_ADDR) 0);
1521
72bf9492
DJ
1522 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1523
1524 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1525
91c24f0a
DC
1526 /* If we didn't find a lowpc, set it to highpc to avoid
1527 complaints from `maint check'. */
1528 if (lowpc == ((CORE_ADDR) -1))
1529 lowpc = highpc;
72bf9492 1530
c906108c
SS
1531 /* If the compilation unit didn't have an explicit address range,
1532 then use the information extracted from its child dies. */
0b010bcc 1533 if (! comp_unit_die.has_pc_info)
c906108c 1534 {
c5aa993b 1535 comp_unit_die.lowpc = lowpc;
c906108c
SS
1536 comp_unit_die.highpc = highpc;
1537 }
1538 }
c5aa993b 1539 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1540 pst->texthigh = comp_unit_die.highpc + baseaddr;
1541
1542 pst->n_global_syms = objfile->global_psymbols.next -
1543 (objfile->global_psymbols.list + pst->globals_offset);
1544 pst->n_static_syms = objfile->static_psymbols.next -
1545 (objfile->static_psymbols.list + pst->statics_offset);
1546 sort_pst_symbols (pst);
1547
1548 /* If there is already a psymtab or symtab for a file of this
1549 name, remove it. (If there is a symtab, more drastic things
1550 also happen.) This happens in VxWorks. */
1551 free_named_symtabs (pst->filename);
1552
dd373385
EZ
1553 info_ptr = beg_of_comp_unit + cu.header.length
1554 + cu.header.initial_length_size;
1555
aaa75496
JB
1556 if (comp_unit_die.has_stmt_list)
1557 {
1558 /* Get the list of files included in the current compilation unit,
1559 and build a psymtab for each of them. */
1560 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1561 }
1562
f3dd6933 1563 do_cleanups (back_to_inner);
c906108c 1564 }
ae038cb0
DJ
1565 do_cleanups (back_to);
1566}
1567
1568/* Load the DIEs for a secondary CU into memory. */
1569
1570static void
1571load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1572{
1573 bfd *abfd = objfile->obfd;
fe1b8b76 1574 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1575 struct partial_die_info comp_unit_die;
1576 struct dwarf2_cu *cu;
1577 struct abbrev_info *abbrev;
1578 unsigned int bytes_read;
1579 struct cleanup *back_to;
1580
1581 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1582 beg_of_comp_unit = info_ptr;
1583
1584 cu = xmalloc (sizeof (struct dwarf2_cu));
1585 memset (cu, 0, sizeof (struct dwarf2_cu));
1586
1587 obstack_init (&cu->comp_unit_obstack);
1588
1589 cu->objfile = objfile;
1590 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1591
1592 /* Complete the cu_header. */
1593 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1594 cu->header.first_die_ptr = info_ptr;
1595 cu->header.cu_head_ptr = beg_of_comp_unit;
1596
1597 /* Read the abbrevs for this compilation unit into a table. */
1598 dwarf2_read_abbrevs (abfd, cu);
1599 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1600
1601 /* Read the compilation unit die. */
1602 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1603 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1604 abfd, info_ptr, cu);
1605
1606 /* Set the language we're debugging. */
1607 set_cu_language (comp_unit_die.language, cu);
1608
1609 /* Link this compilation unit into the compilation unit tree. */
1610 this_cu->cu = cu;
1611 cu->per_cu = this_cu;
1612
1613 /* Check if comp unit has_children.
1614 If so, read the rest of the partial symbols from this comp unit.
1615 If not, there's no more debug_info for this comp unit. */
1616 if (comp_unit_die.has_children)
1617 load_partial_dies (abfd, info_ptr, 0, cu);
1618
1619 do_cleanups (back_to);
1620}
1621
1622/* Create a list of all compilation units in OBJFILE. We do this only
1623 if an inter-comp-unit reference is found; presumably if there is one,
1624 there will be many, and one will occur early in the .debug_info section.
1625 So there's no point in building this list incrementally. */
1626
1627static void
1628create_all_comp_units (struct objfile *objfile)
1629{
1630 int n_allocated;
1631 int n_comp_units;
1632 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1633 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1634
1635 n_comp_units = 0;
1636 n_allocated = 10;
1637 all_comp_units = xmalloc (n_allocated
1638 * sizeof (struct dwarf2_per_cu_data *));
1639
1640 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1641 {
1642 struct comp_unit_head cu_header;
fe1b8b76 1643 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1644 struct dwarf2_per_cu_data *this_cu;
1645 unsigned long offset;
891d2f0b 1646 unsigned int bytes_read;
ae038cb0
DJ
1647
1648 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1649
1650 /* Read just enough information to find out where the next
1651 compilation unit is. */
dd373385 1652 cu_header.initial_length_size = 0;
ae038cb0
DJ
1653 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1654 &cu_header, &bytes_read);
1655
1656 /* Save the compilation unit for later lookup. */
1657 this_cu = obstack_alloc (&objfile->objfile_obstack,
1658 sizeof (struct dwarf2_per_cu_data));
1659 memset (this_cu, 0, sizeof (*this_cu));
1660 this_cu->offset = offset;
1661 this_cu->length = cu_header.length + cu_header.initial_length_size;
1662
1663 if (n_comp_units == n_allocated)
1664 {
1665 n_allocated *= 2;
1666 all_comp_units = xrealloc (all_comp_units,
1667 n_allocated
1668 * sizeof (struct dwarf2_per_cu_data *));
1669 }
1670 all_comp_units[n_comp_units++] = this_cu;
1671
1672 info_ptr = info_ptr + this_cu->length;
1673 }
1674
1675 dwarf2_per_objfile->all_comp_units
1676 = obstack_alloc (&objfile->objfile_obstack,
1677 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1678 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1679 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1680 xfree (all_comp_units);
1681 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1682}
1683
72bf9492
DJ
1684/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1685 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1686 in CU. */
c906108c 1687
72bf9492
DJ
1688static void
1689scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1690 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1691{
e7c27a73 1692 struct objfile *objfile = cu->objfile;
c906108c 1693 bfd *abfd = objfile->obfd;
72bf9492 1694 struct partial_die_info *pdi;
c906108c 1695
91c24f0a
DC
1696 /* Now, march along the PDI's, descending into ones which have
1697 interesting children but skipping the children of the other ones,
1698 until we reach the end of the compilation unit. */
c906108c 1699
72bf9492 1700 pdi = first_die;
91c24f0a 1701
72bf9492
DJ
1702 while (pdi != NULL)
1703 {
1704 fixup_partial_die (pdi, cu);
c906108c 1705
91c24f0a
DC
1706 /* Anonymous namespaces have no name but have interesting
1707 children, so we need to look at them. Ditto for anonymous
1708 enums. */
933c6fe4 1709
72bf9492
DJ
1710 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1711 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1712 {
72bf9492 1713 switch (pdi->tag)
c906108c
SS
1714 {
1715 case DW_TAG_subprogram:
72bf9492 1716 if (pdi->has_pc_info)
c906108c 1717 {
72bf9492 1718 if (pdi->lowpc < *lowpc)
c906108c 1719 {
72bf9492 1720 *lowpc = pdi->lowpc;
c906108c 1721 }
72bf9492 1722 if (pdi->highpc > *highpc)
c906108c 1723 {
72bf9492 1724 *highpc = pdi->highpc;
c906108c 1725 }
72bf9492 1726 if (!pdi->is_declaration)
c906108c 1727 {
72bf9492 1728 add_partial_symbol (pdi, cu);
c906108c
SS
1729 }
1730 }
1731 break;
1732 case DW_TAG_variable:
1733 case DW_TAG_typedef:
91c24f0a 1734 case DW_TAG_union_type:
72bf9492 1735 if (!pdi->is_declaration)
63d06c5c 1736 {
72bf9492 1737 add_partial_symbol (pdi, cu);
63d06c5c
DC
1738 }
1739 break;
c906108c
SS
1740 case DW_TAG_class_type:
1741 case DW_TAG_structure_type:
72bf9492 1742 if (!pdi->is_declaration)
c906108c 1743 {
72bf9492 1744 add_partial_symbol (pdi, cu);
c906108c
SS
1745 }
1746 break;
91c24f0a 1747 case DW_TAG_enumeration_type:
72bf9492
DJ
1748 if (!pdi->is_declaration)
1749 add_partial_enumeration (pdi, cu);
c906108c
SS
1750 break;
1751 case DW_TAG_base_type:
a02abb62 1752 case DW_TAG_subrange_type:
c906108c 1753 /* File scope base type definitions are added to the partial
c5aa993b 1754 symbol table. */
72bf9492 1755 add_partial_symbol (pdi, cu);
c906108c 1756 break;
d9fa45fe 1757 case DW_TAG_namespace:
72bf9492 1758 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1759 break;
c906108c
SS
1760 default:
1761 break;
1762 }
1763 }
1764
72bf9492
DJ
1765 /* If the die has a sibling, skip to the sibling. */
1766
1767 pdi = pdi->die_sibling;
1768 }
1769}
1770
1771/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1772
72bf9492 1773 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1774 name is concatenated with "::" and the partial DIE's name. For
1775 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1776 Enumerators are an exception; they use the scope of their parent
1777 enumeration type, i.e. the name of the enumeration type is not
1778 prepended to the enumerator.
91c24f0a 1779
72bf9492
DJ
1780 There are two complexities. One is DW_AT_specification; in this
1781 case "parent" means the parent of the target of the specification,
1782 instead of the direct parent of the DIE. The other is compilers
1783 which do not emit DW_TAG_namespace; in this case we try to guess
1784 the fully qualified name of structure types from their members'
1785 linkage names. This must be done using the DIE's children rather
1786 than the children of any DW_AT_specification target. We only need
1787 to do this for structures at the top level, i.e. if the target of
1788 any DW_AT_specification (if any; otherwise the DIE itself) does not
1789 have a parent. */
1790
1791/* Compute the scope prefix associated with PDI's parent, in
1792 compilation unit CU. The result will be allocated on CU's
1793 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1794 field. NULL is returned if no prefix is necessary. */
1795static char *
1796partial_die_parent_scope (struct partial_die_info *pdi,
1797 struct dwarf2_cu *cu)
1798{
1799 char *grandparent_scope;
1800 struct partial_die_info *parent, *real_pdi;
91c24f0a 1801
72bf9492
DJ
1802 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1803 then this means the parent of the specification DIE. */
1804
1805 real_pdi = pdi;
72bf9492 1806 while (real_pdi->has_specification)
10b3939b 1807 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1808
1809 parent = real_pdi->die_parent;
1810 if (parent == NULL)
1811 return NULL;
1812
1813 if (parent->scope_set)
1814 return parent->scope;
1815
1816 fixup_partial_die (parent, cu);
1817
10b3939b 1818 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1819
1820 if (parent->tag == DW_TAG_namespace
1821 || parent->tag == DW_TAG_structure_type
1822 || parent->tag == DW_TAG_class_type
1823 || parent->tag == DW_TAG_union_type)
1824 {
1825 if (grandparent_scope == NULL)
1826 parent->scope = parent->name;
1827 else
987504bb
JJ
1828 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1829 parent->name, cu);
72bf9492
DJ
1830 }
1831 else if (parent->tag == DW_TAG_enumeration_type)
1832 /* Enumerators should not get the name of the enumeration as a prefix. */
1833 parent->scope = grandparent_scope;
1834 else
1835 {
1836 /* FIXME drow/2004-04-01: What should we be doing with
1837 function-local names? For partial symbols, we should probably be
1838 ignoring them. */
1839 complaint (&symfile_complaints,
e2e0b3e5 1840 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1841 parent->tag, pdi->offset);
1842 parent->scope = grandparent_scope;
c906108c
SS
1843 }
1844
72bf9492
DJ
1845 parent->scope_set = 1;
1846 return parent->scope;
1847}
1848
1849/* Return the fully scoped name associated with PDI, from compilation unit
1850 CU. The result will be allocated with malloc. */
1851static char *
1852partial_die_full_name (struct partial_die_info *pdi,
1853 struct dwarf2_cu *cu)
1854{
1855 char *parent_scope;
1856
1857 parent_scope = partial_die_parent_scope (pdi, cu);
1858 if (parent_scope == NULL)
1859 return NULL;
1860 else
987504bb 1861 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1862}
1863
1864static void
72bf9492 1865add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1866{
e7c27a73 1867 struct objfile *objfile = cu->objfile;
c906108c 1868 CORE_ADDR addr = 0;
72bf9492
DJ
1869 char *actual_name;
1870 const char *my_prefix;
5c4e30ca 1871 const struct partial_symbol *psym = NULL;
e142c38c 1872 CORE_ADDR baseaddr;
72bf9492 1873 int built_actual_name = 0;
e142c38c
DJ
1874
1875 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1876
72bf9492
DJ
1877 actual_name = NULL;
1878
1879 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1880 {
72bf9492
DJ
1881 actual_name = partial_die_full_name (pdi, cu);
1882 if (actual_name)
1883 built_actual_name = 1;
63d06c5c
DC
1884 }
1885
72bf9492
DJ
1886 if (actual_name == NULL)
1887 actual_name = pdi->name;
1888
c906108c
SS
1889 switch (pdi->tag)
1890 {
1891 case DW_TAG_subprogram:
1892 if (pdi->is_external)
1893 {
38d518c9 1894 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1895 mst_text, objfile); */
38d518c9 1896 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1897 VAR_DOMAIN, LOC_BLOCK,
1898 &objfile->global_psymbols,
1899 0, pdi->lowpc + baseaddr,
e142c38c 1900 cu->language, objfile);
c906108c
SS
1901 }
1902 else
1903 {
38d518c9 1904 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1905 mst_file_text, objfile); */
38d518c9 1906 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1907 VAR_DOMAIN, LOC_BLOCK,
1908 &objfile->static_psymbols,
1909 0, pdi->lowpc + baseaddr,
e142c38c 1910 cu->language, objfile);
c906108c
SS
1911 }
1912 break;
1913 case DW_TAG_variable:
1914 if (pdi->is_external)
1915 {
1916 /* Global Variable.
1917 Don't enter into the minimal symbol tables as there is
1918 a minimal symbol table entry from the ELF symbols already.
1919 Enter into partial symbol table if it has a location
1920 descriptor or a type.
1921 If the location descriptor is missing, new_symbol will create
1922 a LOC_UNRESOLVED symbol, the address of the variable will then
1923 be determined from the minimal symbol table whenever the variable
1924 is referenced.
1925 The address for the partial symbol table entry is not
1926 used by GDB, but it comes in handy for debugging partial symbol
1927 table building. */
1928
1929 if (pdi->locdesc)
e7c27a73 1930 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1931 if (pdi->locdesc || pdi->has_type)
38d518c9 1932 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1933 VAR_DOMAIN, LOC_STATIC,
1934 &objfile->global_psymbols,
1935 0, addr + baseaddr,
e142c38c 1936 cu->language, objfile);
c906108c
SS
1937 }
1938 else
1939 {
1940 /* Static Variable. Skip symbols without location descriptors. */
1941 if (pdi->locdesc == NULL)
1942 return;
e7c27a73 1943 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1944 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1945 mst_file_data, objfile); */
38d518c9 1946 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1947 VAR_DOMAIN, LOC_STATIC,
1948 &objfile->static_psymbols,
1949 0, addr + baseaddr,
e142c38c 1950 cu->language, objfile);
c906108c
SS
1951 }
1952 break;
1953 case DW_TAG_typedef:
1954 case DW_TAG_base_type:
a02abb62 1955 case DW_TAG_subrange_type:
38d518c9 1956 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1957 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1958 &objfile->static_psymbols,
e142c38c 1959 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1960 break;
72bf9492
DJ
1961 case DW_TAG_namespace:
1962 add_psymbol_to_list (actual_name, strlen (actual_name),
1963 VAR_DOMAIN, LOC_TYPEDEF,
1964 &objfile->global_psymbols,
1965 0, (CORE_ADDR) 0, cu->language, objfile);
1966 break;
c906108c
SS
1967 case DW_TAG_class_type:
1968 case DW_TAG_structure_type:
1969 case DW_TAG_union_type:
1970 case DW_TAG_enumeration_type:
1971 /* Skip aggregate types without children, these are external
c5aa993b 1972 references. */
63d06c5c
DC
1973 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1974 static vs. global. */
c906108c
SS
1975 if (pdi->has_children == 0)
1976 return;
38d518c9 1977 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1978 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
1979 (cu->language == language_cplus
1980 || cu->language == language_java)
63d06c5c
DC
1981 ? &objfile->global_psymbols
1982 : &objfile->static_psymbols,
e142c38c 1983 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1984
987504bb
JJ
1985 if (cu->language == language_cplus
1986 || cu->language == language_java)
c906108c 1987 {
987504bb 1988 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 1989 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1990 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 1991 &objfile->global_psymbols,
e142c38c 1992 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1993 }
1994 break;
1995 case DW_TAG_enumerator:
38d518c9 1996 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1997 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
1998 (cu->language == language_cplus
1999 || cu->language == language_java)
f6fe98ef
DJ
2000 ? &objfile->global_psymbols
2001 : &objfile->static_psymbols,
e142c38c 2002 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2003 break;
2004 default:
2005 break;
2006 }
5c4e30ca
DC
2007
2008 /* Check to see if we should scan the name for possible namespace
2009 info. Only do this if this is C++, if we don't have namespace
2010 debugging info in the file, if the psym is of an appropriate type
2011 (otherwise we'll have psym == NULL), and if we actually had a
2012 mangled name to begin with. */
2013
72bf9492
DJ
2014 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2015 cases which do not set PSYM above? */
2016
e142c38c 2017 if (cu->language == language_cplus
72bf9492 2018 && cu->has_namespace_info == 0
5c4e30ca
DC
2019 && psym != NULL
2020 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2021 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2022 objfile);
72bf9492
DJ
2023
2024 if (built_actual_name)
2025 xfree (actual_name);
c906108c
SS
2026}
2027
72bf9492
DJ
2028/* Determine whether a die of type TAG living in a C++ class or
2029 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2030 name listed in the die. */
2031
2032static int
72bf9492 2033pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2034{
63d06c5c
DC
2035 switch (tag)
2036 {
72bf9492 2037 case DW_TAG_namespace:
63d06c5c
DC
2038 case DW_TAG_typedef:
2039 case DW_TAG_class_type:
2040 case DW_TAG_structure_type:
2041 case DW_TAG_union_type:
2042 case DW_TAG_enumeration_type:
2043 case DW_TAG_enumerator:
2044 return 1;
2045 default:
2046 return 0;
2047 }
2048}
2049
5c4e30ca
DC
2050/* Read a partial die corresponding to a namespace; also, add a symbol
2051 corresponding to that namespace to the symbol table. NAMESPACE is
2052 the name of the enclosing namespace. */
91c24f0a 2053
72bf9492
DJ
2054static void
2055add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2056 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2057 struct dwarf2_cu *cu)
91c24f0a 2058{
e7c27a73 2059 struct objfile *objfile = cu->objfile;
5c4e30ca 2060
72bf9492 2061 /* Add a symbol for the namespace. */
e7c27a73 2062
72bf9492 2063 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2064
2065 /* Now scan partial symbols in that namespace. */
2066
91c24f0a 2067 if (pdi->has_children)
72bf9492 2068 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2069}
2070
72bf9492
DJ
2071/* See if we can figure out if the class lives in a namespace. We do
2072 this by looking for a member function; its demangled name will
2073 contain namespace info, if there is any. */
63d06c5c 2074
72bf9492
DJ
2075static void
2076guess_structure_name (struct partial_die_info *struct_pdi,
2077 struct dwarf2_cu *cu)
63d06c5c 2078{
987504bb
JJ
2079 if ((cu->language == language_cplus
2080 || cu->language == language_java)
72bf9492 2081 && cu->has_namespace_info == 0
63d06c5c
DC
2082 && struct_pdi->has_children)
2083 {
63d06c5c
DC
2084 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2085 what template types look like, because the demangler
2086 frequently doesn't give the same name as the debug info. We
2087 could fix this by only using the demangled name to get the
134d01f1 2088 prefix (but see comment in read_structure_type). */
63d06c5c 2089
72bf9492
DJ
2090 struct partial_die_info *child_pdi = struct_pdi->die_child;
2091 struct partial_die_info *real_pdi;
5d51ca54 2092
72bf9492
DJ
2093 /* If this DIE (this DIE's specification, if any) has a parent, then
2094 we should not do this. We'll prepend the parent's fully qualified
2095 name when we create the partial symbol. */
5d51ca54 2096
72bf9492 2097 real_pdi = struct_pdi;
72bf9492 2098 while (real_pdi->has_specification)
10b3939b 2099 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2100
72bf9492
DJ
2101 if (real_pdi->die_parent != NULL)
2102 return;
63d06c5c 2103
72bf9492
DJ
2104 while (child_pdi != NULL)
2105 {
2106 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2107 {
72bf9492 2108 char *actual_class_name
31c27f77
JJ
2109 = language_class_name_from_physname (cu->language_defn,
2110 child_pdi->name);
63d06c5c 2111 if (actual_class_name != NULL)
72bf9492
DJ
2112 {
2113 struct_pdi->name
2114 = obsavestring (actual_class_name,
2115 strlen (actual_class_name),
2116 &cu->comp_unit_obstack);
2117 xfree (actual_class_name);
2118 }
63d06c5c
DC
2119 break;
2120 }
72bf9492
DJ
2121
2122 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2123 }
2124 }
63d06c5c
DC
2125}
2126
91c24f0a
DC
2127/* Read a partial die corresponding to an enumeration type. */
2128
72bf9492
DJ
2129static void
2130add_partial_enumeration (struct partial_die_info *enum_pdi,
2131 struct dwarf2_cu *cu)
91c24f0a 2132{
e7c27a73 2133 struct objfile *objfile = cu->objfile;
91c24f0a 2134 bfd *abfd = objfile->obfd;
72bf9492 2135 struct partial_die_info *pdi;
91c24f0a
DC
2136
2137 if (enum_pdi->name != NULL)
72bf9492
DJ
2138 add_partial_symbol (enum_pdi, cu);
2139
2140 pdi = enum_pdi->die_child;
2141 while (pdi)
91c24f0a 2142 {
72bf9492 2143 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2144 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2145 else
72bf9492
DJ
2146 add_partial_symbol (pdi, cu);
2147 pdi = pdi->die_sibling;
91c24f0a 2148 }
91c24f0a
DC
2149}
2150
4bb7a0a7
DJ
2151/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2152 Return the corresponding abbrev, or NULL if the number is zero (indicating
2153 an empty DIE). In either case *BYTES_READ will be set to the length of
2154 the initial number. */
2155
2156static struct abbrev_info *
fe1b8b76 2157peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2158 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2159{
2160 bfd *abfd = cu->objfile->obfd;
2161 unsigned int abbrev_number;
2162 struct abbrev_info *abbrev;
2163
2164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2165
2166 if (abbrev_number == 0)
2167 return NULL;
2168
2169 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2170 if (!abbrev)
2171 {
8a3fe4f8 2172 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2173 bfd_get_filename (abfd));
2174 }
2175
2176 return abbrev;
2177}
2178
2179/* Scan the debug information for CU starting at INFO_PTR. Returns a
2180 pointer to the end of a series of DIEs, terminated by an empty
2181 DIE. Any children of the skipped DIEs will also be skipped. */
2182
fe1b8b76
JB
2183static gdb_byte *
2184skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2185{
2186 struct abbrev_info *abbrev;
2187 unsigned int bytes_read;
2188
2189 while (1)
2190 {
2191 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2192 if (abbrev == NULL)
2193 return info_ptr + bytes_read;
2194 else
2195 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2196 }
2197}
2198
2199/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2200 should point just after the initial uleb128 of a DIE, and the
2201 abbrev corresponding to that skipped uleb128 should be passed in
2202 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2203 children. */
2204
fe1b8b76
JB
2205static gdb_byte *
2206skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2207 struct dwarf2_cu *cu)
2208{
2209 unsigned int bytes_read;
2210 struct attribute attr;
2211 bfd *abfd = cu->objfile->obfd;
2212 unsigned int form, i;
2213
2214 for (i = 0; i < abbrev->num_attrs; i++)
2215 {
2216 /* The only abbrev we care about is DW_AT_sibling. */
2217 if (abbrev->attrs[i].name == DW_AT_sibling)
2218 {
2219 read_attribute (&attr, &abbrev->attrs[i],
2220 abfd, info_ptr, cu);
2221 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2222 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2223 else
6502dd73
DJ
2224 return dwarf2_per_objfile->info_buffer
2225 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2226 }
2227
2228 /* If it isn't DW_AT_sibling, skip this attribute. */
2229 form = abbrev->attrs[i].form;
2230 skip_attribute:
2231 switch (form)
2232 {
2233 case DW_FORM_addr:
2234 case DW_FORM_ref_addr:
2235 info_ptr += cu->header.addr_size;
2236 break;
2237 case DW_FORM_data1:
2238 case DW_FORM_ref1:
2239 case DW_FORM_flag:
2240 info_ptr += 1;
2241 break;
2242 case DW_FORM_data2:
2243 case DW_FORM_ref2:
2244 info_ptr += 2;
2245 break;
2246 case DW_FORM_data4:
2247 case DW_FORM_ref4:
2248 info_ptr += 4;
2249 break;
2250 case DW_FORM_data8:
2251 case DW_FORM_ref8:
2252 info_ptr += 8;
2253 break;
2254 case DW_FORM_string:
2255 read_string (abfd, info_ptr, &bytes_read);
2256 info_ptr += bytes_read;
2257 break;
2258 case DW_FORM_strp:
2259 info_ptr += cu->header.offset_size;
2260 break;
2261 case DW_FORM_block:
2262 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2263 info_ptr += bytes_read;
2264 break;
2265 case DW_FORM_block1:
2266 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2267 break;
2268 case DW_FORM_block2:
2269 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2270 break;
2271 case DW_FORM_block4:
2272 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2273 break;
2274 case DW_FORM_sdata:
2275 case DW_FORM_udata:
2276 case DW_FORM_ref_udata:
2277 info_ptr = skip_leb128 (abfd, info_ptr);
2278 break;
2279 case DW_FORM_indirect:
2280 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2281 info_ptr += bytes_read;
2282 /* We need to continue parsing from here, so just go back to
2283 the top. */
2284 goto skip_attribute;
2285
2286 default:
8a3fe4f8 2287 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2288 dwarf_form_name (form),
2289 bfd_get_filename (abfd));
2290 }
2291 }
2292
2293 if (abbrev->has_children)
2294 return skip_children (info_ptr, cu);
2295 else
2296 return info_ptr;
2297}
2298
2299/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2300 the next DIE after ORIG_PDI. */
91c24f0a 2301
fe1b8b76
JB
2302static gdb_byte *
2303locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2304 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2305{
2306 /* Do we know the sibling already? */
72bf9492 2307
91c24f0a
DC
2308 if (orig_pdi->sibling)
2309 return orig_pdi->sibling;
2310
2311 /* Are there any children to deal with? */
2312
2313 if (!orig_pdi->has_children)
2314 return info_ptr;
2315
4bb7a0a7 2316 /* Skip the children the long way. */
91c24f0a 2317
4bb7a0a7 2318 return skip_children (info_ptr, cu);
91c24f0a
DC
2319}
2320
c906108c
SS
2321/* Expand this partial symbol table into a full symbol table. */
2322
2323static void
fba45db2 2324dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2325{
2326 /* FIXME: This is barely more than a stub. */
2327 if (pst != NULL)
2328 {
2329 if (pst->readin)
2330 {
8a3fe4f8 2331 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2332 }
2333 else
2334 {
2335 if (info_verbose)
2336 {
a3f17187 2337 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2338 gdb_flush (gdb_stdout);
2339 }
2340
10b3939b
DJ
2341 /* Restore our global data. */
2342 dwarf2_per_objfile = objfile_data (pst->objfile,
2343 dwarf2_objfile_data_key);
2344
c906108c
SS
2345 psymtab_to_symtab_1 (pst);
2346
2347 /* Finish up the debug error message. */
2348 if (info_verbose)
a3f17187 2349 printf_filtered (_("done.\n"));
c906108c
SS
2350 }
2351 }
2352}
2353
10b3939b
DJ
2354/* Add PER_CU to the queue. */
2355
2356static void
2357queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2358{
2359 struct dwarf2_queue_item *item;
2360
2361 per_cu->queued = 1;
2362 item = xmalloc (sizeof (*item));
2363 item->per_cu = per_cu;
2364 item->next = NULL;
2365
2366 if (dwarf2_queue == NULL)
2367 dwarf2_queue = item;
2368 else
2369 dwarf2_queue_tail->next = item;
2370
2371 dwarf2_queue_tail = item;
2372}
2373
2374/* Process the queue. */
2375
2376static void
2377process_queue (struct objfile *objfile)
2378{
2379 struct dwarf2_queue_item *item, *next_item;
2380
2381 /* Initially, there is just one item on the queue. Load its DIEs,
2382 and the DIEs of any other compilation units it requires,
2383 transitively. */
2384
2385 for (item = dwarf2_queue; item != NULL; item = item->next)
2386 {
2387 /* Read in this compilation unit. This may add new items to
2388 the end of the queue. */
2389 load_full_comp_unit (item->per_cu);
2390
2391 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2392 dwarf2_per_objfile->read_in_chain = item->per_cu;
2393
2394 /* If this compilation unit has already had full symbols created,
2395 reset the TYPE fields in each DIE. */
2396 if (item->per_cu->psymtab->readin)
2397 reset_die_and_siblings_types (item->per_cu->cu->dies,
2398 item->per_cu->cu);
2399 }
2400
2401 /* Now everything left on the queue needs to be read in. Process
2402 them, one at a time, removing from the queue as we finish. */
2403 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2404 {
2405 if (!item->per_cu->psymtab->readin)
2406 process_full_comp_unit (item->per_cu);
2407
2408 item->per_cu->queued = 0;
2409 next_item = item->next;
2410 xfree (item);
2411 }
2412
2413 dwarf2_queue_tail = NULL;
2414}
2415
2416/* Free all allocated queue entries. This function only releases anything if
2417 an error was thrown; if the queue was processed then it would have been
2418 freed as we went along. */
2419
2420static void
2421dwarf2_release_queue (void *dummy)
2422{
2423 struct dwarf2_queue_item *item, *last;
2424
2425 item = dwarf2_queue;
2426 while (item)
2427 {
2428 /* Anything still marked queued is likely to be in an
2429 inconsistent state, so discard it. */
2430 if (item->per_cu->queued)
2431 {
2432 if (item->per_cu->cu != NULL)
2433 free_one_cached_comp_unit (item->per_cu->cu);
2434 item->per_cu->queued = 0;
2435 }
2436
2437 last = item;
2438 item = item->next;
2439 xfree (last);
2440 }
2441
2442 dwarf2_queue = dwarf2_queue_tail = NULL;
2443}
2444
2445/* Read in full symbols for PST, and anything it depends on. */
2446
c906108c 2447static void
fba45db2 2448psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2449{
10b3939b 2450 struct dwarf2_per_cu_data *per_cu;
c906108c 2451 struct cleanup *back_to;
aaa75496
JB
2452 int i;
2453
2454 for (i = 0; i < pst->number_of_dependencies; i++)
2455 if (!pst->dependencies[i]->readin)
2456 {
2457 /* Inform about additional files that need to be read in. */
2458 if (info_verbose)
2459 {
a3f17187 2460 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2461 fputs_filtered (" ", gdb_stdout);
2462 wrap_here ("");
2463 fputs_filtered ("and ", gdb_stdout);
2464 wrap_here ("");
2465 printf_filtered ("%s...", pst->dependencies[i]->filename);
2466 wrap_here (""); /* Flush output */
2467 gdb_flush (gdb_stdout);
2468 }
2469 psymtab_to_symtab_1 (pst->dependencies[i]);
2470 }
2471
10b3939b
DJ
2472 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2473
2474 if (per_cu == NULL)
aaa75496
JB
2475 {
2476 /* It's an include file, no symbols to read for it.
2477 Everything is in the parent symtab. */
2478 pst->readin = 1;
2479 return;
2480 }
c906108c 2481
10b3939b
DJ
2482 back_to = make_cleanup (dwarf2_release_queue, NULL);
2483
2484 queue_comp_unit (per_cu);
2485
2486 process_queue (pst->objfile);
2487
2488 /* Age the cache, releasing compilation units that have not
2489 been used recently. */
2490 age_cached_comp_units ();
2491
2492 do_cleanups (back_to);
2493}
2494
2495/* Load the DIEs associated with PST and PER_CU into memory. */
2496
2497static struct dwarf2_cu *
2498load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2499{
2500 struct partial_symtab *pst = per_cu->psymtab;
2501 bfd *abfd = pst->objfile->obfd;
2502 struct dwarf2_cu *cu;
2503 unsigned long offset;
fe1b8b76 2504 gdb_byte *info_ptr;
10b3939b
DJ
2505 struct cleanup *back_to, *free_cu_cleanup;
2506 struct attribute *attr;
2507 CORE_ADDR baseaddr;
6502dd73 2508
c906108c 2509 /* Set local variables from the partial symbol table info. */
10b3939b 2510 offset = per_cu->offset;
6502dd73
DJ
2511
2512 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2513
10b3939b
DJ
2514 cu = xmalloc (sizeof (struct dwarf2_cu));
2515 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2516
10b3939b
DJ
2517 /* If an error occurs while loading, release our storage. */
2518 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2519
10b3939b 2520 cu->objfile = pst->objfile;
e7c27a73 2521
c906108c 2522 /* read in the comp_unit header */
10b3939b 2523 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2524
2525 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2526 dwarf2_read_abbrevs (abfd, cu);
2527 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2528
2529 cu->header.offset = offset;
c906108c 2530
10b3939b
DJ
2531 cu->per_cu = per_cu;
2532 per_cu->cu = cu;
e142c38c 2533
10b3939b
DJ
2534 /* We use this obstack for block values in dwarf_alloc_block. */
2535 obstack_init (&cu->comp_unit_obstack);
2536
2537 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2538
2539 /* We try not to read any attributes in this function, because not
2540 all objfiles needed for references have been loaded yet, and symbol
2541 table processing isn't initialized. But we have to set the CU language,
2542 or we won't be able to build types correctly. */
2543 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2544 if (attr)
2545 set_cu_language (DW_UNSND (attr), cu);
2546 else
2547 set_cu_language (language_minimal, cu);
2548
2549 do_cleanups (back_to);
e142c38c 2550
10b3939b
DJ
2551 /* We've successfully allocated this compilation unit. Let our caller
2552 clean it up when finished with it. */
2553 discard_cleanups (free_cu_cleanup);
c906108c 2554
10b3939b
DJ
2555 return cu;
2556}
2557
2558/* Generate full symbol information for PST and CU, whose DIEs have
2559 already been loaded into memory. */
2560
2561static void
2562process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2563{
2564 struct partial_symtab *pst = per_cu->psymtab;
2565 struct dwarf2_cu *cu = per_cu->cu;
2566 struct objfile *objfile = pst->objfile;
2567 bfd *abfd = objfile->obfd;
2568 CORE_ADDR lowpc, highpc;
2569 struct symtab *symtab;
2570 struct cleanup *back_to;
2571 struct attribute *attr;
2572 CORE_ADDR baseaddr;
2573
2574 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2575
2576 /* We're in the global namespace. */
2577 processing_current_prefix = "";
2578
2579 buildsym_init ();
2580 back_to = make_cleanup (really_free_pendings, NULL);
2581
2582 cu->list_in_scope = &file_symbols;
c906108c 2583
0d53c4c4
DJ
2584 /* Find the base address of the compilation unit for range lists and
2585 location lists. It will normally be specified by DW_AT_low_pc.
2586 In DWARF-3 draft 4, the base address could be overridden by
2587 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2588 compilation units with discontinuous ranges. */
2589
10b3939b
DJ
2590 cu->header.base_known = 0;
2591 cu->header.base_address = 0;
0d53c4c4 2592
10b3939b 2593 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2594 if (attr)
2595 {
10b3939b
DJ
2596 cu->header.base_address = DW_ADDR (attr);
2597 cu->header.base_known = 1;
0d53c4c4
DJ
2598 }
2599 else
2600 {
10b3939b 2601 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2602 if (attr)
2603 {
10b3939b
DJ
2604 cu->header.base_address = DW_ADDR (attr);
2605 cu->header.base_known = 1;
0d53c4c4
DJ
2606 }
2607 }
2608
c906108c 2609 /* Do line number decoding in read_file_scope () */
10b3939b 2610 process_die (cu->dies, cu);
c906108c 2611
fae299cd
DC
2612 /* Some compilers don't define a DW_AT_high_pc attribute for the
2613 compilation unit. If the DW_AT_high_pc is missing, synthesize
2614 it, by scanning the DIE's below the compilation unit. */
10b3939b 2615 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2616
613e1657 2617 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2618
2619 /* Set symtab language to language from DW_AT_language.
2620 If the compilation is from a C file generated by language preprocessors,
2621 do not set the language if it was already deduced by start_subfile. */
2622 if (symtab != NULL
10b3939b 2623 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2624 {
10b3939b 2625 symtab->language = cu->language;
c906108c
SS
2626 }
2627 pst->symtab = symtab;
2628 pst->readin = 1;
c906108c
SS
2629
2630 do_cleanups (back_to);
2631}
2632
2633/* Process a die and its children. */
2634
2635static void
e7c27a73 2636process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2637{
2638 switch (die->tag)
2639 {
2640 case DW_TAG_padding:
2641 break;
2642 case DW_TAG_compile_unit:
e7c27a73 2643 read_file_scope (die, cu);
c906108c
SS
2644 break;
2645 case DW_TAG_subprogram:
e7c27a73
DJ
2646 read_subroutine_type (die, cu);
2647 read_func_scope (die, cu);
c906108c
SS
2648 break;
2649 case DW_TAG_inlined_subroutine:
2650 /* FIXME: These are ignored for now.
c5aa993b
JM
2651 They could be used to set breakpoints on all inlined instances
2652 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2653 break;
2654 case DW_TAG_lexical_block:
14898363
L
2655 case DW_TAG_try_block:
2656 case DW_TAG_catch_block:
e7c27a73 2657 read_lexical_block_scope (die, cu);
c906108c
SS
2658 break;
2659 case DW_TAG_class_type:
2660 case DW_TAG_structure_type:
2661 case DW_TAG_union_type:
134d01f1
DJ
2662 read_structure_type (die, cu);
2663 process_structure_scope (die, cu);
c906108c
SS
2664 break;
2665 case DW_TAG_enumeration_type:
134d01f1
DJ
2666 read_enumeration_type (die, cu);
2667 process_enumeration_scope (die, cu);
c906108c 2668 break;
134d01f1
DJ
2669
2670 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2671 a symbol or process any children. Therefore it doesn't do anything
2672 that won't be done on-demand by read_type_die. */
c906108c 2673 case DW_TAG_subroutine_type:
e7c27a73 2674 read_subroutine_type (die, cu);
c906108c 2675 break;
72019c9c
GM
2676 case DW_TAG_set_type:
2677 read_set_type (die, cu);
2678 break;
c906108c 2679 case DW_TAG_array_type:
e7c27a73 2680 read_array_type (die, cu);
c906108c
SS
2681 break;
2682 case DW_TAG_pointer_type:
e7c27a73 2683 read_tag_pointer_type (die, cu);
c906108c
SS
2684 break;
2685 case DW_TAG_ptr_to_member_type:
e7c27a73 2686 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2687 break;
2688 case DW_TAG_reference_type:
e7c27a73 2689 read_tag_reference_type (die, cu);
c906108c
SS
2690 break;
2691 case DW_TAG_string_type:
e7c27a73 2692 read_tag_string_type (die, cu);
c906108c 2693 break;
134d01f1
DJ
2694 /* END FIXME */
2695
c906108c 2696 case DW_TAG_base_type:
e7c27a73 2697 read_base_type (die, cu);
134d01f1
DJ
2698 /* Add a typedef symbol for the type definition, if it has a
2699 DW_AT_name. */
2700 new_symbol (die, die->type, cu);
c906108c 2701 break;
a02abb62
JB
2702 case DW_TAG_subrange_type:
2703 read_subrange_type (die, cu);
134d01f1
DJ
2704 /* Add a typedef symbol for the type definition, if it has a
2705 DW_AT_name. */
2706 new_symbol (die, die->type, cu);
a02abb62 2707 break;
c906108c 2708 case DW_TAG_common_block:
e7c27a73 2709 read_common_block (die, cu);
c906108c
SS
2710 break;
2711 case DW_TAG_common_inclusion:
2712 break;
d9fa45fe 2713 case DW_TAG_namespace:
63d06c5c 2714 processing_has_namespace_info = 1;
e7c27a73 2715 read_namespace (die, cu);
d9fa45fe
DC
2716 break;
2717 case DW_TAG_imported_declaration:
2718 case DW_TAG_imported_module:
2719 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2720 information contained in these. DW_TAG_imported_declaration
2721 dies shouldn't have children; DW_TAG_imported_module dies
2722 shouldn't in the C++ case, but conceivably could in the
2723 Fortran case, so we'll have to replace this gdb_assert if
2724 Fortran compilers start generating that info. */
63d06c5c 2725 processing_has_namespace_info = 1;
639d11d3 2726 gdb_assert (die->child == NULL);
d9fa45fe 2727 break;
c906108c 2728 default:
e7c27a73 2729 new_symbol (die, NULL, cu);
c906108c
SS
2730 break;
2731 }
2732}
2733
5fb290d7 2734static void
e142c38c 2735initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2736{
e142c38c 2737 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2738}
2739
c906108c 2740static void
e7c27a73 2741read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2742{
e7c27a73
DJ
2743 struct objfile *objfile = cu->objfile;
2744 struct comp_unit_head *cu_header = &cu->header;
debd256d 2745 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2746 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2747 CORE_ADDR highpc = ((CORE_ADDR) 0);
2748 struct attribute *attr;
2749 char *name = "<unknown>";
2750 char *comp_dir = NULL;
2751 struct die_info *child_die;
2752 bfd *abfd = objfile->obfd;
debd256d 2753 struct line_header *line_header = 0;
e142c38c
DJ
2754 CORE_ADDR baseaddr;
2755
2756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2757
fae299cd 2758 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2759
2760 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2761 from finish_block. */
2acceee2 2762 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2763 lowpc = highpc;
2764 lowpc += baseaddr;
2765 highpc += baseaddr;
2766
e142c38c 2767 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2768 if (attr)
2769 {
2770 name = DW_STRING (attr);
2771 }
e142c38c 2772 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c
SS
2773 if (attr)
2774 {
2775 comp_dir = DW_STRING (attr);
2776 if (comp_dir)
2777 {
2778 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2779 directory, get rid of it. */
2780 char *cp = strchr (comp_dir, ':');
2781
2782 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2783 comp_dir = cp + 1;
2784 }
2785 }
2786
e142c38c 2787 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2788 if (attr)
2789 {
e142c38c 2790 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2791 }
2792
b0f35d58
DL
2793 attr = dwarf2_attr (die, DW_AT_producer, cu);
2794 if (attr)
2795 cu->producer = DW_STRING (attr);
2796
c906108c
SS
2797 /* We assume that we're processing GCC output. */
2798 processing_gcc_compilation = 2;
2799#if 0
c5aa993b
JM
2800 /* FIXME:Do something here. */
2801 if (dip->at_producer != NULL)
c906108c
SS
2802 {
2803 handle_producer (dip->at_producer);
2804 }
2805#endif
2806
2807 /* The compilation unit may be in a different language or objfile,
2808 zero out all remembered fundamental types. */
e142c38c 2809 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2810
2811 start_symtab (name, comp_dir, lowpc);
2812 record_debugformat ("DWARF 2");
2813
e142c38c 2814 initialize_cu_func_list (cu);
c906108c
SS
2815
2816 /* Process all dies in compilation unit. */
639d11d3 2817 if (die->child != NULL)
c906108c 2818 {
639d11d3 2819 child_die = die->child;
c906108c
SS
2820 while (child_die && child_die->tag)
2821 {
e7c27a73 2822 process_die (child_die, cu);
c906108c
SS
2823 child_die = sibling_die (child_die);
2824 }
2825 }
5fb290d7
DJ
2826
2827 /* Decode line number information if present. */
e142c38c 2828 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2829 if (attr)
2830 {
debd256d 2831 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2832 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2833 if (line_header)
2834 {
2835 make_cleanup ((make_cleanup_ftype *) free_line_header,
2836 (void *) line_header);
aaa75496 2837 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2838 }
5fb290d7 2839 }
debd256d 2840
2e276125
JB
2841 /* Decode macro information, if present. Dwarf 2 macro information
2842 refers to information in the line number info statement program
2843 header, so we can only read it if we've read the header
2844 successfully. */
e142c38c 2845 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2846 if (attr && line_header)
2e276125
JB
2847 {
2848 unsigned int macro_offset = DW_UNSND (attr);
2849 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2850 comp_dir, abfd, cu);
2e276125 2851 }
debd256d 2852 do_cleanups (back_to);
5fb290d7
DJ
2853}
2854
2855static void
e142c38c
DJ
2856add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2857 struct dwarf2_cu *cu)
5fb290d7
DJ
2858{
2859 struct function_range *thisfn;
2860
2861 thisfn = (struct function_range *)
7b5a2f43 2862 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2863 thisfn->name = name;
2864 thisfn->lowpc = lowpc;
2865 thisfn->highpc = highpc;
2866 thisfn->seen_line = 0;
2867 thisfn->next = NULL;
2868
e142c38c
DJ
2869 if (cu->last_fn == NULL)
2870 cu->first_fn = thisfn;
5fb290d7 2871 else
e142c38c 2872 cu->last_fn->next = thisfn;
5fb290d7 2873
e142c38c 2874 cu->last_fn = thisfn;
c906108c
SS
2875}
2876
2877static void
e7c27a73 2878read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2879{
e7c27a73 2880 struct objfile *objfile = cu->objfile;
52f0bd74 2881 struct context_stack *new;
c906108c
SS
2882 CORE_ADDR lowpc;
2883 CORE_ADDR highpc;
2884 struct die_info *child_die;
2885 struct attribute *attr;
2886 char *name;
fdde2d81
DC
2887 const char *previous_prefix = processing_current_prefix;
2888 struct cleanup *back_to = NULL;
e142c38c 2889 CORE_ADDR baseaddr;
c906108c 2890
e142c38c
DJ
2891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2892
2893 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2894
2895 /* Ignore functions with missing or empty names and functions with
2896 missing or invalid low and high pc attributes. */
e7c27a73 2897 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2898 return;
2899
987504bb
JJ
2900 if (cu->language == language_cplus
2901 || cu->language == language_java)
fdde2d81 2902 {
086ed43d 2903 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2904
2a35147e
JB
2905 /* NOTE: carlton/2004-01-23: We have to be careful in the
2906 presence of DW_AT_specification. For example, with GCC 3.4,
2907 given the code
2908
2909 namespace N {
2910 void foo() {
2911 // Definition of N::foo.
2912 }
2913 }
2914
2915 then we'll have a tree of DIEs like this:
2916
2917 1: DW_TAG_compile_unit
2918 2: DW_TAG_namespace // N
2919 3: DW_TAG_subprogram // declaration of N::foo
2920 4: DW_TAG_subprogram // definition of N::foo
2921 DW_AT_specification // refers to die #3
2922
2923 Thus, when processing die #4, we have to pretend that we're
2924 in the context of its DW_AT_specification, namely the contex
2925 of die #3. */
fdde2d81
DC
2926
2927 if (spec_die != NULL)
2928 {
e142c38c 2929 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2930 processing_current_prefix = specification_prefix;
2931 back_to = make_cleanup (xfree, specification_prefix);
2932 }
2933 }
2934
c906108c
SS
2935 lowpc += baseaddr;
2936 highpc += baseaddr;
2937
5fb290d7 2938 /* Record the function range for dwarf_decode_lines. */
e142c38c 2939 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2940
c906108c 2941 new = push_context (0, lowpc);
e7c27a73 2942 new->name = new_symbol (die, die->type, cu);
4c2df51b 2943
4cecd739
DJ
2944 /* If there is a location expression for DW_AT_frame_base, record
2945 it. */
e142c38c 2946 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2947 if (attr)
c034e007
AC
2948 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2949 expression is being recorded directly in the function's symbol
2950 and not in a separate frame-base object. I guess this hack is
2951 to avoid adding some sort of frame-base adjunct/annex to the
2952 function's symbol :-(. The problem with doing this is that it
2953 results in a function symbol with a location expression that
2954 has nothing to do with the location of the function, ouch! The
2955 relationship should be: a function's symbol has-a frame base; a
2956 frame-base has-a location expression. */
e7c27a73 2957 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2958
e142c38c 2959 cu->list_in_scope = &local_symbols;
c906108c 2960
639d11d3 2961 if (die->child != NULL)
c906108c 2962 {
639d11d3 2963 child_die = die->child;
c906108c
SS
2964 while (child_die && child_die->tag)
2965 {
e7c27a73 2966 process_die (child_die, cu);
c906108c
SS
2967 child_die = sibling_die (child_die);
2968 }
2969 }
2970
2971 new = pop_context ();
2972 /* Make a block for the local symbols within. */
2973 finish_block (new->name, &local_symbols, new->old_blocks,
2974 lowpc, highpc, objfile);
208d8187
JB
2975
2976 /* In C++, we can have functions nested inside functions (e.g., when
2977 a function declares a class that has methods). This means that
2978 when we finish processing a function scope, we may need to go
2979 back to building a containing block's symbol lists. */
2980 local_symbols = new->locals;
2981 param_symbols = new->params;
2982
921e78cf
JB
2983 /* If we've finished processing a top-level function, subsequent
2984 symbols go in the file symbol list. */
2985 if (outermost_context_p ())
e142c38c 2986 cu->list_in_scope = &file_symbols;
fdde2d81
DC
2987
2988 processing_current_prefix = previous_prefix;
2989 if (back_to != NULL)
2990 do_cleanups (back_to);
c906108c
SS
2991}
2992
2993/* Process all the DIES contained within a lexical block scope. Start
2994 a new scope, process the dies, and then close the scope. */
2995
2996static void
e7c27a73 2997read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2998{
e7c27a73 2999 struct objfile *objfile = cu->objfile;
52f0bd74 3000 struct context_stack *new;
c906108c
SS
3001 CORE_ADDR lowpc, highpc;
3002 struct die_info *child_die;
e142c38c
DJ
3003 CORE_ADDR baseaddr;
3004
3005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3006
3007 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3008 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3009 as multiple lexical blocks? Handling children in a sane way would
3010 be nasty. Might be easier to properly extend generic blocks to
3011 describe ranges. */
e7c27a73 3012 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3013 return;
3014 lowpc += baseaddr;
3015 highpc += baseaddr;
3016
3017 push_context (0, lowpc);
639d11d3 3018 if (die->child != NULL)
c906108c 3019 {
639d11d3 3020 child_die = die->child;
c906108c
SS
3021 while (child_die && child_die->tag)
3022 {
e7c27a73 3023 process_die (child_die, cu);
c906108c
SS
3024 child_die = sibling_die (child_die);
3025 }
3026 }
3027 new = pop_context ();
3028
3029 if (local_symbols != NULL)
3030 {
3031 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3032 highpc, objfile);
3033 }
3034 local_symbols = new->locals;
3035}
3036
af34e669
DJ
3037/* Get low and high pc attributes from a die. Return 1 if the attributes
3038 are present and valid, otherwise, return 0. Return -1 if the range is
3039 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3040static int
af34e669 3041dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3042 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3043{
e7c27a73
DJ
3044 struct objfile *objfile = cu->objfile;
3045 struct comp_unit_head *cu_header = &cu->header;
c906108c 3046 struct attribute *attr;
af34e669
DJ
3047 bfd *obfd = objfile->obfd;
3048 CORE_ADDR low = 0;
3049 CORE_ADDR high = 0;
3050 int ret = 0;
c906108c 3051
e142c38c 3052 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3053 if (attr)
af34e669
DJ
3054 {
3055 high = DW_ADDR (attr);
e142c38c 3056 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3057 if (attr)
3058 low = DW_ADDR (attr);
3059 else
3060 /* Found high w/o low attribute. */
3061 return 0;
3062
3063 /* Found consecutive range of addresses. */
3064 ret = 1;
3065 }
c906108c 3066 else
af34e669 3067 {
e142c38c 3068 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3069 if (attr != NULL)
3070 {
3071 unsigned int addr_size = cu_header->addr_size;
3072 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3073 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3074 .debug_ranges section. */
af34e669
DJ
3075 unsigned int offset = DW_UNSND (attr);
3076 /* Base address selection entry. */
0d53c4c4
DJ
3077 CORE_ADDR base;
3078 int found_base;
891d2f0b 3079 unsigned int dummy;
fe1b8b76 3080 gdb_byte *buffer;
af34e669
DJ
3081 CORE_ADDR marker;
3082 int low_set;
3083
0d53c4c4
DJ
3084 found_base = cu_header->base_known;
3085 base = cu_header->base_address;
a604369a 3086
6502dd73 3087 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3088 {
3089 complaint (&symfile_complaints,
e2e0b3e5 3090 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3091 offset);
3092 return 0;
3093 }
6502dd73 3094 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3095
af34e669 3096 /* Read in the largest possible address. */
e7c27a73 3097 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3098 if ((marker & mask) == mask)
3099 {
3100 /* If we found the largest possible address, then
3101 read the base address. */
e7c27a73 3102 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3103 buffer += 2 * addr_size;
3104 offset += 2 * addr_size;
3105 found_base = 1;
3106 }
3107
3108 low_set = 0;
3109
3110 while (1)
3111 {
3112 CORE_ADDR range_beginning, range_end;
3113
e7c27a73 3114 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3115 buffer += addr_size;
e7c27a73 3116 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3117 buffer += addr_size;
3118 offset += 2 * addr_size;
3119
3120 /* An end of list marker is a pair of zero addresses. */
3121 if (range_beginning == 0 && range_end == 0)
3122 /* Found the end of list entry. */
3123 break;
3124
3125 /* Each base address selection entry is a pair of 2 values.
3126 The first is the largest possible address, the second is
3127 the base address. Check for a base address here. */
3128 if ((range_beginning & mask) == mask)
3129 {
3130 /* If we found the largest possible address, then
3131 read the base address. */
e7c27a73 3132 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3133 found_base = 1;
3134 continue;
3135 }
3136
3137 if (!found_base)
3138 {
3139 /* We have no valid base address for the ranges
3140 data. */
3141 complaint (&symfile_complaints,
e2e0b3e5 3142 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3143 return 0;
3144 }
3145
8f05cde5
DJ
3146 range_beginning += base;
3147 range_end += base;
3148
af34e669
DJ
3149 /* FIXME: This is recording everything as a low-high
3150 segment of consecutive addresses. We should have a
3151 data structure for discontiguous block ranges
3152 instead. */
3153 if (! low_set)
3154 {
3155 low = range_beginning;
3156 high = range_end;
3157 low_set = 1;
3158 }
3159 else
3160 {
3161 if (range_beginning < low)
3162 low = range_beginning;
3163 if (range_end > high)
3164 high = range_end;
3165 }
3166 }
3167
3168 if (! low_set)
3169 /* If the first entry is an end-of-list marker, the range
3170 describes an empty scope, i.e. no instructions. */
3171 return 0;
3172
3173 ret = -1;
3174 }
3175 }
c906108c
SS
3176
3177 if (high < low)
3178 return 0;
3179
3180 /* When using the GNU linker, .gnu.linkonce. sections are used to
3181 eliminate duplicate copies of functions and vtables and such.
3182 The linker will arbitrarily choose one and discard the others.
3183 The AT_*_pc values for such functions refer to local labels in
3184 these sections. If the section from that file was discarded, the
3185 labels are not in the output, so the relocs get a value of 0.
3186 If this is a discarded function, mark the pc bounds as invalid,
3187 so that GDB will ignore it. */
72dca2f5 3188 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3189 return 0;
3190
3191 *lowpc = low;
3192 *highpc = high;
af34e669 3193 return ret;
c906108c
SS
3194}
3195
fae299cd
DC
3196/* Get the low and high pc's represented by the scope DIE, and store
3197 them in *LOWPC and *HIGHPC. If the correct values can't be
3198 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3199
3200static void
3201get_scope_pc_bounds (struct die_info *die,
3202 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3203 struct dwarf2_cu *cu)
3204{
3205 CORE_ADDR best_low = (CORE_ADDR) -1;
3206 CORE_ADDR best_high = (CORE_ADDR) 0;
3207 CORE_ADDR current_low, current_high;
3208
3209 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3210 {
3211 best_low = current_low;
3212 best_high = current_high;
3213 }
3214 else
3215 {
3216 struct die_info *child = die->child;
3217
3218 while (child && child->tag)
3219 {
3220 switch (child->tag) {
3221 case DW_TAG_subprogram:
3222 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3223 {
3224 best_low = min (best_low, current_low);
3225 best_high = max (best_high, current_high);
3226 }
3227 break;
3228 case DW_TAG_namespace:
3229 /* FIXME: carlton/2004-01-16: Should we do this for
3230 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3231 that current GCC's always emit the DIEs corresponding
3232 to definitions of methods of classes as children of a
3233 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3234 the DIEs giving the declarations, which could be
3235 anywhere). But I don't see any reason why the
3236 standards says that they have to be there. */
3237 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3238
3239 if (current_low != ((CORE_ADDR) -1))
3240 {
3241 best_low = min (best_low, current_low);
3242 best_high = max (best_high, current_high);
3243 }
3244 break;
3245 default:
3246 /* Ignore. */
3247 break;
3248 }
3249
3250 child = sibling_die (child);
3251 }
3252 }
3253
3254 *lowpc = best_low;
3255 *highpc = best_high;
3256}
3257
c906108c
SS
3258/* Add an aggregate field to the field list. */
3259
3260static void
107d2387 3261dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3262 struct dwarf2_cu *cu)
3263{
3264 struct objfile *objfile = cu->objfile;
c906108c
SS
3265 struct nextfield *new_field;
3266 struct attribute *attr;
3267 struct field *fp;
3268 char *fieldname = "";
3269
3270 /* Allocate a new field list entry and link it in. */
3271 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3272 make_cleanup (xfree, new_field);
c906108c
SS
3273 memset (new_field, 0, sizeof (struct nextfield));
3274 new_field->next = fip->fields;
3275 fip->fields = new_field;
3276 fip->nfields++;
3277
3278 /* Handle accessibility and virtuality of field.
3279 The default accessibility for members is public, the default
3280 accessibility for inheritance is private. */
3281 if (die->tag != DW_TAG_inheritance)
3282 new_field->accessibility = DW_ACCESS_public;
3283 else
3284 new_field->accessibility = DW_ACCESS_private;
3285 new_field->virtuality = DW_VIRTUALITY_none;
3286
e142c38c 3287 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3288 if (attr)
3289 new_field->accessibility = DW_UNSND (attr);
3290 if (new_field->accessibility != DW_ACCESS_public)
3291 fip->non_public_fields = 1;
e142c38c 3292 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3293 if (attr)
3294 new_field->virtuality = DW_UNSND (attr);
3295
3296 fp = &new_field->field;
a9a9bd0f 3297
e142c38c 3298 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3299 {
a9a9bd0f
DC
3300 /* Data member other than a C++ static data member. */
3301
c906108c 3302 /* Get type of field. */
e7c27a73 3303 fp->type = die_type (die, cu);
c906108c 3304
01ad7f36
DJ
3305 FIELD_STATIC_KIND (*fp) = 0;
3306
c906108c 3307 /* Get bit size of field (zero if none). */
e142c38c 3308 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3309 if (attr)
3310 {
3311 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3312 }
3313 else
3314 {
3315 FIELD_BITSIZE (*fp) = 0;
3316 }
3317
3318 /* Get bit offset of field. */
e142c38c 3319 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3320 if (attr)
3321 {
3322 FIELD_BITPOS (*fp) =
e7c27a73 3323 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3324 }
3325 else
3326 FIELD_BITPOS (*fp) = 0;
e142c38c 3327 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3328 if (attr)
3329 {
3330 if (BITS_BIG_ENDIAN)
3331 {
3332 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3333 additional bit offset from the MSB of the containing
3334 anonymous object to the MSB of the field. We don't
3335 have to do anything special since we don't need to
3336 know the size of the anonymous object. */
c906108c
SS
3337 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3338 }
3339 else
3340 {
3341 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3342 MSB of the anonymous object, subtract off the number of
3343 bits from the MSB of the field to the MSB of the
3344 object, and then subtract off the number of bits of
3345 the field itself. The result is the bit offset of
3346 the LSB of the field. */
c906108c
SS
3347 int anonymous_size;
3348 int bit_offset = DW_UNSND (attr);
3349
e142c38c 3350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3351 if (attr)
3352 {
3353 /* The size of the anonymous object containing
3354 the bit field is explicit, so use the
3355 indicated size (in bytes). */
3356 anonymous_size = DW_UNSND (attr);
3357 }
3358 else
3359 {
3360 /* The size of the anonymous object containing
3361 the bit field must be inferred from the type
3362 attribute of the data member containing the
3363 bit field. */
3364 anonymous_size = TYPE_LENGTH (fp->type);
3365 }
3366 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3367 - bit_offset - FIELD_BITSIZE (*fp);
3368 }
3369 }
3370
3371 /* Get name of field. */
e142c38c 3372 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3373 if (attr && DW_STRING (attr))
3374 fieldname = DW_STRING (attr);
d8151005
DJ
3375
3376 /* The name is already allocated along with this objfile, so we don't
3377 need to duplicate it for the type. */
3378 fp->name = fieldname;
c906108c
SS
3379
3380 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3381 pointer or virtual base class pointer) to private. */
e142c38c 3382 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3383 {
3384 new_field->accessibility = DW_ACCESS_private;
3385 fip->non_public_fields = 1;
3386 }
3387 }
a9a9bd0f 3388 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3389 {
a9a9bd0f
DC
3390 /* C++ static member. */
3391
3392 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3393 is a declaration, but all versions of G++ as of this writing
3394 (so through at least 3.2.1) incorrectly generate
3395 DW_TAG_variable tags. */
3396
c906108c 3397 char *physname;
c906108c 3398
a9a9bd0f 3399 /* Get name of field. */
e142c38c 3400 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3401 if (attr && DW_STRING (attr))
3402 fieldname = DW_STRING (attr);
3403 else
c906108c
SS
3404 return;
3405
2df3850c 3406 /* Get physical name. */
e142c38c 3407 physname = dwarf2_linkage_name (die, cu);
c906108c 3408
d8151005
DJ
3409 /* The name is already allocated along with this objfile, so we don't
3410 need to duplicate it for the type. */
3411 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3412 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3413 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3414 }
3415 else if (die->tag == DW_TAG_inheritance)
3416 {
3417 /* C++ base class field. */
e142c38c 3418 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3419 if (attr)
e7c27a73 3420 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3421 * bits_per_byte);
c906108c 3422 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3423 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3424 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3425 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3426 fip->nbaseclasses++;
3427 }
3428}
3429
3430/* Create the vector of fields, and attach it to the type. */
3431
3432static void
fba45db2 3433dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3434 struct dwarf2_cu *cu)
c906108c
SS
3435{
3436 int nfields = fip->nfields;
3437
3438 /* Record the field count, allocate space for the array of fields,
3439 and create blank accessibility bitfields if necessary. */
3440 TYPE_NFIELDS (type) = nfields;
3441 TYPE_FIELDS (type) = (struct field *)
3442 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3443 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3444
3445 if (fip->non_public_fields)
3446 {
3447 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3448
3449 TYPE_FIELD_PRIVATE_BITS (type) =
3450 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3451 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3452
3453 TYPE_FIELD_PROTECTED_BITS (type) =
3454 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3455 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3456
3457 TYPE_FIELD_IGNORE_BITS (type) =
3458 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3459 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3460 }
3461
3462 /* If the type has baseclasses, allocate and clear a bit vector for
3463 TYPE_FIELD_VIRTUAL_BITS. */
3464 if (fip->nbaseclasses)
3465 {
3466 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3467 unsigned char *pointer;
c906108c
SS
3468
3469 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3470 pointer = TYPE_ALLOC (type, num_bytes);
3471 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3472 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3473 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3474 }
3475
3476 /* Copy the saved-up fields into the field vector. Start from the head
3477 of the list, adding to the tail of the field array, so that they end
3478 up in the same order in the array in which they were added to the list. */
3479 while (nfields-- > 0)
3480 {
3481 TYPE_FIELD (type, nfields) = fip->fields->field;
3482 switch (fip->fields->accessibility)
3483 {
c5aa993b
JM
3484 case DW_ACCESS_private:
3485 SET_TYPE_FIELD_PRIVATE (type, nfields);
3486 break;
c906108c 3487
c5aa993b
JM
3488 case DW_ACCESS_protected:
3489 SET_TYPE_FIELD_PROTECTED (type, nfields);
3490 break;
c906108c 3491
c5aa993b
JM
3492 case DW_ACCESS_public:
3493 break;
c906108c 3494
c5aa993b
JM
3495 default:
3496 /* Unknown accessibility. Complain and treat it as public. */
3497 {
e2e0b3e5 3498 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3499 fip->fields->accessibility);
c5aa993b
JM
3500 }
3501 break;
c906108c
SS
3502 }
3503 if (nfields < fip->nbaseclasses)
3504 {
3505 switch (fip->fields->virtuality)
3506 {
c5aa993b
JM
3507 case DW_VIRTUALITY_virtual:
3508 case DW_VIRTUALITY_pure_virtual:
3509 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3510 break;
c906108c
SS
3511 }
3512 }
3513 fip->fields = fip->fields->next;
3514 }
3515}
3516
c906108c
SS
3517/* Add a member function to the proper fieldlist. */
3518
3519static void
107d2387 3520dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3521 struct type *type, struct dwarf2_cu *cu)
c906108c 3522{
e7c27a73 3523 struct objfile *objfile = cu->objfile;
c906108c
SS
3524 struct attribute *attr;
3525 struct fnfieldlist *flp;
3526 int i;
3527 struct fn_field *fnp;
3528 char *fieldname;
3529 char *physname;
3530 struct nextfnfield *new_fnfield;
3531
2df3850c 3532 /* Get name of member function. */
e142c38c 3533 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3534 if (attr && DW_STRING (attr))
3535 fieldname = DW_STRING (attr);
c906108c 3536 else
2df3850c 3537 return;
c906108c 3538
2df3850c 3539 /* Get the mangled name. */
e142c38c 3540 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3541
3542 /* Look up member function name in fieldlist. */
3543 for (i = 0; i < fip->nfnfields; i++)
3544 {
27bfe10e 3545 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3546 break;
3547 }
3548
3549 /* Create new list element if necessary. */
3550 if (i < fip->nfnfields)
3551 flp = &fip->fnfieldlists[i];
3552 else
3553 {
3554 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3555 {
3556 fip->fnfieldlists = (struct fnfieldlist *)
3557 xrealloc (fip->fnfieldlists,
3558 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3559 * sizeof (struct fnfieldlist));
c906108c 3560 if (fip->nfnfields == 0)
c13c43fd 3561 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3562 }
3563 flp = &fip->fnfieldlists[fip->nfnfields];
3564 flp->name = fieldname;
3565 flp->length = 0;
3566 flp->head = NULL;
3567 fip->nfnfields++;
3568 }
3569
3570 /* Create a new member function field and chain it to the field list
3571 entry. */
3572 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3573 make_cleanup (xfree, new_fnfield);
c906108c
SS
3574 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3575 new_fnfield->next = flp->head;
3576 flp->head = new_fnfield;
3577 flp->length++;
3578
3579 /* Fill in the member function field info. */
3580 fnp = &new_fnfield->fnfield;
d8151005
DJ
3581 /* The name is already allocated along with this objfile, so we don't
3582 need to duplicate it for the type. */
3583 fnp->physname = physname ? physname : "";
c906108c
SS
3584 fnp->type = alloc_type (objfile);
3585 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3586 {
c906108c 3587 int nparams = TYPE_NFIELDS (die->type);
c906108c 3588
e26fb1d7
DC
3589 /* TYPE is the domain of this method, and DIE->TYPE is the type
3590 of the method itself (TYPE_CODE_METHOD). */
3591 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3592 TYPE_TARGET_TYPE (die->type),
3593 TYPE_FIELDS (die->type),
3594 TYPE_NFIELDS (die->type),
3595 TYPE_VARARGS (die->type));
c906108c
SS
3596
3597 /* Handle static member functions.
c5aa993b
JM
3598 Dwarf2 has no clean way to discern C++ static and non-static
3599 member functions. G++ helps GDB by marking the first
3600 parameter for non-static member functions (which is the
3601 this pointer) as artificial. We obtain this information
3602 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3604 fnp->voffset = VOFFSET_STATIC;
3605 }
3606 else
e2e0b3e5 3607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3608 physname);
c906108c
SS
3609
3610 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3612 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3613
3614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3615 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3616
3617 /* Get accessibility. */
e142c38c 3618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3619 if (attr)
3620 {
3621 switch (DW_UNSND (attr))
3622 {
c5aa993b
JM
3623 case DW_ACCESS_private:
3624 fnp->is_private = 1;
3625 break;
3626 case DW_ACCESS_protected:
3627 fnp->is_protected = 1;
3628 break;
c906108c
SS
3629 }
3630 }
3631
b02dede2 3632 /* Check for artificial methods. */
e142c38c 3633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3634 if (attr && DW_UNSND (attr) != 0)
3635 fnp->is_artificial = 1;
3636
c906108c 3637 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3638 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3639 if (attr)
8e19ed76
PS
3640 {
3641 /* Support the .debug_loc offsets */
3642 if (attr_form_is_block (attr))
3643 {
e7c27a73 3644 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3645 }
3646 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3647 {
4d3c2250 3648 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3649 }
3650 else
3651 {
4d3c2250
KB
3652 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3653 fieldname);
8e19ed76
PS
3654 }
3655 }
c906108c
SS
3656}
3657
3658/* Create the vector of member function fields, and attach it to the type. */
3659
3660static void
fba45db2 3661dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3662 struct dwarf2_cu *cu)
c906108c
SS
3663{
3664 struct fnfieldlist *flp;
3665 int total_length = 0;
3666 int i;
3667
3668 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3669 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3670 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3671
3672 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3673 {
3674 struct nextfnfield *nfp = flp->head;
3675 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3676 int k;
3677
3678 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3679 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3680 fn_flp->fn_fields = (struct fn_field *)
3681 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3682 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3683 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3684
3685 total_length += flp->length;
3686 }
3687
3688 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3689 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3690}
3691
1168df01
JB
3692
3693/* Returns non-zero if NAME is the name of a vtable member in CU's
3694 language, zero otherwise. */
3695static int
3696is_vtable_name (const char *name, struct dwarf2_cu *cu)
3697{
3698 static const char vptr[] = "_vptr";
987504bb 3699 static const char vtable[] = "vtable";
1168df01 3700
987504bb
JJ
3701 /* Look for the C++ and Java forms of the vtable. */
3702 if ((cu->language == language_java
3703 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3704 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3705 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3706 return 1;
3707
3708 return 0;
3709}
3710
3711
c906108c
SS
3712/* Called when we find the DIE that starts a structure or union scope
3713 (definition) to process all dies that define the members of the
3714 structure or union.
3715
3716 NOTE: we need to call struct_type regardless of whether or not the
3717 DIE has an at_name attribute, since it might be an anonymous
3718 structure or union. This gets the type entered into our set of
3719 user defined types.
3720
3721 However, if the structure is incomplete (an opaque struct/union)
3722 then suppress creating a symbol table entry for it since gdb only
3723 wants to find the one with the complete definition. Note that if
3724 it is complete, we just call new_symbol, which does it's own
3725 checking about whether the struct/union is anonymous or not (and
3726 suppresses creating a symbol table entry itself). */
3727
3728static void
134d01f1 3729read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3730{
e7c27a73 3731 struct objfile *objfile = cu->objfile;
c906108c
SS
3732 struct type *type;
3733 struct attribute *attr;
63d06c5c
DC
3734 const char *previous_prefix = processing_current_prefix;
3735 struct cleanup *back_to = NULL;
c906108c 3736
134d01f1
DJ
3737 if (die->type)
3738 return;
3739
c906108c
SS
3740 type = alloc_type (objfile);
3741
3742 INIT_CPLUS_SPECIFIC (type);
e142c38c 3743 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3744 if (attr && DW_STRING (attr))
3745 {
987504bb
JJ
3746 if (cu->language == language_cplus
3747 || cu->language == language_java)
63d06c5c 3748 {
8176b9b8
DC
3749 char *new_prefix = determine_class_name (die, cu);
3750 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3751 strlen (new_prefix),
3752 &objfile->objfile_obstack);
3753 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3754 processing_current_prefix = new_prefix;
3755 }
3756 else
3757 {
d8151005
DJ
3758 /* The name is already allocated along with this objfile, so
3759 we don't need to duplicate it for the type. */
8176b9b8 3760 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3761 }
c906108c
SS
3762 }
3763
3764 if (die->tag == DW_TAG_structure_type)
3765 {
3766 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3767 }
3768 else if (die->tag == DW_TAG_union_type)
3769 {
3770 TYPE_CODE (type) = TYPE_CODE_UNION;
3771 }
3772 else
3773 {
3774 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3775 in gdbtypes.h. */
c906108c
SS
3776 TYPE_CODE (type) = TYPE_CODE_CLASS;
3777 }
3778
e142c38c 3779 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3780 if (attr)
3781 {
3782 TYPE_LENGTH (type) = DW_UNSND (attr);
3783 }
3784 else
3785 {
3786 TYPE_LENGTH (type) = 0;
3787 }
3788
dc718098
JB
3789 if (die_is_declaration (die, cu))
3790 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3791
c906108c
SS
3792 /* We need to add the type field to the die immediately so we don't
3793 infinitely recurse when dealing with pointers to the structure
3794 type within the structure itself. */
1c379e20 3795 set_die_type (die, type, cu);
c906108c 3796
e142c38c 3797 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3798 {
3799 struct field_info fi;
3800 struct die_info *child_die;
3801 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3802
3803 memset (&fi, 0, sizeof (struct field_info));
3804
639d11d3 3805 child_die = die->child;
c906108c
SS
3806
3807 while (child_die && child_die->tag)
3808 {
a9a9bd0f
DC
3809 if (child_die->tag == DW_TAG_member
3810 || child_die->tag == DW_TAG_variable)
c906108c 3811 {
a9a9bd0f
DC
3812 /* NOTE: carlton/2002-11-05: A C++ static data member
3813 should be a DW_TAG_member that is a declaration, but
3814 all versions of G++ as of this writing (so through at
3815 least 3.2.1) incorrectly generate DW_TAG_variable
3816 tags for them instead. */
e7c27a73 3817 dwarf2_add_field (&fi, child_die, cu);
c906108c 3818 }
8713b1b1 3819 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3820 {
3821 /* C++ member function. */
134d01f1 3822 read_type_die (child_die, cu);
e7c27a73 3823 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3824 }
3825 else if (child_die->tag == DW_TAG_inheritance)
3826 {
3827 /* C++ base class field. */
e7c27a73 3828 dwarf2_add_field (&fi, child_die, cu);
c906108c 3829 }
c906108c
SS
3830 child_die = sibling_die (child_die);
3831 }
3832
3833 /* Attach fields and member functions to the type. */
3834 if (fi.nfields)
e7c27a73 3835 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3836 if (fi.nfnfields)
3837 {
e7c27a73 3838 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3839
c5aa993b 3840 /* Get the type which refers to the base class (possibly this
c906108c
SS
3841 class itself) which contains the vtable pointer for the current
3842 class from the DW_AT_containing_type attribute. */
3843
e142c38c 3844 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3845 {
e7c27a73 3846 struct type *t = die_containing_type (die, cu);
c906108c
SS
3847
3848 TYPE_VPTR_BASETYPE (type) = t;
3849 if (type == t)
3850 {
c906108c
SS
3851 int i;
3852
3853 /* Our own class provides vtbl ptr. */
3854 for (i = TYPE_NFIELDS (t) - 1;
3855 i >= TYPE_N_BASECLASSES (t);
3856 --i)
3857 {
3858 char *fieldname = TYPE_FIELD_NAME (t, i);
3859
1168df01 3860 if (is_vtable_name (fieldname, cu))
c906108c
SS
3861 {
3862 TYPE_VPTR_FIELDNO (type) = i;
3863 break;
3864 }
3865 }
3866
3867 /* Complain if virtual function table field not found. */
3868 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3869 complaint (&symfile_complaints,
e2e0b3e5 3870 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3871 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3872 "");
c906108c
SS
3873 }
3874 else
3875 {
3876 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3877 }
3878 }
f6235d4c
EZ
3879 else if (cu->producer
3880 && strncmp (cu->producer,
3881 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3882 {
3883 /* The IBM XLC compiler does not provide direct indication
3884 of the containing type, but the vtable pointer is
3885 always named __vfp. */
3886
3887 int i;
3888
3889 for (i = TYPE_NFIELDS (type) - 1;
3890 i >= TYPE_N_BASECLASSES (type);
3891 --i)
3892 {
3893 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3894 {
3895 TYPE_VPTR_FIELDNO (type) = i;
3896 TYPE_VPTR_BASETYPE (type) = type;
3897 break;
3898 }
3899 }
3900 }
c906108c
SS
3901 }
3902
c906108c
SS
3903 do_cleanups (back_to);
3904 }
63d06c5c
DC
3905
3906 processing_current_prefix = previous_prefix;
3907 if (back_to != NULL)
3908 do_cleanups (back_to);
c906108c
SS
3909}
3910
134d01f1
DJ
3911static void
3912process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3913{
3914 struct objfile *objfile = cu->objfile;
3915 const char *previous_prefix = processing_current_prefix;
90aeadfc 3916 struct die_info *child_die = die->child;
c906108c 3917
134d01f1
DJ
3918 if (TYPE_TAG_NAME (die->type) != NULL)
3919 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 3920
90aeadfc
DC
3921 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3922 snapshots) has been known to create a die giving a declaration
3923 for a class that has, as a child, a die giving a definition for a
3924 nested class. So we have to process our children even if the
3925 current die is a declaration. Normally, of course, a declaration
3926 won't have any children at all. */
134d01f1 3927
90aeadfc
DC
3928 while (child_die != NULL && child_die->tag)
3929 {
3930 if (child_die->tag == DW_TAG_member
3931 || child_die->tag == DW_TAG_variable
3932 || child_die->tag == DW_TAG_inheritance)
134d01f1 3933 {
90aeadfc 3934 /* Do nothing. */
134d01f1 3935 }
90aeadfc
DC
3936 else
3937 process_die (child_die, cu);
134d01f1 3938
90aeadfc 3939 child_die = sibling_die (child_die);
134d01f1
DJ
3940 }
3941
90aeadfc
DC
3942 if (die->child != NULL && ! die_is_declaration (die, cu))
3943 new_symbol (die, die->type, cu);
3944
134d01f1
DJ
3945 processing_current_prefix = previous_prefix;
3946}
3947
3948/* Given a DW_AT_enumeration_type die, set its type. We do not
3949 complete the type's fields yet, or create any symbols. */
c906108c
SS
3950
3951static void
134d01f1 3952read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3953{
e7c27a73 3954 struct objfile *objfile = cu->objfile;
c906108c 3955 struct type *type;
c906108c 3956 struct attribute *attr;
134d01f1
DJ
3957
3958 if (die->type)
3959 return;
c906108c
SS
3960
3961 type = alloc_type (objfile);
3962
3963 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 3964 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3965 if (attr && DW_STRING (attr))
3966 {
d8151005 3967 char *name = DW_STRING (attr);
63d06c5c
DC
3968
3969 if (processing_has_namespace_info)
3970 {
987504bb
JJ
3971 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3972 processing_current_prefix,
3973 name, cu);
63d06c5c
DC
3974 }
3975 else
3976 {
d8151005
DJ
3977 /* The name is already allocated along with this objfile, so
3978 we don't need to duplicate it for the type. */
3979 TYPE_TAG_NAME (type) = name;
63d06c5c 3980 }
c906108c
SS
3981 }
3982
e142c38c 3983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3984 if (attr)
3985 {
3986 TYPE_LENGTH (type) = DW_UNSND (attr);
3987 }
3988 else
3989 {
3990 TYPE_LENGTH (type) = 0;
3991 }
3992
1c379e20 3993 set_die_type (die, type, cu);
134d01f1
DJ
3994}
3995
8176b9b8 3996/* Determine the name of the type represented by DIE, which should be
987504bb 3997 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
3998 is responsible for xfree()'ing it. */
3999
4000static char *
4001determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4002{
4003 struct cleanup *back_to = NULL;
4004 struct die_info *spec_die = die_specification (die, cu);
4005 char *new_prefix = NULL;
4006
4007 /* If this is the definition of a class that is declared by another
4008 die, then processing_current_prefix may not be accurate; see
4009 read_func_scope for a similar example. */
4010 if (spec_die != NULL)
4011 {
4012 char *specification_prefix = determine_prefix (spec_die, cu);
4013 processing_current_prefix = specification_prefix;
4014 back_to = make_cleanup (xfree, specification_prefix);
4015 }
4016
4017 /* If we don't have namespace debug info, guess the name by trying
4018 to demangle the names of members, just like we did in
72bf9492 4019 guess_structure_name. */
8176b9b8
DC
4020 if (!processing_has_namespace_info)
4021 {
4022 struct die_info *child;
4023
4024 for (child = die->child;
4025 child != NULL && child->tag != 0;
4026 child = sibling_die (child))
4027 {
4028 if (child->tag == DW_TAG_subprogram)
4029 {
31c27f77
JJ
4030 new_prefix
4031 = language_class_name_from_physname (cu->language_defn,
4032 dwarf2_linkage_name
8176b9b8
DC
4033 (child, cu));
4034
4035 if (new_prefix != NULL)
4036 break;
4037 }
4038 }
4039 }
4040
4041 if (new_prefix == NULL)
4042 {
4043 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4044 new_prefix = typename_concat (NULL, processing_current_prefix,
4045 name ? name : "<<anonymous>>",
4046 cu);
8176b9b8
DC
4047 }
4048
4049 if (back_to != NULL)
4050 do_cleanups (back_to);
4051
4052 return new_prefix;
4053}
4054
134d01f1
DJ
4055/* Given a pointer to a die which begins an enumeration, process all
4056 the dies that define the members of the enumeration, and create the
4057 symbol for the enumeration type.
4058
4059 NOTE: We reverse the order of the element list. */
4060
4061static void
4062process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4063{
4064 struct objfile *objfile = cu->objfile;
4065 struct die_info *child_die;
4066 struct field *fields;
4067 struct attribute *attr;
4068 struct symbol *sym;
4069 int num_fields;
4070 int unsigned_enum = 1;
4071
c906108c
SS
4072 num_fields = 0;
4073 fields = NULL;
639d11d3 4074 if (die->child != NULL)
c906108c 4075 {
639d11d3 4076 child_die = die->child;
c906108c
SS
4077 while (child_die && child_die->tag)
4078 {
4079 if (child_die->tag != DW_TAG_enumerator)
4080 {
e7c27a73 4081 process_die (child_die, cu);
c906108c
SS
4082 }
4083 else
4084 {
e142c38c 4085 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4086 if (attr)
4087 {
134d01f1 4088 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4089 if (SYMBOL_VALUE (sym) < 0)
4090 unsigned_enum = 0;
4091
4092 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4093 {
4094 fields = (struct field *)
4095 xrealloc (fields,
4096 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4097 * sizeof (struct field));
c906108c
SS
4098 }
4099
22abf04a 4100 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4101 FIELD_TYPE (fields[num_fields]) = NULL;
4102 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4103 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4104 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4105
4106 num_fields++;
4107 }
4108 }
4109
4110 child_die = sibling_die (child_die);
4111 }
4112
4113 if (num_fields)
4114 {
134d01f1
DJ
4115 TYPE_NFIELDS (die->type) = num_fields;
4116 TYPE_FIELDS (die->type) = (struct field *)
4117 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4118 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4119 sizeof (struct field) * num_fields);
b8c9b27d 4120 xfree (fields);
c906108c
SS
4121 }
4122 if (unsigned_enum)
134d01f1 4123 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4124 }
134d01f1
DJ
4125
4126 new_symbol (die, die->type, cu);
c906108c
SS
4127}
4128
4129/* Extract all information from a DW_TAG_array_type DIE and put it in
4130 the DIE's type field. For now, this only handles one dimensional
4131 arrays. */
4132
4133static void
e7c27a73 4134read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4135{
e7c27a73 4136 struct objfile *objfile = cu->objfile;
c906108c
SS
4137 struct die_info *child_die;
4138 struct type *type = NULL;
4139 struct type *element_type, *range_type, *index_type;
4140 struct type **range_types = NULL;
4141 struct attribute *attr;
4142 int ndim = 0;
4143 struct cleanup *back_to;
4144
4145 /* Return if we've already decoded this type. */
4146 if (die->type)
4147 {
4148 return;
4149 }
4150
e7c27a73 4151 element_type = die_type (die, cu);
c906108c
SS
4152
4153 /* Irix 6.2 native cc creates array types without children for
4154 arrays with unspecified length. */
639d11d3 4155 if (die->child == NULL)
c906108c 4156 {
e142c38c 4157 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4158 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4159 set_die_type (die, create_array_type (NULL, element_type, range_type),
4160 cu);
c906108c
SS
4161 return;
4162 }
4163
4164 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4165 child_die = die->child;
c906108c
SS
4166 while (child_die && child_die->tag)
4167 {
4168 if (child_die->tag == DW_TAG_subrange_type)
4169 {
a02abb62 4170 read_subrange_type (child_die, cu);
c906108c 4171
a02abb62
JB
4172 if (child_die->type != NULL)
4173 {
4174 /* The range type was succesfully read. Save it for
4175 the array type creation. */
4176 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4177 {
4178 range_types = (struct type **)
4179 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4180 * sizeof (struct type *));
4181 if (ndim == 0)
4182 make_cleanup (free_current_contents, &range_types);
4183 }
4184 range_types[ndim++] = child_die->type;
4185 }
c906108c
SS
4186 }
4187 child_die = sibling_die (child_die);
4188 }
4189
4190 /* Dwarf2 dimensions are output from left to right, create the
4191 necessary array types in backwards order. */
7ca2d3a3 4192
c906108c 4193 type = element_type;
7ca2d3a3
DL
4194
4195 if (read_array_order (die, cu) == DW_ORD_col_major)
4196 {
4197 int i = 0;
4198 while (i < ndim)
4199 type = create_array_type (NULL, type, range_types[i++]);
4200 }
4201 else
4202 {
4203 while (ndim-- > 0)
4204 type = create_array_type (NULL, type, range_types[ndim]);
4205 }
c906108c 4206
f5f8a009
EZ
4207 /* Understand Dwarf2 support for vector types (like they occur on
4208 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4209 array type. This is not part of the Dwarf2/3 standard yet, but a
4210 custom vendor extension. The main difference between a regular
4211 array and the vector variant is that vectors are passed by value
4212 to functions. */
e142c38c 4213 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4214 if (attr)
4215 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4216
c906108c
SS
4217 do_cleanups (back_to);
4218
4219 /* Install the type in the die. */
1c379e20 4220 set_die_type (die, type, cu);
c906108c
SS
4221}
4222
7ca2d3a3
DL
4223static enum dwarf_array_dim_ordering
4224read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4225{
4226 struct attribute *attr;
4227
4228 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4229
4230 if (attr) return DW_SND (attr);
4231
4232 /*
4233 GNU F77 is a special case, as at 08/2004 array type info is the
4234 opposite order to the dwarf2 specification, but data is still
4235 laid out as per normal fortran.
4236
4237 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4238 version checking.
4239 */
4240
4241 if (cu->language == language_fortran &&
4242 cu->producer && strstr (cu->producer, "GNU F77"))
4243 {
4244 return DW_ORD_row_major;
4245 }
4246
4247 switch (cu->language_defn->la_array_ordering)
4248 {
4249 case array_column_major:
4250 return DW_ORD_col_major;
4251 case array_row_major:
4252 default:
4253 return DW_ORD_row_major;
4254 };
4255}
4256
72019c9c
GM
4257/* Extract all information from a DW_TAG_set_type DIE and put it in
4258 the DIE's type field. */
4259
4260static void
4261read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4262{
4263 if (die->type == NULL)
4264 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4265}
7ca2d3a3 4266
c906108c
SS
4267/* First cut: install each common block member as a global variable. */
4268
4269static void
e7c27a73 4270read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4271{
4272 struct die_info *child_die;
4273 struct attribute *attr;
4274 struct symbol *sym;
4275 CORE_ADDR base = (CORE_ADDR) 0;
4276
e142c38c 4277 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4278 if (attr)
4279 {
8e19ed76
PS
4280 /* Support the .debug_loc offsets */
4281 if (attr_form_is_block (attr))
4282 {
e7c27a73 4283 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4284 }
4285 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4286 {
4d3c2250 4287 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4288 }
4289 else
4290 {
4d3c2250
KB
4291 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4292 "common block member");
8e19ed76 4293 }
c906108c 4294 }
639d11d3 4295 if (die->child != NULL)
c906108c 4296 {
639d11d3 4297 child_die = die->child;
c906108c
SS
4298 while (child_die && child_die->tag)
4299 {
e7c27a73 4300 sym = new_symbol (child_die, NULL, cu);
e142c38c 4301 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4302 if (attr)
4303 {
4304 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4305 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4306 add_symbol_to_list (sym, &global_symbols);
4307 }
4308 child_die = sibling_die (child_die);
4309 }
4310 }
4311}
4312
d9fa45fe
DC
4313/* Read a C++ namespace. */
4314
d9fa45fe 4315static void
e7c27a73 4316read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4317{
e7c27a73 4318 struct objfile *objfile = cu->objfile;
38d518c9 4319 const char *previous_prefix = processing_current_prefix;
63d06c5c 4320 const char *name;
9219021c
DC
4321 int is_anonymous;
4322 struct die_info *current_die;
987504bb 4323 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4324
e142c38c 4325 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4326
4327 /* Now build the name of the current namespace. */
4328
38d518c9 4329 if (previous_prefix[0] == '\0')
9219021c 4330 {
38d518c9 4331 processing_current_prefix = name;
9219021c
DC
4332 }
4333 else
4334 {
987504bb
JJ
4335 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4336 make_cleanup (xfree, temp_name);
38d518c9 4337 processing_current_prefix = temp_name;
9219021c
DC
4338 }
4339
5c4e30ca
DC
4340 /* Add a symbol associated to this if we haven't seen the namespace
4341 before. Also, add a using directive if it's an anonymous
4342 namespace. */
9219021c 4343
e142c38c 4344 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4345 {
4346 struct type *type;
4347
4348 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4349 this cast will hopefully become unnecessary. */
4350 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4351 (char *) processing_current_prefix,
5c4e30ca
DC
4352 objfile);
4353 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4354
e7c27a73 4355 new_symbol (die, type, cu);
1c379e20 4356 set_die_type (die, type, cu);
5c4e30ca
DC
4357
4358 if (is_anonymous)
38d518c9
EZ
4359 cp_add_using_directive (processing_current_prefix,
4360 strlen (previous_prefix),
4361 strlen (processing_current_prefix));
5c4e30ca 4362 }
9219021c 4363
639d11d3 4364 if (die->child != NULL)
d9fa45fe 4365 {
639d11d3 4366 struct die_info *child_die = die->child;
d9fa45fe
DC
4367
4368 while (child_die && child_die->tag)
4369 {
e7c27a73 4370 process_die (child_die, cu);
d9fa45fe
DC
4371 child_die = sibling_die (child_die);
4372 }
4373 }
9219021c 4374
38d518c9 4375 processing_current_prefix = previous_prefix;
987504bb 4376 do_cleanups (back_to);
38d518c9
EZ
4377}
4378
4379/* Return the name of the namespace represented by DIE. Set
4380 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4381 namespace. */
4382
4383static const char *
e142c38c 4384namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4385{
4386 struct die_info *current_die;
4387 const char *name = NULL;
4388
4389 /* Loop through the extensions until we find a name. */
4390
4391 for (current_die = die;
4392 current_die != NULL;
e142c38c 4393 current_die = dwarf2_extension (die, cu))
38d518c9 4394 {
e142c38c 4395 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4396 if (name != NULL)
4397 break;
4398 }
4399
4400 /* Is it an anonymous namespace? */
4401
4402 *is_anonymous = (name == NULL);
4403 if (*is_anonymous)
4404 name = "(anonymous namespace)";
4405
4406 return name;
d9fa45fe
DC
4407}
4408
c906108c
SS
4409/* Extract all information from a DW_TAG_pointer_type DIE and add to
4410 the user defined type vector. */
4411
4412static void
e7c27a73 4413read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4414{
e7c27a73 4415 struct comp_unit_head *cu_header = &cu->header;
c906108c 4416 struct type *type;
8b2dbe47
KB
4417 struct attribute *attr_byte_size;
4418 struct attribute *attr_address_class;
4419 int byte_size, addr_class;
c906108c
SS
4420
4421 if (die->type)
4422 {
4423 return;
4424 }
4425
e7c27a73 4426 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4427
e142c38c 4428 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4429 if (attr_byte_size)
4430 byte_size = DW_UNSND (attr_byte_size);
c906108c 4431 else
8b2dbe47
KB
4432 byte_size = cu_header->addr_size;
4433
e142c38c 4434 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4435 if (attr_address_class)
4436 addr_class = DW_UNSND (attr_address_class);
4437 else
4438 addr_class = DW_ADDR_none;
4439
4440 /* If the pointer size or address class is different than the
4441 default, create a type variant marked as such and set the
4442 length accordingly. */
4443 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4444 {
8b2dbe47
KB
4445 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4446 {
4447 int type_flags;
4448
4449 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4450 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4451 type = make_type_with_address_space (type, type_flags);
4452 }
4453 else if (TYPE_LENGTH (type) != byte_size)
4454 {
e2e0b3e5 4455 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4456 }
4457 else {
4458 /* Should we also complain about unhandled address classes? */
4459 }
c906108c 4460 }
8b2dbe47
KB
4461
4462 TYPE_LENGTH (type) = byte_size;
1c379e20 4463 set_die_type (die, type, cu);
c906108c
SS
4464}
4465
4466/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4467 the user defined type vector. */
4468
4469static void
e7c27a73 4470read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4471{
e7c27a73 4472 struct objfile *objfile = cu->objfile;
c906108c
SS
4473 struct type *type;
4474 struct type *to_type;
4475 struct type *domain;
4476
4477 if (die->type)
4478 {
4479 return;
4480 }
4481
4482 type = alloc_type (objfile);
e7c27a73
DJ
4483 to_type = die_type (die, cu);
4484 domain = die_containing_type (die, cu);
c906108c
SS
4485 smash_to_member_type (type, domain, to_type);
4486
1c379e20 4487 set_die_type (die, type, cu);
c906108c
SS
4488}
4489
4490/* Extract all information from a DW_TAG_reference_type DIE and add to
4491 the user defined type vector. */
4492
4493static void
e7c27a73 4494read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4495{
e7c27a73 4496 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4497 struct type *type;
4498 struct attribute *attr;
4499
4500 if (die->type)
4501 {
4502 return;
4503 }
4504
e7c27a73 4505 type = lookup_reference_type (die_type (die, cu));
e142c38c 4506 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4507 if (attr)
4508 {
4509 TYPE_LENGTH (type) = DW_UNSND (attr);
4510 }
4511 else
4512 {
107d2387 4513 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4514 }
1c379e20 4515 set_die_type (die, type, cu);
c906108c
SS
4516}
4517
4518static void
e7c27a73 4519read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4520{
090c42a4
JB
4521 struct type *base_type;
4522
c906108c
SS
4523 if (die->type)
4524 {
4525 return;
4526 }
4527
e7c27a73 4528 base_type = die_type (die, cu);
1c379e20
DJ
4529 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4530 cu);
c906108c
SS
4531}
4532
4533static void
e7c27a73 4534read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4535{
090c42a4
JB
4536 struct type *base_type;
4537
c906108c
SS
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
e7c27a73 4543 base_type = die_type (die, cu);
1c379e20
DJ
4544 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4545 cu);
c906108c
SS
4546}
4547
4548/* Extract all information from a DW_TAG_string_type DIE and add to
4549 the user defined type vector. It isn't really a user defined type,
4550 but it behaves like one, with other DIE's using an AT_user_def_type
4551 attribute to reference it. */
4552
4553static void
e7c27a73 4554read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4555{
e7c27a73 4556 struct objfile *objfile = cu->objfile;
c906108c
SS
4557 struct type *type, *range_type, *index_type, *char_type;
4558 struct attribute *attr;
4559 unsigned int length;
4560
4561 if (die->type)
4562 {
4563 return;
4564 }
4565
e142c38c 4566 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4567 if (attr)
4568 {
4569 length = DW_UNSND (attr);
4570 }
4571 else
4572 {
b21b22e0 4573 /* check for the DW_AT_byte_size attribute */
e142c38c 4574 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4575 if (attr)
4576 {
4577 length = DW_UNSND (attr);
4578 }
4579 else
4580 {
4581 length = 1;
4582 }
c906108c 4583 }
e142c38c 4584 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4585 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4586 if (cu->language == language_fortran)
b21b22e0
PS
4587 {
4588 /* Need to create a unique string type for bounds
4589 information */
4590 type = create_string_type (0, range_type);
4591 }
4592 else
4593 {
e142c38c 4594 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4595 type = create_string_type (char_type, range_type);
4596 }
1c379e20 4597 set_die_type (die, type, cu);
c906108c
SS
4598}
4599
4600/* Handle DIES due to C code like:
4601
4602 struct foo
c5aa993b
JM
4603 {
4604 int (*funcp)(int a, long l);
4605 int b;
4606 };
c906108c
SS
4607
4608 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4609 */
c906108c
SS
4610
4611static void
e7c27a73 4612read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4613{
4614 struct type *type; /* Type that this function returns */
4615 struct type *ftype; /* Function that returns above type */
4616 struct attribute *attr;
4617
4618 /* Decode the type that this subroutine returns */
4619 if (die->type)
4620 {
4621 return;
4622 }
e7c27a73 4623 type = die_type (die, cu);
1326e61b 4624 ftype = make_function_type (type, (struct type **) 0);
c906108c 4625
987504bb 4626 /* All functions in C++ and Java have prototypes. */
e142c38c 4627 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4628 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4629 || cu->language == language_cplus
4630 || cu->language == language_java)
c906108c
SS
4631 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4632
639d11d3 4633 if (die->child != NULL)
c906108c
SS
4634 {
4635 struct die_info *child_die;
4636 int nparams = 0;
4637 int iparams = 0;
4638
4639 /* Count the number of parameters.
4640 FIXME: GDB currently ignores vararg functions, but knows about
4641 vararg member functions. */
639d11d3 4642 child_die = die->child;
c906108c
SS
4643 while (child_die && child_die->tag)
4644 {
4645 if (child_die->tag == DW_TAG_formal_parameter)
4646 nparams++;
4647 else if (child_die->tag == DW_TAG_unspecified_parameters)
4648 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4649 child_die = sibling_die (child_die);
4650 }
4651
4652 /* Allocate storage for parameters and fill them in. */
4653 TYPE_NFIELDS (ftype) = nparams;
4654 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4655 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4656
639d11d3 4657 child_die = die->child;
c906108c
SS
4658 while (child_die && child_die->tag)
4659 {
4660 if (child_die->tag == DW_TAG_formal_parameter)
4661 {
4662 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4663 member functions. G++ helps GDB by marking the first
4664 parameter for non-static member functions (which is the
4665 this pointer) as artificial. We pass this information
4666 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4667 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4668 if (attr)
4669 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4670 else
4671 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4672 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4673 iparams++;
4674 }
4675 child_die = sibling_die (child_die);
4676 }
4677 }
4678
1c379e20 4679 set_die_type (die, ftype, cu);
c906108c
SS
4680}
4681
4682static void
e7c27a73 4683read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4684{
e7c27a73 4685 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4686 struct attribute *attr;
4687 char *name = NULL;
c906108c
SS
4688
4689 if (!die->type)
4690 {
e142c38c 4691 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4692 if (attr && DW_STRING (attr))
2f038fcb
FF
4693 {
4694 name = DW_STRING (attr);
4695 }
1c379e20
DJ
4696 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4697 TYPE_FLAG_TARGET_STUB, name, objfile),
4698 cu);
e7c27a73 4699 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4700 }
4701}
4702
4703/* Find a representation of a given base type and install
4704 it in the TYPE field of the die. */
4705
4706static void
e7c27a73 4707read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4708{
e7c27a73 4709 struct objfile *objfile = cu->objfile;
c906108c
SS
4710 struct type *type;
4711 struct attribute *attr;
4712 int encoding = 0, size = 0;
4713
4714 /* If we've already decoded this die, this is a no-op. */
4715 if (die->type)
4716 {
4717 return;
4718 }
4719
e142c38c 4720 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4721 if (attr)
4722 {
4723 encoding = DW_UNSND (attr);
4724 }
e142c38c 4725 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4726 if (attr)
4727 {
4728 size = DW_UNSND (attr);
4729 }
e142c38c 4730 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4731 if (attr && DW_STRING (attr))
4732 {
4733 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4734 int type_flags = 0;
c906108c
SS
4735
4736 switch (encoding)
4737 {
4738 case DW_ATE_address:
4739 /* Turn DW_ATE_address into a void * pointer. */
4740 code = TYPE_CODE_PTR;
f5ef7c67 4741 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4742 break;
4743 case DW_ATE_boolean:
4744 code = TYPE_CODE_BOOL;
f5ef7c67 4745 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4746 break;
4747 case DW_ATE_complex_float:
4748 code = TYPE_CODE_COMPLEX;
4749 break;
4750 case DW_ATE_float:
4751 code = TYPE_CODE_FLT;
4752 break;
4753 case DW_ATE_signed:
c906108c
SS
4754 break;
4755 case DW_ATE_unsigned:
72019c9c
GM
4756 type_flags |= TYPE_FLAG_UNSIGNED;
4757 break;
4758 case DW_ATE_signed_char:
4759 if (cu->language == language_m2)
4760 code = TYPE_CODE_CHAR;
4761 break;
4762 case DW_ATE_unsigned_char:
4763 if (cu->language == language_m2)
4764 code = TYPE_CODE_CHAR;
f5ef7c67 4765 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4766 break;
4767 default:
e2e0b3e5 4768 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4769 dwarf_type_encoding_name (encoding));
c906108c
SS
4770 break;
4771 }
f5ef7c67 4772 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4773 if (encoding == DW_ATE_address)
e142c38c
DJ
4774 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4775 cu);
f65ca430
DJ
4776 else if (encoding == DW_ATE_complex_float)
4777 {
4778 if (size == 32)
4779 TYPE_TARGET_TYPE (type)
e142c38c 4780 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4781 else if (size == 16)
4782 TYPE_TARGET_TYPE (type)
e142c38c 4783 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4784 else if (size == 8)
4785 TYPE_TARGET_TYPE (type)
e142c38c 4786 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4787 }
c906108c
SS
4788 }
4789 else
4790 {
e7c27a73 4791 type = dwarf_base_type (encoding, size, cu);
c906108c 4792 }
1c379e20 4793 set_die_type (die, type, cu);
c906108c
SS
4794}
4795
a02abb62
JB
4796/* Read the given DW_AT_subrange DIE. */
4797
4798static void
4799read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4800{
4801 struct type *base_type;
4802 struct type *range_type;
4803 struct attribute *attr;
4804 int low = 0;
4805 int high = -1;
4806
4807 /* If we have already decoded this die, then nothing more to do. */
4808 if (die->type)
4809 return;
4810
4811 base_type = die_type (die, cu);
4812 if (base_type == NULL)
4813 {
4814 complaint (&symfile_complaints,
e2e0b3e5 4815 _("DW_AT_type missing from DW_TAG_subrange_type"));
a02abb62
JB
4816 return;
4817 }
4818
4819 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4820 base_type = alloc_type (NULL);
4821
e142c38c 4822 if (cu->language == language_fortran)
a02abb62
JB
4823 {
4824 /* FORTRAN implies a lower bound of 1, if not given. */
4825 low = 1;
4826 }
4827
dd5e6932
DJ
4828 /* FIXME: For variable sized arrays either of these could be
4829 a variable rather than a constant value. We'll allow it,
4830 but we don't know how to handle it. */
e142c38c 4831 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4832 if (attr)
4833 low = dwarf2_get_attr_constant_value (attr, 0);
4834
e142c38c 4835 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4836 if (attr)
4837 {
4838 if (attr->form == DW_FORM_block1)
4839 {
4840 /* GCC encodes arrays with unspecified or dynamic length
4841 with a DW_FORM_block1 attribute.
4842 FIXME: GDB does not yet know how to handle dynamic
4843 arrays properly, treat them as arrays with unspecified
4844 length for now.
4845
4846 FIXME: jimb/2003-09-22: GDB does not really know
4847 how to handle arrays of unspecified length
4848 either; we just represent them as zero-length
4849 arrays. Choose an appropriate upper bound given
4850 the lower bound we've computed above. */
4851 high = low - 1;
4852 }
4853 else
4854 high = dwarf2_get_attr_constant_value (attr, 1);
4855 }
4856
4857 range_type = create_range_type (NULL, base_type, low, high);
4858
e142c38c 4859 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4860 if (attr && DW_STRING (attr))
4861 TYPE_NAME (range_type) = DW_STRING (attr);
4862
e142c38c 4863 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4864 if (attr)
4865 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4866
1c379e20 4867 set_die_type (die, range_type, cu);
a02abb62
JB
4868}
4869
81a17f79
JB
4870static void
4871read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4872{
4873 struct type *type;
4874 struct attribute *attr;
4875
4876 if (die->type)
4877 return;
4878
4879 /* For now, we only support the C meaning of an unspecified type: void. */
4880
4881 attr = dwarf2_attr (die, DW_AT_name, cu);
4882 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
4883 cu->objfile);
4884
4885 set_die_type (die, type, cu);
4886}
a02abb62 4887
c906108c
SS
4888/* Read a whole compilation unit into a linked list of dies. */
4889
f9aca02d 4890static struct die_info *
fe1b8b76 4891read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 4892{
e7c27a73 4893 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
4894}
4895
4896/* Read a single die and all its descendents. Set the die's sibling
4897 field to NULL; set other fields in the die correctly, and set all
4898 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4899 location of the info_ptr after reading all of those dies. PARENT
4900 is the parent of the die in question. */
4901
4902static struct die_info *
fe1b8b76 4903read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 4904 struct dwarf2_cu *cu,
fe1b8b76 4905 gdb_byte **new_info_ptr,
639d11d3
DC
4906 struct die_info *parent)
4907{
4908 struct die_info *die;
fe1b8b76 4909 gdb_byte *cur_ptr;
639d11d3
DC
4910 int has_children;
4911
e7c27a73 4912 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 4913 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
4914
4915 if (has_children)
4916 {
e7c27a73 4917 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
4918 new_info_ptr, die);
4919 }
4920 else
4921 {
4922 die->child = NULL;
4923 *new_info_ptr = cur_ptr;
4924 }
4925
4926 die->sibling = NULL;
4927 die->parent = parent;
4928 return die;
4929}
4930
4931/* Read a die, all of its descendents, and all of its siblings; set
4932 all of the fields of all of the dies correctly. Arguments are as
4933 in read_die_and_children. */
4934
4935static struct die_info *
fe1b8b76 4936read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 4937 struct dwarf2_cu *cu,
fe1b8b76 4938 gdb_byte **new_info_ptr,
639d11d3
DC
4939 struct die_info *parent)
4940{
4941 struct die_info *first_die, *last_sibling;
fe1b8b76 4942 gdb_byte *cur_ptr;
639d11d3 4943
c906108c 4944 cur_ptr = info_ptr;
639d11d3
DC
4945 first_die = last_sibling = NULL;
4946
4947 while (1)
c906108c 4948 {
639d11d3 4949 struct die_info *die
e7c27a73 4950 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
4951
4952 if (!first_die)
c906108c 4953 {
639d11d3 4954 first_die = die;
c906108c 4955 }
639d11d3 4956 else
c906108c 4957 {
639d11d3 4958 last_sibling->sibling = die;
c906108c
SS
4959 }
4960
639d11d3 4961 if (die->tag == 0)
c906108c 4962 {
639d11d3
DC
4963 *new_info_ptr = cur_ptr;
4964 return first_die;
c906108c
SS
4965 }
4966 else
4967 {
639d11d3 4968 last_sibling = die;
c906108c
SS
4969 }
4970 }
c906108c
SS
4971}
4972
4973/* Free a linked list of dies. */
4974
4975static void
fba45db2 4976free_die_list (struct die_info *dies)
c906108c
SS
4977{
4978 struct die_info *die, *next;
4979
4980 die = dies;
4981 while (die)
4982 {
639d11d3
DC
4983 if (die->child != NULL)
4984 free_die_list (die->child);
4985 next = die->sibling;
b8c9b27d
KB
4986 xfree (die->attrs);
4987 xfree (die);
c906108c
SS
4988 die = next;
4989 }
4990}
4991
4992/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 4993 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 4994
fe1b8b76 4995gdb_byte *
188dd5d6 4996dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
4997{
4998 bfd *abfd = objfile->obfd;
fe1b8b76 4999 gdb_byte *buf, *retbuf;
2c500098 5000 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5001
5002 if (size == 0)
5003 return NULL;
5004
fe1b8b76
JB
5005 buf = obstack_alloc (&objfile->objfile_obstack, size);
5006 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5007 if (retbuf != NULL)
5008 return retbuf;
5009
188dd5d6
DJ
5010 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5011 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5012 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5013 bfd_get_filename (abfd));
5014
c906108c
SS
5015 return buf;
5016}
5017
5018/* In DWARF version 2, the description of the debugging information is
5019 stored in a separate .debug_abbrev section. Before we read any
5020 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5021 in a hash table. This function also sets flags in CU describing
5022 the data found in the abbrev table. */
c906108c
SS
5023
5024static void
e7c27a73 5025dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5026{
e7c27a73 5027 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5028 gdb_byte *abbrev_ptr;
c906108c
SS
5029 struct abbrev_info *cur_abbrev;
5030 unsigned int abbrev_number, bytes_read, abbrev_name;
5031 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5032 struct attr_abbrev *cur_attrs;
5033 unsigned int allocated_attrs;
c906108c 5034
57349743 5035 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5036 obstack_init (&cu->abbrev_obstack);
5037 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5038 (ABBREV_HASH_SIZE
5039 * sizeof (struct abbrev_info *)));
5040 memset (cu->dwarf2_abbrevs, 0,
5041 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5042
6502dd73 5043 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5044 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5045 abbrev_ptr += bytes_read;
5046
f3dd6933
DJ
5047 allocated_attrs = ATTR_ALLOC_CHUNK;
5048 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5049
c906108c
SS
5050 /* loop until we reach an abbrev number of 0 */
5051 while (abbrev_number)
5052 {
f3dd6933 5053 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5054
5055 /* read in abbrev header */
5056 cur_abbrev->number = abbrev_number;
5057 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5058 abbrev_ptr += bytes_read;
5059 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5060 abbrev_ptr += 1;
5061
72bf9492
DJ
5062 if (cur_abbrev->tag == DW_TAG_namespace)
5063 cu->has_namespace_info = 1;
5064
c906108c
SS
5065 /* now read in declarations */
5066 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5067 abbrev_ptr += bytes_read;
5068 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5069 abbrev_ptr += bytes_read;
5070 while (abbrev_name)
5071 {
f3dd6933 5072 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5073 {
f3dd6933
DJ
5074 allocated_attrs += ATTR_ALLOC_CHUNK;
5075 cur_attrs
5076 = xrealloc (cur_attrs, (allocated_attrs
5077 * sizeof (struct attr_abbrev)));
c906108c 5078 }
ae038cb0
DJ
5079
5080 /* Record whether this compilation unit might have
5081 inter-compilation-unit references. If we don't know what form
5082 this attribute will have, then it might potentially be a
5083 DW_FORM_ref_addr, so we conservatively expect inter-CU
5084 references. */
5085
5086 if (abbrev_form == DW_FORM_ref_addr
5087 || abbrev_form == DW_FORM_indirect)
5088 cu->has_form_ref_addr = 1;
5089
f3dd6933
DJ
5090 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5091 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5092 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5093 abbrev_ptr += bytes_read;
5094 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5095 abbrev_ptr += bytes_read;
5096 }
5097
f3dd6933
DJ
5098 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5099 (cur_abbrev->num_attrs
5100 * sizeof (struct attr_abbrev)));
5101 memcpy (cur_abbrev->attrs, cur_attrs,
5102 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5103
c906108c 5104 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5105 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5106 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5107
5108 /* Get next abbreviation.
5109 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5110 always properly terminated with an abbrev number of 0.
5111 Exit loop if we encounter an abbreviation which we have
5112 already read (which means we are about to read the abbreviations
5113 for the next compile unit) or if the end of the abbreviation
5114 table is reached. */
6502dd73
DJ
5115 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5116 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5117 break;
5118 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5119 abbrev_ptr += bytes_read;
e7c27a73 5120 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5121 break;
5122 }
f3dd6933
DJ
5123
5124 xfree (cur_attrs);
c906108c
SS
5125}
5126
f3dd6933 5127/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5128
c906108c 5129static void
f3dd6933 5130dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5131{
f3dd6933 5132 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5133
f3dd6933
DJ
5134 obstack_free (&cu->abbrev_obstack, NULL);
5135 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5136}
5137
5138/* Lookup an abbrev_info structure in the abbrev hash table. */
5139
5140static struct abbrev_info *
e7c27a73 5141dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5142{
5143 unsigned int hash_number;
5144 struct abbrev_info *abbrev;
5145
5146 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5147 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5148
5149 while (abbrev)
5150 {
5151 if (abbrev->number == number)
5152 return abbrev;
5153 else
5154 abbrev = abbrev->next;
5155 }
5156 return NULL;
5157}
5158
72bf9492
DJ
5159/* Returns nonzero if TAG represents a type that we might generate a partial
5160 symbol for. */
5161
5162static int
5163is_type_tag_for_partial (int tag)
5164{
5165 switch (tag)
5166 {
5167#if 0
5168 /* Some types that would be reasonable to generate partial symbols for,
5169 that we don't at present. */
5170 case DW_TAG_array_type:
5171 case DW_TAG_file_type:
5172 case DW_TAG_ptr_to_member_type:
5173 case DW_TAG_set_type:
5174 case DW_TAG_string_type:
5175 case DW_TAG_subroutine_type:
5176#endif
5177 case DW_TAG_base_type:
5178 case DW_TAG_class_type:
5179 case DW_TAG_enumeration_type:
5180 case DW_TAG_structure_type:
5181 case DW_TAG_subrange_type:
5182 case DW_TAG_typedef:
5183 case DW_TAG_union_type:
5184 return 1;
5185 default:
5186 return 0;
5187 }
5188}
5189
5190/* Load all DIEs that are interesting for partial symbols into memory. */
5191
5192static struct partial_die_info *
fe1b8b76 5193load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5194 struct dwarf2_cu *cu)
5195{
5196 struct partial_die_info *part_die;
5197 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5198 struct abbrev_info *abbrev;
5199 unsigned int bytes_read;
5afb4e99 5200 unsigned int load_all = 0;
72bf9492
DJ
5201
5202 int nesting_level = 1;
5203
5204 parent_die = NULL;
5205 last_die = NULL;
5206
5afb4e99
DJ
5207 if (cu->per_cu && cu->per_cu->load_all_dies)
5208 load_all = 1;
5209
72bf9492
DJ
5210 cu->partial_dies
5211 = htab_create_alloc_ex (cu->header.length / 12,
5212 partial_die_hash,
5213 partial_die_eq,
5214 NULL,
5215 &cu->comp_unit_obstack,
5216 hashtab_obstack_allocate,
5217 dummy_obstack_deallocate);
5218
5219 part_die = obstack_alloc (&cu->comp_unit_obstack,
5220 sizeof (struct partial_die_info));
5221
5222 while (1)
5223 {
5224 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5225
5226 /* A NULL abbrev means the end of a series of children. */
5227 if (abbrev == NULL)
5228 {
5229 if (--nesting_level == 0)
5230 {
5231 /* PART_DIE was probably the last thing allocated on the
5232 comp_unit_obstack, so we could call obstack_free
5233 here. We don't do that because the waste is small,
5234 and will be cleaned up when we're done with this
5235 compilation unit. This way, we're also more robust
5236 against other users of the comp_unit_obstack. */
5237 return first_die;
5238 }
5239 info_ptr += bytes_read;
5240 last_die = parent_die;
5241 parent_die = parent_die->die_parent;
5242 continue;
5243 }
5244
5afb4e99
DJ
5245 /* Check whether this DIE is interesting enough to save. Normally
5246 we would not be interested in members here, but there may be
5247 later variables referencing them via DW_AT_specification (for
5248 static members). */
5249 if (!load_all
5250 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5251 && abbrev->tag != DW_TAG_enumerator
5252 && abbrev->tag != DW_TAG_subprogram
5253 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5254 && abbrev->tag != DW_TAG_namespace
5255 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5256 {
5257 /* Otherwise we skip to the next sibling, if any. */
5258 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5259 continue;
5260 }
5261
5262 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5263 abfd, info_ptr, cu);
5264
5265 /* This two-pass algorithm for processing partial symbols has a
5266 high cost in cache pressure. Thus, handle some simple cases
5267 here which cover the majority of C partial symbols. DIEs
5268 which neither have specification tags in them, nor could have
5269 specification tags elsewhere pointing at them, can simply be
5270 processed and discarded.
5271
5272 This segment is also optional; scan_partial_symbols and
5273 add_partial_symbol will handle these DIEs if we chain
5274 them in normally. When compilers which do not emit large
5275 quantities of duplicate debug information are more common,
5276 this code can probably be removed. */
5277
5278 /* Any complete simple types at the top level (pretty much all
5279 of them, for a language without namespaces), can be processed
5280 directly. */
5281 if (parent_die == NULL
5282 && part_die->has_specification == 0
5283 && part_die->is_declaration == 0
5284 && (part_die->tag == DW_TAG_typedef
5285 || part_die->tag == DW_TAG_base_type
5286 || part_die->tag == DW_TAG_subrange_type))
5287 {
5288 if (building_psymtab && part_die->name != NULL)
5289 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5290 VAR_DOMAIN, LOC_TYPEDEF,
5291 &cu->objfile->static_psymbols,
5292 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5293 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5294 continue;
5295 }
5296
5297 /* If we're at the second level, and we're an enumerator, and
5298 our parent has no specification (meaning possibly lives in a
5299 namespace elsewhere), then we can add the partial symbol now
5300 instead of queueing it. */
5301 if (part_die->tag == DW_TAG_enumerator
5302 && parent_die != NULL
5303 && parent_die->die_parent == NULL
5304 && parent_die->tag == DW_TAG_enumeration_type
5305 && parent_die->has_specification == 0)
5306 {
5307 if (part_die->name == NULL)
e2e0b3e5 5308 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5309 else if (building_psymtab)
5310 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5311 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5312 (cu->language == language_cplus
5313 || cu->language == language_java)
72bf9492
DJ
5314 ? &cu->objfile->global_psymbols
5315 : &cu->objfile->static_psymbols,
5316 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5317
5318 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5319 continue;
5320 }
5321
5322 /* We'll save this DIE so link it in. */
5323 part_die->die_parent = parent_die;
5324 part_die->die_sibling = NULL;
5325 part_die->die_child = NULL;
5326
5327 if (last_die && last_die == parent_die)
5328 last_die->die_child = part_die;
5329 else if (last_die)
5330 last_die->die_sibling = part_die;
5331
5332 last_die = part_die;
5333
5334 if (first_die == NULL)
5335 first_die = part_die;
5336
5337 /* Maybe add the DIE to the hash table. Not all DIEs that we
5338 find interesting need to be in the hash table, because we
5339 also have the parent/sibling/child chains; only those that we
5340 might refer to by offset later during partial symbol reading.
5341
5342 For now this means things that might have be the target of a
5343 DW_AT_specification, DW_AT_abstract_origin, or
5344 DW_AT_extension. DW_AT_extension will refer only to
5345 namespaces; DW_AT_abstract_origin refers to functions (and
5346 many things under the function DIE, but we do not recurse
5347 into function DIEs during partial symbol reading) and
5348 possibly variables as well; DW_AT_specification refers to
5349 declarations. Declarations ought to have the DW_AT_declaration
5350 flag. It happens that GCC forgets to put it in sometimes, but
5351 only for functions, not for types.
5352
5353 Adding more things than necessary to the hash table is harmless
5354 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5355 wasted time in find_partial_die, when we reread the compilation
5356 unit with load_all_dies set. */
72bf9492 5357
5afb4e99
DJ
5358 if (load_all
5359 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5360 || abbrev->tag == DW_TAG_variable
5361 || abbrev->tag == DW_TAG_namespace
5362 || part_die->is_declaration)
5363 {
5364 void **slot;
5365
5366 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5367 part_die->offset, INSERT);
5368 *slot = part_die;
5369 }
5370
5371 part_die = obstack_alloc (&cu->comp_unit_obstack,
5372 sizeof (struct partial_die_info));
5373
5374 /* For some DIEs we want to follow their children (if any). For C
5375 we have no reason to follow the children of structures; for other
5376 languages we have to, both so that we can get at method physnames
5377 to infer fully qualified class names, and for DW_AT_specification. */
5378 if (last_die->has_children
5afb4e99
DJ
5379 && (load_all
5380 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5381 || last_die->tag == DW_TAG_enumeration_type
5382 || (cu->language != language_c
5383 && (last_die->tag == DW_TAG_class_type
5384 || last_die->tag == DW_TAG_structure_type
5385 || last_die->tag == DW_TAG_union_type))))
5386 {
5387 nesting_level++;
5388 parent_die = last_die;
5389 continue;
5390 }
5391
5392 /* Otherwise we skip to the next sibling, if any. */
5393 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5394
5395 /* Back to the top, do it again. */
5396 }
5397}
5398
c906108c
SS
5399/* Read a minimal amount of information into the minimal die structure. */
5400
fe1b8b76 5401static gdb_byte *
72bf9492
DJ
5402read_partial_die (struct partial_die_info *part_die,
5403 struct abbrev_info *abbrev,
5404 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5405 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5406{
72bf9492 5407 unsigned int bytes_read, i;
c906108c 5408 struct attribute attr;
c5aa993b 5409 int has_low_pc_attr = 0;
c906108c
SS
5410 int has_high_pc_attr = 0;
5411
72bf9492 5412 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5413
6502dd73 5414 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5415
5416 info_ptr += abbrev_len;
5417
5418 if (abbrev == NULL)
5419 return info_ptr;
5420
c906108c
SS
5421 part_die->tag = abbrev->tag;
5422 part_die->has_children = abbrev->has_children;
c906108c
SS
5423
5424 for (i = 0; i < abbrev->num_attrs; ++i)
5425 {
e7c27a73 5426 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5427
5428 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5429 partial symbol table. */
c906108c
SS
5430 switch (attr.name)
5431 {
5432 case DW_AT_name:
5433
5434 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5435 if (part_die->name == NULL)
5436 part_die->name = DW_STRING (&attr);
5437 break;
57c22c6c
BR
5438 case DW_AT_comp_dir:
5439 if (part_die->dirname == NULL)
5440 part_die->dirname = DW_STRING (&attr);
5441 break;
c906108c
SS
5442 case DW_AT_MIPS_linkage_name:
5443 part_die->name = DW_STRING (&attr);
5444 break;
5445 case DW_AT_low_pc:
5446 has_low_pc_attr = 1;
5447 part_die->lowpc = DW_ADDR (&attr);
5448 break;
5449 case DW_AT_high_pc:
5450 has_high_pc_attr = 1;
5451 part_die->highpc = DW_ADDR (&attr);
5452 break;
5453 case DW_AT_location:
8e19ed76
PS
5454 /* Support the .debug_loc offsets */
5455 if (attr_form_is_block (&attr))
5456 {
5457 part_die->locdesc = DW_BLOCK (&attr);
5458 }
5459 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5460 {
4d3c2250 5461 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5462 }
5463 else
5464 {
4d3c2250
KB
5465 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5466 "partial symbol information");
8e19ed76 5467 }
c906108c
SS
5468 break;
5469 case DW_AT_language:
5470 part_die->language = DW_UNSND (&attr);
5471 break;
5472 case DW_AT_external:
5473 part_die->is_external = DW_UNSND (&attr);
5474 break;
5475 case DW_AT_declaration:
5476 part_die->is_declaration = DW_UNSND (&attr);
5477 break;
5478 case DW_AT_type:
5479 part_die->has_type = 1;
5480 break;
5481 case DW_AT_abstract_origin:
5482 case DW_AT_specification:
72bf9492
DJ
5483 case DW_AT_extension:
5484 part_die->has_specification = 1;
5485 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5486 break;
5487 case DW_AT_sibling:
5488 /* Ignore absolute siblings, they might point outside of
5489 the current compile unit. */
5490 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5491 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5492 else
6502dd73
DJ
5493 part_die->sibling = dwarf2_per_objfile->info_buffer
5494 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5495 break;
aaa75496
JB
5496 case DW_AT_stmt_list:
5497 part_die->has_stmt_list = 1;
5498 part_die->line_offset = DW_UNSND (&attr);
5499 break;
c906108c
SS
5500 default:
5501 break;
5502 }
5503 }
5504
c906108c
SS
5505 /* When using the GNU linker, .gnu.linkonce. sections are used to
5506 eliminate duplicate copies of functions and vtables and such.
5507 The linker will arbitrarily choose one and discard the others.
5508 The AT_*_pc values for such functions refer to local labels in
5509 these sections. If the section from that file was discarded, the
5510 labels are not in the output, so the relocs get a value of 0.
5511 If this is a discarded function, mark the pc bounds as invalid,
5512 so that GDB will ignore it. */
5513 if (has_low_pc_attr && has_high_pc_attr
5514 && part_die->lowpc < part_die->highpc
5515 && (part_die->lowpc != 0
72dca2f5 5516 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5517 part_die->has_pc_info = 1;
c906108c
SS
5518 return info_ptr;
5519}
5520
72bf9492
DJ
5521/* Find a cached partial DIE at OFFSET in CU. */
5522
5523static struct partial_die_info *
5524find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5525{
5526 struct partial_die_info *lookup_die = NULL;
5527 struct partial_die_info part_die;
5528
5529 part_die.offset = offset;
5530 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5531
72bf9492
DJ
5532 return lookup_die;
5533}
5534
5535/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5536
5537static struct partial_die_info *
10b3939b 5538find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5539{
5afb4e99
DJ
5540 struct dwarf2_per_cu_data *per_cu = NULL;
5541 struct partial_die_info *pd = NULL;
72bf9492
DJ
5542
5543 if (offset >= cu->header.offset
5544 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5545 {
5546 pd = find_partial_die_in_comp_unit (offset, cu);
5547 if (pd != NULL)
5548 return pd;
5549 }
72bf9492 5550
ae038cb0
DJ
5551 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5552
ae038cb0
DJ
5553 if (per_cu->cu == NULL)
5554 {
5555 load_comp_unit (per_cu, cu->objfile);
5556 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5557 dwarf2_per_objfile->read_in_chain = per_cu;
5558 }
5559
5560 per_cu->cu->last_used = 0;
5afb4e99
DJ
5561 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5562
5563 if (pd == NULL && per_cu->load_all_dies == 0)
5564 {
5565 struct cleanup *back_to;
5566 struct partial_die_info comp_unit_die;
5567 struct abbrev_info *abbrev;
5568 unsigned int bytes_read;
5569 char *info_ptr;
5570
5571 per_cu->load_all_dies = 1;
5572
5573 /* Re-read the DIEs. */
5574 back_to = make_cleanup (null_cleanup, 0);
5575 if (per_cu->cu->dwarf2_abbrevs == NULL)
5576 {
5577 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5578 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5579 }
5580 info_ptr = per_cu->cu->header.first_die_ptr;
5581 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5582 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5583 per_cu->cu->objfile->obfd, info_ptr,
5584 per_cu->cu);
5585 if (comp_unit_die.has_children)
5586 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5587 do_cleanups (back_to);
5588
5589 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5590 }
5591
5592 if (pd == NULL)
5593 internal_error (__FILE__, __LINE__,
5594 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5595 offset, bfd_get_filename (cu->objfile->obfd));
5596 return pd;
72bf9492
DJ
5597}
5598
5599/* Adjust PART_DIE before generating a symbol for it. This function
5600 may set the is_external flag or change the DIE's name. */
5601
5602static void
5603fixup_partial_die (struct partial_die_info *part_die,
5604 struct dwarf2_cu *cu)
5605{
5606 /* If we found a reference attribute and the DIE has no name, try
5607 to find a name in the referred to DIE. */
5608
5609 if (part_die->name == NULL && part_die->has_specification)
5610 {
5611 struct partial_die_info *spec_die;
72bf9492 5612
10b3939b 5613 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5614
10b3939b 5615 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5616
5617 if (spec_die->name)
5618 {
5619 part_die->name = spec_die->name;
5620
5621 /* Copy DW_AT_external attribute if it is set. */
5622 if (spec_die->is_external)
5623 part_die->is_external = spec_die->is_external;
5624 }
5625 }
5626
5627 /* Set default names for some unnamed DIEs. */
5628 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5629 || part_die->tag == DW_TAG_class_type))
5630 part_die->name = "(anonymous class)";
5631
5632 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5633 part_die->name = "(anonymous namespace)";
5634
5635 if (part_die->tag == DW_TAG_structure_type
5636 || part_die->tag == DW_TAG_class_type
5637 || part_die->tag == DW_TAG_union_type)
5638 guess_structure_name (part_die, cu);
5639}
5640
639d11d3
DC
5641/* Read the die from the .debug_info section buffer. Set DIEP to
5642 point to a newly allocated die with its information, except for its
5643 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5644 whether the die has children or not. */
c906108c 5645
fe1b8b76
JB
5646static gdb_byte *
5647read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5648 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5649{
5650 unsigned int abbrev_number, bytes_read, i, offset;
5651 struct abbrev_info *abbrev;
5652 struct die_info *die;
5653
6502dd73 5654 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5655 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5656 info_ptr += bytes_read;
5657 if (!abbrev_number)
5658 {
5659 die = dwarf_alloc_die ();
5660 die->tag = 0;
5661 die->abbrev = abbrev_number;
5662 die->type = NULL;
5663 *diep = die;
639d11d3 5664 *has_children = 0;
c906108c
SS
5665 return info_ptr;
5666 }
5667
e7c27a73 5668 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5669 if (!abbrev)
5670 {
8a3fe4f8 5671 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5672 abbrev_number,
639d11d3 5673 bfd_get_filename (abfd));
c906108c
SS
5674 }
5675 die = dwarf_alloc_die ();
5676 die->offset = offset;
5677 die->tag = abbrev->tag;
c906108c
SS
5678 die->abbrev = abbrev_number;
5679 die->type = NULL;
5680
5681 die->num_attrs = abbrev->num_attrs;
5682 die->attrs = (struct attribute *)
5683 xmalloc (die->num_attrs * sizeof (struct attribute));
5684
5685 for (i = 0; i < abbrev->num_attrs; ++i)
5686 {
5687 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5688 abfd, info_ptr, cu);
10b3939b
DJ
5689
5690 /* If this attribute is an absolute reference to a different
5691 compilation unit, make sure that compilation unit is loaded
5692 also. */
5693 if (die->attrs[i].form == DW_FORM_ref_addr
5694 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5695 || (DW_ADDR (&die->attrs[i])
5696 >= cu->header.offset + cu->header.length)))
5697 {
5698 struct dwarf2_per_cu_data *per_cu;
5699 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5700 cu->objfile);
5701
5702 /* Mark the dependence relation so that we don't flush PER_CU
5703 too early. */
5704 dwarf2_add_dependence (cu, per_cu);
5705
5706 /* If it's already on the queue, we have nothing to do. */
5707 if (per_cu->queued)
5708 continue;
5709
5710 /* If the compilation unit is already loaded, just mark it as
5711 used. */
5712 if (per_cu->cu != NULL)
5713 {
5714 per_cu->cu->last_used = 0;
5715 continue;
5716 }
5717
5718 /* Add it to the queue. */
5719 queue_comp_unit (per_cu);
5720 }
c906108c
SS
5721 }
5722
5723 *diep = die;
639d11d3 5724 *has_children = abbrev->has_children;
c906108c
SS
5725 return info_ptr;
5726}
5727
a8329558 5728/* Read an attribute value described by an attribute form. */
c906108c 5729
fe1b8b76 5730static gdb_byte *
a8329558 5731read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5732 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5733 struct dwarf2_cu *cu)
c906108c 5734{
e7c27a73 5735 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5736 unsigned int bytes_read;
5737 struct dwarf_block *blk;
5738
a8329558
KW
5739 attr->form = form;
5740 switch (form)
c906108c
SS
5741 {
5742 case DW_FORM_addr:
5743 case DW_FORM_ref_addr:
e7c27a73 5744 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5745 info_ptr += bytes_read;
c906108c
SS
5746 break;
5747 case DW_FORM_block2:
7b5a2f43 5748 blk = dwarf_alloc_block (cu);
c906108c
SS
5749 blk->size = read_2_bytes (abfd, info_ptr);
5750 info_ptr += 2;
5751 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5752 info_ptr += blk->size;
5753 DW_BLOCK (attr) = blk;
5754 break;
5755 case DW_FORM_block4:
7b5a2f43 5756 blk = dwarf_alloc_block (cu);
c906108c
SS
5757 blk->size = read_4_bytes (abfd, info_ptr);
5758 info_ptr += 4;
5759 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5760 info_ptr += blk->size;
5761 DW_BLOCK (attr) = blk;
5762 break;
5763 case DW_FORM_data2:
5764 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5765 info_ptr += 2;
5766 break;
5767 case DW_FORM_data4:
5768 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5769 info_ptr += 4;
5770 break;
5771 case DW_FORM_data8:
5772 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5773 info_ptr += 8;
5774 break;
5775 case DW_FORM_string:
5776 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5777 info_ptr += bytes_read;
5778 break;
4bdf3d34
JJ
5779 case DW_FORM_strp:
5780 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5781 &bytes_read);
5782 info_ptr += bytes_read;
5783 break;
c906108c 5784 case DW_FORM_block:
7b5a2f43 5785 blk = dwarf_alloc_block (cu);
c906108c
SS
5786 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5787 info_ptr += bytes_read;
5788 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5789 info_ptr += blk->size;
5790 DW_BLOCK (attr) = blk;
5791 break;
5792 case DW_FORM_block1:
7b5a2f43 5793 blk = dwarf_alloc_block (cu);
c906108c
SS
5794 blk->size = read_1_byte (abfd, info_ptr);
5795 info_ptr += 1;
5796 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5797 info_ptr += blk->size;
5798 DW_BLOCK (attr) = blk;
5799 break;
5800 case DW_FORM_data1:
5801 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5802 info_ptr += 1;
5803 break;
5804 case DW_FORM_flag:
5805 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5806 info_ptr += 1;
5807 break;
5808 case DW_FORM_sdata:
5809 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5810 info_ptr += bytes_read;
5811 break;
5812 case DW_FORM_udata:
5813 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5814 info_ptr += bytes_read;
5815 break;
5816 case DW_FORM_ref1:
10b3939b 5817 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5818 info_ptr += 1;
5819 break;
5820 case DW_FORM_ref2:
10b3939b 5821 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5822 info_ptr += 2;
5823 break;
5824 case DW_FORM_ref4:
10b3939b 5825 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5826 info_ptr += 4;
5827 break;
613e1657 5828 case DW_FORM_ref8:
10b3939b 5829 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5830 info_ptr += 8;
5831 break;
c906108c 5832 case DW_FORM_ref_udata:
10b3939b
DJ
5833 DW_ADDR (attr) = (cu->header.offset
5834 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5835 info_ptr += bytes_read;
5836 break;
c906108c 5837 case DW_FORM_indirect:
a8329558
KW
5838 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5839 info_ptr += bytes_read;
e7c27a73 5840 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5841 break;
c906108c 5842 default:
8a3fe4f8 5843 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5844 dwarf_form_name (form),
5845 bfd_get_filename (abfd));
c906108c
SS
5846 }
5847 return info_ptr;
5848}
5849
a8329558
KW
5850/* Read an attribute described by an abbreviated attribute. */
5851
fe1b8b76 5852static gdb_byte *
a8329558 5853read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5854 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5855{
5856 attr->name = abbrev->name;
e7c27a73 5857 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5858}
5859
c906108c
SS
5860/* read dwarf information from a buffer */
5861
5862static unsigned int
fe1b8b76 5863read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5864{
fe1b8b76 5865 return bfd_get_8 (abfd, buf);
c906108c
SS
5866}
5867
5868static int
fe1b8b76 5869read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5870{
fe1b8b76 5871 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5872}
5873
5874static unsigned int
fe1b8b76 5875read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5876{
fe1b8b76 5877 return bfd_get_16 (abfd, buf);
c906108c
SS
5878}
5879
5880static int
fe1b8b76 5881read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5882{
fe1b8b76 5883 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
5884}
5885
5886static unsigned int
fe1b8b76 5887read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5888{
fe1b8b76 5889 return bfd_get_32 (abfd, buf);
c906108c
SS
5890}
5891
5892static int
fe1b8b76 5893read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5894{
fe1b8b76 5895 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
5896}
5897
ce5d95e1 5898static unsigned long
fe1b8b76 5899read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5900{
fe1b8b76 5901 return bfd_get_64 (abfd, buf);
c906108c
SS
5902}
5903
5904static CORE_ADDR
fe1b8b76 5905read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 5906 unsigned int *bytes_read)
c906108c 5907{
e7c27a73 5908 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5909 CORE_ADDR retval = 0;
5910
107d2387 5911 if (cu_header->signed_addr_p)
c906108c 5912 {
107d2387
AC
5913 switch (cu_header->addr_size)
5914 {
5915 case 2:
fe1b8b76 5916 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
5917 break;
5918 case 4:
fe1b8b76 5919 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
5920 break;
5921 case 8:
fe1b8b76 5922 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
5923 break;
5924 default:
8e65ff28 5925 internal_error (__FILE__, __LINE__,
e2e0b3e5 5926 _("read_address: bad switch, signed [in module %s]"),
659b0389 5927 bfd_get_filename (abfd));
107d2387
AC
5928 }
5929 }
5930 else
5931 {
5932 switch (cu_header->addr_size)
5933 {
5934 case 2:
fe1b8b76 5935 retval = bfd_get_16 (abfd, buf);
107d2387
AC
5936 break;
5937 case 4:
fe1b8b76 5938 retval = bfd_get_32 (abfd, buf);
107d2387
AC
5939 break;
5940 case 8:
fe1b8b76 5941 retval = bfd_get_64 (abfd, buf);
107d2387
AC
5942 break;
5943 default:
8e65ff28 5944 internal_error (__FILE__, __LINE__,
e2e0b3e5 5945 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 5946 bfd_get_filename (abfd));
107d2387 5947 }
c906108c 5948 }
64367e0a 5949
107d2387
AC
5950 *bytes_read = cu_header->addr_size;
5951 return retval;
c906108c
SS
5952}
5953
f7ef9339 5954/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
5955 specification allows the initial length to take up either 4 bytes
5956 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5957 bytes describe the length and all offsets will be 8 bytes in length
5958 instead of 4.
5959
f7ef9339
KB
5960 An older, non-standard 64-bit format is also handled by this
5961 function. The older format in question stores the initial length
5962 as an 8-byte quantity without an escape value. Lengths greater
5963 than 2^32 aren't very common which means that the initial 4 bytes
5964 is almost always zero. Since a length value of zero doesn't make
5965 sense for the 32-bit format, this initial zero can be considered to
5966 be an escape value which indicates the presence of the older 64-bit
5967 format. As written, the code can't detect (old format) lengths
917c78fc
MK
5968 greater than 4GB. If it becomes necessary to handle lengths
5969 somewhat larger than 4GB, we could allow other small values (such
5970 as the non-sensical values of 1, 2, and 3) to also be used as
5971 escape values indicating the presence of the old format.
f7ef9339 5972
917c78fc
MK
5973 The value returned via bytes_read should be used to increment the
5974 relevant pointer after calling read_initial_length().
613e1657
KB
5975
5976 As a side effect, this function sets the fields initial_length_size
5977 and offset_size in cu_header to the values appropriate for the
5978 length field. (The format of the initial length field determines
dd373385 5979 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
5980
5981 [ Note: read_initial_length() and read_offset() are based on the
5982 document entitled "DWARF Debugging Information Format", revision
f7ef9339 5983 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
5984 from:
5985
f7ef9339 5986 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
5987
5988 This document is only a draft and is subject to change. (So beware.)
5989
f7ef9339 5990 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
5991 determined empirically by examining 64-bit ELF files produced by
5992 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
5993
5994 - Kevin, July 16, 2002
613e1657
KB
5995 ] */
5996
5997static LONGEST
fe1b8b76 5998read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 5999 unsigned int *bytes_read)
613e1657 6000{
fe1b8b76 6001 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6002
dd373385 6003 if (length == 0xffffffff)
613e1657 6004 {
fe1b8b76 6005 length = bfd_get_64 (abfd, buf + 4);
613e1657 6006 *bytes_read = 12;
613e1657 6007 }
dd373385 6008 else if (length == 0)
f7ef9339 6009 {
dd373385 6010 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6011 length = bfd_get_64 (abfd, buf);
f7ef9339 6012 *bytes_read = 8;
f7ef9339 6013 }
613e1657
KB
6014 else
6015 {
6016 *bytes_read = 4;
613e1657
KB
6017 }
6018
dd373385
EZ
6019 if (cu_header)
6020 {
6021 gdb_assert (cu_header->initial_length_size == 0
6022 || cu_header->initial_length_size == 4
6023 || cu_header->initial_length_size == 8
6024 || cu_header->initial_length_size == 12);
6025
6026 if (cu_header->initial_length_size != 0
6027 && cu_header->initial_length_size != *bytes_read)
6028 complaint (&symfile_complaints,
6029 _("intermixed 32-bit and 64-bit DWARF sections"));
6030
6031 cu_header->initial_length_size = *bytes_read;
6032 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6033 }
6034
6035 return length;
613e1657
KB
6036}
6037
6038/* Read an offset from the data stream. The size of the offset is
917c78fc 6039 given by cu_header->offset_size. */
613e1657
KB
6040
6041static LONGEST
fe1b8b76 6042read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6043 unsigned int *bytes_read)
613e1657
KB
6044{
6045 LONGEST retval = 0;
6046
6047 switch (cu_header->offset_size)
6048 {
6049 case 4:
fe1b8b76 6050 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6051 *bytes_read = 4;
6052 break;
6053 case 8:
fe1b8b76 6054 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6055 *bytes_read = 8;
6056 break;
6057 default:
8e65ff28 6058 internal_error (__FILE__, __LINE__,
e2e0b3e5 6059 _("read_offset: bad switch [in module %s]"),
659b0389 6060 bfd_get_filename (abfd));
613e1657
KB
6061 }
6062
917c78fc 6063 return retval;
613e1657
KB
6064}
6065
fe1b8b76
JB
6066static gdb_byte *
6067read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6068{
6069 /* If the size of a host char is 8 bits, we can return a pointer
6070 to the buffer, otherwise we have to copy the data to a buffer
6071 allocated on the temporary obstack. */
4bdf3d34 6072 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6073 return buf;
c906108c
SS
6074}
6075
6076static char *
fe1b8b76 6077read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6078{
6079 /* If the size of a host char is 8 bits, we can return a pointer
6080 to the string, otherwise we have to copy the string to a buffer
6081 allocated on the temporary obstack. */
4bdf3d34 6082 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6083 if (*buf == '\0')
6084 {
6085 *bytes_read_ptr = 1;
6086 return NULL;
6087 }
fe1b8b76
JB
6088 *bytes_read_ptr = strlen ((char *) buf) + 1;
6089 return (char *) buf;
4bdf3d34
JJ
6090}
6091
6092static char *
fe1b8b76 6093read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6094 const struct comp_unit_head *cu_header,
6095 unsigned int *bytes_read_ptr)
6096{
6097 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6098 bytes_read_ptr);
c906108c 6099
6502dd73 6100 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6101 {
8a3fe4f8 6102 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6103 bfd_get_filename (abfd));
4bdf3d34 6104 return NULL;
c906108c 6105 }
6502dd73 6106 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6107 {
8a3fe4f8 6108 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6109 bfd_get_filename (abfd));
c906108c
SS
6110 return NULL;
6111 }
4bdf3d34 6112 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6113 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6114 return NULL;
fe1b8b76 6115 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6116}
6117
ce5d95e1 6118static unsigned long
fe1b8b76 6119read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6120{
ce5d95e1
JB
6121 unsigned long result;
6122 unsigned int num_read;
c906108c
SS
6123 int i, shift;
6124 unsigned char byte;
6125
6126 result = 0;
6127 shift = 0;
6128 num_read = 0;
6129 i = 0;
6130 while (1)
6131 {
fe1b8b76 6132 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6133 buf++;
6134 num_read++;
ce5d95e1 6135 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6136 if ((byte & 128) == 0)
6137 {
6138 break;
6139 }
6140 shift += 7;
6141 }
6142 *bytes_read_ptr = num_read;
6143 return result;
6144}
6145
ce5d95e1 6146static long
fe1b8b76 6147read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6148{
ce5d95e1 6149 long result;
77e0b926 6150 int i, shift, num_read;
c906108c
SS
6151 unsigned char byte;
6152
6153 result = 0;
6154 shift = 0;
c906108c
SS
6155 num_read = 0;
6156 i = 0;
6157 while (1)
6158 {
fe1b8b76 6159 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6160 buf++;
6161 num_read++;
ce5d95e1 6162 result |= ((long)(byte & 127) << shift);
c906108c
SS
6163 shift += 7;
6164 if ((byte & 128) == 0)
6165 {
6166 break;
6167 }
6168 }
77e0b926
DJ
6169 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6170 result |= -(((long)1) << shift);
c906108c
SS
6171 *bytes_read_ptr = num_read;
6172 return result;
6173}
6174
4bb7a0a7
DJ
6175/* Return a pointer to just past the end of an LEB128 number in BUF. */
6176
fe1b8b76
JB
6177static gdb_byte *
6178skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6179{
6180 int byte;
6181
6182 while (1)
6183 {
fe1b8b76 6184 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6185 buf++;
6186 if ((byte & 128) == 0)
6187 return buf;
6188 }
6189}
6190
c906108c 6191static void
e142c38c 6192set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6193{
6194 switch (lang)
6195 {
6196 case DW_LANG_C89:
6197 case DW_LANG_C:
e142c38c 6198 cu->language = language_c;
c906108c
SS
6199 break;
6200 case DW_LANG_C_plus_plus:
e142c38c 6201 cu->language = language_cplus;
c906108c
SS
6202 break;
6203 case DW_LANG_Fortran77:
6204 case DW_LANG_Fortran90:
b21b22e0 6205 case DW_LANG_Fortran95:
e142c38c 6206 cu->language = language_fortran;
c906108c
SS
6207 break;
6208 case DW_LANG_Mips_Assembler:
e142c38c 6209 cu->language = language_asm;
c906108c 6210 break;
bebd888e 6211 case DW_LANG_Java:
e142c38c 6212 cu->language = language_java;
bebd888e 6213 break;
c906108c 6214 case DW_LANG_Ada83:
8aaf0b47 6215 case DW_LANG_Ada95:
bc5f45f8
JB
6216 cu->language = language_ada;
6217 break;
72019c9c
GM
6218 case DW_LANG_Modula2:
6219 cu->language = language_m2;
6220 break;
c906108c
SS
6221 case DW_LANG_Cobol74:
6222 case DW_LANG_Cobol85:
6223 case DW_LANG_Pascal83:
c906108c 6224 default:
e142c38c 6225 cu->language = language_minimal;
c906108c
SS
6226 break;
6227 }
e142c38c 6228 cu->language_defn = language_def (cu->language);
c906108c
SS
6229}
6230
6231/* Return the named attribute or NULL if not there. */
6232
6233static struct attribute *
e142c38c 6234dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6235{
6236 unsigned int i;
6237 struct attribute *spec = NULL;
6238
6239 for (i = 0; i < die->num_attrs; ++i)
6240 {
6241 if (die->attrs[i].name == name)
10b3939b 6242 return &die->attrs[i];
c906108c
SS
6243 if (die->attrs[i].name == DW_AT_specification
6244 || die->attrs[i].name == DW_AT_abstract_origin)
6245 spec = &die->attrs[i];
6246 }
c906108c 6247
10b3939b
DJ
6248 if (spec)
6249 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6250
c906108c
SS
6251 return NULL;
6252}
6253
05cf31d1
JB
6254/* Return non-zero iff the attribute NAME is defined for the given DIE,
6255 and holds a non-zero value. This function should only be used for
6256 DW_FORM_flag attributes. */
6257
6258static int
6259dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6260{
6261 struct attribute *attr = dwarf2_attr (die, name, cu);
6262
6263 return (attr && DW_UNSND (attr));
6264}
6265
3ca72b44 6266static int
e142c38c 6267die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6268{
05cf31d1
JB
6269 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6270 which value is non-zero. However, we have to be careful with
6271 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6272 (via dwarf2_flag_true_p) follows this attribute. So we may
6273 end up accidently finding a declaration attribute that belongs
6274 to a different DIE referenced by the specification attribute,
6275 even though the given DIE does not have a declaration attribute. */
6276 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6277 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6278}
6279
63d06c5c
DC
6280/* Return the die giving the specification for DIE, if there is
6281 one. */
6282
6283static struct die_info *
e142c38c 6284die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6285{
e142c38c 6286 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6287
6288 if (spec_attr == NULL)
6289 return NULL;
6290 else
10b3939b 6291 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6292}
c906108c 6293
debd256d
JB
6294/* Free the line_header structure *LH, and any arrays and strings it
6295 refers to. */
6296static void
6297free_line_header (struct line_header *lh)
6298{
6299 if (lh->standard_opcode_lengths)
a8bc7b56 6300 xfree (lh->standard_opcode_lengths);
debd256d
JB
6301
6302 /* Remember that all the lh->file_names[i].name pointers are
6303 pointers into debug_line_buffer, and don't need to be freed. */
6304 if (lh->file_names)
a8bc7b56 6305 xfree (lh->file_names);
debd256d
JB
6306
6307 /* Similarly for the include directory names. */
6308 if (lh->include_dirs)
a8bc7b56 6309 xfree (lh->include_dirs);
debd256d 6310
a8bc7b56 6311 xfree (lh);
debd256d
JB
6312}
6313
6314
6315/* Add an entry to LH's include directory table. */
6316static void
6317add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6318{
debd256d
JB
6319 /* Grow the array if necessary. */
6320 if (lh->include_dirs_size == 0)
c5aa993b 6321 {
debd256d
JB
6322 lh->include_dirs_size = 1; /* for testing */
6323 lh->include_dirs = xmalloc (lh->include_dirs_size
6324 * sizeof (*lh->include_dirs));
6325 }
6326 else if (lh->num_include_dirs >= lh->include_dirs_size)
6327 {
6328 lh->include_dirs_size *= 2;
6329 lh->include_dirs = xrealloc (lh->include_dirs,
6330 (lh->include_dirs_size
6331 * sizeof (*lh->include_dirs)));
c5aa993b 6332 }
c906108c 6333
debd256d
JB
6334 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6335}
6336
6337
6338/* Add an entry to LH's file name table. */
6339static void
6340add_file_name (struct line_header *lh,
6341 char *name,
6342 unsigned int dir_index,
6343 unsigned int mod_time,
6344 unsigned int length)
6345{
6346 struct file_entry *fe;
6347
6348 /* Grow the array if necessary. */
6349 if (lh->file_names_size == 0)
6350 {
6351 lh->file_names_size = 1; /* for testing */
6352 lh->file_names = xmalloc (lh->file_names_size
6353 * sizeof (*lh->file_names));
6354 }
6355 else if (lh->num_file_names >= lh->file_names_size)
6356 {
6357 lh->file_names_size *= 2;
6358 lh->file_names = xrealloc (lh->file_names,
6359 (lh->file_names_size
6360 * sizeof (*lh->file_names)));
6361 }
6362
6363 fe = &lh->file_names[lh->num_file_names++];
6364 fe->name = name;
6365 fe->dir_index = dir_index;
6366 fe->mod_time = mod_time;
6367 fe->length = length;
aaa75496 6368 fe->included_p = 0;
debd256d
JB
6369}
6370
6371
6372/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6373 .debug_line, according to the endianness of ABFD. Return a pointer
6374 to a struct line_header, allocated using xmalloc.
debd256d
JB
6375
6376 NOTE: the strings in the include directory and file name tables of
6377 the returned object point into debug_line_buffer, and must not be
6378 freed. */
6379static struct line_header *
6380dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6381 struct dwarf2_cu *cu)
debd256d
JB
6382{
6383 struct cleanup *back_to;
6384 struct line_header *lh;
fe1b8b76 6385 gdb_byte *line_ptr;
891d2f0b 6386 unsigned int bytes_read;
debd256d
JB
6387 int i;
6388 char *cur_dir, *cur_file;
6389
6502dd73 6390 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6391 {
e2e0b3e5 6392 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6393 return 0;
6394 }
6395
a738430d
MK
6396 /* Make sure that at least there's room for the total_length field.
6397 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6398 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6399 {
4d3c2250 6400 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6401 return 0;
6402 }
6403
6404 lh = xmalloc (sizeof (*lh));
6405 memset (lh, 0, sizeof (*lh));
6406 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6407 (void *) lh);
6408
6502dd73 6409 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6410
a738430d 6411 /* Read in the header. */
dd373385
EZ
6412 lh->total_length =
6413 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6414 line_ptr += bytes_read;
6502dd73
DJ
6415 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6416 + dwarf2_per_objfile->line_size))
debd256d 6417 {
4d3c2250 6418 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6419 return 0;
6420 }
6421 lh->statement_program_end = line_ptr + lh->total_length;
6422 lh->version = read_2_bytes (abfd, line_ptr);
6423 line_ptr += 2;
e7c27a73 6424 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6425 line_ptr += bytes_read;
6426 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6427 line_ptr += 1;
6428 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6429 line_ptr += 1;
6430 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6431 line_ptr += 1;
6432 lh->line_range = read_1_byte (abfd, line_ptr);
6433 line_ptr += 1;
6434 lh->opcode_base = read_1_byte (abfd, line_ptr);
6435 line_ptr += 1;
6436 lh->standard_opcode_lengths
fe1b8b76 6437 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6438
6439 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6440 for (i = 1; i < lh->opcode_base; ++i)
6441 {
6442 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6443 line_ptr += 1;
6444 }
6445
a738430d 6446 /* Read directory table. */
debd256d
JB
6447 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6448 {
6449 line_ptr += bytes_read;
6450 add_include_dir (lh, cur_dir);
6451 }
6452 line_ptr += bytes_read;
6453
a738430d 6454 /* Read file name table. */
debd256d
JB
6455 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6456 {
6457 unsigned int dir_index, mod_time, length;
6458
6459 line_ptr += bytes_read;
6460 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6461 line_ptr += bytes_read;
6462 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6463 line_ptr += bytes_read;
6464 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6465 line_ptr += bytes_read;
6466
6467 add_file_name (lh, cur_file, dir_index, mod_time, length);
6468 }
6469 line_ptr += bytes_read;
6470 lh->statement_program_start = line_ptr;
6471
6502dd73
DJ
6472 if (line_ptr > (dwarf2_per_objfile->line_buffer
6473 + dwarf2_per_objfile->line_size))
4d3c2250 6474 complaint (&symfile_complaints,
e2e0b3e5 6475 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6476
6477 discard_cleanups (back_to);
6478 return lh;
6479}
c906108c 6480
5fb290d7
DJ
6481/* This function exists to work around a bug in certain compilers
6482 (particularly GCC 2.95), in which the first line number marker of a
6483 function does not show up until after the prologue, right before
6484 the second line number marker. This function shifts ADDRESS down
6485 to the beginning of the function if necessary, and is called on
6486 addresses passed to record_line. */
6487
6488static CORE_ADDR
e142c38c 6489check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6490{
6491 struct function_range *fn;
6492
6493 /* Find the function_range containing address. */
e142c38c 6494 if (!cu->first_fn)
5fb290d7
DJ
6495 return address;
6496
e142c38c
DJ
6497 if (!cu->cached_fn)
6498 cu->cached_fn = cu->first_fn;
5fb290d7 6499
e142c38c 6500 fn = cu->cached_fn;
5fb290d7
DJ
6501 while (fn)
6502 if (fn->lowpc <= address && fn->highpc > address)
6503 goto found;
6504 else
6505 fn = fn->next;
6506
e142c38c
DJ
6507 fn = cu->first_fn;
6508 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6509 if (fn->lowpc <= address && fn->highpc > address)
6510 goto found;
6511 else
6512 fn = fn->next;
6513
6514 return address;
6515
6516 found:
6517 if (fn->seen_line)
6518 return address;
6519 if (address != fn->lowpc)
4d3c2250 6520 complaint (&symfile_complaints,
e2e0b3e5 6521 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6522 (unsigned long) address, fn->name);
5fb290d7
DJ
6523 fn->seen_line = 1;
6524 return fn->lowpc;
6525}
6526
aaa75496
JB
6527/* Decode the Line Number Program (LNP) for the given line_header
6528 structure and CU. The actual information extracted and the type
6529 of structures created from the LNP depends on the value of PST.
6530
6531 1. If PST is NULL, then this procedure uses the data from the program
6532 to create all necessary symbol tables, and their linetables.
6533 The compilation directory of the file is passed in COMP_DIR,
6534 and must not be NULL.
6535
6536 2. If PST is not NULL, this procedure reads the program to determine
6537 the list of files included by the unit represented by PST, and
6538 builds all the associated partial symbol tables. In this case,
6539 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6540 is not used to compute the full name of the symtab, and therefore
6541 omitting it when building the partial symtab does not introduce
6542 the potential for inconsistency - a partial symtab and its associated
6543 symbtab having a different fullname -). */
debd256d 6544
c906108c 6545static void
debd256d 6546dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6547 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6548{
fe1b8b76
JB
6549 gdb_byte *line_ptr;
6550 gdb_byte *line_end;
e7c27a73 6551 unsigned int bytes_read;
c906108c 6552 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6553 CORE_ADDR baseaddr;
6554 struct objfile *objfile = cu->objfile;
aaa75496 6555 const int decode_for_pst_p = (pst != NULL);
e142c38c
DJ
6556
6557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6558
debd256d
JB
6559 line_ptr = lh->statement_program_start;
6560 line_end = lh->statement_program_end;
c906108c
SS
6561
6562 /* Read the statement sequences until there's nothing left. */
6563 while (line_ptr < line_end)
6564 {
6565 /* state machine registers */
6566 CORE_ADDR address = 0;
6567 unsigned int file = 1;
6568 unsigned int line = 1;
6569 unsigned int column = 0;
debd256d 6570 int is_stmt = lh->default_is_stmt;
c906108c
SS
6571 int basic_block = 0;
6572 int end_sequence = 0;
6573
aaa75496 6574 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6575 {
aaa75496 6576 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6577 /* lh->include_dirs and lh->file_names are 0-based, but the
6578 directory and file name numbers in the statement program
6579 are 1-based. */
6580 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6581 char *dir = NULL;
a738430d 6582
debd256d
JB
6583 if (fe->dir_index)
6584 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6585
6586 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6587 }
6588
a738430d 6589 /* Decode the table. */
c5aa993b 6590 while (!end_sequence)
c906108c
SS
6591 {
6592 op_code = read_1_byte (abfd, line_ptr);
6593 line_ptr += 1;
9aa1fe7e 6594
debd256d 6595 if (op_code >= lh->opcode_base)
a738430d
MK
6596 {
6597 /* Special operand. */
debd256d
JB
6598 adj_opcode = op_code - lh->opcode_base;
6599 address += (adj_opcode / lh->line_range)
6600 * lh->minimum_instruction_length;
6601 line += lh->line_base + (adj_opcode % lh->line_range);
aa495d11 6602 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6603 if (!decode_for_pst_p)
6604 {
a738430d 6605 /* Append row to matrix using current values. */
aaa75496
JB
6606 record_line (current_subfile, line,
6607 check_cu_functions (address, cu));
6608 }
9aa1fe7e
GK
6609 basic_block = 1;
6610 }
6611 else switch (op_code)
c906108c
SS
6612 {
6613 case DW_LNS_extended_op:
473b7be6
DJ
6614 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6615 line_ptr += bytes_read;
c906108c
SS
6616 extended_op = read_1_byte (abfd, line_ptr);
6617 line_ptr += 1;
6618 switch (extended_op)
6619 {
6620 case DW_LNE_end_sequence:
6621 end_sequence = 1;
aa495d11 6622 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6623 if (!decode_for_pst_p)
6624 record_line (current_subfile, 0, address);
c906108c
SS
6625 break;
6626 case DW_LNE_set_address:
e7c27a73 6627 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6628 line_ptr += bytes_read;
6629 address += baseaddr;
c906108c
SS
6630 break;
6631 case DW_LNE_define_file:
debd256d
JB
6632 {
6633 char *cur_file;
6634 unsigned int dir_index, mod_time, length;
6635
6636 cur_file = read_string (abfd, line_ptr, &bytes_read);
6637 line_ptr += bytes_read;
6638 dir_index =
6639 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6640 line_ptr += bytes_read;
6641 mod_time =
6642 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6643 line_ptr += bytes_read;
6644 length =
6645 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6646 line_ptr += bytes_read;
6647 add_file_name (lh, cur_file, dir_index, mod_time, length);
6648 }
c906108c
SS
6649 break;
6650 default:
4d3c2250 6651 complaint (&symfile_complaints,
e2e0b3e5 6652 _("mangled .debug_line section"));
debd256d 6653 return;
c906108c
SS
6654 }
6655 break;
6656 case DW_LNS_copy:
aa495d11 6657 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6658 if (!decode_for_pst_p)
6659 record_line (current_subfile, line,
6660 check_cu_functions (address, cu));
c906108c
SS
6661 basic_block = 0;
6662 break;
6663 case DW_LNS_advance_pc:
debd256d 6664 address += lh->minimum_instruction_length
c906108c
SS
6665 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6666 line_ptr += bytes_read;
6667 break;
6668 case DW_LNS_advance_line:
6669 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6670 line_ptr += bytes_read;
6671 break;
6672 case DW_LNS_set_file:
debd256d 6673 {
a738430d
MK
6674 /* The arrays lh->include_dirs and lh->file_names are
6675 0-based, but the directory and file name numbers in
6676 the statement program are 1-based. */
debd256d 6677 struct file_entry *fe;
4f1520fb 6678 char *dir = NULL;
a738430d 6679
debd256d
JB
6680 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6681 line_ptr += bytes_read;
6682 fe = &lh->file_names[file - 1];
6683 if (fe->dir_index)
6684 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 6685
aaa75496 6686 if (!decode_for_pst_p)
4f1520fb 6687 dwarf2_start_subfile (fe->name, dir, comp_dir);
debd256d 6688 }
c906108c
SS
6689 break;
6690 case DW_LNS_set_column:
6691 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6692 line_ptr += bytes_read;
6693 break;
6694 case DW_LNS_negate_stmt:
6695 is_stmt = (!is_stmt);
6696 break;
6697 case DW_LNS_set_basic_block:
6698 basic_block = 1;
6699 break;
c2c6d25f
JM
6700 /* Add to the address register of the state machine the
6701 address increment value corresponding to special opcode
a738430d
MK
6702 255. I.e., this value is scaled by the minimum
6703 instruction length since special opcode 255 would have
6704 scaled the the increment. */
c906108c 6705 case DW_LNS_const_add_pc:
debd256d
JB
6706 address += (lh->minimum_instruction_length
6707 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6708 break;
6709 case DW_LNS_fixed_advance_pc:
6710 address += read_2_bytes (abfd, line_ptr);
6711 line_ptr += 2;
6712 break;
9aa1fe7e 6713 default:
a738430d
MK
6714 {
6715 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6716 int i;
a738430d 6717
debd256d 6718 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6719 {
6720 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6721 line_ptr += bytes_read;
6722 }
6723 }
c906108c
SS
6724 }
6725 }
6726 }
aaa75496
JB
6727
6728 if (decode_for_pst_p)
6729 {
6730 int file_index;
6731
6732 /* Now that we're done scanning the Line Header Program, we can
6733 create the psymtab of each included file. */
6734 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6735 if (lh->file_names[file_index].included_p == 1)
6736 {
5b5464ad
JB
6737 const struct file_entry fe = lh->file_names [file_index];
6738 char *include_name = fe.name;
6739 char *dir_name = NULL;
6740 char *pst_filename = pst->filename;
6741
6742 if (fe.dir_index)
6743 dir_name = lh->include_dirs[fe.dir_index - 1];
6744
6745 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6746 {
1754f103
MK
6747 include_name = concat (dir_name, SLASH_STRING,
6748 include_name, (char *)NULL);
5b5464ad
JB
6749 make_cleanup (xfree, include_name);
6750 }
6751
6752 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6753 {
1754f103
MK
6754 pst_filename = concat (pst->dirname, SLASH_STRING,
6755 pst_filename, (char *)NULL);
5b5464ad
JB
6756 make_cleanup (xfree, pst_filename);
6757 }
6758
6759 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6760 dwarf2_create_include_psymtab (include_name, pst, objfile);
6761 }
6762 }
c906108c
SS
6763}
6764
6765/* Start a subfile for DWARF. FILENAME is the name of the file and
6766 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
6767 or NULL if not known. COMP_DIR is the compilation directory for the
6768 linetable's compilation unit or NULL if not known.
c906108c
SS
6769 This routine tries to keep line numbers from identical absolute and
6770 relative file names in a common subfile.
6771
6772 Using the `list' example from the GDB testsuite, which resides in
6773 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6774 of /srcdir/list0.c yields the following debugging information for list0.c:
6775
c5aa993b
JM
6776 DW_AT_name: /srcdir/list0.c
6777 DW_AT_comp_dir: /compdir
357e46e7 6778 files.files[0].name: list0.h
c5aa993b 6779 files.files[0].dir: /srcdir
357e46e7 6780 files.files[1].name: list0.c
c5aa993b 6781 files.files[1].dir: /srcdir
c906108c
SS
6782
6783 The line number information for list0.c has to end up in a single
4f1520fb
FR
6784 subfile, so that `break /srcdir/list0.c:1' works as expected.
6785 start_subfile will ensure that this happens provided that we pass the
6786 concatenation of files.files[1].dir and files.files[1].name as the
6787 subfile's name. */
c906108c
SS
6788
6789static void
4f1520fb 6790dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 6791{
4f1520fb
FR
6792 char *fullname;
6793
6794 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6795 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6796 second argument to start_subfile. To be consistent, we do the
6797 same here. In order not to lose the line information directory,
6798 we concatenate it to the filename when it makes sense.
6799 Note that the Dwarf3 standard says (speaking of filenames in line
6800 information): ``The directory index is ignored for file names
6801 that represent full path names''. Thus ignoring dirname in the
6802 `else' branch below isn't an issue. */
c906108c 6803
d5166ae1 6804 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
6805 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6806 else
6807 fullname = filename;
c906108c 6808
4f1520fb
FR
6809 start_subfile (fullname, comp_dir);
6810
6811 if (fullname != filename)
6812 xfree (fullname);
c906108c
SS
6813}
6814
4c2df51b
DJ
6815static void
6816var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 6817 struct dwarf2_cu *cu)
4c2df51b 6818{
e7c27a73
DJ
6819 struct objfile *objfile = cu->objfile;
6820 struct comp_unit_head *cu_header = &cu->header;
6821
4c2df51b
DJ
6822 /* NOTE drow/2003-01-30: There used to be a comment and some special
6823 code here to turn a symbol with DW_AT_external and a
6824 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6825 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6826 with some versions of binutils) where shared libraries could have
6827 relocations against symbols in their debug information - the
6828 minimal symbol would have the right address, but the debug info
6829 would not. It's no longer necessary, because we will explicitly
6830 apply relocations when we read in the debug information now. */
6831
6832 /* A DW_AT_location attribute with no contents indicates that a
6833 variable has been optimized away. */
6834 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6835 {
6836 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6837 return;
6838 }
6839
6840 /* Handle one degenerate form of location expression specially, to
6841 preserve GDB's previous behavior when section offsets are
6842 specified. If this is just a DW_OP_addr then mark this symbol
6843 as LOC_STATIC. */
6844
6845 if (attr_form_is_block (attr)
6846 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6847 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6848 {
891d2f0b 6849 unsigned int dummy;
4c2df51b
DJ
6850
6851 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 6852 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
6853 fixup_symbol_section (sym, objfile);
6854 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6855 SYMBOL_SECTION (sym));
6856 SYMBOL_CLASS (sym) = LOC_STATIC;
6857 return;
6858 }
6859
6860 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6861 expression evaluator, and use LOC_COMPUTED only when necessary
6862 (i.e. when the value of a register or memory location is
6863 referenced, or a thread-local block, etc.). Then again, it might
6864 not be worthwhile. I'm assuming that it isn't unless performance
6865 or memory numbers show me otherwise. */
6866
e7c27a73 6867 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
6868 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6869}
6870
c906108c
SS
6871/* Given a pointer to a DWARF information entry, figure out if we need
6872 to make a symbol table entry for it, and if so, create a new entry
6873 and return a pointer to it.
6874 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 6875 used the passed type. */
c906108c
SS
6876
6877static struct symbol *
e7c27a73 6878new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 6879{
e7c27a73 6880 struct objfile *objfile = cu->objfile;
c906108c
SS
6881 struct symbol *sym = NULL;
6882 char *name;
6883 struct attribute *attr = NULL;
6884 struct attribute *attr2 = NULL;
e142c38c
DJ
6885 CORE_ADDR baseaddr;
6886
6887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6888
5c4e30ca 6889 if (die->tag != DW_TAG_namespace)
e142c38c 6890 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
6891 else
6892 name = TYPE_NAME (type);
6893
c906108c
SS
6894 if (name)
6895 {
4a146b47 6896 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
6897 sizeof (struct symbol));
6898 OBJSTAT (objfile, n_syms++);
6899 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
6900
6901 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 6902 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 6903 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
6904
6905 /* Default assumptions.
c5aa993b 6906 Use the passed type or decode it from the die. */
176620f1 6907 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 6908 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
6909 if (type != NULL)
6910 SYMBOL_TYPE (sym) = type;
6911 else
e7c27a73 6912 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 6913 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
6914 if (attr)
6915 {
6916 SYMBOL_LINE (sym) = DW_UNSND (attr);
6917 }
c906108c
SS
6918 switch (die->tag)
6919 {
6920 case DW_TAG_label:
e142c38c 6921 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
6922 if (attr)
6923 {
6924 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6925 }
6926 SYMBOL_CLASS (sym) = LOC_LABEL;
6927 break;
6928 case DW_TAG_subprogram:
6929 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6930 finish_block. */
6931 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 6932 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6933 if (attr2 && (DW_UNSND (attr2) != 0))
6934 {
6935 add_symbol_to_list (sym, &global_symbols);
6936 }
6937 else
6938 {
e142c38c 6939 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6940 }
6941 break;
6942 case DW_TAG_variable:
6943 /* Compilation with minimal debug info may result in variables
6944 with missing type entries. Change the misleading `void' type
6945 to something sensible. */
6946 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6947 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6948 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6949 "<variable, no debug info>",
6950 objfile);
e142c38c 6951 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6952 if (attr)
6953 {
e7c27a73 6954 dwarf2_const_value (attr, sym, cu);
e142c38c 6955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6956 if (attr2 && (DW_UNSND (attr2) != 0))
6957 add_symbol_to_list (sym, &global_symbols);
6958 else
e142c38c 6959 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6960 break;
6961 }
e142c38c 6962 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6963 if (attr)
6964 {
e7c27a73 6965 var_decode_location (attr, sym, cu);
e142c38c 6966 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6967 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 6968 add_symbol_to_list (sym, &global_symbols);
c906108c 6969 else
e142c38c 6970 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6971 }
6972 else
6973 {
6974 /* We do not know the address of this symbol.
c5aa993b
JM
6975 If it is an external symbol and we have type information
6976 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6977 The address of the variable will then be determined from
6978 the minimal symbol table whenever the variable is
6979 referenced. */
e142c38c 6980 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6981 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 6982 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
6983 {
6984 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6985 add_symbol_to_list (sym, &global_symbols);
6986 }
6987 }
6988 break;
6989 case DW_TAG_formal_parameter:
e142c38c 6990 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6991 if (attr)
6992 {
e7c27a73 6993 var_decode_location (attr, sym, cu);
7cf6e574
DJ
6994 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6995 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6996 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 6997 }
e142c38c 6998 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6999 if (attr)
7000 {
e7c27a73 7001 dwarf2_const_value (attr, sym, cu);
c906108c 7002 }
e142c38c 7003 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7004 break;
7005 case DW_TAG_unspecified_parameters:
7006 /* From varargs functions; gdb doesn't seem to have any
7007 interest in this information, so just ignore it for now.
7008 (FIXME?) */
7009 break;
7010 case DW_TAG_class_type:
7011 case DW_TAG_structure_type:
7012 case DW_TAG_union_type:
72019c9c 7013 case DW_TAG_set_type:
c906108c
SS
7014 case DW_TAG_enumeration_type:
7015 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7016 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7017
63d06c5c
DC
7018 /* Make sure that the symbol includes appropriate enclosing
7019 classes/namespaces in its name. These are calculated in
134d01f1 7020 read_structure_type, and the correct name is saved in
63d06c5c
DC
7021 the type. */
7022
987504bb
JJ
7023 if (cu->language == language_cplus
7024 || cu->language == language_java)
c906108c 7025 {
63d06c5c
DC
7026 struct type *type = SYMBOL_TYPE (sym);
7027
7028 if (TYPE_TAG_NAME (type) != NULL)
7029 {
7030 /* FIXME: carlton/2003-11-10: Should this use
7031 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7032 arises further down in this function.) */
7033 /* The type's name is already allocated along with
7034 this objfile, so we don't need to duplicate it
7035 for the symbol. */
7036 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7037 }
c906108c 7038 }
63d06c5c
DC
7039
7040 {
987504bb 7041 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7042 really ever be static objects: otherwise, if you try
7043 to, say, break of a class's method and you're in a file
7044 which doesn't mention that class, it won't work unless
7045 the check for all static symbols in lookup_symbol_aux
7046 saves you. See the OtherFileClass tests in
7047 gdb.c++/namespace.exp. */
7048
7049 struct pending **list_to_add;
7050
e142c38c 7051 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7052 && (cu->language == language_cplus
7053 || cu->language == language_java)
e142c38c 7054 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7055
7056 add_symbol_to_list (sym, list_to_add);
7057
7058 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7059 defines a typedef for "foo". A Java class declaration also
7060 defines a typedef for the class. Synthesize a typedef symbol
7061 so that "ptype foo" works as expected. */
7062 if (cu->language == language_cplus
7063 || cu->language == language_java)
63d06c5c
DC
7064 {
7065 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7066 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7067 sizeof (struct symbol));
7068 *typedef_sym = *sym;
7069 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7070 /* The symbol's name is already allocated along with
7071 this objfile, so we don't need to duplicate it for
7072 the type. */
63d06c5c 7073 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7074 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7075 add_symbol_to_list (typedef_sym, list_to_add);
7076 }
7077 }
c906108c
SS
7078 break;
7079 case DW_TAG_typedef:
63d06c5c
DC
7080 if (processing_has_namespace_info
7081 && processing_current_prefix[0] != '\0')
7082 {
987504bb
JJ
7083 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7084 processing_current_prefix,
7085 name, cu);
63d06c5c
DC
7086 }
7087 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7088 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7089 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7090 break;
c906108c 7091 case DW_TAG_base_type:
a02abb62 7092 case DW_TAG_subrange_type:
c906108c 7093 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7095 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7096 break;
7097 case DW_TAG_enumerator:
63d06c5c
DC
7098 if (processing_has_namespace_info
7099 && processing_current_prefix[0] != '\0')
7100 {
987504bb
JJ
7101 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7102 processing_current_prefix,
7103 name, cu);
63d06c5c 7104 }
e142c38c 7105 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7106 if (attr)
7107 {
e7c27a73 7108 dwarf2_const_value (attr, sym, cu);
c906108c 7109 }
63d06c5c
DC
7110 {
7111 /* NOTE: carlton/2003-11-10: See comment above in the
7112 DW_TAG_class_type, etc. block. */
7113
7114 struct pending **list_to_add;
7115
e142c38c 7116 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7117 && (cu->language == language_cplus
7118 || cu->language == language_java)
e142c38c 7119 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7120
7121 add_symbol_to_list (sym, list_to_add);
7122 }
c906108c 7123 break;
5c4e30ca
DC
7124 case DW_TAG_namespace:
7125 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7126 add_symbol_to_list (sym, &global_symbols);
7127 break;
c906108c
SS
7128 default:
7129 /* Not a tag we recognize. Hopefully we aren't processing
7130 trash data, but since we must specifically ignore things
7131 we don't recognize, there is nothing else we should do at
7132 this point. */
e2e0b3e5 7133 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7134 dwarf_tag_name (die->tag));
c906108c
SS
7135 break;
7136 }
7137 }
7138 return (sym);
7139}
7140
7141/* Copy constant value from an attribute to a symbol. */
7142
7143static void
107d2387 7144dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7145 struct dwarf2_cu *cu)
c906108c 7146{
e7c27a73
DJ
7147 struct objfile *objfile = cu->objfile;
7148 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7149 struct dwarf_block *blk;
7150
7151 switch (attr->form)
7152 {
7153 case DW_FORM_addr:
107d2387 7154 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7155 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7156 cu_header->addr_size,
7157 TYPE_LENGTH (SYMBOL_TYPE
7158 (sym)));
4e38b386 7159 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7160 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7161 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7162 it's body - store_unsigned_integer. */
7163 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7164 DW_ADDR (attr));
c906108c
SS
7165 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7166 break;
7167 case DW_FORM_block1:
7168 case DW_FORM_block2:
7169 case DW_FORM_block4:
7170 case DW_FORM_block:
7171 blk = DW_BLOCK (attr);
7172 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7173 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7174 blk->size,
7175 TYPE_LENGTH (SYMBOL_TYPE
7176 (sym)));
4e38b386 7177 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7178 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7179 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7180 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7181 break;
2df3850c
JM
7182
7183 /* The DW_AT_const_value attributes are supposed to carry the
7184 symbol's value "represented as it would be on the target
7185 architecture." By the time we get here, it's already been
7186 converted to host endianness, so we just need to sign- or
7187 zero-extend it as appropriate. */
7188 case DW_FORM_data1:
7189 dwarf2_const_value_data (attr, sym, 8);
7190 break;
c906108c 7191 case DW_FORM_data2:
2df3850c
JM
7192 dwarf2_const_value_data (attr, sym, 16);
7193 break;
c906108c 7194 case DW_FORM_data4:
2df3850c
JM
7195 dwarf2_const_value_data (attr, sym, 32);
7196 break;
c906108c 7197 case DW_FORM_data8:
2df3850c
JM
7198 dwarf2_const_value_data (attr, sym, 64);
7199 break;
7200
c906108c 7201 case DW_FORM_sdata:
2df3850c
JM
7202 SYMBOL_VALUE (sym) = DW_SND (attr);
7203 SYMBOL_CLASS (sym) = LOC_CONST;
7204 break;
7205
c906108c
SS
7206 case DW_FORM_udata:
7207 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7208 SYMBOL_CLASS (sym) = LOC_CONST;
7209 break;
2df3850c 7210
c906108c 7211 default:
4d3c2250 7212 complaint (&symfile_complaints,
e2e0b3e5 7213 _("unsupported const value attribute form: '%s'"),
4d3c2250 7214 dwarf_form_name (attr->form));
c906108c
SS
7215 SYMBOL_VALUE (sym) = 0;
7216 SYMBOL_CLASS (sym) = LOC_CONST;
7217 break;
7218 }
7219}
7220
2df3850c
JM
7221
7222/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7223 or zero-extend it as appropriate for the symbol's type. */
7224static void
7225dwarf2_const_value_data (struct attribute *attr,
7226 struct symbol *sym,
7227 int bits)
7228{
7229 LONGEST l = DW_UNSND (attr);
7230
7231 if (bits < sizeof (l) * 8)
7232 {
7233 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7234 l &= ((LONGEST) 1 << bits) - 1;
7235 else
bf9198f1 7236 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7237 }
7238
7239 SYMBOL_VALUE (sym) = l;
7240 SYMBOL_CLASS (sym) = LOC_CONST;
7241}
7242
7243
c906108c
SS
7244/* Return the type of the die in question using its DW_AT_type attribute. */
7245
7246static struct type *
e7c27a73 7247die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7248{
7249 struct type *type;
7250 struct attribute *type_attr;
7251 struct die_info *type_die;
c906108c 7252
e142c38c 7253 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7254 if (!type_attr)
7255 {
7256 /* A missing DW_AT_type represents a void type. */
e142c38c 7257 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7258 }
7259 else
10b3939b
DJ
7260 type_die = follow_die_ref (die, type_attr, cu);
7261
e7c27a73 7262 type = tag_type_to_type (type_die, cu);
c906108c
SS
7263 if (!type)
7264 {
7265 dump_die (type_die);
8a3fe4f8 7266 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7267 cu->objfile->name);
c906108c
SS
7268 }
7269 return type;
7270}
7271
7272/* Return the containing type of the die in question using its
7273 DW_AT_containing_type attribute. */
7274
7275static struct type *
e7c27a73 7276die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7277{
7278 struct type *type = NULL;
7279 struct attribute *type_attr;
7280 struct die_info *type_die = NULL;
c906108c 7281
e142c38c 7282 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7283 if (type_attr)
7284 {
10b3939b 7285 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7286 type = tag_type_to_type (type_die, cu);
c906108c
SS
7287 }
7288 if (!type)
7289 {
7290 if (type_die)
7291 dump_die (type_die);
8a3fe4f8 7292 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7293 cu->objfile->name);
c906108c
SS
7294 }
7295 return type;
7296}
7297
c906108c 7298static struct type *
e7c27a73 7299tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7300{
7301 if (die->type)
7302 {
7303 return die->type;
7304 }
7305 else
7306 {
e7c27a73 7307 read_type_die (die, cu);
c906108c
SS
7308 if (!die->type)
7309 {
7310 dump_die (die);
8a3fe4f8 7311 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7312 cu->objfile->name);
c906108c
SS
7313 }
7314 return die->type;
7315 }
7316}
7317
7318static void
e7c27a73 7319read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7320{
e142c38c 7321 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7322 const char *old_prefix = processing_current_prefix;
7323 struct cleanup *back_to = make_cleanup (xfree, prefix);
7324 processing_current_prefix = prefix;
7325
c906108c
SS
7326 switch (die->tag)
7327 {
7328 case DW_TAG_class_type:
7329 case DW_TAG_structure_type:
7330 case DW_TAG_union_type:
134d01f1 7331 read_structure_type (die, cu);
c906108c
SS
7332 break;
7333 case DW_TAG_enumeration_type:
134d01f1 7334 read_enumeration_type (die, cu);
c906108c
SS
7335 break;
7336 case DW_TAG_subprogram:
7337 case DW_TAG_subroutine_type:
e7c27a73 7338 read_subroutine_type (die, cu);
c906108c
SS
7339 break;
7340 case DW_TAG_array_type:
e7c27a73 7341 read_array_type (die, cu);
c906108c 7342 break;
72019c9c
GM
7343 case DW_TAG_set_type:
7344 read_set_type (die, cu);
7345 break;
c906108c 7346 case DW_TAG_pointer_type:
e7c27a73 7347 read_tag_pointer_type (die, cu);
c906108c
SS
7348 break;
7349 case DW_TAG_ptr_to_member_type:
e7c27a73 7350 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7351 break;
7352 case DW_TAG_reference_type:
e7c27a73 7353 read_tag_reference_type (die, cu);
c906108c
SS
7354 break;
7355 case DW_TAG_const_type:
e7c27a73 7356 read_tag_const_type (die, cu);
c906108c
SS
7357 break;
7358 case DW_TAG_volatile_type:
e7c27a73 7359 read_tag_volatile_type (die, cu);
c906108c
SS
7360 break;
7361 case DW_TAG_string_type:
e7c27a73 7362 read_tag_string_type (die, cu);
c906108c
SS
7363 break;
7364 case DW_TAG_typedef:
e7c27a73 7365 read_typedef (die, cu);
c906108c 7366 break;
a02abb62
JB
7367 case DW_TAG_subrange_type:
7368 read_subrange_type (die, cu);
7369 break;
c906108c 7370 case DW_TAG_base_type:
e7c27a73 7371 read_base_type (die, cu);
c906108c 7372 break;
81a17f79
JB
7373 case DW_TAG_unspecified_type:
7374 read_unspecified_type (die, cu);
7375 break;
c906108c 7376 default:
a1f5b845 7377 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7378 dwarf_tag_name (die->tag));
c906108c
SS
7379 break;
7380 }
63d06c5c
DC
7381
7382 processing_current_prefix = old_prefix;
7383 do_cleanups (back_to);
7384}
7385
fdde2d81
DC
7386/* Return the name of the namespace/class that DIE is defined within,
7387 or "" if we can't tell. The caller should xfree the result. */
7388
7389/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7390 therein) for an example of how to use this function to deal with
7391 DW_AT_specification. */
7392
7393static char *
e142c38c 7394determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7395{
7396 struct die_info *parent;
7397
987504bb
JJ
7398 if (cu->language != language_cplus
7399 && cu->language != language_java)
63d06c5c
DC
7400 return NULL;
7401
7402 parent = die->parent;
7403
7404 if (parent == NULL)
7405 {
8176b9b8 7406 return xstrdup ("");
63d06c5c
DC
7407 }
7408 else
7409 {
63d06c5c
DC
7410 switch (parent->tag) {
7411 case DW_TAG_namespace:
7412 {
8176b9b8
DC
7413 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7414 before doing this check? */
7415 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7416 {
7417 return xstrdup (TYPE_TAG_NAME (parent->type));
7418 }
7419 else
7420 {
7421 int dummy;
7422 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7423 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7424 namespace_name (parent, &dummy,
987504bb
JJ
7425 cu),
7426 cu);
8176b9b8
DC
7427 xfree (parent_prefix);
7428 return retval;
7429 }
63d06c5c
DC
7430 }
7431 break;
7432 case DW_TAG_class_type:
7433 case DW_TAG_structure_type:
7434 {
8176b9b8 7435 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7436 {
8176b9b8 7437 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7438 }
7439 else
8176b9b8
DC
7440 {
7441 const char *old_prefix = processing_current_prefix;
7442 char *new_prefix = determine_prefix (parent, cu);
7443 char *retval;
7444
7445 processing_current_prefix = new_prefix;
7446 retval = determine_class_name (parent, cu);
7447 processing_current_prefix = old_prefix;
7448
7449 xfree (new_prefix);
7450 return retval;
7451 }
63d06c5c 7452 }
63d06c5c 7453 default:
8176b9b8 7454 return determine_prefix (parent, cu);
63d06c5c 7455 }
63d06c5c
DC
7456 }
7457}
7458
987504bb
JJ
7459/* Return a newly-allocated string formed by concatenating PREFIX and
7460 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7461 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7462 perform an obconcat, otherwise allocate storage for the result. The CU argument
7463 is used to determine the language and hence, the appropriate separator. */
7464
7465#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7466
7467static char *
987504bb
JJ
7468typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7469 struct dwarf2_cu *cu)
63d06c5c 7470{
987504bb 7471 char *sep;
63d06c5c 7472
987504bb
JJ
7473 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7474 sep = "";
7475 else if (cu->language == language_java)
7476 sep = ".";
7477 else
7478 sep = "::";
63d06c5c 7479
987504bb
JJ
7480 if (obs == NULL)
7481 {
7482 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7483 retval[0] = '\0';
7484
7485 if (prefix)
7486 {
7487 strcpy (retval, prefix);
7488 strcat (retval, sep);
7489 }
7490 if (suffix)
7491 strcat (retval, suffix);
7492
63d06c5c
DC
7493 return retval;
7494 }
987504bb
JJ
7495 else
7496 {
7497 /* We have an obstack. */
7498 return obconcat (obs, prefix, sep, suffix);
7499 }
63d06c5c
DC
7500}
7501
c906108c 7502static struct type *
e7c27a73 7503dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7504{
e7c27a73
DJ
7505 struct objfile *objfile = cu->objfile;
7506
c906108c
SS
7507 /* FIXME - this should not produce a new (struct type *)
7508 every time. It should cache base types. */
7509 struct type *type;
7510 switch (encoding)
7511 {
7512 case DW_ATE_address:
e142c38c 7513 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7514 return type;
7515 case DW_ATE_boolean:
e142c38c 7516 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7517 return type;
7518 case DW_ATE_complex_float:
7519 if (size == 16)
7520 {
e142c38c 7521 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7522 }
7523 else
7524 {
e142c38c 7525 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7526 }
7527 return type;
7528 case DW_ATE_float:
7529 if (size == 8)
7530 {
e142c38c 7531 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7532 }
7533 else
7534 {
e142c38c 7535 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7536 }
7537 return type;
7538 case DW_ATE_signed:
7539 switch (size)
7540 {
7541 case 1:
e142c38c 7542 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7543 break;
7544 case 2:
e142c38c 7545 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7546 break;
7547 default:
7548 case 4:
e142c38c 7549 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7550 break;
7551 }
7552 return type;
7553 case DW_ATE_signed_char:
e142c38c 7554 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7555 return type;
7556 case DW_ATE_unsigned:
7557 switch (size)
7558 {
7559 case 1:
e142c38c 7560 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7561 break;
7562 case 2:
e142c38c 7563 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7564 break;
7565 default:
7566 case 4:
e142c38c 7567 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7568 break;
7569 }
7570 return type;
7571 case DW_ATE_unsigned_char:
e142c38c 7572 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7573 return type;
7574 default:
e142c38c 7575 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7576 return type;
7577 }
7578}
7579
7580#if 0
7581struct die_info *
fba45db2 7582copy_die (struct die_info *old_die)
c906108c
SS
7583{
7584 struct die_info *new_die;
7585 int i, num_attrs;
7586
7587 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7588 memset (new_die, 0, sizeof (struct die_info));
7589
7590 new_die->tag = old_die->tag;
7591 new_die->has_children = old_die->has_children;
7592 new_die->abbrev = old_die->abbrev;
7593 new_die->offset = old_die->offset;
7594 new_die->type = NULL;
7595
7596 num_attrs = old_die->num_attrs;
7597 new_die->num_attrs = num_attrs;
7598 new_die->attrs = (struct attribute *)
7599 xmalloc (num_attrs * sizeof (struct attribute));
7600
7601 for (i = 0; i < old_die->num_attrs; ++i)
7602 {
7603 new_die->attrs[i].name = old_die->attrs[i].name;
7604 new_die->attrs[i].form = old_die->attrs[i].form;
7605 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7606 }
7607
7608 new_die->next = NULL;
7609 return new_die;
7610}
7611#endif
7612
7613/* Return sibling of die, NULL if no sibling. */
7614
f9aca02d 7615static struct die_info *
fba45db2 7616sibling_die (struct die_info *die)
c906108c 7617{
639d11d3 7618 return die->sibling;
c906108c
SS
7619}
7620
7621/* Get linkage name of a die, return NULL if not found. */
7622
7623static char *
e142c38c 7624dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7625{
7626 struct attribute *attr;
7627
e142c38c 7628 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7629 if (attr && DW_STRING (attr))
7630 return DW_STRING (attr);
e142c38c 7631 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7632 if (attr && DW_STRING (attr))
7633 return DW_STRING (attr);
7634 return NULL;
7635}
7636
9219021c
DC
7637/* Get name of a die, return NULL if not found. */
7638
7639static char *
e142c38c 7640dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7641{
7642 struct attribute *attr;
7643
e142c38c 7644 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7645 if (attr && DW_STRING (attr))
7646 return DW_STRING (attr);
7647 return NULL;
7648}
7649
7650/* Return the die that this die in an extension of, or NULL if there
7651 is none. */
7652
7653static struct die_info *
e142c38c 7654dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7655{
7656 struct attribute *attr;
9219021c 7657
e142c38c 7658 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7659 if (attr == NULL)
7660 return NULL;
7661
10b3939b 7662 return follow_die_ref (die, attr, cu);
9219021c
DC
7663}
7664
c906108c
SS
7665/* Convert a DIE tag into its string name. */
7666
7667static char *
aa1ee363 7668dwarf_tag_name (unsigned tag)
c906108c
SS
7669{
7670 switch (tag)
7671 {
7672 case DW_TAG_padding:
7673 return "DW_TAG_padding";
7674 case DW_TAG_array_type:
7675 return "DW_TAG_array_type";
7676 case DW_TAG_class_type:
7677 return "DW_TAG_class_type";
7678 case DW_TAG_entry_point:
7679 return "DW_TAG_entry_point";
7680 case DW_TAG_enumeration_type:
7681 return "DW_TAG_enumeration_type";
7682 case DW_TAG_formal_parameter:
7683 return "DW_TAG_formal_parameter";
7684 case DW_TAG_imported_declaration:
7685 return "DW_TAG_imported_declaration";
7686 case DW_TAG_label:
7687 return "DW_TAG_label";
7688 case DW_TAG_lexical_block:
7689 return "DW_TAG_lexical_block";
7690 case DW_TAG_member:
7691 return "DW_TAG_member";
7692 case DW_TAG_pointer_type:
7693 return "DW_TAG_pointer_type";
7694 case DW_TAG_reference_type:
7695 return "DW_TAG_reference_type";
7696 case DW_TAG_compile_unit:
7697 return "DW_TAG_compile_unit";
7698 case DW_TAG_string_type:
7699 return "DW_TAG_string_type";
7700 case DW_TAG_structure_type:
7701 return "DW_TAG_structure_type";
7702 case DW_TAG_subroutine_type:
7703 return "DW_TAG_subroutine_type";
7704 case DW_TAG_typedef:
7705 return "DW_TAG_typedef";
7706 case DW_TAG_union_type:
7707 return "DW_TAG_union_type";
7708 case DW_TAG_unspecified_parameters:
7709 return "DW_TAG_unspecified_parameters";
7710 case DW_TAG_variant:
7711 return "DW_TAG_variant";
7712 case DW_TAG_common_block:
7713 return "DW_TAG_common_block";
7714 case DW_TAG_common_inclusion:
7715 return "DW_TAG_common_inclusion";
7716 case DW_TAG_inheritance:
7717 return "DW_TAG_inheritance";
7718 case DW_TAG_inlined_subroutine:
7719 return "DW_TAG_inlined_subroutine";
7720 case DW_TAG_module:
7721 return "DW_TAG_module";
7722 case DW_TAG_ptr_to_member_type:
7723 return "DW_TAG_ptr_to_member_type";
7724 case DW_TAG_set_type:
7725 return "DW_TAG_set_type";
7726 case DW_TAG_subrange_type:
7727 return "DW_TAG_subrange_type";
7728 case DW_TAG_with_stmt:
7729 return "DW_TAG_with_stmt";
7730 case DW_TAG_access_declaration:
7731 return "DW_TAG_access_declaration";
7732 case DW_TAG_base_type:
7733 return "DW_TAG_base_type";
7734 case DW_TAG_catch_block:
7735 return "DW_TAG_catch_block";
7736 case DW_TAG_const_type:
7737 return "DW_TAG_const_type";
7738 case DW_TAG_constant:
7739 return "DW_TAG_constant";
7740 case DW_TAG_enumerator:
7741 return "DW_TAG_enumerator";
7742 case DW_TAG_file_type:
7743 return "DW_TAG_file_type";
7744 case DW_TAG_friend:
7745 return "DW_TAG_friend";
7746 case DW_TAG_namelist:
7747 return "DW_TAG_namelist";
7748 case DW_TAG_namelist_item:
7749 return "DW_TAG_namelist_item";
7750 case DW_TAG_packed_type:
7751 return "DW_TAG_packed_type";
7752 case DW_TAG_subprogram:
7753 return "DW_TAG_subprogram";
7754 case DW_TAG_template_type_param:
7755 return "DW_TAG_template_type_param";
7756 case DW_TAG_template_value_param:
7757 return "DW_TAG_template_value_param";
7758 case DW_TAG_thrown_type:
7759 return "DW_TAG_thrown_type";
7760 case DW_TAG_try_block:
7761 return "DW_TAG_try_block";
7762 case DW_TAG_variant_part:
7763 return "DW_TAG_variant_part";
7764 case DW_TAG_variable:
7765 return "DW_TAG_variable";
7766 case DW_TAG_volatile_type:
7767 return "DW_TAG_volatile_type";
d9fa45fe
DC
7768 case DW_TAG_dwarf_procedure:
7769 return "DW_TAG_dwarf_procedure";
7770 case DW_TAG_restrict_type:
7771 return "DW_TAG_restrict_type";
7772 case DW_TAG_interface_type:
7773 return "DW_TAG_interface_type";
7774 case DW_TAG_namespace:
7775 return "DW_TAG_namespace";
7776 case DW_TAG_imported_module:
7777 return "DW_TAG_imported_module";
7778 case DW_TAG_unspecified_type:
7779 return "DW_TAG_unspecified_type";
7780 case DW_TAG_partial_unit:
7781 return "DW_TAG_partial_unit";
7782 case DW_TAG_imported_unit:
7783 return "DW_TAG_imported_unit";
c906108c
SS
7784 case DW_TAG_MIPS_loop:
7785 return "DW_TAG_MIPS_loop";
7786 case DW_TAG_format_label:
7787 return "DW_TAG_format_label";
7788 case DW_TAG_function_template:
7789 return "DW_TAG_function_template";
7790 case DW_TAG_class_template:
7791 return "DW_TAG_class_template";
7792 default:
7793 return "DW_TAG_<unknown>";
7794 }
7795}
7796
7797/* Convert a DWARF attribute code into its string name. */
7798
7799static char *
aa1ee363 7800dwarf_attr_name (unsigned attr)
c906108c
SS
7801{
7802 switch (attr)
7803 {
7804 case DW_AT_sibling:
7805 return "DW_AT_sibling";
7806 case DW_AT_location:
7807 return "DW_AT_location";
7808 case DW_AT_name:
7809 return "DW_AT_name";
7810 case DW_AT_ordering:
7811 return "DW_AT_ordering";
7812 case DW_AT_subscr_data:
7813 return "DW_AT_subscr_data";
7814 case DW_AT_byte_size:
7815 return "DW_AT_byte_size";
7816 case DW_AT_bit_offset:
7817 return "DW_AT_bit_offset";
7818 case DW_AT_bit_size:
7819 return "DW_AT_bit_size";
7820 case DW_AT_element_list:
7821 return "DW_AT_element_list";
7822 case DW_AT_stmt_list:
7823 return "DW_AT_stmt_list";
7824 case DW_AT_low_pc:
7825 return "DW_AT_low_pc";
7826 case DW_AT_high_pc:
7827 return "DW_AT_high_pc";
7828 case DW_AT_language:
7829 return "DW_AT_language";
7830 case DW_AT_member:
7831 return "DW_AT_member";
7832 case DW_AT_discr:
7833 return "DW_AT_discr";
7834 case DW_AT_discr_value:
7835 return "DW_AT_discr_value";
7836 case DW_AT_visibility:
7837 return "DW_AT_visibility";
7838 case DW_AT_import:
7839 return "DW_AT_import";
7840 case DW_AT_string_length:
7841 return "DW_AT_string_length";
7842 case DW_AT_common_reference:
7843 return "DW_AT_common_reference";
7844 case DW_AT_comp_dir:
7845 return "DW_AT_comp_dir";
7846 case DW_AT_const_value:
7847 return "DW_AT_const_value";
7848 case DW_AT_containing_type:
7849 return "DW_AT_containing_type";
7850 case DW_AT_default_value:
7851 return "DW_AT_default_value";
7852 case DW_AT_inline:
7853 return "DW_AT_inline";
7854 case DW_AT_is_optional:
7855 return "DW_AT_is_optional";
7856 case DW_AT_lower_bound:
7857 return "DW_AT_lower_bound";
7858 case DW_AT_producer:
7859 return "DW_AT_producer";
7860 case DW_AT_prototyped:
7861 return "DW_AT_prototyped";
7862 case DW_AT_return_addr:
7863 return "DW_AT_return_addr";
7864 case DW_AT_start_scope:
7865 return "DW_AT_start_scope";
7866 case DW_AT_stride_size:
7867 return "DW_AT_stride_size";
7868 case DW_AT_upper_bound:
7869 return "DW_AT_upper_bound";
7870 case DW_AT_abstract_origin:
7871 return "DW_AT_abstract_origin";
7872 case DW_AT_accessibility:
7873 return "DW_AT_accessibility";
7874 case DW_AT_address_class:
7875 return "DW_AT_address_class";
7876 case DW_AT_artificial:
7877 return "DW_AT_artificial";
7878 case DW_AT_base_types:
7879 return "DW_AT_base_types";
7880 case DW_AT_calling_convention:
7881 return "DW_AT_calling_convention";
7882 case DW_AT_count:
7883 return "DW_AT_count";
7884 case DW_AT_data_member_location:
7885 return "DW_AT_data_member_location";
7886 case DW_AT_decl_column:
7887 return "DW_AT_decl_column";
7888 case DW_AT_decl_file:
7889 return "DW_AT_decl_file";
7890 case DW_AT_decl_line:
7891 return "DW_AT_decl_line";
7892 case DW_AT_declaration:
7893 return "DW_AT_declaration";
7894 case DW_AT_discr_list:
7895 return "DW_AT_discr_list";
7896 case DW_AT_encoding:
7897 return "DW_AT_encoding";
7898 case DW_AT_external:
7899 return "DW_AT_external";
7900 case DW_AT_frame_base:
7901 return "DW_AT_frame_base";
7902 case DW_AT_friend:
7903 return "DW_AT_friend";
7904 case DW_AT_identifier_case:
7905 return "DW_AT_identifier_case";
7906 case DW_AT_macro_info:
7907 return "DW_AT_macro_info";
7908 case DW_AT_namelist_items:
7909 return "DW_AT_namelist_items";
7910 case DW_AT_priority:
7911 return "DW_AT_priority";
7912 case DW_AT_segment:
7913 return "DW_AT_segment";
7914 case DW_AT_specification:
7915 return "DW_AT_specification";
7916 case DW_AT_static_link:
7917 return "DW_AT_static_link";
7918 case DW_AT_type:
7919 return "DW_AT_type";
7920 case DW_AT_use_location:
7921 return "DW_AT_use_location";
7922 case DW_AT_variable_parameter:
7923 return "DW_AT_variable_parameter";
7924 case DW_AT_virtuality:
7925 return "DW_AT_virtuality";
7926 case DW_AT_vtable_elem_location:
7927 return "DW_AT_vtable_elem_location";
d9fa45fe
DC
7928 case DW_AT_allocated:
7929 return "DW_AT_allocated";
7930 case DW_AT_associated:
7931 return "DW_AT_associated";
7932 case DW_AT_data_location:
7933 return "DW_AT_data_location";
7934 case DW_AT_stride:
7935 return "DW_AT_stride";
7936 case DW_AT_entry_pc:
7937 return "DW_AT_entry_pc";
7938 case DW_AT_use_UTF8:
7939 return "DW_AT_use_UTF8";
7940 case DW_AT_extension:
7941 return "DW_AT_extension";
7942 case DW_AT_ranges:
7943 return "DW_AT_ranges";
7944 case DW_AT_trampoline:
7945 return "DW_AT_trampoline";
7946 case DW_AT_call_column:
7947 return "DW_AT_call_column";
7948 case DW_AT_call_file:
7949 return "DW_AT_call_file";
7950 case DW_AT_call_line:
7951 return "DW_AT_call_line";
c906108c
SS
7952#ifdef MIPS
7953 case DW_AT_MIPS_fde:
7954 return "DW_AT_MIPS_fde";
7955 case DW_AT_MIPS_loop_begin:
7956 return "DW_AT_MIPS_loop_begin";
7957 case DW_AT_MIPS_tail_loop_begin:
7958 return "DW_AT_MIPS_tail_loop_begin";
7959 case DW_AT_MIPS_epilog_begin:
7960 return "DW_AT_MIPS_epilog_begin";
7961 case DW_AT_MIPS_loop_unroll_factor:
7962 return "DW_AT_MIPS_loop_unroll_factor";
7963 case DW_AT_MIPS_software_pipeline_depth:
7964 return "DW_AT_MIPS_software_pipeline_depth";
e0a4f5a1 7965#endif
c906108c
SS
7966 case DW_AT_MIPS_linkage_name:
7967 return "DW_AT_MIPS_linkage_name";
c906108c
SS
7968
7969 case DW_AT_sf_names:
7970 return "DW_AT_sf_names";
7971 case DW_AT_src_info:
7972 return "DW_AT_src_info";
7973 case DW_AT_mac_info:
7974 return "DW_AT_mac_info";
7975 case DW_AT_src_coords:
7976 return "DW_AT_src_coords";
7977 case DW_AT_body_begin:
7978 return "DW_AT_body_begin";
7979 case DW_AT_body_end:
7980 return "DW_AT_body_end";
f5f8a009
EZ
7981 case DW_AT_GNU_vector:
7982 return "DW_AT_GNU_vector";
c906108c
SS
7983 default:
7984 return "DW_AT_<unknown>";
7985 }
7986}
7987
7988/* Convert a DWARF value form code into its string name. */
7989
7990static char *
aa1ee363 7991dwarf_form_name (unsigned form)
c906108c
SS
7992{
7993 switch (form)
7994 {
7995 case DW_FORM_addr:
7996 return "DW_FORM_addr";
7997 case DW_FORM_block2:
7998 return "DW_FORM_block2";
7999 case DW_FORM_block4:
8000 return "DW_FORM_block4";
8001 case DW_FORM_data2:
8002 return "DW_FORM_data2";
8003 case DW_FORM_data4:
8004 return "DW_FORM_data4";
8005 case DW_FORM_data8:
8006 return "DW_FORM_data8";
8007 case DW_FORM_string:
8008 return "DW_FORM_string";
8009 case DW_FORM_block:
8010 return "DW_FORM_block";
8011 case DW_FORM_block1:
8012 return "DW_FORM_block1";
8013 case DW_FORM_data1:
8014 return "DW_FORM_data1";
8015 case DW_FORM_flag:
8016 return "DW_FORM_flag";
8017 case DW_FORM_sdata:
8018 return "DW_FORM_sdata";
8019 case DW_FORM_strp:
8020 return "DW_FORM_strp";
8021 case DW_FORM_udata:
8022 return "DW_FORM_udata";
8023 case DW_FORM_ref_addr:
8024 return "DW_FORM_ref_addr";
8025 case DW_FORM_ref1:
8026 return "DW_FORM_ref1";
8027 case DW_FORM_ref2:
8028 return "DW_FORM_ref2";
8029 case DW_FORM_ref4:
8030 return "DW_FORM_ref4";
8031 case DW_FORM_ref8:
8032 return "DW_FORM_ref8";
8033 case DW_FORM_ref_udata:
8034 return "DW_FORM_ref_udata";
8035 case DW_FORM_indirect:
8036 return "DW_FORM_indirect";
8037 default:
8038 return "DW_FORM_<unknown>";
8039 }
8040}
8041
8042/* Convert a DWARF stack opcode into its string name. */
8043
8044static char *
aa1ee363 8045dwarf_stack_op_name (unsigned op)
c906108c
SS
8046{
8047 switch (op)
8048 {
8049 case DW_OP_addr:
8050 return "DW_OP_addr";
8051 case DW_OP_deref:
8052 return "DW_OP_deref";
8053 case DW_OP_const1u:
8054 return "DW_OP_const1u";
8055 case DW_OP_const1s:
8056 return "DW_OP_const1s";
8057 case DW_OP_const2u:
8058 return "DW_OP_const2u";
8059 case DW_OP_const2s:
8060 return "DW_OP_const2s";
8061 case DW_OP_const4u:
8062 return "DW_OP_const4u";
8063 case DW_OP_const4s:
8064 return "DW_OP_const4s";
8065 case DW_OP_const8u:
8066 return "DW_OP_const8u";
8067 case DW_OP_const8s:
8068 return "DW_OP_const8s";
8069 case DW_OP_constu:
8070 return "DW_OP_constu";
8071 case DW_OP_consts:
8072 return "DW_OP_consts";
8073 case DW_OP_dup:
8074 return "DW_OP_dup";
8075 case DW_OP_drop:
8076 return "DW_OP_drop";
8077 case DW_OP_over:
8078 return "DW_OP_over";
8079 case DW_OP_pick:
8080 return "DW_OP_pick";
8081 case DW_OP_swap:
8082 return "DW_OP_swap";
8083 case DW_OP_rot:
8084 return "DW_OP_rot";
8085 case DW_OP_xderef:
8086 return "DW_OP_xderef";
8087 case DW_OP_abs:
8088 return "DW_OP_abs";
8089 case DW_OP_and:
8090 return "DW_OP_and";
8091 case DW_OP_div:
8092 return "DW_OP_div";
8093 case DW_OP_minus:
8094 return "DW_OP_minus";
8095 case DW_OP_mod:
8096 return "DW_OP_mod";
8097 case DW_OP_mul:
8098 return "DW_OP_mul";
8099 case DW_OP_neg:
8100 return "DW_OP_neg";
8101 case DW_OP_not:
8102 return "DW_OP_not";
8103 case DW_OP_or:
8104 return "DW_OP_or";
8105 case DW_OP_plus:
8106 return "DW_OP_plus";
8107 case DW_OP_plus_uconst:
8108 return "DW_OP_plus_uconst";
8109 case DW_OP_shl:
8110 return "DW_OP_shl";
8111 case DW_OP_shr:
8112 return "DW_OP_shr";
8113 case DW_OP_shra:
8114 return "DW_OP_shra";
8115 case DW_OP_xor:
8116 return "DW_OP_xor";
8117 case DW_OP_bra:
8118 return "DW_OP_bra";
8119 case DW_OP_eq:
8120 return "DW_OP_eq";
8121 case DW_OP_ge:
8122 return "DW_OP_ge";
8123 case DW_OP_gt:
8124 return "DW_OP_gt";
8125 case DW_OP_le:
8126 return "DW_OP_le";
8127 case DW_OP_lt:
8128 return "DW_OP_lt";
8129 case DW_OP_ne:
8130 return "DW_OP_ne";
8131 case DW_OP_skip:
8132 return "DW_OP_skip";
8133 case DW_OP_lit0:
8134 return "DW_OP_lit0";
8135 case DW_OP_lit1:
8136 return "DW_OP_lit1";
8137 case DW_OP_lit2:
8138 return "DW_OP_lit2";
8139 case DW_OP_lit3:
8140 return "DW_OP_lit3";
8141 case DW_OP_lit4:
8142 return "DW_OP_lit4";
8143 case DW_OP_lit5:
8144 return "DW_OP_lit5";
8145 case DW_OP_lit6:
8146 return "DW_OP_lit6";
8147 case DW_OP_lit7:
8148 return "DW_OP_lit7";
8149 case DW_OP_lit8:
8150 return "DW_OP_lit8";
8151 case DW_OP_lit9:
8152 return "DW_OP_lit9";
8153 case DW_OP_lit10:
8154 return "DW_OP_lit10";
8155 case DW_OP_lit11:
8156 return "DW_OP_lit11";
8157 case DW_OP_lit12:
8158 return "DW_OP_lit12";
8159 case DW_OP_lit13:
8160 return "DW_OP_lit13";
8161 case DW_OP_lit14:
8162 return "DW_OP_lit14";
8163 case DW_OP_lit15:
8164 return "DW_OP_lit15";
8165 case DW_OP_lit16:
8166 return "DW_OP_lit16";
8167 case DW_OP_lit17:
8168 return "DW_OP_lit17";
8169 case DW_OP_lit18:
8170 return "DW_OP_lit18";
8171 case DW_OP_lit19:
8172 return "DW_OP_lit19";
8173 case DW_OP_lit20:
8174 return "DW_OP_lit20";
8175 case DW_OP_lit21:
8176 return "DW_OP_lit21";
8177 case DW_OP_lit22:
8178 return "DW_OP_lit22";
8179 case DW_OP_lit23:
8180 return "DW_OP_lit23";
8181 case DW_OP_lit24:
8182 return "DW_OP_lit24";
8183 case DW_OP_lit25:
8184 return "DW_OP_lit25";
8185 case DW_OP_lit26:
8186 return "DW_OP_lit26";
8187 case DW_OP_lit27:
8188 return "DW_OP_lit27";
8189 case DW_OP_lit28:
8190 return "DW_OP_lit28";
8191 case DW_OP_lit29:
8192 return "DW_OP_lit29";
8193 case DW_OP_lit30:
8194 return "DW_OP_lit30";
8195 case DW_OP_lit31:
8196 return "DW_OP_lit31";
8197 case DW_OP_reg0:
8198 return "DW_OP_reg0";
8199 case DW_OP_reg1:
8200 return "DW_OP_reg1";
8201 case DW_OP_reg2:
8202 return "DW_OP_reg2";
8203 case DW_OP_reg3:
8204 return "DW_OP_reg3";
8205 case DW_OP_reg4:
8206 return "DW_OP_reg4";
8207 case DW_OP_reg5:
8208 return "DW_OP_reg5";
8209 case DW_OP_reg6:
8210 return "DW_OP_reg6";
8211 case DW_OP_reg7:
8212 return "DW_OP_reg7";
8213 case DW_OP_reg8:
8214 return "DW_OP_reg8";
8215 case DW_OP_reg9:
8216 return "DW_OP_reg9";
8217 case DW_OP_reg10:
8218 return "DW_OP_reg10";
8219 case DW_OP_reg11:
8220 return "DW_OP_reg11";
8221 case DW_OP_reg12:
8222 return "DW_OP_reg12";
8223 case DW_OP_reg13:
8224 return "DW_OP_reg13";
8225 case DW_OP_reg14:
8226 return "DW_OP_reg14";
8227 case DW_OP_reg15:
8228 return "DW_OP_reg15";
8229 case DW_OP_reg16:
8230 return "DW_OP_reg16";
8231 case DW_OP_reg17:
8232 return "DW_OP_reg17";
8233 case DW_OP_reg18:
8234 return "DW_OP_reg18";
8235 case DW_OP_reg19:
8236 return "DW_OP_reg19";
8237 case DW_OP_reg20:
8238 return "DW_OP_reg20";
8239 case DW_OP_reg21:
8240 return "DW_OP_reg21";
8241 case DW_OP_reg22:
8242 return "DW_OP_reg22";
8243 case DW_OP_reg23:
8244 return "DW_OP_reg23";
8245 case DW_OP_reg24:
8246 return "DW_OP_reg24";
8247 case DW_OP_reg25:
8248 return "DW_OP_reg25";
8249 case DW_OP_reg26:
8250 return "DW_OP_reg26";
8251 case DW_OP_reg27:
8252 return "DW_OP_reg27";
8253 case DW_OP_reg28:
8254 return "DW_OP_reg28";
8255 case DW_OP_reg29:
8256 return "DW_OP_reg29";
8257 case DW_OP_reg30:
8258 return "DW_OP_reg30";
8259 case DW_OP_reg31:
8260 return "DW_OP_reg31";
8261 case DW_OP_breg0:
8262 return "DW_OP_breg0";
8263 case DW_OP_breg1:
8264 return "DW_OP_breg1";
8265 case DW_OP_breg2:
8266 return "DW_OP_breg2";
8267 case DW_OP_breg3:
8268 return "DW_OP_breg3";
8269 case DW_OP_breg4:
8270 return "DW_OP_breg4";
8271 case DW_OP_breg5:
8272 return "DW_OP_breg5";
8273 case DW_OP_breg6:
8274 return "DW_OP_breg6";
8275 case DW_OP_breg7:
8276 return "DW_OP_breg7";
8277 case DW_OP_breg8:
8278 return "DW_OP_breg8";
8279 case DW_OP_breg9:
8280 return "DW_OP_breg9";
8281 case DW_OP_breg10:
8282 return "DW_OP_breg10";
8283 case DW_OP_breg11:
8284 return "DW_OP_breg11";
8285 case DW_OP_breg12:
8286 return "DW_OP_breg12";
8287 case DW_OP_breg13:
8288 return "DW_OP_breg13";
8289 case DW_OP_breg14:
8290 return "DW_OP_breg14";
8291 case DW_OP_breg15:
8292 return "DW_OP_breg15";
8293 case DW_OP_breg16:
8294 return "DW_OP_breg16";
8295 case DW_OP_breg17:
8296 return "DW_OP_breg17";
8297 case DW_OP_breg18:
8298 return "DW_OP_breg18";
8299 case DW_OP_breg19:
8300 return "DW_OP_breg19";
8301 case DW_OP_breg20:
8302 return "DW_OP_breg20";
8303 case DW_OP_breg21:
8304 return "DW_OP_breg21";
8305 case DW_OP_breg22:
8306 return "DW_OP_breg22";
8307 case DW_OP_breg23:
8308 return "DW_OP_breg23";
8309 case DW_OP_breg24:
8310 return "DW_OP_breg24";
8311 case DW_OP_breg25:
8312 return "DW_OP_breg25";
8313 case DW_OP_breg26:
8314 return "DW_OP_breg26";
8315 case DW_OP_breg27:
8316 return "DW_OP_breg27";
8317 case DW_OP_breg28:
8318 return "DW_OP_breg28";
8319 case DW_OP_breg29:
8320 return "DW_OP_breg29";
8321 case DW_OP_breg30:
8322 return "DW_OP_breg30";
8323 case DW_OP_breg31:
8324 return "DW_OP_breg31";
8325 case DW_OP_regx:
8326 return "DW_OP_regx";
8327 case DW_OP_fbreg:
8328 return "DW_OP_fbreg";
8329 case DW_OP_bregx:
8330 return "DW_OP_bregx";
8331 case DW_OP_piece:
8332 return "DW_OP_piece";
8333 case DW_OP_deref_size:
8334 return "DW_OP_deref_size";
8335 case DW_OP_xderef_size:
8336 return "DW_OP_xderef_size";
8337 case DW_OP_nop:
8338 return "DW_OP_nop";
ed348acc
EZ
8339 /* DWARF 3 extensions. */
8340 case DW_OP_push_object_address:
8341 return "DW_OP_push_object_address";
8342 case DW_OP_call2:
8343 return "DW_OP_call2";
8344 case DW_OP_call4:
8345 return "DW_OP_call4";
8346 case DW_OP_call_ref:
8347 return "DW_OP_call_ref";
8348 /* GNU extensions. */
8349 case DW_OP_GNU_push_tls_address:
8350 return "DW_OP_GNU_push_tls_address";
c906108c
SS
8351 default:
8352 return "OP_<unknown>";
8353 }
8354}
8355
8356static char *
fba45db2 8357dwarf_bool_name (unsigned mybool)
c906108c
SS
8358{
8359 if (mybool)
8360 return "TRUE";
8361 else
8362 return "FALSE";
8363}
8364
8365/* Convert a DWARF type code into its string name. */
8366
8367static char *
aa1ee363 8368dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8369{
8370 switch (enc)
8371 {
8372 case DW_ATE_address:
8373 return "DW_ATE_address";
8374 case DW_ATE_boolean:
8375 return "DW_ATE_boolean";
8376 case DW_ATE_complex_float:
8377 return "DW_ATE_complex_float";
8378 case DW_ATE_float:
8379 return "DW_ATE_float";
8380 case DW_ATE_signed:
8381 return "DW_ATE_signed";
8382 case DW_ATE_signed_char:
8383 return "DW_ATE_signed_char";
8384 case DW_ATE_unsigned:
8385 return "DW_ATE_unsigned";
8386 case DW_ATE_unsigned_char:
8387 return "DW_ATE_unsigned_char";
d9fa45fe
DC
8388 case DW_ATE_imaginary_float:
8389 return "DW_ATE_imaginary_float";
c906108c
SS
8390 default:
8391 return "DW_ATE_<unknown>";
8392 }
8393}
8394
8395/* Convert a DWARF call frame info operation to its string name. */
8396
8397#if 0
8398static char *
aa1ee363 8399dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8400{
8401 switch (cfi_opc)
8402 {
8403 case DW_CFA_advance_loc:
8404 return "DW_CFA_advance_loc";
8405 case DW_CFA_offset:
8406 return "DW_CFA_offset";
8407 case DW_CFA_restore:
8408 return "DW_CFA_restore";
8409 case DW_CFA_nop:
8410 return "DW_CFA_nop";
8411 case DW_CFA_set_loc:
8412 return "DW_CFA_set_loc";
8413 case DW_CFA_advance_loc1:
8414 return "DW_CFA_advance_loc1";
8415 case DW_CFA_advance_loc2:
8416 return "DW_CFA_advance_loc2";
8417 case DW_CFA_advance_loc4:
8418 return "DW_CFA_advance_loc4";
8419 case DW_CFA_offset_extended:
8420 return "DW_CFA_offset_extended";
8421 case DW_CFA_restore_extended:
8422 return "DW_CFA_restore_extended";
8423 case DW_CFA_undefined:
8424 return "DW_CFA_undefined";
8425 case DW_CFA_same_value:
8426 return "DW_CFA_same_value";
8427 case DW_CFA_register:
8428 return "DW_CFA_register";
8429 case DW_CFA_remember_state:
8430 return "DW_CFA_remember_state";
8431 case DW_CFA_restore_state:
8432 return "DW_CFA_restore_state";
8433 case DW_CFA_def_cfa:
8434 return "DW_CFA_def_cfa";
8435 case DW_CFA_def_cfa_register:
8436 return "DW_CFA_def_cfa_register";
8437 case DW_CFA_def_cfa_offset:
8438 return "DW_CFA_def_cfa_offset";
985cb1a3
JM
8439
8440 /* DWARF 3 */
8441 case DW_CFA_def_cfa_expression:
8442 return "DW_CFA_def_cfa_expression";
8443 case DW_CFA_expression:
8444 return "DW_CFA_expression";
8445 case DW_CFA_offset_extended_sf:
8446 return "DW_CFA_offset_extended_sf";
8447 case DW_CFA_def_cfa_sf:
8448 return "DW_CFA_def_cfa_sf";
8449 case DW_CFA_def_cfa_offset_sf:
8450 return "DW_CFA_def_cfa_offset_sf";
8451
c906108c
SS
8452 /* SGI/MIPS specific */
8453 case DW_CFA_MIPS_advance_loc8:
8454 return "DW_CFA_MIPS_advance_loc8";
985cb1a3
JM
8455
8456 /* GNU extensions */
8457 case DW_CFA_GNU_window_save:
8458 return "DW_CFA_GNU_window_save";
8459 case DW_CFA_GNU_args_size:
8460 return "DW_CFA_GNU_args_size";
8461 case DW_CFA_GNU_negative_offset_extended:
8462 return "DW_CFA_GNU_negative_offset_extended";
8463
c906108c
SS
8464 default:
8465 return "DW_CFA_<unknown>";
8466 }
8467}
8468#endif
8469
f9aca02d 8470static void
fba45db2 8471dump_die (struct die_info *die)
c906108c
SS
8472{
8473 unsigned int i;
8474
48cd0caa 8475 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8476 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8477 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8478 dwarf_bool_name (die->child != NULL));
c906108c 8479
48cd0caa 8480 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8481 for (i = 0; i < die->num_attrs; ++i)
8482 {
48cd0caa 8483 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8484 dwarf_attr_name (die->attrs[i].name),
8485 dwarf_form_name (die->attrs[i].form));
8486 switch (die->attrs[i].form)
8487 {
8488 case DW_FORM_ref_addr:
8489 case DW_FORM_addr:
48cd0caa 8490 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8491 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8492 break;
8493 case DW_FORM_block2:
8494 case DW_FORM_block4:
8495 case DW_FORM_block:
8496 case DW_FORM_block1:
48cd0caa 8497 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8498 break;
10b3939b
DJ
8499 case DW_FORM_ref1:
8500 case DW_FORM_ref2:
8501 case DW_FORM_ref4:
8502 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8503 (long) (DW_ADDR (&die->attrs[i])));
8504 break;
c906108c
SS
8505 case DW_FORM_data1:
8506 case DW_FORM_data2:
8507 case DW_FORM_data4:
ce5d95e1 8508 case DW_FORM_data8:
c906108c
SS
8509 case DW_FORM_udata:
8510 case DW_FORM_sdata:
48cd0caa 8511 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8512 break;
8513 case DW_FORM_string:
4bdf3d34 8514 case DW_FORM_strp:
48cd0caa 8515 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8516 DW_STRING (&die->attrs[i])
c5aa993b 8517 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8518 break;
8519 case DW_FORM_flag:
8520 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8521 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8522 else
48cd0caa 8523 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8524 break;
a8329558
KW
8525 case DW_FORM_indirect:
8526 /* the reader will have reduced the indirect form to
8527 the "base form" so this form should not occur */
48cd0caa 8528 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8529 break;
c906108c 8530 default:
48cd0caa 8531 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8532 die->attrs[i].form);
c906108c 8533 }
48cd0caa 8534 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8535 }
8536}
8537
f9aca02d 8538static void
fba45db2 8539dump_die_list (struct die_info *die)
c906108c
SS
8540{
8541 while (die)
8542 {
8543 dump_die (die);
639d11d3
DC
8544 if (die->child != NULL)
8545 dump_die_list (die->child);
8546 if (die->sibling != NULL)
8547 dump_die_list (die->sibling);
c906108c
SS
8548 }
8549}
8550
f9aca02d 8551static void
10b3939b
DJ
8552store_in_ref_table (unsigned int offset, struct die_info *die,
8553 struct dwarf2_cu *cu)
c906108c
SS
8554{
8555 int h;
8556 struct die_info *old;
8557
8558 h = (offset % REF_HASH_SIZE);
10b3939b 8559 old = cu->die_ref_table[h];
c906108c 8560 die->next_ref = old;
10b3939b 8561 cu->die_ref_table[h] = die;
c906108c
SS
8562}
8563
8564static unsigned int
e142c38c 8565dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8566{
8567 unsigned int result = 0;
8568
8569 switch (attr->form)
8570 {
8571 case DW_FORM_ref_addr:
c906108c
SS
8572 case DW_FORM_ref1:
8573 case DW_FORM_ref2:
8574 case DW_FORM_ref4:
613e1657 8575 case DW_FORM_ref8:
c906108c 8576 case DW_FORM_ref_udata:
10b3939b 8577 result = DW_ADDR (attr);
c906108c
SS
8578 break;
8579 default:
4d3c2250 8580 complaint (&symfile_complaints,
e2e0b3e5 8581 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8582 dwarf_form_name (attr->form));
c906108c
SS
8583 }
8584 return result;
8585}
8586
a02abb62
JB
8587/* Return the constant value held by the given attribute. Return -1
8588 if the value held by the attribute is not constant. */
8589
8590static int
8591dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8592{
8593 if (attr->form == DW_FORM_sdata)
8594 return DW_SND (attr);
8595 else if (attr->form == DW_FORM_udata
8596 || attr->form == DW_FORM_data1
8597 || attr->form == DW_FORM_data2
8598 || attr->form == DW_FORM_data4
8599 || attr->form == DW_FORM_data8)
8600 return DW_UNSND (attr);
8601 else
8602 {
e2e0b3e5 8603 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8604 dwarf_form_name (attr->form));
8605 return default_value;
8606 }
8607}
8608
f9aca02d 8609static struct die_info *
10b3939b
DJ
8610follow_die_ref (struct die_info *src_die, struct attribute *attr,
8611 struct dwarf2_cu *cu)
c906108c
SS
8612{
8613 struct die_info *die;
10b3939b 8614 unsigned int offset;
c906108c 8615 int h;
10b3939b
DJ
8616 struct die_info temp_die;
8617 struct dwarf2_cu *target_cu;
8618
8619 offset = dwarf2_get_ref_die_offset (attr, cu);
8620
8621 if (DW_ADDR (attr) < cu->header.offset
8622 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8623 {
8624 struct dwarf2_per_cu_data *per_cu;
8625 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8626 cu->objfile);
8627 target_cu = per_cu->cu;
8628 }
8629 else
8630 target_cu = cu;
c906108c
SS
8631
8632 h = (offset % REF_HASH_SIZE);
10b3939b 8633 die = target_cu->die_ref_table[h];
c906108c
SS
8634 while (die)
8635 {
8636 if (die->offset == offset)
10b3939b 8637 return die;
c906108c
SS
8638 die = die->next_ref;
8639 }
10b3939b 8640
8a3fe4f8
AC
8641 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8642 "at 0x%lx [in module %s]"),
10b3939b
DJ
8643 (long) src_die->offset, (long) offset, cu->objfile->name);
8644
c906108c
SS
8645 return NULL;
8646}
8647
8648static struct type *
e142c38c
DJ
8649dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8650 struct dwarf2_cu *cu)
c906108c
SS
8651{
8652 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8653 {
8a3fe4f8 8654 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 8655 typeid, objfile->name);
c906108c
SS
8656 }
8657
8658 /* Look for this particular type in the fundamental type vector. If
8659 one is not found, create and install one appropriate for the
8660 current language and the current target machine. */
8661
e142c38c 8662 if (cu->ftypes[typeid] == NULL)
c906108c 8663 {
e142c38c 8664 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
8665 }
8666
e142c38c 8667 return (cu->ftypes[typeid]);
c906108c
SS
8668}
8669
8670/* Decode simple location descriptions.
8671 Given a pointer to a dwarf block that defines a location, compute
8672 the location and return the value.
8673
4cecd739
DJ
8674 NOTE drow/2003-11-18: This function is called in two situations
8675 now: for the address of static or global variables (partial symbols
8676 only) and for offsets into structures which are expected to be
8677 (more or less) constant. The partial symbol case should go away,
8678 and only the constant case should remain. That will let this
8679 function complain more accurately. A few special modes are allowed
8680 without complaint for global variables (for instance, global
8681 register values and thread-local values).
c906108c
SS
8682
8683 A location description containing no operations indicates that the
4cecd739 8684 object is optimized out. The return value is 0 for that case.
6b992462
DJ
8685 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8686 callers will only want a very basic result and this can become a
8687 complaint.
c906108c 8688
c906108c
SS
8689 Note that stack[0] is unused except as a default error return.
8690 Note that stack overflow is not yet handled. */
8691
8692static CORE_ADDR
e7c27a73 8693decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 8694{
e7c27a73
DJ
8695 struct objfile *objfile = cu->objfile;
8696 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8697 int i;
8698 int size = blk->size;
fe1b8b76 8699 gdb_byte *data = blk->data;
c906108c
SS
8700 CORE_ADDR stack[64];
8701 int stacki;
8702 unsigned int bytes_read, unsnd;
fe1b8b76 8703 gdb_byte op;
c906108c
SS
8704
8705 i = 0;
8706 stacki = 0;
8707 stack[stacki] = 0;
c906108c
SS
8708
8709 while (i < size)
8710 {
c906108c
SS
8711 op = data[i++];
8712 switch (op)
8713 {
f1bea926
JM
8714 case DW_OP_lit0:
8715 case DW_OP_lit1:
8716 case DW_OP_lit2:
8717 case DW_OP_lit3:
8718 case DW_OP_lit4:
8719 case DW_OP_lit5:
8720 case DW_OP_lit6:
8721 case DW_OP_lit7:
8722 case DW_OP_lit8:
8723 case DW_OP_lit9:
8724 case DW_OP_lit10:
8725 case DW_OP_lit11:
8726 case DW_OP_lit12:
8727 case DW_OP_lit13:
8728 case DW_OP_lit14:
8729 case DW_OP_lit15:
8730 case DW_OP_lit16:
8731 case DW_OP_lit17:
8732 case DW_OP_lit18:
8733 case DW_OP_lit19:
8734 case DW_OP_lit20:
8735 case DW_OP_lit21:
8736 case DW_OP_lit22:
8737 case DW_OP_lit23:
8738 case DW_OP_lit24:
8739 case DW_OP_lit25:
8740 case DW_OP_lit26:
8741 case DW_OP_lit27:
8742 case DW_OP_lit28:
8743 case DW_OP_lit29:
8744 case DW_OP_lit30:
8745 case DW_OP_lit31:
8746 stack[++stacki] = op - DW_OP_lit0;
8747 break;
8748
c906108c
SS
8749 case DW_OP_reg0:
8750 case DW_OP_reg1:
8751 case DW_OP_reg2:
8752 case DW_OP_reg3:
8753 case DW_OP_reg4:
8754 case DW_OP_reg5:
8755 case DW_OP_reg6:
8756 case DW_OP_reg7:
8757 case DW_OP_reg8:
8758 case DW_OP_reg9:
8759 case DW_OP_reg10:
8760 case DW_OP_reg11:
8761 case DW_OP_reg12:
8762 case DW_OP_reg13:
8763 case DW_OP_reg14:
8764 case DW_OP_reg15:
8765 case DW_OP_reg16:
8766 case DW_OP_reg17:
8767 case DW_OP_reg18:
8768 case DW_OP_reg19:
8769 case DW_OP_reg20:
8770 case DW_OP_reg21:
8771 case DW_OP_reg22:
8772 case DW_OP_reg23:
8773 case DW_OP_reg24:
8774 case DW_OP_reg25:
8775 case DW_OP_reg26:
8776 case DW_OP_reg27:
8777 case DW_OP_reg28:
8778 case DW_OP_reg29:
8779 case DW_OP_reg30:
8780 case DW_OP_reg31:
c906108c 8781 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
8782 if (i < size)
8783 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8784 break;
8785
8786 case DW_OP_regx:
c906108c
SS
8787 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8788 i += bytes_read;
c906108c 8789 stack[++stacki] = unsnd;
4cecd739
DJ
8790 if (i < size)
8791 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8792 break;
8793
8794 case DW_OP_addr:
107d2387 8795 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 8796 cu, &bytes_read);
107d2387 8797 i += bytes_read;
c906108c
SS
8798 break;
8799
8800 case DW_OP_const1u:
8801 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8802 i += 1;
8803 break;
8804
8805 case DW_OP_const1s:
8806 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8807 i += 1;
8808 break;
8809
8810 case DW_OP_const2u:
8811 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8812 i += 2;
8813 break;
8814
8815 case DW_OP_const2s:
8816 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8817 i += 2;
8818 break;
8819
8820 case DW_OP_const4u:
8821 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8822 i += 4;
8823 break;
8824
8825 case DW_OP_const4s:
8826 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8827 i += 4;
8828 break;
8829
8830 case DW_OP_constu:
8831 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 8832 &bytes_read);
c906108c
SS
8833 i += bytes_read;
8834 break;
8835
8836 case DW_OP_consts:
8837 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8838 i += bytes_read;
8839 break;
8840
f1bea926
JM
8841 case DW_OP_dup:
8842 stack[stacki + 1] = stack[stacki];
8843 stacki++;
8844 break;
8845
c906108c
SS
8846 case DW_OP_plus:
8847 stack[stacki - 1] += stack[stacki];
8848 stacki--;
8849 break;
8850
8851 case DW_OP_plus_uconst:
8852 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8853 i += bytes_read;
8854 break;
8855
8856 case DW_OP_minus:
f1bea926 8857 stack[stacki - 1] -= stack[stacki];
c906108c
SS
8858 stacki--;
8859 break;
8860
7a292a7a 8861 case DW_OP_deref:
7a292a7a 8862 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
8863 this using GDB's address_class enum. This is valid for partial
8864 global symbols, although the variable's address will be bogus
8865 in the psymtab. */
7a292a7a 8866 if (i < size)
4d3c2250 8867 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
8868 break;
8869
9d774e44 8870 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
8871 /* The top of the stack has the offset from the beginning
8872 of the thread control block at which the variable is located. */
8873 /* Nothing should follow this operator, so the top of stack would
8874 be returned. */
4cecd739
DJ
8875 /* This is valid for partial global symbols, but the variable's
8876 address will be bogus in the psymtab. */
9d774e44 8877 if (i < size)
4d3c2250 8878 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
8879 break;
8880
c906108c 8881 default:
e2e0b3e5 8882 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 8883 dwarf_stack_op_name (op));
c906108c
SS
8884 return (stack[stacki]);
8885 }
8886 }
8887 return (stack[stacki]);
8888}
8889
8890/* memory allocation interface */
8891
c906108c 8892static struct dwarf_block *
7b5a2f43 8893dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
8894{
8895 struct dwarf_block *blk;
8896
8897 blk = (struct dwarf_block *)
7b5a2f43 8898 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
8899 return (blk);
8900}
8901
8902static struct abbrev_info *
f3dd6933 8903dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
8904{
8905 struct abbrev_info *abbrev;
8906
f3dd6933
DJ
8907 abbrev = (struct abbrev_info *)
8908 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
8909 memset (abbrev, 0, sizeof (struct abbrev_info));
8910 return (abbrev);
8911}
8912
8913static struct die_info *
fba45db2 8914dwarf_alloc_die (void)
c906108c
SS
8915{
8916 struct die_info *die;
8917
8918 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8919 memset (die, 0, sizeof (struct die_info));
8920 return (die);
8921}
2e276125
JB
8922
8923\f
8924/* Macro support. */
8925
8926
8927/* Return the full name of file number I in *LH's file name table.
8928 Use COMP_DIR as the name of the current directory of the
8929 compilation. The result is allocated using xmalloc; the caller is
8930 responsible for freeing it. */
8931static char *
8932file_full_name (int file, struct line_header *lh, const char *comp_dir)
8933{
6a83a1e6
EZ
8934 /* Is the file number a valid index into the line header's file name
8935 table? Remember that file numbers start with one, not zero. */
8936 if (1 <= file && file <= lh->num_file_names)
8937 {
8938 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 8939
6a83a1e6
EZ
8940 if (IS_ABSOLUTE_PATH (fe->name))
8941 return xstrdup (fe->name);
8942 else
8943 {
8944 const char *dir;
8945 int dir_len;
8946 char *full_name;
8947
8948 if (fe->dir_index)
8949 dir = lh->include_dirs[fe->dir_index - 1];
8950 else
8951 dir = comp_dir;
8952
8953 if (dir)
8954 {
8955 dir_len = strlen (dir);
8956 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8957 strcpy (full_name, dir);
8958 full_name[dir_len] = '/';
8959 strcpy (full_name + dir_len + 1, fe->name);
8960 return full_name;
8961 }
8962 else
8963 return xstrdup (fe->name);
8964 }
8965 }
2e276125
JB
8966 else
8967 {
6a83a1e6
EZ
8968 /* The compiler produced a bogus file number. We can at least
8969 record the macro definitions made in the file, even if we
8970 won't be able to find the file by name. */
8971 char fake_name[80];
8972 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 8973
6a83a1e6
EZ
8974 complaint (&symfile_complaints,
8975 _("bad file number in macro information (%d)"),
8976 file);
2e276125 8977
6a83a1e6 8978 return xstrdup (fake_name);
2e276125
JB
8979 }
8980}
8981
8982
8983static struct macro_source_file *
8984macro_start_file (int file, int line,
8985 struct macro_source_file *current_file,
8986 const char *comp_dir,
8987 struct line_header *lh, struct objfile *objfile)
8988{
8989 /* The full name of this source file. */
8990 char *full_name = file_full_name (file, lh, comp_dir);
8991
8992 /* We don't create a macro table for this compilation unit
8993 at all until we actually get a filename. */
8994 if (! pending_macros)
4a146b47 8995 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 8996 objfile->macro_cache);
2e276125
JB
8997
8998 if (! current_file)
8999 /* If we have no current file, then this must be the start_file
9000 directive for the compilation unit's main source file. */
9001 current_file = macro_set_main (pending_macros, full_name);
9002 else
9003 current_file = macro_include (current_file, line, full_name);
9004
9005 xfree (full_name);
9006
9007 return current_file;
9008}
9009
9010
9011/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9012 followed by a null byte. */
9013static char *
9014copy_string (const char *buf, int len)
9015{
9016 char *s = xmalloc (len + 1);
9017 memcpy (s, buf, len);
9018 s[len] = '\0';
9019
9020 return s;
9021}
9022
9023
9024static const char *
9025consume_improper_spaces (const char *p, const char *body)
9026{
9027 if (*p == ' ')
9028 {
4d3c2250 9029 complaint (&symfile_complaints,
e2e0b3e5 9030 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9031 body);
2e276125
JB
9032
9033 while (*p == ' ')
9034 p++;
9035 }
9036
9037 return p;
9038}
9039
9040
9041static void
9042parse_macro_definition (struct macro_source_file *file, int line,
9043 const char *body)
9044{
9045 const char *p;
9046
9047 /* The body string takes one of two forms. For object-like macro
9048 definitions, it should be:
9049
9050 <macro name> " " <definition>
9051
9052 For function-like macro definitions, it should be:
9053
9054 <macro name> "() " <definition>
9055 or
9056 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9057
9058 Spaces may appear only where explicitly indicated, and in the
9059 <definition>.
9060
9061 The Dwarf 2 spec says that an object-like macro's name is always
9062 followed by a space, but versions of GCC around March 2002 omit
9063 the space when the macro's definition is the empty string.
9064
9065 The Dwarf 2 spec says that there should be no spaces between the
9066 formal arguments in a function-like macro's formal argument list,
9067 but versions of GCC around March 2002 include spaces after the
9068 commas. */
9069
9070
9071 /* Find the extent of the macro name. The macro name is terminated
9072 by either a space or null character (for an object-like macro) or
9073 an opening paren (for a function-like macro). */
9074 for (p = body; *p; p++)
9075 if (*p == ' ' || *p == '(')
9076 break;
9077
9078 if (*p == ' ' || *p == '\0')
9079 {
9080 /* It's an object-like macro. */
9081 int name_len = p - body;
9082 char *name = copy_string (body, name_len);
9083 const char *replacement;
9084
9085 if (*p == ' ')
9086 replacement = body + name_len + 1;
9087 else
9088 {
4d3c2250 9089 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9090 replacement = body + name_len;
9091 }
9092
9093 macro_define_object (file, line, name, replacement);
9094
9095 xfree (name);
9096 }
9097 else if (*p == '(')
9098 {
9099 /* It's a function-like macro. */
9100 char *name = copy_string (body, p - body);
9101 int argc = 0;
9102 int argv_size = 1;
9103 char **argv = xmalloc (argv_size * sizeof (*argv));
9104
9105 p++;
9106
9107 p = consume_improper_spaces (p, body);
9108
9109 /* Parse the formal argument list. */
9110 while (*p && *p != ')')
9111 {
9112 /* Find the extent of the current argument name. */
9113 const char *arg_start = p;
9114
9115 while (*p && *p != ',' && *p != ')' && *p != ' ')
9116 p++;
9117
9118 if (! *p || p == arg_start)
4d3c2250 9119 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9120 else
9121 {
9122 /* Make sure argv has room for the new argument. */
9123 if (argc >= argv_size)
9124 {
9125 argv_size *= 2;
9126 argv = xrealloc (argv, argv_size * sizeof (*argv));
9127 }
9128
9129 argv[argc++] = copy_string (arg_start, p - arg_start);
9130 }
9131
9132 p = consume_improper_spaces (p, body);
9133
9134 /* Consume the comma, if present. */
9135 if (*p == ',')
9136 {
9137 p++;
9138
9139 p = consume_improper_spaces (p, body);
9140 }
9141 }
9142
9143 if (*p == ')')
9144 {
9145 p++;
9146
9147 if (*p == ' ')
9148 /* Perfectly formed definition, no complaints. */
9149 macro_define_function (file, line, name,
9150 argc, (const char **) argv,
9151 p + 1);
9152 else if (*p == '\0')
9153 {
9154 /* Complain, but do define it. */
4d3c2250 9155 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9156 macro_define_function (file, line, name,
9157 argc, (const char **) argv,
9158 p);
9159 }
9160 else
9161 /* Just complain. */
4d3c2250 9162 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9163 }
9164 else
9165 /* Just complain. */
4d3c2250 9166 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9167
9168 xfree (name);
9169 {
9170 int i;
9171
9172 for (i = 0; i < argc; i++)
9173 xfree (argv[i]);
9174 }
9175 xfree (argv);
9176 }
9177 else
4d3c2250 9178 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9179}
9180
9181
9182static void
9183dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9184 char *comp_dir, bfd *abfd,
e7c27a73 9185 struct dwarf2_cu *cu)
2e276125 9186{
fe1b8b76 9187 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9188 struct macro_source_file *current_file = 0;
9189
6502dd73 9190 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9191 {
e2e0b3e5 9192 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9193 return;
9194 }
9195
6502dd73
DJ
9196 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9197 mac_end = dwarf2_per_objfile->macinfo_buffer
9198 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9199
9200 for (;;)
9201 {
9202 enum dwarf_macinfo_record_type macinfo_type;
9203
9204 /* Do we at least have room for a macinfo type byte? */
9205 if (mac_ptr >= mac_end)
9206 {
4d3c2250 9207 dwarf2_macros_too_long_complaint ();
2e276125
JB
9208 return;
9209 }
9210
9211 macinfo_type = read_1_byte (abfd, mac_ptr);
9212 mac_ptr++;
9213
9214 switch (macinfo_type)
9215 {
9216 /* A zero macinfo type indicates the end of the macro
9217 information. */
9218 case 0:
9219 return;
9220
9221 case DW_MACINFO_define:
9222 case DW_MACINFO_undef:
9223 {
891d2f0b 9224 unsigned int bytes_read;
2e276125
JB
9225 int line;
9226 char *body;
9227
9228 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9229 mac_ptr += bytes_read;
9230 body = read_string (abfd, mac_ptr, &bytes_read);
9231 mac_ptr += bytes_read;
9232
9233 if (! current_file)
4d3c2250 9234 complaint (&symfile_complaints,
e2e0b3e5 9235 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9236 macinfo_type ==
9237 DW_MACINFO_define ? "definition" : macinfo_type ==
9238 DW_MACINFO_undef ? "undefinition" :
9239 "something-or-other", body);
2e276125
JB
9240 else
9241 {
9242 if (macinfo_type == DW_MACINFO_define)
9243 parse_macro_definition (current_file, line, body);
9244 else if (macinfo_type == DW_MACINFO_undef)
9245 macro_undef (current_file, line, body);
9246 }
9247 }
9248 break;
9249
9250 case DW_MACINFO_start_file:
9251 {
891d2f0b 9252 unsigned int bytes_read;
2e276125
JB
9253 int line, file;
9254
9255 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9256 mac_ptr += bytes_read;
9257 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9258 mac_ptr += bytes_read;
9259
9260 current_file = macro_start_file (file, line,
9261 current_file, comp_dir,
e7c27a73 9262 lh, cu->objfile);
2e276125
JB
9263 }
9264 break;
9265
9266 case DW_MACINFO_end_file:
9267 if (! current_file)
4d3c2250 9268 complaint (&symfile_complaints,
e2e0b3e5 9269 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9270 else
9271 {
9272 current_file = current_file->included_by;
9273 if (! current_file)
9274 {
9275 enum dwarf_macinfo_record_type next_type;
9276
9277 /* GCC circa March 2002 doesn't produce the zero
9278 type byte marking the end of the compilation
9279 unit. Complain if it's not there, but exit no
9280 matter what. */
9281
9282 /* Do we at least have room for a macinfo type byte? */
9283 if (mac_ptr >= mac_end)
9284 {
4d3c2250 9285 dwarf2_macros_too_long_complaint ();
2e276125
JB
9286 return;
9287 }
9288
9289 /* We don't increment mac_ptr here, so this is just
9290 a look-ahead. */
9291 next_type = read_1_byte (abfd, mac_ptr);
9292 if (next_type != 0)
4d3c2250 9293 complaint (&symfile_complaints,
e2e0b3e5 9294 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9295
9296 return;
9297 }
9298 }
9299 break;
9300
9301 case DW_MACINFO_vendor_ext:
9302 {
891d2f0b 9303 unsigned int bytes_read;
2e276125
JB
9304 int constant;
9305 char *string;
9306
9307 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9308 mac_ptr += bytes_read;
9309 string = read_string (abfd, mac_ptr, &bytes_read);
9310 mac_ptr += bytes_read;
9311
9312 /* We don't recognize any vendor extensions. */
9313 }
9314 break;
9315 }
9316 }
9317}
8e19ed76
PS
9318
9319/* Check if the attribute's form is a DW_FORM_block*
9320 if so return true else false. */
9321static int
9322attr_form_is_block (struct attribute *attr)
9323{
9324 return (attr == NULL ? 0 :
9325 attr->form == DW_FORM_block1
9326 || attr->form == DW_FORM_block2
9327 || attr->form == DW_FORM_block4
9328 || attr->form == DW_FORM_block);
9329}
4c2df51b
DJ
9330
9331static void
9332dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9333 struct dwarf2_cu *cu)
4c2df51b 9334{
99bcc461
DJ
9335 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9336 /* ".debug_loc" may not exist at all, or the offset may be outside
9337 the section. If so, fall through to the complaint in the
9338 other branch. */
9339 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9340 {
0d53c4c4 9341 struct dwarf2_loclist_baton *baton;
4c2df51b 9342
4a146b47 9343 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9344 sizeof (struct dwarf2_loclist_baton));
e7c27a73 9345 baton->objfile = cu->objfile;
4c2df51b 9346
0d53c4c4
DJ
9347 /* We don't know how long the location list is, but make sure we
9348 don't run off the edge of the section. */
6502dd73
DJ
9349 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9350 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9351 baton->base_address = cu->header.base_address;
9352 if (cu->header.base_known == 0)
0d53c4c4 9353 complaint (&symfile_complaints,
e2e0b3e5 9354 _("Location list used without specifying the CU base address."));
4c2df51b 9355
a67af2b9 9356 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9357 SYMBOL_LOCATION_BATON (sym) = baton;
9358 }
9359 else
9360 {
9361 struct dwarf2_locexpr_baton *baton;
9362
4a146b47 9363 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9364 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 9365 baton->objfile = cu->objfile;
0d53c4c4
DJ
9366
9367 if (attr_form_is_block (attr))
9368 {
9369 /* Note that we're just copying the block's data pointer
9370 here, not the actual data. We're still pointing into the
6502dd73
DJ
9371 info_buffer for SYM's objfile; right now we never release
9372 that buffer, but when we do clean up properly this may
9373 need to change. */
0d53c4c4
DJ
9374 baton->size = DW_BLOCK (attr)->size;
9375 baton->data = DW_BLOCK (attr)->data;
9376 }
9377 else
9378 {
9379 dwarf2_invalid_attrib_class_complaint ("location description",
9380 SYMBOL_NATURAL_NAME (sym));
9381 baton->size = 0;
9382 baton->data = NULL;
9383 }
9384
a67af2b9 9385 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9386 SYMBOL_LOCATION_BATON (sym) = baton;
9387 }
4c2df51b 9388}
6502dd73 9389
ae038cb0 9390/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9391 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9392
9393static struct dwarf2_per_cu_data *
9394dwarf2_find_containing_comp_unit (unsigned long offset,
9395 struct objfile *objfile)
9396{
9397 struct dwarf2_per_cu_data *this_cu;
9398 int low, high;
9399
ae038cb0
DJ
9400 low = 0;
9401 high = dwarf2_per_objfile->n_comp_units - 1;
9402 while (high > low)
9403 {
9404 int mid = low + (high - low) / 2;
9405 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9406 high = mid;
9407 else
9408 low = mid + 1;
9409 }
9410 gdb_assert (low == high);
9411 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9412 {
10b3939b 9413 if (low == 0)
8a3fe4f8
AC
9414 error (_("Dwarf Error: could not find partial DIE containing "
9415 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9416 (long) offset, bfd_get_filename (objfile->obfd));
9417
ae038cb0
DJ
9418 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9419 return dwarf2_per_objfile->all_comp_units[low-1];
9420 }
9421 else
9422 {
9423 this_cu = dwarf2_per_objfile->all_comp_units[low];
9424 if (low == dwarf2_per_objfile->n_comp_units - 1
9425 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9426 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9427 gdb_assert (offset < this_cu->offset + this_cu->length);
9428 return this_cu;
9429 }
9430}
9431
10b3939b
DJ
9432/* Locate the compilation unit from OBJFILE which is located at exactly
9433 OFFSET. Raises an error on failure. */
9434
ae038cb0
DJ
9435static struct dwarf2_per_cu_data *
9436dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9437{
9438 struct dwarf2_per_cu_data *this_cu;
9439 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9440 if (this_cu->offset != offset)
8a3fe4f8 9441 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9442 return this_cu;
9443}
9444
9445/* Release one cached compilation unit, CU. We unlink it from the tree
9446 of compilation units, but we don't remove it from the read_in_chain;
9447 the caller is responsible for that. */
9448
9449static void
9450free_one_comp_unit (void *data)
9451{
9452 struct dwarf2_cu *cu = data;
9453
9454 if (cu->per_cu != NULL)
9455 cu->per_cu->cu = NULL;
9456 cu->per_cu = NULL;
9457
9458 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9459 if (cu->dies)
9460 free_die_list (cu->dies);
ae038cb0
DJ
9461
9462 xfree (cu);
9463}
9464
72bf9492 9465/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9466 when we're finished with it. We can't free the pointer itself, but be
9467 sure to unlink it from the cache. Also release any associated storage
9468 and perform cache maintenance.
72bf9492
DJ
9469
9470 Only used during partial symbol parsing. */
9471
9472static void
9473free_stack_comp_unit (void *data)
9474{
9475 struct dwarf2_cu *cu = data;
9476
9477 obstack_free (&cu->comp_unit_obstack, NULL);
9478 cu->partial_dies = NULL;
ae038cb0
DJ
9479
9480 if (cu->per_cu != NULL)
9481 {
9482 /* This compilation unit is on the stack in our caller, so we
9483 should not xfree it. Just unlink it. */
9484 cu->per_cu->cu = NULL;
9485 cu->per_cu = NULL;
9486
9487 /* If we had a per-cu pointer, then we may have other compilation
9488 units loaded, so age them now. */
9489 age_cached_comp_units ();
9490 }
9491}
9492
9493/* Free all cached compilation units. */
9494
9495static void
9496free_cached_comp_units (void *data)
9497{
9498 struct dwarf2_per_cu_data *per_cu, **last_chain;
9499
9500 per_cu = dwarf2_per_objfile->read_in_chain;
9501 last_chain = &dwarf2_per_objfile->read_in_chain;
9502 while (per_cu != NULL)
9503 {
9504 struct dwarf2_per_cu_data *next_cu;
9505
9506 next_cu = per_cu->cu->read_in_chain;
9507
9508 free_one_comp_unit (per_cu->cu);
9509 *last_chain = next_cu;
9510
9511 per_cu = next_cu;
9512 }
9513}
9514
9515/* Increase the age counter on each cached compilation unit, and free
9516 any that are too old. */
9517
9518static void
9519age_cached_comp_units (void)
9520{
9521 struct dwarf2_per_cu_data *per_cu, **last_chain;
9522
9523 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9524 per_cu = dwarf2_per_objfile->read_in_chain;
9525 while (per_cu != NULL)
9526 {
9527 per_cu->cu->last_used ++;
9528 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9529 dwarf2_mark (per_cu->cu);
9530 per_cu = per_cu->cu->read_in_chain;
9531 }
9532
9533 per_cu = dwarf2_per_objfile->read_in_chain;
9534 last_chain = &dwarf2_per_objfile->read_in_chain;
9535 while (per_cu != NULL)
9536 {
9537 struct dwarf2_per_cu_data *next_cu;
9538
9539 next_cu = per_cu->cu->read_in_chain;
9540
9541 if (!per_cu->cu->mark)
9542 {
9543 free_one_comp_unit (per_cu->cu);
9544 *last_chain = next_cu;
9545 }
9546 else
9547 last_chain = &per_cu->cu->read_in_chain;
9548
9549 per_cu = next_cu;
9550 }
9551}
9552
9553/* Remove a single compilation unit from the cache. */
9554
9555static void
9556free_one_cached_comp_unit (void *target_cu)
9557{
9558 struct dwarf2_per_cu_data *per_cu, **last_chain;
9559
9560 per_cu = dwarf2_per_objfile->read_in_chain;
9561 last_chain = &dwarf2_per_objfile->read_in_chain;
9562 while (per_cu != NULL)
9563 {
9564 struct dwarf2_per_cu_data *next_cu;
9565
9566 next_cu = per_cu->cu->read_in_chain;
9567
9568 if (per_cu->cu == target_cu)
9569 {
9570 free_one_comp_unit (per_cu->cu);
9571 *last_chain = next_cu;
9572 break;
9573 }
9574 else
9575 last_chain = &per_cu->cu->read_in_chain;
9576
9577 per_cu = next_cu;
9578 }
9579}
9580
1c379e20
DJ
9581/* A pair of DIE offset and GDB type pointer. We store these
9582 in a hash table separate from the DIEs, and preserve them
9583 when the DIEs are flushed out of cache. */
9584
9585struct dwarf2_offset_and_type
9586{
9587 unsigned int offset;
9588 struct type *type;
9589};
9590
9591/* Hash function for a dwarf2_offset_and_type. */
9592
9593static hashval_t
9594offset_and_type_hash (const void *item)
9595{
9596 const struct dwarf2_offset_and_type *ofs = item;
9597 return ofs->offset;
9598}
9599
9600/* Equality function for a dwarf2_offset_and_type. */
9601
9602static int
9603offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9604{
9605 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9606 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9607 return ofs_lhs->offset == ofs_rhs->offset;
9608}
9609
9610/* Set the type associated with DIE to TYPE. Save it in CU's hash
9611 table if necessary. */
9612
9613static void
9614set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9615{
9616 struct dwarf2_offset_and_type **slot, ofs;
9617
9618 die->type = type;
9619
9620 if (cu->per_cu == NULL)
9621 return;
9622
9623 if (cu->per_cu->type_hash == NULL)
9624 cu->per_cu->type_hash
9625 = htab_create_alloc_ex (cu->header.length / 24,
9626 offset_and_type_hash,
9627 offset_and_type_eq,
9628 NULL,
9629 &cu->objfile->objfile_obstack,
9630 hashtab_obstack_allocate,
9631 dummy_obstack_deallocate);
9632
9633 ofs.offset = die->offset;
9634 ofs.type = type;
9635 slot = (struct dwarf2_offset_and_type **)
9636 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9637 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9638 **slot = ofs;
9639}
9640
1c379e20
DJ
9641/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9642 have a saved type. */
9643
9644static struct type *
9645get_die_type (struct die_info *die, htab_t type_hash)
9646{
9647 struct dwarf2_offset_and_type *slot, ofs;
9648
9649 ofs.offset = die->offset;
9650 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9651 if (slot)
9652 return slot->type;
9653 else
9654 return NULL;
9655}
9656
9657/* Restore the types of the DIE tree starting at START_DIE from the hash
9658 table saved in CU. */
9659
9660static void
9661reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9662{
9663 struct die_info *die;
9664
9665 if (cu->per_cu->type_hash == NULL)
9666 return;
9667
9668 for (die = start_die; die != NULL; die = die->sibling)
9669 {
9670 die->type = get_die_type (die, cu->per_cu->type_hash);
9671 if (die->child != NULL)
9672 reset_die_and_siblings_types (die->child, cu);
9673 }
9674}
9675
10b3939b
DJ
9676/* Set the mark field in CU and in every other compilation unit in the
9677 cache that we must keep because we are keeping CU. */
9678
9679/* Add a dependence relationship from CU to REF_PER_CU. */
9680
9681static void
9682dwarf2_add_dependence (struct dwarf2_cu *cu,
9683 struct dwarf2_per_cu_data *ref_per_cu)
9684{
9685 void **slot;
9686
9687 if (cu->dependencies == NULL)
9688 cu->dependencies
9689 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9690 NULL, &cu->comp_unit_obstack,
9691 hashtab_obstack_allocate,
9692 dummy_obstack_deallocate);
9693
9694 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9695 if (*slot == NULL)
9696 *slot = ref_per_cu;
9697}
1c379e20 9698
ae038cb0
DJ
9699/* Set the mark field in CU and in every other compilation unit in the
9700 cache that we must keep because we are keeping CU. */
9701
10b3939b
DJ
9702static int
9703dwarf2_mark_helper (void **slot, void *data)
9704{
9705 struct dwarf2_per_cu_data *per_cu;
9706
9707 per_cu = (struct dwarf2_per_cu_data *) *slot;
9708 if (per_cu->cu->mark)
9709 return 1;
9710 per_cu->cu->mark = 1;
9711
9712 if (per_cu->cu->dependencies != NULL)
9713 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9714
9715 return 1;
9716}
9717
ae038cb0
DJ
9718static void
9719dwarf2_mark (struct dwarf2_cu *cu)
9720{
9721 if (cu->mark)
9722 return;
9723 cu->mark = 1;
10b3939b
DJ
9724 if (cu->dependencies != NULL)
9725 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
9726}
9727
9728static void
9729dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9730{
9731 while (per_cu)
9732 {
9733 per_cu->cu->mark = 0;
9734 per_cu = per_cu->cu->read_in_chain;
9735 }
72bf9492
DJ
9736}
9737
72bf9492
DJ
9738/* Trivial hash function for partial_die_info: the hash value of a DIE
9739 is its offset in .debug_info for this objfile. */
9740
9741static hashval_t
9742partial_die_hash (const void *item)
9743{
9744 const struct partial_die_info *part_die = item;
9745 return part_die->offset;
9746}
9747
9748/* Trivial comparison function for partial_die_info structures: two DIEs
9749 are equal if they have the same offset. */
9750
9751static int
9752partial_die_eq (const void *item_lhs, const void *item_rhs)
9753{
9754 const struct partial_die_info *part_die_lhs = item_lhs;
9755 const struct partial_die_info *part_die_rhs = item_rhs;
9756 return part_die_lhs->offset == part_die_rhs->offset;
9757}
9758
ae038cb0
DJ
9759static struct cmd_list_element *set_dwarf2_cmdlist;
9760static struct cmd_list_element *show_dwarf2_cmdlist;
9761
9762static void
9763set_dwarf2_cmd (char *args, int from_tty)
9764{
9765 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9766}
9767
9768static void
9769show_dwarf2_cmd (char *args, int from_tty)
9770{
9771 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9772}
9773
6502dd73
DJ
9774void _initialize_dwarf2_read (void);
9775
9776void
9777_initialize_dwarf2_read (void)
9778{
9779 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 9780
1bedd215
AC
9781 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9782Set DWARF 2 specific variables.\n\
9783Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9784 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9785 0/*allow-unknown*/, &maintenance_set_cmdlist);
9786
1bedd215
AC
9787 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9788Show DWARF 2 specific variables\n\
9789Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9790 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9791 0/*allow-unknown*/, &maintenance_show_cmdlist);
9792
9793 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
9794 &dwarf2_max_cache_age, _("\
9795Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9796Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9797A higher limit means that cached compilation units will be stored\n\
9798in memory longer, and more total memory will be used. Zero disables\n\
9799caching, which can slow down startup."),
2c5b56ce 9800 NULL,
920d2a44 9801 show_dwarf2_max_cache_age,
2c5b56ce 9802 &set_dwarf2_cmdlist,
ae038cb0 9803 &show_dwarf2_cmdlist);
6502dd73 9804}