]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
* breakpoint.c:
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
197e01b6 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
1754f103 4 2004, 2005
8e65ff28 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
c906108c 20
c5aa993b
JM
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
c906108c 25
c5aa993b
JM
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
197e01b6
EZ
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
c906108c
SS
30
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c
SS
35#include "objfiles.h"
36#include "elf/dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "expression.h"
d5166ae1 40#include "filenames.h" /* for DOSish file names */
2e276125 41#include "macrotab.h"
c906108c
SS
42#include "language.h"
43#include "complaints.h"
357e46e7 44#include "bcache.h"
4c2df51b
DJ
45#include "dwarf2expr.h"
46#include "dwarf2loc.h"
9219021c 47#include "cp-support.h"
72bf9492 48#include "hashtab.h"
ae038cb0
DJ
49#include "command.h"
50#include "gdbcmd.h"
4c2df51b 51
c906108c
SS
52#include <fcntl.h>
53#include "gdb_string.h"
4bdf3d34 54#include "gdb_assert.h"
c906108c
SS
55#include <sys/types.h>
56
d8151005
DJ
57/* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
88496bb5
MS
71#ifndef DWARF2_REG_TO_REGNUM
72#define DWARF2_REG_TO_REGNUM(REG) (REG)
73#endif
74
107d2387 75#if 0
357e46e7 76/* .debug_info header for a compilation unit
c906108c
SS
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88_COMP_UNIT_HEADER;
89#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 90#endif
c906108c
SS
91
92/* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105_PUBNAMES_HEADER;
106#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108/* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121_ARANGES_HEADER;
122#define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124/* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145_STATEMENT_PROLOGUE;
146
6502dd73
DJ
147static const struct objfile_data *dwarf2_objfile_data_key;
148
149struct dwarf2_per_objfile
150{
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
ae038cb0 172
10b3939b
DJ
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
ae038cb0
DJ
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
6502dd73
DJ
183};
184
185static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 186
086df311
DJ
187static asection *dwarf_info_section;
188static asection *dwarf_abbrev_section;
189static asection *dwarf_line_section;
190static asection *dwarf_pubnames_section;
191static asection *dwarf_aranges_section;
192static asection *dwarf_loc_section;
193static asection *dwarf_macinfo_section;
194static asection *dwarf_str_section;
195static asection *dwarf_ranges_section;
196asection *dwarf_frame_section;
197asection *dwarf_eh_frame_section;
198
c906108c
SS
199/* names of the debugging sections */
200
201#define INFO_SECTION ".debug_info"
202#define ABBREV_SECTION ".debug_abbrev"
203#define LINE_SECTION ".debug_line"
204#define PUBNAMES_SECTION ".debug_pubnames"
205#define ARANGES_SECTION ".debug_aranges"
206#define LOC_SECTION ".debug_loc"
207#define MACINFO_SECTION ".debug_macinfo"
208#define STR_SECTION ".debug_str"
af34e669 209#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
210#define FRAME_SECTION ".debug_frame"
211#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
212
213/* local data types */
214
57349743
JB
215/* We hold several abbreviation tables in memory at the same time. */
216#ifndef ABBREV_HASH_SIZE
217#define ABBREV_HASH_SIZE 121
218#endif
219
107d2387
AC
220/* The data in a compilation unit header, after target2host
221 translation, looks like this. */
c906108c 222struct comp_unit_head
a738430d
MK
223{
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
57349743 229
a738430d
MK
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
57349743 232
a738430d
MK
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
57349743 235
a738430d
MK
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
57349743 239
a738430d
MK
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
57349743 243
a738430d
MK
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
af34e669 247
a738430d
MK
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
0d53c4c4 250
a738430d
MK
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
0d53c4c4 253
a738430d
MK
254 /* Non-zero if base_address has been set. */
255 int base_known;
256};
c906108c 257
10b3939b
DJ
258/* Fixed size for the DIE hash table. */
259#ifndef REF_HASH_SIZE
260#define REF_HASH_SIZE 1021
261#endif
262
e7c27a73
DJ
263/* Internal state when decoding a particular compilation unit. */
264struct dwarf2_cu
265{
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 272 should logically be moved to the dwarf2_cu structure. */
e7c27a73 273 struct comp_unit_head header;
e142c38c
DJ
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
b0f35d58
DL
281 const char *producer;
282
e142c38c
DJ
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
72bf9492
DJ
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
ae038cb0
DJ
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
10b3939b
DJ
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
ae038cb0
DJ
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
72bf9492
DJ
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
e7c27a73
DJ
353};
354
10b3939b
DJ
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
ae038cb0
DJ
361struct dwarf2_per_cu_data
362{
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
1c379e20
DJ
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
1c379e20 380 htab_t type_hash;
10b3939b
DJ
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
ae038cb0
DJ
384};
385
debd256d
JB
386/* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389struct line_header
390{
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
c906108c 418 {
debd256d
JB
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
aaa75496 423 int included_p; /* Non-zero if referenced by the Line Number Program. */
debd256d
JB
424 } *file_names;
425
426 /* The start and end of the statement program following this
6502dd73 427 header. These point into dwarf2_per_objfile->line_buffer. */
debd256d
JB
428 char *statement_program_start, *statement_program_end;
429};
c906108c
SS
430
431/* When we construct a partial symbol table entry we only
432 need this much information. */
433struct partial_die_info
434 {
72bf9492 435 /* Offset of this DIE. */
c906108c 436 unsigned int offset;
72bf9492
DJ
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
aaa75496 451 unsigned int has_stmt_list : 1;
72bf9492
DJ
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
c906108c 461 char *name;
57c22c6c 462 char *dirname;
72bf9492
DJ
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
72bf9492
DJ
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
c906108c 478 char *sibling;
72bf9492
DJ
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
aaa75496
JB
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
72bf9492
DJ
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
491 };
492
493/* This data structure holds the information of an abbrev. */
494struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
c906108c
SS
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510/* This data structure holds a complete die structure. */
511struct die_info
512 {
c5aa993b 513 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
639d11d3
DC
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
78ba4af6 528
c5aa993b 529 struct type *type; /* Cached type information */
c906108c
SS
530 };
531
532/* Attributes have a name and a value */
533struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
ce5d95e1
JB
541 unsigned long unsnd;
542 long int snd;
c906108c
SS
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
5fb290d7
DJ
548struct function_range
549{
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554};
555
c906108c
SS
556/* Get at parts of an attribute structure */
557
558#define DW_STRING(attr) ((attr)->u.str)
559#define DW_UNSND(attr) ((attr)->u.unsnd)
560#define DW_BLOCK(attr) ((attr)->u.blk)
561#define DW_SND(attr) ((attr)->u.snd)
562#define DW_ADDR(attr) ((attr)->u.addr)
563
564/* Blocks are a bunch of untyped bytes. */
565struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
c906108c
SS
571#ifndef ATTR_ALLOC_CHUNK
572#define ATTR_ALLOC_CHUNK 4
573#endif
574
c906108c
SS
575/* Allocate fields for structs, unions and enums in this size. */
576#ifndef DW_FIELD_ALLOC_CHUNK
577#define DW_FIELD_ALLOC_CHUNK 4
578#endif
579
c906108c
SS
580/* A zeroed version of a partial die for initialization purposes. */
581static struct partial_die_info zeroed_partial_die;
582
c906108c
SS
583/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
584 but this would require a corresponding change in unpack_field_as_long
585 and friends. */
586static int bits_per_byte = 8;
587
588/* The routines that read and process dies for a C struct or C++ class
589 pass lists of data member fields and lists of member function fields
590 in an instance of a field_info structure, as defined below. */
591struct field_info
c5aa993b
JM
592 {
593 /* List of data member and baseclasses fields. */
594 struct nextfield
595 {
596 struct nextfield *next;
597 int accessibility;
598 int virtuality;
599 struct field field;
600 }
601 *fields;
c906108c 602
c5aa993b
JM
603 /* Number of fields. */
604 int nfields;
c906108c 605
c5aa993b
JM
606 /* Number of baseclasses. */
607 int nbaseclasses;
c906108c 608
c5aa993b
JM
609 /* Set if the accesibility of one of the fields is not public. */
610 int non_public_fields;
c906108c 611
c5aa993b
JM
612 /* Member function fields array, entries are allocated in the order they
613 are encountered in the object file. */
614 struct nextfnfield
615 {
616 struct nextfnfield *next;
617 struct fn_field fnfield;
618 }
619 *fnfields;
c906108c 620
c5aa993b
JM
621 /* Member function fieldlist array, contains name of possibly overloaded
622 member function, number of overloaded member functions and a pointer
623 to the head of the member function field chain. */
624 struct fnfieldlist
625 {
626 char *name;
627 int length;
628 struct nextfnfield *head;
629 }
630 *fnfieldlists;
c906108c 631
c5aa993b
JM
632 /* Number of entries in the fnfieldlists array. */
633 int nfnfields;
634 };
c906108c 635
10b3939b
DJ
636/* One item on the queue of compilation units to read in full symbols
637 for. */
638struct dwarf2_queue_item
639{
640 struct dwarf2_per_cu_data *per_cu;
641 struct dwarf2_queue_item *next;
642};
643
644/* The current queue. */
645static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
646
ae038cb0
DJ
647/* Loaded secondary compilation units are kept in memory until they
648 have not been referenced for the processing of this many
649 compilation units. Set this to zero to disable caching. Cache
650 sizes of up to at least twenty will improve startup time for
651 typical inter-CU-reference binaries, at an obvious memory cost. */
652static int dwarf2_max_cache_age = 5;
920d2a44
AC
653static void
654show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
655 struct cmd_list_element *c, const char *value)
656{
657 fprintf_filtered (file, _("\
658The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
659 value);
660}
661
ae038cb0 662
c906108c
SS
663/* Various complaints about symbol reading that don't abort the process */
664
4d3c2250
KB
665static void
666dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 667{
4d3c2250 668 complaint (&symfile_complaints,
e2e0b3e5 669 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
670}
671
672static void
673dwarf2_complex_location_expr_complaint (void)
2e276125 674{
e2e0b3e5 675 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
676}
677
4d3c2250
KB
678static void
679dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
680 int arg3)
2e276125 681{
4d3c2250 682 complaint (&symfile_complaints,
e2e0b3e5 683 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
684 arg2, arg3);
685}
686
687static void
688dwarf2_macros_too_long_complaint (void)
2e276125 689{
4d3c2250 690 complaint (&symfile_complaints,
e2e0b3e5 691 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
692}
693
694static void
695dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 696{
4d3c2250 697 complaint (&symfile_complaints,
e2e0b3e5 698 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
699 arg1);
700}
701
702static void
703dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 704{
4d3c2250 705 complaint (&symfile_complaints,
e2e0b3e5 706 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 707}
c906108c 708
c906108c
SS
709/* local function prototypes */
710
4efb68b1 711static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
712
713#if 0
a14ed312 714static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
715#endif
716
aaa75496
JB
717static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
718 struct objfile *);
719
720static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
721 struct partial_die_info *,
722 struct partial_symtab *);
723
a14ed312 724static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 725
72bf9492
DJ
726static void scan_partial_symbols (struct partial_die_info *,
727 CORE_ADDR *, CORE_ADDR *,
728 struct dwarf2_cu *);
c906108c 729
72bf9492
DJ
730static void add_partial_symbol (struct partial_die_info *,
731 struct dwarf2_cu *);
63d06c5c 732
72bf9492 733static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 734
72bf9492
DJ
735static void add_partial_namespace (struct partial_die_info *pdi,
736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
737 struct dwarf2_cu *cu);
63d06c5c 738
72bf9492
DJ
739static void add_partial_enumeration (struct partial_die_info *enum_pdi,
740 struct dwarf2_cu *cu);
91c24f0a
DC
741
742static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
743 char *info_ptr,
744 bfd *abfd,
e7c27a73 745 struct dwarf2_cu *cu);
91c24f0a 746
a14ed312 747static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 748
a14ed312 749static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 750
188dd5d6 751char *dwarf2_read_section (struct objfile *, asection *);
c906108c 752
e7c27a73 753static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 754
f3dd6933 755static void dwarf2_free_abbrev_table (void *);
c906108c 756
72bf9492
DJ
757static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
758
57349743 759static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 760 struct dwarf2_cu *);
c906108c 761
72bf9492
DJ
762static struct partial_die_info *load_partial_dies (bfd *, char *, int,
763 struct dwarf2_cu *);
764
a14ed312 765static char *read_partial_die (struct partial_die_info *,
72bf9492 766 struct abbrev_info *abbrev, unsigned int,
e7c27a73 767 bfd *, char *, struct dwarf2_cu *);
c906108c 768
72bf9492 769static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 770 struct dwarf2_cu *);
72bf9492
DJ
771
772static void fixup_partial_die (struct partial_die_info *,
773 struct dwarf2_cu *);
774
107d2387 775static char *read_full_die (struct die_info **, bfd *, char *,
e7c27a73 776 struct dwarf2_cu *, int *);
c906108c 777
a14ed312 778static char *read_attribute (struct attribute *, struct attr_abbrev *,
e7c27a73 779 bfd *, char *, struct dwarf2_cu *);
c906108c 780
a8329558 781static char *read_attribute_value (struct attribute *, unsigned,
e7c27a73 782 bfd *, char *, struct dwarf2_cu *);
a8329558 783
a14ed312 784static unsigned int read_1_byte (bfd *, char *);
c906108c 785
a14ed312 786static int read_1_signed_byte (bfd *, char *);
c906108c 787
a14ed312 788static unsigned int read_2_bytes (bfd *, char *);
c906108c 789
a14ed312 790static unsigned int read_4_bytes (bfd *, char *);
c906108c 791
ce5d95e1 792static unsigned long read_8_bytes (bfd *, char *);
c906108c 793
e7c27a73 794static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
107d2387 795 int *bytes_read);
c906108c 796
613e1657
KB
797static LONGEST read_initial_length (bfd *, char *,
798 struct comp_unit_head *, int *bytes_read);
799
800static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
801 int *bytes_read);
802
a14ed312 803static char *read_n_bytes (bfd *, char *, unsigned int);
c906108c 804
a14ed312 805static char *read_string (bfd *, char *, unsigned int *);
c906108c 806
4bdf3d34
JJ
807static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
808 unsigned int *);
809
ce5d95e1 810static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
c906108c 811
ce5d95e1 812static long read_signed_leb128 (bfd *, char *, unsigned int *);
c906108c 813
4bb7a0a7
DJ
814static char *skip_leb128 (bfd *, char *);
815
e142c38c 816static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 817
e142c38c
DJ
818static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
819 struct dwarf2_cu *);
c906108c 820
05cf31d1
JB
821static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
822 struct dwarf2_cu *cu);
823
e142c38c 824static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 825
e142c38c
DJ
826static struct die_info *die_specification (struct die_info *die,
827 struct dwarf2_cu *);
63d06c5c 828
debd256d
JB
829static void free_line_header (struct line_header *lh);
830
aaa75496
JB
831static void add_file_name (struct line_header *, char *, unsigned int,
832 unsigned int, unsigned int);
833
debd256d
JB
834static struct line_header *(dwarf_decode_line_header
835 (unsigned int offset,
e7c27a73 836 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
837
838static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 839 struct dwarf2_cu *, struct partial_symtab *);
c906108c 840
a14ed312 841static void dwarf2_start_subfile (char *, char *);
c906108c 842
a14ed312 843static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 844 struct dwarf2_cu *);
c906108c 845
a14ed312 846static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 847 struct dwarf2_cu *);
c906108c 848
2df3850c
JM
849static void dwarf2_const_value_data (struct attribute *attr,
850 struct symbol *sym,
851 int bits);
852
e7c27a73 853static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 854
e7c27a73
DJ
855static struct type *die_containing_type (struct die_info *,
856 struct dwarf2_cu *);
c906108c 857
e7c27a73 858static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 859
e7c27a73 860static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 861
086ed43d 862static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 863
987504bb
JJ
864static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
865 struct dwarf2_cu *);
63d06c5c 866
e7c27a73 867static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 868
e7c27a73 869static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 870
a02abb62
JB
871static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
872
e7c27a73 873static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 874
e7c27a73 875static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 876
e7c27a73 877static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 878
a14ed312 879static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 880 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 881
fae299cd
DC
882static void get_scope_pc_bounds (struct die_info *,
883 CORE_ADDR *, CORE_ADDR *,
884 struct dwarf2_cu *);
885
a14ed312 886static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 887 struct dwarf2_cu *);
c906108c 888
a14ed312 889static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 890 struct type *, struct dwarf2_cu *);
c906108c 891
a14ed312 892static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 893 struct die_info *, struct type *,
e7c27a73 894 struct dwarf2_cu *);
c906108c 895
a14ed312 896static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 897 struct type *, struct dwarf2_cu *);
c906108c 898
134d01f1
DJ
899static void read_structure_type (struct die_info *, struct dwarf2_cu *);
900
901static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 902
8176b9b8
DC
903static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
904
e7c27a73 905static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 906
e7c27a73 907static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 908
38d518c9 909static const char *namespace_name (struct die_info *die,
e142c38c 910 int *is_anonymous, struct dwarf2_cu *);
38d518c9 911
134d01f1
DJ
912static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
913
914static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 915
e7c27a73 916static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 917
e7c27a73 918static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 919
e7c27a73 920static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 921
7ca2d3a3
DL
922static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
923 struct dwarf2_cu *);
924
e7c27a73 925static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 926
e7c27a73
DJ
927static void read_tag_ptr_to_member_type (struct die_info *,
928 struct dwarf2_cu *);
c906108c 929
e7c27a73 930static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 931
e7c27a73 932static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 933
e7c27a73 934static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 935
e7c27a73 936static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 937
e7c27a73 938static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 939
e7c27a73 940static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
c906108c 941
639d11d3 942static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
e7c27a73 943 struct dwarf2_cu *,
639d11d3
DC
944 char **new_info_ptr,
945 struct die_info *parent);
946
947static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
e7c27a73 948 struct dwarf2_cu *,
639d11d3
DC
949 char **new_info_ptr,
950 struct die_info *parent);
951
a14ed312 952static void free_die_list (struct die_info *);
c906108c 953
e7c27a73 954static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 955
e142c38c 956static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 957
e142c38c 958static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 959
e142c38c
DJ
960static struct die_info *dwarf2_extension (struct die_info *die,
961 struct dwarf2_cu *);
9219021c 962
a14ed312 963static char *dwarf_tag_name (unsigned int);
c906108c 964
a14ed312 965static char *dwarf_attr_name (unsigned int);
c906108c 966
a14ed312 967static char *dwarf_form_name (unsigned int);
c906108c 968
a14ed312 969static char *dwarf_stack_op_name (unsigned int);
c906108c 970
a14ed312 971static char *dwarf_bool_name (unsigned int);
c906108c 972
a14ed312 973static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
974
975#if 0
a14ed312 976static char *dwarf_cfi_name (unsigned int);
c906108c 977
a14ed312 978struct die_info *copy_die (struct die_info *);
c906108c
SS
979#endif
980
f9aca02d 981static struct die_info *sibling_die (struct die_info *);
c906108c 982
f9aca02d 983static void dump_die (struct die_info *);
c906108c 984
f9aca02d 985static void dump_die_list (struct die_info *);
c906108c 986
10b3939b
DJ
987static void store_in_ref_table (unsigned int, struct die_info *,
988 struct dwarf2_cu *);
c906108c 989
e142c38c
DJ
990static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
991 struct dwarf2_cu *);
c906108c 992
a02abb62
JB
993static int dwarf2_get_attr_constant_value (struct attribute *, int);
994
10b3939b
DJ
995static struct die_info *follow_die_ref (struct die_info *,
996 struct attribute *,
997 struct dwarf2_cu *);
c906108c 998
e142c38c
DJ
999static struct type *dwarf2_fundamental_type (struct objfile *, int,
1000 struct dwarf2_cu *);
c906108c
SS
1001
1002/* memory allocation interface */
1003
7b5a2f43 1004static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1005
f3dd6933 1006static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1007
a14ed312 1008static struct die_info *dwarf_alloc_die (void);
c906108c 1009
e142c38c 1010static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1011
e142c38c
DJ
1012static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1013 struct dwarf2_cu *);
5fb290d7 1014
2e276125 1015static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1016 char *, bfd *, struct dwarf2_cu *);
2e276125 1017
8e19ed76
PS
1018static int attr_form_is_block (struct attribute *);
1019
4c2df51b
DJ
1020static void
1021dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 1022 struct dwarf2_cu *cu);
4c2df51b 1023
4bb7a0a7
DJ
1024static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1025 struct dwarf2_cu *cu);
1026
72bf9492
DJ
1027static void free_stack_comp_unit (void *);
1028
1029static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1030
1031static void dummy_obstack_deallocate (void *object, void *data);
1032
1033static hashval_t partial_die_hash (const void *item);
1034
1035static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1036
ae038cb0
DJ
1037static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1038 (unsigned long offset, struct objfile *objfile);
1039
1040static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1041 (unsigned long offset, struct objfile *objfile);
1042
1043static void free_one_comp_unit (void *);
1044
1045static void free_cached_comp_units (void *);
1046
1047static void age_cached_comp_units (void);
1048
1049static void free_one_cached_comp_unit (void *);
1050
1c379e20
DJ
1051static void set_die_type (struct die_info *, struct type *,
1052 struct dwarf2_cu *);
1053
1c379e20
DJ
1054static void reset_die_and_siblings_types (struct die_info *,
1055 struct dwarf2_cu *);
1c379e20 1056
ae038cb0
DJ
1057static void create_all_comp_units (struct objfile *);
1058
10b3939b
DJ
1059static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1060
1061static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
ae038cb0
DJ
1066static void dwarf2_mark (struct dwarf2_cu *);
1067
1068static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
c906108c
SS
1070/* Try to locate the sections we need for DWARF 2 debugging
1071 information and return true if we have enough to do something. */
1072
1073int
6502dd73 1074dwarf2_has_info (struct objfile *objfile)
c906108c 1075{
6502dd73
DJ
1076 struct dwarf2_per_objfile *data;
1077
1078 /* Initialize per-objfile state. */
1079 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1080 memset (data, 0, sizeof (*data));
1081 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1082 dwarf2_per_objfile = data;
1083
188dd5d6
DJ
1084 dwarf_info_section = 0;
1085 dwarf_abbrev_section = 0;
1086 dwarf_line_section = 0;
1087 dwarf_str_section = 0;
1088 dwarf_macinfo_section = 0;
1089 dwarf_frame_section = 0;
1090 dwarf_eh_frame_section = 0;
1091 dwarf_ranges_section = 0;
1092 dwarf_loc_section = 0;
af34e669 1093
6502dd73 1094 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1095 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1096}
1097
1098/* This function is mapped across the sections and remembers the
1099 offset and size of each of the debugging sections we are interested
1100 in. */
1101
1102static void
4efb68b1 1103dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
c906108c 1104{
6314a349 1105 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1106 {
2c500098 1107 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1108 dwarf_info_section = sectp;
c906108c 1109 }
6314a349 1110 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1111 {
2c500098 1112 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1113 dwarf_abbrev_section = sectp;
c906108c 1114 }
6314a349 1115 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1116 {
2c500098 1117 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1118 dwarf_line_section = sectp;
c906108c 1119 }
6314a349 1120 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1121 {
2c500098 1122 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1123 dwarf_pubnames_section = sectp;
c906108c 1124 }
6314a349 1125 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1126 {
2c500098 1127 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1128 dwarf_aranges_section = sectp;
c906108c 1129 }
6314a349 1130 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1131 {
2c500098 1132 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1133 dwarf_loc_section = sectp;
c906108c 1134 }
6314a349 1135 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1136 {
2c500098 1137 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1138 dwarf_macinfo_section = sectp;
c906108c 1139 }
6314a349 1140 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1141 {
2c500098 1142 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1143 dwarf_str_section = sectp;
c906108c 1144 }
6314a349 1145 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1146 {
2c500098 1147 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1148 dwarf_frame_section = sectp;
b6af0555 1149 }
6314a349 1150 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1151 {
3799ccc6
EZ
1152 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1153 if (aflag & SEC_HAS_CONTENTS)
1154 {
2c500098 1155 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1156 dwarf_eh_frame_section = sectp;
1157 }
b6af0555 1158 }
6314a349 1159 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1160 {
2c500098 1161 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1162 dwarf_ranges_section = sectp;
af34e669 1163 }
c906108c
SS
1164}
1165
1166/* Build a partial symbol table. */
1167
1168void
fba45db2 1169dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1170{
c906108c
SS
1171 /* We definitely need the .debug_info and .debug_abbrev sections */
1172
6502dd73
DJ
1173 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1174 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1175
1176 if (dwarf_line_section)
6502dd73 1177 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1178 else
6502dd73 1179 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1180
188dd5d6 1181 if (dwarf_str_section)
6502dd73 1182 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1183 else
6502dd73 1184 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1185
188dd5d6 1186 if (dwarf_macinfo_section)
6502dd73 1187 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1188 dwarf_macinfo_section);
2e276125 1189 else
6502dd73 1190 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1191
188dd5d6 1192 if (dwarf_ranges_section)
6502dd73 1193 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1194 else
6502dd73 1195 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1196
188dd5d6 1197 if (dwarf_loc_section)
6502dd73 1198 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1199 else
6502dd73 1200 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1201
ef96bde8
EZ
1202 if (mainline
1203 || (objfile->global_psymbols.size == 0
1204 && objfile->static_psymbols.size == 0))
c906108c
SS
1205 {
1206 init_psymbol_list (objfile, 1024);
1207 }
1208
1209#if 0
1210 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1211 {
d4f3574e 1212 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1213 .debug_pubnames sections */
1214
d4f3574e 1215 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1216 }
1217 else
1218#endif
1219 /* only test this case for now */
c5aa993b 1220 {
c906108c 1221 /* In this case we have to work a bit harder */
d4f3574e 1222 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1223 }
1224}
1225
1226#if 0
1227/* Build the partial symbol table from the information in the
1228 .debug_pubnames and .debug_aranges sections. */
1229
1230static void
fba45db2 1231dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1232{
1233 bfd *abfd = objfile->obfd;
1234 char *aranges_buffer, *pubnames_buffer;
1235 char *aranges_ptr, *pubnames_ptr;
1236 unsigned int entry_length, version, info_offset, info_size;
1237
1238 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1239 dwarf_pubnames_section);
c906108c 1240 pubnames_ptr = pubnames_buffer;
6502dd73 1241 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1242 {
613e1657
KB
1243 struct comp_unit_head cu_header;
1244 int bytes_read;
1245
1246 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1247 &bytes_read);
1248 pubnames_ptr += bytes_read;
c906108c
SS
1249 version = read_1_byte (abfd, pubnames_ptr);
1250 pubnames_ptr += 1;
1251 info_offset = read_4_bytes (abfd, pubnames_ptr);
1252 pubnames_ptr += 4;
1253 info_size = read_4_bytes (abfd, pubnames_ptr);
1254 pubnames_ptr += 4;
1255 }
1256
1257 aranges_buffer = dwarf2_read_section (objfile,
086df311 1258 dwarf_aranges_section);
c906108c
SS
1259
1260}
1261#endif
1262
107d2387 1263/* Read in the comp unit header information from the debug_info at
917c78fc 1264 info_ptr. */
107d2387
AC
1265
1266static char *
1267read_comp_unit_head (struct comp_unit_head *cu_header,
1268 char *info_ptr, bfd *abfd)
1269{
1270 int signed_addr;
613e1657
KB
1271 int bytes_read;
1272 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1273 &bytes_read);
1274 info_ptr += bytes_read;
107d2387
AC
1275 cu_header->version = read_2_bytes (abfd, info_ptr);
1276 info_ptr += 2;
613e1657
KB
1277 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1278 &bytes_read);
1279 info_ptr += bytes_read;
107d2387
AC
1280 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1281 info_ptr += 1;
1282 signed_addr = bfd_get_sign_extend_vma (abfd);
1283 if (signed_addr < 0)
8e65ff28 1284 internal_error (__FILE__, __LINE__,
e2e0b3e5 1285 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1286 cu_header->signed_addr_p = signed_addr;
1287 return info_ptr;
1288}
1289
72bf9492
DJ
1290static char *
1291partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1292 bfd *abfd)
1293{
1294 char *beg_of_comp_unit = info_ptr;
1295
1296 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1297
1298 if (header->version != 2)
8a3fe4f8
AC
1299 error (_("Dwarf Error: wrong version in compilation unit header "
1300 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1301 2, bfd_get_filename (abfd));
1302
1303 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1304 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1305 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1306 (long) header->abbrev_offset,
1307 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1308 bfd_get_filename (abfd));
1309
1310 if (beg_of_comp_unit + header->length + header->initial_length_size
1311 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1313 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1314 (long) header->length,
1315 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1316 bfd_get_filename (abfd));
1317
1318 return info_ptr;
1319}
1320
aaa75496
JB
1321/* Allocate a new partial symtab for file named NAME and mark this new
1322 partial symtab as being an include of PST. */
1323
1324static void
1325dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1326 struct objfile *objfile)
1327{
1328 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1329
1330 subpst->section_offsets = pst->section_offsets;
1331 subpst->textlow = 0;
1332 subpst->texthigh = 0;
1333
1334 subpst->dependencies = (struct partial_symtab **)
1335 obstack_alloc (&objfile->objfile_obstack,
1336 sizeof (struct partial_symtab *));
1337 subpst->dependencies[0] = pst;
1338 subpst->number_of_dependencies = 1;
1339
1340 subpst->globals_offset = 0;
1341 subpst->n_global_syms = 0;
1342 subpst->statics_offset = 0;
1343 subpst->n_static_syms = 0;
1344 subpst->symtab = NULL;
1345 subpst->read_symtab = pst->read_symtab;
1346 subpst->readin = 0;
1347
1348 /* No private part is necessary for include psymtabs. This property
1349 can be used to differentiate between such include psymtabs and
10b3939b 1350 the regular ones. */
58a9656e 1351 subpst->read_symtab_private = NULL;
aaa75496
JB
1352}
1353
1354/* Read the Line Number Program data and extract the list of files
1355 included by the source file represented by PST. Build an include
1356 partial symtab for each of these included files.
1357
1358 This procedure assumes that there *is* a Line Number Program in
1359 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1360 before calling this procedure. */
1361
1362static void
1363dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1364 struct partial_die_info *pdi,
1365 struct partial_symtab *pst)
1366{
1367 struct objfile *objfile = cu->objfile;
1368 bfd *abfd = objfile->obfd;
1369 struct line_header *lh;
1370
1371 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1372 if (lh == NULL)
1373 return; /* No linetable, so no includes. */
1374
1375 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1376
1377 free_line_header (lh);
1378}
1379
1380
c906108c
SS
1381/* Build the partial symbol table by doing a quick pass through the
1382 .debug_info and .debug_abbrev sections. */
1383
1384static void
fba45db2 1385dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1386{
1387 /* Instead of reading this into a big buffer, we should probably use
1388 mmap() on architectures that support it. (FIXME) */
1389 bfd *abfd = objfile->obfd;
72bf9492 1390 char *info_ptr;
c906108c 1391 char *beg_of_comp_unit;
c906108c
SS
1392 struct partial_die_info comp_unit_die;
1393 struct partial_symtab *pst;
ae038cb0 1394 struct cleanup *back_to;
e142c38c 1395 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1396
6502dd73 1397 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1398
ae038cb0
DJ
1399 /* Any cached compilation units will be linked by the per-objfile
1400 read_in_chain. Make sure to free them when we're done. */
1401 back_to = make_cleanup (free_cached_comp_units, NULL);
1402
10b3939b
DJ
1403 create_all_comp_units (objfile);
1404
6502dd73 1405 /* Since the objects we're extracting from .debug_info vary in
af703f96 1406 length, only the individual functions to extract them (like
72bf9492 1407 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1408 the buffer is large enough to hold another complete object.
1409
6502dd73
DJ
1410 At the moment, they don't actually check that. If .debug_info
1411 holds just one extra byte after the last compilation unit's dies,
1412 then read_comp_unit_head will happily read off the end of the
1413 buffer. read_partial_die is similarly casual. Those functions
1414 should be fixed.
af703f96
JB
1415
1416 For this loop condition, simply checking whether there's any data
1417 left at all should be sufficient. */
6502dd73
DJ
1418 while (info_ptr < (dwarf2_per_objfile->info_buffer
1419 + dwarf2_per_objfile->info_size))
c906108c 1420 {
f3dd6933 1421 struct cleanup *back_to_inner;
e7c27a73 1422 struct dwarf2_cu cu;
72bf9492
DJ
1423 struct abbrev_info *abbrev;
1424 unsigned int bytes_read;
1425 struct dwarf2_per_cu_data *this_cu;
1426
c906108c 1427 beg_of_comp_unit = info_ptr;
c906108c 1428
72bf9492
DJ
1429 memset (&cu, 0, sizeof (cu));
1430
1431 obstack_init (&cu.comp_unit_obstack);
1432
1433 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1434
e7c27a73 1435 cu.objfile = objfile;
72bf9492 1436 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1437
57349743 1438 /* Complete the cu_header */
6502dd73 1439 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1440 cu.header.first_die_ptr = info_ptr;
1441 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1442
e142c38c
DJ
1443 cu.list_in_scope = &file_symbols;
1444
c906108c 1445 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1446 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1447 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1448
10b3939b 1449 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1450
c906108c 1451 /* Read the compilation unit die */
72bf9492
DJ
1452 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1453 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1454 abfd, info_ptr, &cu);
c906108c
SS
1455
1456 /* Set the language we're debugging */
e142c38c 1457 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1458
1459 /* Allocate a new partial symbol table structure */
d4f3574e 1460 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1461 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1462 comp_unit_die.lowpc,
1463 objfile->global_psymbols.next,
1464 objfile->static_psymbols.next);
1465
ae038cb0
DJ
1466 if (comp_unit_die.dirname)
1467 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1468
10b3939b
DJ
1469 pst->read_symtab_private = (char *) this_cu;
1470
613e1657 1471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1472
1473 /* Store the function that reads in the rest of the symbol table */
1474 pst->read_symtab = dwarf2_psymtab_to_symtab;
1475
10b3939b
DJ
1476 /* If this compilation unit was already read in, free the
1477 cached copy in order to read it in again. This is
1478 necessary because we skipped some symbols when we first
1479 read in the compilation unit (see load_partial_dies).
1480 This problem could be avoided, but the benefit is
1481 unclear. */
1482 if (this_cu->cu != NULL)
1483 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1484
10b3939b 1485 cu.per_cu = this_cu;
ae038cb0 1486
10b3939b
DJ
1487 /* Note that this is a pointer to our stack frame, being
1488 added to a global data structure. It will be cleaned up
1489 in free_stack_comp_unit when we finish with this
1490 compilation unit. */
1491 this_cu->cu = &cu;
ae038cb0 1492
10b3939b 1493 this_cu->psymtab = pst;
ae038cb0 1494
c906108c
SS
1495 /* Check if comp unit has_children.
1496 If so, read the rest of the partial symbols from this comp unit.
1497 If not, there's no more debug_info for this comp unit. */
1498 if (comp_unit_die.has_children)
1499 {
72bf9492
DJ
1500 struct partial_die_info *first_die;
1501
91c24f0a
DC
1502 lowpc = ((CORE_ADDR) -1);
1503 highpc = ((CORE_ADDR) 0);
1504
72bf9492
DJ
1505 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1506
1507 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1508
91c24f0a
DC
1509 /* If we didn't find a lowpc, set it to highpc to avoid
1510 complaints from `maint check'. */
1511 if (lowpc == ((CORE_ADDR) -1))
1512 lowpc = highpc;
72bf9492 1513
c906108c
SS
1514 /* If the compilation unit didn't have an explicit address range,
1515 then use the information extracted from its child dies. */
0b010bcc 1516 if (! comp_unit_die.has_pc_info)
c906108c 1517 {
c5aa993b 1518 comp_unit_die.lowpc = lowpc;
c906108c
SS
1519 comp_unit_die.highpc = highpc;
1520 }
1521 }
c5aa993b 1522 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1523 pst->texthigh = comp_unit_die.highpc + baseaddr;
1524
1525 pst->n_global_syms = objfile->global_psymbols.next -
1526 (objfile->global_psymbols.list + pst->globals_offset);
1527 pst->n_static_syms = objfile->static_psymbols.next -
1528 (objfile->static_psymbols.list + pst->statics_offset);
1529 sort_pst_symbols (pst);
1530
1531 /* If there is already a psymtab or symtab for a file of this
1532 name, remove it. (If there is a symtab, more drastic things
1533 also happen.) This happens in VxWorks. */
1534 free_named_symtabs (pst->filename);
1535
dd373385
EZ
1536 info_ptr = beg_of_comp_unit + cu.header.length
1537 + cu.header.initial_length_size;
1538
aaa75496
JB
1539 if (comp_unit_die.has_stmt_list)
1540 {
1541 /* Get the list of files included in the current compilation unit,
1542 and build a psymtab for each of them. */
1543 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1544 }
1545
f3dd6933 1546 do_cleanups (back_to_inner);
c906108c 1547 }
ae038cb0
DJ
1548 do_cleanups (back_to);
1549}
1550
1551/* Load the DIEs for a secondary CU into memory. */
1552
1553static void
1554load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1555{
1556 bfd *abfd = objfile->obfd;
1557 char *info_ptr, *beg_of_comp_unit;
1558 struct partial_die_info comp_unit_die;
1559 struct dwarf2_cu *cu;
1560 struct abbrev_info *abbrev;
1561 unsigned int bytes_read;
1562 struct cleanup *back_to;
1563
1564 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1565 beg_of_comp_unit = info_ptr;
1566
1567 cu = xmalloc (sizeof (struct dwarf2_cu));
1568 memset (cu, 0, sizeof (struct dwarf2_cu));
1569
1570 obstack_init (&cu->comp_unit_obstack);
1571
1572 cu->objfile = objfile;
1573 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1574
1575 /* Complete the cu_header. */
1576 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1577 cu->header.first_die_ptr = info_ptr;
1578 cu->header.cu_head_ptr = beg_of_comp_unit;
1579
1580 /* Read the abbrevs for this compilation unit into a table. */
1581 dwarf2_read_abbrevs (abfd, cu);
1582 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1583
1584 /* Read the compilation unit die. */
1585 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1586 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1587 abfd, info_ptr, cu);
1588
1589 /* Set the language we're debugging. */
1590 set_cu_language (comp_unit_die.language, cu);
1591
1592 /* Link this compilation unit into the compilation unit tree. */
1593 this_cu->cu = cu;
1594 cu->per_cu = this_cu;
1595
1596 /* Check if comp unit has_children.
1597 If so, read the rest of the partial symbols from this comp unit.
1598 If not, there's no more debug_info for this comp unit. */
1599 if (comp_unit_die.has_children)
1600 load_partial_dies (abfd, info_ptr, 0, cu);
1601
1602 do_cleanups (back_to);
1603}
1604
1605/* Create a list of all compilation units in OBJFILE. We do this only
1606 if an inter-comp-unit reference is found; presumably if there is one,
1607 there will be many, and one will occur early in the .debug_info section.
1608 So there's no point in building this list incrementally. */
1609
1610static void
1611create_all_comp_units (struct objfile *objfile)
1612{
1613 int n_allocated;
1614 int n_comp_units;
1615 struct dwarf2_per_cu_data **all_comp_units;
1616 char *info_ptr = dwarf2_per_objfile->info_buffer;
1617
1618 n_comp_units = 0;
1619 n_allocated = 10;
1620 all_comp_units = xmalloc (n_allocated
1621 * sizeof (struct dwarf2_per_cu_data *));
1622
1623 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1624 {
1625 struct comp_unit_head cu_header;
1626 char *beg_of_comp_unit;
1627 struct dwarf2_per_cu_data *this_cu;
1628 unsigned long offset;
1629 int bytes_read;
1630
1631 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1632
1633 /* Read just enough information to find out where the next
1634 compilation unit is. */
dd373385 1635 cu_header.initial_length_size = 0;
ae038cb0
DJ
1636 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1637 &cu_header, &bytes_read);
1638
1639 /* Save the compilation unit for later lookup. */
1640 this_cu = obstack_alloc (&objfile->objfile_obstack,
1641 sizeof (struct dwarf2_per_cu_data));
1642 memset (this_cu, 0, sizeof (*this_cu));
1643 this_cu->offset = offset;
1644 this_cu->length = cu_header.length + cu_header.initial_length_size;
1645
1646 if (n_comp_units == n_allocated)
1647 {
1648 n_allocated *= 2;
1649 all_comp_units = xrealloc (all_comp_units,
1650 n_allocated
1651 * sizeof (struct dwarf2_per_cu_data *));
1652 }
1653 all_comp_units[n_comp_units++] = this_cu;
1654
1655 info_ptr = info_ptr + this_cu->length;
1656 }
1657
1658 dwarf2_per_objfile->all_comp_units
1659 = obstack_alloc (&objfile->objfile_obstack,
1660 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1661 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1662 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1663 xfree (all_comp_units);
1664 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1665}
1666
72bf9492
DJ
1667/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1668 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1669 in CU. */
c906108c 1670
72bf9492
DJ
1671static void
1672scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1673 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1674{
e7c27a73 1675 struct objfile *objfile = cu->objfile;
c906108c 1676 bfd *abfd = objfile->obfd;
72bf9492 1677 struct partial_die_info *pdi;
c906108c 1678
91c24f0a
DC
1679 /* Now, march along the PDI's, descending into ones which have
1680 interesting children but skipping the children of the other ones,
1681 until we reach the end of the compilation unit. */
c906108c 1682
72bf9492 1683 pdi = first_die;
91c24f0a 1684
72bf9492
DJ
1685 while (pdi != NULL)
1686 {
1687 fixup_partial_die (pdi, cu);
c906108c 1688
91c24f0a
DC
1689 /* Anonymous namespaces have no name but have interesting
1690 children, so we need to look at them. Ditto for anonymous
1691 enums. */
933c6fe4 1692
72bf9492
DJ
1693 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1694 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1695 {
72bf9492 1696 switch (pdi->tag)
c906108c
SS
1697 {
1698 case DW_TAG_subprogram:
72bf9492 1699 if (pdi->has_pc_info)
c906108c 1700 {
72bf9492 1701 if (pdi->lowpc < *lowpc)
c906108c 1702 {
72bf9492 1703 *lowpc = pdi->lowpc;
c906108c 1704 }
72bf9492 1705 if (pdi->highpc > *highpc)
c906108c 1706 {
72bf9492 1707 *highpc = pdi->highpc;
c906108c 1708 }
72bf9492 1709 if (!pdi->is_declaration)
c906108c 1710 {
72bf9492 1711 add_partial_symbol (pdi, cu);
c906108c
SS
1712 }
1713 }
1714 break;
1715 case DW_TAG_variable:
1716 case DW_TAG_typedef:
91c24f0a 1717 case DW_TAG_union_type:
72bf9492 1718 if (!pdi->is_declaration)
63d06c5c 1719 {
72bf9492 1720 add_partial_symbol (pdi, cu);
63d06c5c
DC
1721 }
1722 break;
c906108c
SS
1723 case DW_TAG_class_type:
1724 case DW_TAG_structure_type:
72bf9492 1725 if (!pdi->is_declaration)
c906108c 1726 {
72bf9492 1727 add_partial_symbol (pdi, cu);
c906108c
SS
1728 }
1729 break;
91c24f0a 1730 case DW_TAG_enumeration_type:
72bf9492
DJ
1731 if (!pdi->is_declaration)
1732 add_partial_enumeration (pdi, cu);
c906108c
SS
1733 break;
1734 case DW_TAG_base_type:
a02abb62 1735 case DW_TAG_subrange_type:
c906108c 1736 /* File scope base type definitions are added to the partial
c5aa993b 1737 symbol table. */
72bf9492 1738 add_partial_symbol (pdi, cu);
c906108c 1739 break;
d9fa45fe 1740 case DW_TAG_namespace:
72bf9492 1741 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1742 break;
c906108c
SS
1743 default:
1744 break;
1745 }
1746 }
1747
72bf9492
DJ
1748 /* If the die has a sibling, skip to the sibling. */
1749
1750 pdi = pdi->die_sibling;
1751 }
1752}
1753
1754/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1755
72bf9492 1756 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1757 name is concatenated with "::" and the partial DIE's name. For
1758 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1759 Enumerators are an exception; they use the scope of their parent
1760 enumeration type, i.e. the name of the enumeration type is not
1761 prepended to the enumerator.
91c24f0a 1762
72bf9492
DJ
1763 There are two complexities. One is DW_AT_specification; in this
1764 case "parent" means the parent of the target of the specification,
1765 instead of the direct parent of the DIE. The other is compilers
1766 which do not emit DW_TAG_namespace; in this case we try to guess
1767 the fully qualified name of structure types from their members'
1768 linkage names. This must be done using the DIE's children rather
1769 than the children of any DW_AT_specification target. We only need
1770 to do this for structures at the top level, i.e. if the target of
1771 any DW_AT_specification (if any; otherwise the DIE itself) does not
1772 have a parent. */
1773
1774/* Compute the scope prefix associated with PDI's parent, in
1775 compilation unit CU. The result will be allocated on CU's
1776 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1777 field. NULL is returned if no prefix is necessary. */
1778static char *
1779partial_die_parent_scope (struct partial_die_info *pdi,
1780 struct dwarf2_cu *cu)
1781{
1782 char *grandparent_scope;
1783 struct partial_die_info *parent, *real_pdi;
91c24f0a 1784
72bf9492
DJ
1785 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1786 then this means the parent of the specification DIE. */
1787
1788 real_pdi = pdi;
72bf9492 1789 while (real_pdi->has_specification)
10b3939b 1790 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1791
1792 parent = real_pdi->die_parent;
1793 if (parent == NULL)
1794 return NULL;
1795
1796 if (parent->scope_set)
1797 return parent->scope;
1798
1799 fixup_partial_die (parent, cu);
1800
10b3939b 1801 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1802
1803 if (parent->tag == DW_TAG_namespace
1804 || parent->tag == DW_TAG_structure_type
1805 || parent->tag == DW_TAG_class_type
1806 || parent->tag == DW_TAG_union_type)
1807 {
1808 if (grandparent_scope == NULL)
1809 parent->scope = parent->name;
1810 else
987504bb
JJ
1811 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1812 parent->name, cu);
72bf9492
DJ
1813 }
1814 else if (parent->tag == DW_TAG_enumeration_type)
1815 /* Enumerators should not get the name of the enumeration as a prefix. */
1816 parent->scope = grandparent_scope;
1817 else
1818 {
1819 /* FIXME drow/2004-04-01: What should we be doing with
1820 function-local names? For partial symbols, we should probably be
1821 ignoring them. */
1822 complaint (&symfile_complaints,
e2e0b3e5 1823 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1824 parent->tag, pdi->offset);
1825 parent->scope = grandparent_scope;
c906108c
SS
1826 }
1827
72bf9492
DJ
1828 parent->scope_set = 1;
1829 return parent->scope;
1830}
1831
1832/* Return the fully scoped name associated with PDI, from compilation unit
1833 CU. The result will be allocated with malloc. */
1834static char *
1835partial_die_full_name (struct partial_die_info *pdi,
1836 struct dwarf2_cu *cu)
1837{
1838 char *parent_scope;
1839
1840 parent_scope = partial_die_parent_scope (pdi, cu);
1841 if (parent_scope == NULL)
1842 return NULL;
1843 else
987504bb 1844 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1845}
1846
1847static void
72bf9492 1848add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1849{
e7c27a73 1850 struct objfile *objfile = cu->objfile;
c906108c 1851 CORE_ADDR addr = 0;
72bf9492
DJ
1852 char *actual_name;
1853 const char *my_prefix;
5c4e30ca 1854 const struct partial_symbol *psym = NULL;
e142c38c 1855 CORE_ADDR baseaddr;
72bf9492 1856 int built_actual_name = 0;
e142c38c
DJ
1857
1858 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1859
72bf9492
DJ
1860 actual_name = NULL;
1861
1862 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1863 {
72bf9492
DJ
1864 actual_name = partial_die_full_name (pdi, cu);
1865 if (actual_name)
1866 built_actual_name = 1;
63d06c5c
DC
1867 }
1868
72bf9492
DJ
1869 if (actual_name == NULL)
1870 actual_name = pdi->name;
1871
c906108c
SS
1872 switch (pdi->tag)
1873 {
1874 case DW_TAG_subprogram:
1875 if (pdi->is_external)
1876 {
38d518c9 1877 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1878 mst_text, objfile); */
38d518c9 1879 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1880 VAR_DOMAIN, LOC_BLOCK,
1881 &objfile->global_psymbols,
1882 0, pdi->lowpc + baseaddr,
e142c38c 1883 cu->language, objfile);
c906108c
SS
1884 }
1885 else
1886 {
38d518c9 1887 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1888 mst_file_text, objfile); */
38d518c9 1889 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1890 VAR_DOMAIN, LOC_BLOCK,
1891 &objfile->static_psymbols,
1892 0, pdi->lowpc + baseaddr,
e142c38c 1893 cu->language, objfile);
c906108c
SS
1894 }
1895 break;
1896 case DW_TAG_variable:
1897 if (pdi->is_external)
1898 {
1899 /* Global Variable.
1900 Don't enter into the minimal symbol tables as there is
1901 a minimal symbol table entry from the ELF symbols already.
1902 Enter into partial symbol table if it has a location
1903 descriptor or a type.
1904 If the location descriptor is missing, new_symbol will create
1905 a LOC_UNRESOLVED symbol, the address of the variable will then
1906 be determined from the minimal symbol table whenever the variable
1907 is referenced.
1908 The address for the partial symbol table entry is not
1909 used by GDB, but it comes in handy for debugging partial symbol
1910 table building. */
1911
1912 if (pdi->locdesc)
e7c27a73 1913 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1914 if (pdi->locdesc || pdi->has_type)
38d518c9 1915 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1916 VAR_DOMAIN, LOC_STATIC,
1917 &objfile->global_psymbols,
1918 0, addr + baseaddr,
e142c38c 1919 cu->language, objfile);
c906108c
SS
1920 }
1921 else
1922 {
1923 /* Static Variable. Skip symbols without location descriptors. */
1924 if (pdi->locdesc == NULL)
1925 return;
e7c27a73 1926 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1927 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1928 mst_file_data, objfile); */
38d518c9 1929 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1930 VAR_DOMAIN, LOC_STATIC,
1931 &objfile->static_psymbols,
1932 0, addr + baseaddr,
e142c38c 1933 cu->language, objfile);
c906108c
SS
1934 }
1935 break;
1936 case DW_TAG_typedef:
1937 case DW_TAG_base_type:
a02abb62 1938 case DW_TAG_subrange_type:
38d518c9 1939 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1940 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1941 &objfile->static_psymbols,
e142c38c 1942 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1943 break;
72bf9492
DJ
1944 case DW_TAG_namespace:
1945 add_psymbol_to_list (actual_name, strlen (actual_name),
1946 VAR_DOMAIN, LOC_TYPEDEF,
1947 &objfile->global_psymbols,
1948 0, (CORE_ADDR) 0, cu->language, objfile);
1949 break;
c906108c
SS
1950 case DW_TAG_class_type:
1951 case DW_TAG_structure_type:
1952 case DW_TAG_union_type:
1953 case DW_TAG_enumeration_type:
1954 /* Skip aggregate types without children, these are external
c5aa993b 1955 references. */
63d06c5c
DC
1956 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1957 static vs. global. */
c906108c
SS
1958 if (pdi->has_children == 0)
1959 return;
38d518c9 1960 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1961 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
1962 (cu->language == language_cplus
1963 || cu->language == language_java)
63d06c5c
DC
1964 ? &objfile->global_psymbols
1965 : &objfile->static_psymbols,
e142c38c 1966 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1967
987504bb
JJ
1968 if (cu->language == language_cplus
1969 || cu->language == language_java)
c906108c 1970 {
987504bb 1971 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 1972 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1973 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 1974 &objfile->global_psymbols,
e142c38c 1975 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1976 }
1977 break;
1978 case DW_TAG_enumerator:
38d518c9 1979 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1980 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
1981 (cu->language == language_cplus
1982 || cu->language == language_java)
f6fe98ef
DJ
1983 ? &objfile->global_psymbols
1984 : &objfile->static_psymbols,
e142c38c 1985 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1986 break;
1987 default:
1988 break;
1989 }
5c4e30ca
DC
1990
1991 /* Check to see if we should scan the name for possible namespace
1992 info. Only do this if this is C++, if we don't have namespace
1993 debugging info in the file, if the psym is of an appropriate type
1994 (otherwise we'll have psym == NULL), and if we actually had a
1995 mangled name to begin with. */
1996
72bf9492
DJ
1997 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1998 cases which do not set PSYM above? */
1999
e142c38c 2000 if (cu->language == language_cplus
72bf9492 2001 && cu->has_namespace_info == 0
5c4e30ca
DC
2002 && psym != NULL
2003 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2004 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2005 objfile);
72bf9492
DJ
2006
2007 if (built_actual_name)
2008 xfree (actual_name);
c906108c
SS
2009}
2010
72bf9492
DJ
2011/* Determine whether a die of type TAG living in a C++ class or
2012 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2013 name listed in the die. */
2014
2015static int
72bf9492 2016pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2017{
63d06c5c
DC
2018 switch (tag)
2019 {
72bf9492 2020 case DW_TAG_namespace:
63d06c5c
DC
2021 case DW_TAG_typedef:
2022 case DW_TAG_class_type:
2023 case DW_TAG_structure_type:
2024 case DW_TAG_union_type:
2025 case DW_TAG_enumeration_type:
2026 case DW_TAG_enumerator:
2027 return 1;
2028 default:
2029 return 0;
2030 }
2031}
2032
5c4e30ca
DC
2033/* Read a partial die corresponding to a namespace; also, add a symbol
2034 corresponding to that namespace to the symbol table. NAMESPACE is
2035 the name of the enclosing namespace. */
91c24f0a 2036
72bf9492
DJ
2037static void
2038add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2039 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2040 struct dwarf2_cu *cu)
91c24f0a 2041{
e7c27a73 2042 struct objfile *objfile = cu->objfile;
5c4e30ca 2043
72bf9492 2044 /* Add a symbol for the namespace. */
e7c27a73 2045
72bf9492 2046 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2047
2048 /* Now scan partial symbols in that namespace. */
2049
91c24f0a 2050 if (pdi->has_children)
72bf9492 2051 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2052}
2053
72bf9492
DJ
2054/* See if we can figure out if the class lives in a namespace. We do
2055 this by looking for a member function; its demangled name will
2056 contain namespace info, if there is any. */
63d06c5c 2057
72bf9492
DJ
2058static void
2059guess_structure_name (struct partial_die_info *struct_pdi,
2060 struct dwarf2_cu *cu)
63d06c5c 2061{
987504bb
JJ
2062 if ((cu->language == language_cplus
2063 || cu->language == language_java)
72bf9492 2064 && cu->has_namespace_info == 0
63d06c5c
DC
2065 && struct_pdi->has_children)
2066 {
63d06c5c
DC
2067 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2068 what template types look like, because the demangler
2069 frequently doesn't give the same name as the debug info. We
2070 could fix this by only using the demangled name to get the
134d01f1 2071 prefix (but see comment in read_structure_type). */
63d06c5c 2072
72bf9492
DJ
2073 struct partial_die_info *child_pdi = struct_pdi->die_child;
2074 struct partial_die_info *real_pdi;
5d51ca54 2075
72bf9492
DJ
2076 /* If this DIE (this DIE's specification, if any) has a parent, then
2077 we should not do this. We'll prepend the parent's fully qualified
2078 name when we create the partial symbol. */
5d51ca54 2079
72bf9492 2080 real_pdi = struct_pdi;
72bf9492 2081 while (real_pdi->has_specification)
10b3939b 2082 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2083
72bf9492
DJ
2084 if (real_pdi->die_parent != NULL)
2085 return;
63d06c5c 2086
72bf9492
DJ
2087 while (child_pdi != NULL)
2088 {
2089 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2090 {
72bf9492 2091 char *actual_class_name
31c27f77
JJ
2092 = language_class_name_from_physname (cu->language_defn,
2093 child_pdi->name);
63d06c5c 2094 if (actual_class_name != NULL)
72bf9492
DJ
2095 {
2096 struct_pdi->name
2097 = obsavestring (actual_class_name,
2098 strlen (actual_class_name),
2099 &cu->comp_unit_obstack);
2100 xfree (actual_class_name);
2101 }
63d06c5c
DC
2102 break;
2103 }
72bf9492
DJ
2104
2105 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2106 }
2107 }
63d06c5c
DC
2108}
2109
91c24f0a
DC
2110/* Read a partial die corresponding to an enumeration type. */
2111
72bf9492
DJ
2112static void
2113add_partial_enumeration (struct partial_die_info *enum_pdi,
2114 struct dwarf2_cu *cu)
91c24f0a 2115{
e7c27a73 2116 struct objfile *objfile = cu->objfile;
91c24f0a 2117 bfd *abfd = objfile->obfd;
72bf9492 2118 struct partial_die_info *pdi;
91c24f0a
DC
2119
2120 if (enum_pdi->name != NULL)
72bf9492
DJ
2121 add_partial_symbol (enum_pdi, cu);
2122
2123 pdi = enum_pdi->die_child;
2124 while (pdi)
91c24f0a 2125 {
72bf9492 2126 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2127 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2128 else
72bf9492
DJ
2129 add_partial_symbol (pdi, cu);
2130 pdi = pdi->die_sibling;
91c24f0a 2131 }
91c24f0a
DC
2132}
2133
4bb7a0a7
DJ
2134/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2135 Return the corresponding abbrev, or NULL if the number is zero (indicating
2136 an empty DIE). In either case *BYTES_READ will be set to the length of
2137 the initial number. */
2138
2139static struct abbrev_info *
2140peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2141{
2142 bfd *abfd = cu->objfile->obfd;
2143 unsigned int abbrev_number;
2144 struct abbrev_info *abbrev;
2145
2146 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2147
2148 if (abbrev_number == 0)
2149 return NULL;
2150
2151 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2152 if (!abbrev)
2153 {
8a3fe4f8 2154 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2155 bfd_get_filename (abfd));
2156 }
2157
2158 return abbrev;
2159}
2160
2161/* Scan the debug information for CU starting at INFO_PTR. Returns a
2162 pointer to the end of a series of DIEs, terminated by an empty
2163 DIE. Any children of the skipped DIEs will also be skipped. */
2164
2165static char *
2166skip_children (char *info_ptr, struct dwarf2_cu *cu)
2167{
2168 struct abbrev_info *abbrev;
2169 unsigned int bytes_read;
2170
2171 while (1)
2172 {
2173 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2174 if (abbrev == NULL)
2175 return info_ptr + bytes_read;
2176 else
2177 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2178 }
2179}
2180
2181/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2182 should point just after the initial uleb128 of a DIE, and the
2183 abbrev corresponding to that skipped uleb128 should be passed in
2184 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2185 children. */
2186
2187static char *
2188skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2189 struct dwarf2_cu *cu)
2190{
2191 unsigned int bytes_read;
2192 struct attribute attr;
2193 bfd *abfd = cu->objfile->obfd;
2194 unsigned int form, i;
2195
2196 for (i = 0; i < abbrev->num_attrs; i++)
2197 {
2198 /* The only abbrev we care about is DW_AT_sibling. */
2199 if (abbrev->attrs[i].name == DW_AT_sibling)
2200 {
2201 read_attribute (&attr, &abbrev->attrs[i],
2202 abfd, info_ptr, cu);
2203 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2204 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2205 else
6502dd73
DJ
2206 return dwarf2_per_objfile->info_buffer
2207 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2208 }
2209
2210 /* If it isn't DW_AT_sibling, skip this attribute. */
2211 form = abbrev->attrs[i].form;
2212 skip_attribute:
2213 switch (form)
2214 {
2215 case DW_FORM_addr:
2216 case DW_FORM_ref_addr:
2217 info_ptr += cu->header.addr_size;
2218 break;
2219 case DW_FORM_data1:
2220 case DW_FORM_ref1:
2221 case DW_FORM_flag:
2222 info_ptr += 1;
2223 break;
2224 case DW_FORM_data2:
2225 case DW_FORM_ref2:
2226 info_ptr += 2;
2227 break;
2228 case DW_FORM_data4:
2229 case DW_FORM_ref4:
2230 info_ptr += 4;
2231 break;
2232 case DW_FORM_data8:
2233 case DW_FORM_ref8:
2234 info_ptr += 8;
2235 break;
2236 case DW_FORM_string:
2237 read_string (abfd, info_ptr, &bytes_read);
2238 info_ptr += bytes_read;
2239 break;
2240 case DW_FORM_strp:
2241 info_ptr += cu->header.offset_size;
2242 break;
2243 case DW_FORM_block:
2244 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2245 info_ptr += bytes_read;
2246 break;
2247 case DW_FORM_block1:
2248 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2249 break;
2250 case DW_FORM_block2:
2251 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2252 break;
2253 case DW_FORM_block4:
2254 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2255 break;
2256 case DW_FORM_sdata:
2257 case DW_FORM_udata:
2258 case DW_FORM_ref_udata:
2259 info_ptr = skip_leb128 (abfd, info_ptr);
2260 break;
2261 case DW_FORM_indirect:
2262 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2263 info_ptr += bytes_read;
2264 /* We need to continue parsing from here, so just go back to
2265 the top. */
2266 goto skip_attribute;
2267
2268 default:
8a3fe4f8 2269 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2270 dwarf_form_name (form),
2271 bfd_get_filename (abfd));
2272 }
2273 }
2274
2275 if (abbrev->has_children)
2276 return skip_children (info_ptr, cu);
2277 else
2278 return info_ptr;
2279}
2280
2281/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2282 the next DIE after ORIG_PDI. */
91c24f0a
DC
2283
2284static char *
2285locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
e7c27a73 2286 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2287{
2288 /* Do we know the sibling already? */
72bf9492 2289
91c24f0a
DC
2290 if (orig_pdi->sibling)
2291 return orig_pdi->sibling;
2292
2293 /* Are there any children to deal with? */
2294
2295 if (!orig_pdi->has_children)
2296 return info_ptr;
2297
4bb7a0a7 2298 /* Skip the children the long way. */
91c24f0a 2299
4bb7a0a7 2300 return skip_children (info_ptr, cu);
91c24f0a
DC
2301}
2302
c906108c
SS
2303/* Expand this partial symbol table into a full symbol table. */
2304
2305static void
fba45db2 2306dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2307{
2308 /* FIXME: This is barely more than a stub. */
2309 if (pst != NULL)
2310 {
2311 if (pst->readin)
2312 {
8a3fe4f8 2313 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2314 }
2315 else
2316 {
2317 if (info_verbose)
2318 {
a3f17187 2319 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2320 gdb_flush (gdb_stdout);
2321 }
2322
10b3939b
DJ
2323 /* Restore our global data. */
2324 dwarf2_per_objfile = objfile_data (pst->objfile,
2325 dwarf2_objfile_data_key);
2326
c906108c
SS
2327 psymtab_to_symtab_1 (pst);
2328
2329 /* Finish up the debug error message. */
2330 if (info_verbose)
a3f17187 2331 printf_filtered (_("done.\n"));
c906108c
SS
2332 }
2333 }
2334}
2335
10b3939b
DJ
2336/* Add PER_CU to the queue. */
2337
2338static void
2339queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2340{
2341 struct dwarf2_queue_item *item;
2342
2343 per_cu->queued = 1;
2344 item = xmalloc (sizeof (*item));
2345 item->per_cu = per_cu;
2346 item->next = NULL;
2347
2348 if (dwarf2_queue == NULL)
2349 dwarf2_queue = item;
2350 else
2351 dwarf2_queue_tail->next = item;
2352
2353 dwarf2_queue_tail = item;
2354}
2355
2356/* Process the queue. */
2357
2358static void
2359process_queue (struct objfile *objfile)
2360{
2361 struct dwarf2_queue_item *item, *next_item;
2362
2363 /* Initially, there is just one item on the queue. Load its DIEs,
2364 and the DIEs of any other compilation units it requires,
2365 transitively. */
2366
2367 for (item = dwarf2_queue; item != NULL; item = item->next)
2368 {
2369 /* Read in this compilation unit. This may add new items to
2370 the end of the queue. */
2371 load_full_comp_unit (item->per_cu);
2372
2373 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2374 dwarf2_per_objfile->read_in_chain = item->per_cu;
2375
2376 /* If this compilation unit has already had full symbols created,
2377 reset the TYPE fields in each DIE. */
2378 if (item->per_cu->psymtab->readin)
2379 reset_die_and_siblings_types (item->per_cu->cu->dies,
2380 item->per_cu->cu);
2381 }
2382
2383 /* Now everything left on the queue needs to be read in. Process
2384 them, one at a time, removing from the queue as we finish. */
2385 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2386 {
2387 if (!item->per_cu->psymtab->readin)
2388 process_full_comp_unit (item->per_cu);
2389
2390 item->per_cu->queued = 0;
2391 next_item = item->next;
2392 xfree (item);
2393 }
2394
2395 dwarf2_queue_tail = NULL;
2396}
2397
2398/* Free all allocated queue entries. This function only releases anything if
2399 an error was thrown; if the queue was processed then it would have been
2400 freed as we went along. */
2401
2402static void
2403dwarf2_release_queue (void *dummy)
2404{
2405 struct dwarf2_queue_item *item, *last;
2406
2407 item = dwarf2_queue;
2408 while (item)
2409 {
2410 /* Anything still marked queued is likely to be in an
2411 inconsistent state, so discard it. */
2412 if (item->per_cu->queued)
2413 {
2414 if (item->per_cu->cu != NULL)
2415 free_one_cached_comp_unit (item->per_cu->cu);
2416 item->per_cu->queued = 0;
2417 }
2418
2419 last = item;
2420 item = item->next;
2421 xfree (last);
2422 }
2423
2424 dwarf2_queue = dwarf2_queue_tail = NULL;
2425}
2426
2427/* Read in full symbols for PST, and anything it depends on. */
2428
c906108c 2429static void
fba45db2 2430psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2431{
10b3939b 2432 struct dwarf2_per_cu_data *per_cu;
c906108c 2433 struct cleanup *back_to;
aaa75496
JB
2434 int i;
2435
2436 for (i = 0; i < pst->number_of_dependencies; i++)
2437 if (!pst->dependencies[i]->readin)
2438 {
2439 /* Inform about additional files that need to be read in. */
2440 if (info_verbose)
2441 {
a3f17187 2442 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2443 fputs_filtered (" ", gdb_stdout);
2444 wrap_here ("");
2445 fputs_filtered ("and ", gdb_stdout);
2446 wrap_here ("");
2447 printf_filtered ("%s...", pst->dependencies[i]->filename);
2448 wrap_here (""); /* Flush output */
2449 gdb_flush (gdb_stdout);
2450 }
2451 psymtab_to_symtab_1 (pst->dependencies[i]);
2452 }
2453
10b3939b
DJ
2454 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2455
2456 if (per_cu == NULL)
aaa75496
JB
2457 {
2458 /* It's an include file, no symbols to read for it.
2459 Everything is in the parent symtab. */
2460 pst->readin = 1;
2461 return;
2462 }
c906108c 2463
10b3939b
DJ
2464 back_to = make_cleanup (dwarf2_release_queue, NULL);
2465
2466 queue_comp_unit (per_cu);
2467
2468 process_queue (pst->objfile);
2469
2470 /* Age the cache, releasing compilation units that have not
2471 been used recently. */
2472 age_cached_comp_units ();
2473
2474 do_cleanups (back_to);
2475}
2476
2477/* Load the DIEs associated with PST and PER_CU into memory. */
2478
2479static struct dwarf2_cu *
2480load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2481{
2482 struct partial_symtab *pst = per_cu->psymtab;
2483 bfd *abfd = pst->objfile->obfd;
2484 struct dwarf2_cu *cu;
2485 unsigned long offset;
2486 char *info_ptr;
2487 struct cleanup *back_to, *free_cu_cleanup;
2488 struct attribute *attr;
2489 CORE_ADDR baseaddr;
6502dd73 2490
c906108c 2491 /* Set local variables from the partial symbol table info. */
10b3939b 2492 offset = per_cu->offset;
6502dd73
DJ
2493
2494 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2495
10b3939b
DJ
2496 cu = xmalloc (sizeof (struct dwarf2_cu));
2497 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2498
10b3939b
DJ
2499 /* If an error occurs while loading, release our storage. */
2500 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2501
10b3939b 2502 cu->objfile = pst->objfile;
e7c27a73 2503
c906108c 2504 /* read in the comp_unit header */
10b3939b 2505 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2506
2507 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2508 dwarf2_read_abbrevs (abfd, cu);
2509 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2510
2511 cu->header.offset = offset;
c906108c 2512
10b3939b
DJ
2513 cu->per_cu = per_cu;
2514 per_cu->cu = cu;
e142c38c 2515
10b3939b
DJ
2516 /* We use this obstack for block values in dwarf_alloc_block. */
2517 obstack_init (&cu->comp_unit_obstack);
2518
2519 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2520
2521 /* We try not to read any attributes in this function, because not
2522 all objfiles needed for references have been loaded yet, and symbol
2523 table processing isn't initialized. But we have to set the CU language,
2524 or we won't be able to build types correctly. */
2525 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2526 if (attr)
2527 set_cu_language (DW_UNSND (attr), cu);
2528 else
2529 set_cu_language (language_minimal, cu);
2530
2531 do_cleanups (back_to);
e142c38c 2532
10b3939b
DJ
2533 /* We've successfully allocated this compilation unit. Let our caller
2534 clean it up when finished with it. */
2535 discard_cleanups (free_cu_cleanup);
c906108c 2536
10b3939b
DJ
2537 return cu;
2538}
2539
2540/* Generate full symbol information for PST and CU, whose DIEs have
2541 already been loaded into memory. */
2542
2543static void
2544process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2545{
2546 struct partial_symtab *pst = per_cu->psymtab;
2547 struct dwarf2_cu *cu = per_cu->cu;
2548 struct objfile *objfile = pst->objfile;
2549 bfd *abfd = objfile->obfd;
2550 CORE_ADDR lowpc, highpc;
2551 struct symtab *symtab;
2552 struct cleanup *back_to;
2553 struct attribute *attr;
2554 CORE_ADDR baseaddr;
2555
2556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2557
2558 /* We're in the global namespace. */
2559 processing_current_prefix = "";
2560
2561 buildsym_init ();
2562 back_to = make_cleanup (really_free_pendings, NULL);
2563
2564 cu->list_in_scope = &file_symbols;
c906108c 2565
0d53c4c4
DJ
2566 /* Find the base address of the compilation unit for range lists and
2567 location lists. It will normally be specified by DW_AT_low_pc.
2568 In DWARF-3 draft 4, the base address could be overridden by
2569 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2570 compilation units with discontinuous ranges. */
2571
10b3939b
DJ
2572 cu->header.base_known = 0;
2573 cu->header.base_address = 0;
0d53c4c4 2574
10b3939b 2575 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2576 if (attr)
2577 {
10b3939b
DJ
2578 cu->header.base_address = DW_ADDR (attr);
2579 cu->header.base_known = 1;
0d53c4c4
DJ
2580 }
2581 else
2582 {
10b3939b 2583 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2584 if (attr)
2585 {
10b3939b
DJ
2586 cu->header.base_address = DW_ADDR (attr);
2587 cu->header.base_known = 1;
0d53c4c4
DJ
2588 }
2589 }
2590
c906108c 2591 /* Do line number decoding in read_file_scope () */
10b3939b 2592 process_die (cu->dies, cu);
c906108c 2593
fae299cd
DC
2594 /* Some compilers don't define a DW_AT_high_pc attribute for the
2595 compilation unit. If the DW_AT_high_pc is missing, synthesize
2596 it, by scanning the DIE's below the compilation unit. */
10b3939b 2597 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2598
613e1657 2599 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2600
2601 /* Set symtab language to language from DW_AT_language.
2602 If the compilation is from a C file generated by language preprocessors,
2603 do not set the language if it was already deduced by start_subfile. */
2604 if (symtab != NULL
10b3939b 2605 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2606 {
10b3939b 2607 symtab->language = cu->language;
c906108c
SS
2608 }
2609 pst->symtab = symtab;
2610 pst->readin = 1;
c906108c
SS
2611
2612 do_cleanups (back_to);
2613}
2614
2615/* Process a die and its children. */
2616
2617static void
e7c27a73 2618process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2619{
2620 switch (die->tag)
2621 {
2622 case DW_TAG_padding:
2623 break;
2624 case DW_TAG_compile_unit:
e7c27a73 2625 read_file_scope (die, cu);
c906108c
SS
2626 break;
2627 case DW_TAG_subprogram:
e7c27a73
DJ
2628 read_subroutine_type (die, cu);
2629 read_func_scope (die, cu);
c906108c
SS
2630 break;
2631 case DW_TAG_inlined_subroutine:
2632 /* FIXME: These are ignored for now.
c5aa993b
JM
2633 They could be used to set breakpoints on all inlined instances
2634 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2635 break;
2636 case DW_TAG_lexical_block:
14898363
L
2637 case DW_TAG_try_block:
2638 case DW_TAG_catch_block:
e7c27a73 2639 read_lexical_block_scope (die, cu);
c906108c
SS
2640 break;
2641 case DW_TAG_class_type:
2642 case DW_TAG_structure_type:
2643 case DW_TAG_union_type:
134d01f1
DJ
2644 read_structure_type (die, cu);
2645 process_structure_scope (die, cu);
c906108c
SS
2646 break;
2647 case DW_TAG_enumeration_type:
134d01f1
DJ
2648 read_enumeration_type (die, cu);
2649 process_enumeration_scope (die, cu);
c906108c 2650 break;
134d01f1
DJ
2651
2652 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2653 a symbol or process any children. Therefore it doesn't do anything
2654 that won't be done on-demand by read_type_die. */
c906108c 2655 case DW_TAG_subroutine_type:
e7c27a73 2656 read_subroutine_type (die, cu);
c906108c
SS
2657 break;
2658 case DW_TAG_array_type:
e7c27a73 2659 read_array_type (die, cu);
c906108c
SS
2660 break;
2661 case DW_TAG_pointer_type:
e7c27a73 2662 read_tag_pointer_type (die, cu);
c906108c
SS
2663 break;
2664 case DW_TAG_ptr_to_member_type:
e7c27a73 2665 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2666 break;
2667 case DW_TAG_reference_type:
e7c27a73 2668 read_tag_reference_type (die, cu);
c906108c
SS
2669 break;
2670 case DW_TAG_string_type:
e7c27a73 2671 read_tag_string_type (die, cu);
c906108c 2672 break;
134d01f1
DJ
2673 /* END FIXME */
2674
c906108c 2675 case DW_TAG_base_type:
e7c27a73 2676 read_base_type (die, cu);
134d01f1
DJ
2677 /* Add a typedef symbol for the type definition, if it has a
2678 DW_AT_name. */
2679 new_symbol (die, die->type, cu);
c906108c 2680 break;
a02abb62
JB
2681 case DW_TAG_subrange_type:
2682 read_subrange_type (die, cu);
134d01f1
DJ
2683 /* Add a typedef symbol for the type definition, if it has a
2684 DW_AT_name. */
2685 new_symbol (die, die->type, cu);
a02abb62 2686 break;
c906108c 2687 case DW_TAG_common_block:
e7c27a73 2688 read_common_block (die, cu);
c906108c
SS
2689 break;
2690 case DW_TAG_common_inclusion:
2691 break;
d9fa45fe 2692 case DW_TAG_namespace:
63d06c5c 2693 processing_has_namespace_info = 1;
e7c27a73 2694 read_namespace (die, cu);
d9fa45fe
DC
2695 break;
2696 case DW_TAG_imported_declaration:
2697 case DW_TAG_imported_module:
2698 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2699 information contained in these. DW_TAG_imported_declaration
2700 dies shouldn't have children; DW_TAG_imported_module dies
2701 shouldn't in the C++ case, but conceivably could in the
2702 Fortran case, so we'll have to replace this gdb_assert if
2703 Fortran compilers start generating that info. */
63d06c5c 2704 processing_has_namespace_info = 1;
639d11d3 2705 gdb_assert (die->child == NULL);
d9fa45fe 2706 break;
c906108c 2707 default:
e7c27a73 2708 new_symbol (die, NULL, cu);
c906108c
SS
2709 break;
2710 }
2711}
2712
5fb290d7 2713static void
e142c38c 2714initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2715{
e142c38c 2716 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2717}
2718
c906108c 2719static void
e7c27a73 2720read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2721{
e7c27a73
DJ
2722 struct objfile *objfile = cu->objfile;
2723 struct comp_unit_head *cu_header = &cu->header;
debd256d 2724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2725 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2726 CORE_ADDR highpc = ((CORE_ADDR) 0);
2727 struct attribute *attr;
2728 char *name = "<unknown>";
2729 char *comp_dir = NULL;
2730 struct die_info *child_die;
2731 bfd *abfd = objfile->obfd;
debd256d 2732 struct line_header *line_header = 0;
e142c38c
DJ
2733 CORE_ADDR baseaddr;
2734
2735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2736
fae299cd 2737 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2738
2739 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2740 from finish_block. */
2acceee2 2741 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2742 lowpc = highpc;
2743 lowpc += baseaddr;
2744 highpc += baseaddr;
2745
e142c38c 2746 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2747 if (attr)
2748 {
2749 name = DW_STRING (attr);
2750 }
e142c38c 2751 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c
SS
2752 if (attr)
2753 {
2754 comp_dir = DW_STRING (attr);
2755 if (comp_dir)
2756 {
2757 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2758 directory, get rid of it. */
2759 char *cp = strchr (comp_dir, ':');
2760
2761 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2762 comp_dir = cp + 1;
2763 }
2764 }
2765
e142c38c 2766 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2767 if (attr)
2768 {
e142c38c 2769 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2770 }
2771
b0f35d58
DL
2772 attr = dwarf2_attr (die, DW_AT_producer, cu);
2773 if (attr)
2774 cu->producer = DW_STRING (attr);
2775
c906108c
SS
2776 /* We assume that we're processing GCC output. */
2777 processing_gcc_compilation = 2;
2778#if 0
c5aa993b
JM
2779 /* FIXME:Do something here. */
2780 if (dip->at_producer != NULL)
c906108c
SS
2781 {
2782 handle_producer (dip->at_producer);
2783 }
2784#endif
2785
2786 /* The compilation unit may be in a different language or objfile,
2787 zero out all remembered fundamental types. */
e142c38c 2788 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2789
2790 start_symtab (name, comp_dir, lowpc);
2791 record_debugformat ("DWARF 2");
2792
e142c38c 2793 initialize_cu_func_list (cu);
c906108c
SS
2794
2795 /* Process all dies in compilation unit. */
639d11d3 2796 if (die->child != NULL)
c906108c 2797 {
639d11d3 2798 child_die = die->child;
c906108c
SS
2799 while (child_die && child_die->tag)
2800 {
e7c27a73 2801 process_die (child_die, cu);
c906108c
SS
2802 child_die = sibling_die (child_die);
2803 }
2804 }
5fb290d7
DJ
2805
2806 /* Decode line number information if present. */
e142c38c 2807 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2808 if (attr)
2809 {
debd256d 2810 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2811 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2812 if (line_header)
2813 {
2814 make_cleanup ((make_cleanup_ftype *) free_line_header,
2815 (void *) line_header);
aaa75496 2816 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2817 }
5fb290d7 2818 }
debd256d 2819
2e276125
JB
2820 /* Decode macro information, if present. Dwarf 2 macro information
2821 refers to information in the line number info statement program
2822 header, so we can only read it if we've read the header
2823 successfully. */
e142c38c 2824 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2825 if (attr && line_header)
2e276125
JB
2826 {
2827 unsigned int macro_offset = DW_UNSND (attr);
2828 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2829 comp_dir, abfd, cu);
2e276125 2830 }
debd256d 2831 do_cleanups (back_to);
5fb290d7
DJ
2832}
2833
2834static void
e142c38c
DJ
2835add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2836 struct dwarf2_cu *cu)
5fb290d7
DJ
2837{
2838 struct function_range *thisfn;
2839
2840 thisfn = (struct function_range *)
7b5a2f43 2841 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2842 thisfn->name = name;
2843 thisfn->lowpc = lowpc;
2844 thisfn->highpc = highpc;
2845 thisfn->seen_line = 0;
2846 thisfn->next = NULL;
2847
e142c38c
DJ
2848 if (cu->last_fn == NULL)
2849 cu->first_fn = thisfn;
5fb290d7 2850 else
e142c38c 2851 cu->last_fn->next = thisfn;
5fb290d7 2852
e142c38c 2853 cu->last_fn = thisfn;
c906108c
SS
2854}
2855
2856static void
e7c27a73 2857read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2858{
e7c27a73 2859 struct objfile *objfile = cu->objfile;
52f0bd74 2860 struct context_stack *new;
c906108c
SS
2861 CORE_ADDR lowpc;
2862 CORE_ADDR highpc;
2863 struct die_info *child_die;
2864 struct attribute *attr;
2865 char *name;
fdde2d81
DC
2866 const char *previous_prefix = processing_current_prefix;
2867 struct cleanup *back_to = NULL;
e142c38c 2868 CORE_ADDR baseaddr;
c906108c 2869
e142c38c
DJ
2870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2871
2872 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2873
2874 /* Ignore functions with missing or empty names and functions with
2875 missing or invalid low and high pc attributes. */
e7c27a73 2876 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2877 return;
2878
987504bb
JJ
2879 if (cu->language == language_cplus
2880 || cu->language == language_java)
fdde2d81 2881 {
086ed43d 2882 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2883
2a35147e
JB
2884 /* NOTE: carlton/2004-01-23: We have to be careful in the
2885 presence of DW_AT_specification. For example, with GCC 3.4,
2886 given the code
2887
2888 namespace N {
2889 void foo() {
2890 // Definition of N::foo.
2891 }
2892 }
2893
2894 then we'll have a tree of DIEs like this:
2895
2896 1: DW_TAG_compile_unit
2897 2: DW_TAG_namespace // N
2898 3: DW_TAG_subprogram // declaration of N::foo
2899 4: DW_TAG_subprogram // definition of N::foo
2900 DW_AT_specification // refers to die #3
2901
2902 Thus, when processing die #4, we have to pretend that we're
2903 in the context of its DW_AT_specification, namely the contex
2904 of die #3. */
fdde2d81
DC
2905
2906 if (spec_die != NULL)
2907 {
e142c38c 2908 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2909 processing_current_prefix = specification_prefix;
2910 back_to = make_cleanup (xfree, specification_prefix);
2911 }
2912 }
2913
c906108c
SS
2914 lowpc += baseaddr;
2915 highpc += baseaddr;
2916
5fb290d7 2917 /* Record the function range for dwarf_decode_lines. */
e142c38c 2918 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2919
c906108c 2920 new = push_context (0, lowpc);
e7c27a73 2921 new->name = new_symbol (die, die->type, cu);
4c2df51b 2922
4cecd739
DJ
2923 /* If there is a location expression for DW_AT_frame_base, record
2924 it. */
e142c38c 2925 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2926 if (attr)
c034e007
AC
2927 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2928 expression is being recorded directly in the function's symbol
2929 and not in a separate frame-base object. I guess this hack is
2930 to avoid adding some sort of frame-base adjunct/annex to the
2931 function's symbol :-(. The problem with doing this is that it
2932 results in a function symbol with a location expression that
2933 has nothing to do with the location of the function, ouch! The
2934 relationship should be: a function's symbol has-a frame base; a
2935 frame-base has-a location expression. */
e7c27a73 2936 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2937
e142c38c 2938 cu->list_in_scope = &local_symbols;
c906108c 2939
639d11d3 2940 if (die->child != NULL)
c906108c 2941 {
639d11d3 2942 child_die = die->child;
c906108c
SS
2943 while (child_die && child_die->tag)
2944 {
e7c27a73 2945 process_die (child_die, cu);
c906108c
SS
2946 child_die = sibling_die (child_die);
2947 }
2948 }
2949
2950 new = pop_context ();
2951 /* Make a block for the local symbols within. */
2952 finish_block (new->name, &local_symbols, new->old_blocks,
2953 lowpc, highpc, objfile);
208d8187
JB
2954
2955 /* In C++, we can have functions nested inside functions (e.g., when
2956 a function declares a class that has methods). This means that
2957 when we finish processing a function scope, we may need to go
2958 back to building a containing block's symbol lists. */
2959 local_symbols = new->locals;
2960 param_symbols = new->params;
2961
921e78cf
JB
2962 /* If we've finished processing a top-level function, subsequent
2963 symbols go in the file symbol list. */
2964 if (outermost_context_p ())
e142c38c 2965 cu->list_in_scope = &file_symbols;
fdde2d81
DC
2966
2967 processing_current_prefix = previous_prefix;
2968 if (back_to != NULL)
2969 do_cleanups (back_to);
c906108c
SS
2970}
2971
2972/* Process all the DIES contained within a lexical block scope. Start
2973 a new scope, process the dies, and then close the scope. */
2974
2975static void
e7c27a73 2976read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2977{
e7c27a73 2978 struct objfile *objfile = cu->objfile;
52f0bd74 2979 struct context_stack *new;
c906108c
SS
2980 CORE_ADDR lowpc, highpc;
2981 struct die_info *child_die;
e142c38c
DJ
2982 CORE_ADDR baseaddr;
2983
2984 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
2985
2986 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
2987 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2988 as multiple lexical blocks? Handling children in a sane way would
2989 be nasty. Might be easier to properly extend generic blocks to
2990 describe ranges. */
e7c27a73 2991 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2992 return;
2993 lowpc += baseaddr;
2994 highpc += baseaddr;
2995
2996 push_context (0, lowpc);
639d11d3 2997 if (die->child != NULL)
c906108c 2998 {
639d11d3 2999 child_die = die->child;
c906108c
SS
3000 while (child_die && child_die->tag)
3001 {
e7c27a73 3002 process_die (child_die, cu);
c906108c
SS
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006 new = pop_context ();
3007
3008 if (local_symbols != NULL)
3009 {
3010 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3011 highpc, objfile);
3012 }
3013 local_symbols = new->locals;
3014}
3015
af34e669
DJ
3016/* Get low and high pc attributes from a die. Return 1 if the attributes
3017 are present and valid, otherwise, return 0. Return -1 if the range is
3018 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3019static int
af34e669 3020dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3021 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3022{
e7c27a73
DJ
3023 struct objfile *objfile = cu->objfile;
3024 struct comp_unit_head *cu_header = &cu->header;
c906108c 3025 struct attribute *attr;
af34e669
DJ
3026 bfd *obfd = objfile->obfd;
3027 CORE_ADDR low = 0;
3028 CORE_ADDR high = 0;
3029 int ret = 0;
c906108c 3030
e142c38c 3031 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3032 if (attr)
af34e669
DJ
3033 {
3034 high = DW_ADDR (attr);
e142c38c 3035 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3036 if (attr)
3037 low = DW_ADDR (attr);
3038 else
3039 /* Found high w/o low attribute. */
3040 return 0;
3041
3042 /* Found consecutive range of addresses. */
3043 ret = 1;
3044 }
c906108c 3045 else
af34e669 3046 {
e142c38c 3047 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3048 if (attr != NULL)
3049 {
3050 unsigned int addr_size = cu_header->addr_size;
3051 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3052 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3053 .debug_ranges section. */
af34e669
DJ
3054 unsigned int offset = DW_UNSND (attr);
3055 /* Base address selection entry. */
0d53c4c4
DJ
3056 CORE_ADDR base;
3057 int found_base;
af34e669 3058 int dummy;
af34e669
DJ
3059 char *buffer;
3060 CORE_ADDR marker;
3061 int low_set;
3062
0d53c4c4
DJ
3063 found_base = cu_header->base_known;
3064 base = cu_header->base_address;
a604369a 3065
6502dd73 3066 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3067 {
3068 complaint (&symfile_complaints,
e2e0b3e5 3069 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3070 offset);
3071 return 0;
3072 }
6502dd73 3073 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3074
af34e669 3075 /* Read in the largest possible address. */
e7c27a73 3076 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3077 if ((marker & mask) == mask)
3078 {
3079 /* If we found the largest possible address, then
3080 read the base address. */
e7c27a73 3081 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3082 buffer += 2 * addr_size;
3083 offset += 2 * addr_size;
3084 found_base = 1;
3085 }
3086
3087 low_set = 0;
3088
3089 while (1)
3090 {
3091 CORE_ADDR range_beginning, range_end;
3092
e7c27a73 3093 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3094 buffer += addr_size;
e7c27a73 3095 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3096 buffer += addr_size;
3097 offset += 2 * addr_size;
3098
3099 /* An end of list marker is a pair of zero addresses. */
3100 if (range_beginning == 0 && range_end == 0)
3101 /* Found the end of list entry. */
3102 break;
3103
3104 /* Each base address selection entry is a pair of 2 values.
3105 The first is the largest possible address, the second is
3106 the base address. Check for a base address here. */
3107 if ((range_beginning & mask) == mask)
3108 {
3109 /* If we found the largest possible address, then
3110 read the base address. */
e7c27a73 3111 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3112 found_base = 1;
3113 continue;
3114 }
3115
3116 if (!found_base)
3117 {
3118 /* We have no valid base address for the ranges
3119 data. */
3120 complaint (&symfile_complaints,
e2e0b3e5 3121 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3122 return 0;
3123 }
3124
8f05cde5
DJ
3125 range_beginning += base;
3126 range_end += base;
3127
af34e669
DJ
3128 /* FIXME: This is recording everything as a low-high
3129 segment of consecutive addresses. We should have a
3130 data structure for discontiguous block ranges
3131 instead. */
3132 if (! low_set)
3133 {
3134 low = range_beginning;
3135 high = range_end;
3136 low_set = 1;
3137 }
3138 else
3139 {
3140 if (range_beginning < low)
3141 low = range_beginning;
3142 if (range_end > high)
3143 high = range_end;
3144 }
3145 }
3146
3147 if (! low_set)
3148 /* If the first entry is an end-of-list marker, the range
3149 describes an empty scope, i.e. no instructions. */
3150 return 0;
3151
3152 ret = -1;
3153 }
3154 }
c906108c
SS
3155
3156 if (high < low)
3157 return 0;
3158
3159 /* When using the GNU linker, .gnu.linkonce. sections are used to
3160 eliminate duplicate copies of functions and vtables and such.
3161 The linker will arbitrarily choose one and discard the others.
3162 The AT_*_pc values for such functions refer to local labels in
3163 these sections. If the section from that file was discarded, the
3164 labels are not in the output, so the relocs get a value of 0.
3165 If this is a discarded function, mark the pc bounds as invalid,
3166 so that GDB will ignore it. */
af34e669 3167 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
c906108c
SS
3168 return 0;
3169
3170 *lowpc = low;
3171 *highpc = high;
af34e669 3172 return ret;
c906108c
SS
3173}
3174
fae299cd
DC
3175/* Get the low and high pc's represented by the scope DIE, and store
3176 them in *LOWPC and *HIGHPC. If the correct values can't be
3177 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3178
3179static void
3180get_scope_pc_bounds (struct die_info *die,
3181 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3182 struct dwarf2_cu *cu)
3183{
3184 CORE_ADDR best_low = (CORE_ADDR) -1;
3185 CORE_ADDR best_high = (CORE_ADDR) 0;
3186 CORE_ADDR current_low, current_high;
3187
3188 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3189 {
3190 best_low = current_low;
3191 best_high = current_high;
3192 }
3193 else
3194 {
3195 struct die_info *child = die->child;
3196
3197 while (child && child->tag)
3198 {
3199 switch (child->tag) {
3200 case DW_TAG_subprogram:
3201 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3202 {
3203 best_low = min (best_low, current_low);
3204 best_high = max (best_high, current_high);
3205 }
3206 break;
3207 case DW_TAG_namespace:
3208 /* FIXME: carlton/2004-01-16: Should we do this for
3209 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3210 that current GCC's always emit the DIEs corresponding
3211 to definitions of methods of classes as children of a
3212 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3213 the DIEs giving the declarations, which could be
3214 anywhere). But I don't see any reason why the
3215 standards says that they have to be there. */
3216 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3217
3218 if (current_low != ((CORE_ADDR) -1))
3219 {
3220 best_low = min (best_low, current_low);
3221 best_high = max (best_high, current_high);
3222 }
3223 break;
3224 default:
3225 /* Ignore. */
3226 break;
3227 }
3228
3229 child = sibling_die (child);
3230 }
3231 }
3232
3233 *lowpc = best_low;
3234 *highpc = best_high;
3235}
3236
c906108c
SS
3237/* Add an aggregate field to the field list. */
3238
3239static void
107d2387 3240dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3241 struct dwarf2_cu *cu)
3242{
3243 struct objfile *objfile = cu->objfile;
c906108c
SS
3244 struct nextfield *new_field;
3245 struct attribute *attr;
3246 struct field *fp;
3247 char *fieldname = "";
3248
3249 /* Allocate a new field list entry and link it in. */
3250 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3251 make_cleanup (xfree, new_field);
c906108c
SS
3252 memset (new_field, 0, sizeof (struct nextfield));
3253 new_field->next = fip->fields;
3254 fip->fields = new_field;
3255 fip->nfields++;
3256
3257 /* Handle accessibility and virtuality of field.
3258 The default accessibility for members is public, the default
3259 accessibility for inheritance is private. */
3260 if (die->tag != DW_TAG_inheritance)
3261 new_field->accessibility = DW_ACCESS_public;
3262 else
3263 new_field->accessibility = DW_ACCESS_private;
3264 new_field->virtuality = DW_VIRTUALITY_none;
3265
e142c38c 3266 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3267 if (attr)
3268 new_field->accessibility = DW_UNSND (attr);
3269 if (new_field->accessibility != DW_ACCESS_public)
3270 fip->non_public_fields = 1;
e142c38c 3271 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3272 if (attr)
3273 new_field->virtuality = DW_UNSND (attr);
3274
3275 fp = &new_field->field;
a9a9bd0f 3276
e142c38c 3277 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3278 {
a9a9bd0f
DC
3279 /* Data member other than a C++ static data member. */
3280
c906108c 3281 /* Get type of field. */
e7c27a73 3282 fp->type = die_type (die, cu);
c906108c 3283
01ad7f36
DJ
3284 FIELD_STATIC_KIND (*fp) = 0;
3285
c906108c 3286 /* Get bit size of field (zero if none). */
e142c38c 3287 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3288 if (attr)
3289 {
3290 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3291 }
3292 else
3293 {
3294 FIELD_BITSIZE (*fp) = 0;
3295 }
3296
3297 /* Get bit offset of field. */
e142c38c 3298 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3299 if (attr)
3300 {
3301 FIELD_BITPOS (*fp) =
e7c27a73 3302 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3303 }
3304 else
3305 FIELD_BITPOS (*fp) = 0;
e142c38c 3306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3307 if (attr)
3308 {
3309 if (BITS_BIG_ENDIAN)
3310 {
3311 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3312 additional bit offset from the MSB of the containing
3313 anonymous object to the MSB of the field. We don't
3314 have to do anything special since we don't need to
3315 know the size of the anonymous object. */
c906108c
SS
3316 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3317 }
3318 else
3319 {
3320 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3321 MSB of the anonymous object, subtract off the number of
3322 bits from the MSB of the field to the MSB of the
3323 object, and then subtract off the number of bits of
3324 the field itself. The result is the bit offset of
3325 the LSB of the field. */
c906108c
SS
3326 int anonymous_size;
3327 int bit_offset = DW_UNSND (attr);
3328
e142c38c 3329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3330 if (attr)
3331 {
3332 /* The size of the anonymous object containing
3333 the bit field is explicit, so use the
3334 indicated size (in bytes). */
3335 anonymous_size = DW_UNSND (attr);
3336 }
3337 else
3338 {
3339 /* The size of the anonymous object containing
3340 the bit field must be inferred from the type
3341 attribute of the data member containing the
3342 bit field. */
3343 anonymous_size = TYPE_LENGTH (fp->type);
3344 }
3345 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3346 - bit_offset - FIELD_BITSIZE (*fp);
3347 }
3348 }
3349
3350 /* Get name of field. */
e142c38c 3351 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3352 if (attr && DW_STRING (attr))
3353 fieldname = DW_STRING (attr);
d8151005
DJ
3354
3355 /* The name is already allocated along with this objfile, so we don't
3356 need to duplicate it for the type. */
3357 fp->name = fieldname;
c906108c
SS
3358
3359 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3360 pointer or virtual base class pointer) to private. */
e142c38c 3361 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3362 {
3363 new_field->accessibility = DW_ACCESS_private;
3364 fip->non_public_fields = 1;
3365 }
3366 }
a9a9bd0f 3367 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3368 {
a9a9bd0f
DC
3369 /* C++ static member. */
3370
3371 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3372 is a declaration, but all versions of G++ as of this writing
3373 (so through at least 3.2.1) incorrectly generate
3374 DW_TAG_variable tags. */
3375
c906108c 3376 char *physname;
c906108c 3377
a9a9bd0f 3378 /* Get name of field. */
e142c38c 3379 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3380 if (attr && DW_STRING (attr))
3381 fieldname = DW_STRING (attr);
3382 else
c906108c
SS
3383 return;
3384
2df3850c 3385 /* Get physical name. */
e142c38c 3386 physname = dwarf2_linkage_name (die, cu);
c906108c 3387
d8151005
DJ
3388 /* The name is already allocated along with this objfile, so we don't
3389 need to duplicate it for the type. */
3390 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3391 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3392 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3393 }
3394 else if (die->tag == DW_TAG_inheritance)
3395 {
3396 /* C++ base class field. */
e142c38c 3397 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3398 if (attr)
e7c27a73 3399 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3400 * bits_per_byte);
c906108c 3401 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3402 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3403 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3404 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3405 fip->nbaseclasses++;
3406 }
3407}
3408
3409/* Create the vector of fields, and attach it to the type. */
3410
3411static void
fba45db2 3412dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3413 struct dwarf2_cu *cu)
c906108c
SS
3414{
3415 int nfields = fip->nfields;
3416
3417 /* Record the field count, allocate space for the array of fields,
3418 and create blank accessibility bitfields if necessary. */
3419 TYPE_NFIELDS (type) = nfields;
3420 TYPE_FIELDS (type) = (struct field *)
3421 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3422 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3423
3424 if (fip->non_public_fields)
3425 {
3426 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3427
3428 TYPE_FIELD_PRIVATE_BITS (type) =
3429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3430 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3431
3432 TYPE_FIELD_PROTECTED_BITS (type) =
3433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3434 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3435
3436 TYPE_FIELD_IGNORE_BITS (type) =
3437 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3438 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3439 }
3440
3441 /* If the type has baseclasses, allocate and clear a bit vector for
3442 TYPE_FIELD_VIRTUAL_BITS. */
3443 if (fip->nbaseclasses)
3444 {
3445 int num_bytes = B_BYTES (fip->nbaseclasses);
3446 char *pointer;
3447
3448 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3449 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3450 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3451 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3452 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3453 }
3454
3455 /* Copy the saved-up fields into the field vector. Start from the head
3456 of the list, adding to the tail of the field array, so that they end
3457 up in the same order in the array in which they were added to the list. */
3458 while (nfields-- > 0)
3459 {
3460 TYPE_FIELD (type, nfields) = fip->fields->field;
3461 switch (fip->fields->accessibility)
3462 {
c5aa993b
JM
3463 case DW_ACCESS_private:
3464 SET_TYPE_FIELD_PRIVATE (type, nfields);
3465 break;
c906108c 3466
c5aa993b
JM
3467 case DW_ACCESS_protected:
3468 SET_TYPE_FIELD_PROTECTED (type, nfields);
3469 break;
c906108c 3470
c5aa993b
JM
3471 case DW_ACCESS_public:
3472 break;
c906108c 3473
c5aa993b
JM
3474 default:
3475 /* Unknown accessibility. Complain and treat it as public. */
3476 {
e2e0b3e5 3477 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3478 fip->fields->accessibility);
c5aa993b
JM
3479 }
3480 break;
c906108c
SS
3481 }
3482 if (nfields < fip->nbaseclasses)
3483 {
3484 switch (fip->fields->virtuality)
3485 {
c5aa993b
JM
3486 case DW_VIRTUALITY_virtual:
3487 case DW_VIRTUALITY_pure_virtual:
3488 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3489 break;
c906108c
SS
3490 }
3491 }
3492 fip->fields = fip->fields->next;
3493 }
3494}
3495
c906108c
SS
3496/* Add a member function to the proper fieldlist. */
3497
3498static void
107d2387 3499dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3500 struct type *type, struct dwarf2_cu *cu)
c906108c 3501{
e7c27a73 3502 struct objfile *objfile = cu->objfile;
c906108c
SS
3503 struct attribute *attr;
3504 struct fnfieldlist *flp;
3505 int i;
3506 struct fn_field *fnp;
3507 char *fieldname;
3508 char *physname;
3509 struct nextfnfield *new_fnfield;
3510
2df3850c 3511 /* Get name of member function. */
e142c38c 3512 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3513 if (attr && DW_STRING (attr))
3514 fieldname = DW_STRING (attr);
c906108c 3515 else
2df3850c 3516 return;
c906108c 3517
2df3850c 3518 /* Get the mangled name. */
e142c38c 3519 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3520
3521 /* Look up member function name in fieldlist. */
3522 for (i = 0; i < fip->nfnfields; i++)
3523 {
27bfe10e 3524 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3525 break;
3526 }
3527
3528 /* Create new list element if necessary. */
3529 if (i < fip->nfnfields)
3530 flp = &fip->fnfieldlists[i];
3531 else
3532 {
3533 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3534 {
3535 fip->fnfieldlists = (struct fnfieldlist *)
3536 xrealloc (fip->fnfieldlists,
3537 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3538 * sizeof (struct fnfieldlist));
c906108c 3539 if (fip->nfnfields == 0)
c13c43fd 3540 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3541 }
3542 flp = &fip->fnfieldlists[fip->nfnfields];
3543 flp->name = fieldname;
3544 flp->length = 0;
3545 flp->head = NULL;
3546 fip->nfnfields++;
3547 }
3548
3549 /* Create a new member function field and chain it to the field list
3550 entry. */
3551 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3552 make_cleanup (xfree, new_fnfield);
c906108c
SS
3553 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3554 new_fnfield->next = flp->head;
3555 flp->head = new_fnfield;
3556 flp->length++;
3557
3558 /* Fill in the member function field info. */
3559 fnp = &new_fnfield->fnfield;
d8151005
DJ
3560 /* The name is already allocated along with this objfile, so we don't
3561 need to duplicate it for the type. */
3562 fnp->physname = physname ? physname : "";
c906108c
SS
3563 fnp->type = alloc_type (objfile);
3564 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3565 {
c906108c 3566 int nparams = TYPE_NFIELDS (die->type);
c906108c 3567
e26fb1d7
DC
3568 /* TYPE is the domain of this method, and DIE->TYPE is the type
3569 of the method itself (TYPE_CODE_METHOD). */
3570 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3571 TYPE_TARGET_TYPE (die->type),
3572 TYPE_FIELDS (die->type),
3573 TYPE_NFIELDS (die->type),
3574 TYPE_VARARGS (die->type));
c906108c
SS
3575
3576 /* Handle static member functions.
c5aa993b
JM
3577 Dwarf2 has no clean way to discern C++ static and non-static
3578 member functions. G++ helps GDB by marking the first
3579 parameter for non-static member functions (which is the
3580 this pointer) as artificial. We obtain this information
3581 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3582 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3583 fnp->voffset = VOFFSET_STATIC;
3584 }
3585 else
e2e0b3e5 3586 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3587 physname);
c906108c
SS
3588
3589 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3590 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3591 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3592
3593 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3594 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3595
3596 /* Get accessibility. */
e142c38c 3597 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3598 if (attr)
3599 {
3600 switch (DW_UNSND (attr))
3601 {
c5aa993b
JM
3602 case DW_ACCESS_private:
3603 fnp->is_private = 1;
3604 break;
3605 case DW_ACCESS_protected:
3606 fnp->is_protected = 1;
3607 break;
c906108c
SS
3608 }
3609 }
3610
b02dede2 3611 /* Check for artificial methods. */
e142c38c 3612 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3613 if (attr && DW_UNSND (attr) != 0)
3614 fnp->is_artificial = 1;
3615
c906108c 3616 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3617 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3618 if (attr)
8e19ed76
PS
3619 {
3620 /* Support the .debug_loc offsets */
3621 if (attr_form_is_block (attr))
3622 {
e7c27a73 3623 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3624 }
3625 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3626 {
4d3c2250 3627 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3628 }
3629 else
3630 {
4d3c2250
KB
3631 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3632 fieldname);
8e19ed76
PS
3633 }
3634 }
c906108c
SS
3635}
3636
3637/* Create the vector of member function fields, and attach it to the type. */
3638
3639static void
fba45db2 3640dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3641 struct dwarf2_cu *cu)
c906108c
SS
3642{
3643 struct fnfieldlist *flp;
3644 int total_length = 0;
3645 int i;
3646
3647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3648 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3649 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3650
3651 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3652 {
3653 struct nextfnfield *nfp = flp->head;
3654 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3655 int k;
3656
3657 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3658 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3659 fn_flp->fn_fields = (struct fn_field *)
3660 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3661 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3662 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3663
3664 total_length += flp->length;
3665 }
3666
3667 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3668 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3669}
3670
1168df01
JB
3671
3672/* Returns non-zero if NAME is the name of a vtable member in CU's
3673 language, zero otherwise. */
3674static int
3675is_vtable_name (const char *name, struct dwarf2_cu *cu)
3676{
3677 static const char vptr[] = "_vptr";
987504bb 3678 static const char vtable[] = "vtable";
1168df01 3679
987504bb
JJ
3680 /* Look for the C++ and Java forms of the vtable. */
3681 if ((cu->language == language_java
3682 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3683 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3684 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3685 return 1;
3686
3687 return 0;
3688}
3689
3690
c906108c
SS
3691/* Called when we find the DIE that starts a structure or union scope
3692 (definition) to process all dies that define the members of the
3693 structure or union.
3694
3695 NOTE: we need to call struct_type regardless of whether or not the
3696 DIE has an at_name attribute, since it might be an anonymous
3697 structure or union. This gets the type entered into our set of
3698 user defined types.
3699
3700 However, if the structure is incomplete (an opaque struct/union)
3701 then suppress creating a symbol table entry for it since gdb only
3702 wants to find the one with the complete definition. Note that if
3703 it is complete, we just call new_symbol, which does it's own
3704 checking about whether the struct/union is anonymous or not (and
3705 suppresses creating a symbol table entry itself). */
3706
3707static void
134d01f1 3708read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3709{
e7c27a73 3710 struct objfile *objfile = cu->objfile;
c906108c
SS
3711 struct type *type;
3712 struct attribute *attr;
63d06c5c
DC
3713 const char *previous_prefix = processing_current_prefix;
3714 struct cleanup *back_to = NULL;
c906108c 3715
134d01f1
DJ
3716 if (die->type)
3717 return;
3718
c906108c
SS
3719 type = alloc_type (objfile);
3720
3721 INIT_CPLUS_SPECIFIC (type);
e142c38c 3722 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3723 if (attr && DW_STRING (attr))
3724 {
987504bb
JJ
3725 if (cu->language == language_cplus
3726 || cu->language == language_java)
63d06c5c 3727 {
8176b9b8
DC
3728 char *new_prefix = determine_class_name (die, cu);
3729 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3730 strlen (new_prefix),
3731 &objfile->objfile_obstack);
3732 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3733 processing_current_prefix = new_prefix;
3734 }
3735 else
3736 {
d8151005
DJ
3737 /* The name is already allocated along with this objfile, so
3738 we don't need to duplicate it for the type. */
8176b9b8 3739 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3740 }
c906108c
SS
3741 }
3742
3743 if (die->tag == DW_TAG_structure_type)
3744 {
3745 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3746 }
3747 else if (die->tag == DW_TAG_union_type)
3748 {
3749 TYPE_CODE (type) = TYPE_CODE_UNION;
3750 }
3751 else
3752 {
3753 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3754 in gdbtypes.h. */
c906108c
SS
3755 TYPE_CODE (type) = TYPE_CODE_CLASS;
3756 }
3757
e142c38c 3758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3759 if (attr)
3760 {
3761 TYPE_LENGTH (type) = DW_UNSND (attr);
3762 }
3763 else
3764 {
3765 TYPE_LENGTH (type) = 0;
3766 }
3767
dc718098
JB
3768 if (die_is_declaration (die, cu))
3769 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3770
c906108c
SS
3771 /* We need to add the type field to the die immediately so we don't
3772 infinitely recurse when dealing with pointers to the structure
3773 type within the structure itself. */
1c379e20 3774 set_die_type (die, type, cu);
c906108c 3775
e142c38c 3776 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3777 {
3778 struct field_info fi;
3779 struct die_info *child_die;
3780 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3781
3782 memset (&fi, 0, sizeof (struct field_info));
3783
639d11d3 3784 child_die = die->child;
c906108c
SS
3785
3786 while (child_die && child_die->tag)
3787 {
a9a9bd0f
DC
3788 if (child_die->tag == DW_TAG_member
3789 || child_die->tag == DW_TAG_variable)
c906108c 3790 {
a9a9bd0f
DC
3791 /* NOTE: carlton/2002-11-05: A C++ static data member
3792 should be a DW_TAG_member that is a declaration, but
3793 all versions of G++ as of this writing (so through at
3794 least 3.2.1) incorrectly generate DW_TAG_variable
3795 tags for them instead. */
e7c27a73 3796 dwarf2_add_field (&fi, child_die, cu);
c906108c 3797 }
8713b1b1 3798 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3799 {
3800 /* C++ member function. */
134d01f1 3801 read_type_die (child_die, cu);
e7c27a73 3802 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3803 }
3804 else if (child_die->tag == DW_TAG_inheritance)
3805 {
3806 /* C++ base class field. */
e7c27a73 3807 dwarf2_add_field (&fi, child_die, cu);
c906108c 3808 }
c906108c
SS
3809 child_die = sibling_die (child_die);
3810 }
3811
3812 /* Attach fields and member functions to the type. */
3813 if (fi.nfields)
e7c27a73 3814 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3815 if (fi.nfnfields)
3816 {
e7c27a73 3817 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3818
c5aa993b 3819 /* Get the type which refers to the base class (possibly this
c906108c
SS
3820 class itself) which contains the vtable pointer for the current
3821 class from the DW_AT_containing_type attribute. */
3822
e142c38c 3823 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3824 {
e7c27a73 3825 struct type *t = die_containing_type (die, cu);
c906108c
SS
3826
3827 TYPE_VPTR_BASETYPE (type) = t;
3828 if (type == t)
3829 {
c906108c
SS
3830 int i;
3831
3832 /* Our own class provides vtbl ptr. */
3833 for (i = TYPE_NFIELDS (t) - 1;
3834 i >= TYPE_N_BASECLASSES (t);
3835 --i)
3836 {
3837 char *fieldname = TYPE_FIELD_NAME (t, i);
3838
1168df01 3839 if (is_vtable_name (fieldname, cu))
c906108c
SS
3840 {
3841 TYPE_VPTR_FIELDNO (type) = i;
3842 break;
3843 }
3844 }
3845
3846 /* Complain if virtual function table field not found. */
3847 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3848 complaint (&symfile_complaints,
e2e0b3e5 3849 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3850 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3851 "");
c906108c
SS
3852 }
3853 else
3854 {
3855 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3856 }
3857 }
f6235d4c
EZ
3858 else if (cu->producer
3859 && strncmp (cu->producer,
3860 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3861 {
3862 /* The IBM XLC compiler does not provide direct indication
3863 of the containing type, but the vtable pointer is
3864 always named __vfp. */
3865
3866 int i;
3867
3868 for (i = TYPE_NFIELDS (type) - 1;
3869 i >= TYPE_N_BASECLASSES (type);
3870 --i)
3871 {
3872 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3873 {
3874 TYPE_VPTR_FIELDNO (type) = i;
3875 TYPE_VPTR_BASETYPE (type) = type;
3876 break;
3877 }
3878 }
3879 }
c906108c
SS
3880 }
3881
c906108c
SS
3882 do_cleanups (back_to);
3883 }
63d06c5c
DC
3884
3885 processing_current_prefix = previous_prefix;
3886 if (back_to != NULL)
3887 do_cleanups (back_to);
c906108c
SS
3888}
3889
134d01f1
DJ
3890static void
3891process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3892{
3893 struct objfile *objfile = cu->objfile;
3894 const char *previous_prefix = processing_current_prefix;
90aeadfc 3895 struct die_info *child_die = die->child;
c906108c 3896
134d01f1
DJ
3897 if (TYPE_TAG_NAME (die->type) != NULL)
3898 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 3899
90aeadfc
DC
3900 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3901 snapshots) has been known to create a die giving a declaration
3902 for a class that has, as a child, a die giving a definition for a
3903 nested class. So we have to process our children even if the
3904 current die is a declaration. Normally, of course, a declaration
3905 won't have any children at all. */
134d01f1 3906
90aeadfc
DC
3907 while (child_die != NULL && child_die->tag)
3908 {
3909 if (child_die->tag == DW_TAG_member
3910 || child_die->tag == DW_TAG_variable
3911 || child_die->tag == DW_TAG_inheritance)
134d01f1 3912 {
90aeadfc 3913 /* Do nothing. */
134d01f1 3914 }
90aeadfc
DC
3915 else
3916 process_die (child_die, cu);
134d01f1 3917
90aeadfc 3918 child_die = sibling_die (child_die);
134d01f1
DJ
3919 }
3920
90aeadfc
DC
3921 if (die->child != NULL && ! die_is_declaration (die, cu))
3922 new_symbol (die, die->type, cu);
3923
134d01f1
DJ
3924 processing_current_prefix = previous_prefix;
3925}
3926
3927/* Given a DW_AT_enumeration_type die, set its type. We do not
3928 complete the type's fields yet, or create any symbols. */
c906108c
SS
3929
3930static void
134d01f1 3931read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3932{
e7c27a73 3933 struct objfile *objfile = cu->objfile;
c906108c 3934 struct type *type;
c906108c 3935 struct attribute *attr;
134d01f1
DJ
3936
3937 if (die->type)
3938 return;
c906108c
SS
3939
3940 type = alloc_type (objfile);
3941
3942 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 3943 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3944 if (attr && DW_STRING (attr))
3945 {
d8151005 3946 char *name = DW_STRING (attr);
63d06c5c
DC
3947
3948 if (processing_has_namespace_info)
3949 {
987504bb
JJ
3950 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3951 processing_current_prefix,
3952 name, cu);
63d06c5c
DC
3953 }
3954 else
3955 {
d8151005
DJ
3956 /* The name is already allocated along with this objfile, so
3957 we don't need to duplicate it for the type. */
3958 TYPE_TAG_NAME (type) = name;
63d06c5c 3959 }
c906108c
SS
3960 }
3961
e142c38c 3962 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3963 if (attr)
3964 {
3965 TYPE_LENGTH (type) = DW_UNSND (attr);
3966 }
3967 else
3968 {
3969 TYPE_LENGTH (type) = 0;
3970 }
3971
1c379e20 3972 set_die_type (die, type, cu);
134d01f1
DJ
3973}
3974
8176b9b8 3975/* Determine the name of the type represented by DIE, which should be
987504bb 3976 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
3977 is responsible for xfree()'ing it. */
3978
3979static char *
3980determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3981{
3982 struct cleanup *back_to = NULL;
3983 struct die_info *spec_die = die_specification (die, cu);
3984 char *new_prefix = NULL;
3985
3986 /* If this is the definition of a class that is declared by another
3987 die, then processing_current_prefix may not be accurate; see
3988 read_func_scope for a similar example. */
3989 if (spec_die != NULL)
3990 {
3991 char *specification_prefix = determine_prefix (spec_die, cu);
3992 processing_current_prefix = specification_prefix;
3993 back_to = make_cleanup (xfree, specification_prefix);
3994 }
3995
3996 /* If we don't have namespace debug info, guess the name by trying
3997 to demangle the names of members, just like we did in
72bf9492 3998 guess_structure_name. */
8176b9b8
DC
3999 if (!processing_has_namespace_info)
4000 {
4001 struct die_info *child;
4002
4003 for (child = die->child;
4004 child != NULL && child->tag != 0;
4005 child = sibling_die (child))
4006 {
4007 if (child->tag == DW_TAG_subprogram)
4008 {
31c27f77
JJ
4009 new_prefix
4010 = language_class_name_from_physname (cu->language_defn,
4011 dwarf2_linkage_name
8176b9b8
DC
4012 (child, cu));
4013
4014 if (new_prefix != NULL)
4015 break;
4016 }
4017 }
4018 }
4019
4020 if (new_prefix == NULL)
4021 {
4022 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4023 new_prefix = typename_concat (NULL, processing_current_prefix,
4024 name ? name : "<<anonymous>>",
4025 cu);
8176b9b8
DC
4026 }
4027
4028 if (back_to != NULL)
4029 do_cleanups (back_to);
4030
4031 return new_prefix;
4032}
4033
134d01f1
DJ
4034/* Given a pointer to a die which begins an enumeration, process all
4035 the dies that define the members of the enumeration, and create the
4036 symbol for the enumeration type.
4037
4038 NOTE: We reverse the order of the element list. */
4039
4040static void
4041process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4042{
4043 struct objfile *objfile = cu->objfile;
4044 struct die_info *child_die;
4045 struct field *fields;
4046 struct attribute *attr;
4047 struct symbol *sym;
4048 int num_fields;
4049 int unsigned_enum = 1;
4050
c906108c
SS
4051 num_fields = 0;
4052 fields = NULL;
639d11d3 4053 if (die->child != NULL)
c906108c 4054 {
639d11d3 4055 child_die = die->child;
c906108c
SS
4056 while (child_die && child_die->tag)
4057 {
4058 if (child_die->tag != DW_TAG_enumerator)
4059 {
e7c27a73 4060 process_die (child_die, cu);
c906108c
SS
4061 }
4062 else
4063 {
e142c38c 4064 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4065 if (attr)
4066 {
134d01f1 4067 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4068 if (SYMBOL_VALUE (sym) < 0)
4069 unsigned_enum = 0;
4070
4071 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4072 {
4073 fields = (struct field *)
4074 xrealloc (fields,
4075 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4076 * sizeof (struct field));
c906108c
SS
4077 }
4078
22abf04a 4079 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4080 FIELD_TYPE (fields[num_fields]) = NULL;
4081 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4082 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4083 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4084
4085 num_fields++;
4086 }
4087 }
4088
4089 child_die = sibling_die (child_die);
4090 }
4091
4092 if (num_fields)
4093 {
134d01f1
DJ
4094 TYPE_NFIELDS (die->type) = num_fields;
4095 TYPE_FIELDS (die->type) = (struct field *)
4096 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4097 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4098 sizeof (struct field) * num_fields);
b8c9b27d 4099 xfree (fields);
c906108c
SS
4100 }
4101 if (unsigned_enum)
134d01f1 4102 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4103 }
134d01f1
DJ
4104
4105 new_symbol (die, die->type, cu);
c906108c
SS
4106}
4107
4108/* Extract all information from a DW_TAG_array_type DIE and put it in
4109 the DIE's type field. For now, this only handles one dimensional
4110 arrays. */
4111
4112static void
e7c27a73 4113read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4114{
e7c27a73 4115 struct objfile *objfile = cu->objfile;
c906108c
SS
4116 struct die_info *child_die;
4117 struct type *type = NULL;
4118 struct type *element_type, *range_type, *index_type;
4119 struct type **range_types = NULL;
4120 struct attribute *attr;
4121 int ndim = 0;
4122 struct cleanup *back_to;
4123
4124 /* Return if we've already decoded this type. */
4125 if (die->type)
4126 {
4127 return;
4128 }
4129
e7c27a73 4130 element_type = die_type (die, cu);
c906108c
SS
4131
4132 /* Irix 6.2 native cc creates array types without children for
4133 arrays with unspecified length. */
639d11d3 4134 if (die->child == NULL)
c906108c 4135 {
e142c38c 4136 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4137 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4138 set_die_type (die, create_array_type (NULL, element_type, range_type),
4139 cu);
c906108c
SS
4140 return;
4141 }
4142
4143 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4144 child_die = die->child;
c906108c
SS
4145 while (child_die && child_die->tag)
4146 {
4147 if (child_die->tag == DW_TAG_subrange_type)
4148 {
a02abb62 4149 read_subrange_type (child_die, cu);
c906108c 4150
a02abb62
JB
4151 if (child_die->type != NULL)
4152 {
4153 /* The range type was succesfully read. Save it for
4154 the array type creation. */
4155 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4156 {
4157 range_types = (struct type **)
4158 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4159 * sizeof (struct type *));
4160 if (ndim == 0)
4161 make_cleanup (free_current_contents, &range_types);
4162 }
4163 range_types[ndim++] = child_die->type;
4164 }
c906108c
SS
4165 }
4166 child_die = sibling_die (child_die);
4167 }
4168
4169 /* Dwarf2 dimensions are output from left to right, create the
4170 necessary array types in backwards order. */
7ca2d3a3 4171
c906108c 4172 type = element_type;
7ca2d3a3
DL
4173
4174 if (read_array_order (die, cu) == DW_ORD_col_major)
4175 {
4176 int i = 0;
4177 while (i < ndim)
4178 type = create_array_type (NULL, type, range_types[i++]);
4179 }
4180 else
4181 {
4182 while (ndim-- > 0)
4183 type = create_array_type (NULL, type, range_types[ndim]);
4184 }
c906108c 4185
f5f8a009
EZ
4186 /* Understand Dwarf2 support for vector types (like they occur on
4187 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4188 array type. This is not part of the Dwarf2/3 standard yet, but a
4189 custom vendor extension. The main difference between a regular
4190 array and the vector variant is that vectors are passed by value
4191 to functions. */
e142c38c 4192 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4193 if (attr)
4194 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4195
c906108c
SS
4196 do_cleanups (back_to);
4197
4198 /* Install the type in the die. */
1c379e20 4199 set_die_type (die, type, cu);
c906108c
SS
4200}
4201
7ca2d3a3
DL
4202static enum dwarf_array_dim_ordering
4203read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4204{
4205 struct attribute *attr;
4206
4207 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4208
4209 if (attr) return DW_SND (attr);
4210
4211 /*
4212 GNU F77 is a special case, as at 08/2004 array type info is the
4213 opposite order to the dwarf2 specification, but data is still
4214 laid out as per normal fortran.
4215
4216 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4217 version checking.
4218 */
4219
4220 if (cu->language == language_fortran &&
4221 cu->producer && strstr (cu->producer, "GNU F77"))
4222 {
4223 return DW_ORD_row_major;
4224 }
4225
4226 switch (cu->language_defn->la_array_ordering)
4227 {
4228 case array_column_major:
4229 return DW_ORD_col_major;
4230 case array_row_major:
4231 default:
4232 return DW_ORD_row_major;
4233 };
4234}
4235
4236
c906108c
SS
4237/* First cut: install each common block member as a global variable. */
4238
4239static void
e7c27a73 4240read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4241{
4242 struct die_info *child_die;
4243 struct attribute *attr;
4244 struct symbol *sym;
4245 CORE_ADDR base = (CORE_ADDR) 0;
4246
e142c38c 4247 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4248 if (attr)
4249 {
8e19ed76
PS
4250 /* Support the .debug_loc offsets */
4251 if (attr_form_is_block (attr))
4252 {
e7c27a73 4253 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4254 }
4255 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4256 {
4d3c2250 4257 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4258 }
4259 else
4260 {
4d3c2250
KB
4261 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4262 "common block member");
8e19ed76 4263 }
c906108c 4264 }
639d11d3 4265 if (die->child != NULL)
c906108c 4266 {
639d11d3 4267 child_die = die->child;
c906108c
SS
4268 while (child_die && child_die->tag)
4269 {
e7c27a73 4270 sym = new_symbol (child_die, NULL, cu);
e142c38c 4271 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4272 if (attr)
4273 {
4274 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4275 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4276 add_symbol_to_list (sym, &global_symbols);
4277 }
4278 child_die = sibling_die (child_die);
4279 }
4280 }
4281}
4282
d9fa45fe
DC
4283/* Read a C++ namespace. */
4284
d9fa45fe 4285static void
e7c27a73 4286read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4287{
e7c27a73 4288 struct objfile *objfile = cu->objfile;
38d518c9 4289 const char *previous_prefix = processing_current_prefix;
63d06c5c 4290 const char *name;
9219021c
DC
4291 int is_anonymous;
4292 struct die_info *current_die;
987504bb 4293 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4294
e142c38c 4295 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4296
4297 /* Now build the name of the current namespace. */
4298
38d518c9 4299 if (previous_prefix[0] == '\0')
9219021c 4300 {
38d518c9 4301 processing_current_prefix = name;
9219021c
DC
4302 }
4303 else
4304 {
987504bb
JJ
4305 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4306 make_cleanup (xfree, temp_name);
38d518c9 4307 processing_current_prefix = temp_name;
9219021c
DC
4308 }
4309
5c4e30ca
DC
4310 /* Add a symbol associated to this if we haven't seen the namespace
4311 before. Also, add a using directive if it's an anonymous
4312 namespace. */
9219021c 4313
e142c38c 4314 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4315 {
4316 struct type *type;
4317
4318 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4319 this cast will hopefully become unnecessary. */
4320 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4321 (char *) processing_current_prefix,
5c4e30ca
DC
4322 objfile);
4323 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4324
e7c27a73 4325 new_symbol (die, type, cu);
1c379e20 4326 set_die_type (die, type, cu);
5c4e30ca
DC
4327
4328 if (is_anonymous)
38d518c9
EZ
4329 cp_add_using_directive (processing_current_prefix,
4330 strlen (previous_prefix),
4331 strlen (processing_current_prefix));
5c4e30ca 4332 }
9219021c 4333
639d11d3 4334 if (die->child != NULL)
d9fa45fe 4335 {
639d11d3 4336 struct die_info *child_die = die->child;
d9fa45fe
DC
4337
4338 while (child_die && child_die->tag)
4339 {
e7c27a73 4340 process_die (child_die, cu);
d9fa45fe
DC
4341 child_die = sibling_die (child_die);
4342 }
4343 }
9219021c 4344
38d518c9 4345 processing_current_prefix = previous_prefix;
987504bb 4346 do_cleanups (back_to);
38d518c9
EZ
4347}
4348
4349/* Return the name of the namespace represented by DIE. Set
4350 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4351 namespace. */
4352
4353static const char *
e142c38c 4354namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4355{
4356 struct die_info *current_die;
4357 const char *name = NULL;
4358
4359 /* Loop through the extensions until we find a name. */
4360
4361 for (current_die = die;
4362 current_die != NULL;
e142c38c 4363 current_die = dwarf2_extension (die, cu))
38d518c9 4364 {
e142c38c 4365 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4366 if (name != NULL)
4367 break;
4368 }
4369
4370 /* Is it an anonymous namespace? */
4371
4372 *is_anonymous = (name == NULL);
4373 if (*is_anonymous)
4374 name = "(anonymous namespace)";
4375
4376 return name;
d9fa45fe
DC
4377}
4378
c906108c
SS
4379/* Extract all information from a DW_TAG_pointer_type DIE and add to
4380 the user defined type vector. */
4381
4382static void
e7c27a73 4383read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4384{
e7c27a73 4385 struct comp_unit_head *cu_header = &cu->header;
c906108c 4386 struct type *type;
8b2dbe47
KB
4387 struct attribute *attr_byte_size;
4388 struct attribute *attr_address_class;
4389 int byte_size, addr_class;
c906108c
SS
4390
4391 if (die->type)
4392 {
4393 return;
4394 }
4395
e7c27a73 4396 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4397
e142c38c 4398 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4399 if (attr_byte_size)
4400 byte_size = DW_UNSND (attr_byte_size);
c906108c 4401 else
8b2dbe47
KB
4402 byte_size = cu_header->addr_size;
4403
e142c38c 4404 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4405 if (attr_address_class)
4406 addr_class = DW_UNSND (attr_address_class);
4407 else
4408 addr_class = DW_ADDR_none;
4409
4410 /* If the pointer size or address class is different than the
4411 default, create a type variant marked as such and set the
4412 length accordingly. */
4413 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4414 {
8b2dbe47
KB
4415 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4416 {
4417 int type_flags;
4418
4419 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4420 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4421 type = make_type_with_address_space (type, type_flags);
4422 }
4423 else if (TYPE_LENGTH (type) != byte_size)
4424 {
e2e0b3e5 4425 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4426 }
4427 else {
4428 /* Should we also complain about unhandled address classes? */
4429 }
c906108c 4430 }
8b2dbe47
KB
4431
4432 TYPE_LENGTH (type) = byte_size;
1c379e20 4433 set_die_type (die, type, cu);
c906108c
SS
4434}
4435
4436/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4437 the user defined type vector. */
4438
4439static void
e7c27a73 4440read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4441{
e7c27a73 4442 struct objfile *objfile = cu->objfile;
c906108c
SS
4443 struct type *type;
4444 struct type *to_type;
4445 struct type *domain;
4446
4447 if (die->type)
4448 {
4449 return;
4450 }
4451
4452 type = alloc_type (objfile);
e7c27a73
DJ
4453 to_type = die_type (die, cu);
4454 domain = die_containing_type (die, cu);
c906108c
SS
4455 smash_to_member_type (type, domain, to_type);
4456
1c379e20 4457 set_die_type (die, type, cu);
c906108c
SS
4458}
4459
4460/* Extract all information from a DW_TAG_reference_type DIE and add to
4461 the user defined type vector. */
4462
4463static void
e7c27a73 4464read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4465{
e7c27a73 4466 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4467 struct type *type;
4468 struct attribute *attr;
4469
4470 if (die->type)
4471 {
4472 return;
4473 }
4474
e7c27a73 4475 type = lookup_reference_type (die_type (die, cu));
e142c38c 4476 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4477 if (attr)
4478 {
4479 TYPE_LENGTH (type) = DW_UNSND (attr);
4480 }
4481 else
4482 {
107d2387 4483 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4484 }
1c379e20 4485 set_die_type (die, type, cu);
c906108c
SS
4486}
4487
4488static void
e7c27a73 4489read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4490{
090c42a4
JB
4491 struct type *base_type;
4492
c906108c
SS
4493 if (die->type)
4494 {
4495 return;
4496 }
4497
e7c27a73 4498 base_type = die_type (die, cu);
1c379e20
DJ
4499 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4500 cu);
c906108c
SS
4501}
4502
4503static void
e7c27a73 4504read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4505{
090c42a4
JB
4506 struct type *base_type;
4507
c906108c
SS
4508 if (die->type)
4509 {
4510 return;
4511 }
4512
e7c27a73 4513 base_type = die_type (die, cu);
1c379e20
DJ
4514 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4515 cu);
c906108c
SS
4516}
4517
4518/* Extract all information from a DW_TAG_string_type DIE and add to
4519 the user defined type vector. It isn't really a user defined type,
4520 but it behaves like one, with other DIE's using an AT_user_def_type
4521 attribute to reference it. */
4522
4523static void
e7c27a73 4524read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4525{
e7c27a73 4526 struct objfile *objfile = cu->objfile;
c906108c
SS
4527 struct type *type, *range_type, *index_type, *char_type;
4528 struct attribute *attr;
4529 unsigned int length;
4530
4531 if (die->type)
4532 {
4533 return;
4534 }
4535
e142c38c 4536 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4537 if (attr)
4538 {
4539 length = DW_UNSND (attr);
4540 }
4541 else
4542 {
b21b22e0 4543 /* check for the DW_AT_byte_size attribute */
e142c38c 4544 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4545 if (attr)
4546 {
4547 length = DW_UNSND (attr);
4548 }
4549 else
4550 {
4551 length = 1;
4552 }
c906108c 4553 }
e142c38c 4554 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4555 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4556 if (cu->language == language_fortran)
b21b22e0
PS
4557 {
4558 /* Need to create a unique string type for bounds
4559 information */
4560 type = create_string_type (0, range_type);
4561 }
4562 else
4563 {
e142c38c 4564 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4565 type = create_string_type (char_type, range_type);
4566 }
1c379e20 4567 set_die_type (die, type, cu);
c906108c
SS
4568}
4569
4570/* Handle DIES due to C code like:
4571
4572 struct foo
c5aa993b
JM
4573 {
4574 int (*funcp)(int a, long l);
4575 int b;
4576 };
c906108c
SS
4577
4578 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4579 */
c906108c
SS
4580
4581static void
e7c27a73 4582read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4583{
4584 struct type *type; /* Type that this function returns */
4585 struct type *ftype; /* Function that returns above type */
4586 struct attribute *attr;
4587
4588 /* Decode the type that this subroutine returns */
4589 if (die->type)
4590 {
4591 return;
4592 }
e7c27a73 4593 type = die_type (die, cu);
1326e61b 4594 ftype = make_function_type (type, (struct type **) 0);
c906108c 4595
987504bb 4596 /* All functions in C++ and Java have prototypes. */
e142c38c 4597 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4598 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4599 || cu->language == language_cplus
4600 || cu->language == language_java)
c906108c
SS
4601 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4602
639d11d3 4603 if (die->child != NULL)
c906108c
SS
4604 {
4605 struct die_info *child_die;
4606 int nparams = 0;
4607 int iparams = 0;
4608
4609 /* Count the number of parameters.
4610 FIXME: GDB currently ignores vararg functions, but knows about
4611 vararg member functions. */
639d11d3 4612 child_die = die->child;
c906108c
SS
4613 while (child_die && child_die->tag)
4614 {
4615 if (child_die->tag == DW_TAG_formal_parameter)
4616 nparams++;
4617 else if (child_die->tag == DW_TAG_unspecified_parameters)
4618 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4619 child_die = sibling_die (child_die);
4620 }
4621
4622 /* Allocate storage for parameters and fill them in. */
4623 TYPE_NFIELDS (ftype) = nparams;
4624 TYPE_FIELDS (ftype) = (struct field *)
4625 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4626
639d11d3 4627 child_die = die->child;
c906108c
SS
4628 while (child_die && child_die->tag)
4629 {
4630 if (child_die->tag == DW_TAG_formal_parameter)
4631 {
4632 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4633 member functions. G++ helps GDB by marking the first
4634 parameter for non-static member functions (which is the
4635 this pointer) as artificial. We pass this information
4636 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4637 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4638 if (attr)
4639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4640 else
4641 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4642 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4643 iparams++;
4644 }
4645 child_die = sibling_die (child_die);
4646 }
4647 }
4648
1c379e20 4649 set_die_type (die, ftype, cu);
c906108c
SS
4650}
4651
4652static void
e7c27a73 4653read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4654{
e7c27a73 4655 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4656 struct attribute *attr;
4657 char *name = NULL;
c906108c
SS
4658
4659 if (!die->type)
4660 {
e142c38c 4661 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4662 if (attr && DW_STRING (attr))
2f038fcb
FF
4663 {
4664 name = DW_STRING (attr);
4665 }
1c379e20
DJ
4666 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4667 TYPE_FLAG_TARGET_STUB, name, objfile),
4668 cu);
e7c27a73 4669 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4670 }
4671}
4672
4673/* Find a representation of a given base type and install
4674 it in the TYPE field of the die. */
4675
4676static void
e7c27a73 4677read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4678{
e7c27a73 4679 struct objfile *objfile = cu->objfile;
c906108c
SS
4680 struct type *type;
4681 struct attribute *attr;
4682 int encoding = 0, size = 0;
4683
4684 /* If we've already decoded this die, this is a no-op. */
4685 if (die->type)
4686 {
4687 return;
4688 }
4689
e142c38c 4690 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4691 if (attr)
4692 {
4693 encoding = DW_UNSND (attr);
4694 }
e142c38c 4695 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4696 if (attr)
4697 {
4698 size = DW_UNSND (attr);
4699 }
e142c38c 4700 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4701 if (attr && DW_STRING (attr))
4702 {
4703 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4704 int type_flags = 0;
c906108c
SS
4705
4706 switch (encoding)
4707 {
4708 case DW_ATE_address:
4709 /* Turn DW_ATE_address into a void * pointer. */
4710 code = TYPE_CODE_PTR;
f5ef7c67 4711 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4712 break;
4713 case DW_ATE_boolean:
4714 code = TYPE_CODE_BOOL;
f5ef7c67 4715 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4716 break;
4717 case DW_ATE_complex_float:
4718 code = TYPE_CODE_COMPLEX;
4719 break;
4720 case DW_ATE_float:
4721 code = TYPE_CODE_FLT;
4722 break;
4723 case DW_ATE_signed:
4724 case DW_ATE_signed_char:
4725 break;
4726 case DW_ATE_unsigned:
4727 case DW_ATE_unsigned_char:
f5ef7c67 4728 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4729 break;
4730 default:
e2e0b3e5 4731 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4732 dwarf_type_encoding_name (encoding));
c906108c
SS
4733 break;
4734 }
f5ef7c67 4735 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4736 if (encoding == DW_ATE_address)
e142c38c
DJ
4737 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4738 cu);
f65ca430
DJ
4739 else if (encoding == DW_ATE_complex_float)
4740 {
4741 if (size == 32)
4742 TYPE_TARGET_TYPE (type)
e142c38c 4743 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4744 else if (size == 16)
4745 TYPE_TARGET_TYPE (type)
e142c38c 4746 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4747 else if (size == 8)
4748 TYPE_TARGET_TYPE (type)
e142c38c 4749 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4750 }
c906108c
SS
4751 }
4752 else
4753 {
e7c27a73 4754 type = dwarf_base_type (encoding, size, cu);
c906108c 4755 }
1c379e20 4756 set_die_type (die, type, cu);
c906108c
SS
4757}
4758
a02abb62
JB
4759/* Read the given DW_AT_subrange DIE. */
4760
4761static void
4762read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4763{
4764 struct type *base_type;
4765 struct type *range_type;
4766 struct attribute *attr;
4767 int low = 0;
4768 int high = -1;
4769
4770 /* If we have already decoded this die, then nothing more to do. */
4771 if (die->type)
4772 return;
4773
4774 base_type = die_type (die, cu);
4775 if (base_type == NULL)
4776 {
4777 complaint (&symfile_complaints,
e2e0b3e5 4778 _("DW_AT_type missing from DW_TAG_subrange_type"));
a02abb62
JB
4779 return;
4780 }
4781
4782 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4783 base_type = alloc_type (NULL);
4784
e142c38c 4785 if (cu->language == language_fortran)
a02abb62
JB
4786 {
4787 /* FORTRAN implies a lower bound of 1, if not given. */
4788 low = 1;
4789 }
4790
dd5e6932
DJ
4791 /* FIXME: For variable sized arrays either of these could be
4792 a variable rather than a constant value. We'll allow it,
4793 but we don't know how to handle it. */
e142c38c 4794 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4795 if (attr)
4796 low = dwarf2_get_attr_constant_value (attr, 0);
4797
e142c38c 4798 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4799 if (attr)
4800 {
4801 if (attr->form == DW_FORM_block1)
4802 {
4803 /* GCC encodes arrays with unspecified or dynamic length
4804 with a DW_FORM_block1 attribute.
4805 FIXME: GDB does not yet know how to handle dynamic
4806 arrays properly, treat them as arrays with unspecified
4807 length for now.
4808
4809 FIXME: jimb/2003-09-22: GDB does not really know
4810 how to handle arrays of unspecified length
4811 either; we just represent them as zero-length
4812 arrays. Choose an appropriate upper bound given
4813 the lower bound we've computed above. */
4814 high = low - 1;
4815 }
4816 else
4817 high = dwarf2_get_attr_constant_value (attr, 1);
4818 }
4819
4820 range_type = create_range_type (NULL, base_type, low, high);
4821
e142c38c 4822 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4823 if (attr && DW_STRING (attr))
4824 TYPE_NAME (range_type) = DW_STRING (attr);
4825
e142c38c 4826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4827 if (attr)
4828 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4829
1c379e20 4830 set_die_type (die, range_type, cu);
a02abb62
JB
4831}
4832
4833
c906108c
SS
4834/* Read a whole compilation unit into a linked list of dies. */
4835
f9aca02d 4836static struct die_info *
e7c27a73 4837read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 4838{
e7c27a73 4839 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
4840}
4841
4842/* Read a single die and all its descendents. Set the die's sibling
4843 field to NULL; set other fields in the die correctly, and set all
4844 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4845 location of the info_ptr after reading all of those dies. PARENT
4846 is the parent of the die in question. */
4847
4848static struct die_info *
4849read_die_and_children (char *info_ptr, bfd *abfd,
e7c27a73 4850 struct dwarf2_cu *cu,
639d11d3
DC
4851 char **new_info_ptr,
4852 struct die_info *parent)
4853{
4854 struct die_info *die;
4855 char *cur_ptr;
4856 int has_children;
4857
e7c27a73 4858 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 4859 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
4860
4861 if (has_children)
4862 {
e7c27a73 4863 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
4864 new_info_ptr, die);
4865 }
4866 else
4867 {
4868 die->child = NULL;
4869 *new_info_ptr = cur_ptr;
4870 }
4871
4872 die->sibling = NULL;
4873 die->parent = parent;
4874 return die;
4875}
4876
4877/* Read a die, all of its descendents, and all of its siblings; set
4878 all of the fields of all of the dies correctly. Arguments are as
4879 in read_die_and_children. */
4880
4881static struct die_info *
4882read_die_and_siblings (char *info_ptr, bfd *abfd,
e7c27a73 4883 struct dwarf2_cu *cu,
639d11d3
DC
4884 char **new_info_ptr,
4885 struct die_info *parent)
4886{
4887 struct die_info *first_die, *last_sibling;
4888 char *cur_ptr;
4889
c906108c 4890 cur_ptr = info_ptr;
639d11d3
DC
4891 first_die = last_sibling = NULL;
4892
4893 while (1)
c906108c 4894 {
639d11d3 4895 struct die_info *die
e7c27a73 4896 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
4897
4898 if (!first_die)
c906108c 4899 {
639d11d3 4900 first_die = die;
c906108c 4901 }
639d11d3 4902 else
c906108c 4903 {
639d11d3 4904 last_sibling->sibling = die;
c906108c
SS
4905 }
4906
639d11d3 4907 if (die->tag == 0)
c906108c 4908 {
639d11d3
DC
4909 *new_info_ptr = cur_ptr;
4910 return first_die;
c906108c
SS
4911 }
4912 else
4913 {
639d11d3 4914 last_sibling = die;
c906108c
SS
4915 }
4916 }
c906108c
SS
4917}
4918
4919/* Free a linked list of dies. */
4920
4921static void
fba45db2 4922free_die_list (struct die_info *dies)
c906108c
SS
4923{
4924 struct die_info *die, *next;
4925
4926 die = dies;
4927 while (die)
4928 {
639d11d3
DC
4929 if (die->child != NULL)
4930 free_die_list (die->child);
4931 next = die->sibling;
b8c9b27d
KB
4932 xfree (die->attrs);
4933 xfree (die);
c906108c
SS
4934 die = next;
4935 }
4936}
4937
4938/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 4939 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 4940
b6af0555 4941char *
188dd5d6 4942dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
4943{
4944 bfd *abfd = objfile->obfd;
086df311 4945 char *buf, *retbuf;
2c500098 4946 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
4947
4948 if (size == 0)
4949 return NULL;
4950
8b92e4d5 4951 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
086df311
DJ
4952 retbuf
4953 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4954 if (retbuf != NULL)
4955 return retbuf;
4956
188dd5d6
DJ
4957 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4958 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 4959 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
4960 bfd_get_filename (abfd));
4961
c906108c
SS
4962 return buf;
4963}
4964
4965/* In DWARF version 2, the description of the debugging information is
4966 stored in a separate .debug_abbrev section. Before we read any
4967 dies from a section we read in all abbreviations and install them
72bf9492
DJ
4968 in a hash table. This function also sets flags in CU describing
4969 the data found in the abbrev table. */
c906108c
SS
4970
4971static void
e7c27a73 4972dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 4973{
e7c27a73 4974 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4975 char *abbrev_ptr;
4976 struct abbrev_info *cur_abbrev;
4977 unsigned int abbrev_number, bytes_read, abbrev_name;
4978 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
4979 struct attr_abbrev *cur_attrs;
4980 unsigned int allocated_attrs;
c906108c 4981
57349743 4982 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
4983 obstack_init (&cu->abbrev_obstack);
4984 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4985 (ABBREV_HASH_SIZE
4986 * sizeof (struct abbrev_info *)));
4987 memset (cu->dwarf2_abbrevs, 0,
4988 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 4989
6502dd73 4990 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
4991 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993
f3dd6933
DJ
4994 allocated_attrs = ATTR_ALLOC_CHUNK;
4995 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4996
c906108c
SS
4997 /* loop until we reach an abbrev number of 0 */
4998 while (abbrev_number)
4999 {
f3dd6933 5000 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5001
5002 /* read in abbrev header */
5003 cur_abbrev->number = abbrev_number;
5004 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5005 abbrev_ptr += bytes_read;
5006 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5007 abbrev_ptr += 1;
5008
72bf9492
DJ
5009 if (cur_abbrev->tag == DW_TAG_namespace)
5010 cu->has_namespace_info = 1;
5011
c906108c
SS
5012 /* now read in declarations */
5013 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5014 abbrev_ptr += bytes_read;
5015 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5016 abbrev_ptr += bytes_read;
5017 while (abbrev_name)
5018 {
f3dd6933 5019 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5020 {
f3dd6933
DJ
5021 allocated_attrs += ATTR_ALLOC_CHUNK;
5022 cur_attrs
5023 = xrealloc (cur_attrs, (allocated_attrs
5024 * sizeof (struct attr_abbrev)));
c906108c 5025 }
ae038cb0
DJ
5026
5027 /* Record whether this compilation unit might have
5028 inter-compilation-unit references. If we don't know what form
5029 this attribute will have, then it might potentially be a
5030 DW_FORM_ref_addr, so we conservatively expect inter-CU
5031 references. */
5032
5033 if (abbrev_form == DW_FORM_ref_addr
5034 || abbrev_form == DW_FORM_indirect)
5035 cu->has_form_ref_addr = 1;
5036
f3dd6933
DJ
5037 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5038 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5039 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5040 abbrev_ptr += bytes_read;
5041 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5042 abbrev_ptr += bytes_read;
5043 }
5044
f3dd6933
DJ
5045 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5046 (cur_abbrev->num_attrs
5047 * sizeof (struct attr_abbrev)));
5048 memcpy (cur_abbrev->attrs, cur_attrs,
5049 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5050
c906108c 5051 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5052 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5053 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5054
5055 /* Get next abbreviation.
5056 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5057 always properly terminated with an abbrev number of 0.
5058 Exit loop if we encounter an abbreviation which we have
5059 already read (which means we are about to read the abbreviations
5060 for the next compile unit) or if the end of the abbreviation
5061 table is reached. */
6502dd73
DJ
5062 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5063 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5064 break;
5065 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5066 abbrev_ptr += bytes_read;
e7c27a73 5067 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5068 break;
5069 }
f3dd6933
DJ
5070
5071 xfree (cur_attrs);
c906108c
SS
5072}
5073
f3dd6933 5074/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5075
c906108c 5076static void
f3dd6933 5077dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5078{
f3dd6933 5079 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5080
f3dd6933
DJ
5081 obstack_free (&cu->abbrev_obstack, NULL);
5082 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5083}
5084
5085/* Lookup an abbrev_info structure in the abbrev hash table. */
5086
5087static struct abbrev_info *
e7c27a73 5088dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5089{
5090 unsigned int hash_number;
5091 struct abbrev_info *abbrev;
5092
5093 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5094 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5095
5096 while (abbrev)
5097 {
5098 if (abbrev->number == number)
5099 return abbrev;
5100 else
5101 abbrev = abbrev->next;
5102 }
5103 return NULL;
5104}
5105
72bf9492
DJ
5106/* Returns nonzero if TAG represents a type that we might generate a partial
5107 symbol for. */
5108
5109static int
5110is_type_tag_for_partial (int tag)
5111{
5112 switch (tag)
5113 {
5114#if 0
5115 /* Some types that would be reasonable to generate partial symbols for,
5116 that we don't at present. */
5117 case DW_TAG_array_type:
5118 case DW_TAG_file_type:
5119 case DW_TAG_ptr_to_member_type:
5120 case DW_TAG_set_type:
5121 case DW_TAG_string_type:
5122 case DW_TAG_subroutine_type:
5123#endif
5124 case DW_TAG_base_type:
5125 case DW_TAG_class_type:
5126 case DW_TAG_enumeration_type:
5127 case DW_TAG_structure_type:
5128 case DW_TAG_subrange_type:
5129 case DW_TAG_typedef:
5130 case DW_TAG_union_type:
5131 return 1;
5132 default:
5133 return 0;
5134 }
5135}
5136
5137/* Load all DIEs that are interesting for partial symbols into memory. */
5138
5139static struct partial_die_info *
5140load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5141 struct dwarf2_cu *cu)
5142{
5143 struct partial_die_info *part_die;
5144 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5145 struct abbrev_info *abbrev;
5146 unsigned int bytes_read;
5147
5148 int nesting_level = 1;
5149
5150 parent_die = NULL;
5151 last_die = NULL;
5152
5153 cu->partial_dies
5154 = htab_create_alloc_ex (cu->header.length / 12,
5155 partial_die_hash,
5156 partial_die_eq,
5157 NULL,
5158 &cu->comp_unit_obstack,
5159 hashtab_obstack_allocate,
5160 dummy_obstack_deallocate);
5161
5162 part_die = obstack_alloc (&cu->comp_unit_obstack,
5163 sizeof (struct partial_die_info));
5164
5165 while (1)
5166 {
5167 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5168
5169 /* A NULL abbrev means the end of a series of children. */
5170 if (abbrev == NULL)
5171 {
5172 if (--nesting_level == 0)
5173 {
5174 /* PART_DIE was probably the last thing allocated on the
5175 comp_unit_obstack, so we could call obstack_free
5176 here. We don't do that because the waste is small,
5177 and will be cleaned up when we're done with this
5178 compilation unit. This way, we're also more robust
5179 against other users of the comp_unit_obstack. */
5180 return first_die;
5181 }
5182 info_ptr += bytes_read;
5183 last_die = parent_die;
5184 parent_die = parent_die->die_parent;
5185 continue;
5186 }
5187
5188 /* Check whether this DIE is interesting enough to save. */
5189 if (!is_type_tag_for_partial (abbrev->tag)
5190 && abbrev->tag != DW_TAG_enumerator
5191 && abbrev->tag != DW_TAG_subprogram
5192 && abbrev->tag != DW_TAG_variable
5193 && abbrev->tag != DW_TAG_namespace)
5194 {
5195 /* Otherwise we skip to the next sibling, if any. */
5196 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5197 continue;
5198 }
5199
5200 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5201 abfd, info_ptr, cu);
5202
5203 /* This two-pass algorithm for processing partial symbols has a
5204 high cost in cache pressure. Thus, handle some simple cases
5205 here which cover the majority of C partial symbols. DIEs
5206 which neither have specification tags in them, nor could have
5207 specification tags elsewhere pointing at them, can simply be
5208 processed and discarded.
5209
5210 This segment is also optional; scan_partial_symbols and
5211 add_partial_symbol will handle these DIEs if we chain
5212 them in normally. When compilers which do not emit large
5213 quantities of duplicate debug information are more common,
5214 this code can probably be removed. */
5215
5216 /* Any complete simple types at the top level (pretty much all
5217 of them, for a language without namespaces), can be processed
5218 directly. */
5219 if (parent_die == NULL
5220 && part_die->has_specification == 0
5221 && part_die->is_declaration == 0
5222 && (part_die->tag == DW_TAG_typedef
5223 || part_die->tag == DW_TAG_base_type
5224 || part_die->tag == DW_TAG_subrange_type))
5225 {
5226 if (building_psymtab && part_die->name != NULL)
5227 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5228 VAR_DOMAIN, LOC_TYPEDEF,
5229 &cu->objfile->static_psymbols,
5230 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5231 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5232 continue;
5233 }
5234
5235 /* If we're at the second level, and we're an enumerator, and
5236 our parent has no specification (meaning possibly lives in a
5237 namespace elsewhere), then we can add the partial symbol now
5238 instead of queueing it. */
5239 if (part_die->tag == DW_TAG_enumerator
5240 && parent_die != NULL
5241 && parent_die->die_parent == NULL
5242 && parent_die->tag == DW_TAG_enumeration_type
5243 && parent_die->has_specification == 0)
5244 {
5245 if (part_die->name == NULL)
e2e0b3e5 5246 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5247 else if (building_psymtab)
5248 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5249 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5250 (cu->language == language_cplus
5251 || cu->language == language_java)
72bf9492
DJ
5252 ? &cu->objfile->global_psymbols
5253 : &cu->objfile->static_psymbols,
5254 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5255
5256 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5257 continue;
5258 }
5259
5260 /* We'll save this DIE so link it in. */
5261 part_die->die_parent = parent_die;
5262 part_die->die_sibling = NULL;
5263 part_die->die_child = NULL;
5264
5265 if (last_die && last_die == parent_die)
5266 last_die->die_child = part_die;
5267 else if (last_die)
5268 last_die->die_sibling = part_die;
5269
5270 last_die = part_die;
5271
5272 if (first_die == NULL)
5273 first_die = part_die;
5274
5275 /* Maybe add the DIE to the hash table. Not all DIEs that we
5276 find interesting need to be in the hash table, because we
5277 also have the parent/sibling/child chains; only those that we
5278 might refer to by offset later during partial symbol reading.
5279
5280 For now this means things that might have be the target of a
5281 DW_AT_specification, DW_AT_abstract_origin, or
5282 DW_AT_extension. DW_AT_extension will refer only to
5283 namespaces; DW_AT_abstract_origin refers to functions (and
5284 many things under the function DIE, but we do not recurse
5285 into function DIEs during partial symbol reading) and
5286 possibly variables as well; DW_AT_specification refers to
5287 declarations. Declarations ought to have the DW_AT_declaration
5288 flag. It happens that GCC forgets to put it in sometimes, but
5289 only for functions, not for types.
5290
5291 Adding more things than necessary to the hash table is harmless
5292 except for the performance cost. Adding too few will result in
5293 internal errors in find_partial_die. */
5294
5295 if (abbrev->tag == DW_TAG_subprogram
5296 || abbrev->tag == DW_TAG_variable
5297 || abbrev->tag == DW_TAG_namespace
5298 || part_die->is_declaration)
5299 {
5300 void **slot;
5301
5302 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5303 part_die->offset, INSERT);
5304 *slot = part_die;
5305 }
5306
5307 part_die = obstack_alloc (&cu->comp_unit_obstack,
5308 sizeof (struct partial_die_info));
5309
5310 /* For some DIEs we want to follow their children (if any). For C
5311 we have no reason to follow the children of structures; for other
5312 languages we have to, both so that we can get at method physnames
5313 to infer fully qualified class names, and for DW_AT_specification. */
5314 if (last_die->has_children
5315 && (last_die->tag == DW_TAG_namespace
5316 || last_die->tag == DW_TAG_enumeration_type
5317 || (cu->language != language_c
5318 && (last_die->tag == DW_TAG_class_type
5319 || last_die->tag == DW_TAG_structure_type
5320 || last_die->tag == DW_TAG_union_type))))
5321 {
5322 nesting_level++;
5323 parent_die = last_die;
5324 continue;
5325 }
5326
5327 /* Otherwise we skip to the next sibling, if any. */
5328 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5329
5330 /* Back to the top, do it again. */
5331 }
5332}
5333
c906108c
SS
5334/* Read a minimal amount of information into the minimal die structure. */
5335
5336static char *
72bf9492
DJ
5337read_partial_die (struct partial_die_info *part_die,
5338 struct abbrev_info *abbrev,
5339 unsigned int abbrev_len, bfd *abfd,
e7c27a73 5340 char *info_ptr, struct dwarf2_cu *cu)
c906108c 5341{
72bf9492 5342 unsigned int bytes_read, i;
c906108c 5343 struct attribute attr;
c5aa993b 5344 int has_low_pc_attr = 0;
c906108c
SS
5345 int has_high_pc_attr = 0;
5346
72bf9492 5347 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5348
6502dd73 5349 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5350
5351 info_ptr += abbrev_len;
5352
5353 if (abbrev == NULL)
5354 return info_ptr;
5355
c906108c
SS
5356 part_die->tag = abbrev->tag;
5357 part_die->has_children = abbrev->has_children;
c906108c
SS
5358
5359 for (i = 0; i < abbrev->num_attrs; ++i)
5360 {
e7c27a73 5361 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5362
5363 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5364 partial symbol table. */
c906108c
SS
5365 switch (attr.name)
5366 {
5367 case DW_AT_name:
5368
5369 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5370 if (part_die->name == NULL)
5371 part_die->name = DW_STRING (&attr);
5372 break;
57c22c6c
BR
5373 case DW_AT_comp_dir:
5374 if (part_die->dirname == NULL)
5375 part_die->dirname = DW_STRING (&attr);
5376 break;
c906108c
SS
5377 case DW_AT_MIPS_linkage_name:
5378 part_die->name = DW_STRING (&attr);
5379 break;
5380 case DW_AT_low_pc:
5381 has_low_pc_attr = 1;
5382 part_die->lowpc = DW_ADDR (&attr);
5383 break;
5384 case DW_AT_high_pc:
5385 has_high_pc_attr = 1;
5386 part_die->highpc = DW_ADDR (&attr);
5387 break;
5388 case DW_AT_location:
8e19ed76
PS
5389 /* Support the .debug_loc offsets */
5390 if (attr_form_is_block (&attr))
5391 {
5392 part_die->locdesc = DW_BLOCK (&attr);
5393 }
5394 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5395 {
4d3c2250 5396 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5397 }
5398 else
5399 {
4d3c2250
KB
5400 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5401 "partial symbol information");
8e19ed76 5402 }
c906108c
SS
5403 break;
5404 case DW_AT_language:
5405 part_die->language = DW_UNSND (&attr);
5406 break;
5407 case DW_AT_external:
5408 part_die->is_external = DW_UNSND (&attr);
5409 break;
5410 case DW_AT_declaration:
5411 part_die->is_declaration = DW_UNSND (&attr);
5412 break;
5413 case DW_AT_type:
5414 part_die->has_type = 1;
5415 break;
5416 case DW_AT_abstract_origin:
5417 case DW_AT_specification:
72bf9492
DJ
5418 case DW_AT_extension:
5419 part_die->has_specification = 1;
5420 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5421 break;
5422 case DW_AT_sibling:
5423 /* Ignore absolute siblings, they might point outside of
5424 the current compile unit. */
5425 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5426 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5427 else
6502dd73
DJ
5428 part_die->sibling = dwarf2_per_objfile->info_buffer
5429 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5430 break;
aaa75496
JB
5431 case DW_AT_stmt_list:
5432 part_die->has_stmt_list = 1;
5433 part_die->line_offset = DW_UNSND (&attr);
5434 break;
c906108c
SS
5435 default:
5436 break;
5437 }
5438 }
5439
c906108c
SS
5440 /* When using the GNU linker, .gnu.linkonce. sections are used to
5441 eliminate duplicate copies of functions and vtables and such.
5442 The linker will arbitrarily choose one and discard the others.
5443 The AT_*_pc values for such functions refer to local labels in
5444 these sections. If the section from that file was discarded, the
5445 labels are not in the output, so the relocs get a value of 0.
5446 If this is a discarded function, mark the pc bounds as invalid,
5447 so that GDB will ignore it. */
5448 if (has_low_pc_attr && has_high_pc_attr
5449 && part_die->lowpc < part_die->highpc
5450 && (part_die->lowpc != 0
5451 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
0b010bcc 5452 part_die->has_pc_info = 1;
c906108c
SS
5453 return info_ptr;
5454}
5455
72bf9492
DJ
5456/* Find a cached partial DIE at OFFSET in CU. */
5457
5458static struct partial_die_info *
5459find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5460{
5461 struct partial_die_info *lookup_die = NULL;
5462 struct partial_die_info part_die;
5463
5464 part_die.offset = offset;
5465 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5466
5467 if (lookup_die == NULL)
5468 internal_error (__FILE__, __LINE__,
e2e0b3e5 5469 _("could not find partial DIE in cache\n"));
72bf9492
DJ
5470
5471 return lookup_die;
5472}
5473
5474/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5475
5476static struct partial_die_info *
10b3939b 5477find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492
DJ
5478{
5479 struct dwarf2_per_cu_data *per_cu;
5480
5481 if (offset >= cu->header.offset
5482 && offset < cu->header.offset + cu->header.length)
10b3939b 5483 return find_partial_die_in_comp_unit (offset, cu);
72bf9492 5484
ae038cb0
DJ
5485 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5486
ae038cb0
DJ
5487 if (per_cu->cu == NULL)
5488 {
5489 load_comp_unit (per_cu, cu->objfile);
5490 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5491 dwarf2_per_objfile->read_in_chain = per_cu;
5492 }
5493
5494 per_cu->cu->last_used = 0;
ae038cb0 5495 return find_partial_die_in_comp_unit (offset, per_cu->cu);
72bf9492
DJ
5496}
5497
5498/* Adjust PART_DIE before generating a symbol for it. This function
5499 may set the is_external flag or change the DIE's name. */
5500
5501static void
5502fixup_partial_die (struct partial_die_info *part_die,
5503 struct dwarf2_cu *cu)
5504{
5505 /* If we found a reference attribute and the DIE has no name, try
5506 to find a name in the referred to DIE. */
5507
5508 if (part_die->name == NULL && part_die->has_specification)
5509 {
5510 struct partial_die_info *spec_die;
72bf9492 5511
10b3939b 5512 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5513
10b3939b 5514 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5515
5516 if (spec_die->name)
5517 {
5518 part_die->name = spec_die->name;
5519
5520 /* Copy DW_AT_external attribute if it is set. */
5521 if (spec_die->is_external)
5522 part_die->is_external = spec_die->is_external;
5523 }
5524 }
5525
5526 /* Set default names for some unnamed DIEs. */
5527 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5528 || part_die->tag == DW_TAG_class_type))
5529 part_die->name = "(anonymous class)";
5530
5531 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5532 part_die->name = "(anonymous namespace)";
5533
5534 if (part_die->tag == DW_TAG_structure_type
5535 || part_die->tag == DW_TAG_class_type
5536 || part_die->tag == DW_TAG_union_type)
5537 guess_structure_name (part_die, cu);
5538}
5539
639d11d3
DC
5540/* Read the die from the .debug_info section buffer. Set DIEP to
5541 point to a newly allocated die with its information, except for its
5542 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5543 whether the die has children or not. */
c906108c
SS
5544
5545static char *
107d2387 5546read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
e7c27a73 5547 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5548{
5549 unsigned int abbrev_number, bytes_read, i, offset;
5550 struct abbrev_info *abbrev;
5551 struct die_info *die;
5552
6502dd73 5553 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5554 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5555 info_ptr += bytes_read;
5556 if (!abbrev_number)
5557 {
5558 die = dwarf_alloc_die ();
5559 die->tag = 0;
5560 die->abbrev = abbrev_number;
5561 die->type = NULL;
5562 *diep = die;
639d11d3 5563 *has_children = 0;
c906108c
SS
5564 return info_ptr;
5565 }
5566
e7c27a73 5567 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5568 if (!abbrev)
5569 {
8a3fe4f8 5570 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5571 abbrev_number,
639d11d3 5572 bfd_get_filename (abfd));
c906108c
SS
5573 }
5574 die = dwarf_alloc_die ();
5575 die->offset = offset;
5576 die->tag = abbrev->tag;
c906108c
SS
5577 die->abbrev = abbrev_number;
5578 die->type = NULL;
5579
5580 die->num_attrs = abbrev->num_attrs;
5581 die->attrs = (struct attribute *)
5582 xmalloc (die->num_attrs * sizeof (struct attribute));
5583
5584 for (i = 0; i < abbrev->num_attrs; ++i)
5585 {
5586 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5587 abfd, info_ptr, cu);
10b3939b
DJ
5588
5589 /* If this attribute is an absolute reference to a different
5590 compilation unit, make sure that compilation unit is loaded
5591 also. */
5592 if (die->attrs[i].form == DW_FORM_ref_addr
5593 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5594 || (DW_ADDR (&die->attrs[i])
5595 >= cu->header.offset + cu->header.length)))
5596 {
5597 struct dwarf2_per_cu_data *per_cu;
5598 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5599 cu->objfile);
5600
5601 /* Mark the dependence relation so that we don't flush PER_CU
5602 too early. */
5603 dwarf2_add_dependence (cu, per_cu);
5604
5605 /* If it's already on the queue, we have nothing to do. */
5606 if (per_cu->queued)
5607 continue;
5608
5609 /* If the compilation unit is already loaded, just mark it as
5610 used. */
5611 if (per_cu->cu != NULL)
5612 {
5613 per_cu->cu->last_used = 0;
5614 continue;
5615 }
5616
5617 /* Add it to the queue. */
5618 queue_comp_unit (per_cu);
5619 }
c906108c
SS
5620 }
5621
5622 *diep = die;
639d11d3 5623 *has_children = abbrev->has_children;
c906108c
SS
5624 return info_ptr;
5625}
5626
a8329558 5627/* Read an attribute value described by an attribute form. */
c906108c
SS
5628
5629static char *
a8329558 5630read_attribute_value (struct attribute *attr, unsigned form,
e7c27a73
DJ
5631 bfd *abfd, char *info_ptr,
5632 struct dwarf2_cu *cu)
c906108c 5633{
e7c27a73 5634 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5635 unsigned int bytes_read;
5636 struct dwarf_block *blk;
5637
a8329558
KW
5638 attr->form = form;
5639 switch (form)
c906108c
SS
5640 {
5641 case DW_FORM_addr:
5642 case DW_FORM_ref_addr:
e7c27a73 5643 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5644 info_ptr += bytes_read;
c906108c
SS
5645 break;
5646 case DW_FORM_block2:
7b5a2f43 5647 blk = dwarf_alloc_block (cu);
c906108c
SS
5648 blk->size = read_2_bytes (abfd, info_ptr);
5649 info_ptr += 2;
5650 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5651 info_ptr += blk->size;
5652 DW_BLOCK (attr) = blk;
5653 break;
5654 case DW_FORM_block4:
7b5a2f43 5655 blk = dwarf_alloc_block (cu);
c906108c
SS
5656 blk->size = read_4_bytes (abfd, info_ptr);
5657 info_ptr += 4;
5658 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5659 info_ptr += blk->size;
5660 DW_BLOCK (attr) = blk;
5661 break;
5662 case DW_FORM_data2:
5663 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5664 info_ptr += 2;
5665 break;
5666 case DW_FORM_data4:
5667 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5668 info_ptr += 4;
5669 break;
5670 case DW_FORM_data8:
5671 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5672 info_ptr += 8;
5673 break;
5674 case DW_FORM_string:
5675 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5676 info_ptr += bytes_read;
5677 break;
4bdf3d34
JJ
5678 case DW_FORM_strp:
5679 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5680 &bytes_read);
5681 info_ptr += bytes_read;
5682 break;
c906108c 5683 case DW_FORM_block:
7b5a2f43 5684 blk = dwarf_alloc_block (cu);
c906108c
SS
5685 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5686 info_ptr += bytes_read;
5687 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5688 info_ptr += blk->size;
5689 DW_BLOCK (attr) = blk;
5690 break;
5691 case DW_FORM_block1:
7b5a2f43 5692 blk = dwarf_alloc_block (cu);
c906108c
SS
5693 blk->size = read_1_byte (abfd, info_ptr);
5694 info_ptr += 1;
5695 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5696 info_ptr += blk->size;
5697 DW_BLOCK (attr) = blk;
5698 break;
5699 case DW_FORM_data1:
5700 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5701 info_ptr += 1;
5702 break;
5703 case DW_FORM_flag:
5704 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5705 info_ptr += 1;
5706 break;
5707 case DW_FORM_sdata:
5708 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5709 info_ptr += bytes_read;
5710 break;
5711 case DW_FORM_udata:
5712 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5713 info_ptr += bytes_read;
5714 break;
5715 case DW_FORM_ref1:
10b3939b 5716 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5717 info_ptr += 1;
5718 break;
5719 case DW_FORM_ref2:
10b3939b 5720 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5721 info_ptr += 2;
5722 break;
5723 case DW_FORM_ref4:
10b3939b 5724 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5725 info_ptr += 4;
5726 break;
613e1657 5727 case DW_FORM_ref8:
10b3939b 5728 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5729 info_ptr += 8;
5730 break;
c906108c 5731 case DW_FORM_ref_udata:
10b3939b
DJ
5732 DW_ADDR (attr) = (cu->header.offset
5733 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5734 info_ptr += bytes_read;
5735 break;
c906108c 5736 case DW_FORM_indirect:
a8329558
KW
5737 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5738 info_ptr += bytes_read;
e7c27a73 5739 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5740 break;
c906108c 5741 default:
8a3fe4f8 5742 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5743 dwarf_form_name (form),
5744 bfd_get_filename (abfd));
c906108c
SS
5745 }
5746 return info_ptr;
5747}
5748
a8329558
KW
5749/* Read an attribute described by an abbreviated attribute. */
5750
5751static char *
5752read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
e7c27a73 5753 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5754{
5755 attr->name = abbrev->name;
e7c27a73 5756 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5757}
5758
c906108c
SS
5759/* read dwarf information from a buffer */
5760
5761static unsigned int
fba45db2 5762read_1_byte (bfd *abfd, char *buf)
c906108c
SS
5763{
5764 return bfd_get_8 (abfd, (bfd_byte *) buf);
5765}
5766
5767static int
fba45db2 5768read_1_signed_byte (bfd *abfd, char *buf)
c906108c
SS
5769{
5770 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5771}
5772
5773static unsigned int
fba45db2 5774read_2_bytes (bfd *abfd, char *buf)
c906108c
SS
5775{
5776 return bfd_get_16 (abfd, (bfd_byte *) buf);
5777}
5778
5779static int
fba45db2 5780read_2_signed_bytes (bfd *abfd, char *buf)
c906108c
SS
5781{
5782 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5783}
5784
5785static unsigned int
fba45db2 5786read_4_bytes (bfd *abfd, char *buf)
c906108c
SS
5787{
5788 return bfd_get_32 (abfd, (bfd_byte *) buf);
5789}
5790
5791static int
fba45db2 5792read_4_signed_bytes (bfd *abfd, char *buf)
c906108c
SS
5793{
5794 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5795}
5796
ce5d95e1 5797static unsigned long
fba45db2 5798read_8_bytes (bfd *abfd, char *buf)
c906108c
SS
5799{
5800 return bfd_get_64 (abfd, (bfd_byte *) buf);
5801}
5802
5803static CORE_ADDR
e7c27a73 5804read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
c906108c 5805{
e7c27a73 5806 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5807 CORE_ADDR retval = 0;
5808
107d2387 5809 if (cu_header->signed_addr_p)
c906108c 5810 {
107d2387
AC
5811 switch (cu_header->addr_size)
5812 {
5813 case 2:
5814 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5815 break;
5816 case 4:
5817 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5818 break;
5819 case 8:
5820 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5821 break;
5822 default:
8e65ff28 5823 internal_error (__FILE__, __LINE__,
e2e0b3e5 5824 _("read_address: bad switch, signed [in module %s]"),
659b0389 5825 bfd_get_filename (abfd));
107d2387
AC
5826 }
5827 }
5828 else
5829 {
5830 switch (cu_header->addr_size)
5831 {
5832 case 2:
5833 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5834 break;
5835 case 4:
5836 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5837 break;
5838 case 8:
5839 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5840 break;
5841 default:
8e65ff28 5842 internal_error (__FILE__, __LINE__,
e2e0b3e5 5843 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 5844 bfd_get_filename (abfd));
107d2387 5845 }
c906108c 5846 }
64367e0a 5847
107d2387
AC
5848 *bytes_read = cu_header->addr_size;
5849 return retval;
c906108c
SS
5850}
5851
f7ef9339 5852/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
5853 specification allows the initial length to take up either 4 bytes
5854 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5855 bytes describe the length and all offsets will be 8 bytes in length
5856 instead of 4.
5857
f7ef9339
KB
5858 An older, non-standard 64-bit format is also handled by this
5859 function. The older format in question stores the initial length
5860 as an 8-byte quantity without an escape value. Lengths greater
5861 than 2^32 aren't very common which means that the initial 4 bytes
5862 is almost always zero. Since a length value of zero doesn't make
5863 sense for the 32-bit format, this initial zero can be considered to
5864 be an escape value which indicates the presence of the older 64-bit
5865 format. As written, the code can't detect (old format) lengths
917c78fc
MK
5866 greater than 4GB. If it becomes necessary to handle lengths
5867 somewhat larger than 4GB, we could allow other small values (such
5868 as the non-sensical values of 1, 2, and 3) to also be used as
5869 escape values indicating the presence of the old format.
f7ef9339 5870
917c78fc
MK
5871 The value returned via bytes_read should be used to increment the
5872 relevant pointer after calling read_initial_length().
613e1657
KB
5873
5874 As a side effect, this function sets the fields initial_length_size
5875 and offset_size in cu_header to the values appropriate for the
5876 length field. (The format of the initial length field determines
dd373385 5877 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
5878
5879 [ Note: read_initial_length() and read_offset() are based on the
5880 document entitled "DWARF Debugging Information Format", revision
f7ef9339 5881 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
5882 from:
5883
f7ef9339 5884 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
5885
5886 This document is only a draft and is subject to change. (So beware.)
5887
f7ef9339 5888 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
5889 determined empirically by examining 64-bit ELF files produced by
5890 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
5891
5892 - Kevin, July 16, 2002
613e1657
KB
5893 ] */
5894
5895static LONGEST
5896read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5897 int *bytes_read)
5898{
dd373385 5899 LONGEST length = bfd_get_32 (abfd, (bfd_byte *) buf);
613e1657 5900
dd373385 5901 if (length == 0xffffffff)
613e1657 5902 {
dd373385 5903 length = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
613e1657 5904 *bytes_read = 12;
613e1657 5905 }
dd373385 5906 else if (length == 0)
f7ef9339 5907 {
dd373385
EZ
5908 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
5909 length = bfd_get_64 (abfd, (bfd_byte *) buf);
f7ef9339 5910 *bytes_read = 8;
f7ef9339 5911 }
613e1657
KB
5912 else
5913 {
5914 *bytes_read = 4;
613e1657
KB
5915 }
5916
dd373385
EZ
5917 if (cu_header)
5918 {
5919 gdb_assert (cu_header->initial_length_size == 0
5920 || cu_header->initial_length_size == 4
5921 || cu_header->initial_length_size == 8
5922 || cu_header->initial_length_size == 12);
5923
5924 if (cu_header->initial_length_size != 0
5925 && cu_header->initial_length_size != *bytes_read)
5926 complaint (&symfile_complaints,
5927 _("intermixed 32-bit and 64-bit DWARF sections"));
5928
5929 cu_header->initial_length_size = *bytes_read;
5930 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5931 }
5932
5933 return length;
613e1657
KB
5934}
5935
5936/* Read an offset from the data stream. The size of the offset is
917c78fc 5937 given by cu_header->offset_size. */
613e1657
KB
5938
5939static LONGEST
5940read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5941 int *bytes_read)
5942{
5943 LONGEST retval = 0;
5944
5945 switch (cu_header->offset_size)
5946 {
5947 case 4:
5948 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5949 *bytes_read = 4;
5950 break;
5951 case 8:
5952 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5953 *bytes_read = 8;
5954 break;
5955 default:
8e65ff28 5956 internal_error (__FILE__, __LINE__,
e2e0b3e5 5957 _("read_offset: bad switch [in module %s]"),
659b0389 5958 bfd_get_filename (abfd));
613e1657
KB
5959 }
5960
917c78fc 5961 return retval;
613e1657
KB
5962}
5963
c906108c 5964static char *
fba45db2 5965read_n_bytes (bfd *abfd, char *buf, unsigned int size)
c906108c
SS
5966{
5967 /* If the size of a host char is 8 bits, we can return a pointer
5968 to the buffer, otherwise we have to copy the data to a buffer
5969 allocated on the temporary obstack. */
4bdf3d34 5970 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 5971 return buf;
c906108c
SS
5972}
5973
5974static char *
fba45db2 5975read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c
SS
5976{
5977 /* If the size of a host char is 8 bits, we can return a pointer
5978 to the string, otherwise we have to copy the string to a buffer
5979 allocated on the temporary obstack. */
4bdf3d34 5980 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
5981 if (*buf == '\0')
5982 {
5983 *bytes_read_ptr = 1;
5984 return NULL;
5985 }
5986 *bytes_read_ptr = strlen (buf) + 1;
5987 return buf;
4bdf3d34
JJ
5988}
5989
5990static char *
5991read_indirect_string (bfd *abfd, char *buf,
5992 const struct comp_unit_head *cu_header,
5993 unsigned int *bytes_read_ptr)
5994{
5995 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5996 (int *) bytes_read_ptr);
c906108c 5997
6502dd73 5998 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 5999 {
8a3fe4f8 6000 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6001 bfd_get_filename (abfd));
4bdf3d34 6002 return NULL;
c906108c 6003 }
6502dd73 6004 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6005 {
8a3fe4f8 6006 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6007 bfd_get_filename (abfd));
c906108c
SS
6008 return NULL;
6009 }
4bdf3d34 6010 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6011 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6012 return NULL;
6502dd73 6013 return dwarf2_per_objfile->str_buffer + str_offset;
c906108c
SS
6014}
6015
ce5d95e1 6016static unsigned long
fba45db2 6017read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c 6018{
ce5d95e1
JB
6019 unsigned long result;
6020 unsigned int num_read;
c906108c
SS
6021 int i, shift;
6022 unsigned char byte;
6023
6024 result = 0;
6025 shift = 0;
6026 num_read = 0;
6027 i = 0;
6028 while (1)
6029 {
6030 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6031 buf++;
6032 num_read++;
ce5d95e1 6033 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6034 if ((byte & 128) == 0)
6035 {
6036 break;
6037 }
6038 shift += 7;
6039 }
6040 *bytes_read_ptr = num_read;
6041 return result;
6042}
6043
ce5d95e1 6044static long
fba45db2 6045read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
c906108c 6046{
ce5d95e1 6047 long result;
77e0b926 6048 int i, shift, num_read;
c906108c
SS
6049 unsigned char byte;
6050
6051 result = 0;
6052 shift = 0;
c906108c
SS
6053 num_read = 0;
6054 i = 0;
6055 while (1)
6056 {
6057 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6058 buf++;
6059 num_read++;
ce5d95e1 6060 result |= ((long)(byte & 127) << shift);
c906108c
SS
6061 shift += 7;
6062 if ((byte & 128) == 0)
6063 {
6064 break;
6065 }
6066 }
77e0b926
DJ
6067 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6068 result |= -(((long)1) << shift);
c906108c
SS
6069 *bytes_read_ptr = num_read;
6070 return result;
6071}
6072
4bb7a0a7
DJ
6073/* Return a pointer to just past the end of an LEB128 number in BUF. */
6074
6075static char *
6076skip_leb128 (bfd *abfd, char *buf)
6077{
6078 int byte;
6079
6080 while (1)
6081 {
6082 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6083 buf++;
6084 if ((byte & 128) == 0)
6085 return buf;
6086 }
6087}
6088
c906108c 6089static void
e142c38c 6090set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6091{
6092 switch (lang)
6093 {
6094 case DW_LANG_C89:
6095 case DW_LANG_C:
e142c38c 6096 cu->language = language_c;
c906108c
SS
6097 break;
6098 case DW_LANG_C_plus_plus:
e142c38c 6099 cu->language = language_cplus;
c906108c
SS
6100 break;
6101 case DW_LANG_Fortran77:
6102 case DW_LANG_Fortran90:
b21b22e0 6103 case DW_LANG_Fortran95:
e142c38c 6104 cu->language = language_fortran;
c906108c
SS
6105 break;
6106 case DW_LANG_Mips_Assembler:
e142c38c 6107 cu->language = language_asm;
c906108c 6108 break;
bebd888e 6109 case DW_LANG_Java:
e142c38c 6110 cu->language = language_java;
bebd888e 6111 break;
c906108c 6112 case DW_LANG_Ada83:
8aaf0b47 6113 case DW_LANG_Ada95:
bc5f45f8
JB
6114 cu->language = language_ada;
6115 break;
c906108c
SS
6116 case DW_LANG_Cobol74:
6117 case DW_LANG_Cobol85:
6118 case DW_LANG_Pascal83:
6119 case DW_LANG_Modula2:
6120 default:
e142c38c 6121 cu->language = language_minimal;
c906108c
SS
6122 break;
6123 }
e142c38c 6124 cu->language_defn = language_def (cu->language);
c906108c
SS
6125}
6126
6127/* Return the named attribute or NULL if not there. */
6128
6129static struct attribute *
e142c38c 6130dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6131{
6132 unsigned int i;
6133 struct attribute *spec = NULL;
6134
6135 for (i = 0; i < die->num_attrs; ++i)
6136 {
6137 if (die->attrs[i].name == name)
10b3939b 6138 return &die->attrs[i];
c906108c
SS
6139 if (die->attrs[i].name == DW_AT_specification
6140 || die->attrs[i].name == DW_AT_abstract_origin)
6141 spec = &die->attrs[i];
6142 }
c906108c 6143
10b3939b
DJ
6144 if (spec)
6145 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6146
c906108c
SS
6147 return NULL;
6148}
6149
05cf31d1
JB
6150/* Return non-zero iff the attribute NAME is defined for the given DIE,
6151 and holds a non-zero value. This function should only be used for
6152 DW_FORM_flag attributes. */
6153
6154static int
6155dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6156{
6157 struct attribute *attr = dwarf2_attr (die, name, cu);
6158
6159 return (attr && DW_UNSND (attr));
6160}
6161
3ca72b44 6162static int
e142c38c 6163die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6164{
05cf31d1
JB
6165 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6166 which value is non-zero. However, we have to be careful with
6167 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6168 (via dwarf2_flag_true_p) follows this attribute. So we may
6169 end up accidently finding a declaration attribute that belongs
6170 to a different DIE referenced by the specification attribute,
6171 even though the given DIE does not have a declaration attribute. */
6172 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6173 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6174}
6175
63d06c5c
DC
6176/* Return the die giving the specification for DIE, if there is
6177 one. */
6178
6179static struct die_info *
e142c38c 6180die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6181{
e142c38c 6182 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6183
6184 if (spec_attr == NULL)
6185 return NULL;
6186 else
10b3939b 6187 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6188}
c906108c 6189
debd256d
JB
6190/* Free the line_header structure *LH, and any arrays and strings it
6191 refers to. */
6192static void
6193free_line_header (struct line_header *lh)
6194{
6195 if (lh->standard_opcode_lengths)
a8bc7b56 6196 xfree (lh->standard_opcode_lengths);
debd256d
JB
6197
6198 /* Remember that all the lh->file_names[i].name pointers are
6199 pointers into debug_line_buffer, and don't need to be freed. */
6200 if (lh->file_names)
a8bc7b56 6201 xfree (lh->file_names);
debd256d
JB
6202
6203 /* Similarly for the include directory names. */
6204 if (lh->include_dirs)
a8bc7b56 6205 xfree (lh->include_dirs);
debd256d 6206
a8bc7b56 6207 xfree (lh);
debd256d
JB
6208}
6209
6210
6211/* Add an entry to LH's include directory table. */
6212static void
6213add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6214{
debd256d
JB
6215 /* Grow the array if necessary. */
6216 if (lh->include_dirs_size == 0)
c5aa993b 6217 {
debd256d
JB
6218 lh->include_dirs_size = 1; /* for testing */
6219 lh->include_dirs = xmalloc (lh->include_dirs_size
6220 * sizeof (*lh->include_dirs));
6221 }
6222 else if (lh->num_include_dirs >= lh->include_dirs_size)
6223 {
6224 lh->include_dirs_size *= 2;
6225 lh->include_dirs = xrealloc (lh->include_dirs,
6226 (lh->include_dirs_size
6227 * sizeof (*lh->include_dirs)));
c5aa993b 6228 }
c906108c 6229
debd256d
JB
6230 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6231}
6232
6233
6234/* Add an entry to LH's file name table. */
6235static void
6236add_file_name (struct line_header *lh,
6237 char *name,
6238 unsigned int dir_index,
6239 unsigned int mod_time,
6240 unsigned int length)
6241{
6242 struct file_entry *fe;
6243
6244 /* Grow the array if necessary. */
6245 if (lh->file_names_size == 0)
6246 {
6247 lh->file_names_size = 1; /* for testing */
6248 lh->file_names = xmalloc (lh->file_names_size
6249 * sizeof (*lh->file_names));
6250 }
6251 else if (lh->num_file_names >= lh->file_names_size)
6252 {
6253 lh->file_names_size *= 2;
6254 lh->file_names = xrealloc (lh->file_names,
6255 (lh->file_names_size
6256 * sizeof (*lh->file_names)));
6257 }
6258
6259 fe = &lh->file_names[lh->num_file_names++];
6260 fe->name = name;
6261 fe->dir_index = dir_index;
6262 fe->mod_time = mod_time;
6263 fe->length = length;
aaa75496 6264 fe->included_p = 0;
debd256d
JB
6265}
6266
6267
6268/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6269 .debug_line, according to the endianness of ABFD. Return a pointer
6270 to a struct line_header, allocated using xmalloc.
debd256d
JB
6271
6272 NOTE: the strings in the include directory and file name tables of
6273 the returned object point into debug_line_buffer, and must not be
6274 freed. */
6275static struct line_header *
6276dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6277 struct dwarf2_cu *cu)
debd256d
JB
6278{
6279 struct cleanup *back_to;
6280 struct line_header *lh;
6281 char *line_ptr;
6282 int bytes_read;
6283 int i;
6284 char *cur_dir, *cur_file;
6285
6502dd73 6286 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6287 {
e2e0b3e5 6288 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6289 return 0;
6290 }
6291
a738430d
MK
6292 /* Make sure that at least there's room for the total_length field.
6293 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6294 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6295 {
4d3c2250 6296 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6297 return 0;
6298 }
6299
6300 lh = xmalloc (sizeof (*lh));
6301 memset (lh, 0, sizeof (*lh));
6302 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6303 (void *) lh);
6304
6502dd73 6305 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6306
a738430d 6307 /* Read in the header. */
dd373385
EZ
6308 lh->total_length =
6309 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6310 line_ptr += bytes_read;
6502dd73
DJ
6311 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6312 + dwarf2_per_objfile->line_size))
debd256d 6313 {
4d3c2250 6314 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6315 return 0;
6316 }
6317 lh->statement_program_end = line_ptr + lh->total_length;
6318 lh->version = read_2_bytes (abfd, line_ptr);
6319 line_ptr += 2;
e7c27a73 6320 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6321 line_ptr += bytes_read;
6322 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6323 line_ptr += 1;
6324 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6325 line_ptr += 1;
6326 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6327 line_ptr += 1;
6328 lh->line_range = read_1_byte (abfd, line_ptr);
6329 line_ptr += 1;
6330 lh->opcode_base = read_1_byte (abfd, line_ptr);
6331 line_ptr += 1;
6332 lh->standard_opcode_lengths
6333 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6334
6335 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6336 for (i = 1; i < lh->opcode_base; ++i)
6337 {
6338 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6339 line_ptr += 1;
6340 }
6341
a738430d 6342 /* Read directory table. */
debd256d
JB
6343 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6344 {
6345 line_ptr += bytes_read;
6346 add_include_dir (lh, cur_dir);
6347 }
6348 line_ptr += bytes_read;
6349
a738430d 6350 /* Read file name table. */
debd256d
JB
6351 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6352 {
6353 unsigned int dir_index, mod_time, length;
6354
6355 line_ptr += bytes_read;
6356 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6357 line_ptr += bytes_read;
6358 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6359 line_ptr += bytes_read;
6360 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6361 line_ptr += bytes_read;
6362
6363 add_file_name (lh, cur_file, dir_index, mod_time, length);
6364 }
6365 line_ptr += bytes_read;
6366 lh->statement_program_start = line_ptr;
6367
6502dd73
DJ
6368 if (line_ptr > (dwarf2_per_objfile->line_buffer
6369 + dwarf2_per_objfile->line_size))
4d3c2250 6370 complaint (&symfile_complaints,
e2e0b3e5 6371 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6372
6373 discard_cleanups (back_to);
6374 return lh;
6375}
c906108c 6376
5fb290d7
DJ
6377/* This function exists to work around a bug in certain compilers
6378 (particularly GCC 2.95), in which the first line number marker of a
6379 function does not show up until after the prologue, right before
6380 the second line number marker. This function shifts ADDRESS down
6381 to the beginning of the function if necessary, and is called on
6382 addresses passed to record_line. */
6383
6384static CORE_ADDR
e142c38c 6385check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6386{
6387 struct function_range *fn;
6388
6389 /* Find the function_range containing address. */
e142c38c 6390 if (!cu->first_fn)
5fb290d7
DJ
6391 return address;
6392
e142c38c
DJ
6393 if (!cu->cached_fn)
6394 cu->cached_fn = cu->first_fn;
5fb290d7 6395
e142c38c 6396 fn = cu->cached_fn;
5fb290d7
DJ
6397 while (fn)
6398 if (fn->lowpc <= address && fn->highpc > address)
6399 goto found;
6400 else
6401 fn = fn->next;
6402
e142c38c
DJ
6403 fn = cu->first_fn;
6404 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6405 if (fn->lowpc <= address && fn->highpc > address)
6406 goto found;
6407 else
6408 fn = fn->next;
6409
6410 return address;
6411
6412 found:
6413 if (fn->seen_line)
6414 return address;
6415 if (address != fn->lowpc)
4d3c2250 6416 complaint (&symfile_complaints,
e2e0b3e5 6417 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6418 (unsigned long) address, fn->name);
5fb290d7
DJ
6419 fn->seen_line = 1;
6420 return fn->lowpc;
6421}
6422
aaa75496
JB
6423/* Decode the Line Number Program (LNP) for the given line_header
6424 structure and CU. The actual information extracted and the type
6425 of structures created from the LNP depends on the value of PST.
6426
6427 1. If PST is NULL, then this procedure uses the data from the program
6428 to create all necessary symbol tables, and their linetables.
6429 The compilation directory of the file is passed in COMP_DIR,
6430 and must not be NULL.
6431
6432 2. If PST is not NULL, this procedure reads the program to determine
6433 the list of files included by the unit represented by PST, and
6434 builds all the associated partial symbol tables. In this case,
6435 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6436 is not used to compute the full name of the symtab, and therefore
6437 omitting it when building the partial symtab does not introduce
6438 the potential for inconsistency - a partial symtab and its associated
6439 symbtab having a different fullname -). */
debd256d 6440
c906108c 6441static void
debd256d 6442dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6443 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c
SS
6444{
6445 char *line_ptr;
6446 char *line_end;
e7c27a73 6447 unsigned int bytes_read;
c906108c 6448 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6449 CORE_ADDR baseaddr;
6450 struct objfile *objfile = cu->objfile;
aaa75496 6451 const int decode_for_pst_p = (pst != NULL);
e142c38c
DJ
6452
6453 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6454
debd256d
JB
6455 line_ptr = lh->statement_program_start;
6456 line_end = lh->statement_program_end;
c906108c
SS
6457
6458 /* Read the statement sequences until there's nothing left. */
6459 while (line_ptr < line_end)
6460 {
6461 /* state machine registers */
6462 CORE_ADDR address = 0;
6463 unsigned int file = 1;
6464 unsigned int line = 1;
6465 unsigned int column = 0;
debd256d 6466 int is_stmt = lh->default_is_stmt;
c906108c
SS
6467 int basic_block = 0;
6468 int end_sequence = 0;
6469
aaa75496 6470 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6471 {
aaa75496 6472 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6473 /* lh->include_dirs and lh->file_names are 0-based, but the
6474 directory and file name numbers in the statement program
6475 are 1-based. */
6476 struct file_entry *fe = &lh->file_names[file - 1];
6477 char *dir;
a738430d 6478
debd256d
JB
6479 if (fe->dir_index)
6480 dir = lh->include_dirs[fe->dir_index - 1];
6481 else
6482 dir = comp_dir;
6483 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
6484 }
6485
a738430d 6486 /* Decode the table. */
c5aa993b 6487 while (!end_sequence)
c906108c
SS
6488 {
6489 op_code = read_1_byte (abfd, line_ptr);
6490 line_ptr += 1;
9aa1fe7e 6491
debd256d 6492 if (op_code >= lh->opcode_base)
a738430d
MK
6493 {
6494 /* Special operand. */
debd256d
JB
6495 adj_opcode = op_code - lh->opcode_base;
6496 address += (adj_opcode / lh->line_range)
6497 * lh->minimum_instruction_length;
6498 line += lh->line_base + (adj_opcode % lh->line_range);
aa495d11 6499 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6500 if (!decode_for_pst_p)
6501 {
a738430d 6502 /* Append row to matrix using current values. */
aaa75496
JB
6503 record_line (current_subfile, line,
6504 check_cu_functions (address, cu));
6505 }
9aa1fe7e
GK
6506 basic_block = 1;
6507 }
6508 else switch (op_code)
c906108c
SS
6509 {
6510 case DW_LNS_extended_op:
473b7be6
DJ
6511 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6512 line_ptr += bytes_read;
c906108c
SS
6513 extended_op = read_1_byte (abfd, line_ptr);
6514 line_ptr += 1;
6515 switch (extended_op)
6516 {
6517 case DW_LNE_end_sequence:
6518 end_sequence = 1;
aa495d11 6519 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6520 if (!decode_for_pst_p)
6521 record_line (current_subfile, 0, address);
c906108c
SS
6522 break;
6523 case DW_LNE_set_address:
e7c27a73 6524 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6525 line_ptr += bytes_read;
6526 address += baseaddr;
c906108c
SS
6527 break;
6528 case DW_LNE_define_file:
debd256d
JB
6529 {
6530 char *cur_file;
6531 unsigned int dir_index, mod_time, length;
6532
6533 cur_file = read_string (abfd, line_ptr, &bytes_read);
6534 line_ptr += bytes_read;
6535 dir_index =
6536 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6537 line_ptr += bytes_read;
6538 mod_time =
6539 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6540 line_ptr += bytes_read;
6541 length =
6542 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6543 line_ptr += bytes_read;
6544 add_file_name (lh, cur_file, dir_index, mod_time, length);
6545 }
c906108c
SS
6546 break;
6547 default:
4d3c2250 6548 complaint (&symfile_complaints,
e2e0b3e5 6549 _("mangled .debug_line section"));
debd256d 6550 return;
c906108c
SS
6551 }
6552 break;
6553 case DW_LNS_copy:
aa495d11 6554 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6555 if (!decode_for_pst_p)
6556 record_line (current_subfile, line,
6557 check_cu_functions (address, cu));
c906108c
SS
6558 basic_block = 0;
6559 break;
6560 case DW_LNS_advance_pc:
debd256d 6561 address += lh->minimum_instruction_length
c906108c
SS
6562 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6563 line_ptr += bytes_read;
6564 break;
6565 case DW_LNS_advance_line:
6566 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6567 line_ptr += bytes_read;
6568 break;
6569 case DW_LNS_set_file:
debd256d 6570 {
a738430d
MK
6571 /* The arrays lh->include_dirs and lh->file_names are
6572 0-based, but the directory and file name numbers in
6573 the statement program are 1-based. */
debd256d
JB
6574 struct file_entry *fe;
6575 char *dir;
a738430d 6576
debd256d
JB
6577 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6578 line_ptr += bytes_read;
6579 fe = &lh->file_names[file - 1];
6580 if (fe->dir_index)
6581 dir = lh->include_dirs[fe->dir_index - 1];
6582 else
6583 dir = comp_dir;
aaa75496
JB
6584 if (!decode_for_pst_p)
6585 dwarf2_start_subfile (fe->name, dir);
debd256d 6586 }
c906108c
SS
6587 break;
6588 case DW_LNS_set_column:
6589 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6590 line_ptr += bytes_read;
6591 break;
6592 case DW_LNS_negate_stmt:
6593 is_stmt = (!is_stmt);
6594 break;
6595 case DW_LNS_set_basic_block:
6596 basic_block = 1;
6597 break;
c2c6d25f
JM
6598 /* Add to the address register of the state machine the
6599 address increment value corresponding to special opcode
a738430d
MK
6600 255. I.e., this value is scaled by the minimum
6601 instruction length since special opcode 255 would have
6602 scaled the the increment. */
c906108c 6603 case DW_LNS_const_add_pc:
debd256d
JB
6604 address += (lh->minimum_instruction_length
6605 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6606 break;
6607 case DW_LNS_fixed_advance_pc:
6608 address += read_2_bytes (abfd, line_ptr);
6609 line_ptr += 2;
6610 break;
9aa1fe7e 6611 default:
a738430d
MK
6612 {
6613 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6614 int i;
a738430d 6615
debd256d 6616 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6617 {
6618 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6619 line_ptr += bytes_read;
6620 }
6621 }
c906108c
SS
6622 }
6623 }
6624 }
aaa75496
JB
6625
6626 if (decode_for_pst_p)
6627 {
6628 int file_index;
6629
6630 /* Now that we're done scanning the Line Header Program, we can
6631 create the psymtab of each included file. */
6632 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6633 if (lh->file_names[file_index].included_p == 1)
6634 {
5b5464ad
JB
6635 const struct file_entry fe = lh->file_names [file_index];
6636 char *include_name = fe.name;
6637 char *dir_name = NULL;
6638 char *pst_filename = pst->filename;
6639
6640 if (fe.dir_index)
6641 dir_name = lh->include_dirs[fe.dir_index - 1];
6642
6643 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6644 {
1754f103
MK
6645 include_name = concat (dir_name, SLASH_STRING,
6646 include_name, (char *)NULL);
5b5464ad
JB
6647 make_cleanup (xfree, include_name);
6648 }
6649
6650 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6651 {
1754f103
MK
6652 pst_filename = concat (pst->dirname, SLASH_STRING,
6653 pst_filename, (char *)NULL);
5b5464ad
JB
6654 make_cleanup (xfree, pst_filename);
6655 }
6656
6657 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6658 dwarf2_create_include_psymtab (include_name, pst, objfile);
6659 }
6660 }
c906108c
SS
6661}
6662
6663/* Start a subfile for DWARF. FILENAME is the name of the file and
6664 DIRNAME the name of the source directory which contains FILENAME
6665 or NULL if not known.
6666 This routine tries to keep line numbers from identical absolute and
6667 relative file names in a common subfile.
6668
6669 Using the `list' example from the GDB testsuite, which resides in
6670 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6671 of /srcdir/list0.c yields the following debugging information for list0.c:
6672
c5aa993b
JM
6673 DW_AT_name: /srcdir/list0.c
6674 DW_AT_comp_dir: /compdir
357e46e7 6675 files.files[0].name: list0.h
c5aa993b 6676 files.files[0].dir: /srcdir
357e46e7 6677 files.files[1].name: list0.c
c5aa993b 6678 files.files[1].dir: /srcdir
c906108c
SS
6679
6680 The line number information for list0.c has to end up in a single
6681 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6682
6683static void
fba45db2 6684dwarf2_start_subfile (char *filename, char *dirname)
c906108c
SS
6685{
6686 /* If the filename isn't absolute, try to match an existing subfile
6687 with the full pathname. */
6688
d5166ae1 6689 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
c906108c
SS
6690 {
6691 struct subfile *subfile;
1754f103 6692 char *fullname = concat (dirname, "/", filename, (char *)NULL);
c906108c
SS
6693
6694 for (subfile = subfiles; subfile; subfile = subfile->next)
6695 {
d5166ae1 6696 if (FILENAME_CMP (subfile->name, fullname) == 0)
c906108c
SS
6697 {
6698 current_subfile = subfile;
b8c9b27d 6699 xfree (fullname);
c906108c
SS
6700 return;
6701 }
6702 }
b8c9b27d 6703 xfree (fullname);
c906108c
SS
6704 }
6705 start_subfile (filename, dirname);
6706}
6707
4c2df51b
DJ
6708static void
6709var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 6710 struct dwarf2_cu *cu)
4c2df51b 6711{
e7c27a73
DJ
6712 struct objfile *objfile = cu->objfile;
6713 struct comp_unit_head *cu_header = &cu->header;
6714
4c2df51b
DJ
6715 /* NOTE drow/2003-01-30: There used to be a comment and some special
6716 code here to turn a symbol with DW_AT_external and a
6717 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6718 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6719 with some versions of binutils) where shared libraries could have
6720 relocations against symbols in their debug information - the
6721 minimal symbol would have the right address, but the debug info
6722 would not. It's no longer necessary, because we will explicitly
6723 apply relocations when we read in the debug information now. */
6724
6725 /* A DW_AT_location attribute with no contents indicates that a
6726 variable has been optimized away. */
6727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6728 {
6729 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6730 return;
6731 }
6732
6733 /* Handle one degenerate form of location expression specially, to
6734 preserve GDB's previous behavior when section offsets are
6735 specified. If this is just a DW_OP_addr then mark this symbol
6736 as LOC_STATIC. */
6737
6738 if (attr_form_is_block (attr)
6739 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6740 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6741 {
6742 int dummy;
6743
6744 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 6745 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
6746 fixup_symbol_section (sym, objfile);
6747 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6748 SYMBOL_SECTION (sym));
6749 SYMBOL_CLASS (sym) = LOC_STATIC;
6750 return;
6751 }
6752
6753 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6754 expression evaluator, and use LOC_COMPUTED only when necessary
6755 (i.e. when the value of a register or memory location is
6756 referenced, or a thread-local block, etc.). Then again, it might
6757 not be worthwhile. I'm assuming that it isn't unless performance
6758 or memory numbers show me otherwise. */
6759
e7c27a73 6760 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
6761 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6762}
6763
c906108c
SS
6764/* Given a pointer to a DWARF information entry, figure out if we need
6765 to make a symbol table entry for it, and if so, create a new entry
6766 and return a pointer to it.
6767 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 6768 used the passed type. */
c906108c
SS
6769
6770static struct symbol *
e7c27a73 6771new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 6772{
e7c27a73 6773 struct objfile *objfile = cu->objfile;
c906108c
SS
6774 struct symbol *sym = NULL;
6775 char *name;
6776 struct attribute *attr = NULL;
6777 struct attribute *attr2 = NULL;
e142c38c
DJ
6778 CORE_ADDR baseaddr;
6779
6780 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6781
5c4e30ca 6782 if (die->tag != DW_TAG_namespace)
e142c38c 6783 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
6784 else
6785 name = TYPE_NAME (type);
6786
c906108c
SS
6787 if (name)
6788 {
4a146b47 6789 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
6790 sizeof (struct symbol));
6791 OBJSTAT (objfile, n_syms++);
6792 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
6793
6794 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 6795 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 6796 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
6797
6798 /* Default assumptions.
c5aa993b 6799 Use the passed type or decode it from the die. */
176620f1 6800 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
6801 SYMBOL_CLASS (sym) = LOC_STATIC;
6802 if (type != NULL)
6803 SYMBOL_TYPE (sym) = type;
6804 else
e7c27a73 6805 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 6806 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
6807 if (attr)
6808 {
6809 SYMBOL_LINE (sym) = DW_UNSND (attr);
6810 }
c906108c
SS
6811 switch (die->tag)
6812 {
6813 case DW_TAG_label:
e142c38c 6814 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
6815 if (attr)
6816 {
6817 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6818 }
6819 SYMBOL_CLASS (sym) = LOC_LABEL;
6820 break;
6821 case DW_TAG_subprogram:
6822 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6823 finish_block. */
6824 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 6825 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6826 if (attr2 && (DW_UNSND (attr2) != 0))
6827 {
6828 add_symbol_to_list (sym, &global_symbols);
6829 }
6830 else
6831 {
e142c38c 6832 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6833 }
6834 break;
6835 case DW_TAG_variable:
6836 /* Compilation with minimal debug info may result in variables
6837 with missing type entries. Change the misleading `void' type
6838 to something sensible. */
6839 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6840 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6841 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6842 "<variable, no debug info>",
6843 objfile);
e142c38c 6844 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6845 if (attr)
6846 {
e7c27a73 6847 dwarf2_const_value (attr, sym, cu);
e142c38c 6848 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6849 if (attr2 && (DW_UNSND (attr2) != 0))
6850 add_symbol_to_list (sym, &global_symbols);
6851 else
e142c38c 6852 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6853 break;
6854 }
e142c38c 6855 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6856 if (attr)
6857 {
e7c27a73 6858 var_decode_location (attr, sym, cu);
e142c38c 6859 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6860 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 6861 add_symbol_to_list (sym, &global_symbols);
c906108c 6862 else
e142c38c 6863 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6864 }
6865 else
6866 {
6867 /* We do not know the address of this symbol.
c5aa993b
JM
6868 If it is an external symbol and we have type information
6869 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6870 The address of the variable will then be determined from
6871 the minimal symbol table whenever the variable is
6872 referenced. */
e142c38c 6873 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6874 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 6875 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
6876 {
6877 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6878 add_symbol_to_list (sym, &global_symbols);
6879 }
6880 }
6881 break;
6882 case DW_TAG_formal_parameter:
e142c38c 6883 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6884 if (attr)
6885 {
e7c27a73 6886 var_decode_location (attr, sym, cu);
7cf6e574
DJ
6887 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6888 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6889 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 6890 }
e142c38c 6891 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6892 if (attr)
6893 {
e7c27a73 6894 dwarf2_const_value (attr, sym, cu);
c906108c 6895 }
e142c38c 6896 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6897 break;
6898 case DW_TAG_unspecified_parameters:
6899 /* From varargs functions; gdb doesn't seem to have any
6900 interest in this information, so just ignore it for now.
6901 (FIXME?) */
6902 break;
6903 case DW_TAG_class_type:
6904 case DW_TAG_structure_type:
6905 case DW_TAG_union_type:
6906 case DW_TAG_enumeration_type:
6907 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 6908 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 6909
63d06c5c
DC
6910 /* Make sure that the symbol includes appropriate enclosing
6911 classes/namespaces in its name. These are calculated in
134d01f1 6912 read_structure_type, and the correct name is saved in
63d06c5c
DC
6913 the type. */
6914
987504bb
JJ
6915 if (cu->language == language_cplus
6916 || cu->language == language_java)
c906108c 6917 {
63d06c5c
DC
6918 struct type *type = SYMBOL_TYPE (sym);
6919
6920 if (TYPE_TAG_NAME (type) != NULL)
6921 {
6922 /* FIXME: carlton/2003-11-10: Should this use
6923 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
6924 arises further down in this function.) */
6925 /* The type's name is already allocated along with
6926 this objfile, so we don't need to duplicate it
6927 for the symbol. */
6928 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 6929 }
c906108c 6930 }
63d06c5c
DC
6931
6932 {
987504bb 6933 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
6934 really ever be static objects: otherwise, if you try
6935 to, say, break of a class's method and you're in a file
6936 which doesn't mention that class, it won't work unless
6937 the check for all static symbols in lookup_symbol_aux
6938 saves you. See the OtherFileClass tests in
6939 gdb.c++/namespace.exp. */
6940
6941 struct pending **list_to_add;
6942
e142c38c 6943 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
6944 && (cu->language == language_cplus
6945 || cu->language == language_java)
e142c38c 6946 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
6947
6948 add_symbol_to_list (sym, list_to_add);
6949
6950 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
6951 defines a typedef for "foo". A Java class declaration also
6952 defines a typedef for the class. Synthesize a typedef symbol
6953 so that "ptype foo" works as expected. */
6954 if (cu->language == language_cplus
6955 || cu->language == language_java)
63d06c5c
DC
6956 {
6957 struct symbol *typedef_sym = (struct symbol *)
4a146b47 6958 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
6959 sizeof (struct symbol));
6960 *typedef_sym = *sym;
6961 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
6962 /* The symbol's name is already allocated along with
6963 this objfile, so we don't need to duplicate it for
6964 the type. */
63d06c5c 6965 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 6966 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
6967 add_symbol_to_list (typedef_sym, list_to_add);
6968 }
6969 }
c906108c
SS
6970 break;
6971 case DW_TAG_typedef:
63d06c5c
DC
6972 if (processing_has_namespace_info
6973 && processing_current_prefix[0] != '\0')
6974 {
987504bb
JJ
6975 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6976 processing_current_prefix,
6977 name, cu);
63d06c5c
DC
6978 }
6979 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6980 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 6981 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 6982 break;
c906108c 6983 case DW_TAG_base_type:
a02abb62 6984 case DW_TAG_subrange_type:
c906108c 6985 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 6986 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 6987 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6988 break;
6989 case DW_TAG_enumerator:
63d06c5c
DC
6990 if (processing_has_namespace_info
6991 && processing_current_prefix[0] != '\0')
6992 {
987504bb
JJ
6993 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6994 processing_current_prefix,
6995 name, cu);
63d06c5c 6996 }
e142c38c 6997 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6998 if (attr)
6999 {
e7c27a73 7000 dwarf2_const_value (attr, sym, cu);
c906108c 7001 }
63d06c5c
DC
7002 {
7003 /* NOTE: carlton/2003-11-10: See comment above in the
7004 DW_TAG_class_type, etc. block. */
7005
7006 struct pending **list_to_add;
7007
e142c38c 7008 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7009 && (cu->language == language_cplus
7010 || cu->language == language_java)
e142c38c 7011 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7012
7013 add_symbol_to_list (sym, list_to_add);
7014 }
c906108c 7015 break;
5c4e30ca
DC
7016 case DW_TAG_namespace:
7017 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7018 add_symbol_to_list (sym, &global_symbols);
7019 break;
c906108c
SS
7020 default:
7021 /* Not a tag we recognize. Hopefully we aren't processing
7022 trash data, but since we must specifically ignore things
7023 we don't recognize, there is nothing else we should do at
7024 this point. */
e2e0b3e5 7025 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7026 dwarf_tag_name (die->tag));
c906108c
SS
7027 break;
7028 }
7029 }
7030 return (sym);
7031}
7032
7033/* Copy constant value from an attribute to a symbol. */
7034
7035static void
107d2387 7036dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7037 struct dwarf2_cu *cu)
c906108c 7038{
e7c27a73
DJ
7039 struct objfile *objfile = cu->objfile;
7040 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7041 struct dwarf_block *blk;
7042
7043 switch (attr->form)
7044 {
7045 case DW_FORM_addr:
107d2387 7046 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7047 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7048 cu_header->addr_size,
7049 TYPE_LENGTH (SYMBOL_TYPE
7050 (sym)));
c906108c 7051 SYMBOL_VALUE_BYTES (sym) = (char *)
4a146b47 7052 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7053 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7054 it's body - store_unsigned_integer. */
7055 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7056 DW_ADDR (attr));
c906108c
SS
7057 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7058 break;
7059 case DW_FORM_block1:
7060 case DW_FORM_block2:
7061 case DW_FORM_block4:
7062 case DW_FORM_block:
7063 blk = DW_BLOCK (attr);
7064 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7065 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7066 blk->size,
7067 TYPE_LENGTH (SYMBOL_TYPE
7068 (sym)));
c906108c 7069 SYMBOL_VALUE_BYTES (sym) = (char *)
4a146b47 7070 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7071 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7072 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7073 break;
2df3850c
JM
7074
7075 /* The DW_AT_const_value attributes are supposed to carry the
7076 symbol's value "represented as it would be on the target
7077 architecture." By the time we get here, it's already been
7078 converted to host endianness, so we just need to sign- or
7079 zero-extend it as appropriate. */
7080 case DW_FORM_data1:
7081 dwarf2_const_value_data (attr, sym, 8);
7082 break;
c906108c 7083 case DW_FORM_data2:
2df3850c
JM
7084 dwarf2_const_value_data (attr, sym, 16);
7085 break;
c906108c 7086 case DW_FORM_data4:
2df3850c
JM
7087 dwarf2_const_value_data (attr, sym, 32);
7088 break;
c906108c 7089 case DW_FORM_data8:
2df3850c
JM
7090 dwarf2_const_value_data (attr, sym, 64);
7091 break;
7092
c906108c 7093 case DW_FORM_sdata:
2df3850c
JM
7094 SYMBOL_VALUE (sym) = DW_SND (attr);
7095 SYMBOL_CLASS (sym) = LOC_CONST;
7096 break;
7097
c906108c
SS
7098 case DW_FORM_udata:
7099 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7100 SYMBOL_CLASS (sym) = LOC_CONST;
7101 break;
2df3850c 7102
c906108c 7103 default:
4d3c2250 7104 complaint (&symfile_complaints,
e2e0b3e5 7105 _("unsupported const value attribute form: '%s'"),
4d3c2250 7106 dwarf_form_name (attr->form));
c906108c
SS
7107 SYMBOL_VALUE (sym) = 0;
7108 SYMBOL_CLASS (sym) = LOC_CONST;
7109 break;
7110 }
7111}
7112
2df3850c
JM
7113
7114/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7115 or zero-extend it as appropriate for the symbol's type. */
7116static void
7117dwarf2_const_value_data (struct attribute *attr,
7118 struct symbol *sym,
7119 int bits)
7120{
7121 LONGEST l = DW_UNSND (attr);
7122
7123 if (bits < sizeof (l) * 8)
7124 {
7125 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7126 l &= ((LONGEST) 1 << bits) - 1;
7127 else
bf9198f1 7128 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7129 }
7130
7131 SYMBOL_VALUE (sym) = l;
7132 SYMBOL_CLASS (sym) = LOC_CONST;
7133}
7134
7135
c906108c
SS
7136/* Return the type of the die in question using its DW_AT_type attribute. */
7137
7138static struct type *
e7c27a73 7139die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7140{
7141 struct type *type;
7142 struct attribute *type_attr;
7143 struct die_info *type_die;
c906108c 7144
e142c38c 7145 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7146 if (!type_attr)
7147 {
7148 /* A missing DW_AT_type represents a void type. */
e142c38c 7149 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7150 }
7151 else
10b3939b
DJ
7152 type_die = follow_die_ref (die, type_attr, cu);
7153
e7c27a73 7154 type = tag_type_to_type (type_die, cu);
c906108c
SS
7155 if (!type)
7156 {
7157 dump_die (type_die);
8a3fe4f8 7158 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7159 cu->objfile->name);
c906108c
SS
7160 }
7161 return type;
7162}
7163
7164/* Return the containing type of the die in question using its
7165 DW_AT_containing_type attribute. */
7166
7167static struct type *
e7c27a73 7168die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7169{
7170 struct type *type = NULL;
7171 struct attribute *type_attr;
7172 struct die_info *type_die = NULL;
c906108c 7173
e142c38c 7174 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7175 if (type_attr)
7176 {
10b3939b 7177 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7178 type = tag_type_to_type (type_die, cu);
c906108c
SS
7179 }
7180 if (!type)
7181 {
7182 if (type_die)
7183 dump_die (type_die);
8a3fe4f8 7184 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7185 cu->objfile->name);
c906108c
SS
7186 }
7187 return type;
7188}
7189
c906108c 7190static struct type *
e7c27a73 7191tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7192{
7193 if (die->type)
7194 {
7195 return die->type;
7196 }
7197 else
7198 {
e7c27a73 7199 read_type_die (die, cu);
c906108c
SS
7200 if (!die->type)
7201 {
7202 dump_die (die);
8a3fe4f8 7203 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7204 cu->objfile->name);
c906108c
SS
7205 }
7206 return die->type;
7207 }
7208}
7209
7210static void
e7c27a73 7211read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7212{
e142c38c 7213 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7214 const char *old_prefix = processing_current_prefix;
7215 struct cleanup *back_to = make_cleanup (xfree, prefix);
7216 processing_current_prefix = prefix;
7217
c906108c
SS
7218 switch (die->tag)
7219 {
7220 case DW_TAG_class_type:
7221 case DW_TAG_structure_type:
7222 case DW_TAG_union_type:
134d01f1 7223 read_structure_type (die, cu);
c906108c
SS
7224 break;
7225 case DW_TAG_enumeration_type:
134d01f1 7226 read_enumeration_type (die, cu);
c906108c
SS
7227 break;
7228 case DW_TAG_subprogram:
7229 case DW_TAG_subroutine_type:
e7c27a73 7230 read_subroutine_type (die, cu);
c906108c
SS
7231 break;
7232 case DW_TAG_array_type:
e7c27a73 7233 read_array_type (die, cu);
c906108c
SS
7234 break;
7235 case DW_TAG_pointer_type:
e7c27a73 7236 read_tag_pointer_type (die, cu);
c906108c
SS
7237 break;
7238 case DW_TAG_ptr_to_member_type:
e7c27a73 7239 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7240 break;
7241 case DW_TAG_reference_type:
e7c27a73 7242 read_tag_reference_type (die, cu);
c906108c
SS
7243 break;
7244 case DW_TAG_const_type:
e7c27a73 7245 read_tag_const_type (die, cu);
c906108c
SS
7246 break;
7247 case DW_TAG_volatile_type:
e7c27a73 7248 read_tag_volatile_type (die, cu);
c906108c
SS
7249 break;
7250 case DW_TAG_string_type:
e7c27a73 7251 read_tag_string_type (die, cu);
c906108c
SS
7252 break;
7253 case DW_TAG_typedef:
e7c27a73 7254 read_typedef (die, cu);
c906108c 7255 break;
a02abb62
JB
7256 case DW_TAG_subrange_type:
7257 read_subrange_type (die, cu);
7258 break;
c906108c 7259 case DW_TAG_base_type:
e7c27a73 7260 read_base_type (die, cu);
c906108c
SS
7261 break;
7262 default:
e2e0b3e5 7263 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
4d3c2250 7264 dwarf_tag_name (die->tag));
c906108c
SS
7265 break;
7266 }
63d06c5c
DC
7267
7268 processing_current_prefix = old_prefix;
7269 do_cleanups (back_to);
7270}
7271
fdde2d81
DC
7272/* Return the name of the namespace/class that DIE is defined within,
7273 or "" if we can't tell. The caller should xfree the result. */
7274
7275/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7276 therein) for an example of how to use this function to deal with
7277 DW_AT_specification. */
7278
7279static char *
e142c38c 7280determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7281{
7282 struct die_info *parent;
7283
987504bb
JJ
7284 if (cu->language != language_cplus
7285 && cu->language != language_java)
63d06c5c
DC
7286 return NULL;
7287
7288 parent = die->parent;
7289
7290 if (parent == NULL)
7291 {
8176b9b8 7292 return xstrdup ("");
63d06c5c
DC
7293 }
7294 else
7295 {
63d06c5c
DC
7296 switch (parent->tag) {
7297 case DW_TAG_namespace:
7298 {
8176b9b8
DC
7299 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7300 before doing this check? */
7301 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7302 {
7303 return xstrdup (TYPE_TAG_NAME (parent->type));
7304 }
7305 else
7306 {
7307 int dummy;
7308 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7309 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7310 namespace_name (parent, &dummy,
987504bb
JJ
7311 cu),
7312 cu);
8176b9b8
DC
7313 xfree (parent_prefix);
7314 return retval;
7315 }
63d06c5c
DC
7316 }
7317 break;
7318 case DW_TAG_class_type:
7319 case DW_TAG_structure_type:
7320 {
8176b9b8 7321 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7322 {
8176b9b8 7323 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7324 }
7325 else
8176b9b8
DC
7326 {
7327 const char *old_prefix = processing_current_prefix;
7328 char *new_prefix = determine_prefix (parent, cu);
7329 char *retval;
7330
7331 processing_current_prefix = new_prefix;
7332 retval = determine_class_name (parent, cu);
7333 processing_current_prefix = old_prefix;
7334
7335 xfree (new_prefix);
7336 return retval;
7337 }
63d06c5c 7338 }
63d06c5c 7339 default:
8176b9b8 7340 return determine_prefix (parent, cu);
63d06c5c 7341 }
63d06c5c
DC
7342 }
7343}
7344
987504bb
JJ
7345/* Return a newly-allocated string formed by concatenating PREFIX and
7346 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7347 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7348 perform an obconcat, otherwise allocate storage for the result. The CU argument
7349 is used to determine the language and hence, the appropriate separator. */
7350
7351#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7352
7353static char *
987504bb
JJ
7354typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7355 struct dwarf2_cu *cu)
63d06c5c 7356{
987504bb 7357 char *sep;
63d06c5c 7358
987504bb
JJ
7359 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7360 sep = "";
7361 else if (cu->language == language_java)
7362 sep = ".";
7363 else
7364 sep = "::";
63d06c5c 7365
987504bb
JJ
7366 if (obs == NULL)
7367 {
7368 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7369 retval[0] = '\0';
7370
7371 if (prefix)
7372 {
7373 strcpy (retval, prefix);
7374 strcat (retval, sep);
7375 }
7376 if (suffix)
7377 strcat (retval, suffix);
7378
63d06c5c
DC
7379 return retval;
7380 }
987504bb
JJ
7381 else
7382 {
7383 /* We have an obstack. */
7384 return obconcat (obs, prefix, sep, suffix);
7385 }
63d06c5c
DC
7386}
7387
c906108c 7388static struct type *
e7c27a73 7389dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7390{
e7c27a73
DJ
7391 struct objfile *objfile = cu->objfile;
7392
c906108c
SS
7393 /* FIXME - this should not produce a new (struct type *)
7394 every time. It should cache base types. */
7395 struct type *type;
7396 switch (encoding)
7397 {
7398 case DW_ATE_address:
e142c38c 7399 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7400 return type;
7401 case DW_ATE_boolean:
e142c38c 7402 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7403 return type;
7404 case DW_ATE_complex_float:
7405 if (size == 16)
7406 {
e142c38c 7407 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7408 }
7409 else
7410 {
e142c38c 7411 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7412 }
7413 return type;
7414 case DW_ATE_float:
7415 if (size == 8)
7416 {
e142c38c 7417 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7418 }
7419 else
7420 {
e142c38c 7421 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7422 }
7423 return type;
7424 case DW_ATE_signed:
7425 switch (size)
7426 {
7427 case 1:
e142c38c 7428 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7429 break;
7430 case 2:
e142c38c 7431 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7432 break;
7433 default:
7434 case 4:
e142c38c 7435 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7436 break;
7437 }
7438 return type;
7439 case DW_ATE_signed_char:
e142c38c 7440 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7441 return type;
7442 case DW_ATE_unsigned:
7443 switch (size)
7444 {
7445 case 1:
e142c38c 7446 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7447 break;
7448 case 2:
e142c38c 7449 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7450 break;
7451 default:
7452 case 4:
e142c38c 7453 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7454 break;
7455 }
7456 return type;
7457 case DW_ATE_unsigned_char:
e142c38c 7458 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7459 return type;
7460 default:
e142c38c 7461 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7462 return type;
7463 }
7464}
7465
7466#if 0
7467struct die_info *
fba45db2 7468copy_die (struct die_info *old_die)
c906108c
SS
7469{
7470 struct die_info *new_die;
7471 int i, num_attrs;
7472
7473 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7474 memset (new_die, 0, sizeof (struct die_info));
7475
7476 new_die->tag = old_die->tag;
7477 new_die->has_children = old_die->has_children;
7478 new_die->abbrev = old_die->abbrev;
7479 new_die->offset = old_die->offset;
7480 new_die->type = NULL;
7481
7482 num_attrs = old_die->num_attrs;
7483 new_die->num_attrs = num_attrs;
7484 new_die->attrs = (struct attribute *)
7485 xmalloc (num_attrs * sizeof (struct attribute));
7486
7487 for (i = 0; i < old_die->num_attrs; ++i)
7488 {
7489 new_die->attrs[i].name = old_die->attrs[i].name;
7490 new_die->attrs[i].form = old_die->attrs[i].form;
7491 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7492 }
7493
7494 new_die->next = NULL;
7495 return new_die;
7496}
7497#endif
7498
7499/* Return sibling of die, NULL if no sibling. */
7500
f9aca02d 7501static struct die_info *
fba45db2 7502sibling_die (struct die_info *die)
c906108c 7503{
639d11d3 7504 return die->sibling;
c906108c
SS
7505}
7506
7507/* Get linkage name of a die, return NULL if not found. */
7508
7509static char *
e142c38c 7510dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7511{
7512 struct attribute *attr;
7513
e142c38c 7514 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7515 if (attr && DW_STRING (attr))
7516 return DW_STRING (attr);
e142c38c 7517 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7518 if (attr && DW_STRING (attr))
7519 return DW_STRING (attr);
7520 return NULL;
7521}
7522
9219021c
DC
7523/* Get name of a die, return NULL if not found. */
7524
7525static char *
e142c38c 7526dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7527{
7528 struct attribute *attr;
7529
e142c38c 7530 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7531 if (attr && DW_STRING (attr))
7532 return DW_STRING (attr);
7533 return NULL;
7534}
7535
7536/* Return the die that this die in an extension of, or NULL if there
7537 is none. */
7538
7539static struct die_info *
e142c38c 7540dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7541{
7542 struct attribute *attr;
9219021c 7543
e142c38c 7544 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7545 if (attr == NULL)
7546 return NULL;
7547
10b3939b 7548 return follow_die_ref (die, attr, cu);
9219021c
DC
7549}
7550
c906108c
SS
7551/* Convert a DIE tag into its string name. */
7552
7553static char *
aa1ee363 7554dwarf_tag_name (unsigned tag)
c906108c
SS
7555{
7556 switch (tag)
7557 {
7558 case DW_TAG_padding:
7559 return "DW_TAG_padding";
7560 case DW_TAG_array_type:
7561 return "DW_TAG_array_type";
7562 case DW_TAG_class_type:
7563 return "DW_TAG_class_type";
7564 case DW_TAG_entry_point:
7565 return "DW_TAG_entry_point";
7566 case DW_TAG_enumeration_type:
7567 return "DW_TAG_enumeration_type";
7568 case DW_TAG_formal_parameter:
7569 return "DW_TAG_formal_parameter";
7570 case DW_TAG_imported_declaration:
7571 return "DW_TAG_imported_declaration";
7572 case DW_TAG_label:
7573 return "DW_TAG_label";
7574 case DW_TAG_lexical_block:
7575 return "DW_TAG_lexical_block";
7576 case DW_TAG_member:
7577 return "DW_TAG_member";
7578 case DW_TAG_pointer_type:
7579 return "DW_TAG_pointer_type";
7580 case DW_TAG_reference_type:
7581 return "DW_TAG_reference_type";
7582 case DW_TAG_compile_unit:
7583 return "DW_TAG_compile_unit";
7584 case DW_TAG_string_type:
7585 return "DW_TAG_string_type";
7586 case DW_TAG_structure_type:
7587 return "DW_TAG_structure_type";
7588 case DW_TAG_subroutine_type:
7589 return "DW_TAG_subroutine_type";
7590 case DW_TAG_typedef:
7591 return "DW_TAG_typedef";
7592 case DW_TAG_union_type:
7593 return "DW_TAG_union_type";
7594 case DW_TAG_unspecified_parameters:
7595 return "DW_TAG_unspecified_parameters";
7596 case DW_TAG_variant:
7597 return "DW_TAG_variant";
7598 case DW_TAG_common_block:
7599 return "DW_TAG_common_block";
7600 case DW_TAG_common_inclusion:
7601 return "DW_TAG_common_inclusion";
7602 case DW_TAG_inheritance:
7603 return "DW_TAG_inheritance";
7604 case DW_TAG_inlined_subroutine:
7605 return "DW_TAG_inlined_subroutine";
7606 case DW_TAG_module:
7607 return "DW_TAG_module";
7608 case DW_TAG_ptr_to_member_type:
7609 return "DW_TAG_ptr_to_member_type";
7610 case DW_TAG_set_type:
7611 return "DW_TAG_set_type";
7612 case DW_TAG_subrange_type:
7613 return "DW_TAG_subrange_type";
7614 case DW_TAG_with_stmt:
7615 return "DW_TAG_with_stmt";
7616 case DW_TAG_access_declaration:
7617 return "DW_TAG_access_declaration";
7618 case DW_TAG_base_type:
7619 return "DW_TAG_base_type";
7620 case DW_TAG_catch_block:
7621 return "DW_TAG_catch_block";
7622 case DW_TAG_const_type:
7623 return "DW_TAG_const_type";
7624 case DW_TAG_constant:
7625 return "DW_TAG_constant";
7626 case DW_TAG_enumerator:
7627 return "DW_TAG_enumerator";
7628 case DW_TAG_file_type:
7629 return "DW_TAG_file_type";
7630 case DW_TAG_friend:
7631 return "DW_TAG_friend";
7632 case DW_TAG_namelist:
7633 return "DW_TAG_namelist";
7634 case DW_TAG_namelist_item:
7635 return "DW_TAG_namelist_item";
7636 case DW_TAG_packed_type:
7637 return "DW_TAG_packed_type";
7638 case DW_TAG_subprogram:
7639 return "DW_TAG_subprogram";
7640 case DW_TAG_template_type_param:
7641 return "DW_TAG_template_type_param";
7642 case DW_TAG_template_value_param:
7643 return "DW_TAG_template_value_param";
7644 case DW_TAG_thrown_type:
7645 return "DW_TAG_thrown_type";
7646 case DW_TAG_try_block:
7647 return "DW_TAG_try_block";
7648 case DW_TAG_variant_part:
7649 return "DW_TAG_variant_part";
7650 case DW_TAG_variable:
7651 return "DW_TAG_variable";
7652 case DW_TAG_volatile_type:
7653 return "DW_TAG_volatile_type";
d9fa45fe
DC
7654 case DW_TAG_dwarf_procedure:
7655 return "DW_TAG_dwarf_procedure";
7656 case DW_TAG_restrict_type:
7657 return "DW_TAG_restrict_type";
7658 case DW_TAG_interface_type:
7659 return "DW_TAG_interface_type";
7660 case DW_TAG_namespace:
7661 return "DW_TAG_namespace";
7662 case DW_TAG_imported_module:
7663 return "DW_TAG_imported_module";
7664 case DW_TAG_unspecified_type:
7665 return "DW_TAG_unspecified_type";
7666 case DW_TAG_partial_unit:
7667 return "DW_TAG_partial_unit";
7668 case DW_TAG_imported_unit:
7669 return "DW_TAG_imported_unit";
c906108c
SS
7670 case DW_TAG_MIPS_loop:
7671 return "DW_TAG_MIPS_loop";
7672 case DW_TAG_format_label:
7673 return "DW_TAG_format_label";
7674 case DW_TAG_function_template:
7675 return "DW_TAG_function_template";
7676 case DW_TAG_class_template:
7677 return "DW_TAG_class_template";
7678 default:
7679 return "DW_TAG_<unknown>";
7680 }
7681}
7682
7683/* Convert a DWARF attribute code into its string name. */
7684
7685static char *
aa1ee363 7686dwarf_attr_name (unsigned attr)
c906108c
SS
7687{
7688 switch (attr)
7689 {
7690 case DW_AT_sibling:
7691 return "DW_AT_sibling";
7692 case DW_AT_location:
7693 return "DW_AT_location";
7694 case DW_AT_name:
7695 return "DW_AT_name";
7696 case DW_AT_ordering:
7697 return "DW_AT_ordering";
7698 case DW_AT_subscr_data:
7699 return "DW_AT_subscr_data";
7700 case DW_AT_byte_size:
7701 return "DW_AT_byte_size";
7702 case DW_AT_bit_offset:
7703 return "DW_AT_bit_offset";
7704 case DW_AT_bit_size:
7705 return "DW_AT_bit_size";
7706 case DW_AT_element_list:
7707 return "DW_AT_element_list";
7708 case DW_AT_stmt_list:
7709 return "DW_AT_stmt_list";
7710 case DW_AT_low_pc:
7711 return "DW_AT_low_pc";
7712 case DW_AT_high_pc:
7713 return "DW_AT_high_pc";
7714 case DW_AT_language:
7715 return "DW_AT_language";
7716 case DW_AT_member:
7717 return "DW_AT_member";
7718 case DW_AT_discr:
7719 return "DW_AT_discr";
7720 case DW_AT_discr_value:
7721 return "DW_AT_discr_value";
7722 case DW_AT_visibility:
7723 return "DW_AT_visibility";
7724 case DW_AT_import:
7725 return "DW_AT_import";
7726 case DW_AT_string_length:
7727 return "DW_AT_string_length";
7728 case DW_AT_common_reference:
7729 return "DW_AT_common_reference";
7730 case DW_AT_comp_dir:
7731 return "DW_AT_comp_dir";
7732 case DW_AT_const_value:
7733 return "DW_AT_const_value";
7734 case DW_AT_containing_type:
7735 return "DW_AT_containing_type";
7736 case DW_AT_default_value:
7737 return "DW_AT_default_value";
7738 case DW_AT_inline:
7739 return "DW_AT_inline";
7740 case DW_AT_is_optional:
7741 return "DW_AT_is_optional";
7742 case DW_AT_lower_bound:
7743 return "DW_AT_lower_bound";
7744 case DW_AT_producer:
7745 return "DW_AT_producer";
7746 case DW_AT_prototyped:
7747 return "DW_AT_prototyped";
7748 case DW_AT_return_addr:
7749 return "DW_AT_return_addr";
7750 case DW_AT_start_scope:
7751 return "DW_AT_start_scope";
7752 case DW_AT_stride_size:
7753 return "DW_AT_stride_size";
7754 case DW_AT_upper_bound:
7755 return "DW_AT_upper_bound";
7756 case DW_AT_abstract_origin:
7757 return "DW_AT_abstract_origin";
7758 case DW_AT_accessibility:
7759 return "DW_AT_accessibility";
7760 case DW_AT_address_class:
7761 return "DW_AT_address_class";
7762 case DW_AT_artificial:
7763 return "DW_AT_artificial";
7764 case DW_AT_base_types:
7765 return "DW_AT_base_types";
7766 case DW_AT_calling_convention:
7767 return "DW_AT_calling_convention";
7768 case DW_AT_count:
7769 return "DW_AT_count";
7770 case DW_AT_data_member_location:
7771 return "DW_AT_data_member_location";
7772 case DW_AT_decl_column:
7773 return "DW_AT_decl_column";
7774 case DW_AT_decl_file:
7775 return "DW_AT_decl_file";
7776 case DW_AT_decl_line:
7777 return "DW_AT_decl_line";
7778 case DW_AT_declaration:
7779 return "DW_AT_declaration";
7780 case DW_AT_discr_list:
7781 return "DW_AT_discr_list";
7782 case DW_AT_encoding:
7783 return "DW_AT_encoding";
7784 case DW_AT_external:
7785 return "DW_AT_external";
7786 case DW_AT_frame_base:
7787 return "DW_AT_frame_base";
7788 case DW_AT_friend:
7789 return "DW_AT_friend";
7790 case DW_AT_identifier_case:
7791 return "DW_AT_identifier_case";
7792 case DW_AT_macro_info:
7793 return "DW_AT_macro_info";
7794 case DW_AT_namelist_items:
7795 return "DW_AT_namelist_items";
7796 case DW_AT_priority:
7797 return "DW_AT_priority";
7798 case DW_AT_segment:
7799 return "DW_AT_segment";
7800 case DW_AT_specification:
7801 return "DW_AT_specification";
7802 case DW_AT_static_link:
7803 return "DW_AT_static_link";
7804 case DW_AT_type:
7805 return "DW_AT_type";
7806 case DW_AT_use_location:
7807 return "DW_AT_use_location";
7808 case DW_AT_variable_parameter:
7809 return "DW_AT_variable_parameter";
7810 case DW_AT_virtuality:
7811 return "DW_AT_virtuality";
7812 case DW_AT_vtable_elem_location:
7813 return "DW_AT_vtable_elem_location";
d9fa45fe
DC
7814 case DW_AT_allocated:
7815 return "DW_AT_allocated";
7816 case DW_AT_associated:
7817 return "DW_AT_associated";
7818 case DW_AT_data_location:
7819 return "DW_AT_data_location";
7820 case DW_AT_stride:
7821 return "DW_AT_stride";
7822 case DW_AT_entry_pc:
7823 return "DW_AT_entry_pc";
7824 case DW_AT_use_UTF8:
7825 return "DW_AT_use_UTF8";
7826 case DW_AT_extension:
7827 return "DW_AT_extension";
7828 case DW_AT_ranges:
7829 return "DW_AT_ranges";
7830 case DW_AT_trampoline:
7831 return "DW_AT_trampoline";
7832 case DW_AT_call_column:
7833 return "DW_AT_call_column";
7834 case DW_AT_call_file:
7835 return "DW_AT_call_file";
7836 case DW_AT_call_line:
7837 return "DW_AT_call_line";
c906108c
SS
7838#ifdef MIPS
7839 case DW_AT_MIPS_fde:
7840 return "DW_AT_MIPS_fde";
7841 case DW_AT_MIPS_loop_begin:
7842 return "DW_AT_MIPS_loop_begin";
7843 case DW_AT_MIPS_tail_loop_begin:
7844 return "DW_AT_MIPS_tail_loop_begin";
7845 case DW_AT_MIPS_epilog_begin:
7846 return "DW_AT_MIPS_epilog_begin";
7847 case DW_AT_MIPS_loop_unroll_factor:
7848 return "DW_AT_MIPS_loop_unroll_factor";
7849 case DW_AT_MIPS_software_pipeline_depth:
7850 return "DW_AT_MIPS_software_pipeline_depth";
e0a4f5a1 7851#endif
c906108c
SS
7852 case DW_AT_MIPS_linkage_name:
7853 return "DW_AT_MIPS_linkage_name";
c906108c
SS
7854
7855 case DW_AT_sf_names:
7856 return "DW_AT_sf_names";
7857 case DW_AT_src_info:
7858 return "DW_AT_src_info";
7859 case DW_AT_mac_info:
7860 return "DW_AT_mac_info";
7861 case DW_AT_src_coords:
7862 return "DW_AT_src_coords";
7863 case DW_AT_body_begin:
7864 return "DW_AT_body_begin";
7865 case DW_AT_body_end:
7866 return "DW_AT_body_end";
f5f8a009
EZ
7867 case DW_AT_GNU_vector:
7868 return "DW_AT_GNU_vector";
c906108c
SS
7869 default:
7870 return "DW_AT_<unknown>";
7871 }
7872}
7873
7874/* Convert a DWARF value form code into its string name. */
7875
7876static char *
aa1ee363 7877dwarf_form_name (unsigned form)
c906108c
SS
7878{
7879 switch (form)
7880 {
7881 case DW_FORM_addr:
7882 return "DW_FORM_addr";
7883 case DW_FORM_block2:
7884 return "DW_FORM_block2";
7885 case DW_FORM_block4:
7886 return "DW_FORM_block4";
7887 case DW_FORM_data2:
7888 return "DW_FORM_data2";
7889 case DW_FORM_data4:
7890 return "DW_FORM_data4";
7891 case DW_FORM_data8:
7892 return "DW_FORM_data8";
7893 case DW_FORM_string:
7894 return "DW_FORM_string";
7895 case DW_FORM_block:
7896 return "DW_FORM_block";
7897 case DW_FORM_block1:
7898 return "DW_FORM_block1";
7899 case DW_FORM_data1:
7900 return "DW_FORM_data1";
7901 case DW_FORM_flag:
7902 return "DW_FORM_flag";
7903 case DW_FORM_sdata:
7904 return "DW_FORM_sdata";
7905 case DW_FORM_strp:
7906 return "DW_FORM_strp";
7907 case DW_FORM_udata:
7908 return "DW_FORM_udata";
7909 case DW_FORM_ref_addr:
7910 return "DW_FORM_ref_addr";
7911 case DW_FORM_ref1:
7912 return "DW_FORM_ref1";
7913 case DW_FORM_ref2:
7914 return "DW_FORM_ref2";
7915 case DW_FORM_ref4:
7916 return "DW_FORM_ref4";
7917 case DW_FORM_ref8:
7918 return "DW_FORM_ref8";
7919 case DW_FORM_ref_udata:
7920 return "DW_FORM_ref_udata";
7921 case DW_FORM_indirect:
7922 return "DW_FORM_indirect";
7923 default:
7924 return "DW_FORM_<unknown>";
7925 }
7926}
7927
7928/* Convert a DWARF stack opcode into its string name. */
7929
7930static char *
aa1ee363 7931dwarf_stack_op_name (unsigned op)
c906108c
SS
7932{
7933 switch (op)
7934 {
7935 case DW_OP_addr:
7936 return "DW_OP_addr";
7937 case DW_OP_deref:
7938 return "DW_OP_deref";
7939 case DW_OP_const1u:
7940 return "DW_OP_const1u";
7941 case DW_OP_const1s:
7942 return "DW_OP_const1s";
7943 case DW_OP_const2u:
7944 return "DW_OP_const2u";
7945 case DW_OP_const2s:
7946 return "DW_OP_const2s";
7947 case DW_OP_const4u:
7948 return "DW_OP_const4u";
7949 case DW_OP_const4s:
7950 return "DW_OP_const4s";
7951 case DW_OP_const8u:
7952 return "DW_OP_const8u";
7953 case DW_OP_const8s:
7954 return "DW_OP_const8s";
7955 case DW_OP_constu:
7956 return "DW_OP_constu";
7957 case DW_OP_consts:
7958 return "DW_OP_consts";
7959 case DW_OP_dup:
7960 return "DW_OP_dup";
7961 case DW_OP_drop:
7962 return "DW_OP_drop";
7963 case DW_OP_over:
7964 return "DW_OP_over";
7965 case DW_OP_pick:
7966 return "DW_OP_pick";
7967 case DW_OP_swap:
7968 return "DW_OP_swap";
7969 case DW_OP_rot:
7970 return "DW_OP_rot";
7971 case DW_OP_xderef:
7972 return "DW_OP_xderef";
7973 case DW_OP_abs:
7974 return "DW_OP_abs";
7975 case DW_OP_and:
7976 return "DW_OP_and";
7977 case DW_OP_div:
7978 return "DW_OP_div";
7979 case DW_OP_minus:
7980 return "DW_OP_minus";
7981 case DW_OP_mod:
7982 return "DW_OP_mod";
7983 case DW_OP_mul:
7984 return "DW_OP_mul";
7985 case DW_OP_neg:
7986 return "DW_OP_neg";
7987 case DW_OP_not:
7988 return "DW_OP_not";
7989 case DW_OP_or:
7990 return "DW_OP_or";
7991 case DW_OP_plus:
7992 return "DW_OP_plus";
7993 case DW_OP_plus_uconst:
7994 return "DW_OP_plus_uconst";
7995 case DW_OP_shl:
7996 return "DW_OP_shl";
7997 case DW_OP_shr:
7998 return "DW_OP_shr";
7999 case DW_OP_shra:
8000 return "DW_OP_shra";
8001 case DW_OP_xor:
8002 return "DW_OP_xor";
8003 case DW_OP_bra:
8004 return "DW_OP_bra";
8005 case DW_OP_eq:
8006 return "DW_OP_eq";
8007 case DW_OP_ge:
8008 return "DW_OP_ge";
8009 case DW_OP_gt:
8010 return "DW_OP_gt";
8011 case DW_OP_le:
8012 return "DW_OP_le";
8013 case DW_OP_lt:
8014 return "DW_OP_lt";
8015 case DW_OP_ne:
8016 return "DW_OP_ne";
8017 case DW_OP_skip:
8018 return "DW_OP_skip";
8019 case DW_OP_lit0:
8020 return "DW_OP_lit0";
8021 case DW_OP_lit1:
8022 return "DW_OP_lit1";
8023 case DW_OP_lit2:
8024 return "DW_OP_lit2";
8025 case DW_OP_lit3:
8026 return "DW_OP_lit3";
8027 case DW_OP_lit4:
8028 return "DW_OP_lit4";
8029 case DW_OP_lit5:
8030 return "DW_OP_lit5";
8031 case DW_OP_lit6:
8032 return "DW_OP_lit6";
8033 case DW_OP_lit7:
8034 return "DW_OP_lit7";
8035 case DW_OP_lit8:
8036 return "DW_OP_lit8";
8037 case DW_OP_lit9:
8038 return "DW_OP_lit9";
8039 case DW_OP_lit10:
8040 return "DW_OP_lit10";
8041 case DW_OP_lit11:
8042 return "DW_OP_lit11";
8043 case DW_OP_lit12:
8044 return "DW_OP_lit12";
8045 case DW_OP_lit13:
8046 return "DW_OP_lit13";
8047 case DW_OP_lit14:
8048 return "DW_OP_lit14";
8049 case DW_OP_lit15:
8050 return "DW_OP_lit15";
8051 case DW_OP_lit16:
8052 return "DW_OP_lit16";
8053 case DW_OP_lit17:
8054 return "DW_OP_lit17";
8055 case DW_OP_lit18:
8056 return "DW_OP_lit18";
8057 case DW_OP_lit19:
8058 return "DW_OP_lit19";
8059 case DW_OP_lit20:
8060 return "DW_OP_lit20";
8061 case DW_OP_lit21:
8062 return "DW_OP_lit21";
8063 case DW_OP_lit22:
8064 return "DW_OP_lit22";
8065 case DW_OP_lit23:
8066 return "DW_OP_lit23";
8067 case DW_OP_lit24:
8068 return "DW_OP_lit24";
8069 case DW_OP_lit25:
8070 return "DW_OP_lit25";
8071 case DW_OP_lit26:
8072 return "DW_OP_lit26";
8073 case DW_OP_lit27:
8074 return "DW_OP_lit27";
8075 case DW_OP_lit28:
8076 return "DW_OP_lit28";
8077 case DW_OP_lit29:
8078 return "DW_OP_lit29";
8079 case DW_OP_lit30:
8080 return "DW_OP_lit30";
8081 case DW_OP_lit31:
8082 return "DW_OP_lit31";
8083 case DW_OP_reg0:
8084 return "DW_OP_reg0";
8085 case DW_OP_reg1:
8086 return "DW_OP_reg1";
8087 case DW_OP_reg2:
8088 return "DW_OP_reg2";
8089 case DW_OP_reg3:
8090 return "DW_OP_reg3";
8091 case DW_OP_reg4:
8092 return "DW_OP_reg4";
8093 case DW_OP_reg5:
8094 return "DW_OP_reg5";
8095 case DW_OP_reg6:
8096 return "DW_OP_reg6";
8097 case DW_OP_reg7:
8098 return "DW_OP_reg7";
8099 case DW_OP_reg8:
8100 return "DW_OP_reg8";
8101 case DW_OP_reg9:
8102 return "DW_OP_reg9";
8103 case DW_OP_reg10:
8104 return "DW_OP_reg10";
8105 case DW_OP_reg11:
8106 return "DW_OP_reg11";
8107 case DW_OP_reg12:
8108 return "DW_OP_reg12";
8109 case DW_OP_reg13:
8110 return "DW_OP_reg13";
8111 case DW_OP_reg14:
8112 return "DW_OP_reg14";
8113 case DW_OP_reg15:
8114 return "DW_OP_reg15";
8115 case DW_OP_reg16:
8116 return "DW_OP_reg16";
8117 case DW_OP_reg17:
8118 return "DW_OP_reg17";
8119 case DW_OP_reg18:
8120 return "DW_OP_reg18";
8121 case DW_OP_reg19:
8122 return "DW_OP_reg19";
8123 case DW_OP_reg20:
8124 return "DW_OP_reg20";
8125 case DW_OP_reg21:
8126 return "DW_OP_reg21";
8127 case DW_OP_reg22:
8128 return "DW_OP_reg22";
8129 case DW_OP_reg23:
8130 return "DW_OP_reg23";
8131 case DW_OP_reg24:
8132 return "DW_OP_reg24";
8133 case DW_OP_reg25:
8134 return "DW_OP_reg25";
8135 case DW_OP_reg26:
8136 return "DW_OP_reg26";
8137 case DW_OP_reg27:
8138 return "DW_OP_reg27";
8139 case DW_OP_reg28:
8140 return "DW_OP_reg28";
8141 case DW_OP_reg29:
8142 return "DW_OP_reg29";
8143 case DW_OP_reg30:
8144 return "DW_OP_reg30";
8145 case DW_OP_reg31:
8146 return "DW_OP_reg31";
8147 case DW_OP_breg0:
8148 return "DW_OP_breg0";
8149 case DW_OP_breg1:
8150 return "DW_OP_breg1";
8151 case DW_OP_breg2:
8152 return "DW_OP_breg2";
8153 case DW_OP_breg3:
8154 return "DW_OP_breg3";
8155 case DW_OP_breg4:
8156 return "DW_OP_breg4";
8157 case DW_OP_breg5:
8158 return "DW_OP_breg5";
8159 case DW_OP_breg6:
8160 return "DW_OP_breg6";
8161 case DW_OP_breg7:
8162 return "DW_OP_breg7";
8163 case DW_OP_breg8:
8164 return "DW_OP_breg8";
8165 case DW_OP_breg9:
8166 return "DW_OP_breg9";
8167 case DW_OP_breg10:
8168 return "DW_OP_breg10";
8169 case DW_OP_breg11:
8170 return "DW_OP_breg11";
8171 case DW_OP_breg12:
8172 return "DW_OP_breg12";
8173 case DW_OP_breg13:
8174 return "DW_OP_breg13";
8175 case DW_OP_breg14:
8176 return "DW_OP_breg14";
8177 case DW_OP_breg15:
8178 return "DW_OP_breg15";
8179 case DW_OP_breg16:
8180 return "DW_OP_breg16";
8181 case DW_OP_breg17:
8182 return "DW_OP_breg17";
8183 case DW_OP_breg18:
8184 return "DW_OP_breg18";
8185 case DW_OP_breg19:
8186 return "DW_OP_breg19";
8187 case DW_OP_breg20:
8188 return "DW_OP_breg20";
8189 case DW_OP_breg21:
8190 return "DW_OP_breg21";
8191 case DW_OP_breg22:
8192 return "DW_OP_breg22";
8193 case DW_OP_breg23:
8194 return "DW_OP_breg23";
8195 case DW_OP_breg24:
8196 return "DW_OP_breg24";
8197 case DW_OP_breg25:
8198 return "DW_OP_breg25";
8199 case DW_OP_breg26:
8200 return "DW_OP_breg26";
8201 case DW_OP_breg27:
8202 return "DW_OP_breg27";
8203 case DW_OP_breg28:
8204 return "DW_OP_breg28";
8205 case DW_OP_breg29:
8206 return "DW_OP_breg29";
8207 case DW_OP_breg30:
8208 return "DW_OP_breg30";
8209 case DW_OP_breg31:
8210 return "DW_OP_breg31";
8211 case DW_OP_regx:
8212 return "DW_OP_regx";
8213 case DW_OP_fbreg:
8214 return "DW_OP_fbreg";
8215 case DW_OP_bregx:
8216 return "DW_OP_bregx";
8217 case DW_OP_piece:
8218 return "DW_OP_piece";
8219 case DW_OP_deref_size:
8220 return "DW_OP_deref_size";
8221 case DW_OP_xderef_size:
8222 return "DW_OP_xderef_size";
8223 case DW_OP_nop:
8224 return "DW_OP_nop";
ed348acc
EZ
8225 /* DWARF 3 extensions. */
8226 case DW_OP_push_object_address:
8227 return "DW_OP_push_object_address";
8228 case DW_OP_call2:
8229 return "DW_OP_call2";
8230 case DW_OP_call4:
8231 return "DW_OP_call4";
8232 case DW_OP_call_ref:
8233 return "DW_OP_call_ref";
8234 /* GNU extensions. */
8235 case DW_OP_GNU_push_tls_address:
8236 return "DW_OP_GNU_push_tls_address";
c906108c
SS
8237 default:
8238 return "OP_<unknown>";
8239 }
8240}
8241
8242static char *
fba45db2 8243dwarf_bool_name (unsigned mybool)
c906108c
SS
8244{
8245 if (mybool)
8246 return "TRUE";
8247 else
8248 return "FALSE";
8249}
8250
8251/* Convert a DWARF type code into its string name. */
8252
8253static char *
aa1ee363 8254dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8255{
8256 switch (enc)
8257 {
8258 case DW_ATE_address:
8259 return "DW_ATE_address";
8260 case DW_ATE_boolean:
8261 return "DW_ATE_boolean";
8262 case DW_ATE_complex_float:
8263 return "DW_ATE_complex_float";
8264 case DW_ATE_float:
8265 return "DW_ATE_float";
8266 case DW_ATE_signed:
8267 return "DW_ATE_signed";
8268 case DW_ATE_signed_char:
8269 return "DW_ATE_signed_char";
8270 case DW_ATE_unsigned:
8271 return "DW_ATE_unsigned";
8272 case DW_ATE_unsigned_char:
8273 return "DW_ATE_unsigned_char";
d9fa45fe
DC
8274 case DW_ATE_imaginary_float:
8275 return "DW_ATE_imaginary_float";
c906108c
SS
8276 default:
8277 return "DW_ATE_<unknown>";
8278 }
8279}
8280
8281/* Convert a DWARF call frame info operation to its string name. */
8282
8283#if 0
8284static char *
aa1ee363 8285dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8286{
8287 switch (cfi_opc)
8288 {
8289 case DW_CFA_advance_loc:
8290 return "DW_CFA_advance_loc";
8291 case DW_CFA_offset:
8292 return "DW_CFA_offset";
8293 case DW_CFA_restore:
8294 return "DW_CFA_restore";
8295 case DW_CFA_nop:
8296 return "DW_CFA_nop";
8297 case DW_CFA_set_loc:
8298 return "DW_CFA_set_loc";
8299 case DW_CFA_advance_loc1:
8300 return "DW_CFA_advance_loc1";
8301 case DW_CFA_advance_loc2:
8302 return "DW_CFA_advance_loc2";
8303 case DW_CFA_advance_loc4:
8304 return "DW_CFA_advance_loc4";
8305 case DW_CFA_offset_extended:
8306 return "DW_CFA_offset_extended";
8307 case DW_CFA_restore_extended:
8308 return "DW_CFA_restore_extended";
8309 case DW_CFA_undefined:
8310 return "DW_CFA_undefined";
8311 case DW_CFA_same_value:
8312 return "DW_CFA_same_value";
8313 case DW_CFA_register:
8314 return "DW_CFA_register";
8315 case DW_CFA_remember_state:
8316 return "DW_CFA_remember_state";
8317 case DW_CFA_restore_state:
8318 return "DW_CFA_restore_state";
8319 case DW_CFA_def_cfa:
8320 return "DW_CFA_def_cfa";
8321 case DW_CFA_def_cfa_register:
8322 return "DW_CFA_def_cfa_register";
8323 case DW_CFA_def_cfa_offset:
8324 return "DW_CFA_def_cfa_offset";
985cb1a3
JM
8325
8326 /* DWARF 3 */
8327 case DW_CFA_def_cfa_expression:
8328 return "DW_CFA_def_cfa_expression";
8329 case DW_CFA_expression:
8330 return "DW_CFA_expression";
8331 case DW_CFA_offset_extended_sf:
8332 return "DW_CFA_offset_extended_sf";
8333 case DW_CFA_def_cfa_sf:
8334 return "DW_CFA_def_cfa_sf";
8335 case DW_CFA_def_cfa_offset_sf:
8336 return "DW_CFA_def_cfa_offset_sf";
8337
c906108c
SS
8338 /* SGI/MIPS specific */
8339 case DW_CFA_MIPS_advance_loc8:
8340 return "DW_CFA_MIPS_advance_loc8";
985cb1a3
JM
8341
8342 /* GNU extensions */
8343 case DW_CFA_GNU_window_save:
8344 return "DW_CFA_GNU_window_save";
8345 case DW_CFA_GNU_args_size:
8346 return "DW_CFA_GNU_args_size";
8347 case DW_CFA_GNU_negative_offset_extended:
8348 return "DW_CFA_GNU_negative_offset_extended";
8349
c906108c
SS
8350 default:
8351 return "DW_CFA_<unknown>";
8352 }
8353}
8354#endif
8355
f9aca02d 8356static void
fba45db2 8357dump_die (struct die_info *die)
c906108c
SS
8358{
8359 unsigned int i;
8360
48cd0caa 8361 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8362 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8363 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8364 dwarf_bool_name (die->child != NULL));
c906108c 8365
48cd0caa 8366 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8367 for (i = 0; i < die->num_attrs; ++i)
8368 {
48cd0caa 8369 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8370 dwarf_attr_name (die->attrs[i].name),
8371 dwarf_form_name (die->attrs[i].form));
8372 switch (die->attrs[i].form)
8373 {
8374 case DW_FORM_ref_addr:
8375 case DW_FORM_addr:
48cd0caa 8376 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8377 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8378 break;
8379 case DW_FORM_block2:
8380 case DW_FORM_block4:
8381 case DW_FORM_block:
8382 case DW_FORM_block1:
48cd0caa 8383 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8384 break;
10b3939b
DJ
8385 case DW_FORM_ref1:
8386 case DW_FORM_ref2:
8387 case DW_FORM_ref4:
8388 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8389 (long) (DW_ADDR (&die->attrs[i])));
8390 break;
c906108c
SS
8391 case DW_FORM_data1:
8392 case DW_FORM_data2:
8393 case DW_FORM_data4:
ce5d95e1 8394 case DW_FORM_data8:
c906108c
SS
8395 case DW_FORM_udata:
8396 case DW_FORM_sdata:
48cd0caa 8397 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8398 break;
8399 case DW_FORM_string:
4bdf3d34 8400 case DW_FORM_strp:
48cd0caa 8401 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8402 DW_STRING (&die->attrs[i])
c5aa993b 8403 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8404 break;
8405 case DW_FORM_flag:
8406 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8407 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8408 else
48cd0caa 8409 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8410 break;
a8329558
KW
8411 case DW_FORM_indirect:
8412 /* the reader will have reduced the indirect form to
8413 the "base form" so this form should not occur */
48cd0caa 8414 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8415 break;
c906108c 8416 default:
48cd0caa 8417 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8418 die->attrs[i].form);
c906108c 8419 }
48cd0caa 8420 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8421 }
8422}
8423
f9aca02d 8424static void
fba45db2 8425dump_die_list (struct die_info *die)
c906108c
SS
8426{
8427 while (die)
8428 {
8429 dump_die (die);
639d11d3
DC
8430 if (die->child != NULL)
8431 dump_die_list (die->child);
8432 if (die->sibling != NULL)
8433 dump_die_list (die->sibling);
c906108c
SS
8434 }
8435}
8436
f9aca02d 8437static void
10b3939b
DJ
8438store_in_ref_table (unsigned int offset, struct die_info *die,
8439 struct dwarf2_cu *cu)
c906108c
SS
8440{
8441 int h;
8442 struct die_info *old;
8443
8444 h = (offset % REF_HASH_SIZE);
10b3939b 8445 old = cu->die_ref_table[h];
c906108c 8446 die->next_ref = old;
10b3939b 8447 cu->die_ref_table[h] = die;
c906108c
SS
8448}
8449
8450static unsigned int
e142c38c 8451dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8452{
8453 unsigned int result = 0;
8454
8455 switch (attr->form)
8456 {
8457 case DW_FORM_ref_addr:
c906108c
SS
8458 case DW_FORM_ref1:
8459 case DW_FORM_ref2:
8460 case DW_FORM_ref4:
613e1657 8461 case DW_FORM_ref8:
c906108c 8462 case DW_FORM_ref_udata:
10b3939b 8463 result = DW_ADDR (attr);
c906108c
SS
8464 break;
8465 default:
4d3c2250 8466 complaint (&symfile_complaints,
e2e0b3e5 8467 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8468 dwarf_form_name (attr->form));
c906108c
SS
8469 }
8470 return result;
8471}
8472
a02abb62
JB
8473/* Return the constant value held by the given attribute. Return -1
8474 if the value held by the attribute is not constant. */
8475
8476static int
8477dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8478{
8479 if (attr->form == DW_FORM_sdata)
8480 return DW_SND (attr);
8481 else if (attr->form == DW_FORM_udata
8482 || attr->form == DW_FORM_data1
8483 || attr->form == DW_FORM_data2
8484 || attr->form == DW_FORM_data4
8485 || attr->form == DW_FORM_data8)
8486 return DW_UNSND (attr);
8487 else
8488 {
e2e0b3e5 8489 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8490 dwarf_form_name (attr->form));
8491 return default_value;
8492 }
8493}
8494
f9aca02d 8495static struct die_info *
10b3939b
DJ
8496follow_die_ref (struct die_info *src_die, struct attribute *attr,
8497 struct dwarf2_cu *cu)
c906108c
SS
8498{
8499 struct die_info *die;
10b3939b 8500 unsigned int offset;
c906108c 8501 int h;
10b3939b
DJ
8502 struct die_info temp_die;
8503 struct dwarf2_cu *target_cu;
8504
8505 offset = dwarf2_get_ref_die_offset (attr, cu);
8506
8507 if (DW_ADDR (attr) < cu->header.offset
8508 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8509 {
8510 struct dwarf2_per_cu_data *per_cu;
8511 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8512 cu->objfile);
8513 target_cu = per_cu->cu;
8514 }
8515 else
8516 target_cu = cu;
c906108c
SS
8517
8518 h = (offset % REF_HASH_SIZE);
10b3939b 8519 die = target_cu->die_ref_table[h];
c906108c
SS
8520 while (die)
8521 {
8522 if (die->offset == offset)
10b3939b 8523 return die;
c906108c
SS
8524 die = die->next_ref;
8525 }
10b3939b 8526
8a3fe4f8
AC
8527 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8528 "at 0x%lx [in module %s]"),
10b3939b
DJ
8529 (long) src_die->offset, (long) offset, cu->objfile->name);
8530
c906108c
SS
8531 return NULL;
8532}
8533
8534static struct type *
e142c38c
DJ
8535dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8536 struct dwarf2_cu *cu)
c906108c
SS
8537{
8538 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8539 {
8a3fe4f8 8540 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 8541 typeid, objfile->name);
c906108c
SS
8542 }
8543
8544 /* Look for this particular type in the fundamental type vector. If
8545 one is not found, create and install one appropriate for the
8546 current language and the current target machine. */
8547
e142c38c 8548 if (cu->ftypes[typeid] == NULL)
c906108c 8549 {
e142c38c 8550 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
8551 }
8552
e142c38c 8553 return (cu->ftypes[typeid]);
c906108c
SS
8554}
8555
8556/* Decode simple location descriptions.
8557 Given a pointer to a dwarf block that defines a location, compute
8558 the location and return the value.
8559
4cecd739
DJ
8560 NOTE drow/2003-11-18: This function is called in two situations
8561 now: for the address of static or global variables (partial symbols
8562 only) and for offsets into structures which are expected to be
8563 (more or less) constant. The partial symbol case should go away,
8564 and only the constant case should remain. That will let this
8565 function complain more accurately. A few special modes are allowed
8566 without complaint for global variables (for instance, global
8567 register values and thread-local values).
c906108c
SS
8568
8569 A location description containing no operations indicates that the
4cecd739 8570 object is optimized out. The return value is 0 for that case.
6b992462
DJ
8571 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8572 callers will only want a very basic result and this can become a
8573 complaint.
c906108c 8574
c906108c
SS
8575 Note that stack[0] is unused except as a default error return.
8576 Note that stack overflow is not yet handled. */
8577
8578static CORE_ADDR
e7c27a73 8579decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 8580{
e7c27a73
DJ
8581 struct objfile *objfile = cu->objfile;
8582 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8583 int i;
8584 int size = blk->size;
8585 char *data = blk->data;
8586 CORE_ADDR stack[64];
8587 int stacki;
8588 unsigned int bytes_read, unsnd;
8589 unsigned char op;
8590
8591 i = 0;
8592 stacki = 0;
8593 stack[stacki] = 0;
c906108c
SS
8594
8595 while (i < size)
8596 {
c906108c
SS
8597 op = data[i++];
8598 switch (op)
8599 {
f1bea926
JM
8600 case DW_OP_lit0:
8601 case DW_OP_lit1:
8602 case DW_OP_lit2:
8603 case DW_OP_lit3:
8604 case DW_OP_lit4:
8605 case DW_OP_lit5:
8606 case DW_OP_lit6:
8607 case DW_OP_lit7:
8608 case DW_OP_lit8:
8609 case DW_OP_lit9:
8610 case DW_OP_lit10:
8611 case DW_OP_lit11:
8612 case DW_OP_lit12:
8613 case DW_OP_lit13:
8614 case DW_OP_lit14:
8615 case DW_OP_lit15:
8616 case DW_OP_lit16:
8617 case DW_OP_lit17:
8618 case DW_OP_lit18:
8619 case DW_OP_lit19:
8620 case DW_OP_lit20:
8621 case DW_OP_lit21:
8622 case DW_OP_lit22:
8623 case DW_OP_lit23:
8624 case DW_OP_lit24:
8625 case DW_OP_lit25:
8626 case DW_OP_lit26:
8627 case DW_OP_lit27:
8628 case DW_OP_lit28:
8629 case DW_OP_lit29:
8630 case DW_OP_lit30:
8631 case DW_OP_lit31:
8632 stack[++stacki] = op - DW_OP_lit0;
8633 break;
8634
c906108c
SS
8635 case DW_OP_reg0:
8636 case DW_OP_reg1:
8637 case DW_OP_reg2:
8638 case DW_OP_reg3:
8639 case DW_OP_reg4:
8640 case DW_OP_reg5:
8641 case DW_OP_reg6:
8642 case DW_OP_reg7:
8643 case DW_OP_reg8:
8644 case DW_OP_reg9:
8645 case DW_OP_reg10:
8646 case DW_OP_reg11:
8647 case DW_OP_reg12:
8648 case DW_OP_reg13:
8649 case DW_OP_reg14:
8650 case DW_OP_reg15:
8651 case DW_OP_reg16:
8652 case DW_OP_reg17:
8653 case DW_OP_reg18:
8654 case DW_OP_reg19:
8655 case DW_OP_reg20:
8656 case DW_OP_reg21:
8657 case DW_OP_reg22:
8658 case DW_OP_reg23:
8659 case DW_OP_reg24:
8660 case DW_OP_reg25:
8661 case DW_OP_reg26:
8662 case DW_OP_reg27:
8663 case DW_OP_reg28:
8664 case DW_OP_reg29:
8665 case DW_OP_reg30:
8666 case DW_OP_reg31:
c906108c 8667 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
8668 if (i < size)
8669 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8670 break;
8671
8672 case DW_OP_regx:
c906108c
SS
8673 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8674 i += bytes_read;
c906108c 8675 stack[++stacki] = unsnd;
4cecd739
DJ
8676 if (i < size)
8677 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8678 break;
8679
8680 case DW_OP_addr:
107d2387 8681 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 8682 cu, &bytes_read);
107d2387 8683 i += bytes_read;
c906108c
SS
8684 break;
8685
8686 case DW_OP_const1u:
8687 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8688 i += 1;
8689 break;
8690
8691 case DW_OP_const1s:
8692 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8693 i += 1;
8694 break;
8695
8696 case DW_OP_const2u:
8697 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8698 i += 2;
8699 break;
8700
8701 case DW_OP_const2s:
8702 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8703 i += 2;
8704 break;
8705
8706 case DW_OP_const4u:
8707 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8708 i += 4;
8709 break;
8710
8711 case DW_OP_const4s:
8712 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8713 i += 4;
8714 break;
8715
8716 case DW_OP_constu:
8717 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 8718 &bytes_read);
c906108c
SS
8719 i += bytes_read;
8720 break;
8721
8722 case DW_OP_consts:
8723 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8724 i += bytes_read;
8725 break;
8726
f1bea926
JM
8727 case DW_OP_dup:
8728 stack[stacki + 1] = stack[stacki];
8729 stacki++;
8730 break;
8731
c906108c
SS
8732 case DW_OP_plus:
8733 stack[stacki - 1] += stack[stacki];
8734 stacki--;
8735 break;
8736
8737 case DW_OP_plus_uconst:
8738 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8739 i += bytes_read;
8740 break;
8741
8742 case DW_OP_minus:
f1bea926 8743 stack[stacki - 1] -= stack[stacki];
c906108c
SS
8744 stacki--;
8745 break;
8746
7a292a7a 8747 case DW_OP_deref:
7a292a7a 8748 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
8749 this using GDB's address_class enum. This is valid for partial
8750 global symbols, although the variable's address will be bogus
8751 in the psymtab. */
7a292a7a 8752 if (i < size)
4d3c2250 8753 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
8754 break;
8755
9d774e44 8756 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
8757 /* The top of the stack has the offset from the beginning
8758 of the thread control block at which the variable is located. */
8759 /* Nothing should follow this operator, so the top of stack would
8760 be returned. */
4cecd739
DJ
8761 /* This is valid for partial global symbols, but the variable's
8762 address will be bogus in the psymtab. */
9d774e44 8763 if (i < size)
4d3c2250 8764 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
8765 break;
8766
c906108c 8767 default:
e2e0b3e5 8768 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 8769 dwarf_stack_op_name (op));
c906108c
SS
8770 return (stack[stacki]);
8771 }
8772 }
8773 return (stack[stacki]);
8774}
8775
8776/* memory allocation interface */
8777
c906108c 8778static struct dwarf_block *
7b5a2f43 8779dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
8780{
8781 struct dwarf_block *blk;
8782
8783 blk = (struct dwarf_block *)
7b5a2f43 8784 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
8785 return (blk);
8786}
8787
8788static struct abbrev_info *
f3dd6933 8789dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
8790{
8791 struct abbrev_info *abbrev;
8792
f3dd6933
DJ
8793 abbrev = (struct abbrev_info *)
8794 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
8795 memset (abbrev, 0, sizeof (struct abbrev_info));
8796 return (abbrev);
8797}
8798
8799static struct die_info *
fba45db2 8800dwarf_alloc_die (void)
c906108c
SS
8801{
8802 struct die_info *die;
8803
8804 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8805 memset (die, 0, sizeof (struct die_info));
8806 return (die);
8807}
2e276125
JB
8808
8809\f
8810/* Macro support. */
8811
8812
8813/* Return the full name of file number I in *LH's file name table.
8814 Use COMP_DIR as the name of the current directory of the
8815 compilation. The result is allocated using xmalloc; the caller is
8816 responsible for freeing it. */
8817static char *
8818file_full_name (int file, struct line_header *lh, const char *comp_dir)
8819{
6a83a1e6
EZ
8820 /* Is the file number a valid index into the line header's file name
8821 table? Remember that file numbers start with one, not zero. */
8822 if (1 <= file && file <= lh->num_file_names)
8823 {
8824 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 8825
6a83a1e6
EZ
8826 if (IS_ABSOLUTE_PATH (fe->name))
8827 return xstrdup (fe->name);
8828 else
8829 {
8830 const char *dir;
8831 int dir_len;
8832 char *full_name;
8833
8834 if (fe->dir_index)
8835 dir = lh->include_dirs[fe->dir_index - 1];
8836 else
8837 dir = comp_dir;
8838
8839 if (dir)
8840 {
8841 dir_len = strlen (dir);
8842 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8843 strcpy (full_name, dir);
8844 full_name[dir_len] = '/';
8845 strcpy (full_name + dir_len + 1, fe->name);
8846 return full_name;
8847 }
8848 else
8849 return xstrdup (fe->name);
8850 }
8851 }
2e276125
JB
8852 else
8853 {
6a83a1e6
EZ
8854 /* The compiler produced a bogus file number. We can at least
8855 record the macro definitions made in the file, even if we
8856 won't be able to find the file by name. */
8857 char fake_name[80];
8858 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 8859
6a83a1e6
EZ
8860 complaint (&symfile_complaints,
8861 _("bad file number in macro information (%d)"),
8862 file);
2e276125 8863
6a83a1e6 8864 return xstrdup (fake_name);
2e276125
JB
8865 }
8866}
8867
8868
8869static struct macro_source_file *
8870macro_start_file (int file, int line,
8871 struct macro_source_file *current_file,
8872 const char *comp_dir,
8873 struct line_header *lh, struct objfile *objfile)
8874{
8875 /* The full name of this source file. */
8876 char *full_name = file_full_name (file, lh, comp_dir);
8877
8878 /* We don't create a macro table for this compilation unit
8879 at all until we actually get a filename. */
8880 if (! pending_macros)
4a146b47 8881 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 8882 objfile->macro_cache);
2e276125
JB
8883
8884 if (! current_file)
8885 /* If we have no current file, then this must be the start_file
8886 directive for the compilation unit's main source file. */
8887 current_file = macro_set_main (pending_macros, full_name);
8888 else
8889 current_file = macro_include (current_file, line, full_name);
8890
8891 xfree (full_name);
8892
8893 return current_file;
8894}
8895
8896
8897/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8898 followed by a null byte. */
8899static char *
8900copy_string (const char *buf, int len)
8901{
8902 char *s = xmalloc (len + 1);
8903 memcpy (s, buf, len);
8904 s[len] = '\0';
8905
8906 return s;
8907}
8908
8909
8910static const char *
8911consume_improper_spaces (const char *p, const char *body)
8912{
8913 if (*p == ' ')
8914 {
4d3c2250 8915 complaint (&symfile_complaints,
e2e0b3e5 8916 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 8917 body);
2e276125
JB
8918
8919 while (*p == ' ')
8920 p++;
8921 }
8922
8923 return p;
8924}
8925
8926
8927static void
8928parse_macro_definition (struct macro_source_file *file, int line,
8929 const char *body)
8930{
8931 const char *p;
8932
8933 /* The body string takes one of two forms. For object-like macro
8934 definitions, it should be:
8935
8936 <macro name> " " <definition>
8937
8938 For function-like macro definitions, it should be:
8939
8940 <macro name> "() " <definition>
8941 or
8942 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8943
8944 Spaces may appear only where explicitly indicated, and in the
8945 <definition>.
8946
8947 The Dwarf 2 spec says that an object-like macro's name is always
8948 followed by a space, but versions of GCC around March 2002 omit
8949 the space when the macro's definition is the empty string.
8950
8951 The Dwarf 2 spec says that there should be no spaces between the
8952 formal arguments in a function-like macro's formal argument list,
8953 but versions of GCC around March 2002 include spaces after the
8954 commas. */
8955
8956
8957 /* Find the extent of the macro name. The macro name is terminated
8958 by either a space or null character (for an object-like macro) or
8959 an opening paren (for a function-like macro). */
8960 for (p = body; *p; p++)
8961 if (*p == ' ' || *p == '(')
8962 break;
8963
8964 if (*p == ' ' || *p == '\0')
8965 {
8966 /* It's an object-like macro. */
8967 int name_len = p - body;
8968 char *name = copy_string (body, name_len);
8969 const char *replacement;
8970
8971 if (*p == ' ')
8972 replacement = body + name_len + 1;
8973 else
8974 {
4d3c2250 8975 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
8976 replacement = body + name_len;
8977 }
8978
8979 macro_define_object (file, line, name, replacement);
8980
8981 xfree (name);
8982 }
8983 else if (*p == '(')
8984 {
8985 /* It's a function-like macro. */
8986 char *name = copy_string (body, p - body);
8987 int argc = 0;
8988 int argv_size = 1;
8989 char **argv = xmalloc (argv_size * sizeof (*argv));
8990
8991 p++;
8992
8993 p = consume_improper_spaces (p, body);
8994
8995 /* Parse the formal argument list. */
8996 while (*p && *p != ')')
8997 {
8998 /* Find the extent of the current argument name. */
8999 const char *arg_start = p;
9000
9001 while (*p && *p != ',' && *p != ')' && *p != ' ')
9002 p++;
9003
9004 if (! *p || p == arg_start)
4d3c2250 9005 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9006 else
9007 {
9008 /* Make sure argv has room for the new argument. */
9009 if (argc >= argv_size)
9010 {
9011 argv_size *= 2;
9012 argv = xrealloc (argv, argv_size * sizeof (*argv));
9013 }
9014
9015 argv[argc++] = copy_string (arg_start, p - arg_start);
9016 }
9017
9018 p = consume_improper_spaces (p, body);
9019
9020 /* Consume the comma, if present. */
9021 if (*p == ',')
9022 {
9023 p++;
9024
9025 p = consume_improper_spaces (p, body);
9026 }
9027 }
9028
9029 if (*p == ')')
9030 {
9031 p++;
9032
9033 if (*p == ' ')
9034 /* Perfectly formed definition, no complaints. */
9035 macro_define_function (file, line, name,
9036 argc, (const char **) argv,
9037 p + 1);
9038 else if (*p == '\0')
9039 {
9040 /* Complain, but do define it. */
4d3c2250 9041 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9042 macro_define_function (file, line, name,
9043 argc, (const char **) argv,
9044 p);
9045 }
9046 else
9047 /* Just complain. */
4d3c2250 9048 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9049 }
9050 else
9051 /* Just complain. */
4d3c2250 9052 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9053
9054 xfree (name);
9055 {
9056 int i;
9057
9058 for (i = 0; i < argc; i++)
9059 xfree (argv[i]);
9060 }
9061 xfree (argv);
9062 }
9063 else
4d3c2250 9064 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9065}
9066
9067
9068static void
9069dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9070 char *comp_dir, bfd *abfd,
e7c27a73 9071 struct dwarf2_cu *cu)
2e276125
JB
9072{
9073 char *mac_ptr, *mac_end;
9074 struct macro_source_file *current_file = 0;
9075
6502dd73 9076 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9077 {
e2e0b3e5 9078 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9079 return;
9080 }
9081
6502dd73
DJ
9082 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9083 mac_end = dwarf2_per_objfile->macinfo_buffer
9084 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9085
9086 for (;;)
9087 {
9088 enum dwarf_macinfo_record_type macinfo_type;
9089
9090 /* Do we at least have room for a macinfo type byte? */
9091 if (mac_ptr >= mac_end)
9092 {
4d3c2250 9093 dwarf2_macros_too_long_complaint ();
2e276125
JB
9094 return;
9095 }
9096
9097 macinfo_type = read_1_byte (abfd, mac_ptr);
9098 mac_ptr++;
9099
9100 switch (macinfo_type)
9101 {
9102 /* A zero macinfo type indicates the end of the macro
9103 information. */
9104 case 0:
9105 return;
9106
9107 case DW_MACINFO_define:
9108 case DW_MACINFO_undef:
9109 {
9110 int bytes_read;
9111 int line;
9112 char *body;
9113
9114 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9115 mac_ptr += bytes_read;
9116 body = read_string (abfd, mac_ptr, &bytes_read);
9117 mac_ptr += bytes_read;
9118
9119 if (! current_file)
4d3c2250 9120 complaint (&symfile_complaints,
e2e0b3e5 9121 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9122 macinfo_type ==
9123 DW_MACINFO_define ? "definition" : macinfo_type ==
9124 DW_MACINFO_undef ? "undefinition" :
9125 "something-or-other", body);
2e276125
JB
9126 else
9127 {
9128 if (macinfo_type == DW_MACINFO_define)
9129 parse_macro_definition (current_file, line, body);
9130 else if (macinfo_type == DW_MACINFO_undef)
9131 macro_undef (current_file, line, body);
9132 }
9133 }
9134 break;
9135
9136 case DW_MACINFO_start_file:
9137 {
9138 int bytes_read;
9139 int line, file;
9140
9141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9142 mac_ptr += bytes_read;
9143 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9144 mac_ptr += bytes_read;
9145
9146 current_file = macro_start_file (file, line,
9147 current_file, comp_dir,
e7c27a73 9148 lh, cu->objfile);
2e276125
JB
9149 }
9150 break;
9151
9152 case DW_MACINFO_end_file:
9153 if (! current_file)
4d3c2250 9154 complaint (&symfile_complaints,
e2e0b3e5 9155 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9156 else
9157 {
9158 current_file = current_file->included_by;
9159 if (! current_file)
9160 {
9161 enum dwarf_macinfo_record_type next_type;
9162
9163 /* GCC circa March 2002 doesn't produce the zero
9164 type byte marking the end of the compilation
9165 unit. Complain if it's not there, but exit no
9166 matter what. */
9167
9168 /* Do we at least have room for a macinfo type byte? */
9169 if (mac_ptr >= mac_end)
9170 {
4d3c2250 9171 dwarf2_macros_too_long_complaint ();
2e276125
JB
9172 return;
9173 }
9174
9175 /* We don't increment mac_ptr here, so this is just
9176 a look-ahead. */
9177 next_type = read_1_byte (abfd, mac_ptr);
9178 if (next_type != 0)
4d3c2250 9179 complaint (&symfile_complaints,
e2e0b3e5 9180 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9181
9182 return;
9183 }
9184 }
9185 break;
9186
9187 case DW_MACINFO_vendor_ext:
9188 {
9189 int bytes_read;
9190 int constant;
9191 char *string;
9192
9193 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9194 mac_ptr += bytes_read;
9195 string = read_string (abfd, mac_ptr, &bytes_read);
9196 mac_ptr += bytes_read;
9197
9198 /* We don't recognize any vendor extensions. */
9199 }
9200 break;
9201 }
9202 }
9203}
8e19ed76
PS
9204
9205/* Check if the attribute's form is a DW_FORM_block*
9206 if so return true else false. */
9207static int
9208attr_form_is_block (struct attribute *attr)
9209{
9210 return (attr == NULL ? 0 :
9211 attr->form == DW_FORM_block1
9212 || attr->form == DW_FORM_block2
9213 || attr->form == DW_FORM_block4
9214 || attr->form == DW_FORM_block);
9215}
4c2df51b
DJ
9216
9217static void
9218dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9219 struct dwarf2_cu *cu)
4c2df51b 9220{
0d53c4c4 9221 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4c2df51b 9222 {
0d53c4c4 9223 struct dwarf2_loclist_baton *baton;
4c2df51b 9224
4a146b47 9225 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9226 sizeof (struct dwarf2_loclist_baton));
e7c27a73 9227 baton->objfile = cu->objfile;
4c2df51b 9228
0d53c4c4
DJ
9229 /* We don't know how long the location list is, but make sure we
9230 don't run off the edge of the section. */
6502dd73
DJ
9231 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9232 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9233 baton->base_address = cu->header.base_address;
9234 if (cu->header.base_known == 0)
0d53c4c4 9235 complaint (&symfile_complaints,
e2e0b3e5 9236 _("Location list used without specifying the CU base address."));
4c2df51b 9237
a67af2b9 9238 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9239 SYMBOL_LOCATION_BATON (sym) = baton;
9240 }
9241 else
9242 {
9243 struct dwarf2_locexpr_baton *baton;
9244
4a146b47 9245 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9246 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 9247 baton->objfile = cu->objfile;
0d53c4c4
DJ
9248
9249 if (attr_form_is_block (attr))
9250 {
9251 /* Note that we're just copying the block's data pointer
9252 here, not the actual data. We're still pointing into the
6502dd73
DJ
9253 info_buffer for SYM's objfile; right now we never release
9254 that buffer, but when we do clean up properly this may
9255 need to change. */
0d53c4c4
DJ
9256 baton->size = DW_BLOCK (attr)->size;
9257 baton->data = DW_BLOCK (attr)->data;
9258 }
9259 else
9260 {
9261 dwarf2_invalid_attrib_class_complaint ("location description",
9262 SYMBOL_NATURAL_NAME (sym));
9263 baton->size = 0;
9264 baton->data = NULL;
9265 }
9266
a67af2b9 9267 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9268 SYMBOL_LOCATION_BATON (sym) = baton;
9269 }
4c2df51b 9270}
6502dd73 9271
ae038cb0 9272/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9273 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9274
9275static struct dwarf2_per_cu_data *
9276dwarf2_find_containing_comp_unit (unsigned long offset,
9277 struct objfile *objfile)
9278{
9279 struct dwarf2_per_cu_data *this_cu;
9280 int low, high;
9281
ae038cb0
DJ
9282 low = 0;
9283 high = dwarf2_per_objfile->n_comp_units - 1;
9284 while (high > low)
9285 {
9286 int mid = low + (high - low) / 2;
9287 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9288 high = mid;
9289 else
9290 low = mid + 1;
9291 }
9292 gdb_assert (low == high);
9293 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9294 {
10b3939b 9295 if (low == 0)
8a3fe4f8
AC
9296 error (_("Dwarf Error: could not find partial DIE containing "
9297 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9298 (long) offset, bfd_get_filename (objfile->obfd));
9299
ae038cb0
DJ
9300 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9301 return dwarf2_per_objfile->all_comp_units[low-1];
9302 }
9303 else
9304 {
9305 this_cu = dwarf2_per_objfile->all_comp_units[low];
9306 if (low == dwarf2_per_objfile->n_comp_units - 1
9307 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9308 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9309 gdb_assert (offset < this_cu->offset + this_cu->length);
9310 return this_cu;
9311 }
9312}
9313
10b3939b
DJ
9314/* Locate the compilation unit from OBJFILE which is located at exactly
9315 OFFSET. Raises an error on failure. */
9316
ae038cb0
DJ
9317static struct dwarf2_per_cu_data *
9318dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9319{
9320 struct dwarf2_per_cu_data *this_cu;
9321 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9322 if (this_cu->offset != offset)
8a3fe4f8 9323 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9324 return this_cu;
9325}
9326
9327/* Release one cached compilation unit, CU. We unlink it from the tree
9328 of compilation units, but we don't remove it from the read_in_chain;
9329 the caller is responsible for that. */
9330
9331static void
9332free_one_comp_unit (void *data)
9333{
9334 struct dwarf2_cu *cu = data;
9335
9336 if (cu->per_cu != NULL)
9337 cu->per_cu->cu = NULL;
9338 cu->per_cu = NULL;
9339
9340 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9341 if (cu->dies)
9342 free_die_list (cu->dies);
ae038cb0
DJ
9343
9344 xfree (cu);
9345}
9346
72bf9492 9347/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9348 when we're finished with it. We can't free the pointer itself, but be
9349 sure to unlink it from the cache. Also release any associated storage
9350 and perform cache maintenance.
72bf9492
DJ
9351
9352 Only used during partial symbol parsing. */
9353
9354static void
9355free_stack_comp_unit (void *data)
9356{
9357 struct dwarf2_cu *cu = data;
9358
9359 obstack_free (&cu->comp_unit_obstack, NULL);
9360 cu->partial_dies = NULL;
ae038cb0
DJ
9361
9362 if (cu->per_cu != NULL)
9363 {
9364 /* This compilation unit is on the stack in our caller, so we
9365 should not xfree it. Just unlink it. */
9366 cu->per_cu->cu = NULL;
9367 cu->per_cu = NULL;
9368
9369 /* If we had a per-cu pointer, then we may have other compilation
9370 units loaded, so age them now. */
9371 age_cached_comp_units ();
9372 }
9373}
9374
9375/* Free all cached compilation units. */
9376
9377static void
9378free_cached_comp_units (void *data)
9379{
9380 struct dwarf2_per_cu_data *per_cu, **last_chain;
9381
9382 per_cu = dwarf2_per_objfile->read_in_chain;
9383 last_chain = &dwarf2_per_objfile->read_in_chain;
9384 while (per_cu != NULL)
9385 {
9386 struct dwarf2_per_cu_data *next_cu;
9387
9388 next_cu = per_cu->cu->read_in_chain;
9389
9390 free_one_comp_unit (per_cu->cu);
9391 *last_chain = next_cu;
9392
9393 per_cu = next_cu;
9394 }
9395}
9396
9397/* Increase the age counter on each cached compilation unit, and free
9398 any that are too old. */
9399
9400static void
9401age_cached_comp_units (void)
9402{
9403 struct dwarf2_per_cu_data *per_cu, **last_chain;
9404
9405 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9406 per_cu = dwarf2_per_objfile->read_in_chain;
9407 while (per_cu != NULL)
9408 {
9409 per_cu->cu->last_used ++;
9410 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9411 dwarf2_mark (per_cu->cu);
9412 per_cu = per_cu->cu->read_in_chain;
9413 }
9414
9415 per_cu = dwarf2_per_objfile->read_in_chain;
9416 last_chain = &dwarf2_per_objfile->read_in_chain;
9417 while (per_cu != NULL)
9418 {
9419 struct dwarf2_per_cu_data *next_cu;
9420
9421 next_cu = per_cu->cu->read_in_chain;
9422
9423 if (!per_cu->cu->mark)
9424 {
9425 free_one_comp_unit (per_cu->cu);
9426 *last_chain = next_cu;
9427 }
9428 else
9429 last_chain = &per_cu->cu->read_in_chain;
9430
9431 per_cu = next_cu;
9432 }
9433}
9434
9435/* Remove a single compilation unit from the cache. */
9436
9437static void
9438free_one_cached_comp_unit (void *target_cu)
9439{
9440 struct dwarf2_per_cu_data *per_cu, **last_chain;
9441
9442 per_cu = dwarf2_per_objfile->read_in_chain;
9443 last_chain = &dwarf2_per_objfile->read_in_chain;
9444 while (per_cu != NULL)
9445 {
9446 struct dwarf2_per_cu_data *next_cu;
9447
9448 next_cu = per_cu->cu->read_in_chain;
9449
9450 if (per_cu->cu == target_cu)
9451 {
9452 free_one_comp_unit (per_cu->cu);
9453 *last_chain = next_cu;
9454 break;
9455 }
9456 else
9457 last_chain = &per_cu->cu->read_in_chain;
9458
9459 per_cu = next_cu;
9460 }
9461}
9462
1c379e20
DJ
9463/* A pair of DIE offset and GDB type pointer. We store these
9464 in a hash table separate from the DIEs, and preserve them
9465 when the DIEs are flushed out of cache. */
9466
9467struct dwarf2_offset_and_type
9468{
9469 unsigned int offset;
9470 struct type *type;
9471};
9472
9473/* Hash function for a dwarf2_offset_and_type. */
9474
9475static hashval_t
9476offset_and_type_hash (const void *item)
9477{
9478 const struct dwarf2_offset_and_type *ofs = item;
9479 return ofs->offset;
9480}
9481
9482/* Equality function for a dwarf2_offset_and_type. */
9483
9484static int
9485offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9486{
9487 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9488 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9489 return ofs_lhs->offset == ofs_rhs->offset;
9490}
9491
9492/* Set the type associated with DIE to TYPE. Save it in CU's hash
9493 table if necessary. */
9494
9495static void
9496set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9497{
9498 struct dwarf2_offset_and_type **slot, ofs;
9499
9500 die->type = type;
9501
9502 if (cu->per_cu == NULL)
9503 return;
9504
9505 if (cu->per_cu->type_hash == NULL)
9506 cu->per_cu->type_hash
9507 = htab_create_alloc_ex (cu->header.length / 24,
9508 offset_and_type_hash,
9509 offset_and_type_eq,
9510 NULL,
9511 &cu->objfile->objfile_obstack,
9512 hashtab_obstack_allocate,
9513 dummy_obstack_deallocate);
9514
9515 ofs.offset = die->offset;
9516 ofs.type = type;
9517 slot = (struct dwarf2_offset_and_type **)
9518 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9519 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9520 **slot = ofs;
9521}
9522
1c379e20
DJ
9523/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9524 have a saved type. */
9525
9526static struct type *
9527get_die_type (struct die_info *die, htab_t type_hash)
9528{
9529 struct dwarf2_offset_and_type *slot, ofs;
9530
9531 ofs.offset = die->offset;
9532 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9533 if (slot)
9534 return slot->type;
9535 else
9536 return NULL;
9537}
9538
9539/* Restore the types of the DIE tree starting at START_DIE from the hash
9540 table saved in CU. */
9541
9542static void
9543reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9544{
9545 struct die_info *die;
9546
9547 if (cu->per_cu->type_hash == NULL)
9548 return;
9549
9550 for (die = start_die; die != NULL; die = die->sibling)
9551 {
9552 die->type = get_die_type (die, cu->per_cu->type_hash);
9553 if (die->child != NULL)
9554 reset_die_and_siblings_types (die->child, cu);
9555 }
9556}
9557
10b3939b
DJ
9558/* Set the mark field in CU and in every other compilation unit in the
9559 cache that we must keep because we are keeping CU. */
9560
9561/* Add a dependence relationship from CU to REF_PER_CU. */
9562
9563static void
9564dwarf2_add_dependence (struct dwarf2_cu *cu,
9565 struct dwarf2_per_cu_data *ref_per_cu)
9566{
9567 void **slot;
9568
9569 if (cu->dependencies == NULL)
9570 cu->dependencies
9571 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9572 NULL, &cu->comp_unit_obstack,
9573 hashtab_obstack_allocate,
9574 dummy_obstack_deallocate);
9575
9576 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9577 if (*slot == NULL)
9578 *slot = ref_per_cu;
9579}
1c379e20 9580
ae038cb0
DJ
9581/* Set the mark field in CU and in every other compilation unit in the
9582 cache that we must keep because we are keeping CU. */
9583
10b3939b
DJ
9584static int
9585dwarf2_mark_helper (void **slot, void *data)
9586{
9587 struct dwarf2_per_cu_data *per_cu;
9588
9589 per_cu = (struct dwarf2_per_cu_data *) *slot;
9590 if (per_cu->cu->mark)
9591 return 1;
9592 per_cu->cu->mark = 1;
9593
9594 if (per_cu->cu->dependencies != NULL)
9595 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9596
9597 return 1;
9598}
9599
ae038cb0
DJ
9600static void
9601dwarf2_mark (struct dwarf2_cu *cu)
9602{
9603 if (cu->mark)
9604 return;
9605 cu->mark = 1;
10b3939b
DJ
9606 if (cu->dependencies != NULL)
9607 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
9608}
9609
9610static void
9611dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9612{
9613 while (per_cu)
9614 {
9615 per_cu->cu->mark = 0;
9616 per_cu = per_cu->cu->read_in_chain;
9617 }
72bf9492
DJ
9618}
9619
9620/* Allocation function for the libiberty hash table which uses an
9621 obstack. */
9622
9623static void *
9624hashtab_obstack_allocate (void *data, size_t size, size_t count)
9625{
9626 unsigned int total = size * count;
9627 void *ptr = obstack_alloc ((struct obstack *) data, total);
9628 memset (ptr, 0, total);
9629 return ptr;
9630}
9631
9632/* Trivial deallocation function for the libiberty splay tree and hash
9633 table - don't deallocate anything. Rely on later deletion of the
9634 obstack. */
9635
9636static void
9637dummy_obstack_deallocate (void *object, void *data)
9638{
9639 return;
9640}
9641
9642/* Trivial hash function for partial_die_info: the hash value of a DIE
9643 is its offset in .debug_info for this objfile. */
9644
9645static hashval_t
9646partial_die_hash (const void *item)
9647{
9648 const struct partial_die_info *part_die = item;
9649 return part_die->offset;
9650}
9651
9652/* Trivial comparison function for partial_die_info structures: two DIEs
9653 are equal if they have the same offset. */
9654
9655static int
9656partial_die_eq (const void *item_lhs, const void *item_rhs)
9657{
9658 const struct partial_die_info *part_die_lhs = item_lhs;
9659 const struct partial_die_info *part_die_rhs = item_rhs;
9660 return part_die_lhs->offset == part_die_rhs->offset;
9661}
9662
ae038cb0
DJ
9663static struct cmd_list_element *set_dwarf2_cmdlist;
9664static struct cmd_list_element *show_dwarf2_cmdlist;
9665
9666static void
9667set_dwarf2_cmd (char *args, int from_tty)
9668{
9669 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9670}
9671
9672static void
9673show_dwarf2_cmd (char *args, int from_tty)
9674{
9675 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9676}
9677
6502dd73
DJ
9678void _initialize_dwarf2_read (void);
9679
9680void
9681_initialize_dwarf2_read (void)
9682{
9683 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 9684
1bedd215
AC
9685 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9686Set DWARF 2 specific variables.\n\
9687Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9688 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9689 0/*allow-unknown*/, &maintenance_set_cmdlist);
9690
1bedd215
AC
9691 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9692Show DWARF 2 specific variables\n\
9693Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9694 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9695 0/*allow-unknown*/, &maintenance_show_cmdlist);
9696
9697 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
9698 &dwarf2_max_cache_age, _("\
9699Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9700Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9701A higher limit means that cached compilation units will be stored\n\
9702in memory longer, and more total memory will be used. Zero disables\n\
9703caching, which can slow down startup."),
2c5b56ce 9704 NULL,
920d2a44 9705 show_dwarf2_max_cache_age,
2c5b56ce 9706 &set_dwarf2_cmdlist,
ae038cb0 9707 &show_dwarf2_cmdlist);
6502dd73 9708}