]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
be391dca
TT
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
8d749320 2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2052
be391dca
TT
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
6502dd73 2056
251d32d9
TG
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
be391dca
TT
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
73869dc2 2061 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2062 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2063 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2065}
2066
2067/* Return the containing section of virtual section SECTION. */
2068
2069static struct dwarf2_section_info *
2070get_containing_section (const struct dwarf2_section_info *section)
2071{
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
c906108c
SS
2074}
2075
a32a8923
DE
2076/* Return the bfd owner of SECTION. */
2077
2078static struct bfd *
2079get_section_bfd_owner (const struct dwarf2_section_info *section)
2080{
73869dc2
DE
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
049412e3 2086 return section->s.section->owner;
a32a8923
DE
2087}
2088
2089/* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092static asection *
2093get_section_bfd_section (const struct dwarf2_section_info *section)
2094{
73869dc2
DE
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
049412e3 2100 return section->s.section;
a32a8923
DE
2101}
2102
2103/* Return the name of SECTION. */
2104
2105static const char *
2106get_section_name (const struct dwarf2_section_info *section)
2107{
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112}
2113
2114/* Return the name of the file SECTION is in. */
2115
2116static const char *
2117get_section_file_name (const struct dwarf2_section_info *section)
2118{
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122}
2123
2124/* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127static int
2128get_section_id (const struct dwarf2_section_info *section)
2129{
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135}
2136
2137/* Return the flags of SECTION.
73869dc2 2138 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2139
2140static int
2141get_section_flags (const struct dwarf2_section_info *section)
2142{
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147}
2148
251d32d9
TG
2149/* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
233a11ab
CS
2151
2152static int
251d32d9
TG
2153section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
233a11ab 2155{
251d32d9
TG
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
233a11ab
CS
2163}
2164
c906108c
SS
2165/* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169static void
251d32d9 2170dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2171{
251d32d9 2172 const struct dwarf2_debug_sections *names;
dc7650b8 2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
dc7650b8
JK
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
c906108c 2184 {
049412e3 2185 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2187 }
251d32d9 2188 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2189 {
049412e3 2190 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2192 }
251d32d9 2193 else if (section_is_p (sectp->name, &names->line))
c906108c 2194 {
049412e3 2195 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2197 }
251d32d9 2198 else if (section_is_p (sectp->name, &names->loc))
c906108c 2199 {
049412e3 2200 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2202 }
251d32d9 2203 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2207 }
cf2c3c16
TT
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
049412e3 2210 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->str))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2217 }
3019eac3
DE
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
049412e3 2220 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2224 {
049412e3 2225 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2227 }
251d32d9 2228 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2229 {
049412e3 2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2234 {
049412e3 2235 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2237 }
251d32d9 2238 else if (section_is_p (sectp->name, &names->types))
348e048f 2239 {
8b70b953
TT
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
049412e3 2243 type_section.s.section = sectp;
8b70b953
TT
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
348e048f 2248 }
251d32d9 2249 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2250 {
049412e3 2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
dce234bc 2254
b4e1fd61 2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2258}
2259
fceca515
DE
2260/* A helper function that decides whether a section is empty,
2261 or not present. */
9e0ac564
TT
2262
2263static int
19ac8c2e 2264dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2265{
73869dc2
DE
2266 if (section->is_virtual)
2267 return section->size == 0;
049412e3 2268 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2269}
2270
3019eac3
DE
2271/* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
dce234bc 2275 If the section is compressed, uncompress it before returning. */
c906108c 2276
dce234bc
PP
2277static void
2278dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2279{
a32a8923 2280 asection *sectp;
3019eac3 2281 bfd *abfd;
dce234bc 2282 gdb_byte *buf, *retbuf;
c906108c 2283
be391dca
TT
2284 if (info->readin)
2285 return;
dce234bc 2286 info->buffer = NULL;
be391dca 2287 info->readin = 1;
188dd5d6 2288
9e0ac564 2289 if (dwarf2_section_empty_p (info))
dce234bc 2290 return;
c906108c 2291
a32a8923 2292 sectp = get_section_bfd_section (info);
3019eac3 2293
73869dc2
DE
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
4bf44c1c
TT
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2322 {
d521ce57 2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2324 return;
dce234bc 2325 }
dce234bc 2326
224c3ddb 2327 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2328 info->buffer = buf;
dce234bc
PP
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
ac8035ab 2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
a32a8923
DE
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
dce234bc
PP
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
dce234bc
PP
2351}
2352
9e0ac564
TT
2353/* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360static bfd_size_type
2361dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363{
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367}
2368
dce234bc 2369/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2370 SECTION_NAME. */
af34e669 2371
dce234bc 2372void
3017a003
TG
2373dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
d521ce57 2375 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2376 bfd_size_type *sizep)
2377{
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
a3b2a86b
TT
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
3017a003
TG
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
dce234bc 2402
9e0ac564 2403 dwarf2_read_section (objfile, info);
dce234bc 2404
a32a8923 2405 *sectp = get_section_bfd_section (info);
dce234bc
PP
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408}
2409
36586728
TT
2410/* A helper function to find the sections for a .dwz file. */
2411
2412static void
2413locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414{
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
049412e3 2421 dwz_file->abbrev.s.section = sectp;
36586728
TT
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
049412e3 2426 dwz_file->info.s.section = sectp;
36586728
TT
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
049412e3 2431 dwz_file->str.s.section = sectp;
36586728
TT
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
049412e3 2436 dwz_file->line.s.section = sectp;
36586728
TT
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
049412e3 2441 dwz_file->macro.s.section = sectp;
36586728
TT
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2ec9a5e0
TT
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
049412e3 2446 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
36586728
TT
2449}
2450
4db1a1dc
TT
2451/* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
36586728
TT
2454
2455static struct dwz_file *
2456dwarf2_get_dwz_file (void)
2457{
4db1a1dc
TT
2458 bfd *dwz_bfd;
2459 char *data;
36586728
TT
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
acd13123 2463 bfd_size_type buildid_len_arg;
dc294be5
TT
2464 size_t buildid_len;
2465 bfd_byte *buildid;
36586728
TT
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
4db1a1dc
TT
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2472 &buildid_len_arg, &buildid);
4db1a1dc
TT
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
36586728 2480 cleanup = make_cleanup (xfree, data);
dc294be5 2481 make_cleanup (xfree, buildid);
36586728 2482
acd13123
TT
2483 buildid_len = (size_t) buildid_len_arg;
2484
f9d83a0b 2485 filename = (const char *) data;
36586728
TT
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
4262abfb 2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
dc294be5
TT
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
36586728 2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2503 if (dwz_bfd != NULL)
36586728 2504 {
dc294be5
TT
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
36586728
TT
2510 }
2511
dc294be5
TT
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
36586728
TT
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
13aaf454 2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2528 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2529 return result;
2530}
9291a0cd 2531\f
7b9f3c50
DE
2532/* DWARF quick_symbols_functions support. */
2533
2534/* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539struct quick_file_names
2540{
094b34ac
DE
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
7b9f3c50
DE
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554};
2555
2556/* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559struct dwarf2_per_cu_quick_data
2560{
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
43f3e411 2568 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577};
2578
094b34ac
DE
2579/* Utility hash function for a stmt_list_hash. */
2580
2581static hashval_t
2582hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583{
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590}
2591
2592/* Utility equality function for a stmt_list_hash. */
2593
2594static int
2595eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597{
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605}
2606
7b9f3c50
DE
2607/* Hash function for a quick_file_names. */
2608
2609static hashval_t
2610hash_file_name_entry (const void *e)
2611{
2612 const struct quick_file_names *file_data = e;
2613
094b34ac 2614 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2615}
2616
2617/* Equality function for a quick_file_names. */
2618
2619static int
2620eq_file_name_entry (const void *a, const void *b)
2621{
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
094b34ac 2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2626}
2627
2628/* Delete function for a quick_file_names. */
2629
2630static void
2631delete_file_name_entry (void *e)
2632{
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645}
2646
2647/* Create a quick_file_names hash table. */
2648
2649static htab_t
2650create_quick_file_names_table (unsigned int nr_initial_entries)
2651{
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655}
9291a0cd 2656
918dd910
JK
2657/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661static void
2662load_cu (struct dwarf2_per_cu_data *per_cu)
2663{
3019eac3 2664 if (per_cu->is_debug_types)
e5fe5e75 2665 load_full_type_unit (per_cu);
918dd910 2666 else
95554aad 2667 load_full_comp_unit (per_cu, language_minimal);
918dd910 2668
cc12ce38
DE
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2dc860c0
DE
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2673}
2674
a0f42c21 2675/* Read in the symbols for PER_CU. */
2fdf6df6 2676
9291a0cd 2677static void
a0f42c21 2678dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2679{
2680 struct cleanup *back_to;
2681
f4dc4d17
DE
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
9291a0cd
TT
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
95554aad 2689 if (dwarf2_per_objfile->using_index
43f3e411 2690 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
89e63ee4
DE
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
cc12ce38 2700 && per_cu->cu != NULL
89e63ee4
DE
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
95554aad 2707 }
9291a0cd 2708
a0f42c21 2709 process_queue ();
9291a0cd
TT
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716}
2717
2718/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2fdf6df6 2721
43f3e411 2722static struct compunit_symtab *
a0f42c21 2723dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2724{
95554aad 2725 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
a0f42c21 2730 dw2_do_instantiate_symtab (per_cu);
95554aad 2731 process_cu_includes ();
9291a0cd
TT
2732 do_cleanups (back_to);
2733 }
f194fefb 2734
43f3e411 2735 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2736}
2737
8832e7e3 2738/* Return the CU/TU given its index.
f4dc4d17
DE
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
8832e7e3 2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2746
2747 ...;
2748 }
2749*/
2fdf6df6 2750
1fd400ff 2751static struct dwarf2_per_cu_data *
8832e7e3 2752dw2_get_cutu (int index)
1fd400ff
TT
2753{
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
f4dc4d17 2756 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762}
2763
8832e7e3
DE
2764/* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
f4dc4d17
DE
2767
2768static struct dwarf2_per_cu_data *
8832e7e3 2769dw2_get_cu (int index)
f4dc4d17 2770{
8832e7e3 2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2772
1fd400ff
TT
2773 return dwarf2_per_objfile->all_comp_units[index];
2774}
2775
2ec9a5e0
TT
2776/* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2fdf6df6 2778
74a0d9f6 2779static void
2ec9a5e0
TT
2780create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
9291a0cd
TT
2785{
2786 offset_type i;
9291a0cd 2787
2ec9a5e0 2788 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
b64f50a1 2800 the_cu->offset.sect_off = offset;
9291a0cd
TT
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
8a0459fd 2803 the_cu->section = section;
9291a0cd
TT
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2808 }
9291a0cd
TT
2809}
2810
2ec9a5e0 2811/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2812 the CU objects for this objfile. */
2ec9a5e0 2813
74a0d9f6 2814static void
2ec9a5e0
TT
2815create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818{
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2825
74a0d9f6
JK
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2828
2829 if (dwz_elements == 0)
74a0d9f6 2830 return;
2ec9a5e0
TT
2831
2832 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2ec9a5e0
TT
2835}
2836
1fd400ff 2837/* Create the signatured type hash table from the index. */
673bfd45 2838
74a0d9f6 2839static void
673bfd45 2840create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2841 struct dwarf2_section_info *section,
673bfd45
DE
2842 const gdb_byte *bytes,
2843 offset_type elements)
1fd400ff
TT
2844{
2845 offset_type i;
673bfd45 2846 htab_t sig_types_hash;
1fd400ff 2847
6aa5f3a6
DE
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
8d749320
SM
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2853
673bfd45 2854 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
52dc124a
DE
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2860 void **slot;
2861
74a0d9f6
JK
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
52dc124a 2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2870 struct signatured_type);
52dc124a 2871 sig_type->signature = signature;
3019eac3
DE
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2874 sig_type->per_cu.section = section;
52dc124a
DE
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
1fd400ff
TT
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
52dc124a
DE
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
1fd400ff 2883
b4dd5633 2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2885 }
2886
673bfd45 2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2888}
2889
9291a0cd
TT
2890/* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2892
9291a0cd
TT
2893static void
2894create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895{
3e29f34a 2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
f652bce2 2921
24a55014 2922 if (lo > hi)
f652bce2 2923 {
24a55014
DE
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2926 hex_string (lo), hex_string (hi));
24a55014 2927 continue;
f652bce2 2928 }
24a55014
DE
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
24a55014 2935 continue;
f652bce2 2936 }
24a55014 2937
3e29f34a
MR
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946}
2947
59d7bcaf
JK
2948/* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2955
9291a0cd 2956static hashval_t
559a7a62 2957mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2958{
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
559a7a62
JK
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
9291a0cd
TT
2969
2970 return r;
2971}
2972
2973/* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2976
9291a0cd
TT
2977static int
2978find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980{
0cf03b49
JK
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
9291a0cd 2983 offset_type slot, step;
559a7a62 2984 int (*cmp) (const char *, const char *);
9291a0cd 2985
0cf03b49
JK
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
45280282
IB
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
0cf03b49
JK
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
a8719064 2993
72998fb3 2994 if (strchr (name, '(') != NULL)
0cf03b49 2995 {
72998fb3 2996 char *without_params = cp_remove_params (name);
0cf03b49 2997
72998fb3
DE
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
0cf03b49
JK
3003 }
3004 }
3005
559a7a62 3006 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3007 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3876f04e
DE
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3876f04e 3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
9291a0cd 3028
3876f04e 3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3030 if (!cmp (name, str))
9291a0cd
TT
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3034 do_cleanups (back_to);
9291a0cd
TT
3035 return 1;
3036 }
3037
3876f04e 3038 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3039 }
3040}
3041
2ec9a5e0
TT
3042/* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3052
9291a0cd 3053static int
2ec9a5e0
TT
3054read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
9291a0cd 3063{
948f8e3d 3064 const gdb_byte *addr;
2ec9a5e0 3065 offset_type version;
b3b272e1 3066 offset_type *metadata;
1fd400ff 3067 int i;
9291a0cd 3068
2ec9a5e0 3069 if (dwarf2_section_empty_p (section))
9291a0cd 3070 return 0;
82430852
JK
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
a32a8923 3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3075 return 0;
3076
2ec9a5e0 3077 dwarf2_read_section (objfile, section);
9291a0cd 3078
2ec9a5e0 3079 addr = section->buffer;
9291a0cd 3080 /* Version check. */
1fd400ff 3081 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3083 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3084 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3085 indices. */
831adc1f 3086 if (version < 4)
481860b3
GB
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3092 filename);
481860b3
GB
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
2ec9a5e0 3105 if (version < 6 && !deprecated_ok)
481860b3
GB
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
e615022a
DE
3110 warning (_("\
3111Skipping deprecated .gdb_index section in %s.\n\
3112Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113to use the section anyway."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
796a7ff8 3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3126
481860b3 3127 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3128 longer backward compatible. */
796a7ff8 3129 if (version > 8)
594e8718 3130 return 0;
9291a0cd 3131
559a7a62 3132 map->version = version;
2ec9a5e0 3133 map->total_size = section->size;
9291a0cd
TT
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3136
3137 i = 0;
2ec9a5e0
TT
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
1fd400ff
TT
3141 ++i;
3142
2ec9a5e0
TT
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
987d643c 3147 ++i;
1fd400ff
TT
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3876f04e
DE
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
1fd400ff 3158 ++i;
9291a0cd 3159
f9d83a0b 3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3161
2ec9a5e0
TT
3162 return 1;
3163}
3164
3165
3166/* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169static int
3170dwarf2_read_index (struct objfile *objfile)
3171{
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3175 struct dwz_file *dwz;
2ec9a5e0 3176
4262abfb 3177 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
0fefef59 3184 /* Don't use the index if it's empty. */
2ec9a5e0 3185 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3186 return 0;
3187
2ec9a5e0
TT
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
4db1a1dc
TT
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
2ec9a5e0 3192 {
2ec9a5e0
TT
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
74a0d9f6
JK
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
1fd400ff 3212
8b70b953
TT
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
74a0d9f6
JK
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
8b70b953 3227 }
9291a0cd 3228
2ec9a5e0
TT
3229 create_addrmap_from_index (objfile, &local_map);
3230
8d749320 3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3232 *map = local_map;
9291a0cd
TT
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3238
3239 return 1;
3240}
3241
3242/* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3244
9291a0cd
TT
3245static void
3246dw2_setup (struct objfile *objfile)
3247{
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250}
3251
dee91e82 3252/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3253
dee91e82
DE
3254static void
3255dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3256 const gdb_byte *info_ptr,
dee91e82
DE
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
9291a0cd 3260{
dee91e82
DE
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3264 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3265 struct line_header *lh;
9291a0cd 3266 struct attribute *attr;
dee91e82 3267 int i;
15d034d0 3268 const char *name, *comp_dir;
7b9f3c50
DE
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
9291a0cd 3272
0186c6a7
DE
3273 gdb_assert (! this_cu->is_debug_types);
3274
07261596
TT
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
0186c6a7 3283 lh_cu = this_cu;
7b9f3c50
DE
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
dee91e82
DE
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3289 if (attr)
3290 {
7b9f3c50
DE
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
094b34ac
DE
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
094b34ac 3303 lh_cu->v.quick->file_names = *slot;
dee91e82 3304 return;
7b9f3c50
DE
3305 }
3306
3019eac3 3307 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3308 }
3309 if (lh == NULL)
3310 {
094b34ac 3311 lh_cu->v.quick->no_file_data = 1;
dee91e82 3312 return;
9291a0cd
TT
3313 }
3314
8d749320 3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
9291a0cd 3320
dee91e82 3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3322
7b9f3c50 3323 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3326 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
9291a0cd 3329
7b9f3c50 3330 free_line_header (lh);
7b9f3c50 3331
094b34ac 3332 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3333}
3334
3335/* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338static struct quick_file_names *
e4a48d9d 3339dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3340{
0186c6a7
DE
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3345
dee91e82
DE
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
0186c6a7 3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
9291a0cd
TT
3357}
3358
3359/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3360 real path for a given file name from the line table. */
2fdf6df6 3361
9291a0cd 3362static const char *
7b9f3c50
DE
3363dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
9291a0cd 3365{
7b9f3c50
DE
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3368 qfn->num_file_names, const char *);
9291a0cd 3369
7b9f3c50
DE
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3372
7b9f3c50 3373 return qfn->real_names[index];
9291a0cd
TT
3374}
3375
3376static struct symtab *
3377dw2_find_last_source_symtab (struct objfile *objfile)
3378{
43f3e411 3379 struct compunit_symtab *cust;
9291a0cd 3380 int index;
ae2de4f8 3381
9291a0cd
TT
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
9291a0cd
TT
3388}
3389
7b9f3c50
DE
3390/* Traversal function for dw2_forget_cached_source_info. */
3391
3392static int
3393dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3394{
7b9f3c50 3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3396
7b9f3c50 3397 if (file_data->real_names)
9291a0cd 3398 {
7b9f3c50 3399 int i;
9291a0cd 3400
7b9f3c50 3401 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3402 {
7b9f3c50
DE
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
9291a0cd
TT
3405 }
3406 }
7b9f3c50
DE
3407
3408 return 1;
3409}
3410
3411static void
3412dw2_forget_cached_source_info (struct objfile *objfile)
3413{
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3418}
3419
f8eba3c6
TT
3420/* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423static int
3424dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3426 const char *name, const char *real_path,
f8eba3c6
TT
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429{
43f3e411 3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3431
3432 /* Don't visit already-expanded CUs. */
43f3e411 3433 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
a0f42c21 3438 dw2_instantiate_symtab (per_cu);
f8eba3c6 3439
f5b95b50 3440 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3441 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3442}
3443
3444/* Implementation of the map_symtabs_matching_filename method. */
3445
9291a0cd 3446static int
f8eba3c6 3447dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3448 const char *real_path,
f8eba3c6
TT
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
9291a0cd
TT
3451{
3452 int i;
c011a4f4 3453 const char *name_basename = lbasename (name);
9291a0cd
TT
3454
3455 dw2_setup (objfile);
ae2de4f8 3456
848e3e78
DE
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
f4dc4d17 3459
848e3e78 3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3461 {
3462 int j;
8832e7e3 3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3464 struct quick_file_names *file_data;
9291a0cd 3465
3d7bb9d9 3466 /* We only need to look at symtabs not already expanded. */
43f3e411 3467 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3468 continue;
3469
e4a48d9d 3470 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3471 if (file_data == NULL)
9291a0cd
TT
3472 continue;
3473
7b9f3c50 3474 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3475 {
7b9f3c50 3476 const char *this_name = file_data->file_names[j];
da235a7c 3477 const char *this_real_name;
9291a0cd 3478
af529f8f 3479 if (compare_filenames_for_search (this_name, name))
9291a0cd 3480 {
f5b95b50 3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3482 callback, data))
3483 return 1;
288e77a7 3484 continue;
4aac40c8 3485 }
9291a0cd 3486
c011a4f4
DE
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
da235a7c
JK
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3495 {
da235a7c
JK
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
288e77a7 3499 continue;
da235a7c 3500 }
9291a0cd 3501
da235a7c
JK
3502 if (real_path != NULL)
3503 {
af529f8f
JK
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3506 if (this_real_name != NULL
af529f8f 3507 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3508 {
f5b95b50 3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3510 callback, data))
3511 return 1;
288e77a7 3512 continue;
9291a0cd
TT
3513 }
3514 }
3515 }
3516 }
3517
9291a0cd
TT
3518 return 0;
3519}
3520
da51c347
DE
3521/* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523struct dw2_symtab_iterator
9291a0cd 3524{
da51c347
DE
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
8943b874
DE
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
da51c347 3546};
9291a0cd 3547
da51c347
DE
3548/* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3551
9291a0cd 3552static void
da51c347
DE
3553dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559{
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
8943b874 3565 iter->global_seen = 0;
da51c347
DE
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574}
3575
3576/* Return the next matching CU or NULL if there are no more. */
3577
3578static struct dwarf2_per_cu_data *
3579dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580{
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3586 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3190f0c6
DE
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
4262abfb
JK
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3608 continue;
3609 }
3610
8832e7e3 3611 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3612
da51c347 3613 /* Skip if already read in. */
43f3e411 3614 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3615 continue;
3616
8943b874
DE
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
da51c347
DE
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660}
3661
43f3e411 3662static struct compunit_symtab *
da51c347
DE
3663dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
9291a0cd 3665{
43f3e411 3666 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3667 struct mapped_index *index;
3668
9291a0cd
TT
3669 dw2_setup (objfile);
3670
156942c7
DE
3671 index = dwarf2_per_objfile->index_table;
3672
da51c347 3673 /* index is NULL if OBJF_READNOW. */
156942c7 3674 if (index)
9291a0cd 3675 {
da51c347
DE
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3680
da51c347 3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3682 {
b2e2f908 3683 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3687
b2e2f908
DE
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
da51c347
DE
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
da51c347 3695
b2e2f908
DE
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
da51c347
DE
3702
3703 /* Keep looking through other CUs. */
9291a0cd
TT
3704 }
3705 }
9291a0cd 3706
da51c347 3707 return stab_best;
9291a0cd
TT
3708}
3709
3710static void
3711dw2_print_stats (struct objfile *objfile)
3712{
e4a48d9d 3713 int i, total, count;
9291a0cd
TT
3714
3715 dw2_setup (objfile);
e4a48d9d 3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3717 count = 0;
e4a48d9d 3718 for (i = 0; i < total; ++i)
9291a0cd 3719 {
8832e7e3 3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3721
43f3e411 3722 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3723 ++count;
3724 }
e4a48d9d 3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727}
3728
779bd270
DE
3729/* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
9291a0cd
TT
3734static void
3735dw2_dump (struct objfile *objfile)
3736{
779bd270
DE
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
9291a0cd
TT
3748}
3749
3750static void
3189cb12
DE
3751dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
9291a0cd
TT
3754{
3755 /* There's nothing to relocate here. */
3756}
3757
3758static void
3759dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761{
da51c347
DE
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
9291a0cd
TT
3781}
3782
3783static void
3784dw2_expand_all_symtabs (struct objfile *objfile)
3785{
3786 int i;
3787
3788 dw2_setup (objfile);
1fd400ff
TT
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3791 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3792 {
8832e7e3 3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3794
a0f42c21 3795 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3796 }
3797}
3798
3799static void
652a8996
JK
3800dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
9291a0cd
TT
3802{
3803 int i;
3804
3805 dw2_setup (objfile);
d4637a04
DE
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3813 {
3814 int j;
8832e7e3 3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3816 struct quick_file_names *file_data;
9291a0cd 3817
3d7bb9d9 3818 /* We only need to look at symtabs not already expanded. */
43f3e411 3819 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3820 continue;
3821
e4a48d9d 3822 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3823 if (file_data == NULL)
9291a0cd
TT
3824 continue;
3825
7b9f3c50 3826 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3827 {
652a8996
JK
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3831 {
a0f42c21 3832 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3833 break;
3834 }
3835 }
3836 }
3837}
3838
9291a0cd 3839static void
ade7ed9e 3840dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3841 const char * name, domain_enum domain,
ade7ed9e 3842 int global,
40658b94
PH
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
2edb89d3
JK
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
9291a0cd 3847{
40658b94 3848 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3851}
3852
3853static void
f8eba3c6
TT
3854dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
206f2a57
DE
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3858 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3859 enum search_domain kind,
3860 void *data)
9291a0cd
TT
3861{
3862 int i;
3863 offset_type iter;
4b5246aa 3864 struct mapped_index *index;
9291a0cd
TT
3865
3866 dw2_setup (objfile);
ae2de4f8
DE
3867
3868 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
4b5246aa 3871 index = dwarf2_per_objfile->index_table;
9291a0cd 3872
7b08b9eb 3873 if (file_matcher != NULL)
24c79950
TT
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
848e3e78
DE
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3891 {
3892 int j;
8832e7e3 3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3894 struct quick_file_names *file_data;
3895 void **slot;
7b08b9eb 3896
61d96d7e
DE
3897 QUIT;
3898
24c79950 3899 per_cu->v.quick->mark = 0;
3d7bb9d9 3900
24c79950 3901 /* We only need to look at symtabs not already expanded. */
43f3e411 3902 if (per_cu->v.quick->compunit_symtab)
24c79950 3903 continue;
7b08b9eb 3904
e4a48d9d 3905 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3906 if (file_data == NULL)
3907 continue;
7b08b9eb 3908
24c79950
TT
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
da235a7c
JK
3919 const char *this_real_name;
3920
fbd9ab74 3921 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
da235a7c
JK
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
24c79950
TT
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
9291a0cd 3951
3876f04e 3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
8943b874 3957 int global_seen = 0;
9291a0cd 3958
61d96d7e
DE
3959 QUIT;
3960
3876f04e 3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3962 continue;
3963
3876f04e 3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3965
206f2a57 3966 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
4b5246aa 3971 vec = (offset_type *) (index->constant_pool
3876f04e 3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
e254ef6a 3976 struct dwarf2_per_cu_data *per_cu;
156942c7 3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
8943b874
DE
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
3190f0c6
DE
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
156942c7
DE
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
3190f0c6
DE
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4262abfb 4028 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4029 continue;
4030 }
4031
8832e7e3 4032 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4033 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
9291a0cd
TT
4048 }
4049 }
4050}
4051
43f3e411 4052/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4053 symtab. */
4054
43f3e411
DE
4055static struct compunit_symtab *
4056recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
9703b513
TT
4058{
4059 int i;
4060
43f3e411
DE
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
9703b513 4064
43f3e411 4065 if (cust->includes == NULL)
a3ec0bb1
DE
4066 return NULL;
4067
43f3e411 4068 for (i = 0; cust->includes[i]; ++i)
9703b513 4069 {
43f3e411 4070 struct compunit_symtab *s = cust->includes[i];
9703b513 4071
43f3e411 4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078}
4079
43f3e411
DE
4080static struct compunit_symtab *
4081dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
9291a0cd
TT
4086{
4087 struct dwarf2_per_cu_data *data;
43f3e411 4088 struct compunit_symtab *result;
9291a0cd
TT
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
43f3e411 4099 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4101 paddress (get_objfile_arch (objfile), pc));
4102
43f3e411
DE
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
9703b513
TT
4106 gdb_assert (result != NULL);
4107 return result;
9291a0cd
TT
4108}
4109
9291a0cd 4110static void
44b13c5a 4111dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4112 void *data, int need_fullname)
9291a0cd
TT
4113{
4114 int i;
24c79950
TT
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
9291a0cd 4118
24c79950 4119 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4120 dw2_setup (objfile);
ae2de4f8 4121
848e3e78
DE
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4125
848e3e78 4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4127 {
8832e7e3 4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4129
43f3e411 4130 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
848e3e78 4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4140 {
4141 int j;
8832e7e3 4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4143 struct quick_file_names *file_data;
24c79950 4144 void **slot;
9291a0cd 4145
3d7bb9d9 4146 /* We only need to look at symtabs not already expanded. */
43f3e411 4147 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4148 continue;
4149
e4a48d9d 4150 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4151 if (file_data == NULL)
9291a0cd
TT
4152 continue;
4153
24c79950
TT
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
7b9f3c50 4162 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4163 {
74e2f255
DE
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
7b9f3c50 4170 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4171 }
4172 }
24c79950
TT
4173
4174 do_cleanups (cleanup);
9291a0cd
TT
4175}
4176
4177static int
4178dw2_has_symbols (struct objfile *objfile)
4179{
4180 return 1;
4181}
4182
4183const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184{
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
f8eba3c6 4188 dw2_map_symtabs_matching_filename,
9291a0cd 4189 dw2_lookup_symbol,
9291a0cd
TT
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
652a8996 4195 dw2_expand_symtabs_with_fullname,
40658b94 4196 dw2_map_matching_symbols,
9291a0cd 4197 dw2_expand_symtabs_matching,
43f3e411 4198 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4199 dw2_map_symbol_filenames
4200};
4201
4202/* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205int
4206dwarf2_initialize_objfile (struct objfile *objfile)
4207{
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
0e50663e 4218 create_all_type_units (objfile);
7b9f3c50
DE
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4221
1fd400ff 4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4223 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4224 {
8832e7e3 4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4226
e254ef6a
DE
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
9291a0cd
TT
4240 return 0;
4241}
4242
4243\f
4244
dce234bc
PP
4245/* Build a partial symbol table. */
4246
4247void
f29dff0a 4248dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4249{
c9bf0622 4250
f29dff0a 4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
492d29ea 4256 TRY
c9bf0622
TT
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
492d29ea
PA
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
c906108c 4271}
c906108c 4272
1ce1cefd
DE
4273/* Return the total length of the CU described by HEADER. */
4274
4275static unsigned int
4276get_cu_length (const struct comp_unit_head *header)
4277{
4278 return header->initial_length_size + header->length;
4279}
4280
45452591
DE
4281/* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283static inline int
b64f50a1 4284offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4285{
b64f50a1 4286 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4288
b64f50a1 4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4290}
4291
3b80fe9b
DE
4292/* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298static void
4299dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300{
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
31aa7e4e 4309 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
31aa7e4e 4317 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4318 cu->base_known = 1;
4319 }
4320 }
4321}
4322
93311388
DE
4323/* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
107d2387 4326
d521ce57 4327static const gdb_byte *
107d2387 4328read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4329 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4330{
4331 int signed_addr;
891d2f0b 4332 unsigned int bytes_read;
c764a876
DE
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4337 info_ptr += bytes_read;
107d2387
AC
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
b64f50a1
JK
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
8e65ff28 4347 internal_error (__FILE__, __LINE__,
e2e0b3e5 4348 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4349 cu_header->signed_addr_p = signed_addr;
c764a876 4350
107d2387
AC
4351 return info_ptr;
4352}
4353
36586728
TT
4354/* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357static struct dwarf2_section_info *
4358get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359{
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368}
4369
9ff913ba
DE
4370/* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374static void
4375error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
9ff913ba 4378{
a32a8923
DE
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
9ff913ba
DE
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
b64f50a1 4387 if (header->abbrev_offset.sect_off
36586728 4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
1ce1cefd 4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4400 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4401 filename);
4402}
4403
4404/* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
adabb602 4407
d521ce57 4408static const gdb_byte *
9ff913ba
DE
4409read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4bdcc0c1 4411 struct dwarf2_section_info *abbrev_section,
d521ce57 4412 const gdb_byte *info_ptr,
9ff913ba 4413 int is_debug_types_section)
72bf9492 4414{
d521ce57 4415 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4416 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4417
b64f50a1 4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4419
72bf9492
DJ
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
460c1c54
CC
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
b0df02fd 4424 if (is_debug_types_section)
460c1c54
CC
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
b64f50a1 4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4428
4bdcc0c1 4429 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4430
4431 return info_ptr;
4432}
4433
348e048f
DE
4434/* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
d521ce57 4437static const gdb_byte *
9ff913ba
DE
4438read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4bdcc0c1 4440 struct dwarf2_section_info *abbrev_section,
d521ce57 4441 const gdb_byte *info_ptr,
dee91e82
DE
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
348e048f 4444{
d521ce57 4445 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4446 bfd *abfd = get_section_bfd_owner (section);
348e048f 4447
b64f50a1 4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4449
9ff913ba 4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4451
9ff913ba
DE
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
dee91e82
DE
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
9ff913ba
DE
4460 info_ptr += header->offset_size;
4461
b64f50a1 4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4463
4bdcc0c1 4464 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4465
4466 return info_ptr;
348e048f
DE
4467}
4468
f4dc4d17
DE
4469/* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471static sect_offset
4472read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474{
a32a8923 4475 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4476 const gdb_byte *info_ptr;
f4dc4d17
DE
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487}
4488
aaa75496
JB
4489/* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492static void
d521ce57 4493dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4494 struct objfile *objfile)
4495{
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
fbd9ab74
JK
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
aaa75496
JB
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
8d749320
SM
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
43f3e411 4516 subpst->compunit_symtab = NULL;
aaa75496
JB
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
10b3939b 4522 the regular ones. */
58a9656e 4523 subpst->read_symtab_private = NULL;
aaa75496
JB
4524}
4525
4526/* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
d85a05f0 4528 partial symtab for each of these included files. */
aaa75496
JB
4529
4530static void
4531dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4532 struct die_info *die,
4533 struct partial_symtab *pst)
aaa75496 4534{
d85a05f0
DJ
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
aaa75496 4537
d85a05f0
DJ
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
3019eac3 4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
c6da4cef 4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4546
4547 free_line_header (lh);
4548}
4549
348e048f 4550static hashval_t
52dc124a 4551hash_signatured_type (const void *item)
348e048f 4552{
52dc124a 4553 const struct signatured_type *sig_type = item;
9a619af0 4554
348e048f 4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4556 return sig_type->signature;
348e048f
DE
4557}
4558
4559static int
52dc124a 4560eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4561{
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
9a619af0 4564
348e048f
DE
4565 return lhs->signature == rhs->signature;
4566}
4567
1fd400ff
TT
4568/* Allocate a hash table for signatured types. */
4569
4570static htab_t
673bfd45 4571allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4572{
4573 return htab_create_alloc_ex (41,
52dc124a
DE
4574 hash_signatured_type,
4575 eq_signatured_type,
1fd400ff
TT
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580}
4581
d467dd73 4582/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4583
4584static int
d467dd73 4585add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4586{
4587 struct signatured_type *sigt = *slot;
b4dd5633 4588 struct signatured_type ***datap = datum;
1fd400ff 4589
b4dd5633 4590 **datap = sigt;
1fd400ff
TT
4591 ++*datap;
4592
4593 return 1;
4594}
4595
c88ee1f0
DE
4596/* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
348e048f 4604
3019eac3
DE
4605static htab_t
4606create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
348e048f 4608{
3019eac3 4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4610 htab_t types_htab = NULL;
8b70b953
TT
4611 int ix;
4612 struct dwarf2_section_info *section;
4bdcc0c1 4613 struct dwarf2_section_info *abbrev_section;
348e048f 4614
3019eac3
DE
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
348e048f 4617
4bdcc0c1
DE
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
b4f54984 4622 if (dwarf_read_debug)
09406207
DE
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
a32a8923 4625 get_section_file_name (abbrev_section));
09406207 4626
8b70b953 4627 for (ix = 0;
3019eac3 4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4629 ++ix)
4630 {
3019eac3 4631 bfd *abfd;
d521ce57 4632 const gdb_byte *info_ptr, *end_ptr;
348e048f 4633
8b70b953
TT
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
348e048f 4636
8b70b953
TT
4637 if (info_ptr == NULL)
4638 continue;
348e048f 4639
3019eac3 4640 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
3019eac3 4643
dee91e82
DE
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
8b70b953
TT
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
b64f50a1 4651 sect_offset offset;
3019eac3 4652 cu_offset type_offset_in_tu;
8b70b953 4653 ULONGEST signature;
52dc124a 4654 struct signatured_type *sig_type;
3019eac3 4655 struct dwo_unit *dwo_tu;
8b70b953 4656 void **slot;
d521ce57 4657 const gdb_byte *ptr = info_ptr;
9ff913ba 4658 struct comp_unit_head header;
dee91e82 4659 unsigned int length;
348e048f 4660
b64f50a1 4661 offset.sect_off = ptr - section->buffer;
348e048f 4662
8b70b953 4663 /* We need to read the type's signature in order to build the hash
9ff913ba 4664 table, but we don't need anything else just yet. */
348e048f 4665
4bdcc0c1
DE
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
3019eac3 4668 &signature, &type_offset_in_tu);
6caca83c 4669
1ce1cefd 4670 length = get_cu_length (&header);
dee91e82 4671
6caca83c 4672 /* Skip dummy type units. */
dee91e82
DE
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4675 {
1ce1cefd 4676 info_ptr += length;
6caca83c
CC
4677 continue;
4678 }
8b70b953 4679
0349ea22
DE
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
3019eac3
DE
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4696 dwo_tu->section = section;
3019eac3
DE
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4711 sig_type->per_cu.section = section;
3019eac3
DE
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
8b70b953 4715
3019eac3
DE
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
8b70b953
TT
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
3019eac3
DE
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
b3c8eb43 4736
8b70b953 4737 complaint (&symfile_complaints,
c88ee1f0 4738 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4739 " the entry at offset 0x%x, signature %s"),
3019eac3 4740 offset.sect_off, dup_offset.sect_off,
4031ecc5 4741 hex_string (signature));
8b70b953 4742 }
3019eac3 4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4744
b4f54984 4745 if (dwarf_read_debug > 1)
4031ecc5 4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4747 offset.sect_off,
4031ecc5 4748 hex_string (signature));
348e048f 4749
dee91e82 4750 info_ptr += length;
8b70b953 4751 }
348e048f
DE
4752 }
4753
3019eac3
DE
4754 return types_htab;
4755}
4756
4757/* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762static int
4763create_all_type_units (struct objfile *objfile)
4764{
4765 htab_t types_htab;
b4dd5633 4766 struct signatured_type **iter;
3019eac3
DE
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
348e048f
DE
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
6aa5f3a6
DE
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
8d749320
SM
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
1fd400ff 4786
348e048f
DE
4787 return 1;
4788}
4789
6aa5f3a6
DE
4790/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794static struct signatured_type *
4795add_type_unit (ULONGEST sig, void **slot)
4796{
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4809 = XRESIZEVEC (struct signatured_type *,
4810 dwarf2_per_objfile->all_type_units,
4811 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837}
4838
a2ce51a0
DE
4839/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842static void
4843fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846{
7ee85ab1 4847 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869}
4870
4871/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
a2ce51a0
DE
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883static struct signatured_type *
4884lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885{
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4890 void **slot;
a2ce51a0
DE
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
6aa5f3a6
DE
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
a2ce51a0
DE
4901
4902 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
a2ce51a0 4907
a2ce51a0 4908 find_sig_entry.signature = sig;
6aa5f3a6
DE
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
7ee85ab1
DE
4912
4913 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4923 return sig_entry;
4924
6aa5f3a6
DE
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
a2ce51a0
DE
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
6aa5f3a6
DE
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
a2ce51a0 4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4942 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4943 return sig_entry;
4944}
4945
a2ce51a0
DE
4946/* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
a2ce51a0
DE
4950
4951static struct signatured_type *
4952lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953{
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4958 void **slot;
a2ce51a0
DE
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
6aa5f3a6
DE
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4966 {
6aa5f3a6
DE
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4969 }
4970
6aa5f3a6
DE
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
a2ce51a0
DE
4982 if (dwp_file->tus == NULL)
4983 return NULL;
57d63ce2
DE
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
6aa5f3a6 4989 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
a2ce51a0
DE
4992 return sig_entry;
4993}
4994
380bca97 4995/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
348e048f
DE
4998
4999static struct signatured_type *
a2ce51a0 5000lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5001{
a2ce51a0
DE
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
348e048f 5015
a2ce51a0
DE
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
348e048f 5022}
42e7ad6c
DE
5023\f
5024/* Low level DIE reading support. */
348e048f 5025
d85a05f0
DJ
5026/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028static void
5029init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5030 struct dwarf2_cu *cu,
3019eac3
DE
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
d85a05f0 5033{
fceca515 5034 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5035 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5036 reader->cu = cu;
3019eac3 5037 reader->dwo_file = dwo_file;
dee91e82
DE
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
f664829e 5040 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5041 reader->comp_dir = NULL;
d85a05f0
DJ
5042}
5043
b0c7bfa9
DE
5044/* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061static int
5062read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
a2ce51a0 5066 const char *stub_comp_dir,
b0c7bfa9 5067 struct die_reader_specs *result_reader,
d521ce57 5068 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071{
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
d521ce57 5076 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
b0aeadb3
DE
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5086
b0c7bfa9
DE
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
b0c7bfa9
DE
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
a2ce51a0
DE
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
b0c7bfa9
DE
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
a32a8923 5140 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
a2ce51a0
DE
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
b0c7bfa9
DE
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
02142a6c
DE
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5195 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5202 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
b4f54984 5232 if (dwarf_die_debug)
bf6af496
DE
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
a32a8923 5236 get_section_name (section),
bf6af496
DE
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
b4f54984 5239 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5240 }
5241
a2ce51a0
DE
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
b0c7bfa9
DE
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256}
5257
5258/* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5260 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5261
5262static struct dwo_unit *
5263lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265{
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
a2ce51a0
DE
5272 gdb_assert (cu != NULL);
5273
b0c7bfa9 5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
4262abfb 5296 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
b0c7bfa9
DE
5302 return dwo_unit;
5303}
5304
a2ce51a0 5305/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
a2ce51a0
DE
5313
5314static void
6aa5f3a6
DE
5315init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
a2ce51a0
DE
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319{
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
6aa5f3a6 5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
6aa5f3a6
DE
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
8d749320 5347 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
a2ce51a0
DE
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
6aa5f3a6 5372 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5376 if (free_cu_cleanup != NULL)
a2ce51a0 5377 {
6aa5f3a6
DE
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
a2ce51a0 5383
6aa5f3a6
DE
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
a2ce51a0 5387
6aa5f3a6
DE
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
a2ce51a0 5394 }
a2ce51a0
DE
5395
5396 do_cleanups (cleanups);
5397}
5398
fd820528 5399/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5400 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5401
f4dc4d17
DE
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
dee91e82
DE
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5413 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5414
70221824 5415static void
fd820528 5416init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5417 struct abbrev_table *abbrev_table,
fd820528
DE
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
c906108c 5421{
dee91e82 5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5423 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5424 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5425 struct dwarf2_cu *cu;
d521ce57 5426 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5427 struct die_reader_specs reader;
d85a05f0 5428 struct die_info *comp_unit_die;
dee91e82 5429 int has_children;
d85a05f0 5430 struct attribute *attr;
365156ad 5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5432 struct signatured_type *sig_type = NULL;
4bdcc0c1 5433 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5437 int rereading_dwo_cu = 0;
c906108c 5438
b4f54984 5439 if (dwarf_die_debug)
09406207
DE
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
dee91e82
DE
5444 if (use_existing_cu)
5445 gdb_assert (keep);
23745b47 5446
a2ce51a0
DE
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
a2ce51a0
DE
5456 return;
5457 }
5458
dee91e82
DE
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
42e7ad6c
DE
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
dee91e82
DE
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
8d749320 5484 cu = XNEW (struct dwarf2_cu);
dee91e82 5485 init_one_comp_unit (cu, this_cu);
dee91e82 5486 /* If an error occurs while loading, release our storage. */
365156ad 5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5488 }
dee91e82 5489
b0c7bfa9 5490 /* Get the header. */
42e7ad6c
DE
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
3019eac3 5498 if (this_cu->is_debug_types)
dee91e82
DE
5499 {
5500 ULONGEST signature;
42e7ad6c 5501 cu_offset type_offset_in_tu;
dee91e82 5502
4bdcc0c1
DE
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
42e7ad6c
DE
5505 &signature,
5506 &type_offset_in_tu);
dee91e82 5507
42e7ad6c
DE
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
dee91e82
DE
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
42e7ad6c
DE
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
1ce1cefd 5518 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5523 }
5524 else
5525 {
4bdcc0c1
DE
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
dee91e82
DE
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5532 }
5533 }
10b3939b 5534
6caca83c 5535 /* Skip dummy compilation units. */
dee91e82 5536 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
dee91e82 5539 do_cleanups (cleanups);
21b2bd31 5540 return;
6caca83c
CC
5541 }
5542
433df2d4
DE
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
f4dc4d17
DE
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
dee91e82 5556 {
4bdcc0c1 5557 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
42e7ad6c
DE
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
af703f96 5565
dee91e82 5566 /* Read the top level CU/TU die. */
3019eac3 5567 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5569
b0c7bfa9
DE
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
3019eac3 5577 struct dwo_unit *dwo_unit;
b0c7bfa9 5578 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5579
5580 if (has_children)
6a506a2d
DE
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
b0c7bfa9 5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5588 if (dwo_unit != NULL)
3019eac3 5589 {
6a506a2d
DE
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
a2ce51a0 5592 comp_unit_die, NULL,
6a506a2d
DE
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
3019eac3
DE
5609 }
5610 }
5611
b0c7bfa9 5612 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
b0c7bfa9 5615 /* Done, clean up. */
365156ad 5616 if (free_cu_cleanup != NULL)
348e048f 5617 {
365156ad
TT
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
dee91e82 5623
365156ad
TT
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
dee91e82 5627
365156ad
TT
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
348e048f 5634 }
365156ad
TT
5635
5636 do_cleanups (cleanups);
dee91e82
DE
5637}
5638
33e80786
DE
5639/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
dee91e82
DE
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5644 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
3019eac3
DE
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5654
5655static void
5656init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5657 struct dwo_file *dwo_file,
dee91e82
DE
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660{
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5662 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5663 bfd *abfd = get_section_bfd_owner (section);
33e80786 5664 struct dwarf2_section_info *abbrev_section;
dee91e82 5665 struct dwarf2_cu cu;
d521ce57 5666 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
b4f54984 5672 if (dwarf_die_debug)
09406207
DE
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
dee91e82
DE
5677 gdb_assert (this_cu->cu == NULL);
5678
33e80786
DE
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
dee91e82
DE
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
3019eac3 5693 this_cu->is_debug_types);
dee91e82 5694
1ce1cefd 5695 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5700 {
dee91e82 5701 do_cleanups (cleanups);
21b2bd31 5702 return;
93311388 5703 }
72bf9492 5704
dee91e82
DE
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
3019eac3 5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714}
5715
3019eac3
DE
5716/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
dee91e82
DE
5719
5720 THIS_CU->cu is always freed when done.
3019eac3
DE
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5724
5725static void
5726init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729{
33e80786 5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5731}
0018ea6f
DE
5732\f
5733/* Type Unit Groups.
dee91e82 5734
0018ea6f
DE
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
ff013f42 5740
f4dc4d17
DE
5741static hashval_t
5742hash_type_unit_group (const void *item)
5743{
094b34ac 5744 const struct type_unit_group *tu_group = item;
f4dc4d17 5745
094b34ac 5746 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5747}
348e048f
DE
5748
5749static int
f4dc4d17 5750eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5751{
f4dc4d17
DE
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
348e048f 5754
094b34ac 5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5756}
348e048f 5757
f4dc4d17
DE
5758/* Allocate a hash table for type unit groups. */
5759
5760static htab_t
5761allocate_type_unit_groups_table (void)
5762{
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770}
dee91e82 5771
f4dc4d17
DE
5772/* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5777
094b34ac 5778/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781static struct type_unit_group *
094b34ac 5782create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5783{
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5785 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5786 struct type_unit_group *tu_group;
f4dc4d17
DE
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
094b34ac 5790 per_cu = &tu_group->per_cu;
f4dc4d17 5791 per_cu->objfile = objfile;
f4dc4d17 5792
094b34ac
DE
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
f4dc4d17 5813
094b34ac
DE
5814 xfree (name);
5815 }
f4dc4d17 5816
094b34ac
DE
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5819
5820 return tu_group;
5821}
5822
094b34ac
DE
5823/* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5825
5826static struct type_unit_group *
ff39bb5e 5827get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5828{
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
094b34ac
DE
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
094b34ac 5875 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881}
0018ea6f
DE
5882\f
5883/* Partial symbol tables. */
5884
5885/* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890static struct partial_symtab *
5891create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892{
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
18a94d75 5896 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908}
5909
b93601f3
TT
5910/* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913struct process_psymtab_comp_unit_data
5914{
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923};
5924
0018ea6f
DE
5925/* die_reader_func for process_psymtab_comp_unit. */
5926
5927static void
5928process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5929 const gdb_byte *info_ptr,
0018ea6f
DE
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933{
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
3e29f34a 5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
b93601f3 5943 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5944
b93601f3 5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
b93601f3 5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
0018ea6f 5957 filename = "";
0018ea6f
DE
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
0018ea6f
DE
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
3e29f34a
MR
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6013
8763cede 6014 end_psymtab_common (objfile, pst);
0018ea6f
DE
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
8d749320
SM
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
b4f54984 6040 if (dwarf_read_debug)
0018ea6f
DE
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053}
6054
6055/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058static void
6059process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6060 int want_partial_unit,
6061 enum language pretend_language)
0018ea6f 6062{
b93601f3
TT
6063 struct process_psymtab_comp_unit_data info;
6064
0018ea6f
DE
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
0018ea6f
DE
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
b93601f3 6078 &info);
0018ea6f
DE
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082}
f4dc4d17
DE
6083
6084/* Reader function for build_type_psymtabs. */
6085
6086static void
6087build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6088 const gdb_byte *info_ptr,
f4dc4d17
DE
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092{
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6096 struct signatured_type *sig_type;
f4dc4d17
DE
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
0186c6a7
DE
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6111 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6112
0186c6a7 6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
8763cede 6126 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6127}
6128
73051182
DE
6129/* Struct used to sort TUs by their abbreviation table offset. */
6130
6131struct tu_abbrev_offset
6132{
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135};
6136
6137/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139static int
6140sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141{
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148}
6149
6150/* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168static void
6169build_type_psymtabs_1 (void)
6170{
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
b4f54984 6205 if (dwarf_read_debug)
73051182
DE
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
73051182 6255 do_cleanups (cleanups);
6aa5f3a6 6256}
73051182 6257
6aa5f3a6
DE
6258/* Print collected type unit statistics. */
6259
6260static void
6261print_tu_stats (void)
6262{
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6278}
6279
f4dc4d17
DE
6280/* Traversal function for build_type_psymtabs. */
6281
6282static int
6283build_type_psymtab_dependencies (void **slot, void *info)
6284{
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6288 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
f4dc4d17
DE
6291 int i;
6292
6293 gdb_assert (len > 0);
0186c6a7 6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6295
6296 pst->number_of_dependencies = len;
8d749320
SM
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6299 for (i = 0;
0186c6a7 6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6301 ++i)
6302 {
0186c6a7
DE
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6305 iter->type_unit_group = tu_group;
f4dc4d17
DE
6306 }
6307
0186c6a7 6308 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6309
6310 return 1;
6311}
6312
6313/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316static void
6317build_type_psymtabs (struct objfile *objfile)
6318{
0e50663e 6319 if (! create_all_type_units (objfile))
348e048f
DE
6320 return;
6321
73051182 6322 build_type_psymtabs_1 ();
6aa5f3a6 6323}
f4dc4d17 6324
6aa5f3a6
DE
6325/* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328static int
6329process_skeletonless_type_unit (void **slot, void *info)
6330{
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362}
6363
6364/* Traversal function for process_skeletonless_type_units. */
6365
6366static int
6367process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368{
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378}
6379
6380/* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384static void
6385process_skeletonless_type_units (struct objfile *objfile)
6386{
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
348e048f
DE
6395}
6396
60606b2c
TT
6397/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399static void
6400psymtabs_addrmap_cleanup (void *o)
6401{
6402 struct objfile *objfile = o;
ec61707d 6403
60606b2c
TT
6404 objfile->psymtabs_addrmap = NULL;
6405}
6406
95554aad
TT
6407/* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409static void
6410set_partial_user (struct objfile *objfile)
6411{
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
8832e7e3 6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
36586728
TT
6420 if (pst == NULL)
6421 continue;
6422
95554aad
TT
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430}
6431
93311388
DE
6432/* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
72bf9492 6434
93311388 6435static void
c67a9c90 6436dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6437{
60606b2c
TT
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
21b2bd31 6440 int i;
93311388 6441
b4f54984 6442 if (dwarf_read_debug)
45cfd468
DE
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6445 objfile_name (objfile));
45cfd468
DE
6446 }
6447
98bfdba5
PA
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
be391dca 6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6451
93311388
DE
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6455
348e048f
DE
6456 build_type_psymtabs (objfile);
6457
93311388 6458 create_all_comp_units (objfile);
c906108c 6459
60606b2c
TT
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6466
21b2bd31 6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6468 {
8832e7e3 6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6470
b93601f3 6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6472 }
ff013f42 6473
6aa5f3a6
DE
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
b4f54984 6484 if (dwarf_read_debug)
6aa5f3a6
DE
6485 print_tu_stats ();
6486
95554aad
TT
6487 set_partial_user (objfile);
6488
ff013f42
JK
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
60606b2c 6491 discard_cleanups (addrmap_cleanup);
ff013f42 6492
ae038cb0 6493 do_cleanups (back_to);
45cfd468 6494
b4f54984 6495 if (dwarf_read_debug)
45cfd468 6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6497 objfile_name (objfile));
ae038cb0
DJ
6498}
6499
3019eac3 6500/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6501
6502static void
dee91e82 6503load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6504 const gdb_byte *info_ptr,
dee91e82
DE
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
ae038cb0 6508{
dee91e82 6509 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6510
95554aad 6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6512
ae038cb0
DJ
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6515 If not, there's no more debug_info for this comp unit. */
d85a05f0 6516 if (has_children)
dee91e82
DE
6517 load_partial_dies (reader, info_ptr, 0);
6518}
98bfdba5 6519
dee91e82
DE
6520/* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6522
dee91e82
DE
6523static void
6524load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525{
f4dc4d17
DE
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6528}
6529
ae038cb0 6530static void
36586728
TT
6531read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6537{
d521ce57 6538 const gdb_byte *info_ptr;
a32a8923 6539 bfd *abfd = get_section_bfd_owner (section);
be391dca 6540
b4f54984 6541 if (dwarf_read_debug)
bf6af496 6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6543 get_section_name (section),
6544 get_section_file_name (section));
bf6af496 6545
36586728 6546 dwarf2_read_section (objfile, section);
ae038cb0 6547
36586728 6548 info_ptr = section->buffer;
6e70227d 6549
36586728 6550 while (info_ptr < section->buffer + section->size)
ae038cb0 6551 {
c764a876 6552 unsigned int length, initial_length_size;
ae038cb0 6553 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6554 sect_offset offset;
ae038cb0 6555
36586728 6556 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
36586728 6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6561
6562 /* Save the compilation unit for later lookup. */
8d749320 6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
c764a876 6566 this_cu->length = length + initial_length_size;
36586728 6567 this_cu->is_dwz = is_dwz;
9291a0cd 6568 this_cu->objfile = objfile;
8a0459fd 6569 this_cu->section = section;
ae038cb0 6570
36586728 6571 if (*n_comp_units == *n_allocated)
ae038cb0 6572 {
36586728 6573 *n_allocated *= 2;
224c3ddb
SM
6574 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6575 *all_comp_units, *n_allocated);
ae038cb0 6576 }
36586728
TT
6577 (*all_comp_units)[*n_comp_units] = this_cu;
6578 ++*n_comp_units;
ae038cb0
DJ
6579
6580 info_ptr = info_ptr + this_cu->length;
6581 }
36586728
TT
6582}
6583
6584/* Create a list of all compilation units in OBJFILE.
6585 This is only done for -readnow and building partial symtabs. */
6586
6587static void
6588create_all_comp_units (struct objfile *objfile)
6589{
6590 int n_allocated;
6591 int n_comp_units;
6592 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6593 struct dwz_file *dwz;
36586728
TT
6594
6595 n_comp_units = 0;
6596 n_allocated = 10;
8d749320 6597 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6598
6599 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6600 &n_allocated, &n_comp_units, &all_comp_units);
6601
4db1a1dc
TT
6602 dwz = dwarf2_get_dwz_file ();
6603 if (dwz != NULL)
6604 read_comp_units_from_section (objfile, &dwz->info, 1,
6605 &n_allocated, &n_comp_units,
6606 &all_comp_units);
ae038cb0 6607
8d749320
SM
6608 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6609 struct dwarf2_per_cu_data *,
6610 n_comp_units);
ae038cb0
DJ
6611 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6612 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6613 xfree (all_comp_units);
6614 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6615}
6616
5734ee8b 6617/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6618 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6619 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6620 DW_AT_ranges). See the comments of add_partial_subprogram on how
6621 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6622
72bf9492
DJ
6623static void
6624scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6625 CORE_ADDR *highpc, int set_addrmap,
6626 struct dwarf2_cu *cu)
c906108c 6627{
72bf9492 6628 struct partial_die_info *pdi;
c906108c 6629
91c24f0a
DC
6630 /* Now, march along the PDI's, descending into ones which have
6631 interesting children but skipping the children of the other ones,
6632 until we reach the end of the compilation unit. */
c906108c 6633
72bf9492 6634 pdi = first_die;
91c24f0a 6635
72bf9492
DJ
6636 while (pdi != NULL)
6637 {
6638 fixup_partial_die (pdi, cu);
c906108c 6639
f55ee35c 6640 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6641 children, so we need to look at them. Ditto for anonymous
6642 enums. */
933c6fe4 6643
72bf9492 6644 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6645 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6646 || pdi->tag == DW_TAG_imported_unit)
c906108c 6647 {
72bf9492 6648 switch (pdi->tag)
c906108c
SS
6649 {
6650 case DW_TAG_subprogram:
cdc07690 6651 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6652 break;
72929c62 6653 case DW_TAG_constant:
c906108c
SS
6654 case DW_TAG_variable:
6655 case DW_TAG_typedef:
91c24f0a 6656 case DW_TAG_union_type:
72bf9492 6657 if (!pdi->is_declaration)
63d06c5c 6658 {
72bf9492 6659 add_partial_symbol (pdi, cu);
63d06c5c
DC
6660 }
6661 break;
c906108c 6662 case DW_TAG_class_type:
680b30c7 6663 case DW_TAG_interface_type:
c906108c 6664 case DW_TAG_structure_type:
72bf9492 6665 if (!pdi->is_declaration)
c906108c 6666 {
72bf9492 6667 add_partial_symbol (pdi, cu);
c906108c
SS
6668 }
6669 break;
91c24f0a 6670 case DW_TAG_enumeration_type:
72bf9492
DJ
6671 if (!pdi->is_declaration)
6672 add_partial_enumeration (pdi, cu);
c906108c
SS
6673 break;
6674 case DW_TAG_base_type:
a02abb62 6675 case DW_TAG_subrange_type:
c906108c 6676 /* File scope base type definitions are added to the partial
c5aa993b 6677 symbol table. */
72bf9492 6678 add_partial_symbol (pdi, cu);
c906108c 6679 break;
d9fa45fe 6680 case DW_TAG_namespace:
cdc07690 6681 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6682 break;
5d7cb8df 6683 case DW_TAG_module:
cdc07690 6684 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6685 break;
95554aad
TT
6686 case DW_TAG_imported_unit:
6687 {
6688 struct dwarf2_per_cu_data *per_cu;
6689
f4dc4d17
DE
6690 /* For now we don't handle imported units in type units. */
6691 if (cu->per_cu->is_debug_types)
6692 {
6693 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6694 " supported in type units [in module %s]"),
4262abfb 6695 objfile_name (cu->objfile));
f4dc4d17
DE
6696 }
6697
95554aad 6698 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6699 pdi->is_dwz,
95554aad
TT
6700 cu->objfile);
6701
6702 /* Go read the partial unit, if needed. */
6703 if (per_cu->v.psymtab == NULL)
b93601f3 6704 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6705
f4dc4d17 6706 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6707 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6708 }
6709 break;
74921315
KS
6710 case DW_TAG_imported_declaration:
6711 add_partial_symbol (pdi, cu);
6712 break;
c906108c
SS
6713 default:
6714 break;
6715 }
6716 }
6717
72bf9492
DJ
6718 /* If the die has a sibling, skip to the sibling. */
6719
6720 pdi = pdi->die_sibling;
6721 }
6722}
6723
6724/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6725
72bf9492 6726 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6727 name is concatenated with "::" and the partial DIE's name. For
6728 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6729 Enumerators are an exception; they use the scope of their parent
6730 enumeration type, i.e. the name of the enumeration type is not
6731 prepended to the enumerator.
91c24f0a 6732
72bf9492
DJ
6733 There are two complexities. One is DW_AT_specification; in this
6734 case "parent" means the parent of the target of the specification,
6735 instead of the direct parent of the DIE. The other is compilers
6736 which do not emit DW_TAG_namespace; in this case we try to guess
6737 the fully qualified name of structure types from their members'
6738 linkage names. This must be done using the DIE's children rather
6739 than the children of any DW_AT_specification target. We only need
6740 to do this for structures at the top level, i.e. if the target of
6741 any DW_AT_specification (if any; otherwise the DIE itself) does not
6742 have a parent. */
6743
6744/* Compute the scope prefix associated with PDI's parent, in
6745 compilation unit CU. The result will be allocated on CU's
6746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6747 field. NULL is returned if no prefix is necessary. */
15d034d0 6748static const char *
72bf9492
DJ
6749partial_die_parent_scope (struct partial_die_info *pdi,
6750 struct dwarf2_cu *cu)
6751{
15d034d0 6752 const char *grandparent_scope;
72bf9492 6753 struct partial_die_info *parent, *real_pdi;
91c24f0a 6754
72bf9492
DJ
6755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6756 then this means the parent of the specification DIE. */
6757
6758 real_pdi = pdi;
72bf9492 6759 while (real_pdi->has_specification)
36586728
TT
6760 real_pdi = find_partial_die (real_pdi->spec_offset,
6761 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6762
6763 parent = real_pdi->die_parent;
6764 if (parent == NULL)
6765 return NULL;
6766
6767 if (parent->scope_set)
6768 return parent->scope;
6769
6770 fixup_partial_die (parent, cu);
6771
10b3939b 6772 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6773
acebe513
UW
6774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6776 Work around this problem here. */
6777 if (cu->language == language_cplus
6e70227d 6778 && parent->tag == DW_TAG_namespace
acebe513
UW
6779 && strcmp (parent->name, "::") == 0
6780 && grandparent_scope == NULL)
6781 {
6782 parent->scope = NULL;
6783 parent->scope_set = 1;
6784 return NULL;
6785 }
6786
9c6c53f7
SA
6787 if (pdi->tag == DW_TAG_enumerator)
6788 /* Enumerators should not get the name of the enumeration as a prefix. */
6789 parent->scope = grandparent_scope;
6790 else if (parent->tag == DW_TAG_namespace
f55ee35c 6791 || parent->tag == DW_TAG_module
72bf9492
DJ
6792 || parent->tag == DW_TAG_structure_type
6793 || parent->tag == DW_TAG_class_type
680b30c7 6794 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6795 || parent->tag == DW_TAG_union_type
6796 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6797 {
6798 if (grandparent_scope == NULL)
6799 parent->scope = parent->name;
6800 else
3e43a32a
MS
6801 parent->scope = typename_concat (&cu->comp_unit_obstack,
6802 grandparent_scope,
f55ee35c 6803 parent->name, 0, cu);
72bf9492 6804 }
72bf9492
DJ
6805 else
6806 {
6807 /* FIXME drow/2004-04-01: What should we be doing with
6808 function-local names? For partial symbols, we should probably be
6809 ignoring them. */
6810 complaint (&symfile_complaints,
e2e0b3e5 6811 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6812 parent->tag, pdi->offset.sect_off);
72bf9492 6813 parent->scope = grandparent_scope;
c906108c
SS
6814 }
6815
72bf9492
DJ
6816 parent->scope_set = 1;
6817 return parent->scope;
6818}
6819
6820/* Return the fully scoped name associated with PDI, from compilation unit
6821 CU. The result will be allocated with malloc. */
4568ecf9 6822
72bf9492
DJ
6823static char *
6824partial_die_full_name (struct partial_die_info *pdi,
6825 struct dwarf2_cu *cu)
6826{
15d034d0 6827 const char *parent_scope;
72bf9492 6828
98bfdba5
PA
6829 /* If this is a template instantiation, we can not work out the
6830 template arguments from partial DIEs. So, unfortunately, we have
6831 to go through the full DIEs. At least any work we do building
6832 types here will be reused if full symbols are loaded later. */
6833 if (pdi->has_template_arguments)
6834 {
6835 fixup_partial_die (pdi, cu);
6836
6837 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6838 {
6839 struct die_info *die;
6840 struct attribute attr;
6841 struct dwarf2_cu *ref_cu = cu;
6842
b64f50a1 6843 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6844 attr.name = 0;
6845 attr.form = DW_FORM_ref_addr;
4568ecf9 6846 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6847 die = follow_die_ref (NULL, &attr, &ref_cu);
6848
6849 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6850 }
6851 }
6852
72bf9492
DJ
6853 parent_scope = partial_die_parent_scope (pdi, cu);
6854 if (parent_scope == NULL)
6855 return NULL;
6856 else
f55ee35c 6857 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6858}
6859
6860static void
72bf9492 6861add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6862{
e7c27a73 6863 struct objfile *objfile = cu->objfile;
3e29f34a 6864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6865 CORE_ADDR addr = 0;
15d034d0 6866 const char *actual_name = NULL;
e142c38c 6867 CORE_ADDR baseaddr;
15d034d0 6868 char *built_actual_name;
e142c38c
DJ
6869
6870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6871
15d034d0
TT
6872 built_actual_name = partial_die_full_name (pdi, cu);
6873 if (built_actual_name != NULL)
6874 actual_name = built_actual_name;
63d06c5c 6875
72bf9492
DJ
6876 if (actual_name == NULL)
6877 actual_name = pdi->name;
6878
c906108c
SS
6879 switch (pdi->tag)
6880 {
6881 case DW_TAG_subprogram:
3e29f34a 6882 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6883 if (pdi->is_external || cu->language == language_ada)
c906108c 6884 {
2cfa0c8d
JB
6885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6886 of the global scope. But in Ada, we want to be able to access
6887 nested procedures globally. So all Ada subprograms are stored
6888 in the global scope. */
f47fb265 6889 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6890 built_actual_name != NULL,
f47fb265
MS
6891 VAR_DOMAIN, LOC_BLOCK,
6892 &objfile->global_psymbols,
1762568f 6893 addr, cu->language, objfile);
c906108c
SS
6894 }
6895 else
6896 {
f47fb265 6897 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6898 built_actual_name != NULL,
f47fb265
MS
6899 VAR_DOMAIN, LOC_BLOCK,
6900 &objfile->static_psymbols,
1762568f 6901 addr, cu->language, objfile);
c906108c
SS
6902 }
6903 break;
72929c62
JB
6904 case DW_TAG_constant:
6905 {
6906 struct psymbol_allocation_list *list;
6907
6908 if (pdi->is_external)
6909 list = &objfile->global_psymbols;
6910 else
6911 list = &objfile->static_psymbols;
f47fb265 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6914 list, 0, cu->language, objfile);
72929c62
JB
6915 }
6916 break;
c906108c 6917 case DW_TAG_variable:
95554aad
TT
6918 if (pdi->d.locdesc)
6919 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6920
95554aad 6921 if (pdi->d.locdesc
caac4577
JG
6922 && addr == 0
6923 && !dwarf2_per_objfile->has_section_at_zero)
6924 {
6925 /* A global or static variable may also have been stripped
6926 out by the linker if unused, in which case its address
6927 will be nullified; do not add such variables into partial
6928 symbol table then. */
6929 }
6930 else if (pdi->is_external)
c906108c
SS
6931 {
6932 /* Global Variable.
6933 Don't enter into the minimal symbol tables as there is
6934 a minimal symbol table entry from the ELF symbols already.
6935 Enter into partial symbol table if it has a location
6936 descriptor or a type.
6937 If the location descriptor is missing, new_symbol will create
6938 a LOC_UNRESOLVED symbol, the address of the variable will then
6939 be determined from the minimal symbol table whenever the variable
6940 is referenced.
6941 The address for the partial symbol table entry is not
6942 used by GDB, but it comes in handy for debugging partial symbol
6943 table building. */
6944
95554aad 6945 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6946 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6947 built_actual_name != NULL,
f47fb265
MS
6948 VAR_DOMAIN, LOC_STATIC,
6949 &objfile->global_psymbols,
1762568f 6950 addr + baseaddr,
f47fb265 6951 cu->language, objfile);
c906108c
SS
6952 }
6953 else
6954 {
ff908ebf
AW
6955 int has_loc = pdi->d.locdesc != NULL;
6956
6957 /* Static Variable. Skip symbols whose value we cannot know (those
6958 without location descriptors or constant values). */
6959 if (!has_loc && !pdi->has_const_value)
decbce07 6960 {
15d034d0 6961 xfree (built_actual_name);
decbce07
MS
6962 return;
6963 }
ff908ebf 6964
f47fb265 6965 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6966 built_actual_name != NULL,
f47fb265
MS
6967 VAR_DOMAIN, LOC_STATIC,
6968 &objfile->static_psymbols,
ff908ebf 6969 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6970 cu->language, objfile);
c906108c
SS
6971 }
6972 break;
6973 case DW_TAG_typedef:
6974 case DW_TAG_base_type:
a02abb62 6975 case DW_TAG_subrange_type:
38d518c9 6976 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6977 built_actual_name != NULL,
176620f1 6978 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6979 &objfile->static_psymbols,
1762568f 6980 0, cu->language, objfile);
c906108c 6981 break;
74921315 6982 case DW_TAG_imported_declaration:
72bf9492
DJ
6983 case DW_TAG_namespace:
6984 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6985 built_actual_name != NULL,
72bf9492
DJ
6986 VAR_DOMAIN, LOC_TYPEDEF,
6987 &objfile->global_psymbols,
1762568f 6988 0, cu->language, objfile);
72bf9492 6989 break;
530e8392
KB
6990 case DW_TAG_module:
6991 add_psymbol_to_list (actual_name, strlen (actual_name),
6992 built_actual_name != NULL,
6993 MODULE_DOMAIN, LOC_TYPEDEF,
6994 &objfile->global_psymbols,
1762568f 6995 0, cu->language, objfile);
530e8392 6996 break;
c906108c 6997 case DW_TAG_class_type:
680b30c7 6998 case DW_TAG_interface_type:
c906108c
SS
6999 case DW_TAG_structure_type:
7000 case DW_TAG_union_type:
7001 case DW_TAG_enumeration_type:
fa4028e9
JB
7002 /* Skip external references. The DWARF standard says in the section
7003 about "Structure, Union, and Class Type Entries": "An incomplete
7004 structure, union or class type is represented by a structure,
7005 union or class entry that does not have a byte size attribute
7006 and that has a DW_AT_declaration attribute." */
7007 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7008 {
15d034d0 7009 xfree (built_actual_name);
decbce07
MS
7010 return;
7011 }
fa4028e9 7012
63d06c5c
DC
7013 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7014 static vs. global. */
38d518c9 7015 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7016 built_actual_name != NULL,
176620f1 7017 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7018 (cu->language == language_cplus
7019 || cu->language == language_java)
63d06c5c
DC
7020 ? &objfile->global_psymbols
7021 : &objfile->static_psymbols,
1762568f 7022 0, cu->language, objfile);
c906108c 7023
c906108c
SS
7024 break;
7025 case DW_TAG_enumerator:
38d518c9 7026 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7027 built_actual_name != NULL,
176620f1 7028 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7029 (cu->language == language_cplus
7030 || cu->language == language_java)
f6fe98ef
DJ
7031 ? &objfile->global_psymbols
7032 : &objfile->static_psymbols,
1762568f 7033 0, cu->language, objfile);
c906108c
SS
7034 break;
7035 default:
7036 break;
7037 }
5c4e30ca 7038
15d034d0 7039 xfree (built_actual_name);
c906108c
SS
7040}
7041
5c4e30ca
DC
7042/* Read a partial die corresponding to a namespace; also, add a symbol
7043 corresponding to that namespace to the symbol table. NAMESPACE is
7044 the name of the enclosing namespace. */
91c24f0a 7045
72bf9492
DJ
7046static void
7047add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7048 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7049 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7050{
72bf9492 7051 /* Add a symbol for the namespace. */
e7c27a73 7052
72bf9492 7053 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7054
7055 /* Now scan partial symbols in that namespace. */
7056
91c24f0a 7057 if (pdi->has_children)
cdc07690 7058 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7059}
7060
5d7cb8df
JK
7061/* Read a partial die corresponding to a Fortran module. */
7062
7063static void
7064add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7065 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7066{
530e8392
KB
7067 /* Add a symbol for the namespace. */
7068
7069 add_partial_symbol (pdi, cu);
7070
f55ee35c 7071 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7072
7073 if (pdi->has_children)
cdc07690 7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7075}
7076
bc30ff58
JB
7077/* Read a partial die corresponding to a subprogram and create a partial
7078 symbol for that subprogram. When the CU language allows it, this
7079 routine also defines a partial symbol for each nested subprogram
cdc07690 7080 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7081 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7082 and highest PC values found in PDI.
6e70227d 7083
cdc07690
YQ
7084 PDI may also be a lexical block, in which case we simply search
7085 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7086 Again, this is only performed when the CU language allows this
7087 type of definitions. */
7088
7089static void
7090add_partial_subprogram (struct partial_die_info *pdi,
7091 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7092 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7093{
7094 if (pdi->tag == DW_TAG_subprogram)
7095 {
7096 if (pdi->has_pc_info)
7097 {
7098 if (pdi->lowpc < *lowpc)
7099 *lowpc = pdi->lowpc;
7100 if (pdi->highpc > *highpc)
7101 *highpc = pdi->highpc;
cdc07690 7102 if (set_addrmap)
5734ee8b 7103 {
5734ee8b 7104 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7105 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7106 CORE_ADDR baseaddr;
7107 CORE_ADDR highpc;
7108 CORE_ADDR lowpc;
5734ee8b
DJ
7109
7110 baseaddr = ANOFFSET (objfile->section_offsets,
7111 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7112 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7113 pdi->lowpc + baseaddr);
7114 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7115 pdi->highpc + baseaddr);
7116 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7117 cu->per_cu->v.psymtab);
5734ee8b 7118 }
481860b3
GB
7119 }
7120
7121 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7122 {
bc30ff58 7123 if (!pdi->is_declaration)
e8d05480
JB
7124 /* Ignore subprogram DIEs that do not have a name, they are
7125 illegal. Do not emit a complaint at this point, we will
7126 do so when we convert this psymtab into a symtab. */
7127 if (pdi->name)
7128 add_partial_symbol (pdi, cu);
bc30ff58
JB
7129 }
7130 }
6e70227d 7131
bc30ff58
JB
7132 if (! pdi->has_children)
7133 return;
7134
7135 if (cu->language == language_ada)
7136 {
7137 pdi = pdi->die_child;
7138 while (pdi != NULL)
7139 {
7140 fixup_partial_die (pdi, cu);
7141 if (pdi->tag == DW_TAG_subprogram
7142 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7143 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7144 pdi = pdi->die_sibling;
7145 }
7146 }
7147}
7148
91c24f0a
DC
7149/* Read a partial die corresponding to an enumeration type. */
7150
72bf9492
DJ
7151static void
7152add_partial_enumeration (struct partial_die_info *enum_pdi,
7153 struct dwarf2_cu *cu)
91c24f0a 7154{
72bf9492 7155 struct partial_die_info *pdi;
91c24f0a
DC
7156
7157 if (enum_pdi->name != NULL)
72bf9492
DJ
7158 add_partial_symbol (enum_pdi, cu);
7159
7160 pdi = enum_pdi->die_child;
7161 while (pdi)
91c24f0a 7162 {
72bf9492 7163 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7164 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7165 else
72bf9492
DJ
7166 add_partial_symbol (pdi, cu);
7167 pdi = pdi->die_sibling;
91c24f0a 7168 }
91c24f0a
DC
7169}
7170
6caca83c
CC
7171/* Return the initial uleb128 in the die at INFO_PTR. */
7172
7173static unsigned int
d521ce57 7174peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7175{
7176 unsigned int bytes_read;
7177
7178 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7179}
7180
4bb7a0a7
DJ
7181/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7182 Return the corresponding abbrev, or NULL if the number is zero (indicating
7183 an empty DIE). In either case *BYTES_READ will be set to the length of
7184 the initial number. */
7185
7186static struct abbrev_info *
d521ce57 7187peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7188 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7189{
7190 bfd *abfd = cu->objfile->obfd;
7191 unsigned int abbrev_number;
7192 struct abbrev_info *abbrev;
7193
7194 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7195
7196 if (abbrev_number == 0)
7197 return NULL;
7198
433df2d4 7199 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7200 if (!abbrev)
7201 {
422b9917
DE
7202 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7203 " at offset 0x%x [in module %s]"),
7204 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7205 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7206 }
7207
7208 return abbrev;
7209}
7210
93311388
DE
7211/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7212 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7213 DIE. Any children of the skipped DIEs will also be skipped. */
7214
d521ce57
TT
7215static const gdb_byte *
7216skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7217{
dee91e82 7218 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7219 struct abbrev_info *abbrev;
7220 unsigned int bytes_read;
7221
7222 while (1)
7223 {
7224 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7225 if (abbrev == NULL)
7226 return info_ptr + bytes_read;
7227 else
dee91e82 7228 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7229 }
7230}
7231
93311388
DE
7232/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7233 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7234 abbrev corresponding to that skipped uleb128 should be passed in
7235 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7236 children. */
7237
d521ce57
TT
7238static const gdb_byte *
7239skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7240 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7241{
7242 unsigned int bytes_read;
7243 struct attribute attr;
dee91e82
DE
7244 bfd *abfd = reader->abfd;
7245 struct dwarf2_cu *cu = reader->cu;
d521ce57 7246 const gdb_byte *buffer = reader->buffer;
f664829e 7247 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7248 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7249 unsigned int form, i;
7250
7251 for (i = 0; i < abbrev->num_attrs; i++)
7252 {
7253 /* The only abbrev we care about is DW_AT_sibling. */
7254 if (abbrev->attrs[i].name == DW_AT_sibling)
7255 {
dee91e82 7256 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7257 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7258 complaint (&symfile_complaints,
7259 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7260 else
b9502d3f
WN
7261 {
7262 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7263 const gdb_byte *sibling_ptr = buffer + off;
7264
7265 if (sibling_ptr < info_ptr)
7266 complaint (&symfile_complaints,
7267 _("DW_AT_sibling points backwards"));
22869d73
KS
7268 else if (sibling_ptr > reader->buffer_end)
7269 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7270 else
7271 return sibling_ptr;
7272 }
4bb7a0a7
DJ
7273 }
7274
7275 /* If it isn't DW_AT_sibling, skip this attribute. */
7276 form = abbrev->attrs[i].form;
7277 skip_attribute:
7278 switch (form)
7279 {
4bb7a0a7 7280 case DW_FORM_ref_addr:
ae411497
TT
7281 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7282 and later it is offset sized. */
7283 if (cu->header.version == 2)
7284 info_ptr += cu->header.addr_size;
7285 else
7286 info_ptr += cu->header.offset_size;
7287 break;
36586728
TT
7288 case DW_FORM_GNU_ref_alt:
7289 info_ptr += cu->header.offset_size;
7290 break;
ae411497 7291 case DW_FORM_addr:
4bb7a0a7
DJ
7292 info_ptr += cu->header.addr_size;
7293 break;
7294 case DW_FORM_data1:
7295 case DW_FORM_ref1:
7296 case DW_FORM_flag:
7297 info_ptr += 1;
7298 break;
2dc7f7b3
TT
7299 case DW_FORM_flag_present:
7300 break;
4bb7a0a7
DJ
7301 case DW_FORM_data2:
7302 case DW_FORM_ref2:
7303 info_ptr += 2;
7304 break;
7305 case DW_FORM_data4:
7306 case DW_FORM_ref4:
7307 info_ptr += 4;
7308 break;
7309 case DW_FORM_data8:
7310 case DW_FORM_ref8:
55f1336d 7311 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7312 info_ptr += 8;
7313 break;
7314 case DW_FORM_string:
9b1c24c8 7315 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7316 info_ptr += bytes_read;
7317 break;
2dc7f7b3 7318 case DW_FORM_sec_offset:
4bb7a0a7 7319 case DW_FORM_strp:
36586728 7320 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7321 info_ptr += cu->header.offset_size;
7322 break;
2dc7f7b3 7323 case DW_FORM_exprloc:
4bb7a0a7
DJ
7324 case DW_FORM_block:
7325 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7326 info_ptr += bytes_read;
7327 break;
7328 case DW_FORM_block1:
7329 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7330 break;
7331 case DW_FORM_block2:
7332 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7333 break;
7334 case DW_FORM_block4:
7335 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7336 break;
7337 case DW_FORM_sdata:
7338 case DW_FORM_udata:
7339 case DW_FORM_ref_udata:
3019eac3
DE
7340 case DW_FORM_GNU_addr_index:
7341 case DW_FORM_GNU_str_index:
d521ce57 7342 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7343 break;
7344 case DW_FORM_indirect:
7345 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7346 info_ptr += bytes_read;
7347 /* We need to continue parsing from here, so just go back to
7348 the top. */
7349 goto skip_attribute;
7350
7351 default:
3e43a32a
MS
7352 error (_("Dwarf Error: Cannot handle %s "
7353 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7354 dwarf_form_name (form),
7355 bfd_get_filename (abfd));
7356 }
7357 }
7358
7359 if (abbrev->has_children)
dee91e82 7360 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7361 else
7362 return info_ptr;
7363}
7364
93311388 7365/* Locate ORIG_PDI's sibling.
dee91e82 7366 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7367
d521ce57 7368static const gdb_byte *
dee91e82
DE
7369locate_pdi_sibling (const struct die_reader_specs *reader,
7370 struct partial_die_info *orig_pdi,
d521ce57 7371 const gdb_byte *info_ptr)
91c24f0a
DC
7372{
7373 /* Do we know the sibling already? */
72bf9492 7374
91c24f0a
DC
7375 if (orig_pdi->sibling)
7376 return orig_pdi->sibling;
7377
7378 /* Are there any children to deal with? */
7379
7380 if (!orig_pdi->has_children)
7381 return info_ptr;
7382
4bb7a0a7 7383 /* Skip the children the long way. */
91c24f0a 7384
dee91e82 7385 return skip_children (reader, info_ptr);
91c24f0a
DC
7386}
7387
257e7a09 7388/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7389 not NULL. */
c906108c
SS
7390
7391static void
257e7a09
YQ
7392dwarf2_read_symtab (struct partial_symtab *self,
7393 struct objfile *objfile)
c906108c 7394{
257e7a09 7395 if (self->readin)
c906108c 7396 {
442e4d9c 7397 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7398 self->filename);
442e4d9c
YQ
7399 }
7400 else
7401 {
7402 if (info_verbose)
c906108c 7403 {
442e4d9c 7404 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7405 self->filename);
442e4d9c 7406 gdb_flush (gdb_stdout);
c906108c 7407 }
c906108c 7408
442e4d9c
YQ
7409 /* Restore our global data. */
7410 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7411
442e4d9c
YQ
7412 /* If this psymtab is constructed from a debug-only objfile, the
7413 has_section_at_zero flag will not necessarily be correct. We
7414 can get the correct value for this flag by looking at the data
7415 associated with the (presumably stripped) associated objfile. */
7416 if (objfile->separate_debug_objfile_backlink)
7417 {
7418 struct dwarf2_per_objfile *dpo_backlink
7419 = objfile_data (objfile->separate_debug_objfile_backlink,
7420 dwarf2_objfile_data_key);
9a619af0 7421
442e4d9c
YQ
7422 dwarf2_per_objfile->has_section_at_zero
7423 = dpo_backlink->has_section_at_zero;
7424 }
b2ab525c 7425
442e4d9c 7426 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7427
257e7a09 7428 psymtab_to_symtab_1 (self);
c906108c 7429
442e4d9c
YQ
7430 /* Finish up the debug error message. */
7431 if (info_verbose)
7432 printf_filtered (_("done.\n"));
c906108c 7433 }
95554aad
TT
7434
7435 process_cu_includes ();
c906108c 7436}
9cdd5dbd
DE
7437\f
7438/* Reading in full CUs. */
c906108c 7439
10b3939b
DJ
7440/* Add PER_CU to the queue. */
7441
7442static void
95554aad
TT
7443queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7444 enum language pretend_language)
10b3939b
DJ
7445{
7446 struct dwarf2_queue_item *item;
7447
7448 per_cu->queued = 1;
8d749320 7449 item = XNEW (struct dwarf2_queue_item);
10b3939b 7450 item->per_cu = per_cu;
95554aad 7451 item->pretend_language = pretend_language;
10b3939b
DJ
7452 item->next = NULL;
7453
7454 if (dwarf2_queue == NULL)
7455 dwarf2_queue = item;
7456 else
7457 dwarf2_queue_tail->next = item;
7458
7459 dwarf2_queue_tail = item;
7460}
7461
89e63ee4
DE
7462/* If PER_CU is not yet queued, add it to the queue.
7463 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7464 dependency.
0907af0c 7465 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7466 meaning either PER_CU is already queued or it is already loaded.
7467
7468 N.B. There is an invariant here that if a CU is queued then it is loaded.
7469 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7470
7471static int
89e63ee4 7472maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7473 struct dwarf2_per_cu_data *per_cu,
7474 enum language pretend_language)
7475{
7476 /* We may arrive here during partial symbol reading, if we need full
7477 DIEs to process an unusual case (e.g. template arguments). Do
7478 not queue PER_CU, just tell our caller to load its DIEs. */
7479 if (dwarf2_per_objfile->reading_partial_symbols)
7480 {
7481 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7482 return 1;
7483 return 0;
7484 }
7485
7486 /* Mark the dependence relation so that we don't flush PER_CU
7487 too early. */
89e63ee4
DE
7488 if (dependent_cu != NULL)
7489 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7490
7491 /* If it's already on the queue, we have nothing to do. */
7492 if (per_cu->queued)
7493 return 0;
7494
7495 /* If the compilation unit is already loaded, just mark it as
7496 used. */
7497 if (per_cu->cu != NULL)
7498 {
7499 per_cu->cu->last_used = 0;
7500 return 0;
7501 }
7502
7503 /* Add it to the queue. */
7504 queue_comp_unit (per_cu, pretend_language);
7505
7506 return 1;
7507}
7508
10b3939b
DJ
7509/* Process the queue. */
7510
7511static void
a0f42c21 7512process_queue (void)
10b3939b
DJ
7513{
7514 struct dwarf2_queue_item *item, *next_item;
7515
b4f54984 7516 if (dwarf_read_debug)
45cfd468
DE
7517 {
7518 fprintf_unfiltered (gdb_stdlog,
7519 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7520 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7521 }
7522
03dd20cc
DJ
7523 /* The queue starts out with one item, but following a DIE reference
7524 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7525 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7526 {
cc12ce38
DE
7527 if ((dwarf2_per_objfile->using_index
7528 ? !item->per_cu->v.quick->compunit_symtab
7529 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7530 /* Skip dummy CUs. */
7531 && item->per_cu->cu != NULL)
f4dc4d17
DE
7532 {
7533 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7534 unsigned int debug_print_threshold;
247f5c4f 7535 char buf[100];
f4dc4d17 7536
247f5c4f 7537 if (per_cu->is_debug_types)
f4dc4d17 7538 {
247f5c4f
DE
7539 struct signatured_type *sig_type =
7540 (struct signatured_type *) per_cu;
7541
7542 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7543 hex_string (sig_type->signature),
7544 per_cu->offset.sect_off);
7545 /* There can be 100s of TUs.
7546 Only print them in verbose mode. */
7547 debug_print_threshold = 2;
f4dc4d17 7548 }
247f5c4f 7549 else
73be47f5
DE
7550 {
7551 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7552 debug_print_threshold = 1;
7553 }
247f5c4f 7554
b4f54984 7555 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7556 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7557
7558 if (per_cu->is_debug_types)
7559 process_full_type_unit (per_cu, item->pretend_language);
7560 else
7561 process_full_comp_unit (per_cu, item->pretend_language);
7562
b4f54984 7563 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7564 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7565 }
10b3939b
DJ
7566
7567 item->per_cu->queued = 0;
7568 next_item = item->next;
7569 xfree (item);
7570 }
7571
7572 dwarf2_queue_tail = NULL;
45cfd468 7573
b4f54984 7574 if (dwarf_read_debug)
45cfd468
DE
7575 {
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7577 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7578 }
10b3939b
DJ
7579}
7580
7581/* Free all allocated queue entries. This function only releases anything if
7582 an error was thrown; if the queue was processed then it would have been
7583 freed as we went along. */
7584
7585static void
7586dwarf2_release_queue (void *dummy)
7587{
7588 struct dwarf2_queue_item *item, *last;
7589
7590 item = dwarf2_queue;
7591 while (item)
7592 {
7593 /* Anything still marked queued is likely to be in an
7594 inconsistent state, so discard it. */
7595 if (item->per_cu->queued)
7596 {
7597 if (item->per_cu->cu != NULL)
dee91e82 7598 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7599 item->per_cu->queued = 0;
7600 }
7601
7602 last = item;
7603 item = item->next;
7604 xfree (last);
7605 }
7606
7607 dwarf2_queue = dwarf2_queue_tail = NULL;
7608}
7609
7610/* Read in full symbols for PST, and anything it depends on. */
7611
c906108c 7612static void
fba45db2 7613psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7614{
10b3939b 7615 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7616 int i;
7617
95554aad
TT
7618 if (pst->readin)
7619 return;
7620
aaa75496 7621 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7622 if (!pst->dependencies[i]->readin
7623 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7624 {
7625 /* Inform about additional files that need to be read in. */
7626 if (info_verbose)
7627 {
a3f17187 7628 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7629 fputs_filtered (" ", gdb_stdout);
7630 wrap_here ("");
7631 fputs_filtered ("and ", gdb_stdout);
7632 wrap_here ("");
7633 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7634 wrap_here (""); /* Flush output. */
aaa75496
JB
7635 gdb_flush (gdb_stdout);
7636 }
7637 psymtab_to_symtab_1 (pst->dependencies[i]);
7638 }
7639
e38df1d0 7640 per_cu = pst->read_symtab_private;
10b3939b
DJ
7641
7642 if (per_cu == NULL)
aaa75496
JB
7643 {
7644 /* It's an include file, no symbols to read for it.
7645 Everything is in the parent symtab. */
7646 pst->readin = 1;
7647 return;
7648 }
c906108c 7649
a0f42c21 7650 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7651}
7652
dee91e82
DE
7653/* Trivial hash function for die_info: the hash value of a DIE
7654 is its offset in .debug_info for this objfile. */
10b3939b 7655
dee91e82
DE
7656static hashval_t
7657die_hash (const void *item)
10b3939b 7658{
dee91e82 7659 const struct die_info *die = item;
6502dd73 7660
dee91e82
DE
7661 return die->offset.sect_off;
7662}
63d06c5c 7663
dee91e82
DE
7664/* Trivial comparison function for die_info structures: two DIEs
7665 are equal if they have the same offset. */
98bfdba5 7666
dee91e82
DE
7667static int
7668die_eq (const void *item_lhs, const void *item_rhs)
7669{
7670 const struct die_info *die_lhs = item_lhs;
7671 const struct die_info *die_rhs = item_rhs;
c906108c 7672
dee91e82
DE
7673 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7674}
c906108c 7675
dee91e82
DE
7676/* die_reader_func for load_full_comp_unit.
7677 This is identical to read_signatured_type_reader,
7678 but is kept separate for now. */
c906108c 7679
dee91e82
DE
7680static void
7681load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7682 const gdb_byte *info_ptr,
dee91e82
DE
7683 struct die_info *comp_unit_die,
7684 int has_children,
7685 void *data)
7686{
7687 struct dwarf2_cu *cu = reader->cu;
95554aad 7688 enum language *language_ptr = data;
6caca83c 7689
dee91e82
DE
7690 gdb_assert (cu->die_hash == NULL);
7691 cu->die_hash =
7692 htab_create_alloc_ex (cu->header.length / 12,
7693 die_hash,
7694 die_eq,
7695 NULL,
7696 &cu->comp_unit_obstack,
7697 hashtab_obstack_allocate,
7698 dummy_obstack_deallocate);
e142c38c 7699
dee91e82
DE
7700 if (has_children)
7701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7702 &info_ptr, comp_unit_die);
7703 cu->dies = comp_unit_die;
7704 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7705
7706 /* We try not to read any attributes in this function, because not
9cdd5dbd 7707 all CUs needed for references have been loaded yet, and symbol
10b3939b 7708 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7709 or we won't be able to build types correctly.
7710 Similarly, if we do not read the producer, we can not apply
7711 producer-specific interpretation. */
95554aad 7712 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7713}
10b3939b 7714
dee91e82 7715/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7716
dee91e82 7717static void
95554aad
TT
7718load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7719 enum language pretend_language)
dee91e82 7720{
3019eac3 7721 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7722
f4dc4d17
DE
7723 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7724 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7725}
7726
3da10d80
KS
7727/* Add a DIE to the delayed physname list. */
7728
7729static void
7730add_to_method_list (struct type *type, int fnfield_index, int index,
7731 const char *name, struct die_info *die,
7732 struct dwarf2_cu *cu)
7733{
7734 struct delayed_method_info mi;
7735 mi.type = type;
7736 mi.fnfield_index = fnfield_index;
7737 mi.index = index;
7738 mi.name = name;
7739 mi.die = die;
7740 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7741}
7742
7743/* A cleanup for freeing the delayed method list. */
7744
7745static void
7746free_delayed_list (void *ptr)
7747{
7748 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7749 if (cu->method_list != NULL)
7750 {
7751 VEC_free (delayed_method_info, cu->method_list);
7752 cu->method_list = NULL;
7753 }
7754}
7755
7756/* Compute the physnames of any methods on the CU's method list.
7757
7758 The computation of method physnames is delayed in order to avoid the
7759 (bad) condition that one of the method's formal parameters is of an as yet
7760 incomplete type. */
7761
7762static void
7763compute_delayed_physnames (struct dwarf2_cu *cu)
7764{
7765 int i;
7766 struct delayed_method_info *mi;
7767 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7768 {
1d06ead6 7769 const char *physname;
3da10d80
KS
7770 struct fn_fieldlist *fn_flp
7771 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7772 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7773 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7774 = physname ? physname : "";
3da10d80
KS
7775 }
7776}
7777
a766d390
DE
7778/* Go objects should be embedded in a DW_TAG_module DIE,
7779 and it's not clear if/how imported objects will appear.
7780 To keep Go support simple until that's worked out,
7781 go back through what we've read and create something usable.
7782 We could do this while processing each DIE, and feels kinda cleaner,
7783 but that way is more invasive.
7784 This is to, for example, allow the user to type "p var" or "b main"
7785 without having to specify the package name, and allow lookups
7786 of module.object to work in contexts that use the expression
7787 parser. */
7788
7789static void
7790fixup_go_packaging (struct dwarf2_cu *cu)
7791{
7792 char *package_name = NULL;
7793 struct pending *list;
7794 int i;
7795
7796 for (list = global_symbols; list != NULL; list = list->next)
7797 {
7798 for (i = 0; i < list->nsyms; ++i)
7799 {
7800 struct symbol *sym = list->symbol[i];
7801
7802 if (SYMBOL_LANGUAGE (sym) == language_go
7803 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7804 {
7805 char *this_package_name = go_symbol_package_name (sym);
7806
7807 if (this_package_name == NULL)
7808 continue;
7809 if (package_name == NULL)
7810 package_name = this_package_name;
7811 else
7812 {
7813 if (strcmp (package_name, this_package_name) != 0)
7814 complaint (&symfile_complaints,
7815 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7816 (symbol_symtab (sym) != NULL
7817 ? symtab_to_filename_for_display
7818 (symbol_symtab (sym))
4262abfb 7819 : objfile_name (cu->objfile)),
a766d390
DE
7820 this_package_name, package_name);
7821 xfree (this_package_name);
7822 }
7823 }
7824 }
7825 }
7826
7827 if (package_name != NULL)
7828 {
7829 struct objfile *objfile = cu->objfile;
34a68019 7830 const char *saved_package_name
224c3ddb
SM
7831 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7832 package_name,
7833 strlen (package_name));
a766d390 7834 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7835 saved_package_name, objfile);
a766d390
DE
7836 struct symbol *sym;
7837
7838 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7839
e623cf5d 7840 sym = allocate_symbol (objfile);
f85f34ed 7841 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7842 SYMBOL_SET_NAMES (sym, saved_package_name,
7843 strlen (saved_package_name), 0, objfile);
a766d390
DE
7844 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7845 e.g., "main" finds the "main" module and not C's main(). */
7846 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7847 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7848 SYMBOL_TYPE (sym) = type;
7849
7850 add_symbol_to_list (sym, &global_symbols);
7851
7852 xfree (package_name);
7853 }
7854}
7855
95554aad
TT
7856/* Return the symtab for PER_CU. This works properly regardless of
7857 whether we're using the index or psymtabs. */
7858
43f3e411
DE
7859static struct compunit_symtab *
7860get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7861{
7862 return (dwarf2_per_objfile->using_index
43f3e411
DE
7863 ? per_cu->v.quick->compunit_symtab
7864 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7865}
7866
7867/* A helper function for computing the list of all symbol tables
7868 included by PER_CU. */
7869
7870static void
43f3e411 7871recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7872 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7873 struct dwarf2_per_cu_data *per_cu,
43f3e411 7874 struct compunit_symtab *immediate_parent)
95554aad
TT
7875{
7876 void **slot;
7877 int ix;
43f3e411 7878 struct compunit_symtab *cust;
95554aad
TT
7879 struct dwarf2_per_cu_data *iter;
7880
7881 slot = htab_find_slot (all_children, per_cu, INSERT);
7882 if (*slot != NULL)
7883 {
7884 /* This inclusion and its children have been processed. */
7885 return;
7886 }
7887
7888 *slot = per_cu;
7889 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7890 cust = get_compunit_symtab (per_cu);
7891 if (cust != NULL)
ec94af83
DE
7892 {
7893 /* If this is a type unit only add its symbol table if we haven't
7894 seen it yet (type unit per_cu's can share symtabs). */
7895 if (per_cu->is_debug_types)
7896 {
43f3e411 7897 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7898 if (*slot == NULL)
7899 {
43f3e411
DE
7900 *slot = cust;
7901 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7902 if (cust->user == NULL)
7903 cust->user = immediate_parent;
ec94af83
DE
7904 }
7905 }
7906 else
f9125b6c 7907 {
43f3e411
DE
7908 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7909 if (cust->user == NULL)
7910 cust->user = immediate_parent;
f9125b6c 7911 }
ec94af83 7912 }
95554aad
TT
7913
7914 for (ix = 0;
796a7ff8 7915 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7916 ++ix)
ec94af83
DE
7917 {
7918 recursively_compute_inclusions (result, all_children,
43f3e411 7919 all_type_symtabs, iter, cust);
ec94af83 7920 }
95554aad
TT
7921}
7922
43f3e411 7923/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7924 PER_CU. */
7925
7926static void
43f3e411 7927compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7928{
f4dc4d17
DE
7929 gdb_assert (! per_cu->is_debug_types);
7930
796a7ff8 7931 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7932 {
7933 int ix, len;
ec94af83 7934 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7935 struct compunit_symtab *compunit_symtab_iter;
7936 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7937 htab_t all_children, all_type_symtabs;
43f3e411 7938 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7939
7940 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7941 if (cust == NULL)
95554aad
TT
7942 return;
7943
7944 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7945 NULL, xcalloc, xfree);
ec94af83
DE
7946 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7947 NULL, xcalloc, xfree);
95554aad
TT
7948
7949 for (ix = 0;
796a7ff8 7950 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7951 ix, per_cu_iter);
95554aad 7952 ++ix)
ec94af83
DE
7953 {
7954 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7955 all_type_symtabs, per_cu_iter,
43f3e411 7956 cust);
ec94af83 7957 }
95554aad 7958
ec94af83 7959 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7960 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7961 cust->includes
8d749320
SM
7962 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7963 struct compunit_symtab *, len + 1);
95554aad 7964 for (ix = 0;
43f3e411
DE
7965 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7966 compunit_symtab_iter);
95554aad 7967 ++ix)
43f3e411
DE
7968 cust->includes[ix] = compunit_symtab_iter;
7969 cust->includes[len] = NULL;
95554aad 7970
43f3e411 7971 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7972 htab_delete (all_children);
ec94af83 7973 htab_delete (all_type_symtabs);
95554aad
TT
7974 }
7975}
7976
7977/* Compute the 'includes' field for the symtabs of all the CUs we just
7978 read. */
7979
7980static void
7981process_cu_includes (void)
7982{
7983 int ix;
7984 struct dwarf2_per_cu_data *iter;
7985
7986 for (ix = 0;
7987 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7988 ix, iter);
7989 ++ix)
f4dc4d17
DE
7990 {
7991 if (! iter->is_debug_types)
43f3e411 7992 compute_compunit_symtab_includes (iter);
f4dc4d17 7993 }
95554aad
TT
7994
7995 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7996}
7997
9cdd5dbd 7998/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7999 already been loaded into memory. */
8000
8001static void
95554aad
TT
8002process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8003 enum language pretend_language)
10b3939b 8004{
10b3939b 8005 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8006 struct objfile *objfile = per_cu->objfile;
3e29f34a 8007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8008 CORE_ADDR lowpc, highpc;
43f3e411 8009 struct compunit_symtab *cust;
3da10d80 8010 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8011 CORE_ADDR baseaddr;
4359dff1 8012 struct block *static_block;
3e29f34a 8013 CORE_ADDR addr;
10b3939b
DJ
8014
8015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8016
10b3939b
DJ
8017 buildsym_init ();
8018 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8020
8021 cu->list_in_scope = &file_symbols;
c906108c 8022
95554aad
TT
8023 cu->language = pretend_language;
8024 cu->language_defn = language_def (cu->language);
8025
c906108c 8026 /* Do line number decoding in read_file_scope () */
10b3939b 8027 process_die (cu->dies, cu);
c906108c 8028
a766d390
DE
8029 /* For now fudge the Go package. */
8030 if (cu->language == language_go)
8031 fixup_go_packaging (cu);
8032
3da10d80
KS
8033 /* Now that we have processed all the DIEs in the CU, all the types
8034 should be complete, and it should now be safe to compute all of the
8035 physnames. */
8036 compute_delayed_physnames (cu);
8037 do_cleanups (delayed_list_cleanup);
8038
fae299cd
DC
8039 /* Some compilers don't define a DW_AT_high_pc attribute for the
8040 compilation unit. If the DW_AT_high_pc is missing, synthesize
8041 it, by scanning the DIE's below the compilation unit. */
10b3939b 8042 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8043
3e29f34a
MR
8044 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8045 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8046
8047 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8048 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8049 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8050 addrmap to help ensure it has an accurate map of pc values belonging to
8051 this comp unit. */
8052 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8053
43f3e411
DE
8054 cust = end_symtab_from_static_block (static_block,
8055 SECT_OFF_TEXT (objfile), 0);
c906108c 8056
43f3e411 8057 if (cust != NULL)
c906108c 8058 {
df15bd07 8059 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8060
8be455d7
JK
8061 /* Set symtab language to language from DW_AT_language. If the
8062 compilation is from a C file generated by language preprocessors, do
8063 not set the language if it was already deduced by start_subfile. */
43f3e411 8064 if (!(cu->language == language_c
40e3ad0e 8065 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8066 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8067
8068 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8069 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8070 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8071 there were bugs in prologue debug info, fixed later in GCC-4.5
8072 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8073
8074 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8075 needed, it would be wrong due to missing DW_AT_producer there.
8076
8077 Still one can confuse GDB by using non-standard GCC compilation
8078 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8079 */
ab260dad 8080 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8081 cust->locations_valid = 1;
e0d00bc7
JK
8082
8083 if (gcc_4_minor >= 5)
43f3e411 8084 cust->epilogue_unwind_valid = 1;
96408a79 8085
43f3e411 8086 cust->call_site_htab = cu->call_site_htab;
c906108c 8087 }
9291a0cd
TT
8088
8089 if (dwarf2_per_objfile->using_index)
43f3e411 8090 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8091 else
8092 {
8093 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8094 pst->compunit_symtab = cust;
9291a0cd
TT
8095 pst->readin = 1;
8096 }
c906108c 8097
95554aad
TT
8098 /* Push it for inclusion processing later. */
8099 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8100
c906108c 8101 do_cleanups (back_to);
f4dc4d17 8102}
45cfd468 8103
f4dc4d17
DE
8104/* Generate full symbol information for type unit PER_CU, whose DIEs have
8105 already been loaded into memory. */
8106
8107static void
8108process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8109 enum language pretend_language)
8110{
8111 struct dwarf2_cu *cu = per_cu->cu;
8112 struct objfile *objfile = per_cu->objfile;
43f3e411 8113 struct compunit_symtab *cust;
f4dc4d17 8114 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8115 struct signatured_type *sig_type;
8116
8117 gdb_assert (per_cu->is_debug_types);
8118 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8119
8120 buildsym_init ();
8121 back_to = make_cleanup (really_free_pendings, NULL);
8122 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8123
8124 cu->list_in_scope = &file_symbols;
8125
8126 cu->language = pretend_language;
8127 cu->language_defn = language_def (cu->language);
8128
8129 /* The symbol tables are set up in read_type_unit_scope. */
8130 process_die (cu->dies, cu);
8131
8132 /* For now fudge the Go package. */
8133 if (cu->language == language_go)
8134 fixup_go_packaging (cu);
8135
8136 /* Now that we have processed all the DIEs in the CU, all the types
8137 should be complete, and it should now be safe to compute all of the
8138 physnames. */
8139 compute_delayed_physnames (cu);
8140 do_cleanups (delayed_list_cleanup);
8141
8142 /* TUs share symbol tables.
8143 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8144 of it with end_expandable_symtab. Otherwise, complete the addition of
8145 this TU's symbols to the existing symtab. */
43f3e411 8146 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8147 {
43f3e411
DE
8148 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8149 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8150
43f3e411 8151 if (cust != NULL)
f4dc4d17
DE
8152 {
8153 /* Set symtab language to language from DW_AT_language. If the
8154 compilation is from a C file generated by language preprocessors,
8155 do not set the language if it was already deduced by
8156 start_subfile. */
43f3e411
DE
8157 if (!(cu->language == language_c
8158 && COMPUNIT_FILETABS (cust)->language != language_c))
8159 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8160 }
8161 }
8162 else
8163 {
0ab9ce85 8164 augment_type_symtab ();
43f3e411 8165 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8166 }
8167
8168 if (dwarf2_per_objfile->using_index)
43f3e411 8169 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8170 else
8171 {
8172 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8173 pst->compunit_symtab = cust;
f4dc4d17 8174 pst->readin = 1;
45cfd468 8175 }
f4dc4d17
DE
8176
8177 do_cleanups (back_to);
c906108c
SS
8178}
8179
95554aad
TT
8180/* Process an imported unit DIE. */
8181
8182static void
8183process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8184{
8185 struct attribute *attr;
8186
f4dc4d17
DE
8187 /* For now we don't handle imported units in type units. */
8188 if (cu->per_cu->is_debug_types)
8189 {
8190 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8191 " supported in type units [in module %s]"),
4262abfb 8192 objfile_name (cu->objfile));
f4dc4d17
DE
8193 }
8194
95554aad
TT
8195 attr = dwarf2_attr (die, DW_AT_import, cu);
8196 if (attr != NULL)
8197 {
8198 struct dwarf2_per_cu_data *per_cu;
8199 struct symtab *imported_symtab;
8200 sect_offset offset;
36586728 8201 int is_dwz;
95554aad
TT
8202
8203 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8204 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8205 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8206
69d751e3 8207 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8208 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8209 load_full_comp_unit (per_cu, cu->language);
8210
796a7ff8 8211 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8212 per_cu);
8213 }
8214}
8215
adde2bff
DE
8216/* Reset the in_process bit of a die. */
8217
8218static void
8219reset_die_in_process (void *arg)
8220{
8221 struct die_info *die = arg;
8c3cb9fa 8222
adde2bff
DE
8223 die->in_process = 0;
8224}
8225
c906108c
SS
8226/* Process a die and its children. */
8227
8228static void
e7c27a73 8229process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8230{
adde2bff
DE
8231 struct cleanup *in_process;
8232
8233 /* We should only be processing those not already in process. */
8234 gdb_assert (!die->in_process);
8235
8236 die->in_process = 1;
8237 in_process = make_cleanup (reset_die_in_process,die);
8238
c906108c
SS
8239 switch (die->tag)
8240 {
8241 case DW_TAG_padding:
8242 break;
8243 case DW_TAG_compile_unit:
95554aad 8244 case DW_TAG_partial_unit:
e7c27a73 8245 read_file_scope (die, cu);
c906108c 8246 break;
348e048f
DE
8247 case DW_TAG_type_unit:
8248 read_type_unit_scope (die, cu);
8249 break;
c906108c 8250 case DW_TAG_subprogram:
c906108c 8251 case DW_TAG_inlined_subroutine:
edb3359d 8252 read_func_scope (die, cu);
c906108c
SS
8253 break;
8254 case DW_TAG_lexical_block:
14898363
L
8255 case DW_TAG_try_block:
8256 case DW_TAG_catch_block:
e7c27a73 8257 read_lexical_block_scope (die, cu);
c906108c 8258 break;
96408a79
SA
8259 case DW_TAG_GNU_call_site:
8260 read_call_site_scope (die, cu);
8261 break;
c906108c 8262 case DW_TAG_class_type:
680b30c7 8263 case DW_TAG_interface_type:
c906108c
SS
8264 case DW_TAG_structure_type:
8265 case DW_TAG_union_type:
134d01f1 8266 process_structure_scope (die, cu);
c906108c
SS
8267 break;
8268 case DW_TAG_enumeration_type:
134d01f1 8269 process_enumeration_scope (die, cu);
c906108c 8270 break;
134d01f1 8271
f792889a
DJ
8272 /* These dies have a type, but processing them does not create
8273 a symbol or recurse to process the children. Therefore we can
8274 read them on-demand through read_type_die. */
c906108c 8275 case DW_TAG_subroutine_type:
72019c9c 8276 case DW_TAG_set_type:
c906108c 8277 case DW_TAG_array_type:
c906108c 8278 case DW_TAG_pointer_type:
c906108c 8279 case DW_TAG_ptr_to_member_type:
c906108c 8280 case DW_TAG_reference_type:
c906108c 8281 case DW_TAG_string_type:
c906108c 8282 break;
134d01f1 8283
c906108c 8284 case DW_TAG_base_type:
a02abb62 8285 case DW_TAG_subrange_type:
cb249c71 8286 case DW_TAG_typedef:
134d01f1
DJ
8287 /* Add a typedef symbol for the type definition, if it has a
8288 DW_AT_name. */
f792889a 8289 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8290 break;
c906108c 8291 case DW_TAG_common_block:
e7c27a73 8292 read_common_block (die, cu);
c906108c
SS
8293 break;
8294 case DW_TAG_common_inclusion:
8295 break;
d9fa45fe 8296 case DW_TAG_namespace:
4d4ec4e5 8297 cu->processing_has_namespace_info = 1;
e7c27a73 8298 read_namespace (die, cu);
d9fa45fe 8299 break;
5d7cb8df 8300 case DW_TAG_module:
4d4ec4e5 8301 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8302 read_module (die, cu);
8303 break;
d9fa45fe 8304 case DW_TAG_imported_declaration:
74921315
KS
8305 cu->processing_has_namespace_info = 1;
8306 if (read_namespace_alias (die, cu))
8307 break;
8308 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8309 case DW_TAG_imported_module:
4d4ec4e5 8310 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8311 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8312 || cu->language != language_fortran))
8313 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8314 dwarf_tag_name (die->tag));
8315 read_import_statement (die, cu);
d9fa45fe 8316 break;
95554aad
TT
8317
8318 case DW_TAG_imported_unit:
8319 process_imported_unit_die (die, cu);
8320 break;
8321
c906108c 8322 default:
e7c27a73 8323 new_symbol (die, NULL, cu);
c906108c
SS
8324 break;
8325 }
adde2bff
DE
8326
8327 do_cleanups (in_process);
c906108c 8328}
ca69b9e6
DE
8329\f
8330/* DWARF name computation. */
c906108c 8331
94af9270
KS
8332/* A helper function for dwarf2_compute_name which determines whether DIE
8333 needs to have the name of the scope prepended to the name listed in the
8334 die. */
8335
8336static int
8337die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8338{
1c809c68
TT
8339 struct attribute *attr;
8340
94af9270
KS
8341 switch (die->tag)
8342 {
8343 case DW_TAG_namespace:
8344 case DW_TAG_typedef:
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 case DW_TAG_enumerator:
8351 case DW_TAG_subprogram:
08a76f8a 8352 case DW_TAG_inlined_subroutine:
94af9270 8353 case DW_TAG_member:
74921315 8354 case DW_TAG_imported_declaration:
94af9270
KS
8355 return 1;
8356
8357 case DW_TAG_variable:
c2b0a229 8358 case DW_TAG_constant:
94af9270
KS
8359 /* We only need to prefix "globally" visible variables. These include
8360 any variable marked with DW_AT_external or any variable that
8361 lives in a namespace. [Variables in anonymous namespaces
8362 require prefixing, but they are not DW_AT_external.] */
8363
8364 if (dwarf2_attr (die, DW_AT_specification, cu))
8365 {
8366 struct dwarf2_cu *spec_cu = cu;
9a619af0 8367
94af9270
KS
8368 return die_needs_namespace (die_specification (die, &spec_cu),
8369 spec_cu);
8370 }
8371
1c809c68 8372 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8373 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8374 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8375 return 0;
8376 /* A variable in a lexical block of some kind does not need a
8377 namespace, even though in C++ such variables may be external
8378 and have a mangled name. */
8379 if (die->parent->tag == DW_TAG_lexical_block
8380 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8381 || die->parent->tag == DW_TAG_catch_block
8382 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8383 return 0;
8384 return 1;
94af9270
KS
8385
8386 default:
8387 return 0;
8388 }
8389}
8390
98bfdba5
PA
8391/* Retrieve the last character from a mem_file. */
8392
8393static void
8394do_ui_file_peek_last (void *object, const char *buffer, long length)
8395{
8396 char *last_char_p = (char *) object;
8397
8398 if (length > 0)
8399 *last_char_p = buffer[length - 1];
8400}
8401
94af9270 8402/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8403 compute the physname for the object, which include a method's:
8404 - formal parameters (C++/Java),
8405 - receiver type (Go),
8406 - return type (Java).
8407
8408 The term "physname" is a bit confusing.
8409 For C++, for example, it is the demangled name.
8410 For Go, for example, it's the mangled name.
94af9270 8411
af6b7be1
JB
8412 For Ada, return the DIE's linkage name rather than the fully qualified
8413 name. PHYSNAME is ignored..
8414
94af9270
KS
8415 The result is allocated on the objfile_obstack and canonicalized. */
8416
8417static const char *
15d034d0
TT
8418dwarf2_compute_name (const char *name,
8419 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8420 int physname)
8421{
bb5ed363
DE
8422 struct objfile *objfile = cu->objfile;
8423
94af9270
KS
8424 if (name == NULL)
8425 name = dwarf2_name (die, cu);
8426
2ee7123e
DE
8427 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8428 but otherwise compute it by typename_concat inside GDB.
8429 FIXME: Actually this is not really true, or at least not always true.
8430 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8431 Fortran names because there is no mangling standard. So new_symbol_full
8432 will set the demangled name to the result of dwarf2_full_name, and it is
8433 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8434 if (cu->language == language_ada
8435 || (cu->language == language_fortran && physname))
8436 {
8437 /* For Ada unit, we prefer the linkage name over the name, as
8438 the former contains the exported name, which the user expects
8439 to be able to reference. Ideally, we want the user to be able
8440 to reference this entity using either natural or linkage name,
8441 but we haven't started looking at this enhancement yet. */
2ee7123e 8442 const char *linkage_name;
f55ee35c 8443
2ee7123e
DE
8444 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8445 if (linkage_name == NULL)
8446 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8447 if (linkage_name != NULL)
8448 return linkage_name;
f55ee35c
JK
8449 }
8450
94af9270
KS
8451 /* These are the only languages we know how to qualify names in. */
8452 if (name != NULL
f55ee35c 8453 && (cu->language == language_cplus || cu->language == language_java
45280282 8454 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8455 {
8456 if (die_needs_namespace (die, cu))
8457 {
8458 long length;
0d5cff50 8459 const char *prefix;
94af9270 8460 struct ui_file *buf;
34a68019
TT
8461 char *intermediate_name;
8462 const char *canonical_name = NULL;
94af9270
KS
8463
8464 prefix = determine_prefix (die, cu);
8465 buf = mem_fileopen ();
8466 if (*prefix != '\0')
8467 {
f55ee35c
JK
8468 char *prefixed_name = typename_concat (NULL, prefix, name,
8469 physname, cu);
9a619af0 8470
94af9270
KS
8471 fputs_unfiltered (prefixed_name, buf);
8472 xfree (prefixed_name);
8473 }
8474 else
62d5b8da 8475 fputs_unfiltered (name, buf);
94af9270 8476
98bfdba5
PA
8477 /* Template parameters may be specified in the DIE's DW_AT_name, or
8478 as children with DW_TAG_template_type_param or
8479 DW_TAG_value_type_param. If the latter, add them to the name
8480 here. If the name already has template parameters, then
8481 skip this step; some versions of GCC emit both, and
8482 it is more efficient to use the pre-computed name.
8483
8484 Something to keep in mind about this process: it is very
8485 unlikely, or in some cases downright impossible, to produce
8486 something that will match the mangled name of a function.
8487 If the definition of the function has the same debug info,
8488 we should be able to match up with it anyway. But fallbacks
8489 using the minimal symbol, for instance to find a method
8490 implemented in a stripped copy of libstdc++, will not work.
8491 If we do not have debug info for the definition, we will have to
8492 match them up some other way.
8493
8494 When we do name matching there is a related problem with function
8495 templates; two instantiated function templates are allowed to
8496 differ only by their return types, which we do not add here. */
8497
8498 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8499 {
8500 struct attribute *attr;
8501 struct die_info *child;
8502 int first = 1;
8503
8504 die->building_fullname = 1;
8505
8506 for (child = die->child; child != NULL; child = child->sibling)
8507 {
8508 struct type *type;
12df843f 8509 LONGEST value;
d521ce57 8510 const gdb_byte *bytes;
98bfdba5
PA
8511 struct dwarf2_locexpr_baton *baton;
8512 struct value *v;
8513
8514 if (child->tag != DW_TAG_template_type_param
8515 && child->tag != DW_TAG_template_value_param)
8516 continue;
8517
8518 if (first)
8519 {
8520 fputs_unfiltered ("<", buf);
8521 first = 0;
8522 }
8523 else
8524 fputs_unfiltered (", ", buf);
8525
8526 attr = dwarf2_attr (child, DW_AT_type, cu);
8527 if (attr == NULL)
8528 {
8529 complaint (&symfile_complaints,
8530 _("template parameter missing DW_AT_type"));
8531 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8532 continue;
8533 }
8534 type = die_type (child, cu);
8535
8536 if (child->tag == DW_TAG_template_type_param)
8537 {
79d43c61 8538 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8539 continue;
8540 }
8541
8542 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
3e43a32a
MS
8546 _("template parameter missing "
8547 "DW_AT_const_value"));
98bfdba5
PA
8548 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8549 continue;
8550 }
8551
8552 dwarf2_const_value_attr (attr, type, name,
8553 &cu->comp_unit_obstack, cu,
8554 &value, &bytes, &baton);
8555
8556 if (TYPE_NOSIGN (type))
8557 /* GDB prints characters as NUMBER 'CHAR'. If that's
8558 changed, this can use value_print instead. */
8559 c_printchar (value, type, buf);
8560 else
8561 {
8562 struct value_print_options opts;
8563
8564 if (baton != NULL)
8565 v = dwarf2_evaluate_loc_desc (type, NULL,
8566 baton->data,
8567 baton->size,
8568 baton->per_cu);
8569 else if (bytes != NULL)
8570 {
8571 v = allocate_value (type);
8572 memcpy (value_contents_writeable (v), bytes,
8573 TYPE_LENGTH (type));
8574 }
8575 else
8576 v = value_from_longest (type, value);
8577
3e43a32a
MS
8578 /* Specify decimal so that we do not depend on
8579 the radix. */
98bfdba5
PA
8580 get_formatted_print_options (&opts, 'd');
8581 opts.raw = 1;
8582 value_print (v, buf, &opts);
8583 release_value (v);
8584 value_free (v);
8585 }
8586 }
8587
8588 die->building_fullname = 0;
8589
8590 if (!first)
8591 {
8592 /* Close the argument list, with a space if necessary
8593 (nested templates). */
8594 char last_char = '\0';
8595 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8596 if (last_char == '>')
8597 fputs_unfiltered (" >", buf);
8598 else
8599 fputs_unfiltered (">", buf);
8600 }
8601 }
8602
94af9270
KS
8603 /* For Java and C++ methods, append formal parameter type
8604 information, if PHYSNAME. */
6e70227d 8605
94af9270
KS
8606 if (physname && die->tag == DW_TAG_subprogram
8607 && (cu->language == language_cplus
8608 || cu->language == language_java))
8609 {
8610 struct type *type = read_type_die (die, cu);
8611
79d43c61
TT
8612 c_type_print_args (type, buf, 1, cu->language,
8613 &type_print_raw_options);
94af9270
KS
8614
8615 if (cu->language == language_java)
8616 {
8617 /* For java, we must append the return type to method
0963b4bd 8618 names. */
94af9270
KS
8619 if (die->tag == DW_TAG_subprogram)
8620 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8621 0, 0, &type_print_raw_options);
94af9270
KS
8622 }
8623 else if (cu->language == language_cplus)
8624 {
60430eff
DJ
8625 /* Assume that an artificial first parameter is
8626 "this", but do not crash if it is not. RealView
8627 marks unnamed (and thus unused) parameters as
8628 artificial; there is no way to differentiate
8629 the two cases. */
94af9270
KS
8630 if (TYPE_NFIELDS (type) > 0
8631 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8632 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8633 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8634 0))))
94af9270
KS
8635 fputs_unfiltered (" const", buf);
8636 }
8637 }
8638
34a68019 8639 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8640 ui_file_delete (buf);
8641
8642 if (cu->language == language_cplus)
34a68019
TT
8643 canonical_name
8644 = dwarf2_canonicalize_name (intermediate_name, cu,
8645 &objfile->per_bfd->storage_obstack);
8646
8647 /* If we only computed INTERMEDIATE_NAME, or if
8648 INTERMEDIATE_NAME is already canonical, then we need to
8649 copy it to the appropriate obstack. */
8650 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8651 name = ((const char *)
8652 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8653 intermediate_name,
8654 strlen (intermediate_name)));
34a68019
TT
8655 else
8656 name = canonical_name;
9a619af0 8657
34a68019 8658 xfree (intermediate_name);
94af9270
KS
8659 }
8660 }
8661
8662 return name;
8663}
8664
0114d602
DJ
8665/* Return the fully qualified name of DIE, based on its DW_AT_name.
8666 If scope qualifiers are appropriate they will be added. The result
34a68019 8667 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8668 not have a name. NAME may either be from a previous call to
8669 dwarf2_name or NULL.
8670
0963b4bd 8671 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8672
8673static const char *
15d034d0 8674dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8675{
94af9270
KS
8676 return dwarf2_compute_name (name, die, cu, 0);
8677}
0114d602 8678
94af9270
KS
8679/* Construct a physname for the given DIE in CU. NAME may either be
8680 from a previous call to dwarf2_name or NULL. The result will be
8681 allocated on the objfile_objstack or NULL if the DIE does not have a
8682 name.
0114d602 8683
94af9270 8684 The output string will be canonicalized (if C++/Java). */
0114d602 8685
94af9270 8686static const char *
15d034d0 8687dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8688{
bb5ed363 8689 struct objfile *objfile = cu->objfile;
900e11f9
JK
8690 struct attribute *attr;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
7d45c7c3
KB
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8705
8706 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8707 has computed. */
7d45c7c3 8708 if (mangled != NULL)
900e11f9
JK
8709 {
8710 char *demangled;
8711
900e11f9
JK
8712 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8713 type. It is easier for GDB users to search for such functions as
8714 `name(params)' than `long name(params)'. In such case the minimal
8715 symbol names do not match the full symbol names but for template
8716 functions there is never a need to look up their definition from their
8717 declaration so the only disadvantage remains the minimal symbol
8718 variant `long name(params)' does not have the proper inferior type.
8719 */
8720
a766d390
DE
8721 if (cu->language == language_go)
8722 {
8723 /* This is a lie, but we already lie to the caller new_symbol_full.
8724 new_symbol_full assumes we return the mangled name.
8725 This just undoes that lie until things are cleaned up. */
8726 demangled = NULL;
8727 }
8728 else
8729 {
8de20a37
TT
8730 demangled = gdb_demangle (mangled,
8731 (DMGL_PARAMS | DMGL_ANSI
8732 | (cu->language == language_java
8733 ? DMGL_JAVA | DMGL_RET_POSTFIX
8734 : DMGL_RET_DROP)));
a766d390 8735 }
900e11f9
JK
8736 if (demangled)
8737 {
8738 make_cleanup (xfree, demangled);
8739 canon = demangled;
8740 }
8741 else
8742 {
8743 canon = mangled;
8744 need_copy = 0;
8745 }
8746 }
8747
8748 if (canon == NULL || check_physname)
8749 {
8750 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8751
8752 if (canon != NULL && strcmp (physname, canon) != 0)
8753 {
8754 /* It may not mean a bug in GDB. The compiler could also
8755 compute DW_AT_linkage_name incorrectly. But in such case
8756 GDB would need to be bug-to-bug compatible. */
8757
8758 complaint (&symfile_complaints,
8759 _("Computed physname <%s> does not match demangled <%s> "
8760 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8761 physname, canon, mangled, die->offset.sect_off,
8762 objfile_name (objfile));
900e11f9
JK
8763
8764 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8765 is available here - over computed PHYSNAME. It is safer
8766 against both buggy GDB and buggy compilers. */
8767
8768 retval = canon;
8769 }
8770 else
8771 {
8772 retval = physname;
8773 need_copy = 0;
8774 }
8775 }
8776 else
8777 retval = canon;
8778
8779 if (need_copy)
224c3ddb
SM
8780 retval = ((const char *)
8781 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8782 retval, strlen (retval)));
900e11f9
JK
8783
8784 do_cleanups (back_to);
8785 return retval;
0114d602
DJ
8786}
8787
74921315
KS
8788/* Inspect DIE in CU for a namespace alias. If one exists, record
8789 a new symbol for it.
8790
8791 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8792
8793static int
8794read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8795{
8796 struct attribute *attr;
8797
8798 /* If the die does not have a name, this is not a namespace
8799 alias. */
8800 attr = dwarf2_attr (die, DW_AT_name, cu);
8801 if (attr != NULL)
8802 {
8803 int num;
8804 struct die_info *d = die;
8805 struct dwarf2_cu *imported_cu = cu;
8806
8807 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8808 keep inspecting DIEs until we hit the underlying import. */
8809#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8810 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8811 {
8812 attr = dwarf2_attr (d, DW_AT_import, cu);
8813 if (attr == NULL)
8814 break;
8815
8816 d = follow_die_ref (d, attr, &imported_cu);
8817 if (d->tag != DW_TAG_imported_declaration)
8818 break;
8819 }
8820
8821 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8822 {
8823 complaint (&symfile_complaints,
8824 _("DIE at 0x%x has too many recursively imported "
8825 "declarations"), d->offset.sect_off);
8826 return 0;
8827 }
8828
8829 if (attr != NULL)
8830 {
8831 struct type *type;
8832 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8833
8834 type = get_die_type_at_offset (offset, cu->per_cu);
8835 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8836 {
8837 /* This declaration is a global namespace alias. Add
8838 a symbol for it whose type is the aliased namespace. */
8839 new_symbol (die, type, cu);
8840 return 1;
8841 }
8842 }
8843 }
8844
8845 return 0;
8846}
8847
22cee43f
PMR
8848/* Return the using directives repository (global or local?) to use in the
8849 current context for LANGUAGE.
8850
8851 For Ada, imported declarations can materialize renamings, which *may* be
8852 global. However it is impossible (for now?) in DWARF to distinguish
8853 "external" imported declarations and "static" ones. As all imported
8854 declarations seem to be static in all other languages, make them all CU-wide
8855 global only in Ada. */
8856
8857static struct using_direct **
8858using_directives (enum language language)
8859{
8860 if (language == language_ada && context_stack_depth == 0)
8861 return &global_using_directives;
8862 else
8863 return &local_using_directives;
8864}
8865
27aa8d6a
SW
8866/* Read the import statement specified by the given die and record it. */
8867
8868static void
8869read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8870{
bb5ed363 8871 struct objfile *objfile = cu->objfile;
27aa8d6a 8872 struct attribute *import_attr;
32019081 8873 struct die_info *imported_die, *child_die;
de4affc9 8874 struct dwarf2_cu *imported_cu;
27aa8d6a 8875 const char *imported_name;
794684b6 8876 const char *imported_name_prefix;
13387711
SW
8877 const char *canonical_name;
8878 const char *import_alias;
8879 const char *imported_declaration = NULL;
794684b6 8880 const char *import_prefix;
32019081
JK
8881 VEC (const_char_ptr) *excludes = NULL;
8882 struct cleanup *cleanups;
13387711 8883
27aa8d6a
SW
8884 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8885 if (import_attr == NULL)
8886 {
8887 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8888 dwarf_tag_name (die->tag));
8889 return;
8890 }
8891
de4affc9
CC
8892 imported_cu = cu;
8893 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8894 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8895 if (imported_name == NULL)
8896 {
8897 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8898
8899 The import in the following code:
8900 namespace A
8901 {
8902 typedef int B;
8903 }
8904
8905 int main ()
8906 {
8907 using A::B;
8908 B b;
8909 return b;
8910 }
8911
8912 ...
8913 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8914 <52> DW_AT_decl_file : 1
8915 <53> DW_AT_decl_line : 6
8916 <54> DW_AT_import : <0x75>
8917 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8918 <59> DW_AT_name : B
8919 <5b> DW_AT_decl_file : 1
8920 <5c> DW_AT_decl_line : 2
8921 <5d> DW_AT_type : <0x6e>
8922 ...
8923 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8924 <76> DW_AT_byte_size : 4
8925 <77> DW_AT_encoding : 5 (signed)
8926
8927 imports the wrong die ( 0x75 instead of 0x58 ).
8928 This case will be ignored until the gcc bug is fixed. */
8929 return;
8930 }
8931
82856980
SW
8932 /* Figure out the local name after import. */
8933 import_alias = dwarf2_name (die, cu);
27aa8d6a 8934
794684b6
SW
8935 /* Figure out where the statement is being imported to. */
8936 import_prefix = determine_prefix (die, cu);
8937
8938 /* Figure out what the scope of the imported die is and prepend it
8939 to the name of the imported die. */
de4affc9 8940 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8941
f55ee35c
JK
8942 if (imported_die->tag != DW_TAG_namespace
8943 && imported_die->tag != DW_TAG_module)
794684b6 8944 {
13387711
SW
8945 imported_declaration = imported_name;
8946 canonical_name = imported_name_prefix;
794684b6 8947 }
13387711 8948 else if (strlen (imported_name_prefix) > 0)
12aaed36 8949 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8950 imported_name_prefix,
8951 (cu->language == language_d ? "." : "::"),
8952 imported_name, (char *) NULL);
13387711
SW
8953 else
8954 canonical_name = imported_name;
794684b6 8955
32019081
JK
8956 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8957
8958 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8959 for (child_die = die->child; child_die && child_die->tag;
8960 child_die = sibling_die (child_die))
8961 {
8962 /* DWARF-4: A Fortran use statement with a “rename list” may be
8963 represented by an imported module entry with an import attribute
8964 referring to the module and owned entries corresponding to those
8965 entities that are renamed as part of being imported. */
8966
8967 if (child_die->tag != DW_TAG_imported_declaration)
8968 {
8969 complaint (&symfile_complaints,
8970 _("child DW_TAG_imported_declaration expected "
8971 "- DIE at 0x%x [in module %s]"),
4262abfb 8972 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8973 continue;
8974 }
8975
8976 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8977 if (import_attr == NULL)
8978 {
8979 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8980 dwarf_tag_name (child_die->tag));
8981 continue;
8982 }
8983
8984 imported_cu = cu;
8985 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8986 &imported_cu);
8987 imported_name = dwarf2_name (imported_die, imported_cu);
8988 if (imported_name == NULL)
8989 {
8990 complaint (&symfile_complaints,
8991 _("child DW_TAG_imported_declaration has unknown "
8992 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8993 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8994 continue;
8995 }
8996
8997 VEC_safe_push (const_char_ptr, excludes, imported_name);
8998
8999 process_die (child_die, cu);
9000 }
9001
22cee43f
PMR
9002 add_using_directive (using_directives (cu->language),
9003 import_prefix,
9004 canonical_name,
9005 import_alias,
9006 imported_declaration,
9007 excludes,
9008 0,
9009 &objfile->objfile_obstack);
32019081
JK
9010
9011 do_cleanups (cleanups);
27aa8d6a
SW
9012}
9013
f4dc4d17 9014/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9015
cb1df416
DJ
9016static void
9017free_cu_line_header (void *arg)
9018{
9019 struct dwarf2_cu *cu = arg;
9020
9021 free_line_header (cu->line_header);
9022 cu->line_header = NULL;
9023}
9024
1b80a9fa
JK
9025/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9026 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9027 this, it was first present in GCC release 4.3.0. */
9028
9029static int
9030producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9031{
9032 if (!cu->checked_producer)
9033 check_producer (cu);
9034
9035 return cu->producer_is_gcc_lt_4_3;
9036}
9037
9291a0cd
TT
9038static void
9039find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9040 const char **name, const char **comp_dir)
9291a0cd 9041{
9291a0cd
TT
9042 /* Find the filename. Do not use dwarf2_name here, since the filename
9043 is not a source language identifier. */
7d45c7c3
KB
9044 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9045 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9046
7d45c7c3
KB
9047 if (*comp_dir == NULL
9048 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9049 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9050 {
15d034d0
TT
9051 char *d = ldirname (*name);
9052
9053 *comp_dir = d;
9054 if (d != NULL)
9055 make_cleanup (xfree, d);
9291a0cd
TT
9056 }
9057 if (*comp_dir != NULL)
9058 {
9059 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9060 directory, get rid of it. */
9061 char *cp = strchr (*comp_dir, ':');
9062
9063 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9064 *comp_dir = cp + 1;
9065 }
9066
9067 if (*name == NULL)
9068 *name = "<unknown>";
9069}
9070
f4dc4d17
DE
9071/* Handle DW_AT_stmt_list for a compilation unit.
9072 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9073 COMP_DIR is the compilation directory. LOWPC is passed to
9074 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9075
9076static void
9077handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9078 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9079{
527f3840 9080 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9081 struct attribute *attr;
527f3840
JK
9082 unsigned int line_offset;
9083 struct line_header line_header_local;
9084 hashval_t line_header_local_hash;
9085 unsigned u;
9086 void **slot;
9087 int decode_mapping;
2ab95328 9088
f4dc4d17
DE
9089 gdb_assert (! cu->per_cu->is_debug_types);
9090
2ab95328 9091 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9092 if (attr == NULL)
9093 return;
9094
9095 line_offset = DW_UNSND (attr);
9096
9097 /* The line header hash table is only created if needed (it exists to
9098 prevent redundant reading of the line table for partial_units).
9099 If we're given a partial_unit, we'll need it. If we're given a
9100 compile_unit, then use the line header hash table if it's already
9101 created, but don't create one just yet. */
9102
9103 if (dwarf2_per_objfile->line_header_hash == NULL
9104 && die->tag == DW_TAG_partial_unit)
2ab95328 9105 {
527f3840
JK
9106 dwarf2_per_objfile->line_header_hash
9107 = htab_create_alloc_ex (127, line_header_hash_voidp,
9108 line_header_eq_voidp,
9109 free_line_header_voidp,
9110 &objfile->objfile_obstack,
9111 hashtab_obstack_allocate,
9112 dummy_obstack_deallocate);
9113 }
2ab95328 9114
527f3840
JK
9115 line_header_local.offset.sect_off = line_offset;
9116 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9117 line_header_local_hash = line_header_hash (&line_header_local);
9118 if (dwarf2_per_objfile->line_header_hash != NULL)
9119 {
9120 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9121 &line_header_local,
9122 line_header_local_hash, NO_INSERT);
9123
9124 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9125 is not present in *SLOT (since if there is something in *SLOT then
9126 it will be for a partial_unit). */
9127 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9128 {
527f3840
JK
9129 gdb_assert (*slot != NULL);
9130 cu->line_header = *slot;
9131 return;
dee91e82 9132 }
2ab95328 9133 }
527f3840
JK
9134
9135 /* dwarf_decode_line_header does not yet provide sufficient information.
9136 We always have to call also dwarf_decode_lines for it. */
9137 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9138 if (cu->line_header == NULL)
9139 return;
9140
9141 if (dwarf2_per_objfile->line_header_hash == NULL)
9142 slot = NULL;
9143 else
9144 {
9145 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9146 &line_header_local,
9147 line_header_local_hash, INSERT);
9148 gdb_assert (slot != NULL);
9149 }
9150 if (slot != NULL && *slot == NULL)
9151 {
9152 /* This newly decoded line number information unit will be owned
9153 by line_header_hash hash table. */
9154 *slot = cu->line_header;
9155 }
9156 else
9157 {
9158 /* We cannot free any current entry in (*slot) as that struct line_header
9159 may be already used by multiple CUs. Create only temporary decoded
9160 line_header for this CU - it may happen at most once for each line
9161 number information unit. And if we're not using line_header_hash
9162 then this is what we want as well. */
9163 gdb_assert (die->tag != DW_TAG_partial_unit);
9164 make_cleanup (free_cu_line_header, cu);
9165 }
9166 decode_mapping = (die->tag != DW_TAG_partial_unit);
9167 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9168 decode_mapping);
2ab95328
TT
9169}
9170
95554aad 9171/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9172
c906108c 9173static void
e7c27a73 9174read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9175{
dee91e82 9176 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9177 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9178 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9179 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9180 CORE_ADDR highpc = ((CORE_ADDR) 0);
9181 struct attribute *attr;
15d034d0
TT
9182 const char *name = NULL;
9183 const char *comp_dir = NULL;
c906108c
SS
9184 struct die_info *child_die;
9185 bfd *abfd = objfile->obfd;
e142c38c 9186 CORE_ADDR baseaddr;
6e70227d 9187
e142c38c 9188 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9189
fae299cd 9190 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9191
9192 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9193 from finish_block. */
2acceee2 9194 if (lowpc == ((CORE_ADDR) -1))
c906108c 9195 lowpc = highpc;
3e29f34a 9196 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9197
9291a0cd 9198 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9199
95554aad 9200 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9201
f4b8a18d
KW
9202 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9203 standardised yet. As a workaround for the language detection we fall
9204 back to the DW_AT_producer string. */
9205 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9206 cu->language = language_opencl;
9207
3019eac3
DE
9208 /* Similar hack for Go. */
9209 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9210 set_cu_language (DW_LANG_Go, cu);
9211
f4dc4d17 9212 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9213
9214 /* Decode line number information if present. We do this before
9215 processing child DIEs, so that the line header table is available
9216 for DW_AT_decl_file. */
c3b7b696 9217 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9218
9219 /* Process all dies in compilation unit. */
9220 if (die->child != NULL)
9221 {
9222 child_die = die->child;
9223 while (child_die && child_die->tag)
9224 {
9225 process_die (child_die, cu);
9226 child_die = sibling_die (child_die);
9227 }
9228 }
9229
9230 /* Decode macro information, if present. Dwarf 2 macro information
9231 refers to information in the line number info statement program
9232 header, so we can only read it if we've read the header
9233 successfully. */
9234 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9235 if (attr && cu->line_header)
9236 {
9237 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9238 complaint (&symfile_complaints,
9239 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9240
43f3e411 9241 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9242 }
9243 else
9244 {
9245 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9246 if (attr && cu->line_header)
9247 {
9248 unsigned int macro_offset = DW_UNSND (attr);
9249
43f3e411 9250 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9251 }
9252 }
9253
9254 do_cleanups (back_to);
9255}
9256
f4dc4d17
DE
9257/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9258 Create the set of symtabs used by this TU, or if this TU is sharing
9259 symtabs with another TU and the symtabs have already been created
9260 then restore those symtabs in the line header.
9261 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9262
9263static void
f4dc4d17 9264setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9265{
f4dc4d17
DE
9266 struct objfile *objfile = dwarf2_per_objfile->objfile;
9267 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9268 struct type_unit_group *tu_group;
9269 int first_time;
9270 struct line_header *lh;
3019eac3 9271 struct attribute *attr;
f4dc4d17 9272 unsigned int i, line_offset;
0186c6a7 9273 struct signatured_type *sig_type;
3019eac3 9274
f4dc4d17 9275 gdb_assert (per_cu->is_debug_types);
0186c6a7 9276 sig_type = (struct signatured_type *) per_cu;
3019eac3 9277
f4dc4d17 9278 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9279
f4dc4d17 9280 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9281 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9282 if (sig_type->type_unit_group == NULL)
9283 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9284 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9285
9286 /* If we've already processed this stmt_list there's no real need to
9287 do it again, we could fake it and just recreate the part we need
9288 (file name,index -> symtab mapping). If data shows this optimization
9289 is useful we can do it then. */
43f3e411 9290 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9291
9292 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9293 debug info. */
9294 lh = NULL;
9295 if (attr != NULL)
3019eac3 9296 {
f4dc4d17
DE
9297 line_offset = DW_UNSND (attr);
9298 lh = dwarf_decode_line_header (line_offset, cu);
9299 }
9300 if (lh == NULL)
9301 {
9302 if (first_time)
9303 dwarf2_start_symtab (cu, "", NULL, 0);
9304 else
9305 {
9306 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9307 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9308 }
f4dc4d17 9309 return;
3019eac3
DE
9310 }
9311
f4dc4d17
DE
9312 cu->line_header = lh;
9313 make_cleanup (free_cu_line_header, cu);
3019eac3 9314
f4dc4d17
DE
9315 if (first_time)
9316 {
43f3e411 9317 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9318
f4dc4d17
DE
9319 tu_group->num_symtabs = lh->num_file_names;
9320 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9321
f4dc4d17
DE
9322 for (i = 0; i < lh->num_file_names; ++i)
9323 {
d521ce57 9324 const char *dir = NULL;
f4dc4d17 9325 struct file_entry *fe = &lh->file_names[i];
3019eac3 9326
afa6c9ab 9327 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9328 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9329 dwarf2_start_subfile (fe->name, dir);
3019eac3 9330
f4dc4d17
DE
9331 if (current_subfile->symtab == NULL)
9332 {
9333 /* NOTE: start_subfile will recognize when it's been passed
9334 a file it has already seen. So we can't assume there's a
43f3e411 9335 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9336 lh->file_names may contain dups. */
43f3e411
DE
9337 current_subfile->symtab
9338 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9339 }
9340
9341 fe->symtab = current_subfile->symtab;
9342 tu_group->symtabs[i] = fe->symtab;
9343 }
9344 }
9345 else
3019eac3 9346 {
0ab9ce85 9347 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9348
9349 for (i = 0; i < lh->num_file_names; ++i)
9350 {
9351 struct file_entry *fe = &lh->file_names[i];
9352
9353 fe->symtab = tu_group->symtabs[i];
9354 }
3019eac3
DE
9355 }
9356
f4dc4d17
DE
9357 /* The main symtab is allocated last. Type units don't have DW_AT_name
9358 so they don't have a "real" (so to speak) symtab anyway.
9359 There is later code that will assign the main symtab to all symbols
9360 that don't have one. We need to handle the case of a symbol with a
9361 missing symtab (DW_AT_decl_file) anyway. */
9362}
3019eac3 9363
f4dc4d17
DE
9364/* Process DW_TAG_type_unit.
9365 For TUs we want to skip the first top level sibling if it's not the
9366 actual type being defined by this TU. In this case the first top
9367 level sibling is there to provide context only. */
3019eac3 9368
f4dc4d17
DE
9369static void
9370read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9371{
9372 struct die_info *child_die;
3019eac3 9373
f4dc4d17
DE
9374 prepare_one_comp_unit (cu, die, language_minimal);
9375
9376 /* Initialize (or reinitialize) the machinery for building symtabs.
9377 We do this before processing child DIEs, so that the line header table
9378 is available for DW_AT_decl_file. */
9379 setup_type_unit_groups (die, cu);
9380
9381 if (die->child != NULL)
9382 {
9383 child_die = die->child;
9384 while (child_die && child_die->tag)
9385 {
9386 process_die (child_die, cu);
9387 child_die = sibling_die (child_die);
9388 }
9389 }
3019eac3
DE
9390}
9391\f
80626a55
DE
9392/* DWO/DWP files.
9393
9394 http://gcc.gnu.org/wiki/DebugFission
9395 http://gcc.gnu.org/wiki/DebugFissionDWP
9396
9397 To simplify handling of both DWO files ("object" files with the DWARF info)
9398 and DWP files (a file with the DWOs packaged up into one file), we treat
9399 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9400
9401static hashval_t
9402hash_dwo_file (const void *item)
9403{
9404 const struct dwo_file *dwo_file = item;
a2ce51a0 9405 hashval_t hash;
3019eac3 9406
a2ce51a0
DE
9407 hash = htab_hash_string (dwo_file->dwo_name);
9408 if (dwo_file->comp_dir != NULL)
9409 hash += htab_hash_string (dwo_file->comp_dir);
9410 return hash;
3019eac3
DE
9411}
9412
9413static int
9414eq_dwo_file (const void *item_lhs, const void *item_rhs)
9415{
9416 const struct dwo_file *lhs = item_lhs;
9417 const struct dwo_file *rhs = item_rhs;
9418
a2ce51a0
DE
9419 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9420 return 0;
9421 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9422 return lhs->comp_dir == rhs->comp_dir;
9423 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9424}
9425
9426/* Allocate a hash table for DWO files. */
9427
9428static htab_t
9429allocate_dwo_file_hash_table (void)
9430{
9431 struct objfile *objfile = dwarf2_per_objfile->objfile;
9432
9433 return htab_create_alloc_ex (41,
9434 hash_dwo_file,
9435 eq_dwo_file,
9436 NULL,
9437 &objfile->objfile_obstack,
9438 hashtab_obstack_allocate,
9439 dummy_obstack_deallocate);
9440}
9441
80626a55
DE
9442/* Lookup DWO file DWO_NAME. */
9443
9444static void **
0ac5b59e 9445lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9446{
9447 struct dwo_file find_entry;
9448 void **slot;
9449
9450 if (dwarf2_per_objfile->dwo_files == NULL)
9451 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9452
9453 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9454 find_entry.dwo_name = dwo_name;
9455 find_entry.comp_dir = comp_dir;
80626a55
DE
9456 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9457
9458 return slot;
9459}
9460
3019eac3
DE
9461static hashval_t
9462hash_dwo_unit (const void *item)
9463{
9464 const struct dwo_unit *dwo_unit = item;
9465
9466 /* This drops the top 32 bits of the id, but is ok for a hash. */
9467 return dwo_unit->signature;
9468}
9469
9470static int
9471eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9472{
9473 const struct dwo_unit *lhs = item_lhs;
9474 const struct dwo_unit *rhs = item_rhs;
9475
9476 /* The signature is assumed to be unique within the DWO file.
9477 So while object file CU dwo_id's always have the value zero,
9478 that's OK, assuming each object file DWO file has only one CU,
9479 and that's the rule for now. */
9480 return lhs->signature == rhs->signature;
9481}
9482
9483/* Allocate a hash table for DWO CUs,TUs.
9484 There is one of these tables for each of CUs,TUs for each DWO file. */
9485
9486static htab_t
9487allocate_dwo_unit_table (struct objfile *objfile)
9488{
9489 /* Start out with a pretty small number.
9490 Generally DWO files contain only one CU and maybe some TUs. */
9491 return htab_create_alloc_ex (3,
9492 hash_dwo_unit,
9493 eq_dwo_unit,
9494 NULL,
9495 &objfile->objfile_obstack,
9496 hashtab_obstack_allocate,
9497 dummy_obstack_deallocate);
9498}
9499
80626a55 9500/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9501
19c3d4c9 9502struct create_dwo_cu_data
3019eac3
DE
9503{
9504 struct dwo_file *dwo_file;
19c3d4c9 9505 struct dwo_unit dwo_unit;
3019eac3
DE
9506};
9507
19c3d4c9 9508/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9509
9510static void
19c3d4c9
DE
9511create_dwo_cu_reader (const struct die_reader_specs *reader,
9512 const gdb_byte *info_ptr,
9513 struct die_info *comp_unit_die,
9514 int has_children,
9515 void *datap)
3019eac3
DE
9516{
9517 struct dwarf2_cu *cu = reader->cu;
9518 struct objfile *objfile = dwarf2_per_objfile->objfile;
9519 sect_offset offset = cu->per_cu->offset;
8a0459fd 9520 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9521 struct create_dwo_cu_data *data = datap;
3019eac3 9522 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9523 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9524 struct attribute *attr;
3019eac3
DE
9525
9526 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9527 if (attr == NULL)
9528 {
19c3d4c9
DE
9529 complaint (&symfile_complaints,
9530 _("Dwarf Error: debug entry at offset 0x%x is missing"
9531 " its dwo_id [in module %s]"),
9532 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9533 return;
9534 }
9535
3019eac3
DE
9536 dwo_unit->dwo_file = dwo_file;
9537 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9538 dwo_unit->section = section;
3019eac3
DE
9539 dwo_unit->offset = offset;
9540 dwo_unit->length = cu->per_cu->length;
9541
b4f54984 9542 if (dwarf_read_debug)
4031ecc5
DE
9543 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9544 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9545}
9546
19c3d4c9
DE
9547/* Create the dwo_unit for the lone CU in DWO_FILE.
9548 Note: This function processes DWO files only, not DWP files. */
3019eac3 9549
19c3d4c9
DE
9550static struct dwo_unit *
9551create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9552{
9553 struct objfile *objfile = dwarf2_per_objfile->objfile;
9554 struct dwarf2_section_info *section = &dwo_file->sections.info;
9555 bfd *abfd;
9556 htab_t cu_htab;
d521ce57 9557 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9558 struct create_dwo_cu_data create_dwo_cu_data;
9559 struct dwo_unit *dwo_unit;
3019eac3
DE
9560
9561 dwarf2_read_section (objfile, section);
9562 info_ptr = section->buffer;
9563
9564 if (info_ptr == NULL)
9565 return NULL;
9566
9567 /* We can't set abfd until now because the section may be empty or
9568 not present, in which case section->asection will be NULL. */
a32a8923 9569 abfd = get_section_bfd_owner (section);
3019eac3 9570
b4f54984 9571 if (dwarf_read_debug)
19c3d4c9
DE
9572 {
9573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9574 get_section_name (section),
9575 get_section_file_name (section));
19c3d4c9 9576 }
3019eac3 9577
19c3d4c9
DE
9578 create_dwo_cu_data.dwo_file = dwo_file;
9579 dwo_unit = NULL;
3019eac3
DE
9580
9581 end_ptr = info_ptr + section->size;
9582 while (info_ptr < end_ptr)
9583 {
9584 struct dwarf2_per_cu_data per_cu;
9585
19c3d4c9
DE
9586 memset (&create_dwo_cu_data.dwo_unit, 0,
9587 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9588 memset (&per_cu, 0, sizeof (per_cu));
9589 per_cu.objfile = objfile;
9590 per_cu.is_debug_types = 0;
9591 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9592 per_cu.section = section;
3019eac3 9593
33e80786 9594 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9595 create_dwo_cu_reader,
9596 &create_dwo_cu_data);
9597
9598 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9599 {
9600 /* If we've already found one, complain. We only support one
9601 because having more than one requires hacking the dwo_name of
9602 each to match, which is highly unlikely to happen. */
9603 if (dwo_unit != NULL)
9604 {
9605 complaint (&symfile_complaints,
9606 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9607 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9608 break;
9609 }
9610
9611 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9612 *dwo_unit = create_dwo_cu_data.dwo_unit;
9613 }
3019eac3
DE
9614
9615 info_ptr += per_cu.length;
9616 }
9617
19c3d4c9 9618 return dwo_unit;
3019eac3
DE
9619}
9620
80626a55
DE
9621/* DWP file .debug_{cu,tu}_index section format:
9622 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9623
d2415c6c
DE
9624 DWP Version 1:
9625
80626a55
DE
9626 Both index sections have the same format, and serve to map a 64-bit
9627 signature to a set of section numbers. Each section begins with a header,
9628 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9629 indexes, and a pool of 32-bit section numbers. The index sections will be
9630 aligned at 8-byte boundaries in the file.
9631
d2415c6c
DE
9632 The index section header consists of:
9633
9634 V, 32 bit version number
9635 -, 32 bits unused
9636 N, 32 bit number of compilation units or type units in the index
9637 M, 32 bit number of slots in the hash table
80626a55 9638
d2415c6c 9639 Numbers are recorded using the byte order of the application binary.
80626a55 9640
d2415c6c
DE
9641 The hash table begins at offset 16 in the section, and consists of an array
9642 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9643 order of the application binary). Unused slots in the hash table are 0.
9644 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9645
d2415c6c
DE
9646 The parallel table begins immediately after the hash table
9647 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9648 array of 32-bit indexes (using the byte order of the application binary),
9649 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9650 table contains a 32-bit index into the pool of section numbers. For unused
9651 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9652
73869dc2
DE
9653 The pool of section numbers begins immediately following the hash table
9654 (at offset 16 + 12 * M from the beginning of the section). The pool of
9655 section numbers consists of an array of 32-bit words (using the byte order
9656 of the application binary). Each item in the array is indexed starting
9657 from 0. The hash table entry provides the index of the first section
9658 number in the set. Additional section numbers in the set follow, and the
9659 set is terminated by a 0 entry (section number 0 is not used in ELF).
9660
9661 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9662 section must be the first entry in the set, and the .debug_abbrev.dwo must
9663 be the second entry. Other members of the set may follow in any order.
9664
9665 ---
9666
9667 DWP Version 2:
9668
9669 DWP Version 2 combines all the .debug_info, etc. sections into one,
9670 and the entries in the index tables are now offsets into these sections.
9671 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9672 section.
9673
9674 Index Section Contents:
9675 Header
9676 Hash Table of Signatures dwp_hash_table.hash_table
9677 Parallel Table of Indices dwp_hash_table.unit_table
9678 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9679 Table of Section Sizes dwp_hash_table.v2.sizes
9680
9681 The index section header consists of:
9682
9683 V, 32 bit version number
9684 L, 32 bit number of columns in the table of section offsets
9685 N, 32 bit number of compilation units or type units in the index
9686 M, 32 bit number of slots in the hash table
9687
9688 Numbers are recorded using the byte order of the application binary.
9689
9690 The hash table has the same format as version 1.
9691 The parallel table of indices has the same format as version 1,
9692 except that the entries are origin-1 indices into the table of sections
9693 offsets and the table of section sizes.
9694
9695 The table of offsets begins immediately following the parallel table
9696 (at offset 16 + 12 * M from the beginning of the section). The table is
9697 a two-dimensional array of 32-bit words (using the byte order of the
9698 application binary), with L columns and N+1 rows, in row-major order.
9699 Each row in the array is indexed starting from 0. The first row provides
9700 a key to the remaining rows: each column in this row provides an identifier
9701 for a debug section, and the offsets in the same column of subsequent rows
9702 refer to that section. The section identifiers are:
9703
9704 DW_SECT_INFO 1 .debug_info.dwo
9705 DW_SECT_TYPES 2 .debug_types.dwo
9706 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9707 DW_SECT_LINE 4 .debug_line.dwo
9708 DW_SECT_LOC 5 .debug_loc.dwo
9709 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9710 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9711 DW_SECT_MACRO 8 .debug_macro.dwo
9712
9713 The offsets provided by the CU and TU index sections are the base offsets
9714 for the contributions made by each CU or TU to the corresponding section
9715 in the package file. Each CU and TU header contains an abbrev_offset
9716 field, used to find the abbreviations table for that CU or TU within the
9717 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9718 be interpreted as relative to the base offset given in the index section.
9719 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9720 should be interpreted as relative to the base offset for .debug_line.dwo,
9721 and offsets into other debug sections obtained from DWARF attributes should
9722 also be interpreted as relative to the corresponding base offset.
9723
9724 The table of sizes begins immediately following the table of offsets.
9725 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9726 with L columns and N rows, in row-major order. Each row in the array is
9727 indexed starting from 1 (row 0 is shared by the two tables).
9728
9729 ---
9730
9731 Hash table lookup is handled the same in version 1 and 2:
9732
9733 We assume that N and M will not exceed 2^32 - 1.
9734 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9735
d2415c6c
DE
9736 Given a 64-bit compilation unit signature or a type signature S, an entry
9737 in the hash table is located as follows:
80626a55 9738
d2415c6c
DE
9739 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9740 the low-order k bits all set to 1.
80626a55 9741
d2415c6c 9742 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9743
d2415c6c
DE
9744 3) If the hash table entry at index H matches the signature, use that
9745 entry. If the hash table entry at index H is unused (all zeroes),
9746 terminate the search: the signature is not present in the table.
80626a55 9747
d2415c6c 9748 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9749
d2415c6c 9750 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9751 to stop at an unused slot or find the match. */
80626a55
DE
9752
9753/* Create a hash table to map DWO IDs to their CU/TU entry in
9754 .debug_{info,types}.dwo in DWP_FILE.
9755 Returns NULL if there isn't one.
9756 Note: This function processes DWP files only, not DWO files. */
9757
9758static struct dwp_hash_table *
9759create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9760{
9761 struct objfile *objfile = dwarf2_per_objfile->objfile;
9762 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9763 const gdb_byte *index_ptr, *index_end;
80626a55 9764 struct dwarf2_section_info *index;
73869dc2 9765 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9766 struct dwp_hash_table *htab;
9767
9768 if (is_debug_types)
9769 index = &dwp_file->sections.tu_index;
9770 else
9771 index = &dwp_file->sections.cu_index;
9772
9773 if (dwarf2_section_empty_p (index))
9774 return NULL;
9775 dwarf2_read_section (objfile, index);
9776
9777 index_ptr = index->buffer;
9778 index_end = index_ptr + index->size;
9779
9780 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9781 index_ptr += 4;
9782 if (version == 2)
9783 nr_columns = read_4_bytes (dbfd, index_ptr);
9784 else
9785 nr_columns = 0;
9786 index_ptr += 4;
80626a55
DE
9787 nr_units = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789 nr_slots = read_4_bytes (dbfd, index_ptr);
9790 index_ptr += 4;
9791
73869dc2 9792 if (version != 1 && version != 2)
80626a55 9793 {
21aa081e 9794 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9795 " [in module %s]"),
21aa081e 9796 pulongest (version), dwp_file->name);
80626a55
DE
9797 }
9798 if (nr_slots != (nr_slots & -nr_slots))
9799 {
21aa081e 9800 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9801 " is not power of 2 [in module %s]"),
21aa081e 9802 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9803 }
9804
9805 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9806 htab->version = version;
9807 htab->nr_columns = nr_columns;
80626a55
DE
9808 htab->nr_units = nr_units;
9809 htab->nr_slots = nr_slots;
9810 htab->hash_table = index_ptr;
9811 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9812
9813 /* Exit early if the table is empty. */
9814 if (nr_slots == 0 || nr_units == 0
9815 || (version == 2 && nr_columns == 0))
9816 {
9817 /* All must be zero. */
9818 if (nr_slots != 0 || nr_units != 0
9819 || (version == 2 && nr_columns != 0))
9820 {
9821 complaint (&symfile_complaints,
9822 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9823 " all zero [in modules %s]"),
9824 dwp_file->name);
9825 }
9826 return htab;
9827 }
9828
9829 if (version == 1)
9830 {
9831 htab->section_pool.v1.indices =
9832 htab->unit_table + sizeof (uint32_t) * nr_slots;
9833 /* It's harder to decide whether the section is too small in v1.
9834 V1 is deprecated anyway so we punt. */
9835 }
9836 else
9837 {
9838 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9839 int *ids = htab->section_pool.v2.section_ids;
9840 /* Reverse map for error checking. */
9841 int ids_seen[DW_SECT_MAX + 1];
9842 int i;
9843
9844 if (nr_columns < 2)
9845 {
9846 error (_("Dwarf Error: bad DWP hash table, too few columns"
9847 " in section table [in module %s]"),
9848 dwp_file->name);
9849 }
9850 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9851 {
9852 error (_("Dwarf Error: bad DWP hash table, too many columns"
9853 " in section table [in module %s]"),
9854 dwp_file->name);
9855 }
9856 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9858 for (i = 0; i < nr_columns; ++i)
9859 {
9860 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9861
9862 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9863 {
9864 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9865 " in section table [in module %s]"),
9866 id, dwp_file->name);
9867 }
9868 if (ids_seen[id] != -1)
9869 {
9870 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9871 " id %d in section table [in module %s]"),
9872 id, dwp_file->name);
9873 }
9874 ids_seen[id] = i;
9875 ids[i] = id;
9876 }
9877 /* Must have exactly one info or types section. */
9878 if (((ids_seen[DW_SECT_INFO] != -1)
9879 + (ids_seen[DW_SECT_TYPES] != -1))
9880 != 1)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9883 " DWO info/types section [in module %s]"),
9884 dwp_file->name);
9885 }
9886 /* Must have an abbrev section. */
9887 if (ids_seen[DW_SECT_ABBREV] == -1)
9888 {
9889 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9890 " section [in module %s]"),
9891 dwp_file->name);
9892 }
9893 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9894 htab->section_pool.v2.sizes =
9895 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9896 * nr_units * nr_columns);
9897 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9898 * nr_units * nr_columns))
9899 > index_end)
9900 {
9901 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9902 " [in module %s]"),
9903 dwp_file->name);
9904 }
9905 }
80626a55
DE
9906
9907 return htab;
9908}
9909
9910/* Update SECTIONS with the data from SECTP.
9911
9912 This function is like the other "locate" section routines that are
9913 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9914 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9915
9916 The result is non-zero for success, or zero if an error was found. */
9917
9918static int
73869dc2
DE
9919locate_v1_virtual_dwo_sections (asection *sectp,
9920 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9921{
9922 const struct dwop_section_names *names = &dwop_section_names;
9923
9924 if (section_is_p (sectp->name, &names->abbrev_dwo))
9925 {
9926 /* There can be only one. */
049412e3 9927 if (sections->abbrev.s.section != NULL)
80626a55 9928 return 0;
049412e3 9929 sections->abbrev.s.section = sectp;
80626a55
DE
9930 sections->abbrev.size = bfd_get_section_size (sectp);
9931 }
9932 else if (section_is_p (sectp->name, &names->info_dwo)
9933 || section_is_p (sectp->name, &names->types_dwo))
9934 {
9935 /* There can be only one. */
049412e3 9936 if (sections->info_or_types.s.section != NULL)
80626a55 9937 return 0;
049412e3 9938 sections->info_or_types.s.section = sectp;
80626a55
DE
9939 sections->info_or_types.size = bfd_get_section_size (sectp);
9940 }
9941 else if (section_is_p (sectp->name, &names->line_dwo))
9942 {
9943 /* There can be only one. */
049412e3 9944 if (sections->line.s.section != NULL)
80626a55 9945 return 0;
049412e3 9946 sections->line.s.section = sectp;
80626a55
DE
9947 sections->line.size = bfd_get_section_size (sectp);
9948 }
9949 else if (section_is_p (sectp->name, &names->loc_dwo))
9950 {
9951 /* There can be only one. */
049412e3 9952 if (sections->loc.s.section != NULL)
80626a55 9953 return 0;
049412e3 9954 sections->loc.s.section = sectp;
80626a55
DE
9955 sections->loc.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9958 {
9959 /* There can be only one. */
049412e3 9960 if (sections->macinfo.s.section != NULL)
80626a55 9961 return 0;
049412e3 9962 sections->macinfo.s.section = sectp;
80626a55
DE
9963 sections->macinfo.size = bfd_get_section_size (sectp);
9964 }
9965 else if (section_is_p (sectp->name, &names->macro_dwo))
9966 {
9967 /* There can be only one. */
049412e3 9968 if (sections->macro.s.section != NULL)
80626a55 9969 return 0;
049412e3 9970 sections->macro.s.section = sectp;
80626a55
DE
9971 sections->macro.size = bfd_get_section_size (sectp);
9972 }
9973 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9974 {
9975 /* There can be only one. */
049412e3 9976 if (sections->str_offsets.s.section != NULL)
80626a55 9977 return 0;
049412e3 9978 sections->str_offsets.s.section = sectp;
80626a55
DE
9979 sections->str_offsets.size = bfd_get_section_size (sectp);
9980 }
9981 else
9982 {
9983 /* No other kind of section is valid. */
9984 return 0;
9985 }
9986
9987 return 1;
9988}
9989
73869dc2
DE
9990/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9991 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9992 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9993 This is for DWP version 1 files. */
80626a55
DE
9994
9995static struct dwo_unit *
73869dc2
DE
9996create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9997 uint32_t unit_index,
9998 const char *comp_dir,
9999 ULONGEST signature, int is_debug_types)
80626a55
DE
10000{
10001 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10002 const struct dwp_hash_table *dwp_htab =
10003 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10004 bfd *dbfd = dwp_file->dbfd;
10005 const char *kind = is_debug_types ? "TU" : "CU";
10006 struct dwo_file *dwo_file;
10007 struct dwo_unit *dwo_unit;
73869dc2 10008 struct virtual_v1_dwo_sections sections;
80626a55
DE
10009 void **dwo_file_slot;
10010 char *virtual_dwo_name;
10011 struct dwarf2_section_info *cutu;
10012 struct cleanup *cleanups;
10013 int i;
10014
73869dc2
DE
10015 gdb_assert (dwp_file->version == 1);
10016
b4f54984 10017 if (dwarf_read_debug)
80626a55 10018 {
73869dc2 10019 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10020 kind,
73869dc2 10021 pulongest (unit_index), hex_string (signature),
80626a55
DE
10022 dwp_file->name);
10023 }
10024
19ac8c2e 10025 /* Fetch the sections of this DWO unit.
80626a55
DE
10026 Put a limit on the number of sections we look for so that bad data
10027 doesn't cause us to loop forever. */
10028
73869dc2 10029#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10030 (1 /* .debug_info or .debug_types */ \
10031 + 1 /* .debug_abbrev */ \
10032 + 1 /* .debug_line */ \
10033 + 1 /* .debug_loc */ \
10034 + 1 /* .debug_str_offsets */ \
19ac8c2e 10035 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10036 + 1 /* trailing zero */)
10037
10038 memset (&sections, 0, sizeof (sections));
10039 cleanups = make_cleanup (null_cleanup, 0);
10040
73869dc2 10041 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10042 {
10043 asection *sectp;
10044 uint32_t section_nr =
10045 read_4_bytes (dbfd,
73869dc2
DE
10046 dwp_htab->section_pool.v1.indices
10047 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10048
10049 if (section_nr == 0)
10050 break;
10051 if (section_nr >= dwp_file->num_sections)
10052 {
10053 error (_("Dwarf Error: bad DWP hash table, section number too large"
10054 " [in module %s]"),
10055 dwp_file->name);
10056 }
10057
10058 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10059 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10060 {
10061 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10062 " [in module %s]"),
10063 dwp_file->name);
10064 }
10065 }
10066
10067 if (i < 2
a32a8923
DE
10068 || dwarf2_section_empty_p (&sections.info_or_types)
10069 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10070 {
10071 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10072 " [in module %s]"),
10073 dwp_file->name);
10074 }
73869dc2 10075 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10076 {
10077 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10078 " [in module %s]"),
10079 dwp_file->name);
10080 }
10081
10082 /* It's easier for the rest of the code if we fake a struct dwo_file and
10083 have dwo_unit "live" in that. At least for now.
10084
10085 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10086 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10087 file, we can combine them back into a virtual DWO file to save space
10088 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10089 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10090
2792b94d
PM
10091 virtual_dwo_name =
10092 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10093 get_section_id (&sections.abbrev),
10094 get_section_id (&sections.line),
10095 get_section_id (&sections.loc),
10096 get_section_id (&sections.str_offsets));
80626a55
DE
10097 make_cleanup (xfree, virtual_dwo_name);
10098 /* Can we use an existing virtual DWO file? */
0ac5b59e 10099 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10100 /* Create one if necessary. */
10101 if (*dwo_file_slot == NULL)
10102 {
b4f54984 10103 if (dwarf_read_debug)
80626a55
DE
10104 {
10105 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10106 virtual_dwo_name);
10107 }
10108 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10109 dwo_file->dwo_name
10110 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10111 virtual_dwo_name,
10112 strlen (virtual_dwo_name));
0ac5b59e 10113 dwo_file->comp_dir = comp_dir;
80626a55
DE
10114 dwo_file->sections.abbrev = sections.abbrev;
10115 dwo_file->sections.line = sections.line;
10116 dwo_file->sections.loc = sections.loc;
10117 dwo_file->sections.macinfo = sections.macinfo;
10118 dwo_file->sections.macro = sections.macro;
10119 dwo_file->sections.str_offsets = sections.str_offsets;
10120 /* The "str" section is global to the entire DWP file. */
10121 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10122 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10123 there's no need to record it in dwo_file.
10124 Also, we can't simply record type sections in dwo_file because
10125 we record a pointer into the vector in dwo_unit. As we collect more
10126 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10127 for it, invalidating all copies of pointers into the previous
10128 contents. */
80626a55
DE
10129 *dwo_file_slot = dwo_file;
10130 }
10131 else
10132 {
b4f54984 10133 if (dwarf_read_debug)
80626a55
DE
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = *dwo_file_slot;
10139 }
10140 do_cleanups (cleanups);
10141
10142 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10143 dwo_unit->dwo_file = dwo_file;
10144 dwo_unit->signature = signature;
8d749320
SM
10145 dwo_unit->section =
10146 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10147 *dwo_unit->section = sections.info_or_types;
57d63ce2 10148 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10149
10150 return dwo_unit;
10151}
10152
73869dc2
DE
10153/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10154 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10155 piece within that section used by a TU/CU, return a virtual section
10156 of just that piece. */
10157
10158static struct dwarf2_section_info
10159create_dwp_v2_section (struct dwarf2_section_info *section,
10160 bfd_size_type offset, bfd_size_type size)
10161{
10162 struct dwarf2_section_info result;
10163 asection *sectp;
10164
10165 gdb_assert (section != NULL);
10166 gdb_assert (!section->is_virtual);
10167
10168 memset (&result, 0, sizeof (result));
10169 result.s.containing_section = section;
10170 result.is_virtual = 1;
10171
10172 if (size == 0)
10173 return result;
10174
10175 sectp = get_section_bfd_section (section);
10176
10177 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10178 bounds of the real section. This is a pretty-rare event, so just
10179 flag an error (easier) instead of a warning and trying to cope. */
10180 if (sectp == NULL
10181 || offset + size > bfd_get_section_size (sectp))
10182 {
10183 bfd *abfd = sectp->owner;
10184
10185 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10186 " in section %s [in module %s]"),
10187 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10188 objfile_name (dwarf2_per_objfile->objfile));
10189 }
10190
10191 result.virtual_offset = offset;
10192 result.size = size;
10193 return result;
10194}
10195
10196/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10197 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10198 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10199 This is for DWP version 2 files. */
10200
10201static struct dwo_unit *
10202create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10203 uint32_t unit_index,
10204 const char *comp_dir,
10205 ULONGEST signature, int is_debug_types)
10206{
10207 struct objfile *objfile = dwarf2_per_objfile->objfile;
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
10210 bfd *dbfd = dwp_file->dbfd;
10211 const char *kind = is_debug_types ? "TU" : "CU";
10212 struct dwo_file *dwo_file;
10213 struct dwo_unit *dwo_unit;
10214 struct virtual_v2_dwo_sections sections;
10215 void **dwo_file_slot;
10216 char *virtual_dwo_name;
10217 struct dwarf2_section_info *cutu;
10218 struct cleanup *cleanups;
10219 int i;
10220
10221 gdb_assert (dwp_file->version == 2);
10222
b4f54984 10223 if (dwarf_read_debug)
73869dc2
DE
10224 {
10225 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10226 kind,
10227 pulongest (unit_index), hex_string (signature),
10228 dwp_file->name);
10229 }
10230
10231 /* Fetch the section offsets of this DWO unit. */
10232
10233 memset (&sections, 0, sizeof (sections));
10234 cleanups = make_cleanup (null_cleanup, 0);
10235
10236 for (i = 0; i < dwp_htab->nr_columns; ++i)
10237 {
10238 uint32_t offset = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.offsets
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243 uint32_t size = read_4_bytes (dbfd,
10244 dwp_htab->section_pool.v2.sizes
10245 + (((unit_index - 1) * dwp_htab->nr_columns
10246 + i)
10247 * sizeof (uint32_t)));
10248
10249 switch (dwp_htab->section_pool.v2.section_ids[i])
10250 {
10251 case DW_SECT_INFO:
10252 case DW_SECT_TYPES:
10253 sections.info_or_types_offset = offset;
10254 sections.info_or_types_size = size;
10255 break;
10256 case DW_SECT_ABBREV:
10257 sections.abbrev_offset = offset;
10258 sections.abbrev_size = size;
10259 break;
10260 case DW_SECT_LINE:
10261 sections.line_offset = offset;
10262 sections.line_size = size;
10263 break;
10264 case DW_SECT_LOC:
10265 sections.loc_offset = offset;
10266 sections.loc_size = size;
10267 break;
10268 case DW_SECT_STR_OFFSETS:
10269 sections.str_offsets_offset = offset;
10270 sections.str_offsets_size = size;
10271 break;
10272 case DW_SECT_MACINFO:
10273 sections.macinfo_offset = offset;
10274 sections.macinfo_size = size;
10275 break;
10276 case DW_SECT_MACRO:
10277 sections.macro_offset = offset;
10278 sections.macro_size = size;
10279 break;
10280 }
10281 }
10282
10283 /* It's easier for the rest of the code if we fake a struct dwo_file and
10284 have dwo_unit "live" in that. At least for now.
10285
10286 The DWP file can be made up of a random collection of CUs and TUs.
10287 However, for each CU + set of TUs that came from the same original DWO
10288 file, we can combine them back into a virtual DWO file to save space
10289 (fewer struct dwo_file objects to allocate). Remember that for really
10290 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10291
10292 virtual_dwo_name =
10293 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10294 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10295 (long) (sections.line_size ? sections.line_offset : 0),
10296 (long) (sections.loc_size ? sections.loc_offset : 0),
10297 (long) (sections.str_offsets_size
10298 ? sections.str_offsets_offset : 0));
10299 make_cleanup (xfree, virtual_dwo_name);
10300 /* Can we use an existing virtual DWO file? */
10301 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10302 /* Create one if necessary. */
10303 if (*dwo_file_slot == NULL)
10304 {
b4f54984 10305 if (dwarf_read_debug)
73869dc2
DE
10306 {
10307 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10308 virtual_dwo_name);
10309 }
10310 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10311 dwo_file->dwo_name
10312 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10313 virtual_dwo_name,
10314 strlen (virtual_dwo_name));
73869dc2
DE
10315 dwo_file->comp_dir = comp_dir;
10316 dwo_file->sections.abbrev =
10317 create_dwp_v2_section (&dwp_file->sections.abbrev,
10318 sections.abbrev_offset, sections.abbrev_size);
10319 dwo_file->sections.line =
10320 create_dwp_v2_section (&dwp_file->sections.line,
10321 sections.line_offset, sections.line_size);
10322 dwo_file->sections.loc =
10323 create_dwp_v2_section (&dwp_file->sections.loc,
10324 sections.loc_offset, sections.loc_size);
10325 dwo_file->sections.macinfo =
10326 create_dwp_v2_section (&dwp_file->sections.macinfo,
10327 sections.macinfo_offset, sections.macinfo_size);
10328 dwo_file->sections.macro =
10329 create_dwp_v2_section (&dwp_file->sections.macro,
10330 sections.macro_offset, sections.macro_size);
10331 dwo_file->sections.str_offsets =
10332 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10333 sections.str_offsets_offset,
10334 sections.str_offsets_size);
10335 /* The "str" section is global to the entire DWP file. */
10336 dwo_file->sections.str = dwp_file->sections.str;
10337 /* The info or types section is assigned below to dwo_unit,
10338 there's no need to record it in dwo_file.
10339 Also, we can't simply record type sections in dwo_file because
10340 we record a pointer into the vector in dwo_unit. As we collect more
10341 types we'll grow the vector and eventually have to reallocate space
10342 for it, invalidating all copies of pointers into the previous
10343 contents. */
10344 *dwo_file_slot = dwo_file;
10345 }
10346 else
10347 {
b4f54984 10348 if (dwarf_read_debug)
73869dc2
DE
10349 {
10350 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10351 virtual_dwo_name);
10352 }
10353 dwo_file = *dwo_file_slot;
10354 }
10355 do_cleanups (cleanups);
10356
10357 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10358 dwo_unit->dwo_file = dwo_file;
10359 dwo_unit->signature = signature;
8d749320
SM
10360 dwo_unit->section =
10361 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10362 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10363 ? &dwp_file->sections.types
10364 : &dwp_file->sections.info,
10365 sections.info_or_types_offset,
10366 sections.info_or_types_size);
10367 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10368
10369 return dwo_unit;
10370}
10371
57d63ce2
DE
10372/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10373 Returns NULL if the signature isn't found. */
80626a55
DE
10374
10375static struct dwo_unit *
57d63ce2
DE
10376lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10377 ULONGEST signature, int is_debug_types)
80626a55 10378{
57d63ce2
DE
10379 const struct dwp_hash_table *dwp_htab =
10380 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10381 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10382 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10383 uint32_t hash = signature & mask;
10384 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10385 unsigned int i;
10386 void **slot;
10387 struct dwo_unit find_dwo_cu, *dwo_cu;
10388
10389 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10390 find_dwo_cu.signature = signature;
19ac8c2e
DE
10391 slot = htab_find_slot (is_debug_types
10392 ? dwp_file->loaded_tus
10393 : dwp_file->loaded_cus,
10394 &find_dwo_cu, INSERT);
80626a55
DE
10395
10396 if (*slot != NULL)
10397 return *slot;
10398
10399 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10400 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10401 {
10402 ULONGEST signature_in_table;
10403
10404 signature_in_table =
57d63ce2 10405 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10406 if (signature_in_table == signature)
10407 {
57d63ce2
DE
10408 uint32_t unit_index =
10409 read_4_bytes (dbfd,
10410 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10411
73869dc2
DE
10412 if (dwp_file->version == 1)
10413 {
10414 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10415 comp_dir, signature,
10416 is_debug_types);
10417 }
10418 else
10419 {
10420 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10421 comp_dir, signature,
10422 is_debug_types);
10423 }
80626a55
DE
10424 return *slot;
10425 }
10426 if (signature_in_table == 0)
10427 return NULL;
10428 hash = (hash + hash2) & mask;
10429 }
10430
10431 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10432 " [in module %s]"),
10433 dwp_file->name);
10434}
10435
ab5088bf 10436/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10437 Open the file specified by FILE_NAME and hand it off to BFD for
10438 preliminary analysis. Return a newly initialized bfd *, which
10439 includes a canonicalized copy of FILE_NAME.
80626a55 10440 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10441 SEARCH_CWD is true if the current directory is to be searched.
10442 It will be searched before debug-file-directory.
13aaf454
DE
10443 If successful, the file is added to the bfd include table of the
10444 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10445 If unable to find/open the file, return NULL.
3019eac3
DE
10446 NOTE: This function is derived from symfile_bfd_open. */
10447
10448static bfd *
6ac97d4c 10449try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10450{
10451 bfd *sym_bfd;
80626a55 10452 int desc, flags;
3019eac3 10453 char *absolute_name;
9c02c129
DE
10454 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10455 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10456 to debug_file_directory. */
10457 char *search_path;
10458 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10459
6ac97d4c
DE
10460 if (search_cwd)
10461 {
10462 if (*debug_file_directory != '\0')
10463 search_path = concat (".", dirname_separator_string,
10464 debug_file_directory, NULL);
10465 else
10466 search_path = xstrdup (".");
10467 }
9c02c129 10468 else
6ac97d4c 10469 search_path = xstrdup (debug_file_directory);
3019eac3 10470
492c0ab7 10471 flags = OPF_RETURN_REALPATH;
80626a55
DE
10472 if (is_dwp)
10473 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10474 desc = openp (search_path, flags, file_name,
3019eac3 10475 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10476 xfree (search_path);
3019eac3
DE
10477 if (desc < 0)
10478 return NULL;
10479
bb397797 10480 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10481 xfree (absolute_name);
9c02c129
DE
10482 if (sym_bfd == NULL)
10483 return NULL;
3019eac3
DE
10484 bfd_set_cacheable (sym_bfd, 1);
10485
10486 if (!bfd_check_format (sym_bfd, bfd_object))
10487 {
cbb099e8 10488 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10489 return NULL;
10490 }
10491
13aaf454
DE
10492 /* Success. Record the bfd as having been included by the objfile's bfd.
10493 This is important because things like demangled_names_hash lives in the
10494 objfile's per_bfd space and may have references to things like symbol
10495 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10496 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10497
3019eac3
DE
10498 return sym_bfd;
10499}
10500
ab5088bf 10501/* Try to open DWO file FILE_NAME.
3019eac3
DE
10502 COMP_DIR is the DW_AT_comp_dir attribute.
10503 The result is the bfd handle of the file.
10504 If there is a problem finding or opening the file, return NULL.
10505 Upon success, the canonicalized path of the file is stored in the bfd,
10506 same as symfile_bfd_open. */
10507
10508static bfd *
ab5088bf 10509open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10510{
10511 bfd *abfd;
3019eac3 10512
80626a55 10513 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10514 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10515
10516 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10517
10518 if (comp_dir != NULL)
10519 {
80626a55 10520 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10521
10522 /* NOTE: If comp_dir is a relative path, this will also try the
10523 search path, which seems useful. */
6ac97d4c 10524 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10525 xfree (path_to_try);
10526 if (abfd != NULL)
10527 return abfd;
10528 }
10529
10530 /* That didn't work, try debug-file-directory, which, despite its name,
10531 is a list of paths. */
10532
10533 if (*debug_file_directory == '\0')
10534 return NULL;
10535
6ac97d4c 10536 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10537}
10538
80626a55
DE
10539/* This function is mapped across the sections and remembers the offset and
10540 size of each of the DWO debugging sections we are interested in. */
10541
10542static void
10543dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10544{
10545 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10546 const struct dwop_section_names *names = &dwop_section_names;
10547
10548 if (section_is_p (sectp->name, &names->abbrev_dwo))
10549 {
049412e3 10550 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10551 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10552 }
10553 else if (section_is_p (sectp->name, &names->info_dwo))
10554 {
049412e3 10555 dwo_sections->info.s.section = sectp;
80626a55
DE
10556 dwo_sections->info.size = bfd_get_section_size (sectp);
10557 }
10558 else if (section_is_p (sectp->name, &names->line_dwo))
10559 {
049412e3 10560 dwo_sections->line.s.section = sectp;
80626a55
DE
10561 dwo_sections->line.size = bfd_get_section_size (sectp);
10562 }
10563 else if (section_is_p (sectp->name, &names->loc_dwo))
10564 {
049412e3 10565 dwo_sections->loc.s.section = sectp;
80626a55
DE
10566 dwo_sections->loc.size = bfd_get_section_size (sectp);
10567 }
10568 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10569 {
049412e3 10570 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10571 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10572 }
10573 else if (section_is_p (sectp->name, &names->macro_dwo))
10574 {
049412e3 10575 dwo_sections->macro.s.section = sectp;
80626a55
DE
10576 dwo_sections->macro.size = bfd_get_section_size (sectp);
10577 }
10578 else if (section_is_p (sectp->name, &names->str_dwo))
10579 {
049412e3 10580 dwo_sections->str.s.section = sectp;
80626a55
DE
10581 dwo_sections->str.size = bfd_get_section_size (sectp);
10582 }
10583 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10584 {
049412e3 10585 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10586 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10587 }
10588 else if (section_is_p (sectp->name, &names->types_dwo))
10589 {
10590 struct dwarf2_section_info type_section;
10591
10592 memset (&type_section, 0, sizeof (type_section));
049412e3 10593 type_section.s.section = sectp;
80626a55
DE
10594 type_section.size = bfd_get_section_size (sectp);
10595 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10596 &type_section);
10597 }
10598}
10599
ab5088bf 10600/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10601 by PER_CU. This is for the non-DWP case.
80626a55 10602 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10603
10604static struct dwo_file *
0ac5b59e
DE
10605open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10606 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10607{
10608 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10609 struct dwo_file *dwo_file;
10610 bfd *dbfd;
3019eac3
DE
10611 struct cleanup *cleanups;
10612
ab5088bf 10613 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10614 if (dbfd == NULL)
10615 {
b4f54984 10616 if (dwarf_read_debug)
80626a55
DE
10617 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10618 return NULL;
10619 }
10620 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10621 dwo_file->dwo_name = dwo_name;
10622 dwo_file->comp_dir = comp_dir;
80626a55 10623 dwo_file->dbfd = dbfd;
3019eac3
DE
10624
10625 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10626
80626a55 10627 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10628
19c3d4c9 10629 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10630
10631 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10632 dwo_file->sections.types);
10633
10634 discard_cleanups (cleanups);
10635
b4f54984 10636 if (dwarf_read_debug)
80626a55
DE
10637 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10638
3019eac3
DE
10639 return dwo_file;
10640}
10641
80626a55 10642/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10643 size of each of the DWP debugging sections common to version 1 and 2 that
10644 we are interested in. */
3019eac3 10645
80626a55 10646static void
73869dc2
DE
10647dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10648 void *dwp_file_ptr)
3019eac3 10649{
80626a55
DE
10650 struct dwp_file *dwp_file = dwp_file_ptr;
10651 const struct dwop_section_names *names = &dwop_section_names;
10652 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10653
80626a55 10654 /* Record the ELF section number for later lookup: this is what the
73869dc2 10655 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10656 gdb_assert (elf_section_nr < dwp_file->num_sections);
10657 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10658
80626a55
DE
10659 /* Look for specific sections that we need. */
10660 if (section_is_p (sectp->name, &names->str_dwo))
10661 {
049412e3 10662 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10663 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10664 }
10665 else if (section_is_p (sectp->name, &names->cu_index))
10666 {
049412e3 10667 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10668 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10669 }
10670 else if (section_is_p (sectp->name, &names->tu_index))
10671 {
049412e3 10672 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10673 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10674 }
10675}
3019eac3 10676
73869dc2
DE
10677/* This function is mapped across the sections and remembers the offset and
10678 size of each of the DWP version 2 debugging sections that we are interested
10679 in. This is split into a separate function because we don't know if we
10680 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10681
10682static void
10683dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10684{
10685 struct dwp_file *dwp_file = dwp_file_ptr;
10686 const struct dwop_section_names *names = &dwop_section_names;
10687 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10688
10689 /* Record the ELF section number for later lookup: this is what the
10690 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10691 gdb_assert (elf_section_nr < dwp_file->num_sections);
10692 dwp_file->elf_sections[elf_section_nr] = sectp;
10693
10694 /* Look for specific sections that we need. */
10695 if (section_is_p (sectp->name, &names->abbrev_dwo))
10696 {
049412e3 10697 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10698 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10699 }
10700 else if (section_is_p (sectp->name, &names->info_dwo))
10701 {
049412e3 10702 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10703 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10704 }
10705 else if (section_is_p (sectp->name, &names->line_dwo))
10706 {
049412e3 10707 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10708 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10709 }
10710 else if (section_is_p (sectp->name, &names->loc_dwo))
10711 {
049412e3 10712 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10713 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10714 }
10715 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10716 {
049412e3 10717 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10718 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10719 }
10720 else if (section_is_p (sectp->name, &names->macro_dwo))
10721 {
049412e3 10722 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10723 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10724 }
10725 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10726 {
049412e3 10727 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10728 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10729 }
10730 else if (section_is_p (sectp->name, &names->types_dwo))
10731 {
049412e3 10732 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10733 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10734 }
10735}
10736
80626a55 10737/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10738
80626a55
DE
10739static hashval_t
10740hash_dwp_loaded_cutus (const void *item)
10741{
10742 const struct dwo_unit *dwo_unit = item;
3019eac3 10743
80626a55
DE
10744 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10745 return dwo_unit->signature;
3019eac3
DE
10746}
10747
80626a55 10748/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10749
80626a55
DE
10750static int
10751eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10752{
80626a55
DE
10753 const struct dwo_unit *dua = a;
10754 const struct dwo_unit *dub = b;
3019eac3 10755
80626a55
DE
10756 return dua->signature == dub->signature;
10757}
3019eac3 10758
80626a55 10759/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10760
80626a55
DE
10761static htab_t
10762allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10763{
10764 return htab_create_alloc_ex (3,
10765 hash_dwp_loaded_cutus,
10766 eq_dwp_loaded_cutus,
10767 NULL,
10768 &objfile->objfile_obstack,
10769 hashtab_obstack_allocate,
10770 dummy_obstack_deallocate);
10771}
3019eac3 10772
ab5088bf
DE
10773/* Try to open DWP file FILE_NAME.
10774 The result is the bfd handle of the file.
10775 If there is a problem finding or opening the file, return NULL.
10776 Upon success, the canonicalized path of the file is stored in the bfd,
10777 same as symfile_bfd_open. */
10778
10779static bfd *
10780open_dwp_file (const char *file_name)
10781{
6ac97d4c
DE
10782 bfd *abfd;
10783
10784 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10785 if (abfd != NULL)
10786 return abfd;
10787
10788 /* Work around upstream bug 15652.
10789 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10790 [Whether that's a "bug" is debatable, but it is getting in our way.]
10791 We have no real idea where the dwp file is, because gdb's realpath-ing
10792 of the executable's path may have discarded the needed info.
10793 [IWBN if the dwp file name was recorded in the executable, akin to
10794 .gnu_debuglink, but that doesn't exist yet.]
10795 Strip the directory from FILE_NAME and search again. */
10796 if (*debug_file_directory != '\0')
10797 {
10798 /* Don't implicitly search the current directory here.
10799 If the user wants to search "." to handle this case,
10800 it must be added to debug-file-directory. */
10801 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10802 0 /*search_cwd*/);
10803 }
10804
10805 return NULL;
ab5088bf
DE
10806}
10807
80626a55
DE
10808/* Initialize the use of the DWP file for the current objfile.
10809 By convention the name of the DWP file is ${objfile}.dwp.
10810 The result is NULL if it can't be found. */
a766d390 10811
80626a55 10812static struct dwp_file *
ab5088bf 10813open_and_init_dwp_file (void)
80626a55
DE
10814{
10815 struct objfile *objfile = dwarf2_per_objfile->objfile;
10816 struct dwp_file *dwp_file;
10817 char *dwp_name;
10818 bfd *dbfd;
10819 struct cleanup *cleanups;
10820
82bf32bc
JK
10821 /* Try to find first .dwp for the binary file before any symbolic links
10822 resolving. */
10823 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10824 cleanups = make_cleanup (xfree, dwp_name);
10825
ab5088bf 10826 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10827 if (dbfd == NULL
10828 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10829 {
10830 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10831 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10832 make_cleanup (xfree, dwp_name);
10833 dbfd = open_dwp_file (dwp_name);
10834 }
10835
80626a55
DE
10836 if (dbfd == NULL)
10837 {
b4f54984 10838 if (dwarf_read_debug)
80626a55
DE
10839 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10840 do_cleanups (cleanups);
10841 return NULL;
3019eac3 10842 }
80626a55 10843 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10844 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10845 dwp_file->dbfd = dbfd;
10846 do_cleanups (cleanups);
c906108c 10847
80626a55
DE
10848 /* +1: section 0 is unused */
10849 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10850 dwp_file->elf_sections =
10851 OBSTACK_CALLOC (&objfile->objfile_obstack,
10852 dwp_file->num_sections, asection *);
10853
73869dc2 10854 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10855
10856 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10857
10858 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10859
73869dc2
DE
10860 /* The DWP file version is stored in the hash table. Oh well. */
10861 if (dwp_file->cus->version != dwp_file->tus->version)
10862 {
10863 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10864 pretty bizarre. We use pulongest here because that's the established
4d65956b 10865 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10866 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10867 " TU version %s [in DWP file %s]"),
10868 pulongest (dwp_file->cus->version),
10869 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10870 }
10871 dwp_file->version = dwp_file->cus->version;
10872
10873 if (dwp_file->version == 2)
10874 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10875
19ac8c2e
DE
10876 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10877 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10878
b4f54984 10879 if (dwarf_read_debug)
80626a55
DE
10880 {
10881 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10882 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10883 " %s CUs, %s TUs\n",
10884 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10885 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10886 }
10887
10888 return dwp_file;
3019eac3 10889}
c906108c 10890
ab5088bf
DE
10891/* Wrapper around open_and_init_dwp_file, only open it once. */
10892
10893static struct dwp_file *
10894get_dwp_file (void)
10895{
10896 if (! dwarf2_per_objfile->dwp_checked)
10897 {
10898 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10899 dwarf2_per_objfile->dwp_checked = 1;
10900 }
10901 return dwarf2_per_objfile->dwp_file;
10902}
10903
80626a55
DE
10904/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10905 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10906 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10907 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10908 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10909
10910 This is called, for example, when wanting to read a variable with a
10911 complex location. Therefore we don't want to do file i/o for every call.
10912 Therefore we don't want to look for a DWO file on every call.
10913 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10914 then we check if we've already seen DWO_NAME, and only THEN do we check
10915 for a DWO file.
10916
1c658ad5 10917 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10918 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10919
3019eac3 10920static struct dwo_unit *
80626a55
DE
10921lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10922 const char *dwo_name, const char *comp_dir,
10923 ULONGEST signature, int is_debug_types)
3019eac3
DE
10924{
10925 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10926 const char *kind = is_debug_types ? "TU" : "CU";
10927 void **dwo_file_slot;
3019eac3 10928 struct dwo_file *dwo_file;
80626a55 10929 struct dwp_file *dwp_file;
cb1df416 10930
6a506a2d
DE
10931 /* First see if there's a DWP file.
10932 If we have a DWP file but didn't find the DWO inside it, don't
10933 look for the original DWO file. It makes gdb behave differently
10934 depending on whether one is debugging in the build tree. */
cf2c3c16 10935
ab5088bf 10936 dwp_file = get_dwp_file ();
80626a55 10937 if (dwp_file != NULL)
cf2c3c16 10938 {
80626a55
DE
10939 const struct dwp_hash_table *dwp_htab =
10940 is_debug_types ? dwp_file->tus : dwp_file->cus;
10941
10942 if (dwp_htab != NULL)
10943 {
10944 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10945 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10946 signature, is_debug_types);
80626a55
DE
10947
10948 if (dwo_cutu != NULL)
10949 {
b4f54984 10950 if (dwarf_read_debug)
80626a55
DE
10951 {
10952 fprintf_unfiltered (gdb_stdlog,
10953 "Virtual DWO %s %s found: @%s\n",
10954 kind, hex_string (signature),
10955 host_address_to_string (dwo_cutu));
10956 }
10957 return dwo_cutu;
10958 }
10959 }
10960 }
6a506a2d 10961 else
80626a55 10962 {
6a506a2d 10963 /* No DWP file, look for the DWO file. */
80626a55 10964
6a506a2d
DE
10965 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10966 if (*dwo_file_slot == NULL)
80626a55 10967 {
6a506a2d
DE
10968 /* Read in the file and build a table of the CUs/TUs it contains. */
10969 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10970 }
6a506a2d
DE
10971 /* NOTE: This will be NULL if unable to open the file. */
10972 dwo_file = *dwo_file_slot;
3019eac3 10973
6a506a2d 10974 if (dwo_file != NULL)
19c3d4c9 10975 {
6a506a2d
DE
10976 struct dwo_unit *dwo_cutu = NULL;
10977
10978 if (is_debug_types && dwo_file->tus)
10979 {
10980 struct dwo_unit find_dwo_cutu;
10981
10982 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10983 find_dwo_cutu.signature = signature;
10984 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10985 }
10986 else if (!is_debug_types && dwo_file->cu)
80626a55 10987 {
6a506a2d
DE
10988 if (signature == dwo_file->cu->signature)
10989 dwo_cutu = dwo_file->cu;
10990 }
10991
10992 if (dwo_cutu != NULL)
10993 {
b4f54984 10994 if (dwarf_read_debug)
6a506a2d
DE
10995 {
10996 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10997 kind, dwo_name, hex_string (signature),
10998 host_address_to_string (dwo_cutu));
10999 }
11000 return dwo_cutu;
80626a55
DE
11001 }
11002 }
2e276125 11003 }
9cdd5dbd 11004
80626a55
DE
11005 /* We didn't find it. This could mean a dwo_id mismatch, or
11006 someone deleted the DWO/DWP file, or the search path isn't set up
11007 correctly to find the file. */
11008
b4f54984 11009 if (dwarf_read_debug)
80626a55
DE
11010 {
11011 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11012 kind, dwo_name, hex_string (signature));
11013 }
3019eac3 11014
6656a72d
DE
11015 /* This is a warning and not a complaint because it can be caused by
11016 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11017 {
11018 /* Print the name of the DWP file if we looked there, helps the user
11019 better diagnose the problem. */
11020 char *dwp_text = NULL;
11021 struct cleanup *cleanups;
11022
11023 if (dwp_file != NULL)
11024 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11025 cleanups = make_cleanup (xfree, dwp_text);
11026
11027 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11028 " [in module %s]"),
11029 kind, dwo_name, hex_string (signature),
11030 dwp_text != NULL ? dwp_text : "",
11031 this_unit->is_debug_types ? "TU" : "CU",
11032 this_unit->offset.sect_off, objfile_name (objfile));
11033
11034 do_cleanups (cleanups);
11035 }
3019eac3 11036 return NULL;
5fb290d7
DJ
11037}
11038
80626a55
DE
11039/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11040 See lookup_dwo_cutu_unit for details. */
11041
11042static struct dwo_unit *
11043lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11044 const char *dwo_name, const char *comp_dir,
11045 ULONGEST signature)
11046{
11047 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11048}
11049
11050/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11051 See lookup_dwo_cutu_unit for details. */
11052
11053static struct dwo_unit *
11054lookup_dwo_type_unit (struct signatured_type *this_tu,
11055 const char *dwo_name, const char *comp_dir)
11056{
11057 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11058}
11059
89e63ee4
DE
11060/* Traversal function for queue_and_load_all_dwo_tus. */
11061
11062static int
11063queue_and_load_dwo_tu (void **slot, void *info)
11064{
11065 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11066 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11067 ULONGEST signature = dwo_unit->signature;
11068 struct signatured_type *sig_type =
11069 lookup_dwo_signatured_type (per_cu->cu, signature);
11070
11071 if (sig_type != NULL)
11072 {
11073 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11074
11075 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11076 a real dependency of PER_CU on SIG_TYPE. That is detected later
11077 while processing PER_CU. */
11078 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11079 load_full_type_unit (sig_cu);
11080 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11081 }
11082
11083 return 1;
11084}
11085
11086/* Queue all TUs contained in the DWO of PER_CU to be read in.
11087 The DWO may have the only definition of the type, though it may not be
11088 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11089 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11090
11091static void
11092queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11093{
11094 struct dwo_unit *dwo_unit;
11095 struct dwo_file *dwo_file;
11096
11097 gdb_assert (!per_cu->is_debug_types);
11098 gdb_assert (get_dwp_file () == NULL);
11099 gdb_assert (per_cu->cu != NULL);
11100
11101 dwo_unit = per_cu->cu->dwo_unit;
11102 gdb_assert (dwo_unit != NULL);
11103
11104 dwo_file = dwo_unit->dwo_file;
11105 if (dwo_file->tus != NULL)
11106 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11107}
11108
3019eac3
DE
11109/* Free all resources associated with DWO_FILE.
11110 Close the DWO file and munmap the sections.
11111 All memory should be on the objfile obstack. */
348e048f
DE
11112
11113static void
3019eac3 11114free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11115{
3019eac3
DE
11116 int ix;
11117 struct dwarf2_section_info *section;
348e048f 11118
5c6fa7ab 11119 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11120 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11121
3019eac3
DE
11122 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11123}
348e048f 11124
3019eac3 11125/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11126
3019eac3
DE
11127static void
11128free_dwo_file_cleanup (void *arg)
11129{
11130 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11131 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11132
3019eac3
DE
11133 free_dwo_file (dwo_file, objfile);
11134}
348e048f 11135
3019eac3 11136/* Traversal function for free_dwo_files. */
2ab95328 11137
3019eac3
DE
11138static int
11139free_dwo_file_from_slot (void **slot, void *info)
11140{
11141 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11142 struct objfile *objfile = (struct objfile *) info;
348e048f 11143
3019eac3 11144 free_dwo_file (dwo_file, objfile);
348e048f 11145
3019eac3
DE
11146 return 1;
11147}
348e048f 11148
3019eac3 11149/* Free all resources associated with DWO_FILES. */
348e048f 11150
3019eac3
DE
11151static void
11152free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11153{
11154 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11155}
3019eac3
DE
11156\f
11157/* Read in various DIEs. */
348e048f 11158
d389af10
JK
11159/* qsort helper for inherit_abstract_dies. */
11160
11161static int
11162unsigned_int_compar (const void *ap, const void *bp)
11163{
11164 unsigned int a = *(unsigned int *) ap;
11165 unsigned int b = *(unsigned int *) bp;
11166
11167 return (a > b) - (b > a);
11168}
11169
11170/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11171 Inherit only the children of the DW_AT_abstract_origin DIE not being
11172 already referenced by DW_AT_abstract_origin from the children of the
11173 current DIE. */
d389af10
JK
11174
11175static void
11176inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11177{
11178 struct die_info *child_die;
11179 unsigned die_children_count;
11180 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11181 sect_offset *offsets;
11182 sect_offset *offsets_end, *offsetp;
d389af10
JK
11183 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11184 struct die_info *origin_die;
11185 /* Iterator of the ORIGIN_DIE children. */
11186 struct die_info *origin_child_die;
11187 struct cleanup *cleanups;
11188 struct attribute *attr;
cd02d79d
PA
11189 struct dwarf2_cu *origin_cu;
11190 struct pending **origin_previous_list_in_scope;
d389af10
JK
11191
11192 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11193 if (!attr)
11194 return;
11195
cd02d79d
PA
11196 /* Note that following die references may follow to a die in a
11197 different cu. */
11198
11199 origin_cu = cu;
11200 origin_die = follow_die_ref (die, attr, &origin_cu);
11201
11202 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11203 symbols in. */
11204 origin_previous_list_in_scope = origin_cu->list_in_scope;
11205 origin_cu->list_in_scope = cu->list_in_scope;
11206
edb3359d
DJ
11207 if (die->tag != origin_die->tag
11208 && !(die->tag == DW_TAG_inlined_subroutine
11209 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11210 complaint (&symfile_complaints,
11211 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11212 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11213
11214 child_die = die->child;
11215 die_children_count = 0;
11216 while (child_die && child_die->tag)
11217 {
11218 child_die = sibling_die (child_die);
11219 die_children_count++;
11220 }
8d749320 11221 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11222 cleanups = make_cleanup (xfree, offsets);
11223
11224 offsets_end = offsets;
3ea89b92
PMR
11225 for (child_die = die->child;
11226 child_die && child_die->tag;
11227 child_die = sibling_die (child_die))
11228 {
11229 struct die_info *child_origin_die;
11230 struct dwarf2_cu *child_origin_cu;
11231
11232 /* We are trying to process concrete instance entries:
11233 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11234 it's not relevant to our analysis here. i.e. detecting DIEs that are
11235 present in the abstract instance but not referenced in the concrete
11236 one. */
11237 if (child_die->tag == DW_TAG_GNU_call_site)
11238 continue;
11239
c38f313d
DJ
11240 /* For each CHILD_DIE, find the corresponding child of
11241 ORIGIN_DIE. If there is more than one layer of
11242 DW_AT_abstract_origin, follow them all; there shouldn't be,
11243 but GCC versions at least through 4.4 generate this (GCC PR
11244 40573). */
3ea89b92
PMR
11245 child_origin_die = child_die;
11246 child_origin_cu = cu;
c38f313d
DJ
11247 while (1)
11248 {
cd02d79d
PA
11249 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11250 child_origin_cu);
c38f313d
DJ
11251 if (attr == NULL)
11252 break;
cd02d79d
PA
11253 child_origin_die = follow_die_ref (child_origin_die, attr,
11254 &child_origin_cu);
c38f313d
DJ
11255 }
11256
d389af10
JK
11257 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11258 counterpart may exist. */
c38f313d 11259 if (child_origin_die != child_die)
d389af10 11260 {
edb3359d
DJ
11261 if (child_die->tag != child_origin_die->tag
11262 && !(child_die->tag == DW_TAG_inlined_subroutine
11263 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11264 complaint (&symfile_complaints,
11265 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11266 "different tags"), child_die->offset.sect_off,
11267 child_origin_die->offset.sect_off);
c38f313d
DJ
11268 if (child_origin_die->parent != origin_die)
11269 complaint (&symfile_complaints,
11270 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11271 "different parents"), child_die->offset.sect_off,
11272 child_origin_die->offset.sect_off);
c38f313d
DJ
11273 else
11274 *offsets_end++ = child_origin_die->offset;
d389af10 11275 }
d389af10
JK
11276 }
11277 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11278 unsigned_int_compar);
11279 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11280 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11281 complaint (&symfile_complaints,
11282 _("Multiple children of DIE 0x%x refer "
11283 "to DIE 0x%x as their abstract origin"),
b64f50a1 11284 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11285
11286 offsetp = offsets;
11287 origin_child_die = origin_die->child;
11288 while (origin_child_die && origin_child_die->tag)
11289 {
11290 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11291 while (offsetp < offsets_end
11292 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11293 offsetp++;
b64f50a1
JK
11294 if (offsetp >= offsets_end
11295 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11296 {
adde2bff
DE
11297 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11298 Check whether we're already processing ORIGIN_CHILD_DIE.
11299 This can happen with mutually referenced abstract_origins.
11300 PR 16581. */
11301 if (!origin_child_die->in_process)
11302 process_die (origin_child_die, origin_cu);
d389af10
JK
11303 }
11304 origin_child_die = sibling_die (origin_child_die);
11305 }
cd02d79d 11306 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11307
11308 do_cleanups (cleanups);
11309}
11310
c906108c 11311static void
e7c27a73 11312read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11313{
e7c27a73 11314 struct objfile *objfile = cu->objfile;
3e29f34a 11315 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11316 struct context_stack *newobj;
c906108c
SS
11317 CORE_ADDR lowpc;
11318 CORE_ADDR highpc;
11319 struct die_info *child_die;
edb3359d 11320 struct attribute *attr, *call_line, *call_file;
15d034d0 11321 const char *name;
e142c38c 11322 CORE_ADDR baseaddr;
801e3a5b 11323 struct block *block;
edb3359d 11324 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11325 VEC (symbolp) *template_args = NULL;
11326 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11327
11328 if (inlined_func)
11329 {
11330 /* If we do not have call site information, we can't show the
11331 caller of this inlined function. That's too confusing, so
11332 only use the scope for local variables. */
11333 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11334 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11335 if (call_line == NULL || call_file == NULL)
11336 {
11337 read_lexical_block_scope (die, cu);
11338 return;
11339 }
11340 }
c906108c 11341
e142c38c
DJ
11342 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11343
94af9270 11344 name = dwarf2_name (die, cu);
c906108c 11345
e8d05480
JB
11346 /* Ignore functions with missing or empty names. These are actually
11347 illegal according to the DWARF standard. */
11348 if (name == NULL)
11349 {
11350 complaint (&symfile_complaints,
b64f50a1
JK
11351 _("missing name for subprogram DIE at %d"),
11352 die->offset.sect_off);
e8d05480
JB
11353 return;
11354 }
11355
11356 /* Ignore functions with missing or invalid low and high pc attributes. */
11357 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11358 {
ae4d0c03
PM
11359 attr = dwarf2_attr (die, DW_AT_external, cu);
11360 if (!attr || !DW_UNSND (attr))
11361 complaint (&symfile_complaints,
3e43a32a
MS
11362 _("cannot get low and high bounds "
11363 "for subprogram DIE at %d"),
b64f50a1 11364 die->offset.sect_off);
e8d05480
JB
11365 return;
11366 }
c906108c 11367
3e29f34a
MR
11368 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11369 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11370
34eaf542
TT
11371 /* If we have any template arguments, then we must allocate a
11372 different sort of symbol. */
11373 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11374 {
11375 if (child_die->tag == DW_TAG_template_type_param
11376 || child_die->tag == DW_TAG_template_value_param)
11377 {
e623cf5d 11378 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11379 templ_func->base.is_cplus_template_function = 1;
11380 break;
11381 }
11382 }
11383
fe978cb0
PA
11384 newobj = push_context (0, lowpc);
11385 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11386 (struct symbol *) templ_func);
4c2df51b 11387
4cecd739
DJ
11388 /* If there is a location expression for DW_AT_frame_base, record
11389 it. */
e142c38c 11390 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11391 if (attr)
fe978cb0 11392 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11393
63e43d3a
PMR
11394 /* If there is a location for the static link, record it. */
11395 newobj->static_link = NULL;
11396 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11397 if (attr)
11398 {
224c3ddb
SM
11399 newobj->static_link
11400 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11401 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11402 }
11403
e142c38c 11404 cu->list_in_scope = &local_symbols;
c906108c 11405
639d11d3 11406 if (die->child != NULL)
c906108c 11407 {
639d11d3 11408 child_die = die->child;
c906108c
SS
11409 while (child_die && child_die->tag)
11410 {
34eaf542
TT
11411 if (child_die->tag == DW_TAG_template_type_param
11412 || child_die->tag == DW_TAG_template_value_param)
11413 {
11414 struct symbol *arg = new_symbol (child_die, NULL, cu);
11415
f1078f66
DJ
11416 if (arg != NULL)
11417 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11418 }
11419 else
11420 process_die (child_die, cu);
c906108c
SS
11421 child_die = sibling_die (child_die);
11422 }
11423 }
11424
d389af10
JK
11425 inherit_abstract_dies (die, cu);
11426
4a811a97
UW
11427 /* If we have a DW_AT_specification, we might need to import using
11428 directives from the context of the specification DIE. See the
11429 comment in determine_prefix. */
11430 if (cu->language == language_cplus
11431 && dwarf2_attr (die, DW_AT_specification, cu))
11432 {
11433 struct dwarf2_cu *spec_cu = cu;
11434 struct die_info *spec_die = die_specification (die, &spec_cu);
11435
11436 while (spec_die)
11437 {
11438 child_die = spec_die->child;
11439 while (child_die && child_die->tag)
11440 {
11441 if (child_die->tag == DW_TAG_imported_module)
11442 process_die (child_die, spec_cu);
11443 child_die = sibling_die (child_die);
11444 }
11445
11446 /* In some cases, GCC generates specification DIEs that
11447 themselves contain DW_AT_specification attributes. */
11448 spec_die = die_specification (spec_die, &spec_cu);
11449 }
11450 }
11451
fe978cb0 11452 newobj = pop_context ();
c906108c 11453 /* Make a block for the local symbols within. */
fe978cb0 11454 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11455 newobj->static_link, lowpc, highpc);
801e3a5b 11456
df8a16a1 11457 /* For C++, set the block's scope. */
45280282
IB
11458 if ((cu->language == language_cplus
11459 || cu->language == language_fortran
11460 || cu->language == language_d)
4d4ec4e5 11461 && cu->processing_has_namespace_info)
195a3f6c
TT
11462 block_set_scope (block, determine_prefix (die, cu),
11463 &objfile->objfile_obstack);
df8a16a1 11464
801e3a5b
JB
11465 /* If we have address ranges, record them. */
11466 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11467
fe978cb0 11468 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11469
34eaf542
TT
11470 /* Attach template arguments to function. */
11471 if (! VEC_empty (symbolp, template_args))
11472 {
11473 gdb_assert (templ_func != NULL);
11474
11475 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11476 templ_func->template_arguments
8d749320
SM
11477 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11478 templ_func->n_template_arguments);
34eaf542
TT
11479 memcpy (templ_func->template_arguments,
11480 VEC_address (symbolp, template_args),
11481 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11482 VEC_free (symbolp, template_args);
11483 }
11484
208d8187
JB
11485 /* In C++, we can have functions nested inside functions (e.g., when
11486 a function declares a class that has methods). This means that
11487 when we finish processing a function scope, we may need to go
11488 back to building a containing block's symbol lists. */
fe978cb0 11489 local_symbols = newobj->locals;
22cee43f 11490 local_using_directives = newobj->local_using_directives;
208d8187 11491
921e78cf
JB
11492 /* If we've finished processing a top-level function, subsequent
11493 symbols go in the file symbol list. */
11494 if (outermost_context_p ())
e142c38c 11495 cu->list_in_scope = &file_symbols;
c906108c
SS
11496}
11497
11498/* Process all the DIES contained within a lexical block scope. Start
11499 a new scope, process the dies, and then close the scope. */
11500
11501static void
e7c27a73 11502read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11503{
e7c27a73 11504 struct objfile *objfile = cu->objfile;
3e29f34a 11505 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11506 struct context_stack *newobj;
c906108c
SS
11507 CORE_ADDR lowpc, highpc;
11508 struct die_info *child_die;
e142c38c
DJ
11509 CORE_ADDR baseaddr;
11510
11511 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11512
11513 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11514 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11515 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11516 be nasty. Might be easier to properly extend generic blocks to
af34e669 11517 describe ranges. */
d85a05f0 11518 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11519 return;
3e29f34a
MR
11520 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11521 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11522
11523 push_context (0, lowpc);
639d11d3 11524 if (die->child != NULL)
c906108c 11525 {
639d11d3 11526 child_die = die->child;
c906108c
SS
11527 while (child_die && child_die->tag)
11528 {
e7c27a73 11529 process_die (child_die, cu);
c906108c
SS
11530 child_die = sibling_die (child_die);
11531 }
11532 }
3ea89b92 11533 inherit_abstract_dies (die, cu);
fe978cb0 11534 newobj = pop_context ();
c906108c 11535
22cee43f 11536 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11537 {
801e3a5b 11538 struct block *block
63e43d3a 11539 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11540 newobj->start_addr, highpc);
801e3a5b
JB
11541
11542 /* Note that recording ranges after traversing children, as we
11543 do here, means that recording a parent's ranges entails
11544 walking across all its children's ranges as they appear in
11545 the address map, which is quadratic behavior.
11546
11547 It would be nicer to record the parent's ranges before
11548 traversing its children, simply overriding whatever you find
11549 there. But since we don't even decide whether to create a
11550 block until after we've traversed its children, that's hard
11551 to do. */
11552 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11553 }
fe978cb0 11554 local_symbols = newobj->locals;
22cee43f 11555 local_using_directives = newobj->local_using_directives;
c906108c
SS
11556}
11557
96408a79
SA
11558/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11559
11560static void
11561read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11562{
11563 struct objfile *objfile = cu->objfile;
11564 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11565 CORE_ADDR pc, baseaddr;
11566 struct attribute *attr;
11567 struct call_site *call_site, call_site_local;
11568 void **slot;
11569 int nparams;
11570 struct die_info *child_die;
11571
11572 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11573
11574 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11575 if (!attr)
11576 {
11577 complaint (&symfile_complaints,
11578 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11579 "DIE 0x%x [in module %s]"),
4262abfb 11580 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11581 return;
11582 }
31aa7e4e 11583 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11584 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11585
11586 if (cu->call_site_htab == NULL)
11587 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11588 NULL, &objfile->objfile_obstack,
11589 hashtab_obstack_allocate, NULL);
11590 call_site_local.pc = pc;
11591 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11592 if (*slot != NULL)
11593 {
11594 complaint (&symfile_complaints,
11595 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11596 "DIE 0x%x [in module %s]"),
4262abfb
JK
11597 paddress (gdbarch, pc), die->offset.sect_off,
11598 objfile_name (objfile));
96408a79
SA
11599 return;
11600 }
11601
11602 /* Count parameters at the caller. */
11603
11604 nparams = 0;
11605 for (child_die = die->child; child_die && child_die->tag;
11606 child_die = sibling_die (child_die))
11607 {
11608 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11609 {
11610 complaint (&symfile_complaints,
11611 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11612 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11613 child_die->tag, child_die->offset.sect_off,
11614 objfile_name (objfile));
96408a79
SA
11615 continue;
11616 }
11617
11618 nparams++;
11619 }
11620
224c3ddb
SM
11621 call_site
11622 = ((struct call_site *)
11623 obstack_alloc (&objfile->objfile_obstack,
11624 sizeof (*call_site)
11625 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11626 *slot = call_site;
11627 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11628 call_site->pc = pc;
11629
11630 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11631 {
11632 struct die_info *func_die;
11633
11634 /* Skip also over DW_TAG_inlined_subroutine. */
11635 for (func_die = die->parent;
11636 func_die && func_die->tag != DW_TAG_subprogram
11637 && func_die->tag != DW_TAG_subroutine_type;
11638 func_die = func_die->parent);
11639
11640 /* DW_AT_GNU_all_call_sites is a superset
11641 of DW_AT_GNU_all_tail_call_sites. */
11642 if (func_die
11643 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11644 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11645 {
11646 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11647 not complete. But keep CALL_SITE for look ups via call_site_htab,
11648 both the initial caller containing the real return address PC and
11649 the final callee containing the current PC of a chain of tail
11650 calls do not need to have the tail call list complete. But any
11651 function candidate for a virtual tail call frame searched via
11652 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11653 determined unambiguously. */
11654 }
11655 else
11656 {
11657 struct type *func_type = NULL;
11658
11659 if (func_die)
11660 func_type = get_die_type (func_die, cu);
11661 if (func_type != NULL)
11662 {
11663 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11664
11665 /* Enlist this call site to the function. */
11666 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11667 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11668 }
11669 else
11670 complaint (&symfile_complaints,
11671 _("Cannot find function owning DW_TAG_GNU_call_site "
11672 "DIE 0x%x [in module %s]"),
4262abfb 11673 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11674 }
11675 }
11676
11677 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11678 if (attr == NULL)
11679 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11680 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11681 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11682 /* Keep NULL DWARF_BLOCK. */;
11683 else if (attr_form_is_block (attr))
11684 {
11685 struct dwarf2_locexpr_baton *dlbaton;
11686
8d749320 11687 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11688 dlbaton->data = DW_BLOCK (attr)->data;
11689 dlbaton->size = DW_BLOCK (attr)->size;
11690 dlbaton->per_cu = cu->per_cu;
11691
11692 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11693 }
7771576e 11694 else if (attr_form_is_ref (attr))
96408a79 11695 {
96408a79
SA
11696 struct dwarf2_cu *target_cu = cu;
11697 struct die_info *target_die;
11698
ac9ec31b 11699 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11700 gdb_assert (target_cu->objfile == objfile);
11701 if (die_is_declaration (target_die, target_cu))
11702 {
7d45c7c3 11703 const char *target_physname;
9112db09
JK
11704
11705 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11706 target_physname = dwarf2_string_attr (target_die,
11707 DW_AT_linkage_name,
11708 target_cu);
11709 if (target_physname == NULL)
11710 target_physname = dwarf2_string_attr (target_die,
11711 DW_AT_MIPS_linkage_name,
11712 target_cu);
11713 if (target_physname == NULL)
9112db09 11714 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11715 if (target_physname == NULL)
11716 complaint (&symfile_complaints,
11717 _("DW_AT_GNU_call_site_target target DIE has invalid "
11718 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11719 die->offset.sect_off, objfile_name (objfile));
96408a79 11720 else
7d455152 11721 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11722 }
11723 else
11724 {
11725 CORE_ADDR lowpc;
11726
11727 /* DW_AT_entry_pc should be preferred. */
11728 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11729 complaint (&symfile_complaints,
11730 _("DW_AT_GNU_call_site_target target DIE has invalid "
11731 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11732 die->offset.sect_off, objfile_name (objfile));
96408a79 11733 else
3e29f34a
MR
11734 {
11735 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11736 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11737 }
96408a79
SA
11738 }
11739 }
11740 else
11741 complaint (&symfile_complaints,
11742 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11743 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11744 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11745
11746 call_site->per_cu = cu->per_cu;
11747
11748 for (child_die = die->child;
11749 child_die && child_die->tag;
11750 child_die = sibling_die (child_die))
11751 {
96408a79 11752 struct call_site_parameter *parameter;
1788b2d3 11753 struct attribute *loc, *origin;
96408a79
SA
11754
11755 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11756 {
11757 /* Already printed the complaint above. */
11758 continue;
11759 }
11760
11761 gdb_assert (call_site->parameter_count < nparams);
11762 parameter = &call_site->parameter[call_site->parameter_count];
11763
1788b2d3
JK
11764 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11765 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11766 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11767
24c5c679 11768 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11769 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11770 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11771 {
11772 sect_offset offset;
11773
11774 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11775 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11776 if (!offset_in_cu_p (&cu->header, offset))
11777 {
11778 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11779 binding can be done only inside one CU. Such referenced DIE
11780 therefore cannot be even moved to DW_TAG_partial_unit. */
11781 complaint (&symfile_complaints,
11782 _("DW_AT_abstract_origin offset is not in CU for "
11783 "DW_TAG_GNU_call_site child DIE 0x%x "
11784 "[in module %s]"),
4262abfb 11785 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11786 continue;
11787 }
1788b2d3
JK
11788 parameter->u.param_offset.cu_off = (offset.sect_off
11789 - cu->header.offset.sect_off);
11790 }
11791 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11792 {
11793 complaint (&symfile_complaints,
11794 _("No DW_FORM_block* DW_AT_location for "
11795 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11796 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11797 continue;
11798 }
24c5c679 11799 else
96408a79 11800 {
24c5c679
JK
11801 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11802 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11803 if (parameter->u.dwarf_reg != -1)
11804 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11805 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11806 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11807 &parameter->u.fb_offset))
11808 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11809 else
11810 {
11811 complaint (&symfile_complaints,
11812 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11813 "for DW_FORM_block* DW_AT_location is supported for "
11814 "DW_TAG_GNU_call_site child DIE 0x%x "
11815 "[in module %s]"),
4262abfb 11816 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11817 continue;
11818 }
96408a79
SA
11819 }
11820
11821 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11822 if (!attr_form_is_block (attr))
11823 {
11824 complaint (&symfile_complaints,
11825 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11826 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11827 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11828 continue;
11829 }
11830 parameter->value = DW_BLOCK (attr)->data;
11831 parameter->value_size = DW_BLOCK (attr)->size;
11832
11833 /* Parameters are not pre-cleared by memset above. */
11834 parameter->data_value = NULL;
11835 parameter->data_value_size = 0;
11836 call_site->parameter_count++;
11837
11838 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11839 if (attr)
11840 {
11841 if (!attr_form_is_block (attr))
11842 complaint (&symfile_complaints,
11843 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11844 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11845 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11846 else
11847 {
11848 parameter->data_value = DW_BLOCK (attr)->data;
11849 parameter->data_value_size = DW_BLOCK (attr)->size;
11850 }
11851 }
11852 }
11853}
11854
43039443 11855/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11856 Return 1 if the attributes are present and valid, otherwise, return 0.
11857 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11858
11859static int
11860dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11861 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11862 struct partial_symtab *ranges_pst)
43039443
JK
11863{
11864 struct objfile *objfile = cu->objfile;
3e29f34a 11865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11866 struct comp_unit_head *cu_header = &cu->header;
11867 bfd *obfd = objfile->obfd;
11868 unsigned int addr_size = cu_header->addr_size;
11869 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11870 /* Base address selection entry. */
11871 CORE_ADDR base;
11872 int found_base;
11873 unsigned int dummy;
d521ce57 11874 const gdb_byte *buffer;
43039443
JK
11875 CORE_ADDR marker;
11876 int low_set;
11877 CORE_ADDR low = 0;
11878 CORE_ADDR high = 0;
ff013f42 11879 CORE_ADDR baseaddr;
43039443 11880
d00adf39
DE
11881 found_base = cu->base_known;
11882 base = cu->base_address;
43039443 11883
be391dca 11884 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11885 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11886 {
11887 complaint (&symfile_complaints,
11888 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11889 offset);
11890 return 0;
11891 }
dce234bc 11892 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11893
11894 /* Read in the largest possible address. */
11895 marker = read_address (obfd, buffer, cu, &dummy);
11896 if ((marker & mask) == mask)
11897 {
11898 /* If we found the largest possible address, then
11899 read the base address. */
11900 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11901 buffer += 2 * addr_size;
11902 offset += 2 * addr_size;
11903 found_base = 1;
11904 }
11905
11906 low_set = 0;
11907
e7030f15 11908 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11909
43039443
JK
11910 while (1)
11911 {
11912 CORE_ADDR range_beginning, range_end;
11913
11914 range_beginning = read_address (obfd, buffer, cu, &dummy);
11915 buffer += addr_size;
11916 range_end = read_address (obfd, buffer, cu, &dummy);
11917 buffer += addr_size;
11918 offset += 2 * addr_size;
11919
11920 /* An end of list marker is a pair of zero addresses. */
11921 if (range_beginning == 0 && range_end == 0)
11922 /* Found the end of list entry. */
11923 break;
11924
11925 /* Each base address selection entry is a pair of 2 values.
11926 The first is the largest possible address, the second is
11927 the base address. Check for a base address here. */
11928 if ((range_beginning & mask) == mask)
11929 {
11930 /* If we found the largest possible address, then
11931 read the base address. */
11932 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11933 found_base = 1;
11934 continue;
11935 }
11936
11937 if (!found_base)
11938 {
11939 /* We have no valid base address for the ranges
11940 data. */
11941 complaint (&symfile_complaints,
11942 _("Invalid .debug_ranges data (no base address)"));
11943 return 0;
11944 }
11945
9277c30c
UW
11946 if (range_beginning > range_end)
11947 {
11948 /* Inverted range entries are invalid. */
11949 complaint (&symfile_complaints,
11950 _("Invalid .debug_ranges data (inverted range)"));
11951 return 0;
11952 }
11953
11954 /* Empty range entries have no effect. */
11955 if (range_beginning == range_end)
11956 continue;
11957
43039443
JK
11958 range_beginning += base;
11959 range_end += base;
11960
01093045
DE
11961 /* A not-uncommon case of bad debug info.
11962 Don't pollute the addrmap with bad data. */
11963 if (range_beginning + baseaddr == 0
11964 && !dwarf2_per_objfile->has_section_at_zero)
11965 {
11966 complaint (&symfile_complaints,
11967 _(".debug_ranges entry has start address of zero"
4262abfb 11968 " [in module %s]"), objfile_name (objfile));
01093045
DE
11969 continue;
11970 }
11971
9277c30c 11972 if (ranges_pst != NULL)
3e29f34a
MR
11973 {
11974 CORE_ADDR lowpc;
11975 CORE_ADDR highpc;
11976
11977 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11978 range_beginning + baseaddr);
11979 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11980 range_end + baseaddr);
11981 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11982 ranges_pst);
11983 }
ff013f42 11984
43039443
JK
11985 /* FIXME: This is recording everything as a low-high
11986 segment of consecutive addresses. We should have a
11987 data structure for discontiguous block ranges
11988 instead. */
11989 if (! low_set)
11990 {
11991 low = range_beginning;
11992 high = range_end;
11993 low_set = 1;
11994 }
11995 else
11996 {
11997 if (range_beginning < low)
11998 low = range_beginning;
11999 if (range_end > high)
12000 high = range_end;
12001 }
12002 }
12003
12004 if (! low_set)
12005 /* If the first entry is an end-of-list marker, the range
12006 describes an empty scope, i.e. no instructions. */
12007 return 0;
12008
12009 if (low_return)
12010 *low_return = low;
12011 if (high_return)
12012 *high_return = high;
12013 return 1;
12014}
12015
af34e669
DJ
12016/* Get low and high pc attributes from a die. Return 1 if the attributes
12017 are present and valid, otherwise, return 0. Return -1 if the range is
12018 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12019
c906108c 12020static int
af34e669 12021dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12022 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12023 struct partial_symtab *pst)
c906108c
SS
12024{
12025 struct attribute *attr;
91da1414 12026 struct attribute *attr_high;
af34e669
DJ
12027 CORE_ADDR low = 0;
12028 CORE_ADDR high = 0;
12029 int ret = 0;
c906108c 12030
91da1414
MW
12031 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12032 if (attr_high)
af34e669 12033 {
e142c38c 12034 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12035 if (attr)
91da1414 12036 {
31aa7e4e
JB
12037 low = attr_value_as_address (attr);
12038 high = attr_value_as_address (attr_high);
12039 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12040 high += low;
91da1414 12041 }
af34e669
DJ
12042 else
12043 /* Found high w/o low attribute. */
12044 return 0;
12045
12046 /* Found consecutive range of addresses. */
12047 ret = 1;
12048 }
c906108c 12049 else
af34e669 12050 {
e142c38c 12051 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12052 if (attr != NULL)
12053 {
ab435259
DE
12054 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12055 We take advantage of the fact that DW_AT_ranges does not appear
12056 in DW_TAG_compile_unit of DWO files. */
12057 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12058 unsigned int ranges_offset = (DW_UNSND (attr)
12059 + (need_ranges_base
12060 ? cu->ranges_base
12061 : 0));
2e3cf129 12062
af34e669 12063 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12064 .debug_ranges section. */
2e3cf129 12065 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12066 return 0;
43039443 12067 /* Found discontinuous range of addresses. */
af34e669
DJ
12068 ret = -1;
12069 }
12070 }
c906108c 12071
9373cf26
JK
12072 /* read_partial_die has also the strict LOW < HIGH requirement. */
12073 if (high <= low)
c906108c
SS
12074 return 0;
12075
12076 /* When using the GNU linker, .gnu.linkonce. sections are used to
12077 eliminate duplicate copies of functions and vtables and such.
12078 The linker will arbitrarily choose one and discard the others.
12079 The AT_*_pc values for such functions refer to local labels in
12080 these sections. If the section from that file was discarded, the
12081 labels are not in the output, so the relocs get a value of 0.
12082 If this is a discarded function, mark the pc bounds as invalid,
12083 so that GDB will ignore it. */
72dca2f5 12084 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12085 return 0;
12086
12087 *lowpc = low;
96408a79
SA
12088 if (highpc)
12089 *highpc = high;
af34e669 12090 return ret;
c906108c
SS
12091}
12092
b084d499
JB
12093/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12094 its low and high PC addresses. Do nothing if these addresses could not
12095 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12096 and HIGHPC to the high address if greater than HIGHPC. */
12097
12098static void
12099dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12100 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12101 struct dwarf2_cu *cu)
12102{
12103 CORE_ADDR low, high;
12104 struct die_info *child = die->child;
12105
d85a05f0 12106 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12107 {
12108 *lowpc = min (*lowpc, low);
12109 *highpc = max (*highpc, high);
12110 }
12111
12112 /* If the language does not allow nested subprograms (either inside
12113 subprograms or lexical blocks), we're done. */
12114 if (cu->language != language_ada)
12115 return;
6e70227d 12116
b084d499
JB
12117 /* Check all the children of the given DIE. If it contains nested
12118 subprograms, then check their pc bounds. Likewise, we need to
12119 check lexical blocks as well, as they may also contain subprogram
12120 definitions. */
12121 while (child && child->tag)
12122 {
12123 if (child->tag == DW_TAG_subprogram
12124 || child->tag == DW_TAG_lexical_block)
12125 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12126 child = sibling_die (child);
12127 }
12128}
12129
fae299cd
DC
12130/* Get the low and high pc's represented by the scope DIE, and store
12131 them in *LOWPC and *HIGHPC. If the correct values can't be
12132 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12133
12134static void
12135get_scope_pc_bounds (struct die_info *die,
12136 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12137 struct dwarf2_cu *cu)
12138{
12139 CORE_ADDR best_low = (CORE_ADDR) -1;
12140 CORE_ADDR best_high = (CORE_ADDR) 0;
12141 CORE_ADDR current_low, current_high;
12142
d85a05f0 12143 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12144 {
12145 best_low = current_low;
12146 best_high = current_high;
12147 }
12148 else
12149 {
12150 struct die_info *child = die->child;
12151
12152 while (child && child->tag)
12153 {
12154 switch (child->tag) {
12155 case DW_TAG_subprogram:
b084d499 12156 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12157 break;
12158 case DW_TAG_namespace:
f55ee35c 12159 case DW_TAG_module:
fae299cd
DC
12160 /* FIXME: carlton/2004-01-16: Should we do this for
12161 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12162 that current GCC's always emit the DIEs corresponding
12163 to definitions of methods of classes as children of a
12164 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12165 the DIEs giving the declarations, which could be
12166 anywhere). But I don't see any reason why the
12167 standards says that they have to be there. */
12168 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12169
12170 if (current_low != ((CORE_ADDR) -1))
12171 {
12172 best_low = min (best_low, current_low);
12173 best_high = max (best_high, current_high);
12174 }
12175 break;
12176 default:
0963b4bd 12177 /* Ignore. */
fae299cd
DC
12178 break;
12179 }
12180
12181 child = sibling_die (child);
12182 }
12183 }
12184
12185 *lowpc = best_low;
12186 *highpc = best_high;
12187}
12188
801e3a5b
JB
12189/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12190 in DIE. */
380bca97 12191
801e3a5b
JB
12192static void
12193dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12194 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12195{
bb5ed363 12196 struct objfile *objfile = cu->objfile;
3e29f34a 12197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12198 struct attribute *attr;
91da1414 12199 struct attribute *attr_high;
801e3a5b 12200
91da1414
MW
12201 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12202 if (attr_high)
801e3a5b 12203 {
801e3a5b
JB
12204 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12205 if (attr)
12206 {
31aa7e4e
JB
12207 CORE_ADDR low = attr_value_as_address (attr);
12208 CORE_ADDR high = attr_value_as_address (attr_high);
12209
12210 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12211 high += low;
9a619af0 12212
3e29f34a
MR
12213 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12214 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12215 record_block_range (block, low, high - 1);
801e3a5b
JB
12216 }
12217 }
12218
12219 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12220 if (attr)
12221 {
bb5ed363 12222 bfd *obfd = objfile->obfd;
ab435259
DE
12223 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12224 We take advantage of the fact that DW_AT_ranges does not appear
12225 in DW_TAG_compile_unit of DWO files. */
12226 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12227
12228 /* The value of the DW_AT_ranges attribute is the offset of the
12229 address range list in the .debug_ranges section. */
ab435259
DE
12230 unsigned long offset = (DW_UNSND (attr)
12231 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12232 const gdb_byte *buffer;
801e3a5b
JB
12233
12234 /* For some target architectures, but not others, the
12235 read_address function sign-extends the addresses it returns.
12236 To recognize base address selection entries, we need a
12237 mask. */
12238 unsigned int addr_size = cu->header.addr_size;
12239 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12240
12241 /* The base address, to which the next pair is relative. Note
12242 that this 'base' is a DWARF concept: most entries in a range
12243 list are relative, to reduce the number of relocs against the
12244 debugging information. This is separate from this function's
12245 'baseaddr' argument, which GDB uses to relocate debugging
12246 information from a shared library based on the address at
12247 which the library was loaded. */
d00adf39
DE
12248 CORE_ADDR base = cu->base_address;
12249 int base_known = cu->base_known;
801e3a5b 12250
d62bfeaf 12251 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12252 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12253 {
12254 complaint (&symfile_complaints,
12255 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12256 offset);
12257 return;
12258 }
d62bfeaf 12259 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12260
12261 for (;;)
12262 {
12263 unsigned int bytes_read;
12264 CORE_ADDR start, end;
12265
12266 start = read_address (obfd, buffer, cu, &bytes_read);
12267 buffer += bytes_read;
12268 end = read_address (obfd, buffer, cu, &bytes_read);
12269 buffer += bytes_read;
12270
12271 /* Did we find the end of the range list? */
12272 if (start == 0 && end == 0)
12273 break;
12274
12275 /* Did we find a base address selection entry? */
12276 else if ((start & base_select_mask) == base_select_mask)
12277 {
12278 base = end;
12279 base_known = 1;
12280 }
12281
12282 /* We found an ordinary address range. */
12283 else
12284 {
12285 if (!base_known)
12286 {
12287 complaint (&symfile_complaints,
3e43a32a
MS
12288 _("Invalid .debug_ranges data "
12289 "(no base address)"));
801e3a5b
JB
12290 return;
12291 }
12292
9277c30c
UW
12293 if (start > end)
12294 {
12295 /* Inverted range entries are invalid. */
12296 complaint (&symfile_complaints,
12297 _("Invalid .debug_ranges data "
12298 "(inverted range)"));
12299 return;
12300 }
12301
12302 /* Empty range entries have no effect. */
12303 if (start == end)
12304 continue;
12305
01093045
DE
12306 start += base + baseaddr;
12307 end += base + baseaddr;
12308
12309 /* A not-uncommon case of bad debug info.
12310 Don't pollute the addrmap with bad data. */
12311 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12312 {
12313 complaint (&symfile_complaints,
12314 _(".debug_ranges entry has start address of zero"
4262abfb 12315 " [in module %s]"), objfile_name (objfile));
01093045
DE
12316 continue;
12317 }
12318
3e29f34a
MR
12319 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12320 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12321 record_block_range (block, start, end - 1);
801e3a5b
JB
12322 }
12323 }
12324 }
12325}
12326
685b1105
JK
12327/* Check whether the producer field indicates either of GCC < 4.6, or the
12328 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12329
685b1105
JK
12330static void
12331check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12332{
12333 const char *cs;
38360086 12334 int major, minor;
60d5a603
JK
12335
12336 if (cu->producer == NULL)
12337 {
12338 /* For unknown compilers expect their behavior is DWARF version
12339 compliant.
12340
12341 GCC started to support .debug_types sections by -gdwarf-4 since
12342 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12343 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12344 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12345 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12346 }
b1ffba5a 12347 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12348 {
38360086
MW
12349 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12350 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12351 }
61012eef 12352 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12353 cu->producer_is_icc = 1;
12354 else
12355 {
12356 /* For other non-GCC compilers, expect their behavior is DWARF version
12357 compliant. */
60d5a603
JK
12358 }
12359
ba919b58 12360 cu->checked_producer = 1;
685b1105 12361}
ba919b58 12362
685b1105
JK
12363/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12364 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12365 during 4.6.0 experimental. */
12366
12367static int
12368producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12369{
12370 if (!cu->checked_producer)
12371 check_producer (cu);
12372
12373 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12374}
12375
12376/* Return the default accessibility type if it is not overriden by
12377 DW_AT_accessibility. */
12378
12379static enum dwarf_access_attribute
12380dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12381{
12382 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12383 {
12384 /* The default DWARF 2 accessibility for members is public, the default
12385 accessibility for inheritance is private. */
12386
12387 if (die->tag != DW_TAG_inheritance)
12388 return DW_ACCESS_public;
12389 else
12390 return DW_ACCESS_private;
12391 }
12392 else
12393 {
12394 /* DWARF 3+ defines the default accessibility a different way. The same
12395 rules apply now for DW_TAG_inheritance as for the members and it only
12396 depends on the container kind. */
12397
12398 if (die->parent->tag == DW_TAG_class_type)
12399 return DW_ACCESS_private;
12400 else
12401 return DW_ACCESS_public;
12402 }
12403}
12404
74ac6d43
TT
12405/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12406 offset. If the attribute was not found return 0, otherwise return
12407 1. If it was found but could not properly be handled, set *OFFSET
12408 to 0. */
12409
12410static int
12411handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12412 LONGEST *offset)
12413{
12414 struct attribute *attr;
12415
12416 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12417 if (attr != NULL)
12418 {
12419 *offset = 0;
12420
12421 /* Note that we do not check for a section offset first here.
12422 This is because DW_AT_data_member_location is new in DWARF 4,
12423 so if we see it, we can assume that a constant form is really
12424 a constant and not a section offset. */
12425 if (attr_form_is_constant (attr))
12426 *offset = dwarf2_get_attr_constant_value (attr, 0);
12427 else if (attr_form_is_section_offset (attr))
12428 dwarf2_complex_location_expr_complaint ();
12429 else if (attr_form_is_block (attr))
12430 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12431 else
12432 dwarf2_complex_location_expr_complaint ();
12433
12434 return 1;
12435 }
12436
12437 return 0;
12438}
12439
c906108c
SS
12440/* Add an aggregate field to the field list. */
12441
12442static void
107d2387 12443dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12444 struct dwarf2_cu *cu)
6e70227d 12445{
e7c27a73 12446 struct objfile *objfile = cu->objfile;
5e2b427d 12447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12448 struct nextfield *new_field;
12449 struct attribute *attr;
12450 struct field *fp;
15d034d0 12451 const char *fieldname = "";
c906108c
SS
12452
12453 /* Allocate a new field list entry and link it in. */
8d749320 12454 new_field = XNEW (struct nextfield);
b8c9b27d 12455 make_cleanup (xfree, new_field);
c906108c 12456 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12457
12458 if (die->tag == DW_TAG_inheritance)
12459 {
12460 new_field->next = fip->baseclasses;
12461 fip->baseclasses = new_field;
12462 }
12463 else
12464 {
12465 new_field->next = fip->fields;
12466 fip->fields = new_field;
12467 }
c906108c
SS
12468 fip->nfields++;
12469
e142c38c 12470 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12471 if (attr)
12472 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12473 else
12474 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12475 if (new_field->accessibility != DW_ACCESS_public)
12476 fip->non_public_fields = 1;
60d5a603 12477
e142c38c 12478 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12479 if (attr)
12480 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12481 else
12482 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12483
12484 fp = &new_field->field;
a9a9bd0f 12485
e142c38c 12486 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12487 {
74ac6d43
TT
12488 LONGEST offset;
12489
a9a9bd0f 12490 /* Data member other than a C++ static data member. */
6e70227d 12491
c906108c 12492 /* Get type of field. */
e7c27a73 12493 fp->type = die_type (die, cu);
c906108c 12494
d6a843b5 12495 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12496
c906108c 12497 /* Get bit size of field (zero if none). */
e142c38c 12498 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12499 if (attr)
12500 {
12501 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12502 }
12503 else
12504 {
12505 FIELD_BITSIZE (*fp) = 0;
12506 }
12507
12508 /* Get bit offset of field. */
74ac6d43
TT
12509 if (handle_data_member_location (die, cu, &offset))
12510 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12511 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12512 if (attr)
12513 {
5e2b427d 12514 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12515 {
12516 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12517 additional bit offset from the MSB of the containing
12518 anonymous object to the MSB of the field. We don't
12519 have to do anything special since we don't need to
12520 know the size of the anonymous object. */
f41f5e61 12521 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12522 }
12523 else
12524 {
12525 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12526 MSB of the anonymous object, subtract off the number of
12527 bits from the MSB of the field to the MSB of the
12528 object, and then subtract off the number of bits of
12529 the field itself. The result is the bit offset of
12530 the LSB of the field. */
c906108c
SS
12531 int anonymous_size;
12532 int bit_offset = DW_UNSND (attr);
12533
e142c38c 12534 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12535 if (attr)
12536 {
12537 /* The size of the anonymous object containing
12538 the bit field is explicit, so use the
12539 indicated size (in bytes). */
12540 anonymous_size = DW_UNSND (attr);
12541 }
12542 else
12543 {
12544 /* The size of the anonymous object containing
12545 the bit field must be inferred from the type
12546 attribute of the data member containing the
12547 bit field. */
12548 anonymous_size = TYPE_LENGTH (fp->type);
12549 }
f41f5e61
PA
12550 SET_FIELD_BITPOS (*fp,
12551 (FIELD_BITPOS (*fp)
12552 + anonymous_size * bits_per_byte
12553 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12554 }
12555 }
12556
12557 /* Get name of field. */
39cbfefa
DJ
12558 fieldname = dwarf2_name (die, cu);
12559 if (fieldname == NULL)
12560 fieldname = "";
d8151005
DJ
12561
12562 /* The name is already allocated along with this objfile, so we don't
12563 need to duplicate it for the type. */
12564 fp->name = fieldname;
c906108c
SS
12565
12566 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12567 pointer or virtual base class pointer) to private. */
e142c38c 12568 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12569 {
d48cc9dd 12570 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12571 new_field->accessibility = DW_ACCESS_private;
12572 fip->non_public_fields = 1;
12573 }
12574 }
a9a9bd0f 12575 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12576 {
a9a9bd0f
DC
12577 /* C++ static member. */
12578
12579 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12580 is a declaration, but all versions of G++ as of this writing
12581 (so through at least 3.2.1) incorrectly generate
12582 DW_TAG_variable tags. */
6e70227d 12583
ff355380 12584 const char *physname;
c906108c 12585
a9a9bd0f 12586 /* Get name of field. */
39cbfefa
DJ
12587 fieldname = dwarf2_name (die, cu);
12588 if (fieldname == NULL)
c906108c
SS
12589 return;
12590
254e6b9e 12591 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12592 if (attr
12593 /* Only create a symbol if this is an external value.
12594 new_symbol checks this and puts the value in the global symbol
12595 table, which we want. If it is not external, new_symbol
12596 will try to put the value in cu->list_in_scope which is wrong. */
12597 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12598 {
12599 /* A static const member, not much different than an enum as far as
12600 we're concerned, except that we can support more types. */
12601 new_symbol (die, NULL, cu);
12602 }
12603
2df3850c 12604 /* Get physical name. */
ff355380 12605 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12606
d8151005
DJ
12607 /* The name is already allocated along with this objfile, so we don't
12608 need to duplicate it for the type. */
12609 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12610 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12611 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12612 }
12613 else if (die->tag == DW_TAG_inheritance)
12614 {
74ac6d43 12615 LONGEST offset;
d4b96c9a 12616
74ac6d43
TT
12617 /* C++ base class field. */
12618 if (handle_data_member_location (die, cu, &offset))
12619 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12620 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12621 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12622 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12623 fip->nbaseclasses++;
12624 }
12625}
12626
98751a41
JK
12627/* Add a typedef defined in the scope of the FIP's class. */
12628
12629static void
12630dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12631 struct dwarf2_cu *cu)
6e70227d 12632{
98751a41 12633 struct objfile *objfile = cu->objfile;
98751a41
JK
12634 struct typedef_field_list *new_field;
12635 struct attribute *attr;
12636 struct typedef_field *fp;
12637 char *fieldname = "";
12638
12639 /* Allocate a new field list entry and link it in. */
8d749320 12640 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12641 make_cleanup (xfree, new_field);
12642
12643 gdb_assert (die->tag == DW_TAG_typedef);
12644
12645 fp = &new_field->field;
12646
12647 /* Get name of field. */
12648 fp->name = dwarf2_name (die, cu);
12649 if (fp->name == NULL)
12650 return;
12651
12652 fp->type = read_type_die (die, cu);
12653
12654 new_field->next = fip->typedef_field_list;
12655 fip->typedef_field_list = new_field;
12656 fip->typedef_field_list_count++;
12657}
12658
c906108c
SS
12659/* Create the vector of fields, and attach it to the type. */
12660
12661static void
fba45db2 12662dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12663 struct dwarf2_cu *cu)
c906108c
SS
12664{
12665 int nfields = fip->nfields;
12666
12667 /* Record the field count, allocate space for the array of fields,
12668 and create blank accessibility bitfields if necessary. */
12669 TYPE_NFIELDS (type) = nfields;
12670 TYPE_FIELDS (type) = (struct field *)
12671 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12672 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12673
b4ba55a1 12674 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12675 {
12676 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12677
12678 TYPE_FIELD_PRIVATE_BITS (type) =
12679 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12680 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12681
12682 TYPE_FIELD_PROTECTED_BITS (type) =
12683 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12684 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12685
774b6a14
TT
12686 TYPE_FIELD_IGNORE_BITS (type) =
12687 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12688 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12689 }
12690
12691 /* If the type has baseclasses, allocate and clear a bit vector for
12692 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12693 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12694 {
12695 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12696 unsigned char *pointer;
c906108c
SS
12697
12698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12699 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12700 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12701 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12702 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12703 }
12704
3e43a32a
MS
12705 /* Copy the saved-up fields into the field vector. Start from the head of
12706 the list, adding to the tail of the field array, so that they end up in
12707 the same order in the array in which they were added to the list. */
c906108c
SS
12708 while (nfields-- > 0)
12709 {
7d0ccb61
DJ
12710 struct nextfield *fieldp;
12711
12712 if (fip->fields)
12713 {
12714 fieldp = fip->fields;
12715 fip->fields = fieldp->next;
12716 }
12717 else
12718 {
12719 fieldp = fip->baseclasses;
12720 fip->baseclasses = fieldp->next;
12721 }
12722
12723 TYPE_FIELD (type, nfields) = fieldp->field;
12724 switch (fieldp->accessibility)
c906108c 12725 {
c5aa993b 12726 case DW_ACCESS_private:
b4ba55a1
JB
12727 if (cu->language != language_ada)
12728 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12729 break;
c906108c 12730
c5aa993b 12731 case DW_ACCESS_protected:
b4ba55a1
JB
12732 if (cu->language != language_ada)
12733 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12734 break;
c906108c 12735
c5aa993b
JM
12736 case DW_ACCESS_public:
12737 break;
c906108c 12738
c5aa993b
JM
12739 default:
12740 /* Unknown accessibility. Complain and treat it as public. */
12741 {
e2e0b3e5 12742 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12743 fieldp->accessibility);
c5aa993b
JM
12744 }
12745 break;
c906108c
SS
12746 }
12747 if (nfields < fip->nbaseclasses)
12748 {
7d0ccb61 12749 switch (fieldp->virtuality)
c906108c 12750 {
c5aa993b
JM
12751 case DW_VIRTUALITY_virtual:
12752 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12753 if (cu->language == language_ada)
a73c6dcd 12754 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12755 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12756 break;
c906108c
SS
12757 }
12758 }
c906108c
SS
12759 }
12760}
12761
7d27a96d
TT
12762/* Return true if this member function is a constructor, false
12763 otherwise. */
12764
12765static int
12766dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12767{
12768 const char *fieldname;
fe978cb0 12769 const char *type_name;
7d27a96d
TT
12770 int len;
12771
12772 if (die->parent == NULL)
12773 return 0;
12774
12775 if (die->parent->tag != DW_TAG_structure_type
12776 && die->parent->tag != DW_TAG_union_type
12777 && die->parent->tag != DW_TAG_class_type)
12778 return 0;
12779
12780 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12781 type_name = dwarf2_name (die->parent, cu);
12782 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12783 return 0;
12784
12785 len = strlen (fieldname);
fe978cb0
PA
12786 return (strncmp (fieldname, type_name, len) == 0
12787 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12788}
12789
c906108c
SS
12790/* Add a member function to the proper fieldlist. */
12791
12792static void
107d2387 12793dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12794 struct type *type, struct dwarf2_cu *cu)
c906108c 12795{
e7c27a73 12796 struct objfile *objfile = cu->objfile;
c906108c
SS
12797 struct attribute *attr;
12798 struct fnfieldlist *flp;
12799 int i;
12800 struct fn_field *fnp;
15d034d0 12801 const char *fieldname;
c906108c 12802 struct nextfnfield *new_fnfield;
f792889a 12803 struct type *this_type;
60d5a603 12804 enum dwarf_access_attribute accessibility;
c906108c 12805
b4ba55a1 12806 if (cu->language == language_ada)
a73c6dcd 12807 error (_("unexpected member function in Ada type"));
b4ba55a1 12808
2df3850c 12809 /* Get name of member function. */
39cbfefa
DJ
12810 fieldname = dwarf2_name (die, cu);
12811 if (fieldname == NULL)
2df3850c 12812 return;
c906108c 12813
c906108c
SS
12814 /* Look up member function name in fieldlist. */
12815 for (i = 0; i < fip->nfnfields; i++)
12816 {
27bfe10e 12817 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12818 break;
12819 }
12820
12821 /* Create new list element if necessary. */
12822 if (i < fip->nfnfields)
12823 flp = &fip->fnfieldlists[i];
12824 else
12825 {
12826 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12827 {
12828 fip->fnfieldlists = (struct fnfieldlist *)
12829 xrealloc (fip->fnfieldlists,
12830 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12831 * sizeof (struct fnfieldlist));
c906108c 12832 if (fip->nfnfields == 0)
c13c43fd 12833 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12834 }
12835 flp = &fip->fnfieldlists[fip->nfnfields];
12836 flp->name = fieldname;
12837 flp->length = 0;
12838 flp->head = NULL;
3da10d80 12839 i = fip->nfnfields++;
c906108c
SS
12840 }
12841
12842 /* Create a new member function field and chain it to the field list
0963b4bd 12843 entry. */
8d749320 12844 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12845 make_cleanup (xfree, new_fnfield);
c906108c
SS
12846 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12847 new_fnfield->next = flp->head;
12848 flp->head = new_fnfield;
12849 flp->length++;
12850
12851 /* Fill in the member function field info. */
12852 fnp = &new_fnfield->fnfield;
3da10d80
KS
12853
12854 /* Delay processing of the physname until later. */
12855 if (cu->language == language_cplus || cu->language == language_java)
12856 {
12857 add_to_method_list (type, i, flp->length - 1, fieldname,
12858 die, cu);
12859 }
12860 else
12861 {
1d06ead6 12862 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12863 fnp->physname = physname ? physname : "";
12864 }
12865
c906108c 12866 fnp->type = alloc_type (objfile);
f792889a
DJ
12867 this_type = read_type_die (die, cu);
12868 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12869 {
f792889a 12870 int nparams = TYPE_NFIELDS (this_type);
c906108c 12871
f792889a 12872 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12873 of the method itself (TYPE_CODE_METHOD). */
12874 smash_to_method_type (fnp->type, type,
f792889a
DJ
12875 TYPE_TARGET_TYPE (this_type),
12876 TYPE_FIELDS (this_type),
12877 TYPE_NFIELDS (this_type),
12878 TYPE_VARARGS (this_type));
c906108c
SS
12879
12880 /* Handle static member functions.
c5aa993b 12881 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12882 member functions. G++ helps GDB by marking the first
12883 parameter for non-static member functions (which is the this
12884 pointer) as artificial. We obtain this information from
12885 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12886 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12887 fnp->voffset = VOFFSET_STATIC;
12888 }
12889 else
e2e0b3e5 12890 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12891 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12892
12893 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12894 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12895 fnp->fcontext = die_containing_type (die, cu);
c906108c 12896
3e43a32a
MS
12897 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12898 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12899
12900 /* Get accessibility. */
e142c38c 12901 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12902 if (attr)
aead7601 12903 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12904 else
12905 accessibility = dwarf2_default_access_attribute (die, cu);
12906 switch (accessibility)
c906108c 12907 {
60d5a603
JK
12908 case DW_ACCESS_private:
12909 fnp->is_private = 1;
12910 break;
12911 case DW_ACCESS_protected:
12912 fnp->is_protected = 1;
12913 break;
c906108c
SS
12914 }
12915
b02dede2 12916 /* Check for artificial methods. */
e142c38c 12917 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12918 if (attr && DW_UNSND (attr) != 0)
12919 fnp->is_artificial = 1;
12920
7d27a96d
TT
12921 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12922
0d564a31 12923 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12924 function. For older versions of GCC, this is an offset in the
12925 appropriate virtual table, as specified by DW_AT_containing_type.
12926 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12927 to the object address. */
12928
e142c38c 12929 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12930 if (attr)
8e19ed76 12931 {
aec5aa8b 12932 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12933 {
aec5aa8b
TT
12934 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12935 {
12936 /* Old-style GCC. */
12937 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12938 }
12939 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12940 || (DW_BLOCK (attr)->size > 1
12941 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12942 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12943 {
12944 struct dwarf_block blk;
12945 int offset;
12946
12947 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12948 ? 1 : 2);
12949 blk.size = DW_BLOCK (attr)->size - offset;
12950 blk.data = DW_BLOCK (attr)->data + offset;
12951 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12952 if ((fnp->voffset % cu->header.addr_size) != 0)
12953 dwarf2_complex_location_expr_complaint ();
12954 else
12955 fnp->voffset /= cu->header.addr_size;
12956 fnp->voffset += 2;
12957 }
12958 else
12959 dwarf2_complex_location_expr_complaint ();
12960
12961 if (!fnp->fcontext)
7e993ebf
KS
12962 {
12963 /* If there is no `this' field and no DW_AT_containing_type,
12964 we cannot actually find a base class context for the
12965 vtable! */
12966 if (TYPE_NFIELDS (this_type) == 0
12967 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12968 {
12969 complaint (&symfile_complaints,
12970 _("cannot determine context for virtual member "
12971 "function \"%s\" (offset %d)"),
12972 fieldname, die->offset.sect_off);
12973 }
12974 else
12975 {
12976 fnp->fcontext
12977 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12978 }
12979 }
aec5aa8b 12980 }
3690dd37 12981 else if (attr_form_is_section_offset (attr))
8e19ed76 12982 {
4d3c2250 12983 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12984 }
12985 else
12986 {
4d3c2250
KB
12987 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12988 fieldname);
8e19ed76 12989 }
0d564a31 12990 }
d48cc9dd
DJ
12991 else
12992 {
12993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12994 if (attr && DW_UNSND (attr))
12995 {
12996 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12997 complaint (&symfile_complaints,
3e43a32a
MS
12998 _("Member function \"%s\" (offset %d) is virtual "
12999 "but the vtable offset is not specified"),
b64f50a1 13000 fieldname, die->offset.sect_off);
9655fd1a 13001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13002 TYPE_CPLUS_DYNAMIC (type) = 1;
13003 }
13004 }
c906108c
SS
13005}
13006
13007/* Create the vector of member function fields, and attach it to the type. */
13008
13009static void
fba45db2 13010dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13011 struct dwarf2_cu *cu)
c906108c
SS
13012{
13013 struct fnfieldlist *flp;
c906108c
SS
13014 int i;
13015
b4ba55a1 13016 if (cu->language == language_ada)
a73c6dcd 13017 error (_("unexpected member functions in Ada type"));
b4ba55a1 13018
c906108c
SS
13019 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13020 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13021 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13022
13023 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13024 {
13025 struct nextfnfield *nfp = flp->head;
13026 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13027 int k;
13028
13029 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13030 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13031 fn_flp->fn_fields = (struct fn_field *)
13032 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13033 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13034 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13035 }
13036
13037 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13038}
13039
1168df01
JB
13040/* Returns non-zero if NAME is the name of a vtable member in CU's
13041 language, zero otherwise. */
13042static int
13043is_vtable_name (const char *name, struct dwarf2_cu *cu)
13044{
13045 static const char vptr[] = "_vptr";
987504bb 13046 static const char vtable[] = "vtable";
1168df01 13047
987504bb
JJ
13048 /* Look for the C++ and Java forms of the vtable. */
13049 if ((cu->language == language_java
61012eef
GB
13050 && startswith (name, vtable))
13051 || (startswith (name, vptr)
987504bb 13052 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13053 return 1;
13054
13055 return 0;
13056}
13057
c0dd20ea 13058/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13059 functions, with the ABI-specified layout. If TYPE describes
13060 such a structure, smash it into a member function type.
61049d3b
DJ
13061
13062 GCC shouldn't do this; it should just output pointer to member DIEs.
13063 This is GCC PR debug/28767. */
c0dd20ea 13064
0b92b5bb
TT
13065static void
13066quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13067{
09e2d7c7 13068 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13069
13070 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13071 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13072 return;
c0dd20ea
DJ
13073
13074 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13075 if (TYPE_FIELD_NAME (type, 0) == NULL
13076 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13077 || TYPE_FIELD_NAME (type, 1) == NULL
13078 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13079 return;
c0dd20ea
DJ
13080
13081 /* Find the type of the method. */
0b92b5bb 13082 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13083 if (pfn_type == NULL
13084 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13085 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13086 return;
c0dd20ea
DJ
13087
13088 /* Look for the "this" argument. */
13089 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13090 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13091 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13092 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13093 return;
c0dd20ea 13094
09e2d7c7 13095 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13096 new_type = alloc_type (objfile);
09e2d7c7 13097 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13098 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13099 TYPE_VARARGS (pfn_type));
0b92b5bb 13100 smash_to_methodptr_type (type, new_type);
c0dd20ea 13101}
1168df01 13102
685b1105
JK
13103/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13104 (icc). */
13105
13106static int
13107producer_is_icc (struct dwarf2_cu *cu)
13108{
13109 if (!cu->checked_producer)
13110 check_producer (cu);
13111
13112 return cu->producer_is_icc;
13113}
13114
c906108c 13115/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13116 (definition) to create a type for the structure or union. Fill in
13117 the type's name and general properties; the members will not be
83655187
DE
13118 processed until process_structure_scope. A symbol table entry for
13119 the type will also not be done until process_structure_scope (assuming
13120 the type has a name).
c906108c 13121
c767944b
DJ
13122 NOTE: we need to call these functions regardless of whether or not the
13123 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13124 structure or union. This gets the type entered into our set of
83655187 13125 user defined types. */
c906108c 13126
f792889a 13127static struct type *
134d01f1 13128read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13129{
e7c27a73 13130 struct objfile *objfile = cu->objfile;
c906108c
SS
13131 struct type *type;
13132 struct attribute *attr;
15d034d0 13133 const char *name;
c906108c 13134
348e048f
DE
13135 /* If the definition of this type lives in .debug_types, read that type.
13136 Don't follow DW_AT_specification though, that will take us back up
13137 the chain and we want to go down. */
45e58e77 13138 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13139 if (attr)
13140 {
ac9ec31b 13141 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13142
ac9ec31b 13143 /* The type's CU may not be the same as CU.
02142a6c 13144 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13145 return set_die_type (die, type, cu);
13146 }
13147
c0dd20ea 13148 type = alloc_type (objfile);
c906108c 13149 INIT_CPLUS_SPECIFIC (type);
93311388 13150
39cbfefa
DJ
13151 name = dwarf2_name (die, cu);
13152 if (name != NULL)
c906108c 13153 {
987504bb 13154 if (cu->language == language_cplus
45280282
IB
13155 || cu->language == language_java
13156 || cu->language == language_d)
63d06c5c 13157 {
15d034d0 13158 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13159
13160 /* dwarf2_full_name might have already finished building the DIE's
13161 type. If so, there is no need to continue. */
13162 if (get_die_type (die, cu) != NULL)
13163 return get_die_type (die, cu);
13164
13165 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13166 if (die->tag == DW_TAG_structure_type
13167 || die->tag == DW_TAG_class_type)
13168 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13169 }
13170 else
13171 {
d8151005
DJ
13172 /* The name is already allocated along with this objfile, so
13173 we don't need to duplicate it for the type. */
7d455152 13174 TYPE_TAG_NAME (type) = name;
94af9270
KS
13175 if (die->tag == DW_TAG_class_type)
13176 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13177 }
c906108c
SS
13178 }
13179
13180 if (die->tag == DW_TAG_structure_type)
13181 {
13182 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13183 }
13184 else if (die->tag == DW_TAG_union_type)
13185 {
13186 TYPE_CODE (type) = TYPE_CODE_UNION;
13187 }
13188 else
13189 {
4753d33b 13190 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13191 }
13192
0cc2414c
TT
13193 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13194 TYPE_DECLARED_CLASS (type) = 1;
13195
e142c38c 13196 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13197 if (attr)
13198 {
13199 TYPE_LENGTH (type) = DW_UNSND (attr);
13200 }
13201 else
13202 {
13203 TYPE_LENGTH (type) = 0;
13204 }
13205
422b1cb0 13206 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13207 {
13208 /* ICC does not output the required DW_AT_declaration
13209 on incomplete types, but gives them a size of zero. */
422b1cb0 13210 TYPE_STUB (type) = 1;
685b1105
JK
13211 }
13212 else
13213 TYPE_STUB_SUPPORTED (type) = 1;
13214
dc718098 13215 if (die_is_declaration (die, cu))
876cecd0 13216 TYPE_STUB (type) = 1;
a6c727b2
DJ
13217 else if (attr == NULL && die->child == NULL
13218 && producer_is_realview (cu->producer))
13219 /* RealView does not output the required DW_AT_declaration
13220 on incomplete types. */
13221 TYPE_STUB (type) = 1;
dc718098 13222
c906108c
SS
13223 /* We need to add the type field to the die immediately so we don't
13224 infinitely recurse when dealing with pointers to the structure
0963b4bd 13225 type within the structure itself. */
1c379e20 13226 set_die_type (die, type, cu);
c906108c 13227
7e314c57
JK
13228 /* set_die_type should be already done. */
13229 set_descriptive_type (type, die, cu);
13230
c767944b
DJ
13231 return type;
13232}
13233
13234/* Finish creating a structure or union type, including filling in
13235 its members and creating a symbol for it. */
13236
13237static void
13238process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13239{
13240 struct objfile *objfile = cu->objfile;
ca040673 13241 struct die_info *child_die;
c767944b
DJ
13242 struct type *type;
13243
13244 type = get_die_type (die, cu);
13245 if (type == NULL)
13246 type = read_structure_type (die, cu);
13247
e142c38c 13248 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13249 {
13250 struct field_info fi;
34eaf542 13251 VEC (symbolp) *template_args = NULL;
c767944b 13252 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13253
13254 memset (&fi, 0, sizeof (struct field_info));
13255
639d11d3 13256 child_die = die->child;
c906108c
SS
13257
13258 while (child_die && child_die->tag)
13259 {
a9a9bd0f
DC
13260 if (child_die->tag == DW_TAG_member
13261 || child_die->tag == DW_TAG_variable)
c906108c 13262 {
a9a9bd0f
DC
13263 /* NOTE: carlton/2002-11-05: A C++ static data member
13264 should be a DW_TAG_member that is a declaration, but
13265 all versions of G++ as of this writing (so through at
13266 least 3.2.1) incorrectly generate DW_TAG_variable
13267 tags for them instead. */
e7c27a73 13268 dwarf2_add_field (&fi, child_die, cu);
c906108c 13269 }
8713b1b1 13270 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13271 {
0963b4bd 13272 /* C++ member function. */
e7c27a73 13273 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13274 }
13275 else if (child_die->tag == DW_TAG_inheritance)
13276 {
13277 /* C++ base class field. */
e7c27a73 13278 dwarf2_add_field (&fi, child_die, cu);
c906108c 13279 }
98751a41
JK
13280 else if (child_die->tag == DW_TAG_typedef)
13281 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13282 else if (child_die->tag == DW_TAG_template_type_param
13283 || child_die->tag == DW_TAG_template_value_param)
13284 {
13285 struct symbol *arg = new_symbol (child_die, NULL, cu);
13286
f1078f66
DJ
13287 if (arg != NULL)
13288 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13289 }
13290
c906108c
SS
13291 child_die = sibling_die (child_die);
13292 }
13293
34eaf542
TT
13294 /* Attach template arguments to type. */
13295 if (! VEC_empty (symbolp, template_args))
13296 {
13297 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13298 TYPE_N_TEMPLATE_ARGUMENTS (type)
13299 = VEC_length (symbolp, template_args);
13300 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13301 = XOBNEWVEC (&objfile->objfile_obstack,
13302 struct symbol *,
13303 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13304 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13305 VEC_address (symbolp, template_args),
13306 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13307 * sizeof (struct symbol *)));
13308 VEC_free (symbolp, template_args);
13309 }
13310
c906108c
SS
13311 /* Attach fields and member functions to the type. */
13312 if (fi.nfields)
e7c27a73 13313 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13314 if (fi.nfnfields)
13315 {
e7c27a73 13316 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13317
c5aa993b 13318 /* Get the type which refers to the base class (possibly this
c906108c 13319 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13320 class from the DW_AT_containing_type attribute. This use of
13321 DW_AT_containing_type is a GNU extension. */
c906108c 13322
e142c38c 13323 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13324 {
e7c27a73 13325 struct type *t = die_containing_type (die, cu);
c906108c 13326
ae6ae975 13327 set_type_vptr_basetype (type, t);
c906108c
SS
13328 if (type == t)
13329 {
c906108c
SS
13330 int i;
13331
13332 /* Our own class provides vtbl ptr. */
13333 for (i = TYPE_NFIELDS (t) - 1;
13334 i >= TYPE_N_BASECLASSES (t);
13335 --i)
13336 {
0d5cff50 13337 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13338
1168df01 13339 if (is_vtable_name (fieldname, cu))
c906108c 13340 {
ae6ae975 13341 set_type_vptr_fieldno (type, i);
c906108c
SS
13342 break;
13343 }
13344 }
13345
13346 /* Complain if virtual function table field not found. */
13347 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13348 complaint (&symfile_complaints,
3e43a32a
MS
13349 _("virtual function table pointer "
13350 "not found when defining class '%s'"),
4d3c2250
KB
13351 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13352 "");
c906108c
SS
13353 }
13354 else
13355 {
ae6ae975 13356 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13357 }
13358 }
f6235d4c 13359 else if (cu->producer
61012eef 13360 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13361 {
13362 /* The IBM XLC compiler does not provide direct indication
13363 of the containing type, but the vtable pointer is
13364 always named __vfp. */
13365
13366 int i;
13367
13368 for (i = TYPE_NFIELDS (type) - 1;
13369 i >= TYPE_N_BASECLASSES (type);
13370 --i)
13371 {
13372 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13373 {
ae6ae975
DE
13374 set_type_vptr_fieldno (type, i);
13375 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13376 break;
13377 }
13378 }
13379 }
c906108c 13380 }
98751a41
JK
13381
13382 /* Copy fi.typedef_field_list linked list elements content into the
13383 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13384 if (fi.typedef_field_list)
13385 {
13386 int i = fi.typedef_field_list_count;
13387
a0d7a4ff 13388 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13389 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13390 = ((struct typedef_field *)
13391 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13392 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13393
13394 /* Reverse the list order to keep the debug info elements order. */
13395 while (--i >= 0)
13396 {
13397 struct typedef_field *dest, *src;
6e70227d 13398
98751a41
JK
13399 dest = &TYPE_TYPEDEF_FIELD (type, i);
13400 src = &fi.typedef_field_list->field;
13401 fi.typedef_field_list = fi.typedef_field_list->next;
13402 *dest = *src;
13403 }
13404 }
c767944b
DJ
13405
13406 do_cleanups (back_to);
eb2a6f42
TT
13407
13408 if (HAVE_CPLUS_STRUCT (type))
13409 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13410 }
63d06c5c 13411
bb5ed363 13412 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13413
90aeadfc
DC
13414 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13415 snapshots) has been known to create a die giving a declaration
13416 for a class that has, as a child, a die giving a definition for a
13417 nested class. So we have to process our children even if the
13418 current die is a declaration. Normally, of course, a declaration
13419 won't have any children at all. */
134d01f1 13420
ca040673
DE
13421 child_die = die->child;
13422
90aeadfc
DC
13423 while (child_die != NULL && child_die->tag)
13424 {
13425 if (child_die->tag == DW_TAG_member
13426 || child_die->tag == DW_TAG_variable
34eaf542
TT
13427 || child_die->tag == DW_TAG_inheritance
13428 || child_die->tag == DW_TAG_template_value_param
13429 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13430 {
90aeadfc 13431 /* Do nothing. */
134d01f1 13432 }
90aeadfc
DC
13433 else
13434 process_die (child_die, cu);
134d01f1 13435
90aeadfc 13436 child_die = sibling_die (child_die);
134d01f1
DJ
13437 }
13438
fa4028e9
JB
13439 /* Do not consider external references. According to the DWARF standard,
13440 these DIEs are identified by the fact that they have no byte_size
13441 attribute, and a declaration attribute. */
13442 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13443 || !die_is_declaration (die, cu))
c767944b 13444 new_symbol (die, type, cu);
134d01f1
DJ
13445}
13446
55426c9d
JB
13447/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13448 update TYPE using some information only available in DIE's children. */
13449
13450static void
13451update_enumeration_type_from_children (struct die_info *die,
13452 struct type *type,
13453 struct dwarf2_cu *cu)
13454{
13455 struct obstack obstack;
60f7655a 13456 struct die_info *child_die;
55426c9d
JB
13457 int unsigned_enum = 1;
13458 int flag_enum = 1;
13459 ULONGEST mask = 0;
13460 struct cleanup *old_chain;
13461
13462 obstack_init (&obstack);
13463 old_chain = make_cleanup_obstack_free (&obstack);
13464
60f7655a
DE
13465 for (child_die = die->child;
13466 child_die != NULL && child_die->tag;
13467 child_die = sibling_die (child_die))
55426c9d
JB
13468 {
13469 struct attribute *attr;
13470 LONGEST value;
13471 const gdb_byte *bytes;
13472 struct dwarf2_locexpr_baton *baton;
13473 const char *name;
60f7655a 13474
55426c9d
JB
13475 if (child_die->tag != DW_TAG_enumerator)
13476 continue;
13477
13478 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13479 if (attr == NULL)
13480 continue;
13481
13482 name = dwarf2_name (child_die, cu);
13483 if (name == NULL)
13484 name = "<anonymous enumerator>";
13485
13486 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13487 &value, &bytes, &baton);
13488 if (value < 0)
13489 {
13490 unsigned_enum = 0;
13491 flag_enum = 0;
13492 }
13493 else if ((mask & value) != 0)
13494 flag_enum = 0;
13495 else
13496 mask |= value;
13497
13498 /* If we already know that the enum type is neither unsigned, nor
13499 a flag type, no need to look at the rest of the enumerates. */
13500 if (!unsigned_enum && !flag_enum)
13501 break;
55426c9d
JB
13502 }
13503
13504 if (unsigned_enum)
13505 TYPE_UNSIGNED (type) = 1;
13506 if (flag_enum)
13507 TYPE_FLAG_ENUM (type) = 1;
13508
13509 do_cleanups (old_chain);
13510}
13511
134d01f1
DJ
13512/* Given a DW_AT_enumeration_type die, set its type. We do not
13513 complete the type's fields yet, or create any symbols. */
c906108c 13514
f792889a 13515static struct type *
134d01f1 13516read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13517{
e7c27a73 13518 struct objfile *objfile = cu->objfile;
c906108c 13519 struct type *type;
c906108c 13520 struct attribute *attr;
0114d602 13521 const char *name;
134d01f1 13522
348e048f
DE
13523 /* If the definition of this type lives in .debug_types, read that type.
13524 Don't follow DW_AT_specification though, that will take us back up
13525 the chain and we want to go down. */
45e58e77 13526 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13527 if (attr)
13528 {
ac9ec31b 13529 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13530
ac9ec31b 13531 /* The type's CU may not be the same as CU.
02142a6c 13532 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13533 return set_die_type (die, type, cu);
13534 }
13535
c906108c
SS
13536 type = alloc_type (objfile);
13537
13538 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13539 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13540 if (name != NULL)
7d455152 13541 TYPE_TAG_NAME (type) = name;
c906108c 13542
0626fc76
TT
13543 attr = dwarf2_attr (die, DW_AT_type, cu);
13544 if (attr != NULL)
13545 {
13546 struct type *underlying_type = die_type (die, cu);
13547
13548 TYPE_TARGET_TYPE (type) = underlying_type;
13549 }
13550
e142c38c 13551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13552 if (attr)
13553 {
13554 TYPE_LENGTH (type) = DW_UNSND (attr);
13555 }
13556 else
13557 {
13558 TYPE_LENGTH (type) = 0;
13559 }
13560
137033e9
JB
13561 /* The enumeration DIE can be incomplete. In Ada, any type can be
13562 declared as private in the package spec, and then defined only
13563 inside the package body. Such types are known as Taft Amendment
13564 Types. When another package uses such a type, an incomplete DIE
13565 may be generated by the compiler. */
02eb380e 13566 if (die_is_declaration (die, cu))
876cecd0 13567 TYPE_STUB (type) = 1;
02eb380e 13568
0626fc76
TT
13569 /* Finish the creation of this type by using the enum's children.
13570 We must call this even when the underlying type has been provided
13571 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13572 update_enumeration_type_from_children (die, type, cu);
13573
0626fc76
TT
13574 /* If this type has an underlying type that is not a stub, then we
13575 may use its attributes. We always use the "unsigned" attribute
13576 in this situation, because ordinarily we guess whether the type
13577 is unsigned -- but the guess can be wrong and the underlying type
13578 can tell us the reality. However, we defer to a local size
13579 attribute if one exists, because this lets the compiler override
13580 the underlying type if needed. */
13581 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13582 {
13583 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13584 if (TYPE_LENGTH (type) == 0)
13585 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13586 }
13587
3d567982
TT
13588 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13589
f792889a 13590 return set_die_type (die, type, cu);
134d01f1
DJ
13591}
13592
13593/* Given a pointer to a die which begins an enumeration, process all
13594 the dies that define the members of the enumeration, and create the
13595 symbol for the enumeration type.
13596
13597 NOTE: We reverse the order of the element list. */
13598
13599static void
13600process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13601{
f792889a 13602 struct type *this_type;
134d01f1 13603
f792889a
DJ
13604 this_type = get_die_type (die, cu);
13605 if (this_type == NULL)
13606 this_type = read_enumeration_type (die, cu);
9dc481d3 13607
639d11d3 13608 if (die->child != NULL)
c906108c 13609 {
9dc481d3
DE
13610 struct die_info *child_die;
13611 struct symbol *sym;
13612 struct field *fields = NULL;
13613 int num_fields = 0;
15d034d0 13614 const char *name;
9dc481d3 13615
639d11d3 13616 child_die = die->child;
c906108c
SS
13617 while (child_die && child_die->tag)
13618 {
13619 if (child_die->tag != DW_TAG_enumerator)
13620 {
e7c27a73 13621 process_die (child_die, cu);
c906108c
SS
13622 }
13623 else
13624 {
39cbfefa
DJ
13625 name = dwarf2_name (child_die, cu);
13626 if (name)
c906108c 13627 {
f792889a 13628 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13629
13630 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13631 {
13632 fields = (struct field *)
13633 xrealloc (fields,
13634 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13635 * sizeof (struct field));
c906108c
SS
13636 }
13637
3567439c 13638 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13639 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13640 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13641 FIELD_BITSIZE (fields[num_fields]) = 0;
13642
13643 num_fields++;
13644 }
13645 }
13646
13647 child_die = sibling_die (child_die);
13648 }
13649
13650 if (num_fields)
13651 {
f792889a
DJ
13652 TYPE_NFIELDS (this_type) = num_fields;
13653 TYPE_FIELDS (this_type) = (struct field *)
13654 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13655 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13656 sizeof (struct field) * num_fields);
b8c9b27d 13657 xfree (fields);
c906108c 13658 }
c906108c 13659 }
134d01f1 13660
6c83ed52
TT
13661 /* If we are reading an enum from a .debug_types unit, and the enum
13662 is a declaration, and the enum is not the signatured type in the
13663 unit, then we do not want to add a symbol for it. Adding a
13664 symbol would in some cases obscure the true definition of the
13665 enum, giving users an incomplete type when the definition is
13666 actually available. Note that we do not want to do this for all
13667 enums which are just declarations, because C++0x allows forward
13668 enum declarations. */
3019eac3 13669 if (cu->per_cu->is_debug_types
6c83ed52
TT
13670 && die_is_declaration (die, cu))
13671 {
52dc124a 13672 struct signatured_type *sig_type;
6c83ed52 13673
c0f78cd4 13674 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13675 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13676 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13677 return;
13678 }
13679
f792889a 13680 new_symbol (die, this_type, cu);
c906108c
SS
13681}
13682
13683/* Extract all information from a DW_TAG_array_type DIE and put it in
13684 the DIE's type field. For now, this only handles one dimensional
13685 arrays. */
13686
f792889a 13687static struct type *
e7c27a73 13688read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13689{
e7c27a73 13690 struct objfile *objfile = cu->objfile;
c906108c 13691 struct die_info *child_die;
7e314c57 13692 struct type *type;
c906108c
SS
13693 struct type *element_type, *range_type, *index_type;
13694 struct type **range_types = NULL;
13695 struct attribute *attr;
13696 int ndim = 0;
13697 struct cleanup *back_to;
15d034d0 13698 const char *name;
dc53a7ad 13699 unsigned int bit_stride = 0;
c906108c 13700
e7c27a73 13701 element_type = die_type (die, cu);
c906108c 13702
7e314c57
JK
13703 /* The die_type call above may have already set the type for this DIE. */
13704 type = get_die_type (die, cu);
13705 if (type)
13706 return type;
13707
dc53a7ad
JB
13708 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13709 if (attr != NULL)
13710 bit_stride = DW_UNSND (attr) * 8;
13711
13712 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13713 if (attr != NULL)
13714 bit_stride = DW_UNSND (attr);
13715
c906108c
SS
13716 /* Irix 6.2 native cc creates array types without children for
13717 arrays with unspecified length. */
639d11d3 13718 if (die->child == NULL)
c906108c 13719 {
46bf5051 13720 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13721 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13722 type = create_array_type_with_stride (NULL, element_type, range_type,
13723 bit_stride);
f792889a 13724 return set_die_type (die, type, cu);
c906108c
SS
13725 }
13726
13727 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13728 child_die = die->child;
c906108c
SS
13729 while (child_die && child_die->tag)
13730 {
13731 if (child_die->tag == DW_TAG_subrange_type)
13732 {
f792889a 13733 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13734
f792889a 13735 if (child_type != NULL)
a02abb62 13736 {
0963b4bd
MS
13737 /* The range type was succesfully read. Save it for the
13738 array type creation. */
a02abb62
JB
13739 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13740 {
13741 range_types = (struct type **)
13742 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13743 * sizeof (struct type *));
13744 if (ndim == 0)
13745 make_cleanup (free_current_contents, &range_types);
13746 }
f792889a 13747 range_types[ndim++] = child_type;
a02abb62 13748 }
c906108c
SS
13749 }
13750 child_die = sibling_die (child_die);
13751 }
13752
13753 /* Dwarf2 dimensions are output from left to right, create the
13754 necessary array types in backwards order. */
7ca2d3a3 13755
c906108c 13756 type = element_type;
7ca2d3a3
DL
13757
13758 if (read_array_order (die, cu) == DW_ORD_col_major)
13759 {
13760 int i = 0;
9a619af0 13761
7ca2d3a3 13762 while (i < ndim)
dc53a7ad
JB
13763 type = create_array_type_with_stride (NULL, type, range_types[i++],
13764 bit_stride);
7ca2d3a3
DL
13765 }
13766 else
13767 {
13768 while (ndim-- > 0)
dc53a7ad
JB
13769 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13770 bit_stride);
7ca2d3a3 13771 }
c906108c 13772
f5f8a009
EZ
13773 /* Understand Dwarf2 support for vector types (like they occur on
13774 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13775 array type. This is not part of the Dwarf2/3 standard yet, but a
13776 custom vendor extension. The main difference between a regular
13777 array and the vector variant is that vectors are passed by value
13778 to functions. */
e142c38c 13779 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13780 if (attr)
ea37ba09 13781 make_vector_type (type);
f5f8a009 13782
dbc98a8b
KW
13783 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13784 implementation may choose to implement triple vectors using this
13785 attribute. */
13786 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13787 if (attr)
13788 {
13789 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13790 TYPE_LENGTH (type) = DW_UNSND (attr);
13791 else
3e43a32a
MS
13792 complaint (&symfile_complaints,
13793 _("DW_AT_byte_size for array type smaller "
13794 "than the total size of elements"));
dbc98a8b
KW
13795 }
13796
39cbfefa
DJ
13797 name = dwarf2_name (die, cu);
13798 if (name)
13799 TYPE_NAME (type) = name;
6e70227d 13800
0963b4bd 13801 /* Install the type in the die. */
7e314c57
JK
13802 set_die_type (die, type, cu);
13803
13804 /* set_die_type should be already done. */
b4ba55a1
JB
13805 set_descriptive_type (type, die, cu);
13806
c906108c
SS
13807 do_cleanups (back_to);
13808
7e314c57 13809 return type;
c906108c
SS
13810}
13811
7ca2d3a3 13812static enum dwarf_array_dim_ordering
6e70227d 13813read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13814{
13815 struct attribute *attr;
13816
13817 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13818
aead7601
SM
13819 if (attr)
13820 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13821
0963b4bd
MS
13822 /* GNU F77 is a special case, as at 08/2004 array type info is the
13823 opposite order to the dwarf2 specification, but data is still
13824 laid out as per normal fortran.
7ca2d3a3 13825
0963b4bd
MS
13826 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13827 version checking. */
7ca2d3a3 13828
905e0470
PM
13829 if (cu->language == language_fortran
13830 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13831 {
13832 return DW_ORD_row_major;
13833 }
13834
6e70227d 13835 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13836 {
13837 case array_column_major:
13838 return DW_ORD_col_major;
13839 case array_row_major:
13840 default:
13841 return DW_ORD_row_major;
13842 };
13843}
13844
72019c9c 13845/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13846 the DIE's type field. */
72019c9c 13847
f792889a 13848static struct type *
72019c9c
GM
13849read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13850{
7e314c57
JK
13851 struct type *domain_type, *set_type;
13852 struct attribute *attr;
f792889a 13853
7e314c57
JK
13854 domain_type = die_type (die, cu);
13855
13856 /* The die_type call above may have already set the type for this DIE. */
13857 set_type = get_die_type (die, cu);
13858 if (set_type)
13859 return set_type;
13860
13861 set_type = create_set_type (NULL, domain_type);
13862
13863 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13864 if (attr)
13865 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13866
f792889a 13867 return set_die_type (die, set_type, cu);
72019c9c 13868}
7ca2d3a3 13869
0971de02
TT
13870/* A helper for read_common_block that creates a locexpr baton.
13871 SYM is the symbol which we are marking as computed.
13872 COMMON_DIE is the DIE for the common block.
13873 COMMON_LOC is the location expression attribute for the common
13874 block itself.
13875 MEMBER_LOC is the location expression attribute for the particular
13876 member of the common block that we are processing.
13877 CU is the CU from which the above come. */
13878
13879static void
13880mark_common_block_symbol_computed (struct symbol *sym,
13881 struct die_info *common_die,
13882 struct attribute *common_loc,
13883 struct attribute *member_loc,
13884 struct dwarf2_cu *cu)
13885{
13886 struct objfile *objfile = dwarf2_per_objfile->objfile;
13887 struct dwarf2_locexpr_baton *baton;
13888 gdb_byte *ptr;
13889 unsigned int cu_off;
13890 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13891 LONGEST offset = 0;
13892
13893 gdb_assert (common_loc && member_loc);
13894 gdb_assert (attr_form_is_block (common_loc));
13895 gdb_assert (attr_form_is_block (member_loc)
13896 || attr_form_is_constant (member_loc));
13897
8d749320 13898 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13899 baton->per_cu = cu->per_cu;
13900 gdb_assert (baton->per_cu);
13901
13902 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13903
13904 if (attr_form_is_constant (member_loc))
13905 {
13906 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13907 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13908 }
13909 else
13910 baton->size += DW_BLOCK (member_loc)->size;
13911
224c3ddb 13912 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13913 baton->data = ptr;
13914
13915 *ptr++ = DW_OP_call4;
13916 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13917 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13918 ptr += 4;
13919
13920 if (attr_form_is_constant (member_loc))
13921 {
13922 *ptr++ = DW_OP_addr;
13923 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13924 ptr += cu->header.addr_size;
13925 }
13926 else
13927 {
13928 /* We have to copy the data here, because DW_OP_call4 will only
13929 use a DW_AT_location attribute. */
13930 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13931 ptr += DW_BLOCK (member_loc)->size;
13932 }
13933
13934 *ptr++ = DW_OP_plus;
13935 gdb_assert (ptr - baton->data == baton->size);
13936
0971de02 13937 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13938 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13939}
13940
4357ac6c
TT
13941/* Create appropriate locally-scoped variables for all the
13942 DW_TAG_common_block entries. Also create a struct common_block
13943 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13944 is used to sepate the common blocks name namespace from regular
13945 variable names. */
c906108c
SS
13946
13947static void
e7c27a73 13948read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13949{
0971de02
TT
13950 struct attribute *attr;
13951
13952 attr = dwarf2_attr (die, DW_AT_location, cu);
13953 if (attr)
13954 {
13955 /* Support the .debug_loc offsets. */
13956 if (attr_form_is_block (attr))
13957 {
13958 /* Ok. */
13959 }
13960 else if (attr_form_is_section_offset (attr))
13961 {
13962 dwarf2_complex_location_expr_complaint ();
13963 attr = NULL;
13964 }
13965 else
13966 {
13967 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13968 "common block member");
13969 attr = NULL;
13970 }
13971 }
13972
639d11d3 13973 if (die->child != NULL)
c906108c 13974 {
4357ac6c
TT
13975 struct objfile *objfile = cu->objfile;
13976 struct die_info *child_die;
13977 size_t n_entries = 0, size;
13978 struct common_block *common_block;
13979 struct symbol *sym;
74ac6d43 13980
4357ac6c
TT
13981 for (child_die = die->child;
13982 child_die && child_die->tag;
13983 child_die = sibling_die (child_die))
13984 ++n_entries;
13985
13986 size = (sizeof (struct common_block)
13987 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
13988 common_block
13989 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
13990 size);
4357ac6c
TT
13991 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13992 common_block->n_entries = 0;
13993
13994 for (child_die = die->child;
13995 child_die && child_die->tag;
13996 child_die = sibling_die (child_die))
13997 {
13998 /* Create the symbol in the DW_TAG_common_block block in the current
13999 symbol scope. */
e7c27a73 14000 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14001 if (sym != NULL)
14002 {
14003 struct attribute *member_loc;
14004
14005 common_block->contents[common_block->n_entries++] = sym;
14006
14007 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14008 cu);
14009 if (member_loc)
14010 {
14011 /* GDB has handled this for a long time, but it is
14012 not specified by DWARF. It seems to have been
14013 emitted by gfortran at least as recently as:
14014 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14015 complaint (&symfile_complaints,
14016 _("Variable in common block has "
14017 "DW_AT_data_member_location "
14018 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14019 child_die->offset.sect_off,
14020 objfile_name (cu->objfile));
0971de02
TT
14021
14022 if (attr_form_is_section_offset (member_loc))
14023 dwarf2_complex_location_expr_complaint ();
14024 else if (attr_form_is_constant (member_loc)
14025 || attr_form_is_block (member_loc))
14026 {
14027 if (attr)
14028 mark_common_block_symbol_computed (sym, die, attr,
14029 member_loc, cu);
14030 }
14031 else
14032 dwarf2_complex_location_expr_complaint ();
14033 }
14034 }
c906108c 14035 }
4357ac6c
TT
14036
14037 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14038 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14039 }
14040}
14041
0114d602 14042/* Create a type for a C++ namespace. */
d9fa45fe 14043
0114d602
DJ
14044static struct type *
14045read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14046{
e7c27a73 14047 struct objfile *objfile = cu->objfile;
0114d602 14048 const char *previous_prefix, *name;
9219021c 14049 int is_anonymous;
0114d602
DJ
14050 struct type *type;
14051
14052 /* For extensions, reuse the type of the original namespace. */
14053 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14054 {
14055 struct die_info *ext_die;
14056 struct dwarf2_cu *ext_cu = cu;
9a619af0 14057
0114d602
DJ
14058 ext_die = dwarf2_extension (die, &ext_cu);
14059 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14060
14061 /* EXT_CU may not be the same as CU.
02142a6c 14062 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14063 return set_die_type (die, type, cu);
14064 }
9219021c 14065
e142c38c 14066 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14067
14068 /* Now build the name of the current namespace. */
14069
0114d602
DJ
14070 previous_prefix = determine_prefix (die, cu);
14071 if (previous_prefix[0] != '\0')
14072 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14073 previous_prefix, name, 0, cu);
0114d602
DJ
14074
14075 /* Create the type. */
14076 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14077 objfile);
abee88f2 14078 TYPE_NAME (type) = name;
0114d602
DJ
14079 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14080
60531b24 14081 return set_die_type (die, type, cu);
0114d602
DJ
14082}
14083
22cee43f 14084/* Read a namespace scope. */
0114d602
DJ
14085
14086static void
14087read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14088{
14089 struct objfile *objfile = cu->objfile;
0114d602 14090 int is_anonymous;
9219021c 14091
5c4e30ca
DC
14092 /* Add a symbol associated to this if we haven't seen the namespace
14093 before. Also, add a using directive if it's an anonymous
14094 namespace. */
9219021c 14095
f2f0e013 14096 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14097 {
14098 struct type *type;
14099
0114d602 14100 type = read_type_die (die, cu);
e7c27a73 14101 new_symbol (die, type, cu);
5c4e30ca 14102
e8e80198 14103 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14104 if (is_anonymous)
0114d602
DJ
14105 {
14106 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14107
22cee43f
PMR
14108 add_using_directive (using_directives (cu->language),
14109 previous_prefix, TYPE_NAME (type), NULL,
14110 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14111 }
5c4e30ca 14112 }
9219021c 14113
639d11d3 14114 if (die->child != NULL)
d9fa45fe 14115 {
639d11d3 14116 struct die_info *child_die = die->child;
6e70227d 14117
d9fa45fe
DC
14118 while (child_die && child_die->tag)
14119 {
e7c27a73 14120 process_die (child_die, cu);
d9fa45fe
DC
14121 child_die = sibling_die (child_die);
14122 }
14123 }
38d518c9
EZ
14124}
14125
f55ee35c
JK
14126/* Read a Fortran module as type. This DIE can be only a declaration used for
14127 imported module. Still we need that type as local Fortran "use ... only"
14128 declaration imports depend on the created type in determine_prefix. */
14129
14130static struct type *
14131read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14132{
14133 struct objfile *objfile = cu->objfile;
15d034d0 14134 const char *module_name;
f55ee35c
JK
14135 struct type *type;
14136
14137 module_name = dwarf2_name (die, cu);
14138 if (!module_name)
3e43a32a
MS
14139 complaint (&symfile_complaints,
14140 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14141 die->offset.sect_off);
f55ee35c
JK
14142 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14143
14144 /* determine_prefix uses TYPE_TAG_NAME. */
14145 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14146
14147 return set_die_type (die, type, cu);
14148}
14149
5d7cb8df
JK
14150/* Read a Fortran module. */
14151
14152static void
14153read_module (struct die_info *die, struct dwarf2_cu *cu)
14154{
14155 struct die_info *child_die = die->child;
530e8392
KB
14156 struct type *type;
14157
14158 type = read_type_die (die, cu);
14159 new_symbol (die, type, cu);
5d7cb8df 14160
5d7cb8df
JK
14161 while (child_die && child_die->tag)
14162 {
14163 process_die (child_die, cu);
14164 child_die = sibling_die (child_die);
14165 }
14166}
14167
38d518c9
EZ
14168/* Return the name of the namespace represented by DIE. Set
14169 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14170 namespace. */
14171
14172static const char *
e142c38c 14173namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14174{
14175 struct die_info *current_die;
14176 const char *name = NULL;
14177
14178 /* Loop through the extensions until we find a name. */
14179
14180 for (current_die = die;
14181 current_die != NULL;
f2f0e013 14182 current_die = dwarf2_extension (die, &cu))
38d518c9 14183 {
96553a0c
DE
14184 /* We don't use dwarf2_name here so that we can detect the absence
14185 of a name -> anonymous namespace. */
7d45c7c3 14186 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14187
38d518c9
EZ
14188 if (name != NULL)
14189 break;
14190 }
14191
14192 /* Is it an anonymous namespace? */
14193
14194 *is_anonymous = (name == NULL);
14195 if (*is_anonymous)
2b1dbab0 14196 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14197
14198 return name;
d9fa45fe
DC
14199}
14200
c906108c
SS
14201/* Extract all information from a DW_TAG_pointer_type DIE and add to
14202 the user defined type vector. */
14203
f792889a 14204static struct type *
e7c27a73 14205read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14206{
5e2b427d 14207 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14208 struct comp_unit_head *cu_header = &cu->header;
c906108c 14209 struct type *type;
8b2dbe47
KB
14210 struct attribute *attr_byte_size;
14211 struct attribute *attr_address_class;
14212 int byte_size, addr_class;
7e314c57
JK
14213 struct type *target_type;
14214
14215 target_type = die_type (die, cu);
c906108c 14216
7e314c57
JK
14217 /* The die_type call above may have already set the type for this DIE. */
14218 type = get_die_type (die, cu);
14219 if (type)
14220 return type;
14221
14222 type = lookup_pointer_type (target_type);
8b2dbe47 14223
e142c38c 14224 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14225 if (attr_byte_size)
14226 byte_size = DW_UNSND (attr_byte_size);
c906108c 14227 else
8b2dbe47
KB
14228 byte_size = cu_header->addr_size;
14229
e142c38c 14230 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14231 if (attr_address_class)
14232 addr_class = DW_UNSND (attr_address_class);
14233 else
14234 addr_class = DW_ADDR_none;
14235
14236 /* If the pointer size or address class is different than the
14237 default, create a type variant marked as such and set the
14238 length accordingly. */
14239 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14240 {
5e2b427d 14241 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14242 {
14243 int type_flags;
14244
849957d9 14245 type_flags = gdbarch_address_class_type_flags
5e2b427d 14246 (gdbarch, byte_size, addr_class);
876cecd0
TT
14247 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14248 == 0);
8b2dbe47
KB
14249 type = make_type_with_address_space (type, type_flags);
14250 }
14251 else if (TYPE_LENGTH (type) != byte_size)
14252 {
3e43a32a
MS
14253 complaint (&symfile_complaints,
14254 _("invalid pointer size %d"), byte_size);
8b2dbe47 14255 }
6e70227d 14256 else
9a619af0
MS
14257 {
14258 /* Should we also complain about unhandled address classes? */
14259 }
c906108c 14260 }
8b2dbe47
KB
14261
14262 TYPE_LENGTH (type) = byte_size;
f792889a 14263 return set_die_type (die, type, cu);
c906108c
SS
14264}
14265
14266/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14267 the user defined type vector. */
14268
f792889a 14269static struct type *
e7c27a73 14270read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14271{
14272 struct type *type;
14273 struct type *to_type;
14274 struct type *domain;
14275
e7c27a73
DJ
14276 to_type = die_type (die, cu);
14277 domain = die_containing_type (die, cu);
0d5de010 14278
7e314c57
JK
14279 /* The calls above may have already set the type for this DIE. */
14280 type = get_die_type (die, cu);
14281 if (type)
14282 return type;
14283
0d5de010
DJ
14284 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14285 type = lookup_methodptr_type (to_type);
7078baeb
TT
14286 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14287 {
14288 struct type *new_type = alloc_type (cu->objfile);
14289
14290 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14291 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14292 TYPE_VARARGS (to_type));
14293 type = lookup_methodptr_type (new_type);
14294 }
0d5de010
DJ
14295 else
14296 type = lookup_memberptr_type (to_type, domain);
c906108c 14297
f792889a 14298 return set_die_type (die, type, cu);
c906108c
SS
14299}
14300
14301/* Extract all information from a DW_TAG_reference_type DIE and add to
14302 the user defined type vector. */
14303
f792889a 14304static struct type *
e7c27a73 14305read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14306{
e7c27a73 14307 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14308 struct type *type, *target_type;
c906108c
SS
14309 struct attribute *attr;
14310
7e314c57
JK
14311 target_type = die_type (die, cu);
14312
14313 /* The die_type call above may have already set the type for this DIE. */
14314 type = get_die_type (die, cu);
14315 if (type)
14316 return type;
14317
14318 type = lookup_reference_type (target_type);
e142c38c 14319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14320 if (attr)
14321 {
14322 TYPE_LENGTH (type) = DW_UNSND (attr);
14323 }
14324 else
14325 {
107d2387 14326 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14327 }
f792889a 14328 return set_die_type (die, type, cu);
c906108c
SS
14329}
14330
cf363f18
MW
14331/* Add the given cv-qualifiers to the element type of the array. GCC
14332 outputs DWARF type qualifiers that apply to an array, not the
14333 element type. But GDB relies on the array element type to carry
14334 the cv-qualifiers. This mimics section 6.7.3 of the C99
14335 specification. */
14336
14337static struct type *
14338add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14339 struct type *base_type, int cnst, int voltl)
14340{
14341 struct type *el_type, *inner_array;
14342
14343 base_type = copy_type (base_type);
14344 inner_array = base_type;
14345
14346 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14347 {
14348 TYPE_TARGET_TYPE (inner_array) =
14349 copy_type (TYPE_TARGET_TYPE (inner_array));
14350 inner_array = TYPE_TARGET_TYPE (inner_array);
14351 }
14352
14353 el_type = TYPE_TARGET_TYPE (inner_array);
14354 cnst |= TYPE_CONST (el_type);
14355 voltl |= TYPE_VOLATILE (el_type);
14356 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14357
14358 return set_die_type (die, base_type, cu);
14359}
14360
f792889a 14361static struct type *
e7c27a73 14362read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14363{
f792889a 14364 struct type *base_type, *cv_type;
c906108c 14365
e7c27a73 14366 base_type = die_type (die, cu);
7e314c57
JK
14367
14368 /* The die_type call above may have already set the type for this DIE. */
14369 cv_type = get_die_type (die, cu);
14370 if (cv_type)
14371 return cv_type;
14372
2f608a3a
KW
14373 /* In case the const qualifier is applied to an array type, the element type
14374 is so qualified, not the array type (section 6.7.3 of C99). */
14375 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14376 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14377
f792889a
DJ
14378 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14379 return set_die_type (die, cv_type, cu);
c906108c
SS
14380}
14381
f792889a 14382static struct type *
e7c27a73 14383read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14384{
f792889a 14385 struct type *base_type, *cv_type;
c906108c 14386
e7c27a73 14387 base_type = die_type (die, cu);
7e314c57
JK
14388
14389 /* The die_type call above may have already set the type for this DIE. */
14390 cv_type = get_die_type (die, cu);
14391 if (cv_type)
14392 return cv_type;
14393
cf363f18
MW
14394 /* In case the volatile qualifier is applied to an array type, the
14395 element type is so qualified, not the array type (section 6.7.3
14396 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14398 return add_array_cv_type (die, cu, base_type, 0, 1);
14399
f792889a
DJ
14400 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14401 return set_die_type (die, cv_type, cu);
c906108c
SS
14402}
14403
06d66ee9
TT
14404/* Handle DW_TAG_restrict_type. */
14405
14406static struct type *
14407read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14408{
14409 struct type *base_type, *cv_type;
14410
14411 base_type = die_type (die, cu);
14412
14413 /* The die_type call above may have already set the type for this DIE. */
14414 cv_type = get_die_type (die, cu);
14415 if (cv_type)
14416 return cv_type;
14417
14418 cv_type = make_restrict_type (base_type);
14419 return set_die_type (die, cv_type, cu);
14420}
14421
a2c2acaf
MW
14422/* Handle DW_TAG_atomic_type. */
14423
14424static struct type *
14425read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14426{
14427 struct type *base_type, *cv_type;
14428
14429 base_type = die_type (die, cu);
14430
14431 /* The die_type call above may have already set the type for this DIE. */
14432 cv_type = get_die_type (die, cu);
14433 if (cv_type)
14434 return cv_type;
14435
14436 cv_type = make_atomic_type (base_type);
14437 return set_die_type (die, cv_type, cu);
14438}
14439
c906108c
SS
14440/* Extract all information from a DW_TAG_string_type DIE and add to
14441 the user defined type vector. It isn't really a user defined type,
14442 but it behaves like one, with other DIE's using an AT_user_def_type
14443 attribute to reference it. */
14444
f792889a 14445static struct type *
e7c27a73 14446read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14447{
e7c27a73 14448 struct objfile *objfile = cu->objfile;
3b7538c0 14449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14450 struct type *type, *range_type, *index_type, *char_type;
14451 struct attribute *attr;
14452 unsigned int length;
14453
e142c38c 14454 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14455 if (attr)
14456 {
14457 length = DW_UNSND (attr);
14458 }
14459 else
14460 {
0963b4bd 14461 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14462 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14463 if (attr)
14464 {
14465 length = DW_UNSND (attr);
14466 }
14467 else
14468 {
14469 length = 1;
14470 }
c906108c 14471 }
6ccb9162 14472
46bf5051 14473 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14474 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14475 char_type = language_string_char_type (cu->language_defn, gdbarch);
14476 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14477
f792889a 14478 return set_die_type (die, type, cu);
c906108c
SS
14479}
14480
4d804846
JB
14481/* Assuming that DIE corresponds to a function, returns nonzero
14482 if the function is prototyped. */
14483
14484static int
14485prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14486{
14487 struct attribute *attr;
14488
14489 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14490 if (attr && (DW_UNSND (attr) != 0))
14491 return 1;
14492
14493 /* The DWARF standard implies that the DW_AT_prototyped attribute
14494 is only meaninful for C, but the concept also extends to other
14495 languages that allow unprototyped functions (Eg: Objective C).
14496 For all other languages, assume that functions are always
14497 prototyped. */
14498 if (cu->language != language_c
14499 && cu->language != language_objc
14500 && cu->language != language_opencl)
14501 return 1;
14502
14503 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14504 prototyped and unprototyped functions; default to prototyped,
14505 since that is more common in modern code (and RealView warns
14506 about unprototyped functions). */
14507 if (producer_is_realview (cu->producer))
14508 return 1;
14509
14510 return 0;
14511}
14512
c906108c
SS
14513/* Handle DIES due to C code like:
14514
14515 struct foo
c5aa993b
JM
14516 {
14517 int (*funcp)(int a, long l);
14518 int b;
14519 };
c906108c 14520
0963b4bd 14521 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14522
f792889a 14523static struct type *
e7c27a73 14524read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14525{
bb5ed363 14526 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14527 struct type *type; /* Type that this function returns. */
14528 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14529 struct attribute *attr;
14530
e7c27a73 14531 type = die_type (die, cu);
7e314c57
JK
14532
14533 /* The die_type call above may have already set the type for this DIE. */
14534 ftype = get_die_type (die, cu);
14535 if (ftype)
14536 return ftype;
14537
0c8b41f1 14538 ftype = lookup_function_type (type);
c906108c 14539
4d804846 14540 if (prototyped_function_p (die, cu))
a6c727b2 14541 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14542
c055b101
CV
14543 /* Store the calling convention in the type if it's available in
14544 the subroutine die. Otherwise set the calling convention to
14545 the default value DW_CC_normal. */
14546 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14547 if (attr)
14548 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14549 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14550 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14551 else
14552 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14553
743649fd
MW
14554 /* Record whether the function returns normally to its caller or not
14555 if the DWARF producer set that information. */
14556 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14557 if (attr && (DW_UNSND (attr) != 0))
14558 TYPE_NO_RETURN (ftype) = 1;
14559
76c10ea2
GM
14560 /* We need to add the subroutine type to the die immediately so
14561 we don't infinitely recurse when dealing with parameters
0963b4bd 14562 declared as the same subroutine type. */
76c10ea2 14563 set_die_type (die, ftype, cu);
6e70227d 14564
639d11d3 14565 if (die->child != NULL)
c906108c 14566 {
bb5ed363 14567 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14568 struct die_info *child_die;
8072405b 14569 int nparams, iparams;
c906108c
SS
14570
14571 /* Count the number of parameters.
14572 FIXME: GDB currently ignores vararg functions, but knows about
14573 vararg member functions. */
8072405b 14574 nparams = 0;
639d11d3 14575 child_die = die->child;
c906108c
SS
14576 while (child_die && child_die->tag)
14577 {
14578 if (child_die->tag == DW_TAG_formal_parameter)
14579 nparams++;
14580 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14581 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14582 child_die = sibling_die (child_die);
14583 }
14584
14585 /* Allocate storage for parameters and fill them in. */
14586 TYPE_NFIELDS (ftype) = nparams;
14587 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14588 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14589
8072405b
JK
14590 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14591 even if we error out during the parameters reading below. */
14592 for (iparams = 0; iparams < nparams; iparams++)
14593 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14594
14595 iparams = 0;
639d11d3 14596 child_die = die->child;
c906108c
SS
14597 while (child_die && child_die->tag)
14598 {
14599 if (child_die->tag == DW_TAG_formal_parameter)
14600 {
3ce3b1ba
PA
14601 struct type *arg_type;
14602
14603 /* DWARF version 2 has no clean way to discern C++
14604 static and non-static member functions. G++ helps
14605 GDB by marking the first parameter for non-static
14606 member functions (which is the this pointer) as
14607 artificial. We pass this information to
14608 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14609
14610 DWARF version 3 added DW_AT_object_pointer, which GCC
14611 4.5 does not yet generate. */
e142c38c 14612 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14613 if (attr)
14614 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14615 else
418835cc
KS
14616 {
14617 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14618
14619 /* GCC/43521: In java, the formal parameter
14620 "this" is sometimes not marked with DW_AT_artificial. */
14621 if (cu->language == language_java)
14622 {
14623 const char *name = dwarf2_name (child_die, cu);
9a619af0 14624
418835cc
KS
14625 if (name && !strcmp (name, "this"))
14626 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14627 }
14628 }
3ce3b1ba
PA
14629 arg_type = die_type (child_die, cu);
14630
14631 /* RealView does not mark THIS as const, which the testsuite
14632 expects. GCC marks THIS as const in method definitions,
14633 but not in the class specifications (GCC PR 43053). */
14634 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14635 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14636 {
14637 int is_this = 0;
14638 struct dwarf2_cu *arg_cu = cu;
14639 const char *name = dwarf2_name (child_die, cu);
14640
14641 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14642 if (attr)
14643 {
14644 /* If the compiler emits this, use it. */
14645 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14646 is_this = 1;
14647 }
14648 else if (name && strcmp (name, "this") == 0)
14649 /* Function definitions will have the argument names. */
14650 is_this = 1;
14651 else if (name == NULL && iparams == 0)
14652 /* Declarations may not have the names, so like
14653 elsewhere in GDB, assume an artificial first
14654 argument is "this". */
14655 is_this = 1;
14656
14657 if (is_this)
14658 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14659 arg_type, 0);
14660 }
14661
14662 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14663 iparams++;
14664 }
14665 child_die = sibling_die (child_die);
14666 }
14667 }
14668
76c10ea2 14669 return ftype;
c906108c
SS
14670}
14671
f792889a 14672static struct type *
e7c27a73 14673read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14674{
e7c27a73 14675 struct objfile *objfile = cu->objfile;
0114d602 14676 const char *name = NULL;
3c8e0968 14677 struct type *this_type, *target_type;
c906108c 14678
94af9270 14679 name = dwarf2_full_name (NULL, die, cu);
f792889a 14680 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14681 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14682 TYPE_NAME (this_type) = name;
f792889a 14683 set_die_type (die, this_type, cu);
3c8e0968
DE
14684 target_type = die_type (die, cu);
14685 if (target_type != this_type)
14686 TYPE_TARGET_TYPE (this_type) = target_type;
14687 else
14688 {
14689 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14690 spec and cause infinite loops in GDB. */
14691 complaint (&symfile_complaints,
14692 _("Self-referential DW_TAG_typedef "
14693 "- DIE at 0x%x [in module %s]"),
4262abfb 14694 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14695 TYPE_TARGET_TYPE (this_type) = NULL;
14696 }
f792889a 14697 return this_type;
c906108c
SS
14698}
14699
14700/* Find a representation of a given base type and install
14701 it in the TYPE field of the die. */
14702
f792889a 14703static struct type *
e7c27a73 14704read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14705{
e7c27a73 14706 struct objfile *objfile = cu->objfile;
c906108c
SS
14707 struct type *type;
14708 struct attribute *attr;
14709 int encoding = 0, size = 0;
15d034d0 14710 const char *name;
6ccb9162
UW
14711 enum type_code code = TYPE_CODE_INT;
14712 int type_flags = 0;
14713 struct type *target_type = NULL;
c906108c 14714
e142c38c 14715 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14716 if (attr)
14717 {
14718 encoding = DW_UNSND (attr);
14719 }
e142c38c 14720 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14721 if (attr)
14722 {
14723 size = DW_UNSND (attr);
14724 }
39cbfefa 14725 name = dwarf2_name (die, cu);
6ccb9162 14726 if (!name)
c906108c 14727 {
6ccb9162
UW
14728 complaint (&symfile_complaints,
14729 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14730 }
6ccb9162
UW
14731
14732 switch (encoding)
c906108c 14733 {
6ccb9162
UW
14734 case DW_ATE_address:
14735 /* Turn DW_ATE_address into a void * pointer. */
14736 code = TYPE_CODE_PTR;
14737 type_flags |= TYPE_FLAG_UNSIGNED;
14738 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14739 break;
14740 case DW_ATE_boolean:
14741 code = TYPE_CODE_BOOL;
14742 type_flags |= TYPE_FLAG_UNSIGNED;
14743 break;
14744 case DW_ATE_complex_float:
14745 code = TYPE_CODE_COMPLEX;
14746 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14747 break;
14748 case DW_ATE_decimal_float:
14749 code = TYPE_CODE_DECFLOAT;
14750 break;
14751 case DW_ATE_float:
14752 code = TYPE_CODE_FLT;
14753 break;
14754 case DW_ATE_signed:
14755 break;
14756 case DW_ATE_unsigned:
14757 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14758 if (cu->language == language_fortran
14759 && name
61012eef 14760 && startswith (name, "character("))
3b2b8fea 14761 code = TYPE_CODE_CHAR;
6ccb9162
UW
14762 break;
14763 case DW_ATE_signed_char:
6e70227d 14764 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14765 || cu->language == language_pascal
14766 || cu->language == language_fortran)
6ccb9162
UW
14767 code = TYPE_CODE_CHAR;
14768 break;
14769 case DW_ATE_unsigned_char:
868a0084 14770 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14771 || cu->language == language_pascal
14772 || cu->language == language_fortran)
6ccb9162
UW
14773 code = TYPE_CODE_CHAR;
14774 type_flags |= TYPE_FLAG_UNSIGNED;
14775 break;
75079b2b
TT
14776 case DW_ATE_UTF:
14777 /* We just treat this as an integer and then recognize the
14778 type by name elsewhere. */
14779 break;
14780
6ccb9162
UW
14781 default:
14782 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14783 dwarf_type_encoding_name (encoding));
14784 break;
c906108c 14785 }
6ccb9162 14786
0114d602
DJ
14787 type = init_type (code, size, type_flags, NULL, objfile);
14788 TYPE_NAME (type) = name;
6ccb9162
UW
14789 TYPE_TARGET_TYPE (type) = target_type;
14790
0114d602 14791 if (name && strcmp (name, "char") == 0)
876cecd0 14792 TYPE_NOSIGN (type) = 1;
0114d602 14793
f792889a 14794 return set_die_type (die, type, cu);
c906108c
SS
14795}
14796
80180f79
SA
14797/* Parse dwarf attribute if it's a block, reference or constant and put the
14798 resulting value of the attribute into struct bound_prop.
14799 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14800
14801static int
14802attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14803 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14804{
14805 struct dwarf2_property_baton *baton;
14806 struct obstack *obstack = &cu->objfile->objfile_obstack;
14807
14808 if (attr == NULL || prop == NULL)
14809 return 0;
14810
14811 if (attr_form_is_block (attr))
14812 {
8d749320 14813 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14814 baton->referenced_type = NULL;
14815 baton->locexpr.per_cu = cu->per_cu;
14816 baton->locexpr.size = DW_BLOCK (attr)->size;
14817 baton->locexpr.data = DW_BLOCK (attr)->data;
14818 prop->data.baton = baton;
14819 prop->kind = PROP_LOCEXPR;
14820 gdb_assert (prop->data.baton != NULL);
14821 }
14822 else if (attr_form_is_ref (attr))
14823 {
14824 struct dwarf2_cu *target_cu = cu;
14825 struct die_info *target_die;
14826 struct attribute *target_attr;
14827
14828 target_die = follow_die_ref (die, attr, &target_cu);
14829 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14830 if (target_attr == NULL)
14831 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14832 target_cu);
80180f79
SA
14833 if (target_attr == NULL)
14834 return 0;
14835
df25ebbd 14836 switch (target_attr->name)
80180f79 14837 {
df25ebbd
JB
14838 case DW_AT_location:
14839 if (attr_form_is_section_offset (target_attr))
14840 {
8d749320 14841 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14842 baton->referenced_type = die_type (target_die, target_cu);
14843 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14844 prop->data.baton = baton;
14845 prop->kind = PROP_LOCLIST;
14846 gdb_assert (prop->data.baton != NULL);
14847 }
14848 else if (attr_form_is_block (target_attr))
14849 {
8d749320 14850 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14851 baton->referenced_type = die_type (target_die, target_cu);
14852 baton->locexpr.per_cu = cu->per_cu;
14853 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14854 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14855 prop->data.baton = baton;
14856 prop->kind = PROP_LOCEXPR;
14857 gdb_assert (prop->data.baton != NULL);
14858 }
14859 else
14860 {
14861 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14862 "dynamic property");
14863 return 0;
14864 }
14865 break;
14866 case DW_AT_data_member_location:
14867 {
14868 LONGEST offset;
14869
14870 if (!handle_data_member_location (target_die, target_cu,
14871 &offset))
14872 return 0;
14873
8d749320 14874 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14875 baton->referenced_type = read_type_die (target_die->parent,
14876 target_cu);
df25ebbd
JB
14877 baton->offset_info.offset = offset;
14878 baton->offset_info.type = die_type (target_die, target_cu);
14879 prop->data.baton = baton;
14880 prop->kind = PROP_ADDR_OFFSET;
14881 break;
14882 }
80180f79
SA
14883 }
14884 }
14885 else if (attr_form_is_constant (attr))
14886 {
14887 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14888 prop->kind = PROP_CONST;
14889 }
14890 else
14891 {
14892 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14893 dwarf2_name (die, cu));
14894 return 0;
14895 }
14896
14897 return 1;
14898}
14899
a02abb62
JB
14900/* Read the given DW_AT_subrange DIE. */
14901
f792889a 14902static struct type *
a02abb62
JB
14903read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14904{
4c9ad8c2 14905 struct type *base_type, *orig_base_type;
a02abb62
JB
14906 struct type *range_type;
14907 struct attribute *attr;
729efb13 14908 struct dynamic_prop low, high;
4fae6e18 14909 int low_default_is_valid;
c451ebe5 14910 int high_bound_is_count = 0;
15d034d0 14911 const char *name;
43bbcdc2 14912 LONGEST negative_mask;
e77813c8 14913
4c9ad8c2
TT
14914 orig_base_type = die_type (die, cu);
14915 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14916 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14917 creating the range type, but we use the result of check_typedef
14918 when examining properties of the type. */
14919 base_type = check_typedef (orig_base_type);
a02abb62 14920
7e314c57
JK
14921 /* The die_type call above may have already set the type for this DIE. */
14922 range_type = get_die_type (die, cu);
14923 if (range_type)
14924 return range_type;
14925
729efb13
SA
14926 low.kind = PROP_CONST;
14927 high.kind = PROP_CONST;
14928 high.data.const_val = 0;
14929
4fae6e18
JK
14930 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14931 omitting DW_AT_lower_bound. */
14932 switch (cu->language)
6e70227d 14933 {
4fae6e18
JK
14934 case language_c:
14935 case language_cplus:
729efb13 14936 low.data.const_val = 0;
4fae6e18
JK
14937 low_default_is_valid = 1;
14938 break;
14939 case language_fortran:
729efb13 14940 low.data.const_val = 1;
4fae6e18
JK
14941 low_default_is_valid = 1;
14942 break;
14943 case language_d:
14944 case language_java:
14945 case language_objc:
729efb13 14946 low.data.const_val = 0;
4fae6e18
JK
14947 low_default_is_valid = (cu->header.version >= 4);
14948 break;
14949 case language_ada:
14950 case language_m2:
14951 case language_pascal:
729efb13 14952 low.data.const_val = 1;
4fae6e18
JK
14953 low_default_is_valid = (cu->header.version >= 4);
14954 break;
14955 default:
729efb13 14956 low.data.const_val = 0;
4fae6e18
JK
14957 low_default_is_valid = 0;
14958 break;
a02abb62
JB
14959 }
14960
e142c38c 14961 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14962 if (attr)
11c1ba78 14963 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14964 else if (!low_default_is_valid)
14965 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14966 "- DIE at 0x%x [in module %s]"),
4262abfb 14967 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14968
e142c38c 14969 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14970 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14971 {
14972 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14973 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14974 {
c451ebe5
SA
14975 /* If bounds are constant do the final calculation here. */
14976 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14977 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14978 else
14979 high_bound_is_count = 1;
c2ff108b 14980 }
e77813c8
PM
14981 }
14982
14983 /* Dwarf-2 specifications explicitly allows to create subrange types
14984 without specifying a base type.
14985 In that case, the base type must be set to the type of
14986 the lower bound, upper bound or count, in that order, if any of these
14987 three attributes references an object that has a type.
14988 If no base type is found, the Dwarf-2 specifications say that
14989 a signed integer type of size equal to the size of an address should
14990 be used.
14991 For the following C code: `extern char gdb_int [];'
14992 GCC produces an empty range DIE.
14993 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14994 high bound or count are not yet handled by this code. */
e77813c8
PM
14995 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14996 {
14997 struct objfile *objfile = cu->objfile;
14998 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14999 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15000 struct type *int_type = objfile_type (objfile)->builtin_int;
15001
15002 /* Test "int", "long int", and "long long int" objfile types,
15003 and select the first one having a size above or equal to the
15004 architecture address size. */
15005 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15006 base_type = int_type;
15007 else
15008 {
15009 int_type = objfile_type (objfile)->builtin_long;
15010 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15011 base_type = int_type;
15012 else
15013 {
15014 int_type = objfile_type (objfile)->builtin_long_long;
15015 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15016 base_type = int_type;
15017 }
15018 }
15019 }
a02abb62 15020
dbb9c2b1
JB
15021 /* Normally, the DWARF producers are expected to use a signed
15022 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15023 But this is unfortunately not always the case, as witnessed
15024 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15025 is used instead. To work around that ambiguity, we treat
15026 the bounds as signed, and thus sign-extend their values, when
15027 the base type is signed. */
6e70227d 15028 negative_mask =
43bbcdc2 15029 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15030 if (low.kind == PROP_CONST
15031 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15032 low.data.const_val |= negative_mask;
15033 if (high.kind == PROP_CONST
15034 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15035 high.data.const_val |= negative_mask;
43bbcdc2 15036
729efb13 15037 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15038
c451ebe5
SA
15039 if (high_bound_is_count)
15040 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15041
c2ff108b
JK
15042 /* Ada expects an empty array on no boundary attributes. */
15043 if (attr == NULL && cu->language != language_ada)
729efb13 15044 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15045
39cbfefa
DJ
15046 name = dwarf2_name (die, cu);
15047 if (name)
15048 TYPE_NAME (range_type) = name;
6e70227d 15049
e142c38c 15050 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15051 if (attr)
15052 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15053
7e314c57
JK
15054 set_die_type (die, range_type, cu);
15055
15056 /* set_die_type should be already done. */
b4ba55a1
JB
15057 set_descriptive_type (range_type, die, cu);
15058
7e314c57 15059 return range_type;
a02abb62 15060}
6e70227d 15061
f792889a 15062static struct type *
81a17f79
JB
15063read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15064{
15065 struct type *type;
81a17f79 15066
81a17f79
JB
15067 /* For now, we only support the C meaning of an unspecified type: void. */
15068
0114d602
DJ
15069 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15070 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15071
f792889a 15072 return set_die_type (die, type, cu);
81a17f79 15073}
a02abb62 15074
639d11d3
DC
15075/* Read a single die and all its descendents. Set the die's sibling
15076 field to NULL; set other fields in the die correctly, and set all
15077 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15078 location of the info_ptr after reading all of those dies. PARENT
15079 is the parent of the die in question. */
15080
15081static struct die_info *
dee91e82 15082read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15083 const gdb_byte *info_ptr,
15084 const gdb_byte **new_info_ptr,
dee91e82 15085 struct die_info *parent)
639d11d3
DC
15086{
15087 struct die_info *die;
d521ce57 15088 const gdb_byte *cur_ptr;
639d11d3
DC
15089 int has_children;
15090
bf6af496 15091 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15092 if (die == NULL)
15093 {
15094 *new_info_ptr = cur_ptr;
15095 return NULL;
15096 }
93311388 15097 store_in_ref_table (die, reader->cu);
639d11d3
DC
15098
15099 if (has_children)
bf6af496 15100 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15101 else
15102 {
15103 die->child = NULL;
15104 *new_info_ptr = cur_ptr;
15105 }
15106
15107 die->sibling = NULL;
15108 die->parent = parent;
15109 return die;
15110}
15111
15112/* Read a die, all of its descendents, and all of its siblings; set
15113 all of the fields of all of the dies correctly. Arguments are as
15114 in read_die_and_children. */
15115
15116static struct die_info *
bf6af496 15117read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15118 const gdb_byte *info_ptr,
15119 const gdb_byte **new_info_ptr,
bf6af496 15120 struct die_info *parent)
639d11d3
DC
15121{
15122 struct die_info *first_die, *last_sibling;
d521ce57 15123 const gdb_byte *cur_ptr;
639d11d3 15124
c906108c 15125 cur_ptr = info_ptr;
639d11d3
DC
15126 first_die = last_sibling = NULL;
15127
15128 while (1)
c906108c 15129 {
639d11d3 15130 struct die_info *die
dee91e82 15131 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15132
1d325ec1 15133 if (die == NULL)
c906108c 15134 {
639d11d3
DC
15135 *new_info_ptr = cur_ptr;
15136 return first_die;
c906108c 15137 }
1d325ec1
DJ
15138
15139 if (!first_die)
15140 first_die = die;
c906108c 15141 else
1d325ec1
DJ
15142 last_sibling->sibling = die;
15143
15144 last_sibling = die;
c906108c 15145 }
c906108c
SS
15146}
15147
bf6af496
DE
15148/* Read a die, all of its descendents, and all of its siblings; set
15149 all of the fields of all of the dies correctly. Arguments are as
15150 in read_die_and_children.
15151 This the main entry point for reading a DIE and all its children. */
15152
15153static struct die_info *
15154read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15155 const gdb_byte *info_ptr,
15156 const gdb_byte **new_info_ptr,
bf6af496
DE
15157 struct die_info *parent)
15158{
15159 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15160 new_info_ptr, parent);
15161
b4f54984 15162 if (dwarf_die_debug)
bf6af496
DE
15163 {
15164 fprintf_unfiltered (gdb_stdlog,
15165 "Read die from %s@0x%x of %s:\n",
a32a8923 15166 get_section_name (reader->die_section),
bf6af496
DE
15167 (unsigned) (info_ptr - reader->die_section->buffer),
15168 bfd_get_filename (reader->abfd));
b4f54984 15169 dump_die (die, dwarf_die_debug);
bf6af496
DE
15170 }
15171
15172 return die;
15173}
15174
3019eac3
DE
15175/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15176 attributes.
15177 The caller is responsible for filling in the extra attributes
15178 and updating (*DIEP)->num_attrs.
15179 Set DIEP to point to a newly allocated die with its information,
15180 except for its child, sibling, and parent fields.
15181 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15182
d521ce57 15183static const gdb_byte *
3019eac3 15184read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15185 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15186 int *has_children, int num_extra_attrs)
93311388 15187{
b64f50a1
JK
15188 unsigned int abbrev_number, bytes_read, i;
15189 sect_offset offset;
93311388
DE
15190 struct abbrev_info *abbrev;
15191 struct die_info *die;
15192 struct dwarf2_cu *cu = reader->cu;
15193 bfd *abfd = reader->abfd;
15194
b64f50a1 15195 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15196 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15197 info_ptr += bytes_read;
15198 if (!abbrev_number)
15199 {
15200 *diep = NULL;
15201 *has_children = 0;
15202 return info_ptr;
15203 }
15204
433df2d4 15205 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15206 if (!abbrev)
348e048f
DE
15207 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15208 abbrev_number,
15209 bfd_get_filename (abfd));
15210
3019eac3 15211 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15212 die->offset = offset;
15213 die->tag = abbrev->tag;
15214 die->abbrev = abbrev_number;
15215
3019eac3
DE
15216 /* Make the result usable.
15217 The caller needs to update num_attrs after adding the extra
15218 attributes. */
93311388
DE
15219 die->num_attrs = abbrev->num_attrs;
15220
15221 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15222 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15223 info_ptr);
93311388
DE
15224
15225 *diep = die;
15226 *has_children = abbrev->has_children;
15227 return info_ptr;
15228}
15229
3019eac3
DE
15230/* Read a die and all its attributes.
15231 Set DIEP to point to a newly allocated die with its information,
15232 except for its child, sibling, and parent fields.
15233 Set HAS_CHILDREN to tell whether the die has children or not. */
15234
d521ce57 15235static const gdb_byte *
3019eac3 15236read_full_die (const struct die_reader_specs *reader,
d521ce57 15237 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15238 int *has_children)
15239{
d521ce57 15240 const gdb_byte *result;
bf6af496
DE
15241
15242 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15243
b4f54984 15244 if (dwarf_die_debug)
bf6af496
DE
15245 {
15246 fprintf_unfiltered (gdb_stdlog,
15247 "Read die from %s@0x%x of %s:\n",
a32a8923 15248 get_section_name (reader->die_section),
bf6af496
DE
15249 (unsigned) (info_ptr - reader->die_section->buffer),
15250 bfd_get_filename (reader->abfd));
b4f54984 15251 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15252 }
15253
15254 return result;
3019eac3 15255}
433df2d4
DE
15256\f
15257/* Abbreviation tables.
3019eac3 15258
433df2d4 15259 In DWARF version 2, the description of the debugging information is
c906108c
SS
15260 stored in a separate .debug_abbrev section. Before we read any
15261 dies from a section we read in all abbreviations and install them
433df2d4
DE
15262 in a hash table. */
15263
15264/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15265
15266static struct abbrev_info *
15267abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15268{
15269 struct abbrev_info *abbrev;
15270
8d749320 15271 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15272 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15273
433df2d4
DE
15274 return abbrev;
15275}
15276
15277/* Add an abbreviation to the table. */
c906108c
SS
15278
15279static void
433df2d4
DE
15280abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15281 unsigned int abbrev_number,
15282 struct abbrev_info *abbrev)
15283{
15284 unsigned int hash_number;
15285
15286 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15287 abbrev->next = abbrev_table->abbrevs[hash_number];
15288 abbrev_table->abbrevs[hash_number] = abbrev;
15289}
dee91e82 15290
433df2d4
DE
15291/* Look up an abbrev in the table.
15292 Returns NULL if the abbrev is not found. */
15293
15294static struct abbrev_info *
15295abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15296 unsigned int abbrev_number)
c906108c 15297{
433df2d4
DE
15298 unsigned int hash_number;
15299 struct abbrev_info *abbrev;
15300
15301 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15302 abbrev = abbrev_table->abbrevs[hash_number];
15303
15304 while (abbrev)
15305 {
15306 if (abbrev->number == abbrev_number)
15307 return abbrev;
15308 abbrev = abbrev->next;
15309 }
15310 return NULL;
15311}
15312
15313/* Read in an abbrev table. */
15314
15315static struct abbrev_table *
15316abbrev_table_read_table (struct dwarf2_section_info *section,
15317 sect_offset offset)
15318{
15319 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15320 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15321 struct abbrev_table *abbrev_table;
d521ce57 15322 const gdb_byte *abbrev_ptr;
c906108c
SS
15323 struct abbrev_info *cur_abbrev;
15324 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15325 unsigned int abbrev_form;
f3dd6933
DJ
15326 struct attr_abbrev *cur_attrs;
15327 unsigned int allocated_attrs;
c906108c 15328
70ba0933 15329 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15330 abbrev_table->offset = offset;
433df2d4 15331 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15332 abbrev_table->abbrevs =
15333 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15334 ABBREV_HASH_SIZE);
433df2d4
DE
15335 memset (abbrev_table->abbrevs, 0,
15336 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15337
433df2d4
DE
15338 dwarf2_read_section (objfile, section);
15339 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15340 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342
f3dd6933 15343 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15344 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15345
0963b4bd 15346 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15347 while (abbrev_number)
15348 {
433df2d4 15349 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15350
15351 /* read in abbrev header */
15352 cur_abbrev->number = abbrev_number;
aead7601
SM
15353 cur_abbrev->tag
15354 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15355 abbrev_ptr += bytes_read;
15356 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15357 abbrev_ptr += 1;
15358
15359 /* now read in declarations */
15360 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15361 abbrev_ptr += bytes_read;
15362 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364 while (abbrev_name)
15365 {
f3dd6933 15366 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15367 {
f3dd6933
DJ
15368 allocated_attrs += ATTR_ALLOC_CHUNK;
15369 cur_attrs
224c3ddb 15370 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15371 }
ae038cb0 15372
aead7601
SM
15373 cur_attrs[cur_abbrev->num_attrs].name
15374 = (enum dwarf_attribute) abbrev_name;
15375 cur_attrs[cur_abbrev->num_attrs++].form
15376 = (enum dwarf_form) abbrev_form;
c906108c
SS
15377 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 }
15382
8d749320
SM
15383 cur_abbrev->attrs =
15384 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15385 cur_abbrev->num_attrs);
f3dd6933
DJ
15386 memcpy (cur_abbrev->attrs, cur_attrs,
15387 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15388
433df2d4 15389 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15390
15391 /* Get next abbreviation.
15392 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15393 always properly terminated with an abbrev number of 0.
15394 Exit loop if we encounter an abbreviation which we have
15395 already read (which means we are about to read the abbreviations
15396 for the next compile unit) or if the end of the abbreviation
15397 table is reached. */
433df2d4 15398 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15399 break;
15400 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15401 abbrev_ptr += bytes_read;
433df2d4 15402 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15403 break;
15404 }
f3dd6933
DJ
15405
15406 xfree (cur_attrs);
433df2d4 15407 return abbrev_table;
c906108c
SS
15408}
15409
433df2d4 15410/* Free the resources held by ABBREV_TABLE. */
c906108c 15411
c906108c 15412static void
433df2d4 15413abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15414{
433df2d4
DE
15415 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15416 xfree (abbrev_table);
c906108c
SS
15417}
15418
f4dc4d17
DE
15419/* Same as abbrev_table_free but as a cleanup.
15420 We pass in a pointer to the pointer to the table so that we can
15421 set the pointer to NULL when we're done. It also simplifies
73051182 15422 build_type_psymtabs_1. */
f4dc4d17
DE
15423
15424static void
15425abbrev_table_free_cleanup (void *table_ptr)
15426{
15427 struct abbrev_table **abbrev_table_ptr = table_ptr;
15428
15429 if (*abbrev_table_ptr != NULL)
15430 abbrev_table_free (*abbrev_table_ptr);
15431 *abbrev_table_ptr = NULL;
15432}
15433
433df2d4
DE
15434/* Read the abbrev table for CU from ABBREV_SECTION. */
15435
15436static void
15437dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15438 struct dwarf2_section_info *abbrev_section)
c906108c 15439{
433df2d4
DE
15440 cu->abbrev_table =
15441 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15442}
c906108c 15443
433df2d4 15444/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15445
433df2d4
DE
15446static void
15447dwarf2_free_abbrev_table (void *ptr_to_cu)
15448{
15449 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15450
a2ce51a0
DE
15451 if (cu->abbrev_table != NULL)
15452 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15453 /* Set this to NULL so that we SEGV if we try to read it later,
15454 and also because free_comp_unit verifies this is NULL. */
15455 cu->abbrev_table = NULL;
15456}
15457\f
72bf9492
DJ
15458/* Returns nonzero if TAG represents a type that we might generate a partial
15459 symbol for. */
15460
15461static int
15462is_type_tag_for_partial (int tag)
15463{
15464 switch (tag)
15465 {
15466#if 0
15467 /* Some types that would be reasonable to generate partial symbols for,
15468 that we don't at present. */
15469 case DW_TAG_array_type:
15470 case DW_TAG_file_type:
15471 case DW_TAG_ptr_to_member_type:
15472 case DW_TAG_set_type:
15473 case DW_TAG_string_type:
15474 case DW_TAG_subroutine_type:
15475#endif
15476 case DW_TAG_base_type:
15477 case DW_TAG_class_type:
680b30c7 15478 case DW_TAG_interface_type:
72bf9492
DJ
15479 case DW_TAG_enumeration_type:
15480 case DW_TAG_structure_type:
15481 case DW_TAG_subrange_type:
15482 case DW_TAG_typedef:
15483 case DW_TAG_union_type:
15484 return 1;
15485 default:
15486 return 0;
15487 }
15488}
15489
15490/* Load all DIEs that are interesting for partial symbols into memory. */
15491
15492static struct partial_die_info *
dee91e82 15493load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15494 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15495{
dee91e82 15496 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15497 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15498 struct partial_die_info *part_die;
15499 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15500 struct abbrev_info *abbrev;
15501 unsigned int bytes_read;
5afb4e99 15502 unsigned int load_all = 0;
72bf9492
DJ
15503 int nesting_level = 1;
15504
15505 parent_die = NULL;
15506 last_die = NULL;
15507
7adf1e79
DE
15508 gdb_assert (cu->per_cu != NULL);
15509 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15510 load_all = 1;
15511
72bf9492
DJ
15512 cu->partial_dies
15513 = htab_create_alloc_ex (cu->header.length / 12,
15514 partial_die_hash,
15515 partial_die_eq,
15516 NULL,
15517 &cu->comp_unit_obstack,
15518 hashtab_obstack_allocate,
15519 dummy_obstack_deallocate);
15520
8d749320 15521 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15522
15523 while (1)
15524 {
15525 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15526
15527 /* A NULL abbrev means the end of a series of children. */
15528 if (abbrev == NULL)
15529 {
15530 if (--nesting_level == 0)
15531 {
15532 /* PART_DIE was probably the last thing allocated on the
15533 comp_unit_obstack, so we could call obstack_free
15534 here. We don't do that because the waste is small,
15535 and will be cleaned up when we're done with this
15536 compilation unit. This way, we're also more robust
15537 against other users of the comp_unit_obstack. */
15538 return first_die;
15539 }
15540 info_ptr += bytes_read;
15541 last_die = parent_die;
15542 parent_die = parent_die->die_parent;
15543 continue;
15544 }
15545
98bfdba5
PA
15546 /* Check for template arguments. We never save these; if
15547 they're seen, we just mark the parent, and go on our way. */
15548 if (parent_die != NULL
15549 && cu->language == language_cplus
15550 && (abbrev->tag == DW_TAG_template_type_param
15551 || abbrev->tag == DW_TAG_template_value_param))
15552 {
15553 parent_die->has_template_arguments = 1;
15554
15555 if (!load_all)
15556 {
15557 /* We don't need a partial DIE for the template argument. */
dee91e82 15558 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15559 continue;
15560 }
15561 }
15562
0d99eb77 15563 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15564 Skip their other children. */
15565 if (!load_all
15566 && cu->language == language_cplus
15567 && parent_die != NULL
15568 && parent_die->tag == DW_TAG_subprogram)
15569 {
dee91e82 15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15571 continue;
15572 }
15573
5afb4e99
DJ
15574 /* Check whether this DIE is interesting enough to save. Normally
15575 we would not be interested in members here, but there may be
15576 later variables referencing them via DW_AT_specification (for
15577 static members). */
15578 if (!load_all
15579 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15580 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15581 && abbrev->tag != DW_TAG_enumerator
15582 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15583 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15584 && abbrev->tag != DW_TAG_variable
5afb4e99 15585 && abbrev->tag != DW_TAG_namespace
f55ee35c 15586 && abbrev->tag != DW_TAG_module
95554aad 15587 && abbrev->tag != DW_TAG_member
74921315
KS
15588 && abbrev->tag != DW_TAG_imported_unit
15589 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15590 {
15591 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15593 continue;
15594 }
15595
dee91e82
DE
15596 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15597 info_ptr);
72bf9492
DJ
15598
15599 /* This two-pass algorithm for processing partial symbols has a
15600 high cost in cache pressure. Thus, handle some simple cases
15601 here which cover the majority of C partial symbols. DIEs
15602 which neither have specification tags in them, nor could have
15603 specification tags elsewhere pointing at them, can simply be
15604 processed and discarded.
15605
15606 This segment is also optional; scan_partial_symbols and
15607 add_partial_symbol will handle these DIEs if we chain
15608 them in normally. When compilers which do not emit large
15609 quantities of duplicate debug information are more common,
15610 this code can probably be removed. */
15611
15612 /* Any complete simple types at the top level (pretty much all
15613 of them, for a language without namespaces), can be processed
15614 directly. */
15615 if (parent_die == NULL
15616 && part_die->has_specification == 0
15617 && part_die->is_declaration == 0
d8228535 15618 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15619 || part_die->tag == DW_TAG_base_type
15620 || part_die->tag == DW_TAG_subrange_type))
15621 {
15622 if (building_psymtab && part_die->name != NULL)
04a679b8 15623 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15624 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15625 &objfile->static_psymbols,
1762568f 15626 0, cu->language, objfile);
dee91e82 15627 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15628 continue;
15629 }
15630
d8228535
JK
15631 /* The exception for DW_TAG_typedef with has_children above is
15632 a workaround of GCC PR debug/47510. In the case of this complaint
15633 type_name_no_tag_or_error will error on such types later.
15634
15635 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15636 it could not find the child DIEs referenced later, this is checked
15637 above. In correct DWARF DW_TAG_typedef should have no children. */
15638
15639 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15640 complaint (&symfile_complaints,
15641 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15642 "- DIE at 0x%x [in module %s]"),
4262abfb 15643 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15644
72bf9492
DJ
15645 /* If we're at the second level, and we're an enumerator, and
15646 our parent has no specification (meaning possibly lives in a
15647 namespace elsewhere), then we can add the partial symbol now
15648 instead of queueing it. */
15649 if (part_die->tag == DW_TAG_enumerator
15650 && parent_die != NULL
15651 && parent_die->die_parent == NULL
15652 && parent_die->tag == DW_TAG_enumeration_type
15653 && parent_die->has_specification == 0)
15654 {
15655 if (part_die->name == NULL)
3e43a32a
MS
15656 complaint (&symfile_complaints,
15657 _("malformed enumerator DIE ignored"));
72bf9492 15658 else if (building_psymtab)
04a679b8 15659 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15660 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15661 (cu->language == language_cplus
15662 || cu->language == language_java)
bb5ed363
DE
15663 ? &objfile->global_psymbols
15664 : &objfile->static_psymbols,
1762568f 15665 0, cu->language, objfile);
72bf9492 15666
dee91e82 15667 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15668 continue;
15669 }
15670
15671 /* We'll save this DIE so link it in. */
15672 part_die->die_parent = parent_die;
15673 part_die->die_sibling = NULL;
15674 part_die->die_child = NULL;
15675
15676 if (last_die && last_die == parent_die)
15677 last_die->die_child = part_die;
15678 else if (last_die)
15679 last_die->die_sibling = part_die;
15680
15681 last_die = part_die;
15682
15683 if (first_die == NULL)
15684 first_die = part_die;
15685
15686 /* Maybe add the DIE to the hash table. Not all DIEs that we
15687 find interesting need to be in the hash table, because we
15688 also have the parent/sibling/child chains; only those that we
15689 might refer to by offset later during partial symbol reading.
15690
15691 For now this means things that might have be the target of a
15692 DW_AT_specification, DW_AT_abstract_origin, or
15693 DW_AT_extension. DW_AT_extension will refer only to
15694 namespaces; DW_AT_abstract_origin refers to functions (and
15695 many things under the function DIE, but we do not recurse
15696 into function DIEs during partial symbol reading) and
15697 possibly variables as well; DW_AT_specification refers to
15698 declarations. Declarations ought to have the DW_AT_declaration
15699 flag. It happens that GCC forgets to put it in sometimes, but
15700 only for functions, not for types.
15701
15702 Adding more things than necessary to the hash table is harmless
15703 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15704 wasted time in find_partial_die, when we reread the compilation
15705 unit with load_all_dies set. */
72bf9492 15706
5afb4e99 15707 if (load_all
72929c62 15708 || abbrev->tag == DW_TAG_constant
5afb4e99 15709 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15710 || abbrev->tag == DW_TAG_variable
15711 || abbrev->tag == DW_TAG_namespace
15712 || part_die->is_declaration)
15713 {
15714 void **slot;
15715
15716 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15717 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15718 *slot = part_die;
15719 }
15720
8d749320 15721 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15722
15723 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15724 we have no reason to follow the children of structures; for other
98bfdba5
PA
15725 languages we have to, so that we can get at method physnames
15726 to infer fully qualified class names, for DW_AT_specification,
15727 and for C++ template arguments. For C++, we also look one level
15728 inside functions to find template arguments (if the name of the
15729 function does not already contain the template arguments).
bc30ff58
JB
15730
15731 For Ada, we need to scan the children of subprograms and lexical
15732 blocks as well because Ada allows the definition of nested
15733 entities that could be interesting for the debugger, such as
15734 nested subprograms for instance. */
72bf9492 15735 if (last_die->has_children
5afb4e99
DJ
15736 && (load_all
15737 || last_die->tag == DW_TAG_namespace
f55ee35c 15738 || last_die->tag == DW_TAG_module
72bf9492 15739 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15740 || (cu->language == language_cplus
15741 && last_die->tag == DW_TAG_subprogram
15742 && (last_die->name == NULL
15743 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15744 || (cu->language != language_c
15745 && (last_die->tag == DW_TAG_class_type
680b30c7 15746 || last_die->tag == DW_TAG_interface_type
72bf9492 15747 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15748 || last_die->tag == DW_TAG_union_type))
15749 || (cu->language == language_ada
15750 && (last_die->tag == DW_TAG_subprogram
15751 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15752 {
15753 nesting_level++;
15754 parent_die = last_die;
15755 continue;
15756 }
15757
15758 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15759 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15760
15761 /* Back to the top, do it again. */
15762 }
15763}
15764
c906108c
SS
15765/* Read a minimal amount of information into the minimal die structure. */
15766
d521ce57 15767static const gdb_byte *
dee91e82
DE
15768read_partial_die (const struct die_reader_specs *reader,
15769 struct partial_die_info *part_die,
15770 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15771 const gdb_byte *info_ptr)
c906108c 15772{
dee91e82 15773 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15774 struct objfile *objfile = cu->objfile;
d521ce57 15775 const gdb_byte *buffer = reader->buffer;
fa238c03 15776 unsigned int i;
c906108c 15777 struct attribute attr;
c5aa993b 15778 int has_low_pc_attr = 0;
c906108c 15779 int has_high_pc_attr = 0;
91da1414 15780 int high_pc_relative = 0;
c906108c 15781
72bf9492 15782 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15783
b64f50a1 15784 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15785
15786 info_ptr += abbrev_len;
15787
15788 if (abbrev == NULL)
15789 return info_ptr;
15790
c906108c
SS
15791 part_die->tag = abbrev->tag;
15792 part_die->has_children = abbrev->has_children;
c906108c
SS
15793
15794 for (i = 0; i < abbrev->num_attrs; ++i)
15795 {
dee91e82 15796 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15797
15798 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15799 partial symbol table. */
c906108c
SS
15800 switch (attr.name)
15801 {
15802 case DW_AT_name:
71c25dea
TT
15803 switch (part_die->tag)
15804 {
15805 case DW_TAG_compile_unit:
95554aad 15806 case DW_TAG_partial_unit:
348e048f 15807 case DW_TAG_type_unit:
71c25dea
TT
15808 /* Compilation units have a DW_AT_name that is a filename, not
15809 a source language identifier. */
15810 case DW_TAG_enumeration_type:
15811 case DW_TAG_enumerator:
15812 /* These tags always have simple identifiers already; no need
15813 to canonicalize them. */
15814 part_die->name = DW_STRING (&attr);
15815 break;
15816 default:
15817 part_die->name
15818 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15819 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15820 break;
15821 }
c906108c 15822 break;
31ef98ae 15823 case DW_AT_linkage_name:
c906108c 15824 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15825 /* Note that both forms of linkage name might appear. We
15826 assume they will be the same, and we only store the last
15827 one we see. */
94af9270
KS
15828 if (cu->language == language_ada)
15829 part_die->name = DW_STRING (&attr);
abc72ce4 15830 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15831 break;
15832 case DW_AT_low_pc:
15833 has_low_pc_attr = 1;
31aa7e4e 15834 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15835 break;
15836 case DW_AT_high_pc:
15837 has_high_pc_attr = 1;
31aa7e4e
JB
15838 part_die->highpc = attr_value_as_address (&attr);
15839 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15840 high_pc_relative = 1;
c906108c
SS
15841 break;
15842 case DW_AT_location:
0963b4bd 15843 /* Support the .debug_loc offsets. */
8e19ed76
PS
15844 if (attr_form_is_block (&attr))
15845 {
95554aad 15846 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15847 }
3690dd37 15848 else if (attr_form_is_section_offset (&attr))
8e19ed76 15849 {
4d3c2250 15850 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15851 }
15852 else
15853 {
4d3c2250
KB
15854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15855 "partial symbol information");
8e19ed76 15856 }
c906108c 15857 break;
c906108c
SS
15858 case DW_AT_external:
15859 part_die->is_external = DW_UNSND (&attr);
15860 break;
15861 case DW_AT_declaration:
15862 part_die->is_declaration = DW_UNSND (&attr);
15863 break;
15864 case DW_AT_type:
15865 part_die->has_type = 1;
15866 break;
15867 case DW_AT_abstract_origin:
15868 case DW_AT_specification:
72bf9492
DJ
15869 case DW_AT_extension:
15870 part_die->has_specification = 1;
c764a876 15871 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15872 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15873 || cu->per_cu->is_dwz);
c906108c
SS
15874 break;
15875 case DW_AT_sibling:
15876 /* Ignore absolute siblings, they might point outside of
15877 the current compile unit. */
15878 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15879 complaint (&symfile_complaints,
15880 _("ignoring absolute DW_AT_sibling"));
c906108c 15881 else
b9502d3f
WN
15882 {
15883 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15884 const gdb_byte *sibling_ptr = buffer + off;
15885
15886 if (sibling_ptr < info_ptr)
15887 complaint (&symfile_complaints,
15888 _("DW_AT_sibling points backwards"));
22869d73
KS
15889 else if (sibling_ptr > reader->buffer_end)
15890 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15891 else
15892 part_die->sibling = sibling_ptr;
15893 }
c906108c 15894 break;
fa4028e9
JB
15895 case DW_AT_byte_size:
15896 part_die->has_byte_size = 1;
15897 break;
ff908ebf
AW
15898 case DW_AT_const_value:
15899 part_die->has_const_value = 1;
15900 break;
68511cec
CES
15901 case DW_AT_calling_convention:
15902 /* DWARF doesn't provide a way to identify a program's source-level
15903 entry point. DW_AT_calling_convention attributes are only meant
15904 to describe functions' calling conventions.
15905
15906 However, because it's a necessary piece of information in
15907 Fortran, and because DW_CC_program is the only piece of debugging
15908 information whose definition refers to a 'main program' at all,
15909 several compilers have begun marking Fortran main programs with
15910 DW_CC_program --- even when those functions use the standard
15911 calling conventions.
15912
15913 So until DWARF specifies a way to provide this information and
15914 compilers pick up the new representation, we'll support this
15915 practice. */
15916 if (DW_UNSND (&attr) == DW_CC_program
15917 && cu->language == language_fortran)
3d548a53 15918 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15919 break;
481860b3
GB
15920 case DW_AT_inline:
15921 if (DW_UNSND (&attr) == DW_INL_inlined
15922 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15923 part_die->may_be_inlined = 1;
15924 break;
95554aad
TT
15925
15926 case DW_AT_import:
15927 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15928 {
15929 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15930 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15931 || cu->per_cu->is_dwz);
15932 }
95554aad
TT
15933 break;
15934
c906108c
SS
15935 default:
15936 break;
15937 }
15938 }
15939
91da1414
MW
15940 if (high_pc_relative)
15941 part_die->highpc += part_die->lowpc;
15942
9373cf26
JK
15943 if (has_low_pc_attr && has_high_pc_attr)
15944 {
15945 /* When using the GNU linker, .gnu.linkonce. sections are used to
15946 eliminate duplicate copies of functions and vtables and such.
15947 The linker will arbitrarily choose one and discard the others.
15948 The AT_*_pc values for such functions refer to local labels in
15949 these sections. If the section from that file was discarded, the
15950 labels are not in the output, so the relocs get a value of 0.
15951 If this is a discarded function, mark the pc bounds as invalid,
15952 so that GDB will ignore it. */
15953 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15954 {
bb5ed363 15955 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15956
15957 complaint (&symfile_complaints,
15958 _("DW_AT_low_pc %s is zero "
15959 "for DIE at 0x%x [in module %s]"),
15960 paddress (gdbarch, part_die->lowpc),
4262abfb 15961 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15962 }
15963 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15964 else if (part_die->lowpc >= part_die->highpc)
15965 {
bb5ed363 15966 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15967
15968 complaint (&symfile_complaints,
15969 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15970 "for DIE at 0x%x [in module %s]"),
15971 paddress (gdbarch, part_die->lowpc),
15972 paddress (gdbarch, part_die->highpc),
4262abfb 15973 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15974 }
15975 else
15976 part_die->has_pc_info = 1;
15977 }
85cbf3d3 15978
c906108c
SS
15979 return info_ptr;
15980}
15981
72bf9492
DJ
15982/* Find a cached partial DIE at OFFSET in CU. */
15983
15984static struct partial_die_info *
b64f50a1 15985find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15986{
15987 struct partial_die_info *lookup_die = NULL;
15988 struct partial_die_info part_die;
15989
15990 part_die.offset = offset;
b64f50a1
JK
15991 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15992 offset.sect_off);
72bf9492 15993
72bf9492
DJ
15994 return lookup_die;
15995}
15996
348e048f
DE
15997/* Find a partial DIE at OFFSET, which may or may not be in CU,
15998 except in the case of .debug_types DIEs which do not reference
15999 outside their CU (they do however referencing other types via
55f1336d 16000 DW_FORM_ref_sig8). */
72bf9492
DJ
16001
16002static struct partial_die_info *
36586728 16003find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16004{
bb5ed363 16005 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16006 struct dwarf2_per_cu_data *per_cu = NULL;
16007 struct partial_die_info *pd = NULL;
72bf9492 16008
36586728
TT
16009 if (offset_in_dwz == cu->per_cu->is_dwz
16010 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16011 {
16012 pd = find_partial_die_in_comp_unit (offset, cu);
16013 if (pd != NULL)
16014 return pd;
0d99eb77
DE
16015 /* We missed recording what we needed.
16016 Load all dies and try again. */
16017 per_cu = cu->per_cu;
5afb4e99 16018 }
0d99eb77
DE
16019 else
16020 {
16021 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16022 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16023 {
16024 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16025 " external reference to offset 0x%lx [in module %s].\n"),
16026 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16027 bfd_get_filename (objfile->obfd));
16028 }
36586728
TT
16029 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16030 objfile);
72bf9492 16031
0d99eb77
DE
16032 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16033 load_partial_comp_unit (per_cu);
ae038cb0 16034
0d99eb77
DE
16035 per_cu->cu->last_used = 0;
16036 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16037 }
5afb4e99 16038
dee91e82
DE
16039 /* If we didn't find it, and not all dies have been loaded,
16040 load them all and try again. */
16041
5afb4e99
DJ
16042 if (pd == NULL && per_cu->load_all_dies == 0)
16043 {
5afb4e99 16044 per_cu->load_all_dies = 1;
fd820528
DE
16045
16046 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16047 THIS_CU->cu may already be in use. So we can't just free it and
16048 replace its DIEs with the ones we read in. Instead, we leave those
16049 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16050 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16051 set. */
dee91e82 16052 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16053
16054 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16055 }
16056
16057 if (pd == NULL)
16058 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16059 _("could not find partial DIE 0x%x "
16060 "in cache [from module %s]\n"),
b64f50a1 16061 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16062 return pd;
72bf9492
DJ
16063}
16064
abc72ce4
DE
16065/* See if we can figure out if the class lives in a namespace. We do
16066 this by looking for a member function; its demangled name will
16067 contain namespace info, if there is any. */
16068
16069static void
16070guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16071 struct dwarf2_cu *cu)
16072{
16073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16074 what template types look like, because the demangler
16075 frequently doesn't give the same name as the debug info. We
16076 could fix this by only using the demangled name to get the
16077 prefix (but see comment in read_structure_type). */
16078
16079 struct partial_die_info *real_pdi;
16080 struct partial_die_info *child_pdi;
16081
16082 /* If this DIE (this DIE's specification, if any) has a parent, then
16083 we should not do this. We'll prepend the parent's fully qualified
16084 name when we create the partial symbol. */
16085
16086 real_pdi = struct_pdi;
16087 while (real_pdi->has_specification)
36586728
TT
16088 real_pdi = find_partial_die (real_pdi->spec_offset,
16089 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16090
16091 if (real_pdi->die_parent != NULL)
16092 return;
16093
16094 for (child_pdi = struct_pdi->die_child;
16095 child_pdi != NULL;
16096 child_pdi = child_pdi->die_sibling)
16097 {
16098 if (child_pdi->tag == DW_TAG_subprogram
16099 && child_pdi->linkage_name != NULL)
16100 {
16101 char *actual_class_name
16102 = language_class_name_from_physname (cu->language_defn,
16103 child_pdi->linkage_name);
16104 if (actual_class_name != NULL)
16105 {
16106 struct_pdi->name
224c3ddb
SM
16107 = ((const char *)
16108 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16109 actual_class_name,
16110 strlen (actual_class_name)));
abc72ce4
DE
16111 xfree (actual_class_name);
16112 }
16113 break;
16114 }
16115 }
16116}
16117
72bf9492
DJ
16118/* Adjust PART_DIE before generating a symbol for it. This function
16119 may set the is_external flag or change the DIE's name. */
16120
16121static void
16122fixup_partial_die (struct partial_die_info *part_die,
16123 struct dwarf2_cu *cu)
16124{
abc72ce4
DE
16125 /* Once we've fixed up a die, there's no point in doing so again.
16126 This also avoids a memory leak if we were to call
16127 guess_partial_die_structure_name multiple times. */
16128 if (part_die->fixup_called)
16129 return;
16130
72bf9492
DJ
16131 /* If we found a reference attribute and the DIE has no name, try
16132 to find a name in the referred to DIE. */
16133
16134 if (part_die->name == NULL && part_die->has_specification)
16135 {
16136 struct partial_die_info *spec_die;
72bf9492 16137
36586728
TT
16138 spec_die = find_partial_die (part_die->spec_offset,
16139 part_die->spec_is_dwz, cu);
72bf9492 16140
10b3939b 16141 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16142
16143 if (spec_die->name)
16144 {
16145 part_die->name = spec_die->name;
16146
16147 /* Copy DW_AT_external attribute if it is set. */
16148 if (spec_die->is_external)
16149 part_die->is_external = spec_die->is_external;
16150 }
16151 }
16152
16153 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16154
16155 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16156 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16157
abc72ce4
DE
16158 /* If there is no parent die to provide a namespace, and there are
16159 children, see if we can determine the namespace from their linkage
122d1940 16160 name. */
abc72ce4 16161 if (cu->language == language_cplus
8b70b953 16162 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16163 && part_die->die_parent == NULL
16164 && part_die->has_children
16165 && (part_die->tag == DW_TAG_class_type
16166 || part_die->tag == DW_TAG_structure_type
16167 || part_die->tag == DW_TAG_union_type))
16168 guess_partial_die_structure_name (part_die, cu);
16169
53832f31
TT
16170 /* GCC might emit a nameless struct or union that has a linkage
16171 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16172 if (part_die->name == NULL
96408a79
SA
16173 && (part_die->tag == DW_TAG_class_type
16174 || part_die->tag == DW_TAG_interface_type
16175 || part_die->tag == DW_TAG_structure_type
16176 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16177 && part_die->linkage_name != NULL)
16178 {
16179 char *demangled;
16180
8de20a37 16181 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16182 if (demangled)
16183 {
96408a79
SA
16184 const char *base;
16185
16186 /* Strip any leading namespaces/classes, keep only the base name.
16187 DW_AT_name for named DIEs does not contain the prefixes. */
16188 base = strrchr (demangled, ':');
16189 if (base && base > demangled && base[-1] == ':')
16190 base++;
16191 else
16192 base = demangled;
16193
34a68019 16194 part_die->name
224c3ddb
SM
16195 = ((const char *)
16196 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16197 base, strlen (base)));
53832f31
TT
16198 xfree (demangled);
16199 }
16200 }
16201
abc72ce4 16202 part_die->fixup_called = 1;
72bf9492
DJ
16203}
16204
a8329558 16205/* Read an attribute value described by an attribute form. */
c906108c 16206
d521ce57 16207static const gdb_byte *
dee91e82
DE
16208read_attribute_value (const struct die_reader_specs *reader,
16209 struct attribute *attr, unsigned form,
d521ce57 16210 const gdb_byte *info_ptr)
c906108c 16211{
dee91e82 16212 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16213 struct objfile *objfile = cu->objfile;
16214 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16215 bfd *abfd = reader->abfd;
e7c27a73 16216 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16217 unsigned int bytes_read;
16218 struct dwarf_block *blk;
16219
aead7601 16220 attr->form = (enum dwarf_form) form;
a8329558 16221 switch (form)
c906108c 16222 {
c906108c 16223 case DW_FORM_ref_addr:
ae411497 16224 if (cu->header.version == 2)
4568ecf9 16225 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16226 else
4568ecf9
DE
16227 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16228 &cu->header, &bytes_read);
ae411497
TT
16229 info_ptr += bytes_read;
16230 break;
36586728
TT
16231 case DW_FORM_GNU_ref_alt:
16232 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16233 info_ptr += bytes_read;
16234 break;
ae411497 16235 case DW_FORM_addr:
e7c27a73 16236 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16237 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16238 info_ptr += bytes_read;
c906108c
SS
16239 break;
16240 case DW_FORM_block2:
7b5a2f43 16241 blk = dwarf_alloc_block (cu);
c906108c
SS
16242 blk->size = read_2_bytes (abfd, info_ptr);
16243 info_ptr += 2;
16244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16245 info_ptr += blk->size;
16246 DW_BLOCK (attr) = blk;
16247 break;
16248 case DW_FORM_block4:
7b5a2f43 16249 blk = dwarf_alloc_block (cu);
c906108c
SS
16250 blk->size = read_4_bytes (abfd, info_ptr);
16251 info_ptr += 4;
16252 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16253 info_ptr += blk->size;
16254 DW_BLOCK (attr) = blk;
16255 break;
16256 case DW_FORM_data2:
16257 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16258 info_ptr += 2;
16259 break;
16260 case DW_FORM_data4:
16261 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16262 info_ptr += 4;
16263 break;
16264 case DW_FORM_data8:
16265 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16266 info_ptr += 8;
16267 break;
2dc7f7b3
TT
16268 case DW_FORM_sec_offset:
16269 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16270 info_ptr += bytes_read;
16271 break;
c906108c 16272 case DW_FORM_string:
9b1c24c8 16273 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16274 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16275 info_ptr += bytes_read;
16276 break;
4bdf3d34 16277 case DW_FORM_strp:
36586728
TT
16278 if (!cu->per_cu->is_dwz)
16279 {
16280 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16281 &bytes_read);
16282 DW_STRING_IS_CANONICAL (attr) = 0;
16283 info_ptr += bytes_read;
16284 break;
16285 }
16286 /* FALLTHROUGH */
16287 case DW_FORM_GNU_strp_alt:
16288 {
16289 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16290 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16291 &bytes_read);
16292
16293 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16294 DW_STRING_IS_CANONICAL (attr) = 0;
16295 info_ptr += bytes_read;
16296 }
4bdf3d34 16297 break;
2dc7f7b3 16298 case DW_FORM_exprloc:
c906108c 16299 case DW_FORM_block:
7b5a2f43 16300 blk = dwarf_alloc_block (cu);
c906108c
SS
16301 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16302 info_ptr += bytes_read;
16303 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16304 info_ptr += blk->size;
16305 DW_BLOCK (attr) = blk;
16306 break;
16307 case DW_FORM_block1:
7b5a2f43 16308 blk = dwarf_alloc_block (cu);
c906108c
SS
16309 blk->size = read_1_byte (abfd, info_ptr);
16310 info_ptr += 1;
16311 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16312 info_ptr += blk->size;
16313 DW_BLOCK (attr) = blk;
16314 break;
16315 case DW_FORM_data1:
16316 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16317 info_ptr += 1;
16318 break;
16319 case DW_FORM_flag:
16320 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16321 info_ptr += 1;
16322 break;
2dc7f7b3
TT
16323 case DW_FORM_flag_present:
16324 DW_UNSND (attr) = 1;
16325 break;
c906108c
SS
16326 case DW_FORM_sdata:
16327 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16328 info_ptr += bytes_read;
16329 break;
16330 case DW_FORM_udata:
16331 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16332 info_ptr += bytes_read;
16333 break;
16334 case DW_FORM_ref1:
4568ecf9
DE
16335 DW_UNSND (attr) = (cu->header.offset.sect_off
16336 + read_1_byte (abfd, info_ptr));
c906108c
SS
16337 info_ptr += 1;
16338 break;
16339 case DW_FORM_ref2:
4568ecf9
DE
16340 DW_UNSND (attr) = (cu->header.offset.sect_off
16341 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16342 info_ptr += 2;
16343 break;
16344 case DW_FORM_ref4:
4568ecf9
DE
16345 DW_UNSND (attr) = (cu->header.offset.sect_off
16346 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16347 info_ptr += 4;
16348 break;
613e1657 16349 case DW_FORM_ref8:
4568ecf9
DE
16350 DW_UNSND (attr) = (cu->header.offset.sect_off
16351 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16352 info_ptr += 8;
16353 break;
55f1336d 16354 case DW_FORM_ref_sig8:
ac9ec31b 16355 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16356 info_ptr += 8;
16357 break;
c906108c 16358 case DW_FORM_ref_udata:
4568ecf9
DE
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16361 info_ptr += bytes_read;
16362 break;
c906108c 16363 case DW_FORM_indirect:
a8329558
KW
16364 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16365 info_ptr += bytes_read;
dee91e82 16366 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16367 break;
3019eac3
DE
16368 case DW_FORM_GNU_addr_index:
16369 if (reader->dwo_file == NULL)
16370 {
16371 /* For now flag a hard error.
16372 Later we can turn this into a complaint. */
16373 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16374 dwarf_form_name (form),
16375 bfd_get_filename (abfd));
16376 }
16377 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16378 info_ptr += bytes_read;
16379 break;
16380 case DW_FORM_GNU_str_index:
16381 if (reader->dwo_file == NULL)
16382 {
16383 /* For now flag a hard error.
16384 Later we can turn this into a complaint if warranted. */
16385 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16386 dwarf_form_name (form),
16387 bfd_get_filename (abfd));
16388 }
16389 {
16390 ULONGEST str_index =
16391 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16392
342587c4 16393 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16394 DW_STRING_IS_CANONICAL (attr) = 0;
16395 info_ptr += bytes_read;
16396 }
16397 break;
c906108c 16398 default:
8a3fe4f8 16399 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16400 dwarf_form_name (form),
16401 bfd_get_filename (abfd));
c906108c 16402 }
28e94949 16403
36586728 16404 /* Super hack. */
7771576e 16405 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16406 attr->form = DW_FORM_GNU_ref_alt;
16407
28e94949
JB
16408 /* We have seen instances where the compiler tried to emit a byte
16409 size attribute of -1 which ended up being encoded as an unsigned
16410 0xffffffff. Although 0xffffffff is technically a valid size value,
16411 an object of this size seems pretty unlikely so we can relatively
16412 safely treat these cases as if the size attribute was invalid and
16413 treat them as zero by default. */
16414 if (attr->name == DW_AT_byte_size
16415 && form == DW_FORM_data4
16416 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16417 {
16418 complaint
16419 (&symfile_complaints,
43bbcdc2
PH
16420 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16421 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16422 DW_UNSND (attr) = 0;
16423 }
28e94949 16424
c906108c
SS
16425 return info_ptr;
16426}
16427
a8329558
KW
16428/* Read an attribute described by an abbreviated attribute. */
16429
d521ce57 16430static const gdb_byte *
dee91e82
DE
16431read_attribute (const struct die_reader_specs *reader,
16432 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16433 const gdb_byte *info_ptr)
a8329558
KW
16434{
16435 attr->name = abbrev->name;
dee91e82 16436 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16437}
16438
0963b4bd 16439/* Read dwarf information from a buffer. */
c906108c
SS
16440
16441static unsigned int
a1855c1d 16442read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16443{
fe1b8b76 16444 return bfd_get_8 (abfd, buf);
c906108c
SS
16445}
16446
16447static int
a1855c1d 16448read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16449{
fe1b8b76 16450 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16451}
16452
16453static unsigned int
a1855c1d 16454read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16455{
fe1b8b76 16456 return bfd_get_16 (abfd, buf);
c906108c
SS
16457}
16458
21ae7a4d 16459static int
a1855c1d 16460read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16461{
16462 return bfd_get_signed_16 (abfd, buf);
16463}
16464
c906108c 16465static unsigned int
a1855c1d 16466read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16467{
fe1b8b76 16468 return bfd_get_32 (abfd, buf);
c906108c
SS
16469}
16470
21ae7a4d 16471static int
a1855c1d 16472read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16473{
16474 return bfd_get_signed_32 (abfd, buf);
16475}
16476
93311388 16477static ULONGEST
a1855c1d 16478read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16479{
fe1b8b76 16480 return bfd_get_64 (abfd, buf);
c906108c
SS
16481}
16482
16483static CORE_ADDR
d521ce57 16484read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16485 unsigned int *bytes_read)
c906108c 16486{
e7c27a73 16487 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16488 CORE_ADDR retval = 0;
16489
107d2387 16490 if (cu_header->signed_addr_p)
c906108c 16491 {
107d2387
AC
16492 switch (cu_header->addr_size)
16493 {
16494 case 2:
fe1b8b76 16495 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16496 break;
16497 case 4:
fe1b8b76 16498 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16499 break;
16500 case 8:
fe1b8b76 16501 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16502 break;
16503 default:
8e65ff28 16504 internal_error (__FILE__, __LINE__,
e2e0b3e5 16505 _("read_address: bad switch, signed [in module %s]"),
659b0389 16506 bfd_get_filename (abfd));
107d2387
AC
16507 }
16508 }
16509 else
16510 {
16511 switch (cu_header->addr_size)
16512 {
16513 case 2:
fe1b8b76 16514 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16515 break;
16516 case 4:
fe1b8b76 16517 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16518 break;
16519 case 8:
fe1b8b76 16520 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16521 break;
16522 default:
8e65ff28 16523 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16524 _("read_address: bad switch, "
16525 "unsigned [in module %s]"),
659b0389 16526 bfd_get_filename (abfd));
107d2387 16527 }
c906108c 16528 }
64367e0a 16529
107d2387
AC
16530 *bytes_read = cu_header->addr_size;
16531 return retval;
c906108c
SS
16532}
16533
f7ef9339 16534/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16535 specification allows the initial length to take up either 4 bytes
16536 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16537 bytes describe the length and all offsets will be 8 bytes in length
16538 instead of 4.
16539
f7ef9339
KB
16540 An older, non-standard 64-bit format is also handled by this
16541 function. The older format in question stores the initial length
16542 as an 8-byte quantity without an escape value. Lengths greater
16543 than 2^32 aren't very common which means that the initial 4 bytes
16544 is almost always zero. Since a length value of zero doesn't make
16545 sense for the 32-bit format, this initial zero can be considered to
16546 be an escape value which indicates the presence of the older 64-bit
16547 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16548 greater than 4GB. If it becomes necessary to handle lengths
16549 somewhat larger than 4GB, we could allow other small values (such
16550 as the non-sensical values of 1, 2, and 3) to also be used as
16551 escape values indicating the presence of the old format.
f7ef9339 16552
917c78fc
MK
16553 The value returned via bytes_read should be used to increment the
16554 relevant pointer after calling read_initial_length().
c764a876 16555
613e1657
KB
16556 [ Note: read_initial_length() and read_offset() are based on the
16557 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16558 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16559 from:
16560
f7ef9339 16561 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16562
613e1657
KB
16563 This document is only a draft and is subject to change. (So beware.)
16564
f7ef9339 16565 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16566 determined empirically by examining 64-bit ELF files produced by
16567 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16568
16569 - Kevin, July 16, 2002
613e1657
KB
16570 ] */
16571
16572static LONGEST
d521ce57 16573read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16574{
fe1b8b76 16575 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16576
dd373385 16577 if (length == 0xffffffff)
613e1657 16578 {
fe1b8b76 16579 length = bfd_get_64 (abfd, buf + 4);
613e1657 16580 *bytes_read = 12;
613e1657 16581 }
dd373385 16582 else if (length == 0)
f7ef9339 16583 {
dd373385 16584 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16585 length = bfd_get_64 (abfd, buf);
f7ef9339 16586 *bytes_read = 8;
f7ef9339 16587 }
613e1657
KB
16588 else
16589 {
16590 *bytes_read = 4;
613e1657
KB
16591 }
16592
c764a876
DE
16593 return length;
16594}
dd373385 16595
c764a876
DE
16596/* Cover function for read_initial_length.
16597 Returns the length of the object at BUF, and stores the size of the
16598 initial length in *BYTES_READ and stores the size that offsets will be in
16599 *OFFSET_SIZE.
16600 If the initial length size is not equivalent to that specified in
16601 CU_HEADER then issue a complaint.
16602 This is useful when reading non-comp-unit headers. */
dd373385 16603
c764a876 16604static LONGEST
d521ce57 16605read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16606 const struct comp_unit_head *cu_header,
16607 unsigned int *bytes_read,
16608 unsigned int *offset_size)
16609{
16610 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16611
16612 gdb_assert (cu_header->initial_length_size == 4
16613 || cu_header->initial_length_size == 8
16614 || cu_header->initial_length_size == 12);
16615
16616 if (cu_header->initial_length_size != *bytes_read)
16617 complaint (&symfile_complaints,
16618 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16619
c764a876 16620 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16621 return length;
613e1657
KB
16622}
16623
16624/* Read an offset from the data stream. The size of the offset is
917c78fc 16625 given by cu_header->offset_size. */
613e1657
KB
16626
16627static LONGEST
d521ce57
TT
16628read_offset (bfd *abfd, const gdb_byte *buf,
16629 const struct comp_unit_head *cu_header,
891d2f0b 16630 unsigned int *bytes_read)
c764a876
DE
16631{
16632 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16633
c764a876
DE
16634 *bytes_read = cu_header->offset_size;
16635 return offset;
16636}
16637
16638/* Read an offset from the data stream. */
16639
16640static LONGEST
d521ce57 16641read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16642{
16643 LONGEST retval = 0;
16644
c764a876 16645 switch (offset_size)
613e1657
KB
16646 {
16647 case 4:
fe1b8b76 16648 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16649 break;
16650 case 8:
fe1b8b76 16651 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16652 break;
16653 default:
8e65ff28 16654 internal_error (__FILE__, __LINE__,
c764a876 16655 _("read_offset_1: bad switch [in module %s]"),
659b0389 16656 bfd_get_filename (abfd));
613e1657
KB
16657 }
16658
917c78fc 16659 return retval;
613e1657
KB
16660}
16661
d521ce57
TT
16662static const gdb_byte *
16663read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16664{
16665 /* If the size of a host char is 8 bits, we can return a pointer
16666 to the buffer, otherwise we have to copy the data to a buffer
16667 allocated on the temporary obstack. */
4bdf3d34 16668 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16669 return buf;
c906108c
SS
16670}
16671
d521ce57
TT
16672static const char *
16673read_direct_string (bfd *abfd, const gdb_byte *buf,
16674 unsigned int *bytes_read_ptr)
c906108c
SS
16675{
16676 /* If the size of a host char is 8 bits, we can return a pointer
16677 to the string, otherwise we have to copy the string to a buffer
16678 allocated on the temporary obstack. */
4bdf3d34 16679 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16680 if (*buf == '\0')
16681 {
16682 *bytes_read_ptr = 1;
16683 return NULL;
16684 }
d521ce57
TT
16685 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16686 return (const char *) buf;
4bdf3d34
JJ
16687}
16688
d521ce57 16689static const char *
cf2c3c16 16690read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16691{
be391dca 16692 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16693 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16694 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16695 bfd_get_filename (abfd));
dce234bc 16696 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16697 error (_("DW_FORM_strp pointing outside of "
16698 ".debug_str section [in module %s]"),
16699 bfd_get_filename (abfd));
4bdf3d34 16700 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16701 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16702 return NULL;
d521ce57 16703 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16704}
16705
36586728
TT
16706/* Read a string at offset STR_OFFSET in the .debug_str section from
16707 the .dwz file DWZ. Throw an error if the offset is too large. If
16708 the string consists of a single NUL byte, return NULL; otherwise
16709 return a pointer to the string. */
16710
d521ce57 16711static const char *
36586728
TT
16712read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16713{
16714 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16715
16716 if (dwz->str.buffer == NULL)
16717 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16718 "section [in module %s]"),
16719 bfd_get_filename (dwz->dwz_bfd));
16720 if (str_offset >= dwz->str.size)
16721 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16722 ".debug_str section [in module %s]"),
16723 bfd_get_filename (dwz->dwz_bfd));
16724 gdb_assert (HOST_CHAR_BIT == 8);
16725 if (dwz->str.buffer[str_offset] == '\0')
16726 return NULL;
d521ce57 16727 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16728}
16729
d521ce57
TT
16730static const char *
16731read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16732 const struct comp_unit_head *cu_header,
16733 unsigned int *bytes_read_ptr)
16734{
16735 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16736
16737 return read_indirect_string_at_offset (abfd, str_offset);
16738}
16739
12df843f 16740static ULONGEST
d521ce57
TT
16741read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16742 unsigned int *bytes_read_ptr)
c906108c 16743{
12df843f 16744 ULONGEST result;
ce5d95e1 16745 unsigned int num_read;
c906108c
SS
16746 int i, shift;
16747 unsigned char byte;
16748
16749 result = 0;
16750 shift = 0;
16751 num_read = 0;
16752 i = 0;
16753 while (1)
16754 {
fe1b8b76 16755 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16756 buf++;
16757 num_read++;
12df843f 16758 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16759 if ((byte & 128) == 0)
16760 {
16761 break;
16762 }
16763 shift += 7;
16764 }
16765 *bytes_read_ptr = num_read;
16766 return result;
16767}
16768
12df843f 16769static LONGEST
d521ce57
TT
16770read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16771 unsigned int *bytes_read_ptr)
c906108c 16772{
12df843f 16773 LONGEST result;
77e0b926 16774 int i, shift, num_read;
c906108c
SS
16775 unsigned char byte;
16776
16777 result = 0;
16778 shift = 0;
c906108c
SS
16779 num_read = 0;
16780 i = 0;
16781 while (1)
16782 {
fe1b8b76 16783 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16784 buf++;
16785 num_read++;
12df843f 16786 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16787 shift += 7;
16788 if ((byte & 128) == 0)
16789 {
16790 break;
16791 }
16792 }
77e0b926 16793 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16794 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16795 *bytes_read_ptr = num_read;
16796 return result;
16797}
16798
3019eac3
DE
16799/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16800 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16801 ADDR_SIZE is the size of addresses from the CU header. */
16802
16803static CORE_ADDR
16804read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16805{
16806 struct objfile *objfile = dwarf2_per_objfile->objfile;
16807 bfd *abfd = objfile->obfd;
16808 const gdb_byte *info_ptr;
16809
16810 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16811 if (dwarf2_per_objfile->addr.buffer == NULL)
16812 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16813 objfile_name (objfile));
3019eac3
DE
16814 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16815 error (_("DW_FORM_addr_index pointing outside of "
16816 ".debug_addr section [in module %s]"),
4262abfb 16817 objfile_name (objfile));
3019eac3
DE
16818 info_ptr = (dwarf2_per_objfile->addr.buffer
16819 + addr_base + addr_index * addr_size);
16820 if (addr_size == 4)
16821 return bfd_get_32 (abfd, info_ptr);
16822 else
16823 return bfd_get_64 (abfd, info_ptr);
16824}
16825
16826/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16827
16828static CORE_ADDR
16829read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16830{
16831 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16832}
16833
16834/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16835
16836static CORE_ADDR
d521ce57 16837read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16838 unsigned int *bytes_read)
16839{
16840 bfd *abfd = cu->objfile->obfd;
16841 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16842
16843 return read_addr_index (cu, addr_index);
16844}
16845
16846/* Data structure to pass results from dwarf2_read_addr_index_reader
16847 back to dwarf2_read_addr_index. */
16848
16849struct dwarf2_read_addr_index_data
16850{
16851 ULONGEST addr_base;
16852 int addr_size;
16853};
16854
16855/* die_reader_func for dwarf2_read_addr_index. */
16856
16857static void
16858dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16859 const gdb_byte *info_ptr,
3019eac3
DE
16860 struct die_info *comp_unit_die,
16861 int has_children,
16862 void *data)
16863{
16864 struct dwarf2_cu *cu = reader->cu;
16865 struct dwarf2_read_addr_index_data *aidata =
16866 (struct dwarf2_read_addr_index_data *) data;
16867
16868 aidata->addr_base = cu->addr_base;
16869 aidata->addr_size = cu->header.addr_size;
16870}
16871
16872/* Given an index in .debug_addr, fetch the value.
16873 NOTE: This can be called during dwarf expression evaluation,
16874 long after the debug information has been read, and thus per_cu->cu
16875 may no longer exist. */
16876
16877CORE_ADDR
16878dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16879 unsigned int addr_index)
16880{
16881 struct objfile *objfile = per_cu->objfile;
16882 struct dwarf2_cu *cu = per_cu->cu;
16883 ULONGEST addr_base;
16884 int addr_size;
16885
16886 /* This is intended to be called from outside this file. */
16887 dw2_setup (objfile);
16888
16889 /* We need addr_base and addr_size.
16890 If we don't have PER_CU->cu, we have to get it.
16891 Nasty, but the alternative is storing the needed info in PER_CU,
16892 which at this point doesn't seem justified: it's not clear how frequently
16893 it would get used and it would increase the size of every PER_CU.
16894 Entry points like dwarf2_per_cu_addr_size do a similar thing
16895 so we're not in uncharted territory here.
16896 Alas we need to be a bit more complicated as addr_base is contained
16897 in the DIE.
16898
16899 We don't need to read the entire CU(/TU).
16900 We just need the header and top level die.
a1b64ce1 16901
3019eac3 16902 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16903 For now we skip this optimization. */
3019eac3
DE
16904
16905 if (cu != NULL)
16906 {
16907 addr_base = cu->addr_base;
16908 addr_size = cu->header.addr_size;
16909 }
16910 else
16911 {
16912 struct dwarf2_read_addr_index_data aidata;
16913
a1b64ce1
DE
16914 /* Note: We can't use init_cutu_and_read_dies_simple here,
16915 we need addr_base. */
16916 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16917 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16918 addr_base = aidata.addr_base;
16919 addr_size = aidata.addr_size;
16920 }
16921
16922 return read_addr_index_1 (addr_index, addr_base, addr_size);
16923}
16924
57d63ce2
DE
16925/* Given a DW_FORM_GNU_str_index, fetch the string.
16926 This is only used by the Fission support. */
3019eac3 16927
d521ce57 16928static const char *
342587c4 16929read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16930{
16931 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16932 const char *objf_name = objfile_name (objfile);
3019eac3 16933 bfd *abfd = objfile->obfd;
342587c4 16934 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16935 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16936 struct dwarf2_section_info *str_offsets_section =
16937 &reader->dwo_file->sections.str_offsets;
d521ce57 16938 const gdb_byte *info_ptr;
3019eac3 16939 ULONGEST str_offset;
57d63ce2 16940 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16941
73869dc2
DE
16942 dwarf2_read_section (objfile, str_section);
16943 dwarf2_read_section (objfile, str_offsets_section);
16944 if (str_section->buffer == NULL)
57d63ce2 16945 error (_("%s used without .debug_str.dwo section"
3019eac3 16946 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16947 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16948 if (str_offsets_section->buffer == NULL)
57d63ce2 16949 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16950 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16951 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16952 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16953 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16954 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16955 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16956 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16957 + str_index * cu->header.offset_size);
16958 if (cu->header.offset_size == 4)
16959 str_offset = bfd_get_32 (abfd, info_ptr);
16960 else
16961 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16962 if (str_offset >= str_section->size)
57d63ce2 16963 error (_("Offset from %s pointing outside of"
3019eac3 16964 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16965 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16966 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16967}
16968
3019eac3
DE
16969/* Return the length of an LEB128 number in BUF. */
16970
16971static int
16972leb128_size (const gdb_byte *buf)
16973{
16974 const gdb_byte *begin = buf;
16975 gdb_byte byte;
16976
16977 while (1)
16978 {
16979 byte = *buf++;
16980 if ((byte & 128) == 0)
16981 return buf - begin;
16982 }
16983}
16984
c906108c 16985static void
e142c38c 16986set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16987{
16988 switch (lang)
16989 {
16990 case DW_LANG_C89:
76bee0cc 16991 case DW_LANG_C99:
0cfd832f 16992 case DW_LANG_C11:
c906108c 16993 case DW_LANG_C:
d1be3247 16994 case DW_LANG_UPC:
e142c38c 16995 cu->language = language_c;
c906108c
SS
16996 break;
16997 case DW_LANG_C_plus_plus:
0cfd832f
MW
16998 case DW_LANG_C_plus_plus_11:
16999 case DW_LANG_C_plus_plus_14:
e142c38c 17000 cu->language = language_cplus;
c906108c 17001 break;
6aecb9c2
JB
17002 case DW_LANG_D:
17003 cu->language = language_d;
17004 break;
c906108c
SS
17005 case DW_LANG_Fortran77:
17006 case DW_LANG_Fortran90:
b21b22e0 17007 case DW_LANG_Fortran95:
f7de9aab
MW
17008 case DW_LANG_Fortran03:
17009 case DW_LANG_Fortran08:
e142c38c 17010 cu->language = language_fortran;
c906108c 17011 break;
a766d390
DE
17012 case DW_LANG_Go:
17013 cu->language = language_go;
17014 break;
c906108c 17015 case DW_LANG_Mips_Assembler:
e142c38c 17016 cu->language = language_asm;
c906108c 17017 break;
bebd888e 17018 case DW_LANG_Java:
e142c38c 17019 cu->language = language_java;
bebd888e 17020 break;
c906108c 17021 case DW_LANG_Ada83:
8aaf0b47 17022 case DW_LANG_Ada95:
bc5f45f8
JB
17023 cu->language = language_ada;
17024 break;
72019c9c
GM
17025 case DW_LANG_Modula2:
17026 cu->language = language_m2;
17027 break;
fe8e67fd
PM
17028 case DW_LANG_Pascal83:
17029 cu->language = language_pascal;
17030 break;
22566fbd
DJ
17031 case DW_LANG_ObjC:
17032 cu->language = language_objc;
17033 break;
c906108c
SS
17034 case DW_LANG_Cobol74:
17035 case DW_LANG_Cobol85:
c906108c 17036 default:
e142c38c 17037 cu->language = language_minimal;
c906108c
SS
17038 break;
17039 }
e142c38c 17040 cu->language_defn = language_def (cu->language);
c906108c
SS
17041}
17042
17043/* Return the named attribute or NULL if not there. */
17044
17045static struct attribute *
e142c38c 17046dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17047{
a48e046c 17048 for (;;)
c906108c 17049 {
a48e046c
TT
17050 unsigned int i;
17051 struct attribute *spec = NULL;
17052
17053 for (i = 0; i < die->num_attrs; ++i)
17054 {
17055 if (die->attrs[i].name == name)
17056 return &die->attrs[i];
17057 if (die->attrs[i].name == DW_AT_specification
17058 || die->attrs[i].name == DW_AT_abstract_origin)
17059 spec = &die->attrs[i];
17060 }
17061
17062 if (!spec)
17063 break;
c906108c 17064
f2f0e013 17065 die = follow_die_ref (die, spec, &cu);
f2f0e013 17066 }
c5aa993b 17067
c906108c
SS
17068 return NULL;
17069}
17070
348e048f
DE
17071/* Return the named attribute or NULL if not there,
17072 but do not follow DW_AT_specification, etc.
17073 This is for use in contexts where we're reading .debug_types dies.
17074 Following DW_AT_specification, DW_AT_abstract_origin will take us
17075 back up the chain, and we want to go down. */
17076
17077static struct attribute *
45e58e77 17078dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17079{
17080 unsigned int i;
17081
17082 for (i = 0; i < die->num_attrs; ++i)
17083 if (die->attrs[i].name == name)
17084 return &die->attrs[i];
17085
17086 return NULL;
17087}
17088
7d45c7c3
KB
17089/* Return the string associated with a string-typed attribute, or NULL if it
17090 is either not found or is of an incorrect type. */
17091
17092static const char *
17093dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17094{
17095 struct attribute *attr;
17096 const char *str = NULL;
17097
17098 attr = dwarf2_attr (die, name, cu);
17099
17100 if (attr != NULL)
17101 {
17102 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17103 || attr->form == DW_FORM_GNU_strp_alt)
17104 str = DW_STRING (attr);
17105 else
17106 complaint (&symfile_complaints,
17107 _("string type expected for attribute %s for "
17108 "DIE at 0x%x in module %s"),
17109 dwarf_attr_name (name), die->offset.sect_off,
17110 objfile_name (cu->objfile));
17111 }
17112
17113 return str;
17114}
17115
05cf31d1
JB
17116/* Return non-zero iff the attribute NAME is defined for the given DIE,
17117 and holds a non-zero value. This function should only be used for
2dc7f7b3 17118 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17119
17120static int
17121dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17122{
17123 struct attribute *attr = dwarf2_attr (die, name, cu);
17124
17125 return (attr && DW_UNSND (attr));
17126}
17127
3ca72b44 17128static int
e142c38c 17129die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17130{
05cf31d1
JB
17131 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17132 which value is non-zero. However, we have to be careful with
17133 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17134 (via dwarf2_flag_true_p) follows this attribute. So we may
17135 end up accidently finding a declaration attribute that belongs
17136 to a different DIE referenced by the specification attribute,
17137 even though the given DIE does not have a declaration attribute. */
17138 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17139 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17140}
17141
63d06c5c 17142/* Return the die giving the specification for DIE, if there is
f2f0e013 17143 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17144 containing the return value on output. If there is no
17145 specification, but there is an abstract origin, that is
17146 returned. */
63d06c5c
DC
17147
17148static struct die_info *
f2f0e013 17149die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17150{
f2f0e013
DJ
17151 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17152 *spec_cu);
63d06c5c 17153
edb3359d
DJ
17154 if (spec_attr == NULL)
17155 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17156
63d06c5c
DC
17157 if (spec_attr == NULL)
17158 return NULL;
17159 else
f2f0e013 17160 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17161}
c906108c 17162
debd256d 17163/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17164 refers to.
17165 NOTE: This is also used as a "cleanup" function. */
17166
debd256d
JB
17167static void
17168free_line_header (struct line_header *lh)
17169{
17170 if (lh->standard_opcode_lengths)
a8bc7b56 17171 xfree (lh->standard_opcode_lengths);
debd256d
JB
17172
17173 /* Remember that all the lh->file_names[i].name pointers are
17174 pointers into debug_line_buffer, and don't need to be freed. */
17175 if (lh->file_names)
a8bc7b56 17176 xfree (lh->file_names);
debd256d
JB
17177
17178 /* Similarly for the include directory names. */
17179 if (lh->include_dirs)
a8bc7b56 17180 xfree (lh->include_dirs);
debd256d 17181
a8bc7b56 17182 xfree (lh);
debd256d
JB
17183}
17184
527f3840
JK
17185/* Stub for free_line_header to match void * callback types. */
17186
17187static void
17188free_line_header_voidp (void *arg)
17189{
17190 struct line_header *lh = arg;
17191
17192 free_line_header (lh);
17193}
17194
debd256d 17195/* Add an entry to LH's include directory table. */
ae2de4f8 17196
debd256d 17197static void
d521ce57 17198add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17199{
27e0867f
DE
17200 if (dwarf_line_debug >= 2)
17201 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17202 lh->num_include_dirs + 1, include_dir);
17203
debd256d
JB
17204 /* Grow the array if necessary. */
17205 if (lh->include_dirs_size == 0)
c5aa993b 17206 {
debd256d 17207 lh->include_dirs_size = 1; /* for testing */
8d749320 17208 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17209 }
17210 else if (lh->num_include_dirs >= lh->include_dirs_size)
17211 {
17212 lh->include_dirs_size *= 2;
8d749320
SM
17213 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17214 lh->include_dirs_size);
c5aa993b 17215 }
c906108c 17216
debd256d
JB
17217 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17218}
6e70227d 17219
debd256d 17220/* Add an entry to LH's file name table. */
ae2de4f8 17221
debd256d
JB
17222static void
17223add_file_name (struct line_header *lh,
d521ce57 17224 const char *name,
debd256d
JB
17225 unsigned int dir_index,
17226 unsigned int mod_time,
17227 unsigned int length)
17228{
17229 struct file_entry *fe;
17230
27e0867f
DE
17231 if (dwarf_line_debug >= 2)
17232 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17233 lh->num_file_names + 1, name);
17234
debd256d
JB
17235 /* Grow the array if necessary. */
17236 if (lh->file_names_size == 0)
17237 {
17238 lh->file_names_size = 1; /* for testing */
8d749320 17239 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17240 }
17241 else if (lh->num_file_names >= lh->file_names_size)
17242 {
17243 lh->file_names_size *= 2;
224c3ddb
SM
17244 lh->file_names
17245 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17246 }
17247
17248 fe = &lh->file_names[lh->num_file_names++];
17249 fe->name = name;
17250 fe->dir_index = dir_index;
17251 fe->mod_time = mod_time;
17252 fe->length = length;
aaa75496 17253 fe->included_p = 0;
cb1df416 17254 fe->symtab = NULL;
debd256d 17255}
6e70227d 17256
83769d0b 17257/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17258
17259static struct dwarf2_section_info *
17260get_debug_line_section (struct dwarf2_cu *cu)
17261{
17262 struct dwarf2_section_info *section;
17263
17264 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17265 DWO file. */
17266 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17267 section = &cu->dwo_unit->dwo_file->sections.line;
17268 else if (cu->per_cu->is_dwz)
17269 {
17270 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17271
17272 section = &dwz->line;
17273 }
17274 else
17275 section = &dwarf2_per_objfile->line;
17276
17277 return section;
17278}
17279
debd256d 17280/* Read the statement program header starting at OFFSET in
3019eac3 17281 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17282 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17283 Returns NULL if there is a problem reading the header, e.g., if it
17284 has a version we don't understand.
debd256d
JB
17285
17286 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17287 the returned object point into the dwarf line section buffer,
17288 and must not be freed. */
ae2de4f8 17289
debd256d 17290static struct line_header *
3019eac3 17291dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17292{
17293 struct cleanup *back_to;
17294 struct line_header *lh;
d521ce57 17295 const gdb_byte *line_ptr;
c764a876 17296 unsigned int bytes_read, offset_size;
debd256d 17297 int i;
d521ce57 17298 const char *cur_dir, *cur_file;
3019eac3
DE
17299 struct dwarf2_section_info *section;
17300 bfd *abfd;
17301
36586728 17302 section = get_debug_line_section (cu);
3019eac3
DE
17303 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17304 if (section->buffer == NULL)
debd256d 17305 {
3019eac3
DE
17306 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17307 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17308 else
17309 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17310 return 0;
17311 }
17312
fceca515
DE
17313 /* We can't do this until we know the section is non-empty.
17314 Only then do we know we have such a section. */
a32a8923 17315 abfd = get_section_bfd_owner (section);
fceca515 17316
a738430d
MK
17317 /* Make sure that at least there's room for the total_length field.
17318 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17319 if (offset + 4 >= section->size)
debd256d 17320 {
4d3c2250 17321 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17322 return 0;
17323 }
17324
8d749320 17325 lh = XNEW (struct line_header);
debd256d
JB
17326 memset (lh, 0, sizeof (*lh));
17327 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17328 (void *) lh);
17329
527f3840
JK
17330 lh->offset.sect_off = offset;
17331 lh->offset_in_dwz = cu->per_cu->is_dwz;
17332
3019eac3 17333 line_ptr = section->buffer + offset;
debd256d 17334
a738430d 17335 /* Read in the header. */
6e70227d 17336 lh->total_length =
c764a876
DE
17337 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17338 &bytes_read, &offset_size);
debd256d 17339 line_ptr += bytes_read;
3019eac3 17340 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17341 {
4d3c2250 17342 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17343 do_cleanups (back_to);
debd256d
JB
17344 return 0;
17345 }
17346 lh->statement_program_end = line_ptr + lh->total_length;
17347 lh->version = read_2_bytes (abfd, line_ptr);
17348 line_ptr += 2;
cd366ee8
DE
17349 if (lh->version > 4)
17350 {
17351 /* This is a version we don't understand. The format could have
17352 changed in ways we don't handle properly so just punt. */
17353 complaint (&symfile_complaints,
17354 _("unsupported version in .debug_line section"));
17355 return NULL;
17356 }
c764a876
DE
17357 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17358 line_ptr += offset_size;
debd256d
JB
17359 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17360 line_ptr += 1;
2dc7f7b3
TT
17361 if (lh->version >= 4)
17362 {
17363 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17364 line_ptr += 1;
17365 }
17366 else
17367 lh->maximum_ops_per_instruction = 1;
17368
17369 if (lh->maximum_ops_per_instruction == 0)
17370 {
17371 lh->maximum_ops_per_instruction = 1;
17372 complaint (&symfile_complaints,
3e43a32a
MS
17373 _("invalid maximum_ops_per_instruction "
17374 "in `.debug_line' section"));
2dc7f7b3
TT
17375 }
17376
debd256d
JB
17377 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17378 line_ptr += 1;
17379 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17380 line_ptr += 1;
17381 lh->line_range = read_1_byte (abfd, line_ptr);
17382 line_ptr += 1;
17383 lh->opcode_base = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
8d749320 17385 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17386
17387 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17388 for (i = 1; i < lh->opcode_base; ++i)
17389 {
17390 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17391 line_ptr += 1;
17392 }
17393
a738430d 17394 /* Read directory table. */
9b1c24c8 17395 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17396 {
17397 line_ptr += bytes_read;
17398 add_include_dir (lh, cur_dir);
17399 }
17400 line_ptr += bytes_read;
17401
a738430d 17402 /* Read file name table. */
9b1c24c8 17403 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17404 {
17405 unsigned int dir_index, mod_time, length;
17406
17407 line_ptr += bytes_read;
17408 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17411 line_ptr += bytes_read;
17412 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17413 line_ptr += bytes_read;
17414
17415 add_file_name (lh, cur_file, dir_index, mod_time, length);
17416 }
17417 line_ptr += bytes_read;
6e70227d 17418 lh->statement_program_start = line_ptr;
debd256d 17419
3019eac3 17420 if (line_ptr > (section->buffer + section->size))
4d3c2250 17421 complaint (&symfile_complaints,
3e43a32a
MS
17422 _("line number info header doesn't "
17423 "fit in `.debug_line' section"));
debd256d
JB
17424
17425 discard_cleanups (back_to);
17426 return lh;
17427}
c906108c 17428
c6da4cef
DE
17429/* Subroutine of dwarf_decode_lines to simplify it.
17430 Return the file name of the psymtab for included file FILE_INDEX
17431 in line header LH of PST.
17432 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17433 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17434 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17435
17436 The function creates dangling cleanup registration. */
c6da4cef 17437
d521ce57 17438static const char *
c6da4cef
DE
17439psymtab_include_file_name (const struct line_header *lh, int file_index,
17440 const struct partial_symtab *pst,
17441 const char *comp_dir)
17442{
17443 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17444 const char *include_name = fe.name;
17445 const char *include_name_to_compare = include_name;
17446 const char *dir_name = NULL;
72b9f47f
TT
17447 const char *pst_filename;
17448 char *copied_name = NULL;
c6da4cef
DE
17449 int file_is_pst;
17450
afa6c9ab 17451 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17452 dir_name = lh->include_dirs[fe.dir_index - 1];
17453
17454 if (!IS_ABSOLUTE_PATH (include_name)
17455 && (dir_name != NULL || comp_dir != NULL))
17456 {
17457 /* Avoid creating a duplicate psymtab for PST.
17458 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17459 Before we do the comparison, however, we need to account
17460 for DIR_NAME and COMP_DIR.
17461 First prepend dir_name (if non-NULL). If we still don't
17462 have an absolute path prepend comp_dir (if non-NULL).
17463 However, the directory we record in the include-file's
17464 psymtab does not contain COMP_DIR (to match the
17465 corresponding symtab(s)).
17466
17467 Example:
17468
17469 bash$ cd /tmp
17470 bash$ gcc -g ./hello.c
17471 include_name = "hello.c"
17472 dir_name = "."
17473 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17474 DW_AT_name = "./hello.c"
17475
17476 */
c6da4cef
DE
17477
17478 if (dir_name != NULL)
17479 {
d521ce57
TT
17480 char *tem = concat (dir_name, SLASH_STRING,
17481 include_name, (char *)NULL);
17482
17483 make_cleanup (xfree, tem);
17484 include_name = tem;
c6da4cef 17485 include_name_to_compare = include_name;
c6da4cef
DE
17486 }
17487 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17488 {
d521ce57
TT
17489 char *tem = concat (comp_dir, SLASH_STRING,
17490 include_name, (char *)NULL);
17491
17492 make_cleanup (xfree, tem);
17493 include_name_to_compare = tem;
c6da4cef
DE
17494 }
17495 }
17496
17497 pst_filename = pst->filename;
17498 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17499 {
72b9f47f
TT
17500 copied_name = concat (pst->dirname, SLASH_STRING,
17501 pst_filename, (char *)NULL);
17502 pst_filename = copied_name;
c6da4cef
DE
17503 }
17504
1e3fad37 17505 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17506
72b9f47f
TT
17507 if (copied_name != NULL)
17508 xfree (copied_name);
c6da4cef
DE
17509
17510 if (file_is_pst)
17511 return NULL;
17512 return include_name;
17513}
17514
d9b3de22
DE
17515/* State machine to track the state of the line number program. */
17516
17517typedef struct
17518{
17519 /* These are part of the standard DWARF line number state machine. */
17520
17521 unsigned char op_index;
17522 unsigned int file;
17523 unsigned int line;
17524 CORE_ADDR address;
17525 int is_stmt;
17526 unsigned int discriminator;
17527
17528 /* Additional bits of state we need to track. */
17529
17530 /* The last file that we called dwarf2_start_subfile for.
17531 This is only used for TLLs. */
17532 unsigned int last_file;
17533 /* The last file a line number was recorded for. */
17534 struct subfile *last_subfile;
17535
17536 /* The function to call to record a line. */
17537 record_line_ftype *record_line;
17538
17539 /* The last line number that was recorded, used to coalesce
17540 consecutive entries for the same line. This can happen, for
17541 example, when discriminators are present. PR 17276. */
17542 unsigned int last_line;
17543 int line_has_non_zero_discriminator;
17544} lnp_state_machine;
17545
17546/* There's a lot of static state to pass to dwarf_record_line.
17547 This keeps it all together. */
17548
17549typedef struct
17550{
17551 /* The gdbarch. */
17552 struct gdbarch *gdbarch;
17553
17554 /* The line number header. */
17555 struct line_header *line_header;
17556
17557 /* Non-zero if we're recording lines.
17558 Otherwise we're building partial symtabs and are just interested in
17559 finding include files mentioned by the line number program. */
17560 int record_lines_p;
17561} lnp_reader_state;
17562
c91513d8
PP
17563/* Ignore this record_line request. */
17564
17565static void
17566noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17567{
17568 return;
17569}
17570
a05a36a5
DE
17571/* Return non-zero if we should add LINE to the line number table.
17572 LINE is the line to add, LAST_LINE is the last line that was added,
17573 LAST_SUBFILE is the subfile for LAST_LINE.
17574 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17575 had a non-zero discriminator.
17576
17577 We have to be careful in the presence of discriminators.
17578 E.g., for this line:
17579
17580 for (i = 0; i < 100000; i++);
17581
17582 clang can emit four line number entries for that one line,
17583 each with a different discriminator.
17584 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17585
17586 However, we want gdb to coalesce all four entries into one.
17587 Otherwise the user could stepi into the middle of the line and
17588 gdb would get confused about whether the pc really was in the
17589 middle of the line.
17590
17591 Things are further complicated by the fact that two consecutive
17592 line number entries for the same line is a heuristic used by gcc
17593 to denote the end of the prologue. So we can't just discard duplicate
17594 entries, we have to be selective about it. The heuristic we use is
17595 that we only collapse consecutive entries for the same line if at least
17596 one of those entries has a non-zero discriminator. PR 17276.
17597
17598 Note: Addresses in the line number state machine can never go backwards
17599 within one sequence, thus this coalescing is ok. */
17600
17601static int
17602dwarf_record_line_p (unsigned int line, unsigned int last_line,
17603 int line_has_non_zero_discriminator,
17604 struct subfile *last_subfile)
17605{
17606 if (current_subfile != last_subfile)
17607 return 1;
17608 if (line != last_line)
17609 return 1;
17610 /* Same line for the same file that we've seen already.
17611 As a last check, for pr 17276, only record the line if the line
17612 has never had a non-zero discriminator. */
17613 if (!line_has_non_zero_discriminator)
17614 return 1;
17615 return 0;
17616}
17617
252a6764
DE
17618/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17619 in the line table of subfile SUBFILE. */
17620
17621static void
d9b3de22
DE
17622dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17623 unsigned int line, CORE_ADDR address,
17624 record_line_ftype p_record_line)
252a6764
DE
17625{
17626 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17627
27e0867f
DE
17628 if (dwarf_line_debug)
17629 {
17630 fprintf_unfiltered (gdb_stdlog,
17631 "Recording line %u, file %s, address %s\n",
17632 line, lbasename (subfile->name),
17633 paddress (gdbarch, address));
17634 }
17635
d5962de5 17636 (*p_record_line) (subfile, line, addr);
252a6764
DE
17637}
17638
17639/* Subroutine of dwarf_decode_lines_1 to simplify it.
17640 Mark the end of a set of line number records.
d9b3de22 17641 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17642 If SUBFILE is NULL the request is ignored. */
17643
17644static void
17645dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17646 CORE_ADDR address, record_line_ftype p_record_line)
17647{
27e0867f
DE
17648 if (subfile == NULL)
17649 return;
17650
17651 if (dwarf_line_debug)
17652 {
17653 fprintf_unfiltered (gdb_stdlog,
17654 "Finishing current line, file %s, address %s\n",
17655 lbasename (subfile->name),
17656 paddress (gdbarch, address));
17657 }
17658
d9b3de22
DE
17659 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17660}
17661
17662/* Record the line in STATE.
17663 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17664
17665static void
17666dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17667 int end_sequence)
17668{
17669 const struct line_header *lh = reader->line_header;
17670 unsigned int file, line, discriminator;
17671 int is_stmt;
17672
17673 file = state->file;
17674 line = state->line;
17675 is_stmt = state->is_stmt;
17676 discriminator = state->discriminator;
17677
17678 if (dwarf_line_debug)
17679 {
17680 fprintf_unfiltered (gdb_stdlog,
17681 "Processing actual line %u: file %u,"
17682 " address %s, is_stmt %u, discrim %u\n",
17683 line, file,
17684 paddress (reader->gdbarch, state->address),
17685 is_stmt, discriminator);
17686 }
17687
17688 if (file == 0 || file - 1 >= lh->num_file_names)
17689 dwarf2_debug_line_missing_file_complaint ();
17690 /* For now we ignore lines not starting on an instruction boundary.
17691 But not when processing end_sequence for compatibility with the
17692 previous version of the code. */
17693 else if (state->op_index == 0 || end_sequence)
17694 {
17695 lh->file_names[file - 1].included_p = 1;
17696 if (reader->record_lines_p && is_stmt)
17697 {
e815d2d2 17698 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17699 {
17700 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17701 state->address, state->record_line);
17702 }
17703
17704 if (!end_sequence)
17705 {
17706 if (dwarf_record_line_p (line, state->last_line,
17707 state->line_has_non_zero_discriminator,
17708 state->last_subfile))
17709 {
17710 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17711 line, state->address,
17712 state->record_line);
17713 }
17714 state->last_subfile = current_subfile;
17715 state->last_line = line;
17716 }
17717 }
17718 }
17719}
17720
17721/* Initialize STATE for the start of a line number program. */
17722
17723static void
17724init_lnp_state_machine (lnp_state_machine *state,
17725 const lnp_reader_state *reader)
17726{
17727 memset (state, 0, sizeof (*state));
17728
17729 /* Just starting, there is no "last file". */
17730 state->last_file = 0;
17731 state->last_subfile = NULL;
17732
17733 state->record_line = record_line;
17734
17735 state->last_line = 0;
17736 state->line_has_non_zero_discriminator = 0;
17737
17738 /* Initialize these according to the DWARF spec. */
17739 state->op_index = 0;
17740 state->file = 1;
17741 state->line = 1;
17742 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17743 was a line entry for it so that the backend has a chance to adjust it
17744 and also record it in case it needs it. This is currently used by MIPS
17745 code, cf. `mips_adjust_dwarf2_line'. */
17746 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17747 state->is_stmt = reader->line_header->default_is_stmt;
17748 state->discriminator = 0;
252a6764
DE
17749}
17750
924c2928
DE
17751/* Check address and if invalid nop-out the rest of the lines in this
17752 sequence. */
17753
17754static void
d9b3de22 17755check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17756 const gdb_byte *line_ptr,
17757 CORE_ADDR lowpc, CORE_ADDR address)
17758{
17759 /* If address < lowpc then it's not a usable value, it's outside the
17760 pc range of the CU. However, we restrict the test to only address
17761 values of zero to preserve GDB's previous behaviour which is to
17762 handle the specific case of a function being GC'd by the linker. */
17763
17764 if (address == 0 && address < lowpc)
17765 {
17766 /* This line table is for a function which has been
17767 GCd by the linker. Ignore it. PR gdb/12528 */
17768
17769 struct objfile *objfile = cu->objfile;
17770 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17771
17772 complaint (&symfile_complaints,
17773 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17774 line_offset, objfile_name (objfile));
d9b3de22
DE
17775 state->record_line = noop_record_line;
17776 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17777 until we see DW_LNE_end_sequence. */
17778 }
17779}
17780
f3f5162e 17781/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17782 Process the line number information in LH.
17783 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17784 program in order to set included_p for every referenced header. */
debd256d 17785
c906108c 17786static void
43f3e411
DE
17787dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17788 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17789{
d521ce57
TT
17790 const gdb_byte *line_ptr, *extended_end;
17791 const gdb_byte *line_end;
a8c50c1f 17792 unsigned int bytes_read, extended_len;
699ca60a 17793 unsigned char op_code, extended_op;
e142c38c
DJ
17794 CORE_ADDR baseaddr;
17795 struct objfile *objfile = cu->objfile;
f3f5162e 17796 bfd *abfd = objfile->obfd;
fbf65064 17797 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17798 /* Non-zero if we're recording line info (as opposed to building partial
17799 symtabs). */
17800 int record_lines_p = !decode_for_pst_p;
17801 /* A collection of things we need to pass to dwarf_record_line. */
17802 lnp_reader_state reader_state;
e142c38c
DJ
17803
17804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17805
debd256d
JB
17806 line_ptr = lh->statement_program_start;
17807 line_end = lh->statement_program_end;
c906108c 17808
d9b3de22
DE
17809 reader_state.gdbarch = gdbarch;
17810 reader_state.line_header = lh;
17811 reader_state.record_lines_p = record_lines_p;
17812
c906108c
SS
17813 /* Read the statement sequences until there's nothing left. */
17814 while (line_ptr < line_end)
17815 {
d9b3de22
DE
17816 /* The DWARF line number program state machine. */
17817 lnp_state_machine state_machine;
c906108c 17818 int end_sequence = 0;
d9b3de22
DE
17819
17820 /* Reset the state machine at the start of each sequence. */
17821 init_lnp_state_machine (&state_machine, &reader_state);
17822
17823 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17824 {
aaa75496 17825 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17826 /* lh->include_dirs and lh->file_names are 0-based, but the
17827 directory and file name numbers in the statement program
17828 are 1-based. */
d9b3de22 17829 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17830 const char *dir = NULL;
a738430d 17831
afa6c9ab 17832 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17833 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17834
4d663531 17835 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17836 }
17837
a738430d 17838 /* Decode the table. */
d9b3de22 17839 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17840 {
17841 op_code = read_1_byte (abfd, line_ptr);
17842 line_ptr += 1;
9aa1fe7e 17843
debd256d 17844 if (op_code >= lh->opcode_base)
6e70227d 17845 {
8e07a239 17846 /* Special opcode. */
699ca60a 17847 unsigned char adj_opcode;
3e29f34a 17848 CORE_ADDR addr_adj;
a05a36a5 17849 int line_delta;
8e07a239 17850
debd256d 17851 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17852 addr_adj = (((state_machine.op_index
17853 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17854 / lh->maximum_ops_per_instruction)
17855 * lh->minimum_instruction_length);
d9b3de22
DE
17856 state_machine.address
17857 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17858 state_machine.op_index = ((state_machine.op_index
17859 + (adj_opcode / lh->line_range))
17860 % lh->maximum_ops_per_instruction);
a05a36a5 17861 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17862 state_machine.line += line_delta;
a05a36a5 17863 if (line_delta != 0)
d9b3de22
DE
17864 state_machine.line_has_non_zero_discriminator
17865 = state_machine.discriminator != 0;
17866
17867 dwarf_record_line (&reader_state, &state_machine, 0);
17868 state_machine.discriminator = 0;
9aa1fe7e
GK
17869 }
17870 else switch (op_code)
c906108c
SS
17871 {
17872 case DW_LNS_extended_op:
3e43a32a
MS
17873 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17874 &bytes_read);
473b7be6 17875 line_ptr += bytes_read;
a8c50c1f 17876 extended_end = line_ptr + extended_len;
c906108c
SS
17877 extended_op = read_1_byte (abfd, line_ptr);
17878 line_ptr += 1;
17879 switch (extended_op)
17880 {
17881 case DW_LNE_end_sequence:
d9b3de22 17882 state_machine.record_line = record_line;
c906108c 17883 end_sequence = 1;
c906108c
SS
17884 break;
17885 case DW_LNE_set_address:
d9b3de22
DE
17886 {
17887 CORE_ADDR address
17888 = read_address (abfd, line_ptr, cu, &bytes_read);
17889
17890 line_ptr += bytes_read;
17891 check_line_address (cu, &state_machine, line_ptr,
17892 lowpc, address);
17893 state_machine.op_index = 0;
17894 address += baseaddr;
17895 state_machine.address
17896 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17897 }
c906108c
SS
17898 break;
17899 case DW_LNE_define_file:
debd256d 17900 {
d521ce57 17901 const char *cur_file;
debd256d 17902 unsigned int dir_index, mod_time, length;
6e70227d 17903
3e43a32a
MS
17904 cur_file = read_direct_string (abfd, line_ptr,
17905 &bytes_read);
debd256d
JB
17906 line_ptr += bytes_read;
17907 dir_index =
17908 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17909 line_ptr += bytes_read;
17910 mod_time =
17911 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17912 line_ptr += bytes_read;
17913 length =
17914 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17915 line_ptr += bytes_read;
17916 add_file_name (lh, cur_file, dir_index, mod_time, length);
17917 }
c906108c 17918 break;
d0c6ba3d
CC
17919 case DW_LNE_set_discriminator:
17920 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17921 just ignore it. We still need to check its value though:
17922 if there are consecutive entries for the same
17923 (non-prologue) line we want to coalesce them.
17924 PR 17276. */
d9b3de22
DE
17925 state_machine.discriminator
17926 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17927 state_machine.line_has_non_zero_discriminator
17928 |= state_machine.discriminator != 0;
a05a36a5 17929 line_ptr += bytes_read;
d0c6ba3d 17930 break;
c906108c 17931 default:
4d3c2250 17932 complaint (&symfile_complaints,
e2e0b3e5 17933 _("mangled .debug_line section"));
debd256d 17934 return;
c906108c 17935 }
a8c50c1f
DJ
17936 /* Make sure that we parsed the extended op correctly. If e.g.
17937 we expected a different address size than the producer used,
17938 we may have read the wrong number of bytes. */
17939 if (line_ptr != extended_end)
17940 {
17941 complaint (&symfile_complaints,
17942 _("mangled .debug_line section"));
17943 return;
17944 }
c906108c
SS
17945 break;
17946 case DW_LNS_copy:
d9b3de22
DE
17947 dwarf_record_line (&reader_state, &state_machine, 0);
17948 state_machine.discriminator = 0;
c906108c
SS
17949 break;
17950 case DW_LNS_advance_pc:
2dc7f7b3
TT
17951 {
17952 CORE_ADDR adjust
17953 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17954 CORE_ADDR addr_adj;
2dc7f7b3 17955
d9b3de22 17956 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17957 / lh->maximum_ops_per_instruction)
17958 * lh->minimum_instruction_length);
d9b3de22
DE
17959 state_machine.address
17960 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17961 state_machine.op_index = ((state_machine.op_index + adjust)
17962 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17963 line_ptr += bytes_read;
17964 }
c906108c
SS
17965 break;
17966 case DW_LNS_advance_line:
a05a36a5
DE
17967 {
17968 int line_delta
17969 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17970
d9b3de22 17971 state_machine.line += line_delta;
a05a36a5 17972 if (line_delta != 0)
d9b3de22
DE
17973 state_machine.line_has_non_zero_discriminator
17974 = state_machine.discriminator != 0;
a05a36a5
DE
17975 line_ptr += bytes_read;
17976 }
c906108c
SS
17977 break;
17978 case DW_LNS_set_file:
d9b3de22
DE
17979 {
17980 /* The arrays lh->include_dirs and lh->file_names are
17981 0-based, but the directory and file name numbers in
17982 the statement program are 1-based. */
17983 struct file_entry *fe;
17984 const char *dir = NULL;
17985
17986 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17987 &bytes_read);
17988 line_ptr += bytes_read;
17989 if (state_machine.file == 0
17990 || state_machine.file - 1 >= lh->num_file_names)
17991 dwarf2_debug_line_missing_file_complaint ();
17992 else
17993 {
17994 fe = &lh->file_names[state_machine.file - 1];
17995 if (fe->dir_index && lh->include_dirs != NULL)
17996 dir = lh->include_dirs[fe->dir_index - 1];
17997 if (record_lines_p)
17998 {
17999 state_machine.last_subfile = current_subfile;
18000 state_machine.line_has_non_zero_discriminator
18001 = state_machine.discriminator != 0;
18002 dwarf2_start_subfile (fe->name, dir);
18003 }
18004 }
18005 }
c906108c
SS
18006 break;
18007 case DW_LNS_set_column:
0ad93d4f 18008 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18009 line_ptr += bytes_read;
18010 break;
18011 case DW_LNS_negate_stmt:
d9b3de22 18012 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18013 break;
18014 case DW_LNS_set_basic_block:
c906108c 18015 break;
c2c6d25f
JM
18016 /* Add to the address register of the state machine the
18017 address increment value corresponding to special opcode
a738430d
MK
18018 255. I.e., this value is scaled by the minimum
18019 instruction length since special opcode 255 would have
b021a221 18020 scaled the increment. */
c906108c 18021 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18022 {
18023 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18024 CORE_ADDR addr_adj;
2dc7f7b3 18025
d9b3de22 18026 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18027 / lh->maximum_ops_per_instruction)
18028 * lh->minimum_instruction_length);
d9b3de22
DE
18029 state_machine.address
18030 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18031 state_machine.op_index = ((state_machine.op_index + adjust)
18032 % lh->maximum_ops_per_instruction);
2dc7f7b3 18033 }
c906108c
SS
18034 break;
18035 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18036 {
18037 CORE_ADDR addr_adj;
18038
18039 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18040 state_machine.address
18041 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18042 state_machine.op_index = 0;
3e29f34a
MR
18043 line_ptr += 2;
18044 }
c906108c 18045 break;
9aa1fe7e 18046 default:
a738430d
MK
18047 {
18048 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18049 int i;
a738430d 18050
debd256d 18051 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18052 {
18053 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18054 line_ptr += bytes_read;
18055 }
18056 }
c906108c
SS
18057 }
18058 }
d9b3de22
DE
18059
18060 if (!end_sequence)
18061 dwarf2_debug_line_missing_end_sequence_complaint ();
18062
18063 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18064 in which case we still finish recording the last line). */
18065 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18066 }
f3f5162e
DE
18067}
18068
18069/* Decode the Line Number Program (LNP) for the given line_header
18070 structure and CU. The actual information extracted and the type
18071 of structures created from the LNP depends on the value of PST.
18072
18073 1. If PST is NULL, then this procedure uses the data from the program
18074 to create all necessary symbol tables, and their linetables.
18075
18076 2. If PST is not NULL, this procedure reads the program to determine
18077 the list of files included by the unit represented by PST, and
18078 builds all the associated partial symbol tables.
18079
18080 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18081 It is used for relative paths in the line table.
18082 NOTE: When processing partial symtabs (pst != NULL),
18083 comp_dir == pst->dirname.
18084
18085 NOTE: It is important that psymtabs have the same file name (via strcmp)
18086 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18087 symtab we don't use it in the name of the psymtabs we create.
18088 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18089 A good testcase for this is mb-inline.exp.
18090
527f3840
JK
18091 LOWPC is the lowest address in CU (or 0 if not known).
18092
18093 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18094 for its PC<->lines mapping information. Otherwise only the filename
18095 table is read in. */
f3f5162e
DE
18096
18097static void
18098dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18099 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18100 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18101{
18102 struct objfile *objfile = cu->objfile;
18103 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18104
527f3840
JK
18105 if (decode_mapping)
18106 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18107
18108 if (decode_for_pst_p)
18109 {
18110 int file_index;
18111
18112 /* Now that we're done scanning the Line Header Program, we can
18113 create the psymtab of each included file. */
18114 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18115 if (lh->file_names[file_index].included_p == 1)
18116 {
d521ce57 18117 const char *include_name =
c6da4cef
DE
18118 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18119 if (include_name != NULL)
aaa75496
JB
18120 dwarf2_create_include_psymtab (include_name, pst, objfile);
18121 }
18122 }
cb1df416
DJ
18123 else
18124 {
18125 /* Make sure a symtab is created for every file, even files
18126 which contain only variables (i.e. no code with associated
18127 line numbers). */
43f3e411 18128 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18129 int i;
cb1df416
DJ
18130
18131 for (i = 0; i < lh->num_file_names; i++)
18132 {
d521ce57 18133 const char *dir = NULL;
f3f5162e 18134 struct file_entry *fe;
9a619af0 18135
cb1df416 18136 fe = &lh->file_names[i];
afa6c9ab 18137 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18138 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18139 dwarf2_start_subfile (fe->name, dir);
cb1df416 18140
cb1df416 18141 if (current_subfile->symtab == NULL)
43f3e411
DE
18142 {
18143 current_subfile->symtab
18144 = allocate_symtab (cust, current_subfile->name);
18145 }
cb1df416
DJ
18146 fe->symtab = current_subfile->symtab;
18147 }
18148 }
c906108c
SS
18149}
18150
18151/* Start a subfile for DWARF. FILENAME is the name of the file and
18152 DIRNAME the name of the source directory which contains FILENAME
4d663531 18153 or NULL if not known.
c906108c
SS
18154 This routine tries to keep line numbers from identical absolute and
18155 relative file names in a common subfile.
18156
18157 Using the `list' example from the GDB testsuite, which resides in
18158 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18159 of /srcdir/list0.c yields the following debugging information for list0.c:
18160
c5aa993b 18161 DW_AT_name: /srcdir/list0.c
4d663531 18162 DW_AT_comp_dir: /compdir
357e46e7 18163 files.files[0].name: list0.h
c5aa993b 18164 files.files[0].dir: /srcdir
357e46e7 18165 files.files[1].name: list0.c
c5aa993b 18166 files.files[1].dir: /srcdir
c906108c
SS
18167
18168 The line number information for list0.c has to end up in a single
4f1520fb
FR
18169 subfile, so that `break /srcdir/list0.c:1' works as expected.
18170 start_subfile will ensure that this happens provided that we pass the
18171 concatenation of files.files[1].dir and files.files[1].name as the
18172 subfile's name. */
c906108c
SS
18173
18174static void
4d663531 18175dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18176{
d521ce57 18177 char *copy = NULL;
4f1520fb 18178
4d663531 18179 /* In order not to lose the line information directory,
4f1520fb
FR
18180 we concatenate it to the filename when it makes sense.
18181 Note that the Dwarf3 standard says (speaking of filenames in line
18182 information): ``The directory index is ignored for file names
18183 that represent full path names''. Thus ignoring dirname in the
18184 `else' branch below isn't an issue. */
c906108c 18185
d5166ae1 18186 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18187 {
18188 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18189 filename = copy;
18190 }
c906108c 18191
4d663531 18192 start_subfile (filename);
4f1520fb 18193
d521ce57
TT
18194 if (copy != NULL)
18195 xfree (copy);
c906108c
SS
18196}
18197
f4dc4d17
DE
18198/* Start a symtab for DWARF.
18199 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18200
43f3e411 18201static struct compunit_symtab *
f4dc4d17 18202dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18203 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18204{
43f3e411
DE
18205 struct compunit_symtab *cust
18206 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18207
f4dc4d17
DE
18208 record_debugformat ("DWARF 2");
18209 record_producer (cu->producer);
18210
18211 /* We assume that we're processing GCC output. */
18212 processing_gcc_compilation = 2;
18213
4d4ec4e5 18214 cu->processing_has_namespace_info = 0;
43f3e411
DE
18215
18216 return cust;
f4dc4d17
DE
18217}
18218
4c2df51b
DJ
18219static void
18220var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18221 struct dwarf2_cu *cu)
4c2df51b 18222{
e7c27a73
DJ
18223 struct objfile *objfile = cu->objfile;
18224 struct comp_unit_head *cu_header = &cu->header;
18225
4c2df51b
DJ
18226 /* NOTE drow/2003-01-30: There used to be a comment and some special
18227 code here to turn a symbol with DW_AT_external and a
18228 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18229 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18230 with some versions of binutils) where shared libraries could have
18231 relocations against symbols in their debug information - the
18232 minimal symbol would have the right address, but the debug info
18233 would not. It's no longer necessary, because we will explicitly
18234 apply relocations when we read in the debug information now. */
18235
18236 /* A DW_AT_location attribute with no contents indicates that a
18237 variable has been optimized away. */
18238 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18239 {
f1e6e072 18240 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18241 return;
18242 }
18243
18244 /* Handle one degenerate form of location expression specially, to
18245 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18246 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18247 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18248
18249 if (attr_form_is_block (attr)
3019eac3
DE
18250 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18251 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18252 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18253 && (DW_BLOCK (attr)->size
18254 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18255 {
891d2f0b 18256 unsigned int dummy;
4c2df51b 18257
3019eac3
DE
18258 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18259 SYMBOL_VALUE_ADDRESS (sym) =
18260 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18261 else
18262 SYMBOL_VALUE_ADDRESS (sym) =
18263 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18264 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18265 fixup_symbol_section (sym, objfile);
18266 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18267 SYMBOL_SECTION (sym));
4c2df51b
DJ
18268 return;
18269 }
18270
18271 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18272 expression evaluator, and use LOC_COMPUTED only when necessary
18273 (i.e. when the value of a register or memory location is
18274 referenced, or a thread-local block, etc.). Then again, it might
18275 not be worthwhile. I'm assuming that it isn't unless performance
18276 or memory numbers show me otherwise. */
18277
f1e6e072 18278 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18279
f1e6e072 18280 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18281 cu->has_loclist = 1;
4c2df51b
DJ
18282}
18283
c906108c
SS
18284/* Given a pointer to a DWARF information entry, figure out if we need
18285 to make a symbol table entry for it, and if so, create a new entry
18286 and return a pointer to it.
18287 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18288 used the passed type.
18289 If SPACE is not NULL, use it to hold the new symbol. If it is
18290 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18291
18292static struct symbol *
34eaf542
TT
18293new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18294 struct symbol *space)
c906108c 18295{
e7c27a73 18296 struct objfile *objfile = cu->objfile;
3e29f34a 18297 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18298 struct symbol *sym = NULL;
15d034d0 18299 const char *name;
c906108c
SS
18300 struct attribute *attr = NULL;
18301 struct attribute *attr2 = NULL;
e142c38c 18302 CORE_ADDR baseaddr;
e37fd15a
SW
18303 struct pending **list_to_add = NULL;
18304
edb3359d 18305 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18306
18307 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18308
94af9270 18309 name = dwarf2_name (die, cu);
c906108c
SS
18310 if (name)
18311 {
94af9270 18312 const char *linkagename;
34eaf542 18313 int suppress_add = 0;
94af9270 18314
34eaf542
TT
18315 if (space)
18316 sym = space;
18317 else
e623cf5d 18318 sym = allocate_symbol (objfile);
c906108c 18319 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18320
18321 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18322 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18323 linkagename = dwarf2_physname (name, die, cu);
18324 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18325
f55ee35c
JK
18326 /* Fortran does not have mangling standard and the mangling does differ
18327 between gfortran, iFort etc. */
18328 if (cu->language == language_fortran
b250c185 18329 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18330 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18331 dwarf2_full_name (name, die, cu),
29df156d 18332 NULL);
f55ee35c 18333
c906108c 18334 /* Default assumptions.
c5aa993b 18335 Use the passed type or decode it from the die. */
176620f1 18336 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18337 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18338 if (type != NULL)
18339 SYMBOL_TYPE (sym) = type;
18340 else
e7c27a73 18341 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18342 attr = dwarf2_attr (die,
18343 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18344 cu);
c906108c
SS
18345 if (attr)
18346 {
18347 SYMBOL_LINE (sym) = DW_UNSND (attr);
18348 }
cb1df416 18349
edb3359d
DJ
18350 attr = dwarf2_attr (die,
18351 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18352 cu);
cb1df416
DJ
18353 if (attr)
18354 {
18355 int file_index = DW_UNSND (attr);
9a619af0 18356
cb1df416
DJ
18357 if (cu->line_header == NULL
18358 || file_index > cu->line_header->num_file_names)
18359 complaint (&symfile_complaints,
18360 _("file index out of range"));
1c3d648d 18361 else if (file_index > 0)
cb1df416
DJ
18362 {
18363 struct file_entry *fe;
9a619af0 18364
cb1df416 18365 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18366 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18367 }
18368 }
18369
c906108c
SS
18370 switch (die->tag)
18371 {
18372 case DW_TAG_label:
e142c38c 18373 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18374 if (attr)
3e29f34a
MR
18375 {
18376 CORE_ADDR addr;
18377
18378 addr = attr_value_as_address (attr);
18379 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18380 SYMBOL_VALUE_ADDRESS (sym) = addr;
18381 }
0f5238ed
TT
18382 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18383 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18384 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18385 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18386 break;
18387 case DW_TAG_subprogram:
18388 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18389 finish_block. */
f1e6e072 18390 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18391 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18392 if ((attr2 && (DW_UNSND (attr2) != 0))
18393 || cu->language == language_ada)
c906108c 18394 {
2cfa0c8d
JB
18395 /* Subprograms marked external are stored as a global symbol.
18396 Ada subprograms, whether marked external or not, are always
18397 stored as a global symbol, because we want to be able to
18398 access them globally. For instance, we want to be able
18399 to break on a nested subprogram without having to
18400 specify the context. */
e37fd15a 18401 list_to_add = &global_symbols;
c906108c
SS
18402 }
18403 else
18404 {
e37fd15a 18405 list_to_add = cu->list_in_scope;
c906108c
SS
18406 }
18407 break;
edb3359d
DJ
18408 case DW_TAG_inlined_subroutine:
18409 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18410 finish_block. */
f1e6e072 18411 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18412 SYMBOL_INLINED (sym) = 1;
481860b3 18413 list_to_add = cu->list_in_scope;
edb3359d 18414 break;
34eaf542
TT
18415 case DW_TAG_template_value_param:
18416 suppress_add = 1;
18417 /* Fall through. */
72929c62 18418 case DW_TAG_constant:
c906108c 18419 case DW_TAG_variable:
254e6b9e 18420 case DW_TAG_member:
0963b4bd
MS
18421 /* Compilation with minimal debug info may result in
18422 variables with missing type entries. Change the
18423 misleading `void' type to something sensible. */
c906108c 18424 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18425 SYMBOL_TYPE (sym)
46bf5051 18426 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18427
e142c38c 18428 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18429 /* In the case of DW_TAG_member, we should only be called for
18430 static const members. */
18431 if (die->tag == DW_TAG_member)
18432 {
3863f96c
DE
18433 /* dwarf2_add_field uses die_is_declaration,
18434 so we do the same. */
254e6b9e
DE
18435 gdb_assert (die_is_declaration (die, cu));
18436 gdb_assert (attr);
18437 }
c906108c
SS
18438 if (attr)
18439 {
e7c27a73 18440 dwarf2_const_value (attr, sym, cu);
e142c38c 18441 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18442 if (!suppress_add)
34eaf542
TT
18443 {
18444 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18445 list_to_add = &global_symbols;
34eaf542 18446 else
e37fd15a 18447 list_to_add = cu->list_in_scope;
34eaf542 18448 }
c906108c
SS
18449 break;
18450 }
e142c38c 18451 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18452 if (attr)
18453 {
e7c27a73 18454 var_decode_location (attr, sym, cu);
e142c38c 18455 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18456
18457 /* Fortran explicitly imports any global symbols to the local
18458 scope by DW_TAG_common_block. */
18459 if (cu->language == language_fortran && die->parent
18460 && die->parent->tag == DW_TAG_common_block)
18461 attr2 = NULL;
18462
caac4577
JG
18463 if (SYMBOL_CLASS (sym) == LOC_STATIC
18464 && SYMBOL_VALUE_ADDRESS (sym) == 0
18465 && !dwarf2_per_objfile->has_section_at_zero)
18466 {
18467 /* When a static variable is eliminated by the linker,
18468 the corresponding debug information is not stripped
18469 out, but the variable address is set to null;
18470 do not add such variables into symbol table. */
18471 }
18472 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18473 {
f55ee35c
JK
18474 /* Workaround gfortran PR debug/40040 - it uses
18475 DW_AT_location for variables in -fPIC libraries which may
18476 get overriden by other libraries/executable and get
18477 a different address. Resolve it by the minimal symbol
18478 which may come from inferior's executable using copy
18479 relocation. Make this workaround only for gfortran as for
18480 other compilers GDB cannot guess the minimal symbol
18481 Fortran mangling kind. */
18482 if (cu->language == language_fortran && die->parent
18483 && die->parent->tag == DW_TAG_module
18484 && cu->producer
61012eef 18485 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18486 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18487
1c809c68
TT
18488 /* A variable with DW_AT_external is never static,
18489 but it may be block-scoped. */
18490 list_to_add = (cu->list_in_scope == &file_symbols
18491 ? &global_symbols : cu->list_in_scope);
1c809c68 18492 }
c906108c 18493 else
e37fd15a 18494 list_to_add = cu->list_in_scope;
c906108c
SS
18495 }
18496 else
18497 {
18498 /* We do not know the address of this symbol.
c5aa993b
JM
18499 If it is an external symbol and we have type information
18500 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18501 The address of the variable will then be determined from
18502 the minimal symbol table whenever the variable is
18503 referenced. */
e142c38c 18504 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18505
18506 /* Fortran explicitly imports any global symbols to the local
18507 scope by DW_TAG_common_block. */
18508 if (cu->language == language_fortran && die->parent
18509 && die->parent->tag == DW_TAG_common_block)
18510 {
18511 /* SYMBOL_CLASS doesn't matter here because
18512 read_common_block is going to reset it. */
18513 if (!suppress_add)
18514 list_to_add = cu->list_in_scope;
18515 }
18516 else if (attr2 && (DW_UNSND (attr2) != 0)
18517 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18518 {
0fe7935b
DJ
18519 /* A variable with DW_AT_external is never static, but it
18520 may be block-scoped. */
18521 list_to_add = (cu->list_in_scope == &file_symbols
18522 ? &global_symbols : cu->list_in_scope);
18523
f1e6e072 18524 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18525 }
442ddf59
JK
18526 else if (!die_is_declaration (die, cu))
18527 {
18528 /* Use the default LOC_OPTIMIZED_OUT class. */
18529 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18530 if (!suppress_add)
18531 list_to_add = cu->list_in_scope;
442ddf59 18532 }
c906108c
SS
18533 }
18534 break;
18535 case DW_TAG_formal_parameter:
edb3359d
DJ
18536 /* If we are inside a function, mark this as an argument. If
18537 not, we might be looking at an argument to an inlined function
18538 when we do not have enough information to show inlined frames;
18539 pretend it's a local variable in that case so that the user can
18540 still see it. */
18541 if (context_stack_depth > 0
18542 && context_stack[context_stack_depth - 1].name != NULL)
18543 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18544 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18545 if (attr)
18546 {
e7c27a73 18547 var_decode_location (attr, sym, cu);
c906108c 18548 }
e142c38c 18549 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18550 if (attr)
18551 {
e7c27a73 18552 dwarf2_const_value (attr, sym, cu);
c906108c 18553 }
f346a30d 18554
e37fd15a 18555 list_to_add = cu->list_in_scope;
c906108c
SS
18556 break;
18557 case DW_TAG_unspecified_parameters:
18558 /* From varargs functions; gdb doesn't seem to have any
18559 interest in this information, so just ignore it for now.
18560 (FIXME?) */
18561 break;
34eaf542
TT
18562 case DW_TAG_template_type_param:
18563 suppress_add = 1;
18564 /* Fall through. */
c906108c 18565 case DW_TAG_class_type:
680b30c7 18566 case DW_TAG_interface_type:
c906108c
SS
18567 case DW_TAG_structure_type:
18568 case DW_TAG_union_type:
72019c9c 18569 case DW_TAG_set_type:
c906108c 18570 case DW_TAG_enumeration_type:
f1e6e072 18571 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18572 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18573
63d06c5c 18574 {
987504bb 18575 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18576 really ever be static objects: otherwise, if you try
18577 to, say, break of a class's method and you're in a file
18578 which doesn't mention that class, it won't work unless
18579 the check for all static symbols in lookup_symbol_aux
18580 saves you. See the OtherFileClass tests in
18581 gdb.c++/namespace.exp. */
18582
e37fd15a 18583 if (!suppress_add)
34eaf542 18584 {
34eaf542
TT
18585 list_to_add = (cu->list_in_scope == &file_symbols
18586 && (cu->language == language_cplus
18587 || cu->language == language_java)
18588 ? &global_symbols : cu->list_in_scope);
63d06c5c 18589
64382290
TT
18590 /* The semantics of C++ state that "struct foo {
18591 ... }" also defines a typedef for "foo". A Java
18592 class declaration also defines a typedef for the
18593 class. */
18594 if (cu->language == language_cplus
18595 || cu->language == language_java
45280282
IB
18596 || cu->language == language_ada
18597 || cu->language == language_d)
64382290
TT
18598 {
18599 /* The symbol's name is already allocated along
18600 with this objfile, so we don't need to
18601 duplicate it for the type. */
18602 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18603 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18604 }
63d06c5c
DC
18605 }
18606 }
c906108c
SS
18607 break;
18608 case DW_TAG_typedef:
f1e6e072 18609 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18610 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18611 list_to_add = cu->list_in_scope;
63d06c5c 18612 break;
c906108c 18613 case DW_TAG_base_type:
a02abb62 18614 case DW_TAG_subrange_type:
f1e6e072 18615 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18616 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18617 list_to_add = cu->list_in_scope;
c906108c
SS
18618 break;
18619 case DW_TAG_enumerator:
e142c38c 18620 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18621 if (attr)
18622 {
e7c27a73 18623 dwarf2_const_value (attr, sym, cu);
c906108c 18624 }
63d06c5c
DC
18625 {
18626 /* NOTE: carlton/2003-11-10: See comment above in the
18627 DW_TAG_class_type, etc. block. */
18628
e142c38c 18629 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18630 && (cu->language == language_cplus
18631 || cu->language == language_java)
e142c38c 18632 ? &global_symbols : cu->list_in_scope);
63d06c5c 18633 }
c906108c 18634 break;
74921315 18635 case DW_TAG_imported_declaration:
5c4e30ca 18636 case DW_TAG_namespace:
f1e6e072 18637 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18638 list_to_add = &global_symbols;
5c4e30ca 18639 break;
530e8392
KB
18640 case DW_TAG_module:
18641 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18642 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18643 list_to_add = &global_symbols;
18644 break;
4357ac6c 18645 case DW_TAG_common_block:
f1e6e072 18646 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18647 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18648 add_symbol_to_list (sym, cu->list_in_scope);
18649 break;
c906108c
SS
18650 default:
18651 /* Not a tag we recognize. Hopefully we aren't processing
18652 trash data, but since we must specifically ignore things
18653 we don't recognize, there is nothing else we should do at
0963b4bd 18654 this point. */
e2e0b3e5 18655 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18656 dwarf_tag_name (die->tag));
c906108c
SS
18657 break;
18658 }
df8a16a1 18659
e37fd15a
SW
18660 if (suppress_add)
18661 {
18662 sym->hash_next = objfile->template_symbols;
18663 objfile->template_symbols = sym;
18664 list_to_add = NULL;
18665 }
18666
18667 if (list_to_add != NULL)
18668 add_symbol_to_list (sym, list_to_add);
18669
df8a16a1
DJ
18670 /* For the benefit of old versions of GCC, check for anonymous
18671 namespaces based on the demangled name. */
4d4ec4e5 18672 if (!cu->processing_has_namespace_info
94af9270 18673 && cu->language == language_cplus)
a10964d1 18674 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18675 }
18676 return (sym);
18677}
18678
34eaf542
TT
18679/* A wrapper for new_symbol_full that always allocates a new symbol. */
18680
18681static struct symbol *
18682new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18683{
18684 return new_symbol_full (die, type, cu, NULL);
18685}
18686
98bfdba5
PA
18687/* Given an attr with a DW_FORM_dataN value in host byte order,
18688 zero-extend it as appropriate for the symbol's type. The DWARF
18689 standard (v4) is not entirely clear about the meaning of using
18690 DW_FORM_dataN for a constant with a signed type, where the type is
18691 wider than the data. The conclusion of a discussion on the DWARF
18692 list was that this is unspecified. We choose to always zero-extend
18693 because that is the interpretation long in use by GCC. */
c906108c 18694
98bfdba5 18695static gdb_byte *
ff39bb5e 18696dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18697 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18698{
e7c27a73 18699 struct objfile *objfile = cu->objfile;
e17a4113
UW
18700 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18701 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18702 LONGEST l = DW_UNSND (attr);
18703
18704 if (bits < sizeof (*value) * 8)
18705 {
18706 l &= ((LONGEST) 1 << bits) - 1;
18707 *value = l;
18708 }
18709 else if (bits == sizeof (*value) * 8)
18710 *value = l;
18711 else
18712 {
224c3ddb 18713 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18714 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18715 return bytes;
18716 }
18717
18718 return NULL;
18719}
18720
18721/* Read a constant value from an attribute. Either set *VALUE, or if
18722 the value does not fit in *VALUE, set *BYTES - either already
18723 allocated on the objfile obstack, or newly allocated on OBSTACK,
18724 or, set *BATON, if we translated the constant to a location
18725 expression. */
18726
18727static void
ff39bb5e 18728dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18729 const char *name, struct obstack *obstack,
18730 struct dwarf2_cu *cu,
d521ce57 18731 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18732 struct dwarf2_locexpr_baton **baton)
18733{
18734 struct objfile *objfile = cu->objfile;
18735 struct comp_unit_head *cu_header = &cu->header;
c906108c 18736 struct dwarf_block *blk;
98bfdba5
PA
18737 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18738 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18739
18740 *value = 0;
18741 *bytes = NULL;
18742 *baton = NULL;
c906108c
SS
18743
18744 switch (attr->form)
18745 {
18746 case DW_FORM_addr:
3019eac3 18747 case DW_FORM_GNU_addr_index:
ac56253d 18748 {
ac56253d
TT
18749 gdb_byte *data;
18750
98bfdba5
PA
18751 if (TYPE_LENGTH (type) != cu_header->addr_size)
18752 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18753 cu_header->addr_size,
98bfdba5 18754 TYPE_LENGTH (type));
ac56253d
TT
18755 /* Symbols of this form are reasonably rare, so we just
18756 piggyback on the existing location code rather than writing
18757 a new implementation of symbol_computed_ops. */
8d749320 18758 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18759 (*baton)->per_cu = cu->per_cu;
18760 gdb_assert ((*baton)->per_cu);
ac56253d 18761
98bfdba5 18762 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18763 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18764 (*baton)->data = data;
ac56253d
TT
18765
18766 data[0] = DW_OP_addr;
18767 store_unsigned_integer (&data[1], cu_header->addr_size,
18768 byte_order, DW_ADDR (attr));
18769 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18770 }
c906108c 18771 break;
4ac36638 18772 case DW_FORM_string:
93b5768b 18773 case DW_FORM_strp:
3019eac3 18774 case DW_FORM_GNU_str_index:
36586728 18775 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18776 /* DW_STRING is already allocated on the objfile obstack, point
18777 directly to it. */
d521ce57 18778 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18779 break;
c906108c
SS
18780 case DW_FORM_block1:
18781 case DW_FORM_block2:
18782 case DW_FORM_block4:
18783 case DW_FORM_block:
2dc7f7b3 18784 case DW_FORM_exprloc:
c906108c 18785 blk = DW_BLOCK (attr);
98bfdba5
PA
18786 if (TYPE_LENGTH (type) != blk->size)
18787 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18788 TYPE_LENGTH (type));
18789 *bytes = blk->data;
c906108c 18790 break;
2df3850c
JM
18791
18792 /* The DW_AT_const_value attributes are supposed to carry the
18793 symbol's value "represented as it would be on the target
18794 architecture." By the time we get here, it's already been
18795 converted to host endianness, so we just need to sign- or
18796 zero-extend it as appropriate. */
18797 case DW_FORM_data1:
3aef2284 18798 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18799 break;
c906108c 18800 case DW_FORM_data2:
3aef2284 18801 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18802 break;
c906108c 18803 case DW_FORM_data4:
3aef2284 18804 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18805 break;
c906108c 18806 case DW_FORM_data8:
3aef2284 18807 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18808 break;
18809
c906108c 18810 case DW_FORM_sdata:
98bfdba5 18811 *value = DW_SND (attr);
2df3850c
JM
18812 break;
18813
c906108c 18814 case DW_FORM_udata:
98bfdba5 18815 *value = DW_UNSND (attr);
c906108c 18816 break;
2df3850c 18817
c906108c 18818 default:
4d3c2250 18819 complaint (&symfile_complaints,
e2e0b3e5 18820 _("unsupported const value attribute form: '%s'"),
4d3c2250 18821 dwarf_form_name (attr->form));
98bfdba5 18822 *value = 0;
c906108c
SS
18823 break;
18824 }
18825}
18826
2df3850c 18827
98bfdba5
PA
18828/* Copy constant value from an attribute to a symbol. */
18829
2df3850c 18830static void
ff39bb5e 18831dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18832 struct dwarf2_cu *cu)
2df3850c 18833{
98bfdba5
PA
18834 struct objfile *objfile = cu->objfile;
18835 struct comp_unit_head *cu_header = &cu->header;
12df843f 18836 LONGEST value;
d521ce57 18837 const gdb_byte *bytes;
98bfdba5 18838 struct dwarf2_locexpr_baton *baton;
2df3850c 18839
98bfdba5
PA
18840 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18841 SYMBOL_PRINT_NAME (sym),
18842 &objfile->objfile_obstack, cu,
18843 &value, &bytes, &baton);
2df3850c 18844
98bfdba5
PA
18845 if (baton != NULL)
18846 {
98bfdba5 18847 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18848 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18849 }
18850 else if (bytes != NULL)
18851 {
18852 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18853 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18854 }
18855 else
18856 {
18857 SYMBOL_VALUE (sym) = value;
f1e6e072 18858 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18859 }
2df3850c
JM
18860}
18861
c906108c
SS
18862/* Return the type of the die in question using its DW_AT_type attribute. */
18863
18864static struct type *
e7c27a73 18865die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18866{
c906108c 18867 struct attribute *type_attr;
c906108c 18868
e142c38c 18869 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18870 if (!type_attr)
18871 {
18872 /* A missing DW_AT_type represents a void type. */
46bf5051 18873 return objfile_type (cu->objfile)->builtin_void;
c906108c 18874 }
348e048f 18875
673bfd45 18876 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18877}
18878
b4ba55a1
JB
18879/* True iff CU's producer generates GNAT Ada auxiliary information
18880 that allows to find parallel types through that information instead
18881 of having to do expensive parallel lookups by type name. */
18882
18883static int
18884need_gnat_info (struct dwarf2_cu *cu)
18885{
18886 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18887 of GNAT produces this auxiliary information, without any indication
18888 that it is produced. Part of enhancing the FSF version of GNAT
18889 to produce that information will be to put in place an indicator
18890 that we can use in order to determine whether the descriptive type
18891 info is available or not. One suggestion that has been made is
18892 to use a new attribute, attached to the CU die. For now, assume
18893 that the descriptive type info is not available. */
18894 return 0;
18895}
18896
b4ba55a1
JB
18897/* Return the auxiliary type of the die in question using its
18898 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18899 attribute is not present. */
18900
18901static struct type *
18902die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18903{
b4ba55a1 18904 struct attribute *type_attr;
b4ba55a1
JB
18905
18906 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18907 if (!type_attr)
18908 return NULL;
18909
673bfd45 18910 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18911}
18912
18913/* If DIE has a descriptive_type attribute, then set the TYPE's
18914 descriptive type accordingly. */
18915
18916static void
18917set_descriptive_type (struct type *type, struct die_info *die,
18918 struct dwarf2_cu *cu)
18919{
18920 struct type *descriptive_type = die_descriptive_type (die, cu);
18921
18922 if (descriptive_type)
18923 {
18924 ALLOCATE_GNAT_AUX_TYPE (type);
18925 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18926 }
18927}
18928
c906108c
SS
18929/* Return the containing type of the die in question using its
18930 DW_AT_containing_type attribute. */
18931
18932static struct type *
e7c27a73 18933die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18934{
c906108c 18935 struct attribute *type_attr;
c906108c 18936
e142c38c 18937 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18938 if (!type_attr)
18939 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18940 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18941
673bfd45 18942 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18943}
18944
ac9ec31b
DE
18945/* Return an error marker type to use for the ill formed type in DIE/CU. */
18946
18947static struct type *
18948build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18949{
18950 struct objfile *objfile = dwarf2_per_objfile->objfile;
18951 char *message, *saved;
18952
18953 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18954 objfile_name (objfile),
ac9ec31b
DE
18955 cu->header.offset.sect_off,
18956 die->offset.sect_off);
224c3ddb
SM
18957 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18958 message, strlen (message));
ac9ec31b
DE
18959 xfree (message);
18960
18961 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18962}
18963
673bfd45 18964/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18965 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18966 DW_AT_containing_type.
673bfd45
DE
18967 If there is no type substitute an error marker. */
18968
c906108c 18969static struct type *
ff39bb5e 18970lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18971 struct dwarf2_cu *cu)
c906108c 18972{
bb5ed363 18973 struct objfile *objfile = cu->objfile;
f792889a
DJ
18974 struct type *this_type;
18975
ac9ec31b
DE
18976 gdb_assert (attr->name == DW_AT_type
18977 || attr->name == DW_AT_GNAT_descriptive_type
18978 || attr->name == DW_AT_containing_type);
18979
673bfd45
DE
18980 /* First see if we have it cached. */
18981
36586728
TT
18982 if (attr->form == DW_FORM_GNU_ref_alt)
18983 {
18984 struct dwarf2_per_cu_data *per_cu;
18985 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18986
18987 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18988 this_type = get_die_type_at_offset (offset, per_cu);
18989 }
7771576e 18990 else if (attr_form_is_ref (attr))
673bfd45 18991 {
b64f50a1 18992 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18993
18994 this_type = get_die_type_at_offset (offset, cu->per_cu);
18995 }
55f1336d 18996 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18997 {
ac9ec31b 18998 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18999
ac9ec31b 19000 return get_signatured_type (die, signature, cu);
673bfd45
DE
19001 }
19002 else
19003 {
ac9ec31b
DE
19004 complaint (&symfile_complaints,
19005 _("Dwarf Error: Bad type attribute %s in DIE"
19006 " at 0x%x [in module %s]"),
19007 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19008 objfile_name (objfile));
ac9ec31b 19009 return build_error_marker_type (cu, die);
673bfd45
DE
19010 }
19011
19012 /* If not cached we need to read it in. */
19013
19014 if (this_type == NULL)
19015 {
ac9ec31b 19016 struct die_info *type_die = NULL;
673bfd45
DE
19017 struct dwarf2_cu *type_cu = cu;
19018
7771576e 19019 if (attr_form_is_ref (attr))
ac9ec31b
DE
19020 type_die = follow_die_ref (die, attr, &type_cu);
19021 if (type_die == NULL)
19022 return build_error_marker_type (cu, die);
19023 /* If we find the type now, it's probably because the type came
3019eac3
DE
19024 from an inter-CU reference and the type's CU got expanded before
19025 ours. */
ac9ec31b 19026 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19027 }
19028
19029 /* If we still don't have a type use an error marker. */
19030
19031 if (this_type == NULL)
ac9ec31b 19032 return build_error_marker_type (cu, die);
673bfd45 19033
f792889a 19034 return this_type;
c906108c
SS
19035}
19036
673bfd45
DE
19037/* Return the type in DIE, CU.
19038 Returns NULL for invalid types.
19039
02142a6c 19040 This first does a lookup in die_type_hash,
673bfd45
DE
19041 and only reads the die in if necessary.
19042
19043 NOTE: This can be called when reading in partial or full symbols. */
19044
f792889a 19045static struct type *
e7c27a73 19046read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19047{
f792889a
DJ
19048 struct type *this_type;
19049
19050 this_type = get_die_type (die, cu);
19051 if (this_type)
19052 return this_type;
19053
673bfd45
DE
19054 return read_type_die_1 (die, cu);
19055}
19056
19057/* Read the type in DIE, CU.
19058 Returns NULL for invalid types. */
19059
19060static struct type *
19061read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19062{
19063 struct type *this_type = NULL;
19064
c906108c
SS
19065 switch (die->tag)
19066 {
19067 case DW_TAG_class_type:
680b30c7 19068 case DW_TAG_interface_type:
c906108c
SS
19069 case DW_TAG_structure_type:
19070 case DW_TAG_union_type:
f792889a 19071 this_type = read_structure_type (die, cu);
c906108c
SS
19072 break;
19073 case DW_TAG_enumeration_type:
f792889a 19074 this_type = read_enumeration_type (die, cu);
c906108c
SS
19075 break;
19076 case DW_TAG_subprogram:
19077 case DW_TAG_subroutine_type:
edb3359d 19078 case DW_TAG_inlined_subroutine:
f792889a 19079 this_type = read_subroutine_type (die, cu);
c906108c
SS
19080 break;
19081 case DW_TAG_array_type:
f792889a 19082 this_type = read_array_type (die, cu);
c906108c 19083 break;
72019c9c 19084 case DW_TAG_set_type:
f792889a 19085 this_type = read_set_type (die, cu);
72019c9c 19086 break;
c906108c 19087 case DW_TAG_pointer_type:
f792889a 19088 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19089 break;
19090 case DW_TAG_ptr_to_member_type:
f792889a 19091 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19092 break;
19093 case DW_TAG_reference_type:
f792889a 19094 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19095 break;
19096 case DW_TAG_const_type:
f792889a 19097 this_type = read_tag_const_type (die, cu);
c906108c
SS
19098 break;
19099 case DW_TAG_volatile_type:
f792889a 19100 this_type = read_tag_volatile_type (die, cu);
c906108c 19101 break;
06d66ee9
TT
19102 case DW_TAG_restrict_type:
19103 this_type = read_tag_restrict_type (die, cu);
19104 break;
c906108c 19105 case DW_TAG_string_type:
f792889a 19106 this_type = read_tag_string_type (die, cu);
c906108c
SS
19107 break;
19108 case DW_TAG_typedef:
f792889a 19109 this_type = read_typedef (die, cu);
c906108c 19110 break;
a02abb62 19111 case DW_TAG_subrange_type:
f792889a 19112 this_type = read_subrange_type (die, cu);
a02abb62 19113 break;
c906108c 19114 case DW_TAG_base_type:
f792889a 19115 this_type = read_base_type (die, cu);
c906108c 19116 break;
81a17f79 19117 case DW_TAG_unspecified_type:
f792889a 19118 this_type = read_unspecified_type (die, cu);
81a17f79 19119 break;
0114d602
DJ
19120 case DW_TAG_namespace:
19121 this_type = read_namespace_type (die, cu);
19122 break;
f55ee35c
JK
19123 case DW_TAG_module:
19124 this_type = read_module_type (die, cu);
19125 break;
a2c2acaf
MW
19126 case DW_TAG_atomic_type:
19127 this_type = read_tag_atomic_type (die, cu);
19128 break;
c906108c 19129 default:
3e43a32a
MS
19130 complaint (&symfile_complaints,
19131 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19132 dwarf_tag_name (die->tag));
c906108c
SS
19133 break;
19134 }
63d06c5c 19135
f792889a 19136 return this_type;
63d06c5c
DC
19137}
19138
abc72ce4
DE
19139/* See if we can figure out if the class lives in a namespace. We do
19140 this by looking for a member function; its demangled name will
19141 contain namespace info, if there is any.
19142 Return the computed name or NULL.
19143 Space for the result is allocated on the objfile's obstack.
19144 This is the full-die version of guess_partial_die_structure_name.
19145 In this case we know DIE has no useful parent. */
19146
19147static char *
19148guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19149{
19150 struct die_info *spec_die;
19151 struct dwarf2_cu *spec_cu;
19152 struct die_info *child;
19153
19154 spec_cu = cu;
19155 spec_die = die_specification (die, &spec_cu);
19156 if (spec_die != NULL)
19157 {
19158 die = spec_die;
19159 cu = spec_cu;
19160 }
19161
19162 for (child = die->child;
19163 child != NULL;
19164 child = child->sibling)
19165 {
19166 if (child->tag == DW_TAG_subprogram)
19167 {
7d45c7c3 19168 const char *linkage_name;
abc72ce4 19169
7d45c7c3
KB
19170 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19171 if (linkage_name == NULL)
19172 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19173 cu);
19174 if (linkage_name != NULL)
abc72ce4
DE
19175 {
19176 char *actual_name
19177 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19178 linkage_name);
abc72ce4
DE
19179 char *name = NULL;
19180
19181 if (actual_name != NULL)
19182 {
15d034d0 19183 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19184
19185 if (die_name != NULL
19186 && strcmp (die_name, actual_name) != 0)
19187 {
19188 /* Strip off the class name from the full name.
19189 We want the prefix. */
19190 int die_name_len = strlen (die_name);
19191 int actual_name_len = strlen (actual_name);
19192
19193 /* Test for '::' as a sanity check. */
19194 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19195 && actual_name[actual_name_len
19196 - die_name_len - 1] == ':')
224c3ddb
SM
19197 name = (char *) obstack_copy0 (
19198 &cu->objfile->per_bfd->storage_obstack,
19199 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19200 }
19201 }
19202 xfree (actual_name);
19203 return name;
19204 }
19205 }
19206 }
19207
19208 return NULL;
19209}
19210
96408a79
SA
19211/* GCC might emit a nameless typedef that has a linkage name. Determine the
19212 prefix part in such case. See
19213 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19214
19215static char *
19216anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19217{
19218 struct attribute *attr;
19219 char *base;
19220
19221 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19222 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19223 return NULL;
19224
7d45c7c3 19225 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19226 return NULL;
19227
19228 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19229 if (attr == NULL)
19230 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19231 if (attr == NULL || DW_STRING (attr) == NULL)
19232 return NULL;
19233
19234 /* dwarf2_name had to be already called. */
19235 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19236
19237 /* Strip the base name, keep any leading namespaces/classes. */
19238 base = strrchr (DW_STRING (attr), ':');
19239 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19240 return "";
19241
224c3ddb
SM
19242 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19243 DW_STRING (attr),
19244 &base[-1] - DW_STRING (attr));
96408a79
SA
19245}
19246
fdde2d81 19247/* Return the name of the namespace/class that DIE is defined within,
0114d602 19248 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19249
0114d602
DJ
19250 For example, if we're within the method foo() in the following
19251 code:
19252
19253 namespace N {
19254 class C {
19255 void foo () {
19256 }
19257 };
19258 }
19259
19260 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19261
0d5cff50 19262static const char *
e142c38c 19263determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19264{
0114d602
DJ
19265 struct die_info *parent, *spec_die;
19266 struct dwarf2_cu *spec_cu;
19267 struct type *parent_type;
96408a79 19268 char *retval;
63d06c5c 19269
f55ee35c 19270 if (cu->language != language_cplus && cu->language != language_java
45280282 19271 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19272 return "";
19273
96408a79
SA
19274 retval = anonymous_struct_prefix (die, cu);
19275 if (retval)
19276 return retval;
19277
0114d602
DJ
19278 /* We have to be careful in the presence of DW_AT_specification.
19279 For example, with GCC 3.4, given the code
19280
19281 namespace N {
19282 void foo() {
19283 // Definition of N::foo.
19284 }
19285 }
19286
19287 then we'll have a tree of DIEs like this:
19288
19289 1: DW_TAG_compile_unit
19290 2: DW_TAG_namespace // N
19291 3: DW_TAG_subprogram // declaration of N::foo
19292 4: DW_TAG_subprogram // definition of N::foo
19293 DW_AT_specification // refers to die #3
19294
19295 Thus, when processing die #4, we have to pretend that we're in
19296 the context of its DW_AT_specification, namely the contex of die
19297 #3. */
19298 spec_cu = cu;
19299 spec_die = die_specification (die, &spec_cu);
19300 if (spec_die == NULL)
19301 parent = die->parent;
19302 else
63d06c5c 19303 {
0114d602
DJ
19304 parent = spec_die->parent;
19305 cu = spec_cu;
63d06c5c 19306 }
0114d602
DJ
19307
19308 if (parent == NULL)
19309 return "";
98bfdba5
PA
19310 else if (parent->building_fullname)
19311 {
19312 const char *name;
19313 const char *parent_name;
19314
19315 /* It has been seen on RealView 2.2 built binaries,
19316 DW_TAG_template_type_param types actually _defined_ as
19317 children of the parent class:
19318
19319 enum E {};
19320 template class <class Enum> Class{};
19321 Class<enum E> class_e;
19322
19323 1: DW_TAG_class_type (Class)
19324 2: DW_TAG_enumeration_type (E)
19325 3: DW_TAG_enumerator (enum1:0)
19326 3: DW_TAG_enumerator (enum2:1)
19327 ...
19328 2: DW_TAG_template_type_param
19329 DW_AT_type DW_FORM_ref_udata (E)
19330
19331 Besides being broken debug info, it can put GDB into an
19332 infinite loop. Consider:
19333
19334 When we're building the full name for Class<E>, we'll start
19335 at Class, and go look over its template type parameters,
19336 finding E. We'll then try to build the full name of E, and
19337 reach here. We're now trying to build the full name of E,
19338 and look over the parent DIE for containing scope. In the
19339 broken case, if we followed the parent DIE of E, we'd again
19340 find Class, and once again go look at its template type
19341 arguments, etc., etc. Simply don't consider such parent die
19342 as source-level parent of this die (it can't be, the language
19343 doesn't allow it), and break the loop here. */
19344 name = dwarf2_name (die, cu);
19345 parent_name = dwarf2_name (parent, cu);
19346 complaint (&symfile_complaints,
19347 _("template param type '%s' defined within parent '%s'"),
19348 name ? name : "<unknown>",
19349 parent_name ? parent_name : "<unknown>");
19350 return "";
19351 }
63d06c5c 19352 else
0114d602
DJ
19353 switch (parent->tag)
19354 {
63d06c5c 19355 case DW_TAG_namespace:
0114d602 19356 parent_type = read_type_die (parent, cu);
acebe513
UW
19357 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19358 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19359 Work around this problem here. */
19360 if (cu->language == language_cplus
19361 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19362 return "";
0114d602
DJ
19363 /* We give a name to even anonymous namespaces. */
19364 return TYPE_TAG_NAME (parent_type);
63d06c5c 19365 case DW_TAG_class_type:
680b30c7 19366 case DW_TAG_interface_type:
63d06c5c 19367 case DW_TAG_structure_type:
0114d602 19368 case DW_TAG_union_type:
f55ee35c 19369 case DW_TAG_module:
0114d602
DJ
19370 parent_type = read_type_die (parent, cu);
19371 if (TYPE_TAG_NAME (parent_type) != NULL)
19372 return TYPE_TAG_NAME (parent_type);
19373 else
19374 /* An anonymous structure is only allowed non-static data
19375 members; no typedefs, no member functions, et cetera.
19376 So it does not need a prefix. */
19377 return "";
abc72ce4 19378 case DW_TAG_compile_unit:
95554aad 19379 case DW_TAG_partial_unit:
abc72ce4
DE
19380 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19381 if (cu->language == language_cplus
8b70b953 19382 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19383 && die->child != NULL
19384 && (die->tag == DW_TAG_class_type
19385 || die->tag == DW_TAG_structure_type
19386 || die->tag == DW_TAG_union_type))
19387 {
19388 char *name = guess_full_die_structure_name (die, cu);
19389 if (name != NULL)
19390 return name;
19391 }
19392 return "";
3d567982
TT
19393 case DW_TAG_enumeration_type:
19394 parent_type = read_type_die (parent, cu);
19395 if (TYPE_DECLARED_CLASS (parent_type))
19396 {
19397 if (TYPE_TAG_NAME (parent_type) != NULL)
19398 return TYPE_TAG_NAME (parent_type);
19399 return "";
19400 }
19401 /* Fall through. */
63d06c5c 19402 default:
8176b9b8 19403 return determine_prefix (parent, cu);
63d06c5c 19404 }
63d06c5c
DC
19405}
19406
3e43a32a
MS
19407/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19408 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19409 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19410 an obconcat, otherwise allocate storage for the result. The CU argument is
19411 used to determine the language and hence, the appropriate separator. */
987504bb 19412
f55ee35c 19413#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19414
19415static char *
f55ee35c
JK
19416typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19417 int physname, struct dwarf2_cu *cu)
63d06c5c 19418{
f55ee35c 19419 const char *lead = "";
5c315b68 19420 const char *sep;
63d06c5c 19421
3e43a32a
MS
19422 if (suffix == NULL || suffix[0] == '\0'
19423 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19424 sep = "";
19425 else if (cu->language == language_java)
19426 sep = ".";
45280282
IB
19427 else if (cu->language == language_d)
19428 {
19429 /* For D, the 'main' function could be defined in any module, but it
19430 should never be prefixed. */
19431 if (strcmp (suffix, "D main") == 0)
19432 {
19433 prefix = "";
19434 sep = "";
19435 }
19436 else
19437 sep = ".";
19438 }
f55ee35c
JK
19439 else if (cu->language == language_fortran && physname)
19440 {
19441 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19442 DW_AT_MIPS_linkage_name is preferred and used instead. */
19443
19444 lead = "__";
19445 sep = "_MOD_";
19446 }
987504bb
JJ
19447 else
19448 sep = "::";
63d06c5c 19449
6dd47d34
DE
19450 if (prefix == NULL)
19451 prefix = "";
19452 if (suffix == NULL)
19453 suffix = "";
19454
987504bb
JJ
19455 if (obs == NULL)
19456 {
3e43a32a 19457 char *retval
224c3ddb
SM
19458 = ((char *)
19459 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19460
f55ee35c
JK
19461 strcpy (retval, lead);
19462 strcat (retval, prefix);
6dd47d34
DE
19463 strcat (retval, sep);
19464 strcat (retval, suffix);
63d06c5c
DC
19465 return retval;
19466 }
987504bb
JJ
19467 else
19468 {
19469 /* We have an obstack. */
f55ee35c 19470 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19471 }
63d06c5c
DC
19472}
19473
c906108c
SS
19474/* Return sibling of die, NULL if no sibling. */
19475
f9aca02d 19476static struct die_info *
fba45db2 19477sibling_die (struct die_info *die)
c906108c 19478{
639d11d3 19479 return die->sibling;
c906108c
SS
19480}
19481
71c25dea
TT
19482/* Get name of a die, return NULL if not found. */
19483
15d034d0
TT
19484static const char *
19485dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19486 struct obstack *obstack)
19487{
19488 if (name && cu->language == language_cplus)
19489 {
19490 char *canon_name = cp_canonicalize_string (name);
19491
19492 if (canon_name != NULL)
19493 {
19494 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19495 name = (const char *) obstack_copy0 (obstack, canon_name,
19496 strlen (canon_name));
71c25dea
TT
19497 xfree (canon_name);
19498 }
19499 }
19500
19501 return name;
c906108c
SS
19502}
19503
96553a0c
DE
19504/* Get name of a die, return NULL if not found.
19505 Anonymous namespaces are converted to their magic string. */
9219021c 19506
15d034d0 19507static const char *
e142c38c 19508dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19509{
19510 struct attribute *attr;
19511
e142c38c 19512 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19513 if ((!attr || !DW_STRING (attr))
96553a0c 19514 && die->tag != DW_TAG_namespace
53832f31
TT
19515 && die->tag != DW_TAG_class_type
19516 && die->tag != DW_TAG_interface_type
19517 && die->tag != DW_TAG_structure_type
19518 && die->tag != DW_TAG_union_type)
71c25dea
TT
19519 return NULL;
19520
19521 switch (die->tag)
19522 {
19523 case DW_TAG_compile_unit:
95554aad 19524 case DW_TAG_partial_unit:
71c25dea
TT
19525 /* Compilation units have a DW_AT_name that is a filename, not
19526 a source language identifier. */
19527 case DW_TAG_enumeration_type:
19528 case DW_TAG_enumerator:
19529 /* These tags always have simple identifiers already; no need
19530 to canonicalize them. */
19531 return DW_STRING (attr);
907af001 19532
96553a0c
DE
19533 case DW_TAG_namespace:
19534 if (attr != NULL && DW_STRING (attr) != NULL)
19535 return DW_STRING (attr);
19536 return CP_ANONYMOUS_NAMESPACE_STR;
19537
418835cc
KS
19538 case DW_TAG_subprogram:
19539 /* Java constructors will all be named "<init>", so return
19540 the class name when we see this special case. */
19541 if (cu->language == language_java
19542 && DW_STRING (attr) != NULL
19543 && strcmp (DW_STRING (attr), "<init>") == 0)
19544 {
19545 struct dwarf2_cu *spec_cu = cu;
19546 struct die_info *spec_die;
19547
19548 /* GCJ will output '<init>' for Java constructor names.
19549 For this special case, return the name of the parent class. */
19550
cdc07690 19551 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19552 If so, use the name of the specified DIE. */
19553 spec_die = die_specification (die, &spec_cu);
19554 if (spec_die != NULL)
19555 return dwarf2_name (spec_die, spec_cu);
19556
19557 do
19558 {
19559 die = die->parent;
19560 if (die->tag == DW_TAG_class_type)
19561 return dwarf2_name (die, cu);
19562 }
95554aad
TT
19563 while (die->tag != DW_TAG_compile_unit
19564 && die->tag != DW_TAG_partial_unit);
418835cc 19565 }
907af001
UW
19566 break;
19567
19568 case DW_TAG_class_type:
19569 case DW_TAG_interface_type:
19570 case DW_TAG_structure_type:
19571 case DW_TAG_union_type:
19572 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19573 structures or unions. These were of the form "._%d" in GCC 4.1,
19574 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19575 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19576 if (attr && DW_STRING (attr)
61012eef
GB
19577 && (startswith (DW_STRING (attr), "._")
19578 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19579 return NULL;
53832f31
TT
19580
19581 /* GCC might emit a nameless typedef that has a linkage name. See
19582 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19583 if (!attr || DW_STRING (attr) == NULL)
19584 {
df5c6c50 19585 char *demangled = NULL;
53832f31
TT
19586
19587 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19588 if (attr == NULL)
19589 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19590
19591 if (attr == NULL || DW_STRING (attr) == NULL)
19592 return NULL;
19593
df5c6c50
JK
19594 /* Avoid demangling DW_STRING (attr) the second time on a second
19595 call for the same DIE. */
19596 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19597 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19598
19599 if (demangled)
19600 {
96408a79
SA
19601 char *base;
19602
53832f31 19603 /* FIXME: we already did this for the partial symbol... */
34a68019 19604 DW_STRING (attr)
224c3ddb
SM
19605 = ((const char *)
19606 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19607 demangled, strlen (demangled)));
53832f31
TT
19608 DW_STRING_IS_CANONICAL (attr) = 1;
19609 xfree (demangled);
96408a79
SA
19610
19611 /* Strip any leading namespaces/classes, keep only the base name.
19612 DW_AT_name for named DIEs does not contain the prefixes. */
19613 base = strrchr (DW_STRING (attr), ':');
19614 if (base && base > DW_STRING (attr) && base[-1] == ':')
19615 return &base[1];
19616 else
19617 return DW_STRING (attr);
53832f31
TT
19618 }
19619 }
907af001
UW
19620 break;
19621
71c25dea 19622 default:
907af001
UW
19623 break;
19624 }
19625
19626 if (!DW_STRING_IS_CANONICAL (attr))
19627 {
19628 DW_STRING (attr)
19629 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19630 &cu->objfile->per_bfd->storage_obstack);
907af001 19631 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19632 }
907af001 19633 return DW_STRING (attr);
9219021c
DC
19634}
19635
19636/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19637 is none. *EXT_CU is the CU containing DIE on input, and the CU
19638 containing the return value on output. */
9219021c
DC
19639
19640static struct die_info *
f2f0e013 19641dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19642{
19643 struct attribute *attr;
9219021c 19644
f2f0e013 19645 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19646 if (attr == NULL)
19647 return NULL;
19648
f2f0e013 19649 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19650}
19651
c906108c
SS
19652/* Convert a DIE tag into its string name. */
19653
f39c6ffd 19654static const char *
aa1ee363 19655dwarf_tag_name (unsigned tag)
c906108c 19656{
f39c6ffd
TT
19657 const char *name = get_DW_TAG_name (tag);
19658
19659 if (name == NULL)
19660 return "DW_TAG_<unknown>";
19661
19662 return name;
c906108c
SS
19663}
19664
19665/* Convert a DWARF attribute code into its string name. */
19666
f39c6ffd 19667static const char *
aa1ee363 19668dwarf_attr_name (unsigned attr)
c906108c 19669{
f39c6ffd
TT
19670 const char *name;
19671
c764a876 19672#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19673 if (attr == DW_AT_MIPS_fde)
19674 return "DW_AT_MIPS_fde";
19675#else
19676 if (attr == DW_AT_HP_block_index)
19677 return "DW_AT_HP_block_index";
c764a876 19678#endif
f39c6ffd
TT
19679
19680 name = get_DW_AT_name (attr);
19681
19682 if (name == NULL)
19683 return "DW_AT_<unknown>";
19684
19685 return name;
c906108c
SS
19686}
19687
19688/* Convert a DWARF value form code into its string name. */
19689
f39c6ffd 19690static const char *
aa1ee363 19691dwarf_form_name (unsigned form)
c906108c 19692{
f39c6ffd
TT
19693 const char *name = get_DW_FORM_name (form);
19694
19695 if (name == NULL)
19696 return "DW_FORM_<unknown>";
19697
19698 return name;
c906108c
SS
19699}
19700
19701static char *
fba45db2 19702dwarf_bool_name (unsigned mybool)
c906108c
SS
19703{
19704 if (mybool)
19705 return "TRUE";
19706 else
19707 return "FALSE";
19708}
19709
19710/* Convert a DWARF type code into its string name. */
19711
f39c6ffd 19712static const char *
aa1ee363 19713dwarf_type_encoding_name (unsigned enc)
c906108c 19714{
f39c6ffd 19715 const char *name = get_DW_ATE_name (enc);
c906108c 19716
f39c6ffd
TT
19717 if (name == NULL)
19718 return "DW_ATE_<unknown>";
c906108c 19719
f39c6ffd 19720 return name;
c906108c 19721}
c906108c 19722
f9aca02d 19723static void
d97bc12b 19724dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19725{
19726 unsigned int i;
19727
d97bc12b
DE
19728 print_spaces (indent, f);
19729 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19730 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19731
19732 if (die->parent != NULL)
19733 {
19734 print_spaces (indent, f);
19735 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19736 die->parent->offset.sect_off);
d97bc12b
DE
19737 }
19738
19739 print_spaces (indent, f);
19740 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19741 dwarf_bool_name (die->child != NULL));
c906108c 19742
d97bc12b
DE
19743 print_spaces (indent, f);
19744 fprintf_unfiltered (f, " attributes:\n");
19745
c906108c
SS
19746 for (i = 0; i < die->num_attrs; ++i)
19747 {
d97bc12b
DE
19748 print_spaces (indent, f);
19749 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19750 dwarf_attr_name (die->attrs[i].name),
19751 dwarf_form_name (die->attrs[i].form));
d97bc12b 19752
c906108c
SS
19753 switch (die->attrs[i].form)
19754 {
c906108c 19755 case DW_FORM_addr:
3019eac3 19756 case DW_FORM_GNU_addr_index:
d97bc12b 19757 fprintf_unfiltered (f, "address: ");
5af949e3 19758 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19759 break;
19760 case DW_FORM_block2:
19761 case DW_FORM_block4:
19762 case DW_FORM_block:
19763 case DW_FORM_block1:
56eb65bd
SP
19764 fprintf_unfiltered (f, "block: size %s",
19765 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19766 break;
2dc7f7b3 19767 case DW_FORM_exprloc:
56eb65bd
SP
19768 fprintf_unfiltered (f, "expression: size %s",
19769 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19770 break;
4568ecf9
DE
19771 case DW_FORM_ref_addr:
19772 fprintf_unfiltered (f, "ref address: ");
19773 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19774 break;
36586728
TT
19775 case DW_FORM_GNU_ref_alt:
19776 fprintf_unfiltered (f, "alt ref address: ");
19777 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19778 break;
10b3939b
DJ
19779 case DW_FORM_ref1:
19780 case DW_FORM_ref2:
19781 case DW_FORM_ref4:
4568ecf9
DE
19782 case DW_FORM_ref8:
19783 case DW_FORM_ref_udata:
d97bc12b 19784 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19785 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19786 break;
c906108c
SS
19787 case DW_FORM_data1:
19788 case DW_FORM_data2:
19789 case DW_FORM_data4:
ce5d95e1 19790 case DW_FORM_data8:
c906108c
SS
19791 case DW_FORM_udata:
19792 case DW_FORM_sdata:
43bbcdc2
PH
19793 fprintf_unfiltered (f, "constant: %s",
19794 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19795 break;
2dc7f7b3
TT
19796 case DW_FORM_sec_offset:
19797 fprintf_unfiltered (f, "section offset: %s",
19798 pulongest (DW_UNSND (&die->attrs[i])));
19799 break;
55f1336d 19800 case DW_FORM_ref_sig8:
ac9ec31b
DE
19801 fprintf_unfiltered (f, "signature: %s",
19802 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19803 break;
c906108c 19804 case DW_FORM_string:
4bdf3d34 19805 case DW_FORM_strp:
3019eac3 19806 case DW_FORM_GNU_str_index:
36586728 19807 case DW_FORM_GNU_strp_alt:
8285870a 19808 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19809 DW_STRING (&die->attrs[i])
8285870a
JK
19810 ? DW_STRING (&die->attrs[i]) : "",
19811 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19812 break;
19813 case DW_FORM_flag:
19814 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19815 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19816 else
d97bc12b 19817 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19818 break;
2dc7f7b3
TT
19819 case DW_FORM_flag_present:
19820 fprintf_unfiltered (f, "flag: TRUE");
19821 break;
a8329558 19822 case DW_FORM_indirect:
0963b4bd
MS
19823 /* The reader will have reduced the indirect form to
19824 the "base form" so this form should not occur. */
3e43a32a
MS
19825 fprintf_unfiltered (f,
19826 "unexpected attribute form: DW_FORM_indirect");
a8329558 19827 break;
c906108c 19828 default:
d97bc12b 19829 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19830 die->attrs[i].form);
d97bc12b 19831 break;
c906108c 19832 }
d97bc12b 19833 fprintf_unfiltered (f, "\n");
c906108c
SS
19834 }
19835}
19836
f9aca02d 19837static void
d97bc12b 19838dump_die_for_error (struct die_info *die)
c906108c 19839{
d97bc12b
DE
19840 dump_die_shallow (gdb_stderr, 0, die);
19841}
19842
19843static void
19844dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19845{
19846 int indent = level * 4;
19847
19848 gdb_assert (die != NULL);
19849
19850 if (level >= max_level)
19851 return;
19852
19853 dump_die_shallow (f, indent, die);
19854
19855 if (die->child != NULL)
c906108c 19856 {
d97bc12b
DE
19857 print_spaces (indent, f);
19858 fprintf_unfiltered (f, " Children:");
19859 if (level + 1 < max_level)
19860 {
19861 fprintf_unfiltered (f, "\n");
19862 dump_die_1 (f, level + 1, max_level, die->child);
19863 }
19864 else
19865 {
3e43a32a
MS
19866 fprintf_unfiltered (f,
19867 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19868 }
19869 }
19870
19871 if (die->sibling != NULL && level > 0)
19872 {
19873 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19874 }
19875}
19876
d97bc12b
DE
19877/* This is called from the pdie macro in gdbinit.in.
19878 It's not static so gcc will keep a copy callable from gdb. */
19879
19880void
19881dump_die (struct die_info *die, int max_level)
19882{
19883 dump_die_1 (gdb_stdlog, 0, max_level, die);
19884}
19885
f9aca02d 19886static void
51545339 19887store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19888{
51545339 19889 void **slot;
c906108c 19890
b64f50a1
JK
19891 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19892 INSERT);
51545339
DJ
19893
19894 *slot = die;
c906108c
SS
19895}
19896
b64f50a1
JK
19897/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19898 required kind. */
19899
19900static sect_offset
ff39bb5e 19901dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19902{
4568ecf9 19903 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19904
7771576e 19905 if (attr_form_is_ref (attr))
b64f50a1 19906 return retval;
93311388 19907
b64f50a1 19908 retval.sect_off = 0;
93311388
DE
19909 complaint (&symfile_complaints,
19910 _("unsupported die ref attribute form: '%s'"),
19911 dwarf_form_name (attr->form));
b64f50a1 19912 return retval;
c906108c
SS
19913}
19914
43bbcdc2
PH
19915/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19916 * the value held by the attribute is not constant. */
a02abb62 19917
43bbcdc2 19918static LONGEST
ff39bb5e 19919dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19920{
19921 if (attr->form == DW_FORM_sdata)
19922 return DW_SND (attr);
19923 else if (attr->form == DW_FORM_udata
19924 || attr->form == DW_FORM_data1
19925 || attr->form == DW_FORM_data2
19926 || attr->form == DW_FORM_data4
19927 || attr->form == DW_FORM_data8)
19928 return DW_UNSND (attr);
19929 else
19930 {
3e43a32a
MS
19931 complaint (&symfile_complaints,
19932 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19933 dwarf_form_name (attr->form));
19934 return default_value;
19935 }
19936}
19937
348e048f
DE
19938/* Follow reference or signature attribute ATTR of SRC_DIE.
19939 On entry *REF_CU is the CU of SRC_DIE.
19940 On exit *REF_CU is the CU of the result. */
19941
19942static struct die_info *
ff39bb5e 19943follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19944 struct dwarf2_cu **ref_cu)
19945{
19946 struct die_info *die;
19947
7771576e 19948 if (attr_form_is_ref (attr))
348e048f 19949 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19950 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19951 die = follow_die_sig (src_die, attr, ref_cu);
19952 else
19953 {
19954 dump_die_for_error (src_die);
19955 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19956 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19957 }
19958
19959 return die;
03dd20cc
DJ
19960}
19961
5c631832 19962/* Follow reference OFFSET.
673bfd45
DE
19963 On entry *REF_CU is the CU of the source die referencing OFFSET.
19964 On exit *REF_CU is the CU of the result.
19965 Returns NULL if OFFSET is invalid. */
f504f079 19966
f9aca02d 19967static struct die_info *
36586728
TT
19968follow_die_offset (sect_offset offset, int offset_in_dwz,
19969 struct dwarf2_cu **ref_cu)
c906108c 19970{
10b3939b 19971 struct die_info temp_die;
f2f0e013 19972 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19973
348e048f
DE
19974 gdb_assert (cu->per_cu != NULL);
19975
98bfdba5
PA
19976 target_cu = cu;
19977
3019eac3 19978 if (cu->per_cu->is_debug_types)
348e048f
DE
19979 {
19980 /* .debug_types CUs cannot reference anything outside their CU.
19981 If they need to, they have to reference a signatured type via
55f1336d 19982 DW_FORM_ref_sig8. */
348e048f 19983 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19984 return NULL;
348e048f 19985 }
36586728
TT
19986 else if (offset_in_dwz != cu->per_cu->is_dwz
19987 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19988 {
19989 struct dwarf2_per_cu_data *per_cu;
9a619af0 19990
36586728
TT
19991 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19992 cu->objfile);
03dd20cc
DJ
19993
19994 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19995 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19996 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19997
10b3939b
DJ
19998 target_cu = per_cu->cu;
19999 }
98bfdba5
PA
20000 else if (cu->dies == NULL)
20001 {
20002 /* We're loading full DIEs during partial symbol reading. */
20003 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20004 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20005 }
c906108c 20006
f2f0e013 20007 *ref_cu = target_cu;
51545339 20008 temp_die.offset = offset;
b64f50a1 20009 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 20010}
10b3939b 20011
5c631832
JK
20012/* Follow reference attribute ATTR of SRC_DIE.
20013 On entry *REF_CU is the CU of SRC_DIE.
20014 On exit *REF_CU is the CU of the result. */
20015
20016static struct die_info *
ff39bb5e 20017follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20018 struct dwarf2_cu **ref_cu)
20019{
b64f50a1 20020 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20021 struct dwarf2_cu *cu = *ref_cu;
20022 struct die_info *die;
20023
36586728
TT
20024 die = follow_die_offset (offset,
20025 (attr->form == DW_FORM_GNU_ref_alt
20026 || cu->per_cu->is_dwz),
20027 ref_cu);
5c631832
JK
20028 if (!die)
20029 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20030 "at 0x%x [in module %s]"),
4262abfb
JK
20031 offset.sect_off, src_die->offset.sect_off,
20032 objfile_name (cu->objfile));
348e048f 20033
5c631832
JK
20034 return die;
20035}
20036
d83e736b
JK
20037/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20038 Returned value is intended for DW_OP_call*. Returned
20039 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20040
20041struct dwarf2_locexpr_baton
8b9737bf
TT
20042dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20043 struct dwarf2_per_cu_data *per_cu,
20044 CORE_ADDR (*get_frame_pc) (void *baton),
20045 void *baton)
5c631832 20046{
918dd910 20047 struct dwarf2_cu *cu;
5c631832
JK
20048 struct die_info *die;
20049 struct attribute *attr;
20050 struct dwarf2_locexpr_baton retval;
20051
8cf6f0b1
TT
20052 dw2_setup (per_cu->objfile);
20053
918dd910
JK
20054 if (per_cu->cu == NULL)
20055 load_cu (per_cu);
20056 cu = per_cu->cu;
cc12ce38
DE
20057 if (cu == NULL)
20058 {
20059 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20060 Instead just throw an error, not much else we can do. */
20061 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20062 offset.sect_off, objfile_name (per_cu->objfile));
20063 }
918dd910 20064
36586728 20065 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20066 if (!die)
20067 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20068 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20069
20070 attr = dwarf2_attr (die, DW_AT_location, cu);
20071 if (!attr)
20072 {
e103e986
JK
20073 /* DWARF: "If there is no such attribute, then there is no effect.".
20074 DATA is ignored if SIZE is 0. */
5c631832 20075
e103e986 20076 retval.data = NULL;
5c631832
JK
20077 retval.size = 0;
20078 }
8cf6f0b1
TT
20079 else if (attr_form_is_section_offset (attr))
20080 {
20081 struct dwarf2_loclist_baton loclist_baton;
20082 CORE_ADDR pc = (*get_frame_pc) (baton);
20083 size_t size;
20084
20085 fill_in_loclist_baton (cu, &loclist_baton, attr);
20086
20087 retval.data = dwarf2_find_location_expression (&loclist_baton,
20088 &size, pc);
20089 retval.size = size;
20090 }
5c631832
JK
20091 else
20092 {
20093 if (!attr_form_is_block (attr))
20094 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20095 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20096 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20097
20098 retval.data = DW_BLOCK (attr)->data;
20099 retval.size = DW_BLOCK (attr)->size;
20100 }
20101 retval.per_cu = cu->per_cu;
918dd910 20102
918dd910
JK
20103 age_cached_comp_units ();
20104
5c631832 20105 return retval;
348e048f
DE
20106}
20107
8b9737bf
TT
20108/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20109 offset. */
20110
20111struct dwarf2_locexpr_baton
20112dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20113 struct dwarf2_per_cu_data *per_cu,
20114 CORE_ADDR (*get_frame_pc) (void *baton),
20115 void *baton)
20116{
20117 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20118
20119 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20120}
20121
b6807d98
TT
20122/* Write a constant of a given type as target-ordered bytes into
20123 OBSTACK. */
20124
20125static const gdb_byte *
20126write_constant_as_bytes (struct obstack *obstack,
20127 enum bfd_endian byte_order,
20128 struct type *type,
20129 ULONGEST value,
20130 LONGEST *len)
20131{
20132 gdb_byte *result;
20133
20134 *len = TYPE_LENGTH (type);
224c3ddb 20135 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20136 store_unsigned_integer (result, *len, byte_order, value);
20137
20138 return result;
20139}
20140
20141/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20142 pointer to the constant bytes and set LEN to the length of the
20143 data. If memory is needed, allocate it on OBSTACK. If the DIE
20144 does not have a DW_AT_const_value, return NULL. */
20145
20146const gdb_byte *
20147dwarf2_fetch_constant_bytes (sect_offset offset,
20148 struct dwarf2_per_cu_data *per_cu,
20149 struct obstack *obstack,
20150 LONGEST *len)
20151{
20152 struct dwarf2_cu *cu;
20153 struct die_info *die;
20154 struct attribute *attr;
20155 const gdb_byte *result = NULL;
20156 struct type *type;
20157 LONGEST value;
20158 enum bfd_endian byte_order;
20159
20160 dw2_setup (per_cu->objfile);
20161
20162 if (per_cu->cu == NULL)
20163 load_cu (per_cu);
20164 cu = per_cu->cu;
cc12ce38
DE
20165 if (cu == NULL)
20166 {
20167 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20168 Instead just throw an error, not much else we can do. */
20169 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20170 offset.sect_off, objfile_name (per_cu->objfile));
20171 }
b6807d98
TT
20172
20173 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20174 if (!die)
20175 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20176 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20177
20178
20179 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20180 if (attr == NULL)
20181 return NULL;
20182
20183 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20184 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20185
20186 switch (attr->form)
20187 {
20188 case DW_FORM_addr:
20189 case DW_FORM_GNU_addr_index:
20190 {
20191 gdb_byte *tem;
20192
20193 *len = cu->header.addr_size;
224c3ddb 20194 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20195 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20196 result = tem;
20197 }
20198 break;
20199 case DW_FORM_string:
20200 case DW_FORM_strp:
20201 case DW_FORM_GNU_str_index:
20202 case DW_FORM_GNU_strp_alt:
20203 /* DW_STRING is already allocated on the objfile obstack, point
20204 directly to it. */
20205 result = (const gdb_byte *) DW_STRING (attr);
20206 *len = strlen (DW_STRING (attr));
20207 break;
20208 case DW_FORM_block1:
20209 case DW_FORM_block2:
20210 case DW_FORM_block4:
20211 case DW_FORM_block:
20212 case DW_FORM_exprloc:
20213 result = DW_BLOCK (attr)->data;
20214 *len = DW_BLOCK (attr)->size;
20215 break;
20216
20217 /* The DW_AT_const_value attributes are supposed to carry the
20218 symbol's value "represented as it would be on the target
20219 architecture." By the time we get here, it's already been
20220 converted to host endianness, so we just need to sign- or
20221 zero-extend it as appropriate. */
20222 case DW_FORM_data1:
20223 type = die_type (die, cu);
20224 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20225 if (result == NULL)
20226 result = write_constant_as_bytes (obstack, byte_order,
20227 type, value, len);
20228 break;
20229 case DW_FORM_data2:
20230 type = die_type (die, cu);
20231 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20232 if (result == NULL)
20233 result = write_constant_as_bytes (obstack, byte_order,
20234 type, value, len);
20235 break;
20236 case DW_FORM_data4:
20237 type = die_type (die, cu);
20238 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20239 if (result == NULL)
20240 result = write_constant_as_bytes (obstack, byte_order,
20241 type, value, len);
20242 break;
20243 case DW_FORM_data8:
20244 type = die_type (die, cu);
20245 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20246 if (result == NULL)
20247 result = write_constant_as_bytes (obstack, byte_order,
20248 type, value, len);
20249 break;
20250
20251 case DW_FORM_sdata:
20252 type = die_type (die, cu);
20253 result = write_constant_as_bytes (obstack, byte_order,
20254 type, DW_SND (attr), len);
20255 break;
20256
20257 case DW_FORM_udata:
20258 type = die_type (die, cu);
20259 result = write_constant_as_bytes (obstack, byte_order,
20260 type, DW_UNSND (attr), len);
20261 break;
20262
20263 default:
20264 complaint (&symfile_complaints,
20265 _("unsupported const value attribute form: '%s'"),
20266 dwarf_form_name (attr->form));
20267 break;
20268 }
20269
20270 return result;
20271}
20272
8a9b8146
TT
20273/* Return the type of the DIE at DIE_OFFSET in the CU named by
20274 PER_CU. */
20275
20276struct type *
b64f50a1 20277dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20278 struct dwarf2_per_cu_data *per_cu)
20279{
b64f50a1
JK
20280 sect_offset die_offset_sect;
20281
8a9b8146 20282 dw2_setup (per_cu->objfile);
b64f50a1
JK
20283
20284 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20285 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20286}
20287
ac9ec31b 20288/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20289 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20290 On exit *REF_CU is the CU of the result.
20291 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20292
20293static struct die_info *
ac9ec31b
DE
20294follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20295 struct dwarf2_cu **ref_cu)
348e048f
DE
20296{
20297 struct objfile *objfile = (*ref_cu)->objfile;
20298 struct die_info temp_die;
348e048f
DE
20299 struct dwarf2_cu *sig_cu;
20300 struct die_info *die;
20301
ac9ec31b
DE
20302 /* While it might be nice to assert sig_type->type == NULL here,
20303 we can get here for DW_AT_imported_declaration where we need
20304 the DIE not the type. */
348e048f
DE
20305
20306 /* If necessary, add it to the queue and load its DIEs. */
20307
95554aad 20308 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20309 read_signatured_type (sig_type);
348e048f 20310
348e048f 20311 sig_cu = sig_type->per_cu.cu;
69d751e3 20312 gdb_assert (sig_cu != NULL);
3019eac3
DE
20313 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20314 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20315 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20316 temp_die.offset.sect_off);
348e048f
DE
20317 if (die)
20318 {
796a7ff8
DE
20319 /* For .gdb_index version 7 keep track of included TUs.
20320 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20321 if (dwarf2_per_objfile->index_table != NULL
20322 && dwarf2_per_objfile->index_table->version <= 7)
20323 {
20324 VEC_safe_push (dwarf2_per_cu_ptr,
20325 (*ref_cu)->per_cu->imported_symtabs,
20326 sig_cu->per_cu);
20327 }
20328
348e048f
DE
20329 *ref_cu = sig_cu;
20330 return die;
20331 }
20332
ac9ec31b
DE
20333 return NULL;
20334}
20335
20336/* Follow signatured type referenced by ATTR in SRC_DIE.
20337 On entry *REF_CU is the CU of SRC_DIE.
20338 On exit *REF_CU is the CU of the result.
20339 The result is the DIE of the type.
20340 If the referenced type cannot be found an error is thrown. */
20341
20342static struct die_info *
ff39bb5e 20343follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20344 struct dwarf2_cu **ref_cu)
20345{
20346 ULONGEST signature = DW_SIGNATURE (attr);
20347 struct signatured_type *sig_type;
20348 struct die_info *die;
20349
20350 gdb_assert (attr->form == DW_FORM_ref_sig8);
20351
a2ce51a0 20352 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20353 /* sig_type will be NULL if the signatured type is missing from
20354 the debug info. */
20355 if (sig_type == NULL)
20356 {
20357 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20358 " from DIE at 0x%x [in module %s]"),
20359 hex_string (signature), src_die->offset.sect_off,
4262abfb 20360 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20361 }
20362
20363 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20364 if (die == NULL)
20365 {
20366 dump_die_for_error (src_die);
20367 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20368 " from DIE at 0x%x [in module %s]"),
20369 hex_string (signature), src_die->offset.sect_off,
4262abfb 20370 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20371 }
20372
20373 return die;
20374}
20375
20376/* Get the type specified by SIGNATURE referenced in DIE/CU,
20377 reading in and processing the type unit if necessary. */
20378
20379static struct type *
20380get_signatured_type (struct die_info *die, ULONGEST signature,
20381 struct dwarf2_cu *cu)
20382{
20383 struct signatured_type *sig_type;
20384 struct dwarf2_cu *type_cu;
20385 struct die_info *type_die;
20386 struct type *type;
20387
a2ce51a0 20388 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20389 /* sig_type will be NULL if the signatured type is missing from
20390 the debug info. */
20391 if (sig_type == NULL)
20392 {
20393 complaint (&symfile_complaints,
20394 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20395 " from DIE at 0x%x [in module %s]"),
20396 hex_string (signature), die->offset.sect_off,
4262abfb 20397 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20398 return build_error_marker_type (cu, die);
20399 }
20400
20401 /* If we already know the type we're done. */
20402 if (sig_type->type != NULL)
20403 return sig_type->type;
20404
20405 type_cu = cu;
20406 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20407 if (type_die != NULL)
20408 {
20409 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20410 is created. This is important, for example, because for c++ classes
20411 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20412 type = read_type_die (type_die, type_cu);
20413 if (type == NULL)
20414 {
20415 complaint (&symfile_complaints,
20416 _("Dwarf Error: Cannot build signatured type %s"
20417 " referenced from DIE at 0x%x [in module %s]"),
20418 hex_string (signature), die->offset.sect_off,
4262abfb 20419 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20420 type = build_error_marker_type (cu, die);
20421 }
20422 }
20423 else
20424 {
20425 complaint (&symfile_complaints,
20426 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20427 " from DIE at 0x%x [in module %s]"),
20428 hex_string (signature), die->offset.sect_off,
4262abfb 20429 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20430 type = build_error_marker_type (cu, die);
20431 }
20432 sig_type->type = type;
20433
20434 return type;
20435}
20436
20437/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20438 reading in and processing the type unit if necessary. */
20439
20440static struct type *
ff39bb5e 20441get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20442 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20443{
20444 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20445 if (attr_form_is_ref (attr))
ac9ec31b
DE
20446 {
20447 struct dwarf2_cu *type_cu = cu;
20448 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20449
20450 return read_type_die (type_die, type_cu);
20451 }
20452 else if (attr->form == DW_FORM_ref_sig8)
20453 {
20454 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20455 }
20456 else
20457 {
20458 complaint (&symfile_complaints,
20459 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20460 " at 0x%x [in module %s]"),
20461 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20462 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20463 return build_error_marker_type (cu, die);
20464 }
348e048f
DE
20465}
20466
e5fe5e75 20467/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20468
20469static void
e5fe5e75 20470load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20471{
52dc124a 20472 struct signatured_type *sig_type;
348e048f 20473
f4dc4d17
DE
20474 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20475 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20476
6721b2ec
DE
20477 /* We have the per_cu, but we need the signatured_type.
20478 Fortunately this is an easy translation. */
20479 gdb_assert (per_cu->is_debug_types);
20480 sig_type = (struct signatured_type *) per_cu;
348e048f 20481
6721b2ec 20482 gdb_assert (per_cu->cu == NULL);
348e048f 20483
52dc124a 20484 read_signatured_type (sig_type);
348e048f 20485
6721b2ec 20486 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20487}
20488
dee91e82
DE
20489/* die_reader_func for read_signatured_type.
20490 This is identical to load_full_comp_unit_reader,
20491 but is kept separate for now. */
348e048f
DE
20492
20493static void
dee91e82 20494read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20495 const gdb_byte *info_ptr,
dee91e82
DE
20496 struct die_info *comp_unit_die,
20497 int has_children,
20498 void *data)
348e048f 20499{
dee91e82 20500 struct dwarf2_cu *cu = reader->cu;
348e048f 20501
dee91e82
DE
20502 gdb_assert (cu->die_hash == NULL);
20503 cu->die_hash =
20504 htab_create_alloc_ex (cu->header.length / 12,
20505 die_hash,
20506 die_eq,
20507 NULL,
20508 &cu->comp_unit_obstack,
20509 hashtab_obstack_allocate,
20510 dummy_obstack_deallocate);
348e048f 20511
dee91e82
DE
20512 if (has_children)
20513 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20514 &info_ptr, comp_unit_die);
20515 cu->dies = comp_unit_die;
20516 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20517
20518 /* We try not to read any attributes in this function, because not
9cdd5dbd 20519 all CUs needed for references have been loaded yet, and symbol
348e048f 20520 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20521 or we won't be able to build types correctly.
20522 Similarly, if we do not read the producer, we can not apply
20523 producer-specific interpretation. */
95554aad 20524 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20525}
348e048f 20526
3019eac3
DE
20527/* Read in a signatured type and build its CU and DIEs.
20528 If the type is a stub for the real type in a DWO file,
20529 read in the real type from the DWO file as well. */
dee91e82
DE
20530
20531static void
20532read_signatured_type (struct signatured_type *sig_type)
20533{
20534 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20535
3019eac3 20536 gdb_assert (per_cu->is_debug_types);
dee91e82 20537 gdb_assert (per_cu->cu == NULL);
348e048f 20538
f4dc4d17
DE
20539 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20540 read_signatured_type_reader, NULL);
7ee85ab1 20541 sig_type->per_cu.tu_read = 1;
c906108c
SS
20542}
20543
c906108c
SS
20544/* Decode simple location descriptions.
20545 Given a pointer to a dwarf block that defines a location, compute
20546 the location and return the value.
20547
4cecd739
DJ
20548 NOTE drow/2003-11-18: This function is called in two situations
20549 now: for the address of static or global variables (partial symbols
20550 only) and for offsets into structures which are expected to be
20551 (more or less) constant. The partial symbol case should go away,
20552 and only the constant case should remain. That will let this
20553 function complain more accurately. A few special modes are allowed
20554 without complaint for global variables (for instance, global
20555 register values and thread-local values).
c906108c
SS
20556
20557 A location description containing no operations indicates that the
4cecd739 20558 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20559 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20560 callers will only want a very basic result and this can become a
21ae7a4d
JK
20561 complaint.
20562
20563 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20564
20565static CORE_ADDR
e7c27a73 20566decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20567{
e7c27a73 20568 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20569 size_t i;
20570 size_t size = blk->size;
d521ce57 20571 const gdb_byte *data = blk->data;
21ae7a4d
JK
20572 CORE_ADDR stack[64];
20573 int stacki;
20574 unsigned int bytes_read, unsnd;
20575 gdb_byte op;
c906108c 20576
21ae7a4d
JK
20577 i = 0;
20578 stacki = 0;
20579 stack[stacki] = 0;
20580 stack[++stacki] = 0;
20581
20582 while (i < size)
20583 {
20584 op = data[i++];
20585 switch (op)
20586 {
20587 case DW_OP_lit0:
20588 case DW_OP_lit1:
20589 case DW_OP_lit2:
20590 case DW_OP_lit3:
20591 case DW_OP_lit4:
20592 case DW_OP_lit5:
20593 case DW_OP_lit6:
20594 case DW_OP_lit7:
20595 case DW_OP_lit8:
20596 case DW_OP_lit9:
20597 case DW_OP_lit10:
20598 case DW_OP_lit11:
20599 case DW_OP_lit12:
20600 case DW_OP_lit13:
20601 case DW_OP_lit14:
20602 case DW_OP_lit15:
20603 case DW_OP_lit16:
20604 case DW_OP_lit17:
20605 case DW_OP_lit18:
20606 case DW_OP_lit19:
20607 case DW_OP_lit20:
20608 case DW_OP_lit21:
20609 case DW_OP_lit22:
20610 case DW_OP_lit23:
20611 case DW_OP_lit24:
20612 case DW_OP_lit25:
20613 case DW_OP_lit26:
20614 case DW_OP_lit27:
20615 case DW_OP_lit28:
20616 case DW_OP_lit29:
20617 case DW_OP_lit30:
20618 case DW_OP_lit31:
20619 stack[++stacki] = op - DW_OP_lit0;
20620 break;
f1bea926 20621
21ae7a4d
JK
20622 case DW_OP_reg0:
20623 case DW_OP_reg1:
20624 case DW_OP_reg2:
20625 case DW_OP_reg3:
20626 case DW_OP_reg4:
20627 case DW_OP_reg5:
20628 case DW_OP_reg6:
20629 case DW_OP_reg7:
20630 case DW_OP_reg8:
20631 case DW_OP_reg9:
20632 case DW_OP_reg10:
20633 case DW_OP_reg11:
20634 case DW_OP_reg12:
20635 case DW_OP_reg13:
20636 case DW_OP_reg14:
20637 case DW_OP_reg15:
20638 case DW_OP_reg16:
20639 case DW_OP_reg17:
20640 case DW_OP_reg18:
20641 case DW_OP_reg19:
20642 case DW_OP_reg20:
20643 case DW_OP_reg21:
20644 case DW_OP_reg22:
20645 case DW_OP_reg23:
20646 case DW_OP_reg24:
20647 case DW_OP_reg25:
20648 case DW_OP_reg26:
20649 case DW_OP_reg27:
20650 case DW_OP_reg28:
20651 case DW_OP_reg29:
20652 case DW_OP_reg30:
20653 case DW_OP_reg31:
20654 stack[++stacki] = op - DW_OP_reg0;
20655 if (i < size)
20656 dwarf2_complex_location_expr_complaint ();
20657 break;
c906108c 20658
21ae7a4d
JK
20659 case DW_OP_regx:
20660 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20661 i += bytes_read;
20662 stack[++stacki] = unsnd;
20663 if (i < size)
20664 dwarf2_complex_location_expr_complaint ();
20665 break;
c906108c 20666
21ae7a4d
JK
20667 case DW_OP_addr:
20668 stack[++stacki] = read_address (objfile->obfd, &data[i],
20669 cu, &bytes_read);
20670 i += bytes_read;
20671 break;
d53d4ac5 20672
21ae7a4d
JK
20673 case DW_OP_const1u:
20674 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20675 i += 1;
20676 break;
20677
20678 case DW_OP_const1s:
20679 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20680 i += 1;
20681 break;
20682
20683 case DW_OP_const2u:
20684 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20685 i += 2;
20686 break;
20687
20688 case DW_OP_const2s:
20689 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20690 i += 2;
20691 break;
d53d4ac5 20692
21ae7a4d
JK
20693 case DW_OP_const4u:
20694 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20695 i += 4;
20696 break;
20697
20698 case DW_OP_const4s:
20699 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20700 i += 4;
20701 break;
20702
585861ea
JK
20703 case DW_OP_const8u:
20704 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20705 i += 8;
20706 break;
20707
21ae7a4d
JK
20708 case DW_OP_constu:
20709 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20710 &bytes_read);
20711 i += bytes_read;
20712 break;
20713
20714 case DW_OP_consts:
20715 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20716 i += bytes_read;
20717 break;
20718
20719 case DW_OP_dup:
20720 stack[stacki + 1] = stack[stacki];
20721 stacki++;
20722 break;
20723
20724 case DW_OP_plus:
20725 stack[stacki - 1] += stack[stacki];
20726 stacki--;
20727 break;
20728
20729 case DW_OP_plus_uconst:
20730 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20731 &bytes_read);
20732 i += bytes_read;
20733 break;
20734
20735 case DW_OP_minus:
20736 stack[stacki - 1] -= stack[stacki];
20737 stacki--;
20738 break;
20739
20740 case DW_OP_deref:
20741 /* If we're not the last op, then we definitely can't encode
20742 this using GDB's address_class enum. This is valid for partial
20743 global symbols, although the variable's address will be bogus
20744 in the psymtab. */
20745 if (i < size)
20746 dwarf2_complex_location_expr_complaint ();
20747 break;
20748
20749 case DW_OP_GNU_push_tls_address:
20750 /* The top of the stack has the offset from the beginning
20751 of the thread control block at which the variable is located. */
20752 /* Nothing should follow this operator, so the top of stack would
20753 be returned. */
20754 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20755 address will be bogus in the psymtab. Make it always at least
20756 non-zero to not look as a variable garbage collected by linker
20757 which have DW_OP_addr 0. */
21ae7a4d
JK
20758 if (i < size)
20759 dwarf2_complex_location_expr_complaint ();
585861ea 20760 stack[stacki]++;
21ae7a4d
JK
20761 break;
20762
20763 case DW_OP_GNU_uninit:
20764 break;
20765
3019eac3 20766 case DW_OP_GNU_addr_index:
49f6c839 20767 case DW_OP_GNU_const_index:
3019eac3
DE
20768 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20769 &bytes_read);
20770 i += bytes_read;
20771 break;
20772
21ae7a4d
JK
20773 default:
20774 {
f39c6ffd 20775 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20776
20777 if (name)
20778 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20779 name);
20780 else
20781 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20782 op);
20783 }
20784
20785 return (stack[stacki]);
d53d4ac5 20786 }
3c6e0cb3 20787
21ae7a4d
JK
20788 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20789 outside of the allocated space. Also enforce minimum>0. */
20790 if (stacki >= ARRAY_SIZE (stack) - 1)
20791 {
20792 complaint (&symfile_complaints,
20793 _("location description stack overflow"));
20794 return 0;
20795 }
20796
20797 if (stacki <= 0)
20798 {
20799 complaint (&symfile_complaints,
20800 _("location description stack underflow"));
20801 return 0;
20802 }
20803 }
20804 return (stack[stacki]);
c906108c
SS
20805}
20806
20807/* memory allocation interface */
20808
c906108c 20809static struct dwarf_block *
7b5a2f43 20810dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20811{
8d749320 20812 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20813}
20814
c906108c 20815static struct die_info *
b60c80d6 20816dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20817{
20818 struct die_info *die;
b60c80d6
DJ
20819 size_t size = sizeof (struct die_info);
20820
20821 if (num_attrs > 1)
20822 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20823
b60c80d6 20824 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20825 memset (die, 0, sizeof (struct die_info));
20826 return (die);
20827}
2e276125
JB
20828
20829\f
20830/* Macro support. */
20831
233d95b5
JK
20832/* Return file name relative to the compilation directory of file number I in
20833 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20834 responsible for freeing it. */
233d95b5 20835
2e276125 20836static char *
233d95b5 20837file_file_name (int file, struct line_header *lh)
2e276125 20838{
6a83a1e6
EZ
20839 /* Is the file number a valid index into the line header's file name
20840 table? Remember that file numbers start with one, not zero. */
20841 if (1 <= file && file <= lh->num_file_names)
20842 {
20843 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20844
afa6c9ab
SL
20845 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20846 || lh->include_dirs == NULL)
6a83a1e6 20847 return xstrdup (fe->name);
233d95b5
JK
20848 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20849 fe->name, NULL);
6a83a1e6 20850 }
2e276125
JB
20851 else
20852 {
6a83a1e6
EZ
20853 /* The compiler produced a bogus file number. We can at least
20854 record the macro definitions made in the file, even if we
20855 won't be able to find the file by name. */
20856 char fake_name[80];
9a619af0 20857
8c042590
PM
20858 xsnprintf (fake_name, sizeof (fake_name),
20859 "<bad macro file number %d>", file);
2e276125 20860
6e70227d 20861 complaint (&symfile_complaints,
6a83a1e6
EZ
20862 _("bad file number in macro information (%d)"),
20863 file);
2e276125 20864
6a83a1e6 20865 return xstrdup (fake_name);
2e276125
JB
20866 }
20867}
20868
233d95b5
JK
20869/* Return the full name of file number I in *LH's file name table.
20870 Use COMP_DIR as the name of the current directory of the
20871 compilation. The result is allocated using xmalloc; the caller is
20872 responsible for freeing it. */
20873static char *
20874file_full_name (int file, struct line_header *lh, const char *comp_dir)
20875{
20876 /* Is the file number a valid index into the line header's file name
20877 table? Remember that file numbers start with one, not zero. */
20878 if (1 <= file && file <= lh->num_file_names)
20879 {
20880 char *relative = file_file_name (file, lh);
20881
20882 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20883 return relative;
20884 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20885 }
20886 else
20887 return file_file_name (file, lh);
20888}
20889
2e276125
JB
20890
20891static struct macro_source_file *
20892macro_start_file (int file, int line,
20893 struct macro_source_file *current_file,
43f3e411 20894 struct line_header *lh)
2e276125 20895{
233d95b5
JK
20896 /* File name relative to the compilation directory of this source file. */
20897 char *file_name = file_file_name (file, lh);
2e276125 20898
2e276125 20899 if (! current_file)
abc9d0dc 20900 {
fc474241
DE
20901 /* Note: We don't create a macro table for this compilation unit
20902 at all until we actually get a filename. */
43f3e411 20903 struct macro_table *macro_table = get_macro_table ();
fc474241 20904
abc9d0dc
TT
20905 /* If we have no current file, then this must be the start_file
20906 directive for the compilation unit's main source file. */
fc474241
DE
20907 current_file = macro_set_main (macro_table, file_name);
20908 macro_define_special (macro_table);
abc9d0dc 20909 }
2e276125 20910 else
233d95b5 20911 current_file = macro_include (current_file, line, file_name);
2e276125 20912
233d95b5 20913 xfree (file_name);
6e70227d 20914
2e276125
JB
20915 return current_file;
20916}
20917
20918
20919/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20920 followed by a null byte. */
20921static char *
20922copy_string (const char *buf, int len)
20923{
224c3ddb 20924 char *s = (char *) xmalloc (len + 1);
9a619af0 20925
2e276125
JB
20926 memcpy (s, buf, len);
20927 s[len] = '\0';
2e276125
JB
20928 return s;
20929}
20930
20931
20932static const char *
20933consume_improper_spaces (const char *p, const char *body)
20934{
20935 if (*p == ' ')
20936 {
4d3c2250 20937 complaint (&symfile_complaints,
3e43a32a
MS
20938 _("macro definition contains spaces "
20939 "in formal argument list:\n`%s'"),
4d3c2250 20940 body);
2e276125
JB
20941
20942 while (*p == ' ')
20943 p++;
20944 }
20945
20946 return p;
20947}
20948
20949
20950static void
20951parse_macro_definition (struct macro_source_file *file, int line,
20952 const char *body)
20953{
20954 const char *p;
20955
20956 /* The body string takes one of two forms. For object-like macro
20957 definitions, it should be:
20958
20959 <macro name> " " <definition>
20960
20961 For function-like macro definitions, it should be:
20962
20963 <macro name> "() " <definition>
20964 or
20965 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20966
20967 Spaces may appear only where explicitly indicated, and in the
20968 <definition>.
20969
20970 The Dwarf 2 spec says that an object-like macro's name is always
20971 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20972 the space when the macro's definition is the empty string.
2e276125
JB
20973
20974 The Dwarf 2 spec says that there should be no spaces between the
20975 formal arguments in a function-like macro's formal argument list,
20976 but versions of GCC around March 2002 include spaces after the
20977 commas. */
20978
20979
20980 /* Find the extent of the macro name. The macro name is terminated
20981 by either a space or null character (for an object-like macro) or
20982 an opening paren (for a function-like macro). */
20983 for (p = body; *p; p++)
20984 if (*p == ' ' || *p == '(')
20985 break;
20986
20987 if (*p == ' ' || *p == '\0')
20988 {
20989 /* It's an object-like macro. */
20990 int name_len = p - body;
20991 char *name = copy_string (body, name_len);
20992 const char *replacement;
20993
20994 if (*p == ' ')
20995 replacement = body + name_len + 1;
20996 else
20997 {
4d3c2250 20998 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20999 replacement = body + name_len;
21000 }
6e70227d 21001
2e276125
JB
21002 macro_define_object (file, line, name, replacement);
21003
21004 xfree (name);
21005 }
21006 else if (*p == '(')
21007 {
21008 /* It's a function-like macro. */
21009 char *name = copy_string (body, p - body);
21010 int argc = 0;
21011 int argv_size = 1;
8d749320 21012 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21013
21014 p++;
21015
21016 p = consume_improper_spaces (p, body);
21017
21018 /* Parse the formal argument list. */
21019 while (*p && *p != ')')
21020 {
21021 /* Find the extent of the current argument name. */
21022 const char *arg_start = p;
21023
21024 while (*p && *p != ',' && *p != ')' && *p != ' ')
21025 p++;
21026
21027 if (! *p || p == arg_start)
4d3c2250 21028 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21029 else
21030 {
21031 /* Make sure argv has room for the new argument. */
21032 if (argc >= argv_size)
21033 {
21034 argv_size *= 2;
224c3ddb 21035 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21036 }
21037
21038 argv[argc++] = copy_string (arg_start, p - arg_start);
21039 }
21040
21041 p = consume_improper_spaces (p, body);
21042
21043 /* Consume the comma, if present. */
21044 if (*p == ',')
21045 {
21046 p++;
21047
21048 p = consume_improper_spaces (p, body);
21049 }
21050 }
21051
21052 if (*p == ')')
21053 {
21054 p++;
21055
21056 if (*p == ' ')
21057 /* Perfectly formed definition, no complaints. */
21058 macro_define_function (file, line, name,
6e70227d 21059 argc, (const char **) argv,
2e276125
JB
21060 p + 1);
21061 else if (*p == '\0')
21062 {
21063 /* Complain, but do define it. */
4d3c2250 21064 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21065 macro_define_function (file, line, name,
6e70227d 21066 argc, (const char **) argv,
2e276125
JB
21067 p);
21068 }
21069 else
21070 /* Just complain. */
4d3c2250 21071 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21072 }
21073 else
21074 /* Just complain. */
4d3c2250 21075 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21076
21077 xfree (name);
21078 {
21079 int i;
21080
21081 for (i = 0; i < argc; i++)
21082 xfree (argv[i]);
21083 }
21084 xfree (argv);
21085 }
21086 else
4d3c2250 21087 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21088}
21089
cf2c3c16
TT
21090/* Skip some bytes from BYTES according to the form given in FORM.
21091 Returns the new pointer. */
2e276125 21092
d521ce57
TT
21093static const gdb_byte *
21094skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21095 enum dwarf_form form,
21096 unsigned int offset_size,
21097 struct dwarf2_section_info *section)
2e276125 21098{
cf2c3c16 21099 unsigned int bytes_read;
2e276125 21100
cf2c3c16 21101 switch (form)
2e276125 21102 {
cf2c3c16
TT
21103 case DW_FORM_data1:
21104 case DW_FORM_flag:
21105 ++bytes;
21106 break;
21107
21108 case DW_FORM_data2:
21109 bytes += 2;
21110 break;
21111
21112 case DW_FORM_data4:
21113 bytes += 4;
21114 break;
21115
21116 case DW_FORM_data8:
21117 bytes += 8;
21118 break;
21119
21120 case DW_FORM_string:
21121 read_direct_string (abfd, bytes, &bytes_read);
21122 bytes += bytes_read;
21123 break;
21124
21125 case DW_FORM_sec_offset:
21126 case DW_FORM_strp:
36586728 21127 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21128 bytes += offset_size;
21129 break;
21130
21131 case DW_FORM_block:
21132 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21133 bytes += bytes_read;
21134 break;
21135
21136 case DW_FORM_block1:
21137 bytes += 1 + read_1_byte (abfd, bytes);
21138 break;
21139 case DW_FORM_block2:
21140 bytes += 2 + read_2_bytes (abfd, bytes);
21141 break;
21142 case DW_FORM_block4:
21143 bytes += 4 + read_4_bytes (abfd, bytes);
21144 break;
21145
21146 case DW_FORM_sdata:
21147 case DW_FORM_udata:
3019eac3
DE
21148 case DW_FORM_GNU_addr_index:
21149 case DW_FORM_GNU_str_index:
d521ce57 21150 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21151 if (bytes == NULL)
21152 {
21153 dwarf2_section_buffer_overflow_complaint (section);
21154 return NULL;
21155 }
cf2c3c16
TT
21156 break;
21157
21158 default:
21159 {
21160 complain:
21161 complaint (&symfile_complaints,
21162 _("invalid form 0x%x in `%s'"),
a32a8923 21163 form, get_section_name (section));
cf2c3c16
TT
21164 return NULL;
21165 }
2e276125
JB
21166 }
21167
cf2c3c16
TT
21168 return bytes;
21169}
757a13d0 21170
cf2c3c16
TT
21171/* A helper for dwarf_decode_macros that handles skipping an unknown
21172 opcode. Returns an updated pointer to the macro data buffer; or,
21173 on error, issues a complaint and returns NULL. */
757a13d0 21174
d521ce57 21175static const gdb_byte *
cf2c3c16 21176skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21177 const gdb_byte **opcode_definitions,
21178 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21179 bfd *abfd,
21180 unsigned int offset_size,
21181 struct dwarf2_section_info *section)
21182{
21183 unsigned int bytes_read, i;
21184 unsigned long arg;
d521ce57 21185 const gdb_byte *defn;
2e276125 21186
cf2c3c16 21187 if (opcode_definitions[opcode] == NULL)
2e276125 21188 {
cf2c3c16
TT
21189 complaint (&symfile_complaints,
21190 _("unrecognized DW_MACFINO opcode 0x%x"),
21191 opcode);
21192 return NULL;
21193 }
2e276125 21194
cf2c3c16
TT
21195 defn = opcode_definitions[opcode];
21196 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21197 defn += bytes_read;
2e276125 21198
cf2c3c16
TT
21199 for (i = 0; i < arg; ++i)
21200 {
aead7601
SM
21201 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21202 (enum dwarf_form) defn[i], offset_size,
f664829e 21203 section);
cf2c3c16
TT
21204 if (mac_ptr == NULL)
21205 {
21206 /* skip_form_bytes already issued the complaint. */
21207 return NULL;
21208 }
21209 }
757a13d0 21210
cf2c3c16
TT
21211 return mac_ptr;
21212}
757a13d0 21213
cf2c3c16
TT
21214/* A helper function which parses the header of a macro section.
21215 If the macro section is the extended (for now called "GNU") type,
21216 then this updates *OFFSET_SIZE. Returns a pointer to just after
21217 the header, or issues a complaint and returns NULL on error. */
757a13d0 21218
d521ce57
TT
21219static const gdb_byte *
21220dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21221 bfd *abfd,
d521ce57 21222 const gdb_byte *mac_ptr,
cf2c3c16
TT
21223 unsigned int *offset_size,
21224 int section_is_gnu)
21225{
21226 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21227
cf2c3c16
TT
21228 if (section_is_gnu)
21229 {
21230 unsigned int version, flags;
757a13d0 21231
cf2c3c16
TT
21232 version = read_2_bytes (abfd, mac_ptr);
21233 if (version != 4)
21234 {
21235 complaint (&symfile_complaints,
21236 _("unrecognized version `%d' in .debug_macro section"),
21237 version);
21238 return NULL;
21239 }
21240 mac_ptr += 2;
757a13d0 21241
cf2c3c16
TT
21242 flags = read_1_byte (abfd, mac_ptr);
21243 ++mac_ptr;
21244 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21245
cf2c3c16
TT
21246 if ((flags & 2) != 0)
21247 /* We don't need the line table offset. */
21248 mac_ptr += *offset_size;
757a13d0 21249
cf2c3c16
TT
21250 /* Vendor opcode descriptions. */
21251 if ((flags & 4) != 0)
21252 {
21253 unsigned int i, count;
757a13d0 21254
cf2c3c16
TT
21255 count = read_1_byte (abfd, mac_ptr);
21256 ++mac_ptr;
21257 for (i = 0; i < count; ++i)
21258 {
21259 unsigned int opcode, bytes_read;
21260 unsigned long arg;
21261
21262 opcode = read_1_byte (abfd, mac_ptr);
21263 ++mac_ptr;
21264 opcode_definitions[opcode] = mac_ptr;
21265 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21266 mac_ptr += bytes_read;
21267 mac_ptr += arg;
21268 }
757a13d0 21269 }
cf2c3c16 21270 }
757a13d0 21271
cf2c3c16
TT
21272 return mac_ptr;
21273}
757a13d0 21274
cf2c3c16 21275/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21276 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21277
21278static void
d521ce57
TT
21279dwarf_decode_macro_bytes (bfd *abfd,
21280 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21281 struct macro_source_file *current_file,
43f3e411 21282 struct line_header *lh,
cf2c3c16 21283 struct dwarf2_section_info *section,
36586728 21284 int section_is_gnu, int section_is_dwz,
cf2c3c16 21285 unsigned int offset_size,
8fc3fc34 21286 htab_t include_hash)
cf2c3c16 21287{
4d663531 21288 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21289 enum dwarf_macro_record_type macinfo_type;
21290 int at_commandline;
d521ce57 21291 const gdb_byte *opcode_definitions[256];
757a13d0 21292
cf2c3c16
TT
21293 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21294 &offset_size, section_is_gnu);
21295 if (mac_ptr == NULL)
21296 {
21297 /* We already issued a complaint. */
21298 return;
21299 }
757a13d0
JK
21300
21301 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21302 GDB is still reading the definitions from command line. First
21303 DW_MACINFO_start_file will need to be ignored as it was already executed
21304 to create CURRENT_FILE for the main source holding also the command line
21305 definitions. On first met DW_MACINFO_start_file this flag is reset to
21306 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21307
21308 at_commandline = 1;
21309
21310 do
21311 {
21312 /* Do we at least have room for a macinfo type byte? */
21313 if (mac_ptr >= mac_end)
21314 {
f664829e 21315 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21316 break;
21317 }
21318
aead7601 21319 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21320 mac_ptr++;
21321
cf2c3c16
TT
21322 /* Note that we rely on the fact that the corresponding GNU and
21323 DWARF constants are the same. */
757a13d0
JK
21324 switch (macinfo_type)
21325 {
21326 /* A zero macinfo type indicates the end of the macro
21327 information. */
21328 case 0:
21329 break;
2e276125 21330
cf2c3c16
TT
21331 case DW_MACRO_GNU_define:
21332 case DW_MACRO_GNU_undef:
21333 case DW_MACRO_GNU_define_indirect:
21334 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21335 case DW_MACRO_GNU_define_indirect_alt:
21336 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21337 {
891d2f0b 21338 unsigned int bytes_read;
2e276125 21339 int line;
d521ce57 21340 const char *body;
cf2c3c16 21341 int is_define;
2e276125 21342
cf2c3c16
TT
21343 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21344 mac_ptr += bytes_read;
21345
21346 if (macinfo_type == DW_MACRO_GNU_define
21347 || macinfo_type == DW_MACRO_GNU_undef)
21348 {
21349 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21350 mac_ptr += bytes_read;
21351 }
21352 else
21353 {
21354 LONGEST str_offset;
21355
21356 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21357 mac_ptr += offset_size;
2e276125 21358
36586728 21359 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21360 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21361 || section_is_dwz)
36586728
TT
21362 {
21363 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21364
21365 body = read_indirect_string_from_dwz (dwz, str_offset);
21366 }
21367 else
21368 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21369 }
21370
21371 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21372 || macinfo_type == DW_MACRO_GNU_define_indirect
21373 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21374 if (! current_file)
757a13d0
JK
21375 {
21376 /* DWARF violation as no main source is present. */
21377 complaint (&symfile_complaints,
21378 _("debug info with no main source gives macro %s "
21379 "on line %d: %s"),
cf2c3c16
TT
21380 is_define ? _("definition") : _("undefinition"),
21381 line, body);
757a13d0
JK
21382 break;
21383 }
3e43a32a
MS
21384 if ((line == 0 && !at_commandline)
21385 || (line != 0 && at_commandline))
4d3c2250 21386 complaint (&symfile_complaints,
757a13d0
JK
21387 _("debug info gives %s macro %s with %s line %d: %s"),
21388 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21389 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21390 line == 0 ? _("zero") : _("non-zero"), line, body);
21391
cf2c3c16 21392 if (is_define)
757a13d0 21393 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21394 else
21395 {
21396 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21397 || macinfo_type == DW_MACRO_GNU_undef_indirect
21398 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21399 macro_undef (current_file, line, body);
21400 }
2e276125
JB
21401 }
21402 break;
21403
cf2c3c16 21404 case DW_MACRO_GNU_start_file:
2e276125 21405 {
891d2f0b 21406 unsigned int bytes_read;
2e276125
JB
21407 int line, file;
21408
21409 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21410 mac_ptr += bytes_read;
21411 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21412 mac_ptr += bytes_read;
21413
3e43a32a
MS
21414 if ((line == 0 && !at_commandline)
21415 || (line != 0 && at_commandline))
757a13d0
JK
21416 complaint (&symfile_complaints,
21417 _("debug info gives source %d included "
21418 "from %s at %s line %d"),
21419 file, at_commandline ? _("command-line") : _("file"),
21420 line == 0 ? _("zero") : _("non-zero"), line);
21421
21422 if (at_commandline)
21423 {
cf2c3c16
TT
21424 /* This DW_MACRO_GNU_start_file was executed in the
21425 pass one. */
757a13d0
JK
21426 at_commandline = 0;
21427 }
21428 else
43f3e411 21429 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21430 }
21431 break;
21432
cf2c3c16 21433 case DW_MACRO_GNU_end_file:
2e276125 21434 if (! current_file)
4d3c2250 21435 complaint (&symfile_complaints,
3e43a32a
MS
21436 _("macro debug info has an unmatched "
21437 "`close_file' directive"));
2e276125
JB
21438 else
21439 {
21440 current_file = current_file->included_by;
21441 if (! current_file)
21442 {
cf2c3c16 21443 enum dwarf_macro_record_type next_type;
2e276125
JB
21444
21445 /* GCC circa March 2002 doesn't produce the zero
21446 type byte marking the end of the compilation
21447 unit. Complain if it's not there, but exit no
21448 matter what. */
21449
21450 /* Do we at least have room for a macinfo type byte? */
21451 if (mac_ptr >= mac_end)
21452 {
f664829e 21453 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21454 return;
21455 }
21456
21457 /* We don't increment mac_ptr here, so this is just
21458 a look-ahead. */
aead7601
SM
21459 next_type
21460 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21461 mac_ptr);
2e276125 21462 if (next_type != 0)
4d3c2250 21463 complaint (&symfile_complaints,
3e43a32a
MS
21464 _("no terminating 0-type entry for "
21465 "macros in `.debug_macinfo' section"));
2e276125
JB
21466
21467 return;
21468 }
21469 }
21470 break;
21471
cf2c3c16 21472 case DW_MACRO_GNU_transparent_include:
36586728 21473 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21474 {
21475 LONGEST offset;
8fc3fc34 21476 void **slot;
a036ba48
TT
21477 bfd *include_bfd = abfd;
21478 struct dwarf2_section_info *include_section = section;
21479 struct dwarf2_section_info alt_section;
d521ce57 21480 const gdb_byte *include_mac_end = mac_end;
a036ba48 21481 int is_dwz = section_is_dwz;
d521ce57 21482 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21483
21484 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21485 mac_ptr += offset_size;
21486
a036ba48
TT
21487 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21488 {
21489 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21490
4d663531 21491 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21492
a036ba48 21493 include_section = &dwz->macro;
a32a8923 21494 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21495 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21496 is_dwz = 1;
21497 }
21498
21499 new_mac_ptr = include_section->buffer + offset;
21500 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21501
8fc3fc34
TT
21502 if (*slot != NULL)
21503 {
21504 /* This has actually happened; see
21505 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21506 complaint (&symfile_complaints,
21507 _("recursive DW_MACRO_GNU_transparent_include in "
21508 ".debug_macro section"));
21509 }
21510 else
21511 {
d521ce57 21512 *slot = (void *) new_mac_ptr;
36586728 21513
a036ba48 21514 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21515 include_mac_end, current_file, lh,
36586728 21516 section, section_is_gnu, is_dwz,
4d663531 21517 offset_size, include_hash);
8fc3fc34 21518
d521ce57 21519 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21520 }
cf2c3c16
TT
21521 }
21522 break;
21523
2e276125 21524 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21525 if (!section_is_gnu)
21526 {
21527 unsigned int bytes_read;
21528 int constant;
2e276125 21529
cf2c3c16
TT
21530 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21531 mac_ptr += bytes_read;
21532 read_direct_string (abfd, mac_ptr, &bytes_read);
21533 mac_ptr += bytes_read;
2e276125 21534
cf2c3c16
TT
21535 /* We don't recognize any vendor extensions. */
21536 break;
21537 }
21538 /* FALLTHROUGH */
21539
21540 default:
21541 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21542 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21543 section);
21544 if (mac_ptr == NULL)
21545 return;
21546 break;
2e276125 21547 }
757a13d0 21548 } while (macinfo_type != 0);
2e276125 21549}
8e19ed76 21550
cf2c3c16 21551static void
09262596 21552dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21553 int section_is_gnu)
cf2c3c16 21554{
bb5ed363 21555 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21556 struct line_header *lh = cu->line_header;
21557 bfd *abfd;
d521ce57 21558 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21559 struct macro_source_file *current_file = 0;
21560 enum dwarf_macro_record_type macinfo_type;
21561 unsigned int offset_size = cu->header.offset_size;
d521ce57 21562 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21563 struct cleanup *cleanup;
21564 htab_t include_hash;
21565 void **slot;
09262596
DE
21566 struct dwarf2_section_info *section;
21567 const char *section_name;
21568
21569 if (cu->dwo_unit != NULL)
21570 {
21571 if (section_is_gnu)
21572 {
21573 section = &cu->dwo_unit->dwo_file->sections.macro;
21574 section_name = ".debug_macro.dwo";
21575 }
21576 else
21577 {
21578 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21579 section_name = ".debug_macinfo.dwo";
21580 }
21581 }
21582 else
21583 {
21584 if (section_is_gnu)
21585 {
21586 section = &dwarf2_per_objfile->macro;
21587 section_name = ".debug_macro";
21588 }
21589 else
21590 {
21591 section = &dwarf2_per_objfile->macinfo;
21592 section_name = ".debug_macinfo";
21593 }
21594 }
cf2c3c16 21595
bb5ed363 21596 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21597 if (section->buffer == NULL)
21598 {
fceca515 21599 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21600 return;
21601 }
a32a8923 21602 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21603
21604 /* First pass: Find the name of the base filename.
21605 This filename is needed in order to process all macros whose definition
21606 (or undefinition) comes from the command line. These macros are defined
21607 before the first DW_MACINFO_start_file entry, and yet still need to be
21608 associated to the base file.
21609
21610 To determine the base file name, we scan the macro definitions until we
21611 reach the first DW_MACINFO_start_file entry. We then initialize
21612 CURRENT_FILE accordingly so that any macro definition found before the
21613 first DW_MACINFO_start_file can still be associated to the base file. */
21614
21615 mac_ptr = section->buffer + offset;
21616 mac_end = section->buffer + section->size;
21617
21618 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21619 &offset_size, section_is_gnu);
21620 if (mac_ptr == NULL)
21621 {
21622 /* We already issued a complaint. */
21623 return;
21624 }
21625
21626 do
21627 {
21628 /* Do we at least have room for a macinfo type byte? */
21629 if (mac_ptr >= mac_end)
21630 {
21631 /* Complaint is printed during the second pass as GDB will probably
21632 stop the first pass earlier upon finding
21633 DW_MACINFO_start_file. */
21634 break;
21635 }
21636
aead7601 21637 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21638 mac_ptr++;
21639
21640 /* Note that we rely on the fact that the corresponding GNU and
21641 DWARF constants are the same. */
21642 switch (macinfo_type)
21643 {
21644 /* A zero macinfo type indicates the end of the macro
21645 information. */
21646 case 0:
21647 break;
21648
21649 case DW_MACRO_GNU_define:
21650 case DW_MACRO_GNU_undef:
21651 /* Only skip the data by MAC_PTR. */
21652 {
21653 unsigned int bytes_read;
21654
21655 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21656 mac_ptr += bytes_read;
21657 read_direct_string (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 }
21660 break;
21661
21662 case DW_MACRO_GNU_start_file:
21663 {
21664 unsigned int bytes_read;
21665 int line, file;
21666
21667 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21668 mac_ptr += bytes_read;
21669 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21670 mac_ptr += bytes_read;
21671
43f3e411 21672 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21673 }
21674 break;
21675
21676 case DW_MACRO_GNU_end_file:
21677 /* No data to skip by MAC_PTR. */
21678 break;
21679
21680 case DW_MACRO_GNU_define_indirect:
21681 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21682 case DW_MACRO_GNU_define_indirect_alt:
21683 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21684 {
21685 unsigned int bytes_read;
21686
21687 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21688 mac_ptr += bytes_read;
21689 mac_ptr += offset_size;
21690 }
21691 break;
21692
21693 case DW_MACRO_GNU_transparent_include:
f7a35f02 21694 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21695 /* Note that, according to the spec, a transparent include
21696 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21697 skip this opcode. */
21698 mac_ptr += offset_size;
21699 break;
21700
21701 case DW_MACINFO_vendor_ext:
21702 /* Only skip the data by MAC_PTR. */
21703 if (!section_is_gnu)
21704 {
21705 unsigned int bytes_read;
21706
21707 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21708 mac_ptr += bytes_read;
21709 read_direct_string (abfd, mac_ptr, &bytes_read);
21710 mac_ptr += bytes_read;
21711 }
21712 /* FALLTHROUGH */
21713
21714 default:
21715 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21716 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21717 section);
21718 if (mac_ptr == NULL)
21719 return;
21720 break;
21721 }
21722 } while (macinfo_type != 0 && current_file == NULL);
21723
21724 /* Second pass: Process all entries.
21725
21726 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21727 command-line macro definitions/undefinitions. This flag is unset when we
21728 reach the first DW_MACINFO_start_file entry. */
21729
8fc3fc34
TT
21730 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21731 NULL, xcalloc, xfree);
21732 cleanup = make_cleanup_htab_delete (include_hash);
21733 mac_ptr = section->buffer + offset;
21734 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21735 *slot = (void *) mac_ptr;
8fc3fc34 21736 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21737 current_file, lh, section,
4d663531 21738 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21739 do_cleanups (cleanup);
cf2c3c16
TT
21740}
21741
8e19ed76 21742/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21743 if so return true else false. */
380bca97 21744
8e19ed76 21745static int
6e5a29e1 21746attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21747{
21748 return (attr == NULL ? 0 :
21749 attr->form == DW_FORM_block1
21750 || attr->form == DW_FORM_block2
21751 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21752 || attr->form == DW_FORM_block
21753 || attr->form == DW_FORM_exprloc);
8e19ed76 21754}
4c2df51b 21755
c6a0999f
JB
21756/* Return non-zero if ATTR's value is a section offset --- classes
21757 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21758 You may use DW_UNSND (attr) to retrieve such offsets.
21759
21760 Section 7.5.4, "Attribute Encodings", explains that no attribute
21761 may have a value that belongs to more than one of these classes; it
21762 would be ambiguous if we did, because we use the same forms for all
21763 of them. */
380bca97 21764
3690dd37 21765static int
6e5a29e1 21766attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21767{
21768 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21769 || attr->form == DW_FORM_data8
21770 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21771}
21772
3690dd37
JB
21773/* Return non-zero if ATTR's value falls in the 'constant' class, or
21774 zero otherwise. When this function returns true, you can apply
21775 dwarf2_get_attr_constant_value to it.
21776
21777 However, note that for some attributes you must check
21778 attr_form_is_section_offset before using this test. DW_FORM_data4
21779 and DW_FORM_data8 are members of both the constant class, and of
21780 the classes that contain offsets into other debug sections
21781 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21782 that, if an attribute's can be either a constant or one of the
21783 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21784 taken as section offsets, not constants. */
380bca97 21785
3690dd37 21786static int
6e5a29e1 21787attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21788{
21789 switch (attr->form)
21790 {
21791 case DW_FORM_sdata:
21792 case DW_FORM_udata:
21793 case DW_FORM_data1:
21794 case DW_FORM_data2:
21795 case DW_FORM_data4:
21796 case DW_FORM_data8:
21797 return 1;
21798 default:
21799 return 0;
21800 }
21801}
21802
7771576e
SA
21803
21804/* DW_ADDR is always stored already as sect_offset; despite for the forms
21805 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21806
21807static int
6e5a29e1 21808attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21809{
21810 switch (attr->form)
21811 {
21812 case DW_FORM_ref_addr:
21813 case DW_FORM_ref1:
21814 case DW_FORM_ref2:
21815 case DW_FORM_ref4:
21816 case DW_FORM_ref8:
21817 case DW_FORM_ref_udata:
21818 case DW_FORM_GNU_ref_alt:
21819 return 1;
21820 default:
21821 return 0;
21822 }
21823}
21824
3019eac3
DE
21825/* Return the .debug_loc section to use for CU.
21826 For DWO files use .debug_loc.dwo. */
21827
21828static struct dwarf2_section_info *
21829cu_debug_loc_section (struct dwarf2_cu *cu)
21830{
21831 if (cu->dwo_unit)
21832 return &cu->dwo_unit->dwo_file->sections.loc;
21833 return &dwarf2_per_objfile->loc;
21834}
21835
8cf6f0b1
TT
21836/* A helper function that fills in a dwarf2_loclist_baton. */
21837
21838static void
21839fill_in_loclist_baton (struct dwarf2_cu *cu,
21840 struct dwarf2_loclist_baton *baton,
ff39bb5e 21841 const struct attribute *attr)
8cf6f0b1 21842{
3019eac3
DE
21843 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21844
21845 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21846
21847 baton->per_cu = cu->per_cu;
21848 gdb_assert (baton->per_cu);
21849 /* We don't know how long the location list is, but make sure we
21850 don't run off the edge of the section. */
3019eac3
DE
21851 baton->size = section->size - DW_UNSND (attr);
21852 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21853 baton->base_address = cu->base_address;
f664829e 21854 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21855}
21856
4c2df51b 21857static void
ff39bb5e 21858dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21859 struct dwarf2_cu *cu, int is_block)
4c2df51b 21860{
bb5ed363 21861 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21862 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21863
3690dd37 21864 if (attr_form_is_section_offset (attr)
3019eac3 21865 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21866 the section. If so, fall through to the complaint in the
21867 other branch. */
3019eac3 21868 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21869 {
0d53c4c4 21870 struct dwarf2_loclist_baton *baton;
4c2df51b 21871
8d749320 21872 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21873
8cf6f0b1 21874 fill_in_loclist_baton (cu, baton, attr);
be391dca 21875
d00adf39 21876 if (cu->base_known == 0)
0d53c4c4 21877 complaint (&symfile_complaints,
3e43a32a
MS
21878 _("Location list used without "
21879 "specifying the CU base address."));
4c2df51b 21880
f1e6e072
TT
21881 SYMBOL_ACLASS_INDEX (sym) = (is_block
21882 ? dwarf2_loclist_block_index
21883 : dwarf2_loclist_index);
0d53c4c4
DJ
21884 SYMBOL_LOCATION_BATON (sym) = baton;
21885 }
21886 else
21887 {
21888 struct dwarf2_locexpr_baton *baton;
21889
8d749320 21890 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21891 baton->per_cu = cu->per_cu;
21892 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21893
21894 if (attr_form_is_block (attr))
21895 {
21896 /* Note that we're just copying the block's data pointer
21897 here, not the actual data. We're still pointing into the
6502dd73
DJ
21898 info_buffer for SYM's objfile; right now we never release
21899 that buffer, but when we do clean up properly this may
21900 need to change. */
0d53c4c4
DJ
21901 baton->size = DW_BLOCK (attr)->size;
21902 baton->data = DW_BLOCK (attr)->data;
21903 }
21904 else
21905 {
21906 dwarf2_invalid_attrib_class_complaint ("location description",
21907 SYMBOL_NATURAL_NAME (sym));
21908 baton->size = 0;
0d53c4c4 21909 }
6e70227d 21910
f1e6e072
TT
21911 SYMBOL_ACLASS_INDEX (sym) = (is_block
21912 ? dwarf2_locexpr_block_index
21913 : dwarf2_locexpr_index);
0d53c4c4
DJ
21914 SYMBOL_LOCATION_BATON (sym) = baton;
21915 }
4c2df51b 21916}
6502dd73 21917
9aa1f1e3
TT
21918/* Return the OBJFILE associated with the compilation unit CU. If CU
21919 came from a separate debuginfo file, then the master objfile is
21920 returned. */
ae0d2f24
UW
21921
21922struct objfile *
21923dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21924{
9291a0cd 21925 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21926
21927 /* Return the master objfile, so that we can report and look up the
21928 correct file containing this variable. */
21929 if (objfile->separate_debug_objfile_backlink)
21930 objfile = objfile->separate_debug_objfile_backlink;
21931
21932 return objfile;
21933}
21934
96408a79
SA
21935/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21936 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21937 CU_HEADERP first. */
21938
21939static const struct comp_unit_head *
21940per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21941 struct dwarf2_per_cu_data *per_cu)
21942{
d521ce57 21943 const gdb_byte *info_ptr;
96408a79
SA
21944
21945 if (per_cu->cu)
21946 return &per_cu->cu->header;
21947
8a0459fd 21948 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21949
21950 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21951 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21952
21953 return cu_headerp;
21954}
21955
ae0d2f24
UW
21956/* Return the address size given in the compilation unit header for CU. */
21957
98714339 21958int
ae0d2f24
UW
21959dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21960{
96408a79
SA
21961 struct comp_unit_head cu_header_local;
21962 const struct comp_unit_head *cu_headerp;
c471e790 21963
96408a79
SA
21964 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21965
21966 return cu_headerp->addr_size;
ae0d2f24
UW
21967}
21968
9eae7c52
TT
21969/* Return the offset size given in the compilation unit header for CU. */
21970
21971int
21972dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21973{
96408a79
SA
21974 struct comp_unit_head cu_header_local;
21975 const struct comp_unit_head *cu_headerp;
9c6c53f7 21976
96408a79
SA
21977 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21978
21979 return cu_headerp->offset_size;
21980}
21981
21982/* See its dwarf2loc.h declaration. */
21983
21984int
21985dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21986{
21987 struct comp_unit_head cu_header_local;
21988 const struct comp_unit_head *cu_headerp;
21989
21990 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21991
21992 if (cu_headerp->version == 2)
21993 return cu_headerp->addr_size;
21994 else
21995 return cu_headerp->offset_size;
181cebd4
JK
21996}
21997
9aa1f1e3
TT
21998/* Return the text offset of the CU. The returned offset comes from
21999 this CU's objfile. If this objfile came from a separate debuginfo
22000 file, then the offset may be different from the corresponding
22001 offset in the parent objfile. */
22002
22003CORE_ADDR
22004dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22005{
bb3fa9d0 22006 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22007
22008 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22009}
22010
348e048f
DE
22011/* Locate the .debug_info compilation unit from CU's objfile which contains
22012 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22013
22014static struct dwarf2_per_cu_data *
b64f50a1 22015dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22016 unsigned int offset_in_dwz,
ae038cb0
DJ
22017 struct objfile *objfile)
22018{
22019 struct dwarf2_per_cu_data *this_cu;
22020 int low, high;
36586728 22021 const sect_offset *cu_off;
ae038cb0 22022
ae038cb0
DJ
22023 low = 0;
22024 high = dwarf2_per_objfile->n_comp_units - 1;
22025 while (high > low)
22026 {
36586728 22027 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22028 int mid = low + (high - low) / 2;
9a619af0 22029
36586728
TT
22030 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22031 cu_off = &mid_cu->offset;
22032 if (mid_cu->is_dwz > offset_in_dwz
22033 || (mid_cu->is_dwz == offset_in_dwz
22034 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22035 high = mid;
22036 else
22037 low = mid + 1;
22038 }
22039 gdb_assert (low == high);
36586728
TT
22040 this_cu = dwarf2_per_objfile->all_comp_units[low];
22041 cu_off = &this_cu->offset;
22042 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22043 {
36586728 22044 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22045 error (_("Dwarf Error: could not find partial DIE containing "
22046 "offset 0x%lx [in module %s]"),
b64f50a1 22047 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22048
b64f50a1
JK
22049 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22050 <= offset.sect_off);
ae038cb0
DJ
22051 return dwarf2_per_objfile->all_comp_units[low-1];
22052 }
22053 else
22054 {
22055 this_cu = dwarf2_per_objfile->all_comp_units[low];
22056 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22057 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22058 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22059 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22060 return this_cu;
22061 }
22062}
22063
23745b47 22064/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22065
9816fde3 22066static void
23745b47 22067init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22068{
9816fde3 22069 memset (cu, 0, sizeof (*cu));
23745b47
DE
22070 per_cu->cu = cu;
22071 cu->per_cu = per_cu;
22072 cu->objfile = per_cu->objfile;
93311388 22073 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22074}
22075
22076/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22077
22078static void
95554aad
TT
22079prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22080 enum language pretend_language)
9816fde3
JK
22081{
22082 struct attribute *attr;
22083
22084 /* Set the language we're debugging. */
22085 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22086 if (attr)
22087 set_cu_language (DW_UNSND (attr), cu);
22088 else
9cded63f 22089 {
95554aad 22090 cu->language = pretend_language;
9cded63f
TT
22091 cu->language_defn = language_def (cu->language);
22092 }
dee91e82 22093
7d45c7c3 22094 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22095}
22096
ae038cb0
DJ
22097/* Release one cached compilation unit, CU. We unlink it from the tree
22098 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22099 the caller is responsible for that.
22100 NOTE: DATA is a void * because this function is also used as a
22101 cleanup routine. */
ae038cb0
DJ
22102
22103static void
68dc6402 22104free_heap_comp_unit (void *data)
ae038cb0
DJ
22105{
22106 struct dwarf2_cu *cu = data;
22107
23745b47
DE
22108 gdb_assert (cu->per_cu != NULL);
22109 cu->per_cu->cu = NULL;
ae038cb0
DJ
22110 cu->per_cu = NULL;
22111
22112 obstack_free (&cu->comp_unit_obstack, NULL);
22113
22114 xfree (cu);
22115}
22116
72bf9492 22117/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22118 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22119 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22120
22121static void
22122free_stack_comp_unit (void *data)
22123{
22124 struct dwarf2_cu *cu = data;
22125
23745b47
DE
22126 gdb_assert (cu->per_cu != NULL);
22127 cu->per_cu->cu = NULL;
22128 cu->per_cu = NULL;
22129
72bf9492
DJ
22130 obstack_free (&cu->comp_unit_obstack, NULL);
22131 cu->partial_dies = NULL;
ae038cb0
DJ
22132}
22133
22134/* Free all cached compilation units. */
22135
22136static void
22137free_cached_comp_units (void *data)
22138{
22139 struct dwarf2_per_cu_data *per_cu, **last_chain;
22140
22141 per_cu = dwarf2_per_objfile->read_in_chain;
22142 last_chain = &dwarf2_per_objfile->read_in_chain;
22143 while (per_cu != NULL)
22144 {
22145 struct dwarf2_per_cu_data *next_cu;
22146
22147 next_cu = per_cu->cu->read_in_chain;
22148
68dc6402 22149 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22150 *last_chain = next_cu;
22151
22152 per_cu = next_cu;
22153 }
22154}
22155
22156/* Increase the age counter on each cached compilation unit, and free
22157 any that are too old. */
22158
22159static void
22160age_cached_comp_units (void)
22161{
22162 struct dwarf2_per_cu_data *per_cu, **last_chain;
22163
22164 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22165 per_cu = dwarf2_per_objfile->read_in_chain;
22166 while (per_cu != NULL)
22167 {
22168 per_cu->cu->last_used ++;
b4f54984 22169 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22170 dwarf2_mark (per_cu->cu);
22171 per_cu = per_cu->cu->read_in_chain;
22172 }
22173
22174 per_cu = dwarf2_per_objfile->read_in_chain;
22175 last_chain = &dwarf2_per_objfile->read_in_chain;
22176 while (per_cu != NULL)
22177 {
22178 struct dwarf2_per_cu_data *next_cu;
22179
22180 next_cu = per_cu->cu->read_in_chain;
22181
22182 if (!per_cu->cu->mark)
22183 {
68dc6402 22184 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22185 *last_chain = next_cu;
22186 }
22187 else
22188 last_chain = &per_cu->cu->read_in_chain;
22189
22190 per_cu = next_cu;
22191 }
22192}
22193
22194/* Remove a single compilation unit from the cache. */
22195
22196static void
dee91e82 22197free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22198{
22199 struct dwarf2_per_cu_data *per_cu, **last_chain;
22200
22201 per_cu = dwarf2_per_objfile->read_in_chain;
22202 last_chain = &dwarf2_per_objfile->read_in_chain;
22203 while (per_cu != NULL)
22204 {
22205 struct dwarf2_per_cu_data *next_cu;
22206
22207 next_cu = per_cu->cu->read_in_chain;
22208
dee91e82 22209 if (per_cu == target_per_cu)
ae038cb0 22210 {
68dc6402 22211 free_heap_comp_unit (per_cu->cu);
dee91e82 22212 per_cu->cu = NULL;
ae038cb0
DJ
22213 *last_chain = next_cu;
22214 break;
22215 }
22216 else
22217 last_chain = &per_cu->cu->read_in_chain;
22218
22219 per_cu = next_cu;
22220 }
22221}
22222
fe3e1990
DJ
22223/* Release all extra memory associated with OBJFILE. */
22224
22225void
22226dwarf2_free_objfile (struct objfile *objfile)
22227{
22228 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22229
22230 if (dwarf2_per_objfile == NULL)
22231 return;
22232
22233 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22234 free_cached_comp_units (NULL);
22235
7b9f3c50
DE
22236 if (dwarf2_per_objfile->quick_file_names_table)
22237 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22238
527f3840
JK
22239 if (dwarf2_per_objfile->line_header_hash)
22240 htab_delete (dwarf2_per_objfile->line_header_hash);
22241
fe3e1990
DJ
22242 /* Everything else should be on the objfile obstack. */
22243}
22244
dee91e82
DE
22245/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22246 We store these in a hash table separate from the DIEs, and preserve them
22247 when the DIEs are flushed out of cache.
22248
22249 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22250 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22251 or the type may come from a DWO file. Furthermore, while it's more logical
22252 to use per_cu->section+offset, with Fission the section with the data is in
22253 the DWO file but we don't know that section at the point we need it.
22254 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22255 because we can enter the lookup routine, get_die_type_at_offset, from
22256 outside this file, and thus won't necessarily have PER_CU->cu.
22257 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22258
dee91e82 22259struct dwarf2_per_cu_offset_and_type
1c379e20 22260{
dee91e82 22261 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22262 sect_offset offset;
1c379e20
DJ
22263 struct type *type;
22264};
22265
dee91e82 22266/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22267
22268static hashval_t
dee91e82 22269per_cu_offset_and_type_hash (const void *item)
1c379e20 22270{
dee91e82 22271 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22272
dee91e82 22273 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22274}
22275
dee91e82 22276/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22277
22278static int
dee91e82 22279per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22280{
dee91e82
DE
22281 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22282 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22283
dee91e82
DE
22284 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22285 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22286}
22287
22288/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22289 table if necessary. For convenience, return TYPE.
22290
22291 The DIEs reading must have careful ordering to:
22292 * Not cause infite loops trying to read in DIEs as a prerequisite for
22293 reading current DIE.
22294 * Not trying to dereference contents of still incompletely read in types
22295 while reading in other DIEs.
22296 * Enable referencing still incompletely read in types just by a pointer to
22297 the type without accessing its fields.
22298
22299 Therefore caller should follow these rules:
22300 * Try to fetch any prerequisite types we may need to build this DIE type
22301 before building the type and calling set_die_type.
e71ec853 22302 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22303 possible before fetching more types to complete the current type.
22304 * Make the type as complete as possible before fetching more types. */
1c379e20 22305
f792889a 22306static struct type *
1c379e20
DJ
22307set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22308{
dee91e82 22309 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22310 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22311 struct attribute *attr;
22312 struct dynamic_prop prop;
1c379e20 22313
b4ba55a1
JB
22314 /* For Ada types, make sure that the gnat-specific data is always
22315 initialized (if not already set). There are a few types where
22316 we should not be doing so, because the type-specific area is
22317 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22318 where the type-specific area is used to store the floatformat).
22319 But this is not a problem, because the gnat-specific information
22320 is actually not needed for these types. */
22321 if (need_gnat_info (cu)
22322 && TYPE_CODE (type) != TYPE_CODE_FUNC
22323 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22324 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22325 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22326 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22327 && !HAVE_GNAT_AUX_INFO (type))
22328 INIT_GNAT_SPECIFIC (type);
22329
3cdcd0ce
JB
22330 /* Read DW_AT_data_location and set in type. */
22331 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22332 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22333 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22334
dee91e82 22335 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22336 {
dee91e82
DE
22337 dwarf2_per_objfile->die_type_hash =
22338 htab_create_alloc_ex (127,
22339 per_cu_offset_and_type_hash,
22340 per_cu_offset_and_type_eq,
22341 NULL,
22342 &objfile->objfile_obstack,
22343 hashtab_obstack_allocate,
22344 dummy_obstack_deallocate);
f792889a 22345 }
1c379e20 22346
dee91e82 22347 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22348 ofs.offset = die->offset;
22349 ofs.type = type;
dee91e82
DE
22350 slot = (struct dwarf2_per_cu_offset_and_type **)
22351 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22352 if (*slot)
22353 complaint (&symfile_complaints,
22354 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22355 die->offset.sect_off);
8d749320
SM
22356 *slot = XOBNEW (&objfile->objfile_obstack,
22357 struct dwarf2_per_cu_offset_and_type);
1c379e20 22358 **slot = ofs;
f792889a 22359 return type;
1c379e20
DJ
22360}
22361
02142a6c
DE
22362/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22363 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22364
22365static struct type *
b64f50a1 22366get_die_type_at_offset (sect_offset offset,
673bfd45 22367 struct dwarf2_per_cu_data *per_cu)
1c379e20 22368{
dee91e82 22369 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22370
dee91e82 22371 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22372 return NULL;
1c379e20 22373
dee91e82 22374 ofs.per_cu = per_cu;
673bfd45 22375 ofs.offset = offset;
dee91e82 22376 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22377 if (slot)
22378 return slot->type;
22379 else
22380 return NULL;
22381}
22382
02142a6c 22383/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22384 or return NULL if DIE does not have a saved type. */
22385
22386static struct type *
22387get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22388{
22389 return get_die_type_at_offset (die->offset, cu->per_cu);
22390}
22391
10b3939b
DJ
22392/* Add a dependence relationship from CU to REF_PER_CU. */
22393
22394static void
22395dwarf2_add_dependence (struct dwarf2_cu *cu,
22396 struct dwarf2_per_cu_data *ref_per_cu)
22397{
22398 void **slot;
22399
22400 if (cu->dependencies == NULL)
22401 cu->dependencies
22402 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22403 NULL, &cu->comp_unit_obstack,
22404 hashtab_obstack_allocate,
22405 dummy_obstack_deallocate);
22406
22407 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22408 if (*slot == NULL)
22409 *slot = ref_per_cu;
22410}
1c379e20 22411
f504f079
DE
22412/* Subroutine of dwarf2_mark to pass to htab_traverse.
22413 Set the mark field in every compilation unit in the
ae038cb0
DJ
22414 cache that we must keep because we are keeping CU. */
22415
10b3939b
DJ
22416static int
22417dwarf2_mark_helper (void **slot, void *data)
22418{
22419 struct dwarf2_per_cu_data *per_cu;
22420
22421 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22422
22423 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22424 reading of the chain. As such dependencies remain valid it is not much
22425 useful to track and undo them during QUIT cleanups. */
22426 if (per_cu->cu == NULL)
22427 return 1;
22428
10b3939b
DJ
22429 if (per_cu->cu->mark)
22430 return 1;
22431 per_cu->cu->mark = 1;
22432
22433 if (per_cu->cu->dependencies != NULL)
22434 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22435
22436 return 1;
22437}
22438
f504f079
DE
22439/* Set the mark field in CU and in every other compilation unit in the
22440 cache that we must keep because we are keeping CU. */
22441
ae038cb0
DJ
22442static void
22443dwarf2_mark (struct dwarf2_cu *cu)
22444{
22445 if (cu->mark)
22446 return;
22447 cu->mark = 1;
10b3939b
DJ
22448 if (cu->dependencies != NULL)
22449 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22450}
22451
22452static void
22453dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22454{
22455 while (per_cu)
22456 {
22457 per_cu->cu->mark = 0;
22458 per_cu = per_cu->cu->read_in_chain;
22459 }
72bf9492
DJ
22460}
22461
72bf9492
DJ
22462/* Trivial hash function for partial_die_info: the hash value of a DIE
22463 is its offset in .debug_info for this objfile. */
22464
22465static hashval_t
22466partial_die_hash (const void *item)
22467{
22468 const struct partial_die_info *part_die = item;
9a619af0 22469
b64f50a1 22470 return part_die->offset.sect_off;
72bf9492
DJ
22471}
22472
22473/* Trivial comparison function for partial_die_info structures: two DIEs
22474 are equal if they have the same offset. */
22475
22476static int
22477partial_die_eq (const void *item_lhs, const void *item_rhs)
22478{
22479 const struct partial_die_info *part_die_lhs = item_lhs;
22480 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22481
b64f50a1 22482 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22483}
22484
b4f54984
DE
22485static struct cmd_list_element *set_dwarf_cmdlist;
22486static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22487
22488static void
b4f54984 22489set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22490{
b4f54984 22491 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22492 gdb_stdout);
ae038cb0
DJ
22493}
22494
22495static void
b4f54984 22496show_dwarf_cmd (char *args, int from_tty)
6e70227d 22497{
b4f54984 22498 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22499}
22500
4bf44c1c 22501/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22502
22503static void
c1bd65d0 22504dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22505{
22506 struct dwarf2_per_objfile *data = d;
8b70b953 22507 int ix;
8b70b953 22508
626f2d1c
TT
22509 /* Make sure we don't accidentally use dwarf2_per_objfile while
22510 cleaning up. */
22511 dwarf2_per_objfile = NULL;
22512
59b0c7c1
JB
22513 for (ix = 0; ix < data->n_comp_units; ++ix)
22514 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22515
59b0c7c1 22516 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22517 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22518 data->all_type_units[ix]->per_cu.imported_symtabs);
22519 xfree (data->all_type_units);
95554aad 22520
8b70b953 22521 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22522
22523 if (data->dwo_files)
22524 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22525 if (data->dwp_file)
22526 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22527
22528 if (data->dwz_file && data->dwz_file->dwz_bfd)
22529 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22530}
22531
22532\f
ae2de4f8 22533/* The "save gdb-index" command. */
9291a0cd
TT
22534
22535/* The contents of the hash table we create when building the string
22536 table. */
22537struct strtab_entry
22538{
22539 offset_type offset;
22540 const char *str;
22541};
22542
559a7a62
JK
22543/* Hash function for a strtab_entry.
22544
22545 Function is used only during write_hash_table so no index format backward
22546 compatibility is needed. */
b89be57b 22547
9291a0cd
TT
22548static hashval_t
22549hash_strtab_entry (const void *e)
22550{
22551 const struct strtab_entry *entry = e;
559a7a62 22552 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22553}
22554
22555/* Equality function for a strtab_entry. */
b89be57b 22556
9291a0cd
TT
22557static int
22558eq_strtab_entry (const void *a, const void *b)
22559{
22560 const struct strtab_entry *ea = a;
22561 const struct strtab_entry *eb = b;
22562 return !strcmp (ea->str, eb->str);
22563}
22564
22565/* Create a strtab_entry hash table. */
b89be57b 22566
9291a0cd
TT
22567static htab_t
22568create_strtab (void)
22569{
22570 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22571 xfree, xcalloc, xfree);
22572}
22573
22574/* Add a string to the constant pool. Return the string's offset in
22575 host order. */
b89be57b 22576
9291a0cd
TT
22577static offset_type
22578add_string (htab_t table, struct obstack *cpool, const char *str)
22579{
22580 void **slot;
22581 struct strtab_entry entry;
22582 struct strtab_entry *result;
22583
22584 entry.str = str;
22585 slot = htab_find_slot (table, &entry, INSERT);
22586 if (*slot)
22587 result = *slot;
22588 else
22589 {
22590 result = XNEW (struct strtab_entry);
22591 result->offset = obstack_object_size (cpool);
22592 result->str = str;
22593 obstack_grow_str0 (cpool, str);
22594 *slot = result;
22595 }
22596 return result->offset;
22597}
22598
22599/* An entry in the symbol table. */
22600struct symtab_index_entry
22601{
22602 /* The name of the symbol. */
22603 const char *name;
22604 /* The offset of the name in the constant pool. */
22605 offset_type index_offset;
22606 /* A sorted vector of the indices of all the CUs that hold an object
22607 of this name. */
22608 VEC (offset_type) *cu_indices;
22609};
22610
22611/* The symbol table. This is a power-of-2-sized hash table. */
22612struct mapped_symtab
22613{
22614 offset_type n_elements;
22615 offset_type size;
22616 struct symtab_index_entry **data;
22617};
22618
22619/* Hash function for a symtab_index_entry. */
b89be57b 22620
9291a0cd
TT
22621static hashval_t
22622hash_symtab_entry (const void *e)
22623{
22624 const struct symtab_index_entry *entry = e;
22625 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22626 sizeof (offset_type) * VEC_length (offset_type,
22627 entry->cu_indices),
22628 0);
22629}
22630
22631/* Equality function for a symtab_index_entry. */
b89be57b 22632
9291a0cd
TT
22633static int
22634eq_symtab_entry (const void *a, const void *b)
22635{
22636 const struct symtab_index_entry *ea = a;
22637 const struct symtab_index_entry *eb = b;
22638 int len = VEC_length (offset_type, ea->cu_indices);
22639 if (len != VEC_length (offset_type, eb->cu_indices))
22640 return 0;
22641 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22642 VEC_address (offset_type, eb->cu_indices),
22643 sizeof (offset_type) * len);
22644}
22645
22646/* Destroy a symtab_index_entry. */
b89be57b 22647
9291a0cd
TT
22648static void
22649delete_symtab_entry (void *p)
22650{
22651 struct symtab_index_entry *entry = p;
22652 VEC_free (offset_type, entry->cu_indices);
22653 xfree (entry);
22654}
22655
22656/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22657
9291a0cd 22658static htab_t
3876f04e 22659create_symbol_hash_table (void)
9291a0cd
TT
22660{
22661 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22662 delete_symtab_entry, xcalloc, xfree);
22663}
22664
22665/* Create a new mapped symtab object. */
b89be57b 22666
9291a0cd
TT
22667static struct mapped_symtab *
22668create_mapped_symtab (void)
22669{
22670 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22671 symtab->n_elements = 0;
22672 symtab->size = 1024;
22673 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22674 return symtab;
22675}
22676
22677/* Destroy a mapped_symtab. */
b89be57b 22678
9291a0cd
TT
22679static void
22680cleanup_mapped_symtab (void *p)
22681{
22682 struct mapped_symtab *symtab = p;
22683 /* The contents of the array are freed when the other hash table is
22684 destroyed. */
22685 xfree (symtab->data);
22686 xfree (symtab);
22687}
22688
22689/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22690 the slot.
22691
22692 Function is used only during write_hash_table so no index format backward
22693 compatibility is needed. */
b89be57b 22694
9291a0cd
TT
22695static struct symtab_index_entry **
22696find_slot (struct mapped_symtab *symtab, const char *name)
22697{
559a7a62 22698 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22699
22700 index = hash & (symtab->size - 1);
22701 step = ((hash * 17) & (symtab->size - 1)) | 1;
22702
22703 for (;;)
22704 {
22705 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22706 return &symtab->data[index];
22707 index = (index + step) & (symtab->size - 1);
22708 }
22709}
22710
22711/* Expand SYMTAB's hash table. */
b89be57b 22712
9291a0cd
TT
22713static void
22714hash_expand (struct mapped_symtab *symtab)
22715{
22716 offset_type old_size = symtab->size;
22717 offset_type i;
22718 struct symtab_index_entry **old_entries = symtab->data;
22719
22720 symtab->size *= 2;
22721 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22722
22723 for (i = 0; i < old_size; ++i)
22724 {
22725 if (old_entries[i])
22726 {
22727 struct symtab_index_entry **slot = find_slot (symtab,
22728 old_entries[i]->name);
22729 *slot = old_entries[i];
22730 }
22731 }
22732
22733 xfree (old_entries);
22734}
22735
156942c7
DE
22736/* Add an entry to SYMTAB. NAME is the name of the symbol.
22737 CU_INDEX is the index of the CU in which the symbol appears.
22738 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22739
9291a0cd
TT
22740static void
22741add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22742 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22743 offset_type cu_index)
22744{
22745 struct symtab_index_entry **slot;
156942c7 22746 offset_type cu_index_and_attrs;
9291a0cd
TT
22747
22748 ++symtab->n_elements;
22749 if (4 * symtab->n_elements / 3 >= symtab->size)
22750 hash_expand (symtab);
22751
22752 slot = find_slot (symtab, name);
22753 if (!*slot)
22754 {
22755 *slot = XNEW (struct symtab_index_entry);
22756 (*slot)->name = name;
156942c7 22757 /* index_offset is set later. */
9291a0cd
TT
22758 (*slot)->cu_indices = NULL;
22759 }
156942c7
DE
22760
22761 cu_index_and_attrs = 0;
22762 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22763 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22764 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22765
22766 /* We don't want to record an index value twice as we want to avoid the
22767 duplication.
22768 We process all global symbols and then all static symbols
22769 (which would allow us to avoid the duplication by only having to check
22770 the last entry pushed), but a symbol could have multiple kinds in one CU.
22771 To keep things simple we don't worry about the duplication here and
22772 sort and uniqufy the list after we've processed all symbols. */
22773 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22774}
22775
22776/* qsort helper routine for uniquify_cu_indices. */
22777
22778static int
22779offset_type_compare (const void *ap, const void *bp)
22780{
22781 offset_type a = *(offset_type *) ap;
22782 offset_type b = *(offset_type *) bp;
22783
22784 return (a > b) - (b > a);
22785}
22786
22787/* Sort and remove duplicates of all symbols' cu_indices lists. */
22788
22789static void
22790uniquify_cu_indices (struct mapped_symtab *symtab)
22791{
22792 int i;
22793
22794 for (i = 0; i < symtab->size; ++i)
22795 {
22796 struct symtab_index_entry *entry = symtab->data[i];
22797
22798 if (entry
22799 && entry->cu_indices != NULL)
22800 {
22801 unsigned int next_to_insert, next_to_check;
22802 offset_type last_value;
22803
22804 qsort (VEC_address (offset_type, entry->cu_indices),
22805 VEC_length (offset_type, entry->cu_indices),
22806 sizeof (offset_type), offset_type_compare);
22807
22808 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22809 next_to_insert = 1;
22810 for (next_to_check = 1;
22811 next_to_check < VEC_length (offset_type, entry->cu_indices);
22812 ++next_to_check)
22813 {
22814 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22815 != last_value)
22816 {
22817 last_value = VEC_index (offset_type, entry->cu_indices,
22818 next_to_check);
22819 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22820 last_value);
22821 ++next_to_insert;
22822 }
22823 }
22824 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22825 }
22826 }
9291a0cd
TT
22827}
22828
22829/* Add a vector of indices to the constant pool. */
b89be57b 22830
9291a0cd 22831static offset_type
3876f04e 22832add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22833 struct symtab_index_entry *entry)
22834{
22835 void **slot;
22836
3876f04e 22837 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22838 if (!*slot)
22839 {
22840 offset_type len = VEC_length (offset_type, entry->cu_indices);
22841 offset_type val = MAYBE_SWAP (len);
22842 offset_type iter;
22843 int i;
22844
22845 *slot = entry;
22846 entry->index_offset = obstack_object_size (cpool);
22847
22848 obstack_grow (cpool, &val, sizeof (val));
22849 for (i = 0;
22850 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22851 ++i)
22852 {
22853 val = MAYBE_SWAP (iter);
22854 obstack_grow (cpool, &val, sizeof (val));
22855 }
22856 }
22857 else
22858 {
22859 struct symtab_index_entry *old_entry = *slot;
22860 entry->index_offset = old_entry->index_offset;
22861 entry = old_entry;
22862 }
22863 return entry->index_offset;
22864}
22865
22866/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22867 constant pool entries going into the obstack CPOOL. */
b89be57b 22868
9291a0cd
TT
22869static void
22870write_hash_table (struct mapped_symtab *symtab,
22871 struct obstack *output, struct obstack *cpool)
22872{
22873 offset_type i;
3876f04e 22874 htab_t symbol_hash_table;
9291a0cd
TT
22875 htab_t str_table;
22876
3876f04e 22877 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22878 str_table = create_strtab ();
3876f04e 22879
9291a0cd
TT
22880 /* We add all the index vectors to the constant pool first, to
22881 ensure alignment is ok. */
22882 for (i = 0; i < symtab->size; ++i)
22883 {
22884 if (symtab->data[i])
3876f04e 22885 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22886 }
22887
22888 /* Now write out the hash table. */
22889 for (i = 0; i < symtab->size; ++i)
22890 {
22891 offset_type str_off, vec_off;
22892
22893 if (symtab->data[i])
22894 {
22895 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22896 vec_off = symtab->data[i]->index_offset;
22897 }
22898 else
22899 {
22900 /* While 0 is a valid constant pool index, it is not valid
22901 to have 0 for both offsets. */
22902 str_off = 0;
22903 vec_off = 0;
22904 }
22905
22906 str_off = MAYBE_SWAP (str_off);
22907 vec_off = MAYBE_SWAP (vec_off);
22908
22909 obstack_grow (output, &str_off, sizeof (str_off));
22910 obstack_grow (output, &vec_off, sizeof (vec_off));
22911 }
22912
22913 htab_delete (str_table);
3876f04e 22914 htab_delete (symbol_hash_table);
9291a0cd
TT
22915}
22916
0a5429f6
DE
22917/* Struct to map psymtab to CU index in the index file. */
22918struct psymtab_cu_index_map
22919{
22920 struct partial_symtab *psymtab;
22921 unsigned int cu_index;
22922};
22923
22924static hashval_t
22925hash_psymtab_cu_index (const void *item)
22926{
22927 const struct psymtab_cu_index_map *map = item;
22928
22929 return htab_hash_pointer (map->psymtab);
22930}
22931
22932static int
22933eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22934{
22935 const struct psymtab_cu_index_map *lhs = item_lhs;
22936 const struct psymtab_cu_index_map *rhs = item_rhs;
22937
22938 return lhs->psymtab == rhs->psymtab;
22939}
22940
22941/* Helper struct for building the address table. */
22942struct addrmap_index_data
22943{
22944 struct objfile *objfile;
22945 struct obstack *addr_obstack;
22946 htab_t cu_index_htab;
22947
22948 /* Non-zero if the previous_* fields are valid.
22949 We can't write an entry until we see the next entry (since it is only then
22950 that we know the end of the entry). */
22951 int previous_valid;
22952 /* Index of the CU in the table of all CUs in the index file. */
22953 unsigned int previous_cu_index;
0963b4bd 22954 /* Start address of the CU. */
0a5429f6
DE
22955 CORE_ADDR previous_cu_start;
22956};
22957
22958/* Write an address entry to OBSTACK. */
b89be57b 22959
9291a0cd 22960static void
0a5429f6
DE
22961add_address_entry (struct objfile *objfile, struct obstack *obstack,
22962 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22963{
0a5429f6 22964 offset_type cu_index_to_write;
948f8e3d 22965 gdb_byte addr[8];
9291a0cd
TT
22966 CORE_ADDR baseaddr;
22967
22968 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22969
0a5429f6
DE
22970 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22971 obstack_grow (obstack, addr, 8);
22972 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22973 obstack_grow (obstack, addr, 8);
22974 cu_index_to_write = MAYBE_SWAP (cu_index);
22975 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22976}
22977
22978/* Worker function for traversing an addrmap to build the address table. */
22979
22980static int
22981add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22982{
22983 struct addrmap_index_data *data = datap;
22984 struct partial_symtab *pst = obj;
0a5429f6
DE
22985
22986 if (data->previous_valid)
22987 add_address_entry (data->objfile, data->addr_obstack,
22988 data->previous_cu_start, start_addr,
22989 data->previous_cu_index);
22990
22991 data->previous_cu_start = start_addr;
22992 if (pst != NULL)
22993 {
22994 struct psymtab_cu_index_map find_map, *map;
22995 find_map.psymtab = pst;
22996 map = htab_find (data->cu_index_htab, &find_map);
22997 gdb_assert (map != NULL);
22998 data->previous_cu_index = map->cu_index;
22999 data->previous_valid = 1;
23000 }
23001 else
23002 data->previous_valid = 0;
23003
23004 return 0;
23005}
23006
23007/* Write OBJFILE's address map to OBSTACK.
23008 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23009 in the index file. */
23010
23011static void
23012write_address_map (struct objfile *objfile, struct obstack *obstack,
23013 htab_t cu_index_htab)
23014{
23015 struct addrmap_index_data addrmap_index_data;
23016
23017 /* When writing the address table, we have to cope with the fact that
23018 the addrmap iterator only provides the start of a region; we have to
23019 wait until the next invocation to get the start of the next region. */
23020
23021 addrmap_index_data.objfile = objfile;
23022 addrmap_index_data.addr_obstack = obstack;
23023 addrmap_index_data.cu_index_htab = cu_index_htab;
23024 addrmap_index_data.previous_valid = 0;
23025
23026 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23027 &addrmap_index_data);
23028
23029 /* It's highly unlikely the last entry (end address = 0xff...ff)
23030 is valid, but we should still handle it.
23031 The end address is recorded as the start of the next region, but that
23032 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23033 anyway. */
23034 if (addrmap_index_data.previous_valid)
23035 add_address_entry (objfile, obstack,
23036 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23037 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23038}
23039
156942c7
DE
23040/* Return the symbol kind of PSYM. */
23041
23042static gdb_index_symbol_kind
23043symbol_kind (struct partial_symbol *psym)
23044{
23045 domain_enum domain = PSYMBOL_DOMAIN (psym);
23046 enum address_class aclass = PSYMBOL_CLASS (psym);
23047
23048 switch (domain)
23049 {
23050 case VAR_DOMAIN:
23051 switch (aclass)
23052 {
23053 case LOC_BLOCK:
23054 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23055 case LOC_TYPEDEF:
23056 return GDB_INDEX_SYMBOL_KIND_TYPE;
23057 case LOC_COMPUTED:
23058 case LOC_CONST_BYTES:
23059 case LOC_OPTIMIZED_OUT:
23060 case LOC_STATIC:
23061 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23062 case LOC_CONST:
23063 /* Note: It's currently impossible to recognize psyms as enum values
23064 short of reading the type info. For now punt. */
23065 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23066 default:
23067 /* There are other LOC_FOO values that one might want to classify
23068 as variables, but dwarf2read.c doesn't currently use them. */
23069 return GDB_INDEX_SYMBOL_KIND_OTHER;
23070 }
23071 case STRUCT_DOMAIN:
23072 return GDB_INDEX_SYMBOL_KIND_TYPE;
23073 default:
23074 return GDB_INDEX_SYMBOL_KIND_OTHER;
23075 }
23076}
23077
9291a0cd 23078/* Add a list of partial symbols to SYMTAB. */
b89be57b 23079
9291a0cd
TT
23080static void
23081write_psymbols (struct mapped_symtab *symtab,
987d643c 23082 htab_t psyms_seen,
9291a0cd
TT
23083 struct partial_symbol **psymp,
23084 int count,
987d643c
TT
23085 offset_type cu_index,
23086 int is_static)
9291a0cd
TT
23087{
23088 for (; count-- > 0; ++psymp)
23089 {
156942c7
DE
23090 struct partial_symbol *psym = *psymp;
23091 void **slot;
987d643c 23092
156942c7 23093 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23094 error (_("Ada is not currently supported by the index"));
987d643c 23095
987d643c 23096 /* Only add a given psymbol once. */
156942c7 23097 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23098 if (!*slot)
23099 {
156942c7
DE
23100 gdb_index_symbol_kind kind = symbol_kind (psym);
23101
23102 *slot = psym;
23103 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23104 is_static, kind, cu_index);
987d643c 23105 }
9291a0cd
TT
23106 }
23107}
23108
23109/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23110 exception if there is an error. */
b89be57b 23111
9291a0cd
TT
23112static void
23113write_obstack (FILE *file, struct obstack *obstack)
23114{
23115 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23116 file)
23117 != obstack_object_size (obstack))
23118 error (_("couldn't data write to file"));
23119}
23120
23121/* Unlink a file if the argument is not NULL. */
b89be57b 23122
9291a0cd
TT
23123static void
23124unlink_if_set (void *p)
23125{
23126 char **filename = p;
23127 if (*filename)
23128 unlink (*filename);
23129}
23130
1fd400ff
TT
23131/* A helper struct used when iterating over debug_types. */
23132struct signatured_type_index_data
23133{
23134 struct objfile *objfile;
23135 struct mapped_symtab *symtab;
23136 struct obstack *types_list;
987d643c 23137 htab_t psyms_seen;
1fd400ff
TT
23138 int cu_index;
23139};
23140
23141/* A helper function that writes a single signatured_type to an
23142 obstack. */
b89be57b 23143
1fd400ff
TT
23144static int
23145write_one_signatured_type (void **slot, void *d)
23146{
23147 struct signatured_type_index_data *info = d;
23148 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23149 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23150 gdb_byte val[8];
23151
23152 write_psymbols (info->symtab,
987d643c 23153 info->psyms_seen,
3e43a32a
MS
23154 info->objfile->global_psymbols.list
23155 + psymtab->globals_offset,
987d643c
TT
23156 psymtab->n_global_syms, info->cu_index,
23157 0);
1fd400ff 23158 write_psymbols (info->symtab,
987d643c 23159 info->psyms_seen,
3e43a32a
MS
23160 info->objfile->static_psymbols.list
23161 + psymtab->statics_offset,
987d643c
TT
23162 psymtab->n_static_syms, info->cu_index,
23163 1);
1fd400ff 23164
b64f50a1
JK
23165 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23166 entry->per_cu.offset.sect_off);
1fd400ff 23167 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23168 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23169 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23170 obstack_grow (info->types_list, val, 8);
23171 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23172 obstack_grow (info->types_list, val, 8);
23173
23174 ++info->cu_index;
23175
23176 return 1;
23177}
23178
95554aad
TT
23179/* Recurse into all "included" dependencies and write their symbols as
23180 if they appeared in this psymtab. */
23181
23182static void
23183recursively_write_psymbols (struct objfile *objfile,
23184 struct partial_symtab *psymtab,
23185 struct mapped_symtab *symtab,
23186 htab_t psyms_seen,
23187 offset_type cu_index)
23188{
23189 int i;
23190
23191 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23192 if (psymtab->dependencies[i]->user != NULL)
23193 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23194 symtab, psyms_seen, cu_index);
23195
23196 write_psymbols (symtab,
23197 psyms_seen,
23198 objfile->global_psymbols.list + psymtab->globals_offset,
23199 psymtab->n_global_syms, cu_index,
23200 0);
23201 write_psymbols (symtab,
23202 psyms_seen,
23203 objfile->static_psymbols.list + psymtab->statics_offset,
23204 psymtab->n_static_syms, cu_index,
23205 1);
23206}
23207
9291a0cd 23208/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23209
9291a0cd
TT
23210static void
23211write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23212{
23213 struct cleanup *cleanup;
23214 char *filename, *cleanup_filename;
1fd400ff
TT
23215 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23216 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23217 int i;
23218 FILE *out_file;
23219 struct mapped_symtab *symtab;
23220 offset_type val, size_of_contents, total_len;
23221 struct stat st;
987d643c 23222 htab_t psyms_seen;
0a5429f6
DE
23223 htab_t cu_index_htab;
23224 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23225
9291a0cd
TT
23226 if (dwarf2_per_objfile->using_index)
23227 error (_("Cannot use an index to create the index"));
23228
8b70b953
TT
23229 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23230 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23231
260b681b
DE
23232 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23233 return;
23234
4262abfb
JK
23235 if (stat (objfile_name (objfile), &st) < 0)
23236 perror_with_name (objfile_name (objfile));
9291a0cd 23237
4262abfb 23238 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23239 INDEX_SUFFIX, (char *) NULL);
23240 cleanup = make_cleanup (xfree, filename);
23241
614c279d 23242 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23243 if (!out_file)
23244 error (_("Can't open `%s' for writing"), filename);
23245
23246 cleanup_filename = filename;
23247 make_cleanup (unlink_if_set, &cleanup_filename);
23248
23249 symtab = create_mapped_symtab ();
23250 make_cleanup (cleanup_mapped_symtab, symtab);
23251
23252 obstack_init (&addr_obstack);
23253 make_cleanup_obstack_free (&addr_obstack);
23254
23255 obstack_init (&cu_list);
23256 make_cleanup_obstack_free (&cu_list);
23257
1fd400ff
TT
23258 obstack_init (&types_cu_list);
23259 make_cleanup_obstack_free (&types_cu_list);
23260
987d643c
TT
23261 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23262 NULL, xcalloc, xfree);
96408a79 23263 make_cleanup_htab_delete (psyms_seen);
987d643c 23264
0a5429f6
DE
23265 /* While we're scanning CU's create a table that maps a psymtab pointer
23266 (which is what addrmap records) to its index (which is what is recorded
23267 in the index file). This will later be needed to write the address
23268 table. */
23269 cu_index_htab = htab_create_alloc (100,
23270 hash_psymtab_cu_index,
23271 eq_psymtab_cu_index,
23272 NULL, xcalloc, xfree);
96408a79 23273 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23274 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23275 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23276 make_cleanup (xfree, psymtab_cu_index_map);
23277
23278 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23279 work here. Also, the debug_types entries do not appear in
23280 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23281 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23282 {
3e43a32a
MS
23283 struct dwarf2_per_cu_data *per_cu
23284 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23285 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23286 gdb_byte val[8];
0a5429f6
DE
23287 struct psymtab_cu_index_map *map;
23288 void **slot;
9291a0cd 23289
92fac807
JK
23290 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23291 It may be referenced from a local scope but in such case it does not
23292 need to be present in .gdb_index. */
23293 if (psymtab == NULL)
23294 continue;
23295
95554aad
TT
23296 if (psymtab->user == NULL)
23297 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23298
0a5429f6
DE
23299 map = &psymtab_cu_index_map[i];
23300 map->psymtab = psymtab;
23301 map->cu_index = i;
23302 slot = htab_find_slot (cu_index_htab, map, INSERT);
23303 gdb_assert (slot != NULL);
23304 gdb_assert (*slot == NULL);
23305 *slot = map;
9291a0cd 23306
b64f50a1
JK
23307 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23308 per_cu->offset.sect_off);
9291a0cd 23309 obstack_grow (&cu_list, val, 8);
e254ef6a 23310 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23311 obstack_grow (&cu_list, val, 8);
23312 }
23313
0a5429f6
DE
23314 /* Dump the address map. */
23315 write_address_map (objfile, &addr_obstack, cu_index_htab);
23316
1fd400ff
TT
23317 /* Write out the .debug_type entries, if any. */
23318 if (dwarf2_per_objfile->signatured_types)
23319 {
23320 struct signatured_type_index_data sig_data;
23321
23322 sig_data.objfile = objfile;
23323 sig_data.symtab = symtab;
23324 sig_data.types_list = &types_cu_list;
987d643c 23325 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23326 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23327 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23328 write_one_signatured_type, &sig_data);
23329 }
23330
156942c7
DE
23331 /* Now that we've processed all symbols we can shrink their cu_indices
23332 lists. */
23333 uniquify_cu_indices (symtab);
23334
9291a0cd
TT
23335 obstack_init (&constant_pool);
23336 make_cleanup_obstack_free (&constant_pool);
23337 obstack_init (&symtab_obstack);
23338 make_cleanup_obstack_free (&symtab_obstack);
23339 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23340
23341 obstack_init (&contents);
23342 make_cleanup_obstack_free (&contents);
1fd400ff 23343 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23344 total_len = size_of_contents;
23345
23346 /* The version number. */
796a7ff8 23347 val = MAYBE_SWAP (8);
9291a0cd
TT
23348 obstack_grow (&contents, &val, sizeof (val));
23349
23350 /* The offset of the CU list from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&cu_list);
23354
1fd400ff
TT
23355 /* The offset of the types CU list from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&types_cu_list);
23359
9291a0cd
TT
23360 /* The offset of the address table from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&addr_obstack);
23364
23365 /* The offset of the symbol table from the start of the file. */
23366 val = MAYBE_SWAP (total_len);
23367 obstack_grow (&contents, &val, sizeof (val));
23368 total_len += obstack_object_size (&symtab_obstack);
23369
23370 /* The offset of the constant pool from the start of the file. */
23371 val = MAYBE_SWAP (total_len);
23372 obstack_grow (&contents, &val, sizeof (val));
23373 total_len += obstack_object_size (&constant_pool);
23374
23375 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23376
23377 write_obstack (out_file, &contents);
23378 write_obstack (out_file, &cu_list);
1fd400ff 23379 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23380 write_obstack (out_file, &addr_obstack);
23381 write_obstack (out_file, &symtab_obstack);
23382 write_obstack (out_file, &constant_pool);
23383
23384 fclose (out_file);
23385
23386 /* We want to keep the file, so we set cleanup_filename to NULL
23387 here. See unlink_if_set. */
23388 cleanup_filename = NULL;
23389
23390 do_cleanups (cleanup);
23391}
23392
90476074
TT
23393/* Implementation of the `save gdb-index' command.
23394
23395 Note that the file format used by this command is documented in the
23396 GDB manual. Any changes here must be documented there. */
11570e71 23397
9291a0cd
TT
23398static void
23399save_gdb_index_command (char *arg, int from_tty)
23400{
23401 struct objfile *objfile;
23402
23403 if (!arg || !*arg)
96d19272 23404 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23405
23406 ALL_OBJFILES (objfile)
23407 {
23408 struct stat st;
23409
23410 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23411 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23412 continue;
23413
23414 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23415 if (dwarf2_per_objfile)
23416 {
9291a0cd 23417
492d29ea 23418 TRY
9291a0cd
TT
23419 {
23420 write_psymtabs_to_index (objfile, arg);
23421 }
492d29ea
PA
23422 CATCH (except, RETURN_MASK_ERROR)
23423 {
23424 exception_fprintf (gdb_stderr, except,
23425 _("Error while writing index for `%s': "),
23426 objfile_name (objfile));
23427 }
23428 END_CATCH
9291a0cd
TT
23429 }
23430 }
dce234bc
PP
23431}
23432
9291a0cd
TT
23433\f
23434
b4f54984 23435int dwarf_always_disassemble;
9eae7c52
TT
23436
23437static void
b4f54984
DE
23438show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23439 struct cmd_list_element *c, const char *value)
9eae7c52 23440{
3e43a32a
MS
23441 fprintf_filtered (file,
23442 _("Whether to always disassemble "
23443 "DWARF expressions is %s.\n"),
9eae7c52
TT
23444 value);
23445}
23446
900e11f9
JK
23447static void
23448show_check_physname (struct ui_file *file, int from_tty,
23449 struct cmd_list_element *c, const char *value)
23450{
23451 fprintf_filtered (file,
23452 _("Whether to check \"physname\" is %s.\n"),
23453 value);
23454}
23455
6502dd73
DJ
23456void _initialize_dwarf2_read (void);
23457
23458void
23459_initialize_dwarf2_read (void)
23460{
96d19272
JK
23461 struct cmd_list_element *c;
23462
dce234bc 23463 dwarf2_objfile_data_key
c1bd65d0 23464 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23465
b4f54984
DE
23466 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23467Set DWARF specific variables.\n\
23468Configure DWARF variables such as the cache size"),
23469 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23470 0/*allow-unknown*/, &maintenance_set_cmdlist);
23471
b4f54984
DE
23472 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23473Show DWARF specific variables\n\
23474Show DWARF variables such as the cache size"),
23475 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23476 0/*allow-unknown*/, &maintenance_show_cmdlist);
23477
23478 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23479 &dwarf_max_cache_age, _("\
23480Set the upper bound on the age of cached DWARF compilation units."), _("\
23481Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23482A higher limit means that cached compilation units will be stored\n\
23483in memory longer, and more total memory will be used. Zero disables\n\
23484caching, which can slow down startup."),
2c5b56ce 23485 NULL,
b4f54984
DE
23486 show_dwarf_max_cache_age,
23487 &set_dwarf_cmdlist,
23488 &show_dwarf_cmdlist);
d97bc12b 23489
9eae7c52 23490 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23491 &dwarf_always_disassemble, _("\
9eae7c52
TT
23492Set whether `info address' always disassembles DWARF expressions."), _("\
23493Show whether `info address' always disassembles DWARF expressions."), _("\
23494When enabled, DWARF expressions are always printed in an assembly-like\n\
23495syntax. When disabled, expressions will be printed in a more\n\
23496conversational style, when possible."),
23497 NULL,
b4f54984
DE
23498 show_dwarf_always_disassemble,
23499 &set_dwarf_cmdlist,
23500 &show_dwarf_cmdlist);
23501
23502 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23503Set debugging of the DWARF reader."), _("\
23504Show debugging of the DWARF reader."), _("\
23505When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23506reading and symtab expansion. A value of 1 (one) provides basic\n\
23507information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23508 NULL,
23509 NULL,
23510 &setdebuglist, &showdebuglist);
23511
b4f54984
DE
23512 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23513Set debugging of the DWARF DIE reader."), _("\
23514Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23515When enabled (non-zero), DIEs are dumped after they are read in.\n\
23516The value is the maximum depth to print."),
ccce17b0
YQ
23517 NULL,
23518 NULL,
23519 &setdebuglist, &showdebuglist);
9291a0cd 23520
27e0867f
DE
23521 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23522Set debugging of the dwarf line reader."), _("\
23523Show debugging of the dwarf line reader."), _("\
23524When enabled (non-zero), line number entries are dumped as they are read in.\n\
23525A value of 1 (one) provides basic information.\n\
23526A value greater than 1 provides more verbose information."),
23527 NULL,
23528 NULL,
23529 &setdebuglist, &showdebuglist);
23530
900e11f9
JK
23531 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23532Set cross-checking of \"physname\" code against demangler."), _("\
23533Show cross-checking of \"physname\" code against demangler."), _("\
23534When enabled, GDB's internal \"physname\" code is checked against\n\
23535the demangler."),
23536 NULL, show_check_physname,
23537 &setdebuglist, &showdebuglist);
23538
e615022a
DE
23539 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23540 no_class, &use_deprecated_index_sections, _("\
23541Set whether to use deprecated gdb_index sections."), _("\
23542Show whether to use deprecated gdb_index sections."), _("\
23543When enabled, deprecated .gdb_index sections are used anyway.\n\
23544Normally they are ignored either because of a missing feature or\n\
23545performance issue.\n\
23546Warning: This option must be enabled before gdb reads the file."),
23547 NULL,
23548 NULL,
23549 &setlist, &showlist);
23550
96d19272 23551 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23552 _("\
fc1a9d6e 23553Save a gdb-index file.\n\
11570e71 23554Usage: save gdb-index DIRECTORY"),
96d19272
JK
23555 &save_cmdlist);
23556 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23557
23558 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23559 &dwarf2_locexpr_funcs);
23560 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23561 &dwarf2_loclist_funcs);
23562
23563 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23564 &dwarf2_block_frame_base_locexpr_funcs);
23565 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23566 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23567}