]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
2010-06-01 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
4c2df51b 54
c906108c
SS
55#include <fcntl.h>
56#include "gdb_string.h"
4bdf3d34 57#include "gdb_assert.h"
c906108c 58#include <sys/types.h>
233a11ab
CS
59#ifdef HAVE_ZLIB_H
60#include <zlib.h>
61#endif
dce234bc
PP
62#ifdef HAVE_MMAP
63#include <sys/mman.h>
85d9bd0e
TT
64#ifndef MAP_FAILED
65#define MAP_FAILED ((void *) -1)
66#endif
dce234bc 67#endif
d8151005 68
107d2387 69#if 0
357e46e7 70/* .debug_info header for a compilation unit
c906108c
SS
71 Because of alignment constraints, this structure has padding and cannot
72 be mapped directly onto the beginning of the .debug_info section. */
73typedef struct comp_unit_header
74 {
75 unsigned int length; /* length of the .debug_info
76 contribution */
77 unsigned short version; /* version number -- 2 for DWARF
78 version 2 */
79 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
80 unsigned char addr_size; /* byte size of an address -- 4 */
81 }
82_COMP_UNIT_HEADER;
83#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 84#endif
c906108c 85
c906108c
SS
86/* .debug_line statement program prologue
87 Because of alignment constraints, this structure has padding and cannot
88 be mapped directly onto the beginning of the .debug_info section. */
89typedef struct statement_prologue
90 {
91 unsigned int total_length; /* byte length of the statement
92 information */
93 unsigned short version; /* version number -- 2 for DWARF
94 version 2 */
95 unsigned int prologue_length; /* # bytes between prologue &
96 stmt program */
97 unsigned char minimum_instruction_length; /* byte size of
98 smallest instr */
99 unsigned char default_is_stmt; /* initial value of is_stmt
100 register */
101 char line_base;
102 unsigned char line_range;
103 unsigned char opcode_base; /* number assigned to first special
104 opcode */
105 unsigned char *standard_opcode_lengths;
106 }
107_STATEMENT_PROLOGUE;
108
d97bc12b
DE
109/* When non-zero, dump DIEs after they are read in. */
110static int dwarf2_die_debug = 0;
111
dce234bc
PP
112static int pagesize;
113
df8a16a1
DJ
114/* When set, the file that we're processing is known to have debugging
115 info for C++ namespaces. GCC 3.3.x did not produce this information,
116 but later versions do. */
117
118static int processing_has_namespace_info;
119
6502dd73
DJ
120static const struct objfile_data *dwarf2_objfile_data_key;
121
dce234bc
PP
122struct dwarf2_section_info
123{
124 asection *asection;
125 gdb_byte *buffer;
126 bfd_size_type size;
127 int was_mmapped;
be391dca
TT
128 /* True if we have tried to read this section. */
129 int readin;
dce234bc
PP
130};
131
6502dd73
DJ
132struct dwarf2_per_objfile
133{
dce234bc
PP
134 struct dwarf2_section_info info;
135 struct dwarf2_section_info abbrev;
136 struct dwarf2_section_info line;
dce234bc
PP
137 struct dwarf2_section_info loc;
138 struct dwarf2_section_info macinfo;
139 struct dwarf2_section_info str;
140 struct dwarf2_section_info ranges;
348e048f 141 struct dwarf2_section_info types;
dce234bc
PP
142 struct dwarf2_section_info frame;
143 struct dwarf2_section_info eh_frame;
ae038cb0 144
be391dca
TT
145 /* Back link. */
146 struct objfile *objfile;
147
10b3939b
DJ
148 /* A list of all the compilation units. This is used to locate
149 the target compilation unit of a particular reference. */
ae038cb0
DJ
150 struct dwarf2_per_cu_data **all_comp_units;
151
152 /* The number of compilation units in ALL_COMP_UNITS. */
153 int n_comp_units;
154
155 /* A chain of compilation units that are currently read in, so that
156 they can be freed later. */
157 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 158
348e048f
DE
159 /* A table mapping .debug_types signatures to its signatured_type entry.
160 This is NULL if the .debug_types section hasn't been read in yet. */
161 htab_t signatured_types;
162
72dca2f5
FR
163 /* A flag indicating wether this objfile has a section loaded at a
164 VMA of 0. */
165 int has_section_at_zero;
6502dd73
DJ
166};
167
168static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
169
170/* names of the debugging sections */
171
233a11ab
CS
172/* Note that if the debugging section has been compressed, it might
173 have a name like .zdebug_info. */
174
175#define INFO_SECTION "debug_info"
176#define ABBREV_SECTION "debug_abbrev"
177#define LINE_SECTION "debug_line"
233a11ab
CS
178#define LOC_SECTION "debug_loc"
179#define MACINFO_SECTION "debug_macinfo"
180#define STR_SECTION "debug_str"
181#define RANGES_SECTION "debug_ranges"
348e048f 182#define TYPES_SECTION "debug_types"
233a11ab
CS
183#define FRAME_SECTION "debug_frame"
184#define EH_FRAME_SECTION "eh_frame"
c906108c
SS
185
186/* local data types */
187
57349743
JB
188/* We hold several abbreviation tables in memory at the same time. */
189#ifndef ABBREV_HASH_SIZE
190#define ABBREV_HASH_SIZE 121
191#endif
192
107d2387
AC
193/* The data in a compilation unit header, after target2host
194 translation, looks like this. */
c906108c 195struct comp_unit_head
a738430d 196{
c764a876 197 unsigned int length;
a738430d 198 short version;
a738430d
MK
199 unsigned char addr_size;
200 unsigned char signed_addr_p;
9cbfa09e 201 unsigned int abbrev_offset;
57349743 202
a738430d
MK
203 /* Size of file offsets; either 4 or 8. */
204 unsigned int offset_size;
57349743 205
a738430d
MK
206 /* Size of the length field; either 4 or 12. */
207 unsigned int initial_length_size;
57349743 208
a738430d
MK
209 /* Offset to the first byte of this compilation unit header in the
210 .debug_info section, for resolving relative reference dies. */
211 unsigned int offset;
57349743 212
d00adf39
DE
213 /* Offset to first die in this cu from the start of the cu.
214 This will be the first byte following the compilation unit header. */
215 unsigned int first_die_offset;
a738430d 216};
c906108c 217
e7c27a73
DJ
218/* Internal state when decoding a particular compilation unit. */
219struct dwarf2_cu
220{
221 /* The objfile containing this compilation unit. */
222 struct objfile *objfile;
223
d00adf39 224 /* The header of the compilation unit. */
e7c27a73 225 struct comp_unit_head header;
e142c38c 226
d00adf39
DE
227 /* Base address of this compilation unit. */
228 CORE_ADDR base_address;
229
230 /* Non-zero if base_address has been set. */
231 int base_known;
232
e142c38c
DJ
233 struct function_range *first_fn, *last_fn, *cached_fn;
234
235 /* The language we are debugging. */
236 enum language language;
237 const struct language_defn *language_defn;
238
b0f35d58
DL
239 const char *producer;
240
e142c38c
DJ
241 /* The generic symbol table building routines have separate lists for
242 file scope symbols and all all other scopes (local scopes). So
243 we need to select the right one to pass to add_symbol_to_list().
244 We do it by keeping a pointer to the correct list in list_in_scope.
245
246 FIXME: The original dwarf code just treated the file scope as the
247 first local scope, and all other local scopes as nested local
248 scopes, and worked fine. Check to see if we really need to
249 distinguish these in buildsym.c. */
250 struct pending **list_in_scope;
251
f3dd6933
DJ
252 /* DWARF abbreviation table associated with this compilation unit. */
253 struct abbrev_info **dwarf2_abbrevs;
254
255 /* Storage for the abbrev table. */
256 struct obstack abbrev_obstack;
72bf9492
DJ
257
258 /* Hash table holding all the loaded partial DIEs. */
259 htab_t partial_dies;
260
261 /* Storage for things with the same lifetime as this read-in compilation
262 unit, including partial DIEs. */
263 struct obstack comp_unit_obstack;
264
ae038cb0
DJ
265 /* When multiple dwarf2_cu structures are living in memory, this field
266 chains them all together, so that they can be released efficiently.
267 We will probably also want a generation counter so that most-recently-used
268 compilation units are cached... */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* Backchain to our per_cu entry if the tree has been built. */
272 struct dwarf2_per_cu_data *per_cu;
273
f792889a
DJ
274 /* Pointer to the die -> type map. Although it is stored
275 permanently in per_cu, we copy it here to avoid double
276 indirection. */
277 htab_t type_hash;
278
ae038cb0
DJ
279 /* How many compilation units ago was this CU last referenced? */
280 int last_used;
281
10b3939b 282 /* A hash table of die offsets for following references. */
51545339 283 htab_t die_hash;
10b3939b
DJ
284
285 /* Full DIEs if read in. */
286 struct die_info *dies;
287
288 /* A set of pointers to dwarf2_per_cu_data objects for compilation
289 units referenced by this one. Only set during full symbol processing;
290 partial symbol tables do not have dependencies. */
291 htab_t dependencies;
292
cb1df416
DJ
293 /* Header data from the line table, during full symbol processing. */
294 struct line_header *line_header;
295
ae038cb0
DJ
296 /* Mark used when releasing cached dies. */
297 unsigned int mark : 1;
298
299 /* This flag will be set if this compilation unit might include
300 inter-compilation-unit references. */
301 unsigned int has_form_ref_addr : 1;
302
72bf9492
DJ
303 /* This flag will be set if this compilation unit includes any
304 DW_TAG_namespace DIEs. If we know that there are explicit
305 DIEs for namespaces, we don't need to try to infer them
306 from mangled names. */
307 unsigned int has_namespace_info : 1;
e7c27a73
DJ
308};
309
10b3939b
DJ
310/* Persistent data held for a compilation unit, even when not
311 processing it. We put a pointer to this structure in the
312 read_symtab_private field of the psymtab. If we encounter
313 inter-compilation-unit references, we also maintain a sorted
314 list of all compilation units. */
315
ae038cb0
DJ
316struct dwarf2_per_cu_data
317{
348e048f 318 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 319 bytes should suffice to store the length of any compilation unit
45452591
DE
320 - if it doesn't, GDB will fall over anyway.
321 NOTE: Unlike comp_unit_head.length, this length includes
322 initial_length_size. */
c764a876 323 unsigned int offset;
348e048f 324 unsigned int length : 29;
ae038cb0
DJ
325
326 /* Flag indicating this compilation unit will be read in before
327 any of the current compilation units are processed. */
c764a876 328 unsigned int queued : 1;
ae038cb0 329
5afb4e99
DJ
330 /* This flag will be set if we need to load absolutely all DIEs
331 for this compilation unit, instead of just the ones we think
332 are interesting. It gets set if we look for a DIE in the
333 hash table and don't find it. */
334 unsigned int load_all_dies : 1;
335
348e048f
DE
336 /* Non-zero if this CU is from .debug_types.
337 Otherwise it's from .debug_info. */
338 unsigned int from_debug_types : 1;
339
ae038cb0
DJ
340 /* Set iff currently read in. */
341 struct dwarf2_cu *cu;
1c379e20
DJ
342
343 /* If full symbols for this CU have been read in, then this field
344 holds a map of DIE offsets to types. It isn't always possible
345 to reconstruct this information later, so we have to preserve
346 it. */
1c379e20 347 htab_t type_hash;
10b3939b 348
31ffec48
DJ
349 /* The partial symbol table associated with this compilation unit,
350 or NULL for partial units (which do not have an associated
351 symtab). */
10b3939b 352 struct partial_symtab *psymtab;
ae038cb0
DJ
353};
354
348e048f
DE
355/* Entry in the signatured_types hash table. */
356
357struct signatured_type
358{
359 ULONGEST signature;
360
361 /* Offset in .debug_types of the TU (type_unit) for this type. */
362 unsigned int offset;
363
364 /* Offset in .debug_types of the type defined by this TU. */
365 unsigned int type_offset;
366
367 /* The CU(/TU) of this type. */
368 struct dwarf2_per_cu_data per_cu;
369};
370
93311388
DE
371/* Struct used to pass misc. parameters to read_die_and_children, et. al.
372 which are used for both .debug_info and .debug_types dies.
373 All parameters here are unchanging for the life of the call.
374 This struct exists to abstract away the constant parameters of
375 die reading. */
376
377struct die_reader_specs
378{
379 /* The bfd of this objfile. */
380 bfd* abfd;
381
382 /* The CU of the DIE we are parsing. */
383 struct dwarf2_cu *cu;
384
385 /* Pointer to start of section buffer.
386 This is either the start of .debug_info or .debug_types. */
387 const gdb_byte *buffer;
388};
389
debd256d
JB
390/* The line number information for a compilation unit (found in the
391 .debug_line section) begins with a "statement program header",
392 which contains the following information. */
393struct line_header
394{
395 unsigned int total_length;
396 unsigned short version;
397 unsigned int header_length;
398 unsigned char minimum_instruction_length;
2dc7f7b3 399 unsigned char maximum_ops_per_instruction;
debd256d
JB
400 unsigned char default_is_stmt;
401 int line_base;
402 unsigned char line_range;
403 unsigned char opcode_base;
404
405 /* standard_opcode_lengths[i] is the number of operands for the
406 standard opcode whose value is i. This means that
407 standard_opcode_lengths[0] is unused, and the last meaningful
408 element is standard_opcode_lengths[opcode_base - 1]. */
409 unsigned char *standard_opcode_lengths;
410
411 /* The include_directories table. NOTE! These strings are not
412 allocated with xmalloc; instead, they are pointers into
413 debug_line_buffer. If you try to free them, `free' will get
414 indigestion. */
415 unsigned int num_include_dirs, include_dirs_size;
416 char **include_dirs;
417
418 /* The file_names table. NOTE! These strings are not allocated
419 with xmalloc; instead, they are pointers into debug_line_buffer.
420 Don't try to free them directly. */
421 unsigned int num_file_names, file_names_size;
422 struct file_entry
c906108c 423 {
debd256d
JB
424 char *name;
425 unsigned int dir_index;
426 unsigned int mod_time;
427 unsigned int length;
aaa75496 428 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 429 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
430 } *file_names;
431
432 /* The start and end of the statement program following this
6502dd73 433 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 434 gdb_byte *statement_program_start, *statement_program_end;
debd256d 435};
c906108c
SS
436
437/* When we construct a partial symbol table entry we only
438 need this much information. */
439struct partial_die_info
440 {
72bf9492 441 /* Offset of this DIE. */
c906108c 442 unsigned int offset;
72bf9492
DJ
443
444 /* DWARF-2 tag for this DIE. */
445 ENUM_BITFIELD(dwarf_tag) tag : 16;
446
72bf9492
DJ
447 /* Assorted flags describing the data found in this DIE. */
448 unsigned int has_children : 1;
449 unsigned int is_external : 1;
450 unsigned int is_declaration : 1;
451 unsigned int has_type : 1;
452 unsigned int has_specification : 1;
453 unsigned int has_pc_info : 1;
454
455 /* Flag set if the SCOPE field of this structure has been
456 computed. */
457 unsigned int scope_set : 1;
458
fa4028e9
JB
459 /* Flag set if the DIE has a byte_size attribute. */
460 unsigned int has_byte_size : 1;
461
72bf9492 462 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 463 sometimes a default name for unnamed DIEs. */
c906108c 464 char *name;
72bf9492
DJ
465
466 /* The scope to prepend to our children. This is generally
467 allocated on the comp_unit_obstack, so will disappear
468 when this compilation unit leaves the cache. */
469 char *scope;
470
471 /* The location description associated with this DIE, if any. */
472 struct dwarf_block *locdesc;
473
474 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
475 CORE_ADDR lowpc;
476 CORE_ADDR highpc;
72bf9492 477
93311388 478 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 479 DW_AT_sibling, if any. */
fe1b8b76 480 gdb_byte *sibling;
72bf9492
DJ
481
482 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
483 DW_AT_specification (or DW_AT_abstract_origin or
484 DW_AT_extension). */
485 unsigned int spec_offset;
486
487 /* Pointers to this DIE's parent, first child, and next sibling,
488 if any. */
489 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
490 };
491
492/* This data structure holds the information of an abbrev. */
493struct abbrev_info
494 {
495 unsigned int number; /* number identifying abbrev */
496 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
497 unsigned short has_children; /* boolean */
498 unsigned short num_attrs; /* number of attributes */
c906108c
SS
499 struct attr_abbrev *attrs; /* an array of attribute descriptions */
500 struct abbrev_info *next; /* next in chain */
501 };
502
503struct attr_abbrev
504 {
9d25dd43
DE
505 ENUM_BITFIELD(dwarf_attribute) name : 16;
506 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
507 };
508
b60c80d6
DJ
509/* Attributes have a name and a value */
510struct attribute
511 {
9d25dd43 512 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
513 ENUM_BITFIELD(dwarf_form) form : 15;
514
515 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
516 field should be in u.str (existing only for DW_STRING) but it is kept
517 here for better struct attribute alignment. */
518 unsigned int string_is_canonical : 1;
519
b60c80d6
DJ
520 union
521 {
522 char *str;
523 struct dwarf_block *blk;
43bbcdc2
PH
524 ULONGEST unsnd;
525 LONGEST snd;
b60c80d6 526 CORE_ADDR addr;
348e048f 527 struct signatured_type *signatured_type;
b60c80d6
DJ
528 }
529 u;
530 };
531
c906108c
SS
532/* This data structure holds a complete die structure. */
533struct die_info
534 {
76815b17
DE
535 /* DWARF-2 tag for this DIE. */
536 ENUM_BITFIELD(dwarf_tag) tag : 16;
537
538 /* Number of attributes */
539 unsigned short num_attrs;
540
541 /* Abbrev number */
542 unsigned int abbrev;
543
93311388 544 /* Offset in .debug_info or .debug_types section. */
76815b17 545 unsigned int offset;
78ba4af6
JB
546
547 /* The dies in a compilation unit form an n-ary tree. PARENT
548 points to this die's parent; CHILD points to the first child of
549 this node; and all the children of a given node are chained
550 together via their SIBLING fields, terminated by a die whose
551 tag is zero. */
639d11d3
DC
552 struct die_info *child; /* Its first child, if any. */
553 struct die_info *sibling; /* Its next sibling, if any. */
554 struct die_info *parent; /* Its parent, if any. */
c906108c 555
b60c80d6
DJ
556 /* An array of attributes, with NUM_ATTRS elements. There may be
557 zero, but it's not common and zero-sized arrays are not
558 sufficiently portable C. */
559 struct attribute attrs[1];
c906108c
SS
560 };
561
5fb290d7
DJ
562struct function_range
563{
564 const char *name;
565 CORE_ADDR lowpc, highpc;
566 int seen_line;
567 struct function_range *next;
568};
569
c906108c
SS
570/* Get at parts of an attribute structure */
571
572#define DW_STRING(attr) ((attr)->u.str)
8285870a 573#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
574#define DW_UNSND(attr) ((attr)->u.unsnd)
575#define DW_BLOCK(attr) ((attr)->u.blk)
576#define DW_SND(attr) ((attr)->u.snd)
577#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 578#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
579
580/* Blocks are a bunch of untyped bytes. */
581struct dwarf_block
582 {
583 unsigned int size;
fe1b8b76 584 gdb_byte *data;
c906108c
SS
585 };
586
c906108c
SS
587#ifndef ATTR_ALLOC_CHUNK
588#define ATTR_ALLOC_CHUNK 4
589#endif
590
c906108c
SS
591/* Allocate fields for structs, unions and enums in this size. */
592#ifndef DW_FIELD_ALLOC_CHUNK
593#define DW_FIELD_ALLOC_CHUNK 4
594#endif
595
c906108c
SS
596/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
597 but this would require a corresponding change in unpack_field_as_long
598 and friends. */
599static int bits_per_byte = 8;
600
601/* The routines that read and process dies for a C struct or C++ class
602 pass lists of data member fields and lists of member function fields
603 in an instance of a field_info structure, as defined below. */
604struct field_info
c5aa993b
JM
605 {
606 /* List of data member and baseclasses fields. */
607 struct nextfield
608 {
609 struct nextfield *next;
610 int accessibility;
611 int virtuality;
612 struct field field;
613 }
7d0ccb61 614 *fields, *baseclasses;
c906108c 615
7d0ccb61 616 /* Number of fields (including baseclasses). */
c5aa993b 617 int nfields;
c906108c 618
c5aa993b
JM
619 /* Number of baseclasses. */
620 int nbaseclasses;
c906108c 621
c5aa993b
JM
622 /* Set if the accesibility of one of the fields is not public. */
623 int non_public_fields;
c906108c 624
c5aa993b
JM
625 /* Member function fields array, entries are allocated in the order they
626 are encountered in the object file. */
627 struct nextfnfield
628 {
629 struct nextfnfield *next;
630 struct fn_field fnfield;
631 }
632 *fnfields;
c906108c 633
c5aa993b
JM
634 /* Member function fieldlist array, contains name of possibly overloaded
635 member function, number of overloaded member functions and a pointer
636 to the head of the member function field chain. */
637 struct fnfieldlist
638 {
639 char *name;
640 int length;
641 struct nextfnfield *head;
642 }
643 *fnfieldlists;
c906108c 644
c5aa993b
JM
645 /* Number of entries in the fnfieldlists array. */
646 int nfnfields;
647 };
c906108c 648
10b3939b
DJ
649/* One item on the queue of compilation units to read in full symbols
650 for. */
651struct dwarf2_queue_item
652{
653 struct dwarf2_per_cu_data *per_cu;
654 struct dwarf2_queue_item *next;
655};
656
657/* The current queue. */
658static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
659
ae038cb0
DJ
660/* Loaded secondary compilation units are kept in memory until they
661 have not been referenced for the processing of this many
662 compilation units. Set this to zero to disable caching. Cache
663 sizes of up to at least twenty will improve startup time for
664 typical inter-CU-reference binaries, at an obvious memory cost. */
665static int dwarf2_max_cache_age = 5;
920d2a44
AC
666static void
667show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
668 struct cmd_list_element *c, const char *value)
669{
670 fprintf_filtered (file, _("\
671The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
672 value);
673}
674
ae038cb0 675
c906108c
SS
676/* Various complaints about symbol reading that don't abort the process */
677
4d3c2250
KB
678static void
679dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 680{
4d3c2250 681 complaint (&symfile_complaints,
e2e0b3e5 682 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
683}
684
25e43795
DJ
685static void
686dwarf2_debug_line_missing_file_complaint (void)
687{
688 complaint (&symfile_complaints,
689 _(".debug_line section has line data without a file"));
690}
691
59205f5a
JB
692static void
693dwarf2_debug_line_missing_end_sequence_complaint (void)
694{
695 complaint (&symfile_complaints,
696 _(".debug_line section has line program sequence without an end"));
697}
698
4d3c2250
KB
699static void
700dwarf2_complex_location_expr_complaint (void)
2e276125 701{
e2e0b3e5 702 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
703}
704
4d3c2250
KB
705static void
706dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
707 int arg3)
2e276125 708{
4d3c2250 709 complaint (&symfile_complaints,
e2e0b3e5 710 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
711 arg2, arg3);
712}
713
714static void
715dwarf2_macros_too_long_complaint (void)
2e276125 716{
4d3c2250 717 complaint (&symfile_complaints,
e2e0b3e5 718 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
719}
720
721static void
722dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 723{
4d3c2250 724 complaint (&symfile_complaints,
e2e0b3e5 725 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
726 arg1);
727}
728
729static void
730dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 731{
4d3c2250 732 complaint (&symfile_complaints,
e2e0b3e5 733 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 734}
c906108c 735
c906108c
SS
736/* local function prototypes */
737
4efb68b1 738static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 739
aaa75496
JB
740static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
741 struct objfile *);
742
743static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 744 struct die_info *,
aaa75496
JB
745 struct partial_symtab *);
746
c67a9c90 747static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 748
72bf9492
DJ
749static void scan_partial_symbols (struct partial_die_info *,
750 CORE_ADDR *, CORE_ADDR *,
5734ee8b 751 int, struct dwarf2_cu *);
c906108c 752
72bf9492
DJ
753static void add_partial_symbol (struct partial_die_info *,
754 struct dwarf2_cu *);
63d06c5c 755
72bf9492
DJ
756static void add_partial_namespace (struct partial_die_info *pdi,
757 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 758 int need_pc, struct dwarf2_cu *cu);
63d06c5c 759
5d7cb8df
JK
760static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
761 CORE_ADDR *highpc, int need_pc,
762 struct dwarf2_cu *cu);
763
72bf9492
DJ
764static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
91c24f0a 766
bc30ff58
JB
767static void add_partial_subprogram (struct partial_die_info *pdi,
768 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 769 int need_pc, struct dwarf2_cu *cu);
bc30ff58 770
fe1b8b76 771static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
772 gdb_byte *buffer, gdb_byte *info_ptr,
773 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 774
a14ed312 775static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 776
a14ed312 777static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 778
e7c27a73 779static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 780
f3dd6933 781static void dwarf2_free_abbrev_table (void *);
c906108c 782
fe1b8b76 783static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 784 struct dwarf2_cu *);
72bf9492 785
57349743 786static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 787 struct dwarf2_cu *);
c906108c 788
93311388
DE
789static struct partial_die_info *load_partial_dies (bfd *,
790 gdb_byte *, gdb_byte *,
791 int, struct dwarf2_cu *);
72bf9492 792
fe1b8b76 793static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
794 struct abbrev_info *abbrev,
795 unsigned int, bfd *,
796 gdb_byte *, gdb_byte *,
797 struct dwarf2_cu *);
c906108c 798
c764a876 799static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 800 struct dwarf2_cu *);
72bf9492
DJ
801
802static void fixup_partial_die (struct partial_die_info *,
803 struct dwarf2_cu *);
804
fe1b8b76
JB
805static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
806 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 807
fe1b8b76
JB
808static gdb_byte *read_attribute_value (struct attribute *, unsigned,
809 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 810
fe1b8b76 811static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 812
fe1b8b76 813static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 814
fe1b8b76 815static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 816
fe1b8b76 817static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 818
93311388 819static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 820
fe1b8b76 821static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 822 unsigned int *);
c906108c 823
c764a876
DE
824static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
825
826static LONGEST read_checked_initial_length_and_offset
827 (bfd *, gdb_byte *, const struct comp_unit_head *,
828 unsigned int *, unsigned int *);
613e1657 829
fe1b8b76 830static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
831 unsigned int *);
832
833static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 834
fe1b8b76 835static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 836
fe1b8b76 837static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 838
fe1b8b76
JB
839static char *read_indirect_string (bfd *, gdb_byte *,
840 const struct comp_unit_head *,
841 unsigned int *);
4bdf3d34 842
fe1b8b76 843static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 844
fe1b8b76 845static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 846
fe1b8b76 847static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 848
e142c38c 849static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 850
e142c38c
DJ
851static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
852 struct dwarf2_cu *);
c906108c 853
348e048f
DE
854static struct attribute *dwarf2_attr_no_follow (struct die_info *,
855 unsigned int,
856 struct dwarf2_cu *);
857
05cf31d1
JB
858static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
859 struct dwarf2_cu *cu);
860
e142c38c 861static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 862
e142c38c 863static struct die_info *die_specification (struct die_info *die,
f2f0e013 864 struct dwarf2_cu **);
63d06c5c 865
debd256d
JB
866static void free_line_header (struct line_header *lh);
867
aaa75496
JB
868static void add_file_name (struct line_header *, char *, unsigned int,
869 unsigned int, unsigned int);
870
debd256d
JB
871static struct line_header *(dwarf_decode_line_header
872 (unsigned int offset,
e7c27a73 873 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
874
875static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 876 struct dwarf2_cu *, struct partial_symtab *);
c906108c 877
4f1520fb 878static void dwarf2_start_subfile (char *, char *, char *);
c906108c 879
a14ed312 880static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 881 struct dwarf2_cu *);
c906108c 882
a14ed312 883static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 884 struct dwarf2_cu *);
c906108c 885
2df3850c
JM
886static void dwarf2_const_value_data (struct attribute *attr,
887 struct symbol *sym,
888 int bits);
889
e7c27a73 890static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 891
b4ba55a1
JB
892static int need_gnat_info (struct dwarf2_cu *);
893
894static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
895
896static void set_descriptive_type (struct type *, struct die_info *,
897 struct dwarf2_cu *);
898
e7c27a73
DJ
899static struct type *die_containing_type (struct die_info *,
900 struct dwarf2_cu *);
c906108c 901
e7c27a73 902static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 903
f792889a 904static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 905
086ed43d 906static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 907
fe1b8b76
JB
908static char *typename_concat (struct obstack *,
909 const char *prefix,
910 const char *suffix,
987504bb 911 struct dwarf2_cu *);
63d06c5c 912
e7c27a73 913static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 914
348e048f
DE
915static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
916
e7c27a73 917static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 918
e7c27a73 919static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 920
ff013f42
JK
921static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
922 struct dwarf2_cu *, struct partial_symtab *);
923
a14ed312 924static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
925 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
926 struct partial_symtab *);
c906108c 927
fae299cd
DC
928static void get_scope_pc_bounds (struct die_info *,
929 CORE_ADDR *, CORE_ADDR *,
930 struct dwarf2_cu *);
931
801e3a5b
JB
932static void dwarf2_record_block_ranges (struct die_info *, struct block *,
933 CORE_ADDR, struct dwarf2_cu *);
934
a14ed312 935static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 936 struct dwarf2_cu *);
c906108c 937
a14ed312 938static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 939 struct type *, struct dwarf2_cu *);
c906108c 940
a14ed312 941static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 942 struct die_info *, struct type *,
e7c27a73 943 struct dwarf2_cu *);
c906108c 944
a14ed312 945static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 946 struct type *, struct dwarf2_cu *);
c906108c 947
134d01f1 948static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73 950static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 951
e7c27a73 952static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 953
5d7cb8df
JK
954static void read_module (struct die_info *die, struct dwarf2_cu *cu);
955
27aa8d6a
SW
956static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
957
38d518c9 958static const char *namespace_name (struct die_info *die,
e142c38c 959 int *is_anonymous, struct dwarf2_cu *);
38d518c9 960
134d01f1 961static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 962
e7c27a73 963static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 964
7ca2d3a3
DL
965static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
966 struct dwarf2_cu *);
967
93311388 968static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 969
93311388
DE
970static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
971 gdb_byte *info_ptr,
d97bc12b
DE
972 gdb_byte **new_info_ptr,
973 struct die_info *parent);
974
93311388
DE
975static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
976 gdb_byte *info_ptr,
fe1b8b76 977 gdb_byte **new_info_ptr,
639d11d3
DC
978 struct die_info *parent);
979
93311388
DE
980static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
981 gdb_byte *info_ptr,
fe1b8b76 982 gdb_byte **new_info_ptr,
639d11d3
DC
983 struct die_info *parent);
984
93311388
DE
985static gdb_byte *read_full_die (const struct die_reader_specs *reader,
986 struct die_info **, gdb_byte *,
987 int *);
988
e7c27a73 989static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 990
71c25dea
TT
991static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
992 struct obstack *);
993
e142c38c 994static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 995
e142c38c 996static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 997 struct dwarf2_cu **);
9219021c 998
a14ed312 999static char *dwarf_tag_name (unsigned int);
c906108c 1000
a14ed312 1001static char *dwarf_attr_name (unsigned int);
c906108c 1002
a14ed312 1003static char *dwarf_form_name (unsigned int);
c906108c 1004
a14ed312 1005static char *dwarf_stack_op_name (unsigned int);
c906108c 1006
a14ed312 1007static char *dwarf_bool_name (unsigned int);
c906108c 1008
a14ed312 1009static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1010
1011#if 0
a14ed312 1012static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1013#endif
1014
f9aca02d 1015static struct die_info *sibling_die (struct die_info *);
c906108c 1016
d97bc12b
DE
1017static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1018
1019static void dump_die_for_error (struct die_info *);
1020
1021static void dump_die_1 (struct ui_file *, int level, int max_level,
1022 struct die_info *);
c906108c 1023
d97bc12b 1024/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1025
51545339 1026static void store_in_ref_table (struct die_info *,
10b3939b 1027 struct dwarf2_cu *);
c906108c 1028
93311388
DE
1029static int is_ref_attr (struct attribute *);
1030
c764a876 1031static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1032
43bbcdc2 1033static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1034
348e048f
DE
1035static struct die_info *follow_die_ref_or_sig (struct die_info *,
1036 struct attribute *,
1037 struct dwarf2_cu **);
1038
10b3939b
DJ
1039static struct die_info *follow_die_ref (struct die_info *,
1040 struct attribute *,
f2f0e013 1041 struct dwarf2_cu **);
c906108c 1042
348e048f
DE
1043static struct die_info *follow_die_sig (struct die_info *,
1044 struct attribute *,
1045 struct dwarf2_cu **);
1046
1047static void read_signatured_type_at_offset (struct objfile *objfile,
1048 unsigned int offset);
1049
1050static void read_signatured_type (struct objfile *,
1051 struct signatured_type *type_sig);
1052
c906108c
SS
1053/* memory allocation interface */
1054
7b5a2f43 1055static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1056
f3dd6933 1057static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1058
b60c80d6 1059static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1060
e142c38c 1061static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1062
e142c38c
DJ
1063static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1064 struct dwarf2_cu *);
5fb290d7 1065
2e276125 1066static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1067 char *, bfd *, struct dwarf2_cu *);
2e276125 1068
8e19ed76
PS
1069static int attr_form_is_block (struct attribute *);
1070
3690dd37
JB
1071static int attr_form_is_section_offset (struct attribute *);
1072
1073static int attr_form_is_constant (struct attribute *);
1074
93e7bd98
DJ
1075static void dwarf2_symbol_mark_computed (struct attribute *attr,
1076 struct symbol *sym,
1077 struct dwarf2_cu *cu);
4c2df51b 1078
93311388
DE
1079static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1080 struct abbrev_info *abbrev,
1081 struct dwarf2_cu *cu);
4bb7a0a7 1082
72bf9492
DJ
1083static void free_stack_comp_unit (void *);
1084
72bf9492
DJ
1085static hashval_t partial_die_hash (const void *item);
1086
1087static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1088
ae038cb0 1089static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1090 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1091
1092static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1093 (unsigned int offset, struct objfile *objfile);
ae038cb0 1094
93311388
DE
1095static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1096
ae038cb0
DJ
1097static void free_one_comp_unit (void *);
1098
1099static void free_cached_comp_units (void *);
1100
1101static void age_cached_comp_units (void);
1102
1103static void free_one_cached_comp_unit (void *);
1104
f792889a
DJ
1105static struct type *set_die_type (struct die_info *, struct type *,
1106 struct dwarf2_cu *);
1c379e20 1107
ae038cb0
DJ
1108static void create_all_comp_units (struct objfile *);
1109
93311388
DE
1110static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1111 struct objfile *);
10b3939b
DJ
1112
1113static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1114
1115static void dwarf2_add_dependence (struct dwarf2_cu *,
1116 struct dwarf2_per_cu_data *);
1117
ae038cb0
DJ
1118static void dwarf2_mark (struct dwarf2_cu *);
1119
1120static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1121
f792889a 1122static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1123
c906108c
SS
1124/* Try to locate the sections we need for DWARF 2 debugging
1125 information and return true if we have enough to do something. */
1126
1127int
6502dd73 1128dwarf2_has_info (struct objfile *objfile)
c906108c 1129{
be391dca
TT
1130 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1131 if (!dwarf2_per_objfile)
1132 {
1133 /* Initialize per-objfile state. */
1134 struct dwarf2_per_objfile *data
1135 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1136
be391dca
TT
1137 memset (data, 0, sizeof (*data));
1138 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1139 dwarf2_per_objfile = data;
6502dd73 1140
be391dca
TT
1141 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1142 dwarf2_per_objfile->objfile = objfile;
1143 }
1144 return (dwarf2_per_objfile->info.asection != NULL
1145 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1146}
1147
233a11ab
CS
1148/* When loading sections, we can either look for ".<name>", or for
1149 * ".z<name>", which indicates a compressed section. */
1150
1151static int
dce234bc 1152section_is_p (const char *section_name, const char *name)
233a11ab 1153{
dce234bc
PP
1154 return (section_name[0] == '.'
1155 && (strcmp (section_name + 1, name) == 0
1156 || (section_name[1] == 'z'
1157 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1158}
1159
c906108c
SS
1160/* This function is mapped across the sections and remembers the
1161 offset and size of each of the debugging sections we are interested
1162 in. */
1163
1164static void
72dca2f5 1165dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1166{
dce234bc 1167 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1168 {
dce234bc
PP
1169 dwarf2_per_objfile->info.asection = sectp;
1170 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1171 }
dce234bc 1172 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1173 {
dce234bc
PP
1174 dwarf2_per_objfile->abbrev.asection = sectp;
1175 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1176 }
dce234bc 1177 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1178 {
dce234bc
PP
1179 dwarf2_per_objfile->line.asection = sectp;
1180 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1181 }
dce234bc 1182 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1183 {
dce234bc
PP
1184 dwarf2_per_objfile->loc.asection = sectp;
1185 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1186 }
dce234bc 1187 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1188 {
dce234bc
PP
1189 dwarf2_per_objfile->macinfo.asection = sectp;
1190 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1191 }
dce234bc 1192 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1193 {
dce234bc
PP
1194 dwarf2_per_objfile->str.asection = sectp;
1195 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1196 }
dce234bc 1197 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1198 {
dce234bc
PP
1199 dwarf2_per_objfile->frame.asection = sectp;
1200 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1201 }
dce234bc 1202 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1203 {
3799ccc6 1204 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1205
3799ccc6
EZ
1206 if (aflag & SEC_HAS_CONTENTS)
1207 {
dce234bc
PP
1208 dwarf2_per_objfile->eh_frame.asection = sectp;
1209 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1210 }
b6af0555 1211 }
dce234bc 1212 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1213 {
dce234bc
PP
1214 dwarf2_per_objfile->ranges.asection = sectp;
1215 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1216 }
348e048f
DE
1217 else if (section_is_p (sectp->name, TYPES_SECTION))
1218 {
1219 dwarf2_per_objfile->types.asection = sectp;
1220 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1221 }
dce234bc 1222
72dca2f5
FR
1223 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1224 && bfd_section_vma (abfd, sectp) == 0)
1225 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1226}
1227
dce234bc
PP
1228/* Decompress a section that was compressed using zlib. Store the
1229 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1230
1231static void
dce234bc
PP
1232zlib_decompress_section (struct objfile *objfile, asection *sectp,
1233 gdb_byte **outbuf, bfd_size_type *outsize)
1234{
1235 bfd *abfd = objfile->obfd;
1236#ifndef HAVE_ZLIB_H
1237 error (_("Support for zlib-compressed DWARF data (from '%s') "
1238 "is disabled in this copy of GDB"),
1239 bfd_get_filename (abfd));
1240#else
1241 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1242 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1243 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1244 bfd_size_type uncompressed_size;
1245 gdb_byte *uncompressed_buffer;
1246 z_stream strm;
1247 int rc;
1248 int header_size = 12;
1249
1250 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1251 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1252 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1253 bfd_get_filename (abfd));
1254
1255 /* Read the zlib header. In this case, it should be "ZLIB" followed
1256 by the uncompressed section size, 8 bytes in big-endian order. */
1257 if (compressed_size < header_size
1258 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1259 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1260 bfd_get_filename (abfd));
1261 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1262 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1263 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1264 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1265 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1266 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1267 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1268 uncompressed_size += compressed_buffer[11];
1269
1270 /* It is possible the section consists of several compressed
1271 buffers concatenated together, so we uncompress in a loop. */
1272 strm.zalloc = NULL;
1273 strm.zfree = NULL;
1274 strm.opaque = NULL;
1275 strm.avail_in = compressed_size - header_size;
1276 strm.next_in = (Bytef*) compressed_buffer + header_size;
1277 strm.avail_out = uncompressed_size;
1278 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1279 uncompressed_size);
1280 rc = inflateInit (&strm);
1281 while (strm.avail_in > 0)
1282 {
1283 if (rc != Z_OK)
1284 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1285 bfd_get_filename (abfd), rc);
1286 strm.next_out = ((Bytef*) uncompressed_buffer
1287 + (uncompressed_size - strm.avail_out));
1288 rc = inflate (&strm, Z_FINISH);
1289 if (rc != Z_STREAM_END)
1290 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1291 bfd_get_filename (abfd), rc);
1292 rc = inflateReset (&strm);
1293 }
1294 rc = inflateEnd (&strm);
1295 if (rc != Z_OK
1296 || strm.avail_out != 0)
1297 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1298 bfd_get_filename (abfd), rc);
1299
affddf13 1300 do_cleanups (cleanup);
dce234bc
PP
1301 *outbuf = uncompressed_buffer;
1302 *outsize = uncompressed_size;
1303#endif
233a11ab
CS
1304}
1305
dce234bc
PP
1306/* Read the contents of the section SECTP from object file specified by
1307 OBJFILE, store info about the section into INFO.
1308 If the section is compressed, uncompress it before returning. */
c906108c 1309
dce234bc
PP
1310static void
1311dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1312{
dce234bc
PP
1313 bfd *abfd = objfile->obfd;
1314 asection *sectp = info->asection;
1315 gdb_byte *buf, *retbuf;
1316 unsigned char header[4];
c906108c 1317
be391dca
TT
1318 if (info->readin)
1319 return;
dce234bc
PP
1320 info->buffer = NULL;
1321 info->was_mmapped = 0;
be391dca 1322 info->readin = 1;
188dd5d6 1323
dce234bc
PP
1324 if (info->asection == NULL || info->size == 0)
1325 return;
c906108c 1326
dce234bc
PP
1327 /* Check if the file has a 4-byte header indicating compression. */
1328 if (info->size > sizeof (header)
1329 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1330 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1331 {
1332 /* Upon decompression, update the buffer and its size. */
1333 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1334 {
1335 zlib_decompress_section (objfile, sectp, &info->buffer,
1336 &info->size);
1337 return;
1338 }
1339 }
4bdf3d34 1340
dce234bc
PP
1341#ifdef HAVE_MMAP
1342 if (pagesize == 0)
1343 pagesize = getpagesize ();
2e276125 1344
dce234bc
PP
1345 /* Only try to mmap sections which are large enough: we don't want to
1346 waste space due to fragmentation. Also, only try mmap for sections
1347 without relocations. */
1348
1349 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1350 {
1351 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1352 size_t map_length = info->size + sectp->filepos - pg_offset;
1353 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1354 MAP_PRIVATE, pg_offset);
1355
1356 if (retbuf != MAP_FAILED)
1357 {
1358 info->was_mmapped = 1;
1359 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1360#if HAVE_POSIX_MADVISE
1361 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1362#endif
dce234bc
PP
1363 return;
1364 }
1365 }
1366#endif
1367
1368 /* If we get here, we are a normal, not-compressed section. */
1369 info->buffer = buf
1370 = obstack_alloc (&objfile->objfile_obstack, info->size);
1371
1372 /* When debugging .o files, we may need to apply relocations; see
1373 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1374 We never compress sections in .o files, so we only need to
1375 try this when the section is not compressed. */
ac8035ab 1376 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1377 if (retbuf != NULL)
1378 {
1379 info->buffer = retbuf;
1380 return;
1381 }
1382
1383 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1384 || bfd_bread (buf, info->size, abfd) != info->size)
1385 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1386 bfd_get_filename (abfd));
1387}
1388
1389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1390 SECTION_NAME. */
af34e669 1391
dce234bc
PP
1392void
1393dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1394 asection **sectp, gdb_byte **bufp,
1395 bfd_size_type *sizep)
1396{
1397 struct dwarf2_per_objfile *data
1398 = objfile_data (objfile, dwarf2_objfile_data_key);
1399 struct dwarf2_section_info *info;
a3b2a86b
TT
1400
1401 /* We may see an objfile without any DWARF, in which case we just
1402 return nothing. */
1403 if (data == NULL)
1404 {
1405 *sectp = NULL;
1406 *bufp = NULL;
1407 *sizep = 0;
1408 return;
1409 }
dce234bc
PP
1410 if (section_is_p (section_name, EH_FRAME_SECTION))
1411 info = &data->eh_frame;
1412 else if (section_is_p (section_name, FRAME_SECTION))
1413 info = &data->frame;
0d53c4c4 1414 else
dce234bc
PP
1415 gdb_assert (0);
1416
1417 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1418 /* We haven't read this section in yet. Do it now. */
1419 dwarf2_read_section (objfile, info);
1420
1421 *sectp = info->asection;
1422 *bufp = info->buffer;
1423 *sizep = info->size;
1424}
1425
1426/* Build a partial symbol table. */
1427
1428void
f29dff0a 1429dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 1430{
f29dff0a 1431 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
1432 {
1433 init_psymbol_list (objfile, 1024);
1434 }
1435
d146bf1e 1436 dwarf2_build_psymtabs_hard (objfile);
c906108c 1437}
c906108c 1438
45452591
DE
1439/* Return TRUE if OFFSET is within CU_HEADER. */
1440
1441static inline int
1442offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
1443{
1444 unsigned int bottom = cu_header->offset;
1445 unsigned int top = (cu_header->offset
1446 + cu_header->length
1447 + cu_header->initial_length_size);
9a619af0 1448
45452591
DE
1449 return (offset >= bottom && offset < top);
1450}
1451
93311388
DE
1452/* Read in the comp unit header information from the debug_info at info_ptr.
1453 NOTE: This leaves members offset, first_die_offset to be filled in
1454 by the caller. */
107d2387 1455
fe1b8b76 1456static gdb_byte *
107d2387 1457read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1458 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1459{
1460 int signed_addr;
891d2f0b 1461 unsigned int bytes_read;
c764a876
DE
1462
1463 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
1464 cu_header->initial_length_size = bytes_read;
1465 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 1466 info_ptr += bytes_read;
107d2387
AC
1467 cu_header->version = read_2_bytes (abfd, info_ptr);
1468 info_ptr += 2;
613e1657 1469 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 1470 &bytes_read);
613e1657 1471 info_ptr += bytes_read;
107d2387
AC
1472 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1473 info_ptr += 1;
1474 signed_addr = bfd_get_sign_extend_vma (abfd);
1475 if (signed_addr < 0)
8e65ff28 1476 internal_error (__FILE__, __LINE__,
e2e0b3e5 1477 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 1478 cu_header->signed_addr_p = signed_addr;
c764a876 1479
107d2387
AC
1480 return info_ptr;
1481}
1482
fe1b8b76
JB
1483static gdb_byte *
1484partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 1485 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
1486 bfd *abfd)
1487{
fe1b8b76 1488 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1489
1490 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1491
2dc7f7b3 1492 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 1493 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
1494 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
1495 bfd_get_filename (abfd));
72bf9492 1496
dce234bc 1497 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
1498 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1499 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 1500 (long) header->abbrev_offset,
93311388 1501 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1502 bfd_get_filename (abfd));
1503
1504 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 1505 > buffer + buffer_size)
8a3fe4f8
AC
1506 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1507 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 1508 (long) header->length,
93311388 1509 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
1510 bfd_get_filename (abfd));
1511
1512 return info_ptr;
1513}
1514
348e048f
DE
1515/* Read in the types comp unit header information from .debug_types entry at
1516 types_ptr. The result is a pointer to one past the end of the header. */
1517
1518static gdb_byte *
1519read_type_comp_unit_head (struct comp_unit_head *cu_header,
1520 ULONGEST *signature,
1521 gdb_byte *types_ptr, bfd *abfd)
1522{
348e048f
DE
1523 gdb_byte *initial_types_ptr = types_ptr;
1524
fa238c03
MS
1525 dwarf2_read_section (dwarf2_per_objfile->objfile,
1526 &dwarf2_per_objfile->types);
348e048f
DE
1527 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
1528
1529 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
1530
1531 *signature = read_8_bytes (abfd, types_ptr);
1532 types_ptr += 8;
1533 types_ptr += cu_header->offset_size;
1534 cu_header->first_die_offset = types_ptr - initial_types_ptr;
1535
1536 return types_ptr;
1537}
1538
aaa75496
JB
1539/* Allocate a new partial symtab for file named NAME and mark this new
1540 partial symtab as being an include of PST. */
1541
1542static void
1543dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1544 struct objfile *objfile)
1545{
1546 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1547
1548 subpst->section_offsets = pst->section_offsets;
1549 subpst->textlow = 0;
1550 subpst->texthigh = 0;
1551
1552 subpst->dependencies = (struct partial_symtab **)
1553 obstack_alloc (&objfile->objfile_obstack,
1554 sizeof (struct partial_symtab *));
1555 subpst->dependencies[0] = pst;
1556 subpst->number_of_dependencies = 1;
1557
1558 subpst->globals_offset = 0;
1559 subpst->n_global_syms = 0;
1560 subpst->statics_offset = 0;
1561 subpst->n_static_syms = 0;
1562 subpst->symtab = NULL;
1563 subpst->read_symtab = pst->read_symtab;
1564 subpst->readin = 0;
1565
1566 /* No private part is necessary for include psymtabs. This property
1567 can be used to differentiate between such include psymtabs and
10b3939b 1568 the regular ones. */
58a9656e 1569 subpst->read_symtab_private = NULL;
aaa75496
JB
1570}
1571
1572/* Read the Line Number Program data and extract the list of files
1573 included by the source file represented by PST. Build an include
d85a05f0 1574 partial symtab for each of these included files. */
aaa75496
JB
1575
1576static void
1577dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 1578 struct die_info *die,
aaa75496
JB
1579 struct partial_symtab *pst)
1580{
1581 struct objfile *objfile = cu->objfile;
1582 bfd *abfd = objfile->obfd;
d85a05f0
DJ
1583 struct line_header *lh = NULL;
1584 struct attribute *attr;
aaa75496 1585
d85a05f0
DJ
1586 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
1587 if (attr)
1588 {
1589 unsigned int line_offset = DW_UNSND (attr);
9a619af0 1590
d85a05f0
DJ
1591 lh = dwarf_decode_line_header (line_offset, abfd, cu);
1592 }
aaa75496
JB
1593 if (lh == NULL)
1594 return; /* No linetable, so no includes. */
1595
1596 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1597
1598 free_line_header (lh);
1599}
1600
348e048f
DE
1601static hashval_t
1602hash_type_signature (const void *item)
1603{
1604 const struct signatured_type *type_sig = item;
9a619af0 1605
348e048f
DE
1606 /* This drops the top 32 bits of the signature, but is ok for a hash. */
1607 return type_sig->signature;
1608}
1609
1610static int
1611eq_type_signature (const void *item_lhs, const void *item_rhs)
1612{
1613 const struct signatured_type *lhs = item_lhs;
1614 const struct signatured_type *rhs = item_rhs;
9a619af0 1615
348e048f
DE
1616 return lhs->signature == rhs->signature;
1617}
1618
1619/* Create the hash table of all entries in the .debug_types section.
1620 The result is zero if there is an error (e.g. missing .debug_types section),
1621 otherwise non-zero. */
1622
1623static int
1624create_debug_types_hash_table (struct objfile *objfile)
1625{
be391dca 1626 gdb_byte *info_ptr;
348e048f
DE
1627 htab_t types_htab;
1628
be391dca
TT
1629 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
1630 info_ptr = dwarf2_per_objfile->types.buffer;
1631
348e048f
DE
1632 if (info_ptr == NULL)
1633 {
1634 dwarf2_per_objfile->signatured_types = NULL;
1635 return 0;
1636 }
1637
1638 types_htab = htab_create_alloc_ex (41,
1639 hash_type_signature,
1640 eq_type_signature,
1641 NULL,
1642 &objfile->objfile_obstack,
1643 hashtab_obstack_allocate,
1644 dummy_obstack_deallocate);
1645
1646 if (dwarf2_die_debug)
1647 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
1648
1649 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1650 {
1651 unsigned int offset;
1652 unsigned int offset_size;
1653 unsigned int type_offset;
1654 unsigned int length, initial_length_size;
1655 unsigned short version;
1656 ULONGEST signature;
1657 struct signatured_type *type_sig;
1658 void **slot;
1659 gdb_byte *ptr = info_ptr;
1660
1661 offset = ptr - dwarf2_per_objfile->types.buffer;
1662
1663 /* We need to read the type's signature in order to build the hash
1664 table, but we don't need to read anything else just yet. */
1665
1666 /* Sanity check to ensure entire cu is present. */
1667 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
1668 if (ptr + length + initial_length_size
1669 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
1670 {
1671 complaint (&symfile_complaints,
1672 _("debug type entry runs off end of `.debug_types' section, ignored"));
1673 break;
1674 }
1675
1676 offset_size = initial_length_size == 4 ? 4 : 8;
1677 ptr += initial_length_size;
1678 version = bfd_get_16 (objfile->obfd, ptr);
1679 ptr += 2;
1680 ptr += offset_size; /* abbrev offset */
1681 ptr += 1; /* address size */
1682 signature = bfd_get_64 (objfile->obfd, ptr);
1683 ptr += 8;
1684 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
1685
1686 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
1687 memset (type_sig, 0, sizeof (*type_sig));
1688 type_sig->signature = signature;
1689 type_sig->offset = offset;
1690 type_sig->type_offset = type_offset;
1691
1692 slot = htab_find_slot (types_htab, type_sig, INSERT);
1693 gdb_assert (slot != NULL);
1694 *slot = type_sig;
1695
1696 if (dwarf2_die_debug)
1697 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
1698 offset, phex (signature, sizeof (signature)));
1699
1700 info_ptr = info_ptr + initial_length_size + length;
1701 }
1702
1703 dwarf2_per_objfile->signatured_types = types_htab;
1704
1705 return 1;
1706}
1707
1708/* Lookup a signature based type.
1709 Returns NULL if SIG is not present in the table. */
1710
1711static struct signatured_type *
1712lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
1713{
1714 struct signatured_type find_entry, *entry;
1715
1716 if (dwarf2_per_objfile->signatured_types == NULL)
1717 {
1718 complaint (&symfile_complaints,
1719 _("missing `.debug_types' section for DW_FORM_sig8 die"));
1720 return 0;
1721 }
1722
1723 find_entry.signature = sig;
1724 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
1725 return entry;
1726}
1727
d85a05f0
DJ
1728/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
1729
1730static void
1731init_cu_die_reader (struct die_reader_specs *reader,
1732 struct dwarf2_cu *cu)
1733{
1734 reader->abfd = cu->objfile->obfd;
1735 reader->cu = cu;
1736 if (cu->per_cu->from_debug_types)
be391dca
TT
1737 {
1738 gdb_assert (dwarf2_per_objfile->types.readin);
1739 reader->buffer = dwarf2_per_objfile->types.buffer;
1740 }
d85a05f0 1741 else
be391dca
TT
1742 {
1743 gdb_assert (dwarf2_per_objfile->info.readin);
1744 reader->buffer = dwarf2_per_objfile->info.buffer;
1745 }
d85a05f0
DJ
1746}
1747
1748/* Find the base address of the compilation unit for range lists and
1749 location lists. It will normally be specified by DW_AT_low_pc.
1750 In DWARF-3 draft 4, the base address could be overridden by
1751 DW_AT_entry_pc. It's been removed, but GCC still uses this for
1752 compilation units with discontinuous ranges. */
1753
1754static void
1755dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
1756{
1757 struct attribute *attr;
1758
1759 cu->base_known = 0;
1760 cu->base_address = 0;
1761
1762 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
1763 if (attr)
1764 {
1765 cu->base_address = DW_ADDR (attr);
1766 cu->base_known = 1;
1767 }
1768 else
1769 {
1770 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
1771 if (attr)
1772 {
1773 cu->base_address = DW_ADDR (attr);
1774 cu->base_known = 1;
1775 }
1776 }
1777}
1778
348e048f
DE
1779/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
1780 to combine the common parts.
93311388 1781 Process a compilation unit for a psymtab.
348e048f
DE
1782 BUFFER is a pointer to the beginning of the dwarf section buffer,
1783 either .debug_info or debug_types.
93311388
DE
1784 INFO_PTR is a pointer to the start of the CU.
1785 Returns a pointer to the next CU. */
aaa75496 1786
93311388
DE
1787static gdb_byte *
1788process_psymtab_comp_unit (struct objfile *objfile,
1789 struct dwarf2_per_cu_data *this_cu,
1790 gdb_byte *buffer, gdb_byte *info_ptr,
1791 unsigned int buffer_size)
c906108c 1792{
c906108c 1793 bfd *abfd = objfile->obfd;
93311388 1794 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 1795 struct die_info *comp_unit_die;
c906108c 1796 struct partial_symtab *pst;
5734ee8b 1797 CORE_ADDR baseaddr;
93311388
DE
1798 struct cleanup *back_to_inner;
1799 struct dwarf2_cu cu;
d85a05f0
DJ
1800 int has_children, has_pc_info;
1801 struct attribute *attr;
d85a05f0
DJ
1802 CORE_ADDR best_lowpc = 0, best_highpc = 0;
1803 struct die_reader_specs reader_specs;
c906108c 1804
93311388
DE
1805 memset (&cu, 0, sizeof (cu));
1806 cu.objfile = objfile;
1807 obstack_init (&cu.comp_unit_obstack);
c906108c 1808
93311388 1809 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 1810
93311388
DE
1811 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1812 buffer, buffer_size,
1813 abfd);
10b3939b 1814
93311388
DE
1815 /* Complete the cu_header. */
1816 cu.header.offset = beg_of_comp_unit - buffer;
1817 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 1818
93311388 1819 cu.list_in_scope = &file_symbols;
af703f96 1820
328c9494
DJ
1821 /* If this compilation unit was already read in, free the
1822 cached copy in order to read it in again. This is
1823 necessary because we skipped some symbols when we first
1824 read in the compilation unit (see load_partial_dies).
1825 This problem could be avoided, but the benefit is
1826 unclear. */
1827 if (this_cu->cu != NULL)
1828 free_one_cached_comp_unit (this_cu->cu);
1829
1830 /* Note that this is a pointer to our stack frame, being
1831 added to a global data structure. It will be cleaned up
1832 in free_stack_comp_unit when we finish with this
1833 compilation unit. */
1834 this_cu->cu = &cu;
d85a05f0
DJ
1835 cu.per_cu = this_cu;
1836
93311388
DE
1837 /* Read the abbrevs for this compilation unit into a table. */
1838 dwarf2_read_abbrevs (abfd, &cu);
1839 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 1840
93311388 1841 /* Read the compilation unit die. */
348e048f
DE
1842 if (this_cu->from_debug_types)
1843 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
1844 init_cu_die_reader (&reader_specs, &cu);
1845 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1846 &has_children);
93311388 1847
348e048f
DE
1848 if (this_cu->from_debug_types)
1849 {
1850 /* offset,length haven't been set yet for type units. */
1851 this_cu->offset = cu.header.offset;
1852 this_cu->length = cu.header.length + cu.header.initial_length_size;
1853 }
d85a05f0 1854 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 1855 {
93311388
DE
1856 info_ptr = (beg_of_comp_unit + cu.header.length
1857 + cu.header.initial_length_size);
1858 do_cleanups (back_to_inner);
1859 return info_ptr;
1860 }
72bf9492 1861
93311388 1862 /* Set the language we're debugging. */
d85a05f0
DJ
1863 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
1864 if (attr)
1865 set_cu_language (DW_UNSND (attr), &cu);
1866 else
1867 set_cu_language (language_minimal, &cu);
c906108c 1868
93311388 1869 /* Allocate a new partial symbol table structure. */
d85a05f0 1870 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 1871 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 1872 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
1873 /* TEXTLOW and TEXTHIGH are set below. */
1874 0,
1875 objfile->global_psymbols.next,
1876 objfile->static_psymbols.next);
72bf9492 1877
d85a05f0
DJ
1878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
1879 if (attr != NULL)
1880 pst->dirname = DW_STRING (attr);
72bf9492 1881
e38df1d0 1882 pst->read_symtab_private = this_cu;
72bf9492 1883
93311388 1884 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 1885
93311388
DE
1886 /* Store the function that reads in the rest of the symbol table */
1887 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 1888
93311388 1889 this_cu->psymtab = pst;
c906108c 1890
d85a05f0
DJ
1891 dwarf2_find_base_address (comp_unit_die, &cu);
1892
93311388
DE
1893 /* Possibly set the default values of LOWPC and HIGHPC from
1894 `DW_AT_ranges'. */
d85a05f0
DJ
1895 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
1896 &best_highpc, &cu, pst);
1897 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
1898 /* Store the contiguous range if it is not empty; it can be empty for
1899 CUs with no code. */
1900 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
1901 best_lowpc + baseaddr,
1902 best_highpc + baseaddr - 1, pst);
93311388
DE
1903
1904 /* Check if comp unit has_children.
1905 If so, read the rest of the partial symbols from this comp unit.
1906 If not, there's no more debug_info for this comp unit. */
d85a05f0 1907 if (has_children)
93311388
DE
1908 {
1909 struct partial_die_info *first_die;
1910 CORE_ADDR lowpc, highpc;
31ffec48 1911
93311388
DE
1912 lowpc = ((CORE_ADDR) -1);
1913 highpc = ((CORE_ADDR) 0);
c906108c 1914
93311388 1915 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 1916
93311388 1917 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 1918 ! has_pc_info, &cu);
57c22c6c 1919
93311388
DE
1920 /* If we didn't find a lowpc, set it to highpc to avoid
1921 complaints from `maint check'. */
1922 if (lowpc == ((CORE_ADDR) -1))
1923 lowpc = highpc;
10b3939b 1924
93311388
DE
1925 /* If the compilation unit didn't have an explicit address range,
1926 then use the information extracted from its child dies. */
d85a05f0 1927 if (! has_pc_info)
93311388 1928 {
d85a05f0
DJ
1929 best_lowpc = lowpc;
1930 best_highpc = highpc;
93311388
DE
1931 }
1932 }
d85a05f0
DJ
1933 pst->textlow = best_lowpc + baseaddr;
1934 pst->texthigh = best_highpc + baseaddr;
c906108c 1935
93311388
DE
1936 pst->n_global_syms = objfile->global_psymbols.next -
1937 (objfile->global_psymbols.list + pst->globals_offset);
1938 pst->n_static_syms = objfile->static_psymbols.next -
1939 (objfile->static_psymbols.list + pst->statics_offset);
1940 sort_pst_symbols (pst);
c906108c 1941
93311388
DE
1942 info_ptr = (beg_of_comp_unit + cu.header.length
1943 + cu.header.initial_length_size);
ae038cb0 1944
348e048f
DE
1945 if (this_cu->from_debug_types)
1946 {
1947 /* It's not clear we want to do anything with stmt lists here.
1948 Waiting to see what gcc ultimately does. */
1949 }
d85a05f0 1950 else
93311388
DE
1951 {
1952 /* Get the list of files included in the current compilation unit,
1953 and build a psymtab for each of them. */
d85a05f0 1954 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 1955 }
ae038cb0 1956
93311388 1957 do_cleanups (back_to_inner);
ae038cb0 1958
93311388
DE
1959 return info_ptr;
1960}
ff013f42 1961
348e048f
DE
1962/* Traversal function for htab_traverse_noresize.
1963 Process one .debug_types comp-unit. */
1964
1965static int
1966process_type_comp_unit (void **slot, void *info)
1967{
1968 struct signatured_type *entry = (struct signatured_type *) *slot;
1969 struct objfile *objfile = (struct objfile *) info;
1970 struct dwarf2_per_cu_data *this_cu;
1971
1972 this_cu = &entry->per_cu;
1973 this_cu->from_debug_types = 1;
1974
be391dca 1975 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
1976 process_psymtab_comp_unit (objfile, this_cu,
1977 dwarf2_per_objfile->types.buffer,
1978 dwarf2_per_objfile->types.buffer + entry->offset,
1979 dwarf2_per_objfile->types.size);
1980
1981 return 1;
1982}
1983
1984/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
1985 Build partial symbol tables for the .debug_types comp-units. */
1986
1987static void
1988build_type_psymtabs (struct objfile *objfile)
1989{
1990 if (! create_debug_types_hash_table (objfile))
1991 return;
1992
1993 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
1994 process_type_comp_unit, objfile);
1995}
1996
93311388
DE
1997/* Build the partial symbol table by doing a quick pass through the
1998 .debug_info and .debug_abbrev sections. */
72bf9492 1999
93311388 2000static void
c67a9c90 2001dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 2002{
93311388
DE
2003 gdb_byte *info_ptr;
2004 struct cleanup *back_to;
2005
be391dca 2006 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 2007 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 2008
93311388
DE
2009 /* Any cached compilation units will be linked by the per-objfile
2010 read_in_chain. Make sure to free them when we're done. */
2011 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 2012
348e048f
DE
2013 build_type_psymtabs (objfile);
2014
93311388 2015 create_all_comp_units (objfile);
c906108c 2016
93311388
DE
2017 objfile->psymtabs_addrmap =
2018 addrmap_create_mutable (&objfile->objfile_obstack);
72bf9492 2019
93311388
DE
2020 /* Since the objects we're extracting from .debug_info vary in
2021 length, only the individual functions to extract them (like
2022 read_comp_unit_head and load_partial_die) can really know whether
2023 the buffer is large enough to hold another complete object.
c906108c 2024
93311388
DE
2025 At the moment, they don't actually check that. If .debug_info
2026 holds just one extra byte after the last compilation unit's dies,
2027 then read_comp_unit_head will happily read off the end of the
2028 buffer. read_partial_die is similarly casual. Those functions
2029 should be fixed.
c906108c 2030
93311388
DE
2031 For this loop condition, simply checking whether there's any data
2032 left at all should be sufficient. */
c906108c 2033
93311388
DE
2034 while (info_ptr < (dwarf2_per_objfile->info.buffer
2035 + dwarf2_per_objfile->info.size))
2036 {
2037 struct dwarf2_per_cu_data *this_cu;
dd373385 2038
93311388
DE
2039 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
2040 objfile);
aaa75496 2041
93311388
DE
2042 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
2043 dwarf2_per_objfile->info.buffer,
2044 info_ptr,
2045 dwarf2_per_objfile->info.size);
c906108c 2046 }
ff013f42
JK
2047
2048 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
2049 &objfile->objfile_obstack);
2050
ae038cb0
DJ
2051 do_cleanups (back_to);
2052}
2053
93311388 2054/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
2055
2056static void
93311388
DE
2057load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
2058 struct objfile *objfile)
ae038cb0
DJ
2059{
2060 bfd *abfd = objfile->obfd;
fe1b8b76 2061 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 2062 struct die_info *comp_unit_die;
ae038cb0 2063 struct dwarf2_cu *cu;
ae038cb0 2064 struct cleanup *back_to;
d85a05f0
DJ
2065 struct attribute *attr;
2066 int has_children;
2067 struct die_reader_specs reader_specs;
ae038cb0 2068
348e048f
DE
2069 gdb_assert (! this_cu->from_debug_types);
2070
be391dca 2071 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 2072 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
2073 beg_of_comp_unit = info_ptr;
2074
93311388 2075 cu = alloc_one_comp_unit (objfile);
ae038cb0 2076
93311388 2077 /* ??? Missing cleanup for CU? */
ae038cb0 2078
328c9494
DJ
2079 /* Link this compilation unit into the compilation unit tree. */
2080 this_cu->cu = cu;
2081 cu->per_cu = this_cu;
2082 cu->type_hash = this_cu->type_hash;
2083
93311388
DE
2084 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
2085 dwarf2_per_objfile->info.buffer,
2086 dwarf2_per_objfile->info.size,
2087 abfd);
ae038cb0
DJ
2088
2089 /* Complete the cu_header. */
93311388 2090 cu->header.offset = this_cu->offset;
d00adf39 2091 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
2092
2093 /* Read the abbrevs for this compilation unit into a table. */
2094 dwarf2_read_abbrevs (abfd, cu);
2095 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2096
2097 /* Read the compilation unit die. */
d85a05f0
DJ
2098 init_cu_die_reader (&reader_specs, cu);
2099 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2100 &has_children);
ae038cb0
DJ
2101
2102 /* Set the language we're debugging. */
d85a05f0
DJ
2103 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
2104 if (attr)
2105 set_cu_language (DW_UNSND (attr), cu);
2106 else
2107 set_cu_language (language_minimal, cu);
ae038cb0 2108
ae038cb0
DJ
2109 /* Check if comp unit has_children.
2110 If so, read the rest of the partial symbols from this comp unit.
2111 If not, there's no more debug_info for this comp unit. */
d85a05f0 2112 if (has_children)
93311388 2113 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
2114
2115 do_cleanups (back_to);
2116}
2117
2118/* Create a list of all compilation units in OBJFILE. We do this only
2119 if an inter-comp-unit reference is found; presumably if there is one,
2120 there will be many, and one will occur early in the .debug_info section.
2121 So there's no point in building this list incrementally. */
2122
2123static void
2124create_all_comp_units (struct objfile *objfile)
2125{
2126 int n_allocated;
2127 int n_comp_units;
2128 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
2129 gdb_byte *info_ptr;
2130
2131 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
2132 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2133
2134 n_comp_units = 0;
2135 n_allocated = 10;
2136 all_comp_units = xmalloc (n_allocated
2137 * sizeof (struct dwarf2_per_cu_data *));
2138
dce234bc 2139 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 2140 {
c764a876 2141 unsigned int length, initial_length_size;
ae038cb0 2142 struct dwarf2_per_cu_data *this_cu;
c764a876 2143 unsigned int offset;
ae038cb0 2144
dce234bc 2145 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
2146
2147 /* Read just enough information to find out where the next
2148 compilation unit is. */
c764a876
DE
2149 length = read_initial_length (objfile->obfd, info_ptr,
2150 &initial_length_size);
ae038cb0
DJ
2151
2152 /* Save the compilation unit for later lookup. */
2153 this_cu = obstack_alloc (&objfile->objfile_obstack,
2154 sizeof (struct dwarf2_per_cu_data));
2155 memset (this_cu, 0, sizeof (*this_cu));
2156 this_cu->offset = offset;
c764a876 2157 this_cu->length = length + initial_length_size;
ae038cb0
DJ
2158
2159 if (n_comp_units == n_allocated)
2160 {
2161 n_allocated *= 2;
2162 all_comp_units = xrealloc (all_comp_units,
2163 n_allocated
2164 * sizeof (struct dwarf2_per_cu_data *));
2165 }
2166 all_comp_units[n_comp_units++] = this_cu;
2167
2168 info_ptr = info_ptr + this_cu->length;
2169 }
2170
2171 dwarf2_per_objfile->all_comp_units
2172 = obstack_alloc (&objfile->objfile_obstack,
2173 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2174 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
2175 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
2176 xfree (all_comp_units);
2177 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
2178}
2179
5734ee8b
DJ
2180/* Process all loaded DIEs for compilation unit CU, starting at
2181 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
2182 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
2183 DW_AT_ranges). If NEED_PC is set, then this function will set
2184 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
2185 and record the covered ranges in the addrmap. */
c906108c 2186
72bf9492
DJ
2187static void
2188scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 2189 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 2190{
72bf9492 2191 struct partial_die_info *pdi;
c906108c 2192
91c24f0a
DC
2193 /* Now, march along the PDI's, descending into ones which have
2194 interesting children but skipping the children of the other ones,
2195 until we reach the end of the compilation unit. */
c906108c 2196
72bf9492 2197 pdi = first_die;
91c24f0a 2198
72bf9492
DJ
2199 while (pdi != NULL)
2200 {
2201 fixup_partial_die (pdi, cu);
c906108c 2202
91c24f0a
DC
2203 /* Anonymous namespaces have no name but have interesting
2204 children, so we need to look at them. Ditto for anonymous
2205 enums. */
933c6fe4 2206
72bf9492
DJ
2207 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
2208 || pdi->tag == DW_TAG_enumeration_type)
c906108c 2209 {
72bf9492 2210 switch (pdi->tag)
c906108c
SS
2211 {
2212 case DW_TAG_subprogram:
5734ee8b 2213 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
2214 break;
2215 case DW_TAG_variable:
2216 case DW_TAG_typedef:
91c24f0a 2217 case DW_TAG_union_type:
72bf9492 2218 if (!pdi->is_declaration)
63d06c5c 2219 {
72bf9492 2220 add_partial_symbol (pdi, cu);
63d06c5c
DC
2221 }
2222 break;
c906108c 2223 case DW_TAG_class_type:
680b30c7 2224 case DW_TAG_interface_type:
c906108c 2225 case DW_TAG_structure_type:
72bf9492 2226 if (!pdi->is_declaration)
c906108c 2227 {
72bf9492 2228 add_partial_symbol (pdi, cu);
c906108c
SS
2229 }
2230 break;
91c24f0a 2231 case DW_TAG_enumeration_type:
72bf9492
DJ
2232 if (!pdi->is_declaration)
2233 add_partial_enumeration (pdi, cu);
c906108c
SS
2234 break;
2235 case DW_TAG_base_type:
a02abb62 2236 case DW_TAG_subrange_type:
c906108c 2237 /* File scope base type definitions are added to the partial
c5aa993b 2238 symbol table. */
72bf9492 2239 add_partial_symbol (pdi, cu);
c906108c 2240 break;
d9fa45fe 2241 case DW_TAG_namespace:
5734ee8b 2242 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 2243 break;
5d7cb8df
JK
2244 case DW_TAG_module:
2245 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
2246 break;
c906108c
SS
2247 default:
2248 break;
2249 }
2250 }
2251
72bf9492
DJ
2252 /* If the die has a sibling, skip to the sibling. */
2253
2254 pdi = pdi->die_sibling;
2255 }
2256}
2257
2258/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 2259
72bf9492 2260 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
2261 name is concatenated with "::" and the partial DIE's name. For
2262 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
2263 Enumerators are an exception; they use the scope of their parent
2264 enumeration type, i.e. the name of the enumeration type is not
2265 prepended to the enumerator.
91c24f0a 2266
72bf9492
DJ
2267 There are two complexities. One is DW_AT_specification; in this
2268 case "parent" means the parent of the target of the specification,
2269 instead of the direct parent of the DIE. The other is compilers
2270 which do not emit DW_TAG_namespace; in this case we try to guess
2271 the fully qualified name of structure types from their members'
2272 linkage names. This must be done using the DIE's children rather
2273 than the children of any DW_AT_specification target. We only need
2274 to do this for structures at the top level, i.e. if the target of
2275 any DW_AT_specification (if any; otherwise the DIE itself) does not
2276 have a parent. */
2277
2278/* Compute the scope prefix associated with PDI's parent, in
2279 compilation unit CU. The result will be allocated on CU's
2280 comp_unit_obstack, or a copy of the already allocated PDI->NAME
2281 field. NULL is returned if no prefix is necessary. */
2282static char *
2283partial_die_parent_scope (struct partial_die_info *pdi,
2284 struct dwarf2_cu *cu)
2285{
2286 char *grandparent_scope;
2287 struct partial_die_info *parent, *real_pdi;
91c24f0a 2288
72bf9492
DJ
2289 /* We need to look at our parent DIE; if we have a DW_AT_specification,
2290 then this means the parent of the specification DIE. */
2291
2292 real_pdi = pdi;
72bf9492 2293 while (real_pdi->has_specification)
10b3939b 2294 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
2295
2296 parent = real_pdi->die_parent;
2297 if (parent == NULL)
2298 return NULL;
2299
2300 if (parent->scope_set)
2301 return parent->scope;
2302
2303 fixup_partial_die (parent, cu);
2304
10b3939b 2305 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 2306
acebe513
UW
2307 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
2308 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
2309 Work around this problem here. */
2310 if (cu->language == language_cplus
2311 && parent->tag == DW_TAG_namespace
2312 && strcmp (parent->name, "::") == 0
2313 && grandparent_scope == NULL)
2314 {
2315 parent->scope = NULL;
2316 parent->scope_set = 1;
2317 return NULL;
2318 }
2319
72bf9492
DJ
2320 if (parent->tag == DW_TAG_namespace
2321 || parent->tag == DW_TAG_structure_type
2322 || parent->tag == DW_TAG_class_type
680b30c7 2323 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
2324 || parent->tag == DW_TAG_union_type
2325 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
2326 {
2327 if (grandparent_scope == NULL)
2328 parent->scope = parent->name;
2329 else
987504bb
JJ
2330 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
2331 parent->name, cu);
72bf9492 2332 }
ceeb3d5a 2333 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
2334 /* Enumerators should not get the name of the enumeration as a prefix. */
2335 parent->scope = grandparent_scope;
2336 else
2337 {
2338 /* FIXME drow/2004-04-01: What should we be doing with
2339 function-local names? For partial symbols, we should probably be
2340 ignoring them. */
2341 complaint (&symfile_complaints,
e2e0b3e5 2342 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
2343 parent->tag, pdi->offset);
2344 parent->scope = grandparent_scope;
c906108c
SS
2345 }
2346
72bf9492
DJ
2347 parent->scope_set = 1;
2348 return parent->scope;
2349}
2350
2351/* Return the fully scoped name associated with PDI, from compilation unit
2352 CU. The result will be allocated with malloc. */
2353static char *
2354partial_die_full_name (struct partial_die_info *pdi,
2355 struct dwarf2_cu *cu)
2356{
2357 char *parent_scope;
2358
2359 parent_scope = partial_die_parent_scope (pdi, cu);
2360 if (parent_scope == NULL)
2361 return NULL;
2362 else
987504bb 2363 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
2364}
2365
2366static void
72bf9492 2367add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 2368{
e7c27a73 2369 struct objfile *objfile = cu->objfile;
c906108c 2370 CORE_ADDR addr = 0;
decbce07 2371 char *actual_name = NULL;
5c4e30ca 2372 const struct partial_symbol *psym = NULL;
e142c38c 2373 CORE_ADDR baseaddr;
72bf9492 2374 int built_actual_name = 0;
e142c38c
DJ
2375
2376 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2377
94af9270
KS
2378 actual_name = partial_die_full_name (pdi, cu);
2379 if (actual_name)
2380 built_actual_name = 1;
63d06c5c 2381
72bf9492
DJ
2382 if (actual_name == NULL)
2383 actual_name = pdi->name;
2384
c906108c
SS
2385 switch (pdi->tag)
2386 {
2387 case DW_TAG_subprogram:
2cfa0c8d 2388 if (pdi->is_external || cu->language == language_ada)
c906108c 2389 {
2cfa0c8d
JB
2390 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
2391 of the global scope. But in Ada, we want to be able to access
2392 nested procedures globally. So all Ada subprograms are stored
2393 in the global scope. */
38d518c9 2394 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2395 mst_text, objfile); */
38d518c9 2396 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2397 built_actual_name,
5c4e30ca
DC
2398 VAR_DOMAIN, LOC_BLOCK,
2399 &objfile->global_psymbols,
2400 0, pdi->lowpc + baseaddr,
e142c38c 2401 cu->language, objfile);
c906108c
SS
2402 }
2403 else
2404 {
38d518c9 2405 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 2406 mst_file_text, objfile); */
38d518c9 2407 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2408 built_actual_name,
5c4e30ca
DC
2409 VAR_DOMAIN, LOC_BLOCK,
2410 &objfile->static_psymbols,
2411 0, pdi->lowpc + baseaddr,
e142c38c 2412 cu->language, objfile);
c906108c
SS
2413 }
2414 break;
2415 case DW_TAG_variable:
2416 if (pdi->is_external)
2417 {
2418 /* Global Variable.
2419 Don't enter into the minimal symbol tables as there is
2420 a minimal symbol table entry from the ELF symbols already.
2421 Enter into partial symbol table if it has a location
2422 descriptor or a type.
2423 If the location descriptor is missing, new_symbol will create
2424 a LOC_UNRESOLVED symbol, the address of the variable will then
2425 be determined from the minimal symbol table whenever the variable
2426 is referenced.
2427 The address for the partial symbol table entry is not
2428 used by GDB, but it comes in handy for debugging partial symbol
2429 table building. */
2430
2431 if (pdi->locdesc)
e7c27a73 2432 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 2433 if (pdi->locdesc || pdi->has_type)
38d518c9 2434 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2435 built_actual_name,
5c4e30ca
DC
2436 VAR_DOMAIN, LOC_STATIC,
2437 &objfile->global_psymbols,
2438 0, addr + baseaddr,
e142c38c 2439 cu->language, objfile);
c906108c
SS
2440 }
2441 else
2442 {
2443 /* Static Variable. Skip symbols without location descriptors. */
2444 if (pdi->locdesc == NULL)
decbce07
MS
2445 {
2446 if (built_actual_name)
2447 xfree (actual_name);
2448 return;
2449 }
e7c27a73 2450 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 2451 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 2452 mst_file_data, objfile); */
38d518c9 2453 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2454 built_actual_name,
5c4e30ca
DC
2455 VAR_DOMAIN, LOC_STATIC,
2456 &objfile->static_psymbols,
2457 0, addr + baseaddr,
e142c38c 2458 cu->language, objfile);
c906108c
SS
2459 }
2460 break;
2461 case DW_TAG_typedef:
2462 case DW_TAG_base_type:
a02abb62 2463 case DW_TAG_subrange_type:
38d518c9 2464 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2465 built_actual_name,
176620f1 2466 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 2467 &objfile->static_psymbols,
e142c38c 2468 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2469 break;
72bf9492
DJ
2470 case DW_TAG_namespace:
2471 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2472 built_actual_name,
72bf9492
DJ
2473 VAR_DOMAIN, LOC_TYPEDEF,
2474 &objfile->global_psymbols,
2475 0, (CORE_ADDR) 0, cu->language, objfile);
2476 break;
c906108c 2477 case DW_TAG_class_type:
680b30c7 2478 case DW_TAG_interface_type:
c906108c
SS
2479 case DW_TAG_structure_type:
2480 case DW_TAG_union_type:
2481 case DW_TAG_enumeration_type:
fa4028e9
JB
2482 /* Skip external references. The DWARF standard says in the section
2483 about "Structure, Union, and Class Type Entries": "An incomplete
2484 structure, union or class type is represented by a structure,
2485 union or class entry that does not have a byte size attribute
2486 and that has a DW_AT_declaration attribute." */
2487 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
2488 {
2489 if (built_actual_name)
2490 xfree (actual_name);
2491 return;
2492 }
fa4028e9 2493
63d06c5c
DC
2494 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2495 static vs. global. */
38d518c9 2496 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2497 built_actual_name,
176620f1 2498 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2499 (cu->language == language_cplus
2500 || cu->language == language_java)
63d06c5c
DC
2501 ? &objfile->global_psymbols
2502 : &objfile->static_psymbols,
e142c38c 2503 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2504
c906108c
SS
2505 break;
2506 case DW_TAG_enumerator:
38d518c9 2507 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 2508 built_actual_name,
176620f1 2509 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2510 (cu->language == language_cplus
2511 || cu->language == language_java)
f6fe98ef
DJ
2512 ? &objfile->global_psymbols
2513 : &objfile->static_psymbols,
e142c38c 2514 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2515 break;
2516 default:
2517 break;
2518 }
5c4e30ca 2519
72bf9492
DJ
2520 if (built_actual_name)
2521 xfree (actual_name);
c906108c
SS
2522}
2523
5c4e30ca
DC
2524/* Read a partial die corresponding to a namespace; also, add a symbol
2525 corresponding to that namespace to the symbol table. NAMESPACE is
2526 the name of the enclosing namespace. */
91c24f0a 2527
72bf9492
DJ
2528static void
2529add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2530 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2531 int need_pc, struct dwarf2_cu *cu)
91c24f0a 2532{
72bf9492 2533 /* Add a symbol for the namespace. */
e7c27a73 2534
72bf9492 2535 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2536
2537 /* Now scan partial symbols in that namespace. */
2538
91c24f0a 2539 if (pdi->has_children)
5734ee8b 2540 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
2541}
2542
5d7cb8df
JK
2543/* Read a partial die corresponding to a Fortran module. */
2544
2545static void
2546add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
2547 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
2548{
2549 /* Now scan partial symbols in that module.
2550
2551 FIXME: Support the separate Fortran module namespaces. */
2552
2553 if (pdi->has_children)
2554 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
2555}
2556
bc30ff58
JB
2557/* Read a partial die corresponding to a subprogram and create a partial
2558 symbol for that subprogram. When the CU language allows it, this
2559 routine also defines a partial symbol for each nested subprogram
2560 that this subprogram contains.
2561
2562 DIE my also be a lexical block, in which case we simply search
2563 recursively for suprograms defined inside that lexical block.
2564 Again, this is only performed when the CU language allows this
2565 type of definitions. */
2566
2567static void
2568add_partial_subprogram (struct partial_die_info *pdi,
2569 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 2570 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
2571{
2572 if (pdi->tag == DW_TAG_subprogram)
2573 {
2574 if (pdi->has_pc_info)
2575 {
2576 if (pdi->lowpc < *lowpc)
2577 *lowpc = pdi->lowpc;
2578 if (pdi->highpc > *highpc)
2579 *highpc = pdi->highpc;
5734ee8b
DJ
2580 if (need_pc)
2581 {
2582 CORE_ADDR baseaddr;
2583 struct objfile *objfile = cu->objfile;
2584
2585 baseaddr = ANOFFSET (objfile->section_offsets,
2586 SECT_OFF_TEXT (objfile));
2587 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
2588 pdi->lowpc + baseaddr,
2589 pdi->highpc - 1 + baseaddr,
5734ee8b
DJ
2590 cu->per_cu->psymtab);
2591 }
bc30ff58 2592 if (!pdi->is_declaration)
e8d05480
JB
2593 /* Ignore subprogram DIEs that do not have a name, they are
2594 illegal. Do not emit a complaint at this point, we will
2595 do so when we convert this psymtab into a symtab. */
2596 if (pdi->name)
2597 add_partial_symbol (pdi, cu);
bc30ff58
JB
2598 }
2599 }
2600
2601 if (! pdi->has_children)
2602 return;
2603
2604 if (cu->language == language_ada)
2605 {
2606 pdi = pdi->die_child;
2607 while (pdi != NULL)
2608 {
2609 fixup_partial_die (pdi, cu);
2610 if (pdi->tag == DW_TAG_subprogram
2611 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 2612 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
2613 pdi = pdi->die_sibling;
2614 }
2615 }
2616}
2617
72bf9492
DJ
2618/* See if we can figure out if the class lives in a namespace. We do
2619 this by looking for a member function; its demangled name will
2620 contain namespace info, if there is any. */
63d06c5c 2621
72bf9492
DJ
2622static void
2623guess_structure_name (struct partial_die_info *struct_pdi,
2624 struct dwarf2_cu *cu)
63d06c5c 2625{
987504bb
JJ
2626 if ((cu->language == language_cplus
2627 || cu->language == language_java)
72bf9492 2628 && cu->has_namespace_info == 0
63d06c5c
DC
2629 && struct_pdi->has_children)
2630 {
63d06c5c
DC
2631 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2632 what template types look like, because the demangler
2633 frequently doesn't give the same name as the debug info. We
2634 could fix this by only using the demangled name to get the
134d01f1 2635 prefix (but see comment in read_structure_type). */
63d06c5c 2636
72bf9492 2637 struct partial_die_info *real_pdi;
5d51ca54 2638
72bf9492
DJ
2639 /* If this DIE (this DIE's specification, if any) has a parent, then
2640 we should not do this. We'll prepend the parent's fully qualified
2641 name when we create the partial symbol. */
5d51ca54 2642
72bf9492 2643 real_pdi = struct_pdi;
72bf9492 2644 while (real_pdi->has_specification)
10b3939b 2645 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2646
72bf9492
DJ
2647 if (real_pdi->die_parent != NULL)
2648 return;
63d06c5c 2649 }
63d06c5c
DC
2650}
2651
91c24f0a
DC
2652/* Read a partial die corresponding to an enumeration type. */
2653
72bf9492
DJ
2654static void
2655add_partial_enumeration (struct partial_die_info *enum_pdi,
2656 struct dwarf2_cu *cu)
91c24f0a 2657{
72bf9492 2658 struct partial_die_info *pdi;
91c24f0a
DC
2659
2660 if (enum_pdi->name != NULL)
72bf9492
DJ
2661 add_partial_symbol (enum_pdi, cu);
2662
2663 pdi = enum_pdi->die_child;
2664 while (pdi)
91c24f0a 2665 {
72bf9492 2666 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2667 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2668 else
72bf9492
DJ
2669 add_partial_symbol (pdi, cu);
2670 pdi = pdi->die_sibling;
91c24f0a 2671 }
91c24f0a
DC
2672}
2673
4bb7a0a7
DJ
2674/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2675 Return the corresponding abbrev, or NULL if the number is zero (indicating
2676 an empty DIE). In either case *BYTES_READ will be set to the length of
2677 the initial number. */
2678
2679static struct abbrev_info *
fe1b8b76 2680peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2681 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2682{
2683 bfd *abfd = cu->objfile->obfd;
2684 unsigned int abbrev_number;
2685 struct abbrev_info *abbrev;
2686
2687 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2688
2689 if (abbrev_number == 0)
2690 return NULL;
2691
2692 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2693 if (!abbrev)
2694 {
8a3fe4f8 2695 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2696 bfd_get_filename (abfd));
2697 }
2698
2699 return abbrev;
2700}
2701
93311388
DE
2702/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2703 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
2704 DIE. Any children of the skipped DIEs will also be skipped. */
2705
fe1b8b76 2706static gdb_byte *
93311388 2707skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2708{
2709 struct abbrev_info *abbrev;
2710 unsigned int bytes_read;
2711
2712 while (1)
2713 {
2714 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2715 if (abbrev == NULL)
2716 return info_ptr + bytes_read;
2717 else
93311388 2718 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
2719 }
2720}
2721
93311388
DE
2722/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
2723 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
2724 abbrev corresponding to that skipped uleb128 should be passed in
2725 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2726 children. */
2727
fe1b8b76 2728static gdb_byte *
93311388
DE
2729skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
2730 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2731{
2732 unsigned int bytes_read;
2733 struct attribute attr;
2734 bfd *abfd = cu->objfile->obfd;
2735 unsigned int form, i;
2736
2737 for (i = 0; i < abbrev->num_attrs; i++)
2738 {
2739 /* The only abbrev we care about is DW_AT_sibling. */
2740 if (abbrev->attrs[i].name == DW_AT_sibling)
2741 {
2742 read_attribute (&attr, &abbrev->attrs[i],
2743 abfd, info_ptr, cu);
2744 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2745 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2746 else
93311388 2747 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
2748 }
2749
2750 /* If it isn't DW_AT_sibling, skip this attribute. */
2751 form = abbrev->attrs[i].form;
2752 skip_attribute:
2753 switch (form)
2754 {
4bb7a0a7 2755 case DW_FORM_ref_addr:
ae411497
TT
2756 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
2757 and later it is offset sized. */
2758 if (cu->header.version == 2)
2759 info_ptr += cu->header.addr_size;
2760 else
2761 info_ptr += cu->header.offset_size;
2762 break;
2763 case DW_FORM_addr:
4bb7a0a7
DJ
2764 info_ptr += cu->header.addr_size;
2765 break;
2766 case DW_FORM_data1:
2767 case DW_FORM_ref1:
2768 case DW_FORM_flag:
2769 info_ptr += 1;
2770 break;
2dc7f7b3
TT
2771 case DW_FORM_flag_present:
2772 break;
4bb7a0a7
DJ
2773 case DW_FORM_data2:
2774 case DW_FORM_ref2:
2775 info_ptr += 2;
2776 break;
2777 case DW_FORM_data4:
2778 case DW_FORM_ref4:
2779 info_ptr += 4;
2780 break;
2781 case DW_FORM_data8:
2782 case DW_FORM_ref8:
348e048f 2783 case DW_FORM_sig8:
4bb7a0a7
DJ
2784 info_ptr += 8;
2785 break;
2786 case DW_FORM_string:
2787 read_string (abfd, info_ptr, &bytes_read);
2788 info_ptr += bytes_read;
2789 break;
2dc7f7b3 2790 case DW_FORM_sec_offset:
4bb7a0a7
DJ
2791 case DW_FORM_strp:
2792 info_ptr += cu->header.offset_size;
2793 break;
2dc7f7b3 2794 case DW_FORM_exprloc:
4bb7a0a7
DJ
2795 case DW_FORM_block:
2796 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2797 info_ptr += bytes_read;
2798 break;
2799 case DW_FORM_block1:
2800 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2801 break;
2802 case DW_FORM_block2:
2803 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2804 break;
2805 case DW_FORM_block4:
2806 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2807 break;
2808 case DW_FORM_sdata:
2809 case DW_FORM_udata:
2810 case DW_FORM_ref_udata:
2811 info_ptr = skip_leb128 (abfd, info_ptr);
2812 break;
2813 case DW_FORM_indirect:
2814 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2815 info_ptr += bytes_read;
2816 /* We need to continue parsing from here, so just go back to
2817 the top. */
2818 goto skip_attribute;
2819
2820 default:
8a3fe4f8 2821 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2822 dwarf_form_name (form),
2823 bfd_get_filename (abfd));
2824 }
2825 }
2826
2827 if (abbrev->has_children)
93311388 2828 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
2829 else
2830 return info_ptr;
2831}
2832
93311388
DE
2833/* Locate ORIG_PDI's sibling.
2834 INFO_PTR should point to the start of the next DIE after ORIG_PDI
2835 in BUFFER. */
91c24f0a 2836
fe1b8b76 2837static gdb_byte *
93311388
DE
2838locate_pdi_sibling (struct partial_die_info *orig_pdi,
2839 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 2840 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2841{
2842 /* Do we know the sibling already? */
72bf9492 2843
91c24f0a
DC
2844 if (orig_pdi->sibling)
2845 return orig_pdi->sibling;
2846
2847 /* Are there any children to deal with? */
2848
2849 if (!orig_pdi->has_children)
2850 return info_ptr;
2851
4bb7a0a7 2852 /* Skip the children the long way. */
91c24f0a 2853
93311388 2854 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
2855}
2856
c906108c
SS
2857/* Expand this partial symbol table into a full symbol table. */
2858
2859static void
fba45db2 2860dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2861{
2862 /* FIXME: This is barely more than a stub. */
2863 if (pst != NULL)
2864 {
2865 if (pst->readin)
2866 {
8a3fe4f8 2867 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2868 }
2869 else
2870 {
2871 if (info_verbose)
2872 {
a3f17187 2873 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2874 gdb_flush (gdb_stdout);
2875 }
2876
10b3939b
DJ
2877 /* Restore our global data. */
2878 dwarf2_per_objfile = objfile_data (pst->objfile,
2879 dwarf2_objfile_data_key);
2880
b2ab525c
KB
2881 /* If this psymtab is constructed from a debug-only objfile, the
2882 has_section_at_zero flag will not necessarily be correct. We
2883 can get the correct value for this flag by looking at the data
2884 associated with the (presumably stripped) associated objfile. */
2885 if (pst->objfile->separate_debug_objfile_backlink)
2886 {
2887 struct dwarf2_per_objfile *dpo_backlink
2888 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
2889 dwarf2_objfile_data_key);
9a619af0 2890
b2ab525c
KB
2891 dwarf2_per_objfile->has_section_at_zero
2892 = dpo_backlink->has_section_at_zero;
2893 }
2894
c906108c
SS
2895 psymtab_to_symtab_1 (pst);
2896
2897 /* Finish up the debug error message. */
2898 if (info_verbose)
a3f17187 2899 printf_filtered (_("done.\n"));
c906108c
SS
2900 }
2901 }
2902}
2903
10b3939b
DJ
2904/* Add PER_CU to the queue. */
2905
2906static void
03dd20cc 2907queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
2908{
2909 struct dwarf2_queue_item *item;
2910
2911 per_cu->queued = 1;
2912 item = xmalloc (sizeof (*item));
2913 item->per_cu = per_cu;
2914 item->next = NULL;
2915
2916 if (dwarf2_queue == NULL)
2917 dwarf2_queue = item;
2918 else
2919 dwarf2_queue_tail->next = item;
2920
2921 dwarf2_queue_tail = item;
2922}
2923
2924/* Process the queue. */
2925
2926static void
2927process_queue (struct objfile *objfile)
2928{
2929 struct dwarf2_queue_item *item, *next_item;
2930
03dd20cc
DJ
2931 /* The queue starts out with one item, but following a DIE reference
2932 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
2933 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2934 {
31ffec48 2935 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2936 process_full_comp_unit (item->per_cu);
2937
2938 item->per_cu->queued = 0;
2939 next_item = item->next;
2940 xfree (item);
2941 }
2942
2943 dwarf2_queue_tail = NULL;
2944}
2945
2946/* Free all allocated queue entries. This function only releases anything if
2947 an error was thrown; if the queue was processed then it would have been
2948 freed as we went along. */
2949
2950static void
2951dwarf2_release_queue (void *dummy)
2952{
2953 struct dwarf2_queue_item *item, *last;
2954
2955 item = dwarf2_queue;
2956 while (item)
2957 {
2958 /* Anything still marked queued is likely to be in an
2959 inconsistent state, so discard it. */
2960 if (item->per_cu->queued)
2961 {
2962 if (item->per_cu->cu != NULL)
2963 free_one_cached_comp_unit (item->per_cu->cu);
2964 item->per_cu->queued = 0;
2965 }
2966
2967 last = item;
2968 item = item->next;
2969 xfree (last);
2970 }
2971
2972 dwarf2_queue = dwarf2_queue_tail = NULL;
2973}
2974
2975/* Read in full symbols for PST, and anything it depends on. */
2976
c906108c 2977static void
fba45db2 2978psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2979{
10b3939b 2980 struct dwarf2_per_cu_data *per_cu;
c906108c 2981 struct cleanup *back_to;
aaa75496
JB
2982 int i;
2983
2984 for (i = 0; i < pst->number_of_dependencies; i++)
2985 if (!pst->dependencies[i]->readin)
2986 {
2987 /* Inform about additional files that need to be read in. */
2988 if (info_verbose)
2989 {
a3f17187 2990 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2991 fputs_filtered (" ", gdb_stdout);
2992 wrap_here ("");
2993 fputs_filtered ("and ", gdb_stdout);
2994 wrap_here ("");
2995 printf_filtered ("%s...", pst->dependencies[i]->filename);
2996 wrap_here (""); /* Flush output */
2997 gdb_flush (gdb_stdout);
2998 }
2999 psymtab_to_symtab_1 (pst->dependencies[i]);
3000 }
3001
e38df1d0 3002 per_cu = pst->read_symtab_private;
10b3939b
DJ
3003
3004 if (per_cu == NULL)
aaa75496
JB
3005 {
3006 /* It's an include file, no symbols to read for it.
3007 Everything is in the parent symtab. */
3008 pst->readin = 1;
3009 return;
3010 }
c906108c 3011
10b3939b
DJ
3012 back_to = make_cleanup (dwarf2_release_queue, NULL);
3013
03dd20cc 3014 queue_comp_unit (per_cu, pst->objfile);
10b3939b 3015
348e048f
DE
3016 if (per_cu->from_debug_types)
3017 read_signatured_type_at_offset (pst->objfile, per_cu->offset);
3018 else
3019 load_full_comp_unit (per_cu, pst->objfile);
3020
10b3939b
DJ
3021 process_queue (pst->objfile);
3022
3023 /* Age the cache, releasing compilation units that have not
3024 been used recently. */
3025 age_cached_comp_units ();
3026
3027 do_cleanups (back_to);
3028}
3029
93311388 3030/* Load the DIEs associated with PER_CU into memory. */
10b3939b 3031
93311388 3032static void
31ffec48 3033load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 3034{
31ffec48 3035 bfd *abfd = objfile->obfd;
10b3939b 3036 struct dwarf2_cu *cu;
c764a876 3037 unsigned int offset;
93311388 3038 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
3039 struct cleanup *back_to, *free_cu_cleanup;
3040 struct attribute *attr;
6502dd73 3041
348e048f
DE
3042 gdb_assert (! per_cu->from_debug_types);
3043
c906108c 3044 /* Set local variables from the partial symbol table info. */
10b3939b 3045 offset = per_cu->offset;
6502dd73 3046
be391dca 3047 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 3048 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 3049 beg_of_comp_unit = info_ptr;
63d06c5c 3050
93311388 3051 cu = alloc_one_comp_unit (objfile);
c906108c 3052
10b3939b
DJ
3053 /* If an error occurs while loading, release our storage. */
3054 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 3055
93311388 3056 /* Read in the comp_unit header. */
10b3939b 3057 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 3058
93311388
DE
3059 /* Complete the cu_header. */
3060 cu->header.offset = offset;
3061 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3062
3063 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
3064 dwarf2_read_abbrevs (abfd, cu);
3065 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3066
93311388 3067 /* Link this compilation unit into the compilation unit tree. */
10b3939b 3068 per_cu->cu = cu;
93311388 3069 cu->per_cu = per_cu;
f792889a 3070 cu->type_hash = per_cu->type_hash;
e142c38c 3071
93311388 3072 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
3073
3074 /* We try not to read any attributes in this function, because not
3075 all objfiles needed for references have been loaded yet, and symbol
3076 table processing isn't initialized. But we have to set the CU language,
3077 or we won't be able to build types correctly. */
3078 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
3079 if (attr)
3080 set_cu_language (DW_UNSND (attr), cu);
3081 else
3082 set_cu_language (language_minimal, cu);
3083
a6c727b2
DJ
3084 /* Similarly, if we do not read the producer, we can not apply
3085 producer-specific interpretation. */
3086 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
3087 if (attr)
3088 cu->producer = DW_STRING (attr);
3089
348e048f
DE
3090 /* Link this CU into read_in_chain. */
3091 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3092 dwarf2_per_objfile->read_in_chain = per_cu;
3093
10b3939b 3094 do_cleanups (back_to);
e142c38c 3095
10b3939b
DJ
3096 /* We've successfully allocated this compilation unit. Let our caller
3097 clean it up when finished with it. */
3098 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
3099}
3100
3101/* Generate full symbol information for PST and CU, whose DIEs have
3102 already been loaded into memory. */
3103
3104static void
3105process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
3106{
3107 struct partial_symtab *pst = per_cu->psymtab;
3108 struct dwarf2_cu *cu = per_cu->cu;
3109 struct objfile *objfile = pst->objfile;
10b3939b
DJ
3110 CORE_ADDR lowpc, highpc;
3111 struct symtab *symtab;
3112 struct cleanup *back_to;
10b3939b
DJ
3113 CORE_ADDR baseaddr;
3114
3115 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3116
10b3939b
DJ
3117 buildsym_init ();
3118 back_to = make_cleanup (really_free_pendings, NULL);
3119
3120 cu->list_in_scope = &file_symbols;
c906108c 3121
d85a05f0 3122 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 3123
c906108c 3124 /* Do line number decoding in read_file_scope () */
10b3939b 3125 process_die (cu->dies, cu);
c906108c 3126
fae299cd
DC
3127 /* Some compilers don't define a DW_AT_high_pc attribute for the
3128 compilation unit. If the DW_AT_high_pc is missing, synthesize
3129 it, by scanning the DIE's below the compilation unit. */
10b3939b 3130 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 3131
613e1657 3132 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
3133
3134 /* Set symtab language to language from DW_AT_language.
3135 If the compilation is from a C file generated by language preprocessors,
3136 do not set the language if it was already deduced by start_subfile. */
3137 if (symtab != NULL
10b3939b 3138 && !(cu->language == language_c && symtab->language != language_c))
c906108c 3139 {
10b3939b 3140 symtab->language = cu->language;
c906108c
SS
3141 }
3142 pst->symtab = symtab;
3143 pst->readin = 1;
c906108c
SS
3144
3145 do_cleanups (back_to);
3146}
3147
3148/* Process a die and its children. */
3149
3150static void
e7c27a73 3151process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
3152{
3153 switch (die->tag)
3154 {
3155 case DW_TAG_padding:
3156 break;
3157 case DW_TAG_compile_unit:
e7c27a73 3158 read_file_scope (die, cu);
c906108c 3159 break;
348e048f
DE
3160 case DW_TAG_type_unit:
3161 read_type_unit_scope (die, cu);
3162 break;
c906108c 3163 case DW_TAG_subprogram:
c906108c 3164 case DW_TAG_inlined_subroutine:
edb3359d 3165 read_func_scope (die, cu);
c906108c
SS
3166 break;
3167 case DW_TAG_lexical_block:
14898363
L
3168 case DW_TAG_try_block:
3169 case DW_TAG_catch_block:
e7c27a73 3170 read_lexical_block_scope (die, cu);
c906108c
SS
3171 break;
3172 case DW_TAG_class_type:
680b30c7 3173 case DW_TAG_interface_type:
c906108c
SS
3174 case DW_TAG_structure_type:
3175 case DW_TAG_union_type:
134d01f1 3176 process_structure_scope (die, cu);
c906108c
SS
3177 break;
3178 case DW_TAG_enumeration_type:
134d01f1 3179 process_enumeration_scope (die, cu);
c906108c 3180 break;
134d01f1 3181
f792889a
DJ
3182 /* These dies have a type, but processing them does not create
3183 a symbol or recurse to process the children. Therefore we can
3184 read them on-demand through read_type_die. */
c906108c 3185 case DW_TAG_subroutine_type:
72019c9c 3186 case DW_TAG_set_type:
c906108c 3187 case DW_TAG_array_type:
c906108c 3188 case DW_TAG_pointer_type:
c906108c 3189 case DW_TAG_ptr_to_member_type:
c906108c 3190 case DW_TAG_reference_type:
c906108c 3191 case DW_TAG_string_type:
c906108c 3192 break;
134d01f1 3193
c906108c 3194 case DW_TAG_base_type:
a02abb62 3195 case DW_TAG_subrange_type:
cb249c71 3196 case DW_TAG_typedef:
90e7c2c5
PM
3197 case DW_TAG_const_type:
3198 case DW_TAG_volatile_type:
134d01f1
DJ
3199 /* Add a typedef symbol for the type definition, if it has a
3200 DW_AT_name. */
f792889a 3201 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 3202 break;
c906108c 3203 case DW_TAG_common_block:
e7c27a73 3204 read_common_block (die, cu);
c906108c
SS
3205 break;
3206 case DW_TAG_common_inclusion:
3207 break;
d9fa45fe 3208 case DW_TAG_namespace:
63d06c5c 3209 processing_has_namespace_info = 1;
e7c27a73 3210 read_namespace (die, cu);
d9fa45fe 3211 break;
5d7cb8df
JK
3212 case DW_TAG_module:
3213 read_module (die, cu);
3214 break;
d9fa45fe
DC
3215 case DW_TAG_imported_declaration:
3216 case DW_TAG_imported_module:
63d06c5c 3217 processing_has_namespace_info = 1;
27aa8d6a
SW
3218 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
3219 || cu->language != language_fortran))
3220 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
3221 dwarf_tag_name (die->tag));
3222 read_import_statement (die, cu);
d9fa45fe 3223 break;
c906108c 3224 default:
e7c27a73 3225 new_symbol (die, NULL, cu);
c906108c
SS
3226 break;
3227 }
3228}
3229
94af9270
KS
3230/* A helper function for dwarf2_compute_name which determines whether DIE
3231 needs to have the name of the scope prepended to the name listed in the
3232 die. */
3233
3234static int
3235die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
3236{
1c809c68
TT
3237 struct attribute *attr;
3238
94af9270
KS
3239 switch (die->tag)
3240 {
3241 case DW_TAG_namespace:
3242 case DW_TAG_typedef:
3243 case DW_TAG_class_type:
3244 case DW_TAG_interface_type:
3245 case DW_TAG_structure_type:
3246 case DW_TAG_union_type:
3247 case DW_TAG_enumeration_type:
3248 case DW_TAG_enumerator:
3249 case DW_TAG_subprogram:
3250 case DW_TAG_member:
3251 return 1;
3252
3253 case DW_TAG_variable:
3254 /* We only need to prefix "globally" visible variables. These include
3255 any variable marked with DW_AT_external or any variable that
3256 lives in a namespace. [Variables in anonymous namespaces
3257 require prefixing, but they are not DW_AT_external.] */
3258
3259 if (dwarf2_attr (die, DW_AT_specification, cu))
3260 {
3261 struct dwarf2_cu *spec_cu = cu;
9a619af0 3262
94af9270
KS
3263 return die_needs_namespace (die_specification (die, &spec_cu),
3264 spec_cu);
3265 }
3266
1c809c68
TT
3267 attr = dwarf2_attr (die, DW_AT_external, cu);
3268 if (attr == NULL && die->parent->tag != DW_TAG_namespace)
3269 return 0;
3270 /* A variable in a lexical block of some kind does not need a
3271 namespace, even though in C++ such variables may be external
3272 and have a mangled name. */
3273 if (die->parent->tag == DW_TAG_lexical_block
3274 || die->parent->tag == DW_TAG_try_block
1054b214
TT
3275 || die->parent->tag == DW_TAG_catch_block
3276 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
3277 return 0;
3278 return 1;
94af9270
KS
3279
3280 default:
3281 return 0;
3282 }
3283}
3284
3285/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
3286 compute the physname for the object, which include a method's
3287 formal parameters (C++/Java) and return type (Java).
3288
af6b7be1
JB
3289 For Ada, return the DIE's linkage name rather than the fully qualified
3290 name. PHYSNAME is ignored..
3291
94af9270
KS
3292 The result is allocated on the objfile_obstack and canonicalized. */
3293
3294static const char *
3295dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
3296 int physname)
3297{
3298 if (name == NULL)
3299 name = dwarf2_name (die, cu);
3300
3301 /* These are the only languages we know how to qualify names in. */
3302 if (name != NULL
3303 && (cu->language == language_cplus || cu->language == language_java))
3304 {
3305 if (die_needs_namespace (die, cu))
3306 {
3307 long length;
3308 char *prefix;
3309 struct ui_file *buf;
3310
3311 prefix = determine_prefix (die, cu);
3312 buf = mem_fileopen ();
3313 if (*prefix != '\0')
3314 {
3315 char *prefixed_name = typename_concat (NULL, prefix, name, cu);
9a619af0 3316
94af9270
KS
3317 fputs_unfiltered (prefixed_name, buf);
3318 xfree (prefixed_name);
3319 }
3320 else
3321 fputs_unfiltered (name ? name : "", buf);
3322
3323 /* For Java and C++ methods, append formal parameter type
3324 information, if PHYSNAME. */
3325
3326 if (physname && die->tag == DW_TAG_subprogram
3327 && (cu->language == language_cplus
3328 || cu->language == language_java))
3329 {
3330 struct type *type = read_type_die (die, cu);
3331
3332 c_type_print_args (type, buf, 0, cu->language);
3333
3334 if (cu->language == language_java)
3335 {
3336 /* For java, we must append the return type to method
3337 names. */
3338 if (die->tag == DW_TAG_subprogram)
3339 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
3340 0, 0);
3341 }
3342 else if (cu->language == language_cplus)
3343 {
3344 if (TYPE_NFIELDS (type) > 0
3345 && TYPE_FIELD_ARTIFICIAL (type, 0)
3346 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
3347 fputs_unfiltered (" const", buf);
3348 }
3349 }
3350
3351 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
3352 &length);
3353 ui_file_delete (buf);
3354
3355 if (cu->language == language_cplus)
3356 {
3357 char *cname
3358 = dwarf2_canonicalize_name (name, cu,
3359 &cu->objfile->objfile_obstack);
9a619af0 3360
94af9270
KS
3361 if (cname != NULL)
3362 name = cname;
3363 }
3364 }
3365 }
af6b7be1
JB
3366 else if (cu->language == language_ada)
3367 {
3368 /* For Ada unit, we prefer the linkage name over the name, as
3369 the former contains the exported name, which the user expects
3370 to be able to reference. Ideally, we want the user to be able
3371 to reference this entity using either natural or linkage name,
3372 but we haven't started looking at this enhancement yet. */
3373 struct attribute *attr;
3374
31ef98ae
TT
3375 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
3376 if (attr == NULL)
3377 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
af6b7be1
JB
3378 if (attr && DW_STRING (attr))
3379 name = DW_STRING (attr);
3380 }
94af9270
KS
3381
3382 return name;
3383}
3384
0114d602
DJ
3385/* Return the fully qualified name of DIE, based on its DW_AT_name.
3386 If scope qualifiers are appropriate they will be added. The result
3387 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
3388 not have a name. NAME may either be from a previous call to
3389 dwarf2_name or NULL.
3390
3391 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
3392
3393static const char *
94af9270 3394dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 3395{
94af9270
KS
3396 return dwarf2_compute_name (name, die, cu, 0);
3397}
0114d602 3398
94af9270
KS
3399/* Construct a physname for the given DIE in CU. NAME may either be
3400 from a previous call to dwarf2_name or NULL. The result will be
3401 allocated on the objfile_objstack or NULL if the DIE does not have a
3402 name.
0114d602 3403
94af9270 3404 The output string will be canonicalized (if C++/Java). */
0114d602 3405
94af9270
KS
3406static const char *
3407dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
3408{
3409 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
3410}
3411
27aa8d6a
SW
3412/* Read the import statement specified by the given die and record it. */
3413
3414static void
3415read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
3416{
3417 struct attribute *import_attr;
3418 struct die_info *imported_die;
de4affc9 3419 struct dwarf2_cu *imported_cu;
27aa8d6a 3420 const char *imported_name;
794684b6 3421 const char *imported_name_prefix;
13387711
SW
3422 const char *canonical_name;
3423 const char *import_alias;
3424 const char *imported_declaration = NULL;
794684b6 3425 const char *import_prefix;
13387711
SW
3426
3427 char *temp;
27aa8d6a
SW
3428
3429 import_attr = dwarf2_attr (die, DW_AT_import, cu);
3430 if (import_attr == NULL)
3431 {
3432 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
3433 dwarf_tag_name (die->tag));
3434 return;
3435 }
3436
de4affc9
CC
3437 imported_cu = cu;
3438 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
3439 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
3440 if (imported_name == NULL)
3441 {
3442 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
3443
3444 The import in the following code:
3445 namespace A
3446 {
3447 typedef int B;
3448 }
3449
3450 int main ()
3451 {
3452 using A::B;
3453 B b;
3454 return b;
3455 }
3456
3457 ...
3458 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
3459 <52> DW_AT_decl_file : 1
3460 <53> DW_AT_decl_line : 6
3461 <54> DW_AT_import : <0x75>
3462 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
3463 <59> DW_AT_name : B
3464 <5b> DW_AT_decl_file : 1
3465 <5c> DW_AT_decl_line : 2
3466 <5d> DW_AT_type : <0x6e>
3467 ...
3468 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
3469 <76> DW_AT_byte_size : 4
3470 <77> DW_AT_encoding : 5 (signed)
3471
3472 imports the wrong die ( 0x75 instead of 0x58 ).
3473 This case will be ignored until the gcc bug is fixed. */
3474 return;
3475 }
3476
82856980
SW
3477 /* Figure out the local name after import. */
3478 import_alias = dwarf2_name (die, cu);
27aa8d6a 3479
794684b6
SW
3480 /* Figure out where the statement is being imported to. */
3481 import_prefix = determine_prefix (die, cu);
3482
3483 /* Figure out what the scope of the imported die is and prepend it
3484 to the name of the imported die. */
de4affc9 3485 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 3486
13387711 3487 if (imported_die->tag != DW_TAG_namespace)
794684b6 3488 {
13387711
SW
3489 imported_declaration = imported_name;
3490 canonical_name = imported_name_prefix;
794684b6 3491 }
13387711 3492 else if (strlen (imported_name_prefix) > 0)
794684b6 3493 {
13387711
SW
3494 temp = alloca (strlen (imported_name_prefix)
3495 + 2 + strlen (imported_name) + 1);
3496 strcpy (temp, imported_name_prefix);
3497 strcat (temp, "::");
3498 strcat (temp, imported_name);
3499 canonical_name = temp;
794684b6 3500 }
13387711
SW
3501 else
3502 canonical_name = imported_name;
794684b6 3503
c0cc3a76
SW
3504 cp_add_using_directive (import_prefix,
3505 canonical_name,
3506 import_alias,
13387711 3507 imported_declaration,
c0cc3a76 3508 &cu->objfile->objfile_obstack);
27aa8d6a
SW
3509}
3510
5fb290d7 3511static void
e142c38c 3512initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 3513{
e142c38c 3514 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
3515}
3516
cb1df416
DJ
3517static void
3518free_cu_line_header (void *arg)
3519{
3520 struct dwarf2_cu *cu = arg;
3521
3522 free_line_header (cu->line_header);
3523 cu->line_header = NULL;
3524}
3525
c906108c 3526static void
e7c27a73 3527read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3528{
e7c27a73 3529 struct objfile *objfile = cu->objfile;
debd256d 3530 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 3531 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
3532 CORE_ADDR highpc = ((CORE_ADDR) 0);
3533 struct attribute *attr;
e1024ff1 3534 char *name = NULL;
c906108c
SS
3535 char *comp_dir = NULL;
3536 struct die_info *child_die;
3537 bfd *abfd = objfile->obfd;
debd256d 3538 struct line_header *line_header = 0;
e142c38c
DJ
3539 CORE_ADDR baseaddr;
3540
3541 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3542
fae299cd 3543 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
3544
3545 /* If we didn't find a lowpc, set it to highpc to avoid complaints
3546 from finish_block. */
2acceee2 3547 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
3548 lowpc = highpc;
3549 lowpc += baseaddr;
3550 highpc += baseaddr;
3551
39cbfefa
DJ
3552 /* Find the filename. Do not use dwarf2_name here, since the filename
3553 is not a source language identifier. */
e142c38c 3554 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3555 if (attr)
3556 {
3557 name = DW_STRING (attr);
3558 }
e1024ff1 3559
e142c38c 3560 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 3561 if (attr)
e1024ff1
DJ
3562 comp_dir = DW_STRING (attr);
3563 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 3564 {
e1024ff1
DJ
3565 comp_dir = ldirname (name);
3566 if (comp_dir != NULL)
3567 make_cleanup (xfree, comp_dir);
3568 }
3569 if (comp_dir != NULL)
3570 {
3571 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3572 directory, get rid of it. */
3573 char *cp = strchr (comp_dir, ':');
c906108c 3574
e1024ff1
DJ
3575 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3576 comp_dir = cp + 1;
c906108c
SS
3577 }
3578
e1024ff1
DJ
3579 if (name == NULL)
3580 name = "<unknown>";
3581
e142c38c 3582 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
3583 if (attr)
3584 {
e142c38c 3585 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
3586 }
3587
b0f35d58
DL
3588 attr = dwarf2_attr (die, DW_AT_producer, cu);
3589 if (attr)
3590 cu->producer = DW_STRING (attr);
303b6f5d 3591
c906108c
SS
3592 /* We assume that we're processing GCC output. */
3593 processing_gcc_compilation = 2;
c906108c 3594
df8a16a1
DJ
3595 processing_has_namespace_info = 0;
3596
c906108c
SS
3597 start_symtab (name, comp_dir, lowpc);
3598 record_debugformat ("DWARF 2");
303b6f5d 3599 record_producer (cu->producer);
c906108c 3600
e142c38c 3601 initialize_cu_func_list (cu);
c906108c 3602
cb1df416
DJ
3603 /* Decode line number information if present. We do this before
3604 processing child DIEs, so that the line header table is available
3605 for DW_AT_decl_file. */
e142c38c 3606 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
3607 if (attr)
3608 {
debd256d 3609 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 3610 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
3611 if (line_header)
3612 {
cb1df416
DJ
3613 cu->line_header = line_header;
3614 make_cleanup (free_cu_line_header, cu);
aaa75496 3615 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 3616 }
5fb290d7 3617 }
debd256d 3618
cb1df416
DJ
3619 /* Process all dies in compilation unit. */
3620 if (die->child != NULL)
3621 {
3622 child_die = die->child;
3623 while (child_die && child_die->tag)
3624 {
3625 process_die (child_die, cu);
3626 child_die = sibling_die (child_die);
3627 }
3628 }
3629
2e276125
JB
3630 /* Decode macro information, if present. Dwarf 2 macro information
3631 refers to information in the line number info statement program
3632 header, so we can only read it if we've read the header
3633 successfully. */
e142c38c 3634 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 3635 if (attr && line_header)
2e276125
JB
3636 {
3637 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 3638
2e276125 3639 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 3640 comp_dir, abfd, cu);
2e276125 3641 }
debd256d 3642 do_cleanups (back_to);
5fb290d7
DJ
3643}
3644
348e048f
DE
3645/* For TUs we want to skip the first top level sibling if it's not the
3646 actual type being defined by this TU. In this case the first top
3647 level sibling is there to provide context only. */
3648
3649static void
3650read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
3651{
3652 struct objfile *objfile = cu->objfile;
3653 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3654 CORE_ADDR lowpc;
3655 struct attribute *attr;
3656 char *name = NULL;
3657 char *comp_dir = NULL;
3658 struct die_info *child_die;
3659 bfd *abfd = objfile->obfd;
348e048f
DE
3660
3661 /* start_symtab needs a low pc, but we don't really have one.
3662 Do what read_file_scope would do in the absence of such info. */
3663 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3664
3665 /* Find the filename. Do not use dwarf2_name here, since the filename
3666 is not a source language identifier. */
3667 attr = dwarf2_attr (die, DW_AT_name, cu);
3668 if (attr)
3669 name = DW_STRING (attr);
3670
3671 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
3672 if (attr)
3673 comp_dir = DW_STRING (attr);
3674 else if (name != NULL && IS_ABSOLUTE_PATH (name))
3675 {
3676 comp_dir = ldirname (name);
3677 if (comp_dir != NULL)
3678 make_cleanup (xfree, comp_dir);
3679 }
3680
3681 if (name == NULL)
3682 name = "<unknown>";
3683
3684 attr = dwarf2_attr (die, DW_AT_language, cu);
3685 if (attr)
3686 set_cu_language (DW_UNSND (attr), cu);
3687
3688 /* This isn't technically needed today. It is done for symmetry
3689 with read_file_scope. */
3690 attr = dwarf2_attr (die, DW_AT_producer, cu);
3691 if (attr)
3692 cu->producer = DW_STRING (attr);
3693
3694 /* We assume that we're processing GCC output. */
3695 processing_gcc_compilation = 2;
3696
3697 processing_has_namespace_info = 0;
3698
3699 start_symtab (name, comp_dir, lowpc);
3700 record_debugformat ("DWARF 2");
3701 record_producer (cu->producer);
3702
3703 /* Process the dies in the type unit. */
3704 if (die->child == NULL)
3705 {
3706 dump_die_for_error (die);
3707 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
3708 bfd_get_filename (abfd));
3709 }
3710
3711 child_die = die->child;
3712
3713 while (child_die && child_die->tag)
3714 {
3715 process_die (child_die, cu);
3716
3717 child_die = sibling_die (child_die);
3718 }
3719
3720 do_cleanups (back_to);
3721}
3722
5fb290d7 3723static void
e142c38c
DJ
3724add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
3725 struct dwarf2_cu *cu)
5fb290d7
DJ
3726{
3727 struct function_range *thisfn;
3728
3729 thisfn = (struct function_range *)
7b5a2f43 3730 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
3731 thisfn->name = name;
3732 thisfn->lowpc = lowpc;
3733 thisfn->highpc = highpc;
3734 thisfn->seen_line = 0;
3735 thisfn->next = NULL;
3736
e142c38c
DJ
3737 if (cu->last_fn == NULL)
3738 cu->first_fn = thisfn;
5fb290d7 3739 else
e142c38c 3740 cu->last_fn->next = thisfn;
5fb290d7 3741
e142c38c 3742 cu->last_fn = thisfn;
c906108c
SS
3743}
3744
d389af10
JK
3745/* qsort helper for inherit_abstract_dies. */
3746
3747static int
3748unsigned_int_compar (const void *ap, const void *bp)
3749{
3750 unsigned int a = *(unsigned int *) ap;
3751 unsigned int b = *(unsigned int *) bp;
3752
3753 return (a > b) - (b > a);
3754}
3755
3756/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3757 Inherit only the children of the DW_AT_abstract_origin DIE not being already
3758 referenced by DW_AT_abstract_origin from the children of the current DIE. */
3759
3760static void
3761inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
3762{
3763 struct die_info *child_die;
3764 unsigned die_children_count;
3765 /* CU offsets which were referenced by children of the current DIE. */
3766 unsigned *offsets;
3767 unsigned *offsets_end, *offsetp;
3768 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
3769 struct die_info *origin_die;
3770 /* Iterator of the ORIGIN_DIE children. */
3771 struct die_info *origin_child_die;
3772 struct cleanup *cleanups;
3773 struct attribute *attr;
3774
3775 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
3776 if (!attr)
3777 return;
3778
3779 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
3780 if (die->tag != origin_die->tag
3781 && !(die->tag == DW_TAG_inlined_subroutine
3782 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3783 complaint (&symfile_complaints,
3784 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
3785 die->offset, origin_die->offset);
3786
3787 child_die = die->child;
3788 die_children_count = 0;
3789 while (child_die && child_die->tag)
3790 {
3791 child_die = sibling_die (child_die);
3792 die_children_count++;
3793 }
3794 offsets = xmalloc (sizeof (*offsets) * die_children_count);
3795 cleanups = make_cleanup (xfree, offsets);
3796
3797 offsets_end = offsets;
3798 child_die = die->child;
3799 while (child_die && child_die->tag)
3800 {
c38f313d
DJ
3801 /* For each CHILD_DIE, find the corresponding child of
3802 ORIGIN_DIE. If there is more than one layer of
3803 DW_AT_abstract_origin, follow them all; there shouldn't be,
3804 but GCC versions at least through 4.4 generate this (GCC PR
3805 40573). */
3806 struct die_info *child_origin_die = child_die;
9a619af0 3807
c38f313d
DJ
3808 while (1)
3809 {
3810 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
3811 if (attr == NULL)
3812 break;
3813 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
3814 }
3815
d389af10
JK
3816 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
3817 counterpart may exist. */
c38f313d 3818 if (child_origin_die != child_die)
d389af10 3819 {
edb3359d
DJ
3820 if (child_die->tag != child_origin_die->tag
3821 && !(child_die->tag == DW_TAG_inlined_subroutine
3822 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
3823 complaint (&symfile_complaints,
3824 _("Child DIE 0x%x and its abstract origin 0x%x have "
3825 "different tags"), child_die->offset,
3826 child_origin_die->offset);
c38f313d
DJ
3827 if (child_origin_die->parent != origin_die)
3828 complaint (&symfile_complaints,
3829 _("Child DIE 0x%x and its abstract origin 0x%x have "
3830 "different parents"), child_die->offset,
3831 child_origin_die->offset);
3832 else
3833 *offsets_end++ = child_origin_die->offset;
d389af10
JK
3834 }
3835 child_die = sibling_die (child_die);
3836 }
3837 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
3838 unsigned_int_compar);
3839 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
3840 if (offsetp[-1] == *offsetp)
3841 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
3842 "to DIE 0x%x as their abstract origin"),
3843 die->offset, *offsetp);
3844
3845 offsetp = offsets;
3846 origin_child_die = origin_die->child;
3847 while (origin_child_die && origin_child_die->tag)
3848 {
3849 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
3850 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
3851 offsetp++;
3852 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
3853 {
3854 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
3855 process_die (origin_child_die, cu);
3856 }
3857 origin_child_die = sibling_die (origin_child_die);
3858 }
3859
3860 do_cleanups (cleanups);
3861}
3862
c906108c 3863static void
e7c27a73 3864read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3865{
e7c27a73 3866 struct objfile *objfile = cu->objfile;
52f0bd74 3867 struct context_stack *new;
c906108c
SS
3868 CORE_ADDR lowpc;
3869 CORE_ADDR highpc;
3870 struct die_info *child_die;
edb3359d 3871 struct attribute *attr, *call_line, *call_file;
c906108c 3872 char *name;
e142c38c 3873 CORE_ADDR baseaddr;
801e3a5b 3874 struct block *block;
edb3359d
DJ
3875 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
3876
3877 if (inlined_func)
3878 {
3879 /* If we do not have call site information, we can't show the
3880 caller of this inlined function. That's too confusing, so
3881 only use the scope for local variables. */
3882 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
3883 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
3884 if (call_line == NULL || call_file == NULL)
3885 {
3886 read_lexical_block_scope (die, cu);
3887 return;
3888 }
3889 }
c906108c 3890
e142c38c
DJ
3891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3892
94af9270 3893 name = dwarf2_name (die, cu);
c906108c 3894
e8d05480
JB
3895 /* Ignore functions with missing or empty names. These are actually
3896 illegal according to the DWARF standard. */
3897 if (name == NULL)
3898 {
3899 complaint (&symfile_complaints,
3900 _("missing name for subprogram DIE at %d"), die->offset);
3901 return;
3902 }
3903
3904 /* Ignore functions with missing or invalid low and high pc attributes. */
3905 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
3906 {
3907 complaint (&symfile_complaints,
3908 _("cannot get low and high bounds for subprogram DIE at %d"),
3909 die->offset);
3910 return;
3911 }
c906108c
SS
3912
3913 lowpc += baseaddr;
3914 highpc += baseaddr;
3915
5fb290d7 3916 /* Record the function range for dwarf_decode_lines. */
e142c38c 3917 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 3918
c906108c 3919 new = push_context (0, lowpc);
f792889a 3920 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 3921
4cecd739
DJ
3922 /* If there is a location expression for DW_AT_frame_base, record
3923 it. */
e142c38c 3924 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 3925 if (attr)
c034e007
AC
3926 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
3927 expression is being recorded directly in the function's symbol
3928 and not in a separate frame-base object. I guess this hack is
3929 to avoid adding some sort of frame-base adjunct/annex to the
3930 function's symbol :-(. The problem with doing this is that it
3931 results in a function symbol with a location expression that
3932 has nothing to do with the location of the function, ouch! The
3933 relationship should be: a function's symbol has-a frame base; a
3934 frame-base has-a location expression. */
e7c27a73 3935 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 3936
e142c38c 3937 cu->list_in_scope = &local_symbols;
c906108c 3938
639d11d3 3939 if (die->child != NULL)
c906108c 3940 {
639d11d3 3941 child_die = die->child;
c906108c
SS
3942 while (child_die && child_die->tag)
3943 {
e7c27a73 3944 process_die (child_die, cu);
c906108c
SS
3945 child_die = sibling_die (child_die);
3946 }
3947 }
3948
d389af10
JK
3949 inherit_abstract_dies (die, cu);
3950
4a811a97
UW
3951 /* If we have a DW_AT_specification, we might need to import using
3952 directives from the context of the specification DIE. See the
3953 comment in determine_prefix. */
3954 if (cu->language == language_cplus
3955 && dwarf2_attr (die, DW_AT_specification, cu))
3956 {
3957 struct dwarf2_cu *spec_cu = cu;
3958 struct die_info *spec_die = die_specification (die, &spec_cu);
3959
3960 while (spec_die)
3961 {
3962 child_die = spec_die->child;
3963 while (child_die && child_die->tag)
3964 {
3965 if (child_die->tag == DW_TAG_imported_module)
3966 process_die (child_die, spec_cu);
3967 child_die = sibling_die (child_die);
3968 }
3969
3970 /* In some cases, GCC generates specification DIEs that
3971 themselves contain DW_AT_specification attributes. */
3972 spec_die = die_specification (spec_die, &spec_cu);
3973 }
3974 }
3975
c906108c
SS
3976 new = pop_context ();
3977 /* Make a block for the local symbols within. */
801e3a5b
JB
3978 block = finish_block (new->name, &local_symbols, new->old_blocks,
3979 lowpc, highpc, objfile);
3980
df8a16a1
DJ
3981 /* For C++, set the block's scope. */
3982 if (cu->language == language_cplus)
3983 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 3984 determine_prefix (die, cu),
df8a16a1
DJ
3985 processing_has_namespace_info);
3986
801e3a5b
JB
3987 /* If we have address ranges, record them. */
3988 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3989
3990 /* In C++, we can have functions nested inside functions (e.g., when
3991 a function declares a class that has methods). This means that
3992 when we finish processing a function scope, we may need to go
3993 back to building a containing block's symbol lists. */
3994 local_symbols = new->locals;
3995 param_symbols = new->params;
27aa8d6a 3996 using_directives = new->using_directives;
208d8187 3997
921e78cf
JB
3998 /* If we've finished processing a top-level function, subsequent
3999 symbols go in the file symbol list. */
4000 if (outermost_context_p ())
e142c38c 4001 cu->list_in_scope = &file_symbols;
c906108c
SS
4002}
4003
4004/* Process all the DIES contained within a lexical block scope. Start
4005 a new scope, process the dies, and then close the scope. */
4006
4007static void
e7c27a73 4008read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4009{
e7c27a73 4010 struct objfile *objfile = cu->objfile;
52f0bd74 4011 struct context_stack *new;
c906108c
SS
4012 CORE_ADDR lowpc, highpc;
4013 struct die_info *child_die;
e142c38c
DJ
4014 CORE_ADDR baseaddr;
4015
4016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
4017
4018 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
4019 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
4020 as multiple lexical blocks? Handling children in a sane way would
4021 be nasty. Might be easier to properly extend generic blocks to
4022 describe ranges. */
d85a05f0 4023 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
4024 return;
4025 lowpc += baseaddr;
4026 highpc += baseaddr;
4027
4028 push_context (0, lowpc);
639d11d3 4029 if (die->child != NULL)
c906108c 4030 {
639d11d3 4031 child_die = die->child;
c906108c
SS
4032 while (child_die && child_die->tag)
4033 {
e7c27a73 4034 process_die (child_die, cu);
c906108c
SS
4035 child_die = sibling_die (child_die);
4036 }
4037 }
4038 new = pop_context ();
4039
8540c487 4040 if (local_symbols != NULL || using_directives != NULL)
c906108c 4041 {
801e3a5b
JB
4042 struct block *block
4043 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4044 highpc, objfile);
4045
4046 /* Note that recording ranges after traversing children, as we
4047 do here, means that recording a parent's ranges entails
4048 walking across all its children's ranges as they appear in
4049 the address map, which is quadratic behavior.
4050
4051 It would be nicer to record the parent's ranges before
4052 traversing its children, simply overriding whatever you find
4053 there. But since we don't even decide whether to create a
4054 block until after we've traversed its children, that's hard
4055 to do. */
4056 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
4057 }
4058 local_symbols = new->locals;
27aa8d6a 4059 using_directives = new->using_directives;
c906108c
SS
4060}
4061
43039443 4062/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
4063 Return 1 if the attributes are present and valid, otherwise, return 0.
4064 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
4065
4066static int
4067dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
4068 CORE_ADDR *high_return, struct dwarf2_cu *cu,
4069 struct partial_symtab *ranges_pst)
43039443
JK
4070{
4071 struct objfile *objfile = cu->objfile;
4072 struct comp_unit_head *cu_header = &cu->header;
4073 bfd *obfd = objfile->obfd;
4074 unsigned int addr_size = cu_header->addr_size;
4075 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4076 /* Base address selection entry. */
4077 CORE_ADDR base;
4078 int found_base;
4079 unsigned int dummy;
4080 gdb_byte *buffer;
4081 CORE_ADDR marker;
4082 int low_set;
4083 CORE_ADDR low = 0;
4084 CORE_ADDR high = 0;
ff013f42 4085 CORE_ADDR baseaddr;
43039443 4086
d00adf39
DE
4087 found_base = cu->base_known;
4088 base = cu->base_address;
43039443 4089
be391dca 4090 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 4091 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
4092 {
4093 complaint (&symfile_complaints,
4094 _("Offset %d out of bounds for DW_AT_ranges attribute"),
4095 offset);
4096 return 0;
4097 }
dce234bc 4098 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
4099
4100 /* Read in the largest possible address. */
4101 marker = read_address (obfd, buffer, cu, &dummy);
4102 if ((marker & mask) == mask)
4103 {
4104 /* If we found the largest possible address, then
4105 read the base address. */
4106 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4107 buffer += 2 * addr_size;
4108 offset += 2 * addr_size;
4109 found_base = 1;
4110 }
4111
4112 low_set = 0;
4113
e7030f15 4114 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 4115
43039443
JK
4116 while (1)
4117 {
4118 CORE_ADDR range_beginning, range_end;
4119
4120 range_beginning = read_address (obfd, buffer, cu, &dummy);
4121 buffer += addr_size;
4122 range_end = read_address (obfd, buffer, cu, &dummy);
4123 buffer += addr_size;
4124 offset += 2 * addr_size;
4125
4126 /* An end of list marker is a pair of zero addresses. */
4127 if (range_beginning == 0 && range_end == 0)
4128 /* Found the end of list entry. */
4129 break;
4130
4131 /* Each base address selection entry is a pair of 2 values.
4132 The first is the largest possible address, the second is
4133 the base address. Check for a base address here. */
4134 if ((range_beginning & mask) == mask)
4135 {
4136 /* If we found the largest possible address, then
4137 read the base address. */
4138 base = read_address (obfd, buffer + addr_size, cu, &dummy);
4139 found_base = 1;
4140 continue;
4141 }
4142
4143 if (!found_base)
4144 {
4145 /* We have no valid base address for the ranges
4146 data. */
4147 complaint (&symfile_complaints,
4148 _("Invalid .debug_ranges data (no base address)"));
4149 return 0;
4150 }
4151
4152 range_beginning += base;
4153 range_end += base;
4154
ff013f42
JK
4155 if (ranges_pst != NULL && range_beginning < range_end)
4156 addrmap_set_empty (objfile->psymtabs_addrmap,
4157 range_beginning + baseaddr, range_end - 1 + baseaddr,
4158 ranges_pst);
4159
43039443
JK
4160 /* FIXME: This is recording everything as a low-high
4161 segment of consecutive addresses. We should have a
4162 data structure for discontiguous block ranges
4163 instead. */
4164 if (! low_set)
4165 {
4166 low = range_beginning;
4167 high = range_end;
4168 low_set = 1;
4169 }
4170 else
4171 {
4172 if (range_beginning < low)
4173 low = range_beginning;
4174 if (range_end > high)
4175 high = range_end;
4176 }
4177 }
4178
4179 if (! low_set)
4180 /* If the first entry is an end-of-list marker, the range
4181 describes an empty scope, i.e. no instructions. */
4182 return 0;
4183
4184 if (low_return)
4185 *low_return = low;
4186 if (high_return)
4187 *high_return = high;
4188 return 1;
4189}
4190
af34e669
DJ
4191/* Get low and high pc attributes from a die. Return 1 if the attributes
4192 are present and valid, otherwise, return 0. Return -1 if the range is
4193 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 4194static int
af34e669 4195dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
4196 CORE_ADDR *highpc, struct dwarf2_cu *cu,
4197 struct partial_symtab *pst)
c906108c
SS
4198{
4199 struct attribute *attr;
af34e669
DJ
4200 CORE_ADDR low = 0;
4201 CORE_ADDR high = 0;
4202 int ret = 0;
c906108c 4203
e142c38c 4204 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 4205 if (attr)
af34e669
DJ
4206 {
4207 high = DW_ADDR (attr);
e142c38c 4208 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
4209 if (attr)
4210 low = DW_ADDR (attr);
4211 else
4212 /* Found high w/o low attribute. */
4213 return 0;
4214
4215 /* Found consecutive range of addresses. */
4216 ret = 1;
4217 }
c906108c 4218 else
af34e669 4219 {
e142c38c 4220 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
4221 if (attr != NULL)
4222 {
af34e669 4223 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 4224 .debug_ranges section. */
d85a05f0 4225 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 4226 return 0;
43039443 4227 /* Found discontinuous range of addresses. */
af34e669
DJ
4228 ret = -1;
4229 }
4230 }
c906108c
SS
4231
4232 if (high < low)
4233 return 0;
4234
4235 /* When using the GNU linker, .gnu.linkonce. sections are used to
4236 eliminate duplicate copies of functions and vtables and such.
4237 The linker will arbitrarily choose one and discard the others.
4238 The AT_*_pc values for such functions refer to local labels in
4239 these sections. If the section from that file was discarded, the
4240 labels are not in the output, so the relocs get a value of 0.
4241 If this is a discarded function, mark the pc bounds as invalid,
4242 so that GDB will ignore it. */
72dca2f5 4243 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
4244 return 0;
4245
4246 *lowpc = low;
4247 *highpc = high;
af34e669 4248 return ret;
c906108c
SS
4249}
4250
b084d499
JB
4251/* Assuming that DIE represents a subprogram DIE or a lexical block, get
4252 its low and high PC addresses. Do nothing if these addresses could not
4253 be determined. Otherwise, set LOWPC to the low address if it is smaller,
4254 and HIGHPC to the high address if greater than HIGHPC. */
4255
4256static void
4257dwarf2_get_subprogram_pc_bounds (struct die_info *die,
4258 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4259 struct dwarf2_cu *cu)
4260{
4261 CORE_ADDR low, high;
4262 struct die_info *child = die->child;
4263
d85a05f0 4264 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
4265 {
4266 *lowpc = min (*lowpc, low);
4267 *highpc = max (*highpc, high);
4268 }
4269
4270 /* If the language does not allow nested subprograms (either inside
4271 subprograms or lexical blocks), we're done. */
4272 if (cu->language != language_ada)
4273 return;
4274
4275 /* Check all the children of the given DIE. If it contains nested
4276 subprograms, then check their pc bounds. Likewise, we need to
4277 check lexical blocks as well, as they may also contain subprogram
4278 definitions. */
4279 while (child && child->tag)
4280 {
4281 if (child->tag == DW_TAG_subprogram
4282 || child->tag == DW_TAG_lexical_block)
4283 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
4284 child = sibling_die (child);
4285 }
4286}
4287
fae299cd
DC
4288/* Get the low and high pc's represented by the scope DIE, and store
4289 them in *LOWPC and *HIGHPC. If the correct values can't be
4290 determined, set *LOWPC to -1 and *HIGHPC to 0. */
4291
4292static void
4293get_scope_pc_bounds (struct die_info *die,
4294 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4295 struct dwarf2_cu *cu)
4296{
4297 CORE_ADDR best_low = (CORE_ADDR) -1;
4298 CORE_ADDR best_high = (CORE_ADDR) 0;
4299 CORE_ADDR current_low, current_high;
4300
d85a05f0 4301 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
4302 {
4303 best_low = current_low;
4304 best_high = current_high;
4305 }
4306 else
4307 {
4308 struct die_info *child = die->child;
4309
4310 while (child && child->tag)
4311 {
4312 switch (child->tag) {
4313 case DW_TAG_subprogram:
b084d499 4314 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
4315 break;
4316 case DW_TAG_namespace:
4317 /* FIXME: carlton/2004-01-16: Should we do this for
4318 DW_TAG_class_type/DW_TAG_structure_type, too? I think
4319 that current GCC's always emit the DIEs corresponding
4320 to definitions of methods of classes as children of a
4321 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
4322 the DIEs giving the declarations, which could be
4323 anywhere). But I don't see any reason why the
4324 standards says that they have to be there. */
4325 get_scope_pc_bounds (child, &current_low, &current_high, cu);
4326
4327 if (current_low != ((CORE_ADDR) -1))
4328 {
4329 best_low = min (best_low, current_low);
4330 best_high = max (best_high, current_high);
4331 }
4332 break;
4333 default:
4334 /* Ignore. */
4335 break;
4336 }
4337
4338 child = sibling_die (child);
4339 }
4340 }
4341
4342 *lowpc = best_low;
4343 *highpc = best_high;
4344}
4345
801e3a5b
JB
4346/* Record the address ranges for BLOCK, offset by BASEADDR, as given
4347 in DIE. */
4348static void
4349dwarf2_record_block_ranges (struct die_info *die, struct block *block,
4350 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
4351{
4352 struct attribute *attr;
4353
4354 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
4355 if (attr)
4356 {
4357 CORE_ADDR high = DW_ADDR (attr);
9a619af0 4358
801e3a5b
JB
4359 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4360 if (attr)
4361 {
4362 CORE_ADDR low = DW_ADDR (attr);
9a619af0 4363
801e3a5b
JB
4364 record_block_range (block, baseaddr + low, baseaddr + high - 1);
4365 }
4366 }
4367
4368 attr = dwarf2_attr (die, DW_AT_ranges, cu);
4369 if (attr)
4370 {
4371 bfd *obfd = cu->objfile->obfd;
4372
4373 /* The value of the DW_AT_ranges attribute is the offset of the
4374 address range list in the .debug_ranges section. */
4375 unsigned long offset = DW_UNSND (attr);
dce234bc 4376 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
4377
4378 /* For some target architectures, but not others, the
4379 read_address function sign-extends the addresses it returns.
4380 To recognize base address selection entries, we need a
4381 mask. */
4382 unsigned int addr_size = cu->header.addr_size;
4383 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
4384
4385 /* The base address, to which the next pair is relative. Note
4386 that this 'base' is a DWARF concept: most entries in a range
4387 list are relative, to reduce the number of relocs against the
4388 debugging information. This is separate from this function's
4389 'baseaddr' argument, which GDB uses to relocate debugging
4390 information from a shared library based on the address at
4391 which the library was loaded. */
d00adf39
DE
4392 CORE_ADDR base = cu->base_address;
4393 int base_known = cu->base_known;
801e3a5b 4394
be391dca 4395 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 4396 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
4397 {
4398 complaint (&symfile_complaints,
4399 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
4400 offset);
4401 return;
4402 }
4403
4404 for (;;)
4405 {
4406 unsigned int bytes_read;
4407 CORE_ADDR start, end;
4408
4409 start = read_address (obfd, buffer, cu, &bytes_read);
4410 buffer += bytes_read;
4411 end = read_address (obfd, buffer, cu, &bytes_read);
4412 buffer += bytes_read;
4413
4414 /* Did we find the end of the range list? */
4415 if (start == 0 && end == 0)
4416 break;
4417
4418 /* Did we find a base address selection entry? */
4419 else if ((start & base_select_mask) == base_select_mask)
4420 {
4421 base = end;
4422 base_known = 1;
4423 }
4424
4425 /* We found an ordinary address range. */
4426 else
4427 {
4428 if (!base_known)
4429 {
4430 complaint (&symfile_complaints,
4431 _("Invalid .debug_ranges data (no base address)"));
4432 return;
4433 }
4434
4435 record_block_range (block,
4436 baseaddr + base + start,
4437 baseaddr + base + end - 1);
4438 }
4439 }
4440 }
4441}
4442
c906108c
SS
4443/* Add an aggregate field to the field list. */
4444
4445static void
107d2387 4446dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
4447 struct dwarf2_cu *cu)
4448{
4449 struct objfile *objfile = cu->objfile;
5e2b427d 4450 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
4451 struct nextfield *new_field;
4452 struct attribute *attr;
4453 struct field *fp;
4454 char *fieldname = "";
4455
4456 /* Allocate a new field list entry and link it in. */
4457 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 4458 make_cleanup (xfree, new_field);
c906108c 4459 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
4460
4461 if (die->tag == DW_TAG_inheritance)
4462 {
4463 new_field->next = fip->baseclasses;
4464 fip->baseclasses = new_field;
4465 }
4466 else
4467 {
4468 new_field->next = fip->fields;
4469 fip->fields = new_field;
4470 }
c906108c
SS
4471 fip->nfields++;
4472
4473 /* Handle accessibility and virtuality of field.
4474 The default accessibility for members is public, the default
4475 accessibility for inheritance is private. */
4476 if (die->tag != DW_TAG_inheritance)
4477 new_field->accessibility = DW_ACCESS_public;
4478 else
4479 new_field->accessibility = DW_ACCESS_private;
4480 new_field->virtuality = DW_VIRTUALITY_none;
4481
e142c38c 4482 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4483 if (attr)
4484 new_field->accessibility = DW_UNSND (attr);
4485 if (new_field->accessibility != DW_ACCESS_public)
4486 fip->non_public_fields = 1;
e142c38c 4487 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
4488 if (attr)
4489 new_field->virtuality = DW_UNSND (attr);
4490
4491 fp = &new_field->field;
a9a9bd0f 4492
e142c38c 4493 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 4494 {
a9a9bd0f
DC
4495 /* Data member other than a C++ static data member. */
4496
c906108c 4497 /* Get type of field. */
e7c27a73 4498 fp->type = die_type (die, cu);
c906108c 4499
d6a843b5 4500 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 4501
c906108c 4502 /* Get bit size of field (zero if none). */
e142c38c 4503 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
4504 if (attr)
4505 {
4506 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
4507 }
4508 else
4509 {
4510 FIELD_BITSIZE (*fp) = 0;
4511 }
4512
4513 /* Get bit offset of field. */
e142c38c 4514 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
4515 if (attr)
4516 {
d4b96c9a 4517 int byte_offset = 0;
c6a0999f 4518
3690dd37 4519 if (attr_form_is_section_offset (attr))
d4b96c9a 4520 dwarf2_complex_location_expr_complaint ();
3690dd37 4521 else if (attr_form_is_constant (attr))
c6a0999f 4522 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 4523 else if (attr_form_is_block (attr))
c6a0999f 4524 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
4525 else
4526 dwarf2_complex_location_expr_complaint ();
c6a0999f 4527
d6a843b5 4528 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 4529 }
e142c38c 4530 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
4531 if (attr)
4532 {
5e2b427d 4533 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
4534 {
4535 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
4536 additional bit offset from the MSB of the containing
4537 anonymous object to the MSB of the field. We don't
4538 have to do anything special since we don't need to
4539 know the size of the anonymous object. */
c906108c
SS
4540 FIELD_BITPOS (*fp) += DW_UNSND (attr);
4541 }
4542 else
4543 {
4544 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
4545 MSB of the anonymous object, subtract off the number of
4546 bits from the MSB of the field to the MSB of the
4547 object, and then subtract off the number of bits of
4548 the field itself. The result is the bit offset of
4549 the LSB of the field. */
c906108c
SS
4550 int anonymous_size;
4551 int bit_offset = DW_UNSND (attr);
4552
e142c38c 4553 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4554 if (attr)
4555 {
4556 /* The size of the anonymous object containing
4557 the bit field is explicit, so use the
4558 indicated size (in bytes). */
4559 anonymous_size = DW_UNSND (attr);
4560 }
4561 else
4562 {
4563 /* The size of the anonymous object containing
4564 the bit field must be inferred from the type
4565 attribute of the data member containing the
4566 bit field. */
4567 anonymous_size = TYPE_LENGTH (fp->type);
4568 }
4569 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
4570 - bit_offset - FIELD_BITSIZE (*fp);
4571 }
4572 }
4573
4574 /* Get name of field. */
39cbfefa
DJ
4575 fieldname = dwarf2_name (die, cu);
4576 if (fieldname == NULL)
4577 fieldname = "";
d8151005
DJ
4578
4579 /* The name is already allocated along with this objfile, so we don't
4580 need to duplicate it for the type. */
4581 fp->name = fieldname;
c906108c
SS
4582
4583 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 4584 pointer or virtual base class pointer) to private. */
e142c38c 4585 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 4586 {
d48cc9dd 4587 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
4588 new_field->accessibility = DW_ACCESS_private;
4589 fip->non_public_fields = 1;
4590 }
4591 }
a9a9bd0f 4592 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 4593 {
a9a9bd0f
DC
4594 /* C++ static member. */
4595
4596 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
4597 is a declaration, but all versions of G++ as of this writing
4598 (so through at least 3.2.1) incorrectly generate
4599 DW_TAG_variable tags. */
4600
c906108c 4601 char *physname;
c906108c 4602
a9a9bd0f 4603 /* Get name of field. */
39cbfefa
DJ
4604 fieldname = dwarf2_name (die, cu);
4605 if (fieldname == NULL)
c906108c
SS
4606 return;
4607
2df3850c 4608 /* Get physical name. */
94af9270 4609 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 4610
d8151005
DJ
4611 /* The name is already allocated along with this objfile, so we don't
4612 need to duplicate it for the type. */
4613 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 4614 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 4615 FIELD_NAME (*fp) = fieldname;
c906108c
SS
4616 }
4617 else if (die->tag == DW_TAG_inheritance)
4618 {
4619 /* C++ base class field. */
e142c38c 4620 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 4621 if (attr)
d4b96c9a
JK
4622 {
4623 int byte_offset = 0;
4624
4625 if (attr_form_is_section_offset (attr))
4626 dwarf2_complex_location_expr_complaint ();
4627 else if (attr_form_is_constant (attr))
4628 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
4629 else if (attr_form_is_block (attr))
4630 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
4631 else
4632 dwarf2_complex_location_expr_complaint ();
4633
4634 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
4635 }
c906108c 4636 FIELD_BITSIZE (*fp) = 0;
e7c27a73 4637 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
4638 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
4639 fip->nbaseclasses++;
4640 }
4641}
4642
4643/* Create the vector of fields, and attach it to the type. */
4644
4645static void
fba45db2 4646dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4647 struct dwarf2_cu *cu)
c906108c
SS
4648{
4649 int nfields = fip->nfields;
4650
4651 /* Record the field count, allocate space for the array of fields,
4652 and create blank accessibility bitfields if necessary. */
4653 TYPE_NFIELDS (type) = nfields;
4654 TYPE_FIELDS (type) = (struct field *)
4655 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4656 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4657
b4ba55a1 4658 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
4659 {
4660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4661
4662 TYPE_FIELD_PRIVATE_BITS (type) =
4663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4664 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4665
4666 TYPE_FIELD_PROTECTED_BITS (type) =
4667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4668 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4669
4670 TYPE_FIELD_IGNORE_BITS (type) =
4671 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4672 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4673 }
4674
4675 /* If the type has baseclasses, allocate and clear a bit vector for
4676 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 4677 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
4678 {
4679 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 4680 unsigned char *pointer;
c906108c
SS
4681
4682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
4683 pointer = TYPE_ALLOC (type, num_bytes);
4684 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
4685 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
4686 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
4687 }
4688
4689 /* Copy the saved-up fields into the field vector. Start from the head
4690 of the list, adding to the tail of the field array, so that they end
4691 up in the same order in the array in which they were added to the list. */
4692 while (nfields-- > 0)
4693 {
7d0ccb61
DJ
4694 struct nextfield *fieldp;
4695
4696 if (fip->fields)
4697 {
4698 fieldp = fip->fields;
4699 fip->fields = fieldp->next;
4700 }
4701 else
4702 {
4703 fieldp = fip->baseclasses;
4704 fip->baseclasses = fieldp->next;
4705 }
4706
4707 TYPE_FIELD (type, nfields) = fieldp->field;
4708 switch (fieldp->accessibility)
c906108c 4709 {
c5aa993b 4710 case DW_ACCESS_private:
b4ba55a1
JB
4711 if (cu->language != language_ada)
4712 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 4713 break;
c906108c 4714
c5aa993b 4715 case DW_ACCESS_protected:
b4ba55a1
JB
4716 if (cu->language != language_ada)
4717 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 4718 break;
c906108c 4719
c5aa993b
JM
4720 case DW_ACCESS_public:
4721 break;
c906108c 4722
c5aa993b
JM
4723 default:
4724 /* Unknown accessibility. Complain and treat it as public. */
4725 {
e2e0b3e5 4726 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 4727 fieldp->accessibility);
c5aa993b
JM
4728 }
4729 break;
c906108c
SS
4730 }
4731 if (nfields < fip->nbaseclasses)
4732 {
7d0ccb61 4733 switch (fieldp->virtuality)
c906108c 4734 {
c5aa993b
JM
4735 case DW_VIRTUALITY_virtual:
4736 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
4737 if (cu->language == language_ada)
4738 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
4739 SET_TYPE_FIELD_VIRTUAL (type, nfields);
4740 break;
c906108c
SS
4741 }
4742 }
c906108c
SS
4743 }
4744}
4745
c906108c
SS
4746/* Add a member function to the proper fieldlist. */
4747
4748static void
107d2387 4749dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 4750 struct type *type, struct dwarf2_cu *cu)
c906108c 4751{
e7c27a73 4752 struct objfile *objfile = cu->objfile;
c906108c
SS
4753 struct attribute *attr;
4754 struct fnfieldlist *flp;
4755 int i;
4756 struct fn_field *fnp;
4757 char *fieldname;
4758 char *physname;
4759 struct nextfnfield *new_fnfield;
f792889a 4760 struct type *this_type;
c906108c 4761
b4ba55a1
JB
4762 if (cu->language == language_ada)
4763 error ("unexpected member function in Ada type");
4764
2df3850c 4765 /* Get name of member function. */
39cbfefa
DJ
4766 fieldname = dwarf2_name (die, cu);
4767 if (fieldname == NULL)
2df3850c 4768 return;
c906108c 4769
2df3850c 4770 /* Get the mangled name. */
94af9270 4771 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c
SS
4772
4773 /* Look up member function name in fieldlist. */
4774 for (i = 0; i < fip->nfnfields; i++)
4775 {
27bfe10e 4776 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
4777 break;
4778 }
4779
4780 /* Create new list element if necessary. */
4781 if (i < fip->nfnfields)
4782 flp = &fip->fnfieldlists[i];
4783 else
4784 {
4785 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
4786 {
4787 fip->fnfieldlists = (struct fnfieldlist *)
4788 xrealloc (fip->fnfieldlists,
4789 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4790 * sizeof (struct fnfieldlist));
c906108c 4791 if (fip->nfnfields == 0)
c13c43fd 4792 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
4793 }
4794 flp = &fip->fnfieldlists[fip->nfnfields];
4795 flp->name = fieldname;
4796 flp->length = 0;
4797 flp->head = NULL;
4798 fip->nfnfields++;
4799 }
4800
4801 /* Create a new member function field and chain it to the field list
4802 entry. */
4803 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 4804 make_cleanup (xfree, new_fnfield);
c906108c
SS
4805 memset (new_fnfield, 0, sizeof (struct nextfnfield));
4806 new_fnfield->next = flp->head;
4807 flp->head = new_fnfield;
4808 flp->length++;
4809
4810 /* Fill in the member function field info. */
4811 fnp = &new_fnfield->fnfield;
d8151005
DJ
4812 /* The name is already allocated along with this objfile, so we don't
4813 need to duplicate it for the type. */
4814 fnp->physname = physname ? physname : "";
c906108c 4815 fnp->type = alloc_type (objfile);
f792889a
DJ
4816 this_type = read_type_die (die, cu);
4817 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 4818 {
f792889a 4819 int nparams = TYPE_NFIELDS (this_type);
c906108c 4820
f792889a 4821 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
4822 of the method itself (TYPE_CODE_METHOD). */
4823 smash_to_method_type (fnp->type, type,
f792889a
DJ
4824 TYPE_TARGET_TYPE (this_type),
4825 TYPE_FIELDS (this_type),
4826 TYPE_NFIELDS (this_type),
4827 TYPE_VARARGS (this_type));
c906108c
SS
4828
4829 /* Handle static member functions.
c5aa993b
JM
4830 Dwarf2 has no clean way to discern C++ static and non-static
4831 member functions. G++ helps GDB by marking the first
4832 parameter for non-static member functions (which is the
4833 this pointer) as artificial. We obtain this information
4834 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 4835 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
4836 fnp->voffset = VOFFSET_STATIC;
4837 }
4838 else
e2e0b3e5 4839 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 4840 physname);
c906108c
SS
4841
4842 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 4843 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 4844 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
4845
4846 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
4847 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
4848
4849 /* Get accessibility. */
e142c38c 4850 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
4851 if (attr)
4852 {
4853 switch (DW_UNSND (attr))
4854 {
c5aa993b
JM
4855 case DW_ACCESS_private:
4856 fnp->is_private = 1;
4857 break;
4858 case DW_ACCESS_protected:
4859 fnp->is_protected = 1;
4860 break;
c906108c
SS
4861 }
4862 }
4863
b02dede2 4864 /* Check for artificial methods. */
e142c38c 4865 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
4866 if (attr && DW_UNSND (attr) != 0)
4867 fnp->is_artificial = 1;
4868
0d564a31
DJ
4869 /* Get index in virtual function table if it is a virtual member
4870 function. For GCC, this is an offset in the appropriate
4871 virtual table, as specified by DW_AT_containing_type. For
4872 everyone else, it is an expression to be evaluated relative
4873 to the object address. */
4874
e142c38c 4875 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
0d564a31 4876 if (attr && fnp->fcontext)
8e19ed76
PS
4877 {
4878 /* Support the .debug_loc offsets */
4879 if (attr_form_is_block (attr))
4880 {
e7c27a73 4881 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 4882 }
3690dd37 4883 else if (attr_form_is_section_offset (attr))
8e19ed76 4884 {
4d3c2250 4885 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4886 }
4887 else
4888 {
4d3c2250
KB
4889 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
4890 fieldname);
8e19ed76 4891 }
0d564a31
DJ
4892 }
4893 else if (attr)
4894 {
4895 /* We only support trivial expressions here. This hack will work
ba950e4d 4896 for v3 classes, which always start with the vtable pointer. */
0d564a31
DJ
4897 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0
4898 && DW_BLOCK (attr)->data[0] == DW_OP_deref)
4899 {
4900 struct dwarf_block blk;
9a619af0 4901
0d564a31
DJ
4902 blk.size = DW_BLOCK (attr)->size - 1;
4903 blk.data = DW_BLOCK (attr)->data + 1;
ba950e4d
DJ
4904 fnp->voffset = decode_locdesc (&blk, cu);
4905 if ((fnp->voffset % cu->header.addr_size) != 0)
4906 dwarf2_complex_location_expr_complaint ();
4907 else
4908 fnp->voffset /= cu->header.addr_size;
0d564a31
DJ
4909 fnp->voffset += 2;
4910 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
4911 }
4912 else
4913 dwarf2_complex_location_expr_complaint ();
4914 }
d48cc9dd
DJ
4915 else
4916 {
4917 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
4918 if (attr && DW_UNSND (attr))
4919 {
4920 /* GCC does this, as of 2008-08-25; PR debug/37237. */
4921 complaint (&symfile_complaints,
4922 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
4923 fieldname, die->offset);
4924 TYPE_CPLUS_DYNAMIC (type) = 1;
4925 }
4926 }
c906108c
SS
4927}
4928
4929/* Create the vector of member function fields, and attach it to the type. */
4930
4931static void
fba45db2 4932dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 4933 struct dwarf2_cu *cu)
c906108c
SS
4934{
4935 struct fnfieldlist *flp;
4936 int total_length = 0;
4937 int i;
4938
b4ba55a1
JB
4939 if (cu->language == language_ada)
4940 error ("unexpected member functions in Ada type");
4941
c906108c
SS
4942 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4943 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
4944 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
4945
4946 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
4947 {
4948 struct nextfnfield *nfp = flp->head;
4949 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
4950 int k;
4951
4952 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
4953 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
4954 fn_flp->fn_fields = (struct fn_field *)
4955 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
4956 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 4957 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
4958
4959 total_length += flp->length;
4960 }
4961
4962 TYPE_NFN_FIELDS (type) = fip->nfnfields;
4963 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4964}
4965
1168df01
JB
4966/* Returns non-zero if NAME is the name of a vtable member in CU's
4967 language, zero otherwise. */
4968static int
4969is_vtable_name (const char *name, struct dwarf2_cu *cu)
4970{
4971 static const char vptr[] = "_vptr";
987504bb 4972 static const char vtable[] = "vtable";
1168df01 4973
987504bb
JJ
4974 /* Look for the C++ and Java forms of the vtable. */
4975 if ((cu->language == language_java
4976 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
4977 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
4978 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
4979 return 1;
4980
4981 return 0;
4982}
4983
c0dd20ea 4984/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
4985 functions, with the ABI-specified layout. If TYPE describes
4986 such a structure, smash it into a member function type.
61049d3b
DJ
4987
4988 GCC shouldn't do this; it should just output pointer to member DIEs.
4989 This is GCC PR debug/28767. */
c0dd20ea 4990
0b92b5bb
TT
4991static void
4992quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 4993{
0b92b5bb 4994 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
4995
4996 /* Check for a structure with no name and two children. */
0b92b5bb
TT
4997 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
4998 return;
c0dd20ea
DJ
4999
5000 /* Check for __pfn and __delta members. */
0b92b5bb
TT
5001 if (TYPE_FIELD_NAME (type, 0) == NULL
5002 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
5003 || TYPE_FIELD_NAME (type, 1) == NULL
5004 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
5005 return;
c0dd20ea
DJ
5006
5007 /* Find the type of the method. */
0b92b5bb 5008 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
5009 if (pfn_type == NULL
5010 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
5011 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 5012 return;
c0dd20ea
DJ
5013
5014 /* Look for the "this" argument. */
5015 pfn_type = TYPE_TARGET_TYPE (pfn_type);
5016 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 5017 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 5018 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 5019 return;
c0dd20ea
DJ
5020
5021 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
5022 new_type = alloc_type (objfile);
5023 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
5024 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
5025 TYPE_VARARGS (pfn_type));
0b92b5bb 5026 smash_to_methodptr_type (type, new_type);
c0dd20ea 5027}
1168df01 5028
c906108c
SS
5029/* Called when we find the DIE that starts a structure or union scope
5030 (definition) to process all dies that define the members of the
5031 structure or union.
5032
5033 NOTE: we need to call struct_type regardless of whether or not the
5034 DIE has an at_name attribute, since it might be an anonymous
5035 structure or union. This gets the type entered into our set of
5036 user defined types.
5037
5038 However, if the structure is incomplete (an opaque struct/union)
5039 then suppress creating a symbol table entry for it since gdb only
5040 wants to find the one with the complete definition. Note that if
5041 it is complete, we just call new_symbol, which does it's own
5042 checking about whether the struct/union is anonymous or not (and
5043 suppresses creating a symbol table entry itself). */
5044
f792889a 5045static struct type *
134d01f1 5046read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5047{
e7c27a73 5048 struct objfile *objfile = cu->objfile;
c906108c
SS
5049 struct type *type;
5050 struct attribute *attr;
39cbfefa 5051 char *name;
0114d602 5052 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c 5053
348e048f
DE
5054 /* If the definition of this type lives in .debug_types, read that type.
5055 Don't follow DW_AT_specification though, that will take us back up
5056 the chain and we want to go down. */
5057 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5058 if (attr)
5059 {
5060 struct dwarf2_cu *type_cu = cu;
5061 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5062
348e048f
DE
5063 /* We could just recurse on read_structure_type, but we need to call
5064 get_die_type to ensure only one type for this DIE is created.
5065 This is important, for example, because for c++ classes we need
5066 TYPE_NAME set which is only done by new_symbol. Blech. */
5067 type = read_type_die (type_die, type_cu);
5068 return set_die_type (die, type, cu);
5069 }
5070
c0dd20ea 5071 type = alloc_type (objfile);
c906108c 5072 INIT_CPLUS_SPECIFIC (type);
93311388 5073
39cbfefa
DJ
5074 name = dwarf2_name (die, cu);
5075 if (name != NULL)
c906108c 5076 {
987504bb
JJ
5077 if (cu->language == language_cplus
5078 || cu->language == language_java)
63d06c5c 5079 {
94af9270
KS
5080 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
5081 if (die->tag == DW_TAG_structure_type
5082 || die->tag == DW_TAG_class_type)
5083 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
5084 }
5085 else
5086 {
d8151005
DJ
5087 /* The name is already allocated along with this objfile, so
5088 we don't need to duplicate it for the type. */
94af9270
KS
5089 TYPE_TAG_NAME (type) = (char *) name;
5090 if (die->tag == DW_TAG_class_type)
5091 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 5092 }
c906108c
SS
5093 }
5094
5095 if (die->tag == DW_TAG_structure_type)
5096 {
5097 TYPE_CODE (type) = TYPE_CODE_STRUCT;
5098 }
5099 else if (die->tag == DW_TAG_union_type)
5100 {
5101 TYPE_CODE (type) = TYPE_CODE_UNION;
5102 }
5103 else
5104 {
c906108c
SS
5105 TYPE_CODE (type) = TYPE_CODE_CLASS;
5106 }
5107
0cc2414c
TT
5108 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
5109 TYPE_DECLARED_CLASS (type) = 1;
5110
e142c38c 5111 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5112 if (attr)
5113 {
5114 TYPE_LENGTH (type) = DW_UNSND (attr);
5115 }
5116 else
5117 {
5118 TYPE_LENGTH (type) = 0;
5119 }
5120
876cecd0 5121 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 5122 if (die_is_declaration (die, cu))
876cecd0 5123 TYPE_STUB (type) = 1;
a6c727b2
DJ
5124 else if (attr == NULL && die->child == NULL
5125 && producer_is_realview (cu->producer))
5126 /* RealView does not output the required DW_AT_declaration
5127 on incomplete types. */
5128 TYPE_STUB (type) = 1;
dc718098 5129
b4ba55a1
JB
5130 set_descriptive_type (type, die, cu);
5131
c906108c
SS
5132 /* We need to add the type field to the die immediately so we don't
5133 infinitely recurse when dealing with pointers to the structure
5134 type within the structure itself. */
1c379e20 5135 set_die_type (die, type, cu);
c906108c 5136
e142c38c 5137 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
5138 {
5139 struct field_info fi;
5140 struct die_info *child_die;
c906108c
SS
5141
5142 memset (&fi, 0, sizeof (struct field_info));
5143
639d11d3 5144 child_die = die->child;
c906108c
SS
5145
5146 while (child_die && child_die->tag)
5147 {
a9a9bd0f
DC
5148 if (child_die->tag == DW_TAG_member
5149 || child_die->tag == DW_TAG_variable)
c906108c 5150 {
a9a9bd0f
DC
5151 /* NOTE: carlton/2002-11-05: A C++ static data member
5152 should be a DW_TAG_member that is a declaration, but
5153 all versions of G++ as of this writing (so through at
5154 least 3.2.1) incorrectly generate DW_TAG_variable
5155 tags for them instead. */
e7c27a73 5156 dwarf2_add_field (&fi, child_die, cu);
c906108c 5157 }
8713b1b1 5158 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
5159 {
5160 /* C++ member function. */
e7c27a73 5161 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
5162 }
5163 else if (child_die->tag == DW_TAG_inheritance)
5164 {
5165 /* C++ base class field. */
e7c27a73 5166 dwarf2_add_field (&fi, child_die, cu);
c906108c 5167 }
c906108c
SS
5168 child_die = sibling_die (child_die);
5169 }
5170
5171 /* Attach fields and member functions to the type. */
5172 if (fi.nfields)
e7c27a73 5173 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
5174 if (fi.nfnfields)
5175 {
e7c27a73 5176 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 5177
c5aa993b 5178 /* Get the type which refers to the base class (possibly this
c906108c 5179 class itself) which contains the vtable pointer for the current
0d564a31
DJ
5180 class from the DW_AT_containing_type attribute. This use of
5181 DW_AT_containing_type is a GNU extension. */
c906108c 5182
e142c38c 5183 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 5184 {
e7c27a73 5185 struct type *t = die_containing_type (die, cu);
c906108c
SS
5186
5187 TYPE_VPTR_BASETYPE (type) = t;
5188 if (type == t)
5189 {
c906108c
SS
5190 int i;
5191
5192 /* Our own class provides vtbl ptr. */
5193 for (i = TYPE_NFIELDS (t) - 1;
5194 i >= TYPE_N_BASECLASSES (t);
5195 --i)
5196 {
5197 char *fieldname = TYPE_FIELD_NAME (t, i);
5198
1168df01 5199 if (is_vtable_name (fieldname, cu))
c906108c
SS
5200 {
5201 TYPE_VPTR_FIELDNO (type) = i;
5202 break;
5203 }
5204 }
5205
5206 /* Complain if virtual function table field not found. */
5207 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 5208 complaint (&symfile_complaints,
e2e0b3e5 5209 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
5210 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
5211 "");
c906108c
SS
5212 }
5213 else
5214 {
5215 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
5216 }
5217 }
f6235d4c
EZ
5218 else if (cu->producer
5219 && strncmp (cu->producer,
5220 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
5221 {
5222 /* The IBM XLC compiler does not provide direct indication
5223 of the containing type, but the vtable pointer is
5224 always named __vfp. */
5225
5226 int i;
5227
5228 for (i = TYPE_NFIELDS (type) - 1;
5229 i >= TYPE_N_BASECLASSES (type);
5230 --i)
5231 {
5232 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
5233 {
5234 TYPE_VPTR_FIELDNO (type) = i;
5235 TYPE_VPTR_BASETYPE (type) = type;
5236 break;
5237 }
5238 }
5239 }
c906108c 5240 }
c906108c 5241 }
63d06c5c 5242
0b92b5bb
TT
5243 quirk_gcc_member_function_pointer (type, cu->objfile);
5244
0114d602 5245 do_cleanups (back_to);
f792889a 5246 return type;
c906108c
SS
5247}
5248
134d01f1
DJ
5249static void
5250process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
5251{
90aeadfc 5252 struct die_info *child_die = die->child;
f792889a 5253 struct type *this_type;
c906108c 5254
f792889a
DJ
5255 this_type = get_die_type (die, cu);
5256 if (this_type == NULL)
5257 this_type = read_structure_type (die, cu);
c906108c 5258
90aeadfc
DC
5259 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
5260 snapshots) has been known to create a die giving a declaration
5261 for a class that has, as a child, a die giving a definition for a
5262 nested class. So we have to process our children even if the
5263 current die is a declaration. Normally, of course, a declaration
5264 won't have any children at all. */
134d01f1 5265
90aeadfc
DC
5266 while (child_die != NULL && child_die->tag)
5267 {
5268 if (child_die->tag == DW_TAG_member
5269 || child_die->tag == DW_TAG_variable
5270 || child_die->tag == DW_TAG_inheritance)
134d01f1 5271 {
90aeadfc 5272 /* Do nothing. */
134d01f1 5273 }
90aeadfc
DC
5274 else
5275 process_die (child_die, cu);
134d01f1 5276
90aeadfc 5277 child_die = sibling_die (child_die);
134d01f1
DJ
5278 }
5279
fa4028e9
JB
5280 /* Do not consider external references. According to the DWARF standard,
5281 these DIEs are identified by the fact that they have no byte_size
5282 attribute, and a declaration attribute. */
5283 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
5284 || !die_is_declaration (die, cu))
f792889a 5285 new_symbol (die, this_type, cu);
134d01f1
DJ
5286}
5287
5288/* Given a DW_AT_enumeration_type die, set its type. We do not
5289 complete the type's fields yet, or create any symbols. */
c906108c 5290
f792889a 5291static struct type *
134d01f1 5292read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5293{
e7c27a73 5294 struct objfile *objfile = cu->objfile;
c906108c 5295 struct type *type;
c906108c 5296 struct attribute *attr;
0114d602 5297 const char *name;
134d01f1 5298
348e048f
DE
5299 /* If the definition of this type lives in .debug_types, read that type.
5300 Don't follow DW_AT_specification though, that will take us back up
5301 the chain and we want to go down. */
5302 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
5303 if (attr)
5304 {
5305 struct dwarf2_cu *type_cu = cu;
5306 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 5307
348e048f
DE
5308 type = read_type_die (type_die, type_cu);
5309 return set_die_type (die, type, cu);
5310 }
5311
c906108c
SS
5312 type = alloc_type (objfile);
5313
5314 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 5315 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 5316 if (name != NULL)
0114d602 5317 TYPE_TAG_NAME (type) = (char *) name;
c906108c 5318
e142c38c 5319 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5320 if (attr)
5321 {
5322 TYPE_LENGTH (type) = DW_UNSND (attr);
5323 }
5324 else
5325 {
5326 TYPE_LENGTH (type) = 0;
5327 }
5328
137033e9
JB
5329 /* The enumeration DIE can be incomplete. In Ada, any type can be
5330 declared as private in the package spec, and then defined only
5331 inside the package body. Such types are known as Taft Amendment
5332 Types. When another package uses such a type, an incomplete DIE
5333 may be generated by the compiler. */
02eb380e 5334 if (die_is_declaration (die, cu))
876cecd0 5335 TYPE_STUB (type) = 1;
02eb380e 5336
f792889a 5337 return set_die_type (die, type, cu);
134d01f1
DJ
5338}
5339
5340/* Given a pointer to a die which begins an enumeration, process all
5341 the dies that define the members of the enumeration, and create the
5342 symbol for the enumeration type.
5343
5344 NOTE: We reverse the order of the element list. */
5345
5346static void
5347process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
5348{
134d01f1
DJ
5349 struct die_info *child_die;
5350 struct field *fields;
134d01f1
DJ
5351 struct symbol *sym;
5352 int num_fields;
5353 int unsigned_enum = 1;
39cbfefa 5354 char *name;
f792889a 5355 struct type *this_type;
134d01f1 5356
c906108c
SS
5357 num_fields = 0;
5358 fields = NULL;
f792889a
DJ
5359 this_type = get_die_type (die, cu);
5360 if (this_type == NULL)
5361 this_type = read_enumeration_type (die, cu);
639d11d3 5362 if (die->child != NULL)
c906108c 5363 {
639d11d3 5364 child_die = die->child;
c906108c
SS
5365 while (child_die && child_die->tag)
5366 {
5367 if (child_die->tag != DW_TAG_enumerator)
5368 {
e7c27a73 5369 process_die (child_die, cu);
c906108c
SS
5370 }
5371 else
5372 {
39cbfefa
DJ
5373 name = dwarf2_name (child_die, cu);
5374 if (name)
c906108c 5375 {
f792889a 5376 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
5377 if (SYMBOL_VALUE (sym) < 0)
5378 unsigned_enum = 0;
5379
5380 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
5381 {
5382 fields = (struct field *)
5383 xrealloc (fields,
5384 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5385 * sizeof (struct field));
c906108c
SS
5386 }
5387
3567439c 5388 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 5389 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 5390 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
5391 FIELD_BITSIZE (fields[num_fields]) = 0;
5392
5393 num_fields++;
5394 }
5395 }
5396
5397 child_die = sibling_die (child_die);
5398 }
5399
5400 if (num_fields)
5401 {
f792889a
DJ
5402 TYPE_NFIELDS (this_type) = num_fields;
5403 TYPE_FIELDS (this_type) = (struct field *)
5404 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
5405 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 5406 sizeof (struct field) * num_fields);
b8c9b27d 5407 xfree (fields);
c906108c
SS
5408 }
5409 if (unsigned_enum)
876cecd0 5410 TYPE_UNSIGNED (this_type) = 1;
c906108c 5411 }
134d01f1 5412
f792889a 5413 new_symbol (die, this_type, cu);
c906108c
SS
5414}
5415
5416/* Extract all information from a DW_TAG_array_type DIE and put it in
5417 the DIE's type field. For now, this only handles one dimensional
5418 arrays. */
5419
f792889a 5420static struct type *
e7c27a73 5421read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5422{
e7c27a73 5423 struct objfile *objfile = cu->objfile;
c906108c
SS
5424 struct die_info *child_die;
5425 struct type *type = NULL;
5426 struct type *element_type, *range_type, *index_type;
5427 struct type **range_types = NULL;
5428 struct attribute *attr;
5429 int ndim = 0;
5430 struct cleanup *back_to;
39cbfefa 5431 char *name;
c906108c 5432
e7c27a73 5433 element_type = die_type (die, cu);
c906108c
SS
5434
5435 /* Irix 6.2 native cc creates array types without children for
5436 arrays with unspecified length. */
639d11d3 5437 if (die->child == NULL)
c906108c 5438 {
46bf5051 5439 index_type = objfile_type (objfile)->builtin_int;
c906108c 5440 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
5441 type = create_array_type (NULL, element_type, range_type);
5442 return set_die_type (die, type, cu);
c906108c
SS
5443 }
5444
5445 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 5446 child_die = die->child;
c906108c
SS
5447 while (child_die && child_die->tag)
5448 {
5449 if (child_die->tag == DW_TAG_subrange_type)
5450 {
f792889a 5451 struct type *child_type = read_type_die (child_die, cu);
9a619af0 5452
f792889a 5453 if (child_type != NULL)
a02abb62
JB
5454 {
5455 /* The range type was succesfully read. Save it for
5456 the array type creation. */
5457 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
5458 {
5459 range_types = (struct type **)
5460 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
5461 * sizeof (struct type *));
5462 if (ndim == 0)
5463 make_cleanup (free_current_contents, &range_types);
5464 }
f792889a 5465 range_types[ndim++] = child_type;
a02abb62 5466 }
c906108c
SS
5467 }
5468 child_die = sibling_die (child_die);
5469 }
5470
5471 /* Dwarf2 dimensions are output from left to right, create the
5472 necessary array types in backwards order. */
7ca2d3a3 5473
c906108c 5474 type = element_type;
7ca2d3a3
DL
5475
5476 if (read_array_order (die, cu) == DW_ORD_col_major)
5477 {
5478 int i = 0;
9a619af0 5479
7ca2d3a3
DL
5480 while (i < ndim)
5481 type = create_array_type (NULL, type, range_types[i++]);
5482 }
5483 else
5484 {
5485 while (ndim-- > 0)
5486 type = create_array_type (NULL, type, range_types[ndim]);
5487 }
c906108c 5488
f5f8a009
EZ
5489 /* Understand Dwarf2 support for vector types (like they occur on
5490 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
5491 array type. This is not part of the Dwarf2/3 standard yet, but a
5492 custom vendor extension. The main difference between a regular
5493 array and the vector variant is that vectors are passed by value
5494 to functions. */
e142c38c 5495 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 5496 if (attr)
ea37ba09 5497 make_vector_type (type);
f5f8a009 5498
39cbfefa
DJ
5499 name = dwarf2_name (die, cu);
5500 if (name)
5501 TYPE_NAME (type) = name;
714e295e 5502
b4ba55a1
JB
5503 set_descriptive_type (type, die, cu);
5504
c906108c
SS
5505 do_cleanups (back_to);
5506
5507 /* Install the type in the die. */
f792889a 5508 return set_die_type (die, type, cu);
c906108c
SS
5509}
5510
7ca2d3a3
DL
5511static enum dwarf_array_dim_ordering
5512read_array_order (struct die_info *die, struct dwarf2_cu *cu)
5513{
5514 struct attribute *attr;
5515
5516 attr = dwarf2_attr (die, DW_AT_ordering, cu);
5517
5518 if (attr) return DW_SND (attr);
5519
5520 /*
5521 GNU F77 is a special case, as at 08/2004 array type info is the
5522 opposite order to the dwarf2 specification, but data is still
5523 laid out as per normal fortran.
5524
5525 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
5526 version checking.
5527 */
5528
905e0470
PM
5529 if (cu->language == language_fortran
5530 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
5531 {
5532 return DW_ORD_row_major;
5533 }
5534
5535 switch (cu->language_defn->la_array_ordering)
5536 {
5537 case array_column_major:
5538 return DW_ORD_col_major;
5539 case array_row_major:
5540 default:
5541 return DW_ORD_row_major;
5542 };
5543}
5544
72019c9c
GM
5545/* Extract all information from a DW_TAG_set_type DIE and put it in
5546 the DIE's type field. */
5547
f792889a 5548static struct type *
72019c9c
GM
5549read_set_type (struct die_info *die, struct dwarf2_cu *cu)
5550{
f792889a 5551 struct type *set_type = create_set_type (NULL, die_type (die, cu));
d09039dd 5552 struct attribute *attr = dwarf2_attr (die, DW_AT_byte_size, cu);
f792889a 5553
d09039dd
PM
5554 if (attr)
5555 TYPE_LENGTH (set_type) = DW_UNSND (attr);
f792889a 5556 return set_die_type (die, set_type, cu);
72019c9c 5557}
7ca2d3a3 5558
c906108c
SS
5559/* First cut: install each common block member as a global variable. */
5560
5561static void
e7c27a73 5562read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5563{
5564 struct die_info *child_die;
5565 struct attribute *attr;
5566 struct symbol *sym;
5567 CORE_ADDR base = (CORE_ADDR) 0;
5568
e142c38c 5569 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
5570 if (attr)
5571 {
8e19ed76
PS
5572 /* Support the .debug_loc offsets */
5573 if (attr_form_is_block (attr))
5574 {
e7c27a73 5575 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 5576 }
3690dd37 5577 else if (attr_form_is_section_offset (attr))
8e19ed76 5578 {
4d3c2250 5579 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5580 }
5581 else
5582 {
4d3c2250
KB
5583 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5584 "common block member");
8e19ed76 5585 }
c906108c 5586 }
639d11d3 5587 if (die->child != NULL)
c906108c 5588 {
639d11d3 5589 child_die = die->child;
c906108c
SS
5590 while (child_die && child_die->tag)
5591 {
e7c27a73 5592 sym = new_symbol (child_die, NULL, cu);
e142c38c 5593 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
5594 if (attr)
5595 {
d4b96c9a
JK
5596 CORE_ADDR byte_offset = 0;
5597
5598 if (attr_form_is_section_offset (attr))
5599 dwarf2_complex_location_expr_complaint ();
5600 else if (attr_form_is_constant (attr))
5601 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5602 else if (attr_form_is_block (attr))
5603 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5604 else
5605 dwarf2_complex_location_expr_complaint ();
5606
5607 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
5608 add_symbol_to_list (sym, &global_symbols);
5609 }
5610 child_die = sibling_die (child_die);
5611 }
5612 }
5613}
5614
0114d602 5615/* Create a type for a C++ namespace. */
d9fa45fe 5616
0114d602
DJ
5617static struct type *
5618read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 5619{
e7c27a73 5620 struct objfile *objfile = cu->objfile;
0114d602 5621 const char *previous_prefix, *name;
9219021c 5622 int is_anonymous;
0114d602
DJ
5623 struct type *type;
5624
5625 /* For extensions, reuse the type of the original namespace. */
5626 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
5627 {
5628 struct die_info *ext_die;
5629 struct dwarf2_cu *ext_cu = cu;
9a619af0 5630
0114d602
DJ
5631 ext_die = dwarf2_extension (die, &ext_cu);
5632 type = read_type_die (ext_die, ext_cu);
5633 return set_die_type (die, type, cu);
5634 }
9219021c 5635
e142c38c 5636 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
5637
5638 /* Now build the name of the current namespace. */
5639
0114d602
DJ
5640 previous_prefix = determine_prefix (die, cu);
5641 if (previous_prefix[0] != '\0')
5642 name = typename_concat (&objfile->objfile_obstack,
5643 previous_prefix, name, cu);
5644
5645 /* Create the type. */
5646 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
5647 objfile);
5648 TYPE_NAME (type) = (char *) name;
5649 TYPE_TAG_NAME (type) = TYPE_NAME (type);
5650
60531b24 5651 return set_die_type (die, type, cu);
0114d602
DJ
5652}
5653
5654/* Read a C++ namespace. */
5655
5656static void
5657read_namespace (struct die_info *die, struct dwarf2_cu *cu)
5658{
5659 struct objfile *objfile = cu->objfile;
5660 const char *name;
5661 int is_anonymous;
9219021c 5662
5c4e30ca
DC
5663 /* Add a symbol associated to this if we haven't seen the namespace
5664 before. Also, add a using directive if it's an anonymous
5665 namespace. */
9219021c 5666
f2f0e013 5667 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
5668 {
5669 struct type *type;
5670
0114d602 5671 type = read_type_die (die, cu);
e7c27a73 5672 new_symbol (die, type, cu);
5c4e30ca 5673
0114d602 5674 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 5675 if (is_anonymous)
0114d602
DJ
5676 {
5677 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 5678
c0cc3a76 5679 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 5680 NULL, &objfile->objfile_obstack);
0114d602 5681 }
5c4e30ca 5682 }
9219021c 5683
639d11d3 5684 if (die->child != NULL)
d9fa45fe 5685 {
639d11d3 5686 struct die_info *child_die = die->child;
d9fa45fe
DC
5687
5688 while (child_die && child_die->tag)
5689 {
e7c27a73 5690 process_die (child_die, cu);
d9fa45fe
DC
5691 child_die = sibling_die (child_die);
5692 }
5693 }
38d518c9
EZ
5694}
5695
5d7cb8df
JK
5696/* Read a Fortran module. */
5697
5698static void
5699read_module (struct die_info *die, struct dwarf2_cu *cu)
5700{
5701 struct die_info *child_die = die->child;
5702
5703 /* FIXME: Support the separate Fortran module namespaces. */
5704
5705 while (child_die && child_die->tag)
5706 {
5707 process_die (child_die, cu);
5708 child_die = sibling_die (child_die);
5709 }
5710}
5711
38d518c9
EZ
5712/* Return the name of the namespace represented by DIE. Set
5713 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
5714 namespace. */
5715
5716static const char *
e142c38c 5717namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
5718{
5719 struct die_info *current_die;
5720 const char *name = NULL;
5721
5722 /* Loop through the extensions until we find a name. */
5723
5724 for (current_die = die;
5725 current_die != NULL;
f2f0e013 5726 current_die = dwarf2_extension (die, &cu))
38d518c9 5727 {
e142c38c 5728 name = dwarf2_name (current_die, cu);
38d518c9
EZ
5729 if (name != NULL)
5730 break;
5731 }
5732
5733 /* Is it an anonymous namespace? */
5734
5735 *is_anonymous = (name == NULL);
5736 if (*is_anonymous)
5737 name = "(anonymous namespace)";
5738
5739 return name;
d9fa45fe
DC
5740}
5741
c906108c
SS
5742/* Extract all information from a DW_TAG_pointer_type DIE and add to
5743 the user defined type vector. */
5744
f792889a 5745static struct type *
e7c27a73 5746read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5747{
5e2b427d 5748 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 5749 struct comp_unit_head *cu_header = &cu->header;
c906108c 5750 struct type *type;
8b2dbe47
KB
5751 struct attribute *attr_byte_size;
5752 struct attribute *attr_address_class;
5753 int byte_size, addr_class;
c906108c 5754
e7c27a73 5755 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 5756
e142c38c 5757 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
5758 if (attr_byte_size)
5759 byte_size = DW_UNSND (attr_byte_size);
c906108c 5760 else
8b2dbe47
KB
5761 byte_size = cu_header->addr_size;
5762
e142c38c 5763 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
5764 if (attr_address_class)
5765 addr_class = DW_UNSND (attr_address_class);
5766 else
5767 addr_class = DW_ADDR_none;
5768
5769 /* If the pointer size or address class is different than the
5770 default, create a type variant marked as such and set the
5771 length accordingly. */
5772 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 5773 {
5e2b427d 5774 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
5775 {
5776 int type_flags;
5777
849957d9 5778 type_flags = gdbarch_address_class_type_flags
5e2b427d 5779 (gdbarch, byte_size, addr_class);
876cecd0
TT
5780 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5781 == 0);
8b2dbe47
KB
5782 type = make_type_with_address_space (type, type_flags);
5783 }
5784 else if (TYPE_LENGTH (type) != byte_size)
5785 {
e2e0b3e5 5786 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47 5787 }
9a619af0
MS
5788 else
5789 {
5790 /* Should we also complain about unhandled address classes? */
5791 }
c906108c 5792 }
8b2dbe47
KB
5793
5794 TYPE_LENGTH (type) = byte_size;
f792889a 5795 return set_die_type (die, type, cu);
c906108c
SS
5796}
5797
5798/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
5799 the user defined type vector. */
5800
f792889a 5801static struct type *
e7c27a73 5802read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5803{
5804 struct type *type;
5805 struct type *to_type;
5806 struct type *domain;
5807
e7c27a73
DJ
5808 to_type = die_type (die, cu);
5809 domain = die_containing_type (die, cu);
0d5de010
DJ
5810
5811 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
5812 type = lookup_methodptr_type (to_type);
5813 else
5814 type = lookup_memberptr_type (to_type, domain);
c906108c 5815
f792889a 5816 return set_die_type (die, type, cu);
c906108c
SS
5817}
5818
5819/* Extract all information from a DW_TAG_reference_type DIE and add to
5820 the user defined type vector. */
5821
f792889a 5822static struct type *
e7c27a73 5823read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5824{
e7c27a73 5825 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5826 struct type *type;
5827 struct attribute *attr;
5828
e7c27a73 5829 type = lookup_reference_type (die_type (die, cu));
e142c38c 5830 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5831 if (attr)
5832 {
5833 TYPE_LENGTH (type) = DW_UNSND (attr);
5834 }
5835 else
5836 {
107d2387 5837 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 5838 }
f792889a 5839 return set_die_type (die, type, cu);
c906108c
SS
5840}
5841
f792889a 5842static struct type *
e7c27a73 5843read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5844{
f792889a 5845 struct type *base_type, *cv_type;
c906108c 5846
e7c27a73 5847 base_type = die_type (die, cu);
f792889a
DJ
5848 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
5849 return set_die_type (die, cv_type, cu);
c906108c
SS
5850}
5851
f792889a 5852static struct type *
e7c27a73 5853read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5854{
f792889a 5855 struct type *base_type, *cv_type;
c906108c 5856
e7c27a73 5857 base_type = die_type (die, cu);
f792889a
DJ
5858 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
5859 return set_die_type (die, cv_type, cu);
c906108c
SS
5860}
5861
5862/* Extract all information from a DW_TAG_string_type DIE and add to
5863 the user defined type vector. It isn't really a user defined type,
5864 but it behaves like one, with other DIE's using an AT_user_def_type
5865 attribute to reference it. */
5866
f792889a 5867static struct type *
e7c27a73 5868read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5869{
e7c27a73 5870 struct objfile *objfile = cu->objfile;
3b7538c0 5871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
5872 struct type *type, *range_type, *index_type, *char_type;
5873 struct attribute *attr;
5874 unsigned int length;
5875
e142c38c 5876 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
5877 if (attr)
5878 {
5879 length = DW_UNSND (attr);
5880 }
5881 else
5882 {
b21b22e0 5883 /* check for the DW_AT_byte_size attribute */
e142c38c 5884 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
5885 if (attr)
5886 {
5887 length = DW_UNSND (attr);
5888 }
5889 else
5890 {
5891 length = 1;
5892 }
c906108c 5893 }
6ccb9162 5894
46bf5051 5895 index_type = objfile_type (objfile)->builtin_int;
c906108c 5896 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
5897 char_type = language_string_char_type (cu->language_defn, gdbarch);
5898 type = create_string_type (NULL, char_type, range_type);
6ccb9162 5899
f792889a 5900 return set_die_type (die, type, cu);
c906108c
SS
5901}
5902
5903/* Handle DIES due to C code like:
5904
5905 struct foo
c5aa993b
JM
5906 {
5907 int (*funcp)(int a, long l);
5908 int b;
5909 };
c906108c
SS
5910
5911 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 5912 */
c906108c 5913
f792889a 5914static struct type *
e7c27a73 5915read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
5916{
5917 struct type *type; /* Type that this function returns */
5918 struct type *ftype; /* Function that returns above type */
5919 struct attribute *attr;
5920
e7c27a73 5921 type = die_type (die, cu);
0c8b41f1 5922 ftype = lookup_function_type (type);
c906108c 5923
5b8101ae 5924 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 5925 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 5926 if ((attr && (DW_UNSND (attr) != 0))
987504bb 5927 || cu->language == language_cplus
5b8101ae
PM
5928 || cu->language == language_java
5929 || cu->language == language_pascal)
876cecd0 5930 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
5931 else if (producer_is_realview (cu->producer))
5932 /* RealView does not emit DW_AT_prototyped. We can not
5933 distinguish prototyped and unprototyped functions; default to
5934 prototyped, since that is more common in modern code (and
5935 RealView warns about unprototyped functions). */
5936 TYPE_PROTOTYPED (ftype) = 1;
c906108c 5937
c055b101
CV
5938 /* Store the calling convention in the type if it's available in
5939 the subroutine die. Otherwise set the calling convention to
5940 the default value DW_CC_normal. */
5941 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
5942 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
5943
5944 /* We need to add the subroutine type to the die immediately so
5945 we don't infinitely recurse when dealing with parameters
5946 declared as the same subroutine type. */
5947 set_die_type (die, ftype, cu);
c055b101 5948
639d11d3 5949 if (die->child != NULL)
c906108c 5950 {
8072405b 5951 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 5952 struct die_info *child_die;
8072405b 5953 int nparams, iparams;
c906108c
SS
5954
5955 /* Count the number of parameters.
5956 FIXME: GDB currently ignores vararg functions, but knows about
5957 vararg member functions. */
8072405b 5958 nparams = 0;
639d11d3 5959 child_die = die->child;
c906108c
SS
5960 while (child_die && child_die->tag)
5961 {
5962 if (child_die->tag == DW_TAG_formal_parameter)
5963 nparams++;
5964 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 5965 TYPE_VARARGS (ftype) = 1;
c906108c
SS
5966 child_die = sibling_die (child_die);
5967 }
5968
5969 /* Allocate storage for parameters and fill them in. */
5970 TYPE_NFIELDS (ftype) = nparams;
5971 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 5972 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 5973
8072405b
JK
5974 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
5975 even if we error out during the parameters reading below. */
5976 for (iparams = 0; iparams < nparams; iparams++)
5977 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
5978
5979 iparams = 0;
639d11d3 5980 child_die = die->child;
c906108c
SS
5981 while (child_die && child_die->tag)
5982 {
5983 if (child_die->tag == DW_TAG_formal_parameter)
5984 {
5985 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
5986 member functions. G++ helps GDB by marking the first
5987 parameter for non-static member functions (which is the
5988 this pointer) as artificial. We pass this information
5989 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 5990 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
5991 if (attr)
5992 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
5993 else
418835cc
KS
5994 {
5995 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
5996
5997 /* GCC/43521: In java, the formal parameter
5998 "this" is sometimes not marked with DW_AT_artificial. */
5999 if (cu->language == language_java)
6000 {
6001 const char *name = dwarf2_name (child_die, cu);
9a619af0 6002
418835cc
KS
6003 if (name && !strcmp (name, "this"))
6004 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
6005 }
6006 }
e7c27a73 6007 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
6008 iparams++;
6009 }
6010 child_die = sibling_die (child_die);
6011 }
6012 }
6013
76c10ea2 6014 return ftype;
c906108c
SS
6015}
6016
f792889a 6017static struct type *
e7c27a73 6018read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6019{
e7c27a73 6020 struct objfile *objfile = cu->objfile;
0114d602 6021 const char *name = NULL;
f792889a 6022 struct type *this_type;
c906108c 6023
94af9270 6024 name = dwarf2_full_name (NULL, die, cu);
f792889a 6025 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
6026 TYPE_FLAG_TARGET_STUB, NULL, objfile);
6027 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
6028 set_die_type (die, this_type, cu);
6029 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
6030 return this_type;
c906108c
SS
6031}
6032
6033/* Find a representation of a given base type and install
6034 it in the TYPE field of the die. */
6035
f792889a 6036static struct type *
e7c27a73 6037read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6038{
e7c27a73 6039 struct objfile *objfile = cu->objfile;
c906108c
SS
6040 struct type *type;
6041 struct attribute *attr;
6042 int encoding = 0, size = 0;
39cbfefa 6043 char *name;
6ccb9162
UW
6044 enum type_code code = TYPE_CODE_INT;
6045 int type_flags = 0;
6046 struct type *target_type = NULL;
c906108c 6047
e142c38c 6048 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
6049 if (attr)
6050 {
6051 encoding = DW_UNSND (attr);
6052 }
e142c38c 6053 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6054 if (attr)
6055 {
6056 size = DW_UNSND (attr);
6057 }
39cbfefa 6058 name = dwarf2_name (die, cu);
6ccb9162 6059 if (!name)
c906108c 6060 {
6ccb9162
UW
6061 complaint (&symfile_complaints,
6062 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 6063 }
6ccb9162
UW
6064
6065 switch (encoding)
c906108c 6066 {
6ccb9162
UW
6067 case DW_ATE_address:
6068 /* Turn DW_ATE_address into a void * pointer. */
6069 code = TYPE_CODE_PTR;
6070 type_flags |= TYPE_FLAG_UNSIGNED;
6071 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
6072 break;
6073 case DW_ATE_boolean:
6074 code = TYPE_CODE_BOOL;
6075 type_flags |= TYPE_FLAG_UNSIGNED;
6076 break;
6077 case DW_ATE_complex_float:
6078 code = TYPE_CODE_COMPLEX;
6079 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
6080 break;
6081 case DW_ATE_decimal_float:
6082 code = TYPE_CODE_DECFLOAT;
6083 break;
6084 case DW_ATE_float:
6085 code = TYPE_CODE_FLT;
6086 break;
6087 case DW_ATE_signed:
6088 break;
6089 case DW_ATE_unsigned:
6090 type_flags |= TYPE_FLAG_UNSIGNED;
6091 break;
6092 case DW_ATE_signed_char:
868a0084
PM
6093 if (cu->language == language_ada || cu->language == language_m2
6094 || cu->language == language_pascal)
6ccb9162
UW
6095 code = TYPE_CODE_CHAR;
6096 break;
6097 case DW_ATE_unsigned_char:
868a0084
PM
6098 if (cu->language == language_ada || cu->language == language_m2
6099 || cu->language == language_pascal)
6ccb9162
UW
6100 code = TYPE_CODE_CHAR;
6101 type_flags |= TYPE_FLAG_UNSIGNED;
6102 break;
6103 default:
6104 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
6105 dwarf_type_encoding_name (encoding));
6106 break;
c906108c 6107 }
6ccb9162 6108
0114d602
DJ
6109 type = init_type (code, size, type_flags, NULL, objfile);
6110 TYPE_NAME (type) = name;
6ccb9162
UW
6111 TYPE_TARGET_TYPE (type) = target_type;
6112
0114d602 6113 if (name && strcmp (name, "char") == 0)
876cecd0 6114 TYPE_NOSIGN (type) = 1;
0114d602 6115
f792889a 6116 return set_die_type (die, type, cu);
c906108c
SS
6117}
6118
a02abb62
JB
6119/* Read the given DW_AT_subrange DIE. */
6120
f792889a 6121static struct type *
a02abb62
JB
6122read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
6123{
5e2b427d 6124 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
6125 struct type *base_type;
6126 struct type *range_type;
6127 struct attribute *attr;
43bbcdc2
PH
6128 LONGEST low = 0;
6129 LONGEST high = -1;
39cbfefa 6130 char *name;
43bbcdc2 6131 LONGEST negative_mask;
a02abb62 6132
a02abb62 6133 base_type = die_type (die, cu);
3d1f72c2 6134 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
6135 {
6136 complaint (&symfile_complaints,
e2e0b3e5 6137 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 6138 base_type
5e2b427d 6139 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (gdbarch) / 8,
6ccb9162 6140 0, NULL, cu->objfile);
a02abb62
JB
6141 }
6142
e142c38c 6143 if (cu->language == language_fortran)
a02abb62
JB
6144 {
6145 /* FORTRAN implies a lower bound of 1, if not given. */
6146 low = 1;
6147 }
6148
dd5e6932
DJ
6149 /* FIXME: For variable sized arrays either of these could be
6150 a variable rather than a constant value. We'll allow it,
6151 but we don't know how to handle it. */
e142c38c 6152 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
6153 if (attr)
6154 low = dwarf2_get_attr_constant_value (attr, 0);
6155
e142c38c 6156 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
6157 if (attr)
6158 {
6159 if (attr->form == DW_FORM_block1)
6160 {
6161 /* GCC encodes arrays with unspecified or dynamic length
6162 with a DW_FORM_block1 attribute.
6163 FIXME: GDB does not yet know how to handle dynamic
6164 arrays properly, treat them as arrays with unspecified
6165 length for now.
6166
6167 FIXME: jimb/2003-09-22: GDB does not really know
6168 how to handle arrays of unspecified length
6169 either; we just represent them as zero-length
6170 arrays. Choose an appropriate upper bound given
6171 the lower bound we've computed above. */
6172 high = low - 1;
6173 }
6174 else
6175 high = dwarf2_get_attr_constant_value (attr, 1);
6176 }
6177
43bbcdc2
PH
6178 negative_mask =
6179 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
6180 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
6181 low |= negative_mask;
6182 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
6183 high |= negative_mask;
6184
a02abb62
JB
6185 range_type = create_range_type (NULL, base_type, low, high);
6186
bbb0eef6
JK
6187 /* Mark arrays with dynamic length at least as an array of unspecified
6188 length. GDB could check the boundary but before it gets implemented at
6189 least allow accessing the array elements. */
6190 if (attr && attr->form == DW_FORM_block1)
6191 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
6192
39cbfefa
DJ
6193 name = dwarf2_name (die, cu);
6194 if (name)
6195 TYPE_NAME (range_type) = name;
a02abb62 6196
e142c38c 6197 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
6198 if (attr)
6199 TYPE_LENGTH (range_type) = DW_UNSND (attr);
6200
b4ba55a1
JB
6201 set_descriptive_type (range_type, die, cu);
6202
f792889a 6203 return set_die_type (die, range_type, cu);
a02abb62
JB
6204}
6205
f792889a 6206static struct type *
81a17f79
JB
6207read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
6208{
6209 struct type *type;
81a17f79 6210
81a17f79
JB
6211 /* For now, we only support the C meaning of an unspecified type: void. */
6212
0114d602
DJ
6213 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
6214 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 6215
f792889a 6216 return set_die_type (die, type, cu);
81a17f79 6217}
a02abb62 6218
51545339
DJ
6219/* Trivial hash function for die_info: the hash value of a DIE
6220 is its offset in .debug_info for this objfile. */
6221
6222static hashval_t
6223die_hash (const void *item)
6224{
6225 const struct die_info *die = item;
9a619af0 6226
51545339
DJ
6227 return die->offset;
6228}
6229
6230/* Trivial comparison function for die_info structures: two DIEs
6231 are equal if they have the same offset. */
6232
6233static int
6234die_eq (const void *item_lhs, const void *item_rhs)
6235{
6236 const struct die_info *die_lhs = item_lhs;
6237 const struct die_info *die_rhs = item_rhs;
9a619af0 6238
51545339
DJ
6239 return die_lhs->offset == die_rhs->offset;
6240}
6241
c906108c
SS
6242/* Read a whole compilation unit into a linked list of dies. */
6243
f9aca02d 6244static struct die_info *
93311388 6245read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 6246{
93311388
DE
6247 struct die_reader_specs reader_specs;
6248
348e048f 6249 gdb_assert (cu->die_hash == NULL);
51545339
DJ
6250 cu->die_hash
6251 = htab_create_alloc_ex (cu->header.length / 12,
6252 die_hash,
6253 die_eq,
6254 NULL,
6255 &cu->comp_unit_obstack,
6256 hashtab_obstack_allocate,
6257 dummy_obstack_deallocate);
6258
93311388
DE
6259 init_cu_die_reader (&reader_specs, cu);
6260
6261 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
6262}
6263
d97bc12b
DE
6264/* Main entry point for reading a DIE and all children.
6265 Read the DIE and dump it if requested. */
6266
6267static struct die_info *
93311388
DE
6268read_die_and_children (const struct die_reader_specs *reader,
6269 gdb_byte *info_ptr,
d97bc12b
DE
6270 gdb_byte **new_info_ptr,
6271 struct die_info *parent)
6272{
93311388 6273 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
6274 new_info_ptr, parent);
6275
6276 if (dwarf2_die_debug)
6277 {
348e048f
DE
6278 fprintf_unfiltered (gdb_stdlog,
6279 "\nRead die from %s of %s:\n",
6280 reader->buffer == dwarf2_per_objfile->info.buffer
6281 ? ".debug_info"
6282 : reader->buffer == dwarf2_per_objfile->types.buffer
6283 ? ".debug_types"
6284 : "unknown section",
6285 reader->abfd->filename);
d97bc12b
DE
6286 dump_die (result, dwarf2_die_debug);
6287 }
6288
6289 return result;
6290}
6291
639d11d3
DC
6292/* Read a single die and all its descendents. Set the die's sibling
6293 field to NULL; set other fields in the die correctly, and set all
6294 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
6295 location of the info_ptr after reading all of those dies. PARENT
6296 is the parent of the die in question. */
6297
6298static struct die_info *
93311388
DE
6299read_die_and_children_1 (const struct die_reader_specs *reader,
6300 gdb_byte *info_ptr,
d97bc12b
DE
6301 gdb_byte **new_info_ptr,
6302 struct die_info *parent)
639d11d3
DC
6303{
6304 struct die_info *die;
fe1b8b76 6305 gdb_byte *cur_ptr;
639d11d3
DC
6306 int has_children;
6307
93311388 6308 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
6309 if (die == NULL)
6310 {
6311 *new_info_ptr = cur_ptr;
6312 return NULL;
6313 }
93311388 6314 store_in_ref_table (die, reader->cu);
639d11d3
DC
6315
6316 if (has_children)
348e048f 6317 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
6318 else
6319 {
6320 die->child = NULL;
6321 *new_info_ptr = cur_ptr;
6322 }
6323
6324 die->sibling = NULL;
6325 die->parent = parent;
6326 return die;
6327}
6328
6329/* Read a die, all of its descendents, and all of its siblings; set
6330 all of the fields of all of the dies correctly. Arguments are as
6331 in read_die_and_children. */
6332
6333static struct die_info *
93311388
DE
6334read_die_and_siblings (const struct die_reader_specs *reader,
6335 gdb_byte *info_ptr,
fe1b8b76 6336 gdb_byte **new_info_ptr,
639d11d3
DC
6337 struct die_info *parent)
6338{
6339 struct die_info *first_die, *last_sibling;
fe1b8b76 6340 gdb_byte *cur_ptr;
639d11d3 6341
c906108c 6342 cur_ptr = info_ptr;
639d11d3
DC
6343 first_die = last_sibling = NULL;
6344
6345 while (1)
c906108c 6346 {
639d11d3 6347 struct die_info *die
93311388 6348 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 6349
1d325ec1 6350 if (die == NULL)
c906108c 6351 {
639d11d3
DC
6352 *new_info_ptr = cur_ptr;
6353 return first_die;
c906108c 6354 }
1d325ec1
DJ
6355
6356 if (!first_die)
6357 first_die = die;
c906108c 6358 else
1d325ec1
DJ
6359 last_sibling->sibling = die;
6360
6361 last_sibling = die;
c906108c 6362 }
c906108c
SS
6363}
6364
93311388
DE
6365/* Read the die from the .debug_info section buffer. Set DIEP to
6366 point to a newly allocated die with its information, except for its
6367 child, sibling, and parent fields. Set HAS_CHILDREN to tell
6368 whether the die has children or not. */
6369
6370static gdb_byte *
6371read_full_die (const struct die_reader_specs *reader,
6372 struct die_info **diep, gdb_byte *info_ptr,
6373 int *has_children)
6374{
6375 unsigned int abbrev_number, bytes_read, i, offset;
6376 struct abbrev_info *abbrev;
6377 struct die_info *die;
6378 struct dwarf2_cu *cu = reader->cu;
6379 bfd *abfd = reader->abfd;
6380
6381 offset = info_ptr - reader->buffer;
6382 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6383 info_ptr += bytes_read;
6384 if (!abbrev_number)
6385 {
6386 *diep = NULL;
6387 *has_children = 0;
6388 return info_ptr;
6389 }
6390
6391 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
6392 if (!abbrev)
348e048f
DE
6393 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
6394 abbrev_number,
6395 bfd_get_filename (abfd));
6396
93311388
DE
6397 die = dwarf_alloc_die (cu, abbrev->num_attrs);
6398 die->offset = offset;
6399 die->tag = abbrev->tag;
6400 die->abbrev = abbrev_number;
6401
6402 die->num_attrs = abbrev->num_attrs;
6403
6404 for (i = 0; i < abbrev->num_attrs; ++i)
6405 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
6406 abfd, info_ptr, cu);
6407
6408 *diep = die;
6409 *has_children = abbrev->has_children;
6410 return info_ptr;
6411}
6412
c906108c
SS
6413/* In DWARF version 2, the description of the debugging information is
6414 stored in a separate .debug_abbrev section. Before we read any
6415 dies from a section we read in all abbreviations and install them
72bf9492
DJ
6416 in a hash table. This function also sets flags in CU describing
6417 the data found in the abbrev table. */
c906108c
SS
6418
6419static void
e7c27a73 6420dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 6421{
e7c27a73 6422 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 6423 gdb_byte *abbrev_ptr;
c906108c
SS
6424 struct abbrev_info *cur_abbrev;
6425 unsigned int abbrev_number, bytes_read, abbrev_name;
6426 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
6427 struct attr_abbrev *cur_attrs;
6428 unsigned int allocated_attrs;
c906108c 6429
57349743 6430 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
6431 obstack_init (&cu->abbrev_obstack);
6432 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
6433 (ABBREV_HASH_SIZE
6434 * sizeof (struct abbrev_info *)));
6435 memset (cu->dwarf2_abbrevs, 0,
6436 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 6437
be391dca
TT
6438 dwarf2_read_section (dwarf2_per_objfile->objfile,
6439 &dwarf2_per_objfile->abbrev);
dce234bc 6440 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
6441 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6442 abbrev_ptr += bytes_read;
6443
f3dd6933
DJ
6444 allocated_attrs = ATTR_ALLOC_CHUNK;
6445 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6446
c906108c
SS
6447 /* loop until we reach an abbrev number of 0 */
6448 while (abbrev_number)
6449 {
f3dd6933 6450 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
6451
6452 /* read in abbrev header */
6453 cur_abbrev->number = abbrev_number;
6454 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6455 abbrev_ptr += bytes_read;
6456 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
6457 abbrev_ptr += 1;
6458
72bf9492
DJ
6459 if (cur_abbrev->tag == DW_TAG_namespace)
6460 cu->has_namespace_info = 1;
6461
c906108c
SS
6462 /* now read in declarations */
6463 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6464 abbrev_ptr += bytes_read;
6465 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6466 abbrev_ptr += bytes_read;
6467 while (abbrev_name)
6468 {
f3dd6933 6469 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 6470 {
f3dd6933
DJ
6471 allocated_attrs += ATTR_ALLOC_CHUNK;
6472 cur_attrs
6473 = xrealloc (cur_attrs, (allocated_attrs
6474 * sizeof (struct attr_abbrev)));
c906108c 6475 }
ae038cb0
DJ
6476
6477 /* Record whether this compilation unit might have
6478 inter-compilation-unit references. If we don't know what form
6479 this attribute will have, then it might potentially be a
6480 DW_FORM_ref_addr, so we conservatively expect inter-CU
6481 references. */
6482
6483 if (abbrev_form == DW_FORM_ref_addr
6484 || abbrev_form == DW_FORM_indirect)
6485 cu->has_form_ref_addr = 1;
6486
f3dd6933
DJ
6487 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
6488 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
6489 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6490 abbrev_ptr += bytes_read;
6491 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6492 abbrev_ptr += bytes_read;
6493 }
6494
f3dd6933
DJ
6495 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
6496 (cur_abbrev->num_attrs
6497 * sizeof (struct attr_abbrev)));
6498 memcpy (cur_abbrev->attrs, cur_attrs,
6499 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
6500
c906108c 6501 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
6502 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
6503 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
6504
6505 /* Get next abbreviation.
6506 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
6507 always properly terminated with an abbrev number of 0.
6508 Exit loop if we encounter an abbreviation which we have
6509 already read (which means we are about to read the abbreviations
6510 for the next compile unit) or if the end of the abbreviation
6511 table is reached. */
dce234bc
PP
6512 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
6513 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
6514 break;
6515 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
6516 abbrev_ptr += bytes_read;
e7c27a73 6517 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
6518 break;
6519 }
f3dd6933
DJ
6520
6521 xfree (cur_attrs);
c906108c
SS
6522}
6523
f3dd6933 6524/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 6525
c906108c 6526static void
f3dd6933 6527dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 6528{
f3dd6933 6529 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 6530
f3dd6933
DJ
6531 obstack_free (&cu->abbrev_obstack, NULL);
6532 cu->dwarf2_abbrevs = NULL;
c906108c
SS
6533}
6534
6535/* Lookup an abbrev_info structure in the abbrev hash table. */
6536
6537static struct abbrev_info *
e7c27a73 6538dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
6539{
6540 unsigned int hash_number;
6541 struct abbrev_info *abbrev;
6542
6543 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 6544 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
6545
6546 while (abbrev)
6547 {
6548 if (abbrev->number == number)
6549 return abbrev;
6550 else
6551 abbrev = abbrev->next;
6552 }
6553 return NULL;
6554}
6555
72bf9492
DJ
6556/* Returns nonzero if TAG represents a type that we might generate a partial
6557 symbol for. */
6558
6559static int
6560is_type_tag_for_partial (int tag)
6561{
6562 switch (tag)
6563 {
6564#if 0
6565 /* Some types that would be reasonable to generate partial symbols for,
6566 that we don't at present. */
6567 case DW_TAG_array_type:
6568 case DW_TAG_file_type:
6569 case DW_TAG_ptr_to_member_type:
6570 case DW_TAG_set_type:
6571 case DW_TAG_string_type:
6572 case DW_TAG_subroutine_type:
6573#endif
6574 case DW_TAG_base_type:
6575 case DW_TAG_class_type:
680b30c7 6576 case DW_TAG_interface_type:
72bf9492
DJ
6577 case DW_TAG_enumeration_type:
6578 case DW_TAG_structure_type:
6579 case DW_TAG_subrange_type:
6580 case DW_TAG_typedef:
6581 case DW_TAG_union_type:
6582 return 1;
6583 default:
6584 return 0;
6585 }
6586}
6587
6588/* Load all DIEs that are interesting for partial symbols into memory. */
6589
6590static struct partial_die_info *
93311388
DE
6591load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
6592 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
6593{
6594 struct partial_die_info *part_die;
6595 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
6596 struct abbrev_info *abbrev;
6597 unsigned int bytes_read;
5afb4e99 6598 unsigned int load_all = 0;
72bf9492
DJ
6599
6600 int nesting_level = 1;
6601
6602 parent_die = NULL;
6603 last_die = NULL;
6604
5afb4e99
DJ
6605 if (cu->per_cu && cu->per_cu->load_all_dies)
6606 load_all = 1;
6607
72bf9492
DJ
6608 cu->partial_dies
6609 = htab_create_alloc_ex (cu->header.length / 12,
6610 partial_die_hash,
6611 partial_die_eq,
6612 NULL,
6613 &cu->comp_unit_obstack,
6614 hashtab_obstack_allocate,
6615 dummy_obstack_deallocate);
6616
6617 part_die = obstack_alloc (&cu->comp_unit_obstack,
6618 sizeof (struct partial_die_info));
6619
6620 while (1)
6621 {
6622 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6623
6624 /* A NULL abbrev means the end of a series of children. */
6625 if (abbrev == NULL)
6626 {
6627 if (--nesting_level == 0)
6628 {
6629 /* PART_DIE was probably the last thing allocated on the
6630 comp_unit_obstack, so we could call obstack_free
6631 here. We don't do that because the waste is small,
6632 and will be cleaned up when we're done with this
6633 compilation unit. This way, we're also more robust
6634 against other users of the comp_unit_obstack. */
6635 return first_die;
6636 }
6637 info_ptr += bytes_read;
6638 last_die = parent_die;
6639 parent_die = parent_die->die_parent;
6640 continue;
6641 }
6642
5afb4e99
DJ
6643 /* Check whether this DIE is interesting enough to save. Normally
6644 we would not be interested in members here, but there may be
6645 later variables referencing them via DW_AT_specification (for
6646 static members). */
6647 if (!load_all
6648 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
6649 && abbrev->tag != DW_TAG_enumerator
6650 && abbrev->tag != DW_TAG_subprogram
bc30ff58 6651 && abbrev->tag != DW_TAG_lexical_block
72bf9492 6652 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
6653 && abbrev->tag != DW_TAG_namespace
6654 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
6655 {
6656 /* Otherwise we skip to the next sibling, if any. */
93311388 6657 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
6658 continue;
6659 }
6660
93311388
DE
6661 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
6662 buffer, info_ptr, cu);
72bf9492
DJ
6663
6664 /* This two-pass algorithm for processing partial symbols has a
6665 high cost in cache pressure. Thus, handle some simple cases
6666 here which cover the majority of C partial symbols. DIEs
6667 which neither have specification tags in them, nor could have
6668 specification tags elsewhere pointing at them, can simply be
6669 processed and discarded.
6670
6671 This segment is also optional; scan_partial_symbols and
6672 add_partial_symbol will handle these DIEs if we chain
6673 them in normally. When compilers which do not emit large
6674 quantities of duplicate debug information are more common,
6675 this code can probably be removed. */
6676
6677 /* Any complete simple types at the top level (pretty much all
6678 of them, for a language without namespaces), can be processed
6679 directly. */
6680 if (parent_die == NULL
6681 && part_die->has_specification == 0
6682 && part_die->is_declaration == 0
6683 && (part_die->tag == DW_TAG_typedef
6684 || part_die->tag == DW_TAG_base_type
6685 || part_die->tag == DW_TAG_subrange_type))
6686 {
6687 if (building_psymtab && part_die->name != NULL)
04a679b8 6688 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
6689 VAR_DOMAIN, LOC_TYPEDEF,
6690 &cu->objfile->static_psymbols,
6691 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 6692 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6693 continue;
6694 }
6695
6696 /* If we're at the second level, and we're an enumerator, and
6697 our parent has no specification (meaning possibly lives in a
6698 namespace elsewhere), then we can add the partial symbol now
6699 instead of queueing it. */
6700 if (part_die->tag == DW_TAG_enumerator
6701 && parent_die != NULL
6702 && parent_die->die_parent == NULL
6703 && parent_die->tag == DW_TAG_enumeration_type
6704 && parent_die->has_specification == 0)
6705 {
6706 if (part_die->name == NULL)
e2e0b3e5 6707 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 6708 else if (building_psymtab)
04a679b8 6709 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 6710 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6711 (cu->language == language_cplus
6712 || cu->language == language_java)
72bf9492
DJ
6713 ? &cu->objfile->global_psymbols
6714 : &cu->objfile->static_psymbols,
6715 0, (CORE_ADDR) 0, cu->language, cu->objfile);
6716
93311388 6717 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6718 continue;
6719 }
6720
6721 /* We'll save this DIE so link it in. */
6722 part_die->die_parent = parent_die;
6723 part_die->die_sibling = NULL;
6724 part_die->die_child = NULL;
6725
6726 if (last_die && last_die == parent_die)
6727 last_die->die_child = part_die;
6728 else if (last_die)
6729 last_die->die_sibling = part_die;
6730
6731 last_die = part_die;
6732
6733 if (first_die == NULL)
6734 first_die = part_die;
6735
6736 /* Maybe add the DIE to the hash table. Not all DIEs that we
6737 find interesting need to be in the hash table, because we
6738 also have the parent/sibling/child chains; only those that we
6739 might refer to by offset later during partial symbol reading.
6740
6741 For now this means things that might have be the target of a
6742 DW_AT_specification, DW_AT_abstract_origin, or
6743 DW_AT_extension. DW_AT_extension will refer only to
6744 namespaces; DW_AT_abstract_origin refers to functions (and
6745 many things under the function DIE, but we do not recurse
6746 into function DIEs during partial symbol reading) and
6747 possibly variables as well; DW_AT_specification refers to
6748 declarations. Declarations ought to have the DW_AT_declaration
6749 flag. It happens that GCC forgets to put it in sometimes, but
6750 only for functions, not for types.
6751
6752 Adding more things than necessary to the hash table is harmless
6753 except for the performance cost. Adding too few will result in
5afb4e99
DJ
6754 wasted time in find_partial_die, when we reread the compilation
6755 unit with load_all_dies set. */
72bf9492 6756
5afb4e99
DJ
6757 if (load_all
6758 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
6759 || abbrev->tag == DW_TAG_variable
6760 || abbrev->tag == DW_TAG_namespace
6761 || part_die->is_declaration)
6762 {
6763 void **slot;
6764
6765 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
6766 part_die->offset, INSERT);
6767 *slot = part_die;
6768 }
6769
6770 part_die = obstack_alloc (&cu->comp_unit_obstack,
6771 sizeof (struct partial_die_info));
6772
6773 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 6774 we have no reason to follow the children of structures; for other
72bf9492 6775 languages we have to, both so that we can get at method physnames
bc30ff58
JB
6776 to infer fully qualified class names, and for DW_AT_specification.
6777
6778 For Ada, we need to scan the children of subprograms and lexical
6779 blocks as well because Ada allows the definition of nested
6780 entities that could be interesting for the debugger, such as
6781 nested subprograms for instance. */
72bf9492 6782 if (last_die->has_children
5afb4e99
DJ
6783 && (load_all
6784 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
6785 || last_die->tag == DW_TAG_enumeration_type
6786 || (cu->language != language_c
6787 && (last_die->tag == DW_TAG_class_type
680b30c7 6788 || last_die->tag == DW_TAG_interface_type
72bf9492 6789 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
6790 || last_die->tag == DW_TAG_union_type))
6791 || (cu->language == language_ada
6792 && (last_die->tag == DW_TAG_subprogram
6793 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
6794 {
6795 nesting_level++;
6796 parent_die = last_die;
6797 continue;
6798 }
6799
6800 /* Otherwise we skip to the next sibling, if any. */
93311388 6801 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
6802
6803 /* Back to the top, do it again. */
6804 }
6805}
6806
c906108c
SS
6807/* Read a minimal amount of information into the minimal die structure. */
6808
fe1b8b76 6809static gdb_byte *
72bf9492
DJ
6810read_partial_die (struct partial_die_info *part_die,
6811 struct abbrev_info *abbrev,
6812 unsigned int abbrev_len, bfd *abfd,
93311388
DE
6813 gdb_byte *buffer, gdb_byte *info_ptr,
6814 struct dwarf2_cu *cu)
c906108c 6815{
fa238c03 6816 unsigned int i;
c906108c 6817 struct attribute attr;
c5aa993b 6818 int has_low_pc_attr = 0;
c906108c
SS
6819 int has_high_pc_attr = 0;
6820
72bf9492 6821 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 6822
93311388 6823 part_die->offset = info_ptr - buffer;
72bf9492
DJ
6824
6825 info_ptr += abbrev_len;
6826
6827 if (abbrev == NULL)
6828 return info_ptr;
6829
c906108c
SS
6830 part_die->tag = abbrev->tag;
6831 part_die->has_children = abbrev->has_children;
c906108c
SS
6832
6833 for (i = 0; i < abbrev->num_attrs; ++i)
6834 {
e7c27a73 6835 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
6836
6837 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 6838 partial symbol table. */
c906108c
SS
6839 switch (attr.name)
6840 {
6841 case DW_AT_name:
71c25dea
TT
6842 switch (part_die->tag)
6843 {
6844 case DW_TAG_compile_unit:
348e048f 6845 case DW_TAG_type_unit:
71c25dea
TT
6846 /* Compilation units have a DW_AT_name that is a filename, not
6847 a source language identifier. */
6848 case DW_TAG_enumeration_type:
6849 case DW_TAG_enumerator:
6850 /* These tags always have simple identifiers already; no need
6851 to canonicalize them. */
6852 part_die->name = DW_STRING (&attr);
6853 break;
6854 default:
6855 part_die->name
6856 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 6857 &cu->objfile->objfile_obstack);
71c25dea
TT
6858 break;
6859 }
c906108c 6860 break;
31ef98ae 6861 case DW_AT_linkage_name:
c906108c 6862 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
6863 /* Note that both forms of linkage name might appear. We
6864 assume they will be the same, and we only store the last
6865 one we see. */
94af9270
KS
6866 if (cu->language == language_ada)
6867 part_die->name = DW_STRING (&attr);
c906108c
SS
6868 break;
6869 case DW_AT_low_pc:
6870 has_low_pc_attr = 1;
6871 part_die->lowpc = DW_ADDR (&attr);
6872 break;
6873 case DW_AT_high_pc:
6874 has_high_pc_attr = 1;
6875 part_die->highpc = DW_ADDR (&attr);
6876 break;
6877 case DW_AT_location:
8e19ed76
PS
6878 /* Support the .debug_loc offsets */
6879 if (attr_form_is_block (&attr))
6880 {
6881 part_die->locdesc = DW_BLOCK (&attr);
6882 }
3690dd37 6883 else if (attr_form_is_section_offset (&attr))
8e19ed76 6884 {
4d3c2250 6885 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6886 }
6887 else
6888 {
4d3c2250
KB
6889 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6890 "partial symbol information");
8e19ed76 6891 }
c906108c 6892 break;
c906108c
SS
6893 case DW_AT_external:
6894 part_die->is_external = DW_UNSND (&attr);
6895 break;
6896 case DW_AT_declaration:
6897 part_die->is_declaration = DW_UNSND (&attr);
6898 break;
6899 case DW_AT_type:
6900 part_die->has_type = 1;
6901 break;
6902 case DW_AT_abstract_origin:
6903 case DW_AT_specification:
72bf9492
DJ
6904 case DW_AT_extension:
6905 part_die->has_specification = 1;
c764a876 6906 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
6907 break;
6908 case DW_AT_sibling:
6909 /* Ignore absolute siblings, they might point outside of
6910 the current compile unit. */
6911 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 6912 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 6913 else
93311388 6914 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 6915 break;
fa4028e9
JB
6916 case DW_AT_byte_size:
6917 part_die->has_byte_size = 1;
6918 break;
68511cec
CES
6919 case DW_AT_calling_convention:
6920 /* DWARF doesn't provide a way to identify a program's source-level
6921 entry point. DW_AT_calling_convention attributes are only meant
6922 to describe functions' calling conventions.
6923
6924 However, because it's a necessary piece of information in
6925 Fortran, and because DW_CC_program is the only piece of debugging
6926 information whose definition refers to a 'main program' at all,
6927 several compilers have begun marking Fortran main programs with
6928 DW_CC_program --- even when those functions use the standard
6929 calling conventions.
6930
6931 So until DWARF specifies a way to provide this information and
6932 compilers pick up the new representation, we'll support this
6933 practice. */
6934 if (DW_UNSND (&attr) == DW_CC_program
6935 && cu->language == language_fortran)
6936 set_main_name (part_die->name);
6937 break;
c906108c
SS
6938 default:
6939 break;
6940 }
6941 }
6942
c906108c
SS
6943 /* When using the GNU linker, .gnu.linkonce. sections are used to
6944 eliminate duplicate copies of functions and vtables and such.
6945 The linker will arbitrarily choose one and discard the others.
6946 The AT_*_pc values for such functions refer to local labels in
6947 these sections. If the section from that file was discarded, the
6948 labels are not in the output, so the relocs get a value of 0.
6949 If this is a discarded function, mark the pc bounds as invalid,
6950 so that GDB will ignore it. */
6951 if (has_low_pc_attr && has_high_pc_attr
6952 && part_die->lowpc < part_die->highpc
6953 && (part_die->lowpc != 0
72dca2f5 6954 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 6955 part_die->has_pc_info = 1;
85cbf3d3 6956
c906108c
SS
6957 return info_ptr;
6958}
6959
72bf9492
DJ
6960/* Find a cached partial DIE at OFFSET in CU. */
6961
6962static struct partial_die_info *
c764a876 6963find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
6964{
6965 struct partial_die_info *lookup_die = NULL;
6966 struct partial_die_info part_die;
6967
6968 part_die.offset = offset;
6969 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
6970
72bf9492
DJ
6971 return lookup_die;
6972}
6973
348e048f
DE
6974/* Find a partial DIE at OFFSET, which may or may not be in CU,
6975 except in the case of .debug_types DIEs which do not reference
6976 outside their CU (they do however referencing other types via
6977 DW_FORM_sig8). */
72bf9492
DJ
6978
6979static struct partial_die_info *
c764a876 6980find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 6981{
5afb4e99
DJ
6982 struct dwarf2_per_cu_data *per_cu = NULL;
6983 struct partial_die_info *pd = NULL;
72bf9492 6984
348e048f
DE
6985 if (cu->per_cu->from_debug_types)
6986 {
6987 pd = find_partial_die_in_comp_unit (offset, cu);
6988 if (pd != NULL)
6989 return pd;
6990 goto not_found;
6991 }
6992
45452591 6993 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
6994 {
6995 pd = find_partial_die_in_comp_unit (offset, cu);
6996 if (pd != NULL)
6997 return pd;
6998 }
72bf9492 6999
ae038cb0
DJ
7000 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
7001
ae038cb0
DJ
7002 if (per_cu->cu == NULL)
7003 {
93311388 7004 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
7005 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7006 dwarf2_per_objfile->read_in_chain = per_cu;
7007 }
7008
7009 per_cu->cu->last_used = 0;
5afb4e99
DJ
7010 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7011
7012 if (pd == NULL && per_cu->load_all_dies == 0)
7013 {
7014 struct cleanup *back_to;
7015 struct partial_die_info comp_unit_die;
7016 struct abbrev_info *abbrev;
7017 unsigned int bytes_read;
7018 char *info_ptr;
7019
7020 per_cu->load_all_dies = 1;
7021
7022 /* Re-read the DIEs. */
7023 back_to = make_cleanup (null_cleanup, 0);
7024 if (per_cu->cu->dwarf2_abbrevs == NULL)
7025 {
7026 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 7027 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 7028 }
dce234bc 7029 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
7030 + per_cu->cu->header.offset
7031 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
7032 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
7033 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
7034 per_cu->cu->objfile->obfd,
7035 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
7036 per_cu->cu);
7037 if (comp_unit_die.has_children)
93311388
DE
7038 load_partial_dies (per_cu->cu->objfile->obfd,
7039 dwarf2_per_objfile->info.buffer, info_ptr,
7040 0, per_cu->cu);
5afb4e99
DJ
7041 do_cleanups (back_to);
7042
7043 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
7044 }
7045
348e048f
DE
7046 not_found:
7047
5afb4e99
DJ
7048 if (pd == NULL)
7049 internal_error (__FILE__, __LINE__,
c764a876 7050 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
7051 offset, bfd_get_filename (cu->objfile->obfd));
7052 return pd;
72bf9492
DJ
7053}
7054
7055/* Adjust PART_DIE before generating a symbol for it. This function
7056 may set the is_external flag or change the DIE's name. */
7057
7058static void
7059fixup_partial_die (struct partial_die_info *part_die,
7060 struct dwarf2_cu *cu)
7061{
7062 /* If we found a reference attribute and the DIE has no name, try
7063 to find a name in the referred to DIE. */
7064
7065 if (part_die->name == NULL && part_die->has_specification)
7066 {
7067 struct partial_die_info *spec_die;
72bf9492 7068
10b3939b 7069 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 7070
10b3939b 7071 fixup_partial_die (spec_die, cu);
72bf9492
DJ
7072
7073 if (spec_die->name)
7074 {
7075 part_die->name = spec_die->name;
7076
7077 /* Copy DW_AT_external attribute if it is set. */
7078 if (spec_die->is_external)
7079 part_die->is_external = spec_die->is_external;
7080 }
7081 }
7082
7083 /* Set default names for some unnamed DIEs. */
7084 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
7085 || part_die->tag == DW_TAG_class_type))
7086 part_die->name = "(anonymous class)";
7087
7088 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
7089 part_die->name = "(anonymous namespace)";
7090
7091 if (part_die->tag == DW_TAG_structure_type
7092 || part_die->tag == DW_TAG_class_type
7093 || part_die->tag == DW_TAG_union_type)
7094 guess_structure_name (part_die, cu);
7095}
7096
a8329558 7097/* Read an attribute value described by an attribute form. */
c906108c 7098
fe1b8b76 7099static gdb_byte *
a8329558 7100read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 7101 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 7102 struct dwarf2_cu *cu)
c906108c 7103{
e7c27a73 7104 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7105 unsigned int bytes_read;
7106 struct dwarf_block *blk;
7107
a8329558
KW
7108 attr->form = form;
7109 switch (form)
c906108c 7110 {
c906108c 7111 case DW_FORM_ref_addr:
ae411497
TT
7112 if (cu->header.version == 2)
7113 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
7114 else
7115 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7116 info_ptr += bytes_read;
7117 break;
7118 case DW_FORM_addr:
e7c27a73 7119 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 7120 info_ptr += bytes_read;
c906108c
SS
7121 break;
7122 case DW_FORM_block2:
7b5a2f43 7123 blk = dwarf_alloc_block (cu);
c906108c
SS
7124 blk->size = read_2_bytes (abfd, info_ptr);
7125 info_ptr += 2;
7126 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7127 info_ptr += blk->size;
7128 DW_BLOCK (attr) = blk;
7129 break;
7130 case DW_FORM_block4:
7b5a2f43 7131 blk = dwarf_alloc_block (cu);
c906108c
SS
7132 blk->size = read_4_bytes (abfd, info_ptr);
7133 info_ptr += 4;
7134 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7135 info_ptr += blk->size;
7136 DW_BLOCK (attr) = blk;
7137 break;
7138 case DW_FORM_data2:
7139 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
7140 info_ptr += 2;
7141 break;
7142 case DW_FORM_data4:
7143 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
7144 info_ptr += 4;
7145 break;
7146 case DW_FORM_data8:
7147 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
7148 info_ptr += 8;
7149 break;
2dc7f7b3
TT
7150 case DW_FORM_sec_offset:
7151 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
7152 info_ptr += bytes_read;
7153 break;
c906108c
SS
7154 case DW_FORM_string:
7155 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 7156 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
7157 info_ptr += bytes_read;
7158 break;
4bdf3d34
JJ
7159 case DW_FORM_strp:
7160 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
7161 &bytes_read);
8285870a 7162 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
7163 info_ptr += bytes_read;
7164 break;
2dc7f7b3 7165 case DW_FORM_exprloc:
c906108c 7166 case DW_FORM_block:
7b5a2f43 7167 blk = dwarf_alloc_block (cu);
c906108c
SS
7168 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7169 info_ptr += bytes_read;
7170 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7171 info_ptr += blk->size;
7172 DW_BLOCK (attr) = blk;
7173 break;
7174 case DW_FORM_block1:
7b5a2f43 7175 blk = dwarf_alloc_block (cu);
c906108c
SS
7176 blk->size = read_1_byte (abfd, info_ptr);
7177 info_ptr += 1;
7178 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
7179 info_ptr += blk->size;
7180 DW_BLOCK (attr) = blk;
7181 break;
7182 case DW_FORM_data1:
7183 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7184 info_ptr += 1;
7185 break;
7186 case DW_FORM_flag:
7187 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
7188 info_ptr += 1;
7189 break;
2dc7f7b3
TT
7190 case DW_FORM_flag_present:
7191 DW_UNSND (attr) = 1;
7192 break;
c906108c
SS
7193 case DW_FORM_sdata:
7194 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
7195 info_ptr += bytes_read;
7196 break;
7197 case DW_FORM_udata:
7198 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7199 info_ptr += bytes_read;
7200 break;
7201 case DW_FORM_ref1:
10b3939b 7202 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
7203 info_ptr += 1;
7204 break;
7205 case DW_FORM_ref2:
10b3939b 7206 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
7207 info_ptr += 2;
7208 break;
7209 case DW_FORM_ref4:
10b3939b 7210 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
7211 info_ptr += 4;
7212 break;
613e1657 7213 case DW_FORM_ref8:
10b3939b 7214 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
7215 info_ptr += 8;
7216 break;
348e048f
DE
7217 case DW_FORM_sig8:
7218 /* Convert the signature to something we can record in DW_UNSND
7219 for later lookup.
7220 NOTE: This is NULL if the type wasn't found. */
7221 DW_SIGNATURED_TYPE (attr) =
7222 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
7223 info_ptr += 8;
7224 break;
c906108c 7225 case DW_FORM_ref_udata:
10b3939b
DJ
7226 DW_ADDR (attr) = (cu->header.offset
7227 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
7228 info_ptr += bytes_read;
7229 break;
c906108c 7230 case DW_FORM_indirect:
a8329558
KW
7231 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7232 info_ptr += bytes_read;
e7c27a73 7233 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 7234 break;
c906108c 7235 default:
8a3fe4f8 7236 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
7237 dwarf_form_name (form),
7238 bfd_get_filename (abfd));
c906108c 7239 }
28e94949
JB
7240
7241 /* We have seen instances where the compiler tried to emit a byte
7242 size attribute of -1 which ended up being encoded as an unsigned
7243 0xffffffff. Although 0xffffffff is technically a valid size value,
7244 an object of this size seems pretty unlikely so we can relatively
7245 safely treat these cases as if the size attribute was invalid and
7246 treat them as zero by default. */
7247 if (attr->name == DW_AT_byte_size
7248 && form == DW_FORM_data4
7249 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
7250 {
7251 complaint
7252 (&symfile_complaints,
43bbcdc2
PH
7253 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
7254 hex_string (DW_UNSND (attr)));
01c66ae6
JB
7255 DW_UNSND (attr) = 0;
7256 }
28e94949 7257
c906108c
SS
7258 return info_ptr;
7259}
7260
a8329558
KW
7261/* Read an attribute described by an abbreviated attribute. */
7262
fe1b8b76 7263static gdb_byte *
a8329558 7264read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 7265 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
7266{
7267 attr->name = abbrev->name;
e7c27a73 7268 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
7269}
7270
c906108c
SS
7271/* read dwarf information from a buffer */
7272
7273static unsigned int
fe1b8b76 7274read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 7275{
fe1b8b76 7276 return bfd_get_8 (abfd, buf);
c906108c
SS
7277}
7278
7279static int
fe1b8b76 7280read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 7281{
fe1b8b76 7282 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
7283}
7284
7285static unsigned int
fe1b8b76 7286read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7287{
fe1b8b76 7288 return bfd_get_16 (abfd, buf);
c906108c
SS
7289}
7290
7291static int
fe1b8b76 7292read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7293{
fe1b8b76 7294 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
7295}
7296
7297static unsigned int
fe1b8b76 7298read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7299{
fe1b8b76 7300 return bfd_get_32 (abfd, buf);
c906108c
SS
7301}
7302
7303static int
fe1b8b76 7304read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7305{
fe1b8b76 7306 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
7307}
7308
93311388 7309static ULONGEST
fe1b8b76 7310read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 7311{
fe1b8b76 7312 return bfd_get_64 (abfd, buf);
c906108c
SS
7313}
7314
7315static CORE_ADDR
fe1b8b76 7316read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 7317 unsigned int *bytes_read)
c906108c 7318{
e7c27a73 7319 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7320 CORE_ADDR retval = 0;
7321
107d2387 7322 if (cu_header->signed_addr_p)
c906108c 7323 {
107d2387
AC
7324 switch (cu_header->addr_size)
7325 {
7326 case 2:
fe1b8b76 7327 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
7328 break;
7329 case 4:
fe1b8b76 7330 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
7331 break;
7332 case 8:
fe1b8b76 7333 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
7334 break;
7335 default:
8e65ff28 7336 internal_error (__FILE__, __LINE__,
e2e0b3e5 7337 _("read_address: bad switch, signed [in module %s]"),
659b0389 7338 bfd_get_filename (abfd));
107d2387
AC
7339 }
7340 }
7341 else
7342 {
7343 switch (cu_header->addr_size)
7344 {
7345 case 2:
fe1b8b76 7346 retval = bfd_get_16 (abfd, buf);
107d2387
AC
7347 break;
7348 case 4:
fe1b8b76 7349 retval = bfd_get_32 (abfd, buf);
107d2387
AC
7350 break;
7351 case 8:
fe1b8b76 7352 retval = bfd_get_64 (abfd, buf);
107d2387
AC
7353 break;
7354 default:
8e65ff28 7355 internal_error (__FILE__, __LINE__,
e2e0b3e5 7356 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 7357 bfd_get_filename (abfd));
107d2387 7358 }
c906108c 7359 }
64367e0a 7360
107d2387
AC
7361 *bytes_read = cu_header->addr_size;
7362 return retval;
c906108c
SS
7363}
7364
f7ef9339 7365/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
7366 specification allows the initial length to take up either 4 bytes
7367 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
7368 bytes describe the length and all offsets will be 8 bytes in length
7369 instead of 4.
7370
f7ef9339
KB
7371 An older, non-standard 64-bit format is also handled by this
7372 function. The older format in question stores the initial length
7373 as an 8-byte quantity without an escape value. Lengths greater
7374 than 2^32 aren't very common which means that the initial 4 bytes
7375 is almost always zero. Since a length value of zero doesn't make
7376 sense for the 32-bit format, this initial zero can be considered to
7377 be an escape value which indicates the presence of the older 64-bit
7378 format. As written, the code can't detect (old format) lengths
917c78fc
MK
7379 greater than 4GB. If it becomes necessary to handle lengths
7380 somewhat larger than 4GB, we could allow other small values (such
7381 as the non-sensical values of 1, 2, and 3) to also be used as
7382 escape values indicating the presence of the old format.
f7ef9339 7383
917c78fc
MK
7384 The value returned via bytes_read should be used to increment the
7385 relevant pointer after calling read_initial_length().
c764a876 7386
613e1657
KB
7387 [ Note: read_initial_length() and read_offset() are based on the
7388 document entitled "DWARF Debugging Information Format", revision
f7ef9339 7389 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
7390 from:
7391
f7ef9339 7392 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
7393
7394 This document is only a draft and is subject to change. (So beware.)
7395
f7ef9339 7396 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
7397 determined empirically by examining 64-bit ELF files produced by
7398 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
7399
7400 - Kevin, July 16, 2002
613e1657
KB
7401 ] */
7402
7403static LONGEST
c764a876 7404read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 7405{
fe1b8b76 7406 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 7407
dd373385 7408 if (length == 0xffffffff)
613e1657 7409 {
fe1b8b76 7410 length = bfd_get_64 (abfd, buf + 4);
613e1657 7411 *bytes_read = 12;
613e1657 7412 }
dd373385 7413 else if (length == 0)
f7ef9339 7414 {
dd373385 7415 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 7416 length = bfd_get_64 (abfd, buf);
f7ef9339 7417 *bytes_read = 8;
f7ef9339 7418 }
613e1657
KB
7419 else
7420 {
7421 *bytes_read = 4;
613e1657
KB
7422 }
7423
c764a876
DE
7424 return length;
7425}
dd373385 7426
c764a876
DE
7427/* Cover function for read_initial_length.
7428 Returns the length of the object at BUF, and stores the size of the
7429 initial length in *BYTES_READ and stores the size that offsets will be in
7430 *OFFSET_SIZE.
7431 If the initial length size is not equivalent to that specified in
7432 CU_HEADER then issue a complaint.
7433 This is useful when reading non-comp-unit headers. */
dd373385 7434
c764a876
DE
7435static LONGEST
7436read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
7437 const struct comp_unit_head *cu_header,
7438 unsigned int *bytes_read,
7439 unsigned int *offset_size)
7440{
7441 LONGEST length = read_initial_length (abfd, buf, bytes_read);
7442
7443 gdb_assert (cu_header->initial_length_size == 4
7444 || cu_header->initial_length_size == 8
7445 || cu_header->initial_length_size == 12);
7446
7447 if (cu_header->initial_length_size != *bytes_read)
7448 complaint (&symfile_complaints,
7449 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 7450
c764a876 7451 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 7452 return length;
613e1657
KB
7453}
7454
7455/* Read an offset from the data stream. The size of the offset is
917c78fc 7456 given by cu_header->offset_size. */
613e1657
KB
7457
7458static LONGEST
fe1b8b76 7459read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 7460 unsigned int *bytes_read)
c764a876
DE
7461{
7462 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 7463
c764a876
DE
7464 *bytes_read = cu_header->offset_size;
7465 return offset;
7466}
7467
7468/* Read an offset from the data stream. */
7469
7470static LONGEST
7471read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
7472{
7473 LONGEST retval = 0;
7474
c764a876 7475 switch (offset_size)
613e1657
KB
7476 {
7477 case 4:
fe1b8b76 7478 retval = bfd_get_32 (abfd, buf);
613e1657
KB
7479 break;
7480 case 8:
fe1b8b76 7481 retval = bfd_get_64 (abfd, buf);
613e1657
KB
7482 break;
7483 default:
8e65ff28 7484 internal_error (__FILE__, __LINE__,
c764a876 7485 _("read_offset_1: bad switch [in module %s]"),
659b0389 7486 bfd_get_filename (abfd));
613e1657
KB
7487 }
7488
917c78fc 7489 return retval;
613e1657
KB
7490}
7491
fe1b8b76
JB
7492static gdb_byte *
7493read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
7494{
7495 /* If the size of a host char is 8 bits, we can return a pointer
7496 to the buffer, otherwise we have to copy the data to a buffer
7497 allocated on the temporary obstack. */
4bdf3d34 7498 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 7499 return buf;
c906108c
SS
7500}
7501
7502static char *
fe1b8b76 7503read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
7504{
7505 /* If the size of a host char is 8 bits, we can return a pointer
7506 to the string, otherwise we have to copy the string to a buffer
7507 allocated on the temporary obstack. */
4bdf3d34 7508 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
7509 if (*buf == '\0')
7510 {
7511 *bytes_read_ptr = 1;
7512 return NULL;
7513 }
fe1b8b76
JB
7514 *bytes_read_ptr = strlen ((char *) buf) + 1;
7515 return (char *) buf;
4bdf3d34
JJ
7516}
7517
7518static char *
fe1b8b76 7519read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
7520 const struct comp_unit_head *cu_header,
7521 unsigned int *bytes_read_ptr)
7522{
c764a876 7523 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 7524
be391dca 7525 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 7526 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 7527 {
8a3fe4f8 7528 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 7529 bfd_get_filename (abfd));
4bdf3d34 7530 return NULL;
c906108c 7531 }
dce234bc 7532 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 7533 {
8a3fe4f8 7534 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 7535 bfd_get_filename (abfd));
c906108c
SS
7536 return NULL;
7537 }
4bdf3d34 7538 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 7539 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 7540 return NULL;
dce234bc 7541 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
7542}
7543
ce5d95e1 7544static unsigned long
fe1b8b76 7545read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7546{
ce5d95e1
JB
7547 unsigned long result;
7548 unsigned int num_read;
c906108c
SS
7549 int i, shift;
7550 unsigned char byte;
7551
7552 result = 0;
7553 shift = 0;
7554 num_read = 0;
7555 i = 0;
7556 while (1)
7557 {
fe1b8b76 7558 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7559 buf++;
7560 num_read++;
ce5d95e1 7561 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
7562 if ((byte & 128) == 0)
7563 {
7564 break;
7565 }
7566 shift += 7;
7567 }
7568 *bytes_read_ptr = num_read;
7569 return result;
7570}
7571
ce5d95e1 7572static long
fe1b8b76 7573read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 7574{
ce5d95e1 7575 long result;
77e0b926 7576 int i, shift, num_read;
c906108c
SS
7577 unsigned char byte;
7578
7579 result = 0;
7580 shift = 0;
c906108c
SS
7581 num_read = 0;
7582 i = 0;
7583 while (1)
7584 {
fe1b8b76 7585 byte = bfd_get_8 (abfd, buf);
c906108c
SS
7586 buf++;
7587 num_read++;
ce5d95e1 7588 result |= ((long)(byte & 127) << shift);
c906108c
SS
7589 shift += 7;
7590 if ((byte & 128) == 0)
7591 {
7592 break;
7593 }
7594 }
77e0b926
DJ
7595 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
7596 result |= -(((long)1) << shift);
c906108c
SS
7597 *bytes_read_ptr = num_read;
7598 return result;
7599}
7600
4bb7a0a7
DJ
7601/* Return a pointer to just past the end of an LEB128 number in BUF. */
7602
fe1b8b76
JB
7603static gdb_byte *
7604skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
7605{
7606 int byte;
7607
7608 while (1)
7609 {
fe1b8b76 7610 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
7611 buf++;
7612 if ((byte & 128) == 0)
7613 return buf;
7614 }
7615}
7616
c906108c 7617static void
e142c38c 7618set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
7619{
7620 switch (lang)
7621 {
7622 case DW_LANG_C89:
76bee0cc 7623 case DW_LANG_C99:
c906108c 7624 case DW_LANG_C:
e142c38c 7625 cu->language = language_c;
c906108c
SS
7626 break;
7627 case DW_LANG_C_plus_plus:
e142c38c 7628 cu->language = language_cplus;
c906108c 7629 break;
6aecb9c2
JB
7630 case DW_LANG_D:
7631 cu->language = language_d;
7632 break;
c906108c
SS
7633 case DW_LANG_Fortran77:
7634 case DW_LANG_Fortran90:
b21b22e0 7635 case DW_LANG_Fortran95:
e142c38c 7636 cu->language = language_fortran;
c906108c
SS
7637 break;
7638 case DW_LANG_Mips_Assembler:
e142c38c 7639 cu->language = language_asm;
c906108c 7640 break;
bebd888e 7641 case DW_LANG_Java:
e142c38c 7642 cu->language = language_java;
bebd888e 7643 break;
c906108c 7644 case DW_LANG_Ada83:
8aaf0b47 7645 case DW_LANG_Ada95:
bc5f45f8
JB
7646 cu->language = language_ada;
7647 break;
72019c9c
GM
7648 case DW_LANG_Modula2:
7649 cu->language = language_m2;
7650 break;
fe8e67fd
PM
7651 case DW_LANG_Pascal83:
7652 cu->language = language_pascal;
7653 break;
22566fbd
DJ
7654 case DW_LANG_ObjC:
7655 cu->language = language_objc;
7656 break;
c906108c
SS
7657 case DW_LANG_Cobol74:
7658 case DW_LANG_Cobol85:
c906108c 7659 default:
e142c38c 7660 cu->language = language_minimal;
c906108c
SS
7661 break;
7662 }
e142c38c 7663 cu->language_defn = language_def (cu->language);
c906108c
SS
7664}
7665
7666/* Return the named attribute or NULL if not there. */
7667
7668static struct attribute *
e142c38c 7669dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
7670{
7671 unsigned int i;
7672 struct attribute *spec = NULL;
7673
7674 for (i = 0; i < die->num_attrs; ++i)
7675 {
7676 if (die->attrs[i].name == name)
10b3939b 7677 return &die->attrs[i];
c906108c
SS
7678 if (die->attrs[i].name == DW_AT_specification
7679 || die->attrs[i].name == DW_AT_abstract_origin)
7680 spec = &die->attrs[i];
7681 }
c906108c 7682
10b3939b 7683 if (spec)
f2f0e013
DJ
7684 {
7685 die = follow_die_ref (die, spec, &cu);
7686 return dwarf2_attr (die, name, cu);
7687 }
c5aa993b 7688
c906108c
SS
7689 return NULL;
7690}
7691
348e048f
DE
7692/* Return the named attribute or NULL if not there,
7693 but do not follow DW_AT_specification, etc.
7694 This is for use in contexts where we're reading .debug_types dies.
7695 Following DW_AT_specification, DW_AT_abstract_origin will take us
7696 back up the chain, and we want to go down. */
7697
7698static struct attribute *
7699dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
7700 struct dwarf2_cu *cu)
7701{
7702 unsigned int i;
7703
7704 for (i = 0; i < die->num_attrs; ++i)
7705 if (die->attrs[i].name == name)
7706 return &die->attrs[i];
7707
7708 return NULL;
7709}
7710
05cf31d1
JB
7711/* Return non-zero iff the attribute NAME is defined for the given DIE,
7712 and holds a non-zero value. This function should only be used for
2dc7f7b3 7713 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
7714
7715static int
7716dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
7717{
7718 struct attribute *attr = dwarf2_attr (die, name, cu);
7719
7720 return (attr && DW_UNSND (attr));
7721}
7722
3ca72b44 7723static int
e142c38c 7724die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 7725{
05cf31d1
JB
7726 /* A DIE is a declaration if it has a DW_AT_declaration attribute
7727 which value is non-zero. However, we have to be careful with
7728 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
7729 (via dwarf2_flag_true_p) follows this attribute. So we may
7730 end up accidently finding a declaration attribute that belongs
7731 to a different DIE referenced by the specification attribute,
7732 even though the given DIE does not have a declaration attribute. */
7733 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
7734 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
7735}
7736
63d06c5c 7737/* Return the die giving the specification for DIE, if there is
f2f0e013 7738 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
7739 containing the return value on output. If there is no
7740 specification, but there is an abstract origin, that is
7741 returned. */
63d06c5c
DC
7742
7743static struct die_info *
f2f0e013 7744die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 7745{
f2f0e013
DJ
7746 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
7747 *spec_cu);
63d06c5c 7748
edb3359d
DJ
7749 if (spec_attr == NULL)
7750 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
7751
63d06c5c
DC
7752 if (spec_attr == NULL)
7753 return NULL;
7754 else
f2f0e013 7755 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 7756}
c906108c 7757
debd256d
JB
7758/* Free the line_header structure *LH, and any arrays and strings it
7759 refers to. */
7760static void
7761free_line_header (struct line_header *lh)
7762{
7763 if (lh->standard_opcode_lengths)
a8bc7b56 7764 xfree (lh->standard_opcode_lengths);
debd256d
JB
7765
7766 /* Remember that all the lh->file_names[i].name pointers are
7767 pointers into debug_line_buffer, and don't need to be freed. */
7768 if (lh->file_names)
a8bc7b56 7769 xfree (lh->file_names);
debd256d
JB
7770
7771 /* Similarly for the include directory names. */
7772 if (lh->include_dirs)
a8bc7b56 7773 xfree (lh->include_dirs);
debd256d 7774
a8bc7b56 7775 xfree (lh);
debd256d
JB
7776}
7777
7778
7779/* Add an entry to LH's include directory table. */
7780static void
7781add_include_dir (struct line_header *lh, char *include_dir)
c906108c 7782{
debd256d
JB
7783 /* Grow the array if necessary. */
7784 if (lh->include_dirs_size == 0)
c5aa993b 7785 {
debd256d
JB
7786 lh->include_dirs_size = 1; /* for testing */
7787 lh->include_dirs = xmalloc (lh->include_dirs_size
7788 * sizeof (*lh->include_dirs));
7789 }
7790 else if (lh->num_include_dirs >= lh->include_dirs_size)
7791 {
7792 lh->include_dirs_size *= 2;
7793 lh->include_dirs = xrealloc (lh->include_dirs,
7794 (lh->include_dirs_size
7795 * sizeof (*lh->include_dirs)));
c5aa993b 7796 }
c906108c 7797
debd256d
JB
7798 lh->include_dirs[lh->num_include_dirs++] = include_dir;
7799}
7800
7801
7802/* Add an entry to LH's file name table. */
7803static void
7804add_file_name (struct line_header *lh,
7805 char *name,
7806 unsigned int dir_index,
7807 unsigned int mod_time,
7808 unsigned int length)
7809{
7810 struct file_entry *fe;
7811
7812 /* Grow the array if necessary. */
7813 if (lh->file_names_size == 0)
7814 {
7815 lh->file_names_size = 1; /* for testing */
7816 lh->file_names = xmalloc (lh->file_names_size
7817 * sizeof (*lh->file_names));
7818 }
7819 else if (lh->num_file_names >= lh->file_names_size)
7820 {
7821 lh->file_names_size *= 2;
7822 lh->file_names = xrealloc (lh->file_names,
7823 (lh->file_names_size
7824 * sizeof (*lh->file_names)));
7825 }
7826
7827 fe = &lh->file_names[lh->num_file_names++];
7828 fe->name = name;
7829 fe->dir_index = dir_index;
7830 fe->mod_time = mod_time;
7831 fe->length = length;
aaa75496 7832 fe->included_p = 0;
cb1df416 7833 fe->symtab = NULL;
debd256d
JB
7834}
7835
7836
7837/* Read the statement program header starting at OFFSET in
6502dd73
DJ
7838 .debug_line, according to the endianness of ABFD. Return a pointer
7839 to a struct line_header, allocated using xmalloc.
debd256d
JB
7840
7841 NOTE: the strings in the include directory and file name tables of
7842 the returned object point into debug_line_buffer, and must not be
7843 freed. */
7844static struct line_header *
7845dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 7846 struct dwarf2_cu *cu)
debd256d
JB
7847{
7848 struct cleanup *back_to;
7849 struct line_header *lh;
fe1b8b76 7850 gdb_byte *line_ptr;
c764a876 7851 unsigned int bytes_read, offset_size;
debd256d
JB
7852 int i;
7853 char *cur_dir, *cur_file;
7854
be391dca 7855 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 7856 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 7857 {
e2e0b3e5 7858 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
7859 return 0;
7860 }
7861
a738430d
MK
7862 /* Make sure that at least there's room for the total_length field.
7863 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 7864 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 7865 {
4d3c2250 7866 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7867 return 0;
7868 }
7869
7870 lh = xmalloc (sizeof (*lh));
7871 memset (lh, 0, sizeof (*lh));
7872 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
7873 (void *) lh);
7874
dce234bc 7875 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 7876
a738430d 7877 /* Read in the header. */
dd373385 7878 lh->total_length =
c764a876
DE
7879 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
7880 &bytes_read, &offset_size);
debd256d 7881 line_ptr += bytes_read;
dce234bc
PP
7882 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
7883 + dwarf2_per_objfile->line.size))
debd256d 7884 {
4d3c2250 7885 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
7886 return 0;
7887 }
7888 lh->statement_program_end = line_ptr + lh->total_length;
7889 lh->version = read_2_bytes (abfd, line_ptr);
7890 line_ptr += 2;
c764a876
DE
7891 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
7892 line_ptr += offset_size;
debd256d
JB
7893 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
7894 line_ptr += 1;
2dc7f7b3
TT
7895 if (lh->version >= 4)
7896 {
7897 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
7898 line_ptr += 1;
7899 }
7900 else
7901 lh->maximum_ops_per_instruction = 1;
7902
7903 if (lh->maximum_ops_per_instruction == 0)
7904 {
7905 lh->maximum_ops_per_instruction = 1;
7906 complaint (&symfile_complaints,
7907 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
7908 }
7909
debd256d
JB
7910 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
7911 line_ptr += 1;
7912 lh->line_base = read_1_signed_byte (abfd, line_ptr);
7913 line_ptr += 1;
7914 lh->line_range = read_1_byte (abfd, line_ptr);
7915 line_ptr += 1;
7916 lh->opcode_base = read_1_byte (abfd, line_ptr);
7917 line_ptr += 1;
7918 lh->standard_opcode_lengths
fe1b8b76 7919 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
7920
7921 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
7922 for (i = 1; i < lh->opcode_base; ++i)
7923 {
7924 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
7925 line_ptr += 1;
7926 }
7927
a738430d 7928 /* Read directory table. */
debd256d
JB
7929 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7930 {
7931 line_ptr += bytes_read;
7932 add_include_dir (lh, cur_dir);
7933 }
7934 line_ptr += bytes_read;
7935
a738430d 7936 /* Read file name table. */
debd256d
JB
7937 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
7938 {
7939 unsigned int dir_index, mod_time, length;
7940
7941 line_ptr += bytes_read;
7942 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7943 line_ptr += bytes_read;
7944 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7945 line_ptr += bytes_read;
7946 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7947 line_ptr += bytes_read;
7948
7949 add_file_name (lh, cur_file, dir_index, mod_time, length);
7950 }
7951 line_ptr += bytes_read;
7952 lh->statement_program_start = line_ptr;
7953
dce234bc
PP
7954 if (line_ptr > (dwarf2_per_objfile->line.buffer
7955 + dwarf2_per_objfile->line.size))
4d3c2250 7956 complaint (&symfile_complaints,
e2e0b3e5 7957 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
7958
7959 discard_cleanups (back_to);
7960 return lh;
7961}
c906108c 7962
5fb290d7
DJ
7963/* This function exists to work around a bug in certain compilers
7964 (particularly GCC 2.95), in which the first line number marker of a
7965 function does not show up until after the prologue, right before
7966 the second line number marker. This function shifts ADDRESS down
7967 to the beginning of the function if necessary, and is called on
7968 addresses passed to record_line. */
7969
7970static CORE_ADDR
e142c38c 7971check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
7972{
7973 struct function_range *fn;
7974
7975 /* Find the function_range containing address. */
e142c38c 7976 if (!cu->first_fn)
5fb290d7
DJ
7977 return address;
7978
e142c38c
DJ
7979 if (!cu->cached_fn)
7980 cu->cached_fn = cu->first_fn;
5fb290d7 7981
e142c38c 7982 fn = cu->cached_fn;
5fb290d7
DJ
7983 while (fn)
7984 if (fn->lowpc <= address && fn->highpc > address)
7985 goto found;
7986 else
7987 fn = fn->next;
7988
e142c38c
DJ
7989 fn = cu->first_fn;
7990 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
7991 if (fn->lowpc <= address && fn->highpc > address)
7992 goto found;
7993 else
7994 fn = fn->next;
7995
7996 return address;
7997
7998 found:
7999 if (fn->seen_line)
8000 return address;
8001 if (address != fn->lowpc)
4d3c2250 8002 complaint (&symfile_complaints,
e2e0b3e5 8003 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 8004 (unsigned long) address, fn->name);
5fb290d7
DJ
8005 fn->seen_line = 1;
8006 return fn->lowpc;
8007}
8008
aaa75496
JB
8009/* Decode the Line Number Program (LNP) for the given line_header
8010 structure and CU. The actual information extracted and the type
8011 of structures created from the LNP depends on the value of PST.
8012
8013 1. If PST is NULL, then this procedure uses the data from the program
8014 to create all necessary symbol tables, and their linetables.
8015 The compilation directory of the file is passed in COMP_DIR,
8016 and must not be NULL.
8017
8018 2. If PST is not NULL, this procedure reads the program to determine
8019 the list of files included by the unit represented by PST, and
8020 builds all the associated partial symbol tables. In this case,
8021 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
8022 is not used to compute the full name of the symtab, and therefore
8023 omitting it when building the partial symtab does not introduce
8024 the potential for inconsistency - a partial symtab and its associated
8025 symbtab having a different fullname -). */
debd256d 8026
c906108c 8027static void
debd256d 8028dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 8029 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 8030{
a8c50c1f 8031 gdb_byte *line_ptr, *extended_end;
fe1b8b76 8032 gdb_byte *line_end;
a8c50c1f 8033 unsigned int bytes_read, extended_len;
c906108c 8034 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
8035 CORE_ADDR baseaddr;
8036 struct objfile *objfile = cu->objfile;
fbf65064 8037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 8038 const int decode_for_pst_p = (pst != NULL);
cb1df416 8039 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
8040
8041 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8042
debd256d
JB
8043 line_ptr = lh->statement_program_start;
8044 line_end = lh->statement_program_end;
c906108c
SS
8045
8046 /* Read the statement sequences until there's nothing left. */
8047 while (line_ptr < line_end)
8048 {
8049 /* state machine registers */
8050 CORE_ADDR address = 0;
8051 unsigned int file = 1;
8052 unsigned int line = 1;
8053 unsigned int column = 0;
debd256d 8054 int is_stmt = lh->default_is_stmt;
c906108c
SS
8055 int basic_block = 0;
8056 int end_sequence = 0;
fbf65064 8057 CORE_ADDR addr;
2dc7f7b3 8058 unsigned char op_index = 0;
c906108c 8059
aaa75496 8060 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 8061 {
aaa75496 8062 /* Start a subfile for the current file of the state machine. */
debd256d
JB
8063 /* lh->include_dirs and lh->file_names are 0-based, but the
8064 directory and file name numbers in the statement program
8065 are 1-based. */
8066 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 8067 char *dir = NULL;
a738430d 8068
debd256d
JB
8069 if (fe->dir_index)
8070 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
8071
8072 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
8073 }
8074
a738430d 8075 /* Decode the table. */
c5aa993b 8076 while (!end_sequence)
c906108c
SS
8077 {
8078 op_code = read_1_byte (abfd, line_ptr);
8079 line_ptr += 1;
59205f5a
JB
8080 if (line_ptr > line_end)
8081 {
8082 dwarf2_debug_line_missing_end_sequence_complaint ();
8083 break;
8084 }
9aa1fe7e 8085
debd256d 8086 if (op_code >= lh->opcode_base)
a738430d
MK
8087 {
8088 /* Special operand. */
debd256d 8089 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
8090 address += (((op_index + (adj_opcode / lh->line_range))
8091 / lh->maximum_ops_per_instruction)
8092 * lh->minimum_instruction_length);
8093 op_index = ((op_index + (adj_opcode / lh->line_range))
8094 % lh->maximum_ops_per_instruction);
debd256d 8095 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 8096 if (lh->num_file_names < file || file == 0)
25e43795 8097 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
8098 /* For now we ignore lines not starting on an
8099 instruction boundary. */
8100 else if (op_index == 0)
25e43795
DJ
8101 {
8102 lh->file_names[file - 1].included_p = 1;
ca5f395d 8103 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8104 {
8105 if (last_subfile != current_subfile)
8106 {
8107 addr = gdbarch_addr_bits_remove (gdbarch, address);
8108 if (last_subfile)
8109 record_line (last_subfile, 0, addr);
8110 last_subfile = current_subfile;
8111 }
25e43795 8112 /* Append row to matrix using current values. */
fbf65064
UW
8113 addr = check_cu_functions (address, cu);
8114 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8115 record_line (current_subfile, line, addr);
366da635 8116 }
25e43795 8117 }
ca5f395d 8118 basic_block = 0;
9aa1fe7e
GK
8119 }
8120 else switch (op_code)
c906108c
SS
8121 {
8122 case DW_LNS_extended_op:
a8c50c1f 8123 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 8124 line_ptr += bytes_read;
a8c50c1f 8125 extended_end = line_ptr + extended_len;
c906108c
SS
8126 extended_op = read_1_byte (abfd, line_ptr);
8127 line_ptr += 1;
8128 switch (extended_op)
8129 {
8130 case DW_LNE_end_sequence:
8131 end_sequence = 1;
c906108c
SS
8132 break;
8133 case DW_LNE_set_address:
e7c27a73 8134 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 8135 op_index = 0;
107d2387
AC
8136 line_ptr += bytes_read;
8137 address += baseaddr;
c906108c
SS
8138 break;
8139 case DW_LNE_define_file:
debd256d
JB
8140 {
8141 char *cur_file;
8142 unsigned int dir_index, mod_time, length;
8143
8144 cur_file = read_string (abfd, line_ptr, &bytes_read);
8145 line_ptr += bytes_read;
8146 dir_index =
8147 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8148 line_ptr += bytes_read;
8149 mod_time =
8150 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8151 line_ptr += bytes_read;
8152 length =
8153 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8154 line_ptr += bytes_read;
8155 add_file_name (lh, cur_file, dir_index, mod_time, length);
8156 }
c906108c 8157 break;
d0c6ba3d
CC
8158 case DW_LNE_set_discriminator:
8159 /* The discriminator is not interesting to the debugger;
8160 just ignore it. */
8161 line_ptr = extended_end;
8162 break;
c906108c 8163 default:
4d3c2250 8164 complaint (&symfile_complaints,
e2e0b3e5 8165 _("mangled .debug_line section"));
debd256d 8166 return;
c906108c 8167 }
a8c50c1f
DJ
8168 /* Make sure that we parsed the extended op correctly. If e.g.
8169 we expected a different address size than the producer used,
8170 we may have read the wrong number of bytes. */
8171 if (line_ptr != extended_end)
8172 {
8173 complaint (&symfile_complaints,
8174 _("mangled .debug_line section"));
8175 return;
8176 }
c906108c
SS
8177 break;
8178 case DW_LNS_copy:
59205f5a 8179 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8180 dwarf2_debug_line_missing_file_complaint ();
8181 else
366da635 8182 {
25e43795 8183 lh->file_names[file - 1].included_p = 1;
ca5f395d 8184 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
8185 {
8186 if (last_subfile != current_subfile)
8187 {
8188 addr = gdbarch_addr_bits_remove (gdbarch, address);
8189 if (last_subfile)
8190 record_line (last_subfile, 0, addr);
8191 last_subfile = current_subfile;
8192 }
8193 addr = check_cu_functions (address, cu);
8194 addr = gdbarch_addr_bits_remove (gdbarch, addr);
8195 record_line (current_subfile, line, addr);
8196 }
366da635 8197 }
c906108c
SS
8198 basic_block = 0;
8199 break;
8200 case DW_LNS_advance_pc:
2dc7f7b3
TT
8201 {
8202 CORE_ADDR adjust
8203 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8204
8205 address += (((op_index + adjust)
8206 / lh->maximum_ops_per_instruction)
8207 * lh->minimum_instruction_length);
8208 op_index = ((op_index + adjust)
8209 % lh->maximum_ops_per_instruction);
8210 line_ptr += bytes_read;
8211 }
c906108c
SS
8212 break;
8213 case DW_LNS_advance_line:
8214 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
8215 line_ptr += bytes_read;
8216 break;
8217 case DW_LNS_set_file:
debd256d 8218 {
a738430d
MK
8219 /* The arrays lh->include_dirs and lh->file_names are
8220 0-based, but the directory and file name numbers in
8221 the statement program are 1-based. */
debd256d 8222 struct file_entry *fe;
4f1520fb 8223 char *dir = NULL;
a738430d 8224
debd256d
JB
8225 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8226 line_ptr += bytes_read;
59205f5a 8227 if (lh->num_file_names < file || file == 0)
25e43795
DJ
8228 dwarf2_debug_line_missing_file_complaint ();
8229 else
8230 {
8231 fe = &lh->file_names[file - 1];
8232 if (fe->dir_index)
8233 dir = lh->include_dirs[fe->dir_index - 1];
8234 if (!decode_for_pst_p)
8235 {
8236 last_subfile = current_subfile;
8237 dwarf2_start_subfile (fe->name, dir, comp_dir);
8238 }
8239 }
debd256d 8240 }
c906108c
SS
8241 break;
8242 case DW_LNS_set_column:
8243 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8244 line_ptr += bytes_read;
8245 break;
8246 case DW_LNS_negate_stmt:
8247 is_stmt = (!is_stmt);
8248 break;
8249 case DW_LNS_set_basic_block:
8250 basic_block = 1;
8251 break;
c2c6d25f
JM
8252 /* Add to the address register of the state machine the
8253 address increment value corresponding to special opcode
a738430d
MK
8254 255. I.e., this value is scaled by the minimum
8255 instruction length since special opcode 255 would have
8256 scaled the the increment. */
c906108c 8257 case DW_LNS_const_add_pc:
2dc7f7b3
TT
8258 {
8259 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
8260
8261 address += (((op_index + adjust)
8262 / lh->maximum_ops_per_instruction)
8263 * lh->minimum_instruction_length);
8264 op_index = ((op_index + adjust)
8265 % lh->maximum_ops_per_instruction);
8266 }
c906108c
SS
8267 break;
8268 case DW_LNS_fixed_advance_pc:
8269 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 8270 op_index = 0;
c906108c
SS
8271 line_ptr += 2;
8272 break;
9aa1fe7e 8273 default:
a738430d
MK
8274 {
8275 /* Unknown standard opcode, ignore it. */
9aa1fe7e 8276 int i;
a738430d 8277
debd256d 8278 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
8279 {
8280 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
8281 line_ptr += bytes_read;
8282 }
8283 }
c906108c
SS
8284 }
8285 }
59205f5a
JB
8286 if (lh->num_file_names < file || file == 0)
8287 dwarf2_debug_line_missing_file_complaint ();
8288 else
8289 {
8290 lh->file_names[file - 1].included_p = 1;
8291 if (!decode_for_pst_p)
fbf65064
UW
8292 {
8293 addr = gdbarch_addr_bits_remove (gdbarch, address);
8294 record_line (current_subfile, 0, addr);
8295 }
59205f5a 8296 }
c906108c 8297 }
aaa75496
JB
8298
8299 if (decode_for_pst_p)
8300 {
8301 int file_index;
8302
8303 /* Now that we're done scanning the Line Header Program, we can
8304 create the psymtab of each included file. */
8305 for (file_index = 0; file_index < lh->num_file_names; file_index++)
8306 if (lh->file_names[file_index].included_p == 1)
8307 {
5b5464ad
JB
8308 const struct file_entry fe = lh->file_names [file_index];
8309 char *include_name = fe.name;
8310 char *dir_name = NULL;
8311 char *pst_filename = pst->filename;
8312
8313 if (fe.dir_index)
8314 dir_name = lh->include_dirs[fe.dir_index - 1];
8315
8316 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
8317 {
1754f103
MK
8318 include_name = concat (dir_name, SLASH_STRING,
8319 include_name, (char *)NULL);
5b5464ad
JB
8320 make_cleanup (xfree, include_name);
8321 }
8322
8323 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
8324 {
1754f103
MK
8325 pst_filename = concat (pst->dirname, SLASH_STRING,
8326 pst_filename, (char *)NULL);
5b5464ad
JB
8327 make_cleanup (xfree, pst_filename);
8328 }
8329
8330 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
8331 dwarf2_create_include_psymtab (include_name, pst, objfile);
8332 }
8333 }
cb1df416
DJ
8334 else
8335 {
8336 /* Make sure a symtab is created for every file, even files
8337 which contain only variables (i.e. no code with associated
8338 line numbers). */
8339
8340 int i;
8341 struct file_entry *fe;
8342
8343 for (i = 0; i < lh->num_file_names; i++)
8344 {
8345 char *dir = NULL;
9a619af0 8346
cb1df416
DJ
8347 fe = &lh->file_names[i];
8348 if (fe->dir_index)
8349 dir = lh->include_dirs[fe->dir_index - 1];
8350 dwarf2_start_subfile (fe->name, dir, comp_dir);
8351
8352 /* Skip the main file; we don't need it, and it must be
8353 allocated last, so that it will show up before the
8354 non-primary symtabs in the objfile's symtab list. */
8355 if (current_subfile == first_subfile)
8356 continue;
8357
8358 if (current_subfile->symtab == NULL)
8359 current_subfile->symtab = allocate_symtab (current_subfile->name,
8360 cu->objfile);
8361 fe->symtab = current_subfile->symtab;
8362 }
8363 }
c906108c
SS
8364}
8365
8366/* Start a subfile for DWARF. FILENAME is the name of the file and
8367 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
8368 or NULL if not known. COMP_DIR is the compilation directory for the
8369 linetable's compilation unit or NULL if not known.
c906108c
SS
8370 This routine tries to keep line numbers from identical absolute and
8371 relative file names in a common subfile.
8372
8373 Using the `list' example from the GDB testsuite, which resides in
8374 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
8375 of /srcdir/list0.c yields the following debugging information for list0.c:
8376
c5aa993b
JM
8377 DW_AT_name: /srcdir/list0.c
8378 DW_AT_comp_dir: /compdir
357e46e7 8379 files.files[0].name: list0.h
c5aa993b 8380 files.files[0].dir: /srcdir
357e46e7 8381 files.files[1].name: list0.c
c5aa993b 8382 files.files[1].dir: /srcdir
c906108c
SS
8383
8384 The line number information for list0.c has to end up in a single
4f1520fb
FR
8385 subfile, so that `break /srcdir/list0.c:1' works as expected.
8386 start_subfile will ensure that this happens provided that we pass the
8387 concatenation of files.files[1].dir and files.files[1].name as the
8388 subfile's name. */
c906108c
SS
8389
8390static void
4f1520fb 8391dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 8392{
4f1520fb
FR
8393 char *fullname;
8394
8395 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
8396 `start_symtab' will always pass the contents of DW_AT_comp_dir as
8397 second argument to start_subfile. To be consistent, we do the
8398 same here. In order not to lose the line information directory,
8399 we concatenate it to the filename when it makes sense.
8400 Note that the Dwarf3 standard says (speaking of filenames in line
8401 information): ``The directory index is ignored for file names
8402 that represent full path names''. Thus ignoring dirname in the
8403 `else' branch below isn't an issue. */
c906108c 8404
d5166ae1 8405 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
8406 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
8407 else
8408 fullname = filename;
c906108c 8409
4f1520fb
FR
8410 start_subfile (fullname, comp_dir);
8411
8412 if (fullname != filename)
8413 xfree (fullname);
c906108c
SS
8414}
8415
4c2df51b
DJ
8416static void
8417var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 8418 struct dwarf2_cu *cu)
4c2df51b 8419{
e7c27a73
DJ
8420 struct objfile *objfile = cu->objfile;
8421 struct comp_unit_head *cu_header = &cu->header;
8422
4c2df51b
DJ
8423 /* NOTE drow/2003-01-30: There used to be a comment and some special
8424 code here to turn a symbol with DW_AT_external and a
8425 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
8426 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
8427 with some versions of binutils) where shared libraries could have
8428 relocations against symbols in their debug information - the
8429 minimal symbol would have the right address, but the debug info
8430 would not. It's no longer necessary, because we will explicitly
8431 apply relocations when we read in the debug information now. */
8432
8433 /* A DW_AT_location attribute with no contents indicates that a
8434 variable has been optimized away. */
8435 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
8436 {
8437 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
8438 return;
8439 }
8440
8441 /* Handle one degenerate form of location expression specially, to
8442 preserve GDB's previous behavior when section offsets are
8443 specified. If this is just a DW_OP_addr then mark this symbol
8444 as LOC_STATIC. */
8445
8446 if (attr_form_is_block (attr)
8447 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
8448 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
8449 {
891d2f0b 8450 unsigned int dummy;
4c2df51b
DJ
8451
8452 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 8453 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 8454 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
8455 fixup_symbol_section (sym, objfile);
8456 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
8457 SYMBOL_SECTION (sym));
4c2df51b
DJ
8458 return;
8459 }
8460
8461 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
8462 expression evaluator, and use LOC_COMPUTED only when necessary
8463 (i.e. when the value of a register or memory location is
8464 referenced, or a thread-local block, etc.). Then again, it might
8465 not be worthwhile. I'm assuming that it isn't unless performance
8466 or memory numbers show me otherwise. */
8467
e7c27a73 8468 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
8469 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8470}
8471
c906108c
SS
8472/* Given a pointer to a DWARF information entry, figure out if we need
8473 to make a symbol table entry for it, and if so, create a new entry
8474 and return a pointer to it.
8475 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 8476 used the passed type. */
c906108c
SS
8477
8478static struct symbol *
e7c27a73 8479new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 8480{
e7c27a73 8481 struct objfile *objfile = cu->objfile;
c906108c
SS
8482 struct symbol *sym = NULL;
8483 char *name;
8484 struct attribute *attr = NULL;
8485 struct attribute *attr2 = NULL;
e142c38c 8486 CORE_ADDR baseaddr;
edb3359d 8487 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
8488
8489 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8490
94af9270 8491 name = dwarf2_name (die, cu);
c906108c
SS
8492 if (name)
8493 {
94af9270
KS
8494 const char *linkagename;
8495
4a146b47 8496 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
8497 sizeof (struct symbol));
8498 OBJSTAT (objfile, n_syms++);
8499 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
8500
8501 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 8502 SYMBOL_LANGUAGE (sym) = cu->language;
94af9270
KS
8503 linkagename = dwarf2_physname (name, die, cu);
8504 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c
SS
8505
8506 /* Default assumptions.
c5aa993b 8507 Use the passed type or decode it from the die. */
176620f1 8508 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 8509 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
8510 if (type != NULL)
8511 SYMBOL_TYPE (sym) = type;
8512 else
e7c27a73 8513 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
8514 attr = dwarf2_attr (die,
8515 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
8516 cu);
c906108c
SS
8517 if (attr)
8518 {
8519 SYMBOL_LINE (sym) = DW_UNSND (attr);
8520 }
cb1df416 8521
edb3359d
DJ
8522 attr = dwarf2_attr (die,
8523 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
8524 cu);
cb1df416
DJ
8525 if (attr)
8526 {
8527 int file_index = DW_UNSND (attr);
9a619af0 8528
cb1df416
DJ
8529 if (cu->line_header == NULL
8530 || file_index > cu->line_header->num_file_names)
8531 complaint (&symfile_complaints,
8532 _("file index out of range"));
1c3d648d 8533 else if (file_index > 0)
cb1df416
DJ
8534 {
8535 struct file_entry *fe;
9a619af0 8536
cb1df416
DJ
8537 fe = &cu->line_header->file_names[file_index - 1];
8538 SYMBOL_SYMTAB (sym) = fe->symtab;
8539 }
8540 }
8541
c906108c
SS
8542 switch (die->tag)
8543 {
8544 case DW_TAG_label:
e142c38c 8545 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
8546 if (attr)
8547 {
8548 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
8549 }
8550 SYMBOL_CLASS (sym) = LOC_LABEL;
8551 break;
8552 case DW_TAG_subprogram:
8553 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8554 finish_block. */
8555 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 8556 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
8557 if ((attr2 && (DW_UNSND (attr2) != 0))
8558 || cu->language == language_ada)
c906108c 8559 {
2cfa0c8d
JB
8560 /* Subprograms marked external are stored as a global symbol.
8561 Ada subprograms, whether marked external or not, are always
8562 stored as a global symbol, because we want to be able to
8563 access them globally. For instance, we want to be able
8564 to break on a nested subprogram without having to
8565 specify the context. */
c906108c
SS
8566 add_symbol_to_list (sym, &global_symbols);
8567 }
8568 else
8569 {
e142c38c 8570 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8571 }
8572 break;
edb3359d
DJ
8573 case DW_TAG_inlined_subroutine:
8574 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
8575 finish_block. */
8576 SYMBOL_CLASS (sym) = LOC_BLOCK;
8577 SYMBOL_INLINED (sym) = 1;
8578 /* Do not add the symbol to any lists. It will be found via
8579 BLOCK_FUNCTION from the blockvector. */
8580 break;
c906108c
SS
8581 case DW_TAG_variable:
8582 /* Compilation with minimal debug info may result in variables
8583 with missing type entries. Change the misleading `void' type
8584 to something sensible. */
8585 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 8586 SYMBOL_TYPE (sym)
46bf5051 8587 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 8588
e142c38c 8589 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8590 if (attr)
8591 {
e7c27a73 8592 dwarf2_const_value (attr, sym, cu);
e142c38c 8593 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
8594 if (attr2 && (DW_UNSND (attr2) != 0))
8595 add_symbol_to_list (sym, &global_symbols);
8596 else
e142c38c 8597 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8598 break;
8599 }
e142c38c 8600 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8601 if (attr)
8602 {
e7c27a73 8603 var_decode_location (attr, sym, cu);
e142c38c 8604 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8605 if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68
TT
8606 {
8607 struct pending **list_to_add;
8608
8609 /* A variable with DW_AT_external is never static,
8610 but it may be block-scoped. */
8611 list_to_add = (cu->list_in_scope == &file_symbols
8612 ? &global_symbols : cu->list_in_scope);
8613 add_symbol_to_list (sym, list_to_add);
8614 }
c906108c 8615 else
e142c38c 8616 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8617 }
8618 else
8619 {
8620 /* We do not know the address of this symbol.
c5aa993b
JM
8621 If it is an external symbol and we have type information
8622 for it, enter the symbol as a LOC_UNRESOLVED symbol.
8623 The address of the variable will then be determined from
8624 the minimal symbol table whenever the variable is
8625 referenced. */
e142c38c 8626 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 8627 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 8628 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 8629 {
0fe7935b
DJ
8630 struct pending **list_to_add;
8631
8632 /* A variable with DW_AT_external is never static, but it
8633 may be block-scoped. */
8634 list_to_add = (cu->list_in_scope == &file_symbols
8635 ? &global_symbols : cu->list_in_scope);
8636
c906108c 8637 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 8638 add_symbol_to_list (sym, list_to_add);
c906108c 8639 }
442ddf59
JK
8640 else if (!die_is_declaration (die, cu))
8641 {
8642 /* Use the default LOC_OPTIMIZED_OUT class. */
8643 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
8644 add_symbol_to_list (sym, cu->list_in_scope);
8645 }
c906108c
SS
8646 }
8647 break;
8648 case DW_TAG_formal_parameter:
edb3359d
DJ
8649 /* If we are inside a function, mark this as an argument. If
8650 not, we might be looking at an argument to an inlined function
8651 when we do not have enough information to show inlined frames;
8652 pretend it's a local variable in that case so that the user can
8653 still see it. */
8654 if (context_stack_depth > 0
8655 && context_stack[context_stack_depth - 1].name != NULL)
8656 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 8657 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
8658 if (attr)
8659 {
e7c27a73 8660 var_decode_location (attr, sym, cu);
c906108c 8661 }
e142c38c 8662 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8663 if (attr)
8664 {
e7c27a73 8665 dwarf2_const_value (attr, sym, cu);
c906108c 8666 }
f346a30d
PM
8667 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
8668 if (attr && DW_UNSND (attr))
8669 {
8670 struct type *ref_type;
8671
8672 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
8673 SYMBOL_TYPE (sym) = ref_type;
8674 }
8675
e142c38c 8676 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8677 break;
8678 case DW_TAG_unspecified_parameters:
8679 /* From varargs functions; gdb doesn't seem to have any
8680 interest in this information, so just ignore it for now.
8681 (FIXME?) */
8682 break;
8683 case DW_TAG_class_type:
680b30c7 8684 case DW_TAG_interface_type:
c906108c
SS
8685 case DW_TAG_structure_type:
8686 case DW_TAG_union_type:
72019c9c 8687 case DW_TAG_set_type:
c906108c
SS
8688 case DW_TAG_enumeration_type:
8689 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8690 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 8691
63d06c5c
DC
8692 /* Make sure that the symbol includes appropriate enclosing
8693 classes/namespaces in its name. These are calculated in
134d01f1 8694 read_structure_type, and the correct name is saved in
63d06c5c
DC
8695 the type. */
8696
987504bb
JJ
8697 if (cu->language == language_cplus
8698 || cu->language == language_java)
c906108c 8699 {
63d06c5c
DC
8700 struct type *type = SYMBOL_TYPE (sym);
8701
8702 if (TYPE_TAG_NAME (type) != NULL)
8703 {
8704 /* FIXME: carlton/2003-11-10: Should this use
8705 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
8706 arises further down in this function.) */
8707 /* The type's name is already allocated along with
8708 this objfile, so we don't need to duplicate it
8709 for the symbol. */
8710 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 8711 }
c906108c 8712 }
63d06c5c
DC
8713
8714 {
987504bb 8715 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
8716 really ever be static objects: otherwise, if you try
8717 to, say, break of a class's method and you're in a file
8718 which doesn't mention that class, it won't work unless
8719 the check for all static symbols in lookup_symbol_aux
8720 saves you. See the OtherFileClass tests in
8721 gdb.c++/namespace.exp. */
8722
8723 struct pending **list_to_add;
8724
e142c38c 8725 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8726 && (cu->language == language_cplus
8727 || cu->language == language_java)
e142c38c 8728 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8729
8730 add_symbol_to_list (sym, list_to_add);
8731
8732 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 8733 defines a typedef for "foo". A Java class declaration also
5eeb2539 8734 defines a typedef for the class. */
987504bb 8735 if (cu->language == language_cplus
8c6860bb
JB
8736 || cu->language == language_java
8737 || cu->language == language_ada)
63d06c5c 8738 {
d8151005
DJ
8739 /* The symbol's name is already allocated along with
8740 this objfile, so we don't need to duplicate it for
8741 the type. */
63d06c5c 8742 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 8743 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
8744 }
8745 }
c906108c
SS
8746 break;
8747 case DW_TAG_typedef:
94af9270
KS
8748 SYMBOL_LINKAGE_NAME (sym)
8749 = (char *) dwarf2_full_name (name, die, cu);
63d06c5c
DC
8750 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8751 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8752 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 8753 break;
c906108c 8754 case DW_TAG_base_type:
a02abb62 8755 case DW_TAG_subrange_type:
90e7c2c5
PM
8756 case DW_TAG_const_type:
8757 case DW_TAG_volatile_type:
c906108c 8758 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 8759 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 8760 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
8761 break;
8762 case DW_TAG_enumerator:
94af9270
KS
8763 SYMBOL_LINKAGE_NAME (sym)
8764 = (char *) dwarf2_full_name (name, die, cu);
e142c38c 8765 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
8766 if (attr)
8767 {
e7c27a73 8768 dwarf2_const_value (attr, sym, cu);
c906108c 8769 }
63d06c5c
DC
8770 {
8771 /* NOTE: carlton/2003-11-10: See comment above in the
8772 DW_TAG_class_type, etc. block. */
8773
8774 struct pending **list_to_add;
8775
e142c38c 8776 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
8777 && (cu->language == language_cplus
8778 || cu->language == language_java)
e142c38c 8779 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
8780
8781 add_symbol_to_list (sym, list_to_add);
8782 }
c906108c 8783 break;
5c4e30ca
DC
8784 case DW_TAG_namespace:
8785 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
8786 add_symbol_to_list (sym, &global_symbols);
8787 break;
c906108c
SS
8788 default:
8789 /* Not a tag we recognize. Hopefully we aren't processing
8790 trash data, but since we must specifically ignore things
8791 we don't recognize, there is nothing else we should do at
8792 this point. */
e2e0b3e5 8793 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 8794 dwarf_tag_name (die->tag));
c906108c
SS
8795 break;
8796 }
df8a16a1
DJ
8797
8798 /* For the benefit of old versions of GCC, check for anonymous
8799 namespaces based on the demangled name. */
8800 if (!processing_has_namespace_info
94af9270 8801 && cu->language == language_cplus)
df8a16a1 8802 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
8803 }
8804 return (sym);
8805}
8806
8807/* Copy constant value from an attribute to a symbol. */
8808
8809static void
107d2387 8810dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 8811 struct dwarf2_cu *cu)
c906108c 8812{
e7c27a73
DJ
8813 struct objfile *objfile = cu->objfile;
8814 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
8815 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
8816 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
8817 struct dwarf_block *blk;
8818
8819 switch (attr->form)
8820 {
8821 case DW_FORM_addr:
107d2387 8822 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
3567439c 8823 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8824 cu_header->addr_size,
8825 TYPE_LENGTH (SYMBOL_TYPE
8826 (sym)));
4e38b386 8827 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8828 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
8829 /* NOTE: cagney/2003-05-09: In-lined store_address call with
8830 it's body - store_unsigned_integer. */
8831 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
72f2769e 8832 byte_order, DW_ADDR (attr));
c906108c
SS
8833 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8834 break;
4ac36638 8835 case DW_FORM_string:
93b5768b
PA
8836 case DW_FORM_strp:
8837 /* DW_STRING is already allocated on the obstack, point directly
8838 to it. */
8839 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
8840 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8841 break;
c906108c
SS
8842 case DW_FORM_block1:
8843 case DW_FORM_block2:
8844 case DW_FORM_block4:
8845 case DW_FORM_block:
2dc7f7b3 8846 case DW_FORM_exprloc:
c906108c
SS
8847 blk = DW_BLOCK (attr);
8848 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 8849 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
8850 blk->size,
8851 TYPE_LENGTH (SYMBOL_TYPE
8852 (sym)));
4e38b386 8853 SYMBOL_VALUE_BYTES (sym) =
4a146b47 8854 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
8855 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
8856 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
8857 break;
2df3850c
JM
8858
8859 /* The DW_AT_const_value attributes are supposed to carry the
8860 symbol's value "represented as it would be on the target
8861 architecture." By the time we get here, it's already been
8862 converted to host endianness, so we just need to sign- or
8863 zero-extend it as appropriate. */
8864 case DW_FORM_data1:
8865 dwarf2_const_value_data (attr, sym, 8);
8866 break;
c906108c 8867 case DW_FORM_data2:
2df3850c
JM
8868 dwarf2_const_value_data (attr, sym, 16);
8869 break;
c906108c 8870 case DW_FORM_data4:
2df3850c
JM
8871 dwarf2_const_value_data (attr, sym, 32);
8872 break;
c906108c 8873 case DW_FORM_data8:
2df3850c
JM
8874 dwarf2_const_value_data (attr, sym, 64);
8875 break;
8876
c906108c 8877 case DW_FORM_sdata:
2df3850c
JM
8878 SYMBOL_VALUE (sym) = DW_SND (attr);
8879 SYMBOL_CLASS (sym) = LOC_CONST;
8880 break;
8881
c906108c
SS
8882 case DW_FORM_udata:
8883 SYMBOL_VALUE (sym) = DW_UNSND (attr);
8884 SYMBOL_CLASS (sym) = LOC_CONST;
8885 break;
2df3850c 8886
c906108c 8887 default:
4d3c2250 8888 complaint (&symfile_complaints,
e2e0b3e5 8889 _("unsupported const value attribute form: '%s'"),
4d3c2250 8890 dwarf_form_name (attr->form));
c906108c
SS
8891 SYMBOL_VALUE (sym) = 0;
8892 SYMBOL_CLASS (sym) = LOC_CONST;
8893 break;
8894 }
8895}
8896
2df3850c
JM
8897
8898/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
8899 or zero-extend it as appropriate for the symbol's type. */
8900static void
8901dwarf2_const_value_data (struct attribute *attr,
8902 struct symbol *sym,
8903 int bits)
8904{
8905 LONGEST l = DW_UNSND (attr);
8906
8907 if (bits < sizeof (l) * 8)
8908 {
8909 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
8910 l &= ((LONGEST) 1 << bits) - 1;
8911 else
bf9198f1 8912 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
8913 }
8914
8915 SYMBOL_VALUE (sym) = l;
8916 SYMBOL_CLASS (sym) = LOC_CONST;
8917}
8918
8919
c906108c
SS
8920/* Return the type of the die in question using its DW_AT_type attribute. */
8921
8922static struct type *
e7c27a73 8923die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8924{
c906108c
SS
8925 struct attribute *type_attr;
8926 struct die_info *type_die;
c906108c 8927
e142c38c 8928 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
8929 if (!type_attr)
8930 {
8931 /* A missing DW_AT_type represents a void type. */
46bf5051 8932 return objfile_type (cu->objfile)->builtin_void;
c906108c 8933 }
348e048f
DE
8934
8935 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 8936
33ac96f0 8937 return tag_type_to_type (type_die, cu);
c906108c
SS
8938}
8939
b4ba55a1
JB
8940/* True iff CU's producer generates GNAT Ada auxiliary information
8941 that allows to find parallel types through that information instead
8942 of having to do expensive parallel lookups by type name. */
8943
8944static int
8945need_gnat_info (struct dwarf2_cu *cu)
8946{
8947 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
8948 of GNAT produces this auxiliary information, without any indication
8949 that it is produced. Part of enhancing the FSF version of GNAT
8950 to produce that information will be to put in place an indicator
8951 that we can use in order to determine whether the descriptive type
8952 info is available or not. One suggestion that has been made is
8953 to use a new attribute, attached to the CU die. For now, assume
8954 that the descriptive type info is not available. */
8955 return 0;
8956}
8957
8958
8959/* Return the auxiliary type of the die in question using its
8960 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
8961 attribute is not present. */
8962
8963static struct type *
8964die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
8965{
b4ba55a1
JB
8966 struct attribute *type_attr;
8967 struct die_info *type_die;
8968
8969 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
8970 if (!type_attr)
8971 return NULL;
8972
8973 type_die = follow_die_ref (die, type_attr, &cu);
33ac96f0 8974 return tag_type_to_type (type_die, cu);
b4ba55a1
JB
8975}
8976
8977/* If DIE has a descriptive_type attribute, then set the TYPE's
8978 descriptive type accordingly. */
8979
8980static void
8981set_descriptive_type (struct type *type, struct die_info *die,
8982 struct dwarf2_cu *cu)
8983{
8984 struct type *descriptive_type = die_descriptive_type (die, cu);
8985
8986 if (descriptive_type)
8987 {
8988 ALLOCATE_GNAT_AUX_TYPE (type);
8989 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
8990 }
8991}
8992
c906108c
SS
8993/* Return the containing type of the die in question using its
8994 DW_AT_containing_type attribute. */
8995
8996static struct type *
e7c27a73 8997die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8998{
c906108c 8999 struct attribute *type_attr;
33ac96f0 9000 struct die_info *type_die;
c906108c 9001
e142c38c 9002 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
9003 if (!type_attr)
9004 error (_("Dwarf Error: Problem turning containing type into gdb type "
9005 "[in module %s]"), cu->objfile->name);
9006
9007 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
9008 return tag_type_to_type (type_die, cu);
c906108c
SS
9009}
9010
c906108c 9011static struct type *
e7c27a73 9012tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9013{
f792889a
DJ
9014 struct type *this_type;
9015
9016 this_type = read_type_die (die, cu);
9017 if (!this_type)
c906108c 9018 {
d97bc12b 9019 dump_die_for_error (die);
f792889a
DJ
9020 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
9021 cu->objfile->name);
c906108c 9022 }
f792889a 9023 return this_type;
c906108c
SS
9024}
9025
f792889a 9026static struct type *
e7c27a73 9027read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9028{
f792889a
DJ
9029 struct type *this_type;
9030
9031 this_type = get_die_type (die, cu);
9032 if (this_type)
9033 return this_type;
9034
c906108c
SS
9035 switch (die->tag)
9036 {
9037 case DW_TAG_class_type:
680b30c7 9038 case DW_TAG_interface_type:
c906108c
SS
9039 case DW_TAG_structure_type:
9040 case DW_TAG_union_type:
f792889a 9041 this_type = read_structure_type (die, cu);
c906108c
SS
9042 break;
9043 case DW_TAG_enumeration_type:
f792889a 9044 this_type = read_enumeration_type (die, cu);
c906108c
SS
9045 break;
9046 case DW_TAG_subprogram:
9047 case DW_TAG_subroutine_type:
edb3359d 9048 case DW_TAG_inlined_subroutine:
f792889a 9049 this_type = read_subroutine_type (die, cu);
c906108c
SS
9050 break;
9051 case DW_TAG_array_type:
f792889a 9052 this_type = read_array_type (die, cu);
c906108c 9053 break;
72019c9c 9054 case DW_TAG_set_type:
f792889a 9055 this_type = read_set_type (die, cu);
72019c9c 9056 break;
c906108c 9057 case DW_TAG_pointer_type:
f792889a 9058 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
9059 break;
9060 case DW_TAG_ptr_to_member_type:
f792889a 9061 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
9062 break;
9063 case DW_TAG_reference_type:
f792889a 9064 this_type = read_tag_reference_type (die, cu);
c906108c
SS
9065 break;
9066 case DW_TAG_const_type:
f792889a 9067 this_type = read_tag_const_type (die, cu);
c906108c
SS
9068 break;
9069 case DW_TAG_volatile_type:
f792889a 9070 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
9071 break;
9072 case DW_TAG_string_type:
f792889a 9073 this_type = read_tag_string_type (die, cu);
c906108c
SS
9074 break;
9075 case DW_TAG_typedef:
f792889a 9076 this_type = read_typedef (die, cu);
c906108c 9077 break;
a02abb62 9078 case DW_TAG_subrange_type:
f792889a 9079 this_type = read_subrange_type (die, cu);
a02abb62 9080 break;
c906108c 9081 case DW_TAG_base_type:
f792889a 9082 this_type = read_base_type (die, cu);
c906108c 9083 break;
81a17f79 9084 case DW_TAG_unspecified_type:
f792889a 9085 this_type = read_unspecified_type (die, cu);
81a17f79 9086 break;
0114d602
DJ
9087 case DW_TAG_namespace:
9088 this_type = read_namespace_type (die, cu);
9089 break;
c906108c 9090 default:
a1f5b845 9091 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 9092 dwarf_tag_name (die->tag));
c906108c
SS
9093 break;
9094 }
63d06c5c 9095
f792889a 9096 return this_type;
63d06c5c
DC
9097}
9098
fdde2d81 9099/* Return the name of the namespace/class that DIE is defined within,
0114d602 9100 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 9101
0114d602
DJ
9102 For example, if we're within the method foo() in the following
9103 code:
9104
9105 namespace N {
9106 class C {
9107 void foo () {
9108 }
9109 };
9110 }
9111
9112 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
9113
9114static char *
e142c38c 9115determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 9116{
0114d602
DJ
9117 struct die_info *parent, *spec_die;
9118 struct dwarf2_cu *spec_cu;
9119 struct type *parent_type;
63d06c5c 9120
987504bb
JJ
9121 if (cu->language != language_cplus
9122 && cu->language != language_java)
0114d602
DJ
9123 return "";
9124
9125 /* We have to be careful in the presence of DW_AT_specification.
9126 For example, with GCC 3.4, given the code
9127
9128 namespace N {
9129 void foo() {
9130 // Definition of N::foo.
9131 }
9132 }
9133
9134 then we'll have a tree of DIEs like this:
9135
9136 1: DW_TAG_compile_unit
9137 2: DW_TAG_namespace // N
9138 3: DW_TAG_subprogram // declaration of N::foo
9139 4: DW_TAG_subprogram // definition of N::foo
9140 DW_AT_specification // refers to die #3
9141
9142 Thus, when processing die #4, we have to pretend that we're in
9143 the context of its DW_AT_specification, namely the contex of die
9144 #3. */
9145 spec_cu = cu;
9146 spec_die = die_specification (die, &spec_cu);
9147 if (spec_die == NULL)
9148 parent = die->parent;
9149 else
63d06c5c 9150 {
0114d602
DJ
9151 parent = spec_die->parent;
9152 cu = spec_cu;
63d06c5c 9153 }
0114d602
DJ
9154
9155 if (parent == NULL)
9156 return "";
63d06c5c 9157 else
0114d602
DJ
9158 switch (parent->tag)
9159 {
63d06c5c 9160 case DW_TAG_namespace:
0114d602 9161 parent_type = read_type_die (parent, cu);
acebe513
UW
9162 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9163 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9164 Work around this problem here. */
9165 if (cu->language == language_cplus
9166 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
9167 return "";
0114d602
DJ
9168 /* We give a name to even anonymous namespaces. */
9169 return TYPE_TAG_NAME (parent_type);
63d06c5c 9170 case DW_TAG_class_type:
680b30c7 9171 case DW_TAG_interface_type:
63d06c5c 9172 case DW_TAG_structure_type:
0114d602
DJ
9173 case DW_TAG_union_type:
9174 parent_type = read_type_die (parent, cu);
9175 if (TYPE_TAG_NAME (parent_type) != NULL)
9176 return TYPE_TAG_NAME (parent_type);
9177 else
9178 /* An anonymous structure is only allowed non-static data
9179 members; no typedefs, no member functions, et cetera.
9180 So it does not need a prefix. */
9181 return "";
63d06c5c 9182 default:
8176b9b8 9183 return determine_prefix (parent, cu);
63d06c5c 9184 }
63d06c5c
DC
9185}
9186
987504bb
JJ
9187/* Return a newly-allocated string formed by concatenating PREFIX and
9188 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
9189 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
9190 perform an obconcat, otherwise allocate storage for the result. The CU argument
9191 is used to determine the language and hence, the appropriate separator. */
9192
9193#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
9194
9195static char *
987504bb
JJ
9196typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
9197 struct dwarf2_cu *cu)
63d06c5c 9198{
987504bb 9199 char *sep;
63d06c5c 9200
987504bb
JJ
9201 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
9202 sep = "";
9203 else if (cu->language == language_java)
9204 sep = ".";
9205 else
9206 sep = "::";
63d06c5c 9207
6dd47d34
DE
9208 if (prefix == NULL)
9209 prefix = "";
9210 if (suffix == NULL)
9211 suffix = "";
9212
987504bb
JJ
9213 if (obs == NULL)
9214 {
9215 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 9216
6dd47d34
DE
9217 strcpy (retval, prefix);
9218 strcat (retval, sep);
9219 strcat (retval, suffix);
63d06c5c
DC
9220 return retval;
9221 }
987504bb
JJ
9222 else
9223 {
9224 /* We have an obstack. */
48cb83fd 9225 return obconcat (obs, prefix, sep, suffix, (char *) NULL);
987504bb 9226 }
63d06c5c
DC
9227}
9228
c906108c
SS
9229/* Return sibling of die, NULL if no sibling. */
9230
f9aca02d 9231static struct die_info *
fba45db2 9232sibling_die (struct die_info *die)
c906108c 9233{
639d11d3 9234 return die->sibling;
c906108c
SS
9235}
9236
71c25dea
TT
9237/* Get name of a die, return NULL if not found. */
9238
9239static char *
9240dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
9241 struct obstack *obstack)
9242{
9243 if (name && cu->language == language_cplus)
9244 {
9245 char *canon_name = cp_canonicalize_string (name);
9246
9247 if (canon_name != NULL)
9248 {
9249 if (strcmp (canon_name, name) != 0)
9250 name = obsavestring (canon_name, strlen (canon_name),
9251 obstack);
9252 xfree (canon_name);
9253 }
9254 }
9255
9256 return name;
c906108c
SS
9257}
9258
9219021c
DC
9259/* Get name of a die, return NULL if not found. */
9260
9261static char *
e142c38c 9262dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
9263{
9264 struct attribute *attr;
9265
e142c38c 9266 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
9267 if (!attr || !DW_STRING (attr))
9268 return NULL;
9269
9270 switch (die->tag)
9271 {
9272 case DW_TAG_compile_unit:
9273 /* Compilation units have a DW_AT_name that is a filename, not
9274 a source language identifier. */
9275 case DW_TAG_enumeration_type:
9276 case DW_TAG_enumerator:
9277 /* These tags always have simple identifiers already; no need
9278 to canonicalize them. */
9279 return DW_STRING (attr);
907af001 9280
418835cc
KS
9281 case DW_TAG_subprogram:
9282 /* Java constructors will all be named "<init>", so return
9283 the class name when we see this special case. */
9284 if (cu->language == language_java
9285 && DW_STRING (attr) != NULL
9286 && strcmp (DW_STRING (attr), "<init>") == 0)
9287 {
9288 struct dwarf2_cu *spec_cu = cu;
9289 struct die_info *spec_die;
9290
9291 /* GCJ will output '<init>' for Java constructor names.
9292 For this special case, return the name of the parent class. */
9293
9294 /* GCJ may output suprogram DIEs with AT_specification set.
9295 If so, use the name of the specified DIE. */
9296 spec_die = die_specification (die, &spec_cu);
9297 if (spec_die != NULL)
9298 return dwarf2_name (spec_die, spec_cu);
9299
9300 do
9301 {
9302 die = die->parent;
9303 if (die->tag == DW_TAG_class_type)
9304 return dwarf2_name (die, cu);
9305 }
9306 while (die->tag != DW_TAG_compile_unit);
9307 }
907af001
UW
9308 break;
9309
9310 case DW_TAG_class_type:
9311 case DW_TAG_interface_type:
9312 case DW_TAG_structure_type:
9313 case DW_TAG_union_type:
9314 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
9315 structures or unions. These were of the form "._%d" in GCC 4.1,
9316 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
9317 and GCC 4.4. We work around this problem by ignoring these. */
9318 if (strncmp (DW_STRING (attr), "._", 2) == 0
9319 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
9320 return NULL;
9321 break;
9322
71c25dea 9323 default:
907af001
UW
9324 break;
9325 }
9326
9327 if (!DW_STRING_IS_CANONICAL (attr))
9328 {
9329 DW_STRING (attr)
9330 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
9331 &cu->objfile->objfile_obstack);
9332 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 9333 }
907af001 9334 return DW_STRING (attr);
9219021c
DC
9335}
9336
9337/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
9338 is none. *EXT_CU is the CU containing DIE on input, and the CU
9339 containing the return value on output. */
9219021c
DC
9340
9341static struct die_info *
f2f0e013 9342dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
9343{
9344 struct attribute *attr;
9219021c 9345
f2f0e013 9346 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
9347 if (attr == NULL)
9348 return NULL;
9349
f2f0e013 9350 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
9351}
9352
c906108c
SS
9353/* Convert a DIE tag into its string name. */
9354
9355static char *
aa1ee363 9356dwarf_tag_name (unsigned tag)
c906108c
SS
9357{
9358 switch (tag)
9359 {
9360 case DW_TAG_padding:
9361 return "DW_TAG_padding";
9362 case DW_TAG_array_type:
9363 return "DW_TAG_array_type";
9364 case DW_TAG_class_type:
9365 return "DW_TAG_class_type";
9366 case DW_TAG_entry_point:
9367 return "DW_TAG_entry_point";
9368 case DW_TAG_enumeration_type:
9369 return "DW_TAG_enumeration_type";
9370 case DW_TAG_formal_parameter:
9371 return "DW_TAG_formal_parameter";
9372 case DW_TAG_imported_declaration:
9373 return "DW_TAG_imported_declaration";
9374 case DW_TAG_label:
9375 return "DW_TAG_label";
9376 case DW_TAG_lexical_block:
9377 return "DW_TAG_lexical_block";
9378 case DW_TAG_member:
9379 return "DW_TAG_member";
9380 case DW_TAG_pointer_type:
9381 return "DW_TAG_pointer_type";
9382 case DW_TAG_reference_type:
9383 return "DW_TAG_reference_type";
9384 case DW_TAG_compile_unit:
9385 return "DW_TAG_compile_unit";
9386 case DW_TAG_string_type:
9387 return "DW_TAG_string_type";
9388 case DW_TAG_structure_type:
9389 return "DW_TAG_structure_type";
9390 case DW_TAG_subroutine_type:
9391 return "DW_TAG_subroutine_type";
9392 case DW_TAG_typedef:
9393 return "DW_TAG_typedef";
9394 case DW_TAG_union_type:
9395 return "DW_TAG_union_type";
9396 case DW_TAG_unspecified_parameters:
9397 return "DW_TAG_unspecified_parameters";
9398 case DW_TAG_variant:
9399 return "DW_TAG_variant";
9400 case DW_TAG_common_block:
9401 return "DW_TAG_common_block";
9402 case DW_TAG_common_inclusion:
9403 return "DW_TAG_common_inclusion";
9404 case DW_TAG_inheritance:
9405 return "DW_TAG_inheritance";
9406 case DW_TAG_inlined_subroutine:
9407 return "DW_TAG_inlined_subroutine";
9408 case DW_TAG_module:
9409 return "DW_TAG_module";
9410 case DW_TAG_ptr_to_member_type:
9411 return "DW_TAG_ptr_to_member_type";
9412 case DW_TAG_set_type:
9413 return "DW_TAG_set_type";
9414 case DW_TAG_subrange_type:
9415 return "DW_TAG_subrange_type";
9416 case DW_TAG_with_stmt:
9417 return "DW_TAG_with_stmt";
9418 case DW_TAG_access_declaration:
9419 return "DW_TAG_access_declaration";
9420 case DW_TAG_base_type:
9421 return "DW_TAG_base_type";
9422 case DW_TAG_catch_block:
9423 return "DW_TAG_catch_block";
9424 case DW_TAG_const_type:
9425 return "DW_TAG_const_type";
9426 case DW_TAG_constant:
9427 return "DW_TAG_constant";
9428 case DW_TAG_enumerator:
9429 return "DW_TAG_enumerator";
9430 case DW_TAG_file_type:
9431 return "DW_TAG_file_type";
9432 case DW_TAG_friend:
9433 return "DW_TAG_friend";
9434 case DW_TAG_namelist:
9435 return "DW_TAG_namelist";
9436 case DW_TAG_namelist_item:
9437 return "DW_TAG_namelist_item";
9438 case DW_TAG_packed_type:
9439 return "DW_TAG_packed_type";
9440 case DW_TAG_subprogram:
9441 return "DW_TAG_subprogram";
9442 case DW_TAG_template_type_param:
9443 return "DW_TAG_template_type_param";
9444 case DW_TAG_template_value_param:
9445 return "DW_TAG_template_value_param";
9446 case DW_TAG_thrown_type:
9447 return "DW_TAG_thrown_type";
9448 case DW_TAG_try_block:
9449 return "DW_TAG_try_block";
9450 case DW_TAG_variant_part:
9451 return "DW_TAG_variant_part";
9452 case DW_TAG_variable:
9453 return "DW_TAG_variable";
9454 case DW_TAG_volatile_type:
9455 return "DW_TAG_volatile_type";
d9fa45fe
DC
9456 case DW_TAG_dwarf_procedure:
9457 return "DW_TAG_dwarf_procedure";
9458 case DW_TAG_restrict_type:
9459 return "DW_TAG_restrict_type";
9460 case DW_TAG_interface_type:
9461 return "DW_TAG_interface_type";
9462 case DW_TAG_namespace:
9463 return "DW_TAG_namespace";
9464 case DW_TAG_imported_module:
9465 return "DW_TAG_imported_module";
9466 case DW_TAG_unspecified_type:
9467 return "DW_TAG_unspecified_type";
9468 case DW_TAG_partial_unit:
9469 return "DW_TAG_partial_unit";
9470 case DW_TAG_imported_unit:
9471 return "DW_TAG_imported_unit";
b7619582
GF
9472 case DW_TAG_condition:
9473 return "DW_TAG_condition";
9474 case DW_TAG_shared_type:
9475 return "DW_TAG_shared_type";
348e048f
DE
9476 case DW_TAG_type_unit:
9477 return "DW_TAG_type_unit";
c906108c
SS
9478 case DW_TAG_MIPS_loop:
9479 return "DW_TAG_MIPS_loop";
b7619582
GF
9480 case DW_TAG_HP_array_descriptor:
9481 return "DW_TAG_HP_array_descriptor";
c906108c
SS
9482 case DW_TAG_format_label:
9483 return "DW_TAG_format_label";
9484 case DW_TAG_function_template:
9485 return "DW_TAG_function_template";
9486 case DW_TAG_class_template:
9487 return "DW_TAG_class_template";
b7619582
GF
9488 case DW_TAG_GNU_BINCL:
9489 return "DW_TAG_GNU_BINCL";
9490 case DW_TAG_GNU_EINCL:
9491 return "DW_TAG_GNU_EINCL";
9492 case DW_TAG_upc_shared_type:
9493 return "DW_TAG_upc_shared_type";
9494 case DW_TAG_upc_strict_type:
9495 return "DW_TAG_upc_strict_type";
9496 case DW_TAG_upc_relaxed_type:
9497 return "DW_TAG_upc_relaxed_type";
9498 case DW_TAG_PGI_kanji_type:
9499 return "DW_TAG_PGI_kanji_type";
9500 case DW_TAG_PGI_interface_block:
9501 return "DW_TAG_PGI_interface_block";
c906108c
SS
9502 default:
9503 return "DW_TAG_<unknown>";
9504 }
9505}
9506
9507/* Convert a DWARF attribute code into its string name. */
9508
9509static char *
aa1ee363 9510dwarf_attr_name (unsigned attr)
c906108c
SS
9511{
9512 switch (attr)
9513 {
9514 case DW_AT_sibling:
9515 return "DW_AT_sibling";
9516 case DW_AT_location:
9517 return "DW_AT_location";
9518 case DW_AT_name:
9519 return "DW_AT_name";
9520 case DW_AT_ordering:
9521 return "DW_AT_ordering";
9522 case DW_AT_subscr_data:
9523 return "DW_AT_subscr_data";
9524 case DW_AT_byte_size:
9525 return "DW_AT_byte_size";
9526 case DW_AT_bit_offset:
9527 return "DW_AT_bit_offset";
9528 case DW_AT_bit_size:
9529 return "DW_AT_bit_size";
9530 case DW_AT_element_list:
9531 return "DW_AT_element_list";
9532 case DW_AT_stmt_list:
9533 return "DW_AT_stmt_list";
9534 case DW_AT_low_pc:
9535 return "DW_AT_low_pc";
9536 case DW_AT_high_pc:
9537 return "DW_AT_high_pc";
9538 case DW_AT_language:
9539 return "DW_AT_language";
9540 case DW_AT_member:
9541 return "DW_AT_member";
9542 case DW_AT_discr:
9543 return "DW_AT_discr";
9544 case DW_AT_discr_value:
9545 return "DW_AT_discr_value";
9546 case DW_AT_visibility:
9547 return "DW_AT_visibility";
9548 case DW_AT_import:
9549 return "DW_AT_import";
9550 case DW_AT_string_length:
9551 return "DW_AT_string_length";
9552 case DW_AT_common_reference:
9553 return "DW_AT_common_reference";
9554 case DW_AT_comp_dir:
9555 return "DW_AT_comp_dir";
9556 case DW_AT_const_value:
9557 return "DW_AT_const_value";
9558 case DW_AT_containing_type:
9559 return "DW_AT_containing_type";
9560 case DW_AT_default_value:
9561 return "DW_AT_default_value";
9562 case DW_AT_inline:
9563 return "DW_AT_inline";
9564 case DW_AT_is_optional:
9565 return "DW_AT_is_optional";
9566 case DW_AT_lower_bound:
9567 return "DW_AT_lower_bound";
9568 case DW_AT_producer:
9569 return "DW_AT_producer";
9570 case DW_AT_prototyped:
9571 return "DW_AT_prototyped";
9572 case DW_AT_return_addr:
9573 return "DW_AT_return_addr";
9574 case DW_AT_start_scope:
9575 return "DW_AT_start_scope";
09fa0d7c
JK
9576 case DW_AT_bit_stride:
9577 return "DW_AT_bit_stride";
c906108c
SS
9578 case DW_AT_upper_bound:
9579 return "DW_AT_upper_bound";
9580 case DW_AT_abstract_origin:
9581 return "DW_AT_abstract_origin";
9582 case DW_AT_accessibility:
9583 return "DW_AT_accessibility";
9584 case DW_AT_address_class:
9585 return "DW_AT_address_class";
9586 case DW_AT_artificial:
9587 return "DW_AT_artificial";
9588 case DW_AT_base_types:
9589 return "DW_AT_base_types";
9590 case DW_AT_calling_convention:
9591 return "DW_AT_calling_convention";
9592 case DW_AT_count:
9593 return "DW_AT_count";
9594 case DW_AT_data_member_location:
9595 return "DW_AT_data_member_location";
9596 case DW_AT_decl_column:
9597 return "DW_AT_decl_column";
9598 case DW_AT_decl_file:
9599 return "DW_AT_decl_file";
9600 case DW_AT_decl_line:
9601 return "DW_AT_decl_line";
9602 case DW_AT_declaration:
9603 return "DW_AT_declaration";
9604 case DW_AT_discr_list:
9605 return "DW_AT_discr_list";
9606 case DW_AT_encoding:
9607 return "DW_AT_encoding";
9608 case DW_AT_external:
9609 return "DW_AT_external";
9610 case DW_AT_frame_base:
9611 return "DW_AT_frame_base";
9612 case DW_AT_friend:
9613 return "DW_AT_friend";
9614 case DW_AT_identifier_case:
9615 return "DW_AT_identifier_case";
9616 case DW_AT_macro_info:
9617 return "DW_AT_macro_info";
9618 case DW_AT_namelist_items:
9619 return "DW_AT_namelist_items";
9620 case DW_AT_priority:
9621 return "DW_AT_priority";
9622 case DW_AT_segment:
9623 return "DW_AT_segment";
9624 case DW_AT_specification:
9625 return "DW_AT_specification";
9626 case DW_AT_static_link:
9627 return "DW_AT_static_link";
9628 case DW_AT_type:
9629 return "DW_AT_type";
9630 case DW_AT_use_location:
9631 return "DW_AT_use_location";
9632 case DW_AT_variable_parameter:
9633 return "DW_AT_variable_parameter";
9634 case DW_AT_virtuality:
9635 return "DW_AT_virtuality";
9636 case DW_AT_vtable_elem_location:
9637 return "DW_AT_vtable_elem_location";
b7619582 9638 /* DWARF 3 values. */
d9fa45fe
DC
9639 case DW_AT_allocated:
9640 return "DW_AT_allocated";
9641 case DW_AT_associated:
9642 return "DW_AT_associated";
9643 case DW_AT_data_location:
9644 return "DW_AT_data_location";
09fa0d7c
JK
9645 case DW_AT_byte_stride:
9646 return "DW_AT_byte_stride";
d9fa45fe
DC
9647 case DW_AT_entry_pc:
9648 return "DW_AT_entry_pc";
9649 case DW_AT_use_UTF8:
9650 return "DW_AT_use_UTF8";
9651 case DW_AT_extension:
9652 return "DW_AT_extension";
9653 case DW_AT_ranges:
9654 return "DW_AT_ranges";
9655 case DW_AT_trampoline:
9656 return "DW_AT_trampoline";
9657 case DW_AT_call_column:
9658 return "DW_AT_call_column";
9659 case DW_AT_call_file:
9660 return "DW_AT_call_file";
9661 case DW_AT_call_line:
9662 return "DW_AT_call_line";
b7619582
GF
9663 case DW_AT_description:
9664 return "DW_AT_description";
9665 case DW_AT_binary_scale:
9666 return "DW_AT_binary_scale";
9667 case DW_AT_decimal_scale:
9668 return "DW_AT_decimal_scale";
9669 case DW_AT_small:
9670 return "DW_AT_small";
9671 case DW_AT_decimal_sign:
9672 return "DW_AT_decimal_sign";
9673 case DW_AT_digit_count:
9674 return "DW_AT_digit_count";
9675 case DW_AT_picture_string:
9676 return "DW_AT_picture_string";
9677 case DW_AT_mutable:
9678 return "DW_AT_mutable";
9679 case DW_AT_threads_scaled:
9680 return "DW_AT_threads_scaled";
9681 case DW_AT_explicit:
9682 return "DW_AT_explicit";
9683 case DW_AT_object_pointer:
9684 return "DW_AT_object_pointer";
9685 case DW_AT_endianity:
9686 return "DW_AT_endianity";
9687 case DW_AT_elemental:
9688 return "DW_AT_elemental";
9689 case DW_AT_pure:
9690 return "DW_AT_pure";
9691 case DW_AT_recursive:
9692 return "DW_AT_recursive";
348e048f
DE
9693 /* DWARF 4 values. */
9694 case DW_AT_signature:
9695 return "DW_AT_signature";
31ef98ae
TT
9696 case DW_AT_linkage_name:
9697 return "DW_AT_linkage_name";
b7619582 9698 /* SGI/MIPS extensions. */
c764a876 9699#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
9700 case DW_AT_MIPS_fde:
9701 return "DW_AT_MIPS_fde";
c764a876 9702#endif
c906108c
SS
9703 case DW_AT_MIPS_loop_begin:
9704 return "DW_AT_MIPS_loop_begin";
9705 case DW_AT_MIPS_tail_loop_begin:
9706 return "DW_AT_MIPS_tail_loop_begin";
9707 case DW_AT_MIPS_epilog_begin:
9708 return "DW_AT_MIPS_epilog_begin";
9709 case DW_AT_MIPS_loop_unroll_factor:
9710 return "DW_AT_MIPS_loop_unroll_factor";
9711 case DW_AT_MIPS_software_pipeline_depth:
9712 return "DW_AT_MIPS_software_pipeline_depth";
9713 case DW_AT_MIPS_linkage_name:
9714 return "DW_AT_MIPS_linkage_name";
b7619582
GF
9715 case DW_AT_MIPS_stride:
9716 return "DW_AT_MIPS_stride";
9717 case DW_AT_MIPS_abstract_name:
9718 return "DW_AT_MIPS_abstract_name";
9719 case DW_AT_MIPS_clone_origin:
9720 return "DW_AT_MIPS_clone_origin";
9721 case DW_AT_MIPS_has_inlines:
9722 return "DW_AT_MIPS_has_inlines";
b7619582 9723 /* HP extensions. */
c764a876 9724#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
9725 case DW_AT_HP_block_index:
9726 return "DW_AT_HP_block_index";
c764a876 9727#endif
b7619582
GF
9728 case DW_AT_HP_unmodifiable:
9729 return "DW_AT_HP_unmodifiable";
9730 case DW_AT_HP_actuals_stmt_list:
9731 return "DW_AT_HP_actuals_stmt_list";
9732 case DW_AT_HP_proc_per_section:
9733 return "DW_AT_HP_proc_per_section";
9734 case DW_AT_HP_raw_data_ptr:
9735 return "DW_AT_HP_raw_data_ptr";
9736 case DW_AT_HP_pass_by_reference:
9737 return "DW_AT_HP_pass_by_reference";
9738 case DW_AT_HP_opt_level:
9739 return "DW_AT_HP_opt_level";
9740 case DW_AT_HP_prof_version_id:
9741 return "DW_AT_HP_prof_version_id";
9742 case DW_AT_HP_opt_flags:
9743 return "DW_AT_HP_opt_flags";
9744 case DW_AT_HP_cold_region_low_pc:
9745 return "DW_AT_HP_cold_region_low_pc";
9746 case DW_AT_HP_cold_region_high_pc:
9747 return "DW_AT_HP_cold_region_high_pc";
9748 case DW_AT_HP_all_variables_modifiable:
9749 return "DW_AT_HP_all_variables_modifiable";
9750 case DW_AT_HP_linkage_name:
9751 return "DW_AT_HP_linkage_name";
9752 case DW_AT_HP_prof_flags:
9753 return "DW_AT_HP_prof_flags";
9754 /* GNU extensions. */
c906108c
SS
9755 case DW_AT_sf_names:
9756 return "DW_AT_sf_names";
9757 case DW_AT_src_info:
9758 return "DW_AT_src_info";
9759 case DW_AT_mac_info:
9760 return "DW_AT_mac_info";
9761 case DW_AT_src_coords:
9762 return "DW_AT_src_coords";
9763 case DW_AT_body_begin:
9764 return "DW_AT_body_begin";
9765 case DW_AT_body_end:
9766 return "DW_AT_body_end";
f5f8a009
EZ
9767 case DW_AT_GNU_vector:
9768 return "DW_AT_GNU_vector";
b7619582
GF
9769 /* VMS extensions. */
9770 case DW_AT_VMS_rtnbeg_pd_address:
9771 return "DW_AT_VMS_rtnbeg_pd_address";
9772 /* UPC extension. */
9773 case DW_AT_upc_threads_scaled:
9774 return "DW_AT_upc_threads_scaled";
9775 /* PGI (STMicroelectronics) extensions. */
9776 case DW_AT_PGI_lbase:
9777 return "DW_AT_PGI_lbase";
9778 case DW_AT_PGI_soffset:
9779 return "DW_AT_PGI_soffset";
9780 case DW_AT_PGI_lstride:
9781 return "DW_AT_PGI_lstride";
c906108c
SS
9782 default:
9783 return "DW_AT_<unknown>";
9784 }
9785}
9786
9787/* Convert a DWARF value form code into its string name. */
9788
9789static char *
aa1ee363 9790dwarf_form_name (unsigned form)
c906108c
SS
9791{
9792 switch (form)
9793 {
9794 case DW_FORM_addr:
9795 return "DW_FORM_addr";
9796 case DW_FORM_block2:
9797 return "DW_FORM_block2";
9798 case DW_FORM_block4:
9799 return "DW_FORM_block4";
9800 case DW_FORM_data2:
9801 return "DW_FORM_data2";
9802 case DW_FORM_data4:
9803 return "DW_FORM_data4";
9804 case DW_FORM_data8:
9805 return "DW_FORM_data8";
9806 case DW_FORM_string:
9807 return "DW_FORM_string";
9808 case DW_FORM_block:
9809 return "DW_FORM_block";
9810 case DW_FORM_block1:
9811 return "DW_FORM_block1";
9812 case DW_FORM_data1:
9813 return "DW_FORM_data1";
9814 case DW_FORM_flag:
9815 return "DW_FORM_flag";
9816 case DW_FORM_sdata:
9817 return "DW_FORM_sdata";
9818 case DW_FORM_strp:
9819 return "DW_FORM_strp";
9820 case DW_FORM_udata:
9821 return "DW_FORM_udata";
9822 case DW_FORM_ref_addr:
9823 return "DW_FORM_ref_addr";
9824 case DW_FORM_ref1:
9825 return "DW_FORM_ref1";
9826 case DW_FORM_ref2:
9827 return "DW_FORM_ref2";
9828 case DW_FORM_ref4:
9829 return "DW_FORM_ref4";
9830 case DW_FORM_ref8:
9831 return "DW_FORM_ref8";
9832 case DW_FORM_ref_udata:
9833 return "DW_FORM_ref_udata";
9834 case DW_FORM_indirect:
9835 return "DW_FORM_indirect";
348e048f
DE
9836 case DW_FORM_sec_offset:
9837 return "DW_FORM_sec_offset";
9838 case DW_FORM_exprloc:
9839 return "DW_FORM_exprloc";
9840 case DW_FORM_flag_present:
9841 return "DW_FORM_flag_present";
9842 case DW_FORM_sig8:
9843 return "DW_FORM_sig8";
c906108c
SS
9844 default:
9845 return "DW_FORM_<unknown>";
9846 }
9847}
9848
9849/* Convert a DWARF stack opcode into its string name. */
9850
9851static char *
aa1ee363 9852dwarf_stack_op_name (unsigned op)
c906108c
SS
9853{
9854 switch (op)
9855 {
9856 case DW_OP_addr:
9857 return "DW_OP_addr";
9858 case DW_OP_deref:
9859 return "DW_OP_deref";
9860 case DW_OP_const1u:
9861 return "DW_OP_const1u";
9862 case DW_OP_const1s:
9863 return "DW_OP_const1s";
9864 case DW_OP_const2u:
9865 return "DW_OP_const2u";
9866 case DW_OP_const2s:
9867 return "DW_OP_const2s";
9868 case DW_OP_const4u:
9869 return "DW_OP_const4u";
9870 case DW_OP_const4s:
9871 return "DW_OP_const4s";
9872 case DW_OP_const8u:
9873 return "DW_OP_const8u";
9874 case DW_OP_const8s:
9875 return "DW_OP_const8s";
9876 case DW_OP_constu:
9877 return "DW_OP_constu";
9878 case DW_OP_consts:
9879 return "DW_OP_consts";
9880 case DW_OP_dup:
9881 return "DW_OP_dup";
9882 case DW_OP_drop:
9883 return "DW_OP_drop";
9884 case DW_OP_over:
9885 return "DW_OP_over";
9886 case DW_OP_pick:
9887 return "DW_OP_pick";
9888 case DW_OP_swap:
9889 return "DW_OP_swap";
9890 case DW_OP_rot:
9891 return "DW_OP_rot";
9892 case DW_OP_xderef:
9893 return "DW_OP_xderef";
9894 case DW_OP_abs:
9895 return "DW_OP_abs";
9896 case DW_OP_and:
9897 return "DW_OP_and";
9898 case DW_OP_div:
9899 return "DW_OP_div";
9900 case DW_OP_minus:
9901 return "DW_OP_minus";
9902 case DW_OP_mod:
9903 return "DW_OP_mod";
9904 case DW_OP_mul:
9905 return "DW_OP_mul";
9906 case DW_OP_neg:
9907 return "DW_OP_neg";
9908 case DW_OP_not:
9909 return "DW_OP_not";
9910 case DW_OP_or:
9911 return "DW_OP_or";
9912 case DW_OP_plus:
9913 return "DW_OP_plus";
9914 case DW_OP_plus_uconst:
9915 return "DW_OP_plus_uconst";
9916 case DW_OP_shl:
9917 return "DW_OP_shl";
9918 case DW_OP_shr:
9919 return "DW_OP_shr";
9920 case DW_OP_shra:
9921 return "DW_OP_shra";
9922 case DW_OP_xor:
9923 return "DW_OP_xor";
9924 case DW_OP_bra:
9925 return "DW_OP_bra";
9926 case DW_OP_eq:
9927 return "DW_OP_eq";
9928 case DW_OP_ge:
9929 return "DW_OP_ge";
9930 case DW_OP_gt:
9931 return "DW_OP_gt";
9932 case DW_OP_le:
9933 return "DW_OP_le";
9934 case DW_OP_lt:
9935 return "DW_OP_lt";
9936 case DW_OP_ne:
9937 return "DW_OP_ne";
9938 case DW_OP_skip:
9939 return "DW_OP_skip";
9940 case DW_OP_lit0:
9941 return "DW_OP_lit0";
9942 case DW_OP_lit1:
9943 return "DW_OP_lit1";
9944 case DW_OP_lit2:
9945 return "DW_OP_lit2";
9946 case DW_OP_lit3:
9947 return "DW_OP_lit3";
9948 case DW_OP_lit4:
9949 return "DW_OP_lit4";
9950 case DW_OP_lit5:
9951 return "DW_OP_lit5";
9952 case DW_OP_lit6:
9953 return "DW_OP_lit6";
9954 case DW_OP_lit7:
9955 return "DW_OP_lit7";
9956 case DW_OP_lit8:
9957 return "DW_OP_lit8";
9958 case DW_OP_lit9:
9959 return "DW_OP_lit9";
9960 case DW_OP_lit10:
9961 return "DW_OP_lit10";
9962 case DW_OP_lit11:
9963 return "DW_OP_lit11";
9964 case DW_OP_lit12:
9965 return "DW_OP_lit12";
9966 case DW_OP_lit13:
9967 return "DW_OP_lit13";
9968 case DW_OP_lit14:
9969 return "DW_OP_lit14";
9970 case DW_OP_lit15:
9971 return "DW_OP_lit15";
9972 case DW_OP_lit16:
9973 return "DW_OP_lit16";
9974 case DW_OP_lit17:
9975 return "DW_OP_lit17";
9976 case DW_OP_lit18:
9977 return "DW_OP_lit18";
9978 case DW_OP_lit19:
9979 return "DW_OP_lit19";
9980 case DW_OP_lit20:
9981 return "DW_OP_lit20";
9982 case DW_OP_lit21:
9983 return "DW_OP_lit21";
9984 case DW_OP_lit22:
9985 return "DW_OP_lit22";
9986 case DW_OP_lit23:
9987 return "DW_OP_lit23";
9988 case DW_OP_lit24:
9989 return "DW_OP_lit24";
9990 case DW_OP_lit25:
9991 return "DW_OP_lit25";
9992 case DW_OP_lit26:
9993 return "DW_OP_lit26";
9994 case DW_OP_lit27:
9995 return "DW_OP_lit27";
9996 case DW_OP_lit28:
9997 return "DW_OP_lit28";
9998 case DW_OP_lit29:
9999 return "DW_OP_lit29";
10000 case DW_OP_lit30:
10001 return "DW_OP_lit30";
10002 case DW_OP_lit31:
10003 return "DW_OP_lit31";
10004 case DW_OP_reg0:
10005 return "DW_OP_reg0";
10006 case DW_OP_reg1:
10007 return "DW_OP_reg1";
10008 case DW_OP_reg2:
10009 return "DW_OP_reg2";
10010 case DW_OP_reg3:
10011 return "DW_OP_reg3";
10012 case DW_OP_reg4:
10013 return "DW_OP_reg4";
10014 case DW_OP_reg5:
10015 return "DW_OP_reg5";
10016 case DW_OP_reg6:
10017 return "DW_OP_reg6";
10018 case DW_OP_reg7:
10019 return "DW_OP_reg7";
10020 case DW_OP_reg8:
10021 return "DW_OP_reg8";
10022 case DW_OP_reg9:
10023 return "DW_OP_reg9";
10024 case DW_OP_reg10:
10025 return "DW_OP_reg10";
10026 case DW_OP_reg11:
10027 return "DW_OP_reg11";
10028 case DW_OP_reg12:
10029 return "DW_OP_reg12";
10030 case DW_OP_reg13:
10031 return "DW_OP_reg13";
10032 case DW_OP_reg14:
10033 return "DW_OP_reg14";
10034 case DW_OP_reg15:
10035 return "DW_OP_reg15";
10036 case DW_OP_reg16:
10037 return "DW_OP_reg16";
10038 case DW_OP_reg17:
10039 return "DW_OP_reg17";
10040 case DW_OP_reg18:
10041 return "DW_OP_reg18";
10042 case DW_OP_reg19:
10043 return "DW_OP_reg19";
10044 case DW_OP_reg20:
10045 return "DW_OP_reg20";
10046 case DW_OP_reg21:
10047 return "DW_OP_reg21";
10048 case DW_OP_reg22:
10049 return "DW_OP_reg22";
10050 case DW_OP_reg23:
10051 return "DW_OP_reg23";
10052 case DW_OP_reg24:
10053 return "DW_OP_reg24";
10054 case DW_OP_reg25:
10055 return "DW_OP_reg25";
10056 case DW_OP_reg26:
10057 return "DW_OP_reg26";
10058 case DW_OP_reg27:
10059 return "DW_OP_reg27";
10060 case DW_OP_reg28:
10061 return "DW_OP_reg28";
10062 case DW_OP_reg29:
10063 return "DW_OP_reg29";
10064 case DW_OP_reg30:
10065 return "DW_OP_reg30";
10066 case DW_OP_reg31:
10067 return "DW_OP_reg31";
10068 case DW_OP_breg0:
10069 return "DW_OP_breg0";
10070 case DW_OP_breg1:
10071 return "DW_OP_breg1";
10072 case DW_OP_breg2:
10073 return "DW_OP_breg2";
10074 case DW_OP_breg3:
10075 return "DW_OP_breg3";
10076 case DW_OP_breg4:
10077 return "DW_OP_breg4";
10078 case DW_OP_breg5:
10079 return "DW_OP_breg5";
10080 case DW_OP_breg6:
10081 return "DW_OP_breg6";
10082 case DW_OP_breg7:
10083 return "DW_OP_breg7";
10084 case DW_OP_breg8:
10085 return "DW_OP_breg8";
10086 case DW_OP_breg9:
10087 return "DW_OP_breg9";
10088 case DW_OP_breg10:
10089 return "DW_OP_breg10";
10090 case DW_OP_breg11:
10091 return "DW_OP_breg11";
10092 case DW_OP_breg12:
10093 return "DW_OP_breg12";
10094 case DW_OP_breg13:
10095 return "DW_OP_breg13";
10096 case DW_OP_breg14:
10097 return "DW_OP_breg14";
10098 case DW_OP_breg15:
10099 return "DW_OP_breg15";
10100 case DW_OP_breg16:
10101 return "DW_OP_breg16";
10102 case DW_OP_breg17:
10103 return "DW_OP_breg17";
10104 case DW_OP_breg18:
10105 return "DW_OP_breg18";
10106 case DW_OP_breg19:
10107 return "DW_OP_breg19";
10108 case DW_OP_breg20:
10109 return "DW_OP_breg20";
10110 case DW_OP_breg21:
10111 return "DW_OP_breg21";
10112 case DW_OP_breg22:
10113 return "DW_OP_breg22";
10114 case DW_OP_breg23:
10115 return "DW_OP_breg23";
10116 case DW_OP_breg24:
10117 return "DW_OP_breg24";
10118 case DW_OP_breg25:
10119 return "DW_OP_breg25";
10120 case DW_OP_breg26:
10121 return "DW_OP_breg26";
10122 case DW_OP_breg27:
10123 return "DW_OP_breg27";
10124 case DW_OP_breg28:
10125 return "DW_OP_breg28";
10126 case DW_OP_breg29:
10127 return "DW_OP_breg29";
10128 case DW_OP_breg30:
10129 return "DW_OP_breg30";
10130 case DW_OP_breg31:
10131 return "DW_OP_breg31";
10132 case DW_OP_regx:
10133 return "DW_OP_regx";
10134 case DW_OP_fbreg:
10135 return "DW_OP_fbreg";
10136 case DW_OP_bregx:
10137 return "DW_OP_bregx";
10138 case DW_OP_piece:
10139 return "DW_OP_piece";
10140 case DW_OP_deref_size:
10141 return "DW_OP_deref_size";
10142 case DW_OP_xderef_size:
10143 return "DW_OP_xderef_size";
10144 case DW_OP_nop:
10145 return "DW_OP_nop";
b7619582 10146 /* DWARF 3 extensions. */
ed348acc
EZ
10147 case DW_OP_push_object_address:
10148 return "DW_OP_push_object_address";
10149 case DW_OP_call2:
10150 return "DW_OP_call2";
10151 case DW_OP_call4:
10152 return "DW_OP_call4";
10153 case DW_OP_call_ref:
10154 return "DW_OP_call_ref";
b7619582
GF
10155 /* GNU extensions. */
10156 case DW_OP_form_tls_address:
10157 return "DW_OP_form_tls_address";
10158 case DW_OP_call_frame_cfa:
10159 return "DW_OP_call_frame_cfa";
10160 case DW_OP_bit_piece:
10161 return "DW_OP_bit_piece";
ed348acc
EZ
10162 case DW_OP_GNU_push_tls_address:
10163 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
10164 case DW_OP_GNU_uninit:
10165 return "DW_OP_GNU_uninit";
b7619582
GF
10166 /* HP extensions. */
10167 case DW_OP_HP_is_value:
10168 return "DW_OP_HP_is_value";
10169 case DW_OP_HP_fltconst4:
10170 return "DW_OP_HP_fltconst4";
10171 case DW_OP_HP_fltconst8:
10172 return "DW_OP_HP_fltconst8";
10173 case DW_OP_HP_mod_range:
10174 return "DW_OP_HP_mod_range";
10175 case DW_OP_HP_unmod_range:
10176 return "DW_OP_HP_unmod_range";
10177 case DW_OP_HP_tls:
10178 return "DW_OP_HP_tls";
c906108c
SS
10179 default:
10180 return "OP_<unknown>";
10181 }
10182}
10183
10184static char *
fba45db2 10185dwarf_bool_name (unsigned mybool)
c906108c
SS
10186{
10187 if (mybool)
10188 return "TRUE";
10189 else
10190 return "FALSE";
10191}
10192
10193/* Convert a DWARF type code into its string name. */
10194
10195static char *
aa1ee363 10196dwarf_type_encoding_name (unsigned enc)
c906108c
SS
10197{
10198 switch (enc)
10199 {
b7619582
GF
10200 case DW_ATE_void:
10201 return "DW_ATE_void";
c906108c
SS
10202 case DW_ATE_address:
10203 return "DW_ATE_address";
10204 case DW_ATE_boolean:
10205 return "DW_ATE_boolean";
10206 case DW_ATE_complex_float:
10207 return "DW_ATE_complex_float";
10208 case DW_ATE_float:
10209 return "DW_ATE_float";
10210 case DW_ATE_signed:
10211 return "DW_ATE_signed";
10212 case DW_ATE_signed_char:
10213 return "DW_ATE_signed_char";
10214 case DW_ATE_unsigned:
10215 return "DW_ATE_unsigned";
10216 case DW_ATE_unsigned_char:
10217 return "DW_ATE_unsigned_char";
b7619582 10218 /* DWARF 3. */
d9fa45fe
DC
10219 case DW_ATE_imaginary_float:
10220 return "DW_ATE_imaginary_float";
b7619582
GF
10221 case DW_ATE_packed_decimal:
10222 return "DW_ATE_packed_decimal";
10223 case DW_ATE_numeric_string:
10224 return "DW_ATE_numeric_string";
10225 case DW_ATE_edited:
10226 return "DW_ATE_edited";
10227 case DW_ATE_signed_fixed:
10228 return "DW_ATE_signed_fixed";
10229 case DW_ATE_unsigned_fixed:
10230 return "DW_ATE_unsigned_fixed";
10231 case DW_ATE_decimal_float:
10232 return "DW_ATE_decimal_float";
10233 /* HP extensions. */
10234 case DW_ATE_HP_float80:
10235 return "DW_ATE_HP_float80";
10236 case DW_ATE_HP_complex_float80:
10237 return "DW_ATE_HP_complex_float80";
10238 case DW_ATE_HP_float128:
10239 return "DW_ATE_HP_float128";
10240 case DW_ATE_HP_complex_float128:
10241 return "DW_ATE_HP_complex_float128";
10242 case DW_ATE_HP_floathpintel:
10243 return "DW_ATE_HP_floathpintel";
10244 case DW_ATE_HP_imaginary_float80:
10245 return "DW_ATE_HP_imaginary_float80";
10246 case DW_ATE_HP_imaginary_float128:
10247 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
10248 default:
10249 return "DW_ATE_<unknown>";
10250 }
10251}
10252
10253/* Convert a DWARF call frame info operation to its string name. */
10254
10255#if 0
10256static char *
aa1ee363 10257dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
10258{
10259 switch (cfi_opc)
10260 {
10261 case DW_CFA_advance_loc:
10262 return "DW_CFA_advance_loc";
10263 case DW_CFA_offset:
10264 return "DW_CFA_offset";
10265 case DW_CFA_restore:
10266 return "DW_CFA_restore";
10267 case DW_CFA_nop:
10268 return "DW_CFA_nop";
10269 case DW_CFA_set_loc:
10270 return "DW_CFA_set_loc";
10271 case DW_CFA_advance_loc1:
10272 return "DW_CFA_advance_loc1";
10273 case DW_CFA_advance_loc2:
10274 return "DW_CFA_advance_loc2";
10275 case DW_CFA_advance_loc4:
10276 return "DW_CFA_advance_loc4";
10277 case DW_CFA_offset_extended:
10278 return "DW_CFA_offset_extended";
10279 case DW_CFA_restore_extended:
10280 return "DW_CFA_restore_extended";
10281 case DW_CFA_undefined:
10282 return "DW_CFA_undefined";
10283 case DW_CFA_same_value:
10284 return "DW_CFA_same_value";
10285 case DW_CFA_register:
10286 return "DW_CFA_register";
10287 case DW_CFA_remember_state:
10288 return "DW_CFA_remember_state";
10289 case DW_CFA_restore_state:
10290 return "DW_CFA_restore_state";
10291 case DW_CFA_def_cfa:
10292 return "DW_CFA_def_cfa";
10293 case DW_CFA_def_cfa_register:
10294 return "DW_CFA_def_cfa_register";
10295 case DW_CFA_def_cfa_offset:
10296 return "DW_CFA_def_cfa_offset";
b7619582 10297 /* DWARF 3. */
985cb1a3
JM
10298 case DW_CFA_def_cfa_expression:
10299 return "DW_CFA_def_cfa_expression";
10300 case DW_CFA_expression:
10301 return "DW_CFA_expression";
10302 case DW_CFA_offset_extended_sf:
10303 return "DW_CFA_offset_extended_sf";
10304 case DW_CFA_def_cfa_sf:
10305 return "DW_CFA_def_cfa_sf";
10306 case DW_CFA_def_cfa_offset_sf:
10307 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
10308 case DW_CFA_val_offset:
10309 return "DW_CFA_val_offset";
10310 case DW_CFA_val_offset_sf:
10311 return "DW_CFA_val_offset_sf";
10312 case DW_CFA_val_expression:
10313 return "DW_CFA_val_expression";
10314 /* SGI/MIPS specific. */
c906108c
SS
10315 case DW_CFA_MIPS_advance_loc8:
10316 return "DW_CFA_MIPS_advance_loc8";
b7619582 10317 /* GNU extensions. */
985cb1a3
JM
10318 case DW_CFA_GNU_window_save:
10319 return "DW_CFA_GNU_window_save";
10320 case DW_CFA_GNU_args_size:
10321 return "DW_CFA_GNU_args_size";
10322 case DW_CFA_GNU_negative_offset_extended:
10323 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
10324 default:
10325 return "DW_CFA_<unknown>";
10326 }
10327}
10328#endif
10329
f9aca02d 10330static void
d97bc12b 10331dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
10332{
10333 unsigned int i;
10334
d97bc12b
DE
10335 print_spaces (indent, f);
10336 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 10337 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
10338
10339 if (die->parent != NULL)
10340 {
10341 print_spaces (indent, f);
10342 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
10343 die->parent->offset);
10344 }
10345
10346 print_spaces (indent, f);
10347 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 10348 dwarf_bool_name (die->child != NULL));
c906108c 10349
d97bc12b
DE
10350 print_spaces (indent, f);
10351 fprintf_unfiltered (f, " attributes:\n");
10352
c906108c
SS
10353 for (i = 0; i < die->num_attrs; ++i)
10354 {
d97bc12b
DE
10355 print_spaces (indent, f);
10356 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
10357 dwarf_attr_name (die->attrs[i].name),
10358 dwarf_form_name (die->attrs[i].form));
d97bc12b 10359
c906108c
SS
10360 switch (die->attrs[i].form)
10361 {
10362 case DW_FORM_ref_addr:
10363 case DW_FORM_addr:
d97bc12b 10364 fprintf_unfiltered (f, "address: ");
5af949e3 10365 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
10366 break;
10367 case DW_FORM_block2:
10368 case DW_FORM_block4:
10369 case DW_FORM_block:
10370 case DW_FORM_block1:
d97bc12b 10371 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 10372 break;
2dc7f7b3
TT
10373 case DW_FORM_exprloc:
10374 fprintf_unfiltered (f, "expression: size %u",
10375 DW_BLOCK (&die->attrs[i])->size);
10376 break;
10b3939b
DJ
10377 case DW_FORM_ref1:
10378 case DW_FORM_ref2:
10379 case DW_FORM_ref4:
d97bc12b 10380 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
10381 (long) (DW_ADDR (&die->attrs[i])));
10382 break;
c906108c
SS
10383 case DW_FORM_data1:
10384 case DW_FORM_data2:
10385 case DW_FORM_data4:
ce5d95e1 10386 case DW_FORM_data8:
c906108c
SS
10387 case DW_FORM_udata:
10388 case DW_FORM_sdata:
43bbcdc2
PH
10389 fprintf_unfiltered (f, "constant: %s",
10390 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 10391 break;
2dc7f7b3
TT
10392 case DW_FORM_sec_offset:
10393 fprintf_unfiltered (f, "section offset: %s",
10394 pulongest (DW_UNSND (&die->attrs[i])));
10395 break;
348e048f
DE
10396 case DW_FORM_sig8:
10397 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
10398 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
10399 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
10400 else
10401 fprintf_unfiltered (f, "signatured type, offset: unknown");
10402 break;
c906108c 10403 case DW_FORM_string:
4bdf3d34 10404 case DW_FORM_strp:
8285870a 10405 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 10406 DW_STRING (&die->attrs[i])
8285870a
JK
10407 ? DW_STRING (&die->attrs[i]) : "",
10408 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
10409 break;
10410 case DW_FORM_flag:
10411 if (DW_UNSND (&die->attrs[i]))
d97bc12b 10412 fprintf_unfiltered (f, "flag: TRUE");
c906108c 10413 else
d97bc12b 10414 fprintf_unfiltered (f, "flag: FALSE");
c906108c 10415 break;
2dc7f7b3
TT
10416 case DW_FORM_flag_present:
10417 fprintf_unfiltered (f, "flag: TRUE");
10418 break;
a8329558
KW
10419 case DW_FORM_indirect:
10420 /* the reader will have reduced the indirect form to
10421 the "base form" so this form should not occur */
d97bc12b 10422 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 10423 break;
c906108c 10424 default:
d97bc12b 10425 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 10426 die->attrs[i].form);
d97bc12b 10427 break;
c906108c 10428 }
d97bc12b 10429 fprintf_unfiltered (f, "\n");
c906108c
SS
10430 }
10431}
10432
f9aca02d 10433static void
d97bc12b 10434dump_die_for_error (struct die_info *die)
c906108c 10435{
d97bc12b
DE
10436 dump_die_shallow (gdb_stderr, 0, die);
10437}
10438
10439static void
10440dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
10441{
10442 int indent = level * 4;
10443
10444 gdb_assert (die != NULL);
10445
10446 if (level >= max_level)
10447 return;
10448
10449 dump_die_shallow (f, indent, die);
10450
10451 if (die->child != NULL)
c906108c 10452 {
d97bc12b
DE
10453 print_spaces (indent, f);
10454 fprintf_unfiltered (f, " Children:");
10455 if (level + 1 < max_level)
10456 {
10457 fprintf_unfiltered (f, "\n");
10458 dump_die_1 (f, level + 1, max_level, die->child);
10459 }
10460 else
10461 {
10462 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
10463 }
10464 }
10465
10466 if (die->sibling != NULL && level > 0)
10467 {
10468 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
10469 }
10470}
10471
d97bc12b
DE
10472/* This is called from the pdie macro in gdbinit.in.
10473 It's not static so gcc will keep a copy callable from gdb. */
10474
10475void
10476dump_die (struct die_info *die, int max_level)
10477{
10478 dump_die_1 (gdb_stdlog, 0, max_level, die);
10479}
10480
f9aca02d 10481static void
51545339 10482store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10483{
51545339 10484 void **slot;
c906108c 10485
51545339
DJ
10486 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
10487
10488 *slot = die;
c906108c
SS
10489}
10490
93311388
DE
10491static int
10492is_ref_attr (struct attribute *attr)
c906108c 10493{
c906108c
SS
10494 switch (attr->form)
10495 {
10496 case DW_FORM_ref_addr:
c906108c
SS
10497 case DW_FORM_ref1:
10498 case DW_FORM_ref2:
10499 case DW_FORM_ref4:
613e1657 10500 case DW_FORM_ref8:
c906108c 10501 case DW_FORM_ref_udata:
93311388 10502 return 1;
c906108c 10503 default:
93311388 10504 return 0;
c906108c 10505 }
93311388
DE
10506}
10507
10508static unsigned int
10509dwarf2_get_ref_die_offset (struct attribute *attr)
10510{
10511 if (is_ref_attr (attr))
10512 return DW_ADDR (attr);
10513
10514 complaint (&symfile_complaints,
10515 _("unsupported die ref attribute form: '%s'"),
10516 dwarf_form_name (attr->form));
10517 return 0;
c906108c
SS
10518}
10519
43bbcdc2
PH
10520/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
10521 * the value held by the attribute is not constant. */
a02abb62 10522
43bbcdc2 10523static LONGEST
a02abb62
JB
10524dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
10525{
10526 if (attr->form == DW_FORM_sdata)
10527 return DW_SND (attr);
10528 else if (attr->form == DW_FORM_udata
10529 || attr->form == DW_FORM_data1
10530 || attr->form == DW_FORM_data2
10531 || attr->form == DW_FORM_data4
10532 || attr->form == DW_FORM_data8)
10533 return DW_UNSND (attr);
10534 else
10535 {
e2e0b3e5 10536 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
10537 dwarf_form_name (attr->form));
10538 return default_value;
10539 }
10540}
10541
03dd20cc 10542/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
10543 unit and add it to our queue.
10544 The result is non-zero if PER_CU was queued, otherwise the result is zero
10545 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 10546
348e048f 10547static int
03dd20cc
DJ
10548maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
10549 struct dwarf2_per_cu_data *per_cu)
10550{
10551 /* Mark the dependence relation so that we don't flush PER_CU
10552 too early. */
10553 dwarf2_add_dependence (this_cu, per_cu);
10554
10555 /* If it's already on the queue, we have nothing to do. */
10556 if (per_cu->queued)
348e048f 10557 return 0;
03dd20cc
DJ
10558
10559 /* If the compilation unit is already loaded, just mark it as
10560 used. */
10561 if (per_cu->cu != NULL)
10562 {
10563 per_cu->cu->last_used = 0;
348e048f 10564 return 0;
03dd20cc
DJ
10565 }
10566
10567 /* Add it to the queue. */
10568 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
10569
10570 return 1;
10571}
10572
10573/* Follow reference or signature attribute ATTR of SRC_DIE.
10574 On entry *REF_CU is the CU of SRC_DIE.
10575 On exit *REF_CU is the CU of the result. */
10576
10577static struct die_info *
10578follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
10579 struct dwarf2_cu **ref_cu)
10580{
10581 struct die_info *die;
10582
10583 if (is_ref_attr (attr))
10584 die = follow_die_ref (src_die, attr, ref_cu);
10585 else if (attr->form == DW_FORM_sig8)
10586 die = follow_die_sig (src_die, attr, ref_cu);
10587 else
10588 {
10589 dump_die_for_error (src_die);
10590 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
10591 (*ref_cu)->objfile->name);
10592 }
10593
10594 return die;
03dd20cc
DJ
10595}
10596
f504f079
DE
10597/* Follow reference attribute ATTR of SRC_DIE.
10598 On entry *REF_CU is the CU of SRC_DIE.
10599 On exit *REF_CU is the CU of the result. */
10600
f9aca02d 10601static struct die_info *
10b3939b 10602follow_die_ref (struct die_info *src_die, struct attribute *attr,
f2f0e013 10603 struct dwarf2_cu **ref_cu)
c906108c
SS
10604{
10605 struct die_info *die;
10b3939b 10606 unsigned int offset;
10b3939b 10607 struct die_info temp_die;
f2f0e013 10608 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 10609
348e048f
DE
10610 gdb_assert (cu->per_cu != NULL);
10611
c764a876 10612 offset = dwarf2_get_ref_die_offset (attr);
10b3939b 10613
348e048f
DE
10614 if (cu->per_cu->from_debug_types)
10615 {
10616 /* .debug_types CUs cannot reference anything outside their CU.
10617 If they need to, they have to reference a signatured type via
10618 DW_FORM_sig8. */
10619 if (! offset_in_cu_p (&cu->header, offset))
10620 goto not_found;
10621 target_cu = cu;
10622 }
10623 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
10624 {
10625 struct dwarf2_per_cu_data *per_cu;
9a619af0 10626
45452591 10627 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
10628
10629 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
10630 if (maybe_queue_comp_unit (cu, per_cu))
10631 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 10632
10b3939b
DJ
10633 target_cu = per_cu->cu;
10634 }
10635 else
10636 target_cu = cu;
c906108c 10637
f2f0e013 10638 *ref_cu = target_cu;
51545339
DJ
10639 temp_die.offset = offset;
10640 die = htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
10641 if (die)
10642 return die;
10b3939b 10643
348e048f
DE
10644 not_found:
10645
10646 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
10647 "at 0x%x [in module %s]"),
10648 offset, src_die->offset, cu->objfile->name);
10649}
10650
10651/* Follow the signature attribute ATTR in SRC_DIE.
10652 On entry *REF_CU is the CU of SRC_DIE.
10653 On exit *REF_CU is the CU of the result. */
10654
10655static struct die_info *
10656follow_die_sig (struct die_info *src_die, struct attribute *attr,
10657 struct dwarf2_cu **ref_cu)
10658{
10659 struct objfile *objfile = (*ref_cu)->objfile;
10660 struct die_info temp_die;
10661 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
10662 struct dwarf2_cu *sig_cu;
10663 struct die_info *die;
10664
10665 /* sig_type will be NULL if the signatured type is missing from
10666 the debug info. */
10667 if (sig_type == NULL)
10668 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
10669 "at 0x%x [in module %s]"),
10670 src_die->offset, objfile->name);
10671
10672 /* If necessary, add it to the queue and load its DIEs. */
10673
10674 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
10675 read_signatured_type (objfile, sig_type);
10676
10677 gdb_assert (sig_type->per_cu.cu != NULL);
10678
10679 sig_cu = sig_type->per_cu.cu;
10680 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
10681 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
10682 if (die)
10683 {
10684 *ref_cu = sig_cu;
10685 return die;
10686 }
10687
10688 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
10689 "at 0x%x [in module %s]"),
10690 sig_type->type_offset, src_die->offset, objfile->name);
10691}
10692
10693/* Given an offset of a signatured type, return its signatured_type. */
10694
10695static struct signatured_type *
10696lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
10697{
10698 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
10699 unsigned int length, initial_length_size;
10700 unsigned int sig_offset;
10701 struct signatured_type find_entry, *type_sig;
10702
10703 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
10704 sig_offset = (initial_length_size
10705 + 2 /*version*/
10706 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
10707 + 1 /*address_size*/);
10708 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
10709 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
10710
10711 /* This is only used to lookup previously recorded types.
10712 If we didn't find it, it's our bug. */
10713 gdb_assert (type_sig != NULL);
10714 gdb_assert (offset == type_sig->offset);
10715
10716 return type_sig;
10717}
10718
10719/* Read in signatured type at OFFSET and build its CU and die(s). */
10720
10721static void
10722read_signatured_type_at_offset (struct objfile *objfile,
10723 unsigned int offset)
10724{
10725 struct signatured_type *type_sig;
10726
be391dca
TT
10727 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
10728
348e048f
DE
10729 /* We have the section offset, but we need the signature to do the
10730 hash table lookup. */
10731 type_sig = lookup_signatured_type_at_offset (objfile, offset);
10732
10733 gdb_assert (type_sig->per_cu.cu == NULL);
10734
10735 read_signatured_type (objfile, type_sig);
10736
10737 gdb_assert (type_sig->per_cu.cu != NULL);
10738}
10739
10740/* Read in a signatured type and build its CU and DIEs. */
10741
10742static void
10743read_signatured_type (struct objfile *objfile,
10744 struct signatured_type *type_sig)
10745{
10746 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
10747 struct die_reader_specs reader_specs;
10748 struct dwarf2_cu *cu;
10749 ULONGEST signature;
10750 struct cleanup *back_to, *free_cu_cleanup;
10751 struct attribute *attr;
10752
10753 gdb_assert (type_sig->per_cu.cu == NULL);
10754
10755 cu = xmalloc (sizeof (struct dwarf2_cu));
10756 memset (cu, 0, sizeof (struct dwarf2_cu));
10757 obstack_init (&cu->comp_unit_obstack);
10758 cu->objfile = objfile;
10759 type_sig->per_cu.cu = cu;
10760 cu->per_cu = &type_sig->per_cu;
10761
10762 /* If an error occurs while loading, release our storage. */
10763 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
10764
10765 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
10766 types_ptr, objfile->obfd);
10767 gdb_assert (signature == type_sig->signature);
10768
10769 cu->die_hash
10770 = htab_create_alloc_ex (cu->header.length / 12,
10771 die_hash,
10772 die_eq,
10773 NULL,
10774 &cu->comp_unit_obstack,
10775 hashtab_obstack_allocate,
10776 dummy_obstack_deallocate);
10777
10778 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
10779 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
10780
10781 init_cu_die_reader (&reader_specs, cu);
10782
10783 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
10784 NULL /*parent*/);
10785
10786 /* We try not to read any attributes in this function, because not
10787 all objfiles needed for references have been loaded yet, and symbol
10788 table processing isn't initialized. But we have to set the CU language,
10789 or we won't be able to build types correctly. */
10790 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
10791 if (attr)
10792 set_cu_language (DW_UNSND (attr), cu);
10793 else
10794 set_cu_language (language_minimal, cu);
10795
10796 do_cleanups (back_to);
10797
10798 /* We've successfully allocated this compilation unit. Let our caller
10799 clean it up when finished with it. */
10800 discard_cleanups (free_cu_cleanup);
10801
10802 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
10803 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
10804}
10805
c906108c
SS
10806/* Decode simple location descriptions.
10807 Given a pointer to a dwarf block that defines a location, compute
10808 the location and return the value.
10809
4cecd739
DJ
10810 NOTE drow/2003-11-18: This function is called in two situations
10811 now: for the address of static or global variables (partial symbols
10812 only) and for offsets into structures which are expected to be
10813 (more or less) constant. The partial symbol case should go away,
10814 and only the constant case should remain. That will let this
10815 function complain more accurately. A few special modes are allowed
10816 without complaint for global variables (for instance, global
10817 register values and thread-local values).
c906108c
SS
10818
10819 A location description containing no operations indicates that the
4cecd739 10820 object is optimized out. The return value is 0 for that case.
6b992462
DJ
10821 FIXME drow/2003-11-16: No callers check for this case any more; soon all
10822 callers will only want a very basic result and this can become a
10823 complaint.
c906108c 10824
c906108c
SS
10825 Note that stack[0] is unused except as a default error return.
10826 Note that stack overflow is not yet handled. */
10827
10828static CORE_ADDR
e7c27a73 10829decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 10830{
e7c27a73 10831 struct objfile *objfile = cu->objfile;
c906108c
SS
10832 int i;
10833 int size = blk->size;
fe1b8b76 10834 gdb_byte *data = blk->data;
c906108c
SS
10835 CORE_ADDR stack[64];
10836 int stacki;
10837 unsigned int bytes_read, unsnd;
fe1b8b76 10838 gdb_byte op;
c906108c
SS
10839
10840 i = 0;
10841 stacki = 0;
10842 stack[stacki] = 0;
c906108c
SS
10843
10844 while (i < size)
10845 {
c906108c
SS
10846 op = data[i++];
10847 switch (op)
10848 {
f1bea926
JM
10849 case DW_OP_lit0:
10850 case DW_OP_lit1:
10851 case DW_OP_lit2:
10852 case DW_OP_lit3:
10853 case DW_OP_lit4:
10854 case DW_OP_lit5:
10855 case DW_OP_lit6:
10856 case DW_OP_lit7:
10857 case DW_OP_lit8:
10858 case DW_OP_lit9:
10859 case DW_OP_lit10:
10860 case DW_OP_lit11:
10861 case DW_OP_lit12:
10862 case DW_OP_lit13:
10863 case DW_OP_lit14:
10864 case DW_OP_lit15:
10865 case DW_OP_lit16:
10866 case DW_OP_lit17:
10867 case DW_OP_lit18:
10868 case DW_OP_lit19:
10869 case DW_OP_lit20:
10870 case DW_OP_lit21:
10871 case DW_OP_lit22:
10872 case DW_OP_lit23:
10873 case DW_OP_lit24:
10874 case DW_OP_lit25:
10875 case DW_OP_lit26:
10876 case DW_OP_lit27:
10877 case DW_OP_lit28:
10878 case DW_OP_lit29:
10879 case DW_OP_lit30:
10880 case DW_OP_lit31:
10881 stack[++stacki] = op - DW_OP_lit0;
10882 break;
10883
c906108c
SS
10884 case DW_OP_reg0:
10885 case DW_OP_reg1:
10886 case DW_OP_reg2:
10887 case DW_OP_reg3:
10888 case DW_OP_reg4:
10889 case DW_OP_reg5:
10890 case DW_OP_reg6:
10891 case DW_OP_reg7:
10892 case DW_OP_reg8:
10893 case DW_OP_reg9:
10894 case DW_OP_reg10:
10895 case DW_OP_reg11:
10896 case DW_OP_reg12:
10897 case DW_OP_reg13:
10898 case DW_OP_reg14:
10899 case DW_OP_reg15:
10900 case DW_OP_reg16:
10901 case DW_OP_reg17:
10902 case DW_OP_reg18:
10903 case DW_OP_reg19:
10904 case DW_OP_reg20:
10905 case DW_OP_reg21:
10906 case DW_OP_reg22:
10907 case DW_OP_reg23:
10908 case DW_OP_reg24:
10909 case DW_OP_reg25:
10910 case DW_OP_reg26:
10911 case DW_OP_reg27:
10912 case DW_OP_reg28:
10913 case DW_OP_reg29:
10914 case DW_OP_reg30:
10915 case DW_OP_reg31:
c906108c 10916 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
10917 if (i < size)
10918 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10919 break;
10920
10921 case DW_OP_regx:
c906108c
SS
10922 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10923 i += bytes_read;
c906108c 10924 stack[++stacki] = unsnd;
4cecd739
DJ
10925 if (i < size)
10926 dwarf2_complex_location_expr_complaint ();
c906108c
SS
10927 break;
10928
10929 case DW_OP_addr:
107d2387 10930 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 10931 cu, &bytes_read);
107d2387 10932 i += bytes_read;
c906108c
SS
10933 break;
10934
10935 case DW_OP_const1u:
10936 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
10937 i += 1;
10938 break;
10939
10940 case DW_OP_const1s:
10941 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
10942 i += 1;
10943 break;
10944
10945 case DW_OP_const2u:
10946 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
10947 i += 2;
10948 break;
10949
10950 case DW_OP_const2s:
10951 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
10952 i += 2;
10953 break;
10954
10955 case DW_OP_const4u:
10956 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
10957 i += 4;
10958 break;
10959
10960 case DW_OP_const4s:
10961 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
10962 i += 4;
10963 break;
10964
10965 case DW_OP_constu:
10966 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 10967 &bytes_read);
c906108c
SS
10968 i += bytes_read;
10969 break;
10970
10971 case DW_OP_consts:
10972 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
10973 i += bytes_read;
10974 break;
10975
f1bea926
JM
10976 case DW_OP_dup:
10977 stack[stacki + 1] = stack[stacki];
10978 stacki++;
10979 break;
10980
c906108c
SS
10981 case DW_OP_plus:
10982 stack[stacki - 1] += stack[stacki];
10983 stacki--;
10984 break;
10985
10986 case DW_OP_plus_uconst:
10987 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
10988 i += bytes_read;
10989 break;
10990
10991 case DW_OP_minus:
f1bea926 10992 stack[stacki - 1] -= stack[stacki];
c906108c
SS
10993 stacki--;
10994 break;
10995
7a292a7a 10996 case DW_OP_deref:
7a292a7a 10997 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
10998 this using GDB's address_class enum. This is valid for partial
10999 global symbols, although the variable's address will be bogus
11000 in the psymtab. */
7a292a7a 11001 if (i < size)
4d3c2250 11002 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
11003 break;
11004
9d774e44 11005 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
11006 /* The top of the stack has the offset from the beginning
11007 of the thread control block at which the variable is located. */
11008 /* Nothing should follow this operator, so the top of stack would
11009 be returned. */
4cecd739
DJ
11010 /* This is valid for partial global symbols, but the variable's
11011 address will be bogus in the psymtab. */
9d774e44 11012 if (i < size)
4d3c2250 11013 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
11014 break;
11015
42be36b3
CT
11016 case DW_OP_GNU_uninit:
11017 break;
11018
c906108c 11019 default:
e2e0b3e5 11020 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 11021 dwarf_stack_op_name (op));
c906108c
SS
11022 return (stack[stacki]);
11023 }
11024 }
11025 return (stack[stacki]);
11026}
11027
11028/* memory allocation interface */
11029
c906108c 11030static struct dwarf_block *
7b5a2f43 11031dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
11032{
11033 struct dwarf_block *blk;
11034
11035 blk = (struct dwarf_block *)
7b5a2f43 11036 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
11037 return (blk);
11038}
11039
11040static struct abbrev_info *
f3dd6933 11041dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
11042{
11043 struct abbrev_info *abbrev;
11044
f3dd6933
DJ
11045 abbrev = (struct abbrev_info *)
11046 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
11047 memset (abbrev, 0, sizeof (struct abbrev_info));
11048 return (abbrev);
11049}
11050
11051static struct die_info *
b60c80d6 11052dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
11053{
11054 struct die_info *die;
b60c80d6
DJ
11055 size_t size = sizeof (struct die_info);
11056
11057 if (num_attrs > 1)
11058 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 11059
b60c80d6 11060 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
11061 memset (die, 0, sizeof (struct die_info));
11062 return (die);
11063}
2e276125
JB
11064
11065\f
11066/* Macro support. */
11067
11068
11069/* Return the full name of file number I in *LH's file name table.
11070 Use COMP_DIR as the name of the current directory of the
11071 compilation. The result is allocated using xmalloc; the caller is
11072 responsible for freeing it. */
11073static char *
11074file_full_name (int file, struct line_header *lh, const char *comp_dir)
11075{
6a83a1e6
EZ
11076 /* Is the file number a valid index into the line header's file name
11077 table? Remember that file numbers start with one, not zero. */
11078 if (1 <= file && file <= lh->num_file_names)
11079 {
11080 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 11081
6a83a1e6
EZ
11082 if (IS_ABSOLUTE_PATH (fe->name))
11083 return xstrdup (fe->name);
11084 else
11085 {
11086 const char *dir;
11087 int dir_len;
11088 char *full_name;
11089
11090 if (fe->dir_index)
11091 dir = lh->include_dirs[fe->dir_index - 1];
11092 else
11093 dir = comp_dir;
11094
11095 if (dir)
11096 {
11097 dir_len = strlen (dir);
11098 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
11099 strcpy (full_name, dir);
11100 full_name[dir_len] = '/';
11101 strcpy (full_name + dir_len + 1, fe->name);
11102 return full_name;
11103 }
11104 else
11105 return xstrdup (fe->name);
11106 }
11107 }
2e276125
JB
11108 else
11109 {
6a83a1e6
EZ
11110 /* The compiler produced a bogus file number. We can at least
11111 record the macro definitions made in the file, even if we
11112 won't be able to find the file by name. */
11113 char fake_name[80];
9a619af0 11114
6a83a1e6 11115 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 11116
6a83a1e6
EZ
11117 complaint (&symfile_complaints,
11118 _("bad file number in macro information (%d)"),
11119 file);
2e276125 11120
6a83a1e6 11121 return xstrdup (fake_name);
2e276125
JB
11122 }
11123}
11124
11125
11126static struct macro_source_file *
11127macro_start_file (int file, int line,
11128 struct macro_source_file *current_file,
11129 const char *comp_dir,
11130 struct line_header *lh, struct objfile *objfile)
11131{
11132 /* The full name of this source file. */
11133 char *full_name = file_full_name (file, lh, comp_dir);
11134
11135 /* We don't create a macro table for this compilation unit
11136 at all until we actually get a filename. */
11137 if (! pending_macros)
4a146b47 11138 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 11139 objfile->macro_cache);
2e276125
JB
11140
11141 if (! current_file)
11142 /* If we have no current file, then this must be the start_file
11143 directive for the compilation unit's main source file. */
11144 current_file = macro_set_main (pending_macros, full_name);
11145 else
11146 current_file = macro_include (current_file, line, full_name);
11147
11148 xfree (full_name);
11149
11150 return current_file;
11151}
11152
11153
11154/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
11155 followed by a null byte. */
11156static char *
11157copy_string (const char *buf, int len)
11158{
11159 char *s = xmalloc (len + 1);
9a619af0 11160
2e276125
JB
11161 memcpy (s, buf, len);
11162 s[len] = '\0';
2e276125
JB
11163 return s;
11164}
11165
11166
11167static const char *
11168consume_improper_spaces (const char *p, const char *body)
11169{
11170 if (*p == ' ')
11171 {
4d3c2250 11172 complaint (&symfile_complaints,
e2e0b3e5 11173 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 11174 body);
2e276125
JB
11175
11176 while (*p == ' ')
11177 p++;
11178 }
11179
11180 return p;
11181}
11182
11183
11184static void
11185parse_macro_definition (struct macro_source_file *file, int line,
11186 const char *body)
11187{
11188 const char *p;
11189
11190 /* The body string takes one of two forms. For object-like macro
11191 definitions, it should be:
11192
11193 <macro name> " " <definition>
11194
11195 For function-like macro definitions, it should be:
11196
11197 <macro name> "() " <definition>
11198 or
11199 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
11200
11201 Spaces may appear only where explicitly indicated, and in the
11202 <definition>.
11203
11204 The Dwarf 2 spec says that an object-like macro's name is always
11205 followed by a space, but versions of GCC around March 2002 omit
11206 the space when the macro's definition is the empty string.
11207
11208 The Dwarf 2 spec says that there should be no spaces between the
11209 formal arguments in a function-like macro's formal argument list,
11210 but versions of GCC around March 2002 include spaces after the
11211 commas. */
11212
11213
11214 /* Find the extent of the macro name. The macro name is terminated
11215 by either a space or null character (for an object-like macro) or
11216 an opening paren (for a function-like macro). */
11217 for (p = body; *p; p++)
11218 if (*p == ' ' || *p == '(')
11219 break;
11220
11221 if (*p == ' ' || *p == '\0')
11222 {
11223 /* It's an object-like macro. */
11224 int name_len = p - body;
11225 char *name = copy_string (body, name_len);
11226 const char *replacement;
11227
11228 if (*p == ' ')
11229 replacement = body + name_len + 1;
11230 else
11231 {
4d3c2250 11232 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11233 replacement = body + name_len;
11234 }
11235
11236 macro_define_object (file, line, name, replacement);
11237
11238 xfree (name);
11239 }
11240 else if (*p == '(')
11241 {
11242 /* It's a function-like macro. */
11243 char *name = copy_string (body, p - body);
11244 int argc = 0;
11245 int argv_size = 1;
11246 char **argv = xmalloc (argv_size * sizeof (*argv));
11247
11248 p++;
11249
11250 p = consume_improper_spaces (p, body);
11251
11252 /* Parse the formal argument list. */
11253 while (*p && *p != ')')
11254 {
11255 /* Find the extent of the current argument name. */
11256 const char *arg_start = p;
11257
11258 while (*p && *p != ',' && *p != ')' && *p != ' ')
11259 p++;
11260
11261 if (! *p || p == arg_start)
4d3c2250 11262 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11263 else
11264 {
11265 /* Make sure argv has room for the new argument. */
11266 if (argc >= argv_size)
11267 {
11268 argv_size *= 2;
11269 argv = xrealloc (argv, argv_size * sizeof (*argv));
11270 }
11271
11272 argv[argc++] = copy_string (arg_start, p - arg_start);
11273 }
11274
11275 p = consume_improper_spaces (p, body);
11276
11277 /* Consume the comma, if present. */
11278 if (*p == ',')
11279 {
11280 p++;
11281
11282 p = consume_improper_spaces (p, body);
11283 }
11284 }
11285
11286 if (*p == ')')
11287 {
11288 p++;
11289
11290 if (*p == ' ')
11291 /* Perfectly formed definition, no complaints. */
11292 macro_define_function (file, line, name,
11293 argc, (const char **) argv,
11294 p + 1);
11295 else if (*p == '\0')
11296 {
11297 /* Complain, but do define it. */
4d3c2250 11298 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11299 macro_define_function (file, line, name,
11300 argc, (const char **) argv,
11301 p);
11302 }
11303 else
11304 /* Just complain. */
4d3c2250 11305 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11306 }
11307 else
11308 /* Just complain. */
4d3c2250 11309 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11310
11311 xfree (name);
11312 {
11313 int i;
11314
11315 for (i = 0; i < argc; i++)
11316 xfree (argv[i]);
11317 }
11318 xfree (argv);
11319 }
11320 else
4d3c2250 11321 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
11322}
11323
11324
11325static void
11326dwarf_decode_macros (struct line_header *lh, unsigned int offset,
11327 char *comp_dir, bfd *abfd,
e7c27a73 11328 struct dwarf2_cu *cu)
2e276125 11329{
fe1b8b76 11330 gdb_byte *mac_ptr, *mac_end;
2e276125 11331 struct macro_source_file *current_file = 0;
757a13d0
JK
11332 enum dwarf_macinfo_record_type macinfo_type;
11333 int at_commandline;
2e276125 11334
be391dca
TT
11335 dwarf2_read_section (dwarf2_per_objfile->objfile,
11336 &dwarf2_per_objfile->macinfo);
dce234bc 11337 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 11338 {
e2e0b3e5 11339 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
11340 return;
11341 }
11342
757a13d0
JK
11343 /* First pass: Find the name of the base filename.
11344 This filename is needed in order to process all macros whose definition
11345 (or undefinition) comes from the command line. These macros are defined
11346 before the first DW_MACINFO_start_file entry, and yet still need to be
11347 associated to the base file.
11348
11349 To determine the base file name, we scan the macro definitions until we
11350 reach the first DW_MACINFO_start_file entry. We then initialize
11351 CURRENT_FILE accordingly so that any macro definition found before the
11352 first DW_MACINFO_start_file can still be associated to the base file. */
11353
dce234bc
PP
11354 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
11355 mac_end = dwarf2_per_objfile->macinfo.buffer
11356 + dwarf2_per_objfile->macinfo.size;
2e276125 11357
757a13d0 11358 do
2e276125 11359 {
2e276125
JB
11360 /* Do we at least have room for a macinfo type byte? */
11361 if (mac_ptr >= mac_end)
11362 {
757a13d0
JK
11363 /* Complaint is printed during the second pass as GDB will probably
11364 stop the first pass earlier upon finding DW_MACINFO_start_file. */
11365 break;
2e276125
JB
11366 }
11367
11368 macinfo_type = read_1_byte (abfd, mac_ptr);
11369 mac_ptr++;
11370
11371 switch (macinfo_type)
11372 {
11373 /* A zero macinfo type indicates the end of the macro
11374 information. */
11375 case 0:
757a13d0
JK
11376 break;
11377
11378 case DW_MACINFO_define:
11379 case DW_MACINFO_undef:
11380 /* Only skip the data by MAC_PTR. */
11381 {
11382 unsigned int bytes_read;
11383
11384 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11385 mac_ptr += bytes_read;
11386 read_string (abfd, mac_ptr, &bytes_read);
11387 mac_ptr += bytes_read;
11388 }
11389 break;
11390
11391 case DW_MACINFO_start_file:
11392 {
11393 unsigned int bytes_read;
11394 int line, file;
11395
11396 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11397 mac_ptr += bytes_read;
11398 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11399 mac_ptr += bytes_read;
11400
11401 current_file = macro_start_file (file, line, current_file, comp_dir,
11402 lh, cu->objfile);
11403 }
11404 break;
11405
11406 case DW_MACINFO_end_file:
11407 /* No data to skip by MAC_PTR. */
11408 break;
11409
11410 case DW_MACINFO_vendor_ext:
11411 /* Only skip the data by MAC_PTR. */
11412 {
11413 unsigned int bytes_read;
11414
11415 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11416 mac_ptr += bytes_read;
11417 read_string (abfd, mac_ptr, &bytes_read);
11418 mac_ptr += bytes_read;
11419 }
11420 break;
11421
11422 default:
11423 break;
11424 }
11425 } while (macinfo_type != 0 && current_file == NULL);
11426
11427 /* Second pass: Process all entries.
11428
11429 Use the AT_COMMAND_LINE flag to determine whether we are still processing
11430 command-line macro definitions/undefinitions. This flag is unset when we
11431 reach the first DW_MACINFO_start_file entry. */
11432
dce234bc 11433 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
11434
11435 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
11436 GDB is still reading the definitions from command line. First
11437 DW_MACINFO_start_file will need to be ignored as it was already executed
11438 to create CURRENT_FILE for the main source holding also the command line
11439 definitions. On first met DW_MACINFO_start_file this flag is reset to
11440 normally execute all the remaining DW_MACINFO_start_file macinfos. */
11441
11442 at_commandline = 1;
11443
11444 do
11445 {
11446 /* Do we at least have room for a macinfo type byte? */
11447 if (mac_ptr >= mac_end)
11448 {
11449 dwarf2_macros_too_long_complaint ();
11450 break;
11451 }
11452
11453 macinfo_type = read_1_byte (abfd, mac_ptr);
11454 mac_ptr++;
11455
11456 switch (macinfo_type)
11457 {
11458 /* A zero macinfo type indicates the end of the macro
11459 information. */
11460 case 0:
11461 break;
2e276125
JB
11462
11463 case DW_MACINFO_define:
11464 case DW_MACINFO_undef:
11465 {
891d2f0b 11466 unsigned int bytes_read;
2e276125
JB
11467 int line;
11468 char *body;
11469
11470 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11471 mac_ptr += bytes_read;
11472 body = read_string (abfd, mac_ptr, &bytes_read);
11473 mac_ptr += bytes_read;
11474
11475 if (! current_file)
757a13d0
JK
11476 {
11477 /* DWARF violation as no main source is present. */
11478 complaint (&symfile_complaints,
11479 _("debug info with no main source gives macro %s "
11480 "on line %d: %s"),
905e0470
PM
11481 macinfo_type == DW_MACINFO_define ?
11482 _("definition") :
11483 macinfo_type == DW_MACINFO_undef ?
11484 _("undefinition") :
11485 _("something-or-other"), line, body);
757a13d0
JK
11486 break;
11487 }
11488 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 11489 complaint (&symfile_complaints,
757a13d0
JK
11490 _("debug info gives %s macro %s with %s line %d: %s"),
11491 at_commandline ? _("command-line") : _("in-file"),
905e0470
PM
11492 macinfo_type == DW_MACINFO_define ?
11493 _("definition") :
11494 macinfo_type == DW_MACINFO_undef ?
11495 _("undefinition") :
11496 _("something-or-other"),
757a13d0
JK
11497 line == 0 ? _("zero") : _("non-zero"), line, body);
11498
11499 if (macinfo_type == DW_MACINFO_define)
11500 parse_macro_definition (current_file, line, body);
11501 else if (macinfo_type == DW_MACINFO_undef)
11502 macro_undef (current_file, line, body);
2e276125
JB
11503 }
11504 break;
11505
11506 case DW_MACINFO_start_file:
11507 {
891d2f0b 11508 unsigned int bytes_read;
2e276125
JB
11509 int line, file;
11510
11511 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11512 mac_ptr += bytes_read;
11513 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11514 mac_ptr += bytes_read;
11515
757a13d0
JK
11516 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
11517 complaint (&symfile_complaints,
11518 _("debug info gives source %d included "
11519 "from %s at %s line %d"),
11520 file, at_commandline ? _("command-line") : _("file"),
11521 line == 0 ? _("zero") : _("non-zero"), line);
11522
11523 if (at_commandline)
11524 {
11525 /* This DW_MACINFO_start_file was executed in the pass one. */
11526 at_commandline = 0;
11527 }
11528 else
11529 current_file = macro_start_file (file, line,
11530 current_file, comp_dir,
11531 lh, cu->objfile);
2e276125
JB
11532 }
11533 break;
11534
11535 case DW_MACINFO_end_file:
11536 if (! current_file)
4d3c2250 11537 complaint (&symfile_complaints,
e2e0b3e5 11538 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
11539 else
11540 {
11541 current_file = current_file->included_by;
11542 if (! current_file)
11543 {
11544 enum dwarf_macinfo_record_type next_type;
11545
11546 /* GCC circa March 2002 doesn't produce the zero
11547 type byte marking the end of the compilation
11548 unit. Complain if it's not there, but exit no
11549 matter what. */
11550
11551 /* Do we at least have room for a macinfo type byte? */
11552 if (mac_ptr >= mac_end)
11553 {
4d3c2250 11554 dwarf2_macros_too_long_complaint ();
2e276125
JB
11555 return;
11556 }
11557
11558 /* We don't increment mac_ptr here, so this is just
11559 a look-ahead. */
11560 next_type = read_1_byte (abfd, mac_ptr);
11561 if (next_type != 0)
4d3c2250 11562 complaint (&symfile_complaints,
e2e0b3e5 11563 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
11564
11565 return;
11566 }
11567 }
11568 break;
11569
11570 case DW_MACINFO_vendor_ext:
11571 {
891d2f0b 11572 unsigned int bytes_read;
2e276125
JB
11573 int constant;
11574 char *string;
11575
11576 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
11577 mac_ptr += bytes_read;
11578 string = read_string (abfd, mac_ptr, &bytes_read);
11579 mac_ptr += bytes_read;
11580
11581 /* We don't recognize any vendor extensions. */
11582 }
11583 break;
11584 }
757a13d0 11585 } while (macinfo_type != 0);
2e276125 11586}
8e19ed76
PS
11587
11588/* Check if the attribute's form is a DW_FORM_block*
11589 if so return true else false. */
11590static int
11591attr_form_is_block (struct attribute *attr)
11592{
11593 return (attr == NULL ? 0 :
11594 attr->form == DW_FORM_block1
11595 || attr->form == DW_FORM_block2
11596 || attr->form == DW_FORM_block4
2dc7f7b3
TT
11597 || attr->form == DW_FORM_block
11598 || attr->form == DW_FORM_exprloc);
8e19ed76 11599}
4c2df51b 11600
c6a0999f
JB
11601/* Return non-zero if ATTR's value is a section offset --- classes
11602 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
11603 You may use DW_UNSND (attr) to retrieve such offsets.
11604
11605 Section 7.5.4, "Attribute Encodings", explains that no attribute
11606 may have a value that belongs to more than one of these classes; it
11607 would be ambiguous if we did, because we use the same forms for all
11608 of them. */
3690dd37
JB
11609static int
11610attr_form_is_section_offset (struct attribute *attr)
11611{
11612 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
11613 || attr->form == DW_FORM_data8
11614 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
11615}
11616
11617
11618/* Return non-zero if ATTR's value falls in the 'constant' class, or
11619 zero otherwise. When this function returns true, you can apply
11620 dwarf2_get_attr_constant_value to it.
11621
11622 However, note that for some attributes you must check
11623 attr_form_is_section_offset before using this test. DW_FORM_data4
11624 and DW_FORM_data8 are members of both the constant class, and of
11625 the classes that contain offsets into other debug sections
11626 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
11627 that, if an attribute's can be either a constant or one of the
11628 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
11629 taken as section offsets, not constants. */
11630static int
11631attr_form_is_constant (struct attribute *attr)
11632{
11633 switch (attr->form)
11634 {
11635 case DW_FORM_sdata:
11636 case DW_FORM_udata:
11637 case DW_FORM_data1:
11638 case DW_FORM_data2:
11639 case DW_FORM_data4:
11640 case DW_FORM_data8:
11641 return 1;
11642 default:
11643 return 0;
11644 }
11645}
11646
4c2df51b
DJ
11647static void
11648dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 11649 struct dwarf2_cu *cu)
4c2df51b 11650{
3690dd37 11651 if (attr_form_is_section_offset (attr)
99bcc461
DJ
11652 /* ".debug_loc" may not exist at all, or the offset may be outside
11653 the section. If so, fall through to the complaint in the
11654 other branch. */
dce234bc 11655 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 11656 {
0d53c4c4 11657 struct dwarf2_loclist_baton *baton;
4c2df51b 11658
4a146b47 11659 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11660 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
11661 baton->per_cu = cu->per_cu;
11662 gdb_assert (baton->per_cu);
4c2df51b 11663
be391dca
TT
11664 dwarf2_read_section (dwarf2_per_objfile->objfile,
11665 &dwarf2_per_objfile->loc);
11666
0d53c4c4
DJ
11667 /* We don't know how long the location list is, but make sure we
11668 don't run off the edge of the section. */
dce234bc
PP
11669 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
11670 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
11671 baton->base_address = cu->base_address;
11672 if (cu->base_known == 0)
0d53c4c4 11673 complaint (&symfile_complaints,
e2e0b3e5 11674 _("Location list used without specifying the CU base address."));
4c2df51b 11675
768a979c 11676 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
11677 SYMBOL_LOCATION_BATON (sym) = baton;
11678 }
11679 else
11680 {
11681 struct dwarf2_locexpr_baton *baton;
11682
4a146b47 11683 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 11684 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
11685 baton->per_cu = cu->per_cu;
11686 gdb_assert (baton->per_cu);
0d53c4c4
DJ
11687
11688 if (attr_form_is_block (attr))
11689 {
11690 /* Note that we're just copying the block's data pointer
11691 here, not the actual data. We're still pointing into the
6502dd73
DJ
11692 info_buffer for SYM's objfile; right now we never release
11693 that buffer, but when we do clean up properly this may
11694 need to change. */
0d53c4c4
DJ
11695 baton->size = DW_BLOCK (attr)->size;
11696 baton->data = DW_BLOCK (attr)->data;
11697 }
11698 else
11699 {
11700 dwarf2_invalid_attrib_class_complaint ("location description",
11701 SYMBOL_NATURAL_NAME (sym));
11702 baton->size = 0;
11703 baton->data = NULL;
11704 }
11705
768a979c 11706 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
11707 SYMBOL_LOCATION_BATON (sym) = baton;
11708 }
4c2df51b 11709}
6502dd73 11710
ae0d2f24
UW
11711/* Return the OBJFILE associated with the compilation unit CU. */
11712
11713struct objfile *
11714dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
11715{
11716 struct objfile *objfile = per_cu->psymtab->objfile;
11717
11718 /* Return the master objfile, so that we can report and look up the
11719 correct file containing this variable. */
11720 if (objfile->separate_debug_objfile_backlink)
11721 objfile = objfile->separate_debug_objfile_backlink;
11722
11723 return objfile;
11724}
11725
11726/* Return the address size given in the compilation unit header for CU. */
11727
11728CORE_ADDR
11729dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
11730{
11731 if (per_cu->cu)
11732 return per_cu->cu->header.addr_size;
11733 else
11734 {
11735 /* If the CU is not currently read in, we re-read its header. */
11736 struct objfile *objfile = per_cu->psymtab->objfile;
11737 struct dwarf2_per_objfile *per_objfile
11738 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 11739 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 11740 struct comp_unit_head cu_header;
9a619af0 11741
ae0d2f24
UW
11742 memset (&cu_header, 0, sizeof cu_header);
11743 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
11744 return cu_header.addr_size;
11745 }
11746}
11747
348e048f
DE
11748/* Locate the .debug_info compilation unit from CU's objfile which contains
11749 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
11750
11751static struct dwarf2_per_cu_data *
c764a876 11752dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
11753 struct objfile *objfile)
11754{
11755 struct dwarf2_per_cu_data *this_cu;
11756 int low, high;
11757
ae038cb0
DJ
11758 low = 0;
11759 high = dwarf2_per_objfile->n_comp_units - 1;
11760 while (high > low)
11761 {
11762 int mid = low + (high - low) / 2;
9a619af0 11763
ae038cb0
DJ
11764 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
11765 high = mid;
11766 else
11767 low = mid + 1;
11768 }
11769 gdb_assert (low == high);
11770 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
11771 {
10b3939b 11772 if (low == 0)
8a3fe4f8
AC
11773 error (_("Dwarf Error: could not find partial DIE containing "
11774 "offset 0x%lx [in module %s]"),
10b3939b
DJ
11775 (long) offset, bfd_get_filename (objfile->obfd));
11776
ae038cb0
DJ
11777 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
11778 return dwarf2_per_objfile->all_comp_units[low-1];
11779 }
11780 else
11781 {
11782 this_cu = dwarf2_per_objfile->all_comp_units[low];
11783 if (low == dwarf2_per_objfile->n_comp_units - 1
11784 && offset >= this_cu->offset + this_cu->length)
c764a876 11785 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
11786 gdb_assert (offset < this_cu->offset + this_cu->length);
11787 return this_cu;
11788 }
11789}
11790
10b3939b
DJ
11791/* Locate the compilation unit from OBJFILE which is located at exactly
11792 OFFSET. Raises an error on failure. */
11793
ae038cb0 11794static struct dwarf2_per_cu_data *
c764a876 11795dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
11796{
11797 struct dwarf2_per_cu_data *this_cu;
9a619af0 11798
ae038cb0
DJ
11799 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
11800 if (this_cu->offset != offset)
c764a876 11801 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
11802 return this_cu;
11803}
11804
93311388
DE
11805/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
11806
11807static struct dwarf2_cu *
11808alloc_one_comp_unit (struct objfile *objfile)
11809{
11810 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
11811 cu->objfile = objfile;
11812 obstack_init (&cu->comp_unit_obstack);
11813 return cu;
11814}
11815
ae038cb0
DJ
11816/* Release one cached compilation unit, CU. We unlink it from the tree
11817 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
11818 the caller is responsible for that.
11819 NOTE: DATA is a void * because this function is also used as a
11820 cleanup routine. */
ae038cb0
DJ
11821
11822static void
11823free_one_comp_unit (void *data)
11824{
11825 struct dwarf2_cu *cu = data;
11826
11827 if (cu->per_cu != NULL)
11828 cu->per_cu->cu = NULL;
11829 cu->per_cu = NULL;
11830
11831 obstack_free (&cu->comp_unit_obstack, NULL);
11832
11833 xfree (cu);
11834}
11835
72bf9492 11836/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
11837 when we're finished with it. We can't free the pointer itself, but be
11838 sure to unlink it from the cache. Also release any associated storage
11839 and perform cache maintenance.
72bf9492
DJ
11840
11841 Only used during partial symbol parsing. */
11842
11843static void
11844free_stack_comp_unit (void *data)
11845{
11846 struct dwarf2_cu *cu = data;
11847
11848 obstack_free (&cu->comp_unit_obstack, NULL);
11849 cu->partial_dies = NULL;
ae038cb0
DJ
11850
11851 if (cu->per_cu != NULL)
11852 {
11853 /* This compilation unit is on the stack in our caller, so we
11854 should not xfree it. Just unlink it. */
11855 cu->per_cu->cu = NULL;
11856 cu->per_cu = NULL;
11857
11858 /* If we had a per-cu pointer, then we may have other compilation
11859 units loaded, so age them now. */
11860 age_cached_comp_units ();
11861 }
11862}
11863
11864/* Free all cached compilation units. */
11865
11866static void
11867free_cached_comp_units (void *data)
11868{
11869 struct dwarf2_per_cu_data *per_cu, **last_chain;
11870
11871 per_cu = dwarf2_per_objfile->read_in_chain;
11872 last_chain = &dwarf2_per_objfile->read_in_chain;
11873 while (per_cu != NULL)
11874 {
11875 struct dwarf2_per_cu_data *next_cu;
11876
11877 next_cu = per_cu->cu->read_in_chain;
11878
11879 free_one_comp_unit (per_cu->cu);
11880 *last_chain = next_cu;
11881
11882 per_cu = next_cu;
11883 }
11884}
11885
11886/* Increase the age counter on each cached compilation unit, and free
11887 any that are too old. */
11888
11889static void
11890age_cached_comp_units (void)
11891{
11892 struct dwarf2_per_cu_data *per_cu, **last_chain;
11893
11894 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
11895 per_cu = dwarf2_per_objfile->read_in_chain;
11896 while (per_cu != NULL)
11897 {
11898 per_cu->cu->last_used ++;
11899 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
11900 dwarf2_mark (per_cu->cu);
11901 per_cu = per_cu->cu->read_in_chain;
11902 }
11903
11904 per_cu = dwarf2_per_objfile->read_in_chain;
11905 last_chain = &dwarf2_per_objfile->read_in_chain;
11906 while (per_cu != NULL)
11907 {
11908 struct dwarf2_per_cu_data *next_cu;
11909
11910 next_cu = per_cu->cu->read_in_chain;
11911
11912 if (!per_cu->cu->mark)
11913 {
11914 free_one_comp_unit (per_cu->cu);
11915 *last_chain = next_cu;
11916 }
11917 else
11918 last_chain = &per_cu->cu->read_in_chain;
11919
11920 per_cu = next_cu;
11921 }
11922}
11923
11924/* Remove a single compilation unit from the cache. */
11925
11926static void
11927free_one_cached_comp_unit (void *target_cu)
11928{
11929 struct dwarf2_per_cu_data *per_cu, **last_chain;
11930
11931 per_cu = dwarf2_per_objfile->read_in_chain;
11932 last_chain = &dwarf2_per_objfile->read_in_chain;
11933 while (per_cu != NULL)
11934 {
11935 struct dwarf2_per_cu_data *next_cu;
11936
11937 next_cu = per_cu->cu->read_in_chain;
11938
11939 if (per_cu->cu == target_cu)
11940 {
11941 free_one_comp_unit (per_cu->cu);
11942 *last_chain = next_cu;
11943 break;
11944 }
11945 else
11946 last_chain = &per_cu->cu->read_in_chain;
11947
11948 per_cu = next_cu;
11949 }
11950}
11951
fe3e1990
DJ
11952/* Release all extra memory associated with OBJFILE. */
11953
11954void
11955dwarf2_free_objfile (struct objfile *objfile)
11956{
11957 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
11958
11959 if (dwarf2_per_objfile == NULL)
11960 return;
11961
11962 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
11963 free_cached_comp_units (NULL);
11964
11965 /* Everything else should be on the objfile obstack. */
11966}
11967
1c379e20
DJ
11968/* A pair of DIE offset and GDB type pointer. We store these
11969 in a hash table separate from the DIEs, and preserve them
11970 when the DIEs are flushed out of cache. */
11971
11972struct dwarf2_offset_and_type
11973{
11974 unsigned int offset;
11975 struct type *type;
11976};
11977
11978/* Hash function for a dwarf2_offset_and_type. */
11979
11980static hashval_t
11981offset_and_type_hash (const void *item)
11982{
11983 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 11984
1c379e20
DJ
11985 return ofs->offset;
11986}
11987
11988/* Equality function for a dwarf2_offset_and_type. */
11989
11990static int
11991offset_and_type_eq (const void *item_lhs, const void *item_rhs)
11992{
11993 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
11994 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 11995
1c379e20
DJ
11996 return ofs_lhs->offset == ofs_rhs->offset;
11997}
11998
11999/* Set the type associated with DIE to TYPE. Save it in CU's hash
f792889a 12000 table if necessary. For convenience, return TYPE. */
1c379e20 12001
f792889a 12002static struct type *
1c379e20
DJ
12003set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
12004{
12005 struct dwarf2_offset_and_type **slot, ofs;
12006
b4ba55a1
JB
12007 /* For Ada types, make sure that the gnat-specific data is always
12008 initialized (if not already set). There are a few types where
12009 we should not be doing so, because the type-specific area is
12010 already used to hold some other piece of info (eg: TYPE_CODE_FLT
12011 where the type-specific area is used to store the floatformat).
12012 But this is not a problem, because the gnat-specific information
12013 is actually not needed for these types. */
12014 if (need_gnat_info (cu)
12015 && TYPE_CODE (type) != TYPE_CODE_FUNC
12016 && TYPE_CODE (type) != TYPE_CODE_FLT
12017 && !HAVE_GNAT_AUX_INFO (type))
12018 INIT_GNAT_SPECIFIC (type);
12019
f792889a
DJ
12020 if (cu->type_hash == NULL)
12021 {
12022 gdb_assert (cu->per_cu != NULL);
12023 cu->per_cu->type_hash
12024 = htab_create_alloc_ex (cu->header.length / 24,
12025 offset_and_type_hash,
12026 offset_and_type_eq,
12027 NULL,
12028 &cu->objfile->objfile_obstack,
12029 hashtab_obstack_allocate,
12030 dummy_obstack_deallocate);
12031 cu->type_hash = cu->per_cu->type_hash;
12032 }
1c379e20
DJ
12033
12034 ofs.offset = die->offset;
12035 ofs.type = type;
12036 slot = (struct dwarf2_offset_and_type **)
f792889a 12037 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
1c379e20
DJ
12038 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
12039 **slot = ofs;
f792889a 12040 return type;
1c379e20
DJ
12041}
12042
f792889a
DJ
12043/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
12044 not have a saved type. */
1c379e20
DJ
12045
12046static struct type *
f792889a 12047get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
12048{
12049 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
12050 htab_t type_hash = cu->type_hash;
12051
12052 if (type_hash == NULL)
12053 return NULL;
1c379e20
DJ
12054
12055 ofs.offset = die->offset;
12056 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
12057 if (slot)
12058 return slot->type;
12059 else
12060 return NULL;
12061}
12062
10b3939b
DJ
12063/* Add a dependence relationship from CU to REF_PER_CU. */
12064
12065static void
12066dwarf2_add_dependence (struct dwarf2_cu *cu,
12067 struct dwarf2_per_cu_data *ref_per_cu)
12068{
12069 void **slot;
12070
12071 if (cu->dependencies == NULL)
12072 cu->dependencies
12073 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
12074 NULL, &cu->comp_unit_obstack,
12075 hashtab_obstack_allocate,
12076 dummy_obstack_deallocate);
12077
12078 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
12079 if (*slot == NULL)
12080 *slot = ref_per_cu;
12081}
1c379e20 12082
f504f079
DE
12083/* Subroutine of dwarf2_mark to pass to htab_traverse.
12084 Set the mark field in every compilation unit in the
ae038cb0
DJ
12085 cache that we must keep because we are keeping CU. */
12086
10b3939b
DJ
12087static int
12088dwarf2_mark_helper (void **slot, void *data)
12089{
12090 struct dwarf2_per_cu_data *per_cu;
12091
12092 per_cu = (struct dwarf2_per_cu_data *) *slot;
12093 if (per_cu->cu->mark)
12094 return 1;
12095 per_cu->cu->mark = 1;
12096
12097 if (per_cu->cu->dependencies != NULL)
12098 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
12099
12100 return 1;
12101}
12102
f504f079
DE
12103/* Set the mark field in CU and in every other compilation unit in the
12104 cache that we must keep because we are keeping CU. */
12105
ae038cb0
DJ
12106static void
12107dwarf2_mark (struct dwarf2_cu *cu)
12108{
12109 if (cu->mark)
12110 return;
12111 cu->mark = 1;
10b3939b
DJ
12112 if (cu->dependencies != NULL)
12113 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
12114}
12115
12116static void
12117dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
12118{
12119 while (per_cu)
12120 {
12121 per_cu->cu->mark = 0;
12122 per_cu = per_cu->cu->read_in_chain;
12123 }
72bf9492
DJ
12124}
12125
72bf9492
DJ
12126/* Trivial hash function for partial_die_info: the hash value of a DIE
12127 is its offset in .debug_info for this objfile. */
12128
12129static hashval_t
12130partial_die_hash (const void *item)
12131{
12132 const struct partial_die_info *part_die = item;
9a619af0 12133
72bf9492
DJ
12134 return part_die->offset;
12135}
12136
12137/* Trivial comparison function for partial_die_info structures: two DIEs
12138 are equal if they have the same offset. */
12139
12140static int
12141partial_die_eq (const void *item_lhs, const void *item_rhs)
12142{
12143 const struct partial_die_info *part_die_lhs = item_lhs;
12144 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 12145
72bf9492
DJ
12146 return part_die_lhs->offset == part_die_rhs->offset;
12147}
12148
ae038cb0
DJ
12149static struct cmd_list_element *set_dwarf2_cmdlist;
12150static struct cmd_list_element *show_dwarf2_cmdlist;
12151
12152static void
12153set_dwarf2_cmd (char *args, int from_tty)
12154{
12155 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
12156}
12157
12158static void
12159show_dwarf2_cmd (char *args, int from_tty)
12160{
12161 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
12162}
12163
dce234bc
PP
12164/* If section described by INFO was mmapped, munmap it now. */
12165
12166static void
12167munmap_section_buffer (struct dwarf2_section_info *info)
12168{
12169 if (info->was_mmapped)
12170 {
12171#ifdef HAVE_MMAP
12172 intptr_t begin = (intptr_t) info->buffer;
12173 intptr_t map_begin = begin & ~(pagesize - 1);
12174 size_t map_length = info->size + begin - map_begin;
9a619af0 12175
dce234bc
PP
12176 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
12177#else
12178 /* Without HAVE_MMAP, we should never be here to begin with. */
12179 gdb_assert (0);
12180#endif
12181 }
12182}
12183
12184/* munmap debug sections for OBJFILE, if necessary. */
12185
12186static void
c1bd65d0 12187dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
12188{
12189 struct dwarf2_per_objfile *data = d;
9a619af0 12190
dce234bc
PP
12191 munmap_section_buffer (&data->info);
12192 munmap_section_buffer (&data->abbrev);
12193 munmap_section_buffer (&data->line);
12194 munmap_section_buffer (&data->str);
12195 munmap_section_buffer (&data->macinfo);
12196 munmap_section_buffer (&data->ranges);
12197 munmap_section_buffer (&data->loc);
12198 munmap_section_buffer (&data->frame);
12199 munmap_section_buffer (&data->eh_frame);
12200}
12201
6502dd73
DJ
12202void _initialize_dwarf2_read (void);
12203
12204void
12205_initialize_dwarf2_read (void)
12206{
dce234bc 12207 dwarf2_objfile_data_key
c1bd65d0 12208 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 12209
1bedd215
AC
12210 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
12211Set DWARF 2 specific variables.\n\
12212Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12213 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
12214 0/*allow-unknown*/, &maintenance_set_cmdlist);
12215
1bedd215
AC
12216 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
12217Show DWARF 2 specific variables\n\
12218Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
12219 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
12220 0/*allow-unknown*/, &maintenance_show_cmdlist);
12221
12222 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
12223 &dwarf2_max_cache_age, _("\
12224Set the upper bound on the age of cached dwarf2 compilation units."), _("\
12225Show the upper bound on the age of cached dwarf2 compilation units."), _("\
12226A higher limit means that cached compilation units will be stored\n\
12227in memory longer, and more total memory will be used. Zero disables\n\
12228caching, which can slow down startup."),
2c5b56ce 12229 NULL,
920d2a44 12230 show_dwarf2_max_cache_age,
2c5b56ce 12231 &set_dwarf2_cmdlist,
ae038cb0 12232 &show_dwarf2_cmdlist);
d97bc12b
DE
12233
12234 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
12235Set debugging of the dwarf2 DIE reader."), _("\
12236Show debugging of the dwarf2 DIE reader."), _("\
12237When enabled (non-zero), DIEs are dumped after they are read in.\n\
12238The value is the maximum depth to print."),
12239 NULL,
12240 NULL,
12241 &setdebuglist, &showdebuglist);
6502dd73 12242}