]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
2008-01-08 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
9b254dd1 4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
107d2387 68#if 0
357e46e7 69/* .debug_info header for a compilation unit
c906108c
SS
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 83#endif
c906108c
SS
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
6502dd73
DJ
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
fe1b8b76
JB
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
ae038cb0 165
10b3939b
DJ
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
ae038cb0
DJ
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
6502dd73
DJ
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 183
086df311
DJ
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
c906108c
SS
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
af34e669 206#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
209
210/* local data types */
211
57349743
JB
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
107d2387
AC
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
c906108c 219struct comp_unit_head
a738430d
MK
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
57349743 226
a738430d
MK
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
57349743 229
a738430d
MK
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
57349743 232
a738430d
MK
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
57349743 236
a738430d
MK
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
fe1b8b76 239 gdb_byte *cu_head_ptr;
57349743 240
a738430d
MK
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
fe1b8b76 243 gdb_byte *first_die_ptr;
af34e669 244
a738430d
MK
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
0d53c4c4 247
a738430d
MK
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
0d53c4c4 250
a738430d
MK
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
c906108c 254
10b3939b
DJ
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
e7c27a73
DJ
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 269 should logically be moved to the dwarf2_cu structure. */
e7c27a73 270 struct comp_unit_head header;
e142c38c
DJ
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
b0f35d58
DL
278 const char *producer;
279
e142c38c
DJ
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
f3dd6933
DJ
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
72bf9492
DJ
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
ae038cb0
DJ
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
10b3939b
DJ
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
cb1df416
DJ
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
ae038cb0
DJ
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
72bf9492
DJ
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
e7c27a73
DJ
342};
343
10b3939b
DJ
344/* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
ae038cb0
DJ
350struct dwarf2_per_cu_data
351{
5afb4e99 352 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
5afb4e99 356 unsigned long length : 30;
ae038cb0
DJ
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
5afb4e99
DJ
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
ae038cb0
DJ
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
1c379e20
DJ
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
1c379e20 375 htab_t type_hash;
10b3939b 376
31ffec48
DJ
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
10b3939b 380 struct partial_symtab *psymtab;
ae038cb0
DJ
381};
382
debd256d
JB
383/* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386struct line_header
387{
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
c906108c 415 {
debd256d
JB
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
aaa75496 420 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 421 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
422 } *file_names;
423
424 /* The start and end of the statement program following this
6502dd73 425 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 426 gdb_byte *statement_program_start, *statement_program_end;
debd256d 427};
c906108c
SS
428
429/* When we construct a partial symbol table entry we only
430 need this much information. */
431struct partial_die_info
432 {
72bf9492 433 /* Offset of this DIE. */
c906108c 434 unsigned int offset;
72bf9492
DJ
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
aaa75496 449 unsigned int has_stmt_list : 1;
72bf9492
DJ
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
fa4028e9
JB
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
72bf9492
DJ
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
c906108c 462 char *name;
57c22c6c 463 char *dirname;
72bf9492
DJ
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
72bf9492
DJ
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
fe1b8b76 479 gdb_byte *sibling;
72bf9492
DJ
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
aaa75496
JB
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
72bf9492
DJ
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
492 };
493
494/* This data structure holds the information of an abbrev. */
495struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
c906108c
SS
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511/* This data structure holds a complete die structure. */
512struct die_info
513 {
c5aa993b 514 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
639d11d3
DC
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
78ba4af6 529
c5aa993b 530 struct type *type; /* Cached type information */
c906108c
SS
531 };
532
533/* Attributes have a name and a value */
534struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
ce5d95e1
JB
542 unsigned long unsnd;
543 long int snd;
c906108c
SS
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
5fb290d7
DJ
549struct function_range
550{
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555};
556
c906108c
SS
557/* Get at parts of an attribute structure */
558
559#define DW_STRING(attr) ((attr)->u.str)
560#define DW_UNSND(attr) ((attr)->u.unsnd)
561#define DW_BLOCK(attr) ((attr)->u.blk)
562#define DW_SND(attr) ((attr)->u.snd)
563#define DW_ADDR(attr) ((attr)->u.addr)
564
565/* Blocks are a bunch of untyped bytes. */
566struct dwarf_block
567 {
568 unsigned int size;
fe1b8b76 569 gdb_byte *data;
c906108c
SS
570 };
571
c906108c
SS
572#ifndef ATTR_ALLOC_CHUNK
573#define ATTR_ALLOC_CHUNK 4
574#endif
575
c906108c
SS
576/* Allocate fields for structs, unions and enums in this size. */
577#ifndef DW_FIELD_ALLOC_CHUNK
578#define DW_FIELD_ALLOC_CHUNK 4
579#endif
580
c906108c
SS
581/* A zeroed version of a partial die for initialization purposes. */
582static struct partial_die_info zeroed_partial_die;
583
c906108c
SS
584/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587static int bits_per_byte = 8;
588
589/* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592struct field_info
c5aa993b
JM
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
c906108c 603
c5aa993b
JM
604 /* Number of fields. */
605 int nfields;
c906108c 606
c5aa993b
JM
607 /* Number of baseclasses. */
608 int nbaseclasses;
c906108c 609
c5aa993b
JM
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
c906108c 612
c5aa993b
JM
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
c906108c 621
c5aa993b
JM
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
c906108c 632
c5aa993b
JM
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
c906108c 636
10b3939b
DJ
637/* One item on the queue of compilation units to read in full symbols
638 for. */
639struct dwarf2_queue_item
640{
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643};
644
645/* The current queue. */
646static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
ae038cb0
DJ
648/* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653static int dwarf2_max_cache_age = 5;
920d2a44
AC
654static void
655show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657{
658 fprintf_filtered (file, _("\
659The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661}
662
ae038cb0 663
c906108c
SS
664/* Various complaints about symbol reading that don't abort the process */
665
4d3c2250
KB
666static void
667dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 668{
4d3c2250 669 complaint (&symfile_complaints,
e2e0b3e5 670 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
671}
672
25e43795
DJ
673static void
674dwarf2_debug_line_missing_file_complaint (void)
675{
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678}
679
4d3c2250
KB
680static void
681dwarf2_complex_location_expr_complaint (void)
2e276125 682{
e2e0b3e5 683 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
684}
685
4d3c2250
KB
686static void
687dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
2e276125 689{
4d3c2250 690 complaint (&symfile_complaints,
e2e0b3e5 691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
692 arg2, arg3);
693}
694
695static void
696dwarf2_macros_too_long_complaint (void)
2e276125 697{
4d3c2250 698 complaint (&symfile_complaints,
e2e0b3e5 699 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
700}
701
702static void
703dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 704{
4d3c2250 705 complaint (&symfile_complaints,
e2e0b3e5 706 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
707 arg1);
708}
709
710static void
711dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 712{
4d3c2250 713 complaint (&symfile_complaints,
e2e0b3e5 714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 715}
c906108c 716
c906108c
SS
717/* local function prototypes */
718
4efb68b1 719static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
720
721#if 0
a14ed312 722static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
723#endif
724
aaa75496
JB
725static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
a14ed312 732static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 733
72bf9492
DJ
734static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
c906108c 737
72bf9492
DJ
738static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
63d06c5c 740
72bf9492 741static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 742
72bf9492
DJ
743static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
63d06c5c 746
72bf9492
DJ
747static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
91c24f0a 749
fe1b8b76
JB
750static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
91c24f0a 754
a14ed312 755static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 756
a14ed312 757static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 758
fe1b8b76 759gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 760
e7c27a73 761static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 762
f3dd6933 763static void dwarf2_free_abbrev_table (void *);
c906108c 764
fe1b8b76 765static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 766 struct dwarf2_cu *);
72bf9492 767
57349743 768static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 769 struct dwarf2_cu *);
c906108c 770
fe1b8b76 771static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
772 struct dwarf2_cu *);
773
fe1b8b76
JB
774static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 777
72bf9492 778static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 779 struct dwarf2_cu *);
72bf9492
DJ
780
781static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
fe1b8b76
JB
784static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
c906108c 786
fe1b8b76
JB
787static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 789
fe1b8b76
JB
790static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 792
fe1b8b76 793static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 794
fe1b8b76 795static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 796
fe1b8b76 797static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 802
fe1b8b76 803static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 804 unsigned int *);
c906108c 805
fe1b8b76 806static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 807 struct comp_unit_head *, unsigned int *);
613e1657 808
fe1b8b76 809static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 810 unsigned int *);
613e1657 811
fe1b8b76 812static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 813
fe1b8b76 814static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 815
fe1b8b76
JB
816static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
4bdf3d34 819
fe1b8b76 820static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 821
fe1b8b76 822static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 823
fe1b8b76 824static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 825
e142c38c 826static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 827
e142c38c
DJ
828static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
c906108c 830
05cf31d1
JB
831static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
e142c38c 834static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 835
e142c38c
DJ
836static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
63d06c5c 838
debd256d
JB
839static void free_line_header (struct line_header *lh);
840
aaa75496
JB
841static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
debd256d
JB
844static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
e7c27a73 846 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
847
848static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 849 struct dwarf2_cu *, struct partial_symtab *);
c906108c 850
4f1520fb 851static void dwarf2_start_subfile (char *, char *, char *);
c906108c 852
a14ed312 853static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 854 struct dwarf2_cu *);
c906108c 855
a14ed312 856static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 857 struct dwarf2_cu *);
c906108c 858
2df3850c
JM
859static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
e7c27a73 863static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 864
e7c27a73
DJ
865static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
c906108c 867
e7c27a73 868static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 869
e7c27a73 870static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 871
086ed43d 872static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 873
fe1b8b76
JB
874static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
987504bb 877 struct dwarf2_cu *);
63d06c5c 878
e7c27a73 879static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73 881static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 882
a02abb62
JB
883static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
e7c27a73 885static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 886
e7c27a73 887static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 888
e7c27a73 889static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 890
a14ed312 891static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 893
fae299cd
DC
894static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
801e3a5b
JB
898static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
a14ed312 901static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 902 struct dwarf2_cu *);
c906108c 903
a14ed312 904static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 905 struct type *, struct dwarf2_cu *);
c906108c 906
a14ed312 907static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 908 struct die_info *, struct type *,
e7c27a73 909 struct dwarf2_cu *);
c906108c 910
a14ed312 911static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 912 struct type *, struct dwarf2_cu *);
c906108c 913
134d01f1
DJ
914static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 917
8176b9b8
DC
918static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
e7c27a73 920static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 921
e7c27a73 922static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 923
38d518c9 924static const char *namespace_name (struct die_info *die,
e142c38c 925 int *is_anonymous, struct dwarf2_cu *);
38d518c9 926
134d01f1
DJ
927static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 930
e7c27a73 931static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 932
e7c27a73 933static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 934
7ca2d3a3
DL
935static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
e7c27a73 938static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 939
e7c27a73
DJ
940static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
c906108c 942
e7c27a73 943static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 944
e7c27a73 945static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 946
e7c27a73 947static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 948
e7c27a73 949static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 950
e7c27a73 951static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 952
fe1b8b76 953static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 954
fe1b8b76 955static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 956 struct dwarf2_cu *,
fe1b8b76 957 gdb_byte **new_info_ptr,
639d11d3
DC
958 struct die_info *parent);
959
fe1b8b76 960static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 961 struct dwarf2_cu *,
fe1b8b76 962 gdb_byte **new_info_ptr,
639d11d3
DC
963 struct die_info *parent);
964
a14ed312 965static void free_die_list (struct die_info *);
c906108c 966
e7c27a73 967static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 968
e142c38c 969static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 970
e142c38c 971static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 972
e142c38c
DJ
973static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
9219021c 975
a14ed312 976static char *dwarf_tag_name (unsigned int);
c906108c 977
a14ed312 978static char *dwarf_attr_name (unsigned int);
c906108c 979
a14ed312 980static char *dwarf_form_name (unsigned int);
c906108c 981
a14ed312 982static char *dwarf_stack_op_name (unsigned int);
c906108c 983
a14ed312 984static char *dwarf_bool_name (unsigned int);
c906108c 985
a14ed312 986static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
987
988#if 0
a14ed312 989static char *dwarf_cfi_name (unsigned int);
c906108c 990
a14ed312 991struct die_info *copy_die (struct die_info *);
c906108c
SS
992#endif
993
f9aca02d 994static struct die_info *sibling_die (struct die_info *);
c906108c 995
f9aca02d 996static void dump_die (struct die_info *);
c906108c 997
f9aca02d 998static void dump_die_list (struct die_info *);
c906108c 999
10b3939b
DJ
1000static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
c906108c 1002
e142c38c
DJ
1003static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
c906108c 1005
a02abb62
JB
1006static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
10b3939b
DJ
1008static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
c906108c 1011
c906108c
SS
1012/* memory allocation interface */
1013
7b5a2f43 1014static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1015
f3dd6933 1016static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1017
a14ed312 1018static struct die_info *dwarf_alloc_die (void);
c906108c 1019
e142c38c 1020static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1021
e142c38c
DJ
1022static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
5fb290d7 1024
2e276125 1025static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1026 char *, bfd *, struct dwarf2_cu *);
2e276125 1027
8e19ed76
PS
1028static int attr_form_is_block (struct attribute *);
1029
3690dd37
JB
1030static int attr_form_is_section_offset (struct attribute *);
1031
1032static int attr_form_is_constant (struct attribute *);
1033
93e7bd98
DJ
1034static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
4c2df51b 1037
fe1b8b76
JB
1038static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
4bb7a0a7 1040
72bf9492
DJ
1041static void free_stack_comp_unit (void *);
1042
72bf9492
DJ
1043static hashval_t partial_die_hash (const void *item);
1044
1045static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
ae038cb0
DJ
1047static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053static void free_one_comp_unit (void *);
1054
1055static void free_cached_comp_units (void *);
1056
1057static void age_cached_comp_units (void);
1058
1059static void free_one_cached_comp_unit (void *);
1060
1c379e20
DJ
1061static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1c379e20
DJ
1064static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1c379e20 1066
ae038cb0
DJ
1067static void create_all_comp_units (struct objfile *);
1068
31ffec48
DJ
1069static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
10b3939b
DJ
1071
1072static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
ae038cb0
DJ
1077static void dwarf2_mark (struct dwarf2_cu *);
1078
1079static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
72019c9c
GM
1081static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
c906108c
SS
1084/* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087int
6502dd73 1088dwarf2_has_info (struct objfile *objfile)
c906108c 1089{
6502dd73
DJ
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
188dd5d6
DJ
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
af34e669 1107
6502dd73 1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1110}
1111
1112/* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116static void
72dca2f5 1117dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1118{
6314a349 1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1120 {
2c500098 1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1122 dwarf_info_section = sectp;
c906108c 1123 }
6314a349 1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1125 {
2c500098 1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1127 dwarf_abbrev_section = sectp;
c906108c 1128 }
6314a349 1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1130 {
2c500098 1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1132 dwarf_line_section = sectp;
c906108c 1133 }
6314a349 1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1135 {
2c500098 1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1137 dwarf_pubnames_section = sectp;
c906108c 1138 }
6314a349 1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1140 {
2c500098 1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1142 dwarf_aranges_section = sectp;
c906108c 1143 }
6314a349 1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1145 {
2c500098 1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1147 dwarf_loc_section = sectp;
c906108c 1148 }
6314a349 1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1150 {
2c500098 1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1152 dwarf_macinfo_section = sectp;
c906108c 1153 }
6314a349 1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1155 {
2c500098 1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1157 dwarf_str_section = sectp;
c906108c 1158 }
6314a349 1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1160 {
2c500098 1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1162 dwarf_frame_section = sectp;
b6af0555 1163 }
6314a349 1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1165 {
3799ccc6
EZ
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
2c500098 1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1170 dwarf_eh_frame_section = sectp;
1171 }
b6af0555 1172 }
6314a349 1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1174 {
2c500098 1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1176 dwarf_ranges_section = sectp;
af34e669 1177 }
72dca2f5
FR
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1182}
1183
1184/* Build a partial symbol table. */
1185
1186void
fba45db2 1187dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1188{
c906108c
SS
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
6502dd73
DJ
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1193
1194 if (dwarf_line_section)
6502dd73 1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1196 else
6502dd73 1197 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1198
188dd5d6 1199 if (dwarf_str_section)
6502dd73 1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1201 else
6502dd73 1202 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1203
188dd5d6 1204 if (dwarf_macinfo_section)
6502dd73 1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1206 dwarf_macinfo_section);
2e276125 1207 else
6502dd73 1208 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1209
188dd5d6 1210 if (dwarf_ranges_section)
6502dd73 1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1212 else
6502dd73 1213 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1214
188dd5d6 1215 if (dwarf_loc_section)
6502dd73 1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1217 else
6502dd73 1218 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1219
ef96bde8
EZ
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
c906108c
SS
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227#if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
d4f3574e 1230 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1231 .debug_pubnames sections */
1232
d4f3574e 1233 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1234 }
1235 else
1236#endif
1237 /* only test this case for now */
c5aa993b 1238 {
c906108c 1239 /* In this case we have to work a bit harder */
d4f3574e 1240 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1241 }
1242}
1243
1244#if 0
1245/* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248static void
fba45db2 1249dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1250{
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1257 dwarf_pubnames_section);
c906108c 1258 pubnames_ptr = pubnames_buffer;
6502dd73 1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1260 {
613e1657 1261 struct comp_unit_head cu_header;
891d2f0b 1262 unsigned int bytes_read;
613e1657
KB
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1265 &bytes_read);
613e1657 1266 pubnames_ptr += bytes_read;
c906108c
SS
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
086df311 1276 dwarf_aranges_section);
c906108c
SS
1277
1278}
1279#endif
1280
107d2387 1281/* Read in the comp unit header information from the debug_info at
917c78fc 1282 info_ptr. */
107d2387 1283
fe1b8b76 1284static gdb_byte *
107d2387 1285read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1286 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1287{
1288 int signed_addr;
891d2f0b 1289 unsigned int bytes_read;
613e1657
KB
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
107d2387
AC
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
613e1657
KB
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
107d2387
AC
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
8e65ff28 1302 internal_error (__FILE__, __LINE__,
e2e0b3e5 1303 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306}
1307
fe1b8b76
JB
1308static gdb_byte *
1309partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1310 bfd *abfd)
1311{
fe1b8b76 1312 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
2b949cb6 1316 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337}
1338
aaa75496
JB
1339/* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342static void
1343dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345{
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
10b3939b 1368 the regular ones. */
58a9656e 1369 subpst->read_symtab_private = NULL;
aaa75496
JB
1370}
1371
1372/* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380static void
1381dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384{
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396}
1397
1398
c906108c
SS
1399/* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402static void
fba45db2 1403dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1404{
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
c906108c
SS
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
ae038cb0 1412 struct cleanup *back_to;
e142c38c 1413 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1414
6502dd73 1415 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1416
ae038cb0
DJ
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
10b3939b
DJ
1421 create_all_comp_units (objfile);
1422
6502dd73 1423 /* Since the objects we're extracting from .debug_info vary in
af703f96 1424 length, only the individual functions to extract them (like
72bf9492 1425 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1426 the buffer is large enough to hold another complete object.
1427
6502dd73
DJ
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
af703f96
JB
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
6502dd73
DJ
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
c906108c 1438 {
f3dd6933 1439 struct cleanup *back_to_inner;
e7c27a73 1440 struct dwarf2_cu cu;
72bf9492
DJ
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
c906108c 1445 beg_of_comp_unit = info_ptr;
c906108c 1446
72bf9492
DJ
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
e7c27a73 1453 cu.objfile = objfile;
72bf9492 1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1455
57349743 1456 /* Complete the cu_header */
6502dd73 1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1460
e142c38c
DJ
1461 cu.list_in_scope = &file_symbols;
1462
c906108c 1463 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1464 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1466
10b3939b 1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1468
c906108c 1469 /* Read the compilation unit die */
72bf9492
DJ
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
c906108c 1473
31ffec48
DJ
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
c906108c 1482 /* Set the language we're debugging */
e142c38c 1483 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1484
1485 /* Allocate a new partial symbol table structure */
d4f3574e 1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1487 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
ae038cb0
DJ
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1494
10b3939b
DJ
1495 pst->read_symtab_private = (char *) this_cu;
1496
613e1657 1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
10b3939b
DJ
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1510
10b3939b 1511 cu.per_cu = this_cu;
ae038cb0 1512
10b3939b
DJ
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
ae038cb0 1518
10b3939b 1519 this_cu->psymtab = pst;
ae038cb0 1520
c906108c
SS
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
72bf9492
DJ
1526 struct partial_die_info *first_die;
1527
91c24f0a
DC
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
72bf9492
DJ
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1534
91c24f0a
DC
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
72bf9492 1539
c906108c
SS
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
0b010bcc 1542 if (! comp_unit_die.has_pc_info)
c906108c 1543 {
c5aa993b 1544 comp_unit_die.lowpc = lowpc;
c906108c
SS
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
c5aa993b 1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
dd373385
EZ
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
aaa75496
JB
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
f3dd6933 1572 do_cleanups (back_to_inner);
c906108c 1573 }
ae038cb0
DJ
1574 do_cleanups (back_to);
1575}
1576
1577/* Load the DIEs for a secondary CU into memory. */
1578
1579static void
1580load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581{
1582 bfd *abfd = objfile->obfd;
fe1b8b76 1583 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629}
1630
1631/* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636static void
1637create_all_comp_units (struct objfile *objfile)
1638{
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
fe1b8b76 1652 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
891d2f0b 1655 unsigned int bytes_read;
ae038cb0
DJ
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
dd373385 1661 cu_header.initial_length_size = 0;
ae038cb0
DJ
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1691}
1692
72bf9492
DJ
1693/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
c906108c 1696
72bf9492
DJ
1697static void
1698scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1700{
e7c27a73 1701 struct objfile *objfile = cu->objfile;
c906108c 1702 bfd *abfd = objfile->obfd;
72bf9492 1703 struct partial_die_info *pdi;
c906108c 1704
91c24f0a
DC
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
c906108c 1708
72bf9492 1709 pdi = first_die;
91c24f0a 1710
72bf9492
DJ
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
c906108c 1714
91c24f0a
DC
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
933c6fe4 1718
72bf9492
DJ
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1721 {
72bf9492 1722 switch (pdi->tag)
c906108c
SS
1723 {
1724 case DW_TAG_subprogram:
72bf9492 1725 if (pdi->has_pc_info)
c906108c 1726 {
72bf9492 1727 if (pdi->lowpc < *lowpc)
c906108c 1728 {
72bf9492 1729 *lowpc = pdi->lowpc;
c906108c 1730 }
72bf9492 1731 if (pdi->highpc > *highpc)
c906108c 1732 {
72bf9492 1733 *highpc = pdi->highpc;
c906108c 1734 }
72bf9492 1735 if (!pdi->is_declaration)
c906108c 1736 {
72bf9492 1737 add_partial_symbol (pdi, cu);
c906108c
SS
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
91c24f0a 1743 case DW_TAG_union_type:
72bf9492 1744 if (!pdi->is_declaration)
63d06c5c 1745 {
72bf9492 1746 add_partial_symbol (pdi, cu);
63d06c5c
DC
1747 }
1748 break;
c906108c 1749 case DW_TAG_class_type:
680b30c7 1750 case DW_TAG_interface_type:
c906108c 1751 case DW_TAG_structure_type:
72bf9492 1752 if (!pdi->is_declaration)
c906108c 1753 {
72bf9492 1754 add_partial_symbol (pdi, cu);
c906108c
SS
1755 }
1756 break;
91c24f0a 1757 case DW_TAG_enumeration_type:
72bf9492
DJ
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
c906108c
SS
1760 break;
1761 case DW_TAG_base_type:
a02abb62 1762 case DW_TAG_subrange_type:
c906108c 1763 /* File scope base type definitions are added to the partial
c5aa993b 1764 symbol table. */
72bf9492 1765 add_partial_symbol (pdi, cu);
c906108c 1766 break;
d9fa45fe 1767 case DW_TAG_namespace:
72bf9492 1768 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1769 break;
c906108c
SS
1770 default:
1771 break;
1772 }
1773 }
1774
72bf9492
DJ
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779}
1780
1781/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1782
72bf9492 1783 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
91c24f0a 1789
72bf9492
DJ
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801/* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805static char *
1806partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808{
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
91c24f0a 1811
72bf9492
DJ
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
72bf9492 1816 while (real_pdi->has_specification)
10b3939b 1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
10b3939b 1828 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
680b30c7 1833 || parent->tag == DW_TAG_interface_type
72bf9492
DJ
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
987504bb
JJ
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
72bf9492
DJ
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
e2e0b3e5 1851 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
c906108c
SS
1854 }
1855
72bf9492
DJ
1856 parent->scope_set = 1;
1857 return parent->scope;
1858}
1859
1860/* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862static char *
1863partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865{
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
987504bb 1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1873}
1874
1875static void
72bf9492 1876add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1877{
e7c27a73 1878 struct objfile *objfile = cu->objfile;
c906108c 1879 CORE_ADDR addr = 0;
decbce07 1880 char *actual_name = NULL;
72bf9492 1881 const char *my_prefix;
5c4e30ca 1882 const struct partial_symbol *psym = NULL;
e142c38c 1883 CORE_ADDR baseaddr;
72bf9492 1884 int built_actual_name = 0;
e142c38c
DJ
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1887
72bf9492 1888 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1889 {
72bf9492
DJ
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
63d06c5c
DC
1893 }
1894
72bf9492
DJ
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
c906108c
SS
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external)
1902 {
38d518c9 1903 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1904 mst_text, objfile); */
38d518c9 1905 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1906 VAR_DOMAIN, LOC_BLOCK,
1907 &objfile->global_psymbols,
1908 0, pdi->lowpc + baseaddr,
e142c38c 1909 cu->language, objfile);
c906108c
SS
1910 }
1911 else
1912 {
38d518c9 1913 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1914 mst_file_text, objfile); */
38d518c9 1915 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1916 VAR_DOMAIN, LOC_BLOCK,
1917 &objfile->static_psymbols,
1918 0, pdi->lowpc + baseaddr,
e142c38c 1919 cu->language, objfile);
c906108c
SS
1920 }
1921 break;
1922 case DW_TAG_variable:
1923 if (pdi->is_external)
1924 {
1925 /* Global Variable.
1926 Don't enter into the minimal symbol tables as there is
1927 a minimal symbol table entry from the ELF symbols already.
1928 Enter into partial symbol table if it has a location
1929 descriptor or a type.
1930 If the location descriptor is missing, new_symbol will create
1931 a LOC_UNRESOLVED symbol, the address of the variable will then
1932 be determined from the minimal symbol table whenever the variable
1933 is referenced.
1934 The address for the partial symbol table entry is not
1935 used by GDB, but it comes in handy for debugging partial symbol
1936 table building. */
1937
1938 if (pdi->locdesc)
e7c27a73 1939 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1940 if (pdi->locdesc || pdi->has_type)
38d518c9 1941 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1942 VAR_DOMAIN, LOC_STATIC,
1943 &objfile->global_psymbols,
1944 0, addr + baseaddr,
e142c38c 1945 cu->language, objfile);
c906108c
SS
1946 }
1947 else
1948 {
1949 /* Static Variable. Skip symbols without location descriptors. */
1950 if (pdi->locdesc == NULL)
decbce07
MS
1951 {
1952 if (built_actual_name)
1953 xfree (actual_name);
1954 return;
1955 }
e7c27a73 1956 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1957 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1958 mst_file_data, objfile); */
38d518c9 1959 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1960 VAR_DOMAIN, LOC_STATIC,
1961 &objfile->static_psymbols,
1962 0, addr + baseaddr,
e142c38c 1963 cu->language, objfile);
c906108c
SS
1964 }
1965 break;
1966 case DW_TAG_typedef:
1967 case DW_TAG_base_type:
a02abb62 1968 case DW_TAG_subrange_type:
38d518c9 1969 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1970 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1971 &objfile->static_psymbols,
e142c38c 1972 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1973 break;
72bf9492
DJ
1974 case DW_TAG_namespace:
1975 add_psymbol_to_list (actual_name, strlen (actual_name),
1976 VAR_DOMAIN, LOC_TYPEDEF,
1977 &objfile->global_psymbols,
1978 0, (CORE_ADDR) 0, cu->language, objfile);
1979 break;
c906108c 1980 case DW_TAG_class_type:
680b30c7 1981 case DW_TAG_interface_type:
c906108c
SS
1982 case DW_TAG_structure_type:
1983 case DW_TAG_union_type:
1984 case DW_TAG_enumeration_type:
fa4028e9
JB
1985 /* Skip external references. The DWARF standard says in the section
1986 about "Structure, Union, and Class Type Entries": "An incomplete
1987 structure, union or class type is represented by a structure,
1988 union or class entry that does not have a byte size attribute
1989 and that has a DW_AT_declaration attribute." */
1990 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
1991 {
1992 if (built_actual_name)
1993 xfree (actual_name);
1994 return;
1995 }
fa4028e9 1996
63d06c5c
DC
1997 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1998 static vs. global. */
38d518c9 1999 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2000 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2001 (cu->language == language_cplus
2002 || cu->language == language_java)
63d06c5c
DC
2003 ? &objfile->global_psymbols
2004 : &objfile->static_psymbols,
e142c38c 2005 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2006
987504bb 2007 if (cu->language == language_cplus
8c6860bb
JB
2008 || cu->language == language_java
2009 || cu->language == language_ada)
c906108c 2010 {
987504bb 2011 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2012 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2013 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2014 &objfile->global_psymbols,
e142c38c 2015 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2016 }
2017 break;
2018 case DW_TAG_enumerator:
38d518c9 2019 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2020 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2021 (cu->language == language_cplus
2022 || cu->language == language_java)
f6fe98ef
DJ
2023 ? &objfile->global_psymbols
2024 : &objfile->static_psymbols,
e142c38c 2025 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2026 break;
2027 default:
2028 break;
2029 }
5c4e30ca
DC
2030
2031 /* Check to see if we should scan the name for possible namespace
2032 info. Only do this if this is C++, if we don't have namespace
2033 debugging info in the file, if the psym is of an appropriate type
2034 (otherwise we'll have psym == NULL), and if we actually had a
2035 mangled name to begin with. */
2036
72bf9492
DJ
2037 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2038 cases which do not set PSYM above? */
2039
e142c38c 2040 if (cu->language == language_cplus
72bf9492 2041 && cu->has_namespace_info == 0
5c4e30ca
DC
2042 && psym != NULL
2043 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2044 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2045 objfile);
72bf9492
DJ
2046
2047 if (built_actual_name)
2048 xfree (actual_name);
c906108c
SS
2049}
2050
72bf9492
DJ
2051/* Determine whether a die of type TAG living in a C++ class or
2052 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2053 name listed in the die. */
2054
2055static int
72bf9492 2056pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2057{
63d06c5c
DC
2058 switch (tag)
2059 {
72bf9492 2060 case DW_TAG_namespace:
63d06c5c
DC
2061 case DW_TAG_typedef:
2062 case DW_TAG_class_type:
680b30c7 2063 case DW_TAG_interface_type:
63d06c5c
DC
2064 case DW_TAG_structure_type:
2065 case DW_TAG_union_type:
2066 case DW_TAG_enumeration_type:
2067 case DW_TAG_enumerator:
2068 return 1;
2069 default:
2070 return 0;
2071 }
2072}
2073
5c4e30ca
DC
2074/* Read a partial die corresponding to a namespace; also, add a symbol
2075 corresponding to that namespace to the symbol table. NAMESPACE is
2076 the name of the enclosing namespace. */
91c24f0a 2077
72bf9492
DJ
2078static void
2079add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2081 struct dwarf2_cu *cu)
91c24f0a 2082{
e7c27a73 2083 struct objfile *objfile = cu->objfile;
5c4e30ca 2084
72bf9492 2085 /* Add a symbol for the namespace. */
e7c27a73 2086
72bf9492 2087 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2088
2089 /* Now scan partial symbols in that namespace. */
2090
91c24f0a 2091 if (pdi->has_children)
72bf9492 2092 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2093}
2094
72bf9492
DJ
2095/* See if we can figure out if the class lives in a namespace. We do
2096 this by looking for a member function; its demangled name will
2097 contain namespace info, if there is any. */
63d06c5c 2098
72bf9492
DJ
2099static void
2100guess_structure_name (struct partial_die_info *struct_pdi,
2101 struct dwarf2_cu *cu)
63d06c5c 2102{
987504bb
JJ
2103 if ((cu->language == language_cplus
2104 || cu->language == language_java)
72bf9492 2105 && cu->has_namespace_info == 0
63d06c5c
DC
2106 && struct_pdi->has_children)
2107 {
63d06c5c
DC
2108 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2109 what template types look like, because the demangler
2110 frequently doesn't give the same name as the debug info. We
2111 could fix this by only using the demangled name to get the
134d01f1 2112 prefix (but see comment in read_structure_type). */
63d06c5c 2113
72bf9492
DJ
2114 struct partial_die_info *child_pdi = struct_pdi->die_child;
2115 struct partial_die_info *real_pdi;
5d51ca54 2116
72bf9492
DJ
2117 /* If this DIE (this DIE's specification, if any) has a parent, then
2118 we should not do this. We'll prepend the parent's fully qualified
2119 name when we create the partial symbol. */
5d51ca54 2120
72bf9492 2121 real_pdi = struct_pdi;
72bf9492 2122 while (real_pdi->has_specification)
10b3939b 2123 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2124
72bf9492
DJ
2125 if (real_pdi->die_parent != NULL)
2126 return;
63d06c5c 2127
72bf9492
DJ
2128 while (child_pdi != NULL)
2129 {
2130 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2131 {
72bf9492 2132 char *actual_class_name
31c27f77
JJ
2133 = language_class_name_from_physname (cu->language_defn,
2134 child_pdi->name);
63d06c5c 2135 if (actual_class_name != NULL)
72bf9492
DJ
2136 {
2137 struct_pdi->name
2138 = obsavestring (actual_class_name,
2139 strlen (actual_class_name),
2140 &cu->comp_unit_obstack);
2141 xfree (actual_class_name);
2142 }
63d06c5c
DC
2143 break;
2144 }
72bf9492
DJ
2145
2146 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2147 }
2148 }
63d06c5c
DC
2149}
2150
91c24f0a
DC
2151/* Read a partial die corresponding to an enumeration type. */
2152
72bf9492
DJ
2153static void
2154add_partial_enumeration (struct partial_die_info *enum_pdi,
2155 struct dwarf2_cu *cu)
91c24f0a 2156{
e7c27a73 2157 struct objfile *objfile = cu->objfile;
91c24f0a 2158 bfd *abfd = objfile->obfd;
72bf9492 2159 struct partial_die_info *pdi;
91c24f0a
DC
2160
2161 if (enum_pdi->name != NULL)
72bf9492
DJ
2162 add_partial_symbol (enum_pdi, cu);
2163
2164 pdi = enum_pdi->die_child;
2165 while (pdi)
91c24f0a 2166 {
72bf9492 2167 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2168 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2169 else
72bf9492
DJ
2170 add_partial_symbol (pdi, cu);
2171 pdi = pdi->die_sibling;
91c24f0a 2172 }
91c24f0a
DC
2173}
2174
4bb7a0a7
DJ
2175/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2176 Return the corresponding abbrev, or NULL if the number is zero (indicating
2177 an empty DIE). In either case *BYTES_READ will be set to the length of
2178 the initial number. */
2179
2180static struct abbrev_info *
fe1b8b76 2181peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2182 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2183{
2184 bfd *abfd = cu->objfile->obfd;
2185 unsigned int abbrev_number;
2186 struct abbrev_info *abbrev;
2187
2188 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2189
2190 if (abbrev_number == 0)
2191 return NULL;
2192
2193 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2194 if (!abbrev)
2195 {
8a3fe4f8 2196 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2197 bfd_get_filename (abfd));
2198 }
2199
2200 return abbrev;
2201}
2202
2203/* Scan the debug information for CU starting at INFO_PTR. Returns a
2204 pointer to the end of a series of DIEs, terminated by an empty
2205 DIE. Any children of the skipped DIEs will also be skipped. */
2206
fe1b8b76
JB
2207static gdb_byte *
2208skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2209{
2210 struct abbrev_info *abbrev;
2211 unsigned int bytes_read;
2212
2213 while (1)
2214 {
2215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2216 if (abbrev == NULL)
2217 return info_ptr + bytes_read;
2218 else
2219 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2220 }
2221}
2222
2223/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2224 should point just after the initial uleb128 of a DIE, and the
2225 abbrev corresponding to that skipped uleb128 should be passed in
2226 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2227 children. */
2228
fe1b8b76
JB
2229static gdb_byte *
2230skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2231 struct dwarf2_cu *cu)
2232{
2233 unsigned int bytes_read;
2234 struct attribute attr;
2235 bfd *abfd = cu->objfile->obfd;
2236 unsigned int form, i;
2237
2238 for (i = 0; i < abbrev->num_attrs; i++)
2239 {
2240 /* The only abbrev we care about is DW_AT_sibling. */
2241 if (abbrev->attrs[i].name == DW_AT_sibling)
2242 {
2243 read_attribute (&attr, &abbrev->attrs[i],
2244 abfd, info_ptr, cu);
2245 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2246 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2247 else
6502dd73
DJ
2248 return dwarf2_per_objfile->info_buffer
2249 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2250 }
2251
2252 /* If it isn't DW_AT_sibling, skip this attribute. */
2253 form = abbrev->attrs[i].form;
2254 skip_attribute:
2255 switch (form)
2256 {
2257 case DW_FORM_addr:
2258 case DW_FORM_ref_addr:
2259 info_ptr += cu->header.addr_size;
2260 break;
2261 case DW_FORM_data1:
2262 case DW_FORM_ref1:
2263 case DW_FORM_flag:
2264 info_ptr += 1;
2265 break;
2266 case DW_FORM_data2:
2267 case DW_FORM_ref2:
2268 info_ptr += 2;
2269 break;
2270 case DW_FORM_data4:
2271 case DW_FORM_ref4:
2272 info_ptr += 4;
2273 break;
2274 case DW_FORM_data8:
2275 case DW_FORM_ref8:
2276 info_ptr += 8;
2277 break;
2278 case DW_FORM_string:
2279 read_string (abfd, info_ptr, &bytes_read);
2280 info_ptr += bytes_read;
2281 break;
2282 case DW_FORM_strp:
2283 info_ptr += cu->header.offset_size;
2284 break;
2285 case DW_FORM_block:
2286 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2287 info_ptr += bytes_read;
2288 break;
2289 case DW_FORM_block1:
2290 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2291 break;
2292 case DW_FORM_block2:
2293 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2294 break;
2295 case DW_FORM_block4:
2296 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2297 break;
2298 case DW_FORM_sdata:
2299 case DW_FORM_udata:
2300 case DW_FORM_ref_udata:
2301 info_ptr = skip_leb128 (abfd, info_ptr);
2302 break;
2303 case DW_FORM_indirect:
2304 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2305 info_ptr += bytes_read;
2306 /* We need to continue parsing from here, so just go back to
2307 the top. */
2308 goto skip_attribute;
2309
2310 default:
8a3fe4f8 2311 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2312 dwarf_form_name (form),
2313 bfd_get_filename (abfd));
2314 }
2315 }
2316
2317 if (abbrev->has_children)
2318 return skip_children (info_ptr, cu);
2319 else
2320 return info_ptr;
2321}
2322
2323/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2324 the next DIE after ORIG_PDI. */
91c24f0a 2325
fe1b8b76
JB
2326static gdb_byte *
2327locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2328 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2329{
2330 /* Do we know the sibling already? */
72bf9492 2331
91c24f0a
DC
2332 if (orig_pdi->sibling)
2333 return orig_pdi->sibling;
2334
2335 /* Are there any children to deal with? */
2336
2337 if (!orig_pdi->has_children)
2338 return info_ptr;
2339
4bb7a0a7 2340 /* Skip the children the long way. */
91c24f0a 2341
4bb7a0a7 2342 return skip_children (info_ptr, cu);
91c24f0a
DC
2343}
2344
c906108c
SS
2345/* Expand this partial symbol table into a full symbol table. */
2346
2347static void
fba45db2 2348dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2349{
2350 /* FIXME: This is barely more than a stub. */
2351 if (pst != NULL)
2352 {
2353 if (pst->readin)
2354 {
8a3fe4f8 2355 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2356 }
2357 else
2358 {
2359 if (info_verbose)
2360 {
a3f17187 2361 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2362 gdb_flush (gdb_stdout);
2363 }
2364
10b3939b
DJ
2365 /* Restore our global data. */
2366 dwarf2_per_objfile = objfile_data (pst->objfile,
2367 dwarf2_objfile_data_key);
2368
c906108c
SS
2369 psymtab_to_symtab_1 (pst);
2370
2371 /* Finish up the debug error message. */
2372 if (info_verbose)
a3f17187 2373 printf_filtered (_("done.\n"));
c906108c
SS
2374 }
2375 }
2376}
2377
10b3939b
DJ
2378/* Add PER_CU to the queue. */
2379
2380static void
2381queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2382{
2383 struct dwarf2_queue_item *item;
2384
2385 per_cu->queued = 1;
2386 item = xmalloc (sizeof (*item));
2387 item->per_cu = per_cu;
2388 item->next = NULL;
2389
2390 if (dwarf2_queue == NULL)
2391 dwarf2_queue = item;
2392 else
2393 dwarf2_queue_tail->next = item;
2394
2395 dwarf2_queue_tail = item;
2396}
2397
2398/* Process the queue. */
2399
2400static void
2401process_queue (struct objfile *objfile)
2402{
2403 struct dwarf2_queue_item *item, *next_item;
2404
2405 /* Initially, there is just one item on the queue. Load its DIEs,
2406 and the DIEs of any other compilation units it requires,
2407 transitively. */
2408
2409 for (item = dwarf2_queue; item != NULL; item = item->next)
2410 {
2411 /* Read in this compilation unit. This may add new items to
2412 the end of the queue. */
31ffec48 2413 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2414
2415 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2416 dwarf2_per_objfile->read_in_chain = item->per_cu;
2417
2418 /* If this compilation unit has already had full symbols created,
2419 reset the TYPE fields in each DIE. */
31ffec48 2420 if (item->per_cu->type_hash)
10b3939b
DJ
2421 reset_die_and_siblings_types (item->per_cu->cu->dies,
2422 item->per_cu->cu);
2423 }
2424
2425 /* Now everything left on the queue needs to be read in. Process
2426 them, one at a time, removing from the queue as we finish. */
2427 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2428 {
31ffec48 2429 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2430 process_full_comp_unit (item->per_cu);
2431
2432 item->per_cu->queued = 0;
2433 next_item = item->next;
2434 xfree (item);
2435 }
2436
2437 dwarf2_queue_tail = NULL;
2438}
2439
2440/* Free all allocated queue entries. This function only releases anything if
2441 an error was thrown; if the queue was processed then it would have been
2442 freed as we went along. */
2443
2444static void
2445dwarf2_release_queue (void *dummy)
2446{
2447 struct dwarf2_queue_item *item, *last;
2448
2449 item = dwarf2_queue;
2450 while (item)
2451 {
2452 /* Anything still marked queued is likely to be in an
2453 inconsistent state, so discard it. */
2454 if (item->per_cu->queued)
2455 {
2456 if (item->per_cu->cu != NULL)
2457 free_one_cached_comp_unit (item->per_cu->cu);
2458 item->per_cu->queued = 0;
2459 }
2460
2461 last = item;
2462 item = item->next;
2463 xfree (last);
2464 }
2465
2466 dwarf2_queue = dwarf2_queue_tail = NULL;
2467}
2468
2469/* Read in full symbols for PST, and anything it depends on. */
2470
c906108c 2471static void
fba45db2 2472psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2473{
10b3939b 2474 struct dwarf2_per_cu_data *per_cu;
c906108c 2475 struct cleanup *back_to;
aaa75496
JB
2476 int i;
2477
2478 for (i = 0; i < pst->number_of_dependencies; i++)
2479 if (!pst->dependencies[i]->readin)
2480 {
2481 /* Inform about additional files that need to be read in. */
2482 if (info_verbose)
2483 {
a3f17187 2484 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2485 fputs_filtered (" ", gdb_stdout);
2486 wrap_here ("");
2487 fputs_filtered ("and ", gdb_stdout);
2488 wrap_here ("");
2489 printf_filtered ("%s...", pst->dependencies[i]->filename);
2490 wrap_here (""); /* Flush output */
2491 gdb_flush (gdb_stdout);
2492 }
2493 psymtab_to_symtab_1 (pst->dependencies[i]);
2494 }
2495
10b3939b
DJ
2496 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2497
2498 if (per_cu == NULL)
aaa75496
JB
2499 {
2500 /* It's an include file, no symbols to read for it.
2501 Everything is in the parent symtab. */
2502 pst->readin = 1;
2503 return;
2504 }
c906108c 2505
10b3939b
DJ
2506 back_to = make_cleanup (dwarf2_release_queue, NULL);
2507
2508 queue_comp_unit (per_cu);
2509
2510 process_queue (pst->objfile);
2511
2512 /* Age the cache, releasing compilation units that have not
2513 been used recently. */
2514 age_cached_comp_units ();
2515
2516 do_cleanups (back_to);
2517}
2518
2519/* Load the DIEs associated with PST and PER_CU into memory. */
2520
2521static struct dwarf2_cu *
31ffec48 2522load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2523{
31ffec48 2524 bfd *abfd = objfile->obfd;
10b3939b
DJ
2525 struct dwarf2_cu *cu;
2526 unsigned long offset;
fe1b8b76 2527 gdb_byte *info_ptr;
10b3939b
DJ
2528 struct cleanup *back_to, *free_cu_cleanup;
2529 struct attribute *attr;
2530 CORE_ADDR baseaddr;
6502dd73 2531
c906108c 2532 /* Set local variables from the partial symbol table info. */
10b3939b 2533 offset = per_cu->offset;
6502dd73
DJ
2534
2535 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2536
10b3939b
DJ
2537 cu = xmalloc (sizeof (struct dwarf2_cu));
2538 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2539
10b3939b
DJ
2540 /* If an error occurs while loading, release our storage. */
2541 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2542
31ffec48 2543 cu->objfile = objfile;
e7c27a73 2544
c906108c 2545 /* read in the comp_unit header */
10b3939b 2546 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2547
2548 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2549 dwarf2_read_abbrevs (abfd, cu);
2550 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2551
2552 cu->header.offset = offset;
c906108c 2553
10b3939b
DJ
2554 cu->per_cu = per_cu;
2555 per_cu->cu = cu;
e142c38c 2556
10b3939b
DJ
2557 /* We use this obstack for block values in dwarf_alloc_block. */
2558 obstack_init (&cu->comp_unit_obstack);
2559
2560 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2561
2562 /* We try not to read any attributes in this function, because not
2563 all objfiles needed for references have been loaded yet, and symbol
2564 table processing isn't initialized. But we have to set the CU language,
2565 or we won't be able to build types correctly. */
2566 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2567 if (attr)
2568 set_cu_language (DW_UNSND (attr), cu);
2569 else
2570 set_cu_language (language_minimal, cu);
2571
2572 do_cleanups (back_to);
e142c38c 2573
10b3939b
DJ
2574 /* We've successfully allocated this compilation unit. Let our caller
2575 clean it up when finished with it. */
2576 discard_cleanups (free_cu_cleanup);
c906108c 2577
10b3939b
DJ
2578 return cu;
2579}
2580
2581/* Generate full symbol information for PST and CU, whose DIEs have
2582 already been loaded into memory. */
2583
2584static void
2585process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2586{
2587 struct partial_symtab *pst = per_cu->psymtab;
2588 struct dwarf2_cu *cu = per_cu->cu;
2589 struct objfile *objfile = pst->objfile;
2590 bfd *abfd = objfile->obfd;
2591 CORE_ADDR lowpc, highpc;
2592 struct symtab *symtab;
2593 struct cleanup *back_to;
2594 struct attribute *attr;
2595 CORE_ADDR baseaddr;
2596
2597 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2598
2599 /* We're in the global namespace. */
2600 processing_current_prefix = "";
2601
2602 buildsym_init ();
2603 back_to = make_cleanup (really_free_pendings, NULL);
2604
2605 cu->list_in_scope = &file_symbols;
c906108c 2606
0d53c4c4
DJ
2607 /* Find the base address of the compilation unit for range lists and
2608 location lists. It will normally be specified by DW_AT_low_pc.
2609 In DWARF-3 draft 4, the base address could be overridden by
2610 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2611 compilation units with discontinuous ranges. */
2612
10b3939b
DJ
2613 cu->header.base_known = 0;
2614 cu->header.base_address = 0;
0d53c4c4 2615
10b3939b 2616 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2617 if (attr)
2618 {
10b3939b
DJ
2619 cu->header.base_address = DW_ADDR (attr);
2620 cu->header.base_known = 1;
0d53c4c4
DJ
2621 }
2622 else
2623 {
10b3939b 2624 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2625 if (attr)
2626 {
10b3939b
DJ
2627 cu->header.base_address = DW_ADDR (attr);
2628 cu->header.base_known = 1;
0d53c4c4
DJ
2629 }
2630 }
2631
c906108c 2632 /* Do line number decoding in read_file_scope () */
10b3939b 2633 process_die (cu->dies, cu);
c906108c 2634
fae299cd
DC
2635 /* Some compilers don't define a DW_AT_high_pc attribute for the
2636 compilation unit. If the DW_AT_high_pc is missing, synthesize
2637 it, by scanning the DIE's below the compilation unit. */
10b3939b 2638 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2639
613e1657 2640 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2641
2642 /* Set symtab language to language from DW_AT_language.
2643 If the compilation is from a C file generated by language preprocessors,
2644 do not set the language if it was already deduced by start_subfile. */
2645 if (symtab != NULL
10b3939b 2646 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2647 {
10b3939b 2648 symtab->language = cu->language;
c906108c
SS
2649 }
2650 pst->symtab = symtab;
2651 pst->readin = 1;
c906108c
SS
2652
2653 do_cleanups (back_to);
2654}
2655
2656/* Process a die and its children. */
2657
2658static void
e7c27a73 2659process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2660{
2661 switch (die->tag)
2662 {
2663 case DW_TAG_padding:
2664 break;
2665 case DW_TAG_compile_unit:
e7c27a73 2666 read_file_scope (die, cu);
c906108c
SS
2667 break;
2668 case DW_TAG_subprogram:
e7c27a73
DJ
2669 read_subroutine_type (die, cu);
2670 read_func_scope (die, cu);
c906108c
SS
2671 break;
2672 case DW_TAG_inlined_subroutine:
2673 /* FIXME: These are ignored for now.
c5aa993b
JM
2674 They could be used to set breakpoints on all inlined instances
2675 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2676 break;
2677 case DW_TAG_lexical_block:
14898363
L
2678 case DW_TAG_try_block:
2679 case DW_TAG_catch_block:
e7c27a73 2680 read_lexical_block_scope (die, cu);
c906108c
SS
2681 break;
2682 case DW_TAG_class_type:
680b30c7 2683 case DW_TAG_interface_type:
c906108c
SS
2684 case DW_TAG_structure_type:
2685 case DW_TAG_union_type:
134d01f1
DJ
2686 read_structure_type (die, cu);
2687 process_structure_scope (die, cu);
c906108c
SS
2688 break;
2689 case DW_TAG_enumeration_type:
134d01f1
DJ
2690 read_enumeration_type (die, cu);
2691 process_enumeration_scope (die, cu);
c906108c 2692 break;
134d01f1
DJ
2693
2694 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2695 a symbol or process any children. Therefore it doesn't do anything
2696 that won't be done on-demand by read_type_die. */
c906108c 2697 case DW_TAG_subroutine_type:
e7c27a73 2698 read_subroutine_type (die, cu);
c906108c 2699 break;
72019c9c
GM
2700 case DW_TAG_set_type:
2701 read_set_type (die, cu);
2702 break;
c906108c 2703 case DW_TAG_array_type:
e7c27a73 2704 read_array_type (die, cu);
c906108c
SS
2705 break;
2706 case DW_TAG_pointer_type:
e7c27a73 2707 read_tag_pointer_type (die, cu);
c906108c
SS
2708 break;
2709 case DW_TAG_ptr_to_member_type:
e7c27a73 2710 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2711 break;
2712 case DW_TAG_reference_type:
e7c27a73 2713 read_tag_reference_type (die, cu);
c906108c
SS
2714 break;
2715 case DW_TAG_string_type:
e7c27a73 2716 read_tag_string_type (die, cu);
c906108c 2717 break;
134d01f1
DJ
2718 /* END FIXME */
2719
c906108c 2720 case DW_TAG_base_type:
e7c27a73 2721 read_base_type (die, cu);
134d01f1
DJ
2722 /* Add a typedef symbol for the type definition, if it has a
2723 DW_AT_name. */
2724 new_symbol (die, die->type, cu);
c906108c 2725 break;
a02abb62
JB
2726 case DW_TAG_subrange_type:
2727 read_subrange_type (die, cu);
134d01f1
DJ
2728 /* Add a typedef symbol for the type definition, if it has a
2729 DW_AT_name. */
2730 new_symbol (die, die->type, cu);
a02abb62 2731 break;
c906108c 2732 case DW_TAG_common_block:
e7c27a73 2733 read_common_block (die, cu);
c906108c
SS
2734 break;
2735 case DW_TAG_common_inclusion:
2736 break;
d9fa45fe 2737 case DW_TAG_namespace:
63d06c5c 2738 processing_has_namespace_info = 1;
e7c27a73 2739 read_namespace (die, cu);
d9fa45fe
DC
2740 break;
2741 case DW_TAG_imported_declaration:
2742 case DW_TAG_imported_module:
2743 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2744 information contained in these. DW_TAG_imported_declaration
2745 dies shouldn't have children; DW_TAG_imported_module dies
2746 shouldn't in the C++ case, but conceivably could in the
2747 Fortran case, so we'll have to replace this gdb_assert if
2748 Fortran compilers start generating that info. */
63d06c5c 2749 processing_has_namespace_info = 1;
639d11d3 2750 gdb_assert (die->child == NULL);
d9fa45fe 2751 break;
c906108c 2752 default:
e7c27a73 2753 new_symbol (die, NULL, cu);
c906108c
SS
2754 break;
2755 }
2756}
2757
5fb290d7 2758static void
e142c38c 2759initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2760{
e142c38c 2761 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2762}
2763
cb1df416
DJ
2764static void
2765free_cu_line_header (void *arg)
2766{
2767 struct dwarf2_cu *cu = arg;
2768
2769 free_line_header (cu->line_header);
2770 cu->line_header = NULL;
2771}
2772
c906108c 2773static void
e7c27a73 2774read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2775{
e7c27a73
DJ
2776 struct objfile *objfile = cu->objfile;
2777 struct comp_unit_head *cu_header = &cu->header;
debd256d 2778 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2779 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2780 CORE_ADDR highpc = ((CORE_ADDR) 0);
2781 struct attribute *attr;
e1024ff1 2782 char *name = NULL;
c906108c
SS
2783 char *comp_dir = NULL;
2784 struct die_info *child_die;
2785 bfd *abfd = objfile->obfd;
debd256d 2786 struct line_header *line_header = 0;
e142c38c
DJ
2787 CORE_ADDR baseaddr;
2788
2789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2790
fae299cd 2791 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2792
2793 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2794 from finish_block. */
2acceee2 2795 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2796 lowpc = highpc;
2797 lowpc += baseaddr;
2798 highpc += baseaddr;
2799
39cbfefa
DJ
2800 /* Find the filename. Do not use dwarf2_name here, since the filename
2801 is not a source language identifier. */
e142c38c 2802 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2803 if (attr)
2804 {
2805 name = DW_STRING (attr);
2806 }
e1024ff1 2807
e142c38c 2808 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2809 if (attr)
e1024ff1
DJ
2810 comp_dir = DW_STRING (attr);
2811 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2812 {
e1024ff1
DJ
2813 comp_dir = ldirname (name);
2814 if (comp_dir != NULL)
2815 make_cleanup (xfree, comp_dir);
2816 }
2817 if (comp_dir != NULL)
2818 {
2819 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2820 directory, get rid of it. */
2821 char *cp = strchr (comp_dir, ':');
c906108c 2822
e1024ff1
DJ
2823 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2824 comp_dir = cp + 1;
c906108c
SS
2825 }
2826
e1024ff1
DJ
2827 if (name == NULL)
2828 name = "<unknown>";
2829
e142c38c 2830 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2831 if (attr)
2832 {
e142c38c 2833 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2834 }
2835
b0f35d58
DL
2836 attr = dwarf2_attr (die, DW_AT_producer, cu);
2837 if (attr)
2838 cu->producer = DW_STRING (attr);
303b6f5d 2839
c906108c
SS
2840 /* We assume that we're processing GCC output. */
2841 processing_gcc_compilation = 2;
c906108c 2842
c906108c
SS
2843 start_symtab (name, comp_dir, lowpc);
2844 record_debugformat ("DWARF 2");
303b6f5d 2845 record_producer (cu->producer);
c906108c 2846
e142c38c 2847 initialize_cu_func_list (cu);
c906108c 2848
cb1df416
DJ
2849 /* Decode line number information if present. We do this before
2850 processing child DIEs, so that the line header table is available
2851 for DW_AT_decl_file. */
e142c38c 2852 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2853 if (attr)
2854 {
debd256d 2855 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2856 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2857 if (line_header)
2858 {
cb1df416
DJ
2859 cu->line_header = line_header;
2860 make_cleanup (free_cu_line_header, cu);
aaa75496 2861 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2862 }
5fb290d7 2863 }
debd256d 2864
cb1df416
DJ
2865 /* Process all dies in compilation unit. */
2866 if (die->child != NULL)
2867 {
2868 child_die = die->child;
2869 while (child_die && child_die->tag)
2870 {
2871 process_die (child_die, cu);
2872 child_die = sibling_die (child_die);
2873 }
2874 }
2875
2e276125
JB
2876 /* Decode macro information, if present. Dwarf 2 macro information
2877 refers to information in the line number info statement program
2878 header, so we can only read it if we've read the header
2879 successfully. */
e142c38c 2880 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2881 if (attr && line_header)
2e276125
JB
2882 {
2883 unsigned int macro_offset = DW_UNSND (attr);
2884 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2885 comp_dir, abfd, cu);
2e276125 2886 }
debd256d 2887 do_cleanups (back_to);
5fb290d7
DJ
2888}
2889
2890static void
e142c38c
DJ
2891add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2892 struct dwarf2_cu *cu)
5fb290d7
DJ
2893{
2894 struct function_range *thisfn;
2895
2896 thisfn = (struct function_range *)
7b5a2f43 2897 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2898 thisfn->name = name;
2899 thisfn->lowpc = lowpc;
2900 thisfn->highpc = highpc;
2901 thisfn->seen_line = 0;
2902 thisfn->next = NULL;
2903
e142c38c
DJ
2904 if (cu->last_fn == NULL)
2905 cu->first_fn = thisfn;
5fb290d7 2906 else
e142c38c 2907 cu->last_fn->next = thisfn;
5fb290d7 2908
e142c38c 2909 cu->last_fn = thisfn;
c906108c
SS
2910}
2911
2912static void
e7c27a73 2913read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2914{
e7c27a73 2915 struct objfile *objfile = cu->objfile;
52f0bd74 2916 struct context_stack *new;
c906108c
SS
2917 CORE_ADDR lowpc;
2918 CORE_ADDR highpc;
2919 struct die_info *child_die;
2920 struct attribute *attr;
2921 char *name;
fdde2d81
DC
2922 const char *previous_prefix = processing_current_prefix;
2923 struct cleanup *back_to = NULL;
e142c38c 2924 CORE_ADDR baseaddr;
801e3a5b 2925 struct block *block;
c906108c 2926
e142c38c
DJ
2927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2928
2929 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2930
2931 /* Ignore functions with missing or empty names and functions with
2932 missing or invalid low and high pc attributes. */
e7c27a73 2933 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2934 return;
2935
987504bb
JJ
2936 if (cu->language == language_cplus
2937 || cu->language == language_java)
fdde2d81 2938 {
086ed43d 2939 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2940
2a35147e
JB
2941 /* NOTE: carlton/2004-01-23: We have to be careful in the
2942 presence of DW_AT_specification. For example, with GCC 3.4,
2943 given the code
2944
2945 namespace N {
2946 void foo() {
2947 // Definition of N::foo.
2948 }
2949 }
2950
2951 then we'll have a tree of DIEs like this:
2952
2953 1: DW_TAG_compile_unit
2954 2: DW_TAG_namespace // N
2955 3: DW_TAG_subprogram // declaration of N::foo
2956 4: DW_TAG_subprogram // definition of N::foo
2957 DW_AT_specification // refers to die #3
2958
2959 Thus, when processing die #4, we have to pretend that we're
2960 in the context of its DW_AT_specification, namely the contex
2961 of die #3. */
fdde2d81
DC
2962
2963 if (spec_die != NULL)
2964 {
e142c38c 2965 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2966 processing_current_prefix = specification_prefix;
2967 back_to = make_cleanup (xfree, specification_prefix);
2968 }
2969 }
2970
c906108c
SS
2971 lowpc += baseaddr;
2972 highpc += baseaddr;
2973
5fb290d7 2974 /* Record the function range for dwarf_decode_lines. */
e142c38c 2975 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2976
c906108c 2977 new = push_context (0, lowpc);
e7c27a73 2978 new->name = new_symbol (die, die->type, cu);
4c2df51b 2979
4cecd739
DJ
2980 /* If there is a location expression for DW_AT_frame_base, record
2981 it. */
e142c38c 2982 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2983 if (attr)
c034e007
AC
2984 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2985 expression is being recorded directly in the function's symbol
2986 and not in a separate frame-base object. I guess this hack is
2987 to avoid adding some sort of frame-base adjunct/annex to the
2988 function's symbol :-(. The problem with doing this is that it
2989 results in a function symbol with a location expression that
2990 has nothing to do with the location of the function, ouch! The
2991 relationship should be: a function's symbol has-a frame base; a
2992 frame-base has-a location expression. */
e7c27a73 2993 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2994
e142c38c 2995 cu->list_in_scope = &local_symbols;
c906108c 2996
639d11d3 2997 if (die->child != NULL)
c906108c 2998 {
639d11d3 2999 child_die = die->child;
c906108c
SS
3000 while (child_die && child_die->tag)
3001 {
e7c27a73 3002 process_die (child_die, cu);
c906108c
SS
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006
3007 new = pop_context ();
3008 /* Make a block for the local symbols within. */
801e3a5b
JB
3009 block = finish_block (new->name, &local_symbols, new->old_blocks,
3010 lowpc, highpc, objfile);
3011
3012 /* If we have address ranges, record them. */
3013 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3014
3015 /* In C++, we can have functions nested inside functions (e.g., when
3016 a function declares a class that has methods). This means that
3017 when we finish processing a function scope, we may need to go
3018 back to building a containing block's symbol lists. */
3019 local_symbols = new->locals;
3020 param_symbols = new->params;
3021
921e78cf
JB
3022 /* If we've finished processing a top-level function, subsequent
3023 symbols go in the file symbol list. */
3024 if (outermost_context_p ())
e142c38c 3025 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3026
3027 processing_current_prefix = previous_prefix;
3028 if (back_to != NULL)
3029 do_cleanups (back_to);
c906108c
SS
3030}
3031
3032/* Process all the DIES contained within a lexical block scope. Start
3033 a new scope, process the dies, and then close the scope. */
3034
3035static void
e7c27a73 3036read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3037{
e7c27a73 3038 struct objfile *objfile = cu->objfile;
52f0bd74 3039 struct context_stack *new;
c906108c
SS
3040 CORE_ADDR lowpc, highpc;
3041 struct die_info *child_die;
e142c38c
DJ
3042 CORE_ADDR baseaddr;
3043
3044 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3045
3046 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3047 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3048 as multiple lexical blocks? Handling children in a sane way would
3049 be nasty. Might be easier to properly extend generic blocks to
3050 describe ranges. */
e7c27a73 3051 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3052 return;
3053 lowpc += baseaddr;
3054 highpc += baseaddr;
3055
3056 push_context (0, lowpc);
639d11d3 3057 if (die->child != NULL)
c906108c 3058 {
639d11d3 3059 child_die = die->child;
c906108c
SS
3060 while (child_die && child_die->tag)
3061 {
e7c27a73 3062 process_die (child_die, cu);
c906108c
SS
3063 child_die = sibling_die (child_die);
3064 }
3065 }
3066 new = pop_context ();
3067
3068 if (local_symbols != NULL)
3069 {
801e3a5b
JB
3070 struct block *block
3071 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3072 highpc, objfile);
3073
3074 /* Note that recording ranges after traversing children, as we
3075 do here, means that recording a parent's ranges entails
3076 walking across all its children's ranges as they appear in
3077 the address map, which is quadratic behavior.
3078
3079 It would be nicer to record the parent's ranges before
3080 traversing its children, simply overriding whatever you find
3081 there. But since we don't even decide whether to create a
3082 block until after we've traversed its children, that's hard
3083 to do. */
3084 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
3085 }
3086 local_symbols = new->locals;
3087}
3088
43039443
JK
3089/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3090 Return 1 if the attributes are present and valid, otherwise, return 0. */
3091
3092static int
3093dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3094 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3095{
3096 struct objfile *objfile = cu->objfile;
3097 struct comp_unit_head *cu_header = &cu->header;
3098 bfd *obfd = objfile->obfd;
3099 unsigned int addr_size = cu_header->addr_size;
3100 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3101 /* Base address selection entry. */
3102 CORE_ADDR base;
3103 int found_base;
3104 unsigned int dummy;
3105 gdb_byte *buffer;
3106 CORE_ADDR marker;
3107 int low_set;
3108 CORE_ADDR low = 0;
3109 CORE_ADDR high = 0;
3110
3111 found_base = cu_header->base_known;
3112 base = cu_header->base_address;
3113
3114 if (offset >= dwarf2_per_objfile->ranges_size)
3115 {
3116 complaint (&symfile_complaints,
3117 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3118 offset);
3119 return 0;
3120 }
3121 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3122
3123 /* Read in the largest possible address. */
3124 marker = read_address (obfd, buffer, cu, &dummy);
3125 if ((marker & mask) == mask)
3126 {
3127 /* If we found the largest possible address, then
3128 read the base address. */
3129 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3130 buffer += 2 * addr_size;
3131 offset += 2 * addr_size;
3132 found_base = 1;
3133 }
3134
3135 low_set = 0;
3136
3137 while (1)
3138 {
3139 CORE_ADDR range_beginning, range_end;
3140
3141 range_beginning = read_address (obfd, buffer, cu, &dummy);
3142 buffer += addr_size;
3143 range_end = read_address (obfd, buffer, cu, &dummy);
3144 buffer += addr_size;
3145 offset += 2 * addr_size;
3146
3147 /* An end of list marker is a pair of zero addresses. */
3148 if (range_beginning == 0 && range_end == 0)
3149 /* Found the end of list entry. */
3150 break;
3151
3152 /* Each base address selection entry is a pair of 2 values.
3153 The first is the largest possible address, the second is
3154 the base address. Check for a base address here. */
3155 if ((range_beginning & mask) == mask)
3156 {
3157 /* If we found the largest possible address, then
3158 read the base address. */
3159 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3160 found_base = 1;
3161 continue;
3162 }
3163
3164 if (!found_base)
3165 {
3166 /* We have no valid base address for the ranges
3167 data. */
3168 complaint (&symfile_complaints,
3169 _("Invalid .debug_ranges data (no base address)"));
3170 return 0;
3171 }
3172
3173 range_beginning += base;
3174 range_end += base;
3175
3176 /* FIXME: This is recording everything as a low-high
3177 segment of consecutive addresses. We should have a
3178 data structure for discontiguous block ranges
3179 instead. */
3180 if (! low_set)
3181 {
3182 low = range_beginning;
3183 high = range_end;
3184 low_set = 1;
3185 }
3186 else
3187 {
3188 if (range_beginning < low)
3189 low = range_beginning;
3190 if (range_end > high)
3191 high = range_end;
3192 }
3193 }
3194
3195 if (! low_set)
3196 /* If the first entry is an end-of-list marker, the range
3197 describes an empty scope, i.e. no instructions. */
3198 return 0;
3199
3200 if (low_return)
3201 *low_return = low;
3202 if (high_return)
3203 *high_return = high;
3204 return 1;
3205}
3206
af34e669
DJ
3207/* Get low and high pc attributes from a die. Return 1 if the attributes
3208 are present and valid, otherwise, return 0. Return -1 if the range is
3209 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3210static int
af34e669 3211dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3212 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c
SS
3213{
3214 struct attribute *attr;
af34e669
DJ
3215 CORE_ADDR low = 0;
3216 CORE_ADDR high = 0;
3217 int ret = 0;
c906108c 3218
e142c38c 3219 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3220 if (attr)
af34e669
DJ
3221 {
3222 high = DW_ADDR (attr);
e142c38c 3223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3224 if (attr)
3225 low = DW_ADDR (attr);
3226 else
3227 /* Found high w/o low attribute. */
3228 return 0;
3229
3230 /* Found consecutive range of addresses. */
3231 ret = 1;
3232 }
c906108c 3233 else
af34e669 3234 {
e142c38c 3235 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3236 if (attr != NULL)
3237 {
af34e669 3238 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3239 .debug_ranges section. */
43039443 3240 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
af34e669 3241 return 0;
43039443 3242 /* Found discontinuous range of addresses. */
af34e669
DJ
3243 ret = -1;
3244 }
3245 }
c906108c
SS
3246
3247 if (high < low)
3248 return 0;
3249
3250 /* When using the GNU linker, .gnu.linkonce. sections are used to
3251 eliminate duplicate copies of functions and vtables and such.
3252 The linker will arbitrarily choose one and discard the others.
3253 The AT_*_pc values for such functions refer to local labels in
3254 these sections. If the section from that file was discarded, the
3255 labels are not in the output, so the relocs get a value of 0.
3256 If this is a discarded function, mark the pc bounds as invalid,
3257 so that GDB will ignore it. */
72dca2f5 3258 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3259 return 0;
3260
3261 *lowpc = low;
3262 *highpc = high;
af34e669 3263 return ret;
c906108c
SS
3264}
3265
fae299cd
DC
3266/* Get the low and high pc's represented by the scope DIE, and store
3267 them in *LOWPC and *HIGHPC. If the correct values can't be
3268 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3269
3270static void
3271get_scope_pc_bounds (struct die_info *die,
3272 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3273 struct dwarf2_cu *cu)
3274{
3275 CORE_ADDR best_low = (CORE_ADDR) -1;
3276 CORE_ADDR best_high = (CORE_ADDR) 0;
3277 CORE_ADDR current_low, current_high;
3278
3279 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3280 {
3281 best_low = current_low;
3282 best_high = current_high;
3283 }
3284 else
3285 {
3286 struct die_info *child = die->child;
3287
3288 while (child && child->tag)
3289 {
3290 switch (child->tag) {
3291 case DW_TAG_subprogram:
3292 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3293 {
3294 best_low = min (best_low, current_low);
3295 best_high = max (best_high, current_high);
3296 }
3297 break;
3298 case DW_TAG_namespace:
3299 /* FIXME: carlton/2004-01-16: Should we do this for
3300 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3301 that current GCC's always emit the DIEs corresponding
3302 to definitions of methods of classes as children of a
3303 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3304 the DIEs giving the declarations, which could be
3305 anywhere). But I don't see any reason why the
3306 standards says that they have to be there. */
3307 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3308
3309 if (current_low != ((CORE_ADDR) -1))
3310 {
3311 best_low = min (best_low, current_low);
3312 best_high = max (best_high, current_high);
3313 }
3314 break;
3315 default:
3316 /* Ignore. */
3317 break;
3318 }
3319
3320 child = sibling_die (child);
3321 }
3322 }
3323
3324 *lowpc = best_low;
3325 *highpc = best_high;
3326}
3327
801e3a5b
JB
3328/* Record the address ranges for BLOCK, offset by BASEADDR, as given
3329 in DIE. */
3330static void
3331dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3332 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3333{
3334 struct attribute *attr;
3335
3336 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3337 if (attr)
3338 {
3339 CORE_ADDR high = DW_ADDR (attr);
3340 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR low = DW_ADDR (attr);
3344 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3345 }
3346 }
3347
3348 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3349 if (attr)
3350 {
3351 bfd *obfd = cu->objfile->obfd;
3352
3353 /* The value of the DW_AT_ranges attribute is the offset of the
3354 address range list in the .debug_ranges section. */
3355 unsigned long offset = DW_UNSND (attr);
3356 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3357
3358 /* For some target architectures, but not others, the
3359 read_address function sign-extends the addresses it returns.
3360 To recognize base address selection entries, we need a
3361 mask. */
3362 unsigned int addr_size = cu->header.addr_size;
3363 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3364
3365 /* The base address, to which the next pair is relative. Note
3366 that this 'base' is a DWARF concept: most entries in a range
3367 list are relative, to reduce the number of relocs against the
3368 debugging information. This is separate from this function's
3369 'baseaddr' argument, which GDB uses to relocate debugging
3370 information from a shared library based on the address at
3371 which the library was loaded. */
3372 CORE_ADDR base = cu->header.base_address;
3373 int base_known = cu->header.base_known;
3374
3375 if (offset >= dwarf2_per_objfile->ranges_size)
3376 {
3377 complaint (&symfile_complaints,
3378 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3379 offset);
3380 return;
3381 }
3382
3383 for (;;)
3384 {
3385 unsigned int bytes_read;
3386 CORE_ADDR start, end;
3387
3388 start = read_address (obfd, buffer, cu, &bytes_read);
3389 buffer += bytes_read;
3390 end = read_address (obfd, buffer, cu, &bytes_read);
3391 buffer += bytes_read;
3392
3393 /* Did we find the end of the range list? */
3394 if (start == 0 && end == 0)
3395 break;
3396
3397 /* Did we find a base address selection entry? */
3398 else if ((start & base_select_mask) == base_select_mask)
3399 {
3400 base = end;
3401 base_known = 1;
3402 }
3403
3404 /* We found an ordinary address range. */
3405 else
3406 {
3407 if (!base_known)
3408 {
3409 complaint (&symfile_complaints,
3410 _("Invalid .debug_ranges data (no base address)"));
3411 return;
3412 }
3413
3414 record_block_range (block,
3415 baseaddr + base + start,
3416 baseaddr + base + end - 1);
3417 }
3418 }
3419 }
3420}
3421
c906108c
SS
3422/* Add an aggregate field to the field list. */
3423
3424static void
107d2387 3425dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3426 struct dwarf2_cu *cu)
3427{
3428 struct objfile *objfile = cu->objfile;
c906108c
SS
3429 struct nextfield *new_field;
3430 struct attribute *attr;
3431 struct field *fp;
3432 char *fieldname = "";
3433
3434 /* Allocate a new field list entry and link it in. */
3435 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3436 make_cleanup (xfree, new_field);
c906108c
SS
3437 memset (new_field, 0, sizeof (struct nextfield));
3438 new_field->next = fip->fields;
3439 fip->fields = new_field;
3440 fip->nfields++;
3441
3442 /* Handle accessibility and virtuality of field.
3443 The default accessibility for members is public, the default
3444 accessibility for inheritance is private. */
3445 if (die->tag != DW_TAG_inheritance)
3446 new_field->accessibility = DW_ACCESS_public;
3447 else
3448 new_field->accessibility = DW_ACCESS_private;
3449 new_field->virtuality = DW_VIRTUALITY_none;
3450
e142c38c 3451 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3452 if (attr)
3453 new_field->accessibility = DW_UNSND (attr);
3454 if (new_field->accessibility != DW_ACCESS_public)
3455 fip->non_public_fields = 1;
e142c38c 3456 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3457 if (attr)
3458 new_field->virtuality = DW_UNSND (attr);
3459
3460 fp = &new_field->field;
a9a9bd0f 3461
e142c38c 3462 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3463 {
a9a9bd0f
DC
3464 /* Data member other than a C++ static data member. */
3465
c906108c 3466 /* Get type of field. */
e7c27a73 3467 fp->type = die_type (die, cu);
c906108c 3468
01ad7f36
DJ
3469 FIELD_STATIC_KIND (*fp) = 0;
3470
c906108c 3471 /* Get bit size of field (zero if none). */
e142c38c 3472 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3473 if (attr)
3474 {
3475 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3476 }
3477 else
3478 {
3479 FIELD_BITSIZE (*fp) = 0;
3480 }
3481
3482 /* Get bit offset of field. */
e142c38c 3483 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3484 if (attr)
3485 {
c6a0999f
JB
3486 int byte_offset;
3487
3690dd37
JB
3488 if (attr_form_is_section_offset (attr))
3489 {
3490 dwarf2_complex_location_expr_complaint ();
c6a0999f 3491 byte_offset = 0;
3690dd37
JB
3492 }
3493 else if (attr_form_is_constant (attr))
c6a0999f 3494 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3690dd37 3495 else
c6a0999f
JB
3496 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3497
3498 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
c906108c
SS
3499 }
3500 else
3501 FIELD_BITPOS (*fp) = 0;
e142c38c 3502 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3503 if (attr)
3504 {
3505 if (BITS_BIG_ENDIAN)
3506 {
3507 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3508 additional bit offset from the MSB of the containing
3509 anonymous object to the MSB of the field. We don't
3510 have to do anything special since we don't need to
3511 know the size of the anonymous object. */
c906108c
SS
3512 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3513 }
3514 else
3515 {
3516 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3517 MSB of the anonymous object, subtract off the number of
3518 bits from the MSB of the field to the MSB of the
3519 object, and then subtract off the number of bits of
3520 the field itself. The result is the bit offset of
3521 the LSB of the field. */
c906108c
SS
3522 int anonymous_size;
3523 int bit_offset = DW_UNSND (attr);
3524
e142c38c 3525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3526 if (attr)
3527 {
3528 /* The size of the anonymous object containing
3529 the bit field is explicit, so use the
3530 indicated size (in bytes). */
3531 anonymous_size = DW_UNSND (attr);
3532 }
3533 else
3534 {
3535 /* The size of the anonymous object containing
3536 the bit field must be inferred from the type
3537 attribute of the data member containing the
3538 bit field. */
3539 anonymous_size = TYPE_LENGTH (fp->type);
3540 }
3541 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3542 - bit_offset - FIELD_BITSIZE (*fp);
3543 }
3544 }
3545
3546 /* Get name of field. */
39cbfefa
DJ
3547 fieldname = dwarf2_name (die, cu);
3548 if (fieldname == NULL)
3549 fieldname = "";
d8151005
DJ
3550
3551 /* The name is already allocated along with this objfile, so we don't
3552 need to duplicate it for the type. */
3553 fp->name = fieldname;
c906108c
SS
3554
3555 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3556 pointer or virtual base class pointer) to private. */
e142c38c 3557 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3558 {
3559 new_field->accessibility = DW_ACCESS_private;
3560 fip->non_public_fields = 1;
3561 }
3562 }
a9a9bd0f 3563 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3564 {
a9a9bd0f
DC
3565 /* C++ static member. */
3566
3567 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3568 is a declaration, but all versions of G++ as of this writing
3569 (so through at least 3.2.1) incorrectly generate
3570 DW_TAG_variable tags. */
3571
c906108c 3572 char *physname;
c906108c 3573
a9a9bd0f 3574 /* Get name of field. */
39cbfefa
DJ
3575 fieldname = dwarf2_name (die, cu);
3576 if (fieldname == NULL)
c906108c
SS
3577 return;
3578
2df3850c 3579 /* Get physical name. */
e142c38c 3580 physname = dwarf2_linkage_name (die, cu);
c906108c 3581
d8151005
DJ
3582 /* The name is already allocated along with this objfile, so we don't
3583 need to duplicate it for the type. */
3584 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3585 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3586 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3587 }
3588 else if (die->tag == DW_TAG_inheritance)
3589 {
3590 /* C++ base class field. */
e142c38c 3591 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3592 if (attr)
e7c27a73 3593 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3594 * bits_per_byte);
c906108c 3595 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3596 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3597 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3598 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3599 fip->nbaseclasses++;
3600 }
3601}
3602
3603/* Create the vector of fields, and attach it to the type. */
3604
3605static void
fba45db2 3606dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3607 struct dwarf2_cu *cu)
c906108c
SS
3608{
3609 int nfields = fip->nfields;
3610
3611 /* Record the field count, allocate space for the array of fields,
3612 and create blank accessibility bitfields if necessary. */
3613 TYPE_NFIELDS (type) = nfields;
3614 TYPE_FIELDS (type) = (struct field *)
3615 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3616 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3617
3618 if (fip->non_public_fields)
3619 {
3620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3621
3622 TYPE_FIELD_PRIVATE_BITS (type) =
3623 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3624 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3625
3626 TYPE_FIELD_PROTECTED_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3629
3630 TYPE_FIELD_IGNORE_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3633 }
3634
3635 /* If the type has baseclasses, allocate and clear a bit vector for
3636 TYPE_FIELD_VIRTUAL_BITS. */
3637 if (fip->nbaseclasses)
3638 {
3639 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3640 unsigned char *pointer;
c906108c
SS
3641
3642 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3643 pointer = TYPE_ALLOC (type, num_bytes);
3644 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3645 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3646 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3647 }
3648
3649 /* Copy the saved-up fields into the field vector. Start from the head
3650 of the list, adding to the tail of the field array, so that they end
3651 up in the same order in the array in which they were added to the list. */
3652 while (nfields-- > 0)
3653 {
3654 TYPE_FIELD (type, nfields) = fip->fields->field;
3655 switch (fip->fields->accessibility)
3656 {
c5aa993b
JM
3657 case DW_ACCESS_private:
3658 SET_TYPE_FIELD_PRIVATE (type, nfields);
3659 break;
c906108c 3660
c5aa993b
JM
3661 case DW_ACCESS_protected:
3662 SET_TYPE_FIELD_PROTECTED (type, nfields);
3663 break;
c906108c 3664
c5aa993b
JM
3665 case DW_ACCESS_public:
3666 break;
c906108c 3667
c5aa993b
JM
3668 default:
3669 /* Unknown accessibility. Complain and treat it as public. */
3670 {
e2e0b3e5 3671 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3672 fip->fields->accessibility);
c5aa993b
JM
3673 }
3674 break;
c906108c
SS
3675 }
3676 if (nfields < fip->nbaseclasses)
3677 {
3678 switch (fip->fields->virtuality)
3679 {
c5aa993b
JM
3680 case DW_VIRTUALITY_virtual:
3681 case DW_VIRTUALITY_pure_virtual:
3682 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3683 break;
c906108c
SS
3684 }
3685 }
3686 fip->fields = fip->fields->next;
3687 }
3688}
3689
c906108c
SS
3690/* Add a member function to the proper fieldlist. */
3691
3692static void
107d2387 3693dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3694 struct type *type, struct dwarf2_cu *cu)
c906108c 3695{
e7c27a73 3696 struct objfile *objfile = cu->objfile;
c906108c
SS
3697 struct attribute *attr;
3698 struct fnfieldlist *flp;
3699 int i;
3700 struct fn_field *fnp;
3701 char *fieldname;
3702 char *physname;
3703 struct nextfnfield *new_fnfield;
3704
2df3850c 3705 /* Get name of member function. */
39cbfefa
DJ
3706 fieldname = dwarf2_name (die, cu);
3707 if (fieldname == NULL)
2df3850c 3708 return;
c906108c 3709
2df3850c 3710 /* Get the mangled name. */
e142c38c 3711 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3712
3713 /* Look up member function name in fieldlist. */
3714 for (i = 0; i < fip->nfnfields; i++)
3715 {
27bfe10e 3716 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3717 break;
3718 }
3719
3720 /* Create new list element if necessary. */
3721 if (i < fip->nfnfields)
3722 flp = &fip->fnfieldlists[i];
3723 else
3724 {
3725 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3726 {
3727 fip->fnfieldlists = (struct fnfieldlist *)
3728 xrealloc (fip->fnfieldlists,
3729 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3730 * sizeof (struct fnfieldlist));
c906108c 3731 if (fip->nfnfields == 0)
c13c43fd 3732 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3733 }
3734 flp = &fip->fnfieldlists[fip->nfnfields];
3735 flp->name = fieldname;
3736 flp->length = 0;
3737 flp->head = NULL;
3738 fip->nfnfields++;
3739 }
3740
3741 /* Create a new member function field and chain it to the field list
3742 entry. */
3743 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3744 make_cleanup (xfree, new_fnfield);
c906108c
SS
3745 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3746 new_fnfield->next = flp->head;
3747 flp->head = new_fnfield;
3748 flp->length++;
3749
3750 /* Fill in the member function field info. */
3751 fnp = &new_fnfield->fnfield;
d8151005
DJ
3752 /* The name is already allocated along with this objfile, so we don't
3753 need to duplicate it for the type. */
3754 fnp->physname = physname ? physname : "";
c906108c
SS
3755 fnp->type = alloc_type (objfile);
3756 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3757 {
c906108c 3758 int nparams = TYPE_NFIELDS (die->type);
c906108c 3759
e26fb1d7
DC
3760 /* TYPE is the domain of this method, and DIE->TYPE is the type
3761 of the method itself (TYPE_CODE_METHOD). */
3762 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3763 TYPE_TARGET_TYPE (die->type),
3764 TYPE_FIELDS (die->type),
3765 TYPE_NFIELDS (die->type),
3766 TYPE_VARARGS (die->type));
c906108c
SS
3767
3768 /* Handle static member functions.
c5aa993b
JM
3769 Dwarf2 has no clean way to discern C++ static and non-static
3770 member functions. G++ helps GDB by marking the first
3771 parameter for non-static member functions (which is the
3772 this pointer) as artificial. We obtain this information
3773 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3774 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3775 fnp->voffset = VOFFSET_STATIC;
3776 }
3777 else
e2e0b3e5 3778 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3779 physname);
c906108c
SS
3780
3781 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3782 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3783 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3784
3785 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3786 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3787
3788 /* Get accessibility. */
e142c38c 3789 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3790 if (attr)
3791 {
3792 switch (DW_UNSND (attr))
3793 {
c5aa993b
JM
3794 case DW_ACCESS_private:
3795 fnp->is_private = 1;
3796 break;
3797 case DW_ACCESS_protected:
3798 fnp->is_protected = 1;
3799 break;
c906108c
SS
3800 }
3801 }
3802
b02dede2 3803 /* Check for artificial methods. */
e142c38c 3804 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3805 if (attr && DW_UNSND (attr) != 0)
3806 fnp->is_artificial = 1;
3807
c906108c 3808 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3809 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3810 if (attr)
8e19ed76
PS
3811 {
3812 /* Support the .debug_loc offsets */
3813 if (attr_form_is_block (attr))
3814 {
e7c27a73 3815 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 3816 }
3690dd37 3817 else if (attr_form_is_section_offset (attr))
8e19ed76 3818 {
4d3c2250 3819 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3820 }
3821 else
3822 {
4d3c2250
KB
3823 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3824 fieldname);
8e19ed76
PS
3825 }
3826 }
c906108c
SS
3827}
3828
3829/* Create the vector of member function fields, and attach it to the type. */
3830
3831static void
fba45db2 3832dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3833 struct dwarf2_cu *cu)
c906108c
SS
3834{
3835 struct fnfieldlist *flp;
3836 int total_length = 0;
3837 int i;
3838
3839 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3840 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3841 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3842
3843 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3844 {
3845 struct nextfnfield *nfp = flp->head;
3846 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3847 int k;
3848
3849 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3850 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3851 fn_flp->fn_fields = (struct fn_field *)
3852 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3853 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3854 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3855
3856 total_length += flp->length;
3857 }
3858
3859 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3860 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3861}
3862
1168df01
JB
3863/* Returns non-zero if NAME is the name of a vtable member in CU's
3864 language, zero otherwise. */
3865static int
3866is_vtable_name (const char *name, struct dwarf2_cu *cu)
3867{
3868 static const char vptr[] = "_vptr";
987504bb 3869 static const char vtable[] = "vtable";
1168df01 3870
987504bb
JJ
3871 /* Look for the C++ and Java forms of the vtable. */
3872 if ((cu->language == language_java
3873 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3874 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3875 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3876 return 1;
3877
3878 return 0;
3879}
3880
c0dd20ea
DJ
3881/* GCC outputs unnamed structures that are really pointers to member
3882 functions, with the ABI-specified layout. If DIE (from CU) describes
3883 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3884 zero.
3885
3886 GCC shouldn't do this; it should just output pointer to member DIEs.
3887 This is GCC PR debug/28767. */
c0dd20ea
DJ
3888
3889static int
3890quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3891{
3892 struct objfile *objfile = cu->objfile;
3893 struct type *type;
3894 struct die_info *pfn_die, *delta_die;
3895 struct attribute *pfn_name, *delta_name;
3896 struct type *pfn_type, *domain_type;
3897
3898 /* Check for a structure with no name and two children. */
3899 if (die->tag != DW_TAG_structure_type
3900 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3901 || die->child == NULL
3902 || die->child->sibling == NULL
3903 || (die->child->sibling->sibling != NULL
3904 && die->child->sibling->sibling->tag != DW_TAG_padding))
3905 return 0;
3906
3907 /* Check for __pfn and __delta members. */
3908 pfn_die = die->child;
3909 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3910 if (pfn_die->tag != DW_TAG_member
3911 || pfn_name == NULL
3912 || DW_STRING (pfn_name) == NULL
3913 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3914 return 0;
3915
3916 delta_die = pfn_die->sibling;
3917 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3918 if (delta_die->tag != DW_TAG_member
3919 || delta_name == NULL
3920 || DW_STRING (delta_name) == NULL
3921 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3922 return 0;
3923
3924 /* Find the type of the method. */
3925 pfn_type = die_type (pfn_die, cu);
3926 if (pfn_type == NULL
3927 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3928 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3929 return 0;
3930
3931 /* Look for the "this" argument. */
3932 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3933 if (TYPE_NFIELDS (pfn_type) == 0
3934 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3935 return 0;
3936
3937 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3938 type = alloc_type (objfile);
3939 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3940 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3941 TYPE_VARARGS (pfn_type));
0d5de010 3942 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3943 set_die_type (die, type, cu);
3944
3945 return 1;
3946}
1168df01 3947
c906108c
SS
3948/* Called when we find the DIE that starts a structure or union scope
3949 (definition) to process all dies that define the members of the
3950 structure or union.
3951
3952 NOTE: we need to call struct_type regardless of whether or not the
3953 DIE has an at_name attribute, since it might be an anonymous
3954 structure or union. This gets the type entered into our set of
3955 user defined types.
3956
3957 However, if the structure is incomplete (an opaque struct/union)
3958 then suppress creating a symbol table entry for it since gdb only
3959 wants to find the one with the complete definition. Note that if
3960 it is complete, we just call new_symbol, which does it's own
3961 checking about whether the struct/union is anonymous or not (and
3962 suppresses creating a symbol table entry itself). */
3963
3964static void
134d01f1 3965read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3966{
e7c27a73 3967 struct objfile *objfile = cu->objfile;
c906108c
SS
3968 struct type *type;
3969 struct attribute *attr;
63d06c5c
DC
3970 const char *previous_prefix = processing_current_prefix;
3971 struct cleanup *back_to = NULL;
39cbfefa 3972 char *name;
c906108c 3973
134d01f1
DJ
3974 if (die->type)
3975 return;
3976
c0dd20ea
DJ
3977 if (quirk_gcc_member_function_pointer (die, cu))
3978 return;
c906108c 3979
c0dd20ea 3980 type = alloc_type (objfile);
c906108c 3981 INIT_CPLUS_SPECIFIC (type);
39cbfefa
DJ
3982 name = dwarf2_name (die, cu);
3983 if (name != NULL)
c906108c 3984 {
987504bb
JJ
3985 if (cu->language == language_cplus
3986 || cu->language == language_java)
63d06c5c 3987 {
8176b9b8
DC
3988 char *new_prefix = determine_class_name (die, cu);
3989 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3990 strlen (new_prefix),
3991 &objfile->objfile_obstack);
3992 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3993 processing_current_prefix = new_prefix;
3994 }
3995 else
3996 {
d8151005
DJ
3997 /* The name is already allocated along with this objfile, so
3998 we don't need to duplicate it for the type. */
39cbfefa 3999 TYPE_TAG_NAME (type) = name;
63d06c5c 4000 }
c906108c
SS
4001 }
4002
4003 if (die->tag == DW_TAG_structure_type)
4004 {
4005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4006 }
4007 else if (die->tag == DW_TAG_union_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_UNION;
4010 }
4011 else
4012 {
4013 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 4014 in gdbtypes.h. */
c906108c
SS
4015 TYPE_CODE (type) = TYPE_CODE_CLASS;
4016 }
4017
e142c38c 4018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4019 if (attr)
4020 {
4021 TYPE_LENGTH (type) = DW_UNSND (attr);
4022 }
4023 else
4024 {
4025 TYPE_LENGTH (type) = 0;
4026 }
4027
d77b6808 4028 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
4029 if (die_is_declaration (die, cu))
4030 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4031
c906108c
SS
4032 /* We need to add the type field to the die immediately so we don't
4033 infinitely recurse when dealing with pointers to the structure
4034 type within the structure itself. */
1c379e20 4035 set_die_type (die, type, cu);
c906108c 4036
e142c38c 4037 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
4038 {
4039 struct field_info fi;
4040 struct die_info *child_die;
4041 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4042
4043 memset (&fi, 0, sizeof (struct field_info));
4044
639d11d3 4045 child_die = die->child;
c906108c
SS
4046
4047 while (child_die && child_die->tag)
4048 {
a9a9bd0f
DC
4049 if (child_die->tag == DW_TAG_member
4050 || child_die->tag == DW_TAG_variable)
c906108c 4051 {
a9a9bd0f
DC
4052 /* NOTE: carlton/2002-11-05: A C++ static data member
4053 should be a DW_TAG_member that is a declaration, but
4054 all versions of G++ as of this writing (so through at
4055 least 3.2.1) incorrectly generate DW_TAG_variable
4056 tags for them instead. */
e7c27a73 4057 dwarf2_add_field (&fi, child_die, cu);
c906108c 4058 }
8713b1b1 4059 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
4060 {
4061 /* C++ member function. */
134d01f1 4062 read_type_die (child_die, cu);
e7c27a73 4063 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
4064 }
4065 else if (child_die->tag == DW_TAG_inheritance)
4066 {
4067 /* C++ base class field. */
e7c27a73 4068 dwarf2_add_field (&fi, child_die, cu);
c906108c 4069 }
c906108c
SS
4070 child_die = sibling_die (child_die);
4071 }
4072
4073 /* Attach fields and member functions to the type. */
4074 if (fi.nfields)
e7c27a73 4075 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
4076 if (fi.nfnfields)
4077 {
e7c27a73 4078 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 4079
c5aa993b 4080 /* Get the type which refers to the base class (possibly this
c906108c
SS
4081 class itself) which contains the vtable pointer for the current
4082 class from the DW_AT_containing_type attribute. */
4083
e142c38c 4084 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 4085 {
e7c27a73 4086 struct type *t = die_containing_type (die, cu);
c906108c
SS
4087
4088 TYPE_VPTR_BASETYPE (type) = t;
4089 if (type == t)
4090 {
c906108c
SS
4091 int i;
4092
4093 /* Our own class provides vtbl ptr. */
4094 for (i = TYPE_NFIELDS (t) - 1;
4095 i >= TYPE_N_BASECLASSES (t);
4096 --i)
4097 {
4098 char *fieldname = TYPE_FIELD_NAME (t, i);
4099
1168df01 4100 if (is_vtable_name (fieldname, cu))
c906108c
SS
4101 {
4102 TYPE_VPTR_FIELDNO (type) = i;
4103 break;
4104 }
4105 }
4106
4107 /* Complain if virtual function table field not found. */
4108 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 4109 complaint (&symfile_complaints,
e2e0b3e5 4110 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
4111 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4112 "");
c906108c
SS
4113 }
4114 else
4115 {
4116 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4117 }
4118 }
f6235d4c
EZ
4119 else if (cu->producer
4120 && strncmp (cu->producer,
4121 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4122 {
4123 /* The IBM XLC compiler does not provide direct indication
4124 of the containing type, but the vtable pointer is
4125 always named __vfp. */
4126
4127 int i;
4128
4129 for (i = TYPE_NFIELDS (type) - 1;
4130 i >= TYPE_N_BASECLASSES (type);
4131 --i)
4132 {
4133 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4134 {
4135 TYPE_VPTR_FIELDNO (type) = i;
4136 TYPE_VPTR_BASETYPE (type) = type;
4137 break;
4138 }
4139 }
4140 }
c906108c
SS
4141 }
4142
c906108c
SS
4143 do_cleanups (back_to);
4144 }
63d06c5c
DC
4145
4146 processing_current_prefix = previous_prefix;
4147 if (back_to != NULL)
4148 do_cleanups (back_to);
c906108c
SS
4149}
4150
134d01f1
DJ
4151static void
4152process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4153{
4154 struct objfile *objfile = cu->objfile;
4155 const char *previous_prefix = processing_current_prefix;
90aeadfc 4156 struct die_info *child_die = die->child;
c906108c 4157
134d01f1
DJ
4158 if (TYPE_TAG_NAME (die->type) != NULL)
4159 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4160
90aeadfc
DC
4161 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4162 snapshots) has been known to create a die giving a declaration
4163 for a class that has, as a child, a die giving a definition for a
4164 nested class. So we have to process our children even if the
4165 current die is a declaration. Normally, of course, a declaration
4166 won't have any children at all. */
134d01f1 4167
90aeadfc
DC
4168 while (child_die != NULL && child_die->tag)
4169 {
4170 if (child_die->tag == DW_TAG_member
4171 || child_die->tag == DW_TAG_variable
4172 || child_die->tag == DW_TAG_inheritance)
134d01f1 4173 {
90aeadfc 4174 /* Do nothing. */
134d01f1 4175 }
90aeadfc
DC
4176 else
4177 process_die (child_die, cu);
134d01f1 4178
90aeadfc 4179 child_die = sibling_die (child_die);
134d01f1
DJ
4180 }
4181
fa4028e9
JB
4182 /* Do not consider external references. According to the DWARF standard,
4183 these DIEs are identified by the fact that they have no byte_size
4184 attribute, and a declaration attribute. */
4185 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4186 || !die_is_declaration (die, cu))
90aeadfc
DC
4187 new_symbol (die, die->type, cu);
4188
134d01f1
DJ
4189 processing_current_prefix = previous_prefix;
4190}
4191
4192/* Given a DW_AT_enumeration_type die, set its type. We do not
4193 complete the type's fields yet, or create any symbols. */
c906108c
SS
4194
4195static void
134d01f1 4196read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4197{
e7c27a73 4198 struct objfile *objfile = cu->objfile;
c906108c 4199 struct type *type;
c906108c 4200 struct attribute *attr;
39cbfefa 4201 char *name;
134d01f1
DJ
4202
4203 if (die->type)
4204 return;
c906108c
SS
4205
4206 type = alloc_type (objfile);
4207
4208 TYPE_CODE (type) = TYPE_CODE_ENUM;
39cbfefa
DJ
4209 name = dwarf2_name (die, cu);
4210 if (name != NULL)
c906108c 4211 {
63d06c5c
DC
4212 if (processing_has_namespace_info)
4213 {
987504bb
JJ
4214 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4215 processing_current_prefix,
4216 name, cu);
63d06c5c
DC
4217 }
4218 else
4219 {
d8151005
DJ
4220 /* The name is already allocated along with this objfile, so
4221 we don't need to duplicate it for the type. */
4222 TYPE_TAG_NAME (type) = name;
63d06c5c 4223 }
c906108c
SS
4224 }
4225
e142c38c 4226 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4227 if (attr)
4228 {
4229 TYPE_LENGTH (type) = DW_UNSND (attr);
4230 }
4231 else
4232 {
4233 TYPE_LENGTH (type) = 0;
4234 }
4235
02eb380e
JB
4236 if (die_is_declaration (die, cu))
4237 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4238
1c379e20 4239 set_die_type (die, type, cu);
134d01f1
DJ
4240}
4241
8176b9b8 4242/* Determine the name of the type represented by DIE, which should be
987504bb 4243 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4244 is responsible for xfree()'ing it. */
4245
4246static char *
4247determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4248{
4249 struct cleanup *back_to = NULL;
4250 struct die_info *spec_die = die_specification (die, cu);
4251 char *new_prefix = NULL;
4252
4253 /* If this is the definition of a class that is declared by another
4254 die, then processing_current_prefix may not be accurate; see
4255 read_func_scope for a similar example. */
4256 if (spec_die != NULL)
4257 {
4258 char *specification_prefix = determine_prefix (spec_die, cu);
4259 processing_current_prefix = specification_prefix;
4260 back_to = make_cleanup (xfree, specification_prefix);
4261 }
4262
4263 /* If we don't have namespace debug info, guess the name by trying
4264 to demangle the names of members, just like we did in
72bf9492 4265 guess_structure_name. */
8176b9b8
DC
4266 if (!processing_has_namespace_info)
4267 {
4268 struct die_info *child;
4269
4270 for (child = die->child;
4271 child != NULL && child->tag != 0;
4272 child = sibling_die (child))
4273 {
4274 if (child->tag == DW_TAG_subprogram)
4275 {
31c27f77
JJ
4276 new_prefix
4277 = language_class_name_from_physname (cu->language_defn,
4278 dwarf2_linkage_name
8176b9b8
DC
4279 (child, cu));
4280
4281 if (new_prefix != NULL)
4282 break;
4283 }
4284 }
4285 }
4286
4287 if (new_prefix == NULL)
4288 {
4289 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4290 new_prefix = typename_concat (NULL, processing_current_prefix,
4291 name ? name : "<<anonymous>>",
4292 cu);
8176b9b8
DC
4293 }
4294
4295 if (back_to != NULL)
4296 do_cleanups (back_to);
4297
4298 return new_prefix;
4299}
4300
134d01f1
DJ
4301/* Given a pointer to a die which begins an enumeration, process all
4302 the dies that define the members of the enumeration, and create the
4303 symbol for the enumeration type.
4304
4305 NOTE: We reverse the order of the element list. */
4306
4307static void
4308process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4309{
4310 struct objfile *objfile = cu->objfile;
4311 struct die_info *child_die;
4312 struct field *fields;
134d01f1
DJ
4313 struct symbol *sym;
4314 int num_fields;
4315 int unsigned_enum = 1;
39cbfefa 4316 char *name;
134d01f1 4317
c906108c
SS
4318 num_fields = 0;
4319 fields = NULL;
639d11d3 4320 if (die->child != NULL)
c906108c 4321 {
639d11d3 4322 child_die = die->child;
c906108c
SS
4323 while (child_die && child_die->tag)
4324 {
4325 if (child_die->tag != DW_TAG_enumerator)
4326 {
e7c27a73 4327 process_die (child_die, cu);
c906108c
SS
4328 }
4329 else
4330 {
39cbfefa
DJ
4331 name = dwarf2_name (child_die, cu);
4332 if (name)
c906108c 4333 {
134d01f1 4334 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4335 if (SYMBOL_VALUE (sym) < 0)
4336 unsigned_enum = 0;
4337
4338 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4339 {
4340 fields = (struct field *)
4341 xrealloc (fields,
4342 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4343 * sizeof (struct field));
c906108c
SS
4344 }
4345
22abf04a 4346 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4347 FIELD_TYPE (fields[num_fields]) = NULL;
4348 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4349 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4350 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4351
4352 num_fields++;
4353 }
4354 }
4355
4356 child_die = sibling_die (child_die);
4357 }
4358
4359 if (num_fields)
4360 {
134d01f1
DJ
4361 TYPE_NFIELDS (die->type) = num_fields;
4362 TYPE_FIELDS (die->type) = (struct field *)
4363 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4364 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4365 sizeof (struct field) * num_fields);
b8c9b27d 4366 xfree (fields);
c906108c
SS
4367 }
4368 if (unsigned_enum)
134d01f1 4369 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4370 }
134d01f1
DJ
4371
4372 new_symbol (die, die->type, cu);
c906108c
SS
4373}
4374
4375/* Extract all information from a DW_TAG_array_type DIE and put it in
4376 the DIE's type field. For now, this only handles one dimensional
4377 arrays. */
4378
4379static void
e7c27a73 4380read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4381{
e7c27a73 4382 struct objfile *objfile = cu->objfile;
c906108c
SS
4383 struct die_info *child_die;
4384 struct type *type = NULL;
4385 struct type *element_type, *range_type, *index_type;
4386 struct type **range_types = NULL;
4387 struct attribute *attr;
4388 int ndim = 0;
4389 struct cleanup *back_to;
39cbfefa 4390 char *name;
c906108c
SS
4391
4392 /* Return if we've already decoded this type. */
4393 if (die->type)
4394 {
4395 return;
4396 }
4397
e7c27a73 4398 element_type = die_type (die, cu);
c906108c
SS
4399
4400 /* Irix 6.2 native cc creates array types without children for
4401 arrays with unspecified length. */
639d11d3 4402 if (die->child == NULL)
c906108c 4403 {
6ccb9162 4404 index_type = builtin_type_int32;
c906108c 4405 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4406 set_die_type (die, create_array_type (NULL, element_type, range_type),
4407 cu);
c906108c
SS
4408 return;
4409 }
4410
4411 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4412 child_die = die->child;
c906108c
SS
4413 while (child_die && child_die->tag)
4414 {
4415 if (child_die->tag == DW_TAG_subrange_type)
4416 {
a02abb62 4417 read_subrange_type (child_die, cu);
c906108c 4418
a02abb62
JB
4419 if (child_die->type != NULL)
4420 {
4421 /* The range type was succesfully read. Save it for
4422 the array type creation. */
4423 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4424 {
4425 range_types = (struct type **)
4426 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4427 * sizeof (struct type *));
4428 if (ndim == 0)
4429 make_cleanup (free_current_contents, &range_types);
4430 }
4431 range_types[ndim++] = child_die->type;
4432 }
c906108c
SS
4433 }
4434 child_die = sibling_die (child_die);
4435 }
4436
4437 /* Dwarf2 dimensions are output from left to right, create the
4438 necessary array types in backwards order. */
7ca2d3a3 4439
c906108c 4440 type = element_type;
7ca2d3a3
DL
4441
4442 if (read_array_order (die, cu) == DW_ORD_col_major)
4443 {
4444 int i = 0;
4445 while (i < ndim)
4446 type = create_array_type (NULL, type, range_types[i++]);
4447 }
4448 else
4449 {
4450 while (ndim-- > 0)
4451 type = create_array_type (NULL, type, range_types[ndim]);
4452 }
c906108c 4453
f5f8a009
EZ
4454 /* Understand Dwarf2 support for vector types (like they occur on
4455 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4456 array type. This is not part of the Dwarf2/3 standard yet, but a
4457 custom vendor extension. The main difference between a regular
4458 array and the vector variant is that vectors are passed by value
4459 to functions. */
e142c38c 4460 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 4461 if (attr)
ea37ba09 4462 make_vector_type (type);
f5f8a009 4463
39cbfefa
DJ
4464 name = dwarf2_name (die, cu);
4465 if (name)
4466 TYPE_NAME (type) = name;
714e295e 4467
c906108c
SS
4468 do_cleanups (back_to);
4469
4470 /* Install the type in the die. */
1c379e20 4471 set_die_type (die, type, cu);
c906108c
SS
4472}
4473
7ca2d3a3
DL
4474static enum dwarf_array_dim_ordering
4475read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4476{
4477 struct attribute *attr;
4478
4479 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4480
4481 if (attr) return DW_SND (attr);
4482
4483 /*
4484 GNU F77 is a special case, as at 08/2004 array type info is the
4485 opposite order to the dwarf2 specification, but data is still
4486 laid out as per normal fortran.
4487
4488 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4489 version checking.
4490 */
4491
4492 if (cu->language == language_fortran &&
4493 cu->producer && strstr (cu->producer, "GNU F77"))
4494 {
4495 return DW_ORD_row_major;
4496 }
4497
4498 switch (cu->language_defn->la_array_ordering)
4499 {
4500 case array_column_major:
4501 return DW_ORD_col_major;
4502 case array_row_major:
4503 default:
4504 return DW_ORD_row_major;
4505 };
4506}
4507
72019c9c
GM
4508/* Extract all information from a DW_TAG_set_type DIE and put it in
4509 the DIE's type field. */
4510
4511static void
4512read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4513{
4514 if (die->type == NULL)
4515 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4516}
7ca2d3a3 4517
c906108c
SS
4518/* First cut: install each common block member as a global variable. */
4519
4520static void
e7c27a73 4521read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4522{
4523 struct die_info *child_die;
4524 struct attribute *attr;
4525 struct symbol *sym;
4526 CORE_ADDR base = (CORE_ADDR) 0;
4527
e142c38c 4528 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4529 if (attr)
4530 {
8e19ed76
PS
4531 /* Support the .debug_loc offsets */
4532 if (attr_form_is_block (attr))
4533 {
e7c27a73 4534 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 4535 }
3690dd37 4536 else if (attr_form_is_section_offset (attr))
8e19ed76 4537 {
4d3c2250 4538 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4539 }
4540 else
4541 {
4d3c2250
KB
4542 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4543 "common block member");
8e19ed76 4544 }
c906108c 4545 }
639d11d3 4546 if (die->child != NULL)
c906108c 4547 {
639d11d3 4548 child_die = die->child;
c906108c
SS
4549 while (child_die && child_die->tag)
4550 {
e7c27a73 4551 sym = new_symbol (child_die, NULL, cu);
e142c38c 4552 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4553 if (attr)
4554 {
4555 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4556 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4557 add_symbol_to_list (sym, &global_symbols);
4558 }
4559 child_die = sibling_die (child_die);
4560 }
4561 }
4562}
4563
d9fa45fe
DC
4564/* Read a C++ namespace. */
4565
d9fa45fe 4566static void
e7c27a73 4567read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4568{
e7c27a73 4569 struct objfile *objfile = cu->objfile;
38d518c9 4570 const char *previous_prefix = processing_current_prefix;
63d06c5c 4571 const char *name;
9219021c
DC
4572 int is_anonymous;
4573 struct die_info *current_die;
987504bb 4574 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4575
e142c38c 4576 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4577
4578 /* Now build the name of the current namespace. */
4579
38d518c9 4580 if (previous_prefix[0] == '\0')
9219021c 4581 {
38d518c9 4582 processing_current_prefix = name;
9219021c
DC
4583 }
4584 else
4585 {
987504bb
JJ
4586 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4587 make_cleanup (xfree, temp_name);
38d518c9 4588 processing_current_prefix = temp_name;
9219021c
DC
4589 }
4590
5c4e30ca
DC
4591 /* Add a symbol associated to this if we haven't seen the namespace
4592 before. Also, add a using directive if it's an anonymous
4593 namespace. */
9219021c 4594
e142c38c 4595 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4596 {
4597 struct type *type;
4598
4599 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4600 this cast will hopefully become unnecessary. */
4601 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4602 (char *) processing_current_prefix,
5c4e30ca
DC
4603 objfile);
4604 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4605
e7c27a73 4606 new_symbol (die, type, cu);
1c379e20 4607 set_die_type (die, type, cu);
5c4e30ca
DC
4608
4609 if (is_anonymous)
38d518c9
EZ
4610 cp_add_using_directive (processing_current_prefix,
4611 strlen (previous_prefix),
4612 strlen (processing_current_prefix));
5c4e30ca 4613 }
9219021c 4614
639d11d3 4615 if (die->child != NULL)
d9fa45fe 4616 {
639d11d3 4617 struct die_info *child_die = die->child;
d9fa45fe
DC
4618
4619 while (child_die && child_die->tag)
4620 {
e7c27a73 4621 process_die (child_die, cu);
d9fa45fe
DC
4622 child_die = sibling_die (child_die);
4623 }
4624 }
9219021c 4625
38d518c9 4626 processing_current_prefix = previous_prefix;
987504bb 4627 do_cleanups (back_to);
38d518c9
EZ
4628}
4629
4630/* Return the name of the namespace represented by DIE. Set
4631 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4632 namespace. */
4633
4634static const char *
e142c38c 4635namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4636{
4637 struct die_info *current_die;
4638 const char *name = NULL;
4639
4640 /* Loop through the extensions until we find a name. */
4641
4642 for (current_die = die;
4643 current_die != NULL;
e142c38c 4644 current_die = dwarf2_extension (die, cu))
38d518c9 4645 {
e142c38c 4646 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4647 if (name != NULL)
4648 break;
4649 }
4650
4651 /* Is it an anonymous namespace? */
4652
4653 *is_anonymous = (name == NULL);
4654 if (*is_anonymous)
4655 name = "(anonymous namespace)";
4656
4657 return name;
d9fa45fe
DC
4658}
4659
c906108c
SS
4660/* Extract all information from a DW_TAG_pointer_type DIE and add to
4661 the user defined type vector. */
4662
4663static void
e7c27a73 4664read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4665{
e7c27a73 4666 struct comp_unit_head *cu_header = &cu->header;
c906108c 4667 struct type *type;
8b2dbe47
KB
4668 struct attribute *attr_byte_size;
4669 struct attribute *attr_address_class;
4670 int byte_size, addr_class;
c906108c
SS
4671
4672 if (die->type)
4673 {
4674 return;
4675 }
4676
e7c27a73 4677 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4678
e142c38c 4679 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4680 if (attr_byte_size)
4681 byte_size = DW_UNSND (attr_byte_size);
c906108c 4682 else
8b2dbe47
KB
4683 byte_size = cu_header->addr_size;
4684
e142c38c 4685 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4686 if (attr_address_class)
4687 addr_class = DW_UNSND (attr_address_class);
4688 else
4689 addr_class = DW_ADDR_none;
4690
4691 /* If the pointer size or address class is different than the
4692 default, create a type variant marked as such and set the
4693 length accordingly. */
4694 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4695 {
849957d9 4696 if (gdbarch_address_class_type_flags_p (current_gdbarch))
8b2dbe47
KB
4697 {
4698 int type_flags;
4699
849957d9
UW
4700 type_flags = gdbarch_address_class_type_flags
4701 (current_gdbarch, byte_size, addr_class);
8b2dbe47
KB
4702 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4703 type = make_type_with_address_space (type, type_flags);
4704 }
4705 else if (TYPE_LENGTH (type) != byte_size)
4706 {
e2e0b3e5 4707 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4708 }
4709 else {
4710 /* Should we also complain about unhandled address classes? */
4711 }
c906108c 4712 }
8b2dbe47
KB
4713
4714 TYPE_LENGTH (type) = byte_size;
1c379e20 4715 set_die_type (die, type, cu);
c906108c
SS
4716}
4717
4718/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4719 the user defined type vector. */
4720
4721static void
e7c27a73 4722read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4723{
e7c27a73 4724 struct objfile *objfile = cu->objfile;
c906108c
SS
4725 struct type *type;
4726 struct type *to_type;
4727 struct type *domain;
4728
4729 if (die->type)
4730 {
4731 return;
4732 }
4733
e7c27a73
DJ
4734 to_type = die_type (die, cu);
4735 domain = die_containing_type (die, cu);
0d5de010
DJ
4736
4737 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4738 type = lookup_methodptr_type (to_type);
4739 else
4740 type = lookup_memberptr_type (to_type, domain);
c906108c 4741
1c379e20 4742 set_die_type (die, type, cu);
c906108c
SS
4743}
4744
4745/* Extract all information from a DW_TAG_reference_type DIE and add to
4746 the user defined type vector. */
4747
4748static void
e7c27a73 4749read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4750{
e7c27a73 4751 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4752 struct type *type;
4753 struct attribute *attr;
4754
4755 if (die->type)
4756 {
4757 return;
4758 }
4759
e7c27a73 4760 type = lookup_reference_type (die_type (die, cu));
e142c38c 4761 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4762 if (attr)
4763 {
4764 TYPE_LENGTH (type) = DW_UNSND (attr);
4765 }
4766 else
4767 {
107d2387 4768 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4769 }
1c379e20 4770 set_die_type (die, type, cu);
c906108c
SS
4771}
4772
4773static void
e7c27a73 4774read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4775{
090c42a4
JB
4776 struct type *base_type;
4777
c906108c
SS
4778 if (die->type)
4779 {
4780 return;
4781 }
4782
e7c27a73 4783 base_type = die_type (die, cu);
1c379e20
DJ
4784 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4785 cu);
c906108c
SS
4786}
4787
4788static void
e7c27a73 4789read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4790{
090c42a4
JB
4791 struct type *base_type;
4792
c906108c
SS
4793 if (die->type)
4794 {
4795 return;
4796 }
4797
e7c27a73 4798 base_type = die_type (die, cu);
1c379e20
DJ
4799 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4800 cu);
c906108c
SS
4801}
4802
4803/* Extract all information from a DW_TAG_string_type DIE and add to
4804 the user defined type vector. It isn't really a user defined type,
4805 but it behaves like one, with other DIE's using an AT_user_def_type
4806 attribute to reference it. */
4807
4808static void
e7c27a73 4809read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4810{
e7c27a73 4811 struct objfile *objfile = cu->objfile;
c906108c
SS
4812 struct type *type, *range_type, *index_type, *char_type;
4813 struct attribute *attr;
4814 unsigned int length;
4815
4816 if (die->type)
4817 {
4818 return;
4819 }
4820
e142c38c 4821 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4822 if (attr)
4823 {
4824 length = DW_UNSND (attr);
4825 }
4826 else
4827 {
b21b22e0 4828 /* check for the DW_AT_byte_size attribute */
e142c38c 4829 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4830 if (attr)
4831 {
4832 length = DW_UNSND (attr);
4833 }
4834 else
4835 {
4836 length = 1;
4837 }
c906108c 4838 }
6ccb9162
UW
4839
4840 index_type = builtin_type_int32;
c906108c 4841 range_type = create_range_type (NULL, index_type, 1, length);
6ccb9162
UW
4842 type = create_string_type (NULL, range_type);
4843
1c379e20 4844 set_die_type (die, type, cu);
c906108c
SS
4845}
4846
4847/* Handle DIES due to C code like:
4848
4849 struct foo
c5aa993b
JM
4850 {
4851 int (*funcp)(int a, long l);
4852 int b;
4853 };
c906108c
SS
4854
4855 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4856 */
c906108c
SS
4857
4858static void
e7c27a73 4859read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4860{
4861 struct type *type; /* Type that this function returns */
4862 struct type *ftype; /* Function that returns above type */
4863 struct attribute *attr;
4864
4865 /* Decode the type that this subroutine returns */
4866 if (die->type)
4867 {
4868 return;
4869 }
e7c27a73 4870 type = die_type (die, cu);
1326e61b 4871 ftype = make_function_type (type, (struct type **) 0);
c906108c 4872
5b8101ae 4873 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 4874 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4875 if ((attr && (DW_UNSND (attr) != 0))
987504bb 4876 || cu->language == language_cplus
5b8101ae
PM
4877 || cu->language == language_java
4878 || cu->language == language_pascal)
c906108c
SS
4879 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4880
639d11d3 4881 if (die->child != NULL)
c906108c
SS
4882 {
4883 struct die_info *child_die;
4884 int nparams = 0;
4885 int iparams = 0;
4886
4887 /* Count the number of parameters.
4888 FIXME: GDB currently ignores vararg functions, but knows about
4889 vararg member functions. */
639d11d3 4890 child_die = die->child;
c906108c
SS
4891 while (child_die && child_die->tag)
4892 {
4893 if (child_die->tag == DW_TAG_formal_parameter)
4894 nparams++;
4895 else if (child_die->tag == DW_TAG_unspecified_parameters)
4896 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4897 child_die = sibling_die (child_die);
4898 }
4899
4900 /* Allocate storage for parameters and fill them in. */
4901 TYPE_NFIELDS (ftype) = nparams;
4902 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4903 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4904
639d11d3 4905 child_die = die->child;
c906108c
SS
4906 while (child_die && child_die->tag)
4907 {
4908 if (child_die->tag == DW_TAG_formal_parameter)
4909 {
4910 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4911 member functions. G++ helps GDB by marking the first
4912 parameter for non-static member functions (which is the
4913 this pointer) as artificial. We pass this information
4914 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4915 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4916 if (attr)
4917 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4918 else
4919 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4920 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4921 iparams++;
4922 }
4923 child_die = sibling_die (child_die);
4924 }
4925 }
4926
1c379e20 4927 set_die_type (die, ftype, cu);
c906108c
SS
4928}
4929
4930static void
e7c27a73 4931read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4932{
e7c27a73 4933 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4934 struct attribute *attr;
4935 char *name = NULL;
c906108c
SS
4936
4937 if (!die->type)
4938 {
39cbfefa 4939 name = dwarf2_name (die, cu);
1c379e20
DJ
4940 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4941 TYPE_FLAG_TARGET_STUB, name, objfile),
4942 cu);
e7c27a73 4943 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4944 }
4945}
4946
4947/* Find a representation of a given base type and install
4948 it in the TYPE field of the die. */
4949
4950static void
e7c27a73 4951read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4952{
e7c27a73 4953 struct objfile *objfile = cu->objfile;
c906108c
SS
4954 struct type *type;
4955 struct attribute *attr;
4956 int encoding = 0, size = 0;
39cbfefa 4957 char *name;
6ccb9162
UW
4958 enum type_code code = TYPE_CODE_INT;
4959 int type_flags = 0;
4960 struct type *target_type = NULL;
c906108c
SS
4961
4962 /* If we've already decoded this die, this is a no-op. */
4963 if (die->type)
4964 {
4965 return;
4966 }
4967
e142c38c 4968 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4969 if (attr)
4970 {
4971 encoding = DW_UNSND (attr);
4972 }
e142c38c 4973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4974 if (attr)
4975 {
4976 size = DW_UNSND (attr);
4977 }
39cbfefa 4978 name = dwarf2_name (die, cu);
6ccb9162 4979 if (!name)
c906108c 4980 {
6ccb9162
UW
4981 complaint (&symfile_complaints,
4982 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 4983 }
6ccb9162
UW
4984
4985 switch (encoding)
c906108c 4986 {
6ccb9162
UW
4987 case DW_ATE_address:
4988 /* Turn DW_ATE_address into a void * pointer. */
4989 code = TYPE_CODE_PTR;
4990 type_flags |= TYPE_FLAG_UNSIGNED;
4991 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4992 break;
4993 case DW_ATE_boolean:
4994 code = TYPE_CODE_BOOL;
4995 type_flags |= TYPE_FLAG_UNSIGNED;
4996 break;
4997 case DW_ATE_complex_float:
4998 code = TYPE_CODE_COMPLEX;
4999 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
5000 break;
5001 case DW_ATE_decimal_float:
5002 code = TYPE_CODE_DECFLOAT;
5003 break;
5004 case DW_ATE_float:
5005 code = TYPE_CODE_FLT;
5006 break;
5007 case DW_ATE_signed:
5008 break;
5009 case DW_ATE_unsigned:
5010 type_flags |= TYPE_FLAG_UNSIGNED;
5011 break;
5012 case DW_ATE_signed_char:
1760d9d5 5013 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5014 code = TYPE_CODE_CHAR;
5015 break;
5016 case DW_ATE_unsigned_char:
1760d9d5 5017 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5018 code = TYPE_CODE_CHAR;
5019 type_flags |= TYPE_FLAG_UNSIGNED;
5020 break;
5021 default:
5022 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5023 dwarf_type_encoding_name (encoding));
5024 break;
c906108c 5025 }
6ccb9162
UW
5026
5027 type = init_type (code, size, type_flags, name, objfile);
5028 TYPE_TARGET_TYPE (type) = target_type;
5029
1c379e20 5030 set_die_type (die, type, cu);
c906108c
SS
5031}
5032
a02abb62
JB
5033/* Read the given DW_AT_subrange DIE. */
5034
5035static void
5036read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5037{
5038 struct type *base_type;
5039 struct type *range_type;
5040 struct attribute *attr;
5041 int low = 0;
5042 int high = -1;
39cbfefa 5043 char *name;
a02abb62
JB
5044
5045 /* If we have already decoded this die, then nothing more to do. */
5046 if (die->type)
5047 return;
5048
5049 base_type = die_type (die, cu);
3d1f72c2 5050 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
5051 {
5052 complaint (&symfile_complaints,
e2e0b3e5 5053 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 5054 base_type
6ccb9162
UW
5055 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5056 0, NULL, cu->objfile);
a02abb62
JB
5057 }
5058
e142c38c 5059 if (cu->language == language_fortran)
a02abb62
JB
5060 {
5061 /* FORTRAN implies a lower bound of 1, if not given. */
5062 low = 1;
5063 }
5064
dd5e6932
DJ
5065 /* FIXME: For variable sized arrays either of these could be
5066 a variable rather than a constant value. We'll allow it,
5067 but we don't know how to handle it. */
e142c38c 5068 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
5069 if (attr)
5070 low = dwarf2_get_attr_constant_value (attr, 0);
5071
e142c38c 5072 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
5073 if (attr)
5074 {
5075 if (attr->form == DW_FORM_block1)
5076 {
5077 /* GCC encodes arrays with unspecified or dynamic length
5078 with a DW_FORM_block1 attribute.
5079 FIXME: GDB does not yet know how to handle dynamic
5080 arrays properly, treat them as arrays with unspecified
5081 length for now.
5082
5083 FIXME: jimb/2003-09-22: GDB does not really know
5084 how to handle arrays of unspecified length
5085 either; we just represent them as zero-length
5086 arrays. Choose an appropriate upper bound given
5087 the lower bound we've computed above. */
5088 high = low - 1;
5089 }
5090 else
5091 high = dwarf2_get_attr_constant_value (attr, 1);
5092 }
5093
5094 range_type = create_range_type (NULL, base_type, low, high);
5095
39cbfefa
DJ
5096 name = dwarf2_name (die, cu);
5097 if (name)
5098 TYPE_NAME (range_type) = name;
a02abb62 5099
e142c38c 5100 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
5101 if (attr)
5102 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5103
1c379e20 5104 set_die_type (die, range_type, cu);
a02abb62
JB
5105}
5106
81a17f79
JB
5107static void
5108read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5109{
5110 struct type *type;
81a17f79
JB
5111
5112 if (die->type)
5113 return;
5114
5115 /* For now, we only support the C meaning of an unspecified type: void. */
5116
39cbfefa 5117 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
81a17f79
JB
5118 cu->objfile);
5119
5120 set_die_type (die, type, cu);
5121}
a02abb62 5122
c906108c
SS
5123/* Read a whole compilation unit into a linked list of dies. */
5124
f9aca02d 5125static struct die_info *
fe1b8b76 5126read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5127{
e7c27a73 5128 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5129}
5130
5131/* Read a single die and all its descendents. Set the die's sibling
5132 field to NULL; set other fields in the die correctly, and set all
5133 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5134 location of the info_ptr after reading all of those dies. PARENT
5135 is the parent of the die in question. */
5136
5137static struct die_info *
fe1b8b76 5138read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5139 struct dwarf2_cu *cu,
fe1b8b76 5140 gdb_byte **new_info_ptr,
639d11d3
DC
5141 struct die_info *parent)
5142{
5143 struct die_info *die;
fe1b8b76 5144 gdb_byte *cur_ptr;
639d11d3
DC
5145 int has_children;
5146
e7c27a73 5147 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5148 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5149
5150 if (has_children)
5151 {
e7c27a73 5152 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5153 new_info_ptr, die);
5154 }
5155 else
5156 {
5157 die->child = NULL;
5158 *new_info_ptr = cur_ptr;
5159 }
5160
5161 die->sibling = NULL;
5162 die->parent = parent;
5163 return die;
5164}
5165
5166/* Read a die, all of its descendents, and all of its siblings; set
5167 all of the fields of all of the dies correctly. Arguments are as
5168 in read_die_and_children. */
5169
5170static struct die_info *
fe1b8b76 5171read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5172 struct dwarf2_cu *cu,
fe1b8b76 5173 gdb_byte **new_info_ptr,
639d11d3
DC
5174 struct die_info *parent)
5175{
5176 struct die_info *first_die, *last_sibling;
fe1b8b76 5177 gdb_byte *cur_ptr;
639d11d3 5178
c906108c 5179 cur_ptr = info_ptr;
639d11d3
DC
5180 first_die = last_sibling = NULL;
5181
5182 while (1)
c906108c 5183 {
639d11d3 5184 struct die_info *die
e7c27a73 5185 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5186
5187 if (!first_die)
c906108c 5188 {
639d11d3 5189 first_die = die;
c906108c 5190 }
639d11d3 5191 else
c906108c 5192 {
639d11d3 5193 last_sibling->sibling = die;
c906108c
SS
5194 }
5195
639d11d3 5196 if (die->tag == 0)
c906108c 5197 {
639d11d3
DC
5198 *new_info_ptr = cur_ptr;
5199 return first_die;
c906108c
SS
5200 }
5201 else
5202 {
639d11d3 5203 last_sibling = die;
c906108c
SS
5204 }
5205 }
c906108c
SS
5206}
5207
5208/* Free a linked list of dies. */
5209
5210static void
fba45db2 5211free_die_list (struct die_info *dies)
c906108c
SS
5212{
5213 struct die_info *die, *next;
5214
5215 die = dies;
5216 while (die)
5217 {
639d11d3
DC
5218 if (die->child != NULL)
5219 free_die_list (die->child);
5220 next = die->sibling;
b8c9b27d
KB
5221 xfree (die->attrs);
5222 xfree (die);
c906108c
SS
5223 die = next;
5224 }
5225}
5226
5227/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5228 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5229
fe1b8b76 5230gdb_byte *
188dd5d6 5231dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5232{
5233 bfd *abfd = objfile->obfd;
fe1b8b76 5234 gdb_byte *buf, *retbuf;
2c500098 5235 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5236
5237 if (size == 0)
5238 return NULL;
5239
fe1b8b76
JB
5240 buf = obstack_alloc (&objfile->objfile_obstack, size);
5241 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5242 if (retbuf != NULL)
5243 return retbuf;
5244
188dd5d6
DJ
5245 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5246 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5247 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5248 bfd_get_filename (abfd));
5249
c906108c
SS
5250 return buf;
5251}
5252
5253/* In DWARF version 2, the description of the debugging information is
5254 stored in a separate .debug_abbrev section. Before we read any
5255 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5256 in a hash table. This function also sets flags in CU describing
5257 the data found in the abbrev table. */
c906108c
SS
5258
5259static void
e7c27a73 5260dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5261{
e7c27a73 5262 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5263 gdb_byte *abbrev_ptr;
c906108c
SS
5264 struct abbrev_info *cur_abbrev;
5265 unsigned int abbrev_number, bytes_read, abbrev_name;
5266 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5267 struct attr_abbrev *cur_attrs;
5268 unsigned int allocated_attrs;
c906108c 5269
57349743 5270 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5271 obstack_init (&cu->abbrev_obstack);
5272 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5273 (ABBREV_HASH_SIZE
5274 * sizeof (struct abbrev_info *)));
5275 memset (cu->dwarf2_abbrevs, 0,
5276 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5277
6502dd73 5278 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5279 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5280 abbrev_ptr += bytes_read;
5281
f3dd6933
DJ
5282 allocated_attrs = ATTR_ALLOC_CHUNK;
5283 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5284
c906108c
SS
5285 /* loop until we reach an abbrev number of 0 */
5286 while (abbrev_number)
5287 {
f3dd6933 5288 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5289
5290 /* read in abbrev header */
5291 cur_abbrev->number = abbrev_number;
5292 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5293 abbrev_ptr += bytes_read;
5294 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5295 abbrev_ptr += 1;
5296
72bf9492
DJ
5297 if (cur_abbrev->tag == DW_TAG_namespace)
5298 cu->has_namespace_info = 1;
5299
c906108c
SS
5300 /* now read in declarations */
5301 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5302 abbrev_ptr += bytes_read;
5303 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5304 abbrev_ptr += bytes_read;
5305 while (abbrev_name)
5306 {
f3dd6933 5307 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5308 {
f3dd6933
DJ
5309 allocated_attrs += ATTR_ALLOC_CHUNK;
5310 cur_attrs
5311 = xrealloc (cur_attrs, (allocated_attrs
5312 * sizeof (struct attr_abbrev)));
c906108c 5313 }
ae038cb0
DJ
5314
5315 /* Record whether this compilation unit might have
5316 inter-compilation-unit references. If we don't know what form
5317 this attribute will have, then it might potentially be a
5318 DW_FORM_ref_addr, so we conservatively expect inter-CU
5319 references. */
5320
5321 if (abbrev_form == DW_FORM_ref_addr
5322 || abbrev_form == DW_FORM_indirect)
5323 cu->has_form_ref_addr = 1;
5324
f3dd6933
DJ
5325 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5326 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5327 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5328 abbrev_ptr += bytes_read;
5329 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5330 abbrev_ptr += bytes_read;
5331 }
5332
f3dd6933
DJ
5333 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5334 (cur_abbrev->num_attrs
5335 * sizeof (struct attr_abbrev)));
5336 memcpy (cur_abbrev->attrs, cur_attrs,
5337 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5338
c906108c 5339 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5340 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5341 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5342
5343 /* Get next abbreviation.
5344 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5345 always properly terminated with an abbrev number of 0.
5346 Exit loop if we encounter an abbreviation which we have
5347 already read (which means we are about to read the abbreviations
5348 for the next compile unit) or if the end of the abbreviation
5349 table is reached. */
6502dd73
DJ
5350 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5351 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5352 break;
5353 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5354 abbrev_ptr += bytes_read;
e7c27a73 5355 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5356 break;
5357 }
f3dd6933
DJ
5358
5359 xfree (cur_attrs);
c906108c
SS
5360}
5361
f3dd6933 5362/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5363
c906108c 5364static void
f3dd6933 5365dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5366{
f3dd6933 5367 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5368
f3dd6933
DJ
5369 obstack_free (&cu->abbrev_obstack, NULL);
5370 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5371}
5372
5373/* Lookup an abbrev_info structure in the abbrev hash table. */
5374
5375static struct abbrev_info *
e7c27a73 5376dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5377{
5378 unsigned int hash_number;
5379 struct abbrev_info *abbrev;
5380
5381 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5382 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5383
5384 while (abbrev)
5385 {
5386 if (abbrev->number == number)
5387 return abbrev;
5388 else
5389 abbrev = abbrev->next;
5390 }
5391 return NULL;
5392}
5393
72bf9492
DJ
5394/* Returns nonzero if TAG represents a type that we might generate a partial
5395 symbol for. */
5396
5397static int
5398is_type_tag_for_partial (int tag)
5399{
5400 switch (tag)
5401 {
5402#if 0
5403 /* Some types that would be reasonable to generate partial symbols for,
5404 that we don't at present. */
5405 case DW_TAG_array_type:
5406 case DW_TAG_file_type:
5407 case DW_TAG_ptr_to_member_type:
5408 case DW_TAG_set_type:
5409 case DW_TAG_string_type:
5410 case DW_TAG_subroutine_type:
5411#endif
5412 case DW_TAG_base_type:
5413 case DW_TAG_class_type:
680b30c7 5414 case DW_TAG_interface_type:
72bf9492
DJ
5415 case DW_TAG_enumeration_type:
5416 case DW_TAG_structure_type:
5417 case DW_TAG_subrange_type:
5418 case DW_TAG_typedef:
5419 case DW_TAG_union_type:
5420 return 1;
5421 default:
5422 return 0;
5423 }
5424}
5425
5426/* Load all DIEs that are interesting for partial symbols into memory. */
5427
5428static struct partial_die_info *
fe1b8b76 5429load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5430 struct dwarf2_cu *cu)
5431{
5432 struct partial_die_info *part_die;
5433 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5434 struct abbrev_info *abbrev;
5435 unsigned int bytes_read;
5afb4e99 5436 unsigned int load_all = 0;
72bf9492
DJ
5437
5438 int nesting_level = 1;
5439
5440 parent_die = NULL;
5441 last_die = NULL;
5442
5afb4e99
DJ
5443 if (cu->per_cu && cu->per_cu->load_all_dies)
5444 load_all = 1;
5445
72bf9492
DJ
5446 cu->partial_dies
5447 = htab_create_alloc_ex (cu->header.length / 12,
5448 partial_die_hash,
5449 partial_die_eq,
5450 NULL,
5451 &cu->comp_unit_obstack,
5452 hashtab_obstack_allocate,
5453 dummy_obstack_deallocate);
5454
5455 part_die = obstack_alloc (&cu->comp_unit_obstack,
5456 sizeof (struct partial_die_info));
5457
5458 while (1)
5459 {
5460 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5461
5462 /* A NULL abbrev means the end of a series of children. */
5463 if (abbrev == NULL)
5464 {
5465 if (--nesting_level == 0)
5466 {
5467 /* PART_DIE was probably the last thing allocated on the
5468 comp_unit_obstack, so we could call obstack_free
5469 here. We don't do that because the waste is small,
5470 and will be cleaned up when we're done with this
5471 compilation unit. This way, we're also more robust
5472 against other users of the comp_unit_obstack. */
5473 return first_die;
5474 }
5475 info_ptr += bytes_read;
5476 last_die = parent_die;
5477 parent_die = parent_die->die_parent;
5478 continue;
5479 }
5480
5afb4e99
DJ
5481 /* Check whether this DIE is interesting enough to save. Normally
5482 we would not be interested in members here, but there may be
5483 later variables referencing them via DW_AT_specification (for
5484 static members). */
5485 if (!load_all
5486 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5487 && abbrev->tag != DW_TAG_enumerator
5488 && abbrev->tag != DW_TAG_subprogram
5489 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5490 && abbrev->tag != DW_TAG_namespace
5491 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5492 {
5493 /* Otherwise we skip to the next sibling, if any. */
5494 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5495 continue;
5496 }
5497
5498 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5499 abfd, info_ptr, cu);
5500
5501 /* This two-pass algorithm for processing partial symbols has a
5502 high cost in cache pressure. Thus, handle some simple cases
5503 here which cover the majority of C partial symbols. DIEs
5504 which neither have specification tags in them, nor could have
5505 specification tags elsewhere pointing at them, can simply be
5506 processed and discarded.
5507
5508 This segment is also optional; scan_partial_symbols and
5509 add_partial_symbol will handle these DIEs if we chain
5510 them in normally. When compilers which do not emit large
5511 quantities of duplicate debug information are more common,
5512 this code can probably be removed. */
5513
5514 /* Any complete simple types at the top level (pretty much all
5515 of them, for a language without namespaces), can be processed
5516 directly. */
5517 if (parent_die == NULL
5518 && part_die->has_specification == 0
5519 && part_die->is_declaration == 0
5520 && (part_die->tag == DW_TAG_typedef
5521 || part_die->tag == DW_TAG_base_type
5522 || part_die->tag == DW_TAG_subrange_type))
5523 {
5524 if (building_psymtab && part_die->name != NULL)
5525 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5526 VAR_DOMAIN, LOC_TYPEDEF,
5527 &cu->objfile->static_psymbols,
5528 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5529 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5530 continue;
5531 }
5532
5533 /* If we're at the second level, and we're an enumerator, and
5534 our parent has no specification (meaning possibly lives in a
5535 namespace elsewhere), then we can add the partial symbol now
5536 instead of queueing it. */
5537 if (part_die->tag == DW_TAG_enumerator
5538 && parent_die != NULL
5539 && parent_die->die_parent == NULL
5540 && parent_die->tag == DW_TAG_enumeration_type
5541 && parent_die->has_specification == 0)
5542 {
5543 if (part_die->name == NULL)
e2e0b3e5 5544 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5545 else if (building_psymtab)
5546 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5547 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5548 (cu->language == language_cplus
5549 || cu->language == language_java)
72bf9492
DJ
5550 ? &cu->objfile->global_psymbols
5551 : &cu->objfile->static_psymbols,
5552 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5553
5554 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5555 continue;
5556 }
5557
5558 /* We'll save this DIE so link it in. */
5559 part_die->die_parent = parent_die;
5560 part_die->die_sibling = NULL;
5561 part_die->die_child = NULL;
5562
5563 if (last_die && last_die == parent_die)
5564 last_die->die_child = part_die;
5565 else if (last_die)
5566 last_die->die_sibling = part_die;
5567
5568 last_die = part_die;
5569
5570 if (first_die == NULL)
5571 first_die = part_die;
5572
5573 /* Maybe add the DIE to the hash table. Not all DIEs that we
5574 find interesting need to be in the hash table, because we
5575 also have the parent/sibling/child chains; only those that we
5576 might refer to by offset later during partial symbol reading.
5577
5578 For now this means things that might have be the target of a
5579 DW_AT_specification, DW_AT_abstract_origin, or
5580 DW_AT_extension. DW_AT_extension will refer only to
5581 namespaces; DW_AT_abstract_origin refers to functions (and
5582 many things under the function DIE, but we do not recurse
5583 into function DIEs during partial symbol reading) and
5584 possibly variables as well; DW_AT_specification refers to
5585 declarations. Declarations ought to have the DW_AT_declaration
5586 flag. It happens that GCC forgets to put it in sometimes, but
5587 only for functions, not for types.
5588
5589 Adding more things than necessary to the hash table is harmless
5590 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5591 wasted time in find_partial_die, when we reread the compilation
5592 unit with load_all_dies set. */
72bf9492 5593
5afb4e99
DJ
5594 if (load_all
5595 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5596 || abbrev->tag == DW_TAG_variable
5597 || abbrev->tag == DW_TAG_namespace
5598 || part_die->is_declaration)
5599 {
5600 void **slot;
5601
5602 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5603 part_die->offset, INSERT);
5604 *slot = part_die;
5605 }
5606
5607 part_die = obstack_alloc (&cu->comp_unit_obstack,
5608 sizeof (struct partial_die_info));
5609
5610 /* For some DIEs we want to follow their children (if any). For C
5611 we have no reason to follow the children of structures; for other
5612 languages we have to, both so that we can get at method physnames
5613 to infer fully qualified class names, and for DW_AT_specification. */
5614 if (last_die->has_children
5afb4e99
DJ
5615 && (load_all
5616 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5617 || last_die->tag == DW_TAG_enumeration_type
5618 || (cu->language != language_c
5619 && (last_die->tag == DW_TAG_class_type
680b30c7 5620 || last_die->tag == DW_TAG_interface_type
72bf9492
DJ
5621 || last_die->tag == DW_TAG_structure_type
5622 || last_die->tag == DW_TAG_union_type))))
5623 {
5624 nesting_level++;
5625 parent_die = last_die;
5626 continue;
5627 }
5628
5629 /* Otherwise we skip to the next sibling, if any. */
5630 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5631
5632 /* Back to the top, do it again. */
5633 }
5634}
5635
c906108c
SS
5636/* Read a minimal amount of information into the minimal die structure. */
5637
fe1b8b76 5638static gdb_byte *
72bf9492
DJ
5639read_partial_die (struct partial_die_info *part_die,
5640 struct abbrev_info *abbrev,
5641 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5642 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5643{
72bf9492 5644 unsigned int bytes_read, i;
c906108c 5645 struct attribute attr;
c5aa993b 5646 int has_low_pc_attr = 0;
c906108c
SS
5647 int has_high_pc_attr = 0;
5648
72bf9492 5649 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5650
6502dd73 5651 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5652
5653 info_ptr += abbrev_len;
5654
5655 if (abbrev == NULL)
5656 return info_ptr;
5657
c906108c
SS
5658 part_die->tag = abbrev->tag;
5659 part_die->has_children = abbrev->has_children;
c906108c
SS
5660
5661 for (i = 0; i < abbrev->num_attrs; ++i)
5662 {
e7c27a73 5663 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5664
5665 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5666 partial symbol table. */
c906108c
SS
5667 switch (attr.name)
5668 {
5669 case DW_AT_name:
5670
5671 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5672 if (part_die->name == NULL)
5673 part_die->name = DW_STRING (&attr);
5674 break;
57c22c6c
BR
5675 case DW_AT_comp_dir:
5676 if (part_die->dirname == NULL)
5677 part_die->dirname = DW_STRING (&attr);
5678 break;
c906108c
SS
5679 case DW_AT_MIPS_linkage_name:
5680 part_die->name = DW_STRING (&attr);
5681 break;
5682 case DW_AT_low_pc:
5683 has_low_pc_attr = 1;
5684 part_die->lowpc = DW_ADDR (&attr);
5685 break;
5686 case DW_AT_high_pc:
5687 has_high_pc_attr = 1;
5688 part_die->highpc = DW_ADDR (&attr);
5689 break;
43039443
JK
5690 case DW_AT_ranges:
5691 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5692 &part_die->highpc, cu))
5693 has_low_pc_attr = has_high_pc_attr = 1;
5694 break;
c906108c 5695 case DW_AT_location:
8e19ed76
PS
5696 /* Support the .debug_loc offsets */
5697 if (attr_form_is_block (&attr))
5698 {
5699 part_die->locdesc = DW_BLOCK (&attr);
5700 }
3690dd37 5701 else if (attr_form_is_section_offset (&attr))
8e19ed76 5702 {
4d3c2250 5703 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5704 }
5705 else
5706 {
4d3c2250
KB
5707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5708 "partial symbol information");
8e19ed76 5709 }
c906108c
SS
5710 break;
5711 case DW_AT_language:
5712 part_die->language = DW_UNSND (&attr);
5713 break;
5714 case DW_AT_external:
5715 part_die->is_external = DW_UNSND (&attr);
5716 break;
5717 case DW_AT_declaration:
5718 part_die->is_declaration = DW_UNSND (&attr);
5719 break;
5720 case DW_AT_type:
5721 part_die->has_type = 1;
5722 break;
5723 case DW_AT_abstract_origin:
5724 case DW_AT_specification:
72bf9492
DJ
5725 case DW_AT_extension:
5726 part_die->has_specification = 1;
5727 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5728 break;
5729 case DW_AT_sibling:
5730 /* Ignore absolute siblings, they might point outside of
5731 the current compile unit. */
5732 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5733 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5734 else
6502dd73
DJ
5735 part_die->sibling = dwarf2_per_objfile->info_buffer
5736 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5737 break;
aaa75496
JB
5738 case DW_AT_stmt_list:
5739 part_die->has_stmt_list = 1;
5740 part_die->line_offset = DW_UNSND (&attr);
5741 break;
fa4028e9
JB
5742 case DW_AT_byte_size:
5743 part_die->has_byte_size = 1;
5744 break;
68511cec
CES
5745 case DW_AT_calling_convention:
5746 /* DWARF doesn't provide a way to identify a program's source-level
5747 entry point. DW_AT_calling_convention attributes are only meant
5748 to describe functions' calling conventions.
5749
5750 However, because it's a necessary piece of information in
5751 Fortran, and because DW_CC_program is the only piece of debugging
5752 information whose definition refers to a 'main program' at all,
5753 several compilers have begun marking Fortran main programs with
5754 DW_CC_program --- even when those functions use the standard
5755 calling conventions.
5756
5757 So until DWARF specifies a way to provide this information and
5758 compilers pick up the new representation, we'll support this
5759 practice. */
5760 if (DW_UNSND (&attr) == DW_CC_program
5761 && cu->language == language_fortran)
5762 set_main_name (part_die->name);
5763 break;
c906108c
SS
5764 default:
5765 break;
5766 }
5767 }
5768
c906108c
SS
5769 /* When using the GNU linker, .gnu.linkonce. sections are used to
5770 eliminate duplicate copies of functions and vtables and such.
5771 The linker will arbitrarily choose one and discard the others.
5772 The AT_*_pc values for such functions refer to local labels in
5773 these sections. If the section from that file was discarded, the
5774 labels are not in the output, so the relocs get a value of 0.
5775 If this is a discarded function, mark the pc bounds as invalid,
5776 so that GDB will ignore it. */
5777 if (has_low_pc_attr && has_high_pc_attr
5778 && part_die->lowpc < part_die->highpc
5779 && (part_die->lowpc != 0
72dca2f5 5780 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5781 part_die->has_pc_info = 1;
c906108c
SS
5782 return info_ptr;
5783}
5784
72bf9492
DJ
5785/* Find a cached partial DIE at OFFSET in CU. */
5786
5787static struct partial_die_info *
5788find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5789{
5790 struct partial_die_info *lookup_die = NULL;
5791 struct partial_die_info part_die;
5792
5793 part_die.offset = offset;
5794 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5795
72bf9492
DJ
5796 return lookup_die;
5797}
5798
5799/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5800
5801static struct partial_die_info *
10b3939b 5802find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5803{
5afb4e99
DJ
5804 struct dwarf2_per_cu_data *per_cu = NULL;
5805 struct partial_die_info *pd = NULL;
72bf9492
DJ
5806
5807 if (offset >= cu->header.offset
5808 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5809 {
5810 pd = find_partial_die_in_comp_unit (offset, cu);
5811 if (pd != NULL)
5812 return pd;
5813 }
72bf9492 5814
ae038cb0
DJ
5815 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5816
ae038cb0
DJ
5817 if (per_cu->cu == NULL)
5818 {
5819 load_comp_unit (per_cu, cu->objfile);
5820 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5821 dwarf2_per_objfile->read_in_chain = per_cu;
5822 }
5823
5824 per_cu->cu->last_used = 0;
5afb4e99
DJ
5825 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5826
5827 if (pd == NULL && per_cu->load_all_dies == 0)
5828 {
5829 struct cleanup *back_to;
5830 struct partial_die_info comp_unit_die;
5831 struct abbrev_info *abbrev;
5832 unsigned int bytes_read;
5833 char *info_ptr;
5834
5835 per_cu->load_all_dies = 1;
5836
5837 /* Re-read the DIEs. */
5838 back_to = make_cleanup (null_cleanup, 0);
5839 if (per_cu->cu->dwarf2_abbrevs == NULL)
5840 {
5841 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5842 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5843 }
5844 info_ptr = per_cu->cu->header.first_die_ptr;
5845 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5846 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5847 per_cu->cu->objfile->obfd, info_ptr,
5848 per_cu->cu);
5849 if (comp_unit_die.has_children)
5850 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5851 do_cleanups (back_to);
5852
5853 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5854 }
5855
5856 if (pd == NULL)
5857 internal_error (__FILE__, __LINE__,
5858 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5859 offset, bfd_get_filename (cu->objfile->obfd));
5860 return pd;
72bf9492
DJ
5861}
5862
5863/* Adjust PART_DIE before generating a symbol for it. This function
5864 may set the is_external flag or change the DIE's name. */
5865
5866static void
5867fixup_partial_die (struct partial_die_info *part_die,
5868 struct dwarf2_cu *cu)
5869{
5870 /* If we found a reference attribute and the DIE has no name, try
5871 to find a name in the referred to DIE. */
5872
5873 if (part_die->name == NULL && part_die->has_specification)
5874 {
5875 struct partial_die_info *spec_die;
72bf9492 5876
10b3939b 5877 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5878
10b3939b 5879 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5880
5881 if (spec_die->name)
5882 {
5883 part_die->name = spec_die->name;
5884
5885 /* Copy DW_AT_external attribute if it is set. */
5886 if (spec_die->is_external)
5887 part_die->is_external = spec_die->is_external;
5888 }
5889 }
5890
5891 /* Set default names for some unnamed DIEs. */
5892 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5893 || part_die->tag == DW_TAG_class_type))
5894 part_die->name = "(anonymous class)";
5895
5896 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5897 part_die->name = "(anonymous namespace)";
5898
5899 if (part_die->tag == DW_TAG_structure_type
5900 || part_die->tag == DW_TAG_class_type
5901 || part_die->tag == DW_TAG_union_type)
5902 guess_structure_name (part_die, cu);
5903}
5904
639d11d3
DC
5905/* Read the die from the .debug_info section buffer. Set DIEP to
5906 point to a newly allocated die with its information, except for its
5907 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5908 whether the die has children or not. */
c906108c 5909
fe1b8b76
JB
5910static gdb_byte *
5911read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5912 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5913{
5914 unsigned int abbrev_number, bytes_read, i, offset;
5915 struct abbrev_info *abbrev;
5916 struct die_info *die;
5917
6502dd73 5918 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5919 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5920 info_ptr += bytes_read;
5921 if (!abbrev_number)
5922 {
5923 die = dwarf_alloc_die ();
5924 die->tag = 0;
5925 die->abbrev = abbrev_number;
5926 die->type = NULL;
5927 *diep = die;
639d11d3 5928 *has_children = 0;
c906108c
SS
5929 return info_ptr;
5930 }
5931
e7c27a73 5932 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5933 if (!abbrev)
5934 {
8a3fe4f8 5935 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5936 abbrev_number,
639d11d3 5937 bfd_get_filename (abfd));
c906108c
SS
5938 }
5939 die = dwarf_alloc_die ();
5940 die->offset = offset;
5941 die->tag = abbrev->tag;
c906108c
SS
5942 die->abbrev = abbrev_number;
5943 die->type = NULL;
5944
5945 die->num_attrs = abbrev->num_attrs;
5946 die->attrs = (struct attribute *)
5947 xmalloc (die->num_attrs * sizeof (struct attribute));
5948
5949 for (i = 0; i < abbrev->num_attrs; ++i)
5950 {
5951 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5952 abfd, info_ptr, cu);
10b3939b
DJ
5953
5954 /* If this attribute is an absolute reference to a different
5955 compilation unit, make sure that compilation unit is loaded
5956 also. */
5957 if (die->attrs[i].form == DW_FORM_ref_addr
5958 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5959 || (DW_ADDR (&die->attrs[i])
5960 >= cu->header.offset + cu->header.length)))
5961 {
5962 struct dwarf2_per_cu_data *per_cu;
5963 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5964 cu->objfile);
5965
5966 /* Mark the dependence relation so that we don't flush PER_CU
5967 too early. */
5968 dwarf2_add_dependence (cu, per_cu);
5969
5970 /* If it's already on the queue, we have nothing to do. */
5971 if (per_cu->queued)
5972 continue;
5973
5974 /* If the compilation unit is already loaded, just mark it as
5975 used. */
5976 if (per_cu->cu != NULL)
5977 {
5978 per_cu->cu->last_used = 0;
5979 continue;
5980 }
5981
5982 /* Add it to the queue. */
5983 queue_comp_unit (per_cu);
5984 }
c906108c
SS
5985 }
5986
5987 *diep = die;
639d11d3 5988 *has_children = abbrev->has_children;
c906108c
SS
5989 return info_ptr;
5990}
5991
a8329558 5992/* Read an attribute value described by an attribute form. */
c906108c 5993
fe1b8b76 5994static gdb_byte *
a8329558 5995read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5996 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5997 struct dwarf2_cu *cu)
c906108c 5998{
e7c27a73 5999 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6000 unsigned int bytes_read;
6001 struct dwarf_block *blk;
6002
a8329558
KW
6003 attr->form = form;
6004 switch (form)
c906108c
SS
6005 {
6006 case DW_FORM_addr:
6007 case DW_FORM_ref_addr:
e7c27a73 6008 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 6009 info_ptr += bytes_read;
c906108c
SS
6010 break;
6011 case DW_FORM_block2:
7b5a2f43 6012 blk = dwarf_alloc_block (cu);
c906108c
SS
6013 blk->size = read_2_bytes (abfd, info_ptr);
6014 info_ptr += 2;
6015 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6016 info_ptr += blk->size;
6017 DW_BLOCK (attr) = blk;
6018 break;
6019 case DW_FORM_block4:
7b5a2f43 6020 blk = dwarf_alloc_block (cu);
c906108c
SS
6021 blk->size = read_4_bytes (abfd, info_ptr);
6022 info_ptr += 4;
6023 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6024 info_ptr += blk->size;
6025 DW_BLOCK (attr) = blk;
6026 break;
6027 case DW_FORM_data2:
6028 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6029 info_ptr += 2;
6030 break;
6031 case DW_FORM_data4:
6032 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6033 info_ptr += 4;
6034 break;
6035 case DW_FORM_data8:
6036 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6037 info_ptr += 8;
6038 break;
6039 case DW_FORM_string:
6040 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6041 info_ptr += bytes_read;
6042 break;
4bdf3d34
JJ
6043 case DW_FORM_strp:
6044 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6045 &bytes_read);
6046 info_ptr += bytes_read;
6047 break;
c906108c 6048 case DW_FORM_block:
7b5a2f43 6049 blk = dwarf_alloc_block (cu);
c906108c
SS
6050 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6051 info_ptr += bytes_read;
6052 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6053 info_ptr += blk->size;
6054 DW_BLOCK (attr) = blk;
6055 break;
6056 case DW_FORM_block1:
7b5a2f43 6057 blk = dwarf_alloc_block (cu);
c906108c
SS
6058 blk->size = read_1_byte (abfd, info_ptr);
6059 info_ptr += 1;
6060 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6061 info_ptr += blk->size;
6062 DW_BLOCK (attr) = blk;
6063 break;
6064 case DW_FORM_data1:
6065 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6066 info_ptr += 1;
6067 break;
6068 case DW_FORM_flag:
6069 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6070 info_ptr += 1;
6071 break;
6072 case DW_FORM_sdata:
6073 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6074 info_ptr += bytes_read;
6075 break;
6076 case DW_FORM_udata:
6077 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6078 info_ptr += bytes_read;
6079 break;
6080 case DW_FORM_ref1:
10b3939b 6081 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
6082 info_ptr += 1;
6083 break;
6084 case DW_FORM_ref2:
10b3939b 6085 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
6086 info_ptr += 2;
6087 break;
6088 case DW_FORM_ref4:
10b3939b 6089 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
6090 info_ptr += 4;
6091 break;
613e1657 6092 case DW_FORM_ref8:
10b3939b 6093 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
6094 info_ptr += 8;
6095 break;
c906108c 6096 case DW_FORM_ref_udata:
10b3939b
DJ
6097 DW_ADDR (attr) = (cu->header.offset
6098 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
6099 info_ptr += bytes_read;
6100 break;
c906108c 6101 case DW_FORM_indirect:
a8329558
KW
6102 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6103 info_ptr += bytes_read;
e7c27a73 6104 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 6105 break;
c906108c 6106 default:
8a3fe4f8 6107 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
6108 dwarf_form_name (form),
6109 bfd_get_filename (abfd));
c906108c
SS
6110 }
6111 return info_ptr;
6112}
6113
a8329558
KW
6114/* Read an attribute described by an abbreviated attribute. */
6115
fe1b8b76 6116static gdb_byte *
a8329558 6117read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 6118 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
6119{
6120 attr->name = abbrev->name;
e7c27a73 6121 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
6122}
6123
c906108c
SS
6124/* read dwarf information from a buffer */
6125
6126static unsigned int
fe1b8b76 6127read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 6128{
fe1b8b76 6129 return bfd_get_8 (abfd, buf);
c906108c
SS
6130}
6131
6132static int
fe1b8b76 6133read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 6134{
fe1b8b76 6135 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
6136}
6137
6138static unsigned int
fe1b8b76 6139read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6140{
fe1b8b76 6141 return bfd_get_16 (abfd, buf);
c906108c
SS
6142}
6143
6144static int
fe1b8b76 6145read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6146{
fe1b8b76 6147 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6148}
6149
6150static unsigned int
fe1b8b76 6151read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6152{
fe1b8b76 6153 return bfd_get_32 (abfd, buf);
c906108c
SS
6154}
6155
6156static int
fe1b8b76 6157read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6158{
fe1b8b76 6159 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6160}
6161
ce5d95e1 6162static unsigned long
fe1b8b76 6163read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6164{
fe1b8b76 6165 return bfd_get_64 (abfd, buf);
c906108c
SS
6166}
6167
6168static CORE_ADDR
fe1b8b76 6169read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6170 unsigned int *bytes_read)
c906108c 6171{
e7c27a73 6172 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6173 CORE_ADDR retval = 0;
6174
107d2387 6175 if (cu_header->signed_addr_p)
c906108c 6176 {
107d2387
AC
6177 switch (cu_header->addr_size)
6178 {
6179 case 2:
fe1b8b76 6180 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6181 break;
6182 case 4:
fe1b8b76 6183 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6184 break;
6185 case 8:
fe1b8b76 6186 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6187 break;
6188 default:
8e65ff28 6189 internal_error (__FILE__, __LINE__,
e2e0b3e5 6190 _("read_address: bad switch, signed [in module %s]"),
659b0389 6191 bfd_get_filename (abfd));
107d2387
AC
6192 }
6193 }
6194 else
6195 {
6196 switch (cu_header->addr_size)
6197 {
6198 case 2:
fe1b8b76 6199 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6200 break;
6201 case 4:
fe1b8b76 6202 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6203 break;
6204 case 8:
fe1b8b76 6205 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6206 break;
6207 default:
8e65ff28 6208 internal_error (__FILE__, __LINE__,
e2e0b3e5 6209 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6210 bfd_get_filename (abfd));
107d2387 6211 }
c906108c 6212 }
64367e0a 6213
107d2387
AC
6214 *bytes_read = cu_header->addr_size;
6215 return retval;
c906108c
SS
6216}
6217
f7ef9339 6218/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6219 specification allows the initial length to take up either 4 bytes
6220 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6221 bytes describe the length and all offsets will be 8 bytes in length
6222 instead of 4.
6223
f7ef9339
KB
6224 An older, non-standard 64-bit format is also handled by this
6225 function. The older format in question stores the initial length
6226 as an 8-byte quantity without an escape value. Lengths greater
6227 than 2^32 aren't very common which means that the initial 4 bytes
6228 is almost always zero. Since a length value of zero doesn't make
6229 sense for the 32-bit format, this initial zero can be considered to
6230 be an escape value which indicates the presence of the older 64-bit
6231 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6232 greater than 4GB. If it becomes necessary to handle lengths
6233 somewhat larger than 4GB, we could allow other small values (such
6234 as the non-sensical values of 1, 2, and 3) to also be used as
6235 escape values indicating the presence of the old format.
f7ef9339 6236
917c78fc
MK
6237 The value returned via bytes_read should be used to increment the
6238 relevant pointer after calling read_initial_length().
613e1657
KB
6239
6240 As a side effect, this function sets the fields initial_length_size
6241 and offset_size in cu_header to the values appropriate for the
6242 length field. (The format of the initial length field determines
dd373385 6243 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6244
6245 [ Note: read_initial_length() and read_offset() are based on the
6246 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6247 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6248 from:
6249
f7ef9339 6250 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6251
6252 This document is only a draft and is subject to change. (So beware.)
6253
f7ef9339 6254 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6255 determined empirically by examining 64-bit ELF files produced by
6256 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6257
6258 - Kevin, July 16, 2002
613e1657
KB
6259 ] */
6260
6261static LONGEST
fe1b8b76 6262read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6263 unsigned int *bytes_read)
613e1657 6264{
fe1b8b76 6265 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6266
dd373385 6267 if (length == 0xffffffff)
613e1657 6268 {
fe1b8b76 6269 length = bfd_get_64 (abfd, buf + 4);
613e1657 6270 *bytes_read = 12;
613e1657 6271 }
dd373385 6272 else if (length == 0)
f7ef9339 6273 {
dd373385 6274 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6275 length = bfd_get_64 (abfd, buf);
f7ef9339 6276 *bytes_read = 8;
f7ef9339 6277 }
613e1657
KB
6278 else
6279 {
6280 *bytes_read = 4;
613e1657
KB
6281 }
6282
dd373385
EZ
6283 if (cu_header)
6284 {
6285 gdb_assert (cu_header->initial_length_size == 0
6286 || cu_header->initial_length_size == 4
6287 || cu_header->initial_length_size == 8
6288 || cu_header->initial_length_size == 12);
6289
6290 if (cu_header->initial_length_size != 0
6291 && cu_header->initial_length_size != *bytes_read)
6292 complaint (&symfile_complaints,
6293 _("intermixed 32-bit and 64-bit DWARF sections"));
6294
6295 cu_header->initial_length_size = *bytes_read;
6296 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6297 }
6298
6299 return length;
613e1657
KB
6300}
6301
6302/* Read an offset from the data stream. The size of the offset is
917c78fc 6303 given by cu_header->offset_size. */
613e1657
KB
6304
6305static LONGEST
fe1b8b76 6306read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6307 unsigned int *bytes_read)
613e1657
KB
6308{
6309 LONGEST retval = 0;
6310
6311 switch (cu_header->offset_size)
6312 {
6313 case 4:
fe1b8b76 6314 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6315 *bytes_read = 4;
6316 break;
6317 case 8:
fe1b8b76 6318 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6319 *bytes_read = 8;
6320 break;
6321 default:
8e65ff28 6322 internal_error (__FILE__, __LINE__,
e2e0b3e5 6323 _("read_offset: bad switch [in module %s]"),
659b0389 6324 bfd_get_filename (abfd));
613e1657
KB
6325 }
6326
917c78fc 6327 return retval;
613e1657
KB
6328}
6329
fe1b8b76
JB
6330static gdb_byte *
6331read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6332{
6333 /* If the size of a host char is 8 bits, we can return a pointer
6334 to the buffer, otherwise we have to copy the data to a buffer
6335 allocated on the temporary obstack. */
4bdf3d34 6336 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6337 return buf;
c906108c
SS
6338}
6339
6340static char *
fe1b8b76 6341read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6342{
6343 /* If the size of a host char is 8 bits, we can return a pointer
6344 to the string, otherwise we have to copy the string to a buffer
6345 allocated on the temporary obstack. */
4bdf3d34 6346 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6347 if (*buf == '\0')
6348 {
6349 *bytes_read_ptr = 1;
6350 return NULL;
6351 }
fe1b8b76
JB
6352 *bytes_read_ptr = strlen ((char *) buf) + 1;
6353 return (char *) buf;
4bdf3d34
JJ
6354}
6355
6356static char *
fe1b8b76 6357read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6358 const struct comp_unit_head *cu_header,
6359 unsigned int *bytes_read_ptr)
6360{
6361 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6362 bytes_read_ptr);
c906108c 6363
6502dd73 6364 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6365 {
8a3fe4f8 6366 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6367 bfd_get_filename (abfd));
4bdf3d34 6368 return NULL;
c906108c 6369 }
6502dd73 6370 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6371 {
8a3fe4f8 6372 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6373 bfd_get_filename (abfd));
c906108c
SS
6374 return NULL;
6375 }
4bdf3d34 6376 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6377 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6378 return NULL;
fe1b8b76 6379 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6380}
6381
ce5d95e1 6382static unsigned long
fe1b8b76 6383read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6384{
ce5d95e1
JB
6385 unsigned long result;
6386 unsigned int num_read;
c906108c
SS
6387 int i, shift;
6388 unsigned char byte;
6389
6390 result = 0;
6391 shift = 0;
6392 num_read = 0;
6393 i = 0;
6394 while (1)
6395 {
fe1b8b76 6396 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6397 buf++;
6398 num_read++;
ce5d95e1 6399 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6400 if ((byte & 128) == 0)
6401 {
6402 break;
6403 }
6404 shift += 7;
6405 }
6406 *bytes_read_ptr = num_read;
6407 return result;
6408}
6409
ce5d95e1 6410static long
fe1b8b76 6411read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6412{
ce5d95e1 6413 long result;
77e0b926 6414 int i, shift, num_read;
c906108c
SS
6415 unsigned char byte;
6416
6417 result = 0;
6418 shift = 0;
c906108c
SS
6419 num_read = 0;
6420 i = 0;
6421 while (1)
6422 {
fe1b8b76 6423 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6424 buf++;
6425 num_read++;
ce5d95e1 6426 result |= ((long)(byte & 127) << shift);
c906108c
SS
6427 shift += 7;
6428 if ((byte & 128) == 0)
6429 {
6430 break;
6431 }
6432 }
77e0b926
DJ
6433 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6434 result |= -(((long)1) << shift);
c906108c
SS
6435 *bytes_read_ptr = num_read;
6436 return result;
6437}
6438
4bb7a0a7
DJ
6439/* Return a pointer to just past the end of an LEB128 number in BUF. */
6440
fe1b8b76
JB
6441static gdb_byte *
6442skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6443{
6444 int byte;
6445
6446 while (1)
6447 {
fe1b8b76 6448 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6449 buf++;
6450 if ((byte & 128) == 0)
6451 return buf;
6452 }
6453}
6454
c906108c 6455static void
e142c38c 6456set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6457{
6458 switch (lang)
6459 {
6460 case DW_LANG_C89:
6461 case DW_LANG_C:
e142c38c 6462 cu->language = language_c;
c906108c
SS
6463 break;
6464 case DW_LANG_C_plus_plus:
e142c38c 6465 cu->language = language_cplus;
c906108c
SS
6466 break;
6467 case DW_LANG_Fortran77:
6468 case DW_LANG_Fortran90:
b21b22e0 6469 case DW_LANG_Fortran95:
e142c38c 6470 cu->language = language_fortran;
c906108c
SS
6471 break;
6472 case DW_LANG_Mips_Assembler:
e142c38c 6473 cu->language = language_asm;
c906108c 6474 break;
bebd888e 6475 case DW_LANG_Java:
e142c38c 6476 cu->language = language_java;
bebd888e 6477 break;
c906108c 6478 case DW_LANG_Ada83:
8aaf0b47 6479 case DW_LANG_Ada95:
bc5f45f8
JB
6480 cu->language = language_ada;
6481 break;
72019c9c
GM
6482 case DW_LANG_Modula2:
6483 cu->language = language_m2;
6484 break;
fe8e67fd
PM
6485 case DW_LANG_Pascal83:
6486 cu->language = language_pascal;
6487 break;
c906108c
SS
6488 case DW_LANG_Cobol74:
6489 case DW_LANG_Cobol85:
c906108c 6490 default:
e142c38c 6491 cu->language = language_minimal;
c906108c
SS
6492 break;
6493 }
e142c38c 6494 cu->language_defn = language_def (cu->language);
c906108c
SS
6495}
6496
6497/* Return the named attribute or NULL if not there. */
6498
6499static struct attribute *
e142c38c 6500dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6501{
6502 unsigned int i;
6503 struct attribute *spec = NULL;
6504
6505 for (i = 0; i < die->num_attrs; ++i)
6506 {
6507 if (die->attrs[i].name == name)
10b3939b 6508 return &die->attrs[i];
c906108c
SS
6509 if (die->attrs[i].name == DW_AT_specification
6510 || die->attrs[i].name == DW_AT_abstract_origin)
6511 spec = &die->attrs[i];
6512 }
c906108c 6513
10b3939b
DJ
6514 if (spec)
6515 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6516
c906108c
SS
6517 return NULL;
6518}
6519
05cf31d1
JB
6520/* Return non-zero iff the attribute NAME is defined for the given DIE,
6521 and holds a non-zero value. This function should only be used for
6522 DW_FORM_flag attributes. */
6523
6524static int
6525dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6526{
6527 struct attribute *attr = dwarf2_attr (die, name, cu);
6528
6529 return (attr && DW_UNSND (attr));
6530}
6531
3ca72b44 6532static int
e142c38c 6533die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6534{
05cf31d1
JB
6535 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6536 which value is non-zero. However, we have to be careful with
6537 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6538 (via dwarf2_flag_true_p) follows this attribute. So we may
6539 end up accidently finding a declaration attribute that belongs
6540 to a different DIE referenced by the specification attribute,
6541 even though the given DIE does not have a declaration attribute. */
6542 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6543 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6544}
6545
63d06c5c
DC
6546/* Return the die giving the specification for DIE, if there is
6547 one. */
6548
6549static struct die_info *
e142c38c 6550die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6551{
e142c38c 6552 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6553
6554 if (spec_attr == NULL)
6555 return NULL;
6556 else
10b3939b 6557 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6558}
c906108c 6559
debd256d
JB
6560/* Free the line_header structure *LH, and any arrays and strings it
6561 refers to. */
6562static void
6563free_line_header (struct line_header *lh)
6564{
6565 if (lh->standard_opcode_lengths)
a8bc7b56 6566 xfree (lh->standard_opcode_lengths);
debd256d
JB
6567
6568 /* Remember that all the lh->file_names[i].name pointers are
6569 pointers into debug_line_buffer, and don't need to be freed. */
6570 if (lh->file_names)
a8bc7b56 6571 xfree (lh->file_names);
debd256d
JB
6572
6573 /* Similarly for the include directory names. */
6574 if (lh->include_dirs)
a8bc7b56 6575 xfree (lh->include_dirs);
debd256d 6576
a8bc7b56 6577 xfree (lh);
debd256d
JB
6578}
6579
6580
6581/* Add an entry to LH's include directory table. */
6582static void
6583add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6584{
debd256d
JB
6585 /* Grow the array if necessary. */
6586 if (lh->include_dirs_size == 0)
c5aa993b 6587 {
debd256d
JB
6588 lh->include_dirs_size = 1; /* for testing */
6589 lh->include_dirs = xmalloc (lh->include_dirs_size
6590 * sizeof (*lh->include_dirs));
6591 }
6592 else if (lh->num_include_dirs >= lh->include_dirs_size)
6593 {
6594 lh->include_dirs_size *= 2;
6595 lh->include_dirs = xrealloc (lh->include_dirs,
6596 (lh->include_dirs_size
6597 * sizeof (*lh->include_dirs)));
c5aa993b 6598 }
c906108c 6599
debd256d
JB
6600 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6601}
6602
6603
6604/* Add an entry to LH's file name table. */
6605static void
6606add_file_name (struct line_header *lh,
6607 char *name,
6608 unsigned int dir_index,
6609 unsigned int mod_time,
6610 unsigned int length)
6611{
6612 struct file_entry *fe;
6613
6614 /* Grow the array if necessary. */
6615 if (lh->file_names_size == 0)
6616 {
6617 lh->file_names_size = 1; /* for testing */
6618 lh->file_names = xmalloc (lh->file_names_size
6619 * sizeof (*lh->file_names));
6620 }
6621 else if (lh->num_file_names >= lh->file_names_size)
6622 {
6623 lh->file_names_size *= 2;
6624 lh->file_names = xrealloc (lh->file_names,
6625 (lh->file_names_size
6626 * sizeof (*lh->file_names)));
6627 }
6628
6629 fe = &lh->file_names[lh->num_file_names++];
6630 fe->name = name;
6631 fe->dir_index = dir_index;
6632 fe->mod_time = mod_time;
6633 fe->length = length;
aaa75496 6634 fe->included_p = 0;
cb1df416 6635 fe->symtab = NULL;
debd256d
JB
6636}
6637
6638
6639/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6640 .debug_line, according to the endianness of ABFD. Return a pointer
6641 to a struct line_header, allocated using xmalloc.
debd256d
JB
6642
6643 NOTE: the strings in the include directory and file name tables of
6644 the returned object point into debug_line_buffer, and must not be
6645 freed. */
6646static struct line_header *
6647dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6648 struct dwarf2_cu *cu)
debd256d
JB
6649{
6650 struct cleanup *back_to;
6651 struct line_header *lh;
fe1b8b76 6652 gdb_byte *line_ptr;
891d2f0b 6653 unsigned int bytes_read;
debd256d
JB
6654 int i;
6655 char *cur_dir, *cur_file;
6656
6502dd73 6657 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6658 {
e2e0b3e5 6659 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6660 return 0;
6661 }
6662
a738430d
MK
6663 /* Make sure that at least there's room for the total_length field.
6664 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6665 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6666 {
4d3c2250 6667 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6668 return 0;
6669 }
6670
6671 lh = xmalloc (sizeof (*lh));
6672 memset (lh, 0, sizeof (*lh));
6673 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6674 (void *) lh);
6675
6502dd73 6676 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6677
a738430d 6678 /* Read in the header. */
dd373385
EZ
6679 lh->total_length =
6680 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6681 line_ptr += bytes_read;
6502dd73
DJ
6682 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6683 + dwarf2_per_objfile->line_size))
debd256d 6684 {
4d3c2250 6685 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6686 return 0;
6687 }
6688 lh->statement_program_end = line_ptr + lh->total_length;
6689 lh->version = read_2_bytes (abfd, line_ptr);
6690 line_ptr += 2;
e7c27a73 6691 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6692 line_ptr += bytes_read;
6693 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6694 line_ptr += 1;
6695 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6696 line_ptr += 1;
6697 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6698 line_ptr += 1;
6699 lh->line_range = read_1_byte (abfd, line_ptr);
6700 line_ptr += 1;
6701 lh->opcode_base = read_1_byte (abfd, line_ptr);
6702 line_ptr += 1;
6703 lh->standard_opcode_lengths
fe1b8b76 6704 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6705
6706 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6707 for (i = 1; i < lh->opcode_base; ++i)
6708 {
6709 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6710 line_ptr += 1;
6711 }
6712
a738430d 6713 /* Read directory table. */
debd256d
JB
6714 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6715 {
6716 line_ptr += bytes_read;
6717 add_include_dir (lh, cur_dir);
6718 }
6719 line_ptr += bytes_read;
6720
a738430d 6721 /* Read file name table. */
debd256d
JB
6722 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6723 {
6724 unsigned int dir_index, mod_time, length;
6725
6726 line_ptr += bytes_read;
6727 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6728 line_ptr += bytes_read;
6729 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6730 line_ptr += bytes_read;
6731 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6732 line_ptr += bytes_read;
6733
6734 add_file_name (lh, cur_file, dir_index, mod_time, length);
6735 }
6736 line_ptr += bytes_read;
6737 lh->statement_program_start = line_ptr;
6738
6502dd73
DJ
6739 if (line_ptr > (dwarf2_per_objfile->line_buffer
6740 + dwarf2_per_objfile->line_size))
4d3c2250 6741 complaint (&symfile_complaints,
e2e0b3e5 6742 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6743
6744 discard_cleanups (back_to);
6745 return lh;
6746}
c906108c 6747
5fb290d7
DJ
6748/* This function exists to work around a bug in certain compilers
6749 (particularly GCC 2.95), in which the first line number marker of a
6750 function does not show up until after the prologue, right before
6751 the second line number marker. This function shifts ADDRESS down
6752 to the beginning of the function if necessary, and is called on
6753 addresses passed to record_line. */
6754
6755static CORE_ADDR
e142c38c 6756check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6757{
6758 struct function_range *fn;
6759
6760 /* Find the function_range containing address. */
e142c38c 6761 if (!cu->first_fn)
5fb290d7
DJ
6762 return address;
6763
e142c38c
DJ
6764 if (!cu->cached_fn)
6765 cu->cached_fn = cu->first_fn;
5fb290d7 6766
e142c38c 6767 fn = cu->cached_fn;
5fb290d7
DJ
6768 while (fn)
6769 if (fn->lowpc <= address && fn->highpc > address)
6770 goto found;
6771 else
6772 fn = fn->next;
6773
e142c38c
DJ
6774 fn = cu->first_fn;
6775 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6776 if (fn->lowpc <= address && fn->highpc > address)
6777 goto found;
6778 else
6779 fn = fn->next;
6780
6781 return address;
6782
6783 found:
6784 if (fn->seen_line)
6785 return address;
6786 if (address != fn->lowpc)
4d3c2250 6787 complaint (&symfile_complaints,
e2e0b3e5 6788 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6789 (unsigned long) address, fn->name);
5fb290d7
DJ
6790 fn->seen_line = 1;
6791 return fn->lowpc;
6792}
6793
aaa75496
JB
6794/* Decode the Line Number Program (LNP) for the given line_header
6795 structure and CU. The actual information extracted and the type
6796 of structures created from the LNP depends on the value of PST.
6797
6798 1. If PST is NULL, then this procedure uses the data from the program
6799 to create all necessary symbol tables, and their linetables.
6800 The compilation directory of the file is passed in COMP_DIR,
6801 and must not be NULL.
6802
6803 2. If PST is not NULL, this procedure reads the program to determine
6804 the list of files included by the unit represented by PST, and
6805 builds all the associated partial symbol tables. In this case,
6806 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6807 is not used to compute the full name of the symtab, and therefore
6808 omitting it when building the partial symtab does not introduce
6809 the potential for inconsistency - a partial symtab and its associated
6810 symbtab having a different fullname -). */
debd256d 6811
c906108c 6812static void
debd256d 6813dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6814 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6815{
a8c50c1f 6816 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6817 gdb_byte *line_end;
a8c50c1f 6818 unsigned int bytes_read, extended_len;
c906108c 6819 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6820 CORE_ADDR baseaddr;
6821 struct objfile *objfile = cu->objfile;
aaa75496 6822 const int decode_for_pst_p = (pst != NULL);
cb1df416 6823 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6824
6825 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6826
debd256d
JB
6827 line_ptr = lh->statement_program_start;
6828 line_end = lh->statement_program_end;
c906108c
SS
6829
6830 /* Read the statement sequences until there's nothing left. */
6831 while (line_ptr < line_end)
6832 {
6833 /* state machine registers */
6834 CORE_ADDR address = 0;
6835 unsigned int file = 1;
6836 unsigned int line = 1;
6837 unsigned int column = 0;
debd256d 6838 int is_stmt = lh->default_is_stmt;
c906108c
SS
6839 int basic_block = 0;
6840 int end_sequence = 0;
6841
aaa75496 6842 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6843 {
aaa75496 6844 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6845 /* lh->include_dirs and lh->file_names are 0-based, but the
6846 directory and file name numbers in the statement program
6847 are 1-based. */
6848 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6849 char *dir = NULL;
a738430d 6850
debd256d
JB
6851 if (fe->dir_index)
6852 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6853
6854 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6855 }
6856
a738430d 6857 /* Decode the table. */
c5aa993b 6858 while (!end_sequence)
c906108c
SS
6859 {
6860 op_code = read_1_byte (abfd, line_ptr);
6861 line_ptr += 1;
9aa1fe7e 6862
debd256d 6863 if (op_code >= lh->opcode_base)
a738430d
MK
6864 {
6865 /* Special operand. */
debd256d
JB
6866 adj_opcode = op_code - lh->opcode_base;
6867 address += (adj_opcode / lh->line_range)
6868 * lh->minimum_instruction_length;
6869 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6870 if (lh->num_file_names < file)
6871 dwarf2_debug_line_missing_file_complaint ();
6872 else
6873 {
6874 lh->file_names[file - 1].included_p = 1;
6875 if (!decode_for_pst_p)
6876 {
6877 if (last_subfile != current_subfile)
6878 {
6879 if (last_subfile)
6880 record_line (last_subfile, 0, address);
6881 last_subfile = current_subfile;
6882 }
6883 /* Append row to matrix using current values. */
6884 record_line (current_subfile, line,
6885 check_cu_functions (address, cu));
366da635 6886 }
25e43795 6887 }
9aa1fe7e
GK
6888 basic_block = 1;
6889 }
6890 else switch (op_code)
c906108c
SS
6891 {
6892 case DW_LNS_extended_op:
a8c50c1f 6893 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 6894 line_ptr += bytes_read;
a8c50c1f 6895 extended_end = line_ptr + extended_len;
c906108c
SS
6896 extended_op = read_1_byte (abfd, line_ptr);
6897 line_ptr += 1;
6898 switch (extended_op)
6899 {
6900 case DW_LNE_end_sequence:
6901 end_sequence = 1;
25e43795
DJ
6902
6903 if (lh->num_file_names < file)
6904 dwarf2_debug_line_missing_file_complaint ();
6905 else
6906 {
6907 lh->file_names[file - 1].included_p = 1;
6908 if (!decode_for_pst_p)
6909 record_line (current_subfile, 0, address);
6910 }
c906108c
SS
6911 break;
6912 case DW_LNE_set_address:
e7c27a73 6913 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6914 line_ptr += bytes_read;
6915 address += baseaddr;
c906108c
SS
6916 break;
6917 case DW_LNE_define_file:
debd256d
JB
6918 {
6919 char *cur_file;
6920 unsigned int dir_index, mod_time, length;
6921
6922 cur_file = read_string (abfd, line_ptr, &bytes_read);
6923 line_ptr += bytes_read;
6924 dir_index =
6925 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6926 line_ptr += bytes_read;
6927 mod_time =
6928 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6929 line_ptr += bytes_read;
6930 length =
6931 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6932 line_ptr += bytes_read;
6933 add_file_name (lh, cur_file, dir_index, mod_time, length);
6934 }
c906108c
SS
6935 break;
6936 default:
4d3c2250 6937 complaint (&symfile_complaints,
e2e0b3e5 6938 _("mangled .debug_line section"));
debd256d 6939 return;
c906108c 6940 }
a8c50c1f
DJ
6941 /* Make sure that we parsed the extended op correctly. If e.g.
6942 we expected a different address size than the producer used,
6943 we may have read the wrong number of bytes. */
6944 if (line_ptr != extended_end)
6945 {
6946 complaint (&symfile_complaints,
6947 _("mangled .debug_line section"));
6948 return;
6949 }
c906108c
SS
6950 break;
6951 case DW_LNS_copy:
25e43795
DJ
6952 if (lh->num_file_names < file)
6953 dwarf2_debug_line_missing_file_complaint ();
6954 else
366da635 6955 {
25e43795
DJ
6956 lh->file_names[file - 1].included_p = 1;
6957 if (!decode_for_pst_p)
6958 {
6959 if (last_subfile != current_subfile)
6960 {
6961 if (last_subfile)
6962 record_line (last_subfile, 0, address);
6963 last_subfile = current_subfile;
6964 }
6965 record_line (current_subfile, line,
6966 check_cu_functions (address, cu));
6967 }
366da635 6968 }
c906108c
SS
6969 basic_block = 0;
6970 break;
6971 case DW_LNS_advance_pc:
debd256d 6972 address += lh->minimum_instruction_length
c906108c
SS
6973 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6974 line_ptr += bytes_read;
6975 break;
6976 case DW_LNS_advance_line:
6977 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6978 line_ptr += bytes_read;
6979 break;
6980 case DW_LNS_set_file:
debd256d 6981 {
a738430d
MK
6982 /* The arrays lh->include_dirs and lh->file_names are
6983 0-based, but the directory and file name numbers in
6984 the statement program are 1-based. */
debd256d 6985 struct file_entry *fe;
4f1520fb 6986 char *dir = NULL;
a738430d 6987
debd256d
JB
6988 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6989 line_ptr += bytes_read;
25e43795
DJ
6990 if (lh->num_file_names < file)
6991 dwarf2_debug_line_missing_file_complaint ();
6992 else
6993 {
6994 fe = &lh->file_names[file - 1];
6995 if (fe->dir_index)
6996 dir = lh->include_dirs[fe->dir_index - 1];
6997 if (!decode_for_pst_p)
6998 {
6999 last_subfile = current_subfile;
7000 dwarf2_start_subfile (fe->name, dir, comp_dir);
7001 }
7002 }
debd256d 7003 }
c906108c
SS
7004 break;
7005 case DW_LNS_set_column:
7006 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7007 line_ptr += bytes_read;
7008 break;
7009 case DW_LNS_negate_stmt:
7010 is_stmt = (!is_stmt);
7011 break;
7012 case DW_LNS_set_basic_block:
7013 basic_block = 1;
7014 break;
c2c6d25f
JM
7015 /* Add to the address register of the state machine the
7016 address increment value corresponding to special opcode
a738430d
MK
7017 255. I.e., this value is scaled by the minimum
7018 instruction length since special opcode 255 would have
7019 scaled the the increment. */
c906108c 7020 case DW_LNS_const_add_pc:
debd256d
JB
7021 address += (lh->minimum_instruction_length
7022 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
7023 break;
7024 case DW_LNS_fixed_advance_pc:
7025 address += read_2_bytes (abfd, line_ptr);
7026 line_ptr += 2;
7027 break;
9aa1fe7e 7028 default:
a738430d
MK
7029 {
7030 /* Unknown standard opcode, ignore it. */
9aa1fe7e 7031 int i;
a738430d 7032
debd256d 7033 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
7034 {
7035 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7036 line_ptr += bytes_read;
7037 }
7038 }
c906108c
SS
7039 }
7040 }
7041 }
aaa75496
JB
7042
7043 if (decode_for_pst_p)
7044 {
7045 int file_index;
7046
7047 /* Now that we're done scanning the Line Header Program, we can
7048 create the psymtab of each included file. */
7049 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7050 if (lh->file_names[file_index].included_p == 1)
7051 {
5b5464ad
JB
7052 const struct file_entry fe = lh->file_names [file_index];
7053 char *include_name = fe.name;
7054 char *dir_name = NULL;
7055 char *pst_filename = pst->filename;
7056
7057 if (fe.dir_index)
7058 dir_name = lh->include_dirs[fe.dir_index - 1];
7059
7060 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7061 {
1754f103
MK
7062 include_name = concat (dir_name, SLASH_STRING,
7063 include_name, (char *)NULL);
5b5464ad
JB
7064 make_cleanup (xfree, include_name);
7065 }
7066
7067 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7068 {
1754f103
MK
7069 pst_filename = concat (pst->dirname, SLASH_STRING,
7070 pst_filename, (char *)NULL);
5b5464ad
JB
7071 make_cleanup (xfree, pst_filename);
7072 }
7073
7074 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
7075 dwarf2_create_include_psymtab (include_name, pst, objfile);
7076 }
7077 }
cb1df416
DJ
7078 else
7079 {
7080 /* Make sure a symtab is created for every file, even files
7081 which contain only variables (i.e. no code with associated
7082 line numbers). */
7083
7084 int i;
7085 struct file_entry *fe;
7086
7087 for (i = 0; i < lh->num_file_names; i++)
7088 {
7089 char *dir = NULL;
7090 fe = &lh->file_names[i];
7091 if (fe->dir_index)
7092 dir = lh->include_dirs[fe->dir_index - 1];
7093 dwarf2_start_subfile (fe->name, dir, comp_dir);
7094
7095 /* Skip the main file; we don't need it, and it must be
7096 allocated last, so that it will show up before the
7097 non-primary symtabs in the objfile's symtab list. */
7098 if (current_subfile == first_subfile)
7099 continue;
7100
7101 if (current_subfile->symtab == NULL)
7102 current_subfile->symtab = allocate_symtab (current_subfile->name,
7103 cu->objfile);
7104 fe->symtab = current_subfile->symtab;
7105 }
7106 }
c906108c
SS
7107}
7108
7109/* Start a subfile for DWARF. FILENAME is the name of the file and
7110 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
7111 or NULL if not known. COMP_DIR is the compilation directory for the
7112 linetable's compilation unit or NULL if not known.
c906108c
SS
7113 This routine tries to keep line numbers from identical absolute and
7114 relative file names in a common subfile.
7115
7116 Using the `list' example from the GDB testsuite, which resides in
7117 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7118 of /srcdir/list0.c yields the following debugging information for list0.c:
7119
c5aa993b
JM
7120 DW_AT_name: /srcdir/list0.c
7121 DW_AT_comp_dir: /compdir
357e46e7 7122 files.files[0].name: list0.h
c5aa993b 7123 files.files[0].dir: /srcdir
357e46e7 7124 files.files[1].name: list0.c
c5aa993b 7125 files.files[1].dir: /srcdir
c906108c
SS
7126
7127 The line number information for list0.c has to end up in a single
4f1520fb
FR
7128 subfile, so that `break /srcdir/list0.c:1' works as expected.
7129 start_subfile will ensure that this happens provided that we pass the
7130 concatenation of files.files[1].dir and files.files[1].name as the
7131 subfile's name. */
c906108c
SS
7132
7133static void
4f1520fb 7134dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 7135{
4f1520fb
FR
7136 char *fullname;
7137
7138 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7139 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7140 second argument to start_subfile. To be consistent, we do the
7141 same here. In order not to lose the line information directory,
7142 we concatenate it to the filename when it makes sense.
7143 Note that the Dwarf3 standard says (speaking of filenames in line
7144 information): ``The directory index is ignored for file names
7145 that represent full path names''. Thus ignoring dirname in the
7146 `else' branch below isn't an issue. */
c906108c 7147
d5166ae1 7148 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7149 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7150 else
7151 fullname = filename;
c906108c 7152
4f1520fb
FR
7153 start_subfile (fullname, comp_dir);
7154
7155 if (fullname != filename)
7156 xfree (fullname);
c906108c
SS
7157}
7158
4c2df51b
DJ
7159static void
7160var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7161 struct dwarf2_cu *cu)
4c2df51b 7162{
e7c27a73
DJ
7163 struct objfile *objfile = cu->objfile;
7164 struct comp_unit_head *cu_header = &cu->header;
7165
4c2df51b
DJ
7166 /* NOTE drow/2003-01-30: There used to be a comment and some special
7167 code here to turn a symbol with DW_AT_external and a
7168 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7169 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7170 with some versions of binutils) where shared libraries could have
7171 relocations against symbols in their debug information - the
7172 minimal symbol would have the right address, but the debug info
7173 would not. It's no longer necessary, because we will explicitly
7174 apply relocations when we read in the debug information now. */
7175
7176 /* A DW_AT_location attribute with no contents indicates that a
7177 variable has been optimized away. */
7178 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7179 {
7180 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7181 return;
7182 }
7183
7184 /* Handle one degenerate form of location expression specially, to
7185 preserve GDB's previous behavior when section offsets are
7186 specified. If this is just a DW_OP_addr then mark this symbol
7187 as LOC_STATIC. */
7188
7189 if (attr_form_is_block (attr)
7190 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7191 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7192 {
891d2f0b 7193 unsigned int dummy;
4c2df51b
DJ
7194
7195 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7196 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7197 fixup_symbol_section (sym, objfile);
7198 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7199 SYMBOL_SECTION (sym));
7200 SYMBOL_CLASS (sym) = LOC_STATIC;
7201 return;
7202 }
7203
7204 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7205 expression evaluator, and use LOC_COMPUTED only when necessary
7206 (i.e. when the value of a register or memory location is
7207 referenced, or a thread-local block, etc.). Then again, it might
7208 not be worthwhile. I'm assuming that it isn't unless performance
7209 or memory numbers show me otherwise. */
7210
e7c27a73 7211 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7212 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7213}
7214
c906108c
SS
7215/* Given a pointer to a DWARF information entry, figure out if we need
7216 to make a symbol table entry for it, and if so, create a new entry
7217 and return a pointer to it.
7218 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7219 used the passed type. */
c906108c
SS
7220
7221static struct symbol *
e7c27a73 7222new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7223{
e7c27a73 7224 struct objfile *objfile = cu->objfile;
c906108c
SS
7225 struct symbol *sym = NULL;
7226 char *name;
7227 struct attribute *attr = NULL;
7228 struct attribute *attr2 = NULL;
e142c38c
DJ
7229 CORE_ADDR baseaddr;
7230
7231 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7232
5c4e30ca 7233 if (die->tag != DW_TAG_namespace)
e142c38c 7234 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7235 else
7236 name = TYPE_NAME (type);
7237
c906108c
SS
7238 if (name)
7239 {
4a146b47 7240 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7241 sizeof (struct symbol));
7242 OBJSTAT (objfile, n_syms++);
7243 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7244
7245 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7246 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7247 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7248
7249 /* Default assumptions.
c5aa993b 7250 Use the passed type or decode it from the die. */
176620f1 7251 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7252 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7253 if (type != NULL)
7254 SYMBOL_TYPE (sym) = type;
7255 else
e7c27a73 7256 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7257 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7258 if (attr)
7259 {
7260 SYMBOL_LINE (sym) = DW_UNSND (attr);
7261 }
cb1df416
DJ
7262
7263 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7264 if (attr)
7265 {
7266 int file_index = DW_UNSND (attr);
7267 if (cu->line_header == NULL
7268 || file_index > cu->line_header->num_file_names)
7269 complaint (&symfile_complaints,
7270 _("file index out of range"));
1c3d648d 7271 else if (file_index > 0)
cb1df416
DJ
7272 {
7273 struct file_entry *fe;
7274 fe = &cu->line_header->file_names[file_index - 1];
7275 SYMBOL_SYMTAB (sym) = fe->symtab;
7276 }
7277 }
7278
c906108c
SS
7279 switch (die->tag)
7280 {
7281 case DW_TAG_label:
e142c38c 7282 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7283 if (attr)
7284 {
7285 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7286 }
7287 SYMBOL_CLASS (sym) = LOC_LABEL;
7288 break;
7289 case DW_TAG_subprogram:
7290 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7291 finish_block. */
7292 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7293 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7294 if (attr2 && (DW_UNSND (attr2) != 0))
7295 {
7296 add_symbol_to_list (sym, &global_symbols);
7297 }
7298 else
7299 {
e142c38c 7300 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7301 }
7302 break;
7303 case DW_TAG_variable:
7304 /* Compilation with minimal debug info may result in variables
7305 with missing type entries. Change the misleading `void' type
7306 to something sensible. */
7307 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499
UW
7308 SYMBOL_TYPE (sym)
7309 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7310
e142c38c 7311 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7312 if (attr)
7313 {
e7c27a73 7314 dwarf2_const_value (attr, sym, cu);
e142c38c 7315 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7316 if (attr2 && (DW_UNSND (attr2) != 0))
7317 add_symbol_to_list (sym, &global_symbols);
7318 else
e142c38c 7319 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7320 break;
7321 }
e142c38c 7322 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7323 if (attr)
7324 {
e7c27a73 7325 var_decode_location (attr, sym, cu);
e142c38c 7326 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7327 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7328 add_symbol_to_list (sym, &global_symbols);
c906108c 7329 else
e142c38c 7330 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7331 }
7332 else
7333 {
7334 /* We do not know the address of this symbol.
c5aa993b
JM
7335 If it is an external symbol and we have type information
7336 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7337 The address of the variable will then be determined from
7338 the minimal symbol table whenever the variable is
7339 referenced. */
e142c38c 7340 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7341 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7342 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7343 {
7344 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7345 add_symbol_to_list (sym, &global_symbols);
7346 }
7347 }
7348 break;
7349 case DW_TAG_formal_parameter:
e142c38c 7350 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7351 if (attr)
7352 {
e7c27a73 7353 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7354 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7355 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7356 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7357 }
e142c38c 7358 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7359 if (attr)
7360 {
e7c27a73 7361 dwarf2_const_value (attr, sym, cu);
c906108c 7362 }
e142c38c 7363 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7364 break;
7365 case DW_TAG_unspecified_parameters:
7366 /* From varargs functions; gdb doesn't seem to have any
7367 interest in this information, so just ignore it for now.
7368 (FIXME?) */
7369 break;
7370 case DW_TAG_class_type:
680b30c7 7371 case DW_TAG_interface_type:
c906108c
SS
7372 case DW_TAG_structure_type:
7373 case DW_TAG_union_type:
72019c9c 7374 case DW_TAG_set_type:
c906108c
SS
7375 case DW_TAG_enumeration_type:
7376 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7377 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7378
63d06c5c
DC
7379 /* Make sure that the symbol includes appropriate enclosing
7380 classes/namespaces in its name. These are calculated in
134d01f1 7381 read_structure_type, and the correct name is saved in
63d06c5c
DC
7382 the type. */
7383
987504bb
JJ
7384 if (cu->language == language_cplus
7385 || cu->language == language_java)
c906108c 7386 {
63d06c5c
DC
7387 struct type *type = SYMBOL_TYPE (sym);
7388
7389 if (TYPE_TAG_NAME (type) != NULL)
7390 {
7391 /* FIXME: carlton/2003-11-10: Should this use
7392 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7393 arises further down in this function.) */
7394 /* The type's name is already allocated along with
7395 this objfile, so we don't need to duplicate it
7396 for the symbol. */
7397 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7398 }
c906108c 7399 }
63d06c5c
DC
7400
7401 {
987504bb 7402 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7403 really ever be static objects: otherwise, if you try
7404 to, say, break of a class's method and you're in a file
7405 which doesn't mention that class, it won't work unless
7406 the check for all static symbols in lookup_symbol_aux
7407 saves you. See the OtherFileClass tests in
7408 gdb.c++/namespace.exp. */
7409
7410 struct pending **list_to_add;
7411
e142c38c 7412 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7413 && (cu->language == language_cplus
7414 || cu->language == language_java)
e142c38c 7415 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7416
7417 add_symbol_to_list (sym, list_to_add);
7418
7419 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7420 defines a typedef for "foo". A Java class declaration also
7421 defines a typedef for the class. Synthesize a typedef symbol
7422 so that "ptype foo" works as expected. */
7423 if (cu->language == language_cplus
8c6860bb
JB
7424 || cu->language == language_java
7425 || cu->language == language_ada)
63d06c5c
DC
7426 {
7427 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7428 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7429 sizeof (struct symbol));
7430 *typedef_sym = *sym;
7431 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7432 /* The symbol's name is already allocated along with
7433 this objfile, so we don't need to duplicate it for
7434 the type. */
63d06c5c 7435 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7436 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7437 add_symbol_to_list (typedef_sym, list_to_add);
7438 }
7439 }
c906108c
SS
7440 break;
7441 case DW_TAG_typedef:
63d06c5c
DC
7442 if (processing_has_namespace_info
7443 && processing_current_prefix[0] != '\0')
7444 {
987504bb
JJ
7445 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7446 processing_current_prefix,
7447 name, cu);
63d06c5c
DC
7448 }
7449 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7450 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7451 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7452 break;
c906108c 7453 case DW_TAG_base_type:
a02abb62 7454 case DW_TAG_subrange_type:
c906108c 7455 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7456 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7457 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7458 break;
7459 case DW_TAG_enumerator:
63d06c5c
DC
7460 if (processing_has_namespace_info
7461 && processing_current_prefix[0] != '\0')
7462 {
987504bb
JJ
7463 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7464 processing_current_prefix,
7465 name, cu);
63d06c5c 7466 }
e142c38c 7467 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7468 if (attr)
7469 {
e7c27a73 7470 dwarf2_const_value (attr, sym, cu);
c906108c 7471 }
63d06c5c
DC
7472 {
7473 /* NOTE: carlton/2003-11-10: See comment above in the
7474 DW_TAG_class_type, etc. block. */
7475
7476 struct pending **list_to_add;
7477
e142c38c 7478 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7479 && (cu->language == language_cplus
7480 || cu->language == language_java)
e142c38c 7481 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7482
7483 add_symbol_to_list (sym, list_to_add);
7484 }
c906108c 7485 break;
5c4e30ca
DC
7486 case DW_TAG_namespace:
7487 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7488 add_symbol_to_list (sym, &global_symbols);
7489 break;
c906108c
SS
7490 default:
7491 /* Not a tag we recognize. Hopefully we aren't processing
7492 trash data, but since we must specifically ignore things
7493 we don't recognize, there is nothing else we should do at
7494 this point. */
e2e0b3e5 7495 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7496 dwarf_tag_name (die->tag));
c906108c
SS
7497 break;
7498 }
7499 }
7500 return (sym);
7501}
7502
7503/* Copy constant value from an attribute to a symbol. */
7504
7505static void
107d2387 7506dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7507 struct dwarf2_cu *cu)
c906108c 7508{
e7c27a73
DJ
7509 struct objfile *objfile = cu->objfile;
7510 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7511 struct dwarf_block *blk;
7512
7513 switch (attr->form)
7514 {
7515 case DW_FORM_addr:
107d2387 7516 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7517 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7518 cu_header->addr_size,
7519 TYPE_LENGTH (SYMBOL_TYPE
7520 (sym)));
4e38b386 7521 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7522 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7523 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7524 it's body - store_unsigned_integer. */
7525 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7526 DW_ADDR (attr));
c906108c
SS
7527 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7528 break;
7529 case DW_FORM_block1:
7530 case DW_FORM_block2:
7531 case DW_FORM_block4:
7532 case DW_FORM_block:
7533 blk = DW_BLOCK (attr);
7534 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7535 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7536 blk->size,
7537 TYPE_LENGTH (SYMBOL_TYPE
7538 (sym)));
4e38b386 7539 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7540 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7541 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7542 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7543 break;
2df3850c
JM
7544
7545 /* The DW_AT_const_value attributes are supposed to carry the
7546 symbol's value "represented as it would be on the target
7547 architecture." By the time we get here, it's already been
7548 converted to host endianness, so we just need to sign- or
7549 zero-extend it as appropriate. */
7550 case DW_FORM_data1:
7551 dwarf2_const_value_data (attr, sym, 8);
7552 break;
c906108c 7553 case DW_FORM_data2:
2df3850c
JM
7554 dwarf2_const_value_data (attr, sym, 16);
7555 break;
c906108c 7556 case DW_FORM_data4:
2df3850c
JM
7557 dwarf2_const_value_data (attr, sym, 32);
7558 break;
c906108c 7559 case DW_FORM_data8:
2df3850c
JM
7560 dwarf2_const_value_data (attr, sym, 64);
7561 break;
7562
c906108c 7563 case DW_FORM_sdata:
2df3850c
JM
7564 SYMBOL_VALUE (sym) = DW_SND (attr);
7565 SYMBOL_CLASS (sym) = LOC_CONST;
7566 break;
7567
c906108c
SS
7568 case DW_FORM_udata:
7569 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7570 SYMBOL_CLASS (sym) = LOC_CONST;
7571 break;
2df3850c 7572
c906108c 7573 default:
4d3c2250 7574 complaint (&symfile_complaints,
e2e0b3e5 7575 _("unsupported const value attribute form: '%s'"),
4d3c2250 7576 dwarf_form_name (attr->form));
c906108c
SS
7577 SYMBOL_VALUE (sym) = 0;
7578 SYMBOL_CLASS (sym) = LOC_CONST;
7579 break;
7580 }
7581}
7582
2df3850c
JM
7583
7584/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7585 or zero-extend it as appropriate for the symbol's type. */
7586static void
7587dwarf2_const_value_data (struct attribute *attr,
7588 struct symbol *sym,
7589 int bits)
7590{
7591 LONGEST l = DW_UNSND (attr);
7592
7593 if (bits < sizeof (l) * 8)
7594 {
7595 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7596 l &= ((LONGEST) 1 << bits) - 1;
7597 else
bf9198f1 7598 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7599 }
7600
7601 SYMBOL_VALUE (sym) = l;
7602 SYMBOL_CLASS (sym) = LOC_CONST;
7603}
7604
7605
c906108c
SS
7606/* Return the type of the die in question using its DW_AT_type attribute. */
7607
7608static struct type *
e7c27a73 7609die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7610{
7611 struct type *type;
7612 struct attribute *type_attr;
7613 struct die_info *type_die;
c906108c 7614
e142c38c 7615 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7616 if (!type_attr)
7617 {
7618 /* A missing DW_AT_type represents a void type. */
6ccb9162 7619 return builtin_type (current_gdbarch)->builtin_void;
c906108c
SS
7620 }
7621 else
10b3939b
DJ
7622 type_die = follow_die_ref (die, type_attr, cu);
7623
e7c27a73 7624 type = tag_type_to_type (type_die, cu);
c906108c
SS
7625 if (!type)
7626 {
7627 dump_die (type_die);
8a3fe4f8 7628 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7629 cu->objfile->name);
c906108c
SS
7630 }
7631 return type;
7632}
7633
7634/* Return the containing type of the die in question using its
7635 DW_AT_containing_type attribute. */
7636
7637static struct type *
e7c27a73 7638die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7639{
7640 struct type *type = NULL;
7641 struct attribute *type_attr;
7642 struct die_info *type_die = NULL;
c906108c 7643
e142c38c 7644 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7645 if (type_attr)
7646 {
10b3939b 7647 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7648 type = tag_type_to_type (type_die, cu);
c906108c
SS
7649 }
7650 if (!type)
7651 {
7652 if (type_die)
7653 dump_die (type_die);
8a3fe4f8 7654 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7655 cu->objfile->name);
c906108c
SS
7656 }
7657 return type;
7658}
7659
c906108c 7660static struct type *
e7c27a73 7661tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7662{
7663 if (die->type)
7664 {
7665 return die->type;
7666 }
7667 else
7668 {
e7c27a73 7669 read_type_die (die, cu);
c906108c
SS
7670 if (!die->type)
7671 {
7672 dump_die (die);
8a3fe4f8 7673 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7674 cu->objfile->name);
c906108c
SS
7675 }
7676 return die->type;
7677 }
7678}
7679
7680static void
e7c27a73 7681read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7682{
e142c38c 7683 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7684 const char *old_prefix = processing_current_prefix;
7685 struct cleanup *back_to = make_cleanup (xfree, prefix);
7686 processing_current_prefix = prefix;
7687
c906108c
SS
7688 switch (die->tag)
7689 {
7690 case DW_TAG_class_type:
680b30c7 7691 case DW_TAG_interface_type:
c906108c
SS
7692 case DW_TAG_structure_type:
7693 case DW_TAG_union_type:
134d01f1 7694 read_structure_type (die, cu);
c906108c
SS
7695 break;
7696 case DW_TAG_enumeration_type:
134d01f1 7697 read_enumeration_type (die, cu);
c906108c
SS
7698 break;
7699 case DW_TAG_subprogram:
7700 case DW_TAG_subroutine_type:
e7c27a73 7701 read_subroutine_type (die, cu);
c906108c
SS
7702 break;
7703 case DW_TAG_array_type:
e7c27a73 7704 read_array_type (die, cu);
c906108c 7705 break;
72019c9c
GM
7706 case DW_TAG_set_type:
7707 read_set_type (die, cu);
7708 break;
c906108c 7709 case DW_TAG_pointer_type:
e7c27a73 7710 read_tag_pointer_type (die, cu);
c906108c
SS
7711 break;
7712 case DW_TAG_ptr_to_member_type:
e7c27a73 7713 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7714 break;
7715 case DW_TAG_reference_type:
e7c27a73 7716 read_tag_reference_type (die, cu);
c906108c
SS
7717 break;
7718 case DW_TAG_const_type:
e7c27a73 7719 read_tag_const_type (die, cu);
c906108c
SS
7720 break;
7721 case DW_TAG_volatile_type:
e7c27a73 7722 read_tag_volatile_type (die, cu);
c906108c
SS
7723 break;
7724 case DW_TAG_string_type:
e7c27a73 7725 read_tag_string_type (die, cu);
c906108c
SS
7726 break;
7727 case DW_TAG_typedef:
e7c27a73 7728 read_typedef (die, cu);
c906108c 7729 break;
a02abb62
JB
7730 case DW_TAG_subrange_type:
7731 read_subrange_type (die, cu);
7732 break;
c906108c 7733 case DW_TAG_base_type:
e7c27a73 7734 read_base_type (die, cu);
c906108c 7735 break;
81a17f79
JB
7736 case DW_TAG_unspecified_type:
7737 read_unspecified_type (die, cu);
7738 break;
c906108c 7739 default:
a1f5b845 7740 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7741 dwarf_tag_name (die->tag));
c906108c
SS
7742 break;
7743 }
63d06c5c
DC
7744
7745 processing_current_prefix = old_prefix;
7746 do_cleanups (back_to);
7747}
7748
fdde2d81
DC
7749/* Return the name of the namespace/class that DIE is defined within,
7750 or "" if we can't tell. The caller should xfree the result. */
7751
7752/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7753 therein) for an example of how to use this function to deal with
7754 DW_AT_specification. */
7755
7756static char *
e142c38c 7757determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7758{
7759 struct die_info *parent;
7760
987504bb
JJ
7761 if (cu->language != language_cplus
7762 && cu->language != language_java)
63d06c5c
DC
7763 return NULL;
7764
7765 parent = die->parent;
7766
7767 if (parent == NULL)
7768 {
8176b9b8 7769 return xstrdup ("");
63d06c5c
DC
7770 }
7771 else
7772 {
63d06c5c
DC
7773 switch (parent->tag) {
7774 case DW_TAG_namespace:
7775 {
8176b9b8
DC
7776 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7777 before doing this check? */
7778 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7779 {
7780 return xstrdup (TYPE_TAG_NAME (parent->type));
7781 }
7782 else
7783 {
7784 int dummy;
7785 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7786 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7787 namespace_name (parent, &dummy,
987504bb
JJ
7788 cu),
7789 cu);
8176b9b8
DC
7790 xfree (parent_prefix);
7791 return retval;
7792 }
63d06c5c
DC
7793 }
7794 break;
7795 case DW_TAG_class_type:
680b30c7 7796 case DW_TAG_interface_type:
63d06c5c
DC
7797 case DW_TAG_structure_type:
7798 {
8176b9b8 7799 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7800 {
8176b9b8 7801 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7802 }
7803 else
8176b9b8
DC
7804 {
7805 const char *old_prefix = processing_current_prefix;
7806 char *new_prefix = determine_prefix (parent, cu);
7807 char *retval;
7808
7809 processing_current_prefix = new_prefix;
7810 retval = determine_class_name (parent, cu);
7811 processing_current_prefix = old_prefix;
7812
7813 xfree (new_prefix);
7814 return retval;
7815 }
63d06c5c 7816 }
63d06c5c 7817 default:
8176b9b8 7818 return determine_prefix (parent, cu);
63d06c5c 7819 }
63d06c5c
DC
7820 }
7821}
7822
987504bb
JJ
7823/* Return a newly-allocated string formed by concatenating PREFIX and
7824 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7825 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7826 perform an obconcat, otherwise allocate storage for the result. The CU argument
7827 is used to determine the language and hence, the appropriate separator. */
7828
7829#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7830
7831static char *
987504bb
JJ
7832typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7833 struct dwarf2_cu *cu)
63d06c5c 7834{
987504bb 7835 char *sep;
63d06c5c 7836
987504bb
JJ
7837 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7838 sep = "";
7839 else if (cu->language == language_java)
7840 sep = ".";
7841 else
7842 sep = "::";
63d06c5c 7843
987504bb
JJ
7844 if (obs == NULL)
7845 {
7846 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7847 retval[0] = '\0';
7848
7849 if (prefix)
7850 {
7851 strcpy (retval, prefix);
7852 strcat (retval, sep);
7853 }
7854 if (suffix)
7855 strcat (retval, suffix);
7856
63d06c5c
DC
7857 return retval;
7858 }
987504bb
JJ
7859 else
7860 {
7861 /* We have an obstack. */
7862 return obconcat (obs, prefix, sep, suffix);
7863 }
63d06c5c
DC
7864}
7865
c906108c
SS
7866#if 0
7867struct die_info *
fba45db2 7868copy_die (struct die_info *old_die)
c906108c
SS
7869{
7870 struct die_info *new_die;
7871 int i, num_attrs;
7872
7873 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7874 memset (new_die, 0, sizeof (struct die_info));
7875
7876 new_die->tag = old_die->tag;
7877 new_die->has_children = old_die->has_children;
7878 new_die->abbrev = old_die->abbrev;
7879 new_die->offset = old_die->offset;
7880 new_die->type = NULL;
7881
7882 num_attrs = old_die->num_attrs;
7883 new_die->num_attrs = num_attrs;
7884 new_die->attrs = (struct attribute *)
7885 xmalloc (num_attrs * sizeof (struct attribute));
7886
7887 for (i = 0; i < old_die->num_attrs; ++i)
7888 {
7889 new_die->attrs[i].name = old_die->attrs[i].name;
7890 new_die->attrs[i].form = old_die->attrs[i].form;
7891 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7892 }
7893
7894 new_die->next = NULL;
7895 return new_die;
7896}
7897#endif
7898
7899/* Return sibling of die, NULL if no sibling. */
7900
f9aca02d 7901static struct die_info *
fba45db2 7902sibling_die (struct die_info *die)
c906108c 7903{
639d11d3 7904 return die->sibling;
c906108c
SS
7905}
7906
7907/* Get linkage name of a die, return NULL if not found. */
7908
7909static char *
e142c38c 7910dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7911{
7912 struct attribute *attr;
7913
e142c38c 7914 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7915 if (attr && DW_STRING (attr))
7916 return DW_STRING (attr);
e142c38c 7917 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7918 if (attr && DW_STRING (attr))
7919 return DW_STRING (attr);
7920 return NULL;
7921}
7922
9219021c
DC
7923/* Get name of a die, return NULL if not found. */
7924
7925static char *
e142c38c 7926dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7927{
7928 struct attribute *attr;
7929
e142c38c 7930 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7931 if (attr && DW_STRING (attr))
7932 return DW_STRING (attr);
7933 return NULL;
7934}
7935
7936/* Return the die that this die in an extension of, or NULL if there
7937 is none. */
7938
7939static struct die_info *
e142c38c 7940dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7941{
7942 struct attribute *attr;
9219021c 7943
e142c38c 7944 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7945 if (attr == NULL)
7946 return NULL;
7947
10b3939b 7948 return follow_die_ref (die, attr, cu);
9219021c
DC
7949}
7950
c906108c
SS
7951/* Convert a DIE tag into its string name. */
7952
7953static char *
aa1ee363 7954dwarf_tag_name (unsigned tag)
c906108c
SS
7955{
7956 switch (tag)
7957 {
7958 case DW_TAG_padding:
7959 return "DW_TAG_padding";
7960 case DW_TAG_array_type:
7961 return "DW_TAG_array_type";
7962 case DW_TAG_class_type:
7963 return "DW_TAG_class_type";
7964 case DW_TAG_entry_point:
7965 return "DW_TAG_entry_point";
7966 case DW_TAG_enumeration_type:
7967 return "DW_TAG_enumeration_type";
7968 case DW_TAG_formal_parameter:
7969 return "DW_TAG_formal_parameter";
7970 case DW_TAG_imported_declaration:
7971 return "DW_TAG_imported_declaration";
7972 case DW_TAG_label:
7973 return "DW_TAG_label";
7974 case DW_TAG_lexical_block:
7975 return "DW_TAG_lexical_block";
7976 case DW_TAG_member:
7977 return "DW_TAG_member";
7978 case DW_TAG_pointer_type:
7979 return "DW_TAG_pointer_type";
7980 case DW_TAG_reference_type:
7981 return "DW_TAG_reference_type";
7982 case DW_TAG_compile_unit:
7983 return "DW_TAG_compile_unit";
7984 case DW_TAG_string_type:
7985 return "DW_TAG_string_type";
7986 case DW_TAG_structure_type:
7987 return "DW_TAG_structure_type";
7988 case DW_TAG_subroutine_type:
7989 return "DW_TAG_subroutine_type";
7990 case DW_TAG_typedef:
7991 return "DW_TAG_typedef";
7992 case DW_TAG_union_type:
7993 return "DW_TAG_union_type";
7994 case DW_TAG_unspecified_parameters:
7995 return "DW_TAG_unspecified_parameters";
7996 case DW_TAG_variant:
7997 return "DW_TAG_variant";
7998 case DW_TAG_common_block:
7999 return "DW_TAG_common_block";
8000 case DW_TAG_common_inclusion:
8001 return "DW_TAG_common_inclusion";
8002 case DW_TAG_inheritance:
8003 return "DW_TAG_inheritance";
8004 case DW_TAG_inlined_subroutine:
8005 return "DW_TAG_inlined_subroutine";
8006 case DW_TAG_module:
8007 return "DW_TAG_module";
8008 case DW_TAG_ptr_to_member_type:
8009 return "DW_TAG_ptr_to_member_type";
8010 case DW_TAG_set_type:
8011 return "DW_TAG_set_type";
8012 case DW_TAG_subrange_type:
8013 return "DW_TAG_subrange_type";
8014 case DW_TAG_with_stmt:
8015 return "DW_TAG_with_stmt";
8016 case DW_TAG_access_declaration:
8017 return "DW_TAG_access_declaration";
8018 case DW_TAG_base_type:
8019 return "DW_TAG_base_type";
8020 case DW_TAG_catch_block:
8021 return "DW_TAG_catch_block";
8022 case DW_TAG_const_type:
8023 return "DW_TAG_const_type";
8024 case DW_TAG_constant:
8025 return "DW_TAG_constant";
8026 case DW_TAG_enumerator:
8027 return "DW_TAG_enumerator";
8028 case DW_TAG_file_type:
8029 return "DW_TAG_file_type";
8030 case DW_TAG_friend:
8031 return "DW_TAG_friend";
8032 case DW_TAG_namelist:
8033 return "DW_TAG_namelist";
8034 case DW_TAG_namelist_item:
8035 return "DW_TAG_namelist_item";
8036 case DW_TAG_packed_type:
8037 return "DW_TAG_packed_type";
8038 case DW_TAG_subprogram:
8039 return "DW_TAG_subprogram";
8040 case DW_TAG_template_type_param:
8041 return "DW_TAG_template_type_param";
8042 case DW_TAG_template_value_param:
8043 return "DW_TAG_template_value_param";
8044 case DW_TAG_thrown_type:
8045 return "DW_TAG_thrown_type";
8046 case DW_TAG_try_block:
8047 return "DW_TAG_try_block";
8048 case DW_TAG_variant_part:
8049 return "DW_TAG_variant_part";
8050 case DW_TAG_variable:
8051 return "DW_TAG_variable";
8052 case DW_TAG_volatile_type:
8053 return "DW_TAG_volatile_type";
d9fa45fe
DC
8054 case DW_TAG_dwarf_procedure:
8055 return "DW_TAG_dwarf_procedure";
8056 case DW_TAG_restrict_type:
8057 return "DW_TAG_restrict_type";
8058 case DW_TAG_interface_type:
8059 return "DW_TAG_interface_type";
8060 case DW_TAG_namespace:
8061 return "DW_TAG_namespace";
8062 case DW_TAG_imported_module:
8063 return "DW_TAG_imported_module";
8064 case DW_TAG_unspecified_type:
8065 return "DW_TAG_unspecified_type";
8066 case DW_TAG_partial_unit:
8067 return "DW_TAG_partial_unit";
8068 case DW_TAG_imported_unit:
8069 return "DW_TAG_imported_unit";
b7619582
GF
8070 case DW_TAG_condition:
8071 return "DW_TAG_condition";
8072 case DW_TAG_shared_type:
8073 return "DW_TAG_shared_type";
c906108c
SS
8074 case DW_TAG_MIPS_loop:
8075 return "DW_TAG_MIPS_loop";
b7619582
GF
8076 case DW_TAG_HP_array_descriptor:
8077 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8078 case DW_TAG_format_label:
8079 return "DW_TAG_format_label";
8080 case DW_TAG_function_template:
8081 return "DW_TAG_function_template";
8082 case DW_TAG_class_template:
8083 return "DW_TAG_class_template";
b7619582
GF
8084 case DW_TAG_GNU_BINCL:
8085 return "DW_TAG_GNU_BINCL";
8086 case DW_TAG_GNU_EINCL:
8087 return "DW_TAG_GNU_EINCL";
8088 case DW_TAG_upc_shared_type:
8089 return "DW_TAG_upc_shared_type";
8090 case DW_TAG_upc_strict_type:
8091 return "DW_TAG_upc_strict_type";
8092 case DW_TAG_upc_relaxed_type:
8093 return "DW_TAG_upc_relaxed_type";
8094 case DW_TAG_PGI_kanji_type:
8095 return "DW_TAG_PGI_kanji_type";
8096 case DW_TAG_PGI_interface_block:
8097 return "DW_TAG_PGI_interface_block";
c906108c
SS
8098 default:
8099 return "DW_TAG_<unknown>";
8100 }
8101}
8102
8103/* Convert a DWARF attribute code into its string name. */
8104
8105static char *
aa1ee363 8106dwarf_attr_name (unsigned attr)
c906108c
SS
8107{
8108 switch (attr)
8109 {
8110 case DW_AT_sibling:
8111 return "DW_AT_sibling";
8112 case DW_AT_location:
8113 return "DW_AT_location";
8114 case DW_AT_name:
8115 return "DW_AT_name";
8116 case DW_AT_ordering:
8117 return "DW_AT_ordering";
8118 case DW_AT_subscr_data:
8119 return "DW_AT_subscr_data";
8120 case DW_AT_byte_size:
8121 return "DW_AT_byte_size";
8122 case DW_AT_bit_offset:
8123 return "DW_AT_bit_offset";
8124 case DW_AT_bit_size:
8125 return "DW_AT_bit_size";
8126 case DW_AT_element_list:
8127 return "DW_AT_element_list";
8128 case DW_AT_stmt_list:
8129 return "DW_AT_stmt_list";
8130 case DW_AT_low_pc:
8131 return "DW_AT_low_pc";
8132 case DW_AT_high_pc:
8133 return "DW_AT_high_pc";
8134 case DW_AT_language:
8135 return "DW_AT_language";
8136 case DW_AT_member:
8137 return "DW_AT_member";
8138 case DW_AT_discr:
8139 return "DW_AT_discr";
8140 case DW_AT_discr_value:
8141 return "DW_AT_discr_value";
8142 case DW_AT_visibility:
8143 return "DW_AT_visibility";
8144 case DW_AT_import:
8145 return "DW_AT_import";
8146 case DW_AT_string_length:
8147 return "DW_AT_string_length";
8148 case DW_AT_common_reference:
8149 return "DW_AT_common_reference";
8150 case DW_AT_comp_dir:
8151 return "DW_AT_comp_dir";
8152 case DW_AT_const_value:
8153 return "DW_AT_const_value";
8154 case DW_AT_containing_type:
8155 return "DW_AT_containing_type";
8156 case DW_AT_default_value:
8157 return "DW_AT_default_value";
8158 case DW_AT_inline:
8159 return "DW_AT_inline";
8160 case DW_AT_is_optional:
8161 return "DW_AT_is_optional";
8162 case DW_AT_lower_bound:
8163 return "DW_AT_lower_bound";
8164 case DW_AT_producer:
8165 return "DW_AT_producer";
8166 case DW_AT_prototyped:
8167 return "DW_AT_prototyped";
8168 case DW_AT_return_addr:
8169 return "DW_AT_return_addr";
8170 case DW_AT_start_scope:
8171 return "DW_AT_start_scope";
09fa0d7c
JK
8172 case DW_AT_bit_stride:
8173 return "DW_AT_bit_stride";
c906108c
SS
8174 case DW_AT_upper_bound:
8175 return "DW_AT_upper_bound";
8176 case DW_AT_abstract_origin:
8177 return "DW_AT_abstract_origin";
8178 case DW_AT_accessibility:
8179 return "DW_AT_accessibility";
8180 case DW_AT_address_class:
8181 return "DW_AT_address_class";
8182 case DW_AT_artificial:
8183 return "DW_AT_artificial";
8184 case DW_AT_base_types:
8185 return "DW_AT_base_types";
8186 case DW_AT_calling_convention:
8187 return "DW_AT_calling_convention";
8188 case DW_AT_count:
8189 return "DW_AT_count";
8190 case DW_AT_data_member_location:
8191 return "DW_AT_data_member_location";
8192 case DW_AT_decl_column:
8193 return "DW_AT_decl_column";
8194 case DW_AT_decl_file:
8195 return "DW_AT_decl_file";
8196 case DW_AT_decl_line:
8197 return "DW_AT_decl_line";
8198 case DW_AT_declaration:
8199 return "DW_AT_declaration";
8200 case DW_AT_discr_list:
8201 return "DW_AT_discr_list";
8202 case DW_AT_encoding:
8203 return "DW_AT_encoding";
8204 case DW_AT_external:
8205 return "DW_AT_external";
8206 case DW_AT_frame_base:
8207 return "DW_AT_frame_base";
8208 case DW_AT_friend:
8209 return "DW_AT_friend";
8210 case DW_AT_identifier_case:
8211 return "DW_AT_identifier_case";
8212 case DW_AT_macro_info:
8213 return "DW_AT_macro_info";
8214 case DW_AT_namelist_items:
8215 return "DW_AT_namelist_items";
8216 case DW_AT_priority:
8217 return "DW_AT_priority";
8218 case DW_AT_segment:
8219 return "DW_AT_segment";
8220 case DW_AT_specification:
8221 return "DW_AT_specification";
8222 case DW_AT_static_link:
8223 return "DW_AT_static_link";
8224 case DW_AT_type:
8225 return "DW_AT_type";
8226 case DW_AT_use_location:
8227 return "DW_AT_use_location";
8228 case DW_AT_variable_parameter:
8229 return "DW_AT_variable_parameter";
8230 case DW_AT_virtuality:
8231 return "DW_AT_virtuality";
8232 case DW_AT_vtable_elem_location:
8233 return "DW_AT_vtable_elem_location";
b7619582 8234 /* DWARF 3 values. */
d9fa45fe
DC
8235 case DW_AT_allocated:
8236 return "DW_AT_allocated";
8237 case DW_AT_associated:
8238 return "DW_AT_associated";
8239 case DW_AT_data_location:
8240 return "DW_AT_data_location";
09fa0d7c
JK
8241 case DW_AT_byte_stride:
8242 return "DW_AT_byte_stride";
d9fa45fe
DC
8243 case DW_AT_entry_pc:
8244 return "DW_AT_entry_pc";
8245 case DW_AT_use_UTF8:
8246 return "DW_AT_use_UTF8";
8247 case DW_AT_extension:
8248 return "DW_AT_extension";
8249 case DW_AT_ranges:
8250 return "DW_AT_ranges";
8251 case DW_AT_trampoline:
8252 return "DW_AT_trampoline";
8253 case DW_AT_call_column:
8254 return "DW_AT_call_column";
8255 case DW_AT_call_file:
8256 return "DW_AT_call_file";
8257 case DW_AT_call_line:
8258 return "DW_AT_call_line";
b7619582
GF
8259 case DW_AT_description:
8260 return "DW_AT_description";
8261 case DW_AT_binary_scale:
8262 return "DW_AT_binary_scale";
8263 case DW_AT_decimal_scale:
8264 return "DW_AT_decimal_scale";
8265 case DW_AT_small:
8266 return "DW_AT_small";
8267 case DW_AT_decimal_sign:
8268 return "DW_AT_decimal_sign";
8269 case DW_AT_digit_count:
8270 return "DW_AT_digit_count";
8271 case DW_AT_picture_string:
8272 return "DW_AT_picture_string";
8273 case DW_AT_mutable:
8274 return "DW_AT_mutable";
8275 case DW_AT_threads_scaled:
8276 return "DW_AT_threads_scaled";
8277 case DW_AT_explicit:
8278 return "DW_AT_explicit";
8279 case DW_AT_object_pointer:
8280 return "DW_AT_object_pointer";
8281 case DW_AT_endianity:
8282 return "DW_AT_endianity";
8283 case DW_AT_elemental:
8284 return "DW_AT_elemental";
8285 case DW_AT_pure:
8286 return "DW_AT_pure";
8287 case DW_AT_recursive:
8288 return "DW_AT_recursive";
c906108c 8289#ifdef MIPS
b7619582 8290 /* SGI/MIPS extensions. */
c906108c
SS
8291 case DW_AT_MIPS_fde:
8292 return "DW_AT_MIPS_fde";
8293 case DW_AT_MIPS_loop_begin:
8294 return "DW_AT_MIPS_loop_begin";
8295 case DW_AT_MIPS_tail_loop_begin:
8296 return "DW_AT_MIPS_tail_loop_begin";
8297 case DW_AT_MIPS_epilog_begin:
8298 return "DW_AT_MIPS_epilog_begin";
8299 case DW_AT_MIPS_loop_unroll_factor:
8300 return "DW_AT_MIPS_loop_unroll_factor";
8301 case DW_AT_MIPS_software_pipeline_depth:
8302 return "DW_AT_MIPS_software_pipeline_depth";
8303 case DW_AT_MIPS_linkage_name:
8304 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8305 case DW_AT_MIPS_stride:
8306 return "DW_AT_MIPS_stride";
8307 case DW_AT_MIPS_abstract_name:
8308 return "DW_AT_MIPS_abstract_name";
8309 case DW_AT_MIPS_clone_origin:
8310 return "DW_AT_MIPS_clone_origin";
8311 case DW_AT_MIPS_has_inlines:
8312 return "DW_AT_MIPS_has_inlines";
8313#endif
8314 /* HP extensions. */
8315 case DW_AT_HP_block_index:
8316 return "DW_AT_HP_block_index";
8317 case DW_AT_HP_unmodifiable:
8318 return "DW_AT_HP_unmodifiable";
8319 case DW_AT_HP_actuals_stmt_list:
8320 return "DW_AT_HP_actuals_stmt_list";
8321 case DW_AT_HP_proc_per_section:
8322 return "DW_AT_HP_proc_per_section";
8323 case DW_AT_HP_raw_data_ptr:
8324 return "DW_AT_HP_raw_data_ptr";
8325 case DW_AT_HP_pass_by_reference:
8326 return "DW_AT_HP_pass_by_reference";
8327 case DW_AT_HP_opt_level:
8328 return "DW_AT_HP_opt_level";
8329 case DW_AT_HP_prof_version_id:
8330 return "DW_AT_HP_prof_version_id";
8331 case DW_AT_HP_opt_flags:
8332 return "DW_AT_HP_opt_flags";
8333 case DW_AT_HP_cold_region_low_pc:
8334 return "DW_AT_HP_cold_region_low_pc";
8335 case DW_AT_HP_cold_region_high_pc:
8336 return "DW_AT_HP_cold_region_high_pc";
8337 case DW_AT_HP_all_variables_modifiable:
8338 return "DW_AT_HP_all_variables_modifiable";
8339 case DW_AT_HP_linkage_name:
8340 return "DW_AT_HP_linkage_name";
8341 case DW_AT_HP_prof_flags:
8342 return "DW_AT_HP_prof_flags";
8343 /* GNU extensions. */
c906108c
SS
8344 case DW_AT_sf_names:
8345 return "DW_AT_sf_names";
8346 case DW_AT_src_info:
8347 return "DW_AT_src_info";
8348 case DW_AT_mac_info:
8349 return "DW_AT_mac_info";
8350 case DW_AT_src_coords:
8351 return "DW_AT_src_coords";
8352 case DW_AT_body_begin:
8353 return "DW_AT_body_begin";
8354 case DW_AT_body_end:
8355 return "DW_AT_body_end";
f5f8a009
EZ
8356 case DW_AT_GNU_vector:
8357 return "DW_AT_GNU_vector";
b7619582
GF
8358 /* VMS extensions. */
8359 case DW_AT_VMS_rtnbeg_pd_address:
8360 return "DW_AT_VMS_rtnbeg_pd_address";
8361 /* UPC extension. */
8362 case DW_AT_upc_threads_scaled:
8363 return "DW_AT_upc_threads_scaled";
8364 /* PGI (STMicroelectronics) extensions. */
8365 case DW_AT_PGI_lbase:
8366 return "DW_AT_PGI_lbase";
8367 case DW_AT_PGI_soffset:
8368 return "DW_AT_PGI_soffset";
8369 case DW_AT_PGI_lstride:
8370 return "DW_AT_PGI_lstride";
c906108c
SS
8371 default:
8372 return "DW_AT_<unknown>";
8373 }
8374}
8375
8376/* Convert a DWARF value form code into its string name. */
8377
8378static char *
aa1ee363 8379dwarf_form_name (unsigned form)
c906108c
SS
8380{
8381 switch (form)
8382 {
8383 case DW_FORM_addr:
8384 return "DW_FORM_addr";
8385 case DW_FORM_block2:
8386 return "DW_FORM_block2";
8387 case DW_FORM_block4:
8388 return "DW_FORM_block4";
8389 case DW_FORM_data2:
8390 return "DW_FORM_data2";
8391 case DW_FORM_data4:
8392 return "DW_FORM_data4";
8393 case DW_FORM_data8:
8394 return "DW_FORM_data8";
8395 case DW_FORM_string:
8396 return "DW_FORM_string";
8397 case DW_FORM_block:
8398 return "DW_FORM_block";
8399 case DW_FORM_block1:
8400 return "DW_FORM_block1";
8401 case DW_FORM_data1:
8402 return "DW_FORM_data1";
8403 case DW_FORM_flag:
8404 return "DW_FORM_flag";
8405 case DW_FORM_sdata:
8406 return "DW_FORM_sdata";
8407 case DW_FORM_strp:
8408 return "DW_FORM_strp";
8409 case DW_FORM_udata:
8410 return "DW_FORM_udata";
8411 case DW_FORM_ref_addr:
8412 return "DW_FORM_ref_addr";
8413 case DW_FORM_ref1:
8414 return "DW_FORM_ref1";
8415 case DW_FORM_ref2:
8416 return "DW_FORM_ref2";
8417 case DW_FORM_ref4:
8418 return "DW_FORM_ref4";
8419 case DW_FORM_ref8:
8420 return "DW_FORM_ref8";
8421 case DW_FORM_ref_udata:
8422 return "DW_FORM_ref_udata";
8423 case DW_FORM_indirect:
8424 return "DW_FORM_indirect";
8425 default:
8426 return "DW_FORM_<unknown>";
8427 }
8428}
8429
8430/* Convert a DWARF stack opcode into its string name. */
8431
8432static char *
aa1ee363 8433dwarf_stack_op_name (unsigned op)
c906108c
SS
8434{
8435 switch (op)
8436 {
8437 case DW_OP_addr:
8438 return "DW_OP_addr";
8439 case DW_OP_deref:
8440 return "DW_OP_deref";
8441 case DW_OP_const1u:
8442 return "DW_OP_const1u";
8443 case DW_OP_const1s:
8444 return "DW_OP_const1s";
8445 case DW_OP_const2u:
8446 return "DW_OP_const2u";
8447 case DW_OP_const2s:
8448 return "DW_OP_const2s";
8449 case DW_OP_const4u:
8450 return "DW_OP_const4u";
8451 case DW_OP_const4s:
8452 return "DW_OP_const4s";
8453 case DW_OP_const8u:
8454 return "DW_OP_const8u";
8455 case DW_OP_const8s:
8456 return "DW_OP_const8s";
8457 case DW_OP_constu:
8458 return "DW_OP_constu";
8459 case DW_OP_consts:
8460 return "DW_OP_consts";
8461 case DW_OP_dup:
8462 return "DW_OP_dup";
8463 case DW_OP_drop:
8464 return "DW_OP_drop";
8465 case DW_OP_over:
8466 return "DW_OP_over";
8467 case DW_OP_pick:
8468 return "DW_OP_pick";
8469 case DW_OP_swap:
8470 return "DW_OP_swap";
8471 case DW_OP_rot:
8472 return "DW_OP_rot";
8473 case DW_OP_xderef:
8474 return "DW_OP_xderef";
8475 case DW_OP_abs:
8476 return "DW_OP_abs";
8477 case DW_OP_and:
8478 return "DW_OP_and";
8479 case DW_OP_div:
8480 return "DW_OP_div";
8481 case DW_OP_minus:
8482 return "DW_OP_minus";
8483 case DW_OP_mod:
8484 return "DW_OP_mod";
8485 case DW_OP_mul:
8486 return "DW_OP_mul";
8487 case DW_OP_neg:
8488 return "DW_OP_neg";
8489 case DW_OP_not:
8490 return "DW_OP_not";
8491 case DW_OP_or:
8492 return "DW_OP_or";
8493 case DW_OP_plus:
8494 return "DW_OP_plus";
8495 case DW_OP_plus_uconst:
8496 return "DW_OP_plus_uconst";
8497 case DW_OP_shl:
8498 return "DW_OP_shl";
8499 case DW_OP_shr:
8500 return "DW_OP_shr";
8501 case DW_OP_shra:
8502 return "DW_OP_shra";
8503 case DW_OP_xor:
8504 return "DW_OP_xor";
8505 case DW_OP_bra:
8506 return "DW_OP_bra";
8507 case DW_OP_eq:
8508 return "DW_OP_eq";
8509 case DW_OP_ge:
8510 return "DW_OP_ge";
8511 case DW_OP_gt:
8512 return "DW_OP_gt";
8513 case DW_OP_le:
8514 return "DW_OP_le";
8515 case DW_OP_lt:
8516 return "DW_OP_lt";
8517 case DW_OP_ne:
8518 return "DW_OP_ne";
8519 case DW_OP_skip:
8520 return "DW_OP_skip";
8521 case DW_OP_lit0:
8522 return "DW_OP_lit0";
8523 case DW_OP_lit1:
8524 return "DW_OP_lit1";
8525 case DW_OP_lit2:
8526 return "DW_OP_lit2";
8527 case DW_OP_lit3:
8528 return "DW_OP_lit3";
8529 case DW_OP_lit4:
8530 return "DW_OP_lit4";
8531 case DW_OP_lit5:
8532 return "DW_OP_lit5";
8533 case DW_OP_lit6:
8534 return "DW_OP_lit6";
8535 case DW_OP_lit7:
8536 return "DW_OP_lit7";
8537 case DW_OP_lit8:
8538 return "DW_OP_lit8";
8539 case DW_OP_lit9:
8540 return "DW_OP_lit9";
8541 case DW_OP_lit10:
8542 return "DW_OP_lit10";
8543 case DW_OP_lit11:
8544 return "DW_OP_lit11";
8545 case DW_OP_lit12:
8546 return "DW_OP_lit12";
8547 case DW_OP_lit13:
8548 return "DW_OP_lit13";
8549 case DW_OP_lit14:
8550 return "DW_OP_lit14";
8551 case DW_OP_lit15:
8552 return "DW_OP_lit15";
8553 case DW_OP_lit16:
8554 return "DW_OP_lit16";
8555 case DW_OP_lit17:
8556 return "DW_OP_lit17";
8557 case DW_OP_lit18:
8558 return "DW_OP_lit18";
8559 case DW_OP_lit19:
8560 return "DW_OP_lit19";
8561 case DW_OP_lit20:
8562 return "DW_OP_lit20";
8563 case DW_OP_lit21:
8564 return "DW_OP_lit21";
8565 case DW_OP_lit22:
8566 return "DW_OP_lit22";
8567 case DW_OP_lit23:
8568 return "DW_OP_lit23";
8569 case DW_OP_lit24:
8570 return "DW_OP_lit24";
8571 case DW_OP_lit25:
8572 return "DW_OP_lit25";
8573 case DW_OP_lit26:
8574 return "DW_OP_lit26";
8575 case DW_OP_lit27:
8576 return "DW_OP_lit27";
8577 case DW_OP_lit28:
8578 return "DW_OP_lit28";
8579 case DW_OP_lit29:
8580 return "DW_OP_lit29";
8581 case DW_OP_lit30:
8582 return "DW_OP_lit30";
8583 case DW_OP_lit31:
8584 return "DW_OP_lit31";
8585 case DW_OP_reg0:
8586 return "DW_OP_reg0";
8587 case DW_OP_reg1:
8588 return "DW_OP_reg1";
8589 case DW_OP_reg2:
8590 return "DW_OP_reg2";
8591 case DW_OP_reg3:
8592 return "DW_OP_reg3";
8593 case DW_OP_reg4:
8594 return "DW_OP_reg4";
8595 case DW_OP_reg5:
8596 return "DW_OP_reg5";
8597 case DW_OP_reg6:
8598 return "DW_OP_reg6";
8599 case DW_OP_reg7:
8600 return "DW_OP_reg7";
8601 case DW_OP_reg8:
8602 return "DW_OP_reg8";
8603 case DW_OP_reg9:
8604 return "DW_OP_reg9";
8605 case DW_OP_reg10:
8606 return "DW_OP_reg10";
8607 case DW_OP_reg11:
8608 return "DW_OP_reg11";
8609 case DW_OP_reg12:
8610 return "DW_OP_reg12";
8611 case DW_OP_reg13:
8612 return "DW_OP_reg13";
8613 case DW_OP_reg14:
8614 return "DW_OP_reg14";
8615 case DW_OP_reg15:
8616 return "DW_OP_reg15";
8617 case DW_OP_reg16:
8618 return "DW_OP_reg16";
8619 case DW_OP_reg17:
8620 return "DW_OP_reg17";
8621 case DW_OP_reg18:
8622 return "DW_OP_reg18";
8623 case DW_OP_reg19:
8624 return "DW_OP_reg19";
8625 case DW_OP_reg20:
8626 return "DW_OP_reg20";
8627 case DW_OP_reg21:
8628 return "DW_OP_reg21";
8629 case DW_OP_reg22:
8630 return "DW_OP_reg22";
8631 case DW_OP_reg23:
8632 return "DW_OP_reg23";
8633 case DW_OP_reg24:
8634 return "DW_OP_reg24";
8635 case DW_OP_reg25:
8636 return "DW_OP_reg25";
8637 case DW_OP_reg26:
8638 return "DW_OP_reg26";
8639 case DW_OP_reg27:
8640 return "DW_OP_reg27";
8641 case DW_OP_reg28:
8642 return "DW_OP_reg28";
8643 case DW_OP_reg29:
8644 return "DW_OP_reg29";
8645 case DW_OP_reg30:
8646 return "DW_OP_reg30";
8647 case DW_OP_reg31:
8648 return "DW_OP_reg31";
8649 case DW_OP_breg0:
8650 return "DW_OP_breg0";
8651 case DW_OP_breg1:
8652 return "DW_OP_breg1";
8653 case DW_OP_breg2:
8654 return "DW_OP_breg2";
8655 case DW_OP_breg3:
8656 return "DW_OP_breg3";
8657 case DW_OP_breg4:
8658 return "DW_OP_breg4";
8659 case DW_OP_breg5:
8660 return "DW_OP_breg5";
8661 case DW_OP_breg6:
8662 return "DW_OP_breg6";
8663 case DW_OP_breg7:
8664 return "DW_OP_breg7";
8665 case DW_OP_breg8:
8666 return "DW_OP_breg8";
8667 case DW_OP_breg9:
8668 return "DW_OP_breg9";
8669 case DW_OP_breg10:
8670 return "DW_OP_breg10";
8671 case DW_OP_breg11:
8672 return "DW_OP_breg11";
8673 case DW_OP_breg12:
8674 return "DW_OP_breg12";
8675 case DW_OP_breg13:
8676 return "DW_OP_breg13";
8677 case DW_OP_breg14:
8678 return "DW_OP_breg14";
8679 case DW_OP_breg15:
8680 return "DW_OP_breg15";
8681 case DW_OP_breg16:
8682 return "DW_OP_breg16";
8683 case DW_OP_breg17:
8684 return "DW_OP_breg17";
8685 case DW_OP_breg18:
8686 return "DW_OP_breg18";
8687 case DW_OP_breg19:
8688 return "DW_OP_breg19";
8689 case DW_OP_breg20:
8690 return "DW_OP_breg20";
8691 case DW_OP_breg21:
8692 return "DW_OP_breg21";
8693 case DW_OP_breg22:
8694 return "DW_OP_breg22";
8695 case DW_OP_breg23:
8696 return "DW_OP_breg23";
8697 case DW_OP_breg24:
8698 return "DW_OP_breg24";
8699 case DW_OP_breg25:
8700 return "DW_OP_breg25";
8701 case DW_OP_breg26:
8702 return "DW_OP_breg26";
8703 case DW_OP_breg27:
8704 return "DW_OP_breg27";
8705 case DW_OP_breg28:
8706 return "DW_OP_breg28";
8707 case DW_OP_breg29:
8708 return "DW_OP_breg29";
8709 case DW_OP_breg30:
8710 return "DW_OP_breg30";
8711 case DW_OP_breg31:
8712 return "DW_OP_breg31";
8713 case DW_OP_regx:
8714 return "DW_OP_regx";
8715 case DW_OP_fbreg:
8716 return "DW_OP_fbreg";
8717 case DW_OP_bregx:
8718 return "DW_OP_bregx";
8719 case DW_OP_piece:
8720 return "DW_OP_piece";
8721 case DW_OP_deref_size:
8722 return "DW_OP_deref_size";
8723 case DW_OP_xderef_size:
8724 return "DW_OP_xderef_size";
8725 case DW_OP_nop:
8726 return "DW_OP_nop";
b7619582 8727 /* DWARF 3 extensions. */
ed348acc
EZ
8728 case DW_OP_push_object_address:
8729 return "DW_OP_push_object_address";
8730 case DW_OP_call2:
8731 return "DW_OP_call2";
8732 case DW_OP_call4:
8733 return "DW_OP_call4";
8734 case DW_OP_call_ref:
8735 return "DW_OP_call_ref";
b7619582
GF
8736 /* GNU extensions. */
8737 case DW_OP_form_tls_address:
8738 return "DW_OP_form_tls_address";
8739 case DW_OP_call_frame_cfa:
8740 return "DW_OP_call_frame_cfa";
8741 case DW_OP_bit_piece:
8742 return "DW_OP_bit_piece";
ed348acc
EZ
8743 case DW_OP_GNU_push_tls_address:
8744 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8745 case DW_OP_GNU_uninit:
8746 return "DW_OP_GNU_uninit";
b7619582
GF
8747 /* HP extensions. */
8748 case DW_OP_HP_is_value:
8749 return "DW_OP_HP_is_value";
8750 case DW_OP_HP_fltconst4:
8751 return "DW_OP_HP_fltconst4";
8752 case DW_OP_HP_fltconst8:
8753 return "DW_OP_HP_fltconst8";
8754 case DW_OP_HP_mod_range:
8755 return "DW_OP_HP_mod_range";
8756 case DW_OP_HP_unmod_range:
8757 return "DW_OP_HP_unmod_range";
8758 case DW_OP_HP_tls:
8759 return "DW_OP_HP_tls";
c906108c
SS
8760 default:
8761 return "OP_<unknown>";
8762 }
8763}
8764
8765static char *
fba45db2 8766dwarf_bool_name (unsigned mybool)
c906108c
SS
8767{
8768 if (mybool)
8769 return "TRUE";
8770 else
8771 return "FALSE";
8772}
8773
8774/* Convert a DWARF type code into its string name. */
8775
8776static char *
aa1ee363 8777dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8778{
8779 switch (enc)
8780 {
b7619582
GF
8781 case DW_ATE_void:
8782 return "DW_ATE_void";
c906108c
SS
8783 case DW_ATE_address:
8784 return "DW_ATE_address";
8785 case DW_ATE_boolean:
8786 return "DW_ATE_boolean";
8787 case DW_ATE_complex_float:
8788 return "DW_ATE_complex_float";
8789 case DW_ATE_float:
8790 return "DW_ATE_float";
8791 case DW_ATE_signed:
8792 return "DW_ATE_signed";
8793 case DW_ATE_signed_char:
8794 return "DW_ATE_signed_char";
8795 case DW_ATE_unsigned:
8796 return "DW_ATE_unsigned";
8797 case DW_ATE_unsigned_char:
8798 return "DW_ATE_unsigned_char";
b7619582 8799 /* DWARF 3. */
d9fa45fe
DC
8800 case DW_ATE_imaginary_float:
8801 return "DW_ATE_imaginary_float";
b7619582
GF
8802 case DW_ATE_packed_decimal:
8803 return "DW_ATE_packed_decimal";
8804 case DW_ATE_numeric_string:
8805 return "DW_ATE_numeric_string";
8806 case DW_ATE_edited:
8807 return "DW_ATE_edited";
8808 case DW_ATE_signed_fixed:
8809 return "DW_ATE_signed_fixed";
8810 case DW_ATE_unsigned_fixed:
8811 return "DW_ATE_unsigned_fixed";
8812 case DW_ATE_decimal_float:
8813 return "DW_ATE_decimal_float";
8814 /* HP extensions. */
8815 case DW_ATE_HP_float80:
8816 return "DW_ATE_HP_float80";
8817 case DW_ATE_HP_complex_float80:
8818 return "DW_ATE_HP_complex_float80";
8819 case DW_ATE_HP_float128:
8820 return "DW_ATE_HP_float128";
8821 case DW_ATE_HP_complex_float128:
8822 return "DW_ATE_HP_complex_float128";
8823 case DW_ATE_HP_floathpintel:
8824 return "DW_ATE_HP_floathpintel";
8825 case DW_ATE_HP_imaginary_float80:
8826 return "DW_ATE_HP_imaginary_float80";
8827 case DW_ATE_HP_imaginary_float128:
8828 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8829 default:
8830 return "DW_ATE_<unknown>";
8831 }
8832}
8833
8834/* Convert a DWARF call frame info operation to its string name. */
8835
8836#if 0
8837static char *
aa1ee363 8838dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8839{
8840 switch (cfi_opc)
8841 {
8842 case DW_CFA_advance_loc:
8843 return "DW_CFA_advance_loc";
8844 case DW_CFA_offset:
8845 return "DW_CFA_offset";
8846 case DW_CFA_restore:
8847 return "DW_CFA_restore";
8848 case DW_CFA_nop:
8849 return "DW_CFA_nop";
8850 case DW_CFA_set_loc:
8851 return "DW_CFA_set_loc";
8852 case DW_CFA_advance_loc1:
8853 return "DW_CFA_advance_loc1";
8854 case DW_CFA_advance_loc2:
8855 return "DW_CFA_advance_loc2";
8856 case DW_CFA_advance_loc4:
8857 return "DW_CFA_advance_loc4";
8858 case DW_CFA_offset_extended:
8859 return "DW_CFA_offset_extended";
8860 case DW_CFA_restore_extended:
8861 return "DW_CFA_restore_extended";
8862 case DW_CFA_undefined:
8863 return "DW_CFA_undefined";
8864 case DW_CFA_same_value:
8865 return "DW_CFA_same_value";
8866 case DW_CFA_register:
8867 return "DW_CFA_register";
8868 case DW_CFA_remember_state:
8869 return "DW_CFA_remember_state";
8870 case DW_CFA_restore_state:
8871 return "DW_CFA_restore_state";
8872 case DW_CFA_def_cfa:
8873 return "DW_CFA_def_cfa";
8874 case DW_CFA_def_cfa_register:
8875 return "DW_CFA_def_cfa_register";
8876 case DW_CFA_def_cfa_offset:
8877 return "DW_CFA_def_cfa_offset";
b7619582 8878 /* DWARF 3. */
985cb1a3
JM
8879 case DW_CFA_def_cfa_expression:
8880 return "DW_CFA_def_cfa_expression";
8881 case DW_CFA_expression:
8882 return "DW_CFA_expression";
8883 case DW_CFA_offset_extended_sf:
8884 return "DW_CFA_offset_extended_sf";
8885 case DW_CFA_def_cfa_sf:
8886 return "DW_CFA_def_cfa_sf";
8887 case DW_CFA_def_cfa_offset_sf:
8888 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8889 case DW_CFA_val_offset:
8890 return "DW_CFA_val_offset";
8891 case DW_CFA_val_offset_sf:
8892 return "DW_CFA_val_offset_sf";
8893 case DW_CFA_val_expression:
8894 return "DW_CFA_val_expression";
8895 /* SGI/MIPS specific. */
c906108c
SS
8896 case DW_CFA_MIPS_advance_loc8:
8897 return "DW_CFA_MIPS_advance_loc8";
b7619582 8898 /* GNU extensions. */
985cb1a3
JM
8899 case DW_CFA_GNU_window_save:
8900 return "DW_CFA_GNU_window_save";
8901 case DW_CFA_GNU_args_size:
8902 return "DW_CFA_GNU_args_size";
8903 case DW_CFA_GNU_negative_offset_extended:
8904 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8905 default:
8906 return "DW_CFA_<unknown>";
8907 }
8908}
8909#endif
8910
f9aca02d 8911static void
fba45db2 8912dump_die (struct die_info *die)
c906108c
SS
8913{
8914 unsigned int i;
8915
48cd0caa 8916 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8917 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8918 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8919 dwarf_bool_name (die->child != NULL));
c906108c 8920
48cd0caa 8921 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8922 for (i = 0; i < die->num_attrs; ++i)
8923 {
48cd0caa 8924 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8925 dwarf_attr_name (die->attrs[i].name),
8926 dwarf_form_name (die->attrs[i].form));
8927 switch (die->attrs[i].form)
8928 {
8929 case DW_FORM_ref_addr:
8930 case DW_FORM_addr:
48cd0caa 8931 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8932 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8933 break;
8934 case DW_FORM_block2:
8935 case DW_FORM_block4:
8936 case DW_FORM_block:
8937 case DW_FORM_block1:
48cd0caa 8938 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8939 break;
10b3939b
DJ
8940 case DW_FORM_ref1:
8941 case DW_FORM_ref2:
8942 case DW_FORM_ref4:
8943 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8944 (long) (DW_ADDR (&die->attrs[i])));
8945 break;
c906108c
SS
8946 case DW_FORM_data1:
8947 case DW_FORM_data2:
8948 case DW_FORM_data4:
ce5d95e1 8949 case DW_FORM_data8:
c906108c
SS
8950 case DW_FORM_udata:
8951 case DW_FORM_sdata:
48cd0caa 8952 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8953 break;
8954 case DW_FORM_string:
4bdf3d34 8955 case DW_FORM_strp:
48cd0caa 8956 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8957 DW_STRING (&die->attrs[i])
c5aa993b 8958 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8959 break;
8960 case DW_FORM_flag:
8961 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8962 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8963 else
48cd0caa 8964 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8965 break;
a8329558
KW
8966 case DW_FORM_indirect:
8967 /* the reader will have reduced the indirect form to
8968 the "base form" so this form should not occur */
48cd0caa 8969 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8970 break;
c906108c 8971 default:
48cd0caa 8972 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8973 die->attrs[i].form);
c906108c 8974 }
48cd0caa 8975 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8976 }
8977}
8978
f9aca02d 8979static void
fba45db2 8980dump_die_list (struct die_info *die)
c906108c
SS
8981{
8982 while (die)
8983 {
8984 dump_die (die);
639d11d3
DC
8985 if (die->child != NULL)
8986 dump_die_list (die->child);
8987 if (die->sibling != NULL)
8988 dump_die_list (die->sibling);
c906108c
SS
8989 }
8990}
8991
f9aca02d 8992static void
10b3939b
DJ
8993store_in_ref_table (unsigned int offset, struct die_info *die,
8994 struct dwarf2_cu *cu)
c906108c
SS
8995{
8996 int h;
8997 struct die_info *old;
8998
8999 h = (offset % REF_HASH_SIZE);
10b3939b 9000 old = cu->die_ref_table[h];
c906108c 9001 die->next_ref = old;
10b3939b 9002 cu->die_ref_table[h] = die;
c906108c
SS
9003}
9004
9005static unsigned int
e142c38c 9006dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
9007{
9008 unsigned int result = 0;
9009
9010 switch (attr->form)
9011 {
9012 case DW_FORM_ref_addr:
c906108c
SS
9013 case DW_FORM_ref1:
9014 case DW_FORM_ref2:
9015 case DW_FORM_ref4:
613e1657 9016 case DW_FORM_ref8:
c906108c 9017 case DW_FORM_ref_udata:
10b3939b 9018 result = DW_ADDR (attr);
c906108c
SS
9019 break;
9020 default:
4d3c2250 9021 complaint (&symfile_complaints,
e2e0b3e5 9022 _("unsupported die ref attribute form: '%s'"),
4d3c2250 9023 dwarf_form_name (attr->form));
c906108c
SS
9024 }
9025 return result;
9026}
9027
a02abb62
JB
9028/* Return the constant value held by the given attribute. Return -1
9029 if the value held by the attribute is not constant. */
9030
9031static int
9032dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9033{
9034 if (attr->form == DW_FORM_sdata)
9035 return DW_SND (attr);
9036 else if (attr->form == DW_FORM_udata
9037 || attr->form == DW_FORM_data1
9038 || attr->form == DW_FORM_data2
9039 || attr->form == DW_FORM_data4
9040 || attr->form == DW_FORM_data8)
9041 return DW_UNSND (attr);
9042 else
9043 {
e2e0b3e5 9044 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
9045 dwarf_form_name (attr->form));
9046 return default_value;
9047 }
9048}
9049
f9aca02d 9050static struct die_info *
10b3939b
DJ
9051follow_die_ref (struct die_info *src_die, struct attribute *attr,
9052 struct dwarf2_cu *cu)
c906108c
SS
9053{
9054 struct die_info *die;
10b3939b 9055 unsigned int offset;
c906108c 9056 int h;
10b3939b
DJ
9057 struct die_info temp_die;
9058 struct dwarf2_cu *target_cu;
9059
9060 offset = dwarf2_get_ref_die_offset (attr, cu);
9061
9062 if (DW_ADDR (attr) < cu->header.offset
9063 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9064 {
9065 struct dwarf2_per_cu_data *per_cu;
9066 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9067 cu->objfile);
9068 target_cu = per_cu->cu;
9069 }
9070 else
9071 target_cu = cu;
c906108c
SS
9072
9073 h = (offset % REF_HASH_SIZE);
10b3939b 9074 die = target_cu->die_ref_table[h];
c906108c
SS
9075 while (die)
9076 {
9077 if (die->offset == offset)
10b3939b 9078 return die;
c906108c
SS
9079 die = die->next_ref;
9080 }
10b3939b 9081
8a3fe4f8
AC
9082 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9083 "at 0x%lx [in module %s]"),
10b3939b
DJ
9084 (long) src_die->offset, (long) offset, cu->objfile->name);
9085
c906108c
SS
9086 return NULL;
9087}
9088
c906108c
SS
9089/* Decode simple location descriptions.
9090 Given a pointer to a dwarf block that defines a location, compute
9091 the location and return the value.
9092
4cecd739
DJ
9093 NOTE drow/2003-11-18: This function is called in two situations
9094 now: for the address of static or global variables (partial symbols
9095 only) and for offsets into structures which are expected to be
9096 (more or less) constant. The partial symbol case should go away,
9097 and only the constant case should remain. That will let this
9098 function complain more accurately. A few special modes are allowed
9099 without complaint for global variables (for instance, global
9100 register values and thread-local values).
c906108c
SS
9101
9102 A location description containing no operations indicates that the
4cecd739 9103 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9104 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9105 callers will only want a very basic result and this can become a
9106 complaint.
c906108c 9107
c906108c
SS
9108 Note that stack[0] is unused except as a default error return.
9109 Note that stack overflow is not yet handled. */
9110
9111static CORE_ADDR
e7c27a73 9112decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9113{
e7c27a73
DJ
9114 struct objfile *objfile = cu->objfile;
9115 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9116 int i;
9117 int size = blk->size;
fe1b8b76 9118 gdb_byte *data = blk->data;
c906108c
SS
9119 CORE_ADDR stack[64];
9120 int stacki;
9121 unsigned int bytes_read, unsnd;
fe1b8b76 9122 gdb_byte op;
c906108c
SS
9123
9124 i = 0;
9125 stacki = 0;
9126 stack[stacki] = 0;
c906108c
SS
9127
9128 while (i < size)
9129 {
c906108c
SS
9130 op = data[i++];
9131 switch (op)
9132 {
f1bea926
JM
9133 case DW_OP_lit0:
9134 case DW_OP_lit1:
9135 case DW_OP_lit2:
9136 case DW_OP_lit3:
9137 case DW_OP_lit4:
9138 case DW_OP_lit5:
9139 case DW_OP_lit6:
9140 case DW_OP_lit7:
9141 case DW_OP_lit8:
9142 case DW_OP_lit9:
9143 case DW_OP_lit10:
9144 case DW_OP_lit11:
9145 case DW_OP_lit12:
9146 case DW_OP_lit13:
9147 case DW_OP_lit14:
9148 case DW_OP_lit15:
9149 case DW_OP_lit16:
9150 case DW_OP_lit17:
9151 case DW_OP_lit18:
9152 case DW_OP_lit19:
9153 case DW_OP_lit20:
9154 case DW_OP_lit21:
9155 case DW_OP_lit22:
9156 case DW_OP_lit23:
9157 case DW_OP_lit24:
9158 case DW_OP_lit25:
9159 case DW_OP_lit26:
9160 case DW_OP_lit27:
9161 case DW_OP_lit28:
9162 case DW_OP_lit29:
9163 case DW_OP_lit30:
9164 case DW_OP_lit31:
9165 stack[++stacki] = op - DW_OP_lit0;
9166 break;
9167
c906108c
SS
9168 case DW_OP_reg0:
9169 case DW_OP_reg1:
9170 case DW_OP_reg2:
9171 case DW_OP_reg3:
9172 case DW_OP_reg4:
9173 case DW_OP_reg5:
9174 case DW_OP_reg6:
9175 case DW_OP_reg7:
9176 case DW_OP_reg8:
9177 case DW_OP_reg9:
9178 case DW_OP_reg10:
9179 case DW_OP_reg11:
9180 case DW_OP_reg12:
9181 case DW_OP_reg13:
9182 case DW_OP_reg14:
9183 case DW_OP_reg15:
9184 case DW_OP_reg16:
9185 case DW_OP_reg17:
9186 case DW_OP_reg18:
9187 case DW_OP_reg19:
9188 case DW_OP_reg20:
9189 case DW_OP_reg21:
9190 case DW_OP_reg22:
9191 case DW_OP_reg23:
9192 case DW_OP_reg24:
9193 case DW_OP_reg25:
9194 case DW_OP_reg26:
9195 case DW_OP_reg27:
9196 case DW_OP_reg28:
9197 case DW_OP_reg29:
9198 case DW_OP_reg30:
9199 case DW_OP_reg31:
c906108c 9200 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9201 if (i < size)
9202 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9203 break;
9204
9205 case DW_OP_regx:
c906108c
SS
9206 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9207 i += bytes_read;
c906108c 9208 stack[++stacki] = unsnd;
4cecd739
DJ
9209 if (i < size)
9210 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9211 break;
9212
9213 case DW_OP_addr:
107d2387 9214 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9215 cu, &bytes_read);
107d2387 9216 i += bytes_read;
c906108c
SS
9217 break;
9218
9219 case DW_OP_const1u:
9220 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9221 i += 1;
9222 break;
9223
9224 case DW_OP_const1s:
9225 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9226 i += 1;
9227 break;
9228
9229 case DW_OP_const2u:
9230 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9231 i += 2;
9232 break;
9233
9234 case DW_OP_const2s:
9235 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9236 i += 2;
9237 break;
9238
9239 case DW_OP_const4u:
9240 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9241 i += 4;
9242 break;
9243
9244 case DW_OP_const4s:
9245 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9246 i += 4;
9247 break;
9248
9249 case DW_OP_constu:
9250 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9251 &bytes_read);
c906108c
SS
9252 i += bytes_read;
9253 break;
9254
9255 case DW_OP_consts:
9256 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9257 i += bytes_read;
9258 break;
9259
f1bea926
JM
9260 case DW_OP_dup:
9261 stack[stacki + 1] = stack[stacki];
9262 stacki++;
9263 break;
9264
c906108c
SS
9265 case DW_OP_plus:
9266 stack[stacki - 1] += stack[stacki];
9267 stacki--;
9268 break;
9269
9270 case DW_OP_plus_uconst:
9271 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9272 i += bytes_read;
9273 break;
9274
9275 case DW_OP_minus:
f1bea926 9276 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9277 stacki--;
9278 break;
9279
7a292a7a 9280 case DW_OP_deref:
7a292a7a 9281 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9282 this using GDB's address_class enum. This is valid for partial
9283 global symbols, although the variable's address will be bogus
9284 in the psymtab. */
7a292a7a 9285 if (i < size)
4d3c2250 9286 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9287 break;
9288
9d774e44 9289 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9290 /* The top of the stack has the offset from the beginning
9291 of the thread control block at which the variable is located. */
9292 /* Nothing should follow this operator, so the top of stack would
9293 be returned. */
4cecd739
DJ
9294 /* This is valid for partial global symbols, but the variable's
9295 address will be bogus in the psymtab. */
9d774e44 9296 if (i < size)
4d3c2250 9297 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9298 break;
9299
42be36b3
CT
9300 case DW_OP_GNU_uninit:
9301 break;
9302
c906108c 9303 default:
e2e0b3e5 9304 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9305 dwarf_stack_op_name (op));
c906108c
SS
9306 return (stack[stacki]);
9307 }
9308 }
9309 return (stack[stacki]);
9310}
9311
9312/* memory allocation interface */
9313
c906108c 9314static struct dwarf_block *
7b5a2f43 9315dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9316{
9317 struct dwarf_block *blk;
9318
9319 blk = (struct dwarf_block *)
7b5a2f43 9320 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9321 return (blk);
9322}
9323
9324static struct abbrev_info *
f3dd6933 9325dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9326{
9327 struct abbrev_info *abbrev;
9328
f3dd6933
DJ
9329 abbrev = (struct abbrev_info *)
9330 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9331 memset (abbrev, 0, sizeof (struct abbrev_info));
9332 return (abbrev);
9333}
9334
9335static struct die_info *
fba45db2 9336dwarf_alloc_die (void)
c906108c
SS
9337{
9338 struct die_info *die;
9339
9340 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9341 memset (die, 0, sizeof (struct die_info));
9342 return (die);
9343}
2e276125
JB
9344
9345\f
9346/* Macro support. */
9347
9348
9349/* Return the full name of file number I in *LH's file name table.
9350 Use COMP_DIR as the name of the current directory of the
9351 compilation. The result is allocated using xmalloc; the caller is
9352 responsible for freeing it. */
9353static char *
9354file_full_name (int file, struct line_header *lh, const char *comp_dir)
9355{
6a83a1e6
EZ
9356 /* Is the file number a valid index into the line header's file name
9357 table? Remember that file numbers start with one, not zero. */
9358 if (1 <= file && file <= lh->num_file_names)
9359 {
9360 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9361
6a83a1e6
EZ
9362 if (IS_ABSOLUTE_PATH (fe->name))
9363 return xstrdup (fe->name);
9364 else
9365 {
9366 const char *dir;
9367 int dir_len;
9368 char *full_name;
9369
9370 if (fe->dir_index)
9371 dir = lh->include_dirs[fe->dir_index - 1];
9372 else
9373 dir = comp_dir;
9374
9375 if (dir)
9376 {
9377 dir_len = strlen (dir);
9378 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9379 strcpy (full_name, dir);
9380 full_name[dir_len] = '/';
9381 strcpy (full_name + dir_len + 1, fe->name);
9382 return full_name;
9383 }
9384 else
9385 return xstrdup (fe->name);
9386 }
9387 }
2e276125
JB
9388 else
9389 {
6a83a1e6
EZ
9390 /* The compiler produced a bogus file number. We can at least
9391 record the macro definitions made in the file, even if we
9392 won't be able to find the file by name. */
9393 char fake_name[80];
9394 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9395
6a83a1e6
EZ
9396 complaint (&symfile_complaints,
9397 _("bad file number in macro information (%d)"),
9398 file);
2e276125 9399
6a83a1e6 9400 return xstrdup (fake_name);
2e276125
JB
9401 }
9402}
9403
9404
9405static struct macro_source_file *
9406macro_start_file (int file, int line,
9407 struct macro_source_file *current_file,
9408 const char *comp_dir,
9409 struct line_header *lh, struct objfile *objfile)
9410{
9411 /* The full name of this source file. */
9412 char *full_name = file_full_name (file, lh, comp_dir);
9413
9414 /* We don't create a macro table for this compilation unit
9415 at all until we actually get a filename. */
9416 if (! pending_macros)
4a146b47 9417 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9418 objfile->macro_cache);
2e276125
JB
9419
9420 if (! current_file)
9421 /* If we have no current file, then this must be the start_file
9422 directive for the compilation unit's main source file. */
9423 current_file = macro_set_main (pending_macros, full_name);
9424 else
9425 current_file = macro_include (current_file, line, full_name);
9426
9427 xfree (full_name);
9428
9429 return current_file;
9430}
9431
9432
9433/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9434 followed by a null byte. */
9435static char *
9436copy_string (const char *buf, int len)
9437{
9438 char *s = xmalloc (len + 1);
9439 memcpy (s, buf, len);
9440 s[len] = '\0';
9441
9442 return s;
9443}
9444
9445
9446static const char *
9447consume_improper_spaces (const char *p, const char *body)
9448{
9449 if (*p == ' ')
9450 {
4d3c2250 9451 complaint (&symfile_complaints,
e2e0b3e5 9452 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9453 body);
2e276125
JB
9454
9455 while (*p == ' ')
9456 p++;
9457 }
9458
9459 return p;
9460}
9461
9462
9463static void
9464parse_macro_definition (struct macro_source_file *file, int line,
9465 const char *body)
9466{
9467 const char *p;
9468
9469 /* The body string takes one of two forms. For object-like macro
9470 definitions, it should be:
9471
9472 <macro name> " " <definition>
9473
9474 For function-like macro definitions, it should be:
9475
9476 <macro name> "() " <definition>
9477 or
9478 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9479
9480 Spaces may appear only where explicitly indicated, and in the
9481 <definition>.
9482
9483 The Dwarf 2 spec says that an object-like macro's name is always
9484 followed by a space, but versions of GCC around March 2002 omit
9485 the space when the macro's definition is the empty string.
9486
9487 The Dwarf 2 spec says that there should be no spaces between the
9488 formal arguments in a function-like macro's formal argument list,
9489 but versions of GCC around March 2002 include spaces after the
9490 commas. */
9491
9492
9493 /* Find the extent of the macro name. The macro name is terminated
9494 by either a space or null character (for an object-like macro) or
9495 an opening paren (for a function-like macro). */
9496 for (p = body; *p; p++)
9497 if (*p == ' ' || *p == '(')
9498 break;
9499
9500 if (*p == ' ' || *p == '\0')
9501 {
9502 /* It's an object-like macro. */
9503 int name_len = p - body;
9504 char *name = copy_string (body, name_len);
9505 const char *replacement;
9506
9507 if (*p == ' ')
9508 replacement = body + name_len + 1;
9509 else
9510 {
4d3c2250 9511 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9512 replacement = body + name_len;
9513 }
9514
9515 macro_define_object (file, line, name, replacement);
9516
9517 xfree (name);
9518 }
9519 else if (*p == '(')
9520 {
9521 /* It's a function-like macro. */
9522 char *name = copy_string (body, p - body);
9523 int argc = 0;
9524 int argv_size = 1;
9525 char **argv = xmalloc (argv_size * sizeof (*argv));
9526
9527 p++;
9528
9529 p = consume_improper_spaces (p, body);
9530
9531 /* Parse the formal argument list. */
9532 while (*p && *p != ')')
9533 {
9534 /* Find the extent of the current argument name. */
9535 const char *arg_start = p;
9536
9537 while (*p && *p != ',' && *p != ')' && *p != ' ')
9538 p++;
9539
9540 if (! *p || p == arg_start)
4d3c2250 9541 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9542 else
9543 {
9544 /* Make sure argv has room for the new argument. */
9545 if (argc >= argv_size)
9546 {
9547 argv_size *= 2;
9548 argv = xrealloc (argv, argv_size * sizeof (*argv));
9549 }
9550
9551 argv[argc++] = copy_string (arg_start, p - arg_start);
9552 }
9553
9554 p = consume_improper_spaces (p, body);
9555
9556 /* Consume the comma, if present. */
9557 if (*p == ',')
9558 {
9559 p++;
9560
9561 p = consume_improper_spaces (p, body);
9562 }
9563 }
9564
9565 if (*p == ')')
9566 {
9567 p++;
9568
9569 if (*p == ' ')
9570 /* Perfectly formed definition, no complaints. */
9571 macro_define_function (file, line, name,
9572 argc, (const char **) argv,
9573 p + 1);
9574 else if (*p == '\0')
9575 {
9576 /* Complain, but do define it. */
4d3c2250 9577 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9578 macro_define_function (file, line, name,
9579 argc, (const char **) argv,
9580 p);
9581 }
9582 else
9583 /* Just complain. */
4d3c2250 9584 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9585 }
9586 else
9587 /* Just complain. */
4d3c2250 9588 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9589
9590 xfree (name);
9591 {
9592 int i;
9593
9594 for (i = 0; i < argc; i++)
9595 xfree (argv[i]);
9596 }
9597 xfree (argv);
9598 }
9599 else
4d3c2250 9600 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9601}
9602
9603
9604static void
9605dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9606 char *comp_dir, bfd *abfd,
e7c27a73 9607 struct dwarf2_cu *cu)
2e276125 9608{
fe1b8b76 9609 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9610 struct macro_source_file *current_file = 0;
9611
6502dd73 9612 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9613 {
e2e0b3e5 9614 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9615 return;
9616 }
9617
6502dd73
DJ
9618 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9619 mac_end = dwarf2_per_objfile->macinfo_buffer
9620 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9621
9622 for (;;)
9623 {
9624 enum dwarf_macinfo_record_type macinfo_type;
9625
9626 /* Do we at least have room for a macinfo type byte? */
9627 if (mac_ptr >= mac_end)
9628 {
4d3c2250 9629 dwarf2_macros_too_long_complaint ();
2e276125
JB
9630 return;
9631 }
9632
9633 macinfo_type = read_1_byte (abfd, mac_ptr);
9634 mac_ptr++;
9635
9636 switch (macinfo_type)
9637 {
9638 /* A zero macinfo type indicates the end of the macro
9639 information. */
9640 case 0:
9641 return;
9642
9643 case DW_MACINFO_define:
9644 case DW_MACINFO_undef:
9645 {
891d2f0b 9646 unsigned int bytes_read;
2e276125
JB
9647 int line;
9648 char *body;
9649
9650 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9651 mac_ptr += bytes_read;
9652 body = read_string (abfd, mac_ptr, &bytes_read);
9653 mac_ptr += bytes_read;
9654
9655 if (! current_file)
4d3c2250 9656 complaint (&symfile_complaints,
e2e0b3e5 9657 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9658 macinfo_type ==
9659 DW_MACINFO_define ? "definition" : macinfo_type ==
9660 DW_MACINFO_undef ? "undefinition" :
9661 "something-or-other", body);
2e276125
JB
9662 else
9663 {
9664 if (macinfo_type == DW_MACINFO_define)
9665 parse_macro_definition (current_file, line, body);
9666 else if (macinfo_type == DW_MACINFO_undef)
9667 macro_undef (current_file, line, body);
9668 }
9669 }
9670 break;
9671
9672 case DW_MACINFO_start_file:
9673 {
891d2f0b 9674 unsigned int bytes_read;
2e276125
JB
9675 int line, file;
9676
9677 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9678 mac_ptr += bytes_read;
9679 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9680 mac_ptr += bytes_read;
9681
9682 current_file = macro_start_file (file, line,
9683 current_file, comp_dir,
e7c27a73 9684 lh, cu->objfile);
2e276125
JB
9685 }
9686 break;
9687
9688 case DW_MACINFO_end_file:
9689 if (! current_file)
4d3c2250 9690 complaint (&symfile_complaints,
e2e0b3e5 9691 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9692 else
9693 {
9694 current_file = current_file->included_by;
9695 if (! current_file)
9696 {
9697 enum dwarf_macinfo_record_type next_type;
9698
9699 /* GCC circa March 2002 doesn't produce the zero
9700 type byte marking the end of the compilation
9701 unit. Complain if it's not there, but exit no
9702 matter what. */
9703
9704 /* Do we at least have room for a macinfo type byte? */
9705 if (mac_ptr >= mac_end)
9706 {
4d3c2250 9707 dwarf2_macros_too_long_complaint ();
2e276125
JB
9708 return;
9709 }
9710
9711 /* We don't increment mac_ptr here, so this is just
9712 a look-ahead. */
9713 next_type = read_1_byte (abfd, mac_ptr);
9714 if (next_type != 0)
4d3c2250 9715 complaint (&symfile_complaints,
e2e0b3e5 9716 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9717
9718 return;
9719 }
9720 }
9721 break;
9722
9723 case DW_MACINFO_vendor_ext:
9724 {
891d2f0b 9725 unsigned int bytes_read;
2e276125
JB
9726 int constant;
9727 char *string;
9728
9729 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9730 mac_ptr += bytes_read;
9731 string = read_string (abfd, mac_ptr, &bytes_read);
9732 mac_ptr += bytes_read;
9733
9734 /* We don't recognize any vendor extensions. */
9735 }
9736 break;
9737 }
9738 }
9739}
8e19ed76
PS
9740
9741/* Check if the attribute's form is a DW_FORM_block*
9742 if so return true else false. */
9743static int
9744attr_form_is_block (struct attribute *attr)
9745{
9746 return (attr == NULL ? 0 :
9747 attr->form == DW_FORM_block1
9748 || attr->form == DW_FORM_block2
9749 || attr->form == DW_FORM_block4
9750 || attr->form == DW_FORM_block);
9751}
4c2df51b 9752
c6a0999f
JB
9753/* Return non-zero if ATTR's value is a section offset --- classes
9754 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9755 You may use DW_UNSND (attr) to retrieve such offsets.
9756
9757 Section 7.5.4, "Attribute Encodings", explains that no attribute
9758 may have a value that belongs to more than one of these classes; it
9759 would be ambiguous if we did, because we use the same forms for all
9760 of them. */
3690dd37
JB
9761static int
9762attr_form_is_section_offset (struct attribute *attr)
9763{
9764 return (attr->form == DW_FORM_data4
9765 || attr->form == DW_FORM_data8);
9766}
9767
9768
9769/* Return non-zero if ATTR's value falls in the 'constant' class, or
9770 zero otherwise. When this function returns true, you can apply
9771 dwarf2_get_attr_constant_value to it.
9772
9773 However, note that for some attributes you must check
9774 attr_form_is_section_offset before using this test. DW_FORM_data4
9775 and DW_FORM_data8 are members of both the constant class, and of
9776 the classes that contain offsets into other debug sections
9777 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9778 that, if an attribute's can be either a constant or one of the
9779 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9780 taken as section offsets, not constants. */
9781static int
9782attr_form_is_constant (struct attribute *attr)
9783{
9784 switch (attr->form)
9785 {
9786 case DW_FORM_sdata:
9787 case DW_FORM_udata:
9788 case DW_FORM_data1:
9789 case DW_FORM_data2:
9790 case DW_FORM_data4:
9791 case DW_FORM_data8:
9792 return 1;
9793 default:
9794 return 0;
9795 }
9796}
9797
4c2df51b
DJ
9798static void
9799dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9800 struct dwarf2_cu *cu)
4c2df51b 9801{
93e7bd98
DJ
9802 struct objfile *objfile = cu->objfile;
9803
9804 /* Save the master objfile, so that we can report and look up the
9805 correct file containing this variable. */
9806 if (objfile->separate_debug_objfile_backlink)
9807 objfile = objfile->separate_debug_objfile_backlink;
9808
3690dd37 9809 if (attr_form_is_section_offset (attr)
99bcc461
DJ
9810 /* ".debug_loc" may not exist at all, or the offset may be outside
9811 the section. If so, fall through to the complaint in the
9812 other branch. */
9813 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9814 {
0d53c4c4 9815 struct dwarf2_loclist_baton *baton;
4c2df51b 9816
4a146b47 9817 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9818 sizeof (struct dwarf2_loclist_baton));
93e7bd98 9819 baton->objfile = objfile;
4c2df51b 9820
0d53c4c4
DJ
9821 /* We don't know how long the location list is, but make sure we
9822 don't run off the edge of the section. */
6502dd73
DJ
9823 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9824 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9825 baton->base_address = cu->header.base_address;
9826 if (cu->header.base_known == 0)
0d53c4c4 9827 complaint (&symfile_complaints,
e2e0b3e5 9828 _("Location list used without specifying the CU base address."));
4c2df51b 9829
a67af2b9 9830 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9831 SYMBOL_LOCATION_BATON (sym) = baton;
9832 }
9833 else
9834 {
9835 struct dwarf2_locexpr_baton *baton;
9836
4a146b47 9837 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9838 sizeof (struct dwarf2_locexpr_baton));
93e7bd98 9839 baton->objfile = objfile;
0d53c4c4
DJ
9840
9841 if (attr_form_is_block (attr))
9842 {
9843 /* Note that we're just copying the block's data pointer
9844 here, not the actual data. We're still pointing into the
6502dd73
DJ
9845 info_buffer for SYM's objfile; right now we never release
9846 that buffer, but when we do clean up properly this may
9847 need to change. */
0d53c4c4
DJ
9848 baton->size = DW_BLOCK (attr)->size;
9849 baton->data = DW_BLOCK (attr)->data;
9850 }
9851 else
9852 {
9853 dwarf2_invalid_attrib_class_complaint ("location description",
9854 SYMBOL_NATURAL_NAME (sym));
9855 baton->size = 0;
9856 baton->data = NULL;
9857 }
9858
a67af2b9 9859 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9860 SYMBOL_LOCATION_BATON (sym) = baton;
9861 }
4c2df51b 9862}
6502dd73 9863
ae038cb0 9864/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9865 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9866
9867static struct dwarf2_per_cu_data *
9868dwarf2_find_containing_comp_unit (unsigned long offset,
9869 struct objfile *objfile)
9870{
9871 struct dwarf2_per_cu_data *this_cu;
9872 int low, high;
9873
ae038cb0
DJ
9874 low = 0;
9875 high = dwarf2_per_objfile->n_comp_units - 1;
9876 while (high > low)
9877 {
9878 int mid = low + (high - low) / 2;
9879 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9880 high = mid;
9881 else
9882 low = mid + 1;
9883 }
9884 gdb_assert (low == high);
9885 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9886 {
10b3939b 9887 if (low == 0)
8a3fe4f8
AC
9888 error (_("Dwarf Error: could not find partial DIE containing "
9889 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9890 (long) offset, bfd_get_filename (objfile->obfd));
9891
ae038cb0
DJ
9892 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9893 return dwarf2_per_objfile->all_comp_units[low-1];
9894 }
9895 else
9896 {
9897 this_cu = dwarf2_per_objfile->all_comp_units[low];
9898 if (low == dwarf2_per_objfile->n_comp_units - 1
9899 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9900 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9901 gdb_assert (offset < this_cu->offset + this_cu->length);
9902 return this_cu;
9903 }
9904}
9905
10b3939b
DJ
9906/* Locate the compilation unit from OBJFILE which is located at exactly
9907 OFFSET. Raises an error on failure. */
9908
ae038cb0
DJ
9909static struct dwarf2_per_cu_data *
9910dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9911{
9912 struct dwarf2_per_cu_data *this_cu;
9913 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9914 if (this_cu->offset != offset)
8a3fe4f8 9915 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9916 return this_cu;
9917}
9918
9919/* Release one cached compilation unit, CU. We unlink it from the tree
9920 of compilation units, but we don't remove it from the read_in_chain;
9921 the caller is responsible for that. */
9922
9923static void
9924free_one_comp_unit (void *data)
9925{
9926 struct dwarf2_cu *cu = data;
9927
9928 if (cu->per_cu != NULL)
9929 cu->per_cu->cu = NULL;
9930 cu->per_cu = NULL;
9931
9932 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9933 if (cu->dies)
9934 free_die_list (cu->dies);
ae038cb0
DJ
9935
9936 xfree (cu);
9937}
9938
72bf9492 9939/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9940 when we're finished with it. We can't free the pointer itself, but be
9941 sure to unlink it from the cache. Also release any associated storage
9942 and perform cache maintenance.
72bf9492
DJ
9943
9944 Only used during partial symbol parsing. */
9945
9946static void
9947free_stack_comp_unit (void *data)
9948{
9949 struct dwarf2_cu *cu = data;
9950
9951 obstack_free (&cu->comp_unit_obstack, NULL);
9952 cu->partial_dies = NULL;
ae038cb0
DJ
9953
9954 if (cu->per_cu != NULL)
9955 {
9956 /* This compilation unit is on the stack in our caller, so we
9957 should not xfree it. Just unlink it. */
9958 cu->per_cu->cu = NULL;
9959 cu->per_cu = NULL;
9960
9961 /* If we had a per-cu pointer, then we may have other compilation
9962 units loaded, so age them now. */
9963 age_cached_comp_units ();
9964 }
9965}
9966
9967/* Free all cached compilation units. */
9968
9969static void
9970free_cached_comp_units (void *data)
9971{
9972 struct dwarf2_per_cu_data *per_cu, **last_chain;
9973
9974 per_cu = dwarf2_per_objfile->read_in_chain;
9975 last_chain = &dwarf2_per_objfile->read_in_chain;
9976 while (per_cu != NULL)
9977 {
9978 struct dwarf2_per_cu_data *next_cu;
9979
9980 next_cu = per_cu->cu->read_in_chain;
9981
9982 free_one_comp_unit (per_cu->cu);
9983 *last_chain = next_cu;
9984
9985 per_cu = next_cu;
9986 }
9987}
9988
9989/* Increase the age counter on each cached compilation unit, and free
9990 any that are too old. */
9991
9992static void
9993age_cached_comp_units (void)
9994{
9995 struct dwarf2_per_cu_data *per_cu, **last_chain;
9996
9997 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9998 per_cu = dwarf2_per_objfile->read_in_chain;
9999 while (per_cu != NULL)
10000 {
10001 per_cu->cu->last_used ++;
10002 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10003 dwarf2_mark (per_cu->cu);
10004 per_cu = per_cu->cu->read_in_chain;
10005 }
10006
10007 per_cu = dwarf2_per_objfile->read_in_chain;
10008 last_chain = &dwarf2_per_objfile->read_in_chain;
10009 while (per_cu != NULL)
10010 {
10011 struct dwarf2_per_cu_data *next_cu;
10012
10013 next_cu = per_cu->cu->read_in_chain;
10014
10015 if (!per_cu->cu->mark)
10016 {
10017 free_one_comp_unit (per_cu->cu);
10018 *last_chain = next_cu;
10019 }
10020 else
10021 last_chain = &per_cu->cu->read_in_chain;
10022
10023 per_cu = next_cu;
10024 }
10025}
10026
10027/* Remove a single compilation unit from the cache. */
10028
10029static void
10030free_one_cached_comp_unit (void *target_cu)
10031{
10032 struct dwarf2_per_cu_data *per_cu, **last_chain;
10033
10034 per_cu = dwarf2_per_objfile->read_in_chain;
10035 last_chain = &dwarf2_per_objfile->read_in_chain;
10036 while (per_cu != NULL)
10037 {
10038 struct dwarf2_per_cu_data *next_cu;
10039
10040 next_cu = per_cu->cu->read_in_chain;
10041
10042 if (per_cu->cu == target_cu)
10043 {
10044 free_one_comp_unit (per_cu->cu);
10045 *last_chain = next_cu;
10046 break;
10047 }
10048 else
10049 last_chain = &per_cu->cu->read_in_chain;
10050
10051 per_cu = next_cu;
10052 }
10053}
10054
fe3e1990
DJ
10055/* Release all extra memory associated with OBJFILE. */
10056
10057void
10058dwarf2_free_objfile (struct objfile *objfile)
10059{
10060 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10061
10062 if (dwarf2_per_objfile == NULL)
10063 return;
10064
10065 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10066 free_cached_comp_units (NULL);
10067
10068 /* Everything else should be on the objfile obstack. */
10069}
10070
1c379e20
DJ
10071/* A pair of DIE offset and GDB type pointer. We store these
10072 in a hash table separate from the DIEs, and preserve them
10073 when the DIEs are flushed out of cache. */
10074
10075struct dwarf2_offset_and_type
10076{
10077 unsigned int offset;
10078 struct type *type;
10079};
10080
10081/* Hash function for a dwarf2_offset_and_type. */
10082
10083static hashval_t
10084offset_and_type_hash (const void *item)
10085{
10086 const struct dwarf2_offset_and_type *ofs = item;
10087 return ofs->offset;
10088}
10089
10090/* Equality function for a dwarf2_offset_and_type. */
10091
10092static int
10093offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10094{
10095 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10096 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10097 return ofs_lhs->offset == ofs_rhs->offset;
10098}
10099
10100/* Set the type associated with DIE to TYPE. Save it in CU's hash
10101 table if necessary. */
10102
10103static void
10104set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10105{
10106 struct dwarf2_offset_and_type **slot, ofs;
10107
10108 die->type = type;
10109
10110 if (cu->per_cu == NULL)
10111 return;
10112
10113 if (cu->per_cu->type_hash == NULL)
10114 cu->per_cu->type_hash
10115 = htab_create_alloc_ex (cu->header.length / 24,
10116 offset_and_type_hash,
10117 offset_and_type_eq,
10118 NULL,
10119 &cu->objfile->objfile_obstack,
10120 hashtab_obstack_allocate,
10121 dummy_obstack_deallocate);
10122
10123 ofs.offset = die->offset;
10124 ofs.type = type;
10125 slot = (struct dwarf2_offset_and_type **)
10126 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10127 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10128 **slot = ofs;
10129}
10130
1c379e20
DJ
10131/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10132 have a saved type. */
10133
10134static struct type *
10135get_die_type (struct die_info *die, htab_t type_hash)
10136{
10137 struct dwarf2_offset_and_type *slot, ofs;
10138
10139 ofs.offset = die->offset;
10140 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10141 if (slot)
10142 return slot->type;
10143 else
10144 return NULL;
10145}
10146
10147/* Restore the types of the DIE tree starting at START_DIE from the hash
10148 table saved in CU. */
10149
10150static void
10151reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10152{
10153 struct die_info *die;
10154
10155 if (cu->per_cu->type_hash == NULL)
10156 return;
10157
10158 for (die = start_die; die != NULL; die = die->sibling)
10159 {
10160 die->type = get_die_type (die, cu->per_cu->type_hash);
10161 if (die->child != NULL)
10162 reset_die_and_siblings_types (die->child, cu);
10163 }
10164}
10165
10b3939b
DJ
10166/* Set the mark field in CU and in every other compilation unit in the
10167 cache that we must keep because we are keeping CU. */
10168
10169/* Add a dependence relationship from CU to REF_PER_CU. */
10170
10171static void
10172dwarf2_add_dependence (struct dwarf2_cu *cu,
10173 struct dwarf2_per_cu_data *ref_per_cu)
10174{
10175 void **slot;
10176
10177 if (cu->dependencies == NULL)
10178 cu->dependencies
10179 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10180 NULL, &cu->comp_unit_obstack,
10181 hashtab_obstack_allocate,
10182 dummy_obstack_deallocate);
10183
10184 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10185 if (*slot == NULL)
10186 *slot = ref_per_cu;
10187}
1c379e20 10188
ae038cb0
DJ
10189/* Set the mark field in CU and in every other compilation unit in the
10190 cache that we must keep because we are keeping CU. */
10191
10b3939b
DJ
10192static int
10193dwarf2_mark_helper (void **slot, void *data)
10194{
10195 struct dwarf2_per_cu_data *per_cu;
10196
10197 per_cu = (struct dwarf2_per_cu_data *) *slot;
10198 if (per_cu->cu->mark)
10199 return 1;
10200 per_cu->cu->mark = 1;
10201
10202 if (per_cu->cu->dependencies != NULL)
10203 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10204
10205 return 1;
10206}
10207
ae038cb0
DJ
10208static void
10209dwarf2_mark (struct dwarf2_cu *cu)
10210{
10211 if (cu->mark)
10212 return;
10213 cu->mark = 1;
10b3939b
DJ
10214 if (cu->dependencies != NULL)
10215 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10216}
10217
10218static void
10219dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10220{
10221 while (per_cu)
10222 {
10223 per_cu->cu->mark = 0;
10224 per_cu = per_cu->cu->read_in_chain;
10225 }
72bf9492
DJ
10226}
10227
72bf9492
DJ
10228/* Trivial hash function for partial_die_info: the hash value of a DIE
10229 is its offset in .debug_info for this objfile. */
10230
10231static hashval_t
10232partial_die_hash (const void *item)
10233{
10234 const struct partial_die_info *part_die = item;
10235 return part_die->offset;
10236}
10237
10238/* Trivial comparison function for partial_die_info structures: two DIEs
10239 are equal if they have the same offset. */
10240
10241static int
10242partial_die_eq (const void *item_lhs, const void *item_rhs)
10243{
10244 const struct partial_die_info *part_die_lhs = item_lhs;
10245 const struct partial_die_info *part_die_rhs = item_rhs;
10246 return part_die_lhs->offset == part_die_rhs->offset;
10247}
10248
ae038cb0
DJ
10249static struct cmd_list_element *set_dwarf2_cmdlist;
10250static struct cmd_list_element *show_dwarf2_cmdlist;
10251
10252static void
10253set_dwarf2_cmd (char *args, int from_tty)
10254{
10255 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10256}
10257
10258static void
10259show_dwarf2_cmd (char *args, int from_tty)
10260{
10261 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10262}
10263
6502dd73
DJ
10264void _initialize_dwarf2_read (void);
10265
10266void
10267_initialize_dwarf2_read (void)
10268{
10269 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10270
1bedd215
AC
10271 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10272Set DWARF 2 specific variables.\n\
10273Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10274 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10275 0/*allow-unknown*/, &maintenance_set_cmdlist);
10276
1bedd215
AC
10277 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10278Show DWARF 2 specific variables\n\
10279Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10280 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10281 0/*allow-unknown*/, &maintenance_show_cmdlist);
10282
10283 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10284 &dwarf2_max_cache_age, _("\
10285Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10286Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10287A higher limit means that cached compilation units will be stored\n\
10288in memory longer, and more total memory will be used. Zero disables\n\
10289caching, which can slow down startup."),
2c5b56ce 10290 NULL,
920d2a44 10291 show_dwarf2_max_cache_age,
2c5b56ce 10292 &set_dwarf2_cmdlist,
ae038cb0 10293 &show_dwarf2_cmdlist);
6502dd73 10294}