]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
* elf.c (assign_file_positions_except_relocs): Move code setting
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
197e01b6 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
939b2b42 4 2004, 2005, 2006
8e65ff28 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
c906108c 20
c5aa993b
JM
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
c906108c 25
c5aa993b
JM
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
197e01b6
EZ
28 Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
c906108c
SS
30
31#include "defs.h"
32#include "bfd.h"
c906108c
SS
33#include "symtab.h"
34#include "gdbtypes.h"
c906108c
SS
35#include "objfiles.h"
36#include "elf/dwarf2.h"
37#include "buildsym.h"
38#include "demangle.h"
39#include "expression.h"
d5166ae1 40#include "filenames.h" /* for DOSish file names */
2e276125 41#include "macrotab.h"
c906108c
SS
42#include "language.h"
43#include "complaints.h"
357e46e7 44#include "bcache.h"
4c2df51b
DJ
45#include "dwarf2expr.h"
46#include "dwarf2loc.h"
9219021c 47#include "cp-support.h"
72bf9492 48#include "hashtab.h"
ae038cb0
DJ
49#include "command.h"
50#include "gdbcmd.h"
4c2df51b 51
c906108c
SS
52#include <fcntl.h>
53#include "gdb_string.h"
4bdf3d34 54#include "gdb_assert.h"
c906108c
SS
55#include <sys/types.h>
56
d8151005
DJ
57/* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
88496bb5
MS
71#ifndef DWARF2_REG_TO_REGNUM
72#define DWARF2_REG_TO_REGNUM(REG) (REG)
73#endif
74
107d2387 75#if 0
357e46e7 76/* .debug_info header for a compilation unit
c906108c
SS
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88_COMP_UNIT_HEADER;
89#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 90#endif
c906108c
SS
91
92/* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105_PUBNAMES_HEADER;
106#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108/* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121_ARANGES_HEADER;
122#define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124/* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145_STATEMENT_PROLOGUE;
146
6502dd73
DJ
147static const struct objfile_data *dwarf2_objfile_data_key;
148
149struct dwarf2_per_objfile
150{
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
fe1b8b76
JB
165 gdb_byte *info_buffer;
166 gdb_byte *abbrev_buffer;
167 gdb_byte *line_buffer;
168 gdb_byte *str_buffer;
169 gdb_byte *macinfo_buffer;
170 gdb_byte *ranges_buffer;
171 gdb_byte *loc_buffer;
ae038cb0 172
10b3939b
DJ
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
ae038cb0
DJ
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
6502dd73
DJ
183};
184
185static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 186
086df311
DJ
187static asection *dwarf_info_section;
188static asection *dwarf_abbrev_section;
189static asection *dwarf_line_section;
190static asection *dwarf_pubnames_section;
191static asection *dwarf_aranges_section;
192static asection *dwarf_loc_section;
193static asection *dwarf_macinfo_section;
194static asection *dwarf_str_section;
195static asection *dwarf_ranges_section;
196asection *dwarf_frame_section;
197asection *dwarf_eh_frame_section;
198
c906108c
SS
199/* names of the debugging sections */
200
201#define INFO_SECTION ".debug_info"
202#define ABBREV_SECTION ".debug_abbrev"
203#define LINE_SECTION ".debug_line"
204#define PUBNAMES_SECTION ".debug_pubnames"
205#define ARANGES_SECTION ".debug_aranges"
206#define LOC_SECTION ".debug_loc"
207#define MACINFO_SECTION ".debug_macinfo"
208#define STR_SECTION ".debug_str"
af34e669 209#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
210#define FRAME_SECTION ".debug_frame"
211#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
212
213/* local data types */
214
57349743
JB
215/* We hold several abbreviation tables in memory at the same time. */
216#ifndef ABBREV_HASH_SIZE
217#define ABBREV_HASH_SIZE 121
218#endif
219
107d2387
AC
220/* The data in a compilation unit header, after target2host
221 translation, looks like this. */
c906108c 222struct comp_unit_head
a738430d
MK
223{
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
57349743 229
a738430d
MK
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
57349743 232
a738430d
MK
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
57349743 235
a738430d
MK
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
57349743 239
a738430d
MK
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
fe1b8b76 242 gdb_byte *cu_head_ptr;
57349743 243
a738430d
MK
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
fe1b8b76 246 gdb_byte *first_die_ptr;
af34e669 247
a738430d
MK
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
0d53c4c4 250
a738430d
MK
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
0d53c4c4 253
a738430d
MK
254 /* Non-zero if base_address has been set. */
255 int base_known;
256};
c906108c 257
10b3939b
DJ
258/* Fixed size for the DIE hash table. */
259#ifndef REF_HASH_SIZE
260#define REF_HASH_SIZE 1021
261#endif
262
e7c27a73
DJ
263/* Internal state when decoding a particular compilation unit. */
264struct dwarf2_cu
265{
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 272 should logically be moved to the dwarf2_cu structure. */
e7c27a73 273 struct comp_unit_head header;
e142c38c
DJ
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
b0f35d58
DL
281 const char *producer;
282
e142c38c
DJ
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
72bf9492
DJ
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
ae038cb0
DJ
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
10b3939b
DJ
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
ae038cb0
DJ
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
72bf9492
DJ
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
e7c27a73
DJ
353};
354
10b3939b
DJ
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
ae038cb0
DJ
361struct dwarf2_per_cu_data
362{
5afb4e99 363 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
5afb4e99 367 unsigned long length : 30;
ae038cb0
DJ
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
5afb4e99
DJ
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
ae038cb0
DJ
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
1c379e20
DJ
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
1c379e20 386 htab_t type_hash;
10b3939b
DJ
387
388 /* The partial symbol table associated with this compilation unit. */
389 struct partial_symtab *psymtab;
ae038cb0
DJ
390};
391
debd256d
JB
392/* The line number information for a compilation unit (found in the
393 .debug_line section) begins with a "statement program header",
394 which contains the following information. */
395struct line_header
396{
397 unsigned int total_length;
398 unsigned short version;
399 unsigned int header_length;
400 unsigned char minimum_instruction_length;
401 unsigned char default_is_stmt;
402 int line_base;
403 unsigned char line_range;
404 unsigned char opcode_base;
405
406 /* standard_opcode_lengths[i] is the number of operands for the
407 standard opcode whose value is i. This means that
408 standard_opcode_lengths[0] is unused, and the last meaningful
409 element is standard_opcode_lengths[opcode_base - 1]. */
410 unsigned char *standard_opcode_lengths;
411
412 /* The include_directories table. NOTE! These strings are not
413 allocated with xmalloc; instead, they are pointers into
414 debug_line_buffer. If you try to free them, `free' will get
415 indigestion. */
416 unsigned int num_include_dirs, include_dirs_size;
417 char **include_dirs;
418
419 /* The file_names table. NOTE! These strings are not allocated
420 with xmalloc; instead, they are pointers into debug_line_buffer.
421 Don't try to free them directly. */
422 unsigned int num_file_names, file_names_size;
423 struct file_entry
c906108c 424 {
debd256d
JB
425 char *name;
426 unsigned int dir_index;
427 unsigned int mod_time;
428 unsigned int length;
aaa75496 429 int included_p; /* Non-zero if referenced by the Line Number Program. */
debd256d
JB
430 } *file_names;
431
432 /* The start and end of the statement program following this
6502dd73 433 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 434 gdb_byte *statement_program_start, *statement_program_end;
debd256d 435};
c906108c
SS
436
437/* When we construct a partial symbol table entry we only
438 need this much information. */
439struct partial_die_info
440 {
72bf9492 441 /* Offset of this DIE. */
c906108c 442 unsigned int offset;
72bf9492
DJ
443
444 /* DWARF-2 tag for this DIE. */
445 ENUM_BITFIELD(dwarf_tag) tag : 16;
446
447 /* Language code associated with this DIE. This is only used
448 for the compilation unit DIE. */
449 unsigned int language : 8;
450
451 /* Assorted flags describing the data found in this DIE. */
452 unsigned int has_children : 1;
453 unsigned int is_external : 1;
454 unsigned int is_declaration : 1;
455 unsigned int has_type : 1;
456 unsigned int has_specification : 1;
aaa75496 457 unsigned int has_stmt_list : 1;
72bf9492
DJ
458 unsigned int has_pc_info : 1;
459
460 /* Flag set if the SCOPE field of this structure has been
461 computed. */
462 unsigned int scope_set : 1;
463
464 /* The name of this DIE. Normally the value of DW_AT_name, but
465 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
466 other fashion. */
c906108c 467 char *name;
57c22c6c 468 char *dirname;
72bf9492
DJ
469
470 /* The scope to prepend to our children. This is generally
471 allocated on the comp_unit_obstack, so will disappear
472 when this compilation unit leaves the cache. */
473 char *scope;
474
475 /* The location description associated with this DIE, if any. */
476 struct dwarf_block *locdesc;
477
478 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
479 CORE_ADDR lowpc;
480 CORE_ADDR highpc;
72bf9492
DJ
481
482 /* Pointer into the info_buffer pointing at the target of
483 DW_AT_sibling, if any. */
fe1b8b76 484 gdb_byte *sibling;
72bf9492
DJ
485
486 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
487 DW_AT_specification (or DW_AT_abstract_origin or
488 DW_AT_extension). */
489 unsigned int spec_offset;
490
aaa75496
JB
491 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
492 unsigned int line_offset;
493
72bf9492
DJ
494 /* Pointers to this DIE's parent, first child, and next sibling,
495 if any. */
496 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
497 };
498
499/* This data structure holds the information of an abbrev. */
500struct abbrev_info
501 {
502 unsigned int number; /* number identifying abbrev */
503 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
504 unsigned short has_children; /* boolean */
505 unsigned short num_attrs; /* number of attributes */
c906108c
SS
506 struct attr_abbrev *attrs; /* an array of attribute descriptions */
507 struct abbrev_info *next; /* next in chain */
508 };
509
510struct attr_abbrev
511 {
512 enum dwarf_attribute name;
513 enum dwarf_form form;
514 };
515
516/* This data structure holds a complete die structure. */
517struct die_info
518 {
c5aa993b 519 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
520 unsigned int abbrev; /* Abbrev number */
521 unsigned int offset; /* Offset in .debug_info section */
522 unsigned int num_attrs; /* Number of attributes */
523 struct attribute *attrs; /* An array of attributes */
524 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
525
526 /* The dies in a compilation unit form an n-ary tree. PARENT
527 points to this die's parent; CHILD points to the first child of
528 this node; and all the children of a given node are chained
529 together via their SIBLING fields, terminated by a die whose
530 tag is zero. */
639d11d3
DC
531 struct die_info *child; /* Its first child, if any. */
532 struct die_info *sibling; /* Its next sibling, if any. */
533 struct die_info *parent; /* Its parent, if any. */
78ba4af6 534
c5aa993b 535 struct type *type; /* Cached type information */
c906108c
SS
536 };
537
538/* Attributes have a name and a value */
539struct attribute
540 {
541 enum dwarf_attribute name;
542 enum dwarf_form form;
543 union
544 {
545 char *str;
546 struct dwarf_block *blk;
ce5d95e1
JB
547 unsigned long unsnd;
548 long int snd;
c906108c
SS
549 CORE_ADDR addr;
550 }
551 u;
552 };
553
5fb290d7
DJ
554struct function_range
555{
556 const char *name;
557 CORE_ADDR lowpc, highpc;
558 int seen_line;
559 struct function_range *next;
560};
561
c906108c
SS
562/* Get at parts of an attribute structure */
563
564#define DW_STRING(attr) ((attr)->u.str)
565#define DW_UNSND(attr) ((attr)->u.unsnd)
566#define DW_BLOCK(attr) ((attr)->u.blk)
567#define DW_SND(attr) ((attr)->u.snd)
568#define DW_ADDR(attr) ((attr)->u.addr)
569
570/* Blocks are a bunch of untyped bytes. */
571struct dwarf_block
572 {
573 unsigned int size;
fe1b8b76 574 gdb_byte *data;
c906108c
SS
575 };
576
c906108c
SS
577#ifndef ATTR_ALLOC_CHUNK
578#define ATTR_ALLOC_CHUNK 4
579#endif
580
c906108c
SS
581/* Allocate fields for structs, unions and enums in this size. */
582#ifndef DW_FIELD_ALLOC_CHUNK
583#define DW_FIELD_ALLOC_CHUNK 4
584#endif
585
c906108c
SS
586/* A zeroed version of a partial die for initialization purposes. */
587static struct partial_die_info zeroed_partial_die;
588
c906108c
SS
589/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
590 but this would require a corresponding change in unpack_field_as_long
591 and friends. */
592static int bits_per_byte = 8;
593
594/* The routines that read and process dies for a C struct or C++ class
595 pass lists of data member fields and lists of member function fields
596 in an instance of a field_info structure, as defined below. */
597struct field_info
c5aa993b
JM
598 {
599 /* List of data member and baseclasses fields. */
600 struct nextfield
601 {
602 struct nextfield *next;
603 int accessibility;
604 int virtuality;
605 struct field field;
606 }
607 *fields;
c906108c 608
c5aa993b
JM
609 /* Number of fields. */
610 int nfields;
c906108c 611
c5aa993b
JM
612 /* Number of baseclasses. */
613 int nbaseclasses;
c906108c 614
c5aa993b
JM
615 /* Set if the accesibility of one of the fields is not public. */
616 int non_public_fields;
c906108c 617
c5aa993b
JM
618 /* Member function fields array, entries are allocated in the order they
619 are encountered in the object file. */
620 struct nextfnfield
621 {
622 struct nextfnfield *next;
623 struct fn_field fnfield;
624 }
625 *fnfields;
c906108c 626
c5aa993b
JM
627 /* Member function fieldlist array, contains name of possibly overloaded
628 member function, number of overloaded member functions and a pointer
629 to the head of the member function field chain. */
630 struct fnfieldlist
631 {
632 char *name;
633 int length;
634 struct nextfnfield *head;
635 }
636 *fnfieldlists;
c906108c 637
c5aa993b
JM
638 /* Number of entries in the fnfieldlists array. */
639 int nfnfields;
640 };
c906108c 641
10b3939b
DJ
642/* One item on the queue of compilation units to read in full symbols
643 for. */
644struct dwarf2_queue_item
645{
646 struct dwarf2_per_cu_data *per_cu;
647 struct dwarf2_queue_item *next;
648};
649
650/* The current queue. */
651static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
652
ae038cb0
DJ
653/* Loaded secondary compilation units are kept in memory until they
654 have not been referenced for the processing of this many
655 compilation units. Set this to zero to disable caching. Cache
656 sizes of up to at least twenty will improve startup time for
657 typical inter-CU-reference binaries, at an obvious memory cost. */
658static int dwarf2_max_cache_age = 5;
920d2a44
AC
659static void
660show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
661 struct cmd_list_element *c, const char *value)
662{
663 fprintf_filtered (file, _("\
664The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
665 value);
666}
667
ae038cb0 668
c906108c
SS
669/* Various complaints about symbol reading that don't abort the process */
670
4d3c2250
KB
671static void
672dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 673{
4d3c2250 674 complaint (&symfile_complaints,
e2e0b3e5 675 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
676}
677
678static void
679dwarf2_complex_location_expr_complaint (void)
2e276125 680{
e2e0b3e5 681 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
682}
683
4d3c2250
KB
684static void
685dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
686 int arg3)
2e276125 687{
4d3c2250 688 complaint (&symfile_complaints,
e2e0b3e5 689 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
690 arg2, arg3);
691}
692
693static void
694dwarf2_macros_too_long_complaint (void)
2e276125 695{
4d3c2250 696 complaint (&symfile_complaints,
e2e0b3e5 697 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
698}
699
700static void
701dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 702{
4d3c2250 703 complaint (&symfile_complaints,
e2e0b3e5 704 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
705 arg1);
706}
707
708static void
709dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 710{
4d3c2250 711 complaint (&symfile_complaints,
e2e0b3e5 712 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 713}
c906108c 714
c906108c
SS
715/* local function prototypes */
716
4efb68b1 717static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
718
719#if 0
a14ed312 720static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
721#endif
722
aaa75496
JB
723static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
724 struct objfile *);
725
726static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
727 struct partial_die_info *,
728 struct partial_symtab *);
729
a14ed312 730static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 731
72bf9492
DJ
732static void scan_partial_symbols (struct partial_die_info *,
733 CORE_ADDR *, CORE_ADDR *,
734 struct dwarf2_cu *);
c906108c 735
72bf9492
DJ
736static void add_partial_symbol (struct partial_die_info *,
737 struct dwarf2_cu *);
63d06c5c 738
72bf9492 739static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 740
72bf9492
DJ
741static void add_partial_namespace (struct partial_die_info *pdi,
742 CORE_ADDR *lowpc, CORE_ADDR *highpc,
743 struct dwarf2_cu *cu);
63d06c5c 744
72bf9492
DJ
745static void add_partial_enumeration (struct partial_die_info *enum_pdi,
746 struct dwarf2_cu *cu);
91c24f0a 747
fe1b8b76
JB
748static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
749 gdb_byte *info_ptr,
750 bfd *abfd,
751 struct dwarf2_cu *cu);
91c24f0a 752
a14ed312 753static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 754
a14ed312 755static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 756
fe1b8b76 757gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 758
e7c27a73 759static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 760
f3dd6933 761static void dwarf2_free_abbrev_table (void *);
c906108c 762
fe1b8b76 763static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 764 struct dwarf2_cu *);
72bf9492 765
57349743 766static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 767 struct dwarf2_cu *);
c906108c 768
fe1b8b76 769static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
770 struct dwarf2_cu *);
771
fe1b8b76
JB
772static gdb_byte *read_partial_die (struct partial_die_info *,
773 struct abbrev_info *abbrev, unsigned int,
774 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 775
72bf9492 776static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 777 struct dwarf2_cu *);
72bf9492
DJ
778
779static void fixup_partial_die (struct partial_die_info *,
780 struct dwarf2_cu *);
781
fe1b8b76
JB
782static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
783 struct dwarf2_cu *, int *);
c906108c 784
fe1b8b76
JB
785static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
786 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 787
fe1b8b76
JB
788static gdb_byte *read_attribute_value (struct attribute *, unsigned,
789 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 790
fe1b8b76 791static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 792
fe1b8b76 793static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 794
fe1b8b76 795static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 796
fe1b8b76 797static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 802 unsigned int *);
c906108c 803
fe1b8b76 804static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 805 struct comp_unit_head *, unsigned int *);
613e1657 806
fe1b8b76 807static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 808 unsigned int *);
613e1657 809
fe1b8b76 810static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 811
fe1b8b76 812static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 813
fe1b8b76
JB
814static char *read_indirect_string (bfd *, gdb_byte *,
815 const struct comp_unit_head *,
816 unsigned int *);
4bdf3d34 817
fe1b8b76 818static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 819
fe1b8b76 820static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 821
fe1b8b76 822static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 823
e142c38c 824static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 825
e142c38c
DJ
826static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
827 struct dwarf2_cu *);
c906108c 828
05cf31d1
JB
829static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
830 struct dwarf2_cu *cu);
831
e142c38c 832static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 833
e142c38c
DJ
834static struct die_info *die_specification (struct die_info *die,
835 struct dwarf2_cu *);
63d06c5c 836
debd256d
JB
837static void free_line_header (struct line_header *lh);
838
aaa75496
JB
839static void add_file_name (struct line_header *, char *, unsigned int,
840 unsigned int, unsigned int);
841
debd256d
JB
842static struct line_header *(dwarf_decode_line_header
843 (unsigned int offset,
e7c27a73 844 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
845
846static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 847 struct dwarf2_cu *, struct partial_symtab *);
c906108c 848
a14ed312 849static void dwarf2_start_subfile (char *, char *);
c906108c 850
a14ed312 851static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 852 struct dwarf2_cu *);
c906108c 853
a14ed312 854static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 855 struct dwarf2_cu *);
c906108c 856
2df3850c
JM
857static void dwarf2_const_value_data (struct attribute *attr,
858 struct symbol *sym,
859 int bits);
860
e7c27a73 861static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 862
e7c27a73
DJ
863static struct type *die_containing_type (struct die_info *,
864 struct dwarf2_cu *);
c906108c 865
e7c27a73 866static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 867
e7c27a73 868static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 869
086ed43d 870static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 871
fe1b8b76
JB
872static char *typename_concat (struct obstack *,
873 const char *prefix,
874 const char *suffix,
987504bb 875 struct dwarf2_cu *);
63d06c5c 876
e7c27a73 877static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 878
e7c27a73 879static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 880
a02abb62
JB
881static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
882
e7c27a73 883static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 884
e7c27a73 885static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 886
e7c27a73 887static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 888
a14ed312 889static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 890 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 891
fae299cd
DC
892static void get_scope_pc_bounds (struct die_info *,
893 CORE_ADDR *, CORE_ADDR *,
894 struct dwarf2_cu *);
895
a14ed312 896static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 897 struct dwarf2_cu *);
c906108c 898
a14ed312 899static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 900 struct type *, struct dwarf2_cu *);
c906108c 901
a14ed312 902static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 903 struct die_info *, struct type *,
e7c27a73 904 struct dwarf2_cu *);
c906108c 905
a14ed312 906static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 907 struct type *, struct dwarf2_cu *);
c906108c 908
134d01f1
DJ
909static void read_structure_type (struct die_info *, struct dwarf2_cu *);
910
911static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 912
8176b9b8
DC
913static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
914
e7c27a73 915static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 916
e7c27a73 917static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 918
38d518c9 919static const char *namespace_name (struct die_info *die,
e142c38c 920 int *is_anonymous, struct dwarf2_cu *);
38d518c9 921
134d01f1
DJ
922static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
923
924static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 925
e7c27a73 926static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 927
e7c27a73 928static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 929
e7c27a73 930static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 931
7ca2d3a3
DL
932static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
933 struct dwarf2_cu *);
934
e7c27a73 935static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 936
e7c27a73
DJ
937static void read_tag_ptr_to_member_type (struct die_info *,
938 struct dwarf2_cu *);
c906108c 939
e7c27a73 940static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 941
e7c27a73 942static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 943
e7c27a73 944static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 945
e7c27a73 946static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 947
e7c27a73 948static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 949
fe1b8b76 950static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 951
fe1b8b76 952static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 953 struct dwarf2_cu *,
fe1b8b76 954 gdb_byte **new_info_ptr,
639d11d3
DC
955 struct die_info *parent);
956
fe1b8b76 957static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 958 struct dwarf2_cu *,
fe1b8b76 959 gdb_byte **new_info_ptr,
639d11d3
DC
960 struct die_info *parent);
961
a14ed312 962static void free_die_list (struct die_info *);
c906108c 963
e7c27a73 964static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 965
e142c38c 966static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 967
e142c38c 968static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 969
e142c38c
DJ
970static struct die_info *dwarf2_extension (struct die_info *die,
971 struct dwarf2_cu *);
9219021c 972
a14ed312 973static char *dwarf_tag_name (unsigned int);
c906108c 974
a14ed312 975static char *dwarf_attr_name (unsigned int);
c906108c 976
a14ed312 977static char *dwarf_form_name (unsigned int);
c906108c 978
a14ed312 979static char *dwarf_stack_op_name (unsigned int);
c906108c 980
a14ed312 981static char *dwarf_bool_name (unsigned int);
c906108c 982
a14ed312 983static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
984
985#if 0
a14ed312 986static char *dwarf_cfi_name (unsigned int);
c906108c 987
a14ed312 988struct die_info *copy_die (struct die_info *);
c906108c
SS
989#endif
990
f9aca02d 991static struct die_info *sibling_die (struct die_info *);
c906108c 992
f9aca02d 993static void dump_die (struct die_info *);
c906108c 994
f9aca02d 995static void dump_die_list (struct die_info *);
c906108c 996
10b3939b
DJ
997static void store_in_ref_table (unsigned int, struct die_info *,
998 struct dwarf2_cu *);
c906108c 999
e142c38c
DJ
1000static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1001 struct dwarf2_cu *);
c906108c 1002
a02abb62
JB
1003static int dwarf2_get_attr_constant_value (struct attribute *, int);
1004
10b3939b
DJ
1005static struct die_info *follow_die_ref (struct die_info *,
1006 struct attribute *,
1007 struct dwarf2_cu *);
c906108c 1008
e142c38c
DJ
1009static struct type *dwarf2_fundamental_type (struct objfile *, int,
1010 struct dwarf2_cu *);
c906108c
SS
1011
1012/* memory allocation interface */
1013
7b5a2f43 1014static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1015
f3dd6933 1016static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1017
a14ed312 1018static struct die_info *dwarf_alloc_die (void);
c906108c 1019
e142c38c 1020static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1021
e142c38c
DJ
1022static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
5fb290d7 1024
2e276125 1025static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1026 char *, bfd *, struct dwarf2_cu *);
2e276125 1027
8e19ed76
PS
1028static int attr_form_is_block (struct attribute *);
1029
4c2df51b
DJ
1030static void
1031dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 1032 struct dwarf2_cu *cu);
4c2df51b 1033
fe1b8b76
JB
1034static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1035 struct dwarf2_cu *cu);
4bb7a0a7 1036
72bf9492
DJ
1037static void free_stack_comp_unit (void *);
1038
72bf9492
DJ
1039static hashval_t partial_die_hash (const void *item);
1040
1041static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1042
ae038cb0
DJ
1043static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1044 (unsigned long offset, struct objfile *objfile);
1045
1046static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1047 (unsigned long offset, struct objfile *objfile);
1048
1049static void free_one_comp_unit (void *);
1050
1051static void free_cached_comp_units (void *);
1052
1053static void age_cached_comp_units (void);
1054
1055static void free_one_cached_comp_unit (void *);
1056
1c379e20
DJ
1057static void set_die_type (struct die_info *, struct type *,
1058 struct dwarf2_cu *);
1059
1c379e20
DJ
1060static void reset_die_and_siblings_types (struct die_info *,
1061 struct dwarf2_cu *);
1c379e20 1062
ae038cb0
DJ
1063static void create_all_comp_units (struct objfile *);
1064
10b3939b
DJ
1065static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1066
1067static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1068
1069static void dwarf2_add_dependence (struct dwarf2_cu *,
1070 struct dwarf2_per_cu_data *);
1071
ae038cb0
DJ
1072static void dwarf2_mark (struct dwarf2_cu *);
1073
1074static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1075
c906108c
SS
1076/* Try to locate the sections we need for DWARF 2 debugging
1077 information and return true if we have enough to do something. */
1078
1079int
6502dd73 1080dwarf2_has_info (struct objfile *objfile)
c906108c 1081{
6502dd73
DJ
1082 struct dwarf2_per_objfile *data;
1083
1084 /* Initialize per-objfile state. */
1085 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1086 memset (data, 0, sizeof (*data));
1087 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1088 dwarf2_per_objfile = data;
1089
188dd5d6
DJ
1090 dwarf_info_section = 0;
1091 dwarf_abbrev_section = 0;
1092 dwarf_line_section = 0;
1093 dwarf_str_section = 0;
1094 dwarf_macinfo_section = 0;
1095 dwarf_frame_section = 0;
1096 dwarf_eh_frame_section = 0;
1097 dwarf_ranges_section = 0;
1098 dwarf_loc_section = 0;
af34e669 1099
6502dd73 1100 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1101 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1102}
1103
1104/* This function is mapped across the sections and remembers the
1105 offset and size of each of the debugging sections we are interested
1106 in. */
1107
1108static void
4efb68b1 1109dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
c906108c 1110{
6314a349 1111 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1112 {
2c500098 1113 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1114 dwarf_info_section = sectp;
c906108c 1115 }
6314a349 1116 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1117 {
2c500098 1118 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1119 dwarf_abbrev_section = sectp;
c906108c 1120 }
6314a349 1121 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1122 {
2c500098 1123 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1124 dwarf_line_section = sectp;
c906108c 1125 }
6314a349 1126 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1127 {
2c500098 1128 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1129 dwarf_pubnames_section = sectp;
c906108c 1130 }
6314a349 1131 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1132 {
2c500098 1133 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1134 dwarf_aranges_section = sectp;
c906108c 1135 }
6314a349 1136 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1137 {
2c500098 1138 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1139 dwarf_loc_section = sectp;
c906108c 1140 }
6314a349 1141 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1142 {
2c500098 1143 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1144 dwarf_macinfo_section = sectp;
c906108c 1145 }
6314a349 1146 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1147 {
2c500098 1148 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1149 dwarf_str_section = sectp;
c906108c 1150 }
6314a349 1151 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1152 {
2c500098 1153 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1154 dwarf_frame_section = sectp;
b6af0555 1155 }
6314a349 1156 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1157 {
3799ccc6
EZ
1158 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1159 if (aflag & SEC_HAS_CONTENTS)
1160 {
2c500098 1161 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1162 dwarf_eh_frame_section = sectp;
1163 }
b6af0555 1164 }
6314a349 1165 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1166 {
2c500098 1167 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1168 dwarf_ranges_section = sectp;
af34e669 1169 }
c906108c
SS
1170}
1171
1172/* Build a partial symbol table. */
1173
1174void
fba45db2 1175dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1176{
c906108c
SS
1177 /* We definitely need the .debug_info and .debug_abbrev sections */
1178
6502dd73
DJ
1179 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1180 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1181
1182 if (dwarf_line_section)
6502dd73 1183 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1184 else
6502dd73 1185 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1186
188dd5d6 1187 if (dwarf_str_section)
6502dd73 1188 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1189 else
6502dd73 1190 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1191
188dd5d6 1192 if (dwarf_macinfo_section)
6502dd73 1193 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1194 dwarf_macinfo_section);
2e276125 1195 else
6502dd73 1196 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1197
188dd5d6 1198 if (dwarf_ranges_section)
6502dd73 1199 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1200 else
6502dd73 1201 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1202
188dd5d6 1203 if (dwarf_loc_section)
6502dd73 1204 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1205 else
6502dd73 1206 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1207
ef96bde8
EZ
1208 if (mainline
1209 || (objfile->global_psymbols.size == 0
1210 && objfile->static_psymbols.size == 0))
c906108c
SS
1211 {
1212 init_psymbol_list (objfile, 1024);
1213 }
1214
1215#if 0
1216 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1217 {
d4f3574e 1218 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1219 .debug_pubnames sections */
1220
d4f3574e 1221 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1222 }
1223 else
1224#endif
1225 /* only test this case for now */
c5aa993b 1226 {
c906108c 1227 /* In this case we have to work a bit harder */
d4f3574e 1228 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1229 }
1230}
1231
1232#if 0
1233/* Build the partial symbol table from the information in the
1234 .debug_pubnames and .debug_aranges sections. */
1235
1236static void
fba45db2 1237dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1238{
1239 bfd *abfd = objfile->obfd;
1240 char *aranges_buffer, *pubnames_buffer;
1241 char *aranges_ptr, *pubnames_ptr;
1242 unsigned int entry_length, version, info_offset, info_size;
1243
1244 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1245 dwarf_pubnames_section);
c906108c 1246 pubnames_ptr = pubnames_buffer;
6502dd73 1247 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1248 {
613e1657 1249 struct comp_unit_head cu_header;
891d2f0b 1250 unsigned int bytes_read;
613e1657
KB
1251
1252 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1253 &bytes_read);
613e1657 1254 pubnames_ptr += bytes_read;
c906108c
SS
1255 version = read_1_byte (abfd, pubnames_ptr);
1256 pubnames_ptr += 1;
1257 info_offset = read_4_bytes (abfd, pubnames_ptr);
1258 pubnames_ptr += 4;
1259 info_size = read_4_bytes (abfd, pubnames_ptr);
1260 pubnames_ptr += 4;
1261 }
1262
1263 aranges_buffer = dwarf2_read_section (objfile,
086df311 1264 dwarf_aranges_section);
c906108c
SS
1265
1266}
1267#endif
1268
107d2387 1269/* Read in the comp unit header information from the debug_info at
917c78fc 1270 info_ptr. */
107d2387 1271
fe1b8b76 1272static gdb_byte *
107d2387 1273read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1274 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1275{
1276 int signed_addr;
891d2f0b 1277 unsigned int bytes_read;
613e1657
KB
1278 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1279 &bytes_read);
1280 info_ptr += bytes_read;
107d2387
AC
1281 cu_header->version = read_2_bytes (abfd, info_ptr);
1282 info_ptr += 2;
613e1657
KB
1283 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1284 &bytes_read);
1285 info_ptr += bytes_read;
107d2387
AC
1286 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1287 info_ptr += 1;
1288 signed_addr = bfd_get_sign_extend_vma (abfd);
1289 if (signed_addr < 0)
8e65ff28 1290 internal_error (__FILE__, __LINE__,
e2e0b3e5 1291 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1292 cu_header->signed_addr_p = signed_addr;
1293 return info_ptr;
1294}
1295
fe1b8b76
JB
1296static gdb_byte *
1297partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1298 bfd *abfd)
1299{
fe1b8b76 1300 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1301
1302 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1303
1304 if (header->version != 2)
8a3fe4f8
AC
1305 error (_("Dwarf Error: wrong version in compilation unit header "
1306 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1307 2, bfd_get_filename (abfd));
1308
1309 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1310 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1311 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1312 (long) header->abbrev_offset,
1313 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1314 bfd_get_filename (abfd));
1315
1316 if (beg_of_comp_unit + header->length + header->initial_length_size
1317 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1318 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1319 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1320 (long) header->length,
1321 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1322 bfd_get_filename (abfd));
1323
1324 return info_ptr;
1325}
1326
aaa75496
JB
1327/* Allocate a new partial symtab for file named NAME and mark this new
1328 partial symtab as being an include of PST. */
1329
1330static void
1331dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1332 struct objfile *objfile)
1333{
1334 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1335
1336 subpst->section_offsets = pst->section_offsets;
1337 subpst->textlow = 0;
1338 subpst->texthigh = 0;
1339
1340 subpst->dependencies = (struct partial_symtab **)
1341 obstack_alloc (&objfile->objfile_obstack,
1342 sizeof (struct partial_symtab *));
1343 subpst->dependencies[0] = pst;
1344 subpst->number_of_dependencies = 1;
1345
1346 subpst->globals_offset = 0;
1347 subpst->n_global_syms = 0;
1348 subpst->statics_offset = 0;
1349 subpst->n_static_syms = 0;
1350 subpst->symtab = NULL;
1351 subpst->read_symtab = pst->read_symtab;
1352 subpst->readin = 0;
1353
1354 /* No private part is necessary for include psymtabs. This property
1355 can be used to differentiate between such include psymtabs and
10b3939b 1356 the regular ones. */
58a9656e 1357 subpst->read_symtab_private = NULL;
aaa75496
JB
1358}
1359
1360/* Read the Line Number Program data and extract the list of files
1361 included by the source file represented by PST. Build an include
1362 partial symtab for each of these included files.
1363
1364 This procedure assumes that there *is* a Line Number Program in
1365 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1366 before calling this procedure. */
1367
1368static void
1369dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1370 struct partial_die_info *pdi,
1371 struct partial_symtab *pst)
1372{
1373 struct objfile *objfile = cu->objfile;
1374 bfd *abfd = objfile->obfd;
1375 struct line_header *lh;
1376
1377 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1378 if (lh == NULL)
1379 return; /* No linetable, so no includes. */
1380
1381 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1382
1383 free_line_header (lh);
1384}
1385
1386
c906108c
SS
1387/* Build the partial symbol table by doing a quick pass through the
1388 .debug_info and .debug_abbrev sections. */
1389
1390static void
fba45db2 1391dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1392{
1393 /* Instead of reading this into a big buffer, we should probably use
1394 mmap() on architectures that support it. (FIXME) */
1395 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1396 gdb_byte *info_ptr;
1397 gdb_byte *beg_of_comp_unit;
c906108c
SS
1398 struct partial_die_info comp_unit_die;
1399 struct partial_symtab *pst;
ae038cb0 1400 struct cleanup *back_to;
e142c38c 1401 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1402
6502dd73 1403 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1404
ae038cb0
DJ
1405 /* Any cached compilation units will be linked by the per-objfile
1406 read_in_chain. Make sure to free them when we're done. */
1407 back_to = make_cleanup (free_cached_comp_units, NULL);
1408
10b3939b
DJ
1409 create_all_comp_units (objfile);
1410
6502dd73 1411 /* Since the objects we're extracting from .debug_info vary in
af703f96 1412 length, only the individual functions to extract them (like
72bf9492 1413 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1414 the buffer is large enough to hold another complete object.
1415
6502dd73
DJ
1416 At the moment, they don't actually check that. If .debug_info
1417 holds just one extra byte after the last compilation unit's dies,
1418 then read_comp_unit_head will happily read off the end of the
1419 buffer. read_partial_die is similarly casual. Those functions
1420 should be fixed.
af703f96
JB
1421
1422 For this loop condition, simply checking whether there's any data
1423 left at all should be sufficient. */
6502dd73
DJ
1424 while (info_ptr < (dwarf2_per_objfile->info_buffer
1425 + dwarf2_per_objfile->info_size))
c906108c 1426 {
f3dd6933 1427 struct cleanup *back_to_inner;
e7c27a73 1428 struct dwarf2_cu cu;
72bf9492
DJ
1429 struct abbrev_info *abbrev;
1430 unsigned int bytes_read;
1431 struct dwarf2_per_cu_data *this_cu;
1432
c906108c 1433 beg_of_comp_unit = info_ptr;
c906108c 1434
72bf9492
DJ
1435 memset (&cu, 0, sizeof (cu));
1436
1437 obstack_init (&cu.comp_unit_obstack);
1438
1439 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1440
e7c27a73 1441 cu.objfile = objfile;
72bf9492 1442 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1443
57349743 1444 /* Complete the cu_header */
6502dd73 1445 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1446 cu.header.first_die_ptr = info_ptr;
1447 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1448
e142c38c
DJ
1449 cu.list_in_scope = &file_symbols;
1450
c906108c 1451 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1452 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1453 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1454
10b3939b 1455 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1456
c906108c 1457 /* Read the compilation unit die */
72bf9492
DJ
1458 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1459 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1460 abfd, info_ptr, &cu);
c906108c
SS
1461
1462 /* Set the language we're debugging */
e142c38c 1463 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1464
1465 /* Allocate a new partial symbol table structure */
d4f3574e 1466 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1467 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1468 comp_unit_die.lowpc,
1469 objfile->global_psymbols.next,
1470 objfile->static_psymbols.next);
1471
ae038cb0
DJ
1472 if (comp_unit_die.dirname)
1473 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1474
10b3939b
DJ
1475 pst->read_symtab_private = (char *) this_cu;
1476
613e1657 1477 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1478
1479 /* Store the function that reads in the rest of the symbol table */
1480 pst->read_symtab = dwarf2_psymtab_to_symtab;
1481
10b3939b
DJ
1482 /* If this compilation unit was already read in, free the
1483 cached copy in order to read it in again. This is
1484 necessary because we skipped some symbols when we first
1485 read in the compilation unit (see load_partial_dies).
1486 This problem could be avoided, but the benefit is
1487 unclear. */
1488 if (this_cu->cu != NULL)
1489 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1490
10b3939b 1491 cu.per_cu = this_cu;
ae038cb0 1492
10b3939b
DJ
1493 /* Note that this is a pointer to our stack frame, being
1494 added to a global data structure. It will be cleaned up
1495 in free_stack_comp_unit when we finish with this
1496 compilation unit. */
1497 this_cu->cu = &cu;
ae038cb0 1498
10b3939b 1499 this_cu->psymtab = pst;
ae038cb0 1500
c906108c
SS
1501 /* Check if comp unit has_children.
1502 If so, read the rest of the partial symbols from this comp unit.
1503 If not, there's no more debug_info for this comp unit. */
1504 if (comp_unit_die.has_children)
1505 {
72bf9492
DJ
1506 struct partial_die_info *first_die;
1507
91c24f0a
DC
1508 lowpc = ((CORE_ADDR) -1);
1509 highpc = ((CORE_ADDR) 0);
1510
72bf9492
DJ
1511 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1512
1513 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1514
91c24f0a
DC
1515 /* If we didn't find a lowpc, set it to highpc to avoid
1516 complaints from `maint check'. */
1517 if (lowpc == ((CORE_ADDR) -1))
1518 lowpc = highpc;
72bf9492 1519
c906108c
SS
1520 /* If the compilation unit didn't have an explicit address range,
1521 then use the information extracted from its child dies. */
0b010bcc 1522 if (! comp_unit_die.has_pc_info)
c906108c 1523 {
c5aa993b 1524 comp_unit_die.lowpc = lowpc;
c906108c
SS
1525 comp_unit_die.highpc = highpc;
1526 }
1527 }
c5aa993b 1528 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1529 pst->texthigh = comp_unit_die.highpc + baseaddr;
1530
1531 pst->n_global_syms = objfile->global_psymbols.next -
1532 (objfile->global_psymbols.list + pst->globals_offset);
1533 pst->n_static_syms = objfile->static_psymbols.next -
1534 (objfile->static_psymbols.list + pst->statics_offset);
1535 sort_pst_symbols (pst);
1536
1537 /* If there is already a psymtab or symtab for a file of this
1538 name, remove it. (If there is a symtab, more drastic things
1539 also happen.) This happens in VxWorks. */
1540 free_named_symtabs (pst->filename);
1541
dd373385
EZ
1542 info_ptr = beg_of_comp_unit + cu.header.length
1543 + cu.header.initial_length_size;
1544
aaa75496
JB
1545 if (comp_unit_die.has_stmt_list)
1546 {
1547 /* Get the list of files included in the current compilation unit,
1548 and build a psymtab for each of them. */
1549 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1550 }
1551
f3dd6933 1552 do_cleanups (back_to_inner);
c906108c 1553 }
ae038cb0
DJ
1554 do_cleanups (back_to);
1555}
1556
1557/* Load the DIEs for a secondary CU into memory. */
1558
1559static void
1560load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1561{
1562 bfd *abfd = objfile->obfd;
fe1b8b76 1563 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1564 struct partial_die_info comp_unit_die;
1565 struct dwarf2_cu *cu;
1566 struct abbrev_info *abbrev;
1567 unsigned int bytes_read;
1568 struct cleanup *back_to;
1569
1570 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1571 beg_of_comp_unit = info_ptr;
1572
1573 cu = xmalloc (sizeof (struct dwarf2_cu));
1574 memset (cu, 0, sizeof (struct dwarf2_cu));
1575
1576 obstack_init (&cu->comp_unit_obstack);
1577
1578 cu->objfile = objfile;
1579 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1580
1581 /* Complete the cu_header. */
1582 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1583 cu->header.first_die_ptr = info_ptr;
1584 cu->header.cu_head_ptr = beg_of_comp_unit;
1585
1586 /* Read the abbrevs for this compilation unit into a table. */
1587 dwarf2_read_abbrevs (abfd, cu);
1588 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1589
1590 /* Read the compilation unit die. */
1591 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1592 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1593 abfd, info_ptr, cu);
1594
1595 /* Set the language we're debugging. */
1596 set_cu_language (comp_unit_die.language, cu);
1597
1598 /* Link this compilation unit into the compilation unit tree. */
1599 this_cu->cu = cu;
1600 cu->per_cu = this_cu;
1601
1602 /* Check if comp unit has_children.
1603 If so, read the rest of the partial symbols from this comp unit.
1604 If not, there's no more debug_info for this comp unit. */
1605 if (comp_unit_die.has_children)
1606 load_partial_dies (abfd, info_ptr, 0, cu);
1607
1608 do_cleanups (back_to);
1609}
1610
1611/* Create a list of all compilation units in OBJFILE. We do this only
1612 if an inter-comp-unit reference is found; presumably if there is one,
1613 there will be many, and one will occur early in the .debug_info section.
1614 So there's no point in building this list incrementally. */
1615
1616static void
1617create_all_comp_units (struct objfile *objfile)
1618{
1619 int n_allocated;
1620 int n_comp_units;
1621 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1622 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1623
1624 n_comp_units = 0;
1625 n_allocated = 10;
1626 all_comp_units = xmalloc (n_allocated
1627 * sizeof (struct dwarf2_per_cu_data *));
1628
1629 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1630 {
1631 struct comp_unit_head cu_header;
fe1b8b76 1632 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1633 struct dwarf2_per_cu_data *this_cu;
1634 unsigned long offset;
891d2f0b 1635 unsigned int bytes_read;
ae038cb0
DJ
1636
1637 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1638
1639 /* Read just enough information to find out where the next
1640 compilation unit is. */
dd373385 1641 cu_header.initial_length_size = 0;
ae038cb0
DJ
1642 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1643 &cu_header, &bytes_read);
1644
1645 /* Save the compilation unit for later lookup. */
1646 this_cu = obstack_alloc (&objfile->objfile_obstack,
1647 sizeof (struct dwarf2_per_cu_data));
1648 memset (this_cu, 0, sizeof (*this_cu));
1649 this_cu->offset = offset;
1650 this_cu->length = cu_header.length + cu_header.initial_length_size;
1651
1652 if (n_comp_units == n_allocated)
1653 {
1654 n_allocated *= 2;
1655 all_comp_units = xrealloc (all_comp_units,
1656 n_allocated
1657 * sizeof (struct dwarf2_per_cu_data *));
1658 }
1659 all_comp_units[n_comp_units++] = this_cu;
1660
1661 info_ptr = info_ptr + this_cu->length;
1662 }
1663
1664 dwarf2_per_objfile->all_comp_units
1665 = obstack_alloc (&objfile->objfile_obstack,
1666 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1667 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1668 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1669 xfree (all_comp_units);
1670 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1671}
1672
72bf9492
DJ
1673/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1674 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1675 in CU. */
c906108c 1676
72bf9492
DJ
1677static void
1678scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1679 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1680{
e7c27a73 1681 struct objfile *objfile = cu->objfile;
c906108c 1682 bfd *abfd = objfile->obfd;
72bf9492 1683 struct partial_die_info *pdi;
c906108c 1684
91c24f0a
DC
1685 /* Now, march along the PDI's, descending into ones which have
1686 interesting children but skipping the children of the other ones,
1687 until we reach the end of the compilation unit. */
c906108c 1688
72bf9492 1689 pdi = first_die;
91c24f0a 1690
72bf9492
DJ
1691 while (pdi != NULL)
1692 {
1693 fixup_partial_die (pdi, cu);
c906108c 1694
91c24f0a
DC
1695 /* Anonymous namespaces have no name but have interesting
1696 children, so we need to look at them. Ditto for anonymous
1697 enums. */
933c6fe4 1698
72bf9492
DJ
1699 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1700 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1701 {
72bf9492 1702 switch (pdi->tag)
c906108c
SS
1703 {
1704 case DW_TAG_subprogram:
72bf9492 1705 if (pdi->has_pc_info)
c906108c 1706 {
72bf9492 1707 if (pdi->lowpc < *lowpc)
c906108c 1708 {
72bf9492 1709 *lowpc = pdi->lowpc;
c906108c 1710 }
72bf9492 1711 if (pdi->highpc > *highpc)
c906108c 1712 {
72bf9492 1713 *highpc = pdi->highpc;
c906108c 1714 }
72bf9492 1715 if (!pdi->is_declaration)
c906108c 1716 {
72bf9492 1717 add_partial_symbol (pdi, cu);
c906108c
SS
1718 }
1719 }
1720 break;
1721 case DW_TAG_variable:
1722 case DW_TAG_typedef:
91c24f0a 1723 case DW_TAG_union_type:
72bf9492 1724 if (!pdi->is_declaration)
63d06c5c 1725 {
72bf9492 1726 add_partial_symbol (pdi, cu);
63d06c5c
DC
1727 }
1728 break;
c906108c
SS
1729 case DW_TAG_class_type:
1730 case DW_TAG_structure_type:
72bf9492 1731 if (!pdi->is_declaration)
c906108c 1732 {
72bf9492 1733 add_partial_symbol (pdi, cu);
c906108c
SS
1734 }
1735 break;
91c24f0a 1736 case DW_TAG_enumeration_type:
72bf9492
DJ
1737 if (!pdi->is_declaration)
1738 add_partial_enumeration (pdi, cu);
c906108c
SS
1739 break;
1740 case DW_TAG_base_type:
a02abb62 1741 case DW_TAG_subrange_type:
c906108c 1742 /* File scope base type definitions are added to the partial
c5aa993b 1743 symbol table. */
72bf9492 1744 add_partial_symbol (pdi, cu);
c906108c 1745 break;
d9fa45fe 1746 case DW_TAG_namespace:
72bf9492 1747 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1748 break;
c906108c
SS
1749 default:
1750 break;
1751 }
1752 }
1753
72bf9492
DJ
1754 /* If the die has a sibling, skip to the sibling. */
1755
1756 pdi = pdi->die_sibling;
1757 }
1758}
1759
1760/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1761
72bf9492 1762 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1763 name is concatenated with "::" and the partial DIE's name. For
1764 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1765 Enumerators are an exception; they use the scope of their parent
1766 enumeration type, i.e. the name of the enumeration type is not
1767 prepended to the enumerator.
91c24f0a 1768
72bf9492
DJ
1769 There are two complexities. One is DW_AT_specification; in this
1770 case "parent" means the parent of the target of the specification,
1771 instead of the direct parent of the DIE. The other is compilers
1772 which do not emit DW_TAG_namespace; in this case we try to guess
1773 the fully qualified name of structure types from their members'
1774 linkage names. This must be done using the DIE's children rather
1775 than the children of any DW_AT_specification target. We only need
1776 to do this for structures at the top level, i.e. if the target of
1777 any DW_AT_specification (if any; otherwise the DIE itself) does not
1778 have a parent. */
1779
1780/* Compute the scope prefix associated with PDI's parent, in
1781 compilation unit CU. The result will be allocated on CU's
1782 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1783 field. NULL is returned if no prefix is necessary. */
1784static char *
1785partial_die_parent_scope (struct partial_die_info *pdi,
1786 struct dwarf2_cu *cu)
1787{
1788 char *grandparent_scope;
1789 struct partial_die_info *parent, *real_pdi;
91c24f0a 1790
72bf9492
DJ
1791 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1792 then this means the parent of the specification DIE. */
1793
1794 real_pdi = pdi;
72bf9492 1795 while (real_pdi->has_specification)
10b3939b 1796 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1797
1798 parent = real_pdi->die_parent;
1799 if (parent == NULL)
1800 return NULL;
1801
1802 if (parent->scope_set)
1803 return parent->scope;
1804
1805 fixup_partial_die (parent, cu);
1806
10b3939b 1807 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1808
1809 if (parent->tag == DW_TAG_namespace
1810 || parent->tag == DW_TAG_structure_type
1811 || parent->tag == DW_TAG_class_type
1812 || parent->tag == DW_TAG_union_type)
1813 {
1814 if (grandparent_scope == NULL)
1815 parent->scope = parent->name;
1816 else
987504bb
JJ
1817 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1818 parent->name, cu);
72bf9492
DJ
1819 }
1820 else if (parent->tag == DW_TAG_enumeration_type)
1821 /* Enumerators should not get the name of the enumeration as a prefix. */
1822 parent->scope = grandparent_scope;
1823 else
1824 {
1825 /* FIXME drow/2004-04-01: What should we be doing with
1826 function-local names? For partial symbols, we should probably be
1827 ignoring them. */
1828 complaint (&symfile_complaints,
e2e0b3e5 1829 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1830 parent->tag, pdi->offset);
1831 parent->scope = grandparent_scope;
c906108c
SS
1832 }
1833
72bf9492
DJ
1834 parent->scope_set = 1;
1835 return parent->scope;
1836}
1837
1838/* Return the fully scoped name associated with PDI, from compilation unit
1839 CU. The result will be allocated with malloc. */
1840static char *
1841partial_die_full_name (struct partial_die_info *pdi,
1842 struct dwarf2_cu *cu)
1843{
1844 char *parent_scope;
1845
1846 parent_scope = partial_die_parent_scope (pdi, cu);
1847 if (parent_scope == NULL)
1848 return NULL;
1849 else
987504bb 1850 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1851}
1852
1853static void
72bf9492 1854add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1855{
e7c27a73 1856 struct objfile *objfile = cu->objfile;
c906108c 1857 CORE_ADDR addr = 0;
72bf9492
DJ
1858 char *actual_name;
1859 const char *my_prefix;
5c4e30ca 1860 const struct partial_symbol *psym = NULL;
e142c38c 1861 CORE_ADDR baseaddr;
72bf9492 1862 int built_actual_name = 0;
e142c38c
DJ
1863
1864 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1865
72bf9492
DJ
1866 actual_name = NULL;
1867
1868 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1869 {
72bf9492
DJ
1870 actual_name = partial_die_full_name (pdi, cu);
1871 if (actual_name)
1872 built_actual_name = 1;
63d06c5c
DC
1873 }
1874
72bf9492
DJ
1875 if (actual_name == NULL)
1876 actual_name = pdi->name;
1877
c906108c
SS
1878 switch (pdi->tag)
1879 {
1880 case DW_TAG_subprogram:
1881 if (pdi->is_external)
1882 {
38d518c9 1883 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1884 mst_text, objfile); */
38d518c9 1885 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1886 VAR_DOMAIN, LOC_BLOCK,
1887 &objfile->global_psymbols,
1888 0, pdi->lowpc + baseaddr,
e142c38c 1889 cu->language, objfile);
c906108c
SS
1890 }
1891 else
1892 {
38d518c9 1893 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1894 mst_file_text, objfile); */
38d518c9 1895 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1896 VAR_DOMAIN, LOC_BLOCK,
1897 &objfile->static_psymbols,
1898 0, pdi->lowpc + baseaddr,
e142c38c 1899 cu->language, objfile);
c906108c
SS
1900 }
1901 break;
1902 case DW_TAG_variable:
1903 if (pdi->is_external)
1904 {
1905 /* Global Variable.
1906 Don't enter into the minimal symbol tables as there is
1907 a minimal symbol table entry from the ELF symbols already.
1908 Enter into partial symbol table if it has a location
1909 descriptor or a type.
1910 If the location descriptor is missing, new_symbol will create
1911 a LOC_UNRESOLVED symbol, the address of the variable will then
1912 be determined from the minimal symbol table whenever the variable
1913 is referenced.
1914 The address for the partial symbol table entry is not
1915 used by GDB, but it comes in handy for debugging partial symbol
1916 table building. */
1917
1918 if (pdi->locdesc)
e7c27a73 1919 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1920 if (pdi->locdesc || pdi->has_type)
38d518c9 1921 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1922 VAR_DOMAIN, LOC_STATIC,
1923 &objfile->global_psymbols,
1924 0, addr + baseaddr,
e142c38c 1925 cu->language, objfile);
c906108c
SS
1926 }
1927 else
1928 {
1929 /* Static Variable. Skip symbols without location descriptors. */
1930 if (pdi->locdesc == NULL)
1931 return;
e7c27a73 1932 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1933 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1934 mst_file_data, objfile); */
38d518c9 1935 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1936 VAR_DOMAIN, LOC_STATIC,
1937 &objfile->static_psymbols,
1938 0, addr + baseaddr,
e142c38c 1939 cu->language, objfile);
c906108c
SS
1940 }
1941 break;
1942 case DW_TAG_typedef:
1943 case DW_TAG_base_type:
a02abb62 1944 case DW_TAG_subrange_type:
38d518c9 1945 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1946 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1947 &objfile->static_psymbols,
e142c38c 1948 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1949 break;
72bf9492
DJ
1950 case DW_TAG_namespace:
1951 add_psymbol_to_list (actual_name, strlen (actual_name),
1952 VAR_DOMAIN, LOC_TYPEDEF,
1953 &objfile->global_psymbols,
1954 0, (CORE_ADDR) 0, cu->language, objfile);
1955 break;
c906108c
SS
1956 case DW_TAG_class_type:
1957 case DW_TAG_structure_type:
1958 case DW_TAG_union_type:
1959 case DW_TAG_enumeration_type:
1960 /* Skip aggregate types without children, these are external
c5aa993b 1961 references. */
63d06c5c
DC
1962 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1963 static vs. global. */
c906108c
SS
1964 if (pdi->has_children == 0)
1965 return;
38d518c9 1966 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1967 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
1968 (cu->language == language_cplus
1969 || cu->language == language_java)
63d06c5c
DC
1970 ? &objfile->global_psymbols
1971 : &objfile->static_psymbols,
e142c38c 1972 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1973
987504bb
JJ
1974 if (cu->language == language_cplus
1975 || cu->language == language_java)
c906108c 1976 {
987504bb 1977 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 1978 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1979 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 1980 &objfile->global_psymbols,
e142c38c 1981 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1982 }
1983 break;
1984 case DW_TAG_enumerator:
38d518c9 1985 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1986 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
1987 (cu->language == language_cplus
1988 || cu->language == language_java)
f6fe98ef
DJ
1989 ? &objfile->global_psymbols
1990 : &objfile->static_psymbols,
e142c38c 1991 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
1992 break;
1993 default:
1994 break;
1995 }
5c4e30ca
DC
1996
1997 /* Check to see if we should scan the name for possible namespace
1998 info. Only do this if this is C++, if we don't have namespace
1999 debugging info in the file, if the psym is of an appropriate type
2000 (otherwise we'll have psym == NULL), and if we actually had a
2001 mangled name to begin with. */
2002
72bf9492
DJ
2003 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2004 cases which do not set PSYM above? */
2005
e142c38c 2006 if (cu->language == language_cplus
72bf9492 2007 && cu->has_namespace_info == 0
5c4e30ca
DC
2008 && psym != NULL
2009 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2010 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2011 objfile);
72bf9492
DJ
2012
2013 if (built_actual_name)
2014 xfree (actual_name);
c906108c
SS
2015}
2016
72bf9492
DJ
2017/* Determine whether a die of type TAG living in a C++ class or
2018 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2019 name listed in the die. */
2020
2021static int
72bf9492 2022pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2023{
63d06c5c
DC
2024 switch (tag)
2025 {
72bf9492 2026 case DW_TAG_namespace:
63d06c5c
DC
2027 case DW_TAG_typedef:
2028 case DW_TAG_class_type:
2029 case DW_TAG_structure_type:
2030 case DW_TAG_union_type:
2031 case DW_TAG_enumeration_type:
2032 case DW_TAG_enumerator:
2033 return 1;
2034 default:
2035 return 0;
2036 }
2037}
2038
5c4e30ca
DC
2039/* Read a partial die corresponding to a namespace; also, add a symbol
2040 corresponding to that namespace to the symbol table. NAMESPACE is
2041 the name of the enclosing namespace. */
91c24f0a 2042
72bf9492
DJ
2043static void
2044add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2045 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2046 struct dwarf2_cu *cu)
91c24f0a 2047{
e7c27a73 2048 struct objfile *objfile = cu->objfile;
5c4e30ca 2049
72bf9492 2050 /* Add a symbol for the namespace. */
e7c27a73 2051
72bf9492 2052 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2053
2054 /* Now scan partial symbols in that namespace. */
2055
91c24f0a 2056 if (pdi->has_children)
72bf9492 2057 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2058}
2059
72bf9492
DJ
2060/* See if we can figure out if the class lives in a namespace. We do
2061 this by looking for a member function; its demangled name will
2062 contain namespace info, if there is any. */
63d06c5c 2063
72bf9492
DJ
2064static void
2065guess_structure_name (struct partial_die_info *struct_pdi,
2066 struct dwarf2_cu *cu)
63d06c5c 2067{
987504bb
JJ
2068 if ((cu->language == language_cplus
2069 || cu->language == language_java)
72bf9492 2070 && cu->has_namespace_info == 0
63d06c5c
DC
2071 && struct_pdi->has_children)
2072 {
63d06c5c
DC
2073 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2074 what template types look like, because the demangler
2075 frequently doesn't give the same name as the debug info. We
2076 could fix this by only using the demangled name to get the
134d01f1 2077 prefix (but see comment in read_structure_type). */
63d06c5c 2078
72bf9492
DJ
2079 struct partial_die_info *child_pdi = struct_pdi->die_child;
2080 struct partial_die_info *real_pdi;
5d51ca54 2081
72bf9492
DJ
2082 /* If this DIE (this DIE's specification, if any) has a parent, then
2083 we should not do this. We'll prepend the parent's fully qualified
2084 name when we create the partial symbol. */
5d51ca54 2085
72bf9492 2086 real_pdi = struct_pdi;
72bf9492 2087 while (real_pdi->has_specification)
10b3939b 2088 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2089
72bf9492
DJ
2090 if (real_pdi->die_parent != NULL)
2091 return;
63d06c5c 2092
72bf9492
DJ
2093 while (child_pdi != NULL)
2094 {
2095 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2096 {
72bf9492 2097 char *actual_class_name
31c27f77
JJ
2098 = language_class_name_from_physname (cu->language_defn,
2099 child_pdi->name);
63d06c5c 2100 if (actual_class_name != NULL)
72bf9492
DJ
2101 {
2102 struct_pdi->name
2103 = obsavestring (actual_class_name,
2104 strlen (actual_class_name),
2105 &cu->comp_unit_obstack);
2106 xfree (actual_class_name);
2107 }
63d06c5c
DC
2108 break;
2109 }
72bf9492
DJ
2110
2111 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2112 }
2113 }
63d06c5c
DC
2114}
2115
91c24f0a
DC
2116/* Read a partial die corresponding to an enumeration type. */
2117
72bf9492
DJ
2118static void
2119add_partial_enumeration (struct partial_die_info *enum_pdi,
2120 struct dwarf2_cu *cu)
91c24f0a 2121{
e7c27a73 2122 struct objfile *objfile = cu->objfile;
91c24f0a 2123 bfd *abfd = objfile->obfd;
72bf9492 2124 struct partial_die_info *pdi;
91c24f0a
DC
2125
2126 if (enum_pdi->name != NULL)
72bf9492
DJ
2127 add_partial_symbol (enum_pdi, cu);
2128
2129 pdi = enum_pdi->die_child;
2130 while (pdi)
91c24f0a 2131 {
72bf9492 2132 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2133 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2134 else
72bf9492
DJ
2135 add_partial_symbol (pdi, cu);
2136 pdi = pdi->die_sibling;
91c24f0a 2137 }
91c24f0a
DC
2138}
2139
4bb7a0a7
DJ
2140/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2141 Return the corresponding abbrev, or NULL if the number is zero (indicating
2142 an empty DIE). In either case *BYTES_READ will be set to the length of
2143 the initial number. */
2144
2145static struct abbrev_info *
fe1b8b76 2146peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2147 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2148{
2149 bfd *abfd = cu->objfile->obfd;
2150 unsigned int abbrev_number;
2151 struct abbrev_info *abbrev;
2152
2153 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2154
2155 if (abbrev_number == 0)
2156 return NULL;
2157
2158 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2159 if (!abbrev)
2160 {
8a3fe4f8 2161 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2162 bfd_get_filename (abfd));
2163 }
2164
2165 return abbrev;
2166}
2167
2168/* Scan the debug information for CU starting at INFO_PTR. Returns a
2169 pointer to the end of a series of DIEs, terminated by an empty
2170 DIE. Any children of the skipped DIEs will also be skipped. */
2171
fe1b8b76
JB
2172static gdb_byte *
2173skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2174{
2175 struct abbrev_info *abbrev;
2176 unsigned int bytes_read;
2177
2178 while (1)
2179 {
2180 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2181 if (abbrev == NULL)
2182 return info_ptr + bytes_read;
2183 else
2184 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2185 }
2186}
2187
2188/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2189 should point just after the initial uleb128 of a DIE, and the
2190 abbrev corresponding to that skipped uleb128 should be passed in
2191 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2192 children. */
2193
fe1b8b76
JB
2194static gdb_byte *
2195skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2196 struct dwarf2_cu *cu)
2197{
2198 unsigned int bytes_read;
2199 struct attribute attr;
2200 bfd *abfd = cu->objfile->obfd;
2201 unsigned int form, i;
2202
2203 for (i = 0; i < abbrev->num_attrs; i++)
2204 {
2205 /* The only abbrev we care about is DW_AT_sibling. */
2206 if (abbrev->attrs[i].name == DW_AT_sibling)
2207 {
2208 read_attribute (&attr, &abbrev->attrs[i],
2209 abfd, info_ptr, cu);
2210 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2211 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2212 else
6502dd73
DJ
2213 return dwarf2_per_objfile->info_buffer
2214 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2215 }
2216
2217 /* If it isn't DW_AT_sibling, skip this attribute. */
2218 form = abbrev->attrs[i].form;
2219 skip_attribute:
2220 switch (form)
2221 {
2222 case DW_FORM_addr:
2223 case DW_FORM_ref_addr:
2224 info_ptr += cu->header.addr_size;
2225 break;
2226 case DW_FORM_data1:
2227 case DW_FORM_ref1:
2228 case DW_FORM_flag:
2229 info_ptr += 1;
2230 break;
2231 case DW_FORM_data2:
2232 case DW_FORM_ref2:
2233 info_ptr += 2;
2234 break;
2235 case DW_FORM_data4:
2236 case DW_FORM_ref4:
2237 info_ptr += 4;
2238 break;
2239 case DW_FORM_data8:
2240 case DW_FORM_ref8:
2241 info_ptr += 8;
2242 break;
2243 case DW_FORM_string:
2244 read_string (abfd, info_ptr, &bytes_read);
2245 info_ptr += bytes_read;
2246 break;
2247 case DW_FORM_strp:
2248 info_ptr += cu->header.offset_size;
2249 break;
2250 case DW_FORM_block:
2251 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2252 info_ptr += bytes_read;
2253 break;
2254 case DW_FORM_block1:
2255 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2256 break;
2257 case DW_FORM_block2:
2258 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2259 break;
2260 case DW_FORM_block4:
2261 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2262 break;
2263 case DW_FORM_sdata:
2264 case DW_FORM_udata:
2265 case DW_FORM_ref_udata:
2266 info_ptr = skip_leb128 (abfd, info_ptr);
2267 break;
2268 case DW_FORM_indirect:
2269 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2270 info_ptr += bytes_read;
2271 /* We need to continue parsing from here, so just go back to
2272 the top. */
2273 goto skip_attribute;
2274
2275 default:
8a3fe4f8 2276 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2277 dwarf_form_name (form),
2278 bfd_get_filename (abfd));
2279 }
2280 }
2281
2282 if (abbrev->has_children)
2283 return skip_children (info_ptr, cu);
2284 else
2285 return info_ptr;
2286}
2287
2288/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2289 the next DIE after ORIG_PDI. */
91c24f0a 2290
fe1b8b76
JB
2291static gdb_byte *
2292locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2293 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2294{
2295 /* Do we know the sibling already? */
72bf9492 2296
91c24f0a
DC
2297 if (orig_pdi->sibling)
2298 return orig_pdi->sibling;
2299
2300 /* Are there any children to deal with? */
2301
2302 if (!orig_pdi->has_children)
2303 return info_ptr;
2304
4bb7a0a7 2305 /* Skip the children the long way. */
91c24f0a 2306
4bb7a0a7 2307 return skip_children (info_ptr, cu);
91c24f0a
DC
2308}
2309
c906108c
SS
2310/* Expand this partial symbol table into a full symbol table. */
2311
2312static void
fba45db2 2313dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2314{
2315 /* FIXME: This is barely more than a stub. */
2316 if (pst != NULL)
2317 {
2318 if (pst->readin)
2319 {
8a3fe4f8 2320 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2321 }
2322 else
2323 {
2324 if (info_verbose)
2325 {
a3f17187 2326 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2327 gdb_flush (gdb_stdout);
2328 }
2329
10b3939b
DJ
2330 /* Restore our global data. */
2331 dwarf2_per_objfile = objfile_data (pst->objfile,
2332 dwarf2_objfile_data_key);
2333
c906108c
SS
2334 psymtab_to_symtab_1 (pst);
2335
2336 /* Finish up the debug error message. */
2337 if (info_verbose)
a3f17187 2338 printf_filtered (_("done.\n"));
c906108c
SS
2339 }
2340 }
2341}
2342
10b3939b
DJ
2343/* Add PER_CU to the queue. */
2344
2345static void
2346queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2347{
2348 struct dwarf2_queue_item *item;
2349
2350 per_cu->queued = 1;
2351 item = xmalloc (sizeof (*item));
2352 item->per_cu = per_cu;
2353 item->next = NULL;
2354
2355 if (dwarf2_queue == NULL)
2356 dwarf2_queue = item;
2357 else
2358 dwarf2_queue_tail->next = item;
2359
2360 dwarf2_queue_tail = item;
2361}
2362
2363/* Process the queue. */
2364
2365static void
2366process_queue (struct objfile *objfile)
2367{
2368 struct dwarf2_queue_item *item, *next_item;
2369
2370 /* Initially, there is just one item on the queue. Load its DIEs,
2371 and the DIEs of any other compilation units it requires,
2372 transitively. */
2373
2374 for (item = dwarf2_queue; item != NULL; item = item->next)
2375 {
2376 /* Read in this compilation unit. This may add new items to
2377 the end of the queue. */
2378 load_full_comp_unit (item->per_cu);
2379
2380 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2381 dwarf2_per_objfile->read_in_chain = item->per_cu;
2382
2383 /* If this compilation unit has already had full symbols created,
2384 reset the TYPE fields in each DIE. */
2385 if (item->per_cu->psymtab->readin)
2386 reset_die_and_siblings_types (item->per_cu->cu->dies,
2387 item->per_cu->cu);
2388 }
2389
2390 /* Now everything left on the queue needs to be read in. Process
2391 them, one at a time, removing from the queue as we finish. */
2392 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2393 {
2394 if (!item->per_cu->psymtab->readin)
2395 process_full_comp_unit (item->per_cu);
2396
2397 item->per_cu->queued = 0;
2398 next_item = item->next;
2399 xfree (item);
2400 }
2401
2402 dwarf2_queue_tail = NULL;
2403}
2404
2405/* Free all allocated queue entries. This function only releases anything if
2406 an error was thrown; if the queue was processed then it would have been
2407 freed as we went along. */
2408
2409static void
2410dwarf2_release_queue (void *dummy)
2411{
2412 struct dwarf2_queue_item *item, *last;
2413
2414 item = dwarf2_queue;
2415 while (item)
2416 {
2417 /* Anything still marked queued is likely to be in an
2418 inconsistent state, so discard it. */
2419 if (item->per_cu->queued)
2420 {
2421 if (item->per_cu->cu != NULL)
2422 free_one_cached_comp_unit (item->per_cu->cu);
2423 item->per_cu->queued = 0;
2424 }
2425
2426 last = item;
2427 item = item->next;
2428 xfree (last);
2429 }
2430
2431 dwarf2_queue = dwarf2_queue_tail = NULL;
2432}
2433
2434/* Read in full symbols for PST, and anything it depends on. */
2435
c906108c 2436static void
fba45db2 2437psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2438{
10b3939b 2439 struct dwarf2_per_cu_data *per_cu;
c906108c 2440 struct cleanup *back_to;
aaa75496
JB
2441 int i;
2442
2443 for (i = 0; i < pst->number_of_dependencies; i++)
2444 if (!pst->dependencies[i]->readin)
2445 {
2446 /* Inform about additional files that need to be read in. */
2447 if (info_verbose)
2448 {
a3f17187 2449 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2450 fputs_filtered (" ", gdb_stdout);
2451 wrap_here ("");
2452 fputs_filtered ("and ", gdb_stdout);
2453 wrap_here ("");
2454 printf_filtered ("%s...", pst->dependencies[i]->filename);
2455 wrap_here (""); /* Flush output */
2456 gdb_flush (gdb_stdout);
2457 }
2458 psymtab_to_symtab_1 (pst->dependencies[i]);
2459 }
2460
10b3939b
DJ
2461 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2462
2463 if (per_cu == NULL)
aaa75496
JB
2464 {
2465 /* It's an include file, no symbols to read for it.
2466 Everything is in the parent symtab. */
2467 pst->readin = 1;
2468 return;
2469 }
c906108c 2470
10b3939b
DJ
2471 back_to = make_cleanup (dwarf2_release_queue, NULL);
2472
2473 queue_comp_unit (per_cu);
2474
2475 process_queue (pst->objfile);
2476
2477 /* Age the cache, releasing compilation units that have not
2478 been used recently. */
2479 age_cached_comp_units ();
2480
2481 do_cleanups (back_to);
2482}
2483
2484/* Load the DIEs associated with PST and PER_CU into memory. */
2485
2486static struct dwarf2_cu *
2487load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2488{
2489 struct partial_symtab *pst = per_cu->psymtab;
2490 bfd *abfd = pst->objfile->obfd;
2491 struct dwarf2_cu *cu;
2492 unsigned long offset;
fe1b8b76 2493 gdb_byte *info_ptr;
10b3939b
DJ
2494 struct cleanup *back_to, *free_cu_cleanup;
2495 struct attribute *attr;
2496 CORE_ADDR baseaddr;
6502dd73 2497
c906108c 2498 /* Set local variables from the partial symbol table info. */
10b3939b 2499 offset = per_cu->offset;
6502dd73
DJ
2500
2501 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2502
10b3939b
DJ
2503 cu = xmalloc (sizeof (struct dwarf2_cu));
2504 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2505
10b3939b
DJ
2506 /* If an error occurs while loading, release our storage. */
2507 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2508
10b3939b 2509 cu->objfile = pst->objfile;
e7c27a73 2510
c906108c 2511 /* read in the comp_unit header */
10b3939b 2512 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2513
2514 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2515 dwarf2_read_abbrevs (abfd, cu);
2516 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2517
2518 cu->header.offset = offset;
c906108c 2519
10b3939b
DJ
2520 cu->per_cu = per_cu;
2521 per_cu->cu = cu;
e142c38c 2522
10b3939b
DJ
2523 /* We use this obstack for block values in dwarf_alloc_block. */
2524 obstack_init (&cu->comp_unit_obstack);
2525
2526 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2527
2528 /* We try not to read any attributes in this function, because not
2529 all objfiles needed for references have been loaded yet, and symbol
2530 table processing isn't initialized. But we have to set the CU language,
2531 or we won't be able to build types correctly. */
2532 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2533 if (attr)
2534 set_cu_language (DW_UNSND (attr), cu);
2535 else
2536 set_cu_language (language_minimal, cu);
2537
2538 do_cleanups (back_to);
e142c38c 2539
10b3939b
DJ
2540 /* We've successfully allocated this compilation unit. Let our caller
2541 clean it up when finished with it. */
2542 discard_cleanups (free_cu_cleanup);
c906108c 2543
10b3939b
DJ
2544 return cu;
2545}
2546
2547/* Generate full symbol information for PST and CU, whose DIEs have
2548 already been loaded into memory. */
2549
2550static void
2551process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2552{
2553 struct partial_symtab *pst = per_cu->psymtab;
2554 struct dwarf2_cu *cu = per_cu->cu;
2555 struct objfile *objfile = pst->objfile;
2556 bfd *abfd = objfile->obfd;
2557 CORE_ADDR lowpc, highpc;
2558 struct symtab *symtab;
2559 struct cleanup *back_to;
2560 struct attribute *attr;
2561 CORE_ADDR baseaddr;
2562
2563 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2564
2565 /* We're in the global namespace. */
2566 processing_current_prefix = "";
2567
2568 buildsym_init ();
2569 back_to = make_cleanup (really_free_pendings, NULL);
2570
2571 cu->list_in_scope = &file_symbols;
c906108c 2572
0d53c4c4
DJ
2573 /* Find the base address of the compilation unit for range lists and
2574 location lists. It will normally be specified by DW_AT_low_pc.
2575 In DWARF-3 draft 4, the base address could be overridden by
2576 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2577 compilation units with discontinuous ranges. */
2578
10b3939b
DJ
2579 cu->header.base_known = 0;
2580 cu->header.base_address = 0;
0d53c4c4 2581
10b3939b 2582 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2583 if (attr)
2584 {
10b3939b
DJ
2585 cu->header.base_address = DW_ADDR (attr);
2586 cu->header.base_known = 1;
0d53c4c4
DJ
2587 }
2588 else
2589 {
10b3939b 2590 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2591 if (attr)
2592 {
10b3939b
DJ
2593 cu->header.base_address = DW_ADDR (attr);
2594 cu->header.base_known = 1;
0d53c4c4
DJ
2595 }
2596 }
2597
c906108c 2598 /* Do line number decoding in read_file_scope () */
10b3939b 2599 process_die (cu->dies, cu);
c906108c 2600
fae299cd
DC
2601 /* Some compilers don't define a DW_AT_high_pc attribute for the
2602 compilation unit. If the DW_AT_high_pc is missing, synthesize
2603 it, by scanning the DIE's below the compilation unit. */
10b3939b 2604 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2605
613e1657 2606 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2607
2608 /* Set symtab language to language from DW_AT_language.
2609 If the compilation is from a C file generated by language preprocessors,
2610 do not set the language if it was already deduced by start_subfile. */
2611 if (symtab != NULL
10b3939b 2612 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2613 {
10b3939b 2614 symtab->language = cu->language;
c906108c
SS
2615 }
2616 pst->symtab = symtab;
2617 pst->readin = 1;
c906108c
SS
2618
2619 do_cleanups (back_to);
2620}
2621
2622/* Process a die and its children. */
2623
2624static void
e7c27a73 2625process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2626{
2627 switch (die->tag)
2628 {
2629 case DW_TAG_padding:
2630 break;
2631 case DW_TAG_compile_unit:
e7c27a73 2632 read_file_scope (die, cu);
c906108c
SS
2633 break;
2634 case DW_TAG_subprogram:
e7c27a73
DJ
2635 read_subroutine_type (die, cu);
2636 read_func_scope (die, cu);
c906108c
SS
2637 break;
2638 case DW_TAG_inlined_subroutine:
2639 /* FIXME: These are ignored for now.
c5aa993b
JM
2640 They could be used to set breakpoints on all inlined instances
2641 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2642 break;
2643 case DW_TAG_lexical_block:
14898363
L
2644 case DW_TAG_try_block:
2645 case DW_TAG_catch_block:
e7c27a73 2646 read_lexical_block_scope (die, cu);
c906108c
SS
2647 break;
2648 case DW_TAG_class_type:
2649 case DW_TAG_structure_type:
2650 case DW_TAG_union_type:
134d01f1
DJ
2651 read_structure_type (die, cu);
2652 process_structure_scope (die, cu);
c906108c
SS
2653 break;
2654 case DW_TAG_enumeration_type:
134d01f1
DJ
2655 read_enumeration_type (die, cu);
2656 process_enumeration_scope (die, cu);
c906108c 2657 break;
134d01f1
DJ
2658
2659 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2660 a symbol or process any children. Therefore it doesn't do anything
2661 that won't be done on-demand by read_type_die. */
c906108c 2662 case DW_TAG_subroutine_type:
e7c27a73 2663 read_subroutine_type (die, cu);
c906108c
SS
2664 break;
2665 case DW_TAG_array_type:
e7c27a73 2666 read_array_type (die, cu);
c906108c
SS
2667 break;
2668 case DW_TAG_pointer_type:
e7c27a73 2669 read_tag_pointer_type (die, cu);
c906108c
SS
2670 break;
2671 case DW_TAG_ptr_to_member_type:
e7c27a73 2672 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2673 break;
2674 case DW_TAG_reference_type:
e7c27a73 2675 read_tag_reference_type (die, cu);
c906108c
SS
2676 break;
2677 case DW_TAG_string_type:
e7c27a73 2678 read_tag_string_type (die, cu);
c906108c 2679 break;
134d01f1
DJ
2680 /* END FIXME */
2681
c906108c 2682 case DW_TAG_base_type:
e7c27a73 2683 read_base_type (die, cu);
134d01f1
DJ
2684 /* Add a typedef symbol for the type definition, if it has a
2685 DW_AT_name. */
2686 new_symbol (die, die->type, cu);
c906108c 2687 break;
a02abb62
JB
2688 case DW_TAG_subrange_type:
2689 read_subrange_type (die, cu);
134d01f1
DJ
2690 /* Add a typedef symbol for the type definition, if it has a
2691 DW_AT_name. */
2692 new_symbol (die, die->type, cu);
a02abb62 2693 break;
c906108c 2694 case DW_TAG_common_block:
e7c27a73 2695 read_common_block (die, cu);
c906108c
SS
2696 break;
2697 case DW_TAG_common_inclusion:
2698 break;
d9fa45fe 2699 case DW_TAG_namespace:
63d06c5c 2700 processing_has_namespace_info = 1;
e7c27a73 2701 read_namespace (die, cu);
d9fa45fe
DC
2702 break;
2703 case DW_TAG_imported_declaration:
2704 case DW_TAG_imported_module:
2705 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2706 information contained in these. DW_TAG_imported_declaration
2707 dies shouldn't have children; DW_TAG_imported_module dies
2708 shouldn't in the C++ case, but conceivably could in the
2709 Fortran case, so we'll have to replace this gdb_assert if
2710 Fortran compilers start generating that info. */
63d06c5c 2711 processing_has_namespace_info = 1;
639d11d3 2712 gdb_assert (die->child == NULL);
d9fa45fe 2713 break;
c906108c 2714 default:
e7c27a73 2715 new_symbol (die, NULL, cu);
c906108c
SS
2716 break;
2717 }
2718}
2719
5fb290d7 2720static void
e142c38c 2721initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2722{
e142c38c 2723 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2724}
2725
c906108c 2726static void
e7c27a73 2727read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2728{
e7c27a73
DJ
2729 struct objfile *objfile = cu->objfile;
2730 struct comp_unit_head *cu_header = &cu->header;
debd256d 2731 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2732 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2733 CORE_ADDR highpc = ((CORE_ADDR) 0);
2734 struct attribute *attr;
2735 char *name = "<unknown>";
2736 char *comp_dir = NULL;
2737 struct die_info *child_die;
2738 bfd *abfd = objfile->obfd;
debd256d 2739 struct line_header *line_header = 0;
e142c38c
DJ
2740 CORE_ADDR baseaddr;
2741
2742 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2743
fae299cd 2744 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2745
2746 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2747 from finish_block. */
2acceee2 2748 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2749 lowpc = highpc;
2750 lowpc += baseaddr;
2751 highpc += baseaddr;
2752
e142c38c 2753 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2754 if (attr)
2755 {
2756 name = DW_STRING (attr);
2757 }
e142c38c 2758 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c
SS
2759 if (attr)
2760 {
2761 comp_dir = DW_STRING (attr);
2762 if (comp_dir)
2763 {
2764 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2765 directory, get rid of it. */
2766 char *cp = strchr (comp_dir, ':');
2767
2768 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2769 comp_dir = cp + 1;
2770 }
2771 }
2772
e142c38c 2773 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2774 if (attr)
2775 {
e142c38c 2776 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2777 }
2778
b0f35d58
DL
2779 attr = dwarf2_attr (die, DW_AT_producer, cu);
2780 if (attr)
2781 cu->producer = DW_STRING (attr);
2782
c906108c
SS
2783 /* We assume that we're processing GCC output. */
2784 processing_gcc_compilation = 2;
2785#if 0
c5aa993b
JM
2786 /* FIXME:Do something here. */
2787 if (dip->at_producer != NULL)
c906108c
SS
2788 {
2789 handle_producer (dip->at_producer);
2790 }
2791#endif
2792
2793 /* The compilation unit may be in a different language or objfile,
2794 zero out all remembered fundamental types. */
e142c38c 2795 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2796
2797 start_symtab (name, comp_dir, lowpc);
2798 record_debugformat ("DWARF 2");
2799
e142c38c 2800 initialize_cu_func_list (cu);
c906108c
SS
2801
2802 /* Process all dies in compilation unit. */
639d11d3 2803 if (die->child != NULL)
c906108c 2804 {
639d11d3 2805 child_die = die->child;
c906108c
SS
2806 while (child_die && child_die->tag)
2807 {
e7c27a73 2808 process_die (child_die, cu);
c906108c
SS
2809 child_die = sibling_die (child_die);
2810 }
2811 }
5fb290d7
DJ
2812
2813 /* Decode line number information if present. */
e142c38c 2814 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2815 if (attr)
2816 {
debd256d 2817 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2818 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2819 if (line_header)
2820 {
2821 make_cleanup ((make_cleanup_ftype *) free_line_header,
2822 (void *) line_header);
aaa75496 2823 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2824 }
5fb290d7 2825 }
debd256d 2826
2e276125
JB
2827 /* Decode macro information, if present. Dwarf 2 macro information
2828 refers to information in the line number info statement program
2829 header, so we can only read it if we've read the header
2830 successfully. */
e142c38c 2831 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2832 if (attr && line_header)
2e276125
JB
2833 {
2834 unsigned int macro_offset = DW_UNSND (attr);
2835 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2836 comp_dir, abfd, cu);
2e276125 2837 }
debd256d 2838 do_cleanups (back_to);
5fb290d7
DJ
2839}
2840
2841static void
e142c38c
DJ
2842add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2843 struct dwarf2_cu *cu)
5fb290d7
DJ
2844{
2845 struct function_range *thisfn;
2846
2847 thisfn = (struct function_range *)
7b5a2f43 2848 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2849 thisfn->name = name;
2850 thisfn->lowpc = lowpc;
2851 thisfn->highpc = highpc;
2852 thisfn->seen_line = 0;
2853 thisfn->next = NULL;
2854
e142c38c
DJ
2855 if (cu->last_fn == NULL)
2856 cu->first_fn = thisfn;
5fb290d7 2857 else
e142c38c 2858 cu->last_fn->next = thisfn;
5fb290d7 2859
e142c38c 2860 cu->last_fn = thisfn;
c906108c
SS
2861}
2862
2863static void
e7c27a73 2864read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2865{
e7c27a73 2866 struct objfile *objfile = cu->objfile;
52f0bd74 2867 struct context_stack *new;
c906108c
SS
2868 CORE_ADDR lowpc;
2869 CORE_ADDR highpc;
2870 struct die_info *child_die;
2871 struct attribute *attr;
2872 char *name;
fdde2d81
DC
2873 const char *previous_prefix = processing_current_prefix;
2874 struct cleanup *back_to = NULL;
e142c38c 2875 CORE_ADDR baseaddr;
c906108c 2876
e142c38c
DJ
2877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2878
2879 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2880
2881 /* Ignore functions with missing or empty names and functions with
2882 missing or invalid low and high pc attributes. */
e7c27a73 2883 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2884 return;
2885
987504bb
JJ
2886 if (cu->language == language_cplus
2887 || cu->language == language_java)
fdde2d81 2888 {
086ed43d 2889 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2890
2a35147e
JB
2891 /* NOTE: carlton/2004-01-23: We have to be careful in the
2892 presence of DW_AT_specification. For example, with GCC 3.4,
2893 given the code
2894
2895 namespace N {
2896 void foo() {
2897 // Definition of N::foo.
2898 }
2899 }
2900
2901 then we'll have a tree of DIEs like this:
2902
2903 1: DW_TAG_compile_unit
2904 2: DW_TAG_namespace // N
2905 3: DW_TAG_subprogram // declaration of N::foo
2906 4: DW_TAG_subprogram // definition of N::foo
2907 DW_AT_specification // refers to die #3
2908
2909 Thus, when processing die #4, we have to pretend that we're
2910 in the context of its DW_AT_specification, namely the contex
2911 of die #3. */
fdde2d81
DC
2912
2913 if (spec_die != NULL)
2914 {
e142c38c 2915 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2916 processing_current_prefix = specification_prefix;
2917 back_to = make_cleanup (xfree, specification_prefix);
2918 }
2919 }
2920
c906108c
SS
2921 lowpc += baseaddr;
2922 highpc += baseaddr;
2923
5fb290d7 2924 /* Record the function range for dwarf_decode_lines. */
e142c38c 2925 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2926
c906108c 2927 new = push_context (0, lowpc);
e7c27a73 2928 new->name = new_symbol (die, die->type, cu);
4c2df51b 2929
4cecd739
DJ
2930 /* If there is a location expression for DW_AT_frame_base, record
2931 it. */
e142c38c 2932 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2933 if (attr)
c034e007
AC
2934 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2935 expression is being recorded directly in the function's symbol
2936 and not in a separate frame-base object. I guess this hack is
2937 to avoid adding some sort of frame-base adjunct/annex to the
2938 function's symbol :-(. The problem with doing this is that it
2939 results in a function symbol with a location expression that
2940 has nothing to do with the location of the function, ouch! The
2941 relationship should be: a function's symbol has-a frame base; a
2942 frame-base has-a location expression. */
e7c27a73 2943 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2944
e142c38c 2945 cu->list_in_scope = &local_symbols;
c906108c 2946
639d11d3 2947 if (die->child != NULL)
c906108c 2948 {
639d11d3 2949 child_die = die->child;
c906108c
SS
2950 while (child_die && child_die->tag)
2951 {
e7c27a73 2952 process_die (child_die, cu);
c906108c
SS
2953 child_die = sibling_die (child_die);
2954 }
2955 }
2956
2957 new = pop_context ();
2958 /* Make a block for the local symbols within. */
2959 finish_block (new->name, &local_symbols, new->old_blocks,
2960 lowpc, highpc, objfile);
208d8187
JB
2961
2962 /* In C++, we can have functions nested inside functions (e.g., when
2963 a function declares a class that has methods). This means that
2964 when we finish processing a function scope, we may need to go
2965 back to building a containing block's symbol lists. */
2966 local_symbols = new->locals;
2967 param_symbols = new->params;
2968
921e78cf
JB
2969 /* If we've finished processing a top-level function, subsequent
2970 symbols go in the file symbol list. */
2971 if (outermost_context_p ())
e142c38c 2972 cu->list_in_scope = &file_symbols;
fdde2d81
DC
2973
2974 processing_current_prefix = previous_prefix;
2975 if (back_to != NULL)
2976 do_cleanups (back_to);
c906108c
SS
2977}
2978
2979/* Process all the DIES contained within a lexical block scope. Start
2980 a new scope, process the dies, and then close the scope. */
2981
2982static void
e7c27a73 2983read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2984{
e7c27a73 2985 struct objfile *objfile = cu->objfile;
52f0bd74 2986 struct context_stack *new;
c906108c
SS
2987 CORE_ADDR lowpc, highpc;
2988 struct die_info *child_die;
e142c38c
DJ
2989 CORE_ADDR baseaddr;
2990
2991 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
2992
2993 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
2994 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2995 as multiple lexical blocks? Handling children in a sane way would
2996 be nasty. Might be easier to properly extend generic blocks to
2997 describe ranges. */
e7c27a73 2998 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2999 return;
3000 lowpc += baseaddr;
3001 highpc += baseaddr;
3002
3003 push_context (0, lowpc);
639d11d3 3004 if (die->child != NULL)
c906108c 3005 {
639d11d3 3006 child_die = die->child;
c906108c
SS
3007 while (child_die && child_die->tag)
3008 {
e7c27a73 3009 process_die (child_die, cu);
c906108c
SS
3010 child_die = sibling_die (child_die);
3011 }
3012 }
3013 new = pop_context ();
3014
3015 if (local_symbols != NULL)
3016 {
3017 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3018 highpc, objfile);
3019 }
3020 local_symbols = new->locals;
3021}
3022
af34e669
DJ
3023/* Get low and high pc attributes from a die. Return 1 if the attributes
3024 are present and valid, otherwise, return 0. Return -1 if the range is
3025 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3026static int
af34e669 3027dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3028 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3029{
e7c27a73
DJ
3030 struct objfile *objfile = cu->objfile;
3031 struct comp_unit_head *cu_header = &cu->header;
c906108c 3032 struct attribute *attr;
af34e669
DJ
3033 bfd *obfd = objfile->obfd;
3034 CORE_ADDR low = 0;
3035 CORE_ADDR high = 0;
3036 int ret = 0;
c906108c 3037
e142c38c 3038 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3039 if (attr)
af34e669
DJ
3040 {
3041 high = DW_ADDR (attr);
e142c38c 3042 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3043 if (attr)
3044 low = DW_ADDR (attr);
3045 else
3046 /* Found high w/o low attribute. */
3047 return 0;
3048
3049 /* Found consecutive range of addresses. */
3050 ret = 1;
3051 }
c906108c 3052 else
af34e669 3053 {
e142c38c 3054 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3055 if (attr != NULL)
3056 {
3057 unsigned int addr_size = cu_header->addr_size;
3058 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3059 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3060 .debug_ranges section. */
af34e669
DJ
3061 unsigned int offset = DW_UNSND (attr);
3062 /* Base address selection entry. */
0d53c4c4
DJ
3063 CORE_ADDR base;
3064 int found_base;
891d2f0b 3065 unsigned int dummy;
fe1b8b76 3066 gdb_byte *buffer;
af34e669
DJ
3067 CORE_ADDR marker;
3068 int low_set;
3069
0d53c4c4
DJ
3070 found_base = cu_header->base_known;
3071 base = cu_header->base_address;
a604369a 3072
6502dd73 3073 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3074 {
3075 complaint (&symfile_complaints,
e2e0b3e5 3076 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3077 offset);
3078 return 0;
3079 }
6502dd73 3080 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3081
af34e669 3082 /* Read in the largest possible address. */
e7c27a73 3083 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3084 if ((marker & mask) == mask)
3085 {
3086 /* If we found the largest possible address, then
3087 read the base address. */
e7c27a73 3088 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3089 buffer += 2 * addr_size;
3090 offset += 2 * addr_size;
3091 found_base = 1;
3092 }
3093
3094 low_set = 0;
3095
3096 while (1)
3097 {
3098 CORE_ADDR range_beginning, range_end;
3099
e7c27a73 3100 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3101 buffer += addr_size;
e7c27a73 3102 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3103 buffer += addr_size;
3104 offset += 2 * addr_size;
3105
3106 /* An end of list marker is a pair of zero addresses. */
3107 if (range_beginning == 0 && range_end == 0)
3108 /* Found the end of list entry. */
3109 break;
3110
3111 /* Each base address selection entry is a pair of 2 values.
3112 The first is the largest possible address, the second is
3113 the base address. Check for a base address here. */
3114 if ((range_beginning & mask) == mask)
3115 {
3116 /* If we found the largest possible address, then
3117 read the base address. */
e7c27a73 3118 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3119 found_base = 1;
3120 continue;
3121 }
3122
3123 if (!found_base)
3124 {
3125 /* We have no valid base address for the ranges
3126 data. */
3127 complaint (&symfile_complaints,
e2e0b3e5 3128 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3129 return 0;
3130 }
3131
8f05cde5
DJ
3132 range_beginning += base;
3133 range_end += base;
3134
af34e669
DJ
3135 /* FIXME: This is recording everything as a low-high
3136 segment of consecutive addresses. We should have a
3137 data structure for discontiguous block ranges
3138 instead. */
3139 if (! low_set)
3140 {
3141 low = range_beginning;
3142 high = range_end;
3143 low_set = 1;
3144 }
3145 else
3146 {
3147 if (range_beginning < low)
3148 low = range_beginning;
3149 if (range_end > high)
3150 high = range_end;
3151 }
3152 }
3153
3154 if (! low_set)
3155 /* If the first entry is an end-of-list marker, the range
3156 describes an empty scope, i.e. no instructions. */
3157 return 0;
3158
3159 ret = -1;
3160 }
3161 }
c906108c
SS
3162
3163 if (high < low)
3164 return 0;
3165
3166 /* When using the GNU linker, .gnu.linkonce. sections are used to
3167 eliminate duplicate copies of functions and vtables and such.
3168 The linker will arbitrarily choose one and discard the others.
3169 The AT_*_pc values for such functions refer to local labels in
3170 these sections. If the section from that file was discarded, the
3171 labels are not in the output, so the relocs get a value of 0.
3172 If this is a discarded function, mark the pc bounds as invalid,
3173 so that GDB will ignore it. */
af34e669 3174 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
c906108c
SS
3175 return 0;
3176
3177 *lowpc = low;
3178 *highpc = high;
af34e669 3179 return ret;
c906108c
SS
3180}
3181
fae299cd
DC
3182/* Get the low and high pc's represented by the scope DIE, and store
3183 them in *LOWPC and *HIGHPC. If the correct values can't be
3184 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3185
3186static void
3187get_scope_pc_bounds (struct die_info *die,
3188 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3189 struct dwarf2_cu *cu)
3190{
3191 CORE_ADDR best_low = (CORE_ADDR) -1;
3192 CORE_ADDR best_high = (CORE_ADDR) 0;
3193 CORE_ADDR current_low, current_high;
3194
3195 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3196 {
3197 best_low = current_low;
3198 best_high = current_high;
3199 }
3200 else
3201 {
3202 struct die_info *child = die->child;
3203
3204 while (child && child->tag)
3205 {
3206 switch (child->tag) {
3207 case DW_TAG_subprogram:
3208 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3209 {
3210 best_low = min (best_low, current_low);
3211 best_high = max (best_high, current_high);
3212 }
3213 break;
3214 case DW_TAG_namespace:
3215 /* FIXME: carlton/2004-01-16: Should we do this for
3216 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3217 that current GCC's always emit the DIEs corresponding
3218 to definitions of methods of classes as children of a
3219 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3220 the DIEs giving the declarations, which could be
3221 anywhere). But I don't see any reason why the
3222 standards says that they have to be there. */
3223 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3224
3225 if (current_low != ((CORE_ADDR) -1))
3226 {
3227 best_low = min (best_low, current_low);
3228 best_high = max (best_high, current_high);
3229 }
3230 break;
3231 default:
3232 /* Ignore. */
3233 break;
3234 }
3235
3236 child = sibling_die (child);
3237 }
3238 }
3239
3240 *lowpc = best_low;
3241 *highpc = best_high;
3242}
3243
c906108c
SS
3244/* Add an aggregate field to the field list. */
3245
3246static void
107d2387 3247dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3248 struct dwarf2_cu *cu)
3249{
3250 struct objfile *objfile = cu->objfile;
c906108c
SS
3251 struct nextfield *new_field;
3252 struct attribute *attr;
3253 struct field *fp;
3254 char *fieldname = "";
3255
3256 /* Allocate a new field list entry and link it in. */
3257 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3258 make_cleanup (xfree, new_field);
c906108c
SS
3259 memset (new_field, 0, sizeof (struct nextfield));
3260 new_field->next = fip->fields;
3261 fip->fields = new_field;
3262 fip->nfields++;
3263
3264 /* Handle accessibility and virtuality of field.
3265 The default accessibility for members is public, the default
3266 accessibility for inheritance is private. */
3267 if (die->tag != DW_TAG_inheritance)
3268 new_field->accessibility = DW_ACCESS_public;
3269 else
3270 new_field->accessibility = DW_ACCESS_private;
3271 new_field->virtuality = DW_VIRTUALITY_none;
3272
e142c38c 3273 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3274 if (attr)
3275 new_field->accessibility = DW_UNSND (attr);
3276 if (new_field->accessibility != DW_ACCESS_public)
3277 fip->non_public_fields = 1;
e142c38c 3278 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3279 if (attr)
3280 new_field->virtuality = DW_UNSND (attr);
3281
3282 fp = &new_field->field;
a9a9bd0f 3283
e142c38c 3284 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3285 {
a9a9bd0f
DC
3286 /* Data member other than a C++ static data member. */
3287
c906108c 3288 /* Get type of field. */
e7c27a73 3289 fp->type = die_type (die, cu);
c906108c 3290
01ad7f36
DJ
3291 FIELD_STATIC_KIND (*fp) = 0;
3292
c906108c 3293 /* Get bit size of field (zero if none). */
e142c38c 3294 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3295 if (attr)
3296 {
3297 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3298 }
3299 else
3300 {
3301 FIELD_BITSIZE (*fp) = 0;
3302 }
3303
3304 /* Get bit offset of field. */
e142c38c 3305 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3306 if (attr)
3307 {
3308 FIELD_BITPOS (*fp) =
e7c27a73 3309 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3310 }
3311 else
3312 FIELD_BITPOS (*fp) = 0;
e142c38c 3313 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3314 if (attr)
3315 {
3316 if (BITS_BIG_ENDIAN)
3317 {
3318 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3319 additional bit offset from the MSB of the containing
3320 anonymous object to the MSB of the field. We don't
3321 have to do anything special since we don't need to
3322 know the size of the anonymous object. */
c906108c
SS
3323 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3324 }
3325 else
3326 {
3327 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3328 MSB of the anonymous object, subtract off the number of
3329 bits from the MSB of the field to the MSB of the
3330 object, and then subtract off the number of bits of
3331 the field itself. The result is the bit offset of
3332 the LSB of the field. */
c906108c
SS
3333 int anonymous_size;
3334 int bit_offset = DW_UNSND (attr);
3335
e142c38c 3336 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3337 if (attr)
3338 {
3339 /* The size of the anonymous object containing
3340 the bit field is explicit, so use the
3341 indicated size (in bytes). */
3342 anonymous_size = DW_UNSND (attr);
3343 }
3344 else
3345 {
3346 /* The size of the anonymous object containing
3347 the bit field must be inferred from the type
3348 attribute of the data member containing the
3349 bit field. */
3350 anonymous_size = TYPE_LENGTH (fp->type);
3351 }
3352 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3353 - bit_offset - FIELD_BITSIZE (*fp);
3354 }
3355 }
3356
3357 /* Get name of field. */
e142c38c 3358 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3359 if (attr && DW_STRING (attr))
3360 fieldname = DW_STRING (attr);
d8151005
DJ
3361
3362 /* The name is already allocated along with this objfile, so we don't
3363 need to duplicate it for the type. */
3364 fp->name = fieldname;
c906108c
SS
3365
3366 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3367 pointer or virtual base class pointer) to private. */
e142c38c 3368 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3369 {
3370 new_field->accessibility = DW_ACCESS_private;
3371 fip->non_public_fields = 1;
3372 }
3373 }
a9a9bd0f 3374 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3375 {
a9a9bd0f
DC
3376 /* C++ static member. */
3377
3378 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3379 is a declaration, but all versions of G++ as of this writing
3380 (so through at least 3.2.1) incorrectly generate
3381 DW_TAG_variable tags. */
3382
c906108c 3383 char *physname;
c906108c 3384
a9a9bd0f 3385 /* Get name of field. */
e142c38c 3386 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3387 if (attr && DW_STRING (attr))
3388 fieldname = DW_STRING (attr);
3389 else
c906108c
SS
3390 return;
3391
2df3850c 3392 /* Get physical name. */
e142c38c 3393 physname = dwarf2_linkage_name (die, cu);
c906108c 3394
d8151005
DJ
3395 /* The name is already allocated along with this objfile, so we don't
3396 need to duplicate it for the type. */
3397 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3398 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3399 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3400 }
3401 else if (die->tag == DW_TAG_inheritance)
3402 {
3403 /* C++ base class field. */
e142c38c 3404 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3405 if (attr)
e7c27a73 3406 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3407 * bits_per_byte);
c906108c 3408 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3409 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3410 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3411 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3412 fip->nbaseclasses++;
3413 }
3414}
3415
3416/* Create the vector of fields, and attach it to the type. */
3417
3418static void
fba45db2 3419dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3420 struct dwarf2_cu *cu)
c906108c
SS
3421{
3422 int nfields = fip->nfields;
3423
3424 /* Record the field count, allocate space for the array of fields,
3425 and create blank accessibility bitfields if necessary. */
3426 TYPE_NFIELDS (type) = nfields;
3427 TYPE_FIELDS (type) = (struct field *)
3428 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3429 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3430
3431 if (fip->non_public_fields)
3432 {
3433 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3434
3435 TYPE_FIELD_PRIVATE_BITS (type) =
3436 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3437 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3438
3439 TYPE_FIELD_PROTECTED_BITS (type) =
3440 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3441 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3442
3443 TYPE_FIELD_IGNORE_BITS (type) =
3444 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3445 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3446 }
3447
3448 /* If the type has baseclasses, allocate and clear a bit vector for
3449 TYPE_FIELD_VIRTUAL_BITS. */
3450 if (fip->nbaseclasses)
3451 {
3452 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3453 unsigned char *pointer;
c906108c
SS
3454
3455 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3456 pointer = TYPE_ALLOC (type, num_bytes);
3457 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3458 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3459 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3460 }
3461
3462 /* Copy the saved-up fields into the field vector. Start from the head
3463 of the list, adding to the tail of the field array, so that they end
3464 up in the same order in the array in which they were added to the list. */
3465 while (nfields-- > 0)
3466 {
3467 TYPE_FIELD (type, nfields) = fip->fields->field;
3468 switch (fip->fields->accessibility)
3469 {
c5aa993b
JM
3470 case DW_ACCESS_private:
3471 SET_TYPE_FIELD_PRIVATE (type, nfields);
3472 break;
c906108c 3473
c5aa993b
JM
3474 case DW_ACCESS_protected:
3475 SET_TYPE_FIELD_PROTECTED (type, nfields);
3476 break;
c906108c 3477
c5aa993b
JM
3478 case DW_ACCESS_public:
3479 break;
c906108c 3480
c5aa993b
JM
3481 default:
3482 /* Unknown accessibility. Complain and treat it as public. */
3483 {
e2e0b3e5 3484 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3485 fip->fields->accessibility);
c5aa993b
JM
3486 }
3487 break;
c906108c
SS
3488 }
3489 if (nfields < fip->nbaseclasses)
3490 {
3491 switch (fip->fields->virtuality)
3492 {
c5aa993b
JM
3493 case DW_VIRTUALITY_virtual:
3494 case DW_VIRTUALITY_pure_virtual:
3495 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3496 break;
c906108c
SS
3497 }
3498 }
3499 fip->fields = fip->fields->next;
3500 }
3501}
3502
c906108c
SS
3503/* Add a member function to the proper fieldlist. */
3504
3505static void
107d2387 3506dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3507 struct type *type, struct dwarf2_cu *cu)
c906108c 3508{
e7c27a73 3509 struct objfile *objfile = cu->objfile;
c906108c
SS
3510 struct attribute *attr;
3511 struct fnfieldlist *flp;
3512 int i;
3513 struct fn_field *fnp;
3514 char *fieldname;
3515 char *physname;
3516 struct nextfnfield *new_fnfield;
3517
2df3850c 3518 /* Get name of member function. */
e142c38c 3519 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3520 if (attr && DW_STRING (attr))
3521 fieldname = DW_STRING (attr);
c906108c 3522 else
2df3850c 3523 return;
c906108c 3524
2df3850c 3525 /* Get the mangled name. */
e142c38c 3526 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3527
3528 /* Look up member function name in fieldlist. */
3529 for (i = 0; i < fip->nfnfields; i++)
3530 {
27bfe10e 3531 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3532 break;
3533 }
3534
3535 /* Create new list element if necessary. */
3536 if (i < fip->nfnfields)
3537 flp = &fip->fnfieldlists[i];
3538 else
3539 {
3540 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3541 {
3542 fip->fnfieldlists = (struct fnfieldlist *)
3543 xrealloc (fip->fnfieldlists,
3544 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3545 * sizeof (struct fnfieldlist));
c906108c 3546 if (fip->nfnfields == 0)
c13c43fd 3547 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3548 }
3549 flp = &fip->fnfieldlists[fip->nfnfields];
3550 flp->name = fieldname;
3551 flp->length = 0;
3552 flp->head = NULL;
3553 fip->nfnfields++;
3554 }
3555
3556 /* Create a new member function field and chain it to the field list
3557 entry. */
3558 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3559 make_cleanup (xfree, new_fnfield);
c906108c
SS
3560 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3561 new_fnfield->next = flp->head;
3562 flp->head = new_fnfield;
3563 flp->length++;
3564
3565 /* Fill in the member function field info. */
3566 fnp = &new_fnfield->fnfield;
d8151005
DJ
3567 /* The name is already allocated along with this objfile, so we don't
3568 need to duplicate it for the type. */
3569 fnp->physname = physname ? physname : "";
c906108c
SS
3570 fnp->type = alloc_type (objfile);
3571 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3572 {
c906108c 3573 int nparams = TYPE_NFIELDS (die->type);
c906108c 3574
e26fb1d7
DC
3575 /* TYPE is the domain of this method, and DIE->TYPE is the type
3576 of the method itself (TYPE_CODE_METHOD). */
3577 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3578 TYPE_TARGET_TYPE (die->type),
3579 TYPE_FIELDS (die->type),
3580 TYPE_NFIELDS (die->type),
3581 TYPE_VARARGS (die->type));
c906108c
SS
3582
3583 /* Handle static member functions.
c5aa993b
JM
3584 Dwarf2 has no clean way to discern C++ static and non-static
3585 member functions. G++ helps GDB by marking the first
3586 parameter for non-static member functions (which is the
3587 this pointer) as artificial. We obtain this information
3588 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3589 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3590 fnp->voffset = VOFFSET_STATIC;
3591 }
3592 else
e2e0b3e5 3593 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3594 physname);
c906108c
SS
3595
3596 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3597 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3598 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3599
3600 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3601 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3602
3603 /* Get accessibility. */
e142c38c 3604 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3605 if (attr)
3606 {
3607 switch (DW_UNSND (attr))
3608 {
c5aa993b
JM
3609 case DW_ACCESS_private:
3610 fnp->is_private = 1;
3611 break;
3612 case DW_ACCESS_protected:
3613 fnp->is_protected = 1;
3614 break;
c906108c
SS
3615 }
3616 }
3617
b02dede2 3618 /* Check for artificial methods. */
e142c38c 3619 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3620 if (attr && DW_UNSND (attr) != 0)
3621 fnp->is_artificial = 1;
3622
c906108c 3623 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3624 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3625 if (attr)
8e19ed76
PS
3626 {
3627 /* Support the .debug_loc offsets */
3628 if (attr_form_is_block (attr))
3629 {
e7c27a73 3630 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3631 }
3632 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3633 {
4d3c2250 3634 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3635 }
3636 else
3637 {
4d3c2250
KB
3638 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3639 fieldname);
8e19ed76
PS
3640 }
3641 }
c906108c
SS
3642}
3643
3644/* Create the vector of member function fields, and attach it to the type. */
3645
3646static void
fba45db2 3647dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3648 struct dwarf2_cu *cu)
c906108c
SS
3649{
3650 struct fnfieldlist *flp;
3651 int total_length = 0;
3652 int i;
3653
3654 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3655 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3656 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3657
3658 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3659 {
3660 struct nextfnfield *nfp = flp->head;
3661 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3662 int k;
3663
3664 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3665 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3666 fn_flp->fn_fields = (struct fn_field *)
3667 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3668 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3669 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3670
3671 total_length += flp->length;
3672 }
3673
3674 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3675 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3676}
3677
1168df01
JB
3678
3679/* Returns non-zero if NAME is the name of a vtable member in CU's
3680 language, zero otherwise. */
3681static int
3682is_vtable_name (const char *name, struct dwarf2_cu *cu)
3683{
3684 static const char vptr[] = "_vptr";
987504bb 3685 static const char vtable[] = "vtable";
1168df01 3686
987504bb
JJ
3687 /* Look for the C++ and Java forms of the vtable. */
3688 if ((cu->language == language_java
3689 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3690 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3691 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3692 return 1;
3693
3694 return 0;
3695}
3696
3697
c906108c
SS
3698/* Called when we find the DIE that starts a structure or union scope
3699 (definition) to process all dies that define the members of the
3700 structure or union.
3701
3702 NOTE: we need to call struct_type regardless of whether or not the
3703 DIE has an at_name attribute, since it might be an anonymous
3704 structure or union. This gets the type entered into our set of
3705 user defined types.
3706
3707 However, if the structure is incomplete (an opaque struct/union)
3708 then suppress creating a symbol table entry for it since gdb only
3709 wants to find the one with the complete definition. Note that if
3710 it is complete, we just call new_symbol, which does it's own
3711 checking about whether the struct/union is anonymous or not (and
3712 suppresses creating a symbol table entry itself). */
3713
3714static void
134d01f1 3715read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3716{
e7c27a73 3717 struct objfile *objfile = cu->objfile;
c906108c
SS
3718 struct type *type;
3719 struct attribute *attr;
63d06c5c
DC
3720 const char *previous_prefix = processing_current_prefix;
3721 struct cleanup *back_to = NULL;
c906108c 3722
134d01f1
DJ
3723 if (die->type)
3724 return;
3725
c906108c
SS
3726 type = alloc_type (objfile);
3727
3728 INIT_CPLUS_SPECIFIC (type);
e142c38c 3729 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3730 if (attr && DW_STRING (attr))
3731 {
987504bb
JJ
3732 if (cu->language == language_cplus
3733 || cu->language == language_java)
63d06c5c 3734 {
8176b9b8
DC
3735 char *new_prefix = determine_class_name (die, cu);
3736 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3737 strlen (new_prefix),
3738 &objfile->objfile_obstack);
3739 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3740 processing_current_prefix = new_prefix;
3741 }
3742 else
3743 {
d8151005
DJ
3744 /* The name is already allocated along with this objfile, so
3745 we don't need to duplicate it for the type. */
8176b9b8 3746 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3747 }
c906108c
SS
3748 }
3749
3750 if (die->tag == DW_TAG_structure_type)
3751 {
3752 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3753 }
3754 else if (die->tag == DW_TAG_union_type)
3755 {
3756 TYPE_CODE (type) = TYPE_CODE_UNION;
3757 }
3758 else
3759 {
3760 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3761 in gdbtypes.h. */
c906108c
SS
3762 TYPE_CODE (type) = TYPE_CODE_CLASS;
3763 }
3764
e142c38c 3765 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3766 if (attr)
3767 {
3768 TYPE_LENGTH (type) = DW_UNSND (attr);
3769 }
3770 else
3771 {
3772 TYPE_LENGTH (type) = 0;
3773 }
3774
dc718098
JB
3775 if (die_is_declaration (die, cu))
3776 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3777
c906108c
SS
3778 /* We need to add the type field to the die immediately so we don't
3779 infinitely recurse when dealing with pointers to the structure
3780 type within the structure itself. */
1c379e20 3781 set_die_type (die, type, cu);
c906108c 3782
e142c38c 3783 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3784 {
3785 struct field_info fi;
3786 struct die_info *child_die;
3787 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3788
3789 memset (&fi, 0, sizeof (struct field_info));
3790
639d11d3 3791 child_die = die->child;
c906108c
SS
3792
3793 while (child_die && child_die->tag)
3794 {
a9a9bd0f
DC
3795 if (child_die->tag == DW_TAG_member
3796 || child_die->tag == DW_TAG_variable)
c906108c 3797 {
a9a9bd0f
DC
3798 /* NOTE: carlton/2002-11-05: A C++ static data member
3799 should be a DW_TAG_member that is a declaration, but
3800 all versions of G++ as of this writing (so through at
3801 least 3.2.1) incorrectly generate DW_TAG_variable
3802 tags for them instead. */
e7c27a73 3803 dwarf2_add_field (&fi, child_die, cu);
c906108c 3804 }
8713b1b1 3805 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3806 {
3807 /* C++ member function. */
134d01f1 3808 read_type_die (child_die, cu);
e7c27a73 3809 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3810 }
3811 else if (child_die->tag == DW_TAG_inheritance)
3812 {
3813 /* C++ base class field. */
e7c27a73 3814 dwarf2_add_field (&fi, child_die, cu);
c906108c 3815 }
c906108c
SS
3816 child_die = sibling_die (child_die);
3817 }
3818
3819 /* Attach fields and member functions to the type. */
3820 if (fi.nfields)
e7c27a73 3821 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3822 if (fi.nfnfields)
3823 {
e7c27a73 3824 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3825
c5aa993b 3826 /* Get the type which refers to the base class (possibly this
c906108c
SS
3827 class itself) which contains the vtable pointer for the current
3828 class from the DW_AT_containing_type attribute. */
3829
e142c38c 3830 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3831 {
e7c27a73 3832 struct type *t = die_containing_type (die, cu);
c906108c
SS
3833
3834 TYPE_VPTR_BASETYPE (type) = t;
3835 if (type == t)
3836 {
c906108c
SS
3837 int i;
3838
3839 /* Our own class provides vtbl ptr. */
3840 for (i = TYPE_NFIELDS (t) - 1;
3841 i >= TYPE_N_BASECLASSES (t);
3842 --i)
3843 {
3844 char *fieldname = TYPE_FIELD_NAME (t, i);
3845
1168df01 3846 if (is_vtable_name (fieldname, cu))
c906108c
SS
3847 {
3848 TYPE_VPTR_FIELDNO (type) = i;
3849 break;
3850 }
3851 }
3852
3853 /* Complain if virtual function table field not found. */
3854 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3855 complaint (&symfile_complaints,
e2e0b3e5 3856 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3857 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3858 "");
c906108c
SS
3859 }
3860 else
3861 {
3862 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3863 }
3864 }
f6235d4c
EZ
3865 else if (cu->producer
3866 && strncmp (cu->producer,
3867 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3868 {
3869 /* The IBM XLC compiler does not provide direct indication
3870 of the containing type, but the vtable pointer is
3871 always named __vfp. */
3872
3873 int i;
3874
3875 for (i = TYPE_NFIELDS (type) - 1;
3876 i >= TYPE_N_BASECLASSES (type);
3877 --i)
3878 {
3879 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
3880 {
3881 TYPE_VPTR_FIELDNO (type) = i;
3882 TYPE_VPTR_BASETYPE (type) = type;
3883 break;
3884 }
3885 }
3886 }
c906108c
SS
3887 }
3888
c906108c
SS
3889 do_cleanups (back_to);
3890 }
63d06c5c
DC
3891
3892 processing_current_prefix = previous_prefix;
3893 if (back_to != NULL)
3894 do_cleanups (back_to);
c906108c
SS
3895}
3896
134d01f1
DJ
3897static void
3898process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3899{
3900 struct objfile *objfile = cu->objfile;
3901 const char *previous_prefix = processing_current_prefix;
90aeadfc 3902 struct die_info *child_die = die->child;
c906108c 3903
134d01f1
DJ
3904 if (TYPE_TAG_NAME (die->type) != NULL)
3905 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 3906
90aeadfc
DC
3907 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3908 snapshots) has been known to create a die giving a declaration
3909 for a class that has, as a child, a die giving a definition for a
3910 nested class. So we have to process our children even if the
3911 current die is a declaration. Normally, of course, a declaration
3912 won't have any children at all. */
134d01f1 3913
90aeadfc
DC
3914 while (child_die != NULL && child_die->tag)
3915 {
3916 if (child_die->tag == DW_TAG_member
3917 || child_die->tag == DW_TAG_variable
3918 || child_die->tag == DW_TAG_inheritance)
134d01f1 3919 {
90aeadfc 3920 /* Do nothing. */
134d01f1 3921 }
90aeadfc
DC
3922 else
3923 process_die (child_die, cu);
134d01f1 3924
90aeadfc 3925 child_die = sibling_die (child_die);
134d01f1
DJ
3926 }
3927
90aeadfc
DC
3928 if (die->child != NULL && ! die_is_declaration (die, cu))
3929 new_symbol (die, die->type, cu);
3930
134d01f1
DJ
3931 processing_current_prefix = previous_prefix;
3932}
3933
3934/* Given a DW_AT_enumeration_type die, set its type. We do not
3935 complete the type's fields yet, or create any symbols. */
c906108c
SS
3936
3937static void
134d01f1 3938read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3939{
e7c27a73 3940 struct objfile *objfile = cu->objfile;
c906108c 3941 struct type *type;
c906108c 3942 struct attribute *attr;
134d01f1
DJ
3943
3944 if (die->type)
3945 return;
c906108c
SS
3946
3947 type = alloc_type (objfile);
3948
3949 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 3950 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3951 if (attr && DW_STRING (attr))
3952 {
d8151005 3953 char *name = DW_STRING (attr);
63d06c5c
DC
3954
3955 if (processing_has_namespace_info)
3956 {
987504bb
JJ
3957 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3958 processing_current_prefix,
3959 name, cu);
63d06c5c
DC
3960 }
3961 else
3962 {
d8151005
DJ
3963 /* The name is already allocated along with this objfile, so
3964 we don't need to duplicate it for the type. */
3965 TYPE_TAG_NAME (type) = name;
63d06c5c 3966 }
c906108c
SS
3967 }
3968
e142c38c 3969 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3970 if (attr)
3971 {
3972 TYPE_LENGTH (type) = DW_UNSND (attr);
3973 }
3974 else
3975 {
3976 TYPE_LENGTH (type) = 0;
3977 }
3978
1c379e20 3979 set_die_type (die, type, cu);
134d01f1
DJ
3980}
3981
8176b9b8 3982/* Determine the name of the type represented by DIE, which should be
987504bb 3983 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
3984 is responsible for xfree()'ing it. */
3985
3986static char *
3987determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3988{
3989 struct cleanup *back_to = NULL;
3990 struct die_info *spec_die = die_specification (die, cu);
3991 char *new_prefix = NULL;
3992
3993 /* If this is the definition of a class that is declared by another
3994 die, then processing_current_prefix may not be accurate; see
3995 read_func_scope for a similar example. */
3996 if (spec_die != NULL)
3997 {
3998 char *specification_prefix = determine_prefix (spec_die, cu);
3999 processing_current_prefix = specification_prefix;
4000 back_to = make_cleanup (xfree, specification_prefix);
4001 }
4002
4003 /* If we don't have namespace debug info, guess the name by trying
4004 to demangle the names of members, just like we did in
72bf9492 4005 guess_structure_name. */
8176b9b8
DC
4006 if (!processing_has_namespace_info)
4007 {
4008 struct die_info *child;
4009
4010 for (child = die->child;
4011 child != NULL && child->tag != 0;
4012 child = sibling_die (child))
4013 {
4014 if (child->tag == DW_TAG_subprogram)
4015 {
31c27f77
JJ
4016 new_prefix
4017 = language_class_name_from_physname (cu->language_defn,
4018 dwarf2_linkage_name
8176b9b8
DC
4019 (child, cu));
4020
4021 if (new_prefix != NULL)
4022 break;
4023 }
4024 }
4025 }
4026
4027 if (new_prefix == NULL)
4028 {
4029 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4030 new_prefix = typename_concat (NULL, processing_current_prefix,
4031 name ? name : "<<anonymous>>",
4032 cu);
8176b9b8
DC
4033 }
4034
4035 if (back_to != NULL)
4036 do_cleanups (back_to);
4037
4038 return new_prefix;
4039}
4040
134d01f1
DJ
4041/* Given a pointer to a die which begins an enumeration, process all
4042 the dies that define the members of the enumeration, and create the
4043 symbol for the enumeration type.
4044
4045 NOTE: We reverse the order of the element list. */
4046
4047static void
4048process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4049{
4050 struct objfile *objfile = cu->objfile;
4051 struct die_info *child_die;
4052 struct field *fields;
4053 struct attribute *attr;
4054 struct symbol *sym;
4055 int num_fields;
4056 int unsigned_enum = 1;
4057
c906108c
SS
4058 num_fields = 0;
4059 fields = NULL;
639d11d3 4060 if (die->child != NULL)
c906108c 4061 {
639d11d3 4062 child_die = die->child;
c906108c
SS
4063 while (child_die && child_die->tag)
4064 {
4065 if (child_die->tag != DW_TAG_enumerator)
4066 {
e7c27a73 4067 process_die (child_die, cu);
c906108c
SS
4068 }
4069 else
4070 {
e142c38c 4071 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4072 if (attr)
4073 {
134d01f1 4074 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4075 if (SYMBOL_VALUE (sym) < 0)
4076 unsigned_enum = 0;
4077
4078 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4079 {
4080 fields = (struct field *)
4081 xrealloc (fields,
4082 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4083 * sizeof (struct field));
c906108c
SS
4084 }
4085
22abf04a 4086 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4087 FIELD_TYPE (fields[num_fields]) = NULL;
4088 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4089 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4090 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4091
4092 num_fields++;
4093 }
4094 }
4095
4096 child_die = sibling_die (child_die);
4097 }
4098
4099 if (num_fields)
4100 {
134d01f1
DJ
4101 TYPE_NFIELDS (die->type) = num_fields;
4102 TYPE_FIELDS (die->type) = (struct field *)
4103 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4104 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4105 sizeof (struct field) * num_fields);
b8c9b27d 4106 xfree (fields);
c906108c
SS
4107 }
4108 if (unsigned_enum)
134d01f1 4109 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4110 }
134d01f1
DJ
4111
4112 new_symbol (die, die->type, cu);
c906108c
SS
4113}
4114
4115/* Extract all information from a DW_TAG_array_type DIE and put it in
4116 the DIE's type field. For now, this only handles one dimensional
4117 arrays. */
4118
4119static void
e7c27a73 4120read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4121{
e7c27a73 4122 struct objfile *objfile = cu->objfile;
c906108c
SS
4123 struct die_info *child_die;
4124 struct type *type = NULL;
4125 struct type *element_type, *range_type, *index_type;
4126 struct type **range_types = NULL;
4127 struct attribute *attr;
4128 int ndim = 0;
4129 struct cleanup *back_to;
4130
4131 /* Return if we've already decoded this type. */
4132 if (die->type)
4133 {
4134 return;
4135 }
4136
e7c27a73 4137 element_type = die_type (die, cu);
c906108c
SS
4138
4139 /* Irix 6.2 native cc creates array types without children for
4140 arrays with unspecified length. */
639d11d3 4141 if (die->child == NULL)
c906108c 4142 {
e142c38c 4143 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4144 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4145 set_die_type (die, create_array_type (NULL, element_type, range_type),
4146 cu);
c906108c
SS
4147 return;
4148 }
4149
4150 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4151 child_die = die->child;
c906108c
SS
4152 while (child_die && child_die->tag)
4153 {
4154 if (child_die->tag == DW_TAG_subrange_type)
4155 {
a02abb62 4156 read_subrange_type (child_die, cu);
c906108c 4157
a02abb62
JB
4158 if (child_die->type != NULL)
4159 {
4160 /* The range type was succesfully read. Save it for
4161 the array type creation. */
4162 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4163 {
4164 range_types = (struct type **)
4165 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4166 * sizeof (struct type *));
4167 if (ndim == 0)
4168 make_cleanup (free_current_contents, &range_types);
4169 }
4170 range_types[ndim++] = child_die->type;
4171 }
c906108c
SS
4172 }
4173 child_die = sibling_die (child_die);
4174 }
4175
4176 /* Dwarf2 dimensions are output from left to right, create the
4177 necessary array types in backwards order. */
7ca2d3a3 4178
c906108c 4179 type = element_type;
7ca2d3a3
DL
4180
4181 if (read_array_order (die, cu) == DW_ORD_col_major)
4182 {
4183 int i = 0;
4184 while (i < ndim)
4185 type = create_array_type (NULL, type, range_types[i++]);
4186 }
4187 else
4188 {
4189 while (ndim-- > 0)
4190 type = create_array_type (NULL, type, range_types[ndim]);
4191 }
c906108c 4192
f5f8a009
EZ
4193 /* Understand Dwarf2 support for vector types (like they occur on
4194 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4195 array type. This is not part of the Dwarf2/3 standard yet, but a
4196 custom vendor extension. The main difference between a regular
4197 array and the vector variant is that vectors are passed by value
4198 to functions. */
e142c38c 4199 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4200 if (attr)
4201 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4202
c906108c
SS
4203 do_cleanups (back_to);
4204
4205 /* Install the type in the die. */
1c379e20 4206 set_die_type (die, type, cu);
c906108c
SS
4207}
4208
7ca2d3a3
DL
4209static enum dwarf_array_dim_ordering
4210read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4211{
4212 struct attribute *attr;
4213
4214 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4215
4216 if (attr) return DW_SND (attr);
4217
4218 /*
4219 GNU F77 is a special case, as at 08/2004 array type info is the
4220 opposite order to the dwarf2 specification, but data is still
4221 laid out as per normal fortran.
4222
4223 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4224 version checking.
4225 */
4226
4227 if (cu->language == language_fortran &&
4228 cu->producer && strstr (cu->producer, "GNU F77"))
4229 {
4230 return DW_ORD_row_major;
4231 }
4232
4233 switch (cu->language_defn->la_array_ordering)
4234 {
4235 case array_column_major:
4236 return DW_ORD_col_major;
4237 case array_row_major:
4238 default:
4239 return DW_ORD_row_major;
4240 };
4241}
4242
4243
c906108c
SS
4244/* First cut: install each common block member as a global variable. */
4245
4246static void
e7c27a73 4247read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4248{
4249 struct die_info *child_die;
4250 struct attribute *attr;
4251 struct symbol *sym;
4252 CORE_ADDR base = (CORE_ADDR) 0;
4253
e142c38c 4254 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4255 if (attr)
4256 {
8e19ed76
PS
4257 /* Support the .debug_loc offsets */
4258 if (attr_form_is_block (attr))
4259 {
e7c27a73 4260 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4261 }
4262 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4263 {
4d3c2250 4264 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4265 }
4266 else
4267 {
4d3c2250
KB
4268 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4269 "common block member");
8e19ed76 4270 }
c906108c 4271 }
639d11d3 4272 if (die->child != NULL)
c906108c 4273 {
639d11d3 4274 child_die = die->child;
c906108c
SS
4275 while (child_die && child_die->tag)
4276 {
e7c27a73 4277 sym = new_symbol (child_die, NULL, cu);
e142c38c 4278 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4279 if (attr)
4280 {
4281 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4282 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4283 add_symbol_to_list (sym, &global_symbols);
4284 }
4285 child_die = sibling_die (child_die);
4286 }
4287 }
4288}
4289
d9fa45fe
DC
4290/* Read a C++ namespace. */
4291
d9fa45fe 4292static void
e7c27a73 4293read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4294{
e7c27a73 4295 struct objfile *objfile = cu->objfile;
38d518c9 4296 const char *previous_prefix = processing_current_prefix;
63d06c5c 4297 const char *name;
9219021c
DC
4298 int is_anonymous;
4299 struct die_info *current_die;
987504bb 4300 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4301
e142c38c 4302 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4303
4304 /* Now build the name of the current namespace. */
4305
38d518c9 4306 if (previous_prefix[0] == '\0')
9219021c 4307 {
38d518c9 4308 processing_current_prefix = name;
9219021c
DC
4309 }
4310 else
4311 {
987504bb
JJ
4312 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4313 make_cleanup (xfree, temp_name);
38d518c9 4314 processing_current_prefix = temp_name;
9219021c
DC
4315 }
4316
5c4e30ca
DC
4317 /* Add a symbol associated to this if we haven't seen the namespace
4318 before. Also, add a using directive if it's an anonymous
4319 namespace. */
9219021c 4320
e142c38c 4321 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4322 {
4323 struct type *type;
4324
4325 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4326 this cast will hopefully become unnecessary. */
4327 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4328 (char *) processing_current_prefix,
5c4e30ca
DC
4329 objfile);
4330 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4331
e7c27a73 4332 new_symbol (die, type, cu);
1c379e20 4333 set_die_type (die, type, cu);
5c4e30ca
DC
4334
4335 if (is_anonymous)
38d518c9
EZ
4336 cp_add_using_directive (processing_current_prefix,
4337 strlen (previous_prefix),
4338 strlen (processing_current_prefix));
5c4e30ca 4339 }
9219021c 4340
639d11d3 4341 if (die->child != NULL)
d9fa45fe 4342 {
639d11d3 4343 struct die_info *child_die = die->child;
d9fa45fe
DC
4344
4345 while (child_die && child_die->tag)
4346 {
e7c27a73 4347 process_die (child_die, cu);
d9fa45fe
DC
4348 child_die = sibling_die (child_die);
4349 }
4350 }
9219021c 4351
38d518c9 4352 processing_current_prefix = previous_prefix;
987504bb 4353 do_cleanups (back_to);
38d518c9
EZ
4354}
4355
4356/* Return the name of the namespace represented by DIE. Set
4357 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4358 namespace. */
4359
4360static const char *
e142c38c 4361namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4362{
4363 struct die_info *current_die;
4364 const char *name = NULL;
4365
4366 /* Loop through the extensions until we find a name. */
4367
4368 for (current_die = die;
4369 current_die != NULL;
e142c38c 4370 current_die = dwarf2_extension (die, cu))
38d518c9 4371 {
e142c38c 4372 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4373 if (name != NULL)
4374 break;
4375 }
4376
4377 /* Is it an anonymous namespace? */
4378
4379 *is_anonymous = (name == NULL);
4380 if (*is_anonymous)
4381 name = "(anonymous namespace)";
4382
4383 return name;
d9fa45fe
DC
4384}
4385
c906108c
SS
4386/* Extract all information from a DW_TAG_pointer_type DIE and add to
4387 the user defined type vector. */
4388
4389static void
e7c27a73 4390read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4391{
e7c27a73 4392 struct comp_unit_head *cu_header = &cu->header;
c906108c 4393 struct type *type;
8b2dbe47
KB
4394 struct attribute *attr_byte_size;
4395 struct attribute *attr_address_class;
4396 int byte_size, addr_class;
c906108c
SS
4397
4398 if (die->type)
4399 {
4400 return;
4401 }
4402
e7c27a73 4403 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4404
e142c38c 4405 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4406 if (attr_byte_size)
4407 byte_size = DW_UNSND (attr_byte_size);
c906108c 4408 else
8b2dbe47
KB
4409 byte_size = cu_header->addr_size;
4410
e142c38c 4411 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4412 if (attr_address_class)
4413 addr_class = DW_UNSND (attr_address_class);
4414 else
4415 addr_class = DW_ADDR_none;
4416
4417 /* If the pointer size or address class is different than the
4418 default, create a type variant marked as such and set the
4419 length accordingly. */
4420 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4421 {
8b2dbe47
KB
4422 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4423 {
4424 int type_flags;
4425
4426 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4427 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4428 type = make_type_with_address_space (type, type_flags);
4429 }
4430 else if (TYPE_LENGTH (type) != byte_size)
4431 {
e2e0b3e5 4432 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4433 }
4434 else {
4435 /* Should we also complain about unhandled address classes? */
4436 }
c906108c 4437 }
8b2dbe47
KB
4438
4439 TYPE_LENGTH (type) = byte_size;
1c379e20 4440 set_die_type (die, type, cu);
c906108c
SS
4441}
4442
4443/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4444 the user defined type vector. */
4445
4446static void
e7c27a73 4447read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4448{
e7c27a73 4449 struct objfile *objfile = cu->objfile;
c906108c
SS
4450 struct type *type;
4451 struct type *to_type;
4452 struct type *domain;
4453
4454 if (die->type)
4455 {
4456 return;
4457 }
4458
4459 type = alloc_type (objfile);
e7c27a73
DJ
4460 to_type = die_type (die, cu);
4461 domain = die_containing_type (die, cu);
c906108c
SS
4462 smash_to_member_type (type, domain, to_type);
4463
1c379e20 4464 set_die_type (die, type, cu);
c906108c
SS
4465}
4466
4467/* Extract all information from a DW_TAG_reference_type DIE and add to
4468 the user defined type vector. */
4469
4470static void
e7c27a73 4471read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4472{
e7c27a73 4473 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4474 struct type *type;
4475 struct attribute *attr;
4476
4477 if (die->type)
4478 {
4479 return;
4480 }
4481
e7c27a73 4482 type = lookup_reference_type (die_type (die, cu));
e142c38c 4483 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4484 if (attr)
4485 {
4486 TYPE_LENGTH (type) = DW_UNSND (attr);
4487 }
4488 else
4489 {
107d2387 4490 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4491 }
1c379e20 4492 set_die_type (die, type, cu);
c906108c
SS
4493}
4494
4495static void
e7c27a73 4496read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4497{
090c42a4
JB
4498 struct type *base_type;
4499
c906108c
SS
4500 if (die->type)
4501 {
4502 return;
4503 }
4504
e7c27a73 4505 base_type = die_type (die, cu);
1c379e20
DJ
4506 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4507 cu);
c906108c
SS
4508}
4509
4510static void
e7c27a73 4511read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4512{
090c42a4
JB
4513 struct type *base_type;
4514
c906108c
SS
4515 if (die->type)
4516 {
4517 return;
4518 }
4519
e7c27a73 4520 base_type = die_type (die, cu);
1c379e20
DJ
4521 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4522 cu);
c906108c
SS
4523}
4524
4525/* Extract all information from a DW_TAG_string_type DIE and add to
4526 the user defined type vector. It isn't really a user defined type,
4527 but it behaves like one, with other DIE's using an AT_user_def_type
4528 attribute to reference it. */
4529
4530static void
e7c27a73 4531read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4532{
e7c27a73 4533 struct objfile *objfile = cu->objfile;
c906108c
SS
4534 struct type *type, *range_type, *index_type, *char_type;
4535 struct attribute *attr;
4536 unsigned int length;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
e142c38c 4543 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4544 if (attr)
4545 {
4546 length = DW_UNSND (attr);
4547 }
4548 else
4549 {
b21b22e0 4550 /* check for the DW_AT_byte_size attribute */
e142c38c 4551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4552 if (attr)
4553 {
4554 length = DW_UNSND (attr);
4555 }
4556 else
4557 {
4558 length = 1;
4559 }
c906108c 4560 }
e142c38c 4561 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4562 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4563 if (cu->language == language_fortran)
b21b22e0
PS
4564 {
4565 /* Need to create a unique string type for bounds
4566 information */
4567 type = create_string_type (0, range_type);
4568 }
4569 else
4570 {
e142c38c 4571 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4572 type = create_string_type (char_type, range_type);
4573 }
1c379e20 4574 set_die_type (die, type, cu);
c906108c
SS
4575}
4576
4577/* Handle DIES due to C code like:
4578
4579 struct foo
c5aa993b
JM
4580 {
4581 int (*funcp)(int a, long l);
4582 int b;
4583 };
c906108c
SS
4584
4585 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4586 */
c906108c
SS
4587
4588static void
e7c27a73 4589read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4590{
4591 struct type *type; /* Type that this function returns */
4592 struct type *ftype; /* Function that returns above type */
4593 struct attribute *attr;
4594
4595 /* Decode the type that this subroutine returns */
4596 if (die->type)
4597 {
4598 return;
4599 }
e7c27a73 4600 type = die_type (die, cu);
1326e61b 4601 ftype = make_function_type (type, (struct type **) 0);
c906108c 4602
987504bb 4603 /* All functions in C++ and Java have prototypes. */
e142c38c 4604 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4605 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4606 || cu->language == language_cplus
4607 || cu->language == language_java)
c906108c
SS
4608 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4609
639d11d3 4610 if (die->child != NULL)
c906108c
SS
4611 {
4612 struct die_info *child_die;
4613 int nparams = 0;
4614 int iparams = 0;
4615
4616 /* Count the number of parameters.
4617 FIXME: GDB currently ignores vararg functions, but knows about
4618 vararg member functions. */
639d11d3 4619 child_die = die->child;
c906108c
SS
4620 while (child_die && child_die->tag)
4621 {
4622 if (child_die->tag == DW_TAG_formal_parameter)
4623 nparams++;
4624 else if (child_die->tag == DW_TAG_unspecified_parameters)
4625 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4626 child_die = sibling_die (child_die);
4627 }
4628
4629 /* Allocate storage for parameters and fill them in. */
4630 TYPE_NFIELDS (ftype) = nparams;
4631 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4632 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4633
639d11d3 4634 child_die = die->child;
c906108c
SS
4635 while (child_die && child_die->tag)
4636 {
4637 if (child_die->tag == DW_TAG_formal_parameter)
4638 {
4639 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4640 member functions. G++ helps GDB by marking the first
4641 parameter for non-static member functions (which is the
4642 this pointer) as artificial. We pass this information
4643 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4644 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4645 if (attr)
4646 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4647 else
4648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4649 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4650 iparams++;
4651 }
4652 child_die = sibling_die (child_die);
4653 }
4654 }
4655
1c379e20 4656 set_die_type (die, ftype, cu);
c906108c
SS
4657}
4658
4659static void
e7c27a73 4660read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4661{
e7c27a73 4662 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4663 struct attribute *attr;
4664 char *name = NULL;
c906108c
SS
4665
4666 if (!die->type)
4667 {
e142c38c 4668 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4669 if (attr && DW_STRING (attr))
2f038fcb
FF
4670 {
4671 name = DW_STRING (attr);
4672 }
1c379e20
DJ
4673 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4674 TYPE_FLAG_TARGET_STUB, name, objfile),
4675 cu);
e7c27a73 4676 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4677 }
4678}
4679
4680/* Find a representation of a given base type and install
4681 it in the TYPE field of the die. */
4682
4683static void
e7c27a73 4684read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4685{
e7c27a73 4686 struct objfile *objfile = cu->objfile;
c906108c
SS
4687 struct type *type;
4688 struct attribute *attr;
4689 int encoding = 0, size = 0;
4690
4691 /* If we've already decoded this die, this is a no-op. */
4692 if (die->type)
4693 {
4694 return;
4695 }
4696
e142c38c 4697 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4698 if (attr)
4699 {
4700 encoding = DW_UNSND (attr);
4701 }
e142c38c 4702 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4703 if (attr)
4704 {
4705 size = DW_UNSND (attr);
4706 }
e142c38c 4707 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4708 if (attr && DW_STRING (attr))
4709 {
4710 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4711 int type_flags = 0;
c906108c
SS
4712
4713 switch (encoding)
4714 {
4715 case DW_ATE_address:
4716 /* Turn DW_ATE_address into a void * pointer. */
4717 code = TYPE_CODE_PTR;
f5ef7c67 4718 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4719 break;
4720 case DW_ATE_boolean:
4721 code = TYPE_CODE_BOOL;
f5ef7c67 4722 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4723 break;
4724 case DW_ATE_complex_float:
4725 code = TYPE_CODE_COMPLEX;
4726 break;
4727 case DW_ATE_float:
4728 code = TYPE_CODE_FLT;
4729 break;
4730 case DW_ATE_signed:
4731 case DW_ATE_signed_char:
4732 break;
4733 case DW_ATE_unsigned:
4734 case DW_ATE_unsigned_char:
f5ef7c67 4735 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4736 break;
4737 default:
e2e0b3e5 4738 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4739 dwarf_type_encoding_name (encoding));
c906108c
SS
4740 break;
4741 }
f5ef7c67 4742 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4743 if (encoding == DW_ATE_address)
e142c38c
DJ
4744 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4745 cu);
f65ca430
DJ
4746 else if (encoding == DW_ATE_complex_float)
4747 {
4748 if (size == 32)
4749 TYPE_TARGET_TYPE (type)
e142c38c 4750 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4751 else if (size == 16)
4752 TYPE_TARGET_TYPE (type)
e142c38c 4753 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4754 else if (size == 8)
4755 TYPE_TARGET_TYPE (type)
e142c38c 4756 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4757 }
c906108c
SS
4758 }
4759 else
4760 {
e7c27a73 4761 type = dwarf_base_type (encoding, size, cu);
c906108c 4762 }
1c379e20 4763 set_die_type (die, type, cu);
c906108c
SS
4764}
4765
a02abb62
JB
4766/* Read the given DW_AT_subrange DIE. */
4767
4768static void
4769read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4770{
4771 struct type *base_type;
4772 struct type *range_type;
4773 struct attribute *attr;
4774 int low = 0;
4775 int high = -1;
4776
4777 /* If we have already decoded this die, then nothing more to do. */
4778 if (die->type)
4779 return;
4780
4781 base_type = die_type (die, cu);
4782 if (base_type == NULL)
4783 {
4784 complaint (&symfile_complaints,
e2e0b3e5 4785 _("DW_AT_type missing from DW_TAG_subrange_type"));
a02abb62
JB
4786 return;
4787 }
4788
4789 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4790 base_type = alloc_type (NULL);
4791
e142c38c 4792 if (cu->language == language_fortran)
a02abb62
JB
4793 {
4794 /* FORTRAN implies a lower bound of 1, if not given. */
4795 low = 1;
4796 }
4797
dd5e6932
DJ
4798 /* FIXME: For variable sized arrays either of these could be
4799 a variable rather than a constant value. We'll allow it,
4800 but we don't know how to handle it. */
e142c38c 4801 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4802 if (attr)
4803 low = dwarf2_get_attr_constant_value (attr, 0);
4804
e142c38c 4805 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4806 if (attr)
4807 {
4808 if (attr->form == DW_FORM_block1)
4809 {
4810 /* GCC encodes arrays with unspecified or dynamic length
4811 with a DW_FORM_block1 attribute.
4812 FIXME: GDB does not yet know how to handle dynamic
4813 arrays properly, treat them as arrays with unspecified
4814 length for now.
4815
4816 FIXME: jimb/2003-09-22: GDB does not really know
4817 how to handle arrays of unspecified length
4818 either; we just represent them as zero-length
4819 arrays. Choose an appropriate upper bound given
4820 the lower bound we've computed above. */
4821 high = low - 1;
4822 }
4823 else
4824 high = dwarf2_get_attr_constant_value (attr, 1);
4825 }
4826
4827 range_type = create_range_type (NULL, base_type, low, high);
4828
e142c38c 4829 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4830 if (attr && DW_STRING (attr))
4831 TYPE_NAME (range_type) = DW_STRING (attr);
4832
e142c38c 4833 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4834 if (attr)
4835 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4836
1c379e20 4837 set_die_type (die, range_type, cu);
a02abb62
JB
4838}
4839
4840
c906108c
SS
4841/* Read a whole compilation unit into a linked list of dies. */
4842
f9aca02d 4843static struct die_info *
fe1b8b76 4844read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 4845{
e7c27a73 4846 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
4847}
4848
4849/* Read a single die and all its descendents. Set the die's sibling
4850 field to NULL; set other fields in the die correctly, and set all
4851 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4852 location of the info_ptr after reading all of those dies. PARENT
4853 is the parent of the die in question. */
4854
4855static struct die_info *
fe1b8b76 4856read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 4857 struct dwarf2_cu *cu,
fe1b8b76 4858 gdb_byte **new_info_ptr,
639d11d3
DC
4859 struct die_info *parent)
4860{
4861 struct die_info *die;
fe1b8b76 4862 gdb_byte *cur_ptr;
639d11d3
DC
4863 int has_children;
4864
e7c27a73 4865 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 4866 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
4867
4868 if (has_children)
4869 {
e7c27a73 4870 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
4871 new_info_ptr, die);
4872 }
4873 else
4874 {
4875 die->child = NULL;
4876 *new_info_ptr = cur_ptr;
4877 }
4878
4879 die->sibling = NULL;
4880 die->parent = parent;
4881 return die;
4882}
4883
4884/* Read a die, all of its descendents, and all of its siblings; set
4885 all of the fields of all of the dies correctly. Arguments are as
4886 in read_die_and_children. */
4887
4888static struct die_info *
fe1b8b76 4889read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 4890 struct dwarf2_cu *cu,
fe1b8b76 4891 gdb_byte **new_info_ptr,
639d11d3
DC
4892 struct die_info *parent)
4893{
4894 struct die_info *first_die, *last_sibling;
fe1b8b76 4895 gdb_byte *cur_ptr;
639d11d3 4896
c906108c 4897 cur_ptr = info_ptr;
639d11d3
DC
4898 first_die = last_sibling = NULL;
4899
4900 while (1)
c906108c 4901 {
639d11d3 4902 struct die_info *die
e7c27a73 4903 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
4904
4905 if (!first_die)
c906108c 4906 {
639d11d3 4907 first_die = die;
c906108c 4908 }
639d11d3 4909 else
c906108c 4910 {
639d11d3 4911 last_sibling->sibling = die;
c906108c
SS
4912 }
4913
639d11d3 4914 if (die->tag == 0)
c906108c 4915 {
639d11d3
DC
4916 *new_info_ptr = cur_ptr;
4917 return first_die;
c906108c
SS
4918 }
4919 else
4920 {
639d11d3 4921 last_sibling = die;
c906108c
SS
4922 }
4923 }
c906108c
SS
4924}
4925
4926/* Free a linked list of dies. */
4927
4928static void
fba45db2 4929free_die_list (struct die_info *dies)
c906108c
SS
4930{
4931 struct die_info *die, *next;
4932
4933 die = dies;
4934 while (die)
4935 {
639d11d3
DC
4936 if (die->child != NULL)
4937 free_die_list (die->child);
4938 next = die->sibling;
b8c9b27d
KB
4939 xfree (die->attrs);
4940 xfree (die);
c906108c
SS
4941 die = next;
4942 }
4943}
4944
4945/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 4946 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 4947
fe1b8b76 4948gdb_byte *
188dd5d6 4949dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
4950{
4951 bfd *abfd = objfile->obfd;
fe1b8b76 4952 gdb_byte *buf, *retbuf;
2c500098 4953 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
4954
4955 if (size == 0)
4956 return NULL;
4957
fe1b8b76
JB
4958 buf = obstack_alloc (&objfile->objfile_obstack, size);
4959 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
4960 if (retbuf != NULL)
4961 return retbuf;
4962
188dd5d6
DJ
4963 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4964 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 4965 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
4966 bfd_get_filename (abfd));
4967
c906108c
SS
4968 return buf;
4969}
4970
4971/* In DWARF version 2, the description of the debugging information is
4972 stored in a separate .debug_abbrev section. Before we read any
4973 dies from a section we read in all abbreviations and install them
72bf9492
DJ
4974 in a hash table. This function also sets flags in CU describing
4975 the data found in the abbrev table. */
c906108c
SS
4976
4977static void
e7c27a73 4978dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 4979{
e7c27a73 4980 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 4981 gdb_byte *abbrev_ptr;
c906108c
SS
4982 struct abbrev_info *cur_abbrev;
4983 unsigned int abbrev_number, bytes_read, abbrev_name;
4984 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
4985 struct attr_abbrev *cur_attrs;
4986 unsigned int allocated_attrs;
c906108c 4987
57349743 4988 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
4989 obstack_init (&cu->abbrev_obstack);
4990 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4991 (ABBREV_HASH_SIZE
4992 * sizeof (struct abbrev_info *)));
4993 memset (cu->dwarf2_abbrevs, 0,
4994 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 4995
6502dd73 4996 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
4997 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4998 abbrev_ptr += bytes_read;
4999
f3dd6933
DJ
5000 allocated_attrs = ATTR_ALLOC_CHUNK;
5001 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5002
c906108c
SS
5003 /* loop until we reach an abbrev number of 0 */
5004 while (abbrev_number)
5005 {
f3dd6933 5006 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5007
5008 /* read in abbrev header */
5009 cur_abbrev->number = abbrev_number;
5010 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5011 abbrev_ptr += bytes_read;
5012 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5013 abbrev_ptr += 1;
5014
72bf9492
DJ
5015 if (cur_abbrev->tag == DW_TAG_namespace)
5016 cu->has_namespace_info = 1;
5017
c906108c
SS
5018 /* now read in declarations */
5019 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5020 abbrev_ptr += bytes_read;
5021 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5022 abbrev_ptr += bytes_read;
5023 while (abbrev_name)
5024 {
f3dd6933 5025 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5026 {
f3dd6933
DJ
5027 allocated_attrs += ATTR_ALLOC_CHUNK;
5028 cur_attrs
5029 = xrealloc (cur_attrs, (allocated_attrs
5030 * sizeof (struct attr_abbrev)));
c906108c 5031 }
ae038cb0
DJ
5032
5033 /* Record whether this compilation unit might have
5034 inter-compilation-unit references. If we don't know what form
5035 this attribute will have, then it might potentially be a
5036 DW_FORM_ref_addr, so we conservatively expect inter-CU
5037 references. */
5038
5039 if (abbrev_form == DW_FORM_ref_addr
5040 || abbrev_form == DW_FORM_indirect)
5041 cu->has_form_ref_addr = 1;
5042
f3dd6933
DJ
5043 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5044 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5045 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5046 abbrev_ptr += bytes_read;
5047 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5048 abbrev_ptr += bytes_read;
5049 }
5050
f3dd6933
DJ
5051 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5052 (cur_abbrev->num_attrs
5053 * sizeof (struct attr_abbrev)));
5054 memcpy (cur_abbrev->attrs, cur_attrs,
5055 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5056
c906108c 5057 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5058 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5059 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5060
5061 /* Get next abbreviation.
5062 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5063 always properly terminated with an abbrev number of 0.
5064 Exit loop if we encounter an abbreviation which we have
5065 already read (which means we are about to read the abbreviations
5066 for the next compile unit) or if the end of the abbreviation
5067 table is reached. */
6502dd73
DJ
5068 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5069 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5070 break;
5071 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5072 abbrev_ptr += bytes_read;
e7c27a73 5073 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5074 break;
5075 }
f3dd6933
DJ
5076
5077 xfree (cur_attrs);
c906108c
SS
5078}
5079
f3dd6933 5080/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5081
c906108c 5082static void
f3dd6933 5083dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5084{
f3dd6933 5085 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5086
f3dd6933
DJ
5087 obstack_free (&cu->abbrev_obstack, NULL);
5088 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5089}
5090
5091/* Lookup an abbrev_info structure in the abbrev hash table. */
5092
5093static struct abbrev_info *
e7c27a73 5094dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5095{
5096 unsigned int hash_number;
5097 struct abbrev_info *abbrev;
5098
5099 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5100 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5101
5102 while (abbrev)
5103 {
5104 if (abbrev->number == number)
5105 return abbrev;
5106 else
5107 abbrev = abbrev->next;
5108 }
5109 return NULL;
5110}
5111
72bf9492
DJ
5112/* Returns nonzero if TAG represents a type that we might generate a partial
5113 symbol for. */
5114
5115static int
5116is_type_tag_for_partial (int tag)
5117{
5118 switch (tag)
5119 {
5120#if 0
5121 /* Some types that would be reasonable to generate partial symbols for,
5122 that we don't at present. */
5123 case DW_TAG_array_type:
5124 case DW_TAG_file_type:
5125 case DW_TAG_ptr_to_member_type:
5126 case DW_TAG_set_type:
5127 case DW_TAG_string_type:
5128 case DW_TAG_subroutine_type:
5129#endif
5130 case DW_TAG_base_type:
5131 case DW_TAG_class_type:
5132 case DW_TAG_enumeration_type:
5133 case DW_TAG_structure_type:
5134 case DW_TAG_subrange_type:
5135 case DW_TAG_typedef:
5136 case DW_TAG_union_type:
5137 return 1;
5138 default:
5139 return 0;
5140 }
5141}
5142
5143/* Load all DIEs that are interesting for partial symbols into memory. */
5144
5145static struct partial_die_info *
fe1b8b76 5146load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5147 struct dwarf2_cu *cu)
5148{
5149 struct partial_die_info *part_die;
5150 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5151 struct abbrev_info *abbrev;
5152 unsigned int bytes_read;
5afb4e99 5153 unsigned int load_all = 0;
72bf9492
DJ
5154
5155 int nesting_level = 1;
5156
5157 parent_die = NULL;
5158 last_die = NULL;
5159
5afb4e99
DJ
5160 if (cu->per_cu && cu->per_cu->load_all_dies)
5161 load_all = 1;
5162
72bf9492
DJ
5163 cu->partial_dies
5164 = htab_create_alloc_ex (cu->header.length / 12,
5165 partial_die_hash,
5166 partial_die_eq,
5167 NULL,
5168 &cu->comp_unit_obstack,
5169 hashtab_obstack_allocate,
5170 dummy_obstack_deallocate);
5171
5172 part_die = obstack_alloc (&cu->comp_unit_obstack,
5173 sizeof (struct partial_die_info));
5174
5175 while (1)
5176 {
5177 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5178
5179 /* A NULL abbrev means the end of a series of children. */
5180 if (abbrev == NULL)
5181 {
5182 if (--nesting_level == 0)
5183 {
5184 /* PART_DIE was probably the last thing allocated on the
5185 comp_unit_obstack, so we could call obstack_free
5186 here. We don't do that because the waste is small,
5187 and will be cleaned up when we're done with this
5188 compilation unit. This way, we're also more robust
5189 against other users of the comp_unit_obstack. */
5190 return first_die;
5191 }
5192 info_ptr += bytes_read;
5193 last_die = parent_die;
5194 parent_die = parent_die->die_parent;
5195 continue;
5196 }
5197
5afb4e99
DJ
5198 /* Check whether this DIE is interesting enough to save. Normally
5199 we would not be interested in members here, but there may be
5200 later variables referencing them via DW_AT_specification (for
5201 static members). */
5202 if (!load_all
5203 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5204 && abbrev->tag != DW_TAG_enumerator
5205 && abbrev->tag != DW_TAG_subprogram
5206 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5207 && abbrev->tag != DW_TAG_namespace
5208 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5209 {
5210 /* Otherwise we skip to the next sibling, if any. */
5211 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5212 continue;
5213 }
5214
5215 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5216 abfd, info_ptr, cu);
5217
5218 /* This two-pass algorithm for processing partial symbols has a
5219 high cost in cache pressure. Thus, handle some simple cases
5220 here which cover the majority of C partial symbols. DIEs
5221 which neither have specification tags in them, nor could have
5222 specification tags elsewhere pointing at them, can simply be
5223 processed and discarded.
5224
5225 This segment is also optional; scan_partial_symbols and
5226 add_partial_symbol will handle these DIEs if we chain
5227 them in normally. When compilers which do not emit large
5228 quantities of duplicate debug information are more common,
5229 this code can probably be removed. */
5230
5231 /* Any complete simple types at the top level (pretty much all
5232 of them, for a language without namespaces), can be processed
5233 directly. */
5234 if (parent_die == NULL
5235 && part_die->has_specification == 0
5236 && part_die->is_declaration == 0
5237 && (part_die->tag == DW_TAG_typedef
5238 || part_die->tag == DW_TAG_base_type
5239 || part_die->tag == DW_TAG_subrange_type))
5240 {
5241 if (building_psymtab && part_die->name != NULL)
5242 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5243 VAR_DOMAIN, LOC_TYPEDEF,
5244 &cu->objfile->static_psymbols,
5245 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5246 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5247 continue;
5248 }
5249
5250 /* If we're at the second level, and we're an enumerator, and
5251 our parent has no specification (meaning possibly lives in a
5252 namespace elsewhere), then we can add the partial symbol now
5253 instead of queueing it. */
5254 if (part_die->tag == DW_TAG_enumerator
5255 && parent_die != NULL
5256 && parent_die->die_parent == NULL
5257 && parent_die->tag == DW_TAG_enumeration_type
5258 && parent_die->has_specification == 0)
5259 {
5260 if (part_die->name == NULL)
e2e0b3e5 5261 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5262 else if (building_psymtab)
5263 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5264 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5265 (cu->language == language_cplus
5266 || cu->language == language_java)
72bf9492
DJ
5267 ? &cu->objfile->global_psymbols
5268 : &cu->objfile->static_psymbols,
5269 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5270
5271 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5272 continue;
5273 }
5274
5275 /* We'll save this DIE so link it in. */
5276 part_die->die_parent = parent_die;
5277 part_die->die_sibling = NULL;
5278 part_die->die_child = NULL;
5279
5280 if (last_die && last_die == parent_die)
5281 last_die->die_child = part_die;
5282 else if (last_die)
5283 last_die->die_sibling = part_die;
5284
5285 last_die = part_die;
5286
5287 if (first_die == NULL)
5288 first_die = part_die;
5289
5290 /* Maybe add the DIE to the hash table. Not all DIEs that we
5291 find interesting need to be in the hash table, because we
5292 also have the parent/sibling/child chains; only those that we
5293 might refer to by offset later during partial symbol reading.
5294
5295 For now this means things that might have be the target of a
5296 DW_AT_specification, DW_AT_abstract_origin, or
5297 DW_AT_extension. DW_AT_extension will refer only to
5298 namespaces; DW_AT_abstract_origin refers to functions (and
5299 many things under the function DIE, but we do not recurse
5300 into function DIEs during partial symbol reading) and
5301 possibly variables as well; DW_AT_specification refers to
5302 declarations. Declarations ought to have the DW_AT_declaration
5303 flag. It happens that GCC forgets to put it in sometimes, but
5304 only for functions, not for types.
5305
5306 Adding more things than necessary to the hash table is harmless
5307 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5308 wasted time in find_partial_die, when we reread the compilation
5309 unit with load_all_dies set. */
72bf9492 5310
5afb4e99
DJ
5311 if (load_all
5312 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5313 || abbrev->tag == DW_TAG_variable
5314 || abbrev->tag == DW_TAG_namespace
5315 || part_die->is_declaration)
5316 {
5317 void **slot;
5318
5319 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5320 part_die->offset, INSERT);
5321 *slot = part_die;
5322 }
5323
5324 part_die = obstack_alloc (&cu->comp_unit_obstack,
5325 sizeof (struct partial_die_info));
5326
5327 /* For some DIEs we want to follow their children (if any). For C
5328 we have no reason to follow the children of structures; for other
5329 languages we have to, both so that we can get at method physnames
5330 to infer fully qualified class names, and for DW_AT_specification. */
5331 if (last_die->has_children
5afb4e99
DJ
5332 && (load_all
5333 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5334 || last_die->tag == DW_TAG_enumeration_type
5335 || (cu->language != language_c
5336 && (last_die->tag == DW_TAG_class_type
5337 || last_die->tag == DW_TAG_structure_type
5338 || last_die->tag == DW_TAG_union_type))))
5339 {
5340 nesting_level++;
5341 parent_die = last_die;
5342 continue;
5343 }
5344
5345 /* Otherwise we skip to the next sibling, if any. */
5346 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5347
5348 /* Back to the top, do it again. */
5349 }
5350}
5351
c906108c
SS
5352/* Read a minimal amount of information into the minimal die structure. */
5353
fe1b8b76 5354static gdb_byte *
72bf9492
DJ
5355read_partial_die (struct partial_die_info *part_die,
5356 struct abbrev_info *abbrev,
5357 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5358 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5359{
72bf9492 5360 unsigned int bytes_read, i;
c906108c 5361 struct attribute attr;
c5aa993b 5362 int has_low_pc_attr = 0;
c906108c
SS
5363 int has_high_pc_attr = 0;
5364
72bf9492 5365 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5366
6502dd73 5367 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5368
5369 info_ptr += abbrev_len;
5370
5371 if (abbrev == NULL)
5372 return info_ptr;
5373
c906108c
SS
5374 part_die->tag = abbrev->tag;
5375 part_die->has_children = abbrev->has_children;
c906108c
SS
5376
5377 for (i = 0; i < abbrev->num_attrs; ++i)
5378 {
e7c27a73 5379 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5380
5381 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5382 partial symbol table. */
c906108c
SS
5383 switch (attr.name)
5384 {
5385 case DW_AT_name:
5386
5387 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5388 if (part_die->name == NULL)
5389 part_die->name = DW_STRING (&attr);
5390 break;
57c22c6c
BR
5391 case DW_AT_comp_dir:
5392 if (part_die->dirname == NULL)
5393 part_die->dirname = DW_STRING (&attr);
5394 break;
c906108c
SS
5395 case DW_AT_MIPS_linkage_name:
5396 part_die->name = DW_STRING (&attr);
5397 break;
5398 case DW_AT_low_pc:
5399 has_low_pc_attr = 1;
5400 part_die->lowpc = DW_ADDR (&attr);
5401 break;
5402 case DW_AT_high_pc:
5403 has_high_pc_attr = 1;
5404 part_die->highpc = DW_ADDR (&attr);
5405 break;
5406 case DW_AT_location:
8e19ed76
PS
5407 /* Support the .debug_loc offsets */
5408 if (attr_form_is_block (&attr))
5409 {
5410 part_die->locdesc = DW_BLOCK (&attr);
5411 }
5412 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5413 {
4d3c2250 5414 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5415 }
5416 else
5417 {
4d3c2250
KB
5418 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5419 "partial symbol information");
8e19ed76 5420 }
c906108c
SS
5421 break;
5422 case DW_AT_language:
5423 part_die->language = DW_UNSND (&attr);
5424 break;
5425 case DW_AT_external:
5426 part_die->is_external = DW_UNSND (&attr);
5427 break;
5428 case DW_AT_declaration:
5429 part_die->is_declaration = DW_UNSND (&attr);
5430 break;
5431 case DW_AT_type:
5432 part_die->has_type = 1;
5433 break;
5434 case DW_AT_abstract_origin:
5435 case DW_AT_specification:
72bf9492
DJ
5436 case DW_AT_extension:
5437 part_die->has_specification = 1;
5438 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5439 break;
5440 case DW_AT_sibling:
5441 /* Ignore absolute siblings, they might point outside of
5442 the current compile unit. */
5443 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5444 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5445 else
6502dd73
DJ
5446 part_die->sibling = dwarf2_per_objfile->info_buffer
5447 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5448 break;
aaa75496
JB
5449 case DW_AT_stmt_list:
5450 part_die->has_stmt_list = 1;
5451 part_die->line_offset = DW_UNSND (&attr);
5452 break;
c906108c
SS
5453 default:
5454 break;
5455 }
5456 }
5457
c906108c
SS
5458 /* When using the GNU linker, .gnu.linkonce. sections are used to
5459 eliminate duplicate copies of functions and vtables and such.
5460 The linker will arbitrarily choose one and discard the others.
5461 The AT_*_pc values for such functions refer to local labels in
5462 these sections. If the section from that file was discarded, the
5463 labels are not in the output, so the relocs get a value of 0.
5464 If this is a discarded function, mark the pc bounds as invalid,
5465 so that GDB will ignore it. */
5466 if (has_low_pc_attr && has_high_pc_attr
5467 && part_die->lowpc < part_die->highpc
5468 && (part_die->lowpc != 0
5469 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
0b010bcc 5470 part_die->has_pc_info = 1;
c906108c
SS
5471 return info_ptr;
5472}
5473
72bf9492
DJ
5474/* Find a cached partial DIE at OFFSET in CU. */
5475
5476static struct partial_die_info *
5477find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5478{
5479 struct partial_die_info *lookup_die = NULL;
5480 struct partial_die_info part_die;
5481
5482 part_die.offset = offset;
5483 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5484
72bf9492
DJ
5485 return lookup_die;
5486}
5487
5488/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5489
5490static struct partial_die_info *
10b3939b 5491find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5492{
5afb4e99
DJ
5493 struct dwarf2_per_cu_data *per_cu = NULL;
5494 struct partial_die_info *pd = NULL;
72bf9492
DJ
5495
5496 if (offset >= cu->header.offset
5497 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5498 {
5499 pd = find_partial_die_in_comp_unit (offset, cu);
5500 if (pd != NULL)
5501 return pd;
5502 }
72bf9492 5503
ae038cb0
DJ
5504 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5505
ae038cb0
DJ
5506 if (per_cu->cu == NULL)
5507 {
5508 load_comp_unit (per_cu, cu->objfile);
5509 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5510 dwarf2_per_objfile->read_in_chain = per_cu;
5511 }
5512
5513 per_cu->cu->last_used = 0;
5afb4e99
DJ
5514 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5515
5516 if (pd == NULL && per_cu->load_all_dies == 0)
5517 {
5518 struct cleanup *back_to;
5519 struct partial_die_info comp_unit_die;
5520 struct abbrev_info *abbrev;
5521 unsigned int bytes_read;
5522 char *info_ptr;
5523
5524 per_cu->load_all_dies = 1;
5525
5526 /* Re-read the DIEs. */
5527 back_to = make_cleanup (null_cleanup, 0);
5528 if (per_cu->cu->dwarf2_abbrevs == NULL)
5529 {
5530 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5531 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5532 }
5533 info_ptr = per_cu->cu->header.first_die_ptr;
5534 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5535 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5536 per_cu->cu->objfile->obfd, info_ptr,
5537 per_cu->cu);
5538 if (comp_unit_die.has_children)
5539 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5540 do_cleanups (back_to);
5541
5542 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5543 }
5544
5545 if (pd == NULL)
5546 internal_error (__FILE__, __LINE__,
5547 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5548 offset, bfd_get_filename (cu->objfile->obfd));
5549 return pd;
72bf9492
DJ
5550}
5551
5552/* Adjust PART_DIE before generating a symbol for it. This function
5553 may set the is_external flag or change the DIE's name. */
5554
5555static void
5556fixup_partial_die (struct partial_die_info *part_die,
5557 struct dwarf2_cu *cu)
5558{
5559 /* If we found a reference attribute and the DIE has no name, try
5560 to find a name in the referred to DIE. */
5561
5562 if (part_die->name == NULL && part_die->has_specification)
5563 {
5564 struct partial_die_info *spec_die;
72bf9492 5565
10b3939b 5566 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5567
10b3939b 5568 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5569
5570 if (spec_die->name)
5571 {
5572 part_die->name = spec_die->name;
5573
5574 /* Copy DW_AT_external attribute if it is set. */
5575 if (spec_die->is_external)
5576 part_die->is_external = spec_die->is_external;
5577 }
5578 }
5579
5580 /* Set default names for some unnamed DIEs. */
5581 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5582 || part_die->tag == DW_TAG_class_type))
5583 part_die->name = "(anonymous class)";
5584
5585 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5586 part_die->name = "(anonymous namespace)";
5587
5588 if (part_die->tag == DW_TAG_structure_type
5589 || part_die->tag == DW_TAG_class_type
5590 || part_die->tag == DW_TAG_union_type)
5591 guess_structure_name (part_die, cu);
5592}
5593
639d11d3
DC
5594/* Read the die from the .debug_info section buffer. Set DIEP to
5595 point to a newly allocated die with its information, except for its
5596 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5597 whether the die has children or not. */
c906108c 5598
fe1b8b76
JB
5599static gdb_byte *
5600read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5601 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5602{
5603 unsigned int abbrev_number, bytes_read, i, offset;
5604 struct abbrev_info *abbrev;
5605 struct die_info *die;
5606
6502dd73 5607 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5608 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5609 info_ptr += bytes_read;
5610 if (!abbrev_number)
5611 {
5612 die = dwarf_alloc_die ();
5613 die->tag = 0;
5614 die->abbrev = abbrev_number;
5615 die->type = NULL;
5616 *diep = die;
639d11d3 5617 *has_children = 0;
c906108c
SS
5618 return info_ptr;
5619 }
5620
e7c27a73 5621 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5622 if (!abbrev)
5623 {
8a3fe4f8 5624 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5625 abbrev_number,
639d11d3 5626 bfd_get_filename (abfd));
c906108c
SS
5627 }
5628 die = dwarf_alloc_die ();
5629 die->offset = offset;
5630 die->tag = abbrev->tag;
c906108c
SS
5631 die->abbrev = abbrev_number;
5632 die->type = NULL;
5633
5634 die->num_attrs = abbrev->num_attrs;
5635 die->attrs = (struct attribute *)
5636 xmalloc (die->num_attrs * sizeof (struct attribute));
5637
5638 for (i = 0; i < abbrev->num_attrs; ++i)
5639 {
5640 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5641 abfd, info_ptr, cu);
10b3939b
DJ
5642
5643 /* If this attribute is an absolute reference to a different
5644 compilation unit, make sure that compilation unit is loaded
5645 also. */
5646 if (die->attrs[i].form == DW_FORM_ref_addr
5647 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5648 || (DW_ADDR (&die->attrs[i])
5649 >= cu->header.offset + cu->header.length)))
5650 {
5651 struct dwarf2_per_cu_data *per_cu;
5652 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5653 cu->objfile);
5654
5655 /* Mark the dependence relation so that we don't flush PER_CU
5656 too early. */
5657 dwarf2_add_dependence (cu, per_cu);
5658
5659 /* If it's already on the queue, we have nothing to do. */
5660 if (per_cu->queued)
5661 continue;
5662
5663 /* If the compilation unit is already loaded, just mark it as
5664 used. */
5665 if (per_cu->cu != NULL)
5666 {
5667 per_cu->cu->last_used = 0;
5668 continue;
5669 }
5670
5671 /* Add it to the queue. */
5672 queue_comp_unit (per_cu);
5673 }
c906108c
SS
5674 }
5675
5676 *diep = die;
639d11d3 5677 *has_children = abbrev->has_children;
c906108c
SS
5678 return info_ptr;
5679}
5680
a8329558 5681/* Read an attribute value described by an attribute form. */
c906108c 5682
fe1b8b76 5683static gdb_byte *
a8329558 5684read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5685 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5686 struct dwarf2_cu *cu)
c906108c 5687{
e7c27a73 5688 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5689 unsigned int bytes_read;
5690 struct dwarf_block *blk;
5691
a8329558
KW
5692 attr->form = form;
5693 switch (form)
c906108c
SS
5694 {
5695 case DW_FORM_addr:
5696 case DW_FORM_ref_addr:
e7c27a73 5697 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5698 info_ptr += bytes_read;
c906108c
SS
5699 break;
5700 case DW_FORM_block2:
7b5a2f43 5701 blk = dwarf_alloc_block (cu);
c906108c
SS
5702 blk->size = read_2_bytes (abfd, info_ptr);
5703 info_ptr += 2;
5704 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5705 info_ptr += blk->size;
5706 DW_BLOCK (attr) = blk;
5707 break;
5708 case DW_FORM_block4:
7b5a2f43 5709 blk = dwarf_alloc_block (cu);
c906108c
SS
5710 blk->size = read_4_bytes (abfd, info_ptr);
5711 info_ptr += 4;
5712 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5713 info_ptr += blk->size;
5714 DW_BLOCK (attr) = blk;
5715 break;
5716 case DW_FORM_data2:
5717 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5718 info_ptr += 2;
5719 break;
5720 case DW_FORM_data4:
5721 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5722 info_ptr += 4;
5723 break;
5724 case DW_FORM_data8:
5725 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5726 info_ptr += 8;
5727 break;
5728 case DW_FORM_string:
5729 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5730 info_ptr += bytes_read;
5731 break;
4bdf3d34
JJ
5732 case DW_FORM_strp:
5733 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5734 &bytes_read);
5735 info_ptr += bytes_read;
5736 break;
c906108c 5737 case DW_FORM_block:
7b5a2f43 5738 blk = dwarf_alloc_block (cu);
c906108c
SS
5739 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5740 info_ptr += bytes_read;
5741 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5742 info_ptr += blk->size;
5743 DW_BLOCK (attr) = blk;
5744 break;
5745 case DW_FORM_block1:
7b5a2f43 5746 blk = dwarf_alloc_block (cu);
c906108c
SS
5747 blk->size = read_1_byte (abfd, info_ptr);
5748 info_ptr += 1;
5749 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5750 info_ptr += blk->size;
5751 DW_BLOCK (attr) = blk;
5752 break;
5753 case DW_FORM_data1:
5754 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5755 info_ptr += 1;
5756 break;
5757 case DW_FORM_flag:
5758 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5759 info_ptr += 1;
5760 break;
5761 case DW_FORM_sdata:
5762 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5763 info_ptr += bytes_read;
5764 break;
5765 case DW_FORM_udata:
5766 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5767 info_ptr += bytes_read;
5768 break;
5769 case DW_FORM_ref1:
10b3939b 5770 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5771 info_ptr += 1;
5772 break;
5773 case DW_FORM_ref2:
10b3939b 5774 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5775 info_ptr += 2;
5776 break;
5777 case DW_FORM_ref4:
10b3939b 5778 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5779 info_ptr += 4;
5780 break;
613e1657 5781 case DW_FORM_ref8:
10b3939b 5782 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5783 info_ptr += 8;
5784 break;
c906108c 5785 case DW_FORM_ref_udata:
10b3939b
DJ
5786 DW_ADDR (attr) = (cu->header.offset
5787 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5788 info_ptr += bytes_read;
5789 break;
c906108c 5790 case DW_FORM_indirect:
a8329558
KW
5791 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5792 info_ptr += bytes_read;
e7c27a73 5793 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5794 break;
c906108c 5795 default:
8a3fe4f8 5796 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5797 dwarf_form_name (form),
5798 bfd_get_filename (abfd));
c906108c
SS
5799 }
5800 return info_ptr;
5801}
5802
a8329558
KW
5803/* Read an attribute described by an abbreviated attribute. */
5804
fe1b8b76 5805static gdb_byte *
a8329558 5806read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5807 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5808{
5809 attr->name = abbrev->name;
e7c27a73 5810 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5811}
5812
c906108c
SS
5813/* read dwarf information from a buffer */
5814
5815static unsigned int
fe1b8b76 5816read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5817{
fe1b8b76 5818 return bfd_get_8 (abfd, buf);
c906108c
SS
5819}
5820
5821static int
fe1b8b76 5822read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5823{
fe1b8b76 5824 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5825}
5826
5827static unsigned int
fe1b8b76 5828read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5829{
fe1b8b76 5830 return bfd_get_16 (abfd, buf);
c906108c
SS
5831}
5832
5833static int
fe1b8b76 5834read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5835{
fe1b8b76 5836 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
5837}
5838
5839static unsigned int
fe1b8b76 5840read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5841{
fe1b8b76 5842 return bfd_get_32 (abfd, buf);
c906108c
SS
5843}
5844
5845static int
fe1b8b76 5846read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5847{
fe1b8b76 5848 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
5849}
5850
ce5d95e1 5851static unsigned long
fe1b8b76 5852read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5853{
fe1b8b76 5854 return bfd_get_64 (abfd, buf);
c906108c
SS
5855}
5856
5857static CORE_ADDR
fe1b8b76 5858read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 5859 unsigned int *bytes_read)
c906108c 5860{
e7c27a73 5861 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5862 CORE_ADDR retval = 0;
5863
107d2387 5864 if (cu_header->signed_addr_p)
c906108c 5865 {
107d2387
AC
5866 switch (cu_header->addr_size)
5867 {
5868 case 2:
fe1b8b76 5869 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
5870 break;
5871 case 4:
fe1b8b76 5872 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
5873 break;
5874 case 8:
fe1b8b76 5875 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
5876 break;
5877 default:
8e65ff28 5878 internal_error (__FILE__, __LINE__,
e2e0b3e5 5879 _("read_address: bad switch, signed [in module %s]"),
659b0389 5880 bfd_get_filename (abfd));
107d2387
AC
5881 }
5882 }
5883 else
5884 {
5885 switch (cu_header->addr_size)
5886 {
5887 case 2:
fe1b8b76 5888 retval = bfd_get_16 (abfd, buf);
107d2387
AC
5889 break;
5890 case 4:
fe1b8b76 5891 retval = bfd_get_32 (abfd, buf);
107d2387
AC
5892 break;
5893 case 8:
fe1b8b76 5894 retval = bfd_get_64 (abfd, buf);
107d2387
AC
5895 break;
5896 default:
8e65ff28 5897 internal_error (__FILE__, __LINE__,
e2e0b3e5 5898 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 5899 bfd_get_filename (abfd));
107d2387 5900 }
c906108c 5901 }
64367e0a 5902
107d2387
AC
5903 *bytes_read = cu_header->addr_size;
5904 return retval;
c906108c
SS
5905}
5906
f7ef9339 5907/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
5908 specification allows the initial length to take up either 4 bytes
5909 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5910 bytes describe the length and all offsets will be 8 bytes in length
5911 instead of 4.
5912
f7ef9339
KB
5913 An older, non-standard 64-bit format is also handled by this
5914 function. The older format in question stores the initial length
5915 as an 8-byte quantity without an escape value. Lengths greater
5916 than 2^32 aren't very common which means that the initial 4 bytes
5917 is almost always zero. Since a length value of zero doesn't make
5918 sense for the 32-bit format, this initial zero can be considered to
5919 be an escape value which indicates the presence of the older 64-bit
5920 format. As written, the code can't detect (old format) lengths
917c78fc
MK
5921 greater than 4GB. If it becomes necessary to handle lengths
5922 somewhat larger than 4GB, we could allow other small values (such
5923 as the non-sensical values of 1, 2, and 3) to also be used as
5924 escape values indicating the presence of the old format.
f7ef9339 5925
917c78fc
MK
5926 The value returned via bytes_read should be used to increment the
5927 relevant pointer after calling read_initial_length().
613e1657
KB
5928
5929 As a side effect, this function sets the fields initial_length_size
5930 and offset_size in cu_header to the values appropriate for the
5931 length field. (The format of the initial length field determines
dd373385 5932 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
5933
5934 [ Note: read_initial_length() and read_offset() are based on the
5935 document entitled "DWARF Debugging Information Format", revision
f7ef9339 5936 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
5937 from:
5938
f7ef9339 5939 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
5940
5941 This document is only a draft and is subject to change. (So beware.)
5942
f7ef9339 5943 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
5944 determined empirically by examining 64-bit ELF files produced by
5945 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
5946
5947 - Kevin, July 16, 2002
613e1657
KB
5948 ] */
5949
5950static LONGEST
fe1b8b76 5951read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 5952 unsigned int *bytes_read)
613e1657 5953{
fe1b8b76 5954 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 5955
dd373385 5956 if (length == 0xffffffff)
613e1657 5957 {
fe1b8b76 5958 length = bfd_get_64 (abfd, buf + 4);
613e1657 5959 *bytes_read = 12;
613e1657 5960 }
dd373385 5961 else if (length == 0)
f7ef9339 5962 {
dd373385 5963 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 5964 length = bfd_get_64 (abfd, buf);
f7ef9339 5965 *bytes_read = 8;
f7ef9339 5966 }
613e1657
KB
5967 else
5968 {
5969 *bytes_read = 4;
613e1657
KB
5970 }
5971
dd373385
EZ
5972 if (cu_header)
5973 {
5974 gdb_assert (cu_header->initial_length_size == 0
5975 || cu_header->initial_length_size == 4
5976 || cu_header->initial_length_size == 8
5977 || cu_header->initial_length_size == 12);
5978
5979 if (cu_header->initial_length_size != 0
5980 && cu_header->initial_length_size != *bytes_read)
5981 complaint (&symfile_complaints,
5982 _("intermixed 32-bit and 64-bit DWARF sections"));
5983
5984 cu_header->initial_length_size = *bytes_read;
5985 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
5986 }
5987
5988 return length;
613e1657
KB
5989}
5990
5991/* Read an offset from the data stream. The size of the offset is
917c78fc 5992 given by cu_header->offset_size. */
613e1657
KB
5993
5994static LONGEST
fe1b8b76 5995read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 5996 unsigned int *bytes_read)
613e1657
KB
5997{
5998 LONGEST retval = 0;
5999
6000 switch (cu_header->offset_size)
6001 {
6002 case 4:
fe1b8b76 6003 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6004 *bytes_read = 4;
6005 break;
6006 case 8:
fe1b8b76 6007 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6008 *bytes_read = 8;
6009 break;
6010 default:
8e65ff28 6011 internal_error (__FILE__, __LINE__,
e2e0b3e5 6012 _("read_offset: bad switch [in module %s]"),
659b0389 6013 bfd_get_filename (abfd));
613e1657
KB
6014 }
6015
917c78fc 6016 return retval;
613e1657
KB
6017}
6018
fe1b8b76
JB
6019static gdb_byte *
6020read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6021{
6022 /* If the size of a host char is 8 bits, we can return a pointer
6023 to the buffer, otherwise we have to copy the data to a buffer
6024 allocated on the temporary obstack. */
4bdf3d34 6025 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6026 return buf;
c906108c
SS
6027}
6028
6029static char *
fe1b8b76 6030read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6031{
6032 /* If the size of a host char is 8 bits, we can return a pointer
6033 to the string, otherwise we have to copy the string to a buffer
6034 allocated on the temporary obstack. */
4bdf3d34 6035 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6036 if (*buf == '\0')
6037 {
6038 *bytes_read_ptr = 1;
6039 return NULL;
6040 }
fe1b8b76
JB
6041 *bytes_read_ptr = strlen ((char *) buf) + 1;
6042 return (char *) buf;
4bdf3d34
JJ
6043}
6044
6045static char *
fe1b8b76 6046read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6047 const struct comp_unit_head *cu_header,
6048 unsigned int *bytes_read_ptr)
6049{
6050 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6051 bytes_read_ptr);
c906108c 6052
6502dd73 6053 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6054 {
8a3fe4f8 6055 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6056 bfd_get_filename (abfd));
4bdf3d34 6057 return NULL;
c906108c 6058 }
6502dd73 6059 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6060 {
8a3fe4f8 6061 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6062 bfd_get_filename (abfd));
c906108c
SS
6063 return NULL;
6064 }
4bdf3d34 6065 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6066 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6067 return NULL;
fe1b8b76 6068 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6069}
6070
ce5d95e1 6071static unsigned long
fe1b8b76 6072read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6073{
ce5d95e1
JB
6074 unsigned long result;
6075 unsigned int num_read;
c906108c
SS
6076 int i, shift;
6077 unsigned char byte;
6078
6079 result = 0;
6080 shift = 0;
6081 num_read = 0;
6082 i = 0;
6083 while (1)
6084 {
fe1b8b76 6085 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6086 buf++;
6087 num_read++;
ce5d95e1 6088 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6089 if ((byte & 128) == 0)
6090 {
6091 break;
6092 }
6093 shift += 7;
6094 }
6095 *bytes_read_ptr = num_read;
6096 return result;
6097}
6098
ce5d95e1 6099static long
fe1b8b76 6100read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6101{
ce5d95e1 6102 long result;
77e0b926 6103 int i, shift, num_read;
c906108c
SS
6104 unsigned char byte;
6105
6106 result = 0;
6107 shift = 0;
c906108c
SS
6108 num_read = 0;
6109 i = 0;
6110 while (1)
6111 {
fe1b8b76 6112 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6113 buf++;
6114 num_read++;
ce5d95e1 6115 result |= ((long)(byte & 127) << shift);
c906108c
SS
6116 shift += 7;
6117 if ((byte & 128) == 0)
6118 {
6119 break;
6120 }
6121 }
77e0b926
DJ
6122 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6123 result |= -(((long)1) << shift);
c906108c
SS
6124 *bytes_read_ptr = num_read;
6125 return result;
6126}
6127
4bb7a0a7
DJ
6128/* Return a pointer to just past the end of an LEB128 number in BUF. */
6129
fe1b8b76
JB
6130static gdb_byte *
6131skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6132{
6133 int byte;
6134
6135 while (1)
6136 {
fe1b8b76 6137 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6138 buf++;
6139 if ((byte & 128) == 0)
6140 return buf;
6141 }
6142}
6143
c906108c 6144static void
e142c38c 6145set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6146{
6147 switch (lang)
6148 {
6149 case DW_LANG_C89:
6150 case DW_LANG_C:
e142c38c 6151 cu->language = language_c;
c906108c
SS
6152 break;
6153 case DW_LANG_C_plus_plus:
e142c38c 6154 cu->language = language_cplus;
c906108c
SS
6155 break;
6156 case DW_LANG_Fortran77:
6157 case DW_LANG_Fortran90:
b21b22e0 6158 case DW_LANG_Fortran95:
e142c38c 6159 cu->language = language_fortran;
c906108c
SS
6160 break;
6161 case DW_LANG_Mips_Assembler:
e142c38c 6162 cu->language = language_asm;
c906108c 6163 break;
bebd888e 6164 case DW_LANG_Java:
e142c38c 6165 cu->language = language_java;
bebd888e 6166 break;
c906108c 6167 case DW_LANG_Ada83:
8aaf0b47 6168 case DW_LANG_Ada95:
bc5f45f8
JB
6169 cu->language = language_ada;
6170 break;
c906108c
SS
6171 case DW_LANG_Cobol74:
6172 case DW_LANG_Cobol85:
6173 case DW_LANG_Pascal83:
6174 case DW_LANG_Modula2:
6175 default:
e142c38c 6176 cu->language = language_minimal;
c906108c
SS
6177 break;
6178 }
e142c38c 6179 cu->language_defn = language_def (cu->language);
c906108c
SS
6180}
6181
6182/* Return the named attribute or NULL if not there. */
6183
6184static struct attribute *
e142c38c 6185dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6186{
6187 unsigned int i;
6188 struct attribute *spec = NULL;
6189
6190 for (i = 0; i < die->num_attrs; ++i)
6191 {
6192 if (die->attrs[i].name == name)
10b3939b 6193 return &die->attrs[i];
c906108c
SS
6194 if (die->attrs[i].name == DW_AT_specification
6195 || die->attrs[i].name == DW_AT_abstract_origin)
6196 spec = &die->attrs[i];
6197 }
c906108c 6198
10b3939b
DJ
6199 if (spec)
6200 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6201
c906108c
SS
6202 return NULL;
6203}
6204
05cf31d1
JB
6205/* Return non-zero iff the attribute NAME is defined for the given DIE,
6206 and holds a non-zero value. This function should only be used for
6207 DW_FORM_flag attributes. */
6208
6209static int
6210dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6211{
6212 struct attribute *attr = dwarf2_attr (die, name, cu);
6213
6214 return (attr && DW_UNSND (attr));
6215}
6216
3ca72b44 6217static int
e142c38c 6218die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6219{
05cf31d1
JB
6220 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6221 which value is non-zero. However, we have to be careful with
6222 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6223 (via dwarf2_flag_true_p) follows this attribute. So we may
6224 end up accidently finding a declaration attribute that belongs
6225 to a different DIE referenced by the specification attribute,
6226 even though the given DIE does not have a declaration attribute. */
6227 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6228 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6229}
6230
63d06c5c
DC
6231/* Return the die giving the specification for DIE, if there is
6232 one. */
6233
6234static struct die_info *
e142c38c 6235die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6236{
e142c38c 6237 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6238
6239 if (spec_attr == NULL)
6240 return NULL;
6241 else
10b3939b 6242 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6243}
c906108c 6244
debd256d
JB
6245/* Free the line_header structure *LH, and any arrays and strings it
6246 refers to. */
6247static void
6248free_line_header (struct line_header *lh)
6249{
6250 if (lh->standard_opcode_lengths)
a8bc7b56 6251 xfree (lh->standard_opcode_lengths);
debd256d
JB
6252
6253 /* Remember that all the lh->file_names[i].name pointers are
6254 pointers into debug_line_buffer, and don't need to be freed. */
6255 if (lh->file_names)
a8bc7b56 6256 xfree (lh->file_names);
debd256d
JB
6257
6258 /* Similarly for the include directory names. */
6259 if (lh->include_dirs)
a8bc7b56 6260 xfree (lh->include_dirs);
debd256d 6261
a8bc7b56 6262 xfree (lh);
debd256d
JB
6263}
6264
6265
6266/* Add an entry to LH's include directory table. */
6267static void
6268add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6269{
debd256d
JB
6270 /* Grow the array if necessary. */
6271 if (lh->include_dirs_size == 0)
c5aa993b 6272 {
debd256d
JB
6273 lh->include_dirs_size = 1; /* for testing */
6274 lh->include_dirs = xmalloc (lh->include_dirs_size
6275 * sizeof (*lh->include_dirs));
6276 }
6277 else if (lh->num_include_dirs >= lh->include_dirs_size)
6278 {
6279 lh->include_dirs_size *= 2;
6280 lh->include_dirs = xrealloc (lh->include_dirs,
6281 (lh->include_dirs_size
6282 * sizeof (*lh->include_dirs)));
c5aa993b 6283 }
c906108c 6284
debd256d
JB
6285 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6286}
6287
6288
6289/* Add an entry to LH's file name table. */
6290static void
6291add_file_name (struct line_header *lh,
6292 char *name,
6293 unsigned int dir_index,
6294 unsigned int mod_time,
6295 unsigned int length)
6296{
6297 struct file_entry *fe;
6298
6299 /* Grow the array if necessary. */
6300 if (lh->file_names_size == 0)
6301 {
6302 lh->file_names_size = 1; /* for testing */
6303 lh->file_names = xmalloc (lh->file_names_size
6304 * sizeof (*lh->file_names));
6305 }
6306 else if (lh->num_file_names >= lh->file_names_size)
6307 {
6308 lh->file_names_size *= 2;
6309 lh->file_names = xrealloc (lh->file_names,
6310 (lh->file_names_size
6311 * sizeof (*lh->file_names)));
6312 }
6313
6314 fe = &lh->file_names[lh->num_file_names++];
6315 fe->name = name;
6316 fe->dir_index = dir_index;
6317 fe->mod_time = mod_time;
6318 fe->length = length;
aaa75496 6319 fe->included_p = 0;
debd256d
JB
6320}
6321
6322
6323/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6324 .debug_line, according to the endianness of ABFD. Return a pointer
6325 to a struct line_header, allocated using xmalloc.
debd256d
JB
6326
6327 NOTE: the strings in the include directory and file name tables of
6328 the returned object point into debug_line_buffer, and must not be
6329 freed. */
6330static struct line_header *
6331dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6332 struct dwarf2_cu *cu)
debd256d
JB
6333{
6334 struct cleanup *back_to;
6335 struct line_header *lh;
fe1b8b76 6336 gdb_byte *line_ptr;
891d2f0b 6337 unsigned int bytes_read;
debd256d
JB
6338 int i;
6339 char *cur_dir, *cur_file;
6340
6502dd73 6341 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6342 {
e2e0b3e5 6343 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6344 return 0;
6345 }
6346
a738430d
MK
6347 /* Make sure that at least there's room for the total_length field.
6348 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6349 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6350 {
4d3c2250 6351 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6352 return 0;
6353 }
6354
6355 lh = xmalloc (sizeof (*lh));
6356 memset (lh, 0, sizeof (*lh));
6357 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6358 (void *) lh);
6359
6502dd73 6360 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6361
a738430d 6362 /* Read in the header. */
dd373385
EZ
6363 lh->total_length =
6364 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6365 line_ptr += bytes_read;
6502dd73
DJ
6366 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6367 + dwarf2_per_objfile->line_size))
debd256d 6368 {
4d3c2250 6369 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6370 return 0;
6371 }
6372 lh->statement_program_end = line_ptr + lh->total_length;
6373 lh->version = read_2_bytes (abfd, line_ptr);
6374 line_ptr += 2;
e7c27a73 6375 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6376 line_ptr += bytes_read;
6377 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6378 line_ptr += 1;
6379 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6380 line_ptr += 1;
6381 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6382 line_ptr += 1;
6383 lh->line_range = read_1_byte (abfd, line_ptr);
6384 line_ptr += 1;
6385 lh->opcode_base = read_1_byte (abfd, line_ptr);
6386 line_ptr += 1;
6387 lh->standard_opcode_lengths
fe1b8b76 6388 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6389
6390 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6391 for (i = 1; i < lh->opcode_base; ++i)
6392 {
6393 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6394 line_ptr += 1;
6395 }
6396
a738430d 6397 /* Read directory table. */
debd256d
JB
6398 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6399 {
6400 line_ptr += bytes_read;
6401 add_include_dir (lh, cur_dir);
6402 }
6403 line_ptr += bytes_read;
6404
a738430d 6405 /* Read file name table. */
debd256d
JB
6406 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6407 {
6408 unsigned int dir_index, mod_time, length;
6409
6410 line_ptr += bytes_read;
6411 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6412 line_ptr += bytes_read;
6413 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6414 line_ptr += bytes_read;
6415 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6416 line_ptr += bytes_read;
6417
6418 add_file_name (lh, cur_file, dir_index, mod_time, length);
6419 }
6420 line_ptr += bytes_read;
6421 lh->statement_program_start = line_ptr;
6422
6502dd73
DJ
6423 if (line_ptr > (dwarf2_per_objfile->line_buffer
6424 + dwarf2_per_objfile->line_size))
4d3c2250 6425 complaint (&symfile_complaints,
e2e0b3e5 6426 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6427
6428 discard_cleanups (back_to);
6429 return lh;
6430}
c906108c 6431
5fb290d7
DJ
6432/* This function exists to work around a bug in certain compilers
6433 (particularly GCC 2.95), in which the first line number marker of a
6434 function does not show up until after the prologue, right before
6435 the second line number marker. This function shifts ADDRESS down
6436 to the beginning of the function if necessary, and is called on
6437 addresses passed to record_line. */
6438
6439static CORE_ADDR
e142c38c 6440check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6441{
6442 struct function_range *fn;
6443
6444 /* Find the function_range containing address. */
e142c38c 6445 if (!cu->first_fn)
5fb290d7
DJ
6446 return address;
6447
e142c38c
DJ
6448 if (!cu->cached_fn)
6449 cu->cached_fn = cu->first_fn;
5fb290d7 6450
e142c38c 6451 fn = cu->cached_fn;
5fb290d7
DJ
6452 while (fn)
6453 if (fn->lowpc <= address && fn->highpc > address)
6454 goto found;
6455 else
6456 fn = fn->next;
6457
e142c38c
DJ
6458 fn = cu->first_fn;
6459 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6460 if (fn->lowpc <= address && fn->highpc > address)
6461 goto found;
6462 else
6463 fn = fn->next;
6464
6465 return address;
6466
6467 found:
6468 if (fn->seen_line)
6469 return address;
6470 if (address != fn->lowpc)
4d3c2250 6471 complaint (&symfile_complaints,
e2e0b3e5 6472 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6473 (unsigned long) address, fn->name);
5fb290d7
DJ
6474 fn->seen_line = 1;
6475 return fn->lowpc;
6476}
6477
aaa75496
JB
6478/* Decode the Line Number Program (LNP) for the given line_header
6479 structure and CU. The actual information extracted and the type
6480 of structures created from the LNP depends on the value of PST.
6481
6482 1. If PST is NULL, then this procedure uses the data from the program
6483 to create all necessary symbol tables, and their linetables.
6484 The compilation directory of the file is passed in COMP_DIR,
6485 and must not be NULL.
6486
6487 2. If PST is not NULL, this procedure reads the program to determine
6488 the list of files included by the unit represented by PST, and
6489 builds all the associated partial symbol tables. In this case,
6490 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6491 is not used to compute the full name of the symtab, and therefore
6492 omitting it when building the partial symtab does not introduce
6493 the potential for inconsistency - a partial symtab and its associated
6494 symbtab having a different fullname -). */
debd256d 6495
c906108c 6496static void
debd256d 6497dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6498 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6499{
fe1b8b76
JB
6500 gdb_byte *line_ptr;
6501 gdb_byte *line_end;
e7c27a73 6502 unsigned int bytes_read;
c906108c 6503 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6504 CORE_ADDR baseaddr;
6505 struct objfile *objfile = cu->objfile;
aaa75496 6506 const int decode_for_pst_p = (pst != NULL);
e142c38c
DJ
6507
6508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6509
debd256d
JB
6510 line_ptr = lh->statement_program_start;
6511 line_end = lh->statement_program_end;
c906108c
SS
6512
6513 /* Read the statement sequences until there's nothing left. */
6514 while (line_ptr < line_end)
6515 {
6516 /* state machine registers */
6517 CORE_ADDR address = 0;
6518 unsigned int file = 1;
6519 unsigned int line = 1;
6520 unsigned int column = 0;
debd256d 6521 int is_stmt = lh->default_is_stmt;
c906108c
SS
6522 int basic_block = 0;
6523 int end_sequence = 0;
6524
aaa75496 6525 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6526 {
aaa75496 6527 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6528 /* lh->include_dirs and lh->file_names are 0-based, but the
6529 directory and file name numbers in the statement program
6530 are 1-based. */
6531 struct file_entry *fe = &lh->file_names[file - 1];
6532 char *dir;
a738430d 6533
debd256d
JB
6534 if (fe->dir_index)
6535 dir = lh->include_dirs[fe->dir_index - 1];
6536 else
6537 dir = comp_dir;
6538 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
6539 }
6540
a738430d 6541 /* Decode the table. */
c5aa993b 6542 while (!end_sequence)
c906108c
SS
6543 {
6544 op_code = read_1_byte (abfd, line_ptr);
6545 line_ptr += 1;
9aa1fe7e 6546
debd256d 6547 if (op_code >= lh->opcode_base)
a738430d
MK
6548 {
6549 /* Special operand. */
debd256d
JB
6550 adj_opcode = op_code - lh->opcode_base;
6551 address += (adj_opcode / lh->line_range)
6552 * lh->minimum_instruction_length;
6553 line += lh->line_base + (adj_opcode % lh->line_range);
aa495d11 6554 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6555 if (!decode_for_pst_p)
6556 {
a738430d 6557 /* Append row to matrix using current values. */
aaa75496
JB
6558 record_line (current_subfile, line,
6559 check_cu_functions (address, cu));
6560 }
9aa1fe7e
GK
6561 basic_block = 1;
6562 }
6563 else switch (op_code)
c906108c
SS
6564 {
6565 case DW_LNS_extended_op:
473b7be6
DJ
6566 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6567 line_ptr += bytes_read;
c906108c
SS
6568 extended_op = read_1_byte (abfd, line_ptr);
6569 line_ptr += 1;
6570 switch (extended_op)
6571 {
6572 case DW_LNE_end_sequence:
6573 end_sequence = 1;
aa495d11 6574 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6575 if (!decode_for_pst_p)
6576 record_line (current_subfile, 0, address);
c906108c
SS
6577 break;
6578 case DW_LNE_set_address:
e7c27a73 6579 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6580 line_ptr += bytes_read;
6581 address += baseaddr;
c906108c
SS
6582 break;
6583 case DW_LNE_define_file:
debd256d
JB
6584 {
6585 char *cur_file;
6586 unsigned int dir_index, mod_time, length;
6587
6588 cur_file = read_string (abfd, line_ptr, &bytes_read);
6589 line_ptr += bytes_read;
6590 dir_index =
6591 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6592 line_ptr += bytes_read;
6593 mod_time =
6594 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6595 line_ptr += bytes_read;
6596 length =
6597 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6598 line_ptr += bytes_read;
6599 add_file_name (lh, cur_file, dir_index, mod_time, length);
6600 }
c906108c
SS
6601 break;
6602 default:
4d3c2250 6603 complaint (&symfile_complaints,
e2e0b3e5 6604 _("mangled .debug_line section"));
debd256d 6605 return;
c906108c
SS
6606 }
6607 break;
6608 case DW_LNS_copy:
aa495d11 6609 lh->file_names[file - 1].included_p = 1;
aaa75496
JB
6610 if (!decode_for_pst_p)
6611 record_line (current_subfile, line,
6612 check_cu_functions (address, cu));
c906108c
SS
6613 basic_block = 0;
6614 break;
6615 case DW_LNS_advance_pc:
debd256d 6616 address += lh->minimum_instruction_length
c906108c
SS
6617 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6618 line_ptr += bytes_read;
6619 break;
6620 case DW_LNS_advance_line:
6621 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6622 line_ptr += bytes_read;
6623 break;
6624 case DW_LNS_set_file:
debd256d 6625 {
a738430d
MK
6626 /* The arrays lh->include_dirs and lh->file_names are
6627 0-based, but the directory and file name numbers in
6628 the statement program are 1-based. */
debd256d
JB
6629 struct file_entry *fe;
6630 char *dir;
a738430d 6631
debd256d
JB
6632 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6633 line_ptr += bytes_read;
6634 fe = &lh->file_names[file - 1];
6635 if (fe->dir_index)
6636 dir = lh->include_dirs[fe->dir_index - 1];
6637 else
6638 dir = comp_dir;
aaa75496
JB
6639 if (!decode_for_pst_p)
6640 dwarf2_start_subfile (fe->name, dir);
debd256d 6641 }
c906108c
SS
6642 break;
6643 case DW_LNS_set_column:
6644 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6645 line_ptr += bytes_read;
6646 break;
6647 case DW_LNS_negate_stmt:
6648 is_stmt = (!is_stmt);
6649 break;
6650 case DW_LNS_set_basic_block:
6651 basic_block = 1;
6652 break;
c2c6d25f
JM
6653 /* Add to the address register of the state machine the
6654 address increment value corresponding to special opcode
a738430d
MK
6655 255. I.e., this value is scaled by the minimum
6656 instruction length since special opcode 255 would have
6657 scaled the the increment. */
c906108c 6658 case DW_LNS_const_add_pc:
debd256d
JB
6659 address += (lh->minimum_instruction_length
6660 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6661 break;
6662 case DW_LNS_fixed_advance_pc:
6663 address += read_2_bytes (abfd, line_ptr);
6664 line_ptr += 2;
6665 break;
9aa1fe7e 6666 default:
a738430d
MK
6667 {
6668 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6669 int i;
a738430d 6670
debd256d 6671 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6672 {
6673 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6674 line_ptr += bytes_read;
6675 }
6676 }
c906108c
SS
6677 }
6678 }
6679 }
aaa75496
JB
6680
6681 if (decode_for_pst_p)
6682 {
6683 int file_index;
6684
6685 /* Now that we're done scanning the Line Header Program, we can
6686 create the psymtab of each included file. */
6687 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6688 if (lh->file_names[file_index].included_p == 1)
6689 {
5b5464ad
JB
6690 const struct file_entry fe = lh->file_names [file_index];
6691 char *include_name = fe.name;
6692 char *dir_name = NULL;
6693 char *pst_filename = pst->filename;
6694
6695 if (fe.dir_index)
6696 dir_name = lh->include_dirs[fe.dir_index - 1];
6697
6698 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6699 {
1754f103
MK
6700 include_name = concat (dir_name, SLASH_STRING,
6701 include_name, (char *)NULL);
5b5464ad
JB
6702 make_cleanup (xfree, include_name);
6703 }
6704
6705 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6706 {
1754f103
MK
6707 pst_filename = concat (pst->dirname, SLASH_STRING,
6708 pst_filename, (char *)NULL);
5b5464ad
JB
6709 make_cleanup (xfree, pst_filename);
6710 }
6711
6712 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6713 dwarf2_create_include_psymtab (include_name, pst, objfile);
6714 }
6715 }
c906108c
SS
6716}
6717
6718/* Start a subfile for DWARF. FILENAME is the name of the file and
6719 DIRNAME the name of the source directory which contains FILENAME
6720 or NULL if not known.
6721 This routine tries to keep line numbers from identical absolute and
6722 relative file names in a common subfile.
6723
6724 Using the `list' example from the GDB testsuite, which resides in
6725 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6726 of /srcdir/list0.c yields the following debugging information for list0.c:
6727
c5aa993b
JM
6728 DW_AT_name: /srcdir/list0.c
6729 DW_AT_comp_dir: /compdir
357e46e7 6730 files.files[0].name: list0.h
c5aa993b 6731 files.files[0].dir: /srcdir
357e46e7 6732 files.files[1].name: list0.c
c5aa993b 6733 files.files[1].dir: /srcdir
c906108c
SS
6734
6735 The line number information for list0.c has to end up in a single
6736 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6737
6738static void
fba45db2 6739dwarf2_start_subfile (char *filename, char *dirname)
c906108c
SS
6740{
6741 /* If the filename isn't absolute, try to match an existing subfile
6742 with the full pathname. */
6743
d5166ae1 6744 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
c906108c
SS
6745 {
6746 struct subfile *subfile;
1754f103 6747 char *fullname = concat (dirname, "/", filename, (char *)NULL);
c906108c
SS
6748
6749 for (subfile = subfiles; subfile; subfile = subfile->next)
6750 {
d5166ae1 6751 if (FILENAME_CMP (subfile->name, fullname) == 0)
c906108c
SS
6752 {
6753 current_subfile = subfile;
b8c9b27d 6754 xfree (fullname);
c906108c
SS
6755 return;
6756 }
6757 }
b8c9b27d 6758 xfree (fullname);
c906108c
SS
6759 }
6760 start_subfile (filename, dirname);
6761}
6762
4c2df51b
DJ
6763static void
6764var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 6765 struct dwarf2_cu *cu)
4c2df51b 6766{
e7c27a73
DJ
6767 struct objfile *objfile = cu->objfile;
6768 struct comp_unit_head *cu_header = &cu->header;
6769
4c2df51b
DJ
6770 /* NOTE drow/2003-01-30: There used to be a comment and some special
6771 code here to turn a symbol with DW_AT_external and a
6772 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6773 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6774 with some versions of binutils) where shared libraries could have
6775 relocations against symbols in their debug information - the
6776 minimal symbol would have the right address, but the debug info
6777 would not. It's no longer necessary, because we will explicitly
6778 apply relocations when we read in the debug information now. */
6779
6780 /* A DW_AT_location attribute with no contents indicates that a
6781 variable has been optimized away. */
6782 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6783 {
6784 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6785 return;
6786 }
6787
6788 /* Handle one degenerate form of location expression specially, to
6789 preserve GDB's previous behavior when section offsets are
6790 specified. If this is just a DW_OP_addr then mark this symbol
6791 as LOC_STATIC. */
6792
6793 if (attr_form_is_block (attr)
6794 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6795 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6796 {
891d2f0b 6797 unsigned int dummy;
4c2df51b
DJ
6798
6799 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 6800 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
6801 fixup_symbol_section (sym, objfile);
6802 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6803 SYMBOL_SECTION (sym));
6804 SYMBOL_CLASS (sym) = LOC_STATIC;
6805 return;
6806 }
6807
6808 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6809 expression evaluator, and use LOC_COMPUTED only when necessary
6810 (i.e. when the value of a register or memory location is
6811 referenced, or a thread-local block, etc.). Then again, it might
6812 not be worthwhile. I'm assuming that it isn't unless performance
6813 or memory numbers show me otherwise. */
6814
e7c27a73 6815 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
6816 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6817}
6818
c906108c
SS
6819/* Given a pointer to a DWARF information entry, figure out if we need
6820 to make a symbol table entry for it, and if so, create a new entry
6821 and return a pointer to it.
6822 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 6823 used the passed type. */
c906108c
SS
6824
6825static struct symbol *
e7c27a73 6826new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 6827{
e7c27a73 6828 struct objfile *objfile = cu->objfile;
c906108c
SS
6829 struct symbol *sym = NULL;
6830 char *name;
6831 struct attribute *attr = NULL;
6832 struct attribute *attr2 = NULL;
e142c38c
DJ
6833 CORE_ADDR baseaddr;
6834
6835 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6836
5c4e30ca 6837 if (die->tag != DW_TAG_namespace)
e142c38c 6838 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
6839 else
6840 name = TYPE_NAME (type);
6841
c906108c
SS
6842 if (name)
6843 {
4a146b47 6844 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
6845 sizeof (struct symbol));
6846 OBJSTAT (objfile, n_syms++);
6847 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
6848
6849 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 6850 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 6851 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
6852
6853 /* Default assumptions.
c5aa993b 6854 Use the passed type or decode it from the die. */
176620f1 6855 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
6856 SYMBOL_CLASS (sym) = LOC_STATIC;
6857 if (type != NULL)
6858 SYMBOL_TYPE (sym) = type;
6859 else
e7c27a73 6860 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 6861 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
6862 if (attr)
6863 {
6864 SYMBOL_LINE (sym) = DW_UNSND (attr);
6865 }
c906108c
SS
6866 switch (die->tag)
6867 {
6868 case DW_TAG_label:
e142c38c 6869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
6870 if (attr)
6871 {
6872 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6873 }
6874 SYMBOL_CLASS (sym) = LOC_LABEL;
6875 break;
6876 case DW_TAG_subprogram:
6877 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6878 finish_block. */
6879 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 6880 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6881 if (attr2 && (DW_UNSND (attr2) != 0))
6882 {
6883 add_symbol_to_list (sym, &global_symbols);
6884 }
6885 else
6886 {
e142c38c 6887 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6888 }
6889 break;
6890 case DW_TAG_variable:
6891 /* Compilation with minimal debug info may result in variables
6892 with missing type entries. Change the misleading `void' type
6893 to something sensible. */
6894 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6895 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6896 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6897 "<variable, no debug info>",
6898 objfile);
e142c38c 6899 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6900 if (attr)
6901 {
e7c27a73 6902 dwarf2_const_value (attr, sym, cu);
e142c38c 6903 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
6904 if (attr2 && (DW_UNSND (attr2) != 0))
6905 add_symbol_to_list (sym, &global_symbols);
6906 else
e142c38c 6907 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6908 break;
6909 }
e142c38c 6910 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6911 if (attr)
6912 {
e7c27a73 6913 var_decode_location (attr, sym, cu);
e142c38c 6914 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6915 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 6916 add_symbol_to_list (sym, &global_symbols);
c906108c 6917 else
e142c38c 6918 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6919 }
6920 else
6921 {
6922 /* We do not know the address of this symbol.
c5aa993b
JM
6923 If it is an external symbol and we have type information
6924 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6925 The address of the variable will then be determined from
6926 the minimal symbol table whenever the variable is
6927 referenced. */
e142c38c 6928 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 6929 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 6930 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
6931 {
6932 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6933 add_symbol_to_list (sym, &global_symbols);
6934 }
6935 }
6936 break;
6937 case DW_TAG_formal_parameter:
e142c38c 6938 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6939 if (attr)
6940 {
e7c27a73 6941 var_decode_location (attr, sym, cu);
7cf6e574
DJ
6942 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6943 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6944 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 6945 }
e142c38c 6946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
6947 if (attr)
6948 {
e7c27a73 6949 dwarf2_const_value (attr, sym, cu);
c906108c 6950 }
e142c38c 6951 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
6952 break;
6953 case DW_TAG_unspecified_parameters:
6954 /* From varargs functions; gdb doesn't seem to have any
6955 interest in this information, so just ignore it for now.
6956 (FIXME?) */
6957 break;
6958 case DW_TAG_class_type:
6959 case DW_TAG_structure_type:
6960 case DW_TAG_union_type:
6961 case DW_TAG_enumeration_type:
6962 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 6963 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 6964
63d06c5c
DC
6965 /* Make sure that the symbol includes appropriate enclosing
6966 classes/namespaces in its name. These are calculated in
134d01f1 6967 read_structure_type, and the correct name is saved in
63d06c5c
DC
6968 the type. */
6969
987504bb
JJ
6970 if (cu->language == language_cplus
6971 || cu->language == language_java)
c906108c 6972 {
63d06c5c
DC
6973 struct type *type = SYMBOL_TYPE (sym);
6974
6975 if (TYPE_TAG_NAME (type) != NULL)
6976 {
6977 /* FIXME: carlton/2003-11-10: Should this use
6978 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
6979 arises further down in this function.) */
6980 /* The type's name is already allocated along with
6981 this objfile, so we don't need to duplicate it
6982 for the symbol. */
6983 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 6984 }
c906108c 6985 }
63d06c5c
DC
6986
6987 {
987504bb 6988 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
6989 really ever be static objects: otherwise, if you try
6990 to, say, break of a class's method and you're in a file
6991 which doesn't mention that class, it won't work unless
6992 the check for all static symbols in lookup_symbol_aux
6993 saves you. See the OtherFileClass tests in
6994 gdb.c++/namespace.exp. */
6995
6996 struct pending **list_to_add;
6997
e142c38c 6998 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
6999 && (cu->language == language_cplus
7000 || cu->language == language_java)
e142c38c 7001 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7002
7003 add_symbol_to_list (sym, list_to_add);
7004
7005 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7006 defines a typedef for "foo". A Java class declaration also
7007 defines a typedef for the class. Synthesize a typedef symbol
7008 so that "ptype foo" works as expected. */
7009 if (cu->language == language_cplus
7010 || cu->language == language_java)
63d06c5c
DC
7011 {
7012 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7013 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7014 sizeof (struct symbol));
7015 *typedef_sym = *sym;
7016 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7017 /* The symbol's name is already allocated along with
7018 this objfile, so we don't need to duplicate it for
7019 the type. */
63d06c5c 7020 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7021 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7022 add_symbol_to_list (typedef_sym, list_to_add);
7023 }
7024 }
c906108c
SS
7025 break;
7026 case DW_TAG_typedef:
63d06c5c
DC
7027 if (processing_has_namespace_info
7028 && processing_current_prefix[0] != '\0')
7029 {
987504bb
JJ
7030 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7031 processing_current_prefix,
7032 name, cu);
63d06c5c
DC
7033 }
7034 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7035 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7036 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7037 break;
c906108c 7038 case DW_TAG_base_type:
a02abb62 7039 case DW_TAG_subrange_type:
c906108c 7040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7041 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7042 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7043 break;
7044 case DW_TAG_enumerator:
63d06c5c
DC
7045 if (processing_has_namespace_info
7046 && processing_current_prefix[0] != '\0')
7047 {
987504bb
JJ
7048 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7049 processing_current_prefix,
7050 name, cu);
63d06c5c 7051 }
e142c38c 7052 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7053 if (attr)
7054 {
e7c27a73 7055 dwarf2_const_value (attr, sym, cu);
c906108c 7056 }
63d06c5c
DC
7057 {
7058 /* NOTE: carlton/2003-11-10: See comment above in the
7059 DW_TAG_class_type, etc. block. */
7060
7061 struct pending **list_to_add;
7062
e142c38c 7063 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7064 && (cu->language == language_cplus
7065 || cu->language == language_java)
e142c38c 7066 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7067
7068 add_symbol_to_list (sym, list_to_add);
7069 }
c906108c 7070 break;
5c4e30ca
DC
7071 case DW_TAG_namespace:
7072 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7073 add_symbol_to_list (sym, &global_symbols);
7074 break;
c906108c
SS
7075 default:
7076 /* Not a tag we recognize. Hopefully we aren't processing
7077 trash data, but since we must specifically ignore things
7078 we don't recognize, there is nothing else we should do at
7079 this point. */
e2e0b3e5 7080 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7081 dwarf_tag_name (die->tag));
c906108c
SS
7082 break;
7083 }
7084 }
7085 return (sym);
7086}
7087
7088/* Copy constant value from an attribute to a symbol. */
7089
7090static void
107d2387 7091dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7092 struct dwarf2_cu *cu)
c906108c 7093{
e7c27a73
DJ
7094 struct objfile *objfile = cu->objfile;
7095 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7096 struct dwarf_block *blk;
7097
7098 switch (attr->form)
7099 {
7100 case DW_FORM_addr:
107d2387 7101 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7102 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7103 cu_header->addr_size,
7104 TYPE_LENGTH (SYMBOL_TYPE
7105 (sym)));
4e38b386 7106 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7107 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7108 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7109 it's body - store_unsigned_integer. */
7110 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7111 DW_ADDR (attr));
c906108c
SS
7112 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7113 break;
7114 case DW_FORM_block1:
7115 case DW_FORM_block2:
7116 case DW_FORM_block4:
7117 case DW_FORM_block:
7118 blk = DW_BLOCK (attr);
7119 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7120 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7121 blk->size,
7122 TYPE_LENGTH (SYMBOL_TYPE
7123 (sym)));
4e38b386 7124 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7125 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7126 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7127 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7128 break;
2df3850c
JM
7129
7130 /* The DW_AT_const_value attributes are supposed to carry the
7131 symbol's value "represented as it would be on the target
7132 architecture." By the time we get here, it's already been
7133 converted to host endianness, so we just need to sign- or
7134 zero-extend it as appropriate. */
7135 case DW_FORM_data1:
7136 dwarf2_const_value_data (attr, sym, 8);
7137 break;
c906108c 7138 case DW_FORM_data2:
2df3850c
JM
7139 dwarf2_const_value_data (attr, sym, 16);
7140 break;
c906108c 7141 case DW_FORM_data4:
2df3850c
JM
7142 dwarf2_const_value_data (attr, sym, 32);
7143 break;
c906108c 7144 case DW_FORM_data8:
2df3850c
JM
7145 dwarf2_const_value_data (attr, sym, 64);
7146 break;
7147
c906108c 7148 case DW_FORM_sdata:
2df3850c
JM
7149 SYMBOL_VALUE (sym) = DW_SND (attr);
7150 SYMBOL_CLASS (sym) = LOC_CONST;
7151 break;
7152
c906108c
SS
7153 case DW_FORM_udata:
7154 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7155 SYMBOL_CLASS (sym) = LOC_CONST;
7156 break;
2df3850c 7157
c906108c 7158 default:
4d3c2250 7159 complaint (&symfile_complaints,
e2e0b3e5 7160 _("unsupported const value attribute form: '%s'"),
4d3c2250 7161 dwarf_form_name (attr->form));
c906108c
SS
7162 SYMBOL_VALUE (sym) = 0;
7163 SYMBOL_CLASS (sym) = LOC_CONST;
7164 break;
7165 }
7166}
7167
2df3850c
JM
7168
7169/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7170 or zero-extend it as appropriate for the symbol's type. */
7171static void
7172dwarf2_const_value_data (struct attribute *attr,
7173 struct symbol *sym,
7174 int bits)
7175{
7176 LONGEST l = DW_UNSND (attr);
7177
7178 if (bits < sizeof (l) * 8)
7179 {
7180 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7181 l &= ((LONGEST) 1 << bits) - 1;
7182 else
bf9198f1 7183 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7184 }
7185
7186 SYMBOL_VALUE (sym) = l;
7187 SYMBOL_CLASS (sym) = LOC_CONST;
7188}
7189
7190
c906108c
SS
7191/* Return the type of the die in question using its DW_AT_type attribute. */
7192
7193static struct type *
e7c27a73 7194die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7195{
7196 struct type *type;
7197 struct attribute *type_attr;
7198 struct die_info *type_die;
c906108c 7199
e142c38c 7200 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7201 if (!type_attr)
7202 {
7203 /* A missing DW_AT_type represents a void type. */
e142c38c 7204 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7205 }
7206 else
10b3939b
DJ
7207 type_die = follow_die_ref (die, type_attr, cu);
7208
e7c27a73 7209 type = tag_type_to_type (type_die, cu);
c906108c
SS
7210 if (!type)
7211 {
7212 dump_die (type_die);
8a3fe4f8 7213 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7214 cu->objfile->name);
c906108c
SS
7215 }
7216 return type;
7217}
7218
7219/* Return the containing type of the die in question using its
7220 DW_AT_containing_type attribute. */
7221
7222static struct type *
e7c27a73 7223die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7224{
7225 struct type *type = NULL;
7226 struct attribute *type_attr;
7227 struct die_info *type_die = NULL;
c906108c 7228
e142c38c 7229 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7230 if (type_attr)
7231 {
10b3939b 7232 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7233 type = tag_type_to_type (type_die, cu);
c906108c
SS
7234 }
7235 if (!type)
7236 {
7237 if (type_die)
7238 dump_die (type_die);
8a3fe4f8 7239 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7240 cu->objfile->name);
c906108c
SS
7241 }
7242 return type;
7243}
7244
c906108c 7245static struct type *
e7c27a73 7246tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7247{
7248 if (die->type)
7249 {
7250 return die->type;
7251 }
7252 else
7253 {
e7c27a73 7254 read_type_die (die, cu);
c906108c
SS
7255 if (!die->type)
7256 {
7257 dump_die (die);
8a3fe4f8 7258 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7259 cu->objfile->name);
c906108c
SS
7260 }
7261 return die->type;
7262 }
7263}
7264
7265static void
e7c27a73 7266read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7267{
e142c38c 7268 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7269 const char *old_prefix = processing_current_prefix;
7270 struct cleanup *back_to = make_cleanup (xfree, prefix);
7271 processing_current_prefix = prefix;
7272
c906108c
SS
7273 switch (die->tag)
7274 {
7275 case DW_TAG_class_type:
7276 case DW_TAG_structure_type:
7277 case DW_TAG_union_type:
134d01f1 7278 read_structure_type (die, cu);
c906108c
SS
7279 break;
7280 case DW_TAG_enumeration_type:
134d01f1 7281 read_enumeration_type (die, cu);
c906108c
SS
7282 break;
7283 case DW_TAG_subprogram:
7284 case DW_TAG_subroutine_type:
e7c27a73 7285 read_subroutine_type (die, cu);
c906108c
SS
7286 break;
7287 case DW_TAG_array_type:
e7c27a73 7288 read_array_type (die, cu);
c906108c
SS
7289 break;
7290 case DW_TAG_pointer_type:
e7c27a73 7291 read_tag_pointer_type (die, cu);
c906108c
SS
7292 break;
7293 case DW_TAG_ptr_to_member_type:
e7c27a73 7294 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7295 break;
7296 case DW_TAG_reference_type:
e7c27a73 7297 read_tag_reference_type (die, cu);
c906108c
SS
7298 break;
7299 case DW_TAG_const_type:
e7c27a73 7300 read_tag_const_type (die, cu);
c906108c
SS
7301 break;
7302 case DW_TAG_volatile_type:
e7c27a73 7303 read_tag_volatile_type (die, cu);
c906108c
SS
7304 break;
7305 case DW_TAG_string_type:
e7c27a73 7306 read_tag_string_type (die, cu);
c906108c
SS
7307 break;
7308 case DW_TAG_typedef:
e7c27a73 7309 read_typedef (die, cu);
c906108c 7310 break;
a02abb62
JB
7311 case DW_TAG_subrange_type:
7312 read_subrange_type (die, cu);
7313 break;
c906108c 7314 case DW_TAG_base_type:
e7c27a73 7315 read_base_type (die, cu);
c906108c
SS
7316 break;
7317 default:
e2e0b3e5 7318 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
4d3c2250 7319 dwarf_tag_name (die->tag));
c906108c
SS
7320 break;
7321 }
63d06c5c
DC
7322
7323 processing_current_prefix = old_prefix;
7324 do_cleanups (back_to);
7325}
7326
fdde2d81
DC
7327/* Return the name of the namespace/class that DIE is defined within,
7328 or "" if we can't tell. The caller should xfree the result. */
7329
7330/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7331 therein) for an example of how to use this function to deal with
7332 DW_AT_specification. */
7333
7334static char *
e142c38c 7335determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7336{
7337 struct die_info *parent;
7338
987504bb
JJ
7339 if (cu->language != language_cplus
7340 && cu->language != language_java)
63d06c5c
DC
7341 return NULL;
7342
7343 parent = die->parent;
7344
7345 if (parent == NULL)
7346 {
8176b9b8 7347 return xstrdup ("");
63d06c5c
DC
7348 }
7349 else
7350 {
63d06c5c
DC
7351 switch (parent->tag) {
7352 case DW_TAG_namespace:
7353 {
8176b9b8
DC
7354 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7355 before doing this check? */
7356 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7357 {
7358 return xstrdup (TYPE_TAG_NAME (parent->type));
7359 }
7360 else
7361 {
7362 int dummy;
7363 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7364 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7365 namespace_name (parent, &dummy,
987504bb
JJ
7366 cu),
7367 cu);
8176b9b8
DC
7368 xfree (parent_prefix);
7369 return retval;
7370 }
63d06c5c
DC
7371 }
7372 break;
7373 case DW_TAG_class_type:
7374 case DW_TAG_structure_type:
7375 {
8176b9b8 7376 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7377 {
8176b9b8 7378 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7379 }
7380 else
8176b9b8
DC
7381 {
7382 const char *old_prefix = processing_current_prefix;
7383 char *new_prefix = determine_prefix (parent, cu);
7384 char *retval;
7385
7386 processing_current_prefix = new_prefix;
7387 retval = determine_class_name (parent, cu);
7388 processing_current_prefix = old_prefix;
7389
7390 xfree (new_prefix);
7391 return retval;
7392 }
63d06c5c 7393 }
63d06c5c 7394 default:
8176b9b8 7395 return determine_prefix (parent, cu);
63d06c5c 7396 }
63d06c5c
DC
7397 }
7398}
7399
987504bb
JJ
7400/* Return a newly-allocated string formed by concatenating PREFIX and
7401 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7402 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7403 perform an obconcat, otherwise allocate storage for the result. The CU argument
7404 is used to determine the language and hence, the appropriate separator. */
7405
7406#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7407
7408static char *
987504bb
JJ
7409typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7410 struct dwarf2_cu *cu)
63d06c5c 7411{
987504bb 7412 char *sep;
63d06c5c 7413
987504bb
JJ
7414 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7415 sep = "";
7416 else if (cu->language == language_java)
7417 sep = ".";
7418 else
7419 sep = "::";
63d06c5c 7420
987504bb
JJ
7421 if (obs == NULL)
7422 {
7423 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7424 retval[0] = '\0';
7425
7426 if (prefix)
7427 {
7428 strcpy (retval, prefix);
7429 strcat (retval, sep);
7430 }
7431 if (suffix)
7432 strcat (retval, suffix);
7433
63d06c5c
DC
7434 return retval;
7435 }
987504bb
JJ
7436 else
7437 {
7438 /* We have an obstack. */
7439 return obconcat (obs, prefix, sep, suffix);
7440 }
63d06c5c
DC
7441}
7442
c906108c 7443static struct type *
e7c27a73 7444dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7445{
e7c27a73
DJ
7446 struct objfile *objfile = cu->objfile;
7447
c906108c
SS
7448 /* FIXME - this should not produce a new (struct type *)
7449 every time. It should cache base types. */
7450 struct type *type;
7451 switch (encoding)
7452 {
7453 case DW_ATE_address:
e142c38c 7454 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7455 return type;
7456 case DW_ATE_boolean:
e142c38c 7457 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7458 return type;
7459 case DW_ATE_complex_float:
7460 if (size == 16)
7461 {
e142c38c 7462 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7463 }
7464 else
7465 {
e142c38c 7466 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7467 }
7468 return type;
7469 case DW_ATE_float:
7470 if (size == 8)
7471 {
e142c38c 7472 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7473 }
7474 else
7475 {
e142c38c 7476 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7477 }
7478 return type;
7479 case DW_ATE_signed:
7480 switch (size)
7481 {
7482 case 1:
e142c38c 7483 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7484 break;
7485 case 2:
e142c38c 7486 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7487 break;
7488 default:
7489 case 4:
e142c38c 7490 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7491 break;
7492 }
7493 return type;
7494 case DW_ATE_signed_char:
e142c38c 7495 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7496 return type;
7497 case DW_ATE_unsigned:
7498 switch (size)
7499 {
7500 case 1:
e142c38c 7501 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7502 break;
7503 case 2:
e142c38c 7504 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7505 break;
7506 default:
7507 case 4:
e142c38c 7508 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7509 break;
7510 }
7511 return type;
7512 case DW_ATE_unsigned_char:
e142c38c 7513 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7514 return type;
7515 default:
e142c38c 7516 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7517 return type;
7518 }
7519}
7520
7521#if 0
7522struct die_info *
fba45db2 7523copy_die (struct die_info *old_die)
c906108c
SS
7524{
7525 struct die_info *new_die;
7526 int i, num_attrs;
7527
7528 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7529 memset (new_die, 0, sizeof (struct die_info));
7530
7531 new_die->tag = old_die->tag;
7532 new_die->has_children = old_die->has_children;
7533 new_die->abbrev = old_die->abbrev;
7534 new_die->offset = old_die->offset;
7535 new_die->type = NULL;
7536
7537 num_attrs = old_die->num_attrs;
7538 new_die->num_attrs = num_attrs;
7539 new_die->attrs = (struct attribute *)
7540 xmalloc (num_attrs * sizeof (struct attribute));
7541
7542 for (i = 0; i < old_die->num_attrs; ++i)
7543 {
7544 new_die->attrs[i].name = old_die->attrs[i].name;
7545 new_die->attrs[i].form = old_die->attrs[i].form;
7546 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7547 }
7548
7549 new_die->next = NULL;
7550 return new_die;
7551}
7552#endif
7553
7554/* Return sibling of die, NULL if no sibling. */
7555
f9aca02d 7556static struct die_info *
fba45db2 7557sibling_die (struct die_info *die)
c906108c 7558{
639d11d3 7559 return die->sibling;
c906108c
SS
7560}
7561
7562/* Get linkage name of a die, return NULL if not found. */
7563
7564static char *
e142c38c 7565dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7566{
7567 struct attribute *attr;
7568
e142c38c 7569 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7570 if (attr && DW_STRING (attr))
7571 return DW_STRING (attr);
e142c38c 7572 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7573 if (attr && DW_STRING (attr))
7574 return DW_STRING (attr);
7575 return NULL;
7576}
7577
9219021c
DC
7578/* Get name of a die, return NULL if not found. */
7579
7580static char *
e142c38c 7581dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7582{
7583 struct attribute *attr;
7584
e142c38c 7585 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7586 if (attr && DW_STRING (attr))
7587 return DW_STRING (attr);
7588 return NULL;
7589}
7590
7591/* Return the die that this die in an extension of, or NULL if there
7592 is none. */
7593
7594static struct die_info *
e142c38c 7595dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7596{
7597 struct attribute *attr;
9219021c 7598
e142c38c 7599 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7600 if (attr == NULL)
7601 return NULL;
7602
10b3939b 7603 return follow_die_ref (die, attr, cu);
9219021c
DC
7604}
7605
c906108c
SS
7606/* Convert a DIE tag into its string name. */
7607
7608static char *
aa1ee363 7609dwarf_tag_name (unsigned tag)
c906108c
SS
7610{
7611 switch (tag)
7612 {
7613 case DW_TAG_padding:
7614 return "DW_TAG_padding";
7615 case DW_TAG_array_type:
7616 return "DW_TAG_array_type";
7617 case DW_TAG_class_type:
7618 return "DW_TAG_class_type";
7619 case DW_TAG_entry_point:
7620 return "DW_TAG_entry_point";
7621 case DW_TAG_enumeration_type:
7622 return "DW_TAG_enumeration_type";
7623 case DW_TAG_formal_parameter:
7624 return "DW_TAG_formal_parameter";
7625 case DW_TAG_imported_declaration:
7626 return "DW_TAG_imported_declaration";
7627 case DW_TAG_label:
7628 return "DW_TAG_label";
7629 case DW_TAG_lexical_block:
7630 return "DW_TAG_lexical_block";
7631 case DW_TAG_member:
7632 return "DW_TAG_member";
7633 case DW_TAG_pointer_type:
7634 return "DW_TAG_pointer_type";
7635 case DW_TAG_reference_type:
7636 return "DW_TAG_reference_type";
7637 case DW_TAG_compile_unit:
7638 return "DW_TAG_compile_unit";
7639 case DW_TAG_string_type:
7640 return "DW_TAG_string_type";
7641 case DW_TAG_structure_type:
7642 return "DW_TAG_structure_type";
7643 case DW_TAG_subroutine_type:
7644 return "DW_TAG_subroutine_type";
7645 case DW_TAG_typedef:
7646 return "DW_TAG_typedef";
7647 case DW_TAG_union_type:
7648 return "DW_TAG_union_type";
7649 case DW_TAG_unspecified_parameters:
7650 return "DW_TAG_unspecified_parameters";
7651 case DW_TAG_variant:
7652 return "DW_TAG_variant";
7653 case DW_TAG_common_block:
7654 return "DW_TAG_common_block";
7655 case DW_TAG_common_inclusion:
7656 return "DW_TAG_common_inclusion";
7657 case DW_TAG_inheritance:
7658 return "DW_TAG_inheritance";
7659 case DW_TAG_inlined_subroutine:
7660 return "DW_TAG_inlined_subroutine";
7661 case DW_TAG_module:
7662 return "DW_TAG_module";
7663 case DW_TAG_ptr_to_member_type:
7664 return "DW_TAG_ptr_to_member_type";
7665 case DW_TAG_set_type:
7666 return "DW_TAG_set_type";
7667 case DW_TAG_subrange_type:
7668 return "DW_TAG_subrange_type";
7669 case DW_TAG_with_stmt:
7670 return "DW_TAG_with_stmt";
7671 case DW_TAG_access_declaration:
7672 return "DW_TAG_access_declaration";
7673 case DW_TAG_base_type:
7674 return "DW_TAG_base_type";
7675 case DW_TAG_catch_block:
7676 return "DW_TAG_catch_block";
7677 case DW_TAG_const_type:
7678 return "DW_TAG_const_type";
7679 case DW_TAG_constant:
7680 return "DW_TAG_constant";
7681 case DW_TAG_enumerator:
7682 return "DW_TAG_enumerator";
7683 case DW_TAG_file_type:
7684 return "DW_TAG_file_type";
7685 case DW_TAG_friend:
7686 return "DW_TAG_friend";
7687 case DW_TAG_namelist:
7688 return "DW_TAG_namelist";
7689 case DW_TAG_namelist_item:
7690 return "DW_TAG_namelist_item";
7691 case DW_TAG_packed_type:
7692 return "DW_TAG_packed_type";
7693 case DW_TAG_subprogram:
7694 return "DW_TAG_subprogram";
7695 case DW_TAG_template_type_param:
7696 return "DW_TAG_template_type_param";
7697 case DW_TAG_template_value_param:
7698 return "DW_TAG_template_value_param";
7699 case DW_TAG_thrown_type:
7700 return "DW_TAG_thrown_type";
7701 case DW_TAG_try_block:
7702 return "DW_TAG_try_block";
7703 case DW_TAG_variant_part:
7704 return "DW_TAG_variant_part";
7705 case DW_TAG_variable:
7706 return "DW_TAG_variable";
7707 case DW_TAG_volatile_type:
7708 return "DW_TAG_volatile_type";
d9fa45fe
DC
7709 case DW_TAG_dwarf_procedure:
7710 return "DW_TAG_dwarf_procedure";
7711 case DW_TAG_restrict_type:
7712 return "DW_TAG_restrict_type";
7713 case DW_TAG_interface_type:
7714 return "DW_TAG_interface_type";
7715 case DW_TAG_namespace:
7716 return "DW_TAG_namespace";
7717 case DW_TAG_imported_module:
7718 return "DW_TAG_imported_module";
7719 case DW_TAG_unspecified_type:
7720 return "DW_TAG_unspecified_type";
7721 case DW_TAG_partial_unit:
7722 return "DW_TAG_partial_unit";
7723 case DW_TAG_imported_unit:
7724 return "DW_TAG_imported_unit";
c906108c
SS
7725 case DW_TAG_MIPS_loop:
7726 return "DW_TAG_MIPS_loop";
7727 case DW_TAG_format_label:
7728 return "DW_TAG_format_label";
7729 case DW_TAG_function_template:
7730 return "DW_TAG_function_template";
7731 case DW_TAG_class_template:
7732 return "DW_TAG_class_template";
7733 default:
7734 return "DW_TAG_<unknown>";
7735 }
7736}
7737
7738/* Convert a DWARF attribute code into its string name. */
7739
7740static char *
aa1ee363 7741dwarf_attr_name (unsigned attr)
c906108c
SS
7742{
7743 switch (attr)
7744 {
7745 case DW_AT_sibling:
7746 return "DW_AT_sibling";
7747 case DW_AT_location:
7748 return "DW_AT_location";
7749 case DW_AT_name:
7750 return "DW_AT_name";
7751 case DW_AT_ordering:
7752 return "DW_AT_ordering";
7753 case DW_AT_subscr_data:
7754 return "DW_AT_subscr_data";
7755 case DW_AT_byte_size:
7756 return "DW_AT_byte_size";
7757 case DW_AT_bit_offset:
7758 return "DW_AT_bit_offset";
7759 case DW_AT_bit_size:
7760 return "DW_AT_bit_size";
7761 case DW_AT_element_list:
7762 return "DW_AT_element_list";
7763 case DW_AT_stmt_list:
7764 return "DW_AT_stmt_list";
7765 case DW_AT_low_pc:
7766 return "DW_AT_low_pc";
7767 case DW_AT_high_pc:
7768 return "DW_AT_high_pc";
7769 case DW_AT_language:
7770 return "DW_AT_language";
7771 case DW_AT_member:
7772 return "DW_AT_member";
7773 case DW_AT_discr:
7774 return "DW_AT_discr";
7775 case DW_AT_discr_value:
7776 return "DW_AT_discr_value";
7777 case DW_AT_visibility:
7778 return "DW_AT_visibility";
7779 case DW_AT_import:
7780 return "DW_AT_import";
7781 case DW_AT_string_length:
7782 return "DW_AT_string_length";
7783 case DW_AT_common_reference:
7784 return "DW_AT_common_reference";
7785 case DW_AT_comp_dir:
7786 return "DW_AT_comp_dir";
7787 case DW_AT_const_value:
7788 return "DW_AT_const_value";
7789 case DW_AT_containing_type:
7790 return "DW_AT_containing_type";
7791 case DW_AT_default_value:
7792 return "DW_AT_default_value";
7793 case DW_AT_inline:
7794 return "DW_AT_inline";
7795 case DW_AT_is_optional:
7796 return "DW_AT_is_optional";
7797 case DW_AT_lower_bound:
7798 return "DW_AT_lower_bound";
7799 case DW_AT_producer:
7800 return "DW_AT_producer";
7801 case DW_AT_prototyped:
7802 return "DW_AT_prototyped";
7803 case DW_AT_return_addr:
7804 return "DW_AT_return_addr";
7805 case DW_AT_start_scope:
7806 return "DW_AT_start_scope";
7807 case DW_AT_stride_size:
7808 return "DW_AT_stride_size";
7809 case DW_AT_upper_bound:
7810 return "DW_AT_upper_bound";
7811 case DW_AT_abstract_origin:
7812 return "DW_AT_abstract_origin";
7813 case DW_AT_accessibility:
7814 return "DW_AT_accessibility";
7815 case DW_AT_address_class:
7816 return "DW_AT_address_class";
7817 case DW_AT_artificial:
7818 return "DW_AT_artificial";
7819 case DW_AT_base_types:
7820 return "DW_AT_base_types";
7821 case DW_AT_calling_convention:
7822 return "DW_AT_calling_convention";
7823 case DW_AT_count:
7824 return "DW_AT_count";
7825 case DW_AT_data_member_location:
7826 return "DW_AT_data_member_location";
7827 case DW_AT_decl_column:
7828 return "DW_AT_decl_column";
7829 case DW_AT_decl_file:
7830 return "DW_AT_decl_file";
7831 case DW_AT_decl_line:
7832 return "DW_AT_decl_line";
7833 case DW_AT_declaration:
7834 return "DW_AT_declaration";
7835 case DW_AT_discr_list:
7836 return "DW_AT_discr_list";
7837 case DW_AT_encoding:
7838 return "DW_AT_encoding";
7839 case DW_AT_external:
7840 return "DW_AT_external";
7841 case DW_AT_frame_base:
7842 return "DW_AT_frame_base";
7843 case DW_AT_friend:
7844 return "DW_AT_friend";
7845 case DW_AT_identifier_case:
7846 return "DW_AT_identifier_case";
7847 case DW_AT_macro_info:
7848 return "DW_AT_macro_info";
7849 case DW_AT_namelist_items:
7850 return "DW_AT_namelist_items";
7851 case DW_AT_priority:
7852 return "DW_AT_priority";
7853 case DW_AT_segment:
7854 return "DW_AT_segment";
7855 case DW_AT_specification:
7856 return "DW_AT_specification";
7857 case DW_AT_static_link:
7858 return "DW_AT_static_link";
7859 case DW_AT_type:
7860 return "DW_AT_type";
7861 case DW_AT_use_location:
7862 return "DW_AT_use_location";
7863 case DW_AT_variable_parameter:
7864 return "DW_AT_variable_parameter";
7865 case DW_AT_virtuality:
7866 return "DW_AT_virtuality";
7867 case DW_AT_vtable_elem_location:
7868 return "DW_AT_vtable_elem_location";
d9fa45fe
DC
7869 case DW_AT_allocated:
7870 return "DW_AT_allocated";
7871 case DW_AT_associated:
7872 return "DW_AT_associated";
7873 case DW_AT_data_location:
7874 return "DW_AT_data_location";
7875 case DW_AT_stride:
7876 return "DW_AT_stride";
7877 case DW_AT_entry_pc:
7878 return "DW_AT_entry_pc";
7879 case DW_AT_use_UTF8:
7880 return "DW_AT_use_UTF8";
7881 case DW_AT_extension:
7882 return "DW_AT_extension";
7883 case DW_AT_ranges:
7884 return "DW_AT_ranges";
7885 case DW_AT_trampoline:
7886 return "DW_AT_trampoline";
7887 case DW_AT_call_column:
7888 return "DW_AT_call_column";
7889 case DW_AT_call_file:
7890 return "DW_AT_call_file";
7891 case DW_AT_call_line:
7892 return "DW_AT_call_line";
c906108c
SS
7893#ifdef MIPS
7894 case DW_AT_MIPS_fde:
7895 return "DW_AT_MIPS_fde";
7896 case DW_AT_MIPS_loop_begin:
7897 return "DW_AT_MIPS_loop_begin";
7898 case DW_AT_MIPS_tail_loop_begin:
7899 return "DW_AT_MIPS_tail_loop_begin";
7900 case DW_AT_MIPS_epilog_begin:
7901 return "DW_AT_MIPS_epilog_begin";
7902 case DW_AT_MIPS_loop_unroll_factor:
7903 return "DW_AT_MIPS_loop_unroll_factor";
7904 case DW_AT_MIPS_software_pipeline_depth:
7905 return "DW_AT_MIPS_software_pipeline_depth";
e0a4f5a1 7906#endif
c906108c
SS
7907 case DW_AT_MIPS_linkage_name:
7908 return "DW_AT_MIPS_linkage_name";
c906108c
SS
7909
7910 case DW_AT_sf_names:
7911 return "DW_AT_sf_names";
7912 case DW_AT_src_info:
7913 return "DW_AT_src_info";
7914 case DW_AT_mac_info:
7915 return "DW_AT_mac_info";
7916 case DW_AT_src_coords:
7917 return "DW_AT_src_coords";
7918 case DW_AT_body_begin:
7919 return "DW_AT_body_begin";
7920 case DW_AT_body_end:
7921 return "DW_AT_body_end";
f5f8a009
EZ
7922 case DW_AT_GNU_vector:
7923 return "DW_AT_GNU_vector";
c906108c
SS
7924 default:
7925 return "DW_AT_<unknown>";
7926 }
7927}
7928
7929/* Convert a DWARF value form code into its string name. */
7930
7931static char *
aa1ee363 7932dwarf_form_name (unsigned form)
c906108c
SS
7933{
7934 switch (form)
7935 {
7936 case DW_FORM_addr:
7937 return "DW_FORM_addr";
7938 case DW_FORM_block2:
7939 return "DW_FORM_block2";
7940 case DW_FORM_block4:
7941 return "DW_FORM_block4";
7942 case DW_FORM_data2:
7943 return "DW_FORM_data2";
7944 case DW_FORM_data4:
7945 return "DW_FORM_data4";
7946 case DW_FORM_data8:
7947 return "DW_FORM_data8";
7948 case DW_FORM_string:
7949 return "DW_FORM_string";
7950 case DW_FORM_block:
7951 return "DW_FORM_block";
7952 case DW_FORM_block1:
7953 return "DW_FORM_block1";
7954 case DW_FORM_data1:
7955 return "DW_FORM_data1";
7956 case DW_FORM_flag:
7957 return "DW_FORM_flag";
7958 case DW_FORM_sdata:
7959 return "DW_FORM_sdata";
7960 case DW_FORM_strp:
7961 return "DW_FORM_strp";
7962 case DW_FORM_udata:
7963 return "DW_FORM_udata";
7964 case DW_FORM_ref_addr:
7965 return "DW_FORM_ref_addr";
7966 case DW_FORM_ref1:
7967 return "DW_FORM_ref1";
7968 case DW_FORM_ref2:
7969 return "DW_FORM_ref2";
7970 case DW_FORM_ref4:
7971 return "DW_FORM_ref4";
7972 case DW_FORM_ref8:
7973 return "DW_FORM_ref8";
7974 case DW_FORM_ref_udata:
7975 return "DW_FORM_ref_udata";
7976 case DW_FORM_indirect:
7977 return "DW_FORM_indirect";
7978 default:
7979 return "DW_FORM_<unknown>";
7980 }
7981}
7982
7983/* Convert a DWARF stack opcode into its string name. */
7984
7985static char *
aa1ee363 7986dwarf_stack_op_name (unsigned op)
c906108c
SS
7987{
7988 switch (op)
7989 {
7990 case DW_OP_addr:
7991 return "DW_OP_addr";
7992 case DW_OP_deref:
7993 return "DW_OP_deref";
7994 case DW_OP_const1u:
7995 return "DW_OP_const1u";
7996 case DW_OP_const1s:
7997 return "DW_OP_const1s";
7998 case DW_OP_const2u:
7999 return "DW_OP_const2u";
8000 case DW_OP_const2s:
8001 return "DW_OP_const2s";
8002 case DW_OP_const4u:
8003 return "DW_OP_const4u";
8004 case DW_OP_const4s:
8005 return "DW_OP_const4s";
8006 case DW_OP_const8u:
8007 return "DW_OP_const8u";
8008 case DW_OP_const8s:
8009 return "DW_OP_const8s";
8010 case DW_OP_constu:
8011 return "DW_OP_constu";
8012 case DW_OP_consts:
8013 return "DW_OP_consts";
8014 case DW_OP_dup:
8015 return "DW_OP_dup";
8016 case DW_OP_drop:
8017 return "DW_OP_drop";
8018 case DW_OP_over:
8019 return "DW_OP_over";
8020 case DW_OP_pick:
8021 return "DW_OP_pick";
8022 case DW_OP_swap:
8023 return "DW_OP_swap";
8024 case DW_OP_rot:
8025 return "DW_OP_rot";
8026 case DW_OP_xderef:
8027 return "DW_OP_xderef";
8028 case DW_OP_abs:
8029 return "DW_OP_abs";
8030 case DW_OP_and:
8031 return "DW_OP_and";
8032 case DW_OP_div:
8033 return "DW_OP_div";
8034 case DW_OP_minus:
8035 return "DW_OP_minus";
8036 case DW_OP_mod:
8037 return "DW_OP_mod";
8038 case DW_OP_mul:
8039 return "DW_OP_mul";
8040 case DW_OP_neg:
8041 return "DW_OP_neg";
8042 case DW_OP_not:
8043 return "DW_OP_not";
8044 case DW_OP_or:
8045 return "DW_OP_or";
8046 case DW_OP_plus:
8047 return "DW_OP_plus";
8048 case DW_OP_plus_uconst:
8049 return "DW_OP_plus_uconst";
8050 case DW_OP_shl:
8051 return "DW_OP_shl";
8052 case DW_OP_shr:
8053 return "DW_OP_shr";
8054 case DW_OP_shra:
8055 return "DW_OP_shra";
8056 case DW_OP_xor:
8057 return "DW_OP_xor";
8058 case DW_OP_bra:
8059 return "DW_OP_bra";
8060 case DW_OP_eq:
8061 return "DW_OP_eq";
8062 case DW_OP_ge:
8063 return "DW_OP_ge";
8064 case DW_OP_gt:
8065 return "DW_OP_gt";
8066 case DW_OP_le:
8067 return "DW_OP_le";
8068 case DW_OP_lt:
8069 return "DW_OP_lt";
8070 case DW_OP_ne:
8071 return "DW_OP_ne";
8072 case DW_OP_skip:
8073 return "DW_OP_skip";
8074 case DW_OP_lit0:
8075 return "DW_OP_lit0";
8076 case DW_OP_lit1:
8077 return "DW_OP_lit1";
8078 case DW_OP_lit2:
8079 return "DW_OP_lit2";
8080 case DW_OP_lit3:
8081 return "DW_OP_lit3";
8082 case DW_OP_lit4:
8083 return "DW_OP_lit4";
8084 case DW_OP_lit5:
8085 return "DW_OP_lit5";
8086 case DW_OP_lit6:
8087 return "DW_OP_lit6";
8088 case DW_OP_lit7:
8089 return "DW_OP_lit7";
8090 case DW_OP_lit8:
8091 return "DW_OP_lit8";
8092 case DW_OP_lit9:
8093 return "DW_OP_lit9";
8094 case DW_OP_lit10:
8095 return "DW_OP_lit10";
8096 case DW_OP_lit11:
8097 return "DW_OP_lit11";
8098 case DW_OP_lit12:
8099 return "DW_OP_lit12";
8100 case DW_OP_lit13:
8101 return "DW_OP_lit13";
8102 case DW_OP_lit14:
8103 return "DW_OP_lit14";
8104 case DW_OP_lit15:
8105 return "DW_OP_lit15";
8106 case DW_OP_lit16:
8107 return "DW_OP_lit16";
8108 case DW_OP_lit17:
8109 return "DW_OP_lit17";
8110 case DW_OP_lit18:
8111 return "DW_OP_lit18";
8112 case DW_OP_lit19:
8113 return "DW_OP_lit19";
8114 case DW_OP_lit20:
8115 return "DW_OP_lit20";
8116 case DW_OP_lit21:
8117 return "DW_OP_lit21";
8118 case DW_OP_lit22:
8119 return "DW_OP_lit22";
8120 case DW_OP_lit23:
8121 return "DW_OP_lit23";
8122 case DW_OP_lit24:
8123 return "DW_OP_lit24";
8124 case DW_OP_lit25:
8125 return "DW_OP_lit25";
8126 case DW_OP_lit26:
8127 return "DW_OP_lit26";
8128 case DW_OP_lit27:
8129 return "DW_OP_lit27";
8130 case DW_OP_lit28:
8131 return "DW_OP_lit28";
8132 case DW_OP_lit29:
8133 return "DW_OP_lit29";
8134 case DW_OP_lit30:
8135 return "DW_OP_lit30";
8136 case DW_OP_lit31:
8137 return "DW_OP_lit31";
8138 case DW_OP_reg0:
8139 return "DW_OP_reg0";
8140 case DW_OP_reg1:
8141 return "DW_OP_reg1";
8142 case DW_OP_reg2:
8143 return "DW_OP_reg2";
8144 case DW_OP_reg3:
8145 return "DW_OP_reg3";
8146 case DW_OP_reg4:
8147 return "DW_OP_reg4";
8148 case DW_OP_reg5:
8149 return "DW_OP_reg5";
8150 case DW_OP_reg6:
8151 return "DW_OP_reg6";
8152 case DW_OP_reg7:
8153 return "DW_OP_reg7";
8154 case DW_OP_reg8:
8155 return "DW_OP_reg8";
8156 case DW_OP_reg9:
8157 return "DW_OP_reg9";
8158 case DW_OP_reg10:
8159 return "DW_OP_reg10";
8160 case DW_OP_reg11:
8161 return "DW_OP_reg11";
8162 case DW_OP_reg12:
8163 return "DW_OP_reg12";
8164 case DW_OP_reg13:
8165 return "DW_OP_reg13";
8166 case DW_OP_reg14:
8167 return "DW_OP_reg14";
8168 case DW_OP_reg15:
8169 return "DW_OP_reg15";
8170 case DW_OP_reg16:
8171 return "DW_OP_reg16";
8172 case DW_OP_reg17:
8173 return "DW_OP_reg17";
8174 case DW_OP_reg18:
8175 return "DW_OP_reg18";
8176 case DW_OP_reg19:
8177 return "DW_OP_reg19";
8178 case DW_OP_reg20:
8179 return "DW_OP_reg20";
8180 case DW_OP_reg21:
8181 return "DW_OP_reg21";
8182 case DW_OP_reg22:
8183 return "DW_OP_reg22";
8184 case DW_OP_reg23:
8185 return "DW_OP_reg23";
8186 case DW_OP_reg24:
8187 return "DW_OP_reg24";
8188 case DW_OP_reg25:
8189 return "DW_OP_reg25";
8190 case DW_OP_reg26:
8191 return "DW_OP_reg26";
8192 case DW_OP_reg27:
8193 return "DW_OP_reg27";
8194 case DW_OP_reg28:
8195 return "DW_OP_reg28";
8196 case DW_OP_reg29:
8197 return "DW_OP_reg29";
8198 case DW_OP_reg30:
8199 return "DW_OP_reg30";
8200 case DW_OP_reg31:
8201 return "DW_OP_reg31";
8202 case DW_OP_breg0:
8203 return "DW_OP_breg0";
8204 case DW_OP_breg1:
8205 return "DW_OP_breg1";
8206 case DW_OP_breg2:
8207 return "DW_OP_breg2";
8208 case DW_OP_breg3:
8209 return "DW_OP_breg3";
8210 case DW_OP_breg4:
8211 return "DW_OP_breg4";
8212 case DW_OP_breg5:
8213 return "DW_OP_breg5";
8214 case DW_OP_breg6:
8215 return "DW_OP_breg6";
8216 case DW_OP_breg7:
8217 return "DW_OP_breg7";
8218 case DW_OP_breg8:
8219 return "DW_OP_breg8";
8220 case DW_OP_breg9:
8221 return "DW_OP_breg9";
8222 case DW_OP_breg10:
8223 return "DW_OP_breg10";
8224 case DW_OP_breg11:
8225 return "DW_OP_breg11";
8226 case DW_OP_breg12:
8227 return "DW_OP_breg12";
8228 case DW_OP_breg13:
8229 return "DW_OP_breg13";
8230 case DW_OP_breg14:
8231 return "DW_OP_breg14";
8232 case DW_OP_breg15:
8233 return "DW_OP_breg15";
8234 case DW_OP_breg16:
8235 return "DW_OP_breg16";
8236 case DW_OP_breg17:
8237 return "DW_OP_breg17";
8238 case DW_OP_breg18:
8239 return "DW_OP_breg18";
8240 case DW_OP_breg19:
8241 return "DW_OP_breg19";
8242 case DW_OP_breg20:
8243 return "DW_OP_breg20";
8244 case DW_OP_breg21:
8245 return "DW_OP_breg21";
8246 case DW_OP_breg22:
8247 return "DW_OP_breg22";
8248 case DW_OP_breg23:
8249 return "DW_OP_breg23";
8250 case DW_OP_breg24:
8251 return "DW_OP_breg24";
8252 case DW_OP_breg25:
8253 return "DW_OP_breg25";
8254 case DW_OP_breg26:
8255 return "DW_OP_breg26";
8256 case DW_OP_breg27:
8257 return "DW_OP_breg27";
8258 case DW_OP_breg28:
8259 return "DW_OP_breg28";
8260 case DW_OP_breg29:
8261 return "DW_OP_breg29";
8262 case DW_OP_breg30:
8263 return "DW_OP_breg30";
8264 case DW_OP_breg31:
8265 return "DW_OP_breg31";
8266 case DW_OP_regx:
8267 return "DW_OP_regx";
8268 case DW_OP_fbreg:
8269 return "DW_OP_fbreg";
8270 case DW_OP_bregx:
8271 return "DW_OP_bregx";
8272 case DW_OP_piece:
8273 return "DW_OP_piece";
8274 case DW_OP_deref_size:
8275 return "DW_OP_deref_size";
8276 case DW_OP_xderef_size:
8277 return "DW_OP_xderef_size";
8278 case DW_OP_nop:
8279 return "DW_OP_nop";
ed348acc
EZ
8280 /* DWARF 3 extensions. */
8281 case DW_OP_push_object_address:
8282 return "DW_OP_push_object_address";
8283 case DW_OP_call2:
8284 return "DW_OP_call2";
8285 case DW_OP_call4:
8286 return "DW_OP_call4";
8287 case DW_OP_call_ref:
8288 return "DW_OP_call_ref";
8289 /* GNU extensions. */
8290 case DW_OP_GNU_push_tls_address:
8291 return "DW_OP_GNU_push_tls_address";
c906108c
SS
8292 default:
8293 return "OP_<unknown>";
8294 }
8295}
8296
8297static char *
fba45db2 8298dwarf_bool_name (unsigned mybool)
c906108c
SS
8299{
8300 if (mybool)
8301 return "TRUE";
8302 else
8303 return "FALSE";
8304}
8305
8306/* Convert a DWARF type code into its string name. */
8307
8308static char *
aa1ee363 8309dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8310{
8311 switch (enc)
8312 {
8313 case DW_ATE_address:
8314 return "DW_ATE_address";
8315 case DW_ATE_boolean:
8316 return "DW_ATE_boolean";
8317 case DW_ATE_complex_float:
8318 return "DW_ATE_complex_float";
8319 case DW_ATE_float:
8320 return "DW_ATE_float";
8321 case DW_ATE_signed:
8322 return "DW_ATE_signed";
8323 case DW_ATE_signed_char:
8324 return "DW_ATE_signed_char";
8325 case DW_ATE_unsigned:
8326 return "DW_ATE_unsigned";
8327 case DW_ATE_unsigned_char:
8328 return "DW_ATE_unsigned_char";
d9fa45fe
DC
8329 case DW_ATE_imaginary_float:
8330 return "DW_ATE_imaginary_float";
c906108c
SS
8331 default:
8332 return "DW_ATE_<unknown>";
8333 }
8334}
8335
8336/* Convert a DWARF call frame info operation to its string name. */
8337
8338#if 0
8339static char *
aa1ee363 8340dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8341{
8342 switch (cfi_opc)
8343 {
8344 case DW_CFA_advance_loc:
8345 return "DW_CFA_advance_loc";
8346 case DW_CFA_offset:
8347 return "DW_CFA_offset";
8348 case DW_CFA_restore:
8349 return "DW_CFA_restore";
8350 case DW_CFA_nop:
8351 return "DW_CFA_nop";
8352 case DW_CFA_set_loc:
8353 return "DW_CFA_set_loc";
8354 case DW_CFA_advance_loc1:
8355 return "DW_CFA_advance_loc1";
8356 case DW_CFA_advance_loc2:
8357 return "DW_CFA_advance_loc2";
8358 case DW_CFA_advance_loc4:
8359 return "DW_CFA_advance_loc4";
8360 case DW_CFA_offset_extended:
8361 return "DW_CFA_offset_extended";
8362 case DW_CFA_restore_extended:
8363 return "DW_CFA_restore_extended";
8364 case DW_CFA_undefined:
8365 return "DW_CFA_undefined";
8366 case DW_CFA_same_value:
8367 return "DW_CFA_same_value";
8368 case DW_CFA_register:
8369 return "DW_CFA_register";
8370 case DW_CFA_remember_state:
8371 return "DW_CFA_remember_state";
8372 case DW_CFA_restore_state:
8373 return "DW_CFA_restore_state";
8374 case DW_CFA_def_cfa:
8375 return "DW_CFA_def_cfa";
8376 case DW_CFA_def_cfa_register:
8377 return "DW_CFA_def_cfa_register";
8378 case DW_CFA_def_cfa_offset:
8379 return "DW_CFA_def_cfa_offset";
985cb1a3
JM
8380
8381 /* DWARF 3 */
8382 case DW_CFA_def_cfa_expression:
8383 return "DW_CFA_def_cfa_expression";
8384 case DW_CFA_expression:
8385 return "DW_CFA_expression";
8386 case DW_CFA_offset_extended_sf:
8387 return "DW_CFA_offset_extended_sf";
8388 case DW_CFA_def_cfa_sf:
8389 return "DW_CFA_def_cfa_sf";
8390 case DW_CFA_def_cfa_offset_sf:
8391 return "DW_CFA_def_cfa_offset_sf";
8392
c906108c
SS
8393 /* SGI/MIPS specific */
8394 case DW_CFA_MIPS_advance_loc8:
8395 return "DW_CFA_MIPS_advance_loc8";
985cb1a3
JM
8396
8397 /* GNU extensions */
8398 case DW_CFA_GNU_window_save:
8399 return "DW_CFA_GNU_window_save";
8400 case DW_CFA_GNU_args_size:
8401 return "DW_CFA_GNU_args_size";
8402 case DW_CFA_GNU_negative_offset_extended:
8403 return "DW_CFA_GNU_negative_offset_extended";
8404
c906108c
SS
8405 default:
8406 return "DW_CFA_<unknown>";
8407 }
8408}
8409#endif
8410
f9aca02d 8411static void
fba45db2 8412dump_die (struct die_info *die)
c906108c
SS
8413{
8414 unsigned int i;
8415
48cd0caa 8416 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8417 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8418 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8419 dwarf_bool_name (die->child != NULL));
c906108c 8420
48cd0caa 8421 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8422 for (i = 0; i < die->num_attrs; ++i)
8423 {
48cd0caa 8424 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8425 dwarf_attr_name (die->attrs[i].name),
8426 dwarf_form_name (die->attrs[i].form));
8427 switch (die->attrs[i].form)
8428 {
8429 case DW_FORM_ref_addr:
8430 case DW_FORM_addr:
48cd0caa 8431 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8432 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8433 break;
8434 case DW_FORM_block2:
8435 case DW_FORM_block4:
8436 case DW_FORM_block:
8437 case DW_FORM_block1:
48cd0caa 8438 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8439 break;
10b3939b
DJ
8440 case DW_FORM_ref1:
8441 case DW_FORM_ref2:
8442 case DW_FORM_ref4:
8443 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8444 (long) (DW_ADDR (&die->attrs[i])));
8445 break;
c906108c
SS
8446 case DW_FORM_data1:
8447 case DW_FORM_data2:
8448 case DW_FORM_data4:
ce5d95e1 8449 case DW_FORM_data8:
c906108c
SS
8450 case DW_FORM_udata:
8451 case DW_FORM_sdata:
48cd0caa 8452 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8453 break;
8454 case DW_FORM_string:
4bdf3d34 8455 case DW_FORM_strp:
48cd0caa 8456 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8457 DW_STRING (&die->attrs[i])
c5aa993b 8458 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8459 break;
8460 case DW_FORM_flag:
8461 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8462 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8463 else
48cd0caa 8464 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8465 break;
a8329558
KW
8466 case DW_FORM_indirect:
8467 /* the reader will have reduced the indirect form to
8468 the "base form" so this form should not occur */
48cd0caa 8469 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8470 break;
c906108c 8471 default:
48cd0caa 8472 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8473 die->attrs[i].form);
c906108c 8474 }
48cd0caa 8475 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8476 }
8477}
8478
f9aca02d 8479static void
fba45db2 8480dump_die_list (struct die_info *die)
c906108c
SS
8481{
8482 while (die)
8483 {
8484 dump_die (die);
639d11d3
DC
8485 if (die->child != NULL)
8486 dump_die_list (die->child);
8487 if (die->sibling != NULL)
8488 dump_die_list (die->sibling);
c906108c
SS
8489 }
8490}
8491
f9aca02d 8492static void
10b3939b
DJ
8493store_in_ref_table (unsigned int offset, struct die_info *die,
8494 struct dwarf2_cu *cu)
c906108c
SS
8495{
8496 int h;
8497 struct die_info *old;
8498
8499 h = (offset % REF_HASH_SIZE);
10b3939b 8500 old = cu->die_ref_table[h];
c906108c 8501 die->next_ref = old;
10b3939b 8502 cu->die_ref_table[h] = die;
c906108c
SS
8503}
8504
8505static unsigned int
e142c38c 8506dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8507{
8508 unsigned int result = 0;
8509
8510 switch (attr->form)
8511 {
8512 case DW_FORM_ref_addr:
c906108c
SS
8513 case DW_FORM_ref1:
8514 case DW_FORM_ref2:
8515 case DW_FORM_ref4:
613e1657 8516 case DW_FORM_ref8:
c906108c 8517 case DW_FORM_ref_udata:
10b3939b 8518 result = DW_ADDR (attr);
c906108c
SS
8519 break;
8520 default:
4d3c2250 8521 complaint (&symfile_complaints,
e2e0b3e5 8522 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8523 dwarf_form_name (attr->form));
c906108c
SS
8524 }
8525 return result;
8526}
8527
a02abb62
JB
8528/* Return the constant value held by the given attribute. Return -1
8529 if the value held by the attribute is not constant. */
8530
8531static int
8532dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8533{
8534 if (attr->form == DW_FORM_sdata)
8535 return DW_SND (attr);
8536 else if (attr->form == DW_FORM_udata
8537 || attr->form == DW_FORM_data1
8538 || attr->form == DW_FORM_data2
8539 || attr->form == DW_FORM_data4
8540 || attr->form == DW_FORM_data8)
8541 return DW_UNSND (attr);
8542 else
8543 {
e2e0b3e5 8544 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8545 dwarf_form_name (attr->form));
8546 return default_value;
8547 }
8548}
8549
f9aca02d 8550static struct die_info *
10b3939b
DJ
8551follow_die_ref (struct die_info *src_die, struct attribute *attr,
8552 struct dwarf2_cu *cu)
c906108c
SS
8553{
8554 struct die_info *die;
10b3939b 8555 unsigned int offset;
c906108c 8556 int h;
10b3939b
DJ
8557 struct die_info temp_die;
8558 struct dwarf2_cu *target_cu;
8559
8560 offset = dwarf2_get_ref_die_offset (attr, cu);
8561
8562 if (DW_ADDR (attr) < cu->header.offset
8563 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8564 {
8565 struct dwarf2_per_cu_data *per_cu;
8566 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8567 cu->objfile);
8568 target_cu = per_cu->cu;
8569 }
8570 else
8571 target_cu = cu;
c906108c
SS
8572
8573 h = (offset % REF_HASH_SIZE);
10b3939b 8574 die = target_cu->die_ref_table[h];
c906108c
SS
8575 while (die)
8576 {
8577 if (die->offset == offset)
10b3939b 8578 return die;
c906108c
SS
8579 die = die->next_ref;
8580 }
10b3939b 8581
8a3fe4f8
AC
8582 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8583 "at 0x%lx [in module %s]"),
10b3939b
DJ
8584 (long) src_die->offset, (long) offset, cu->objfile->name);
8585
c906108c
SS
8586 return NULL;
8587}
8588
8589static struct type *
e142c38c
DJ
8590dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8591 struct dwarf2_cu *cu)
c906108c
SS
8592{
8593 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8594 {
8a3fe4f8 8595 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 8596 typeid, objfile->name);
c906108c
SS
8597 }
8598
8599 /* Look for this particular type in the fundamental type vector. If
8600 one is not found, create and install one appropriate for the
8601 current language and the current target machine. */
8602
e142c38c 8603 if (cu->ftypes[typeid] == NULL)
c906108c 8604 {
e142c38c 8605 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
8606 }
8607
e142c38c 8608 return (cu->ftypes[typeid]);
c906108c
SS
8609}
8610
8611/* Decode simple location descriptions.
8612 Given a pointer to a dwarf block that defines a location, compute
8613 the location and return the value.
8614
4cecd739
DJ
8615 NOTE drow/2003-11-18: This function is called in two situations
8616 now: for the address of static or global variables (partial symbols
8617 only) and for offsets into structures which are expected to be
8618 (more or less) constant. The partial symbol case should go away,
8619 and only the constant case should remain. That will let this
8620 function complain more accurately. A few special modes are allowed
8621 without complaint for global variables (for instance, global
8622 register values and thread-local values).
c906108c
SS
8623
8624 A location description containing no operations indicates that the
4cecd739 8625 object is optimized out. The return value is 0 for that case.
6b992462
DJ
8626 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8627 callers will only want a very basic result and this can become a
8628 complaint.
c906108c 8629
c906108c
SS
8630 Note that stack[0] is unused except as a default error return.
8631 Note that stack overflow is not yet handled. */
8632
8633static CORE_ADDR
e7c27a73 8634decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 8635{
e7c27a73
DJ
8636 struct objfile *objfile = cu->objfile;
8637 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8638 int i;
8639 int size = blk->size;
fe1b8b76 8640 gdb_byte *data = blk->data;
c906108c
SS
8641 CORE_ADDR stack[64];
8642 int stacki;
8643 unsigned int bytes_read, unsnd;
fe1b8b76 8644 gdb_byte op;
c906108c
SS
8645
8646 i = 0;
8647 stacki = 0;
8648 stack[stacki] = 0;
c906108c
SS
8649
8650 while (i < size)
8651 {
c906108c
SS
8652 op = data[i++];
8653 switch (op)
8654 {
f1bea926
JM
8655 case DW_OP_lit0:
8656 case DW_OP_lit1:
8657 case DW_OP_lit2:
8658 case DW_OP_lit3:
8659 case DW_OP_lit4:
8660 case DW_OP_lit5:
8661 case DW_OP_lit6:
8662 case DW_OP_lit7:
8663 case DW_OP_lit8:
8664 case DW_OP_lit9:
8665 case DW_OP_lit10:
8666 case DW_OP_lit11:
8667 case DW_OP_lit12:
8668 case DW_OP_lit13:
8669 case DW_OP_lit14:
8670 case DW_OP_lit15:
8671 case DW_OP_lit16:
8672 case DW_OP_lit17:
8673 case DW_OP_lit18:
8674 case DW_OP_lit19:
8675 case DW_OP_lit20:
8676 case DW_OP_lit21:
8677 case DW_OP_lit22:
8678 case DW_OP_lit23:
8679 case DW_OP_lit24:
8680 case DW_OP_lit25:
8681 case DW_OP_lit26:
8682 case DW_OP_lit27:
8683 case DW_OP_lit28:
8684 case DW_OP_lit29:
8685 case DW_OP_lit30:
8686 case DW_OP_lit31:
8687 stack[++stacki] = op - DW_OP_lit0;
8688 break;
8689
c906108c
SS
8690 case DW_OP_reg0:
8691 case DW_OP_reg1:
8692 case DW_OP_reg2:
8693 case DW_OP_reg3:
8694 case DW_OP_reg4:
8695 case DW_OP_reg5:
8696 case DW_OP_reg6:
8697 case DW_OP_reg7:
8698 case DW_OP_reg8:
8699 case DW_OP_reg9:
8700 case DW_OP_reg10:
8701 case DW_OP_reg11:
8702 case DW_OP_reg12:
8703 case DW_OP_reg13:
8704 case DW_OP_reg14:
8705 case DW_OP_reg15:
8706 case DW_OP_reg16:
8707 case DW_OP_reg17:
8708 case DW_OP_reg18:
8709 case DW_OP_reg19:
8710 case DW_OP_reg20:
8711 case DW_OP_reg21:
8712 case DW_OP_reg22:
8713 case DW_OP_reg23:
8714 case DW_OP_reg24:
8715 case DW_OP_reg25:
8716 case DW_OP_reg26:
8717 case DW_OP_reg27:
8718 case DW_OP_reg28:
8719 case DW_OP_reg29:
8720 case DW_OP_reg30:
8721 case DW_OP_reg31:
c906108c 8722 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
8723 if (i < size)
8724 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8725 break;
8726
8727 case DW_OP_regx:
c906108c
SS
8728 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8729 i += bytes_read;
c906108c 8730 stack[++stacki] = unsnd;
4cecd739
DJ
8731 if (i < size)
8732 dwarf2_complex_location_expr_complaint ();
c906108c
SS
8733 break;
8734
8735 case DW_OP_addr:
107d2387 8736 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 8737 cu, &bytes_read);
107d2387 8738 i += bytes_read;
c906108c
SS
8739 break;
8740
8741 case DW_OP_const1u:
8742 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8743 i += 1;
8744 break;
8745
8746 case DW_OP_const1s:
8747 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8748 i += 1;
8749 break;
8750
8751 case DW_OP_const2u:
8752 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8753 i += 2;
8754 break;
8755
8756 case DW_OP_const2s:
8757 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8758 i += 2;
8759 break;
8760
8761 case DW_OP_const4u:
8762 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8763 i += 4;
8764 break;
8765
8766 case DW_OP_const4s:
8767 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8768 i += 4;
8769 break;
8770
8771 case DW_OP_constu:
8772 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 8773 &bytes_read);
c906108c
SS
8774 i += bytes_read;
8775 break;
8776
8777 case DW_OP_consts:
8778 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8779 i += bytes_read;
8780 break;
8781
f1bea926
JM
8782 case DW_OP_dup:
8783 stack[stacki + 1] = stack[stacki];
8784 stacki++;
8785 break;
8786
c906108c
SS
8787 case DW_OP_plus:
8788 stack[stacki - 1] += stack[stacki];
8789 stacki--;
8790 break;
8791
8792 case DW_OP_plus_uconst:
8793 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8794 i += bytes_read;
8795 break;
8796
8797 case DW_OP_minus:
f1bea926 8798 stack[stacki - 1] -= stack[stacki];
c906108c
SS
8799 stacki--;
8800 break;
8801
7a292a7a 8802 case DW_OP_deref:
7a292a7a 8803 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
8804 this using GDB's address_class enum. This is valid for partial
8805 global symbols, although the variable's address will be bogus
8806 in the psymtab. */
7a292a7a 8807 if (i < size)
4d3c2250 8808 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
8809 break;
8810
9d774e44 8811 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
8812 /* The top of the stack has the offset from the beginning
8813 of the thread control block at which the variable is located. */
8814 /* Nothing should follow this operator, so the top of stack would
8815 be returned. */
4cecd739
DJ
8816 /* This is valid for partial global symbols, but the variable's
8817 address will be bogus in the psymtab. */
9d774e44 8818 if (i < size)
4d3c2250 8819 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
8820 break;
8821
c906108c 8822 default:
e2e0b3e5 8823 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 8824 dwarf_stack_op_name (op));
c906108c
SS
8825 return (stack[stacki]);
8826 }
8827 }
8828 return (stack[stacki]);
8829}
8830
8831/* memory allocation interface */
8832
c906108c 8833static struct dwarf_block *
7b5a2f43 8834dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
8835{
8836 struct dwarf_block *blk;
8837
8838 blk = (struct dwarf_block *)
7b5a2f43 8839 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
8840 return (blk);
8841}
8842
8843static struct abbrev_info *
f3dd6933 8844dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
8845{
8846 struct abbrev_info *abbrev;
8847
f3dd6933
DJ
8848 abbrev = (struct abbrev_info *)
8849 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
8850 memset (abbrev, 0, sizeof (struct abbrev_info));
8851 return (abbrev);
8852}
8853
8854static struct die_info *
fba45db2 8855dwarf_alloc_die (void)
c906108c
SS
8856{
8857 struct die_info *die;
8858
8859 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8860 memset (die, 0, sizeof (struct die_info));
8861 return (die);
8862}
2e276125
JB
8863
8864\f
8865/* Macro support. */
8866
8867
8868/* Return the full name of file number I in *LH's file name table.
8869 Use COMP_DIR as the name of the current directory of the
8870 compilation. The result is allocated using xmalloc; the caller is
8871 responsible for freeing it. */
8872static char *
8873file_full_name (int file, struct line_header *lh, const char *comp_dir)
8874{
6a83a1e6
EZ
8875 /* Is the file number a valid index into the line header's file name
8876 table? Remember that file numbers start with one, not zero. */
8877 if (1 <= file && file <= lh->num_file_names)
8878 {
8879 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 8880
6a83a1e6
EZ
8881 if (IS_ABSOLUTE_PATH (fe->name))
8882 return xstrdup (fe->name);
8883 else
8884 {
8885 const char *dir;
8886 int dir_len;
8887 char *full_name;
8888
8889 if (fe->dir_index)
8890 dir = lh->include_dirs[fe->dir_index - 1];
8891 else
8892 dir = comp_dir;
8893
8894 if (dir)
8895 {
8896 dir_len = strlen (dir);
8897 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8898 strcpy (full_name, dir);
8899 full_name[dir_len] = '/';
8900 strcpy (full_name + dir_len + 1, fe->name);
8901 return full_name;
8902 }
8903 else
8904 return xstrdup (fe->name);
8905 }
8906 }
2e276125
JB
8907 else
8908 {
6a83a1e6
EZ
8909 /* The compiler produced a bogus file number. We can at least
8910 record the macro definitions made in the file, even if we
8911 won't be able to find the file by name. */
8912 char fake_name[80];
8913 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 8914
6a83a1e6
EZ
8915 complaint (&symfile_complaints,
8916 _("bad file number in macro information (%d)"),
8917 file);
2e276125 8918
6a83a1e6 8919 return xstrdup (fake_name);
2e276125
JB
8920 }
8921}
8922
8923
8924static struct macro_source_file *
8925macro_start_file (int file, int line,
8926 struct macro_source_file *current_file,
8927 const char *comp_dir,
8928 struct line_header *lh, struct objfile *objfile)
8929{
8930 /* The full name of this source file. */
8931 char *full_name = file_full_name (file, lh, comp_dir);
8932
8933 /* We don't create a macro table for this compilation unit
8934 at all until we actually get a filename. */
8935 if (! pending_macros)
4a146b47 8936 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 8937 objfile->macro_cache);
2e276125
JB
8938
8939 if (! current_file)
8940 /* If we have no current file, then this must be the start_file
8941 directive for the compilation unit's main source file. */
8942 current_file = macro_set_main (pending_macros, full_name);
8943 else
8944 current_file = macro_include (current_file, line, full_name);
8945
8946 xfree (full_name);
8947
8948 return current_file;
8949}
8950
8951
8952/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8953 followed by a null byte. */
8954static char *
8955copy_string (const char *buf, int len)
8956{
8957 char *s = xmalloc (len + 1);
8958 memcpy (s, buf, len);
8959 s[len] = '\0';
8960
8961 return s;
8962}
8963
8964
8965static const char *
8966consume_improper_spaces (const char *p, const char *body)
8967{
8968 if (*p == ' ')
8969 {
4d3c2250 8970 complaint (&symfile_complaints,
e2e0b3e5 8971 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 8972 body);
2e276125
JB
8973
8974 while (*p == ' ')
8975 p++;
8976 }
8977
8978 return p;
8979}
8980
8981
8982static void
8983parse_macro_definition (struct macro_source_file *file, int line,
8984 const char *body)
8985{
8986 const char *p;
8987
8988 /* The body string takes one of two forms. For object-like macro
8989 definitions, it should be:
8990
8991 <macro name> " " <definition>
8992
8993 For function-like macro definitions, it should be:
8994
8995 <macro name> "() " <definition>
8996 or
8997 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8998
8999 Spaces may appear only where explicitly indicated, and in the
9000 <definition>.
9001
9002 The Dwarf 2 spec says that an object-like macro's name is always
9003 followed by a space, but versions of GCC around March 2002 omit
9004 the space when the macro's definition is the empty string.
9005
9006 The Dwarf 2 spec says that there should be no spaces between the
9007 formal arguments in a function-like macro's formal argument list,
9008 but versions of GCC around March 2002 include spaces after the
9009 commas. */
9010
9011
9012 /* Find the extent of the macro name. The macro name is terminated
9013 by either a space or null character (for an object-like macro) or
9014 an opening paren (for a function-like macro). */
9015 for (p = body; *p; p++)
9016 if (*p == ' ' || *p == '(')
9017 break;
9018
9019 if (*p == ' ' || *p == '\0')
9020 {
9021 /* It's an object-like macro. */
9022 int name_len = p - body;
9023 char *name = copy_string (body, name_len);
9024 const char *replacement;
9025
9026 if (*p == ' ')
9027 replacement = body + name_len + 1;
9028 else
9029 {
4d3c2250 9030 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9031 replacement = body + name_len;
9032 }
9033
9034 macro_define_object (file, line, name, replacement);
9035
9036 xfree (name);
9037 }
9038 else if (*p == '(')
9039 {
9040 /* It's a function-like macro. */
9041 char *name = copy_string (body, p - body);
9042 int argc = 0;
9043 int argv_size = 1;
9044 char **argv = xmalloc (argv_size * sizeof (*argv));
9045
9046 p++;
9047
9048 p = consume_improper_spaces (p, body);
9049
9050 /* Parse the formal argument list. */
9051 while (*p && *p != ')')
9052 {
9053 /* Find the extent of the current argument name. */
9054 const char *arg_start = p;
9055
9056 while (*p && *p != ',' && *p != ')' && *p != ' ')
9057 p++;
9058
9059 if (! *p || p == arg_start)
4d3c2250 9060 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9061 else
9062 {
9063 /* Make sure argv has room for the new argument. */
9064 if (argc >= argv_size)
9065 {
9066 argv_size *= 2;
9067 argv = xrealloc (argv, argv_size * sizeof (*argv));
9068 }
9069
9070 argv[argc++] = copy_string (arg_start, p - arg_start);
9071 }
9072
9073 p = consume_improper_spaces (p, body);
9074
9075 /* Consume the comma, if present. */
9076 if (*p == ',')
9077 {
9078 p++;
9079
9080 p = consume_improper_spaces (p, body);
9081 }
9082 }
9083
9084 if (*p == ')')
9085 {
9086 p++;
9087
9088 if (*p == ' ')
9089 /* Perfectly formed definition, no complaints. */
9090 macro_define_function (file, line, name,
9091 argc, (const char **) argv,
9092 p + 1);
9093 else if (*p == '\0')
9094 {
9095 /* Complain, but do define it. */
4d3c2250 9096 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9097 macro_define_function (file, line, name,
9098 argc, (const char **) argv,
9099 p);
9100 }
9101 else
9102 /* Just complain. */
4d3c2250 9103 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9104 }
9105 else
9106 /* Just complain. */
4d3c2250 9107 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9108
9109 xfree (name);
9110 {
9111 int i;
9112
9113 for (i = 0; i < argc; i++)
9114 xfree (argv[i]);
9115 }
9116 xfree (argv);
9117 }
9118 else
4d3c2250 9119 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9120}
9121
9122
9123static void
9124dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9125 char *comp_dir, bfd *abfd,
e7c27a73 9126 struct dwarf2_cu *cu)
2e276125 9127{
fe1b8b76 9128 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9129 struct macro_source_file *current_file = 0;
9130
6502dd73 9131 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9132 {
e2e0b3e5 9133 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9134 return;
9135 }
9136
6502dd73
DJ
9137 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9138 mac_end = dwarf2_per_objfile->macinfo_buffer
9139 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9140
9141 for (;;)
9142 {
9143 enum dwarf_macinfo_record_type macinfo_type;
9144
9145 /* Do we at least have room for a macinfo type byte? */
9146 if (mac_ptr >= mac_end)
9147 {
4d3c2250 9148 dwarf2_macros_too_long_complaint ();
2e276125
JB
9149 return;
9150 }
9151
9152 macinfo_type = read_1_byte (abfd, mac_ptr);
9153 mac_ptr++;
9154
9155 switch (macinfo_type)
9156 {
9157 /* A zero macinfo type indicates the end of the macro
9158 information. */
9159 case 0:
9160 return;
9161
9162 case DW_MACINFO_define:
9163 case DW_MACINFO_undef:
9164 {
891d2f0b 9165 unsigned int bytes_read;
2e276125
JB
9166 int line;
9167 char *body;
9168
9169 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9170 mac_ptr += bytes_read;
9171 body = read_string (abfd, mac_ptr, &bytes_read);
9172 mac_ptr += bytes_read;
9173
9174 if (! current_file)
4d3c2250 9175 complaint (&symfile_complaints,
e2e0b3e5 9176 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9177 macinfo_type ==
9178 DW_MACINFO_define ? "definition" : macinfo_type ==
9179 DW_MACINFO_undef ? "undefinition" :
9180 "something-or-other", body);
2e276125
JB
9181 else
9182 {
9183 if (macinfo_type == DW_MACINFO_define)
9184 parse_macro_definition (current_file, line, body);
9185 else if (macinfo_type == DW_MACINFO_undef)
9186 macro_undef (current_file, line, body);
9187 }
9188 }
9189 break;
9190
9191 case DW_MACINFO_start_file:
9192 {
891d2f0b 9193 unsigned int bytes_read;
2e276125
JB
9194 int line, file;
9195
9196 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9197 mac_ptr += bytes_read;
9198 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9199 mac_ptr += bytes_read;
9200
9201 current_file = macro_start_file (file, line,
9202 current_file, comp_dir,
e7c27a73 9203 lh, cu->objfile);
2e276125
JB
9204 }
9205 break;
9206
9207 case DW_MACINFO_end_file:
9208 if (! current_file)
4d3c2250 9209 complaint (&symfile_complaints,
e2e0b3e5 9210 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9211 else
9212 {
9213 current_file = current_file->included_by;
9214 if (! current_file)
9215 {
9216 enum dwarf_macinfo_record_type next_type;
9217
9218 /* GCC circa March 2002 doesn't produce the zero
9219 type byte marking the end of the compilation
9220 unit. Complain if it's not there, but exit no
9221 matter what. */
9222
9223 /* Do we at least have room for a macinfo type byte? */
9224 if (mac_ptr >= mac_end)
9225 {
4d3c2250 9226 dwarf2_macros_too_long_complaint ();
2e276125
JB
9227 return;
9228 }
9229
9230 /* We don't increment mac_ptr here, so this is just
9231 a look-ahead. */
9232 next_type = read_1_byte (abfd, mac_ptr);
9233 if (next_type != 0)
4d3c2250 9234 complaint (&symfile_complaints,
e2e0b3e5 9235 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9236
9237 return;
9238 }
9239 }
9240 break;
9241
9242 case DW_MACINFO_vendor_ext:
9243 {
891d2f0b 9244 unsigned int bytes_read;
2e276125
JB
9245 int constant;
9246 char *string;
9247
9248 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9249 mac_ptr += bytes_read;
9250 string = read_string (abfd, mac_ptr, &bytes_read);
9251 mac_ptr += bytes_read;
9252
9253 /* We don't recognize any vendor extensions. */
9254 }
9255 break;
9256 }
9257 }
9258}
8e19ed76
PS
9259
9260/* Check if the attribute's form is a DW_FORM_block*
9261 if so return true else false. */
9262static int
9263attr_form_is_block (struct attribute *attr)
9264{
9265 return (attr == NULL ? 0 :
9266 attr->form == DW_FORM_block1
9267 || attr->form == DW_FORM_block2
9268 || attr->form == DW_FORM_block4
9269 || attr->form == DW_FORM_block);
9270}
4c2df51b
DJ
9271
9272static void
9273dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9274 struct dwarf2_cu *cu)
4c2df51b 9275{
0d53c4c4 9276 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4c2df51b 9277 {
0d53c4c4 9278 struct dwarf2_loclist_baton *baton;
4c2df51b 9279
4a146b47 9280 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9281 sizeof (struct dwarf2_loclist_baton));
e7c27a73 9282 baton->objfile = cu->objfile;
4c2df51b 9283
0d53c4c4
DJ
9284 /* We don't know how long the location list is, but make sure we
9285 don't run off the edge of the section. */
6502dd73
DJ
9286 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9287 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9288 baton->base_address = cu->header.base_address;
9289 if (cu->header.base_known == 0)
0d53c4c4 9290 complaint (&symfile_complaints,
e2e0b3e5 9291 _("Location list used without specifying the CU base address."));
4c2df51b 9292
a67af2b9 9293 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9294 SYMBOL_LOCATION_BATON (sym) = baton;
9295 }
9296 else
9297 {
9298 struct dwarf2_locexpr_baton *baton;
9299
4a146b47 9300 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9301 sizeof (struct dwarf2_locexpr_baton));
e7c27a73 9302 baton->objfile = cu->objfile;
0d53c4c4
DJ
9303
9304 if (attr_form_is_block (attr))
9305 {
9306 /* Note that we're just copying the block's data pointer
9307 here, not the actual data. We're still pointing into the
6502dd73
DJ
9308 info_buffer for SYM's objfile; right now we never release
9309 that buffer, but when we do clean up properly this may
9310 need to change. */
0d53c4c4
DJ
9311 baton->size = DW_BLOCK (attr)->size;
9312 baton->data = DW_BLOCK (attr)->data;
9313 }
9314 else
9315 {
9316 dwarf2_invalid_attrib_class_complaint ("location description",
9317 SYMBOL_NATURAL_NAME (sym));
9318 baton->size = 0;
9319 baton->data = NULL;
9320 }
9321
a67af2b9 9322 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9323 SYMBOL_LOCATION_BATON (sym) = baton;
9324 }
4c2df51b 9325}
6502dd73 9326
ae038cb0 9327/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9328 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9329
9330static struct dwarf2_per_cu_data *
9331dwarf2_find_containing_comp_unit (unsigned long offset,
9332 struct objfile *objfile)
9333{
9334 struct dwarf2_per_cu_data *this_cu;
9335 int low, high;
9336
ae038cb0
DJ
9337 low = 0;
9338 high = dwarf2_per_objfile->n_comp_units - 1;
9339 while (high > low)
9340 {
9341 int mid = low + (high - low) / 2;
9342 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9343 high = mid;
9344 else
9345 low = mid + 1;
9346 }
9347 gdb_assert (low == high);
9348 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9349 {
10b3939b 9350 if (low == 0)
8a3fe4f8
AC
9351 error (_("Dwarf Error: could not find partial DIE containing "
9352 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9353 (long) offset, bfd_get_filename (objfile->obfd));
9354
ae038cb0
DJ
9355 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9356 return dwarf2_per_objfile->all_comp_units[low-1];
9357 }
9358 else
9359 {
9360 this_cu = dwarf2_per_objfile->all_comp_units[low];
9361 if (low == dwarf2_per_objfile->n_comp_units - 1
9362 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9363 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9364 gdb_assert (offset < this_cu->offset + this_cu->length);
9365 return this_cu;
9366 }
9367}
9368
10b3939b
DJ
9369/* Locate the compilation unit from OBJFILE which is located at exactly
9370 OFFSET. Raises an error on failure. */
9371
ae038cb0
DJ
9372static struct dwarf2_per_cu_data *
9373dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9374{
9375 struct dwarf2_per_cu_data *this_cu;
9376 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9377 if (this_cu->offset != offset)
8a3fe4f8 9378 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9379 return this_cu;
9380}
9381
9382/* Release one cached compilation unit, CU. We unlink it from the tree
9383 of compilation units, but we don't remove it from the read_in_chain;
9384 the caller is responsible for that. */
9385
9386static void
9387free_one_comp_unit (void *data)
9388{
9389 struct dwarf2_cu *cu = data;
9390
9391 if (cu->per_cu != NULL)
9392 cu->per_cu->cu = NULL;
9393 cu->per_cu = NULL;
9394
9395 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9396 if (cu->dies)
9397 free_die_list (cu->dies);
ae038cb0
DJ
9398
9399 xfree (cu);
9400}
9401
72bf9492 9402/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9403 when we're finished with it. We can't free the pointer itself, but be
9404 sure to unlink it from the cache. Also release any associated storage
9405 and perform cache maintenance.
72bf9492
DJ
9406
9407 Only used during partial symbol parsing. */
9408
9409static void
9410free_stack_comp_unit (void *data)
9411{
9412 struct dwarf2_cu *cu = data;
9413
9414 obstack_free (&cu->comp_unit_obstack, NULL);
9415 cu->partial_dies = NULL;
ae038cb0
DJ
9416
9417 if (cu->per_cu != NULL)
9418 {
9419 /* This compilation unit is on the stack in our caller, so we
9420 should not xfree it. Just unlink it. */
9421 cu->per_cu->cu = NULL;
9422 cu->per_cu = NULL;
9423
9424 /* If we had a per-cu pointer, then we may have other compilation
9425 units loaded, so age them now. */
9426 age_cached_comp_units ();
9427 }
9428}
9429
9430/* Free all cached compilation units. */
9431
9432static void
9433free_cached_comp_units (void *data)
9434{
9435 struct dwarf2_per_cu_data *per_cu, **last_chain;
9436
9437 per_cu = dwarf2_per_objfile->read_in_chain;
9438 last_chain = &dwarf2_per_objfile->read_in_chain;
9439 while (per_cu != NULL)
9440 {
9441 struct dwarf2_per_cu_data *next_cu;
9442
9443 next_cu = per_cu->cu->read_in_chain;
9444
9445 free_one_comp_unit (per_cu->cu);
9446 *last_chain = next_cu;
9447
9448 per_cu = next_cu;
9449 }
9450}
9451
9452/* Increase the age counter on each cached compilation unit, and free
9453 any that are too old. */
9454
9455static void
9456age_cached_comp_units (void)
9457{
9458 struct dwarf2_per_cu_data *per_cu, **last_chain;
9459
9460 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9461 per_cu = dwarf2_per_objfile->read_in_chain;
9462 while (per_cu != NULL)
9463 {
9464 per_cu->cu->last_used ++;
9465 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9466 dwarf2_mark (per_cu->cu);
9467 per_cu = per_cu->cu->read_in_chain;
9468 }
9469
9470 per_cu = dwarf2_per_objfile->read_in_chain;
9471 last_chain = &dwarf2_per_objfile->read_in_chain;
9472 while (per_cu != NULL)
9473 {
9474 struct dwarf2_per_cu_data *next_cu;
9475
9476 next_cu = per_cu->cu->read_in_chain;
9477
9478 if (!per_cu->cu->mark)
9479 {
9480 free_one_comp_unit (per_cu->cu);
9481 *last_chain = next_cu;
9482 }
9483 else
9484 last_chain = &per_cu->cu->read_in_chain;
9485
9486 per_cu = next_cu;
9487 }
9488}
9489
9490/* Remove a single compilation unit from the cache. */
9491
9492static void
9493free_one_cached_comp_unit (void *target_cu)
9494{
9495 struct dwarf2_per_cu_data *per_cu, **last_chain;
9496
9497 per_cu = dwarf2_per_objfile->read_in_chain;
9498 last_chain = &dwarf2_per_objfile->read_in_chain;
9499 while (per_cu != NULL)
9500 {
9501 struct dwarf2_per_cu_data *next_cu;
9502
9503 next_cu = per_cu->cu->read_in_chain;
9504
9505 if (per_cu->cu == target_cu)
9506 {
9507 free_one_comp_unit (per_cu->cu);
9508 *last_chain = next_cu;
9509 break;
9510 }
9511 else
9512 last_chain = &per_cu->cu->read_in_chain;
9513
9514 per_cu = next_cu;
9515 }
9516}
9517
1c379e20
DJ
9518/* A pair of DIE offset and GDB type pointer. We store these
9519 in a hash table separate from the DIEs, and preserve them
9520 when the DIEs are flushed out of cache. */
9521
9522struct dwarf2_offset_and_type
9523{
9524 unsigned int offset;
9525 struct type *type;
9526};
9527
9528/* Hash function for a dwarf2_offset_and_type. */
9529
9530static hashval_t
9531offset_and_type_hash (const void *item)
9532{
9533 const struct dwarf2_offset_and_type *ofs = item;
9534 return ofs->offset;
9535}
9536
9537/* Equality function for a dwarf2_offset_and_type. */
9538
9539static int
9540offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9541{
9542 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9543 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9544 return ofs_lhs->offset == ofs_rhs->offset;
9545}
9546
9547/* Set the type associated with DIE to TYPE. Save it in CU's hash
9548 table if necessary. */
9549
9550static void
9551set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9552{
9553 struct dwarf2_offset_and_type **slot, ofs;
9554
9555 die->type = type;
9556
9557 if (cu->per_cu == NULL)
9558 return;
9559
9560 if (cu->per_cu->type_hash == NULL)
9561 cu->per_cu->type_hash
9562 = htab_create_alloc_ex (cu->header.length / 24,
9563 offset_and_type_hash,
9564 offset_and_type_eq,
9565 NULL,
9566 &cu->objfile->objfile_obstack,
9567 hashtab_obstack_allocate,
9568 dummy_obstack_deallocate);
9569
9570 ofs.offset = die->offset;
9571 ofs.type = type;
9572 slot = (struct dwarf2_offset_and_type **)
9573 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9574 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9575 **slot = ofs;
9576}
9577
1c379e20
DJ
9578/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9579 have a saved type. */
9580
9581static struct type *
9582get_die_type (struct die_info *die, htab_t type_hash)
9583{
9584 struct dwarf2_offset_and_type *slot, ofs;
9585
9586 ofs.offset = die->offset;
9587 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9588 if (slot)
9589 return slot->type;
9590 else
9591 return NULL;
9592}
9593
9594/* Restore the types of the DIE tree starting at START_DIE from the hash
9595 table saved in CU. */
9596
9597static void
9598reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9599{
9600 struct die_info *die;
9601
9602 if (cu->per_cu->type_hash == NULL)
9603 return;
9604
9605 for (die = start_die; die != NULL; die = die->sibling)
9606 {
9607 die->type = get_die_type (die, cu->per_cu->type_hash);
9608 if (die->child != NULL)
9609 reset_die_and_siblings_types (die->child, cu);
9610 }
9611}
9612
10b3939b
DJ
9613/* Set the mark field in CU and in every other compilation unit in the
9614 cache that we must keep because we are keeping CU. */
9615
9616/* Add a dependence relationship from CU to REF_PER_CU. */
9617
9618static void
9619dwarf2_add_dependence (struct dwarf2_cu *cu,
9620 struct dwarf2_per_cu_data *ref_per_cu)
9621{
9622 void **slot;
9623
9624 if (cu->dependencies == NULL)
9625 cu->dependencies
9626 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9627 NULL, &cu->comp_unit_obstack,
9628 hashtab_obstack_allocate,
9629 dummy_obstack_deallocate);
9630
9631 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9632 if (*slot == NULL)
9633 *slot = ref_per_cu;
9634}
1c379e20 9635
ae038cb0
DJ
9636/* Set the mark field in CU and in every other compilation unit in the
9637 cache that we must keep because we are keeping CU. */
9638
10b3939b
DJ
9639static int
9640dwarf2_mark_helper (void **slot, void *data)
9641{
9642 struct dwarf2_per_cu_data *per_cu;
9643
9644 per_cu = (struct dwarf2_per_cu_data *) *slot;
9645 if (per_cu->cu->mark)
9646 return 1;
9647 per_cu->cu->mark = 1;
9648
9649 if (per_cu->cu->dependencies != NULL)
9650 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9651
9652 return 1;
9653}
9654
ae038cb0
DJ
9655static void
9656dwarf2_mark (struct dwarf2_cu *cu)
9657{
9658 if (cu->mark)
9659 return;
9660 cu->mark = 1;
10b3939b
DJ
9661 if (cu->dependencies != NULL)
9662 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
9663}
9664
9665static void
9666dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9667{
9668 while (per_cu)
9669 {
9670 per_cu->cu->mark = 0;
9671 per_cu = per_cu->cu->read_in_chain;
9672 }
72bf9492
DJ
9673}
9674
72bf9492
DJ
9675/* Trivial hash function for partial_die_info: the hash value of a DIE
9676 is its offset in .debug_info for this objfile. */
9677
9678static hashval_t
9679partial_die_hash (const void *item)
9680{
9681 const struct partial_die_info *part_die = item;
9682 return part_die->offset;
9683}
9684
9685/* Trivial comparison function for partial_die_info structures: two DIEs
9686 are equal if they have the same offset. */
9687
9688static int
9689partial_die_eq (const void *item_lhs, const void *item_rhs)
9690{
9691 const struct partial_die_info *part_die_lhs = item_lhs;
9692 const struct partial_die_info *part_die_rhs = item_rhs;
9693 return part_die_lhs->offset == part_die_rhs->offset;
9694}
9695
ae038cb0
DJ
9696static struct cmd_list_element *set_dwarf2_cmdlist;
9697static struct cmd_list_element *show_dwarf2_cmdlist;
9698
9699static void
9700set_dwarf2_cmd (char *args, int from_tty)
9701{
9702 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9703}
9704
9705static void
9706show_dwarf2_cmd (char *args, int from_tty)
9707{
9708 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9709}
9710
6502dd73
DJ
9711void _initialize_dwarf2_read (void);
9712
9713void
9714_initialize_dwarf2_read (void)
9715{
9716 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 9717
1bedd215
AC
9718 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
9719Set DWARF 2 specific variables.\n\
9720Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9721 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9722 0/*allow-unknown*/, &maintenance_set_cmdlist);
9723
1bedd215
AC
9724 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
9725Show DWARF 2 specific variables\n\
9726Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
9727 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9728 0/*allow-unknown*/, &maintenance_show_cmdlist);
9729
9730 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
9731 &dwarf2_max_cache_age, _("\
9732Set the upper bound on the age of cached dwarf2 compilation units."), _("\
9733Show the upper bound on the age of cached dwarf2 compilation units."), _("\
9734A higher limit means that cached compilation units will be stored\n\
9735in memory longer, and more total memory will be used. Zero disables\n\
9736caching, which can slow down startup."),
2c5b56ce 9737 NULL,
920d2a44 9738 show_dwarf2_max_cache_age,
2c5b56ce 9739 &set_dwarf2_cmdlist,
ae038cb0 9740 &show_dwarf2_cmdlist);
6502dd73 9741}