]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
* symfile.c (set_initial_language): Update.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4c38e0a4 4 2004, 2005, 2006, 2007, 2008, 2009, 2010
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
4c2df51b 56
c906108c
SS
57#include <fcntl.h>
58#include "gdb_string.h"
4bdf3d34 59#include "gdb_assert.h"
c906108c 60#include <sys/types.h>
233a11ab
CS
61#ifdef HAVE_ZLIB_H
62#include <zlib.h>
63#endif
dce234bc
PP
64#ifdef HAVE_MMAP
65#include <sys/mman.h>
85d9bd0e
TT
66#ifndef MAP_FAILED
67#define MAP_FAILED ((void *) -1)
68#endif
dce234bc 69#endif
d8151005 70
107d2387 71#if 0
357e46e7 72/* .debug_info header for a compilation unit
c906108c
SS
73 Because of alignment constraints, this structure has padding and cannot
74 be mapped directly onto the beginning of the .debug_info section. */
75typedef struct comp_unit_header
76 {
77 unsigned int length; /* length of the .debug_info
78 contribution */
79 unsigned short version; /* version number -- 2 for DWARF
80 version 2 */
81 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
82 unsigned char addr_size; /* byte size of an address -- 4 */
83 }
84_COMP_UNIT_HEADER;
85#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 86#endif
c906108c 87
c906108c
SS
88/* .debug_line statement program prologue
89 Because of alignment constraints, this structure has padding and cannot
90 be mapped directly onto the beginning of the .debug_info section. */
91typedef struct statement_prologue
92 {
93 unsigned int total_length; /* byte length of the statement
94 information */
95 unsigned short version; /* version number -- 2 for DWARF
96 version 2 */
97 unsigned int prologue_length; /* # bytes between prologue &
98 stmt program */
99 unsigned char minimum_instruction_length; /* byte size of
100 smallest instr */
101 unsigned char default_is_stmt; /* initial value of is_stmt
102 register */
103 char line_base;
104 unsigned char line_range;
105 unsigned char opcode_base; /* number assigned to first special
106 opcode */
107 unsigned char *standard_opcode_lengths;
108 }
109_STATEMENT_PROLOGUE;
110
d97bc12b
DE
111/* When non-zero, dump DIEs after they are read in. */
112static int dwarf2_die_debug = 0;
113
dce234bc
PP
114static int pagesize;
115
df8a16a1
DJ
116/* When set, the file that we're processing is known to have debugging
117 info for C++ namespaces. GCC 3.3.x did not produce this information,
118 but later versions do. */
119
120static int processing_has_namespace_info;
121
6502dd73
DJ
122static const struct objfile_data *dwarf2_objfile_data_key;
123
dce234bc
PP
124struct dwarf2_section_info
125{
126 asection *asection;
127 gdb_byte *buffer;
128 bfd_size_type size;
129 int was_mmapped;
be391dca
TT
130 /* True if we have tried to read this section. */
131 int readin;
dce234bc
PP
132};
133
9291a0cd
TT
134/* All offsets in the index are of this type. It must be
135 architecture-independent. */
136typedef uint32_t offset_type;
137
138DEF_VEC_I (offset_type);
139
140/* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142struct mapped_index
143{
144 /* The total length of the buffer. */
145 off_t total_size;
146 /* A pointer to the address table data. */
147 const gdb_byte *address_table;
148 /* Size of the address table data in bytes. */
149 offset_type address_table_size;
150 /* The hash table. */
151 const offset_type *index_table;
152 /* Size in slots, each slot is 2 offset_types. */
153 offset_type index_table_slots;
154 /* A pointer to the constant pool. */
155 const char *constant_pool;
156};
157
158typedef struct dwarf2_per_cu_data *dwarf2_per_cu_data_ptr;
159DEF_VEC_P (dwarf2_per_cu_data_ptr);
160
6502dd73
DJ
161struct dwarf2_per_objfile
162{
dce234bc
PP
163 struct dwarf2_section_info info;
164 struct dwarf2_section_info abbrev;
165 struct dwarf2_section_info line;
dce234bc
PP
166 struct dwarf2_section_info loc;
167 struct dwarf2_section_info macinfo;
168 struct dwarf2_section_info str;
169 struct dwarf2_section_info ranges;
348e048f 170 struct dwarf2_section_info types;
dce234bc
PP
171 struct dwarf2_section_info frame;
172 struct dwarf2_section_info eh_frame;
9291a0cd 173 struct dwarf2_section_info gdb_index;
ae038cb0 174
be391dca
TT
175 /* Back link. */
176 struct objfile *objfile;
177
10b3939b
DJ
178 /* A list of all the compilation units. This is used to locate
179 the target compilation unit of a particular reference. */
ae038cb0
DJ
180 struct dwarf2_per_cu_data **all_comp_units;
181
182 /* The number of compilation units in ALL_COMP_UNITS. */
183 int n_comp_units;
184
185 /* A chain of compilation units that are currently read in, so that
186 they can be freed later. */
187 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 188
348e048f
DE
189 /* A table mapping .debug_types signatures to its signatured_type entry.
190 This is NULL if the .debug_types section hasn't been read in yet. */
191 htab_t signatured_types;
192
72dca2f5
FR
193 /* A flag indicating wether this objfile has a section loaded at a
194 VMA of 0. */
195 int has_section_at_zero;
9291a0cd
TT
196
197 /* True if we are using the mapped index. */
198 unsigned char using_index;
199
200 /* The mapped index. */
201 struct mapped_index *index_table;
6502dd73
DJ
202};
203
204static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c
SS
205
206/* names of the debugging sections */
207
233a11ab
CS
208/* Note that if the debugging section has been compressed, it might
209 have a name like .zdebug_info. */
210
211#define INFO_SECTION "debug_info"
212#define ABBREV_SECTION "debug_abbrev"
213#define LINE_SECTION "debug_line"
233a11ab
CS
214#define LOC_SECTION "debug_loc"
215#define MACINFO_SECTION "debug_macinfo"
216#define STR_SECTION "debug_str"
217#define RANGES_SECTION "debug_ranges"
348e048f 218#define TYPES_SECTION "debug_types"
233a11ab
CS
219#define FRAME_SECTION "debug_frame"
220#define EH_FRAME_SECTION "eh_frame"
9291a0cd 221#define GDB_INDEX_SECTION "gdb_index"
c906108c
SS
222
223/* local data types */
224
57349743
JB
225/* We hold several abbreviation tables in memory at the same time. */
226#ifndef ABBREV_HASH_SIZE
227#define ABBREV_HASH_SIZE 121
228#endif
229
107d2387
AC
230/* The data in a compilation unit header, after target2host
231 translation, looks like this. */
c906108c 232struct comp_unit_head
a738430d 233{
c764a876 234 unsigned int length;
a738430d 235 short version;
a738430d
MK
236 unsigned char addr_size;
237 unsigned char signed_addr_p;
9cbfa09e 238 unsigned int abbrev_offset;
57349743 239
a738430d
MK
240 /* Size of file offsets; either 4 or 8. */
241 unsigned int offset_size;
57349743 242
a738430d
MK
243 /* Size of the length field; either 4 or 12. */
244 unsigned int initial_length_size;
57349743 245
a738430d
MK
246 /* Offset to the first byte of this compilation unit header in the
247 .debug_info section, for resolving relative reference dies. */
248 unsigned int offset;
57349743 249
d00adf39
DE
250 /* Offset to first die in this cu from the start of the cu.
251 This will be the first byte following the compilation unit header. */
252 unsigned int first_die_offset;
a738430d 253};
c906108c 254
e7c27a73
DJ
255/* Internal state when decoding a particular compilation unit. */
256struct dwarf2_cu
257{
258 /* The objfile containing this compilation unit. */
259 struct objfile *objfile;
260
d00adf39 261 /* The header of the compilation unit. */
e7c27a73 262 struct comp_unit_head header;
e142c38c 263
d00adf39
DE
264 /* Base address of this compilation unit. */
265 CORE_ADDR base_address;
266
267 /* Non-zero if base_address has been set. */
268 int base_known;
269
e142c38c
DJ
270 struct function_range *first_fn, *last_fn, *cached_fn;
271
272 /* The language we are debugging. */
273 enum language language;
274 const struct language_defn *language_defn;
275
b0f35d58
DL
276 const char *producer;
277
e142c38c
DJ
278 /* The generic symbol table building routines have separate lists for
279 file scope symbols and all all other scopes (local scopes). So
280 we need to select the right one to pass to add_symbol_to_list().
281 We do it by keeping a pointer to the correct list in list_in_scope.
282
283 FIXME: The original dwarf code just treated the file scope as the
284 first local scope, and all other local scopes as nested local
285 scopes, and worked fine. Check to see if we really need to
286 distinguish these in buildsym.c. */
287 struct pending **list_in_scope;
288
f3dd6933
DJ
289 /* DWARF abbreviation table associated with this compilation unit. */
290 struct abbrev_info **dwarf2_abbrevs;
291
292 /* Storage for the abbrev table. */
293 struct obstack abbrev_obstack;
72bf9492
DJ
294
295 /* Hash table holding all the loaded partial DIEs. */
296 htab_t partial_dies;
297
298 /* Storage for things with the same lifetime as this read-in compilation
299 unit, including partial DIEs. */
300 struct obstack comp_unit_obstack;
301
ae038cb0
DJ
302 /* When multiple dwarf2_cu structures are living in memory, this field
303 chains them all together, so that they can be released efficiently.
304 We will probably also want a generation counter so that most-recently-used
305 compilation units are cached... */
306 struct dwarf2_per_cu_data *read_in_chain;
307
308 /* Backchain to our per_cu entry if the tree has been built. */
309 struct dwarf2_per_cu_data *per_cu;
310
f792889a
DJ
311 /* Pointer to the die -> type map. Although it is stored
312 permanently in per_cu, we copy it here to avoid double
313 indirection. */
314 htab_t type_hash;
315
ae038cb0
DJ
316 /* How many compilation units ago was this CU last referenced? */
317 int last_used;
318
10b3939b 319 /* A hash table of die offsets for following references. */
51545339 320 htab_t die_hash;
10b3939b
DJ
321
322 /* Full DIEs if read in. */
323 struct die_info *dies;
324
325 /* A set of pointers to dwarf2_per_cu_data objects for compilation
326 units referenced by this one. Only set during full symbol processing;
327 partial symbol tables do not have dependencies. */
328 htab_t dependencies;
329
cb1df416
DJ
330 /* Header data from the line table, during full symbol processing. */
331 struct line_header *line_header;
332
ae038cb0
DJ
333 /* Mark used when releasing cached dies. */
334 unsigned int mark : 1;
335
336 /* This flag will be set if this compilation unit might include
337 inter-compilation-unit references. */
338 unsigned int has_form_ref_addr : 1;
339
72bf9492
DJ
340 /* This flag will be set if this compilation unit includes any
341 DW_TAG_namespace DIEs. If we know that there are explicit
342 DIEs for namespaces, we don't need to try to infer them
343 from mangled names. */
344 unsigned int has_namespace_info : 1;
e7c27a73
DJ
345};
346
9291a0cd
TT
347/* When using the index (and thus not using psymtabs), each CU has an
348 object of this type. This is used to hold information needed by
349 the various "quick" methods. */
350struct dwarf2_per_cu_quick_data
351{
352 /* The line table. This can be NULL if there was no line table. */
353 struct line_header *lines;
354
355 /* The file names from the line table. */
356 const char **file_names;
357 /* The file names from the line table after being run through
358 gdb_realpath. */
359 const char **full_names;
360
361 /* The corresponding symbol table. This is NULL if symbols for this
362 CU have not yet been read. */
363 struct symtab *symtab;
364
365 /* A temporary mark bit used when iterating over all CUs in
366 expand_symtabs_matching. */
367 unsigned int mark : 1;
368
369 /* True if we've tried to read the line table. */
370 unsigned int read_lines : 1;
371};
372
10b3939b
DJ
373/* Persistent data held for a compilation unit, even when not
374 processing it. We put a pointer to this structure in the
375 read_symtab_private field of the psymtab. If we encounter
376 inter-compilation-unit references, we also maintain a sorted
377 list of all compilation units. */
378
ae038cb0
DJ
379struct dwarf2_per_cu_data
380{
348e048f 381 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 382 bytes should suffice to store the length of any compilation unit
45452591
DE
383 - if it doesn't, GDB will fall over anyway.
384 NOTE: Unlike comp_unit_head.length, this length includes
385 initial_length_size. */
c764a876 386 unsigned int offset;
348e048f 387 unsigned int length : 29;
ae038cb0
DJ
388
389 /* Flag indicating this compilation unit will be read in before
390 any of the current compilation units are processed. */
c764a876 391 unsigned int queued : 1;
ae038cb0 392
5afb4e99
DJ
393 /* This flag will be set if we need to load absolutely all DIEs
394 for this compilation unit, instead of just the ones we think
395 are interesting. It gets set if we look for a DIE in the
396 hash table and don't find it. */
397 unsigned int load_all_dies : 1;
398
348e048f
DE
399 /* Non-zero if this CU is from .debug_types.
400 Otherwise it's from .debug_info. */
401 unsigned int from_debug_types : 1;
402
17ea53c3
JK
403 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
404 of the CU cache it gets reset to NULL again. */
ae038cb0 405 struct dwarf2_cu *cu;
1c379e20
DJ
406
407 /* If full symbols for this CU have been read in, then this field
408 holds a map of DIE offsets to types. It isn't always possible
409 to reconstruct this information later, so we have to preserve
410 it. */
1c379e20 411 htab_t type_hash;
10b3939b 412
9291a0cd
TT
413 /* The corresponding objfile. */
414 struct objfile *objfile;
415
416 /* When using partial symbol tables, the 'psymtab' field is active.
417 Otherwise the 'quick' field is active. */
418 union
419 {
420 /* The partial symbol table associated with this compilation unit,
421 or NULL for partial units (which do not have an associated
422 symtab). */
423 struct partial_symtab *psymtab;
424
425 /* Data needed by the "quick" functions. */
426 struct dwarf2_per_cu_quick_data *quick;
427 } v;
ae038cb0
DJ
428};
429
348e048f
DE
430/* Entry in the signatured_types hash table. */
431
432struct signatured_type
433{
434 ULONGEST signature;
435
436 /* Offset in .debug_types of the TU (type_unit) for this type. */
437 unsigned int offset;
438
439 /* Offset in .debug_types of the type defined by this TU. */
440 unsigned int type_offset;
441
442 /* The CU(/TU) of this type. */
443 struct dwarf2_per_cu_data per_cu;
444};
445
93311388
DE
446/* Struct used to pass misc. parameters to read_die_and_children, et. al.
447 which are used for both .debug_info and .debug_types dies.
448 All parameters here are unchanging for the life of the call.
449 This struct exists to abstract away the constant parameters of
450 die reading. */
451
452struct die_reader_specs
453{
454 /* The bfd of this objfile. */
455 bfd* abfd;
456
457 /* The CU of the DIE we are parsing. */
458 struct dwarf2_cu *cu;
459
460 /* Pointer to start of section buffer.
461 This is either the start of .debug_info or .debug_types. */
462 const gdb_byte *buffer;
463};
464
debd256d
JB
465/* The line number information for a compilation unit (found in the
466 .debug_line section) begins with a "statement program header",
467 which contains the following information. */
468struct line_header
469{
470 unsigned int total_length;
471 unsigned short version;
472 unsigned int header_length;
473 unsigned char minimum_instruction_length;
2dc7f7b3 474 unsigned char maximum_ops_per_instruction;
debd256d
JB
475 unsigned char default_is_stmt;
476 int line_base;
477 unsigned char line_range;
478 unsigned char opcode_base;
479
480 /* standard_opcode_lengths[i] is the number of operands for the
481 standard opcode whose value is i. This means that
482 standard_opcode_lengths[0] is unused, and the last meaningful
483 element is standard_opcode_lengths[opcode_base - 1]. */
484 unsigned char *standard_opcode_lengths;
485
486 /* The include_directories table. NOTE! These strings are not
487 allocated with xmalloc; instead, they are pointers into
488 debug_line_buffer. If you try to free them, `free' will get
489 indigestion. */
490 unsigned int num_include_dirs, include_dirs_size;
491 char **include_dirs;
492
493 /* The file_names table. NOTE! These strings are not allocated
494 with xmalloc; instead, they are pointers into debug_line_buffer.
495 Don't try to free them directly. */
496 unsigned int num_file_names, file_names_size;
497 struct file_entry
c906108c 498 {
debd256d
JB
499 char *name;
500 unsigned int dir_index;
501 unsigned int mod_time;
502 unsigned int length;
aaa75496 503 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 504 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
505 } *file_names;
506
507 /* The start and end of the statement program following this
6502dd73 508 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 509 gdb_byte *statement_program_start, *statement_program_end;
debd256d 510};
c906108c
SS
511
512/* When we construct a partial symbol table entry we only
513 need this much information. */
514struct partial_die_info
515 {
72bf9492 516 /* Offset of this DIE. */
c906108c 517 unsigned int offset;
72bf9492
DJ
518
519 /* DWARF-2 tag for this DIE. */
520 ENUM_BITFIELD(dwarf_tag) tag : 16;
521
72bf9492
DJ
522 /* Assorted flags describing the data found in this DIE. */
523 unsigned int has_children : 1;
524 unsigned int is_external : 1;
525 unsigned int is_declaration : 1;
526 unsigned int has_type : 1;
527 unsigned int has_specification : 1;
528 unsigned int has_pc_info : 1;
529
530 /* Flag set if the SCOPE field of this structure has been
531 computed. */
532 unsigned int scope_set : 1;
533
fa4028e9
JB
534 /* Flag set if the DIE has a byte_size attribute. */
535 unsigned int has_byte_size : 1;
536
72bf9492 537 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 538 sometimes a default name for unnamed DIEs. */
c906108c 539 char *name;
72bf9492
DJ
540
541 /* The scope to prepend to our children. This is generally
542 allocated on the comp_unit_obstack, so will disappear
543 when this compilation unit leaves the cache. */
544 char *scope;
545
546 /* The location description associated with this DIE, if any. */
547 struct dwarf_block *locdesc;
548
549 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
550 CORE_ADDR lowpc;
551 CORE_ADDR highpc;
72bf9492 552
93311388 553 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 554 DW_AT_sibling, if any. */
fe1b8b76 555 gdb_byte *sibling;
72bf9492
DJ
556
557 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
558 DW_AT_specification (or DW_AT_abstract_origin or
559 DW_AT_extension). */
560 unsigned int spec_offset;
561
562 /* Pointers to this DIE's parent, first child, and next sibling,
563 if any. */
564 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
565 };
566
567/* This data structure holds the information of an abbrev. */
568struct abbrev_info
569 {
570 unsigned int number; /* number identifying abbrev */
571 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
572 unsigned short has_children; /* boolean */
573 unsigned short num_attrs; /* number of attributes */
c906108c
SS
574 struct attr_abbrev *attrs; /* an array of attribute descriptions */
575 struct abbrev_info *next; /* next in chain */
576 };
577
578struct attr_abbrev
579 {
9d25dd43
DE
580 ENUM_BITFIELD(dwarf_attribute) name : 16;
581 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
582 };
583
b60c80d6
DJ
584/* Attributes have a name and a value */
585struct attribute
586 {
9d25dd43 587 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
588 ENUM_BITFIELD(dwarf_form) form : 15;
589
590 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
591 field should be in u.str (existing only for DW_STRING) but it is kept
592 here for better struct attribute alignment. */
593 unsigned int string_is_canonical : 1;
594
b60c80d6
DJ
595 union
596 {
597 char *str;
598 struct dwarf_block *blk;
43bbcdc2
PH
599 ULONGEST unsnd;
600 LONGEST snd;
b60c80d6 601 CORE_ADDR addr;
348e048f 602 struct signatured_type *signatured_type;
b60c80d6
DJ
603 }
604 u;
605 };
606
c906108c
SS
607/* This data structure holds a complete die structure. */
608struct die_info
609 {
76815b17
DE
610 /* DWARF-2 tag for this DIE. */
611 ENUM_BITFIELD(dwarf_tag) tag : 16;
612
613 /* Number of attributes */
614 unsigned short num_attrs;
615
616 /* Abbrev number */
617 unsigned int abbrev;
618
93311388 619 /* Offset in .debug_info or .debug_types section. */
76815b17 620 unsigned int offset;
78ba4af6
JB
621
622 /* The dies in a compilation unit form an n-ary tree. PARENT
623 points to this die's parent; CHILD points to the first child of
624 this node; and all the children of a given node are chained
625 together via their SIBLING fields, terminated by a die whose
626 tag is zero. */
639d11d3
DC
627 struct die_info *child; /* Its first child, if any. */
628 struct die_info *sibling; /* Its next sibling, if any. */
629 struct die_info *parent; /* Its parent, if any. */
c906108c 630
b60c80d6
DJ
631 /* An array of attributes, with NUM_ATTRS elements. There may be
632 zero, but it's not common and zero-sized arrays are not
633 sufficiently portable C. */
634 struct attribute attrs[1];
c906108c
SS
635 };
636
5fb290d7
DJ
637struct function_range
638{
639 const char *name;
640 CORE_ADDR lowpc, highpc;
641 int seen_line;
642 struct function_range *next;
643};
644
c906108c
SS
645/* Get at parts of an attribute structure */
646
647#define DW_STRING(attr) ((attr)->u.str)
8285870a 648#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
649#define DW_UNSND(attr) ((attr)->u.unsnd)
650#define DW_BLOCK(attr) ((attr)->u.blk)
651#define DW_SND(attr) ((attr)->u.snd)
652#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 653#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c
SS
654
655/* Blocks are a bunch of untyped bytes. */
656struct dwarf_block
657 {
658 unsigned int size;
fe1b8b76 659 gdb_byte *data;
c906108c
SS
660 };
661
c906108c
SS
662#ifndef ATTR_ALLOC_CHUNK
663#define ATTR_ALLOC_CHUNK 4
664#endif
665
c906108c
SS
666/* Allocate fields for structs, unions and enums in this size. */
667#ifndef DW_FIELD_ALLOC_CHUNK
668#define DW_FIELD_ALLOC_CHUNK 4
669#endif
670
c906108c
SS
671/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
672 but this would require a corresponding change in unpack_field_as_long
673 and friends. */
674static int bits_per_byte = 8;
675
676/* The routines that read and process dies for a C struct or C++ class
677 pass lists of data member fields and lists of member function fields
678 in an instance of a field_info structure, as defined below. */
679struct field_info
c5aa993b
JM
680 {
681 /* List of data member and baseclasses fields. */
682 struct nextfield
683 {
684 struct nextfield *next;
685 int accessibility;
686 int virtuality;
687 struct field field;
688 }
7d0ccb61 689 *fields, *baseclasses;
c906108c 690
7d0ccb61 691 /* Number of fields (including baseclasses). */
c5aa993b 692 int nfields;
c906108c 693
c5aa993b
JM
694 /* Number of baseclasses. */
695 int nbaseclasses;
c906108c 696
c5aa993b
JM
697 /* Set if the accesibility of one of the fields is not public. */
698 int non_public_fields;
c906108c 699
c5aa993b
JM
700 /* Member function fields array, entries are allocated in the order they
701 are encountered in the object file. */
702 struct nextfnfield
703 {
704 struct nextfnfield *next;
705 struct fn_field fnfield;
706 }
707 *fnfields;
c906108c 708
c5aa993b
JM
709 /* Member function fieldlist array, contains name of possibly overloaded
710 member function, number of overloaded member functions and a pointer
711 to the head of the member function field chain. */
712 struct fnfieldlist
713 {
714 char *name;
715 int length;
716 struct nextfnfield *head;
717 }
718 *fnfieldlists;
c906108c 719
c5aa993b
JM
720 /* Number of entries in the fnfieldlists array. */
721 int nfnfields;
98751a41
JK
722
723 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
724 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
725 struct typedef_field_list
726 {
727 struct typedef_field field;
728 struct typedef_field_list *next;
729 }
730 *typedef_field_list;
731 unsigned typedef_field_list_count;
c5aa993b 732 };
c906108c 733
10b3939b
DJ
734/* One item on the queue of compilation units to read in full symbols
735 for. */
736struct dwarf2_queue_item
737{
738 struct dwarf2_per_cu_data *per_cu;
739 struct dwarf2_queue_item *next;
740};
741
742/* The current queue. */
743static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
744
ae038cb0
DJ
745/* Loaded secondary compilation units are kept in memory until they
746 have not been referenced for the processing of this many
747 compilation units. Set this to zero to disable caching. Cache
748 sizes of up to at least twenty will improve startup time for
749 typical inter-CU-reference binaries, at an obvious memory cost. */
750static int dwarf2_max_cache_age = 5;
920d2a44
AC
751static void
752show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
753 struct cmd_list_element *c, const char *value)
754{
755 fprintf_filtered (file, _("\
756The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
757 value);
758}
759
ae038cb0 760
c906108c
SS
761/* Various complaints about symbol reading that don't abort the process */
762
4d3c2250
KB
763static void
764dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 765{
4d3c2250 766 complaint (&symfile_complaints,
e2e0b3e5 767 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
768}
769
25e43795
DJ
770static void
771dwarf2_debug_line_missing_file_complaint (void)
772{
773 complaint (&symfile_complaints,
774 _(".debug_line section has line data without a file"));
775}
776
59205f5a
JB
777static void
778dwarf2_debug_line_missing_end_sequence_complaint (void)
779{
780 complaint (&symfile_complaints,
781 _(".debug_line section has line program sequence without an end"));
782}
783
4d3c2250
KB
784static void
785dwarf2_complex_location_expr_complaint (void)
2e276125 786{
e2e0b3e5 787 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
788}
789
4d3c2250
KB
790static void
791dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
792 int arg3)
2e276125 793{
4d3c2250 794 complaint (&symfile_complaints,
e2e0b3e5 795 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
796 arg2, arg3);
797}
798
799static void
800dwarf2_macros_too_long_complaint (void)
2e276125 801{
4d3c2250 802 complaint (&symfile_complaints,
e2e0b3e5 803 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
804}
805
806static void
807dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 808{
4d3c2250 809 complaint (&symfile_complaints,
e2e0b3e5 810 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
811 arg1);
812}
813
814static void
815dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 816{
4d3c2250 817 complaint (&symfile_complaints,
e2e0b3e5 818 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 819}
c906108c 820
c906108c
SS
821/* local function prototypes */
822
4efb68b1 823static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 824
aaa75496
JB
825static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
826 struct objfile *);
827
828static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
d85a05f0 829 struct die_info *,
aaa75496
JB
830 struct partial_symtab *);
831
c67a9c90 832static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 833
72bf9492
DJ
834static void scan_partial_symbols (struct partial_die_info *,
835 CORE_ADDR *, CORE_ADDR *,
5734ee8b 836 int, struct dwarf2_cu *);
c906108c 837
72bf9492
DJ
838static void add_partial_symbol (struct partial_die_info *,
839 struct dwarf2_cu *);
63d06c5c 840
72bf9492
DJ
841static void add_partial_namespace (struct partial_die_info *pdi,
842 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 843 int need_pc, struct dwarf2_cu *cu);
63d06c5c 844
5d7cb8df
JK
845static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
846 CORE_ADDR *highpc, int need_pc,
847 struct dwarf2_cu *cu);
848
72bf9492
DJ
849static void add_partial_enumeration (struct partial_die_info *enum_pdi,
850 struct dwarf2_cu *cu);
91c24f0a 851
bc30ff58
JB
852static void add_partial_subprogram (struct partial_die_info *pdi,
853 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 854 int need_pc, struct dwarf2_cu *cu);
bc30ff58 855
fe1b8b76 856static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
857 gdb_byte *buffer, gdb_byte *info_ptr,
858 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 859
a14ed312 860static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 861
a14ed312 862static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 863
e7c27a73 864static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 865
f3dd6933 866static void dwarf2_free_abbrev_table (void *);
c906108c 867
fe1b8b76 868static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 869 struct dwarf2_cu *);
72bf9492 870
57349743 871static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 872 struct dwarf2_cu *);
c906108c 873
93311388
DE
874static struct partial_die_info *load_partial_dies (bfd *,
875 gdb_byte *, gdb_byte *,
876 int, struct dwarf2_cu *);
72bf9492 877
fe1b8b76 878static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
879 struct abbrev_info *abbrev,
880 unsigned int, bfd *,
881 gdb_byte *, gdb_byte *,
882 struct dwarf2_cu *);
c906108c 883
c764a876 884static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 885 struct dwarf2_cu *);
72bf9492
DJ
886
887static void fixup_partial_die (struct partial_die_info *,
888 struct dwarf2_cu *);
889
fe1b8b76
JB
890static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
891 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 892
fe1b8b76
JB
893static gdb_byte *read_attribute_value (struct attribute *, unsigned,
894 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 895
fe1b8b76 896static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 897
fe1b8b76 898static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 899
fe1b8b76 900static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 901
fe1b8b76 902static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 903
93311388 904static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 905
fe1b8b76 906static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 907 unsigned int *);
c906108c 908
c764a876
DE
909static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
910
911static LONGEST read_checked_initial_length_and_offset
912 (bfd *, gdb_byte *, const struct comp_unit_head *,
913 unsigned int *, unsigned int *);
613e1657 914
fe1b8b76 915static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
916 unsigned int *);
917
918static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 919
fe1b8b76 920static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 921
fe1b8b76 922static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 923
fe1b8b76
JB
924static char *read_indirect_string (bfd *, gdb_byte *,
925 const struct comp_unit_head *,
926 unsigned int *);
4bdf3d34 927
fe1b8b76 928static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 929
fe1b8b76 930static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 931
fe1b8b76 932static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 933
e142c38c 934static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 935
e142c38c
DJ
936static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
937 struct dwarf2_cu *);
c906108c 938
348e048f
DE
939static struct attribute *dwarf2_attr_no_follow (struct die_info *,
940 unsigned int,
941 struct dwarf2_cu *);
942
05cf31d1
JB
943static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
944 struct dwarf2_cu *cu);
945
e142c38c 946static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 947
e142c38c 948static struct die_info *die_specification (struct die_info *die,
f2f0e013 949 struct dwarf2_cu **);
63d06c5c 950
debd256d
JB
951static void free_line_header (struct line_header *lh);
952
aaa75496
JB
953static void add_file_name (struct line_header *, char *, unsigned int,
954 unsigned int, unsigned int);
955
debd256d
JB
956static struct line_header *(dwarf_decode_line_header
957 (unsigned int offset,
e7c27a73 958 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
959
960static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 961 struct dwarf2_cu *, struct partial_symtab *);
c906108c 962
4f1520fb 963static void dwarf2_start_subfile (char *, char *, char *);
c906108c 964
a14ed312 965static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 966 struct dwarf2_cu *);
c906108c 967
a14ed312 968static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 969 struct dwarf2_cu *);
c906108c 970
2df3850c
JM
971static void dwarf2_const_value_data (struct attribute *attr,
972 struct symbol *sym,
973 int bits);
974
e7c27a73 975static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 976
b4ba55a1
JB
977static int need_gnat_info (struct dwarf2_cu *);
978
979static struct type *die_descriptive_type (struct die_info *, struct dwarf2_cu *);
980
981static void set_descriptive_type (struct type *, struct die_info *,
982 struct dwarf2_cu *);
983
e7c27a73
DJ
984static struct type *die_containing_type (struct die_info *,
985 struct dwarf2_cu *);
c906108c 986
e7c27a73 987static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 988
f792889a 989static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 990
086ed43d 991static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 992
6e70227d 993static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
994 const char *suffix, int physname,
995 struct dwarf2_cu *cu);
63d06c5c 996
e7c27a73 997static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 998
348e048f
DE
999static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1000
e7c27a73 1001static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1002
e7c27a73 1003static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1004
ff013f42
JK
1005static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1006 struct dwarf2_cu *, struct partial_symtab *);
1007
a14ed312 1008static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1009 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1010 struct partial_symtab *);
c906108c 1011
fae299cd
DC
1012static void get_scope_pc_bounds (struct die_info *,
1013 CORE_ADDR *, CORE_ADDR *,
1014 struct dwarf2_cu *);
1015
801e3a5b
JB
1016static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1017 CORE_ADDR, struct dwarf2_cu *);
1018
a14ed312 1019static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1020 struct dwarf2_cu *);
c906108c 1021
a14ed312 1022static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1023 struct type *, struct dwarf2_cu *);
c906108c 1024
a14ed312 1025static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1026 struct die_info *, struct type *,
e7c27a73 1027 struct dwarf2_cu *);
c906108c 1028
a14ed312 1029static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 1030 struct type *, struct dwarf2_cu *);
c906108c 1031
134d01f1 1032static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1033
e7c27a73 1034static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1035
e7c27a73 1036static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1037
5d7cb8df
JK
1038static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1039
27aa8d6a
SW
1040static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1041
f55ee35c
JK
1042static struct type *read_module_type (struct die_info *die,
1043 struct dwarf2_cu *cu);
1044
38d518c9 1045static const char *namespace_name (struct die_info *die,
e142c38c 1046 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1047
134d01f1 1048static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1049
e7c27a73 1050static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1051
6e70227d 1052static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1053 struct dwarf2_cu *);
1054
93311388 1055static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1056
93311388
DE
1057static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1058 gdb_byte *info_ptr,
d97bc12b
DE
1059 gdb_byte **new_info_ptr,
1060 struct die_info *parent);
1061
93311388
DE
1062static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1063 gdb_byte *info_ptr,
fe1b8b76 1064 gdb_byte **new_info_ptr,
639d11d3
DC
1065 struct die_info *parent);
1066
93311388
DE
1067static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1068 gdb_byte *info_ptr,
fe1b8b76 1069 gdb_byte **new_info_ptr,
639d11d3
DC
1070 struct die_info *parent);
1071
93311388
DE
1072static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1073 struct die_info **, gdb_byte *,
1074 int *);
1075
e7c27a73 1076static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1077
71c25dea
TT
1078static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1079 struct obstack *);
1080
e142c38c 1081static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1082
e142c38c 1083static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1084 struct dwarf2_cu **);
9219021c 1085
a14ed312 1086static char *dwarf_tag_name (unsigned int);
c906108c 1087
a14ed312 1088static char *dwarf_attr_name (unsigned int);
c906108c 1089
a14ed312 1090static char *dwarf_form_name (unsigned int);
c906108c 1091
a14ed312 1092static char *dwarf_bool_name (unsigned int);
c906108c 1093
a14ed312 1094static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1095
1096#if 0
a14ed312 1097static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1098#endif
1099
f9aca02d 1100static struct die_info *sibling_die (struct die_info *);
c906108c 1101
d97bc12b
DE
1102static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1103
1104static void dump_die_for_error (struct die_info *);
1105
1106static void dump_die_1 (struct ui_file *, int level, int max_level,
1107 struct die_info *);
c906108c 1108
d97bc12b 1109/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1110
51545339 1111static void store_in_ref_table (struct die_info *,
10b3939b 1112 struct dwarf2_cu *);
c906108c 1113
93311388
DE
1114static int is_ref_attr (struct attribute *);
1115
c764a876 1116static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1117
43bbcdc2 1118static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1119
348e048f
DE
1120static struct die_info *follow_die_ref_or_sig (struct die_info *,
1121 struct attribute *,
1122 struct dwarf2_cu **);
1123
10b3939b
DJ
1124static struct die_info *follow_die_ref (struct die_info *,
1125 struct attribute *,
f2f0e013 1126 struct dwarf2_cu **);
c906108c 1127
348e048f
DE
1128static struct die_info *follow_die_sig (struct die_info *,
1129 struct attribute *,
1130 struct dwarf2_cu **);
1131
1132static void read_signatured_type_at_offset (struct objfile *objfile,
1133 unsigned int offset);
1134
1135static void read_signatured_type (struct objfile *,
1136 struct signatured_type *type_sig);
1137
c906108c
SS
1138/* memory allocation interface */
1139
7b5a2f43 1140static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1141
f3dd6933 1142static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1143
b60c80d6 1144static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1145
e142c38c 1146static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1147
e142c38c
DJ
1148static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1149 struct dwarf2_cu *);
5fb290d7 1150
2e276125 1151static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1152 char *, bfd *, struct dwarf2_cu *);
2e276125 1153
8e19ed76
PS
1154static int attr_form_is_block (struct attribute *);
1155
3690dd37
JB
1156static int attr_form_is_section_offset (struct attribute *);
1157
1158static int attr_form_is_constant (struct attribute *);
1159
93e7bd98
DJ
1160static void dwarf2_symbol_mark_computed (struct attribute *attr,
1161 struct symbol *sym,
1162 struct dwarf2_cu *cu);
4c2df51b 1163
93311388
DE
1164static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1165 struct abbrev_info *abbrev,
1166 struct dwarf2_cu *cu);
4bb7a0a7 1167
72bf9492
DJ
1168static void free_stack_comp_unit (void *);
1169
72bf9492
DJ
1170static hashval_t partial_die_hash (const void *item);
1171
1172static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1173
ae038cb0 1174static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1175 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1176
1177static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1178 (unsigned int offset, struct objfile *objfile);
ae038cb0 1179
93311388
DE
1180static struct dwarf2_cu *alloc_one_comp_unit (struct objfile *objfile);
1181
ae038cb0
DJ
1182static void free_one_comp_unit (void *);
1183
1184static void free_cached_comp_units (void *);
1185
1186static void age_cached_comp_units (void);
1187
1188static void free_one_cached_comp_unit (void *);
1189
f792889a
DJ
1190static struct type *set_die_type (struct die_info *, struct type *,
1191 struct dwarf2_cu *);
1c379e20 1192
ae038cb0
DJ
1193static void create_all_comp_units (struct objfile *);
1194
93311388
DE
1195static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1196 struct objfile *);
10b3939b
DJ
1197
1198static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1199
1200static void dwarf2_add_dependence (struct dwarf2_cu *,
1201 struct dwarf2_per_cu_data *);
1202
ae038cb0
DJ
1203static void dwarf2_mark (struct dwarf2_cu *);
1204
1205static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1206
f792889a 1207static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1208
9291a0cd
TT
1209static void dwarf2_release_queue (void *dummy);
1210
1211static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1212 struct objfile *objfile);
1213
1214static void process_queue (struct objfile *objfile);
1215
1216static void find_file_and_directory (struct die_info *die,
1217 struct dwarf2_cu *cu,
1218 char **name, char **comp_dir);
1219
1220static char *file_full_name (int file, struct line_header *lh,
1221 const char *comp_dir);
1222
1223static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1224 gdb_byte *info_ptr,
1225 gdb_byte *buffer,
1226 unsigned int buffer_size,
1227 bfd *abfd);
1228
1229static void init_cu_die_reader (struct die_reader_specs *reader,
1230 struct dwarf2_cu *cu);
1231
1232#if WORDS_BIGENDIAN
1233
1234/* Convert VALUE between big- and little-endian. */
1235static offset_type
1236byte_swap (offset_type value)
1237{
1238 offset_type result;
1239
1240 result = (value & 0xff) << 24;
1241 result |= (value & 0xff00) << 8;
1242 result |= (value & 0xff0000) >> 8;
1243 result |= (value & 0xff000000) >> 24;
1244 return result;
1245}
1246
1247#define MAYBE_SWAP(V) byte_swap (V)
1248
1249#else
1250#define MAYBE_SWAP(V) (V)
1251#endif /* WORDS_BIGENDIAN */
1252
1253/* The suffix for an index file. */
1254#define INDEX_SUFFIX ".gdb-index"
1255
c906108c
SS
1256/* Try to locate the sections we need for DWARF 2 debugging
1257 information and return true if we have enough to do something. */
1258
1259int
6502dd73 1260dwarf2_has_info (struct objfile *objfile)
c906108c 1261{
be391dca
TT
1262 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1263 if (!dwarf2_per_objfile)
1264 {
1265 /* Initialize per-objfile state. */
1266 struct dwarf2_per_objfile *data
1267 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1268
be391dca
TT
1269 memset (data, 0, sizeof (*data));
1270 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1271 dwarf2_per_objfile = data;
6502dd73 1272
be391dca
TT
1273 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1274 dwarf2_per_objfile->objfile = objfile;
1275 }
1276 return (dwarf2_per_objfile->info.asection != NULL
1277 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1278}
1279
233a11ab
CS
1280/* When loading sections, we can either look for ".<name>", or for
1281 * ".z<name>", which indicates a compressed section. */
1282
1283static int
dce234bc 1284section_is_p (const char *section_name, const char *name)
233a11ab 1285{
dce234bc
PP
1286 return (section_name[0] == '.'
1287 && (strcmp (section_name + 1, name) == 0
1288 || (section_name[1] == 'z'
1289 && strcmp (section_name + 2, name) == 0)));
233a11ab
CS
1290}
1291
c906108c
SS
1292/* This function is mapped across the sections and remembers the
1293 offset and size of each of the debugging sections we are interested
1294 in. */
1295
1296static void
72dca2f5 1297dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1298{
dce234bc 1299 if (section_is_p (sectp->name, INFO_SECTION))
c906108c 1300 {
dce234bc
PP
1301 dwarf2_per_objfile->info.asection = sectp;
1302 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1303 }
dce234bc 1304 else if (section_is_p (sectp->name, ABBREV_SECTION))
c906108c 1305 {
dce234bc
PP
1306 dwarf2_per_objfile->abbrev.asection = sectp;
1307 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1308 }
dce234bc 1309 else if (section_is_p (sectp->name, LINE_SECTION))
c906108c 1310 {
dce234bc
PP
1311 dwarf2_per_objfile->line.asection = sectp;
1312 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1313 }
dce234bc 1314 else if (section_is_p (sectp->name, LOC_SECTION))
c906108c 1315 {
dce234bc
PP
1316 dwarf2_per_objfile->loc.asection = sectp;
1317 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1318 }
dce234bc 1319 else if (section_is_p (sectp->name, MACINFO_SECTION))
c906108c 1320 {
dce234bc
PP
1321 dwarf2_per_objfile->macinfo.asection = sectp;
1322 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1323 }
dce234bc 1324 else if (section_is_p (sectp->name, STR_SECTION))
c906108c 1325 {
dce234bc
PP
1326 dwarf2_per_objfile->str.asection = sectp;
1327 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1328 }
dce234bc 1329 else if (section_is_p (sectp->name, FRAME_SECTION))
b6af0555 1330 {
dce234bc
PP
1331 dwarf2_per_objfile->frame.asection = sectp;
1332 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1333 }
dce234bc 1334 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
b6af0555 1335 {
3799ccc6 1336 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1337
3799ccc6
EZ
1338 if (aflag & SEC_HAS_CONTENTS)
1339 {
dce234bc
PP
1340 dwarf2_per_objfile->eh_frame.asection = sectp;
1341 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1342 }
b6af0555 1343 }
dce234bc 1344 else if (section_is_p (sectp->name, RANGES_SECTION))
af34e669 1345 {
dce234bc
PP
1346 dwarf2_per_objfile->ranges.asection = sectp;
1347 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1348 }
348e048f
DE
1349 else if (section_is_p (sectp->name, TYPES_SECTION))
1350 {
1351 dwarf2_per_objfile->types.asection = sectp;
1352 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1353 }
9291a0cd
TT
1354 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1355 {
1356 dwarf2_per_objfile->gdb_index.asection = sectp;
1357 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1358 }
dce234bc 1359
72dca2f5
FR
1360 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1361 && bfd_section_vma (abfd, sectp) == 0)
1362 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1363}
1364
dce234bc
PP
1365/* Decompress a section that was compressed using zlib. Store the
1366 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1367
1368static void
dce234bc
PP
1369zlib_decompress_section (struct objfile *objfile, asection *sectp,
1370 gdb_byte **outbuf, bfd_size_type *outsize)
1371{
1372 bfd *abfd = objfile->obfd;
1373#ifndef HAVE_ZLIB_H
1374 error (_("Support for zlib-compressed DWARF data (from '%s') "
1375 "is disabled in this copy of GDB"),
1376 bfd_get_filename (abfd));
1377#else
1378 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1379 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1380 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1381 bfd_size_type uncompressed_size;
1382 gdb_byte *uncompressed_buffer;
1383 z_stream strm;
1384 int rc;
1385 int header_size = 12;
1386
1387 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1388 || bfd_bread (compressed_buffer, compressed_size, abfd) != compressed_size)
1389 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1390 bfd_get_filename (abfd));
1391
1392 /* Read the zlib header. In this case, it should be "ZLIB" followed
1393 by the uncompressed section size, 8 bytes in big-endian order. */
1394 if (compressed_size < header_size
1395 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1396 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1397 bfd_get_filename (abfd));
1398 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1399 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1400 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1401 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1402 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1403 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1404 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1405 uncompressed_size += compressed_buffer[11];
1406
1407 /* It is possible the section consists of several compressed
1408 buffers concatenated together, so we uncompress in a loop. */
1409 strm.zalloc = NULL;
1410 strm.zfree = NULL;
1411 strm.opaque = NULL;
1412 strm.avail_in = compressed_size - header_size;
1413 strm.next_in = (Bytef*) compressed_buffer + header_size;
1414 strm.avail_out = uncompressed_size;
1415 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1416 uncompressed_size);
1417 rc = inflateInit (&strm);
1418 while (strm.avail_in > 0)
1419 {
1420 if (rc != Z_OK)
1421 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1422 bfd_get_filename (abfd), rc);
1423 strm.next_out = ((Bytef*) uncompressed_buffer
1424 + (uncompressed_size - strm.avail_out));
1425 rc = inflate (&strm, Z_FINISH);
1426 if (rc != Z_STREAM_END)
1427 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1428 bfd_get_filename (abfd), rc);
1429 rc = inflateReset (&strm);
1430 }
1431 rc = inflateEnd (&strm);
1432 if (rc != Z_OK
1433 || strm.avail_out != 0)
1434 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1435 bfd_get_filename (abfd), rc);
1436
affddf13 1437 do_cleanups (cleanup);
dce234bc
PP
1438 *outbuf = uncompressed_buffer;
1439 *outsize = uncompressed_size;
1440#endif
233a11ab
CS
1441}
1442
dce234bc
PP
1443/* Read the contents of the section SECTP from object file specified by
1444 OBJFILE, store info about the section into INFO.
1445 If the section is compressed, uncompress it before returning. */
c906108c 1446
dce234bc
PP
1447static void
1448dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1449{
dce234bc
PP
1450 bfd *abfd = objfile->obfd;
1451 asection *sectp = info->asection;
1452 gdb_byte *buf, *retbuf;
1453 unsigned char header[4];
c906108c 1454
be391dca
TT
1455 if (info->readin)
1456 return;
dce234bc
PP
1457 info->buffer = NULL;
1458 info->was_mmapped = 0;
be391dca 1459 info->readin = 1;
188dd5d6 1460
dce234bc
PP
1461 if (info->asection == NULL || info->size == 0)
1462 return;
c906108c 1463
dce234bc
PP
1464 /* Check if the file has a 4-byte header indicating compression. */
1465 if (info->size > sizeof (header)
1466 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1467 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1468 {
1469 /* Upon decompression, update the buffer and its size. */
1470 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1471 {
1472 zlib_decompress_section (objfile, sectp, &info->buffer,
1473 &info->size);
1474 return;
1475 }
1476 }
4bdf3d34 1477
dce234bc
PP
1478#ifdef HAVE_MMAP
1479 if (pagesize == 0)
1480 pagesize = getpagesize ();
2e276125 1481
dce234bc
PP
1482 /* Only try to mmap sections which are large enough: we don't want to
1483 waste space due to fragmentation. Also, only try mmap for sections
1484 without relocations. */
1485
1486 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1487 {
1488 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1489 size_t map_length = info->size + sectp->filepos - pg_offset;
1490 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1491 MAP_PRIVATE, pg_offset);
1492
1493 if (retbuf != MAP_FAILED)
1494 {
1495 info->was_mmapped = 1;
1496 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
be391dca
TT
1497#if HAVE_POSIX_MADVISE
1498 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1499#endif
dce234bc
PP
1500 return;
1501 }
1502 }
1503#endif
1504
1505 /* If we get here, we are a normal, not-compressed section. */
1506 info->buffer = buf
1507 = obstack_alloc (&objfile->objfile_obstack, info->size);
1508
1509 /* When debugging .o files, we may need to apply relocations; see
1510 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1511 We never compress sections in .o files, so we only need to
1512 try this when the section is not compressed. */
ac8035ab 1513 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1514 if (retbuf != NULL)
1515 {
1516 info->buffer = retbuf;
1517 return;
1518 }
1519
1520 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1521 || bfd_bread (buf, info->size, abfd) != info->size)
1522 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1523 bfd_get_filename (abfd));
1524}
1525
1526/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1527 SECTION_NAME. */
af34e669 1528
dce234bc
PP
1529void
1530dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1531 asection **sectp, gdb_byte **bufp,
1532 bfd_size_type *sizep)
1533{
1534 struct dwarf2_per_objfile *data
1535 = objfile_data (objfile, dwarf2_objfile_data_key);
1536 struct dwarf2_section_info *info;
a3b2a86b
TT
1537
1538 /* We may see an objfile without any DWARF, in which case we just
1539 return nothing. */
1540 if (data == NULL)
1541 {
1542 *sectp = NULL;
1543 *bufp = NULL;
1544 *sizep = 0;
1545 return;
1546 }
dce234bc
PP
1547 if (section_is_p (section_name, EH_FRAME_SECTION))
1548 info = &data->eh_frame;
1549 else if (section_is_p (section_name, FRAME_SECTION))
1550 info = &data->frame;
0d53c4c4 1551 else
dce234bc
PP
1552 gdb_assert (0);
1553
1554 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1555 /* We haven't read this section in yet. Do it now. */
1556 dwarf2_read_section (objfile, info);
1557
1558 *sectp = info->asection;
1559 *bufp = info->buffer;
1560 *sizep = info->size;
1561}
1562
9291a0cd
TT
1563\f
1564
1565/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1566 this CU came. */
1567static void
1568dw2_do_instantiate_symtab (struct objfile *objfile,
1569 struct dwarf2_per_cu_data *per_cu)
1570{
1571 struct cleanup *back_to;
1572
1573 back_to = make_cleanup (dwarf2_release_queue, NULL);
1574
1575 queue_comp_unit (per_cu, objfile);
1576
1577 if (per_cu->from_debug_types)
1578 read_signatured_type_at_offset (objfile, per_cu->offset);
1579 else
1580 load_full_comp_unit (per_cu, objfile);
1581
1582 process_queue (objfile);
1583
1584 /* Age the cache, releasing compilation units that have not
1585 been used recently. */
1586 age_cached_comp_units ();
1587
1588 do_cleanups (back_to);
1589}
1590
1591/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1592 the objfile from which this CU came. Returns the resulting symbol
1593 table. */
1594static struct symtab *
1595dw2_instantiate_symtab (struct objfile *objfile,
1596 struct dwarf2_per_cu_data *per_cu)
1597{
1598 if (!per_cu->v.quick->symtab)
1599 {
1600 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1601 increment_reading_symtab ();
1602 dw2_do_instantiate_symtab (objfile, per_cu);
1603 do_cleanups (back_to);
1604 }
1605 return per_cu->v.quick->symtab;
1606}
1607
1608/* A helper function that knows how to read a 64-bit value in a way
1609 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1610 otherwise. */
1611static int
1612extract_cu_value (const char *bytes, ULONGEST *result)
1613{
1614 if (sizeof (ULONGEST) < 8)
1615 {
1616 int i;
1617
1618 /* Ignore the upper 4 bytes if they are all zero. */
1619 for (i = 0; i < 4; ++i)
1620 if (bytes[i + 4] != 0)
1621 return 0;
1622
1623 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1624 }
1625 else
1626 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1627 return 1;
1628}
1629
1630/* Read the CU list from the mapped index, and use it to create all
1631 the CU objects for this objfile. Return 0 if something went wrong,
1632 1 if everything went ok. */
1633static int
1634create_cus_from_index (struct objfile *objfile, struct mapped_index *index,
1635 const gdb_byte *cu_list, offset_type cu_list_elements)
1636{
1637 offset_type i;
1638 const char *entry;
1639
1640 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1641 dwarf2_per_objfile->all_comp_units
1642 = obstack_alloc (&objfile->objfile_obstack,
1643 dwarf2_per_objfile->n_comp_units
1644 * sizeof (struct dwarf2_per_cu_data *));
1645
1646 for (i = 0; i < cu_list_elements; i += 2)
1647 {
1648 struct dwarf2_per_cu_data *the_cu;
1649 ULONGEST offset, length;
1650
1651 if (!extract_cu_value (cu_list, &offset)
1652 || !extract_cu_value (cu_list + 8, &length))
1653 return 0;
1654 cu_list += 2 * 8;
1655
1656 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1657 struct dwarf2_per_cu_data);
1658 the_cu->offset = offset;
1659 the_cu->length = length;
1660 the_cu->objfile = objfile;
1661 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1662 struct dwarf2_per_cu_quick_data);
1663 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1664 }
1665
1666 return 1;
1667}
1668
1669/* Read the address map data from the mapped index, and use it to
1670 populate the objfile's psymtabs_addrmap. */
1671static void
1672create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1673{
1674 const gdb_byte *iter, *end;
1675 struct obstack temp_obstack;
1676 struct addrmap *mutable_map;
1677 struct cleanup *cleanup;
1678 CORE_ADDR baseaddr;
1679
1680 obstack_init (&temp_obstack);
1681 cleanup = make_cleanup_obstack_free (&temp_obstack);
1682 mutable_map = addrmap_create_mutable (&temp_obstack);
1683
1684 iter = index->address_table;
1685 end = iter + index->address_table_size;
1686
1687 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1688
1689 while (iter < end)
1690 {
1691 ULONGEST hi, lo, cu_index;
1692 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1693 iter += 8;
1694 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1695 iter += 8;
1696 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1697 iter += 4;
1698
1699 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1700 dwarf2_per_objfile->all_comp_units[cu_index]);
1701 }
1702
1703 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1704 &objfile->objfile_obstack);
1705 do_cleanups (cleanup);
1706}
1707
1708/* The hash function for strings in the mapped index. This is the
1709 same as the hashtab.c hash function, but we keep a separate copy to
1710 maintain control over the implementation. This is necessary
1711 because the hash function is tied to the format of the mapped index
1712 file. */
1713static hashval_t
1714mapped_index_string_hash (const void *p)
1715{
1716 const unsigned char *str = (const unsigned char *) p;
1717 hashval_t r = 0;
1718 unsigned char c;
1719
1720 while ((c = *str++) != 0)
1721 r = r * 67 + c - 113;
1722
1723 return r;
1724}
1725
1726/* Find a slot in the mapped index INDEX for the object named NAME.
1727 If NAME is found, set *VEC_OUT to point to the CU vector in the
1728 constant pool and return 1. If NAME cannot be found, return 0. */
1729static int
1730find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1731 offset_type **vec_out)
1732{
1733 offset_type hash = mapped_index_string_hash (name);
1734 offset_type slot, step;
1735
1736 slot = hash & (index->index_table_slots - 1);
1737 step = ((hash * 17) & (index->index_table_slots - 1)) | 1;
1738
1739 for (;;)
1740 {
1741 /* Convert a slot number to an offset into the table. */
1742 offset_type i = 2 * slot;
1743 const char *str;
1744 if (index->index_table[i] == 0 && index->index_table[i + 1] == 0)
1745 return 0;
1746
1747 str = index->constant_pool + MAYBE_SWAP (index->index_table[i]);
1748 if (!strcmp (name, str))
1749 {
1750 *vec_out = (offset_type *) (index->constant_pool
1751 + MAYBE_SWAP (index->index_table[i + 1]));
1752 return 1;
1753 }
1754
1755 slot = (slot + step) & (index->index_table_slots - 1);
1756 }
1757}
1758
1759/* Read the index file. If everything went ok, initialize the "quick"
1760 elements of all the CUs and return 1. Otherwise, return 0. */
1761static int
1762dwarf2_read_index (struct objfile *objfile)
1763{
1764 struct stat st, obstat;
1765 int fd;
1766 char *addr;
1767 struct mapped_index *map;
1768 offset_type val, *metadata;
1769 char buf1[8], buf2[8];
1770 const gdb_byte *cu_list;
1771 offset_type cu_list_elements;
1772
1773 if (dwarf2_per_objfile->gdb_index.asection == NULL
1774 || dwarf2_per_objfile->gdb_index.size == 0)
1775 return 0;
1776 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
1777
1778 addr = dwarf2_per_objfile->gdb_index.buffer;
1779 /* Version check. */
1780 if (MAYBE_SWAP (*(offset_type *) addr) != 1)
1781 return 0;
1782
1783 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
1784 map->total_size = st.st_size;
1785
1786 metadata = (offset_type *) (addr + sizeof (offset_type));
1787 cu_list = addr + MAYBE_SWAP (metadata[0]);
1788 cu_list_elements = ((MAYBE_SWAP (metadata[1]) - MAYBE_SWAP (metadata[0]))
1789 / 8);
1790 map->address_table = addr + MAYBE_SWAP (metadata[1]);
1791 map->address_table_size = (MAYBE_SWAP (metadata[2])
1792 - MAYBE_SWAP (metadata[1]));
1793 map->index_table = (offset_type *) (addr + MAYBE_SWAP (metadata[2]));
1794 map->index_table_slots = ((MAYBE_SWAP (metadata[3])
1795 - MAYBE_SWAP (metadata[2]))
1796 / (2 * sizeof (offset_type)));
1797 map->constant_pool = addr + MAYBE_SWAP (metadata[3]);
1798
1799 if (!create_cus_from_index (objfile, map, cu_list, cu_list_elements))
1800 return 0;
1801
1802 create_addrmap_from_index (objfile, map);
1803
1804 dwarf2_per_objfile->index_table = map;
1805 dwarf2_per_objfile->using_index = 1;
1806
1807 return 1;
1808}
1809
1810/* A helper for the "quick" functions which sets the global
1811 dwarf2_per_objfile according to OBJFILE. */
1812static void
1813dw2_setup (struct objfile *objfile)
1814{
1815 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1816 gdb_assert (dwarf2_per_objfile);
1817}
1818
1819/* A helper for the "quick" functions which attempts to read the line
1820 table for THIS_CU. */
1821static void
1822dw2_require_line_header (struct objfile *objfile,
1823 struct dwarf2_per_cu_data *this_cu)
1824{
1825 bfd *abfd = objfile->obfd;
1826 struct line_header *lh = NULL;
1827 struct attribute *attr;
1828 struct cleanup *cleanups;
1829 struct die_info *comp_unit_die;
1830 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
1831 int has_children, i;
1832 struct dwarf2_cu cu;
1833 unsigned int bytes_read, buffer_size;
1834 struct die_reader_specs reader_specs;
1835 char *name, *comp_dir;
1836
1837 if (this_cu->v.quick->read_lines)
1838 return;
1839 this_cu->v.quick->read_lines = 1;
1840
1841 memset (&cu, 0, sizeof (cu));
1842 cu.objfile = objfile;
1843 obstack_init (&cu.comp_unit_obstack);
1844
1845 cleanups = make_cleanup (free_stack_comp_unit, &cu);
1846
1847 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
1848 buffer_size = dwarf2_per_objfile->info.size;
1849 buffer = dwarf2_per_objfile->info.buffer;
1850 info_ptr = buffer + this_cu->offset;
1851 beg_of_comp_unit = info_ptr;
1852
1853 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
1854 buffer, buffer_size,
1855 abfd);
1856
1857 /* Complete the cu_header. */
1858 cu.header.offset = beg_of_comp_unit - buffer;
1859 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
1860
1861 this_cu->cu = &cu;
1862 cu.per_cu = this_cu;
1863
1864 dwarf2_read_abbrevs (abfd, &cu);
1865 make_cleanup (dwarf2_free_abbrev_table, &cu);
1866
1867 if (this_cu->from_debug_types)
1868 info_ptr += 8 /*signature*/ + cu.header.offset_size;
1869 init_cu_die_reader (&reader_specs, &cu);
1870 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
1871 &has_children);
1872
1873 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
1874 if (attr)
1875 {
1876 unsigned int line_offset = DW_UNSND (attr);
1877 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
1878 }
1879 if (lh == NULL)
1880 {
1881 do_cleanups (cleanups);
1882 return;
1883 }
1884
1885 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
1886
1887 this_cu->v.quick->lines = lh;
1888
1889 this_cu->v.quick->file_names
1890 = obstack_alloc (&objfile->objfile_obstack,
1891 lh->num_file_names * sizeof (char *));
1892 for (i = 0; i < lh->num_file_names; ++i)
1893 this_cu->v.quick->file_names[i] = file_full_name (i + 1, lh, comp_dir);
1894
1895 do_cleanups (cleanups);
1896}
1897
1898/* A helper for the "quick" functions which computes and caches the
1899 real path for a given file name from the line table.
1900 dw2_require_line_header must have been called before this is
1901 invoked. */
1902static const char *
1903dw2_require_full_path (struct objfile *objfile,
1904 struct dwarf2_per_cu_data *cu,
1905 int index)
1906{
1907 if (!cu->v.quick->full_names)
1908 cu->v.quick->full_names
1909 = OBSTACK_CALLOC (&objfile->objfile_obstack,
1910 cu->v.quick->lines->num_file_names,
1911 sizeof (char *));
1912
1913 if (!cu->v.quick->full_names[index])
1914 cu->v.quick->full_names[index]
1915 = gdb_realpath (cu->v.quick->file_names[index]);
1916
1917 return cu->v.quick->full_names[index];
1918}
1919
1920static struct symtab *
1921dw2_find_last_source_symtab (struct objfile *objfile)
1922{
1923 int index;
1924 dw2_setup (objfile);
1925 index = dwarf2_per_objfile->n_comp_units - 1;
1926 return dw2_instantiate_symtab (objfile,
1927 dwarf2_per_objfile->all_comp_units[index]);
1928}
1929
1930static void
1931dw2_forget_cached_source_info (struct objfile *objfile)
1932{
1933 int i;
1934
1935 dw2_setup (objfile);
1936 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
1937 {
1938 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
1939
1940 if (cu->v.quick->full_names)
1941 {
1942 int j;
1943
1944 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
1945 xfree ((void *) cu->v.quick->full_names[j]);
1946 }
1947 }
1948}
1949
1950static int
1951dw2_lookup_symtab (struct objfile *objfile, const char *name,
1952 const char *full_path, const char *real_path,
1953 struct symtab **result)
1954{
1955 int i;
1956 int check_basename = lbasename (name) == name;
1957 struct dwarf2_per_cu_data *base_cu = NULL;
1958
1959 dw2_setup (objfile);
1960 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
1961 {
1962 int j;
1963 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
1964
1965 if (cu->v.quick->symtab)
1966 continue;
1967
1968 dw2_require_line_header (objfile, cu);
1969 if (!cu->v.quick->lines)
1970 continue;
1971
1972 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
1973 {
1974 const char *this_name = cu->v.quick->file_names[j];
1975
1976 if (FILENAME_CMP (name, this_name) == 0)
1977 {
1978 *result = dw2_instantiate_symtab (objfile, cu);
1979 return 1;
1980 }
1981
1982 if (check_basename && ! base_cu
1983 && FILENAME_CMP (lbasename (this_name), name) == 0)
1984 base_cu = cu;
1985
1986 if (full_path != NULL)
1987 {
1988 const char *this_full_name = dw2_require_full_path (objfile,
1989 cu, j);
1990
1991 if (this_full_name
1992 && FILENAME_CMP (full_path, this_full_name) == 0)
1993 {
1994 *result = dw2_instantiate_symtab (objfile, cu);
1995 return 1;
1996 }
1997 }
1998
1999 if (real_path != NULL)
2000 {
2001 const char *this_full_name = dw2_require_full_path (objfile,
2002 cu, j);
2003
2004 if (this_full_name != NULL)
2005 {
2006 char *rp = gdb_realpath (this_full_name);
2007 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
2008 {
2009 xfree (rp);
2010 *result = dw2_instantiate_symtab (objfile, cu);
2011 return 1;
2012 }
2013 xfree (rp);
2014 }
2015 }
2016 }
2017 }
2018
2019 if (base_cu)
2020 {
2021 *result = dw2_instantiate_symtab (objfile, base_cu);
2022 return 1;
2023 }
2024
2025 return 0;
2026}
2027
2028static struct symtab *
2029dw2_lookup_symbol (struct objfile *objfile, int block_index,
2030 const char *name, domain_enum domain)
2031{
2032 /* We do all the work in the pre_expand_symtabs_matching hook
2033 instead. */
2034 return NULL;
2035}
2036
2037/* A helper function that expands all symtabs that hold an object
2038 named NAME. */
2039static void
2040dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2041{
2042 dw2_setup (objfile);
2043
2044 if (dwarf2_per_objfile->index_table)
2045 {
2046 offset_type *vec;
2047
2048 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2049 name, &vec))
2050 {
2051 offset_type i, len = MAYBE_SWAP (*vec);
2052 for (i = 0; i < len; ++i)
2053 {
2054 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2055 struct dwarf2_per_cu_data *cu;
2056 cu = dwarf2_per_objfile->all_comp_units[cu_index];
2057 dw2_instantiate_symtab (objfile, cu);
2058 }
2059 }
2060 }
2061}
2062
2063static void
2064dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2065 int kind, const char *name,
2066 domain_enum domain)
2067{
2068 dw2_do_expand_symtabs_matching (objfile, name);
2069}
2070
2071static void
2072dw2_print_stats (struct objfile *objfile)
2073{
2074 int i, count;
2075
2076 dw2_setup (objfile);
2077 count = 0;
2078 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2079 {
2080 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2081
2082 if (!cu->v.quick->symtab)
2083 ++count;
2084 }
2085 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2086}
2087
2088static void
2089dw2_dump (struct objfile *objfile)
2090{
2091 /* Nothing worth printing. */
2092}
2093
2094static void
2095dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2096 struct section_offsets *delta)
2097{
2098 /* There's nothing to relocate here. */
2099}
2100
2101static void
2102dw2_expand_symtabs_for_function (struct objfile *objfile,
2103 const char *func_name)
2104{
2105 dw2_do_expand_symtabs_matching (objfile, func_name);
2106}
2107
2108static void
2109dw2_expand_all_symtabs (struct objfile *objfile)
2110{
2111 int i;
2112
2113 dw2_setup (objfile);
2114 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2115 {
2116 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2117
2118 dw2_instantiate_symtab (objfile, cu);
2119 }
2120}
2121
2122static void
2123dw2_expand_symtabs_with_filename (struct objfile *objfile,
2124 const char *filename)
2125{
2126 int i;
2127
2128 dw2_setup (objfile);
2129 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2130 {
2131 int j;
2132 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2133
2134 if (cu->v.quick->symtab)
2135 continue;
2136
2137 dw2_require_line_header (objfile, cu);
2138 if (!cu->v.quick->lines)
2139 continue;
2140
2141 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2142 {
2143 const char *this_name = cu->v.quick->file_names[j];
2144 if (strcmp (this_name, filename) == 0)
2145 {
2146 dw2_instantiate_symtab (objfile, cu);
2147 break;
2148 }
2149 }
2150 }
2151}
2152
dd786858 2153static const char *
9291a0cd
TT
2154dw2_find_symbol_file (struct objfile *objfile, const char *name)
2155{
2156 struct dwarf2_per_cu_data *cu;
2157 offset_type *vec;
2158
2159 dw2_setup (objfile);
2160
2161 if (!dwarf2_per_objfile->index_table)
2162 return NULL;
2163
2164 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2165 name, &vec))
2166 return NULL;
2167
2168 /* Note that this just looks at the very first one named NAME -- but
2169 actually we are looking for a function. find_main_filename
2170 should be rewritten so that it doesn't require a custom hook. It
2171 could just use the ordinary symbol tables. */
2172 /* vec[0] is the length, which must always be >0. */
2173 cu = dwarf2_per_objfile->all_comp_units[MAYBE_SWAP (vec[1])];
2174
2175 dw2_require_line_header (objfile, cu);
2176 if (!cu->v.quick->lines)
2177 return NULL;
2178
dd786858 2179 return cu->v.quick->file_names[cu->v.quick->lines->num_file_names - 1];
9291a0cd
TT
2180}
2181
2182static void
2183dw2_map_ada_symtabs (struct objfile *objfile,
2184 int (*wild_match) (const char *, int, const char *),
2185 int (*is_name_suffix) (const char *),
2186 void (*callback) (struct objfile *,
2187 struct symtab *, void *),
2188 const char *name, int global,
2189 domain_enum namespace, int wild,
2190 void *data)
2191{
2192 /* For now, we don't support Ada, so this function can't be
2193 reached. */
2194 internal_error (__FILE__, __LINE__,
2195 _("map_ada_symtabs called via index method"));
2196}
2197
2198static void
2199dw2_expand_symtabs_matching (struct objfile *objfile,
2200 int (*file_matcher) (const char *, void *),
2201 int (*name_matcher) (const char *, void *),
2202 domain_enum kind,
2203 void *data)
2204{
2205 int i;
2206 offset_type iter;
2207
2208 dw2_setup (objfile);
2209 if (!dwarf2_per_objfile->index_table)
2210 return;
2211
2212 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2213 {
2214 int j;
2215 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2216
2217 cu->v.quick->mark = 0;
2218 if (cu->v.quick->symtab)
2219 continue;
2220
2221 dw2_require_line_header (objfile, cu);
2222 if (!cu->v.quick->lines)
2223 continue;
2224
2225 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2226 {
2227 if (file_matcher (cu->v.quick->file_names[j], data))
2228 {
2229 cu->v.quick->mark = 1;
2230 break;
2231 }
2232 }
2233 }
2234
2235 for (iter = 0;
2236 iter < dwarf2_per_objfile->index_table->index_table_slots;
2237 ++iter)
2238 {
2239 offset_type idx = 2 * iter;
2240 const char *name;
2241 offset_type *vec, vec_len, vec_idx;
2242
2243 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2244 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2245 continue;
2246
2247 name = (dwarf2_per_objfile->index_table->constant_pool
2248 + dwarf2_per_objfile->index_table->index_table[idx]);
2249
2250 if (! (*name_matcher) (name, data))
2251 continue;
2252
2253 /* The name was matched, now expand corresponding CUs that were
2254 marked. */
2255 vec = (offset_type *) (dwarf2_per_objfile->index_table->constant_pool
2256 + dwarf2_per_objfile->index_table->index_table[idx + 1]);
2257 vec_len = MAYBE_SWAP (vec[0]);
2258 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2259 {
2260 struct dwarf2_per_cu_data *cu
2261 = dwarf2_per_objfile->all_comp_units[MAYBE_SWAP (vec[vec_idx + 1])];
2262 if (cu->v.quick->mark)
2263 dw2_instantiate_symtab (objfile, cu);
2264 }
2265 }
2266}
2267
2268static struct symtab *
2269dw2_find_pc_sect_symtab (struct objfile *objfile,
2270 struct minimal_symbol *msymbol,
2271 CORE_ADDR pc,
2272 struct obj_section *section,
2273 int warn_if_readin)
2274{
2275 struct dwarf2_per_cu_data *data;
2276
2277 dw2_setup (objfile);
2278
2279 if (!objfile->psymtabs_addrmap)
2280 return NULL;
2281
2282 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2283 if (!data)
2284 return NULL;
2285
2286 if (warn_if_readin && data->v.quick->symtab)
2287 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)\n"),
2288 paddress (get_objfile_arch (objfile), pc));
2289
2290 return dw2_instantiate_symtab (objfile, data);
2291}
2292
2293static void
2294dw2_map_symbol_names (struct objfile *objfile,
2295 void (*fun) (const char *, void *),
2296 void *data)
2297{
2298 offset_type iter;
2299 dw2_setup (objfile);
2300
2301 if (!dwarf2_per_objfile->index_table)
2302 return;
2303
2304 for (iter = 0;
2305 iter < dwarf2_per_objfile->index_table->index_table_slots;
2306 ++iter)
2307 {
2308 offset_type idx = 2 * iter;
2309 const char *name;
2310 offset_type *vec, vec_len, vec_idx;
2311
2312 if (dwarf2_per_objfile->index_table->index_table[idx] == 0
2313 && dwarf2_per_objfile->index_table->index_table[idx + 1] == 0)
2314 continue;
2315
2316 name = (dwarf2_per_objfile->index_table->constant_pool
2317 + dwarf2_per_objfile->index_table->index_table[idx]);
2318
2319 (*fun) (name, data);
2320 }
2321}
2322
2323static void
2324dw2_map_symbol_filenames (struct objfile *objfile,
2325 void (*fun) (const char *, const char *, void *),
2326 void *data)
2327{
2328 int i;
2329
2330 dw2_setup (objfile);
2331 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2332 {
2333 int j;
2334 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2335
2336 if (cu->v.quick->symtab)
2337 continue;
2338
2339 dw2_require_line_header (objfile, cu);
2340 if (!cu->v.quick->lines)
2341 continue;
2342
2343 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
2344 {
2345 const char *this_full_name = dw2_require_full_path (objfile, cu, j);
2346 (*fun) (cu->v.quick->file_names[j], this_full_name, data);
2347 }
2348 }
2349}
2350
2351static int
2352dw2_has_symbols (struct objfile *objfile)
2353{
2354 return 1;
2355}
2356
2357const struct quick_symbol_functions dwarf2_gdb_index_functions =
2358{
2359 dw2_has_symbols,
2360 dw2_find_last_source_symtab,
2361 dw2_forget_cached_source_info,
2362 dw2_lookup_symtab,
2363 dw2_lookup_symbol,
2364 dw2_pre_expand_symtabs_matching,
2365 dw2_print_stats,
2366 dw2_dump,
2367 dw2_relocate,
2368 dw2_expand_symtabs_for_function,
2369 dw2_expand_all_symtabs,
2370 dw2_expand_symtabs_with_filename,
2371 dw2_find_symbol_file,
2372 dw2_map_ada_symtabs,
2373 dw2_expand_symtabs_matching,
2374 dw2_find_pc_sect_symtab,
2375 dw2_map_symbol_names,
2376 dw2_map_symbol_filenames
2377};
2378
2379/* Initialize for reading DWARF for this objfile. Return 0 if this
2380 file will use psymtabs, or 1 if using the GNU index. */
2381
2382int
2383dwarf2_initialize_objfile (struct objfile *objfile)
2384{
2385 /* If we're about to read full symbols, don't bother with the
2386 indices. In this case we also don't care if some other debug
2387 format is making psymtabs, because they are all about to be
2388 expanded anyway. */
2389 if ((objfile->flags & OBJF_READNOW))
2390 {
2391 int i;
2392
2393 dwarf2_per_objfile->using_index = 1;
2394 create_all_comp_units (objfile);
2395
2396 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2397 {
2398 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
2399
2400 cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2401 struct dwarf2_per_cu_quick_data);
2402 }
2403
2404 /* Return 1 so that gdb sees the "quick" functions. However,
2405 these functions will be no-ops because we will have expanded
2406 all symtabs. */
2407 return 1;
2408 }
2409
2410 if (dwarf2_read_index (objfile))
2411 return 1;
2412
2413 dwarf2_build_psymtabs (objfile);
2414 return 0;
2415}
2416
2417\f
2418
dce234bc
PP
2419/* Build a partial symbol table. */
2420
2421void
f29dff0a 2422dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2423{
f29dff0a 2424 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2425 {
2426 init_psymbol_list (objfile, 1024);
2427 }
2428
d146bf1e 2429 dwarf2_build_psymtabs_hard (objfile);
c906108c 2430}
c906108c 2431
45452591
DE
2432/* Return TRUE if OFFSET is within CU_HEADER. */
2433
2434static inline int
2435offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2436{
2437 unsigned int bottom = cu_header->offset;
2438 unsigned int top = (cu_header->offset
2439 + cu_header->length
2440 + cu_header->initial_length_size);
9a619af0 2441
45452591
DE
2442 return (offset >= bottom && offset < top);
2443}
2444
93311388
DE
2445/* Read in the comp unit header information from the debug_info at info_ptr.
2446 NOTE: This leaves members offset, first_die_offset to be filled in
2447 by the caller. */
107d2387 2448
fe1b8b76 2449static gdb_byte *
107d2387 2450read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2451 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2452{
2453 int signed_addr;
891d2f0b 2454 unsigned int bytes_read;
c764a876
DE
2455
2456 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2457 cu_header->initial_length_size = bytes_read;
2458 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2459 info_ptr += bytes_read;
107d2387
AC
2460 cu_header->version = read_2_bytes (abfd, info_ptr);
2461 info_ptr += 2;
613e1657 2462 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2463 &bytes_read);
613e1657 2464 info_ptr += bytes_read;
107d2387
AC
2465 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2466 info_ptr += 1;
2467 signed_addr = bfd_get_sign_extend_vma (abfd);
2468 if (signed_addr < 0)
8e65ff28 2469 internal_error (__FILE__, __LINE__,
e2e0b3e5 2470 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2471 cu_header->signed_addr_p = signed_addr;
c764a876 2472
107d2387
AC
2473 return info_ptr;
2474}
2475
fe1b8b76
JB
2476static gdb_byte *
2477partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2478 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2479 bfd *abfd)
2480{
fe1b8b76 2481 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2482
2483 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2484
2dc7f7b3 2485 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2486 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2487 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2488 bfd_get_filename (abfd));
72bf9492 2489
dce234bc 2490 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
8a3fe4f8
AC
2491 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2492 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2493 (long) header->abbrev_offset,
93311388 2494 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2495 bfd_get_filename (abfd));
2496
2497 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2498 > buffer + buffer_size)
8a3fe4f8
AC
2499 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2500 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2501 (long) header->length,
93311388 2502 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2503 bfd_get_filename (abfd));
2504
2505 return info_ptr;
2506}
2507
348e048f
DE
2508/* Read in the types comp unit header information from .debug_types entry at
2509 types_ptr. The result is a pointer to one past the end of the header. */
2510
2511static gdb_byte *
2512read_type_comp_unit_head (struct comp_unit_head *cu_header,
2513 ULONGEST *signature,
2514 gdb_byte *types_ptr, bfd *abfd)
2515{
348e048f
DE
2516 gdb_byte *initial_types_ptr = types_ptr;
2517
6e70227d 2518 dwarf2_read_section (dwarf2_per_objfile->objfile,
fa238c03 2519 &dwarf2_per_objfile->types);
348e048f
DE
2520 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2521
2522 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2523
2524 *signature = read_8_bytes (abfd, types_ptr);
2525 types_ptr += 8;
2526 types_ptr += cu_header->offset_size;
2527 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2528
2529 return types_ptr;
2530}
2531
aaa75496
JB
2532/* Allocate a new partial symtab for file named NAME and mark this new
2533 partial symtab as being an include of PST. */
2534
2535static void
2536dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2537 struct objfile *objfile)
2538{
2539 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2540
2541 subpst->section_offsets = pst->section_offsets;
2542 subpst->textlow = 0;
2543 subpst->texthigh = 0;
2544
2545 subpst->dependencies = (struct partial_symtab **)
2546 obstack_alloc (&objfile->objfile_obstack,
2547 sizeof (struct partial_symtab *));
2548 subpst->dependencies[0] = pst;
2549 subpst->number_of_dependencies = 1;
2550
2551 subpst->globals_offset = 0;
2552 subpst->n_global_syms = 0;
2553 subpst->statics_offset = 0;
2554 subpst->n_static_syms = 0;
2555 subpst->symtab = NULL;
2556 subpst->read_symtab = pst->read_symtab;
2557 subpst->readin = 0;
2558
2559 /* No private part is necessary for include psymtabs. This property
2560 can be used to differentiate between such include psymtabs and
10b3939b 2561 the regular ones. */
58a9656e 2562 subpst->read_symtab_private = NULL;
aaa75496
JB
2563}
2564
2565/* Read the Line Number Program data and extract the list of files
2566 included by the source file represented by PST. Build an include
d85a05f0 2567 partial symtab for each of these included files. */
aaa75496
JB
2568
2569static void
2570dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 2571 struct die_info *die,
aaa75496
JB
2572 struct partial_symtab *pst)
2573{
2574 struct objfile *objfile = cu->objfile;
2575 bfd *abfd = objfile->obfd;
d85a05f0
DJ
2576 struct line_header *lh = NULL;
2577 struct attribute *attr;
aaa75496 2578
d85a05f0
DJ
2579 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2580 if (attr)
2581 {
2582 unsigned int line_offset = DW_UNSND (attr);
9a619af0 2583
d85a05f0
DJ
2584 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2585 }
aaa75496
JB
2586 if (lh == NULL)
2587 return; /* No linetable, so no includes. */
2588
2589 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
2590
2591 free_line_header (lh);
2592}
2593
348e048f
DE
2594static hashval_t
2595hash_type_signature (const void *item)
2596{
2597 const struct signatured_type *type_sig = item;
9a619af0 2598
348e048f
DE
2599 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2600 return type_sig->signature;
2601}
2602
2603static int
2604eq_type_signature (const void *item_lhs, const void *item_rhs)
2605{
2606 const struct signatured_type *lhs = item_lhs;
2607 const struct signatured_type *rhs = item_rhs;
9a619af0 2608
348e048f
DE
2609 return lhs->signature == rhs->signature;
2610}
2611
2612/* Create the hash table of all entries in the .debug_types section.
2613 The result is zero if there is an error (e.g. missing .debug_types section),
2614 otherwise non-zero. */
2615
2616static int
2617create_debug_types_hash_table (struct objfile *objfile)
2618{
be391dca 2619 gdb_byte *info_ptr;
348e048f
DE
2620 htab_t types_htab;
2621
be391dca
TT
2622 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2623 info_ptr = dwarf2_per_objfile->types.buffer;
2624
348e048f
DE
2625 if (info_ptr == NULL)
2626 {
2627 dwarf2_per_objfile->signatured_types = NULL;
2628 return 0;
2629 }
2630
2631 types_htab = htab_create_alloc_ex (41,
2632 hash_type_signature,
2633 eq_type_signature,
2634 NULL,
2635 &objfile->objfile_obstack,
2636 hashtab_obstack_allocate,
2637 dummy_obstack_deallocate);
2638
2639 if (dwarf2_die_debug)
2640 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
2641
2642 while (info_ptr < dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2643 {
2644 unsigned int offset;
2645 unsigned int offset_size;
2646 unsigned int type_offset;
2647 unsigned int length, initial_length_size;
2648 unsigned short version;
2649 ULONGEST signature;
2650 struct signatured_type *type_sig;
2651 void **slot;
2652 gdb_byte *ptr = info_ptr;
2653
2654 offset = ptr - dwarf2_per_objfile->types.buffer;
2655
2656 /* We need to read the type's signature in order to build the hash
2657 table, but we don't need to read anything else just yet. */
2658
2659 /* Sanity check to ensure entire cu is present. */
2660 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
2661 if (ptr + length + initial_length_size
2662 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
2663 {
2664 complaint (&symfile_complaints,
2665 _("debug type entry runs off end of `.debug_types' section, ignored"));
2666 break;
2667 }
2668
2669 offset_size = initial_length_size == 4 ? 4 : 8;
2670 ptr += initial_length_size;
2671 version = bfd_get_16 (objfile->obfd, ptr);
2672 ptr += 2;
2673 ptr += offset_size; /* abbrev offset */
2674 ptr += 1; /* address size */
2675 signature = bfd_get_64 (objfile->obfd, ptr);
2676 ptr += 8;
2677 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
2678
2679 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
2680 memset (type_sig, 0, sizeof (*type_sig));
2681 type_sig->signature = signature;
2682 type_sig->offset = offset;
2683 type_sig->type_offset = type_offset;
2684
2685 slot = htab_find_slot (types_htab, type_sig, INSERT);
2686 gdb_assert (slot != NULL);
2687 *slot = type_sig;
2688
2689 if (dwarf2_die_debug)
2690 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
2691 offset, phex (signature, sizeof (signature)));
2692
2693 info_ptr = info_ptr + initial_length_size + length;
2694 }
2695
2696 dwarf2_per_objfile->signatured_types = types_htab;
2697
2698 return 1;
2699}
2700
2701/* Lookup a signature based type.
2702 Returns NULL if SIG is not present in the table. */
2703
2704static struct signatured_type *
2705lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
2706{
2707 struct signatured_type find_entry, *entry;
2708
2709 if (dwarf2_per_objfile->signatured_types == NULL)
2710 {
2711 complaint (&symfile_complaints,
2712 _("missing `.debug_types' section for DW_FORM_sig8 die"));
2713 return 0;
2714 }
2715
2716 find_entry.signature = sig;
2717 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
2718 return entry;
2719}
2720
d85a05f0
DJ
2721/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
2722
2723static void
2724init_cu_die_reader (struct die_reader_specs *reader,
2725 struct dwarf2_cu *cu)
2726{
2727 reader->abfd = cu->objfile->obfd;
2728 reader->cu = cu;
2729 if (cu->per_cu->from_debug_types)
be391dca
TT
2730 {
2731 gdb_assert (dwarf2_per_objfile->types.readin);
2732 reader->buffer = dwarf2_per_objfile->types.buffer;
2733 }
d85a05f0 2734 else
be391dca
TT
2735 {
2736 gdb_assert (dwarf2_per_objfile->info.readin);
2737 reader->buffer = dwarf2_per_objfile->info.buffer;
2738 }
d85a05f0
DJ
2739}
2740
2741/* Find the base address of the compilation unit for range lists and
2742 location lists. It will normally be specified by DW_AT_low_pc.
2743 In DWARF-3 draft 4, the base address could be overridden by
2744 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2745 compilation units with discontinuous ranges. */
2746
2747static void
2748dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
2749{
2750 struct attribute *attr;
2751
2752 cu->base_known = 0;
2753 cu->base_address = 0;
2754
2755 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
2756 if (attr)
2757 {
2758 cu->base_address = DW_ADDR (attr);
2759 cu->base_known = 1;
2760 }
2761 else
2762 {
2763 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
2764 if (attr)
2765 {
2766 cu->base_address = DW_ADDR (attr);
2767 cu->base_known = 1;
2768 }
2769 }
2770}
2771
348e048f
DE
2772/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
2773 to combine the common parts.
93311388 2774 Process a compilation unit for a psymtab.
348e048f
DE
2775 BUFFER is a pointer to the beginning of the dwarf section buffer,
2776 either .debug_info or debug_types.
93311388
DE
2777 INFO_PTR is a pointer to the start of the CU.
2778 Returns a pointer to the next CU. */
aaa75496 2779
93311388
DE
2780static gdb_byte *
2781process_psymtab_comp_unit (struct objfile *objfile,
2782 struct dwarf2_per_cu_data *this_cu,
2783 gdb_byte *buffer, gdb_byte *info_ptr,
2784 unsigned int buffer_size)
c906108c 2785{
c906108c 2786 bfd *abfd = objfile->obfd;
93311388 2787 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 2788 struct die_info *comp_unit_die;
c906108c 2789 struct partial_symtab *pst;
5734ee8b 2790 CORE_ADDR baseaddr;
93311388
DE
2791 struct cleanup *back_to_inner;
2792 struct dwarf2_cu cu;
d85a05f0
DJ
2793 int has_children, has_pc_info;
2794 struct attribute *attr;
d85a05f0
DJ
2795 CORE_ADDR best_lowpc = 0, best_highpc = 0;
2796 struct die_reader_specs reader_specs;
c906108c 2797
93311388
DE
2798 memset (&cu, 0, sizeof (cu));
2799 cu.objfile = objfile;
2800 obstack_init (&cu.comp_unit_obstack);
c906108c 2801
93311388 2802 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 2803
93311388
DE
2804 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2805 buffer, buffer_size,
2806 abfd);
10b3939b 2807
93311388
DE
2808 /* Complete the cu_header. */
2809 cu.header.offset = beg_of_comp_unit - buffer;
2810 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 2811
93311388 2812 cu.list_in_scope = &file_symbols;
af703f96 2813
328c9494
DJ
2814 /* If this compilation unit was already read in, free the
2815 cached copy in order to read it in again. This is
2816 necessary because we skipped some symbols when we first
2817 read in the compilation unit (see load_partial_dies).
2818 This problem could be avoided, but the benefit is
2819 unclear. */
2820 if (this_cu->cu != NULL)
2821 free_one_cached_comp_unit (this_cu->cu);
2822
2823 /* Note that this is a pointer to our stack frame, being
2824 added to a global data structure. It will be cleaned up
2825 in free_stack_comp_unit when we finish with this
2826 compilation unit. */
2827 this_cu->cu = &cu;
d85a05f0
DJ
2828 cu.per_cu = this_cu;
2829
93311388
DE
2830 /* Read the abbrevs for this compilation unit into a table. */
2831 dwarf2_read_abbrevs (abfd, &cu);
2832 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 2833
93311388 2834 /* Read the compilation unit die. */
348e048f
DE
2835 if (this_cu->from_debug_types)
2836 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
2837 init_cu_die_reader (&reader_specs, &cu);
2838 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2839 &has_children);
93311388 2840
348e048f
DE
2841 if (this_cu->from_debug_types)
2842 {
2843 /* offset,length haven't been set yet for type units. */
2844 this_cu->offset = cu.header.offset;
2845 this_cu->length = cu.header.length + cu.header.initial_length_size;
2846 }
d85a05f0 2847 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 2848 {
93311388
DE
2849 info_ptr = (beg_of_comp_unit + cu.header.length
2850 + cu.header.initial_length_size);
2851 do_cleanups (back_to_inner);
2852 return info_ptr;
2853 }
72bf9492 2854
93311388 2855 /* Set the language we're debugging. */
d85a05f0
DJ
2856 attr = dwarf2_attr (comp_unit_die, DW_AT_language, &cu);
2857 if (attr)
2858 set_cu_language (DW_UNSND (attr), &cu);
2859 else
2860 set_cu_language (language_minimal, &cu);
c906108c 2861
93311388 2862 /* Allocate a new partial symbol table structure. */
d85a05f0 2863 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
93311388 2864 pst = start_psymtab_common (objfile, objfile->section_offsets,
d85a05f0 2865 (attr != NULL) ? DW_STRING (attr) : "",
93311388
DE
2866 /* TEXTLOW and TEXTHIGH are set below. */
2867 0,
2868 objfile->global_psymbols.next,
2869 objfile->static_psymbols.next);
72bf9492 2870
d85a05f0
DJ
2871 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
2872 if (attr != NULL)
2873 pst->dirname = DW_STRING (attr);
72bf9492 2874
e38df1d0 2875 pst->read_symtab_private = this_cu;
72bf9492 2876
93311388 2877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 2878
93311388
DE
2879 /* Store the function that reads in the rest of the symbol table */
2880 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 2881
9291a0cd 2882 this_cu->v.psymtab = pst;
c906108c 2883
d85a05f0
DJ
2884 dwarf2_find_base_address (comp_unit_die, &cu);
2885
93311388
DE
2886 /* Possibly set the default values of LOWPC and HIGHPC from
2887 `DW_AT_ranges'. */
d85a05f0
DJ
2888 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
2889 &best_highpc, &cu, pst);
2890 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
2891 /* Store the contiguous range if it is not empty; it can be empty for
2892 CUs with no code. */
2893 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
2894 best_lowpc + baseaddr,
2895 best_highpc + baseaddr - 1, pst);
93311388
DE
2896
2897 /* Check if comp unit has_children.
2898 If so, read the rest of the partial symbols from this comp unit.
2899 If not, there's no more debug_info for this comp unit. */
d85a05f0 2900 if (has_children)
93311388
DE
2901 {
2902 struct partial_die_info *first_die;
2903 CORE_ADDR lowpc, highpc;
31ffec48 2904
93311388
DE
2905 lowpc = ((CORE_ADDR) -1);
2906 highpc = ((CORE_ADDR) 0);
c906108c 2907
93311388 2908 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 2909
93311388 2910 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 2911 ! has_pc_info, &cu);
57c22c6c 2912
93311388
DE
2913 /* If we didn't find a lowpc, set it to highpc to avoid
2914 complaints from `maint check'. */
2915 if (lowpc == ((CORE_ADDR) -1))
2916 lowpc = highpc;
10b3939b 2917
93311388
DE
2918 /* If the compilation unit didn't have an explicit address range,
2919 then use the information extracted from its child dies. */
d85a05f0 2920 if (! has_pc_info)
93311388 2921 {
d85a05f0
DJ
2922 best_lowpc = lowpc;
2923 best_highpc = highpc;
93311388
DE
2924 }
2925 }
d85a05f0
DJ
2926 pst->textlow = best_lowpc + baseaddr;
2927 pst->texthigh = best_highpc + baseaddr;
c906108c 2928
93311388
DE
2929 pst->n_global_syms = objfile->global_psymbols.next -
2930 (objfile->global_psymbols.list + pst->globals_offset);
2931 pst->n_static_syms = objfile->static_psymbols.next -
2932 (objfile->static_psymbols.list + pst->statics_offset);
2933 sort_pst_symbols (pst);
c906108c 2934
93311388
DE
2935 info_ptr = (beg_of_comp_unit + cu.header.length
2936 + cu.header.initial_length_size);
ae038cb0 2937
348e048f
DE
2938 if (this_cu->from_debug_types)
2939 {
2940 /* It's not clear we want to do anything with stmt lists here.
2941 Waiting to see what gcc ultimately does. */
2942 }
d85a05f0 2943 else
93311388
DE
2944 {
2945 /* Get the list of files included in the current compilation unit,
2946 and build a psymtab for each of them. */
d85a05f0 2947 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 2948 }
ae038cb0 2949
93311388 2950 do_cleanups (back_to_inner);
ae038cb0 2951
93311388
DE
2952 return info_ptr;
2953}
ff013f42 2954
348e048f
DE
2955/* Traversal function for htab_traverse_noresize.
2956 Process one .debug_types comp-unit. */
2957
2958static int
2959process_type_comp_unit (void **slot, void *info)
2960{
2961 struct signatured_type *entry = (struct signatured_type *) *slot;
2962 struct objfile *objfile = (struct objfile *) info;
2963 struct dwarf2_per_cu_data *this_cu;
2964
2965 this_cu = &entry->per_cu;
2966 this_cu->from_debug_types = 1;
2967
be391dca 2968 gdb_assert (dwarf2_per_objfile->types.readin);
348e048f
DE
2969 process_psymtab_comp_unit (objfile, this_cu,
2970 dwarf2_per_objfile->types.buffer,
2971 dwarf2_per_objfile->types.buffer + entry->offset,
2972 dwarf2_per_objfile->types.size);
2973
2974 return 1;
2975}
2976
2977/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
2978 Build partial symbol tables for the .debug_types comp-units. */
2979
2980static void
2981build_type_psymtabs (struct objfile *objfile)
2982{
2983 if (! create_debug_types_hash_table (objfile))
2984 return;
2985
2986 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
2987 process_type_comp_unit, objfile);
2988}
2989
60606b2c
TT
2990/* A cleanup function that clears objfile's psymtabs_addrmap field. */
2991
2992static void
2993psymtabs_addrmap_cleanup (void *o)
2994{
2995 struct objfile *objfile = o;
ec61707d 2996
60606b2c
TT
2997 objfile->psymtabs_addrmap = NULL;
2998}
2999
93311388
DE
3000/* Build the partial symbol table by doing a quick pass through the
3001 .debug_info and .debug_abbrev sections. */
72bf9492 3002
93311388 3003static void
c67a9c90 3004dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3005{
93311388 3006 gdb_byte *info_ptr;
60606b2c
TT
3007 struct cleanup *back_to, *addrmap_cleanup;
3008 struct obstack temp_obstack;
93311388 3009
be391dca 3010 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3011 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3012
93311388
DE
3013 /* Any cached compilation units will be linked by the per-objfile
3014 read_in_chain. Make sure to free them when we're done. */
3015 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3016
348e048f
DE
3017 build_type_psymtabs (objfile);
3018
93311388 3019 create_all_comp_units (objfile);
c906108c 3020
60606b2c
TT
3021 /* Create a temporary address map on a temporary obstack. We later
3022 copy this to the final obstack. */
3023 obstack_init (&temp_obstack);
3024 make_cleanup_obstack_free (&temp_obstack);
3025 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3026 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3027
93311388
DE
3028 /* Since the objects we're extracting from .debug_info vary in
3029 length, only the individual functions to extract them (like
3030 read_comp_unit_head and load_partial_die) can really know whether
3031 the buffer is large enough to hold another complete object.
c906108c 3032
93311388
DE
3033 At the moment, they don't actually check that. If .debug_info
3034 holds just one extra byte after the last compilation unit's dies,
3035 then read_comp_unit_head will happily read off the end of the
3036 buffer. read_partial_die is similarly casual. Those functions
3037 should be fixed.
c906108c 3038
93311388
DE
3039 For this loop condition, simply checking whether there's any data
3040 left at all should be sufficient. */
c906108c 3041
93311388
DE
3042 while (info_ptr < (dwarf2_per_objfile->info.buffer
3043 + dwarf2_per_objfile->info.size))
3044 {
3045 struct dwarf2_per_cu_data *this_cu;
dd373385 3046
93311388
DE
3047 this_cu = dwarf2_find_comp_unit (info_ptr - dwarf2_per_objfile->info.buffer,
3048 objfile);
aaa75496 3049
93311388
DE
3050 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3051 dwarf2_per_objfile->info.buffer,
3052 info_ptr,
3053 dwarf2_per_objfile->info.size);
c906108c 3054 }
ff013f42
JK
3055
3056 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3057 &objfile->objfile_obstack);
60606b2c 3058 discard_cleanups (addrmap_cleanup);
ff013f42 3059
ae038cb0
DJ
3060 do_cleanups (back_to);
3061}
3062
93311388 3063/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3064
3065static void
93311388
DE
3066load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3067 struct objfile *objfile)
ae038cb0
DJ
3068{
3069 bfd *abfd = objfile->obfd;
fe1b8b76 3070 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3071 struct die_info *comp_unit_die;
ae038cb0 3072 struct dwarf2_cu *cu;
ae038cb0 3073 struct cleanup *back_to;
d85a05f0
DJ
3074 struct attribute *attr;
3075 int has_children;
3076 struct die_reader_specs reader_specs;
ae038cb0 3077
348e048f
DE
3078 gdb_assert (! this_cu->from_debug_types);
3079
be391dca 3080 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3081 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3082 beg_of_comp_unit = info_ptr;
3083
93311388 3084 cu = alloc_one_comp_unit (objfile);
ae038cb0 3085
93311388 3086 /* ??? Missing cleanup for CU? */
ae038cb0 3087
328c9494
DJ
3088 /* Link this compilation unit into the compilation unit tree. */
3089 this_cu->cu = cu;
3090 cu->per_cu = this_cu;
3091 cu->type_hash = this_cu->type_hash;
3092
93311388
DE
3093 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3094 dwarf2_per_objfile->info.buffer,
3095 dwarf2_per_objfile->info.size,
3096 abfd);
ae038cb0
DJ
3097
3098 /* Complete the cu_header. */
93311388 3099 cu->header.offset = this_cu->offset;
d00adf39 3100 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
ae038cb0
DJ
3101
3102 /* Read the abbrevs for this compilation unit into a table. */
3103 dwarf2_read_abbrevs (abfd, cu);
3104 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
3105
3106 /* Read the compilation unit die. */
d85a05f0
DJ
3107 init_cu_die_reader (&reader_specs, cu);
3108 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3109 &has_children);
ae038cb0
DJ
3110
3111 /* Set the language we're debugging. */
d85a05f0
DJ
3112 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
3113 if (attr)
3114 set_cu_language (DW_UNSND (attr), cu);
3115 else
3116 set_cu_language (language_minimal, cu);
ae038cb0 3117
ae038cb0
DJ
3118 /* Check if comp unit has_children.
3119 If so, read the rest of the partial symbols from this comp unit.
3120 If not, there's no more debug_info for this comp unit. */
d85a05f0 3121 if (has_children)
93311388 3122 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0
DJ
3123
3124 do_cleanups (back_to);
3125}
3126
3127/* Create a list of all compilation units in OBJFILE. We do this only
3128 if an inter-comp-unit reference is found; presumably if there is one,
3129 there will be many, and one will occur early in the .debug_info section.
3130 So there's no point in building this list incrementally. */
3131
3132static void
3133create_all_comp_units (struct objfile *objfile)
3134{
3135 int n_allocated;
3136 int n_comp_units;
3137 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3138 gdb_byte *info_ptr;
3139
3140 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3141 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3142
3143 n_comp_units = 0;
3144 n_allocated = 10;
3145 all_comp_units = xmalloc (n_allocated
3146 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3147
dce234bc 3148 while (info_ptr < dwarf2_per_objfile->info.buffer + dwarf2_per_objfile->info.size)
ae038cb0 3149 {
c764a876 3150 unsigned int length, initial_length_size;
ae038cb0 3151 struct dwarf2_per_cu_data *this_cu;
c764a876 3152 unsigned int offset;
ae038cb0 3153
dce234bc 3154 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3155
3156 /* Read just enough information to find out where the next
3157 compilation unit is. */
c764a876
DE
3158 length = read_initial_length (objfile->obfd, info_ptr,
3159 &initial_length_size);
ae038cb0
DJ
3160
3161 /* Save the compilation unit for later lookup. */
3162 this_cu = obstack_alloc (&objfile->objfile_obstack,
3163 sizeof (struct dwarf2_per_cu_data));
3164 memset (this_cu, 0, sizeof (*this_cu));
3165 this_cu->offset = offset;
c764a876 3166 this_cu->length = length + initial_length_size;
9291a0cd 3167 this_cu->objfile = objfile;
ae038cb0
DJ
3168
3169 if (n_comp_units == n_allocated)
3170 {
3171 n_allocated *= 2;
3172 all_comp_units = xrealloc (all_comp_units,
3173 n_allocated
3174 * sizeof (struct dwarf2_per_cu_data *));
3175 }
3176 all_comp_units[n_comp_units++] = this_cu;
3177
3178 info_ptr = info_ptr + this_cu->length;
3179 }
3180
3181 dwarf2_per_objfile->all_comp_units
3182 = obstack_alloc (&objfile->objfile_obstack,
3183 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3184 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3185 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3186 xfree (all_comp_units);
3187 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3188}
3189
5734ee8b
DJ
3190/* Process all loaded DIEs for compilation unit CU, starting at
3191 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3192 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3193 DW_AT_ranges). If NEED_PC is set, then this function will set
3194 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3195 and record the covered ranges in the addrmap. */
c906108c 3196
72bf9492
DJ
3197static void
3198scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3199 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3200{
72bf9492 3201 struct partial_die_info *pdi;
c906108c 3202
91c24f0a
DC
3203 /* Now, march along the PDI's, descending into ones which have
3204 interesting children but skipping the children of the other ones,
3205 until we reach the end of the compilation unit. */
c906108c 3206
72bf9492 3207 pdi = first_die;
91c24f0a 3208
72bf9492
DJ
3209 while (pdi != NULL)
3210 {
3211 fixup_partial_die (pdi, cu);
c906108c 3212
f55ee35c 3213 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3214 children, so we need to look at them. Ditto for anonymous
3215 enums. */
933c6fe4 3216
72bf9492 3217 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3218 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3219 {
72bf9492 3220 switch (pdi->tag)
c906108c
SS
3221 {
3222 case DW_TAG_subprogram:
5734ee8b 3223 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c
SS
3224 break;
3225 case DW_TAG_variable:
3226 case DW_TAG_typedef:
91c24f0a 3227 case DW_TAG_union_type:
72bf9492 3228 if (!pdi->is_declaration)
63d06c5c 3229 {
72bf9492 3230 add_partial_symbol (pdi, cu);
63d06c5c
DC
3231 }
3232 break;
c906108c 3233 case DW_TAG_class_type:
680b30c7 3234 case DW_TAG_interface_type:
c906108c 3235 case DW_TAG_structure_type:
72bf9492 3236 if (!pdi->is_declaration)
c906108c 3237 {
72bf9492 3238 add_partial_symbol (pdi, cu);
c906108c
SS
3239 }
3240 break;
91c24f0a 3241 case DW_TAG_enumeration_type:
72bf9492
DJ
3242 if (!pdi->is_declaration)
3243 add_partial_enumeration (pdi, cu);
c906108c
SS
3244 break;
3245 case DW_TAG_base_type:
a02abb62 3246 case DW_TAG_subrange_type:
c906108c 3247 /* File scope base type definitions are added to the partial
c5aa993b 3248 symbol table. */
72bf9492 3249 add_partial_symbol (pdi, cu);
c906108c 3250 break;
d9fa45fe 3251 case DW_TAG_namespace:
5734ee8b 3252 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3253 break;
5d7cb8df
JK
3254 case DW_TAG_module:
3255 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3256 break;
c906108c
SS
3257 default:
3258 break;
3259 }
3260 }
3261
72bf9492
DJ
3262 /* If the die has a sibling, skip to the sibling. */
3263
3264 pdi = pdi->die_sibling;
3265 }
3266}
3267
3268/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3269
72bf9492 3270 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3271 name is concatenated with "::" and the partial DIE's name. For
3272 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3273 Enumerators are an exception; they use the scope of their parent
3274 enumeration type, i.e. the name of the enumeration type is not
3275 prepended to the enumerator.
91c24f0a 3276
72bf9492
DJ
3277 There are two complexities. One is DW_AT_specification; in this
3278 case "parent" means the parent of the target of the specification,
3279 instead of the direct parent of the DIE. The other is compilers
3280 which do not emit DW_TAG_namespace; in this case we try to guess
3281 the fully qualified name of structure types from their members'
3282 linkage names. This must be done using the DIE's children rather
3283 than the children of any DW_AT_specification target. We only need
3284 to do this for structures at the top level, i.e. if the target of
3285 any DW_AT_specification (if any; otherwise the DIE itself) does not
3286 have a parent. */
3287
3288/* Compute the scope prefix associated with PDI's parent, in
3289 compilation unit CU. The result will be allocated on CU's
3290 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3291 field. NULL is returned if no prefix is necessary. */
3292static char *
3293partial_die_parent_scope (struct partial_die_info *pdi,
3294 struct dwarf2_cu *cu)
3295{
3296 char *grandparent_scope;
3297 struct partial_die_info *parent, *real_pdi;
91c24f0a 3298
72bf9492
DJ
3299 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3300 then this means the parent of the specification DIE. */
3301
3302 real_pdi = pdi;
72bf9492 3303 while (real_pdi->has_specification)
10b3939b 3304 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3305
3306 parent = real_pdi->die_parent;
3307 if (parent == NULL)
3308 return NULL;
3309
3310 if (parent->scope_set)
3311 return parent->scope;
3312
3313 fixup_partial_die (parent, cu);
3314
10b3939b 3315 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3316
acebe513
UW
3317 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3318 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3319 Work around this problem here. */
3320 if (cu->language == language_cplus
6e70227d 3321 && parent->tag == DW_TAG_namespace
acebe513
UW
3322 && strcmp (parent->name, "::") == 0
3323 && grandparent_scope == NULL)
3324 {
3325 parent->scope = NULL;
3326 parent->scope_set = 1;
3327 return NULL;
3328 }
3329
72bf9492 3330 if (parent->tag == DW_TAG_namespace
f55ee35c 3331 || parent->tag == DW_TAG_module
72bf9492
DJ
3332 || parent->tag == DW_TAG_structure_type
3333 || parent->tag == DW_TAG_class_type
680b30c7 3334 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3335 || parent->tag == DW_TAG_union_type
3336 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3337 {
3338 if (grandparent_scope == NULL)
3339 parent->scope = parent->name;
3340 else
987504bb 3341 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
f55ee35c 3342 parent->name, 0, cu);
72bf9492 3343 }
ceeb3d5a 3344 else if (parent->tag == DW_TAG_enumerator)
72bf9492
DJ
3345 /* Enumerators should not get the name of the enumeration as a prefix. */
3346 parent->scope = grandparent_scope;
3347 else
3348 {
3349 /* FIXME drow/2004-04-01: What should we be doing with
3350 function-local names? For partial symbols, we should probably be
3351 ignoring them. */
3352 complaint (&symfile_complaints,
e2e0b3e5 3353 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3354 parent->tag, pdi->offset);
3355 parent->scope = grandparent_scope;
c906108c
SS
3356 }
3357
72bf9492
DJ
3358 parent->scope_set = 1;
3359 return parent->scope;
3360}
3361
3362/* Return the fully scoped name associated with PDI, from compilation unit
3363 CU. The result will be allocated with malloc. */
3364static char *
3365partial_die_full_name (struct partial_die_info *pdi,
3366 struct dwarf2_cu *cu)
3367{
3368 char *parent_scope;
3369
3370 parent_scope = partial_die_parent_scope (pdi, cu);
3371 if (parent_scope == NULL)
3372 return NULL;
3373 else
f55ee35c 3374 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3375}
3376
3377static void
72bf9492 3378add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3379{
e7c27a73 3380 struct objfile *objfile = cu->objfile;
c906108c 3381 CORE_ADDR addr = 0;
decbce07 3382 char *actual_name = NULL;
5c4e30ca 3383 const struct partial_symbol *psym = NULL;
e142c38c 3384 CORE_ADDR baseaddr;
72bf9492 3385 int built_actual_name = 0;
e142c38c
DJ
3386
3387 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3388
94af9270
KS
3389 actual_name = partial_die_full_name (pdi, cu);
3390 if (actual_name)
3391 built_actual_name = 1;
63d06c5c 3392
72bf9492
DJ
3393 if (actual_name == NULL)
3394 actual_name = pdi->name;
3395
c906108c
SS
3396 switch (pdi->tag)
3397 {
3398 case DW_TAG_subprogram:
2cfa0c8d 3399 if (pdi->is_external || cu->language == language_ada)
c906108c 3400 {
2cfa0c8d
JB
3401 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3402 of the global scope. But in Ada, we want to be able to access
3403 nested procedures globally. So all Ada subprograms are stored
3404 in the global scope. */
38d518c9 3405 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3406 mst_text, objfile); */
38d518c9 3407 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3408 built_actual_name,
5c4e30ca
DC
3409 VAR_DOMAIN, LOC_BLOCK,
3410 &objfile->global_psymbols,
3411 0, pdi->lowpc + baseaddr,
e142c38c 3412 cu->language, objfile);
c906108c
SS
3413 }
3414 else
3415 {
38d518c9 3416 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3417 mst_file_text, objfile); */
38d518c9 3418 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3419 built_actual_name,
5c4e30ca
DC
3420 VAR_DOMAIN, LOC_BLOCK,
3421 &objfile->static_psymbols,
3422 0, pdi->lowpc + baseaddr,
e142c38c 3423 cu->language, objfile);
c906108c
SS
3424 }
3425 break;
3426 case DW_TAG_variable:
3427 if (pdi->is_external)
3428 {
3429 /* Global Variable.
3430 Don't enter into the minimal symbol tables as there is
3431 a minimal symbol table entry from the ELF symbols already.
3432 Enter into partial symbol table if it has a location
3433 descriptor or a type.
3434 If the location descriptor is missing, new_symbol will create
3435 a LOC_UNRESOLVED symbol, the address of the variable will then
3436 be determined from the minimal symbol table whenever the variable
3437 is referenced.
3438 The address for the partial symbol table entry is not
3439 used by GDB, but it comes in handy for debugging partial symbol
3440 table building. */
3441
3442 if (pdi->locdesc)
e7c27a73 3443 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 3444 if (pdi->locdesc || pdi->has_type)
38d518c9 3445 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3446 built_actual_name,
5c4e30ca
DC
3447 VAR_DOMAIN, LOC_STATIC,
3448 &objfile->global_psymbols,
3449 0, addr + baseaddr,
e142c38c 3450 cu->language, objfile);
c906108c
SS
3451 }
3452 else
3453 {
3454 /* Static Variable. Skip symbols without location descriptors. */
3455 if (pdi->locdesc == NULL)
decbce07
MS
3456 {
3457 if (built_actual_name)
3458 xfree (actual_name);
3459 return;
3460 }
e7c27a73 3461 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 3462 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 3463 mst_file_data, objfile); */
38d518c9 3464 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3465 built_actual_name,
5c4e30ca
DC
3466 VAR_DOMAIN, LOC_STATIC,
3467 &objfile->static_psymbols,
3468 0, addr + baseaddr,
e142c38c 3469 cu->language, objfile);
c906108c
SS
3470 }
3471 break;
3472 case DW_TAG_typedef:
3473 case DW_TAG_base_type:
a02abb62 3474 case DW_TAG_subrange_type:
38d518c9 3475 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3476 built_actual_name,
176620f1 3477 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 3478 &objfile->static_psymbols,
e142c38c 3479 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3480 break;
72bf9492
DJ
3481 case DW_TAG_namespace:
3482 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3483 built_actual_name,
72bf9492
DJ
3484 VAR_DOMAIN, LOC_TYPEDEF,
3485 &objfile->global_psymbols,
3486 0, (CORE_ADDR) 0, cu->language, objfile);
3487 break;
c906108c 3488 case DW_TAG_class_type:
680b30c7 3489 case DW_TAG_interface_type:
c906108c
SS
3490 case DW_TAG_structure_type:
3491 case DW_TAG_union_type:
3492 case DW_TAG_enumeration_type:
fa4028e9
JB
3493 /* Skip external references. The DWARF standard says in the section
3494 about "Structure, Union, and Class Type Entries": "An incomplete
3495 structure, union or class type is represented by a structure,
3496 union or class entry that does not have a byte size attribute
3497 and that has a DW_AT_declaration attribute." */
3498 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
3499 {
3500 if (built_actual_name)
3501 xfree (actual_name);
3502 return;
3503 }
fa4028e9 3504
63d06c5c
DC
3505 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3506 static vs. global. */
38d518c9 3507 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3508 built_actual_name,
176620f1 3509 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
3510 (cu->language == language_cplus
3511 || cu->language == language_java)
63d06c5c
DC
3512 ? &objfile->global_psymbols
3513 : &objfile->static_psymbols,
e142c38c 3514 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 3515
c906108c
SS
3516 break;
3517 case DW_TAG_enumerator:
38d518c9 3518 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 3519 built_actual_name,
176620f1 3520 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
3521 (cu->language == language_cplus
3522 || cu->language == language_java)
f6fe98ef
DJ
3523 ? &objfile->global_psymbols
3524 : &objfile->static_psymbols,
e142c38c 3525 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
3526 break;
3527 default:
3528 break;
3529 }
5c4e30ca 3530
72bf9492
DJ
3531 if (built_actual_name)
3532 xfree (actual_name);
c906108c
SS
3533}
3534
5c4e30ca
DC
3535/* Read a partial die corresponding to a namespace; also, add a symbol
3536 corresponding to that namespace to the symbol table. NAMESPACE is
3537 the name of the enclosing namespace. */
91c24f0a 3538
72bf9492
DJ
3539static void
3540add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 3541 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3542 int need_pc, struct dwarf2_cu *cu)
91c24f0a 3543{
72bf9492 3544 /* Add a symbol for the namespace. */
e7c27a73 3545
72bf9492 3546 add_partial_symbol (pdi, cu);
5c4e30ca
DC
3547
3548 /* Now scan partial symbols in that namespace. */
3549
91c24f0a 3550 if (pdi->has_children)
5734ee8b 3551 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
3552}
3553
5d7cb8df
JK
3554/* Read a partial die corresponding to a Fortran module. */
3555
3556static void
3557add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3558 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3559{
f55ee35c 3560 /* Now scan partial symbols in that module. */
5d7cb8df
JK
3561
3562 if (pdi->has_children)
3563 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3564}
3565
bc30ff58
JB
3566/* Read a partial die corresponding to a subprogram and create a partial
3567 symbol for that subprogram. When the CU language allows it, this
3568 routine also defines a partial symbol for each nested subprogram
3569 that this subprogram contains.
6e70227d 3570
bc30ff58
JB
3571 DIE my also be a lexical block, in which case we simply search
3572 recursively for suprograms defined inside that lexical block.
3573 Again, this is only performed when the CU language allows this
3574 type of definitions. */
3575
3576static void
3577add_partial_subprogram (struct partial_die_info *pdi,
3578 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 3579 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
3580{
3581 if (pdi->tag == DW_TAG_subprogram)
3582 {
3583 if (pdi->has_pc_info)
3584 {
3585 if (pdi->lowpc < *lowpc)
3586 *lowpc = pdi->lowpc;
3587 if (pdi->highpc > *highpc)
3588 *highpc = pdi->highpc;
5734ee8b
DJ
3589 if (need_pc)
3590 {
3591 CORE_ADDR baseaddr;
3592 struct objfile *objfile = cu->objfile;
3593
3594 baseaddr = ANOFFSET (objfile->section_offsets,
3595 SECT_OFF_TEXT (objfile));
3596 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
3597 pdi->lowpc + baseaddr,
3598 pdi->highpc - 1 + baseaddr,
9291a0cd 3599 cu->per_cu->v.psymtab);
5734ee8b 3600 }
bc30ff58 3601 if (!pdi->is_declaration)
e8d05480
JB
3602 /* Ignore subprogram DIEs that do not have a name, they are
3603 illegal. Do not emit a complaint at this point, we will
3604 do so when we convert this psymtab into a symtab. */
3605 if (pdi->name)
3606 add_partial_symbol (pdi, cu);
bc30ff58
JB
3607 }
3608 }
6e70227d 3609
bc30ff58
JB
3610 if (! pdi->has_children)
3611 return;
3612
3613 if (cu->language == language_ada)
3614 {
3615 pdi = pdi->die_child;
3616 while (pdi != NULL)
3617 {
3618 fixup_partial_die (pdi, cu);
3619 if (pdi->tag == DW_TAG_subprogram
3620 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 3621 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
3622 pdi = pdi->die_sibling;
3623 }
3624 }
3625}
3626
72bf9492
DJ
3627/* See if we can figure out if the class lives in a namespace. We do
3628 this by looking for a member function; its demangled name will
3629 contain namespace info, if there is any. */
63d06c5c 3630
72bf9492
DJ
3631static void
3632guess_structure_name (struct partial_die_info *struct_pdi,
3633 struct dwarf2_cu *cu)
63d06c5c 3634{
987504bb
JJ
3635 if ((cu->language == language_cplus
3636 || cu->language == language_java)
72bf9492 3637 && cu->has_namespace_info == 0
63d06c5c
DC
3638 && struct_pdi->has_children)
3639 {
63d06c5c
DC
3640 /* NOTE: carlton/2003-10-07: Getting the info this way changes
3641 what template types look like, because the demangler
3642 frequently doesn't give the same name as the debug info. We
3643 could fix this by only using the demangled name to get the
134d01f1 3644 prefix (but see comment in read_structure_type). */
63d06c5c 3645
72bf9492 3646 struct partial_die_info *real_pdi;
5d51ca54 3647
72bf9492
DJ
3648 /* If this DIE (this DIE's specification, if any) has a parent, then
3649 we should not do this. We'll prepend the parent's fully qualified
3650 name when we create the partial symbol. */
5d51ca54 3651
72bf9492 3652 real_pdi = struct_pdi;
72bf9492 3653 while (real_pdi->has_specification)
10b3939b 3654 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 3655
72bf9492
DJ
3656 if (real_pdi->die_parent != NULL)
3657 return;
63d06c5c 3658 }
63d06c5c
DC
3659}
3660
91c24f0a
DC
3661/* Read a partial die corresponding to an enumeration type. */
3662
72bf9492
DJ
3663static void
3664add_partial_enumeration (struct partial_die_info *enum_pdi,
3665 struct dwarf2_cu *cu)
91c24f0a 3666{
72bf9492 3667 struct partial_die_info *pdi;
91c24f0a
DC
3668
3669 if (enum_pdi->name != NULL)
72bf9492
DJ
3670 add_partial_symbol (enum_pdi, cu);
3671
3672 pdi = enum_pdi->die_child;
3673 while (pdi)
91c24f0a 3674 {
72bf9492 3675 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 3676 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 3677 else
72bf9492
DJ
3678 add_partial_symbol (pdi, cu);
3679 pdi = pdi->die_sibling;
91c24f0a 3680 }
91c24f0a
DC
3681}
3682
4bb7a0a7
DJ
3683/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
3684 Return the corresponding abbrev, or NULL if the number is zero (indicating
3685 an empty DIE). In either case *BYTES_READ will be set to the length of
3686 the initial number. */
3687
3688static struct abbrev_info *
fe1b8b76 3689peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 3690 struct dwarf2_cu *cu)
4bb7a0a7
DJ
3691{
3692 bfd *abfd = cu->objfile->obfd;
3693 unsigned int abbrev_number;
3694 struct abbrev_info *abbrev;
3695
3696 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
3697
3698 if (abbrev_number == 0)
3699 return NULL;
3700
3701 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
3702 if (!abbrev)
3703 {
8a3fe4f8 3704 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
3705 bfd_get_filename (abfd));
3706 }
3707
3708 return abbrev;
3709}
3710
93311388
DE
3711/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3712 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
3713 DIE. Any children of the skipped DIEs will also be skipped. */
3714
fe1b8b76 3715static gdb_byte *
93311388 3716skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
3717{
3718 struct abbrev_info *abbrev;
3719 unsigned int bytes_read;
3720
3721 while (1)
3722 {
3723 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
3724 if (abbrev == NULL)
3725 return info_ptr + bytes_read;
3726 else
93311388 3727 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
3728 }
3729}
3730
93311388
DE
3731/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
3732 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
3733 abbrev corresponding to that skipped uleb128 should be passed in
3734 ABBREV. Returns a pointer to this DIE's sibling, skipping any
3735 children. */
3736
fe1b8b76 3737static gdb_byte *
93311388
DE
3738skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
3739 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
3740{
3741 unsigned int bytes_read;
3742 struct attribute attr;
3743 bfd *abfd = cu->objfile->obfd;
3744 unsigned int form, i;
3745
3746 for (i = 0; i < abbrev->num_attrs; i++)
3747 {
3748 /* The only abbrev we care about is DW_AT_sibling. */
3749 if (abbrev->attrs[i].name == DW_AT_sibling)
3750 {
3751 read_attribute (&attr, &abbrev->attrs[i],
3752 abfd, info_ptr, cu);
3753 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 3754 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 3755 else
93311388 3756 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
3757 }
3758
3759 /* If it isn't DW_AT_sibling, skip this attribute. */
3760 form = abbrev->attrs[i].form;
3761 skip_attribute:
3762 switch (form)
3763 {
4bb7a0a7 3764 case DW_FORM_ref_addr:
ae411497
TT
3765 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
3766 and later it is offset sized. */
3767 if (cu->header.version == 2)
3768 info_ptr += cu->header.addr_size;
3769 else
3770 info_ptr += cu->header.offset_size;
3771 break;
3772 case DW_FORM_addr:
4bb7a0a7
DJ
3773 info_ptr += cu->header.addr_size;
3774 break;
3775 case DW_FORM_data1:
3776 case DW_FORM_ref1:
3777 case DW_FORM_flag:
3778 info_ptr += 1;
3779 break;
2dc7f7b3
TT
3780 case DW_FORM_flag_present:
3781 break;
4bb7a0a7
DJ
3782 case DW_FORM_data2:
3783 case DW_FORM_ref2:
3784 info_ptr += 2;
3785 break;
3786 case DW_FORM_data4:
3787 case DW_FORM_ref4:
3788 info_ptr += 4;
3789 break;
3790 case DW_FORM_data8:
3791 case DW_FORM_ref8:
348e048f 3792 case DW_FORM_sig8:
4bb7a0a7
DJ
3793 info_ptr += 8;
3794 break;
3795 case DW_FORM_string:
3796 read_string (abfd, info_ptr, &bytes_read);
3797 info_ptr += bytes_read;
3798 break;
2dc7f7b3 3799 case DW_FORM_sec_offset:
4bb7a0a7
DJ
3800 case DW_FORM_strp:
3801 info_ptr += cu->header.offset_size;
3802 break;
2dc7f7b3 3803 case DW_FORM_exprloc:
4bb7a0a7
DJ
3804 case DW_FORM_block:
3805 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
3806 info_ptr += bytes_read;
3807 break;
3808 case DW_FORM_block1:
3809 info_ptr += 1 + read_1_byte (abfd, info_ptr);
3810 break;
3811 case DW_FORM_block2:
3812 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
3813 break;
3814 case DW_FORM_block4:
3815 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
3816 break;
3817 case DW_FORM_sdata:
3818 case DW_FORM_udata:
3819 case DW_FORM_ref_udata:
3820 info_ptr = skip_leb128 (abfd, info_ptr);
3821 break;
3822 case DW_FORM_indirect:
3823 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
3824 info_ptr += bytes_read;
3825 /* We need to continue parsing from here, so just go back to
3826 the top. */
3827 goto skip_attribute;
3828
3829 default:
8a3fe4f8 3830 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
3831 dwarf_form_name (form),
3832 bfd_get_filename (abfd));
3833 }
3834 }
3835
3836 if (abbrev->has_children)
93311388 3837 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
3838 else
3839 return info_ptr;
3840}
3841
93311388
DE
3842/* Locate ORIG_PDI's sibling.
3843 INFO_PTR should point to the start of the next DIE after ORIG_PDI
3844 in BUFFER. */
91c24f0a 3845
fe1b8b76 3846static gdb_byte *
93311388
DE
3847locate_pdi_sibling (struct partial_die_info *orig_pdi,
3848 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 3849 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
3850{
3851 /* Do we know the sibling already? */
72bf9492 3852
91c24f0a
DC
3853 if (orig_pdi->sibling)
3854 return orig_pdi->sibling;
3855
3856 /* Are there any children to deal with? */
3857
3858 if (!orig_pdi->has_children)
3859 return info_ptr;
3860
4bb7a0a7 3861 /* Skip the children the long way. */
91c24f0a 3862
93311388 3863 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
3864}
3865
c906108c
SS
3866/* Expand this partial symbol table into a full symbol table. */
3867
3868static void
fba45db2 3869dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 3870{
c906108c
SS
3871 if (pst != NULL)
3872 {
3873 if (pst->readin)
3874 {
8a3fe4f8 3875 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
3876 }
3877 else
3878 {
3879 if (info_verbose)
3880 {
a3f17187 3881 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
3882 gdb_flush (gdb_stdout);
3883 }
3884
10b3939b
DJ
3885 /* Restore our global data. */
3886 dwarf2_per_objfile = objfile_data (pst->objfile,
3887 dwarf2_objfile_data_key);
3888
b2ab525c
KB
3889 /* If this psymtab is constructed from a debug-only objfile, the
3890 has_section_at_zero flag will not necessarily be correct. We
3891 can get the correct value for this flag by looking at the data
3892 associated with the (presumably stripped) associated objfile. */
3893 if (pst->objfile->separate_debug_objfile_backlink)
3894 {
3895 struct dwarf2_per_objfile *dpo_backlink
3896 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
3897 dwarf2_objfile_data_key);
9a619af0 3898
b2ab525c
KB
3899 dwarf2_per_objfile->has_section_at_zero
3900 = dpo_backlink->has_section_at_zero;
3901 }
3902
c906108c
SS
3903 psymtab_to_symtab_1 (pst);
3904
3905 /* Finish up the debug error message. */
3906 if (info_verbose)
a3f17187 3907 printf_filtered (_("done.\n"));
c906108c
SS
3908 }
3909 }
3910}
3911
10b3939b
DJ
3912/* Add PER_CU to the queue. */
3913
3914static void
03dd20cc 3915queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
3916{
3917 struct dwarf2_queue_item *item;
3918
3919 per_cu->queued = 1;
3920 item = xmalloc (sizeof (*item));
3921 item->per_cu = per_cu;
3922 item->next = NULL;
3923
3924 if (dwarf2_queue == NULL)
3925 dwarf2_queue = item;
3926 else
3927 dwarf2_queue_tail->next = item;
3928
3929 dwarf2_queue_tail = item;
3930}
3931
3932/* Process the queue. */
3933
3934static void
3935process_queue (struct objfile *objfile)
3936{
3937 struct dwarf2_queue_item *item, *next_item;
3938
03dd20cc
DJ
3939 /* The queue starts out with one item, but following a DIE reference
3940 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
3941 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
3942 {
9291a0cd
TT
3943 if (dwarf2_per_objfile->using_index
3944 ? !item->per_cu->v.quick->symtab
3945 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
3946 process_full_comp_unit (item->per_cu);
3947
3948 item->per_cu->queued = 0;
3949 next_item = item->next;
3950 xfree (item);
3951 }
3952
3953 dwarf2_queue_tail = NULL;
3954}
3955
3956/* Free all allocated queue entries. This function only releases anything if
3957 an error was thrown; if the queue was processed then it would have been
3958 freed as we went along. */
3959
3960static void
3961dwarf2_release_queue (void *dummy)
3962{
3963 struct dwarf2_queue_item *item, *last;
3964
3965 item = dwarf2_queue;
3966 while (item)
3967 {
3968 /* Anything still marked queued is likely to be in an
3969 inconsistent state, so discard it. */
3970 if (item->per_cu->queued)
3971 {
3972 if (item->per_cu->cu != NULL)
3973 free_one_cached_comp_unit (item->per_cu->cu);
3974 item->per_cu->queued = 0;
3975 }
3976
3977 last = item;
3978 item = item->next;
3979 xfree (last);
3980 }
3981
3982 dwarf2_queue = dwarf2_queue_tail = NULL;
3983}
3984
3985/* Read in full symbols for PST, and anything it depends on. */
3986
c906108c 3987static void
fba45db2 3988psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 3989{
10b3939b 3990 struct dwarf2_per_cu_data *per_cu;
c906108c 3991 struct cleanup *back_to;
aaa75496
JB
3992 int i;
3993
3994 for (i = 0; i < pst->number_of_dependencies; i++)
3995 if (!pst->dependencies[i]->readin)
3996 {
3997 /* Inform about additional files that need to be read in. */
3998 if (info_verbose)
3999 {
a3f17187 4000 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4001 fputs_filtered (" ", gdb_stdout);
4002 wrap_here ("");
4003 fputs_filtered ("and ", gdb_stdout);
4004 wrap_here ("");
4005 printf_filtered ("%s...", pst->dependencies[i]->filename);
4006 wrap_here (""); /* Flush output */
4007 gdb_flush (gdb_stdout);
4008 }
4009 psymtab_to_symtab_1 (pst->dependencies[i]);
4010 }
4011
e38df1d0 4012 per_cu = pst->read_symtab_private;
10b3939b
DJ
4013
4014 if (per_cu == NULL)
aaa75496
JB
4015 {
4016 /* It's an include file, no symbols to read for it.
4017 Everything is in the parent symtab. */
4018 pst->readin = 1;
4019 return;
4020 }
c906108c 4021
9291a0cd 4022 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4023}
4024
93311388 4025/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4026
93311388 4027static void
31ffec48 4028load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 4029{
31ffec48 4030 bfd *abfd = objfile->obfd;
10b3939b 4031 struct dwarf2_cu *cu;
c764a876 4032 unsigned int offset;
93311388 4033 gdb_byte *info_ptr, *beg_of_comp_unit;
10b3939b
DJ
4034 struct cleanup *back_to, *free_cu_cleanup;
4035 struct attribute *attr;
6502dd73 4036
348e048f
DE
4037 gdb_assert (! per_cu->from_debug_types);
4038
c906108c 4039 /* Set local variables from the partial symbol table info. */
10b3939b 4040 offset = per_cu->offset;
6502dd73 4041
be391dca 4042 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4043 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4044 beg_of_comp_unit = info_ptr;
63d06c5c 4045
93311388 4046 cu = alloc_one_comp_unit (objfile);
c906108c 4047
10b3939b
DJ
4048 /* If an error occurs while loading, release our storage. */
4049 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4050
93311388 4051 /* Read in the comp_unit header. */
10b3939b 4052 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4053
93311388
DE
4054 /* Complete the cu_header. */
4055 cu->header.offset = offset;
4056 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4057
4058 /* Read the abbrevs for this compilation unit. */
10b3939b
DJ
4059 dwarf2_read_abbrevs (abfd, cu);
4060 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
4061
93311388 4062 /* Link this compilation unit into the compilation unit tree. */
10b3939b 4063 per_cu->cu = cu;
93311388 4064 cu->per_cu = per_cu;
f792889a 4065 cu->type_hash = per_cu->type_hash;
e142c38c 4066
93311388 4067 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4068
4069 /* We try not to read any attributes in this function, because not
4070 all objfiles needed for references have been loaded yet, and symbol
4071 table processing isn't initialized. But we have to set the CU language,
4072 or we won't be able to build types correctly. */
4073 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
4074 if (attr)
4075 set_cu_language (DW_UNSND (attr), cu);
4076 else
4077 set_cu_language (language_minimal, cu);
4078
a6c727b2
DJ
4079 /* Similarly, if we do not read the producer, we can not apply
4080 producer-specific interpretation. */
4081 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4082 if (attr)
4083 cu->producer = DW_STRING (attr);
4084
348e048f
DE
4085 /* Link this CU into read_in_chain. */
4086 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4087 dwarf2_per_objfile->read_in_chain = per_cu;
4088
10b3939b 4089 do_cleanups (back_to);
e142c38c 4090
10b3939b
DJ
4091 /* We've successfully allocated this compilation unit. Let our caller
4092 clean it up when finished with it. */
4093 discard_cleanups (free_cu_cleanup);
10b3939b
DJ
4094}
4095
4096/* Generate full symbol information for PST and CU, whose DIEs have
4097 already been loaded into memory. */
4098
4099static void
4100process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4101{
10b3939b 4102 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4103 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4104 CORE_ADDR lowpc, highpc;
4105 struct symtab *symtab;
4106 struct cleanup *back_to;
10b3939b
DJ
4107 CORE_ADDR baseaddr;
4108
4109 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4110
10b3939b
DJ
4111 buildsym_init ();
4112 back_to = make_cleanup (really_free_pendings, NULL);
4113
4114 cu->list_in_scope = &file_symbols;
c906108c 4115
d85a05f0 4116 dwarf2_find_base_address (cu->dies, cu);
0d53c4c4 4117
c906108c 4118 /* Do line number decoding in read_file_scope () */
10b3939b 4119 process_die (cu->dies, cu);
c906108c 4120
fae299cd
DC
4121 /* Some compilers don't define a DW_AT_high_pc attribute for the
4122 compilation unit. If the DW_AT_high_pc is missing, synthesize
4123 it, by scanning the DIE's below the compilation unit. */
10b3939b 4124 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4125
613e1657 4126 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
4127
4128 /* Set symtab language to language from DW_AT_language.
4129 If the compilation is from a C file generated by language preprocessors,
4130 do not set the language if it was already deduced by start_subfile. */
4131 if (symtab != NULL
10b3939b 4132 && !(cu->language == language_c && symtab->language != language_c))
c906108c 4133 {
10b3939b 4134 symtab->language = cu->language;
c906108c 4135 }
9291a0cd
TT
4136
4137 if (dwarf2_per_objfile->using_index)
4138 per_cu->v.quick->symtab = symtab;
4139 else
4140 {
4141 struct partial_symtab *pst = per_cu->v.psymtab;
4142 pst->symtab = symtab;
4143 pst->readin = 1;
4144 }
c906108c
SS
4145
4146 do_cleanups (back_to);
4147}
4148
4149/* Process a die and its children. */
4150
4151static void
e7c27a73 4152process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4153{
4154 switch (die->tag)
4155 {
4156 case DW_TAG_padding:
4157 break;
4158 case DW_TAG_compile_unit:
e7c27a73 4159 read_file_scope (die, cu);
c906108c 4160 break;
348e048f
DE
4161 case DW_TAG_type_unit:
4162 read_type_unit_scope (die, cu);
4163 break;
c906108c 4164 case DW_TAG_subprogram:
c906108c 4165 case DW_TAG_inlined_subroutine:
edb3359d 4166 read_func_scope (die, cu);
c906108c
SS
4167 break;
4168 case DW_TAG_lexical_block:
14898363
L
4169 case DW_TAG_try_block:
4170 case DW_TAG_catch_block:
e7c27a73 4171 read_lexical_block_scope (die, cu);
c906108c
SS
4172 break;
4173 case DW_TAG_class_type:
680b30c7 4174 case DW_TAG_interface_type:
c906108c
SS
4175 case DW_TAG_structure_type:
4176 case DW_TAG_union_type:
134d01f1 4177 process_structure_scope (die, cu);
c906108c
SS
4178 break;
4179 case DW_TAG_enumeration_type:
134d01f1 4180 process_enumeration_scope (die, cu);
c906108c 4181 break;
134d01f1 4182
f792889a
DJ
4183 /* These dies have a type, but processing them does not create
4184 a symbol or recurse to process the children. Therefore we can
4185 read them on-demand through read_type_die. */
c906108c 4186 case DW_TAG_subroutine_type:
72019c9c 4187 case DW_TAG_set_type:
c906108c 4188 case DW_TAG_array_type:
c906108c 4189 case DW_TAG_pointer_type:
c906108c 4190 case DW_TAG_ptr_to_member_type:
c906108c 4191 case DW_TAG_reference_type:
c906108c 4192 case DW_TAG_string_type:
c906108c 4193 break;
134d01f1 4194
c906108c 4195 case DW_TAG_base_type:
a02abb62 4196 case DW_TAG_subrange_type:
cb249c71 4197 case DW_TAG_typedef:
90e7c2c5
PM
4198 case DW_TAG_const_type:
4199 case DW_TAG_volatile_type:
134d01f1
DJ
4200 /* Add a typedef symbol for the type definition, if it has a
4201 DW_AT_name. */
f792889a 4202 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4203 break;
c906108c 4204 case DW_TAG_common_block:
e7c27a73 4205 read_common_block (die, cu);
c906108c
SS
4206 break;
4207 case DW_TAG_common_inclusion:
4208 break;
d9fa45fe 4209 case DW_TAG_namespace:
63d06c5c 4210 processing_has_namespace_info = 1;
e7c27a73 4211 read_namespace (die, cu);
d9fa45fe 4212 break;
5d7cb8df 4213 case DW_TAG_module:
f55ee35c 4214 processing_has_namespace_info = 1;
5d7cb8df
JK
4215 read_module (die, cu);
4216 break;
d9fa45fe
DC
4217 case DW_TAG_imported_declaration:
4218 case DW_TAG_imported_module:
63d06c5c 4219 processing_has_namespace_info = 1;
27aa8d6a
SW
4220 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4221 || cu->language != language_fortran))
4222 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4223 dwarf_tag_name (die->tag));
4224 read_import_statement (die, cu);
d9fa45fe 4225 break;
c906108c 4226 default:
e7c27a73 4227 new_symbol (die, NULL, cu);
c906108c
SS
4228 break;
4229 }
4230}
4231
94af9270
KS
4232/* A helper function for dwarf2_compute_name which determines whether DIE
4233 needs to have the name of the scope prepended to the name listed in the
4234 die. */
4235
4236static int
4237die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4238{
1c809c68
TT
4239 struct attribute *attr;
4240
94af9270
KS
4241 switch (die->tag)
4242 {
4243 case DW_TAG_namespace:
4244 case DW_TAG_typedef:
4245 case DW_TAG_class_type:
4246 case DW_TAG_interface_type:
4247 case DW_TAG_structure_type:
4248 case DW_TAG_union_type:
4249 case DW_TAG_enumeration_type:
4250 case DW_TAG_enumerator:
4251 case DW_TAG_subprogram:
4252 case DW_TAG_member:
4253 return 1;
4254
4255 case DW_TAG_variable:
4256 /* We only need to prefix "globally" visible variables. These include
4257 any variable marked with DW_AT_external or any variable that
4258 lives in a namespace. [Variables in anonymous namespaces
4259 require prefixing, but they are not DW_AT_external.] */
4260
4261 if (dwarf2_attr (die, DW_AT_specification, cu))
4262 {
4263 struct dwarf2_cu *spec_cu = cu;
9a619af0 4264
94af9270
KS
4265 return die_needs_namespace (die_specification (die, &spec_cu),
4266 spec_cu);
4267 }
4268
1c809c68 4269 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4270 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4271 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4272 return 0;
4273 /* A variable in a lexical block of some kind does not need a
4274 namespace, even though in C++ such variables may be external
4275 and have a mangled name. */
4276 if (die->parent->tag == DW_TAG_lexical_block
4277 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4278 || die->parent->tag == DW_TAG_catch_block
4279 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4280 return 0;
4281 return 1;
94af9270
KS
4282
4283 default:
4284 return 0;
4285 }
4286}
4287
4288/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4289 compute the physname for the object, which include a method's
4290 formal parameters (C++/Java) and return type (Java).
4291
af6b7be1
JB
4292 For Ada, return the DIE's linkage name rather than the fully qualified
4293 name. PHYSNAME is ignored..
4294
94af9270
KS
4295 The result is allocated on the objfile_obstack and canonicalized. */
4296
4297static const char *
4298dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4299 int physname)
4300{
4301 if (name == NULL)
4302 name = dwarf2_name (die, cu);
4303
f55ee35c
JK
4304 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4305 compute it by typename_concat inside GDB. */
4306 if (cu->language == language_ada
4307 || (cu->language == language_fortran && physname))
4308 {
4309 /* For Ada unit, we prefer the linkage name over the name, as
4310 the former contains the exported name, which the user expects
4311 to be able to reference. Ideally, we want the user to be able
4312 to reference this entity using either natural or linkage name,
4313 but we haven't started looking at this enhancement yet. */
4314 struct attribute *attr;
4315
4316 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4317 if (attr == NULL)
4318 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4319 if (attr && DW_STRING (attr))
4320 return DW_STRING (attr);
4321 }
4322
94af9270
KS
4323 /* These are the only languages we know how to qualify names in. */
4324 if (name != NULL
f55ee35c
JK
4325 && (cu->language == language_cplus || cu->language == language_java
4326 || cu->language == language_fortran))
94af9270
KS
4327 {
4328 if (die_needs_namespace (die, cu))
4329 {
4330 long length;
4331 char *prefix;
4332 struct ui_file *buf;
4333
4334 prefix = determine_prefix (die, cu);
4335 buf = mem_fileopen ();
4336 if (*prefix != '\0')
4337 {
f55ee35c
JK
4338 char *prefixed_name = typename_concat (NULL, prefix, name,
4339 physname, cu);
9a619af0 4340
94af9270
KS
4341 fputs_unfiltered (prefixed_name, buf);
4342 xfree (prefixed_name);
4343 }
4344 else
4345 fputs_unfiltered (name ? name : "", buf);
4346
4347 /* For Java and C++ methods, append formal parameter type
4348 information, if PHYSNAME. */
6e70227d 4349
94af9270
KS
4350 if (physname && die->tag == DW_TAG_subprogram
4351 && (cu->language == language_cplus
4352 || cu->language == language_java))
4353 {
4354 struct type *type = read_type_die (die, cu);
4355
4356 c_type_print_args (type, buf, 0, cu->language);
4357
4358 if (cu->language == language_java)
4359 {
4360 /* For java, we must append the return type to method
4361 names. */
4362 if (die->tag == DW_TAG_subprogram)
4363 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4364 0, 0);
4365 }
4366 else if (cu->language == language_cplus)
4367 {
4368 if (TYPE_NFIELDS (type) > 0
4369 && TYPE_FIELD_ARTIFICIAL (type, 0)
4370 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0))))
4371 fputs_unfiltered (" const", buf);
4372 }
4373 }
4374
4375 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4376 &length);
4377 ui_file_delete (buf);
4378
4379 if (cu->language == language_cplus)
4380 {
4381 char *cname
4382 = dwarf2_canonicalize_name (name, cu,
4383 &cu->objfile->objfile_obstack);
9a619af0 4384
94af9270
KS
4385 if (cname != NULL)
4386 name = cname;
4387 }
4388 }
4389 }
4390
4391 return name;
4392}
4393
0114d602
DJ
4394/* Return the fully qualified name of DIE, based on its DW_AT_name.
4395 If scope qualifiers are appropriate they will be added. The result
4396 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
4397 not have a name. NAME may either be from a previous call to
4398 dwarf2_name or NULL.
4399
4400 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
4401
4402static const char *
94af9270 4403dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 4404{
94af9270
KS
4405 return dwarf2_compute_name (name, die, cu, 0);
4406}
0114d602 4407
94af9270
KS
4408/* Construct a physname for the given DIE in CU. NAME may either be
4409 from a previous call to dwarf2_name or NULL. The result will be
4410 allocated on the objfile_objstack or NULL if the DIE does not have a
4411 name.
0114d602 4412
94af9270 4413 The output string will be canonicalized (if C++/Java). */
0114d602 4414
94af9270
KS
4415static const char *
4416dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
4417{
4418 return dwarf2_compute_name (name, die, cu, 1);
0114d602
DJ
4419}
4420
27aa8d6a
SW
4421/* Read the import statement specified by the given die and record it. */
4422
4423static void
4424read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
4425{
4426 struct attribute *import_attr;
4427 struct die_info *imported_die;
de4affc9 4428 struct dwarf2_cu *imported_cu;
27aa8d6a 4429 const char *imported_name;
794684b6 4430 const char *imported_name_prefix;
13387711
SW
4431 const char *canonical_name;
4432 const char *import_alias;
4433 const char *imported_declaration = NULL;
794684b6 4434 const char *import_prefix;
13387711
SW
4435
4436 char *temp;
27aa8d6a
SW
4437
4438 import_attr = dwarf2_attr (die, DW_AT_import, cu);
4439 if (import_attr == NULL)
4440 {
4441 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
4442 dwarf_tag_name (die->tag));
4443 return;
4444 }
4445
de4affc9
CC
4446 imported_cu = cu;
4447 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
4448 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
4449 if (imported_name == NULL)
4450 {
4451 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
4452
4453 The import in the following code:
4454 namespace A
4455 {
4456 typedef int B;
4457 }
4458
4459 int main ()
4460 {
4461 using A::B;
4462 B b;
4463 return b;
4464 }
4465
4466 ...
4467 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
4468 <52> DW_AT_decl_file : 1
4469 <53> DW_AT_decl_line : 6
4470 <54> DW_AT_import : <0x75>
4471 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
4472 <59> DW_AT_name : B
4473 <5b> DW_AT_decl_file : 1
4474 <5c> DW_AT_decl_line : 2
4475 <5d> DW_AT_type : <0x6e>
4476 ...
4477 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
4478 <76> DW_AT_byte_size : 4
4479 <77> DW_AT_encoding : 5 (signed)
4480
4481 imports the wrong die ( 0x75 instead of 0x58 ).
4482 This case will be ignored until the gcc bug is fixed. */
4483 return;
4484 }
4485
82856980
SW
4486 /* Figure out the local name after import. */
4487 import_alias = dwarf2_name (die, cu);
27aa8d6a 4488
794684b6
SW
4489 /* Figure out where the statement is being imported to. */
4490 import_prefix = determine_prefix (die, cu);
4491
4492 /* Figure out what the scope of the imported die is and prepend it
4493 to the name of the imported die. */
de4affc9 4494 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 4495
f55ee35c
JK
4496 if (imported_die->tag != DW_TAG_namespace
4497 && imported_die->tag != DW_TAG_module)
794684b6 4498 {
13387711
SW
4499 imported_declaration = imported_name;
4500 canonical_name = imported_name_prefix;
794684b6 4501 }
13387711 4502 else if (strlen (imported_name_prefix) > 0)
794684b6 4503 {
13387711
SW
4504 temp = alloca (strlen (imported_name_prefix)
4505 + 2 + strlen (imported_name) + 1);
4506 strcpy (temp, imported_name_prefix);
4507 strcat (temp, "::");
4508 strcat (temp, imported_name);
4509 canonical_name = temp;
794684b6 4510 }
13387711
SW
4511 else
4512 canonical_name = imported_name;
794684b6 4513
c0cc3a76
SW
4514 cp_add_using_directive (import_prefix,
4515 canonical_name,
4516 import_alias,
13387711 4517 imported_declaration,
c0cc3a76 4518 &cu->objfile->objfile_obstack);
27aa8d6a
SW
4519}
4520
5fb290d7 4521static void
e142c38c 4522initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 4523{
e142c38c 4524 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
4525}
4526
cb1df416
DJ
4527static void
4528free_cu_line_header (void *arg)
4529{
4530 struct dwarf2_cu *cu = arg;
4531
4532 free_line_header (cu->line_header);
4533 cu->line_header = NULL;
4534}
4535
9291a0cd
TT
4536static void
4537find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
4538 char **name, char **comp_dir)
4539{
4540 struct attribute *attr;
4541
4542 *name = NULL;
4543 *comp_dir = NULL;
4544
4545 /* Find the filename. Do not use dwarf2_name here, since the filename
4546 is not a source language identifier. */
4547 attr = dwarf2_attr (die, DW_AT_name, cu);
4548 if (attr)
4549 {
4550 *name = DW_STRING (attr);
4551 }
4552
4553 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
4554 if (attr)
4555 *comp_dir = DW_STRING (attr);
4556 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
4557 {
4558 *comp_dir = ldirname (*name);
4559 if (*comp_dir != NULL)
4560 make_cleanup (xfree, *comp_dir);
4561 }
4562 if (*comp_dir != NULL)
4563 {
4564 /* Irix 6.2 native cc prepends <machine>.: to the compilation
4565 directory, get rid of it. */
4566 char *cp = strchr (*comp_dir, ':');
4567
4568 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
4569 *comp_dir = cp + 1;
4570 }
4571
4572 if (*name == NULL)
4573 *name = "<unknown>";
4574}
4575
c906108c 4576static void
e7c27a73 4577read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4578{
e7c27a73 4579 struct objfile *objfile = cu->objfile;
debd256d 4580 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 4581 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
4582 CORE_ADDR highpc = ((CORE_ADDR) 0);
4583 struct attribute *attr;
e1024ff1 4584 char *name = NULL;
c906108c
SS
4585 char *comp_dir = NULL;
4586 struct die_info *child_die;
4587 bfd *abfd = objfile->obfd;
debd256d 4588 struct line_header *line_header = 0;
e142c38c 4589 CORE_ADDR baseaddr;
6e70227d 4590
e142c38c 4591 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 4592
fae299cd 4593 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
4594
4595 /* If we didn't find a lowpc, set it to highpc to avoid complaints
4596 from finish_block. */
2acceee2 4597 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
4598 lowpc = highpc;
4599 lowpc += baseaddr;
4600 highpc += baseaddr;
4601
9291a0cd 4602 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 4603
e142c38c 4604 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
4605 if (attr)
4606 {
e142c38c 4607 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
4608 }
4609
b0f35d58 4610 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 4611 if (attr)
b0f35d58 4612 cu->producer = DW_STRING (attr);
303b6f5d 4613
c906108c
SS
4614 /* We assume that we're processing GCC output. */
4615 processing_gcc_compilation = 2;
c906108c 4616
df8a16a1
DJ
4617 processing_has_namespace_info = 0;
4618
c906108c
SS
4619 start_symtab (name, comp_dir, lowpc);
4620 record_debugformat ("DWARF 2");
303b6f5d 4621 record_producer (cu->producer);
c906108c 4622
e142c38c 4623 initialize_cu_func_list (cu);
c906108c 4624
cb1df416
DJ
4625 /* Decode line number information if present. We do this before
4626 processing child DIEs, so that the line header table is available
4627 for DW_AT_decl_file. */
e142c38c 4628 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
4629 if (attr)
4630 {
debd256d 4631 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 4632 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
4633 if (line_header)
4634 {
cb1df416
DJ
4635 cu->line_header = line_header;
4636 make_cleanup (free_cu_line_header, cu);
aaa75496 4637 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 4638 }
5fb290d7 4639 }
debd256d 4640
cb1df416
DJ
4641 /* Process all dies in compilation unit. */
4642 if (die->child != NULL)
4643 {
4644 child_die = die->child;
4645 while (child_die && child_die->tag)
4646 {
4647 process_die (child_die, cu);
4648 child_die = sibling_die (child_die);
4649 }
4650 }
4651
2e276125
JB
4652 /* Decode macro information, if present. Dwarf 2 macro information
4653 refers to information in the line number info statement program
4654 header, so we can only read it if we've read the header
4655 successfully. */
e142c38c 4656 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 4657 if (attr && line_header)
2e276125
JB
4658 {
4659 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 4660
2e276125 4661 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 4662 comp_dir, abfd, cu);
2e276125 4663 }
debd256d 4664 do_cleanups (back_to);
5fb290d7
DJ
4665}
4666
348e048f
DE
4667/* For TUs we want to skip the first top level sibling if it's not the
4668 actual type being defined by this TU. In this case the first top
4669 level sibling is there to provide context only. */
4670
4671static void
4672read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
4673{
4674 struct objfile *objfile = cu->objfile;
4675 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4676 CORE_ADDR lowpc;
4677 struct attribute *attr;
4678 char *name = NULL;
4679 char *comp_dir = NULL;
4680 struct die_info *child_die;
4681 bfd *abfd = objfile->obfd;
348e048f
DE
4682
4683 /* start_symtab needs a low pc, but we don't really have one.
4684 Do what read_file_scope would do in the absence of such info. */
4685 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4686
4687 /* Find the filename. Do not use dwarf2_name here, since the filename
4688 is not a source language identifier. */
4689 attr = dwarf2_attr (die, DW_AT_name, cu);
4690 if (attr)
4691 name = DW_STRING (attr);
4692
4693 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
4694 if (attr)
4695 comp_dir = DW_STRING (attr);
4696 else if (name != NULL && IS_ABSOLUTE_PATH (name))
4697 {
4698 comp_dir = ldirname (name);
4699 if (comp_dir != NULL)
4700 make_cleanup (xfree, comp_dir);
4701 }
4702
4703 if (name == NULL)
4704 name = "<unknown>";
4705
4706 attr = dwarf2_attr (die, DW_AT_language, cu);
4707 if (attr)
4708 set_cu_language (DW_UNSND (attr), cu);
4709
4710 /* This isn't technically needed today. It is done for symmetry
4711 with read_file_scope. */
4712 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 4713 if (attr)
348e048f
DE
4714 cu->producer = DW_STRING (attr);
4715
4716 /* We assume that we're processing GCC output. */
4717 processing_gcc_compilation = 2;
4718
4719 processing_has_namespace_info = 0;
4720
4721 start_symtab (name, comp_dir, lowpc);
4722 record_debugformat ("DWARF 2");
4723 record_producer (cu->producer);
4724
4725 /* Process the dies in the type unit. */
4726 if (die->child == NULL)
4727 {
4728 dump_die_for_error (die);
4729 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
4730 bfd_get_filename (abfd));
4731 }
4732
4733 child_die = die->child;
4734
4735 while (child_die && child_die->tag)
4736 {
4737 process_die (child_die, cu);
4738
4739 child_die = sibling_die (child_die);
4740 }
4741
4742 do_cleanups (back_to);
4743}
4744
5fb290d7 4745static void
e142c38c
DJ
4746add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
4747 struct dwarf2_cu *cu)
5fb290d7
DJ
4748{
4749 struct function_range *thisfn;
4750
4751 thisfn = (struct function_range *)
7b5a2f43 4752 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
4753 thisfn->name = name;
4754 thisfn->lowpc = lowpc;
4755 thisfn->highpc = highpc;
4756 thisfn->seen_line = 0;
4757 thisfn->next = NULL;
4758
e142c38c
DJ
4759 if (cu->last_fn == NULL)
4760 cu->first_fn = thisfn;
5fb290d7 4761 else
e142c38c 4762 cu->last_fn->next = thisfn;
5fb290d7 4763
e142c38c 4764 cu->last_fn = thisfn;
c906108c
SS
4765}
4766
d389af10
JK
4767/* qsort helper for inherit_abstract_dies. */
4768
4769static int
4770unsigned_int_compar (const void *ap, const void *bp)
4771{
4772 unsigned int a = *(unsigned int *) ap;
4773 unsigned int b = *(unsigned int *) bp;
4774
4775 return (a > b) - (b > a);
4776}
4777
4778/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
4779 Inherit only the children of the DW_AT_abstract_origin DIE not being already
4780 referenced by DW_AT_abstract_origin from the children of the current DIE. */
4781
4782static void
4783inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
4784{
4785 struct die_info *child_die;
4786 unsigned die_children_count;
4787 /* CU offsets which were referenced by children of the current DIE. */
4788 unsigned *offsets;
4789 unsigned *offsets_end, *offsetp;
4790 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
4791 struct die_info *origin_die;
4792 /* Iterator of the ORIGIN_DIE children. */
4793 struct die_info *origin_child_die;
4794 struct cleanup *cleanups;
4795 struct attribute *attr;
4796
4797 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
4798 if (!attr)
4799 return;
4800
4801 origin_die = follow_die_ref (die, attr, &cu);
edb3359d
DJ
4802 if (die->tag != origin_die->tag
4803 && !(die->tag == DW_TAG_inlined_subroutine
4804 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
4805 complaint (&symfile_complaints,
4806 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
4807 die->offset, origin_die->offset);
4808
4809 child_die = die->child;
4810 die_children_count = 0;
4811 while (child_die && child_die->tag)
4812 {
4813 child_die = sibling_die (child_die);
4814 die_children_count++;
4815 }
4816 offsets = xmalloc (sizeof (*offsets) * die_children_count);
4817 cleanups = make_cleanup (xfree, offsets);
4818
4819 offsets_end = offsets;
4820 child_die = die->child;
4821 while (child_die && child_die->tag)
4822 {
c38f313d
DJ
4823 /* For each CHILD_DIE, find the corresponding child of
4824 ORIGIN_DIE. If there is more than one layer of
4825 DW_AT_abstract_origin, follow them all; there shouldn't be,
4826 but GCC versions at least through 4.4 generate this (GCC PR
4827 40573). */
4828 struct die_info *child_origin_die = child_die;
9a619af0 4829
c38f313d
DJ
4830 while (1)
4831 {
4832 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, cu);
4833 if (attr == NULL)
4834 break;
4835 child_origin_die = follow_die_ref (child_origin_die, attr, &cu);
4836 }
4837
d389af10
JK
4838 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
4839 counterpart may exist. */
c38f313d 4840 if (child_origin_die != child_die)
d389af10 4841 {
edb3359d
DJ
4842 if (child_die->tag != child_origin_die->tag
4843 && !(child_die->tag == DW_TAG_inlined_subroutine
4844 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
4845 complaint (&symfile_complaints,
4846 _("Child DIE 0x%x and its abstract origin 0x%x have "
4847 "different tags"), child_die->offset,
4848 child_origin_die->offset);
c38f313d
DJ
4849 if (child_origin_die->parent != origin_die)
4850 complaint (&symfile_complaints,
4851 _("Child DIE 0x%x and its abstract origin 0x%x have "
4852 "different parents"), child_die->offset,
4853 child_origin_die->offset);
4854 else
4855 *offsets_end++ = child_origin_die->offset;
d389af10
JK
4856 }
4857 child_die = sibling_die (child_die);
4858 }
4859 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
4860 unsigned_int_compar);
4861 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
4862 if (offsetp[-1] == *offsetp)
4863 complaint (&symfile_complaints, _("Multiple children of DIE 0x%x refer "
4864 "to DIE 0x%x as their abstract origin"),
4865 die->offset, *offsetp);
4866
4867 offsetp = offsets;
4868 origin_child_die = origin_die->child;
4869 while (origin_child_die && origin_child_die->tag)
4870 {
4871 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
4872 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
4873 offsetp++;
4874 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
4875 {
4876 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
4877 process_die (origin_child_die, cu);
4878 }
4879 origin_child_die = sibling_die (origin_child_die);
4880 }
4881
4882 do_cleanups (cleanups);
4883}
4884
c906108c 4885static void
e7c27a73 4886read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4887{
e7c27a73 4888 struct objfile *objfile = cu->objfile;
52f0bd74 4889 struct context_stack *new;
c906108c
SS
4890 CORE_ADDR lowpc;
4891 CORE_ADDR highpc;
4892 struct die_info *child_die;
edb3359d 4893 struct attribute *attr, *call_line, *call_file;
c906108c 4894 char *name;
e142c38c 4895 CORE_ADDR baseaddr;
801e3a5b 4896 struct block *block;
edb3359d
DJ
4897 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
4898
4899 if (inlined_func)
4900 {
4901 /* If we do not have call site information, we can't show the
4902 caller of this inlined function. That's too confusing, so
4903 only use the scope for local variables. */
4904 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
4905 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
4906 if (call_line == NULL || call_file == NULL)
4907 {
4908 read_lexical_block_scope (die, cu);
4909 return;
4910 }
4911 }
c906108c 4912
e142c38c
DJ
4913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4914
94af9270 4915 name = dwarf2_name (die, cu);
c906108c 4916
e8d05480
JB
4917 /* Ignore functions with missing or empty names. These are actually
4918 illegal according to the DWARF standard. */
4919 if (name == NULL)
4920 {
4921 complaint (&symfile_complaints,
4922 _("missing name for subprogram DIE at %d"), die->offset);
4923 return;
4924 }
4925
4926 /* Ignore functions with missing or invalid low and high pc attributes. */
4927 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
4928 {
ae4d0c03
PM
4929 attr = dwarf2_attr (die, DW_AT_external, cu);
4930 if (!attr || !DW_UNSND (attr))
4931 complaint (&symfile_complaints,
4932 _("cannot get low and high bounds for subprogram DIE at %d"),
4933 die->offset);
e8d05480
JB
4934 return;
4935 }
c906108c
SS
4936
4937 lowpc += baseaddr;
4938 highpc += baseaddr;
4939
5fb290d7 4940 /* Record the function range for dwarf_decode_lines. */
e142c38c 4941 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 4942
c906108c 4943 new = push_context (0, lowpc);
f792889a 4944 new->name = new_symbol (die, read_type_die (die, cu), cu);
4c2df51b 4945
4cecd739
DJ
4946 /* If there is a location expression for DW_AT_frame_base, record
4947 it. */
e142c38c 4948 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 4949 if (attr)
c034e007
AC
4950 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
4951 expression is being recorded directly in the function's symbol
4952 and not in a separate frame-base object. I guess this hack is
4953 to avoid adding some sort of frame-base adjunct/annex to the
4954 function's symbol :-(. The problem with doing this is that it
4955 results in a function symbol with a location expression that
4956 has nothing to do with the location of the function, ouch! The
4957 relationship should be: a function's symbol has-a frame base; a
4958 frame-base has-a location expression. */
e7c27a73 4959 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 4960
e142c38c 4961 cu->list_in_scope = &local_symbols;
c906108c 4962
639d11d3 4963 if (die->child != NULL)
c906108c 4964 {
639d11d3 4965 child_die = die->child;
c906108c
SS
4966 while (child_die && child_die->tag)
4967 {
e7c27a73 4968 process_die (child_die, cu);
c906108c
SS
4969 child_die = sibling_die (child_die);
4970 }
4971 }
4972
d389af10
JK
4973 inherit_abstract_dies (die, cu);
4974
4a811a97
UW
4975 /* If we have a DW_AT_specification, we might need to import using
4976 directives from the context of the specification DIE. See the
4977 comment in determine_prefix. */
4978 if (cu->language == language_cplus
4979 && dwarf2_attr (die, DW_AT_specification, cu))
4980 {
4981 struct dwarf2_cu *spec_cu = cu;
4982 struct die_info *spec_die = die_specification (die, &spec_cu);
4983
4984 while (spec_die)
4985 {
4986 child_die = spec_die->child;
4987 while (child_die && child_die->tag)
4988 {
4989 if (child_die->tag == DW_TAG_imported_module)
4990 process_die (child_die, spec_cu);
4991 child_die = sibling_die (child_die);
4992 }
4993
4994 /* In some cases, GCC generates specification DIEs that
4995 themselves contain DW_AT_specification attributes. */
4996 spec_die = die_specification (spec_die, &spec_cu);
4997 }
4998 }
4999
c906108c
SS
5000 new = pop_context ();
5001 /* Make a block for the local symbols within. */
801e3a5b
JB
5002 block = finish_block (new->name, &local_symbols, new->old_blocks,
5003 lowpc, highpc, objfile);
5004
df8a16a1 5005 /* For C++, set the block's scope. */
f55ee35c 5006 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 5007 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 5008 determine_prefix (die, cu),
df8a16a1
DJ
5009 processing_has_namespace_info);
5010
801e3a5b
JB
5011 /* If we have address ranges, record them. */
5012 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 5013
208d8187
JB
5014 /* In C++, we can have functions nested inside functions (e.g., when
5015 a function declares a class that has methods). This means that
5016 when we finish processing a function scope, we may need to go
5017 back to building a containing block's symbol lists. */
5018 local_symbols = new->locals;
5019 param_symbols = new->params;
27aa8d6a 5020 using_directives = new->using_directives;
208d8187 5021
921e78cf
JB
5022 /* If we've finished processing a top-level function, subsequent
5023 symbols go in the file symbol list. */
5024 if (outermost_context_p ())
e142c38c 5025 cu->list_in_scope = &file_symbols;
c906108c
SS
5026}
5027
5028/* Process all the DIES contained within a lexical block scope. Start
5029 a new scope, process the dies, and then close the scope. */
5030
5031static void
e7c27a73 5032read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5033{
e7c27a73 5034 struct objfile *objfile = cu->objfile;
52f0bd74 5035 struct context_stack *new;
c906108c
SS
5036 CORE_ADDR lowpc, highpc;
5037 struct die_info *child_die;
e142c38c
DJ
5038 CORE_ADDR baseaddr;
5039
5040 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
5041
5042 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
5043 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5044 as multiple lexical blocks? Handling children in a sane way would
6e70227d 5045 be nasty. Might be easier to properly extend generic blocks to
af34e669 5046 describe ranges. */
d85a05f0 5047 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
5048 return;
5049 lowpc += baseaddr;
5050 highpc += baseaddr;
5051
5052 push_context (0, lowpc);
639d11d3 5053 if (die->child != NULL)
c906108c 5054 {
639d11d3 5055 child_die = die->child;
c906108c
SS
5056 while (child_die && child_die->tag)
5057 {
e7c27a73 5058 process_die (child_die, cu);
c906108c
SS
5059 child_die = sibling_die (child_die);
5060 }
5061 }
5062 new = pop_context ();
5063
8540c487 5064 if (local_symbols != NULL || using_directives != NULL)
c906108c 5065 {
801e3a5b
JB
5066 struct block *block
5067 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5068 highpc, objfile);
5069
5070 /* Note that recording ranges after traversing children, as we
5071 do here, means that recording a parent's ranges entails
5072 walking across all its children's ranges as they appear in
5073 the address map, which is quadratic behavior.
5074
5075 It would be nicer to record the parent's ranges before
5076 traversing its children, simply overriding whatever you find
5077 there. But since we don't even decide whether to create a
5078 block until after we've traversed its children, that's hard
5079 to do. */
5080 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
5081 }
5082 local_symbols = new->locals;
27aa8d6a 5083 using_directives = new->using_directives;
c906108c
SS
5084}
5085
43039443 5086/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
5087 Return 1 if the attributes are present and valid, otherwise, return 0.
5088 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
5089
5090static int
5091dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
5092 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5093 struct partial_symtab *ranges_pst)
43039443
JK
5094{
5095 struct objfile *objfile = cu->objfile;
5096 struct comp_unit_head *cu_header = &cu->header;
5097 bfd *obfd = objfile->obfd;
5098 unsigned int addr_size = cu_header->addr_size;
5099 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5100 /* Base address selection entry. */
5101 CORE_ADDR base;
5102 int found_base;
5103 unsigned int dummy;
5104 gdb_byte *buffer;
5105 CORE_ADDR marker;
5106 int low_set;
5107 CORE_ADDR low = 0;
5108 CORE_ADDR high = 0;
ff013f42 5109 CORE_ADDR baseaddr;
43039443 5110
d00adf39
DE
5111 found_base = cu->base_known;
5112 base = cu->base_address;
43039443 5113
be391dca 5114 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 5115 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
5116 {
5117 complaint (&symfile_complaints,
5118 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5119 offset);
5120 return 0;
5121 }
dce234bc 5122 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
5123
5124 /* Read in the largest possible address. */
5125 marker = read_address (obfd, buffer, cu, &dummy);
5126 if ((marker & mask) == mask)
5127 {
5128 /* If we found the largest possible address, then
5129 read the base address. */
5130 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5131 buffer += 2 * addr_size;
5132 offset += 2 * addr_size;
5133 found_base = 1;
5134 }
5135
5136 low_set = 0;
5137
e7030f15 5138 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 5139
43039443
JK
5140 while (1)
5141 {
5142 CORE_ADDR range_beginning, range_end;
5143
5144 range_beginning = read_address (obfd, buffer, cu, &dummy);
5145 buffer += addr_size;
5146 range_end = read_address (obfd, buffer, cu, &dummy);
5147 buffer += addr_size;
5148 offset += 2 * addr_size;
5149
5150 /* An end of list marker is a pair of zero addresses. */
5151 if (range_beginning == 0 && range_end == 0)
5152 /* Found the end of list entry. */
5153 break;
5154
5155 /* Each base address selection entry is a pair of 2 values.
5156 The first is the largest possible address, the second is
5157 the base address. Check for a base address here. */
5158 if ((range_beginning & mask) == mask)
5159 {
5160 /* If we found the largest possible address, then
5161 read the base address. */
5162 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5163 found_base = 1;
5164 continue;
5165 }
5166
5167 if (!found_base)
5168 {
5169 /* We have no valid base address for the ranges
5170 data. */
5171 complaint (&symfile_complaints,
5172 _("Invalid .debug_ranges data (no base address)"));
5173 return 0;
5174 }
5175
5176 range_beginning += base;
5177 range_end += base;
5178
ff013f42
JK
5179 if (ranges_pst != NULL && range_beginning < range_end)
5180 addrmap_set_empty (objfile->psymtabs_addrmap,
5181 range_beginning + baseaddr, range_end - 1 + baseaddr,
5182 ranges_pst);
5183
43039443
JK
5184 /* FIXME: This is recording everything as a low-high
5185 segment of consecutive addresses. We should have a
5186 data structure for discontiguous block ranges
5187 instead. */
5188 if (! low_set)
5189 {
5190 low = range_beginning;
5191 high = range_end;
5192 low_set = 1;
5193 }
5194 else
5195 {
5196 if (range_beginning < low)
5197 low = range_beginning;
5198 if (range_end > high)
5199 high = range_end;
5200 }
5201 }
5202
5203 if (! low_set)
5204 /* If the first entry is an end-of-list marker, the range
5205 describes an empty scope, i.e. no instructions. */
5206 return 0;
5207
5208 if (low_return)
5209 *low_return = low;
5210 if (high_return)
5211 *high_return = high;
5212 return 1;
5213}
5214
af34e669
DJ
5215/* Get low and high pc attributes from a die. Return 1 if the attributes
5216 are present and valid, otherwise, return 0. Return -1 if the range is
5217 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 5218static int
af34e669 5219dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
5220 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5221 struct partial_symtab *pst)
c906108c
SS
5222{
5223 struct attribute *attr;
af34e669
DJ
5224 CORE_ADDR low = 0;
5225 CORE_ADDR high = 0;
5226 int ret = 0;
c906108c 5227
e142c38c 5228 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 5229 if (attr)
af34e669
DJ
5230 {
5231 high = DW_ADDR (attr);
e142c38c 5232 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
5233 if (attr)
5234 low = DW_ADDR (attr);
5235 else
5236 /* Found high w/o low attribute. */
5237 return 0;
5238
5239 /* Found consecutive range of addresses. */
5240 ret = 1;
5241 }
c906108c 5242 else
af34e669 5243 {
e142c38c 5244 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
5245 if (attr != NULL)
5246 {
af34e669 5247 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 5248 .debug_ranges section. */
d85a05f0 5249 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 5250 return 0;
43039443 5251 /* Found discontinuous range of addresses. */
af34e669
DJ
5252 ret = -1;
5253 }
5254 }
c906108c
SS
5255
5256 if (high < low)
5257 return 0;
5258
5259 /* When using the GNU linker, .gnu.linkonce. sections are used to
5260 eliminate duplicate copies of functions and vtables and such.
5261 The linker will arbitrarily choose one and discard the others.
5262 The AT_*_pc values for such functions refer to local labels in
5263 these sections. If the section from that file was discarded, the
5264 labels are not in the output, so the relocs get a value of 0.
5265 If this is a discarded function, mark the pc bounds as invalid,
5266 so that GDB will ignore it. */
72dca2f5 5267 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
5268 return 0;
5269
5270 *lowpc = low;
5271 *highpc = high;
af34e669 5272 return ret;
c906108c
SS
5273}
5274
b084d499
JB
5275/* Assuming that DIE represents a subprogram DIE or a lexical block, get
5276 its low and high PC addresses. Do nothing if these addresses could not
5277 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5278 and HIGHPC to the high address if greater than HIGHPC. */
5279
5280static void
5281dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5282 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5283 struct dwarf2_cu *cu)
5284{
5285 CORE_ADDR low, high;
5286 struct die_info *child = die->child;
5287
d85a05f0 5288 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
5289 {
5290 *lowpc = min (*lowpc, low);
5291 *highpc = max (*highpc, high);
5292 }
5293
5294 /* If the language does not allow nested subprograms (either inside
5295 subprograms or lexical blocks), we're done. */
5296 if (cu->language != language_ada)
5297 return;
6e70227d 5298
b084d499
JB
5299 /* Check all the children of the given DIE. If it contains nested
5300 subprograms, then check their pc bounds. Likewise, we need to
5301 check lexical blocks as well, as they may also contain subprogram
5302 definitions. */
5303 while (child && child->tag)
5304 {
5305 if (child->tag == DW_TAG_subprogram
5306 || child->tag == DW_TAG_lexical_block)
5307 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5308 child = sibling_die (child);
5309 }
5310}
5311
fae299cd
DC
5312/* Get the low and high pc's represented by the scope DIE, and store
5313 them in *LOWPC and *HIGHPC. If the correct values can't be
5314 determined, set *LOWPC to -1 and *HIGHPC to 0. */
5315
5316static void
5317get_scope_pc_bounds (struct die_info *die,
5318 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5319 struct dwarf2_cu *cu)
5320{
5321 CORE_ADDR best_low = (CORE_ADDR) -1;
5322 CORE_ADDR best_high = (CORE_ADDR) 0;
5323 CORE_ADDR current_low, current_high;
5324
d85a05f0 5325 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
5326 {
5327 best_low = current_low;
5328 best_high = current_high;
5329 }
5330 else
5331 {
5332 struct die_info *child = die->child;
5333
5334 while (child && child->tag)
5335 {
5336 switch (child->tag) {
5337 case DW_TAG_subprogram:
b084d499 5338 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
5339 break;
5340 case DW_TAG_namespace:
f55ee35c 5341 case DW_TAG_module:
fae299cd
DC
5342 /* FIXME: carlton/2004-01-16: Should we do this for
5343 DW_TAG_class_type/DW_TAG_structure_type, too? I think
5344 that current GCC's always emit the DIEs corresponding
5345 to definitions of methods of classes as children of a
5346 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
5347 the DIEs giving the declarations, which could be
5348 anywhere). But I don't see any reason why the
5349 standards says that they have to be there. */
5350 get_scope_pc_bounds (child, &current_low, &current_high, cu);
5351
5352 if (current_low != ((CORE_ADDR) -1))
5353 {
5354 best_low = min (best_low, current_low);
5355 best_high = max (best_high, current_high);
5356 }
5357 break;
5358 default:
5359 /* Ignore. */
5360 break;
5361 }
5362
5363 child = sibling_die (child);
5364 }
5365 }
5366
5367 *lowpc = best_low;
5368 *highpc = best_high;
5369}
5370
801e3a5b
JB
5371/* Record the address ranges for BLOCK, offset by BASEADDR, as given
5372 in DIE. */
5373static void
5374dwarf2_record_block_ranges (struct die_info *die, struct block *block,
5375 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
5376{
5377 struct attribute *attr;
5378
5379 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5380 if (attr)
5381 {
5382 CORE_ADDR high = DW_ADDR (attr);
9a619af0 5383
801e3a5b
JB
5384 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5385 if (attr)
5386 {
5387 CORE_ADDR low = DW_ADDR (attr);
9a619af0 5388
801e3a5b
JB
5389 record_block_range (block, baseaddr + low, baseaddr + high - 1);
5390 }
5391 }
5392
5393 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5394 if (attr)
5395 {
5396 bfd *obfd = cu->objfile->obfd;
5397
5398 /* The value of the DW_AT_ranges attribute is the offset of the
5399 address range list in the .debug_ranges section. */
5400 unsigned long offset = DW_UNSND (attr);
dce234bc 5401 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
5402
5403 /* For some target architectures, but not others, the
5404 read_address function sign-extends the addresses it returns.
5405 To recognize base address selection entries, we need a
5406 mask. */
5407 unsigned int addr_size = cu->header.addr_size;
5408 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5409
5410 /* The base address, to which the next pair is relative. Note
5411 that this 'base' is a DWARF concept: most entries in a range
5412 list are relative, to reduce the number of relocs against the
5413 debugging information. This is separate from this function's
5414 'baseaddr' argument, which GDB uses to relocate debugging
5415 information from a shared library based on the address at
5416 which the library was loaded. */
d00adf39
DE
5417 CORE_ADDR base = cu->base_address;
5418 int base_known = cu->base_known;
801e3a5b 5419
be391dca 5420 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 5421 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
5422 {
5423 complaint (&symfile_complaints,
5424 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
5425 offset);
5426 return;
5427 }
5428
5429 for (;;)
5430 {
5431 unsigned int bytes_read;
5432 CORE_ADDR start, end;
5433
5434 start = read_address (obfd, buffer, cu, &bytes_read);
5435 buffer += bytes_read;
5436 end = read_address (obfd, buffer, cu, &bytes_read);
5437 buffer += bytes_read;
5438
5439 /* Did we find the end of the range list? */
5440 if (start == 0 && end == 0)
5441 break;
5442
5443 /* Did we find a base address selection entry? */
5444 else if ((start & base_select_mask) == base_select_mask)
5445 {
5446 base = end;
5447 base_known = 1;
5448 }
5449
5450 /* We found an ordinary address range. */
5451 else
5452 {
5453 if (!base_known)
5454 {
5455 complaint (&symfile_complaints,
5456 _("Invalid .debug_ranges data (no base address)"));
5457 return;
5458 }
5459
6e70227d
DE
5460 record_block_range (block,
5461 baseaddr + base + start,
801e3a5b
JB
5462 baseaddr + base + end - 1);
5463 }
5464 }
5465 }
5466}
5467
c906108c
SS
5468/* Add an aggregate field to the field list. */
5469
5470static void
107d2387 5471dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 5472 struct dwarf2_cu *cu)
6e70227d 5473{
e7c27a73 5474 struct objfile *objfile = cu->objfile;
5e2b427d 5475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
5476 struct nextfield *new_field;
5477 struct attribute *attr;
5478 struct field *fp;
5479 char *fieldname = "";
5480
5481 /* Allocate a new field list entry and link it in. */
5482 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 5483 make_cleanup (xfree, new_field);
c906108c 5484 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
5485
5486 if (die->tag == DW_TAG_inheritance)
5487 {
5488 new_field->next = fip->baseclasses;
5489 fip->baseclasses = new_field;
5490 }
5491 else
5492 {
5493 new_field->next = fip->fields;
5494 fip->fields = new_field;
5495 }
c906108c
SS
5496 fip->nfields++;
5497
5498 /* Handle accessibility and virtuality of field.
5499 The default accessibility for members is public, the default
5500 accessibility for inheritance is private. */
5501 if (die->tag != DW_TAG_inheritance)
5502 new_field->accessibility = DW_ACCESS_public;
5503 else
5504 new_field->accessibility = DW_ACCESS_private;
5505 new_field->virtuality = DW_VIRTUALITY_none;
5506
e142c38c 5507 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
5508 if (attr)
5509 new_field->accessibility = DW_UNSND (attr);
5510 if (new_field->accessibility != DW_ACCESS_public)
5511 fip->non_public_fields = 1;
e142c38c 5512 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
5513 if (attr)
5514 new_field->virtuality = DW_UNSND (attr);
5515
5516 fp = &new_field->field;
a9a9bd0f 5517
e142c38c 5518 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 5519 {
a9a9bd0f 5520 /* Data member other than a C++ static data member. */
6e70227d 5521
c906108c 5522 /* Get type of field. */
e7c27a73 5523 fp->type = die_type (die, cu);
c906108c 5524
d6a843b5 5525 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 5526
c906108c 5527 /* Get bit size of field (zero if none). */
e142c38c 5528 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
5529 if (attr)
5530 {
5531 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
5532 }
5533 else
5534 {
5535 FIELD_BITSIZE (*fp) = 0;
5536 }
5537
5538 /* Get bit offset of field. */
e142c38c 5539 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
5540 if (attr)
5541 {
d4b96c9a 5542 int byte_offset = 0;
c6a0999f 5543
3690dd37 5544 if (attr_form_is_section_offset (attr))
d4b96c9a 5545 dwarf2_complex_location_expr_complaint ();
3690dd37 5546 else if (attr_form_is_constant (attr))
c6a0999f 5547 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
d4b96c9a 5548 else if (attr_form_is_block (attr))
c6a0999f 5549 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
d4b96c9a
JK
5550 else
5551 dwarf2_complex_location_expr_complaint ();
c6a0999f 5552
d6a843b5 5553 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
c906108c 5554 }
e142c38c 5555 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
5556 if (attr)
5557 {
5e2b427d 5558 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
5559 {
5560 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
5561 additional bit offset from the MSB of the containing
5562 anonymous object to the MSB of the field. We don't
5563 have to do anything special since we don't need to
5564 know the size of the anonymous object. */
c906108c
SS
5565 FIELD_BITPOS (*fp) += DW_UNSND (attr);
5566 }
5567 else
5568 {
5569 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
5570 MSB of the anonymous object, subtract off the number of
5571 bits from the MSB of the field to the MSB of the
5572 object, and then subtract off the number of bits of
5573 the field itself. The result is the bit offset of
5574 the LSB of the field. */
c906108c
SS
5575 int anonymous_size;
5576 int bit_offset = DW_UNSND (attr);
5577
e142c38c 5578 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
5579 if (attr)
5580 {
5581 /* The size of the anonymous object containing
5582 the bit field is explicit, so use the
5583 indicated size (in bytes). */
5584 anonymous_size = DW_UNSND (attr);
5585 }
5586 else
5587 {
5588 /* The size of the anonymous object containing
5589 the bit field must be inferred from the type
5590 attribute of the data member containing the
5591 bit field. */
5592 anonymous_size = TYPE_LENGTH (fp->type);
5593 }
5594 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
5595 - bit_offset - FIELD_BITSIZE (*fp);
5596 }
5597 }
5598
5599 /* Get name of field. */
39cbfefa
DJ
5600 fieldname = dwarf2_name (die, cu);
5601 if (fieldname == NULL)
5602 fieldname = "";
d8151005
DJ
5603
5604 /* The name is already allocated along with this objfile, so we don't
5605 need to duplicate it for the type. */
5606 fp->name = fieldname;
c906108c
SS
5607
5608 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 5609 pointer or virtual base class pointer) to private. */
e142c38c 5610 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 5611 {
d48cc9dd 5612 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
5613 new_field->accessibility = DW_ACCESS_private;
5614 fip->non_public_fields = 1;
5615 }
5616 }
a9a9bd0f 5617 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 5618 {
a9a9bd0f
DC
5619 /* C++ static member. */
5620
5621 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
5622 is a declaration, but all versions of G++ as of this writing
5623 (so through at least 3.2.1) incorrectly generate
5624 DW_TAG_variable tags. */
6e70227d 5625
c906108c 5626 char *physname;
c906108c 5627
a9a9bd0f 5628 /* Get name of field. */
39cbfefa
DJ
5629 fieldname = dwarf2_name (die, cu);
5630 if (fieldname == NULL)
c906108c
SS
5631 return;
5632
254e6b9e 5633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
5634 if (attr
5635 /* Only create a symbol if this is an external value.
5636 new_symbol checks this and puts the value in the global symbol
5637 table, which we want. If it is not external, new_symbol
5638 will try to put the value in cu->list_in_scope which is wrong. */
5639 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
5640 {
5641 /* A static const member, not much different than an enum as far as
5642 we're concerned, except that we can support more types. */
5643 new_symbol (die, NULL, cu);
5644 }
5645
2df3850c 5646 /* Get physical name. */
94af9270 5647 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c 5648
d8151005
DJ
5649 /* The name is already allocated along with this objfile, so we don't
5650 need to duplicate it for the type. */
5651 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 5652 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 5653 FIELD_NAME (*fp) = fieldname;
c906108c
SS
5654 }
5655 else if (die->tag == DW_TAG_inheritance)
5656 {
5657 /* C++ base class field. */
e142c38c 5658 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 5659 if (attr)
d4b96c9a
JK
5660 {
5661 int byte_offset = 0;
5662
5663 if (attr_form_is_section_offset (attr))
5664 dwarf2_complex_location_expr_complaint ();
5665 else if (attr_form_is_constant (attr))
5666 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
5667 else if (attr_form_is_block (attr))
5668 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
5669 else
5670 dwarf2_complex_location_expr_complaint ();
5671
5672 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
5673 }
c906108c 5674 FIELD_BITSIZE (*fp) = 0;
e7c27a73 5675 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
5676 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
5677 fip->nbaseclasses++;
5678 }
5679}
5680
98751a41
JK
5681/* Add a typedef defined in the scope of the FIP's class. */
5682
5683static void
5684dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
5685 struct dwarf2_cu *cu)
6e70227d 5686{
98751a41
JK
5687 struct objfile *objfile = cu->objfile;
5688 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5689 struct typedef_field_list *new_field;
5690 struct attribute *attr;
5691 struct typedef_field *fp;
5692 char *fieldname = "";
5693
5694 /* Allocate a new field list entry and link it in. */
5695 new_field = xzalloc (sizeof (*new_field));
5696 make_cleanup (xfree, new_field);
5697
5698 gdb_assert (die->tag == DW_TAG_typedef);
5699
5700 fp = &new_field->field;
5701
5702 /* Get name of field. */
5703 fp->name = dwarf2_name (die, cu);
5704 if (fp->name == NULL)
5705 return;
5706
5707 fp->type = read_type_die (die, cu);
5708
5709 new_field->next = fip->typedef_field_list;
5710 fip->typedef_field_list = new_field;
5711 fip->typedef_field_list_count++;
5712}
5713
c906108c
SS
5714/* Create the vector of fields, and attach it to the type. */
5715
5716static void
fba45db2 5717dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 5718 struct dwarf2_cu *cu)
c906108c
SS
5719{
5720 int nfields = fip->nfields;
5721
5722 /* Record the field count, allocate space for the array of fields,
5723 and create blank accessibility bitfields if necessary. */
5724 TYPE_NFIELDS (type) = nfields;
5725 TYPE_FIELDS (type) = (struct field *)
5726 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5727 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
5728
b4ba55a1 5729 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
5730 {
5731 ALLOCATE_CPLUS_STRUCT_TYPE (type);
5732
5733 TYPE_FIELD_PRIVATE_BITS (type) =
5734 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5735 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
5736
5737 TYPE_FIELD_PROTECTED_BITS (type) =
5738 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5739 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
5740
5741 TYPE_FIELD_IGNORE_BITS (type) =
5742 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
5743 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
5744 }
5745
5746 /* If the type has baseclasses, allocate and clear a bit vector for
5747 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 5748 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
5749 {
5750 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 5751 unsigned char *pointer;
c906108c
SS
5752
5753 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
5754 pointer = TYPE_ALLOC (type, num_bytes);
5755 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
5756 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
5757 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
5758 }
5759
5760 /* Copy the saved-up fields into the field vector. Start from the head
5761 of the list, adding to the tail of the field array, so that they end
5762 up in the same order in the array in which they were added to the list. */
5763 while (nfields-- > 0)
5764 {
7d0ccb61
DJ
5765 struct nextfield *fieldp;
5766
5767 if (fip->fields)
5768 {
5769 fieldp = fip->fields;
5770 fip->fields = fieldp->next;
5771 }
5772 else
5773 {
5774 fieldp = fip->baseclasses;
5775 fip->baseclasses = fieldp->next;
5776 }
5777
5778 TYPE_FIELD (type, nfields) = fieldp->field;
5779 switch (fieldp->accessibility)
c906108c 5780 {
c5aa993b 5781 case DW_ACCESS_private:
b4ba55a1
JB
5782 if (cu->language != language_ada)
5783 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 5784 break;
c906108c 5785
c5aa993b 5786 case DW_ACCESS_protected:
b4ba55a1
JB
5787 if (cu->language != language_ada)
5788 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 5789 break;
c906108c 5790
c5aa993b
JM
5791 case DW_ACCESS_public:
5792 break;
c906108c 5793
c5aa993b
JM
5794 default:
5795 /* Unknown accessibility. Complain and treat it as public. */
5796 {
e2e0b3e5 5797 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 5798 fieldp->accessibility);
c5aa993b
JM
5799 }
5800 break;
c906108c
SS
5801 }
5802 if (nfields < fip->nbaseclasses)
5803 {
7d0ccb61 5804 switch (fieldp->virtuality)
c906108c 5805 {
c5aa993b
JM
5806 case DW_VIRTUALITY_virtual:
5807 case DW_VIRTUALITY_pure_virtual:
b4ba55a1
JB
5808 if (cu->language == language_ada)
5809 error ("unexpected virtuality in component of Ada type");
c5aa993b
JM
5810 SET_TYPE_FIELD_VIRTUAL (type, nfields);
5811 break;
c906108c
SS
5812 }
5813 }
c906108c
SS
5814 }
5815}
5816
c906108c
SS
5817/* Add a member function to the proper fieldlist. */
5818
5819static void
107d2387 5820dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 5821 struct type *type, struct dwarf2_cu *cu)
c906108c 5822{
e7c27a73 5823 struct objfile *objfile = cu->objfile;
c906108c
SS
5824 struct attribute *attr;
5825 struct fnfieldlist *flp;
5826 int i;
5827 struct fn_field *fnp;
5828 char *fieldname;
5829 char *physname;
5830 struct nextfnfield *new_fnfield;
f792889a 5831 struct type *this_type;
c906108c 5832
b4ba55a1
JB
5833 if (cu->language == language_ada)
5834 error ("unexpected member function in Ada type");
5835
2df3850c 5836 /* Get name of member function. */
39cbfefa
DJ
5837 fieldname = dwarf2_name (die, cu);
5838 if (fieldname == NULL)
2df3850c 5839 return;
c906108c 5840
2df3850c 5841 /* Get the mangled name. */
94af9270 5842 physname = (char *) dwarf2_physname (fieldname, die, cu);
c906108c
SS
5843
5844 /* Look up member function name in fieldlist. */
5845 for (i = 0; i < fip->nfnfields; i++)
5846 {
27bfe10e 5847 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
5848 break;
5849 }
5850
5851 /* Create new list element if necessary. */
5852 if (i < fip->nfnfields)
5853 flp = &fip->fnfieldlists[i];
5854 else
5855 {
5856 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
5857 {
5858 fip->fnfieldlists = (struct fnfieldlist *)
5859 xrealloc (fip->fnfieldlists,
5860 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 5861 * sizeof (struct fnfieldlist));
c906108c 5862 if (fip->nfnfields == 0)
c13c43fd 5863 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
5864 }
5865 flp = &fip->fnfieldlists[fip->nfnfields];
5866 flp->name = fieldname;
5867 flp->length = 0;
5868 flp->head = NULL;
5869 fip->nfnfields++;
5870 }
5871
5872 /* Create a new member function field and chain it to the field list
5873 entry. */
5874 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 5875 make_cleanup (xfree, new_fnfield);
c906108c
SS
5876 memset (new_fnfield, 0, sizeof (struct nextfnfield));
5877 new_fnfield->next = flp->head;
5878 flp->head = new_fnfield;
5879 flp->length++;
5880
5881 /* Fill in the member function field info. */
5882 fnp = &new_fnfield->fnfield;
d8151005
DJ
5883 /* The name is already allocated along with this objfile, so we don't
5884 need to duplicate it for the type. */
5885 fnp->physname = physname ? physname : "";
c906108c 5886 fnp->type = alloc_type (objfile);
f792889a
DJ
5887 this_type = read_type_die (die, cu);
5888 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 5889 {
f792889a 5890 int nparams = TYPE_NFIELDS (this_type);
c906108c 5891
f792889a 5892 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
5893 of the method itself (TYPE_CODE_METHOD). */
5894 smash_to_method_type (fnp->type, type,
f792889a
DJ
5895 TYPE_TARGET_TYPE (this_type),
5896 TYPE_FIELDS (this_type),
5897 TYPE_NFIELDS (this_type),
5898 TYPE_VARARGS (this_type));
c906108c
SS
5899
5900 /* Handle static member functions.
c5aa993b
JM
5901 Dwarf2 has no clean way to discern C++ static and non-static
5902 member functions. G++ helps GDB by marking the first
5903 parameter for non-static member functions (which is the
5904 this pointer) as artificial. We obtain this information
5905 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 5906 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
5907 fnp->voffset = VOFFSET_STATIC;
5908 }
5909 else
e2e0b3e5 5910 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 5911 physname);
c906108c
SS
5912
5913 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 5914 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 5915 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
5916
5917 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
5918 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
5919
5920 /* Get accessibility. */
e142c38c 5921 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
5922 if (attr)
5923 {
5924 switch (DW_UNSND (attr))
5925 {
c5aa993b
JM
5926 case DW_ACCESS_private:
5927 fnp->is_private = 1;
5928 break;
5929 case DW_ACCESS_protected:
5930 fnp->is_protected = 1;
5931 break;
c906108c
SS
5932 }
5933 }
5934
b02dede2 5935 /* Check for artificial methods. */
e142c38c 5936 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
5937 if (attr && DW_UNSND (attr) != 0)
5938 fnp->is_artificial = 1;
5939
0d564a31 5940 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
5941 function. For older versions of GCC, this is an offset in the
5942 appropriate virtual table, as specified by DW_AT_containing_type.
5943 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
5944 to the object address. */
5945
e142c38c 5946 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 5947 if (attr)
8e19ed76 5948 {
aec5aa8b 5949 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 5950 {
aec5aa8b
TT
5951 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
5952 {
5953 /* Old-style GCC. */
5954 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
5955 }
5956 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
5957 || (DW_BLOCK (attr)->size > 1
5958 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
5959 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
5960 {
5961 struct dwarf_block blk;
5962 int offset;
5963
5964 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
5965 ? 1 : 2);
5966 blk.size = DW_BLOCK (attr)->size - offset;
5967 blk.data = DW_BLOCK (attr)->data + offset;
5968 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
5969 if ((fnp->voffset % cu->header.addr_size) != 0)
5970 dwarf2_complex_location_expr_complaint ();
5971 else
5972 fnp->voffset /= cu->header.addr_size;
5973 fnp->voffset += 2;
5974 }
5975 else
5976 dwarf2_complex_location_expr_complaint ();
5977
5978 if (!fnp->fcontext)
5979 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
5980 }
3690dd37 5981 else if (attr_form_is_section_offset (attr))
8e19ed76 5982 {
4d3c2250 5983 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5984 }
5985 else
5986 {
4d3c2250
KB
5987 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
5988 fieldname);
8e19ed76 5989 }
0d564a31 5990 }
d48cc9dd
DJ
5991 else
5992 {
5993 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
5994 if (attr && DW_UNSND (attr))
5995 {
5996 /* GCC does this, as of 2008-08-25; PR debug/37237. */
5997 complaint (&symfile_complaints,
5998 _("Member function \"%s\" (offset %d) is virtual but the vtable offset is not specified"),
5999 fieldname, die->offset);
9655fd1a 6000 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
6001 TYPE_CPLUS_DYNAMIC (type) = 1;
6002 }
6003 }
c906108c
SS
6004}
6005
6006/* Create the vector of member function fields, and attach it to the type. */
6007
6008static void
fba45db2 6009dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6010 struct dwarf2_cu *cu)
c906108c
SS
6011{
6012 struct fnfieldlist *flp;
6013 int total_length = 0;
6014 int i;
6015
b4ba55a1
JB
6016 if (cu->language == language_ada)
6017 error ("unexpected member functions in Ada type");
6018
c906108c
SS
6019 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6020 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6021 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6022
6023 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6024 {
6025 struct nextfnfield *nfp = flp->head;
6026 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6027 int k;
6028
6029 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6030 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6031 fn_flp->fn_fields = (struct fn_field *)
6032 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6033 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 6034 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
6035
6036 total_length += flp->length;
6037 }
6038
6039 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6040 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6041}
6042
1168df01
JB
6043/* Returns non-zero if NAME is the name of a vtable member in CU's
6044 language, zero otherwise. */
6045static int
6046is_vtable_name (const char *name, struct dwarf2_cu *cu)
6047{
6048 static const char vptr[] = "_vptr";
987504bb 6049 static const char vtable[] = "vtable";
1168df01 6050
987504bb
JJ
6051 /* Look for the C++ and Java forms of the vtable. */
6052 if ((cu->language == language_java
6053 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6054 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6055 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
6056 return 1;
6057
6058 return 0;
6059}
6060
c0dd20ea 6061/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
6062 functions, with the ABI-specified layout. If TYPE describes
6063 such a structure, smash it into a member function type.
61049d3b
DJ
6064
6065 GCC shouldn't do this; it should just output pointer to member DIEs.
6066 This is GCC PR debug/28767. */
c0dd20ea 6067
0b92b5bb
TT
6068static void
6069quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 6070{
0b92b5bb 6071 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
6072
6073 /* Check for a structure with no name and two children. */
0b92b5bb
TT
6074 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6075 return;
c0dd20ea
DJ
6076
6077 /* Check for __pfn and __delta members. */
0b92b5bb
TT
6078 if (TYPE_FIELD_NAME (type, 0) == NULL
6079 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6080 || TYPE_FIELD_NAME (type, 1) == NULL
6081 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6082 return;
c0dd20ea
DJ
6083
6084 /* Find the type of the method. */
0b92b5bb 6085 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
6086 if (pfn_type == NULL
6087 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6088 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 6089 return;
c0dd20ea
DJ
6090
6091 /* Look for the "this" argument. */
6092 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6093 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 6094 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 6095 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 6096 return;
c0dd20ea
DJ
6097
6098 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
6099 new_type = alloc_type (objfile);
6100 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
6101 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6102 TYPE_VARARGS (pfn_type));
0b92b5bb 6103 smash_to_methodptr_type (type, new_type);
c0dd20ea 6104}
1168df01 6105
c906108c
SS
6106/* Called when we find the DIE that starts a structure or union scope
6107 (definition) to process all dies that define the members of the
6108 structure or union.
6109
6110 NOTE: we need to call struct_type regardless of whether or not the
6111 DIE has an at_name attribute, since it might be an anonymous
6112 structure or union. This gets the type entered into our set of
6113 user defined types.
6114
6115 However, if the structure is incomplete (an opaque struct/union)
6116 then suppress creating a symbol table entry for it since gdb only
6117 wants to find the one with the complete definition. Note that if
6118 it is complete, we just call new_symbol, which does it's own
6119 checking about whether the struct/union is anonymous or not (and
6120 suppresses creating a symbol table entry itself). */
6121
f792889a 6122static struct type *
134d01f1 6123read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6124{
e7c27a73 6125 struct objfile *objfile = cu->objfile;
c906108c
SS
6126 struct type *type;
6127 struct attribute *attr;
39cbfefa 6128 char *name;
d3f41bb1 6129 struct cleanup *back_to;
c906108c 6130
348e048f
DE
6131 /* If the definition of this type lives in .debug_types, read that type.
6132 Don't follow DW_AT_specification though, that will take us back up
6133 the chain and we want to go down. */
6134 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6135 if (attr)
6136 {
6137 struct dwarf2_cu *type_cu = cu;
6138 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6139
348e048f
DE
6140 /* We could just recurse on read_structure_type, but we need to call
6141 get_die_type to ensure only one type for this DIE is created.
6142 This is important, for example, because for c++ classes we need
6143 TYPE_NAME set which is only done by new_symbol. Blech. */
6144 type = read_type_die (type_die, type_cu);
6145 return set_die_type (die, type, cu);
6146 }
6147
d3f41bb1
TT
6148 back_to = make_cleanup (null_cleanup, 0);
6149
c0dd20ea 6150 type = alloc_type (objfile);
c906108c 6151 INIT_CPLUS_SPECIFIC (type);
93311388 6152
39cbfefa
DJ
6153 name = dwarf2_name (die, cu);
6154 if (name != NULL)
c906108c 6155 {
987504bb
JJ
6156 if (cu->language == language_cplus
6157 || cu->language == language_java)
63d06c5c 6158 {
94af9270
KS
6159 TYPE_TAG_NAME (type) = (char *) dwarf2_full_name (name, die, cu);
6160 if (die->tag == DW_TAG_structure_type
6161 || die->tag == DW_TAG_class_type)
6162 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
6163 }
6164 else
6165 {
d8151005
DJ
6166 /* The name is already allocated along with this objfile, so
6167 we don't need to duplicate it for the type. */
94af9270
KS
6168 TYPE_TAG_NAME (type) = (char *) name;
6169 if (die->tag == DW_TAG_class_type)
6170 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 6171 }
c906108c
SS
6172 }
6173
6174 if (die->tag == DW_TAG_structure_type)
6175 {
6176 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6177 }
6178 else if (die->tag == DW_TAG_union_type)
6179 {
6180 TYPE_CODE (type) = TYPE_CODE_UNION;
6181 }
6182 else
6183 {
c906108c
SS
6184 TYPE_CODE (type) = TYPE_CODE_CLASS;
6185 }
6186
0cc2414c
TT
6187 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6188 TYPE_DECLARED_CLASS (type) = 1;
6189
e142c38c 6190 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6191 if (attr)
6192 {
6193 TYPE_LENGTH (type) = DW_UNSND (attr);
6194 }
6195 else
6196 {
6197 TYPE_LENGTH (type) = 0;
6198 }
6199
876cecd0 6200 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 6201 if (die_is_declaration (die, cu))
876cecd0 6202 TYPE_STUB (type) = 1;
a6c727b2
DJ
6203 else if (attr == NULL && die->child == NULL
6204 && producer_is_realview (cu->producer))
6205 /* RealView does not output the required DW_AT_declaration
6206 on incomplete types. */
6207 TYPE_STUB (type) = 1;
dc718098 6208
c906108c
SS
6209 /* We need to add the type field to the die immediately so we don't
6210 infinitely recurse when dealing with pointers to the structure
6211 type within the structure itself. */
1c379e20 6212 set_die_type (die, type, cu);
c906108c 6213
7e314c57
JK
6214 /* set_die_type should be already done. */
6215 set_descriptive_type (type, die, cu);
6216
e142c38c 6217 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
6218 {
6219 struct field_info fi;
6220 struct die_info *child_die;
c906108c
SS
6221
6222 memset (&fi, 0, sizeof (struct field_info));
6223
639d11d3 6224 child_die = die->child;
c906108c
SS
6225
6226 while (child_die && child_die->tag)
6227 {
a9a9bd0f
DC
6228 if (child_die->tag == DW_TAG_member
6229 || child_die->tag == DW_TAG_variable)
c906108c 6230 {
a9a9bd0f
DC
6231 /* NOTE: carlton/2002-11-05: A C++ static data member
6232 should be a DW_TAG_member that is a declaration, but
6233 all versions of G++ as of this writing (so through at
6234 least 3.2.1) incorrectly generate DW_TAG_variable
6235 tags for them instead. */
e7c27a73 6236 dwarf2_add_field (&fi, child_die, cu);
c906108c 6237 }
8713b1b1 6238 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
6239 {
6240 /* C++ member function. */
e7c27a73 6241 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
6242 }
6243 else if (child_die->tag == DW_TAG_inheritance)
6244 {
6245 /* C++ base class field. */
e7c27a73 6246 dwarf2_add_field (&fi, child_die, cu);
c906108c 6247 }
98751a41
JK
6248 else if (child_die->tag == DW_TAG_typedef)
6249 dwarf2_add_typedef (&fi, child_die, cu);
c906108c
SS
6250 child_die = sibling_die (child_die);
6251 }
6252
6253 /* Attach fields and member functions to the type. */
6254 if (fi.nfields)
e7c27a73 6255 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
6256 if (fi.nfnfields)
6257 {
e7c27a73 6258 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 6259
c5aa993b 6260 /* Get the type which refers to the base class (possibly this
c906108c 6261 class itself) which contains the vtable pointer for the current
0d564a31
DJ
6262 class from the DW_AT_containing_type attribute. This use of
6263 DW_AT_containing_type is a GNU extension. */
c906108c 6264
e142c38c 6265 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 6266 {
e7c27a73 6267 struct type *t = die_containing_type (die, cu);
c906108c
SS
6268
6269 TYPE_VPTR_BASETYPE (type) = t;
6270 if (type == t)
6271 {
c906108c
SS
6272 int i;
6273
6274 /* Our own class provides vtbl ptr. */
6275 for (i = TYPE_NFIELDS (t) - 1;
6276 i >= TYPE_N_BASECLASSES (t);
6277 --i)
6278 {
6279 char *fieldname = TYPE_FIELD_NAME (t, i);
6280
1168df01 6281 if (is_vtable_name (fieldname, cu))
c906108c
SS
6282 {
6283 TYPE_VPTR_FIELDNO (type) = i;
6284 break;
6285 }
6286 }
6287
6288 /* Complain if virtual function table field not found. */
6289 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 6290 complaint (&symfile_complaints,
e2e0b3e5 6291 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
6292 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
6293 "");
c906108c
SS
6294 }
6295 else
6296 {
6297 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
6298 }
6299 }
f6235d4c
EZ
6300 else if (cu->producer
6301 && strncmp (cu->producer,
6302 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
6303 {
6304 /* The IBM XLC compiler does not provide direct indication
6305 of the containing type, but the vtable pointer is
6306 always named __vfp. */
6307
6308 int i;
6309
6310 for (i = TYPE_NFIELDS (type) - 1;
6311 i >= TYPE_N_BASECLASSES (type);
6312 --i)
6313 {
6314 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
6315 {
6316 TYPE_VPTR_FIELDNO (type) = i;
6317 TYPE_VPTR_BASETYPE (type) = type;
6318 break;
6319 }
6320 }
6321 }
c906108c 6322 }
98751a41
JK
6323
6324 /* Copy fi.typedef_field_list linked list elements content into the
6325 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
6326 if (fi.typedef_field_list)
6327 {
6328 int i = fi.typedef_field_list_count;
6329
a0d7a4ff 6330 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
6331 TYPE_TYPEDEF_FIELD_ARRAY (type)
6332 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
6333 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
6334
6335 /* Reverse the list order to keep the debug info elements order. */
6336 while (--i >= 0)
6337 {
6338 struct typedef_field *dest, *src;
6e70227d 6339
98751a41
JK
6340 dest = &TYPE_TYPEDEF_FIELD (type, i);
6341 src = &fi.typedef_field_list->field;
6342 fi.typedef_field_list = fi.typedef_field_list->next;
6343 *dest = *src;
6344 }
6345 }
c906108c 6346 }
63d06c5c 6347
0b92b5bb
TT
6348 quirk_gcc_member_function_pointer (type, cu->objfile);
6349
0114d602 6350 do_cleanups (back_to);
f792889a 6351 return type;
c906108c
SS
6352}
6353
134d01f1
DJ
6354static void
6355process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6356{
90aeadfc 6357 struct die_info *child_die = die->child;
f792889a 6358 struct type *this_type;
c906108c 6359
f792889a
DJ
6360 this_type = get_die_type (die, cu);
6361 if (this_type == NULL)
6362 this_type = read_structure_type (die, cu);
c906108c 6363
90aeadfc
DC
6364 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
6365 snapshots) has been known to create a die giving a declaration
6366 for a class that has, as a child, a die giving a definition for a
6367 nested class. So we have to process our children even if the
6368 current die is a declaration. Normally, of course, a declaration
6369 won't have any children at all. */
134d01f1 6370
90aeadfc
DC
6371 while (child_die != NULL && child_die->tag)
6372 {
6373 if (child_die->tag == DW_TAG_member
6374 || child_die->tag == DW_TAG_variable
6375 || child_die->tag == DW_TAG_inheritance)
134d01f1 6376 {
90aeadfc 6377 /* Do nothing. */
134d01f1 6378 }
90aeadfc
DC
6379 else
6380 process_die (child_die, cu);
134d01f1 6381
90aeadfc 6382 child_die = sibling_die (child_die);
134d01f1
DJ
6383 }
6384
fa4028e9
JB
6385 /* Do not consider external references. According to the DWARF standard,
6386 these DIEs are identified by the fact that they have no byte_size
6387 attribute, and a declaration attribute. */
6388 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
6389 || !die_is_declaration (die, cu))
f792889a 6390 new_symbol (die, this_type, cu);
134d01f1
DJ
6391}
6392
6393/* Given a DW_AT_enumeration_type die, set its type. We do not
6394 complete the type's fields yet, or create any symbols. */
c906108c 6395
f792889a 6396static struct type *
134d01f1 6397read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6398{
e7c27a73 6399 struct objfile *objfile = cu->objfile;
c906108c 6400 struct type *type;
c906108c 6401 struct attribute *attr;
0114d602 6402 const char *name;
134d01f1 6403
348e048f
DE
6404 /* If the definition of this type lives in .debug_types, read that type.
6405 Don't follow DW_AT_specification though, that will take us back up
6406 the chain and we want to go down. */
6407 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6408 if (attr)
6409 {
6410 struct dwarf2_cu *type_cu = cu;
6411 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 6412
348e048f
DE
6413 type = read_type_die (type_die, type_cu);
6414 return set_die_type (die, type, cu);
6415 }
6416
c906108c
SS
6417 type = alloc_type (objfile);
6418
6419 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 6420 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 6421 if (name != NULL)
0114d602 6422 TYPE_TAG_NAME (type) = (char *) name;
c906108c 6423
e142c38c 6424 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6425 if (attr)
6426 {
6427 TYPE_LENGTH (type) = DW_UNSND (attr);
6428 }
6429 else
6430 {
6431 TYPE_LENGTH (type) = 0;
6432 }
6433
137033e9
JB
6434 /* The enumeration DIE can be incomplete. In Ada, any type can be
6435 declared as private in the package spec, and then defined only
6436 inside the package body. Such types are known as Taft Amendment
6437 Types. When another package uses such a type, an incomplete DIE
6438 may be generated by the compiler. */
02eb380e 6439 if (die_is_declaration (die, cu))
876cecd0 6440 TYPE_STUB (type) = 1;
02eb380e 6441
f792889a 6442 return set_die_type (die, type, cu);
134d01f1
DJ
6443}
6444
6445/* Given a pointer to a die which begins an enumeration, process all
6446 the dies that define the members of the enumeration, and create the
6447 symbol for the enumeration type.
6448
6449 NOTE: We reverse the order of the element list. */
6450
6451static void
6452process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
6453{
134d01f1
DJ
6454 struct die_info *child_die;
6455 struct field *fields;
134d01f1
DJ
6456 struct symbol *sym;
6457 int num_fields;
6458 int unsigned_enum = 1;
39cbfefa 6459 char *name;
f792889a 6460 struct type *this_type;
134d01f1 6461
c906108c
SS
6462 num_fields = 0;
6463 fields = NULL;
f792889a
DJ
6464 this_type = get_die_type (die, cu);
6465 if (this_type == NULL)
6466 this_type = read_enumeration_type (die, cu);
639d11d3 6467 if (die->child != NULL)
c906108c 6468 {
639d11d3 6469 child_die = die->child;
c906108c
SS
6470 while (child_die && child_die->tag)
6471 {
6472 if (child_die->tag != DW_TAG_enumerator)
6473 {
e7c27a73 6474 process_die (child_die, cu);
c906108c
SS
6475 }
6476 else
6477 {
39cbfefa
DJ
6478 name = dwarf2_name (child_die, cu);
6479 if (name)
c906108c 6480 {
f792889a 6481 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
6482 if (SYMBOL_VALUE (sym) < 0)
6483 unsigned_enum = 0;
6484
6485 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
6486 {
6487 fields = (struct field *)
6488 xrealloc (fields,
6489 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 6490 * sizeof (struct field));
c906108c
SS
6491 }
6492
3567439c 6493 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 6494 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 6495 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
6496 FIELD_BITSIZE (fields[num_fields]) = 0;
6497
6498 num_fields++;
6499 }
6500 }
6501
6502 child_die = sibling_die (child_die);
6503 }
6504
6505 if (num_fields)
6506 {
f792889a
DJ
6507 TYPE_NFIELDS (this_type) = num_fields;
6508 TYPE_FIELDS (this_type) = (struct field *)
6509 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
6510 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 6511 sizeof (struct field) * num_fields);
b8c9b27d 6512 xfree (fields);
c906108c
SS
6513 }
6514 if (unsigned_enum)
876cecd0 6515 TYPE_UNSIGNED (this_type) = 1;
c906108c 6516 }
134d01f1 6517
f792889a 6518 new_symbol (die, this_type, cu);
c906108c
SS
6519}
6520
6521/* Extract all information from a DW_TAG_array_type DIE and put it in
6522 the DIE's type field. For now, this only handles one dimensional
6523 arrays. */
6524
f792889a 6525static struct type *
e7c27a73 6526read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6527{
e7c27a73 6528 struct objfile *objfile = cu->objfile;
c906108c 6529 struct die_info *child_die;
7e314c57 6530 struct type *type;
c906108c
SS
6531 struct type *element_type, *range_type, *index_type;
6532 struct type **range_types = NULL;
6533 struct attribute *attr;
6534 int ndim = 0;
6535 struct cleanup *back_to;
39cbfefa 6536 char *name;
c906108c 6537
e7c27a73 6538 element_type = die_type (die, cu);
c906108c 6539
7e314c57
JK
6540 /* The die_type call above may have already set the type for this DIE. */
6541 type = get_die_type (die, cu);
6542 if (type)
6543 return type;
6544
c906108c
SS
6545 /* Irix 6.2 native cc creates array types without children for
6546 arrays with unspecified length. */
639d11d3 6547 if (die->child == NULL)
c906108c 6548 {
46bf5051 6549 index_type = objfile_type (objfile)->builtin_int;
c906108c 6550 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
6551 type = create_array_type (NULL, element_type, range_type);
6552 return set_die_type (die, type, cu);
c906108c
SS
6553 }
6554
6555 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 6556 child_die = die->child;
c906108c
SS
6557 while (child_die && child_die->tag)
6558 {
6559 if (child_die->tag == DW_TAG_subrange_type)
6560 {
f792889a 6561 struct type *child_type = read_type_die (child_die, cu);
9a619af0 6562
f792889a 6563 if (child_type != NULL)
a02abb62
JB
6564 {
6565 /* The range type was succesfully read. Save it for
6566 the array type creation. */
6567 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
6568 {
6569 range_types = (struct type **)
6570 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
6571 * sizeof (struct type *));
6572 if (ndim == 0)
6573 make_cleanup (free_current_contents, &range_types);
6574 }
f792889a 6575 range_types[ndim++] = child_type;
a02abb62 6576 }
c906108c
SS
6577 }
6578 child_die = sibling_die (child_die);
6579 }
6580
6581 /* Dwarf2 dimensions are output from left to right, create the
6582 necessary array types in backwards order. */
7ca2d3a3 6583
c906108c 6584 type = element_type;
7ca2d3a3
DL
6585
6586 if (read_array_order (die, cu) == DW_ORD_col_major)
6587 {
6588 int i = 0;
9a619af0 6589
7ca2d3a3
DL
6590 while (i < ndim)
6591 type = create_array_type (NULL, type, range_types[i++]);
6592 }
6593 else
6594 {
6595 while (ndim-- > 0)
6596 type = create_array_type (NULL, type, range_types[ndim]);
6597 }
c906108c 6598
f5f8a009
EZ
6599 /* Understand Dwarf2 support for vector types (like they occur on
6600 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
6601 array type. This is not part of the Dwarf2/3 standard yet, but a
6602 custom vendor extension. The main difference between a regular
6603 array and the vector variant is that vectors are passed by value
6604 to functions. */
e142c38c 6605 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 6606 if (attr)
ea37ba09 6607 make_vector_type (type);
f5f8a009 6608
39cbfefa
DJ
6609 name = dwarf2_name (die, cu);
6610 if (name)
6611 TYPE_NAME (type) = name;
6e70227d 6612
7e314c57
JK
6613 /* Install the type in the die. */
6614 set_die_type (die, type, cu);
6615
6616 /* set_die_type should be already done. */
b4ba55a1
JB
6617 set_descriptive_type (type, die, cu);
6618
c906108c
SS
6619 do_cleanups (back_to);
6620
7e314c57 6621 return type;
c906108c
SS
6622}
6623
7ca2d3a3 6624static enum dwarf_array_dim_ordering
6e70227d 6625read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
6626{
6627 struct attribute *attr;
6628
6629 attr = dwarf2_attr (die, DW_AT_ordering, cu);
6630
6631 if (attr) return DW_SND (attr);
6632
6633 /*
6634 GNU F77 is a special case, as at 08/2004 array type info is the
6e70227d 6635 opposite order to the dwarf2 specification, but data is still
7ca2d3a3
DL
6636 laid out as per normal fortran.
6637
6e70227d 6638 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7ca2d3a3
DL
6639 version checking.
6640 */
6641
905e0470
PM
6642 if (cu->language == language_fortran
6643 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
6644 {
6645 return DW_ORD_row_major;
6646 }
6647
6e70227d 6648 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
6649 {
6650 case array_column_major:
6651 return DW_ORD_col_major;
6652 case array_row_major:
6653 default:
6654 return DW_ORD_row_major;
6655 };
6656}
6657
72019c9c
GM
6658/* Extract all information from a DW_TAG_set_type DIE and put it in
6659 the DIE's type field. */
6660
f792889a 6661static struct type *
72019c9c
GM
6662read_set_type (struct die_info *die, struct dwarf2_cu *cu)
6663{
7e314c57
JK
6664 struct type *domain_type, *set_type;
6665 struct attribute *attr;
f792889a 6666
7e314c57
JK
6667 domain_type = die_type (die, cu);
6668
6669 /* The die_type call above may have already set the type for this DIE. */
6670 set_type = get_die_type (die, cu);
6671 if (set_type)
6672 return set_type;
6673
6674 set_type = create_set_type (NULL, domain_type);
6675
6676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
6677 if (attr)
6678 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 6679
f792889a 6680 return set_die_type (die, set_type, cu);
72019c9c 6681}
7ca2d3a3 6682
c906108c
SS
6683/* First cut: install each common block member as a global variable. */
6684
6685static void
e7c27a73 6686read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6687{
6688 struct die_info *child_die;
6689 struct attribute *attr;
6690 struct symbol *sym;
6691 CORE_ADDR base = (CORE_ADDR) 0;
6692
e142c38c 6693 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
6694 if (attr)
6695 {
8e19ed76
PS
6696 /* Support the .debug_loc offsets */
6697 if (attr_form_is_block (attr))
6698 {
e7c27a73 6699 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 6700 }
3690dd37 6701 else if (attr_form_is_section_offset (attr))
8e19ed76 6702 {
4d3c2250 6703 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
6704 }
6705 else
6706 {
4d3c2250
KB
6707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
6708 "common block member");
8e19ed76 6709 }
c906108c 6710 }
639d11d3 6711 if (die->child != NULL)
c906108c 6712 {
639d11d3 6713 child_die = die->child;
c906108c
SS
6714 while (child_die && child_die->tag)
6715 {
e7c27a73 6716 sym = new_symbol (child_die, NULL, cu);
e142c38c 6717 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
6718 if (attr)
6719 {
d4b96c9a
JK
6720 CORE_ADDR byte_offset = 0;
6721
6722 if (attr_form_is_section_offset (attr))
6723 dwarf2_complex_location_expr_complaint ();
6724 else if (attr_form_is_constant (attr))
6725 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6726 else if (attr_form_is_block (attr))
6727 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6728 else
6729 dwarf2_complex_location_expr_complaint ();
6730
6731 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
c906108c
SS
6732 add_symbol_to_list (sym, &global_symbols);
6733 }
6734 child_die = sibling_die (child_die);
6735 }
6736 }
6737}
6738
0114d602 6739/* Create a type for a C++ namespace. */
d9fa45fe 6740
0114d602
DJ
6741static struct type *
6742read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 6743{
e7c27a73 6744 struct objfile *objfile = cu->objfile;
0114d602 6745 const char *previous_prefix, *name;
9219021c 6746 int is_anonymous;
0114d602
DJ
6747 struct type *type;
6748
6749 /* For extensions, reuse the type of the original namespace. */
6750 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
6751 {
6752 struct die_info *ext_die;
6753 struct dwarf2_cu *ext_cu = cu;
9a619af0 6754
0114d602
DJ
6755 ext_die = dwarf2_extension (die, &ext_cu);
6756 type = read_type_die (ext_die, ext_cu);
6757 return set_die_type (die, type, cu);
6758 }
9219021c 6759
e142c38c 6760 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
6761
6762 /* Now build the name of the current namespace. */
6763
0114d602
DJ
6764 previous_prefix = determine_prefix (die, cu);
6765 if (previous_prefix[0] != '\0')
6766 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 6767 previous_prefix, name, 0, cu);
0114d602
DJ
6768
6769 /* Create the type. */
6770 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
6771 objfile);
6772 TYPE_NAME (type) = (char *) name;
6773 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6774
60531b24 6775 return set_die_type (die, type, cu);
0114d602
DJ
6776}
6777
6778/* Read a C++ namespace. */
6779
6780static void
6781read_namespace (struct die_info *die, struct dwarf2_cu *cu)
6782{
6783 struct objfile *objfile = cu->objfile;
6784 const char *name;
6785 int is_anonymous;
9219021c 6786
5c4e30ca
DC
6787 /* Add a symbol associated to this if we haven't seen the namespace
6788 before. Also, add a using directive if it's an anonymous
6789 namespace. */
9219021c 6790
f2f0e013 6791 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
6792 {
6793 struct type *type;
6794
0114d602 6795 type = read_type_die (die, cu);
e7c27a73 6796 new_symbol (die, type, cu);
5c4e30ca 6797
0114d602 6798 name = namespace_name (die, &is_anonymous, cu);
5c4e30ca 6799 if (is_anonymous)
0114d602
DJ
6800 {
6801 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 6802
c0cc3a76 6803 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13387711 6804 NULL, &objfile->objfile_obstack);
0114d602 6805 }
5c4e30ca 6806 }
9219021c 6807
639d11d3 6808 if (die->child != NULL)
d9fa45fe 6809 {
639d11d3 6810 struct die_info *child_die = die->child;
6e70227d 6811
d9fa45fe
DC
6812 while (child_die && child_die->tag)
6813 {
e7c27a73 6814 process_die (child_die, cu);
d9fa45fe
DC
6815 child_die = sibling_die (child_die);
6816 }
6817 }
38d518c9
EZ
6818}
6819
f55ee35c
JK
6820/* Read a Fortran module as type. This DIE can be only a declaration used for
6821 imported module. Still we need that type as local Fortran "use ... only"
6822 declaration imports depend on the created type in determine_prefix. */
6823
6824static struct type *
6825read_module_type (struct die_info *die, struct dwarf2_cu *cu)
6826{
6827 struct objfile *objfile = cu->objfile;
6828 char *module_name;
6829 struct type *type;
6830
6831 module_name = dwarf2_name (die, cu);
6832 if (!module_name)
6833 complaint (&symfile_complaints, _("DW_TAG_module has no name, offset 0x%x"),
6834 die->offset);
6835 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
6836
6837 /* determine_prefix uses TYPE_TAG_NAME. */
6838 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6839
6840 return set_die_type (die, type, cu);
6841}
6842
5d7cb8df
JK
6843/* Read a Fortran module. */
6844
6845static void
6846read_module (struct die_info *die, struct dwarf2_cu *cu)
6847{
6848 struct die_info *child_die = die->child;
6849
5d7cb8df
JK
6850 while (child_die && child_die->tag)
6851 {
6852 process_die (child_die, cu);
6853 child_die = sibling_die (child_die);
6854 }
6855}
6856
38d518c9
EZ
6857/* Return the name of the namespace represented by DIE. Set
6858 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
6859 namespace. */
6860
6861static const char *
e142c38c 6862namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
6863{
6864 struct die_info *current_die;
6865 const char *name = NULL;
6866
6867 /* Loop through the extensions until we find a name. */
6868
6869 for (current_die = die;
6870 current_die != NULL;
f2f0e013 6871 current_die = dwarf2_extension (die, &cu))
38d518c9 6872 {
e142c38c 6873 name = dwarf2_name (current_die, cu);
38d518c9
EZ
6874 if (name != NULL)
6875 break;
6876 }
6877
6878 /* Is it an anonymous namespace? */
6879
6880 *is_anonymous = (name == NULL);
6881 if (*is_anonymous)
6882 name = "(anonymous namespace)";
6883
6884 return name;
d9fa45fe
DC
6885}
6886
c906108c
SS
6887/* Extract all information from a DW_TAG_pointer_type DIE and add to
6888 the user defined type vector. */
6889
f792889a 6890static struct type *
e7c27a73 6891read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6892{
5e2b427d 6893 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 6894 struct comp_unit_head *cu_header = &cu->header;
c906108c 6895 struct type *type;
8b2dbe47
KB
6896 struct attribute *attr_byte_size;
6897 struct attribute *attr_address_class;
6898 int byte_size, addr_class;
7e314c57
JK
6899 struct type *target_type;
6900
6901 target_type = die_type (die, cu);
c906108c 6902
7e314c57
JK
6903 /* The die_type call above may have already set the type for this DIE. */
6904 type = get_die_type (die, cu);
6905 if (type)
6906 return type;
6907
6908 type = lookup_pointer_type (target_type);
8b2dbe47 6909
e142c38c 6910 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
6911 if (attr_byte_size)
6912 byte_size = DW_UNSND (attr_byte_size);
c906108c 6913 else
8b2dbe47
KB
6914 byte_size = cu_header->addr_size;
6915
e142c38c 6916 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
6917 if (attr_address_class)
6918 addr_class = DW_UNSND (attr_address_class);
6919 else
6920 addr_class = DW_ADDR_none;
6921
6922 /* If the pointer size or address class is different than the
6923 default, create a type variant marked as such and set the
6924 length accordingly. */
6925 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 6926 {
5e2b427d 6927 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
6928 {
6929 int type_flags;
6930
849957d9 6931 type_flags = gdbarch_address_class_type_flags
5e2b427d 6932 (gdbarch, byte_size, addr_class);
876cecd0
TT
6933 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
6934 == 0);
8b2dbe47
KB
6935 type = make_type_with_address_space (type, type_flags);
6936 }
6937 else if (TYPE_LENGTH (type) != byte_size)
6938 {
e2e0b3e5 6939 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47 6940 }
6e70227d 6941 else
9a619af0
MS
6942 {
6943 /* Should we also complain about unhandled address classes? */
6944 }
c906108c 6945 }
8b2dbe47
KB
6946
6947 TYPE_LENGTH (type) = byte_size;
f792889a 6948 return set_die_type (die, type, cu);
c906108c
SS
6949}
6950
6951/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
6952 the user defined type vector. */
6953
f792889a 6954static struct type *
e7c27a73 6955read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
6956{
6957 struct type *type;
6958 struct type *to_type;
6959 struct type *domain;
6960
e7c27a73
DJ
6961 to_type = die_type (die, cu);
6962 domain = die_containing_type (die, cu);
0d5de010 6963
7e314c57
JK
6964 /* The calls above may have already set the type for this DIE. */
6965 type = get_die_type (die, cu);
6966 if (type)
6967 return type;
6968
0d5de010
DJ
6969 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
6970 type = lookup_methodptr_type (to_type);
6971 else
6972 type = lookup_memberptr_type (to_type, domain);
c906108c 6973
f792889a 6974 return set_die_type (die, type, cu);
c906108c
SS
6975}
6976
6977/* Extract all information from a DW_TAG_reference_type DIE and add to
6978 the user defined type vector. */
6979
f792889a 6980static struct type *
e7c27a73 6981read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6982{
e7c27a73 6983 struct comp_unit_head *cu_header = &cu->header;
7e314c57 6984 struct type *type, *target_type;
c906108c
SS
6985 struct attribute *attr;
6986
7e314c57
JK
6987 target_type = die_type (die, cu);
6988
6989 /* The die_type call above may have already set the type for this DIE. */
6990 type = get_die_type (die, cu);
6991 if (type)
6992 return type;
6993
6994 type = lookup_reference_type (target_type);
e142c38c 6995 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6996 if (attr)
6997 {
6998 TYPE_LENGTH (type) = DW_UNSND (attr);
6999 }
7000 else
7001 {
107d2387 7002 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 7003 }
f792889a 7004 return set_die_type (die, type, cu);
c906108c
SS
7005}
7006
f792889a 7007static struct type *
e7c27a73 7008read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7009{
f792889a 7010 struct type *base_type, *cv_type;
c906108c 7011
e7c27a73 7012 base_type = die_type (die, cu);
7e314c57
JK
7013
7014 /* The die_type call above may have already set the type for this DIE. */
7015 cv_type = get_die_type (die, cu);
7016 if (cv_type)
7017 return cv_type;
7018
f792889a
DJ
7019 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7020 return set_die_type (die, cv_type, cu);
c906108c
SS
7021}
7022
f792889a 7023static struct type *
e7c27a73 7024read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7025{
f792889a 7026 struct type *base_type, *cv_type;
c906108c 7027
e7c27a73 7028 base_type = die_type (die, cu);
7e314c57
JK
7029
7030 /* The die_type call above may have already set the type for this DIE. */
7031 cv_type = get_die_type (die, cu);
7032 if (cv_type)
7033 return cv_type;
7034
f792889a
DJ
7035 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7036 return set_die_type (die, cv_type, cu);
c906108c
SS
7037}
7038
7039/* Extract all information from a DW_TAG_string_type DIE and add to
7040 the user defined type vector. It isn't really a user defined type,
7041 but it behaves like one, with other DIE's using an AT_user_def_type
7042 attribute to reference it. */
7043
f792889a 7044static struct type *
e7c27a73 7045read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7046{
e7c27a73 7047 struct objfile *objfile = cu->objfile;
3b7538c0 7048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
7049 struct type *type, *range_type, *index_type, *char_type;
7050 struct attribute *attr;
7051 unsigned int length;
7052
e142c38c 7053 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
7054 if (attr)
7055 {
7056 length = DW_UNSND (attr);
7057 }
7058 else
7059 {
b21b22e0 7060 /* check for the DW_AT_byte_size attribute */
e142c38c 7061 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
7062 if (attr)
7063 {
7064 length = DW_UNSND (attr);
7065 }
7066 else
7067 {
7068 length = 1;
7069 }
c906108c 7070 }
6ccb9162 7071
46bf5051 7072 index_type = objfile_type (objfile)->builtin_int;
c906108c 7073 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
7074 char_type = language_string_char_type (cu->language_defn, gdbarch);
7075 type = create_string_type (NULL, char_type, range_type);
6ccb9162 7076
f792889a 7077 return set_die_type (die, type, cu);
c906108c
SS
7078}
7079
7080/* Handle DIES due to C code like:
7081
7082 struct foo
c5aa993b
JM
7083 {
7084 int (*funcp)(int a, long l);
7085 int b;
7086 };
c906108c
SS
7087
7088 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 7089 */
c906108c 7090
f792889a 7091static struct type *
e7c27a73 7092read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7093{
7094 struct type *type; /* Type that this function returns */
7095 struct type *ftype; /* Function that returns above type */
7096 struct attribute *attr;
7097
e7c27a73 7098 type = die_type (die, cu);
7e314c57
JK
7099
7100 /* The die_type call above may have already set the type for this DIE. */
7101 ftype = get_die_type (die, cu);
7102 if (ftype)
7103 return ftype;
7104
0c8b41f1 7105 ftype = lookup_function_type (type);
c906108c 7106
5b8101ae 7107 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 7108 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 7109 if ((attr && (DW_UNSND (attr) != 0))
987504bb 7110 || cu->language == language_cplus
5b8101ae
PM
7111 || cu->language == language_java
7112 || cu->language == language_pascal)
876cecd0 7113 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
7114 else if (producer_is_realview (cu->producer))
7115 /* RealView does not emit DW_AT_prototyped. We can not
7116 distinguish prototyped and unprototyped functions; default to
7117 prototyped, since that is more common in modern code (and
7118 RealView warns about unprototyped functions). */
7119 TYPE_PROTOTYPED (ftype) = 1;
c906108c 7120
c055b101
CV
7121 /* Store the calling convention in the type if it's available in
7122 the subroutine die. Otherwise set the calling convention to
7123 the default value DW_CC_normal. */
7124 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7125 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
76c10ea2
GM
7126
7127 /* We need to add the subroutine type to the die immediately so
7128 we don't infinitely recurse when dealing with parameters
7129 declared as the same subroutine type. */
7130 set_die_type (die, ftype, cu);
6e70227d 7131
639d11d3 7132 if (die->child != NULL)
c906108c 7133 {
8072405b 7134 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 7135 struct die_info *child_die;
8072405b 7136 int nparams, iparams;
c906108c
SS
7137
7138 /* Count the number of parameters.
7139 FIXME: GDB currently ignores vararg functions, but knows about
7140 vararg member functions. */
8072405b 7141 nparams = 0;
639d11d3 7142 child_die = die->child;
c906108c
SS
7143 while (child_die && child_die->tag)
7144 {
7145 if (child_die->tag == DW_TAG_formal_parameter)
7146 nparams++;
7147 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 7148 TYPE_VARARGS (ftype) = 1;
c906108c
SS
7149 child_die = sibling_die (child_die);
7150 }
7151
7152 /* Allocate storage for parameters and fill them in. */
7153 TYPE_NFIELDS (ftype) = nparams;
7154 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 7155 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 7156
8072405b
JK
7157 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7158 even if we error out during the parameters reading below. */
7159 for (iparams = 0; iparams < nparams; iparams++)
7160 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7161
7162 iparams = 0;
639d11d3 7163 child_die = die->child;
c906108c
SS
7164 while (child_die && child_die->tag)
7165 {
7166 if (child_die->tag == DW_TAG_formal_parameter)
7167 {
7168 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
7169 member functions. G++ helps GDB by marking the first
7170 parameter for non-static member functions (which is the
7171 this pointer) as artificial. We pass this information
7172 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 7173 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
7174 if (attr)
7175 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7176 else
418835cc
KS
7177 {
7178 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7179
7180 /* GCC/43521: In java, the formal parameter
7181 "this" is sometimes not marked with DW_AT_artificial. */
7182 if (cu->language == language_java)
7183 {
7184 const char *name = dwarf2_name (child_die, cu);
9a619af0 7185
418835cc
KS
7186 if (name && !strcmp (name, "this"))
7187 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7188 }
7189 }
e7c27a73 7190 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
7191 iparams++;
7192 }
7193 child_die = sibling_die (child_die);
7194 }
7195 }
7196
76c10ea2 7197 return ftype;
c906108c
SS
7198}
7199
f792889a 7200static struct type *
e7c27a73 7201read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7202{
e7c27a73 7203 struct objfile *objfile = cu->objfile;
0114d602 7204 const char *name = NULL;
f792889a 7205 struct type *this_type;
c906108c 7206
94af9270 7207 name = dwarf2_full_name (NULL, die, cu);
f792889a 7208 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
7209 TYPE_FLAG_TARGET_STUB, NULL, objfile);
7210 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
7211 set_die_type (die, this_type, cu);
7212 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
7213 return this_type;
c906108c
SS
7214}
7215
7216/* Find a representation of a given base type and install
7217 it in the TYPE field of the die. */
7218
f792889a 7219static struct type *
e7c27a73 7220read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7221{
e7c27a73 7222 struct objfile *objfile = cu->objfile;
c906108c
SS
7223 struct type *type;
7224 struct attribute *attr;
7225 int encoding = 0, size = 0;
39cbfefa 7226 char *name;
6ccb9162
UW
7227 enum type_code code = TYPE_CODE_INT;
7228 int type_flags = 0;
7229 struct type *target_type = NULL;
c906108c 7230
e142c38c 7231 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
7232 if (attr)
7233 {
7234 encoding = DW_UNSND (attr);
7235 }
e142c38c 7236 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7237 if (attr)
7238 {
7239 size = DW_UNSND (attr);
7240 }
39cbfefa 7241 name = dwarf2_name (die, cu);
6ccb9162 7242 if (!name)
c906108c 7243 {
6ccb9162
UW
7244 complaint (&symfile_complaints,
7245 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 7246 }
6ccb9162
UW
7247
7248 switch (encoding)
c906108c 7249 {
6ccb9162
UW
7250 case DW_ATE_address:
7251 /* Turn DW_ATE_address into a void * pointer. */
7252 code = TYPE_CODE_PTR;
7253 type_flags |= TYPE_FLAG_UNSIGNED;
7254 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
7255 break;
7256 case DW_ATE_boolean:
7257 code = TYPE_CODE_BOOL;
7258 type_flags |= TYPE_FLAG_UNSIGNED;
7259 break;
7260 case DW_ATE_complex_float:
7261 code = TYPE_CODE_COMPLEX;
7262 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
7263 break;
7264 case DW_ATE_decimal_float:
7265 code = TYPE_CODE_DECFLOAT;
7266 break;
7267 case DW_ATE_float:
7268 code = TYPE_CODE_FLT;
7269 break;
7270 case DW_ATE_signed:
7271 break;
7272 case DW_ATE_unsigned:
7273 type_flags |= TYPE_FLAG_UNSIGNED;
7274 break;
7275 case DW_ATE_signed_char:
6e70227d 7276 if (cu->language == language_ada || cu->language == language_m2
868a0084 7277 || cu->language == language_pascal)
6ccb9162
UW
7278 code = TYPE_CODE_CHAR;
7279 break;
7280 case DW_ATE_unsigned_char:
868a0084
PM
7281 if (cu->language == language_ada || cu->language == language_m2
7282 || cu->language == language_pascal)
6ccb9162
UW
7283 code = TYPE_CODE_CHAR;
7284 type_flags |= TYPE_FLAG_UNSIGNED;
7285 break;
75079b2b
TT
7286 case DW_ATE_UTF:
7287 /* We just treat this as an integer and then recognize the
7288 type by name elsewhere. */
7289 break;
7290
6ccb9162
UW
7291 default:
7292 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
7293 dwarf_type_encoding_name (encoding));
7294 break;
c906108c 7295 }
6ccb9162 7296
0114d602
DJ
7297 type = init_type (code, size, type_flags, NULL, objfile);
7298 TYPE_NAME (type) = name;
6ccb9162
UW
7299 TYPE_TARGET_TYPE (type) = target_type;
7300
0114d602 7301 if (name && strcmp (name, "char") == 0)
876cecd0 7302 TYPE_NOSIGN (type) = 1;
0114d602 7303
f792889a 7304 return set_die_type (die, type, cu);
c906108c
SS
7305}
7306
a02abb62
JB
7307/* Read the given DW_AT_subrange DIE. */
7308
f792889a 7309static struct type *
a02abb62
JB
7310read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
7311{
5e2b427d 7312 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
a02abb62
JB
7313 struct type *base_type;
7314 struct type *range_type;
7315 struct attribute *attr;
43bbcdc2
PH
7316 LONGEST low = 0;
7317 LONGEST high = -1;
39cbfefa 7318 char *name;
43bbcdc2 7319 LONGEST negative_mask;
e77813c8 7320
a02abb62 7321 base_type = die_type (die, cu);
953ac07e
JK
7322 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
7323 check_typedef (base_type);
a02abb62 7324
7e314c57
JK
7325 /* The die_type call above may have already set the type for this DIE. */
7326 range_type = get_die_type (die, cu);
7327 if (range_type)
7328 return range_type;
7329
e142c38c 7330 if (cu->language == language_fortran)
6e70227d 7331 {
a02abb62
JB
7332 /* FORTRAN implies a lower bound of 1, if not given. */
7333 low = 1;
7334 }
7335
dd5e6932
DJ
7336 /* FIXME: For variable sized arrays either of these could be
7337 a variable rather than a constant value. We'll allow it,
7338 but we don't know how to handle it. */
e142c38c 7339 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
7340 if (attr)
7341 low = dwarf2_get_attr_constant_value (attr, 0);
7342
e142c38c 7343 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 7344 if (attr)
6e70227d 7345 {
e77813c8 7346 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
a02abb62
JB
7347 {
7348 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 7349 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
7350 FIXME: GDB does not yet know how to handle dynamic
7351 arrays properly, treat them as arrays with unspecified
7352 length for now.
7353
7354 FIXME: jimb/2003-09-22: GDB does not really know
7355 how to handle arrays of unspecified length
7356 either; we just represent them as zero-length
7357 arrays. Choose an appropriate upper bound given
7358 the lower bound we've computed above. */
7359 high = low - 1;
7360 }
7361 else
7362 high = dwarf2_get_attr_constant_value (attr, 1);
7363 }
e77813c8
PM
7364 else
7365 {
7366 attr = dwarf2_attr (die, DW_AT_count, cu);
7367 if (attr)
7368 {
7369 int count = dwarf2_get_attr_constant_value (attr, 1);
7370 high = low + count - 1;
7371 }
7372 }
7373
7374 /* Dwarf-2 specifications explicitly allows to create subrange types
7375 without specifying a base type.
7376 In that case, the base type must be set to the type of
7377 the lower bound, upper bound or count, in that order, if any of these
7378 three attributes references an object that has a type.
7379 If no base type is found, the Dwarf-2 specifications say that
7380 a signed integer type of size equal to the size of an address should
7381 be used.
7382 For the following C code: `extern char gdb_int [];'
7383 GCC produces an empty range DIE.
7384 FIXME: muller/2010-05-28: Possible references to object for low bound,
7385 high bound or count are not yet handled by this code.
7386 */
7387 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
7388 {
7389 struct objfile *objfile = cu->objfile;
7390 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7391 int addr_size = gdbarch_addr_bit (gdbarch) /8;
7392 struct type *int_type = objfile_type (objfile)->builtin_int;
7393
7394 /* Test "int", "long int", and "long long int" objfile types,
7395 and select the first one having a size above or equal to the
7396 architecture address size. */
7397 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7398 base_type = int_type;
7399 else
7400 {
7401 int_type = objfile_type (objfile)->builtin_long;
7402 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7403 base_type = int_type;
7404 else
7405 {
7406 int_type = objfile_type (objfile)->builtin_long_long;
7407 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
7408 base_type = int_type;
7409 }
7410 }
7411 }
a02abb62 7412
6e70227d 7413 negative_mask =
43bbcdc2
PH
7414 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
7415 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
7416 low |= negative_mask;
7417 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
7418 high |= negative_mask;
7419
a02abb62
JB
7420 range_type = create_range_type (NULL, base_type, low, high);
7421
bbb0eef6
JK
7422 /* Mark arrays with dynamic length at least as an array of unspecified
7423 length. GDB could check the boundary but before it gets implemented at
7424 least allow accessing the array elements. */
7425 if (attr && attr->form == DW_FORM_block1)
7426 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
7427
39cbfefa
DJ
7428 name = dwarf2_name (die, cu);
7429 if (name)
7430 TYPE_NAME (range_type) = name;
6e70227d 7431
e142c38c 7432 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
7433 if (attr)
7434 TYPE_LENGTH (range_type) = DW_UNSND (attr);
7435
7e314c57
JK
7436 set_die_type (die, range_type, cu);
7437
7438 /* set_die_type should be already done. */
b4ba55a1
JB
7439 set_descriptive_type (range_type, die, cu);
7440
7e314c57 7441 return range_type;
a02abb62 7442}
6e70227d 7443
f792889a 7444static struct type *
81a17f79
JB
7445read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
7446{
7447 struct type *type;
81a17f79 7448
81a17f79
JB
7449 /* For now, we only support the C meaning of an unspecified type: void. */
7450
0114d602
DJ
7451 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
7452 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 7453
f792889a 7454 return set_die_type (die, type, cu);
81a17f79 7455}
a02abb62 7456
51545339
DJ
7457/* Trivial hash function for die_info: the hash value of a DIE
7458 is its offset in .debug_info for this objfile. */
7459
7460static hashval_t
7461die_hash (const void *item)
7462{
7463 const struct die_info *die = item;
9a619af0 7464
51545339
DJ
7465 return die->offset;
7466}
7467
7468/* Trivial comparison function for die_info structures: two DIEs
7469 are equal if they have the same offset. */
7470
7471static int
7472die_eq (const void *item_lhs, const void *item_rhs)
7473{
7474 const struct die_info *die_lhs = item_lhs;
7475 const struct die_info *die_rhs = item_rhs;
9a619af0 7476
51545339
DJ
7477 return die_lhs->offset == die_rhs->offset;
7478}
7479
c906108c
SS
7480/* Read a whole compilation unit into a linked list of dies. */
7481
f9aca02d 7482static struct die_info *
93311388 7483read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 7484{
93311388
DE
7485 struct die_reader_specs reader_specs;
7486
348e048f 7487 gdb_assert (cu->die_hash == NULL);
51545339
DJ
7488 cu->die_hash
7489 = htab_create_alloc_ex (cu->header.length / 12,
7490 die_hash,
7491 die_eq,
7492 NULL,
7493 &cu->comp_unit_obstack,
7494 hashtab_obstack_allocate,
7495 dummy_obstack_deallocate);
7496
93311388
DE
7497 init_cu_die_reader (&reader_specs, cu);
7498
7499 return read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
639d11d3
DC
7500}
7501
d97bc12b
DE
7502/* Main entry point for reading a DIE and all children.
7503 Read the DIE and dump it if requested. */
7504
7505static struct die_info *
93311388
DE
7506read_die_and_children (const struct die_reader_specs *reader,
7507 gdb_byte *info_ptr,
d97bc12b
DE
7508 gdb_byte **new_info_ptr,
7509 struct die_info *parent)
7510{
93311388 7511 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
7512 new_info_ptr, parent);
7513
7514 if (dwarf2_die_debug)
7515 {
348e048f
DE
7516 fprintf_unfiltered (gdb_stdlog,
7517 "\nRead die from %s of %s:\n",
7518 reader->buffer == dwarf2_per_objfile->info.buffer
7519 ? ".debug_info"
7520 : reader->buffer == dwarf2_per_objfile->types.buffer
7521 ? ".debug_types"
7522 : "unknown section",
7523 reader->abfd->filename);
d97bc12b
DE
7524 dump_die (result, dwarf2_die_debug);
7525 }
7526
7527 return result;
7528}
7529
639d11d3
DC
7530/* Read a single die and all its descendents. Set the die's sibling
7531 field to NULL; set other fields in the die correctly, and set all
7532 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
7533 location of the info_ptr after reading all of those dies. PARENT
7534 is the parent of the die in question. */
7535
7536static struct die_info *
93311388
DE
7537read_die_and_children_1 (const struct die_reader_specs *reader,
7538 gdb_byte *info_ptr,
d97bc12b
DE
7539 gdb_byte **new_info_ptr,
7540 struct die_info *parent)
639d11d3
DC
7541{
7542 struct die_info *die;
fe1b8b76 7543 gdb_byte *cur_ptr;
639d11d3
DC
7544 int has_children;
7545
93311388 7546 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
7547 if (die == NULL)
7548 {
7549 *new_info_ptr = cur_ptr;
7550 return NULL;
7551 }
93311388 7552 store_in_ref_table (die, reader->cu);
639d11d3
DC
7553
7554 if (has_children)
348e048f 7555 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
7556 else
7557 {
7558 die->child = NULL;
7559 *new_info_ptr = cur_ptr;
7560 }
7561
7562 die->sibling = NULL;
7563 die->parent = parent;
7564 return die;
7565}
7566
7567/* Read a die, all of its descendents, and all of its siblings; set
7568 all of the fields of all of the dies correctly. Arguments are as
7569 in read_die_and_children. */
7570
7571static struct die_info *
93311388
DE
7572read_die_and_siblings (const struct die_reader_specs *reader,
7573 gdb_byte *info_ptr,
fe1b8b76 7574 gdb_byte **new_info_ptr,
639d11d3
DC
7575 struct die_info *parent)
7576{
7577 struct die_info *first_die, *last_sibling;
fe1b8b76 7578 gdb_byte *cur_ptr;
639d11d3 7579
c906108c 7580 cur_ptr = info_ptr;
639d11d3
DC
7581 first_die = last_sibling = NULL;
7582
7583 while (1)
c906108c 7584 {
639d11d3 7585 struct die_info *die
93311388 7586 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 7587
1d325ec1 7588 if (die == NULL)
c906108c 7589 {
639d11d3
DC
7590 *new_info_ptr = cur_ptr;
7591 return first_die;
c906108c 7592 }
1d325ec1
DJ
7593
7594 if (!first_die)
7595 first_die = die;
c906108c 7596 else
1d325ec1
DJ
7597 last_sibling->sibling = die;
7598
7599 last_sibling = die;
c906108c 7600 }
c906108c
SS
7601}
7602
93311388
DE
7603/* Read the die from the .debug_info section buffer. Set DIEP to
7604 point to a newly allocated die with its information, except for its
7605 child, sibling, and parent fields. Set HAS_CHILDREN to tell
7606 whether the die has children or not. */
7607
7608static gdb_byte *
7609read_full_die (const struct die_reader_specs *reader,
7610 struct die_info **diep, gdb_byte *info_ptr,
7611 int *has_children)
7612{
7613 unsigned int abbrev_number, bytes_read, i, offset;
7614 struct abbrev_info *abbrev;
7615 struct die_info *die;
7616 struct dwarf2_cu *cu = reader->cu;
7617 bfd *abfd = reader->abfd;
7618
7619 offset = info_ptr - reader->buffer;
7620 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7621 info_ptr += bytes_read;
7622 if (!abbrev_number)
7623 {
7624 *diep = NULL;
7625 *has_children = 0;
7626 return info_ptr;
7627 }
7628
7629 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
7630 if (!abbrev)
348e048f
DE
7631 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
7632 abbrev_number,
7633 bfd_get_filename (abfd));
7634
93311388
DE
7635 die = dwarf_alloc_die (cu, abbrev->num_attrs);
7636 die->offset = offset;
7637 die->tag = abbrev->tag;
7638 die->abbrev = abbrev_number;
7639
7640 die->num_attrs = abbrev->num_attrs;
7641
7642 for (i = 0; i < abbrev->num_attrs; ++i)
7643 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
7644 abfd, info_ptr, cu);
7645
7646 *diep = die;
7647 *has_children = abbrev->has_children;
7648 return info_ptr;
7649}
7650
c906108c
SS
7651/* In DWARF version 2, the description of the debugging information is
7652 stored in a separate .debug_abbrev section. Before we read any
7653 dies from a section we read in all abbreviations and install them
72bf9492
DJ
7654 in a hash table. This function also sets flags in CU describing
7655 the data found in the abbrev table. */
c906108c
SS
7656
7657static void
e7c27a73 7658dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 7659{
e7c27a73 7660 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 7661 gdb_byte *abbrev_ptr;
c906108c
SS
7662 struct abbrev_info *cur_abbrev;
7663 unsigned int abbrev_number, bytes_read, abbrev_name;
7664 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
7665 struct attr_abbrev *cur_attrs;
7666 unsigned int allocated_attrs;
c906108c 7667
57349743 7668 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
7669 obstack_init (&cu->abbrev_obstack);
7670 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
7671 (ABBREV_HASH_SIZE
7672 * sizeof (struct abbrev_info *)));
7673 memset (cu->dwarf2_abbrevs, 0,
7674 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 7675
be391dca
TT
7676 dwarf2_read_section (dwarf2_per_objfile->objfile,
7677 &dwarf2_per_objfile->abbrev);
dce234bc 7678 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
7679 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7680 abbrev_ptr += bytes_read;
7681
f3dd6933
DJ
7682 allocated_attrs = ATTR_ALLOC_CHUNK;
7683 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 7684
c906108c
SS
7685 /* loop until we reach an abbrev number of 0 */
7686 while (abbrev_number)
7687 {
f3dd6933 7688 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
7689
7690 /* read in abbrev header */
7691 cur_abbrev->number = abbrev_number;
7692 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7693 abbrev_ptr += bytes_read;
7694 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
7695 abbrev_ptr += 1;
7696
72bf9492
DJ
7697 if (cur_abbrev->tag == DW_TAG_namespace)
7698 cu->has_namespace_info = 1;
7699
c906108c
SS
7700 /* now read in declarations */
7701 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7702 abbrev_ptr += bytes_read;
7703 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7704 abbrev_ptr += bytes_read;
7705 while (abbrev_name)
7706 {
f3dd6933 7707 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 7708 {
f3dd6933
DJ
7709 allocated_attrs += ATTR_ALLOC_CHUNK;
7710 cur_attrs
7711 = xrealloc (cur_attrs, (allocated_attrs
7712 * sizeof (struct attr_abbrev)));
c906108c 7713 }
ae038cb0
DJ
7714
7715 /* Record whether this compilation unit might have
7716 inter-compilation-unit references. If we don't know what form
7717 this attribute will have, then it might potentially be a
7718 DW_FORM_ref_addr, so we conservatively expect inter-CU
7719 references. */
7720
7721 if (abbrev_form == DW_FORM_ref_addr
7722 || abbrev_form == DW_FORM_indirect)
7723 cu->has_form_ref_addr = 1;
7724
f3dd6933
DJ
7725 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
7726 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
7727 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7728 abbrev_ptr += bytes_read;
7729 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7730 abbrev_ptr += bytes_read;
7731 }
7732
f3dd6933
DJ
7733 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
7734 (cur_abbrev->num_attrs
7735 * sizeof (struct attr_abbrev)));
7736 memcpy (cur_abbrev->attrs, cur_attrs,
7737 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
7738
c906108c 7739 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
7740 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
7741 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
7742
7743 /* Get next abbreviation.
7744 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
7745 always properly terminated with an abbrev number of 0.
7746 Exit loop if we encounter an abbreviation which we have
7747 already read (which means we are about to read the abbreviations
7748 for the next compile unit) or if the end of the abbreviation
7749 table is reached. */
dce234bc
PP
7750 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
7751 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
7752 break;
7753 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
7754 abbrev_ptr += bytes_read;
e7c27a73 7755 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
7756 break;
7757 }
f3dd6933
DJ
7758
7759 xfree (cur_attrs);
c906108c
SS
7760}
7761
f3dd6933 7762/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 7763
c906108c 7764static void
f3dd6933 7765dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 7766{
f3dd6933 7767 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 7768
f3dd6933
DJ
7769 obstack_free (&cu->abbrev_obstack, NULL);
7770 cu->dwarf2_abbrevs = NULL;
c906108c
SS
7771}
7772
7773/* Lookup an abbrev_info structure in the abbrev hash table. */
7774
7775static struct abbrev_info *
e7c27a73 7776dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
7777{
7778 unsigned int hash_number;
7779 struct abbrev_info *abbrev;
7780
7781 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 7782 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
7783
7784 while (abbrev)
7785 {
7786 if (abbrev->number == number)
7787 return abbrev;
7788 else
7789 abbrev = abbrev->next;
7790 }
7791 return NULL;
7792}
7793
72bf9492
DJ
7794/* Returns nonzero if TAG represents a type that we might generate a partial
7795 symbol for. */
7796
7797static int
7798is_type_tag_for_partial (int tag)
7799{
7800 switch (tag)
7801 {
7802#if 0
7803 /* Some types that would be reasonable to generate partial symbols for,
7804 that we don't at present. */
7805 case DW_TAG_array_type:
7806 case DW_TAG_file_type:
7807 case DW_TAG_ptr_to_member_type:
7808 case DW_TAG_set_type:
7809 case DW_TAG_string_type:
7810 case DW_TAG_subroutine_type:
7811#endif
7812 case DW_TAG_base_type:
7813 case DW_TAG_class_type:
680b30c7 7814 case DW_TAG_interface_type:
72bf9492
DJ
7815 case DW_TAG_enumeration_type:
7816 case DW_TAG_structure_type:
7817 case DW_TAG_subrange_type:
7818 case DW_TAG_typedef:
7819 case DW_TAG_union_type:
7820 return 1;
7821 default:
7822 return 0;
7823 }
7824}
7825
7826/* Load all DIEs that are interesting for partial symbols into memory. */
7827
7828static struct partial_die_info *
93311388
DE
7829load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
7830 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
7831{
7832 struct partial_die_info *part_die;
7833 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
7834 struct abbrev_info *abbrev;
7835 unsigned int bytes_read;
5afb4e99 7836 unsigned int load_all = 0;
72bf9492
DJ
7837
7838 int nesting_level = 1;
7839
7840 parent_die = NULL;
7841 last_die = NULL;
7842
5afb4e99
DJ
7843 if (cu->per_cu && cu->per_cu->load_all_dies)
7844 load_all = 1;
7845
72bf9492
DJ
7846 cu->partial_dies
7847 = htab_create_alloc_ex (cu->header.length / 12,
7848 partial_die_hash,
7849 partial_die_eq,
7850 NULL,
7851 &cu->comp_unit_obstack,
7852 hashtab_obstack_allocate,
7853 dummy_obstack_deallocate);
7854
7855 part_die = obstack_alloc (&cu->comp_unit_obstack,
7856 sizeof (struct partial_die_info));
7857
7858 while (1)
7859 {
7860 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7861
7862 /* A NULL abbrev means the end of a series of children. */
7863 if (abbrev == NULL)
7864 {
7865 if (--nesting_level == 0)
7866 {
7867 /* PART_DIE was probably the last thing allocated on the
7868 comp_unit_obstack, so we could call obstack_free
7869 here. We don't do that because the waste is small,
7870 and will be cleaned up when we're done with this
7871 compilation unit. This way, we're also more robust
7872 against other users of the comp_unit_obstack. */
7873 return first_die;
7874 }
7875 info_ptr += bytes_read;
7876 last_die = parent_die;
7877 parent_die = parent_die->die_parent;
7878 continue;
7879 }
7880
5afb4e99
DJ
7881 /* Check whether this DIE is interesting enough to save. Normally
7882 we would not be interested in members here, but there may be
7883 later variables referencing them via DW_AT_specification (for
7884 static members). */
7885 if (!load_all
7886 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
7887 && abbrev->tag != DW_TAG_enumerator
7888 && abbrev->tag != DW_TAG_subprogram
bc30ff58 7889 && abbrev->tag != DW_TAG_lexical_block
72bf9492 7890 && abbrev->tag != DW_TAG_variable
5afb4e99 7891 && abbrev->tag != DW_TAG_namespace
f55ee35c 7892 && abbrev->tag != DW_TAG_module
5afb4e99 7893 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
7894 {
7895 /* Otherwise we skip to the next sibling, if any. */
93311388 7896 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
7897 continue;
7898 }
7899
93311388
DE
7900 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
7901 buffer, info_ptr, cu);
72bf9492
DJ
7902
7903 /* This two-pass algorithm for processing partial symbols has a
7904 high cost in cache pressure. Thus, handle some simple cases
7905 here which cover the majority of C partial symbols. DIEs
7906 which neither have specification tags in them, nor could have
7907 specification tags elsewhere pointing at them, can simply be
7908 processed and discarded.
7909
7910 This segment is also optional; scan_partial_symbols and
7911 add_partial_symbol will handle these DIEs if we chain
7912 them in normally. When compilers which do not emit large
7913 quantities of duplicate debug information are more common,
7914 this code can probably be removed. */
7915
7916 /* Any complete simple types at the top level (pretty much all
7917 of them, for a language without namespaces), can be processed
7918 directly. */
7919 if (parent_die == NULL
7920 && part_die->has_specification == 0
7921 && part_die->is_declaration == 0
7922 && (part_die->tag == DW_TAG_typedef
7923 || part_die->tag == DW_TAG_base_type
7924 || part_die->tag == DW_TAG_subrange_type))
7925 {
7926 if (building_psymtab && part_die->name != NULL)
04a679b8 7927 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
7928 VAR_DOMAIN, LOC_TYPEDEF,
7929 &cu->objfile->static_psymbols,
7930 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 7931 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
7932 continue;
7933 }
7934
7935 /* If we're at the second level, and we're an enumerator, and
7936 our parent has no specification (meaning possibly lives in a
7937 namespace elsewhere), then we can add the partial symbol now
7938 instead of queueing it. */
7939 if (part_die->tag == DW_TAG_enumerator
7940 && parent_die != NULL
7941 && parent_die->die_parent == NULL
7942 && parent_die->tag == DW_TAG_enumeration_type
7943 && parent_die->has_specification == 0)
7944 {
7945 if (part_die->name == NULL)
e2e0b3e5 7946 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492 7947 else if (building_psymtab)
04a679b8 7948 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 7949 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7950 (cu->language == language_cplus
7951 || cu->language == language_java)
72bf9492
DJ
7952 ? &cu->objfile->global_psymbols
7953 : &cu->objfile->static_psymbols,
7954 0, (CORE_ADDR) 0, cu->language, cu->objfile);
7955
93311388 7956 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
7957 continue;
7958 }
7959
7960 /* We'll save this DIE so link it in. */
7961 part_die->die_parent = parent_die;
7962 part_die->die_sibling = NULL;
7963 part_die->die_child = NULL;
7964
7965 if (last_die && last_die == parent_die)
7966 last_die->die_child = part_die;
7967 else if (last_die)
7968 last_die->die_sibling = part_die;
7969
7970 last_die = part_die;
7971
7972 if (first_die == NULL)
7973 first_die = part_die;
7974
7975 /* Maybe add the DIE to the hash table. Not all DIEs that we
7976 find interesting need to be in the hash table, because we
7977 also have the parent/sibling/child chains; only those that we
7978 might refer to by offset later during partial symbol reading.
7979
7980 For now this means things that might have be the target of a
7981 DW_AT_specification, DW_AT_abstract_origin, or
7982 DW_AT_extension. DW_AT_extension will refer only to
7983 namespaces; DW_AT_abstract_origin refers to functions (and
7984 many things under the function DIE, but we do not recurse
7985 into function DIEs during partial symbol reading) and
7986 possibly variables as well; DW_AT_specification refers to
7987 declarations. Declarations ought to have the DW_AT_declaration
7988 flag. It happens that GCC forgets to put it in sometimes, but
7989 only for functions, not for types.
7990
7991 Adding more things than necessary to the hash table is harmless
7992 except for the performance cost. Adding too few will result in
5afb4e99
DJ
7993 wasted time in find_partial_die, when we reread the compilation
7994 unit with load_all_dies set. */
72bf9492 7995
5afb4e99
DJ
7996 if (load_all
7997 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
7998 || abbrev->tag == DW_TAG_variable
7999 || abbrev->tag == DW_TAG_namespace
8000 || part_die->is_declaration)
8001 {
8002 void **slot;
8003
8004 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8005 part_die->offset, INSERT);
8006 *slot = part_die;
8007 }
8008
8009 part_die = obstack_alloc (&cu->comp_unit_obstack,
8010 sizeof (struct partial_die_info));
8011
8012 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 8013 we have no reason to follow the children of structures; for other
72bf9492 8014 languages we have to, both so that we can get at method physnames
bc30ff58
JB
8015 to infer fully qualified class names, and for DW_AT_specification.
8016
8017 For Ada, we need to scan the children of subprograms and lexical
8018 blocks as well because Ada allows the definition of nested
8019 entities that could be interesting for the debugger, such as
8020 nested subprograms for instance. */
72bf9492 8021 if (last_die->has_children
5afb4e99
DJ
8022 && (load_all
8023 || last_die->tag == DW_TAG_namespace
f55ee35c 8024 || last_die->tag == DW_TAG_module
72bf9492
DJ
8025 || last_die->tag == DW_TAG_enumeration_type
8026 || (cu->language != language_c
8027 && (last_die->tag == DW_TAG_class_type
680b30c7 8028 || last_die->tag == DW_TAG_interface_type
72bf9492 8029 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
8030 || last_die->tag == DW_TAG_union_type))
8031 || (cu->language == language_ada
8032 && (last_die->tag == DW_TAG_subprogram
8033 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
8034 {
8035 nesting_level++;
8036 parent_die = last_die;
8037 continue;
8038 }
8039
8040 /* Otherwise we skip to the next sibling, if any. */
93311388 8041 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
8042
8043 /* Back to the top, do it again. */
8044 }
8045}
8046
c906108c
SS
8047/* Read a minimal amount of information into the minimal die structure. */
8048
fe1b8b76 8049static gdb_byte *
72bf9492
DJ
8050read_partial_die (struct partial_die_info *part_die,
8051 struct abbrev_info *abbrev,
8052 unsigned int abbrev_len, bfd *abfd,
93311388
DE
8053 gdb_byte *buffer, gdb_byte *info_ptr,
8054 struct dwarf2_cu *cu)
c906108c 8055{
fa238c03 8056 unsigned int i;
c906108c 8057 struct attribute attr;
c5aa993b 8058 int has_low_pc_attr = 0;
c906108c
SS
8059 int has_high_pc_attr = 0;
8060
72bf9492 8061 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 8062
93311388 8063 part_die->offset = info_ptr - buffer;
72bf9492
DJ
8064
8065 info_ptr += abbrev_len;
8066
8067 if (abbrev == NULL)
8068 return info_ptr;
8069
c906108c
SS
8070 part_die->tag = abbrev->tag;
8071 part_die->has_children = abbrev->has_children;
c906108c
SS
8072
8073 for (i = 0; i < abbrev->num_attrs; ++i)
8074 {
e7c27a73 8075 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
8076
8077 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 8078 partial symbol table. */
c906108c
SS
8079 switch (attr.name)
8080 {
8081 case DW_AT_name:
71c25dea
TT
8082 switch (part_die->tag)
8083 {
8084 case DW_TAG_compile_unit:
348e048f 8085 case DW_TAG_type_unit:
71c25dea
TT
8086 /* Compilation units have a DW_AT_name that is a filename, not
8087 a source language identifier. */
8088 case DW_TAG_enumeration_type:
8089 case DW_TAG_enumerator:
8090 /* These tags always have simple identifiers already; no need
8091 to canonicalize them. */
8092 part_die->name = DW_STRING (&attr);
8093 break;
8094 default:
8095 part_die->name
8096 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 8097 &cu->objfile->objfile_obstack);
71c25dea
TT
8098 break;
8099 }
c906108c 8100 break;
31ef98ae 8101 case DW_AT_linkage_name:
c906108c 8102 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
8103 /* Note that both forms of linkage name might appear. We
8104 assume they will be the same, and we only store the last
8105 one we see. */
94af9270
KS
8106 if (cu->language == language_ada)
8107 part_die->name = DW_STRING (&attr);
c906108c
SS
8108 break;
8109 case DW_AT_low_pc:
8110 has_low_pc_attr = 1;
8111 part_die->lowpc = DW_ADDR (&attr);
8112 break;
8113 case DW_AT_high_pc:
8114 has_high_pc_attr = 1;
8115 part_die->highpc = DW_ADDR (&attr);
8116 break;
8117 case DW_AT_location:
8e19ed76
PS
8118 /* Support the .debug_loc offsets */
8119 if (attr_form_is_block (&attr))
8120 {
8121 part_die->locdesc = DW_BLOCK (&attr);
8122 }
3690dd37 8123 else if (attr_form_is_section_offset (&attr))
8e19ed76 8124 {
4d3c2250 8125 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
8126 }
8127 else
8128 {
4d3c2250
KB
8129 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
8130 "partial symbol information");
8e19ed76 8131 }
c906108c 8132 break;
c906108c
SS
8133 case DW_AT_external:
8134 part_die->is_external = DW_UNSND (&attr);
8135 break;
8136 case DW_AT_declaration:
8137 part_die->is_declaration = DW_UNSND (&attr);
8138 break;
8139 case DW_AT_type:
8140 part_die->has_type = 1;
8141 break;
8142 case DW_AT_abstract_origin:
8143 case DW_AT_specification:
72bf9492
DJ
8144 case DW_AT_extension:
8145 part_die->has_specification = 1;
c764a876 8146 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
8147 break;
8148 case DW_AT_sibling:
8149 /* Ignore absolute siblings, they might point outside of
8150 the current compile unit. */
8151 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 8152 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 8153 else
93311388 8154 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 8155 break;
fa4028e9
JB
8156 case DW_AT_byte_size:
8157 part_die->has_byte_size = 1;
8158 break;
68511cec
CES
8159 case DW_AT_calling_convention:
8160 /* DWARF doesn't provide a way to identify a program's source-level
8161 entry point. DW_AT_calling_convention attributes are only meant
8162 to describe functions' calling conventions.
8163
8164 However, because it's a necessary piece of information in
8165 Fortran, and because DW_CC_program is the only piece of debugging
8166 information whose definition refers to a 'main program' at all,
8167 several compilers have begun marking Fortran main programs with
8168 DW_CC_program --- even when those functions use the standard
8169 calling conventions.
8170
8171 So until DWARF specifies a way to provide this information and
8172 compilers pick up the new representation, we'll support this
8173 practice. */
8174 if (DW_UNSND (&attr) == DW_CC_program
8175 && cu->language == language_fortran)
8176 set_main_name (part_die->name);
8177 break;
c906108c
SS
8178 default:
8179 break;
8180 }
8181 }
8182
c906108c
SS
8183 /* When using the GNU linker, .gnu.linkonce. sections are used to
8184 eliminate duplicate copies of functions and vtables and such.
8185 The linker will arbitrarily choose one and discard the others.
8186 The AT_*_pc values for such functions refer to local labels in
8187 these sections. If the section from that file was discarded, the
8188 labels are not in the output, so the relocs get a value of 0.
8189 If this is a discarded function, mark the pc bounds as invalid,
8190 so that GDB will ignore it. */
8191 if (has_low_pc_attr && has_high_pc_attr
8192 && part_die->lowpc < part_die->highpc
8193 && (part_die->lowpc != 0
72dca2f5 8194 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 8195 part_die->has_pc_info = 1;
85cbf3d3 8196
c906108c
SS
8197 return info_ptr;
8198}
8199
72bf9492
DJ
8200/* Find a cached partial DIE at OFFSET in CU. */
8201
8202static struct partial_die_info *
c764a876 8203find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
8204{
8205 struct partial_die_info *lookup_die = NULL;
8206 struct partial_die_info part_die;
8207
8208 part_die.offset = offset;
8209 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
8210
72bf9492
DJ
8211 return lookup_die;
8212}
8213
348e048f
DE
8214/* Find a partial DIE at OFFSET, which may or may not be in CU,
8215 except in the case of .debug_types DIEs which do not reference
8216 outside their CU (they do however referencing other types via
8217 DW_FORM_sig8). */
72bf9492
DJ
8218
8219static struct partial_die_info *
c764a876 8220find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 8221{
5afb4e99
DJ
8222 struct dwarf2_per_cu_data *per_cu = NULL;
8223 struct partial_die_info *pd = NULL;
72bf9492 8224
348e048f
DE
8225 if (cu->per_cu->from_debug_types)
8226 {
8227 pd = find_partial_die_in_comp_unit (offset, cu);
8228 if (pd != NULL)
8229 return pd;
8230 goto not_found;
8231 }
8232
45452591 8233 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
8234 {
8235 pd = find_partial_die_in_comp_unit (offset, cu);
8236 if (pd != NULL)
8237 return pd;
8238 }
72bf9492 8239
ae038cb0
DJ
8240 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
8241
ae038cb0
DJ
8242 if (per_cu->cu == NULL)
8243 {
93311388 8244 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
8245 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8246 dwarf2_per_objfile->read_in_chain = per_cu;
8247 }
8248
8249 per_cu->cu->last_used = 0;
5afb4e99
DJ
8250 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8251
8252 if (pd == NULL && per_cu->load_all_dies == 0)
8253 {
8254 struct cleanup *back_to;
8255 struct partial_die_info comp_unit_die;
8256 struct abbrev_info *abbrev;
8257 unsigned int bytes_read;
8258 char *info_ptr;
8259
8260 per_cu->load_all_dies = 1;
8261
8262 /* Re-read the DIEs. */
8263 back_to = make_cleanup (null_cleanup, 0);
8264 if (per_cu->cu->dwarf2_abbrevs == NULL)
8265 {
8266 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 8267 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 8268 }
dce234bc 8269 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
8270 + per_cu->cu->header.offset
8271 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
8272 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
8273 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
8274 per_cu->cu->objfile->obfd,
8275 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
8276 per_cu->cu);
8277 if (comp_unit_die.has_children)
93311388
DE
8278 load_partial_dies (per_cu->cu->objfile->obfd,
8279 dwarf2_per_objfile->info.buffer, info_ptr,
8280 0, per_cu->cu);
5afb4e99
DJ
8281 do_cleanups (back_to);
8282
8283 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
8284 }
8285
348e048f
DE
8286 not_found:
8287
5afb4e99
DJ
8288 if (pd == NULL)
8289 internal_error (__FILE__, __LINE__,
c764a876 8290 _("could not find partial DIE 0x%x in cache [from module %s]\n"),
5afb4e99
DJ
8291 offset, bfd_get_filename (cu->objfile->obfd));
8292 return pd;
72bf9492
DJ
8293}
8294
8295/* Adjust PART_DIE before generating a symbol for it. This function
8296 may set the is_external flag or change the DIE's name. */
8297
8298static void
8299fixup_partial_die (struct partial_die_info *part_die,
8300 struct dwarf2_cu *cu)
8301{
8302 /* If we found a reference attribute and the DIE has no name, try
8303 to find a name in the referred to DIE. */
8304
8305 if (part_die->name == NULL && part_die->has_specification)
8306 {
8307 struct partial_die_info *spec_die;
72bf9492 8308
10b3939b 8309 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 8310
10b3939b 8311 fixup_partial_die (spec_die, cu);
72bf9492
DJ
8312
8313 if (spec_die->name)
8314 {
8315 part_die->name = spec_die->name;
8316
8317 /* Copy DW_AT_external attribute if it is set. */
8318 if (spec_die->is_external)
8319 part_die->is_external = spec_die->is_external;
8320 }
8321 }
8322
8323 /* Set default names for some unnamed DIEs. */
8324 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
8325 || part_die->tag == DW_TAG_class_type))
8326 part_die->name = "(anonymous class)";
8327
8328 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
8329 part_die->name = "(anonymous namespace)";
8330
8331 if (part_die->tag == DW_TAG_structure_type
8332 || part_die->tag == DW_TAG_class_type
8333 || part_die->tag == DW_TAG_union_type)
8334 guess_structure_name (part_die, cu);
8335}
8336
a8329558 8337/* Read an attribute value described by an attribute form. */
c906108c 8338
fe1b8b76 8339static gdb_byte *
a8329558 8340read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 8341 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 8342 struct dwarf2_cu *cu)
c906108c 8343{
e7c27a73 8344 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8345 unsigned int bytes_read;
8346 struct dwarf_block *blk;
8347
a8329558
KW
8348 attr->form = form;
8349 switch (form)
c906108c 8350 {
c906108c 8351 case DW_FORM_ref_addr:
ae411497
TT
8352 if (cu->header.version == 2)
8353 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
8354 else
8355 DW_ADDR (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
8356 info_ptr += bytes_read;
8357 break;
8358 case DW_FORM_addr:
e7c27a73 8359 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 8360 info_ptr += bytes_read;
c906108c
SS
8361 break;
8362 case DW_FORM_block2:
7b5a2f43 8363 blk = dwarf_alloc_block (cu);
c906108c
SS
8364 blk->size = read_2_bytes (abfd, info_ptr);
8365 info_ptr += 2;
8366 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8367 info_ptr += blk->size;
8368 DW_BLOCK (attr) = blk;
8369 break;
8370 case DW_FORM_block4:
7b5a2f43 8371 blk = dwarf_alloc_block (cu);
c906108c
SS
8372 blk->size = read_4_bytes (abfd, info_ptr);
8373 info_ptr += 4;
8374 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8375 info_ptr += blk->size;
8376 DW_BLOCK (attr) = blk;
8377 break;
8378 case DW_FORM_data2:
8379 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
8380 info_ptr += 2;
8381 break;
8382 case DW_FORM_data4:
8383 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
8384 info_ptr += 4;
8385 break;
8386 case DW_FORM_data8:
8387 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
8388 info_ptr += 8;
8389 break;
2dc7f7b3
TT
8390 case DW_FORM_sec_offset:
8391 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
8392 info_ptr += bytes_read;
8393 break;
c906108c
SS
8394 case DW_FORM_string:
8395 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
8285870a 8396 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
8397 info_ptr += bytes_read;
8398 break;
4bdf3d34
JJ
8399 case DW_FORM_strp:
8400 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
8401 &bytes_read);
8285870a 8402 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
8403 info_ptr += bytes_read;
8404 break;
2dc7f7b3 8405 case DW_FORM_exprloc:
c906108c 8406 case DW_FORM_block:
7b5a2f43 8407 blk = dwarf_alloc_block (cu);
c906108c
SS
8408 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8409 info_ptr += bytes_read;
8410 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8411 info_ptr += blk->size;
8412 DW_BLOCK (attr) = blk;
8413 break;
8414 case DW_FORM_block1:
7b5a2f43 8415 blk = dwarf_alloc_block (cu);
c906108c
SS
8416 blk->size = read_1_byte (abfd, info_ptr);
8417 info_ptr += 1;
8418 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
8419 info_ptr += blk->size;
8420 DW_BLOCK (attr) = blk;
8421 break;
8422 case DW_FORM_data1:
8423 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
8424 info_ptr += 1;
8425 break;
8426 case DW_FORM_flag:
8427 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
8428 info_ptr += 1;
8429 break;
2dc7f7b3
TT
8430 case DW_FORM_flag_present:
8431 DW_UNSND (attr) = 1;
8432 break;
c906108c
SS
8433 case DW_FORM_sdata:
8434 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
8435 info_ptr += bytes_read;
8436 break;
8437 case DW_FORM_udata:
8438 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8439 info_ptr += bytes_read;
8440 break;
8441 case DW_FORM_ref1:
10b3939b 8442 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
8443 info_ptr += 1;
8444 break;
8445 case DW_FORM_ref2:
10b3939b 8446 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
8447 info_ptr += 2;
8448 break;
8449 case DW_FORM_ref4:
10b3939b 8450 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
8451 info_ptr += 4;
8452 break;
613e1657 8453 case DW_FORM_ref8:
10b3939b 8454 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
8455 info_ptr += 8;
8456 break;
348e048f
DE
8457 case DW_FORM_sig8:
8458 /* Convert the signature to something we can record in DW_UNSND
8459 for later lookup.
8460 NOTE: This is NULL if the type wasn't found. */
8461 DW_SIGNATURED_TYPE (attr) =
8462 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
8463 info_ptr += 8;
8464 break;
c906108c 8465 case DW_FORM_ref_udata:
10b3939b
DJ
8466 DW_ADDR (attr) = (cu->header.offset
8467 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
8468 info_ptr += bytes_read;
8469 break;
c906108c 8470 case DW_FORM_indirect:
a8329558
KW
8471 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8472 info_ptr += bytes_read;
e7c27a73 8473 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 8474 break;
c906108c 8475 default:
8a3fe4f8 8476 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
8477 dwarf_form_name (form),
8478 bfd_get_filename (abfd));
c906108c 8479 }
28e94949
JB
8480
8481 /* We have seen instances where the compiler tried to emit a byte
8482 size attribute of -1 which ended up being encoded as an unsigned
8483 0xffffffff. Although 0xffffffff is technically a valid size value,
8484 an object of this size seems pretty unlikely so we can relatively
8485 safely treat these cases as if the size attribute was invalid and
8486 treat them as zero by default. */
8487 if (attr->name == DW_AT_byte_size
8488 && form == DW_FORM_data4
8489 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
8490 {
8491 complaint
8492 (&symfile_complaints,
43bbcdc2
PH
8493 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
8494 hex_string (DW_UNSND (attr)));
01c66ae6
JB
8495 DW_UNSND (attr) = 0;
8496 }
28e94949 8497
c906108c
SS
8498 return info_ptr;
8499}
8500
a8329558
KW
8501/* Read an attribute described by an abbreviated attribute. */
8502
fe1b8b76 8503static gdb_byte *
a8329558 8504read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 8505 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
8506{
8507 attr->name = abbrev->name;
e7c27a73 8508 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
8509}
8510
c906108c
SS
8511/* read dwarf information from a buffer */
8512
8513static unsigned int
fe1b8b76 8514read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 8515{
fe1b8b76 8516 return bfd_get_8 (abfd, buf);
c906108c
SS
8517}
8518
8519static int
fe1b8b76 8520read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 8521{
fe1b8b76 8522 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
8523}
8524
8525static unsigned int
fe1b8b76 8526read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 8527{
fe1b8b76 8528 return bfd_get_16 (abfd, buf);
c906108c
SS
8529}
8530
8531static int
fe1b8b76 8532read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 8533{
fe1b8b76 8534 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
8535}
8536
8537static unsigned int
fe1b8b76 8538read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 8539{
fe1b8b76 8540 return bfd_get_32 (abfd, buf);
c906108c
SS
8541}
8542
8543static int
fe1b8b76 8544read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 8545{
fe1b8b76 8546 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
8547}
8548
93311388 8549static ULONGEST
fe1b8b76 8550read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 8551{
fe1b8b76 8552 return bfd_get_64 (abfd, buf);
c906108c
SS
8553}
8554
8555static CORE_ADDR
fe1b8b76 8556read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 8557 unsigned int *bytes_read)
c906108c 8558{
e7c27a73 8559 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
8560 CORE_ADDR retval = 0;
8561
107d2387 8562 if (cu_header->signed_addr_p)
c906108c 8563 {
107d2387
AC
8564 switch (cu_header->addr_size)
8565 {
8566 case 2:
fe1b8b76 8567 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
8568 break;
8569 case 4:
fe1b8b76 8570 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
8571 break;
8572 case 8:
fe1b8b76 8573 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
8574 break;
8575 default:
8e65ff28 8576 internal_error (__FILE__, __LINE__,
e2e0b3e5 8577 _("read_address: bad switch, signed [in module %s]"),
659b0389 8578 bfd_get_filename (abfd));
107d2387
AC
8579 }
8580 }
8581 else
8582 {
8583 switch (cu_header->addr_size)
8584 {
8585 case 2:
fe1b8b76 8586 retval = bfd_get_16 (abfd, buf);
107d2387
AC
8587 break;
8588 case 4:
fe1b8b76 8589 retval = bfd_get_32 (abfd, buf);
107d2387
AC
8590 break;
8591 case 8:
fe1b8b76 8592 retval = bfd_get_64 (abfd, buf);
107d2387
AC
8593 break;
8594 default:
8e65ff28 8595 internal_error (__FILE__, __LINE__,
e2e0b3e5 8596 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 8597 bfd_get_filename (abfd));
107d2387 8598 }
c906108c 8599 }
64367e0a 8600
107d2387
AC
8601 *bytes_read = cu_header->addr_size;
8602 return retval;
c906108c
SS
8603}
8604
f7ef9339 8605/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
8606 specification allows the initial length to take up either 4 bytes
8607 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
8608 bytes describe the length and all offsets will be 8 bytes in length
8609 instead of 4.
8610
f7ef9339
KB
8611 An older, non-standard 64-bit format is also handled by this
8612 function. The older format in question stores the initial length
8613 as an 8-byte quantity without an escape value. Lengths greater
8614 than 2^32 aren't very common which means that the initial 4 bytes
8615 is almost always zero. Since a length value of zero doesn't make
8616 sense for the 32-bit format, this initial zero can be considered to
8617 be an escape value which indicates the presence of the older 64-bit
8618 format. As written, the code can't detect (old format) lengths
917c78fc
MK
8619 greater than 4GB. If it becomes necessary to handle lengths
8620 somewhat larger than 4GB, we could allow other small values (such
8621 as the non-sensical values of 1, 2, and 3) to also be used as
8622 escape values indicating the presence of the old format.
f7ef9339 8623
917c78fc
MK
8624 The value returned via bytes_read should be used to increment the
8625 relevant pointer after calling read_initial_length().
c764a876 8626
613e1657
KB
8627 [ Note: read_initial_length() and read_offset() are based on the
8628 document entitled "DWARF Debugging Information Format", revision
f7ef9339 8629 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
8630 from:
8631
f7ef9339 8632 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 8633
613e1657
KB
8634 This document is only a draft and is subject to change. (So beware.)
8635
f7ef9339 8636 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
8637 determined empirically by examining 64-bit ELF files produced by
8638 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
8639
8640 - Kevin, July 16, 2002
613e1657
KB
8641 ] */
8642
8643static LONGEST
c764a876 8644read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 8645{
fe1b8b76 8646 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 8647
dd373385 8648 if (length == 0xffffffff)
613e1657 8649 {
fe1b8b76 8650 length = bfd_get_64 (abfd, buf + 4);
613e1657 8651 *bytes_read = 12;
613e1657 8652 }
dd373385 8653 else if (length == 0)
f7ef9339 8654 {
dd373385 8655 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 8656 length = bfd_get_64 (abfd, buf);
f7ef9339 8657 *bytes_read = 8;
f7ef9339 8658 }
613e1657
KB
8659 else
8660 {
8661 *bytes_read = 4;
613e1657
KB
8662 }
8663
c764a876
DE
8664 return length;
8665}
dd373385 8666
c764a876
DE
8667/* Cover function for read_initial_length.
8668 Returns the length of the object at BUF, and stores the size of the
8669 initial length in *BYTES_READ and stores the size that offsets will be in
8670 *OFFSET_SIZE.
8671 If the initial length size is not equivalent to that specified in
8672 CU_HEADER then issue a complaint.
8673 This is useful when reading non-comp-unit headers. */
dd373385 8674
c764a876
DE
8675static LONGEST
8676read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
8677 const struct comp_unit_head *cu_header,
8678 unsigned int *bytes_read,
8679 unsigned int *offset_size)
8680{
8681 LONGEST length = read_initial_length (abfd, buf, bytes_read);
8682
8683 gdb_assert (cu_header->initial_length_size == 4
8684 || cu_header->initial_length_size == 8
8685 || cu_header->initial_length_size == 12);
8686
8687 if (cu_header->initial_length_size != *bytes_read)
8688 complaint (&symfile_complaints,
8689 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 8690
c764a876 8691 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 8692 return length;
613e1657
KB
8693}
8694
8695/* Read an offset from the data stream. The size of the offset is
917c78fc 8696 given by cu_header->offset_size. */
613e1657
KB
8697
8698static LONGEST
fe1b8b76 8699read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 8700 unsigned int *bytes_read)
c764a876
DE
8701{
8702 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 8703
c764a876
DE
8704 *bytes_read = cu_header->offset_size;
8705 return offset;
8706}
8707
8708/* Read an offset from the data stream. */
8709
8710static LONGEST
8711read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
8712{
8713 LONGEST retval = 0;
8714
c764a876 8715 switch (offset_size)
613e1657
KB
8716 {
8717 case 4:
fe1b8b76 8718 retval = bfd_get_32 (abfd, buf);
613e1657
KB
8719 break;
8720 case 8:
fe1b8b76 8721 retval = bfd_get_64 (abfd, buf);
613e1657
KB
8722 break;
8723 default:
8e65ff28 8724 internal_error (__FILE__, __LINE__,
c764a876 8725 _("read_offset_1: bad switch [in module %s]"),
659b0389 8726 bfd_get_filename (abfd));
613e1657
KB
8727 }
8728
917c78fc 8729 return retval;
613e1657
KB
8730}
8731
fe1b8b76
JB
8732static gdb_byte *
8733read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
8734{
8735 /* If the size of a host char is 8 bits, we can return a pointer
8736 to the buffer, otherwise we have to copy the data to a buffer
8737 allocated on the temporary obstack. */
4bdf3d34 8738 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 8739 return buf;
c906108c
SS
8740}
8741
8742static char *
fe1b8b76 8743read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
8744{
8745 /* If the size of a host char is 8 bits, we can return a pointer
8746 to the string, otherwise we have to copy the string to a buffer
8747 allocated on the temporary obstack. */
4bdf3d34 8748 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
8749 if (*buf == '\0')
8750 {
8751 *bytes_read_ptr = 1;
8752 return NULL;
8753 }
fe1b8b76
JB
8754 *bytes_read_ptr = strlen ((char *) buf) + 1;
8755 return (char *) buf;
4bdf3d34
JJ
8756}
8757
8758static char *
fe1b8b76 8759read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
8760 const struct comp_unit_head *cu_header,
8761 unsigned int *bytes_read_ptr)
8762{
c764a876 8763 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
c906108c 8764
be391dca 8765 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 8766 if (dwarf2_per_objfile->str.buffer == NULL)
c906108c 8767 {
8a3fe4f8 8768 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 8769 bfd_get_filename (abfd));
4bdf3d34 8770 return NULL;
c906108c 8771 }
dce234bc 8772 if (str_offset >= dwarf2_per_objfile->str.size)
c906108c 8773 {
8a3fe4f8 8774 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 8775 bfd_get_filename (abfd));
c906108c
SS
8776 return NULL;
8777 }
4bdf3d34 8778 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 8779 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 8780 return NULL;
dce234bc 8781 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
8782}
8783
ce5d95e1 8784static unsigned long
fe1b8b76 8785read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 8786{
ce5d95e1
JB
8787 unsigned long result;
8788 unsigned int num_read;
c906108c
SS
8789 int i, shift;
8790 unsigned char byte;
8791
8792 result = 0;
8793 shift = 0;
8794 num_read = 0;
8795 i = 0;
8796 while (1)
8797 {
fe1b8b76 8798 byte = bfd_get_8 (abfd, buf);
c906108c
SS
8799 buf++;
8800 num_read++;
ce5d95e1 8801 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
8802 if ((byte & 128) == 0)
8803 {
8804 break;
8805 }
8806 shift += 7;
8807 }
8808 *bytes_read_ptr = num_read;
8809 return result;
8810}
8811
ce5d95e1 8812static long
fe1b8b76 8813read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 8814{
ce5d95e1 8815 long result;
77e0b926 8816 int i, shift, num_read;
c906108c
SS
8817 unsigned char byte;
8818
8819 result = 0;
8820 shift = 0;
c906108c
SS
8821 num_read = 0;
8822 i = 0;
8823 while (1)
8824 {
fe1b8b76 8825 byte = bfd_get_8 (abfd, buf);
c906108c
SS
8826 buf++;
8827 num_read++;
ce5d95e1 8828 result |= ((long)(byte & 127) << shift);
c906108c
SS
8829 shift += 7;
8830 if ((byte & 128) == 0)
8831 {
8832 break;
8833 }
8834 }
77e0b926
DJ
8835 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
8836 result |= -(((long)1) << shift);
c906108c
SS
8837 *bytes_read_ptr = num_read;
8838 return result;
8839}
8840
4bb7a0a7
DJ
8841/* Return a pointer to just past the end of an LEB128 number in BUF. */
8842
fe1b8b76
JB
8843static gdb_byte *
8844skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
8845{
8846 int byte;
8847
8848 while (1)
8849 {
fe1b8b76 8850 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
8851 buf++;
8852 if ((byte & 128) == 0)
8853 return buf;
8854 }
8855}
8856
c906108c 8857static void
e142c38c 8858set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
8859{
8860 switch (lang)
8861 {
8862 case DW_LANG_C89:
76bee0cc 8863 case DW_LANG_C99:
c906108c 8864 case DW_LANG_C:
e142c38c 8865 cu->language = language_c;
c906108c
SS
8866 break;
8867 case DW_LANG_C_plus_plus:
e142c38c 8868 cu->language = language_cplus;
c906108c 8869 break;
6aecb9c2
JB
8870 case DW_LANG_D:
8871 cu->language = language_d;
8872 break;
c906108c
SS
8873 case DW_LANG_Fortran77:
8874 case DW_LANG_Fortran90:
b21b22e0 8875 case DW_LANG_Fortran95:
e142c38c 8876 cu->language = language_fortran;
c906108c
SS
8877 break;
8878 case DW_LANG_Mips_Assembler:
e142c38c 8879 cu->language = language_asm;
c906108c 8880 break;
bebd888e 8881 case DW_LANG_Java:
e142c38c 8882 cu->language = language_java;
bebd888e 8883 break;
c906108c 8884 case DW_LANG_Ada83:
8aaf0b47 8885 case DW_LANG_Ada95:
bc5f45f8
JB
8886 cu->language = language_ada;
8887 break;
72019c9c
GM
8888 case DW_LANG_Modula2:
8889 cu->language = language_m2;
8890 break;
fe8e67fd
PM
8891 case DW_LANG_Pascal83:
8892 cu->language = language_pascal;
8893 break;
22566fbd
DJ
8894 case DW_LANG_ObjC:
8895 cu->language = language_objc;
8896 break;
c906108c
SS
8897 case DW_LANG_Cobol74:
8898 case DW_LANG_Cobol85:
c906108c 8899 default:
e142c38c 8900 cu->language = language_minimal;
c906108c
SS
8901 break;
8902 }
e142c38c 8903 cu->language_defn = language_def (cu->language);
c906108c
SS
8904}
8905
8906/* Return the named attribute or NULL if not there. */
8907
8908static struct attribute *
e142c38c 8909dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
8910{
8911 unsigned int i;
8912 struct attribute *spec = NULL;
8913
8914 for (i = 0; i < die->num_attrs; ++i)
8915 {
8916 if (die->attrs[i].name == name)
10b3939b 8917 return &die->attrs[i];
c906108c
SS
8918 if (die->attrs[i].name == DW_AT_specification
8919 || die->attrs[i].name == DW_AT_abstract_origin)
8920 spec = &die->attrs[i];
8921 }
c906108c 8922
10b3939b 8923 if (spec)
f2f0e013
DJ
8924 {
8925 die = follow_die_ref (die, spec, &cu);
8926 return dwarf2_attr (die, name, cu);
8927 }
c5aa993b 8928
c906108c
SS
8929 return NULL;
8930}
8931
348e048f
DE
8932/* Return the named attribute or NULL if not there,
8933 but do not follow DW_AT_specification, etc.
8934 This is for use in contexts where we're reading .debug_types dies.
8935 Following DW_AT_specification, DW_AT_abstract_origin will take us
8936 back up the chain, and we want to go down. */
8937
8938static struct attribute *
8939dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
8940 struct dwarf2_cu *cu)
8941{
8942 unsigned int i;
8943
8944 for (i = 0; i < die->num_attrs; ++i)
8945 if (die->attrs[i].name == name)
8946 return &die->attrs[i];
8947
8948 return NULL;
8949}
8950
05cf31d1
JB
8951/* Return non-zero iff the attribute NAME is defined for the given DIE,
8952 and holds a non-zero value. This function should only be used for
2dc7f7b3 8953 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
8954
8955static int
8956dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
8957{
8958 struct attribute *attr = dwarf2_attr (die, name, cu);
8959
8960 return (attr && DW_UNSND (attr));
8961}
8962
3ca72b44 8963static int
e142c38c 8964die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 8965{
05cf31d1
JB
8966 /* A DIE is a declaration if it has a DW_AT_declaration attribute
8967 which value is non-zero. However, we have to be careful with
8968 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
8969 (via dwarf2_flag_true_p) follows this attribute. So we may
8970 end up accidently finding a declaration attribute that belongs
8971 to a different DIE referenced by the specification attribute,
8972 even though the given DIE does not have a declaration attribute. */
8973 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
8974 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
8975}
8976
63d06c5c 8977/* Return the die giving the specification for DIE, if there is
f2f0e013 8978 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
8979 containing the return value on output. If there is no
8980 specification, but there is an abstract origin, that is
8981 returned. */
63d06c5c
DC
8982
8983static struct die_info *
f2f0e013 8984die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 8985{
f2f0e013
DJ
8986 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
8987 *spec_cu);
63d06c5c 8988
edb3359d
DJ
8989 if (spec_attr == NULL)
8990 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
8991
63d06c5c
DC
8992 if (spec_attr == NULL)
8993 return NULL;
8994 else
f2f0e013 8995 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 8996}
c906108c 8997
debd256d
JB
8998/* Free the line_header structure *LH, and any arrays and strings it
8999 refers to. */
9000static void
9001free_line_header (struct line_header *lh)
9002{
9003 if (lh->standard_opcode_lengths)
a8bc7b56 9004 xfree (lh->standard_opcode_lengths);
debd256d
JB
9005
9006 /* Remember that all the lh->file_names[i].name pointers are
9007 pointers into debug_line_buffer, and don't need to be freed. */
9008 if (lh->file_names)
a8bc7b56 9009 xfree (lh->file_names);
debd256d
JB
9010
9011 /* Similarly for the include directory names. */
9012 if (lh->include_dirs)
a8bc7b56 9013 xfree (lh->include_dirs);
debd256d 9014
a8bc7b56 9015 xfree (lh);
debd256d
JB
9016}
9017
9018
9019/* Add an entry to LH's include directory table. */
9020static void
9021add_include_dir (struct line_header *lh, char *include_dir)
c906108c 9022{
debd256d
JB
9023 /* Grow the array if necessary. */
9024 if (lh->include_dirs_size == 0)
c5aa993b 9025 {
debd256d
JB
9026 lh->include_dirs_size = 1; /* for testing */
9027 lh->include_dirs = xmalloc (lh->include_dirs_size
9028 * sizeof (*lh->include_dirs));
9029 }
9030 else if (lh->num_include_dirs >= lh->include_dirs_size)
9031 {
9032 lh->include_dirs_size *= 2;
9033 lh->include_dirs = xrealloc (lh->include_dirs,
9034 (lh->include_dirs_size
9035 * sizeof (*lh->include_dirs)));
c5aa993b 9036 }
c906108c 9037
debd256d
JB
9038 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9039}
6e70227d 9040
debd256d
JB
9041
9042/* Add an entry to LH's file name table. */
9043static void
9044add_file_name (struct line_header *lh,
9045 char *name,
9046 unsigned int dir_index,
9047 unsigned int mod_time,
9048 unsigned int length)
9049{
9050 struct file_entry *fe;
9051
9052 /* Grow the array if necessary. */
9053 if (lh->file_names_size == 0)
9054 {
9055 lh->file_names_size = 1; /* for testing */
9056 lh->file_names = xmalloc (lh->file_names_size
9057 * sizeof (*lh->file_names));
9058 }
9059 else if (lh->num_file_names >= lh->file_names_size)
9060 {
9061 lh->file_names_size *= 2;
9062 lh->file_names = xrealloc (lh->file_names,
9063 (lh->file_names_size
9064 * sizeof (*lh->file_names)));
9065 }
9066
9067 fe = &lh->file_names[lh->num_file_names++];
9068 fe->name = name;
9069 fe->dir_index = dir_index;
9070 fe->mod_time = mod_time;
9071 fe->length = length;
aaa75496 9072 fe->included_p = 0;
cb1df416 9073 fe->symtab = NULL;
debd256d 9074}
6e70227d 9075
debd256d
JB
9076
9077/* Read the statement program header starting at OFFSET in
6502dd73
DJ
9078 .debug_line, according to the endianness of ABFD. Return a pointer
9079 to a struct line_header, allocated using xmalloc.
debd256d
JB
9080
9081 NOTE: the strings in the include directory and file name tables of
9082 the returned object point into debug_line_buffer, and must not be
9083 freed. */
9084static struct line_header *
9085dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 9086 struct dwarf2_cu *cu)
debd256d
JB
9087{
9088 struct cleanup *back_to;
9089 struct line_header *lh;
fe1b8b76 9090 gdb_byte *line_ptr;
c764a876 9091 unsigned int bytes_read, offset_size;
debd256d
JB
9092 int i;
9093 char *cur_dir, *cur_file;
9094
be391dca 9095 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 9096 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 9097 {
e2e0b3e5 9098 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
9099 return 0;
9100 }
9101
a738430d
MK
9102 /* Make sure that at least there's room for the total_length field.
9103 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 9104 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 9105 {
4d3c2250 9106 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
9107 return 0;
9108 }
9109
9110 lh = xmalloc (sizeof (*lh));
9111 memset (lh, 0, sizeof (*lh));
9112 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
9113 (void *) lh);
9114
dce234bc 9115 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 9116
a738430d 9117 /* Read in the header. */
6e70227d 9118 lh->total_length =
c764a876
DE
9119 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
9120 &bytes_read, &offset_size);
debd256d 9121 line_ptr += bytes_read;
dce234bc
PP
9122 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
9123 + dwarf2_per_objfile->line.size))
debd256d 9124 {
4d3c2250 9125 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
9126 return 0;
9127 }
9128 lh->statement_program_end = line_ptr + lh->total_length;
9129 lh->version = read_2_bytes (abfd, line_ptr);
9130 line_ptr += 2;
c764a876
DE
9131 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
9132 line_ptr += offset_size;
debd256d
JB
9133 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
9134 line_ptr += 1;
2dc7f7b3
TT
9135 if (lh->version >= 4)
9136 {
9137 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
9138 line_ptr += 1;
9139 }
9140 else
9141 lh->maximum_ops_per_instruction = 1;
9142
9143 if (lh->maximum_ops_per_instruction == 0)
9144 {
9145 lh->maximum_ops_per_instruction = 1;
9146 complaint (&symfile_complaints,
9147 _("invalid maximum_ops_per_instruction in `.debug_line' section"));
9148 }
9149
debd256d
JB
9150 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
9151 line_ptr += 1;
9152 lh->line_base = read_1_signed_byte (abfd, line_ptr);
9153 line_ptr += 1;
9154 lh->line_range = read_1_byte (abfd, line_ptr);
9155 line_ptr += 1;
9156 lh->opcode_base = read_1_byte (abfd, line_ptr);
9157 line_ptr += 1;
9158 lh->standard_opcode_lengths
fe1b8b76 9159 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
9160
9161 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
9162 for (i = 1; i < lh->opcode_base; ++i)
9163 {
9164 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
9165 line_ptr += 1;
9166 }
9167
a738430d 9168 /* Read directory table. */
debd256d
JB
9169 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
9170 {
9171 line_ptr += bytes_read;
9172 add_include_dir (lh, cur_dir);
9173 }
9174 line_ptr += bytes_read;
9175
a738430d 9176 /* Read file name table. */
debd256d
JB
9177 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
9178 {
9179 unsigned int dir_index, mod_time, length;
9180
9181 line_ptr += bytes_read;
9182 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9183 line_ptr += bytes_read;
9184 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9185 line_ptr += bytes_read;
9186 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9187 line_ptr += bytes_read;
9188
9189 add_file_name (lh, cur_file, dir_index, mod_time, length);
9190 }
9191 line_ptr += bytes_read;
6e70227d 9192 lh->statement_program_start = line_ptr;
debd256d 9193
dce234bc
PP
9194 if (line_ptr > (dwarf2_per_objfile->line.buffer
9195 + dwarf2_per_objfile->line.size))
4d3c2250 9196 complaint (&symfile_complaints,
e2e0b3e5 9197 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
9198
9199 discard_cleanups (back_to);
9200 return lh;
9201}
c906108c 9202
5fb290d7
DJ
9203/* This function exists to work around a bug in certain compilers
9204 (particularly GCC 2.95), in which the first line number marker of a
9205 function does not show up until after the prologue, right before
9206 the second line number marker. This function shifts ADDRESS down
9207 to the beginning of the function if necessary, and is called on
9208 addresses passed to record_line. */
9209
9210static CORE_ADDR
e142c38c 9211check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
9212{
9213 struct function_range *fn;
9214
9215 /* Find the function_range containing address. */
e142c38c 9216 if (!cu->first_fn)
5fb290d7
DJ
9217 return address;
9218
e142c38c
DJ
9219 if (!cu->cached_fn)
9220 cu->cached_fn = cu->first_fn;
5fb290d7 9221
e142c38c 9222 fn = cu->cached_fn;
5fb290d7
DJ
9223 while (fn)
9224 if (fn->lowpc <= address && fn->highpc > address)
9225 goto found;
9226 else
9227 fn = fn->next;
9228
e142c38c
DJ
9229 fn = cu->first_fn;
9230 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
9231 if (fn->lowpc <= address && fn->highpc > address)
9232 goto found;
9233 else
9234 fn = fn->next;
9235
9236 return address;
9237
9238 found:
9239 if (fn->seen_line)
9240 return address;
9241 if (address != fn->lowpc)
4d3c2250 9242 complaint (&symfile_complaints,
e2e0b3e5 9243 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 9244 (unsigned long) address, fn->name);
5fb290d7
DJ
9245 fn->seen_line = 1;
9246 return fn->lowpc;
9247}
9248
aaa75496
JB
9249/* Decode the Line Number Program (LNP) for the given line_header
9250 structure and CU. The actual information extracted and the type
9251 of structures created from the LNP depends on the value of PST.
9252
9253 1. If PST is NULL, then this procedure uses the data from the program
9254 to create all necessary symbol tables, and their linetables.
9255 The compilation directory of the file is passed in COMP_DIR,
9256 and must not be NULL.
6e70227d 9257
aaa75496
JB
9258 2. If PST is not NULL, this procedure reads the program to determine
9259 the list of files included by the unit represented by PST, and
9260 builds all the associated partial symbol tables. In this case,
9261 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
9262 is not used to compute the full name of the symtab, and therefore
9263 omitting it when building the partial symtab does not introduce
9264 the potential for inconsistency - a partial symtab and its associated
9265 symbtab having a different fullname -). */
debd256d 9266
c906108c 9267static void
debd256d 9268dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 9269 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 9270{
a8c50c1f 9271 gdb_byte *line_ptr, *extended_end;
fe1b8b76 9272 gdb_byte *line_end;
a8c50c1f 9273 unsigned int bytes_read, extended_len;
c906108c 9274 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
9275 CORE_ADDR baseaddr;
9276 struct objfile *objfile = cu->objfile;
fbf65064 9277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 9278 const int decode_for_pst_p = (pst != NULL);
cb1df416 9279 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
9280
9281 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9282
debd256d
JB
9283 line_ptr = lh->statement_program_start;
9284 line_end = lh->statement_program_end;
c906108c
SS
9285
9286 /* Read the statement sequences until there's nothing left. */
9287 while (line_ptr < line_end)
9288 {
9289 /* state machine registers */
9290 CORE_ADDR address = 0;
9291 unsigned int file = 1;
9292 unsigned int line = 1;
9293 unsigned int column = 0;
debd256d 9294 int is_stmt = lh->default_is_stmt;
c906108c
SS
9295 int basic_block = 0;
9296 int end_sequence = 0;
fbf65064 9297 CORE_ADDR addr;
2dc7f7b3 9298 unsigned char op_index = 0;
c906108c 9299
aaa75496 9300 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 9301 {
aaa75496 9302 /* Start a subfile for the current file of the state machine. */
debd256d
JB
9303 /* lh->include_dirs and lh->file_names are 0-based, but the
9304 directory and file name numbers in the statement program
9305 are 1-based. */
9306 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 9307 char *dir = NULL;
a738430d 9308
debd256d
JB
9309 if (fe->dir_index)
9310 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
9311
9312 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
9313 }
9314
a738430d 9315 /* Decode the table. */
c5aa993b 9316 while (!end_sequence)
c906108c
SS
9317 {
9318 op_code = read_1_byte (abfd, line_ptr);
9319 line_ptr += 1;
59205f5a
JB
9320 if (line_ptr > line_end)
9321 {
9322 dwarf2_debug_line_missing_end_sequence_complaint ();
9323 break;
9324 }
9aa1fe7e 9325
debd256d 9326 if (op_code >= lh->opcode_base)
6e70227d 9327 {
a738430d 9328 /* Special operand. */
debd256d 9329 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
9330 address += (((op_index + (adj_opcode / lh->line_range))
9331 / lh->maximum_ops_per_instruction)
9332 * lh->minimum_instruction_length);
9333 op_index = ((op_index + (adj_opcode / lh->line_range))
9334 % lh->maximum_ops_per_instruction);
debd256d 9335 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 9336 if (lh->num_file_names < file || file == 0)
25e43795 9337 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
9338 /* For now we ignore lines not starting on an
9339 instruction boundary. */
9340 else if (op_index == 0)
25e43795
DJ
9341 {
9342 lh->file_names[file - 1].included_p = 1;
ca5f395d 9343 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
9344 {
9345 if (last_subfile != current_subfile)
9346 {
9347 addr = gdbarch_addr_bits_remove (gdbarch, address);
9348 if (last_subfile)
9349 record_line (last_subfile, 0, addr);
9350 last_subfile = current_subfile;
9351 }
25e43795 9352 /* Append row to matrix using current values. */
fbf65064
UW
9353 addr = check_cu_functions (address, cu);
9354 addr = gdbarch_addr_bits_remove (gdbarch, addr);
9355 record_line (current_subfile, line, addr);
366da635 9356 }
25e43795 9357 }
ca5f395d 9358 basic_block = 0;
9aa1fe7e
GK
9359 }
9360 else switch (op_code)
c906108c
SS
9361 {
9362 case DW_LNS_extended_op:
a8c50c1f 9363 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 9364 line_ptr += bytes_read;
a8c50c1f 9365 extended_end = line_ptr + extended_len;
c906108c
SS
9366 extended_op = read_1_byte (abfd, line_ptr);
9367 line_ptr += 1;
9368 switch (extended_op)
9369 {
9370 case DW_LNE_end_sequence:
9371 end_sequence = 1;
c906108c
SS
9372 break;
9373 case DW_LNE_set_address:
e7c27a73 9374 address = read_address (abfd, line_ptr, cu, &bytes_read);
2dc7f7b3 9375 op_index = 0;
107d2387
AC
9376 line_ptr += bytes_read;
9377 address += baseaddr;
c906108c
SS
9378 break;
9379 case DW_LNE_define_file:
debd256d
JB
9380 {
9381 char *cur_file;
9382 unsigned int dir_index, mod_time, length;
6e70227d 9383
debd256d
JB
9384 cur_file = read_string (abfd, line_ptr, &bytes_read);
9385 line_ptr += bytes_read;
9386 dir_index =
9387 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9388 line_ptr += bytes_read;
9389 mod_time =
9390 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9391 line_ptr += bytes_read;
9392 length =
9393 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9394 line_ptr += bytes_read;
9395 add_file_name (lh, cur_file, dir_index, mod_time, length);
9396 }
c906108c 9397 break;
d0c6ba3d
CC
9398 case DW_LNE_set_discriminator:
9399 /* The discriminator is not interesting to the debugger;
9400 just ignore it. */
9401 line_ptr = extended_end;
9402 break;
c906108c 9403 default:
4d3c2250 9404 complaint (&symfile_complaints,
e2e0b3e5 9405 _("mangled .debug_line section"));
debd256d 9406 return;
c906108c 9407 }
a8c50c1f
DJ
9408 /* Make sure that we parsed the extended op correctly. If e.g.
9409 we expected a different address size than the producer used,
9410 we may have read the wrong number of bytes. */
9411 if (line_ptr != extended_end)
9412 {
9413 complaint (&symfile_complaints,
9414 _("mangled .debug_line section"));
9415 return;
9416 }
c906108c
SS
9417 break;
9418 case DW_LNS_copy:
59205f5a 9419 if (lh->num_file_names < file || file == 0)
25e43795
DJ
9420 dwarf2_debug_line_missing_file_complaint ();
9421 else
366da635 9422 {
25e43795 9423 lh->file_names[file - 1].included_p = 1;
ca5f395d 9424 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
9425 {
9426 if (last_subfile != current_subfile)
9427 {
9428 addr = gdbarch_addr_bits_remove (gdbarch, address);
9429 if (last_subfile)
9430 record_line (last_subfile, 0, addr);
9431 last_subfile = current_subfile;
9432 }
9433 addr = check_cu_functions (address, cu);
9434 addr = gdbarch_addr_bits_remove (gdbarch, addr);
9435 record_line (current_subfile, line, addr);
9436 }
366da635 9437 }
c906108c
SS
9438 basic_block = 0;
9439 break;
9440 case DW_LNS_advance_pc:
2dc7f7b3
TT
9441 {
9442 CORE_ADDR adjust
9443 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9444
9445 address += (((op_index + adjust)
9446 / lh->maximum_ops_per_instruction)
9447 * lh->minimum_instruction_length);
9448 op_index = ((op_index + adjust)
9449 % lh->maximum_ops_per_instruction);
9450 line_ptr += bytes_read;
9451 }
c906108c
SS
9452 break;
9453 case DW_LNS_advance_line:
9454 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
9455 line_ptr += bytes_read;
9456 break;
9457 case DW_LNS_set_file:
debd256d 9458 {
a738430d
MK
9459 /* The arrays lh->include_dirs and lh->file_names are
9460 0-based, but the directory and file name numbers in
9461 the statement program are 1-based. */
debd256d 9462 struct file_entry *fe;
4f1520fb 9463 char *dir = NULL;
a738430d 9464
debd256d
JB
9465 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9466 line_ptr += bytes_read;
59205f5a 9467 if (lh->num_file_names < file || file == 0)
25e43795
DJ
9468 dwarf2_debug_line_missing_file_complaint ();
9469 else
9470 {
9471 fe = &lh->file_names[file - 1];
9472 if (fe->dir_index)
9473 dir = lh->include_dirs[fe->dir_index - 1];
9474 if (!decode_for_pst_p)
9475 {
9476 last_subfile = current_subfile;
9477 dwarf2_start_subfile (fe->name, dir, comp_dir);
9478 }
9479 }
debd256d 9480 }
c906108c
SS
9481 break;
9482 case DW_LNS_set_column:
9483 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9484 line_ptr += bytes_read;
9485 break;
9486 case DW_LNS_negate_stmt:
9487 is_stmt = (!is_stmt);
9488 break;
9489 case DW_LNS_set_basic_block:
9490 basic_block = 1;
9491 break;
c2c6d25f
JM
9492 /* Add to the address register of the state machine the
9493 address increment value corresponding to special opcode
a738430d
MK
9494 255. I.e., this value is scaled by the minimum
9495 instruction length since special opcode 255 would have
9496 scaled the the increment. */
c906108c 9497 case DW_LNS_const_add_pc:
2dc7f7b3
TT
9498 {
9499 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
9500
9501 address += (((op_index + adjust)
9502 / lh->maximum_ops_per_instruction)
9503 * lh->minimum_instruction_length);
9504 op_index = ((op_index + adjust)
9505 % lh->maximum_ops_per_instruction);
9506 }
c906108c
SS
9507 break;
9508 case DW_LNS_fixed_advance_pc:
9509 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 9510 op_index = 0;
c906108c
SS
9511 line_ptr += 2;
9512 break;
9aa1fe7e 9513 default:
a738430d
MK
9514 {
9515 /* Unknown standard opcode, ignore it. */
9aa1fe7e 9516 int i;
a738430d 9517
debd256d 9518 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
9519 {
9520 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
9521 line_ptr += bytes_read;
9522 }
9523 }
c906108c
SS
9524 }
9525 }
59205f5a
JB
9526 if (lh->num_file_names < file || file == 0)
9527 dwarf2_debug_line_missing_file_complaint ();
9528 else
9529 {
9530 lh->file_names[file - 1].included_p = 1;
9531 if (!decode_for_pst_p)
fbf65064
UW
9532 {
9533 addr = gdbarch_addr_bits_remove (gdbarch, address);
9534 record_line (current_subfile, 0, addr);
9535 }
59205f5a 9536 }
c906108c 9537 }
aaa75496
JB
9538
9539 if (decode_for_pst_p)
9540 {
9541 int file_index;
9542
9543 /* Now that we're done scanning the Line Header Program, we can
9544 create the psymtab of each included file. */
9545 for (file_index = 0; file_index < lh->num_file_names; file_index++)
9546 if (lh->file_names[file_index].included_p == 1)
9547 {
5b5464ad
JB
9548 const struct file_entry fe = lh->file_names [file_index];
9549 char *include_name = fe.name;
9550 char *dir_name = NULL;
9551 char *pst_filename = pst->filename;
9552
9553 if (fe.dir_index)
9554 dir_name = lh->include_dirs[fe.dir_index - 1];
9555
9556 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
9557 {
1754f103
MK
9558 include_name = concat (dir_name, SLASH_STRING,
9559 include_name, (char *)NULL);
5b5464ad
JB
9560 make_cleanup (xfree, include_name);
9561 }
9562
9563 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
9564 {
1754f103
MK
9565 pst_filename = concat (pst->dirname, SLASH_STRING,
9566 pst_filename, (char *)NULL);
5b5464ad
JB
9567 make_cleanup (xfree, pst_filename);
9568 }
9569
9570 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
9571 dwarf2_create_include_psymtab (include_name, pst, objfile);
9572 }
9573 }
cb1df416
DJ
9574 else
9575 {
9576 /* Make sure a symtab is created for every file, even files
9577 which contain only variables (i.e. no code with associated
9578 line numbers). */
9579
9580 int i;
9581 struct file_entry *fe;
9582
9583 for (i = 0; i < lh->num_file_names; i++)
9584 {
9585 char *dir = NULL;
9a619af0 9586
cb1df416
DJ
9587 fe = &lh->file_names[i];
9588 if (fe->dir_index)
9589 dir = lh->include_dirs[fe->dir_index - 1];
9590 dwarf2_start_subfile (fe->name, dir, comp_dir);
9591
9592 /* Skip the main file; we don't need it, and it must be
9593 allocated last, so that it will show up before the
9594 non-primary symtabs in the objfile's symtab list. */
9595 if (current_subfile == first_subfile)
9596 continue;
9597
9598 if (current_subfile->symtab == NULL)
9599 current_subfile->symtab = allocate_symtab (current_subfile->name,
9600 cu->objfile);
9601 fe->symtab = current_subfile->symtab;
9602 }
9603 }
c906108c
SS
9604}
9605
9606/* Start a subfile for DWARF. FILENAME is the name of the file and
9607 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
9608 or NULL if not known. COMP_DIR is the compilation directory for the
9609 linetable's compilation unit or NULL if not known.
c906108c
SS
9610 This routine tries to keep line numbers from identical absolute and
9611 relative file names in a common subfile.
9612
9613 Using the `list' example from the GDB testsuite, which resides in
9614 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
9615 of /srcdir/list0.c yields the following debugging information for list0.c:
9616
c5aa993b
JM
9617 DW_AT_name: /srcdir/list0.c
9618 DW_AT_comp_dir: /compdir
357e46e7 9619 files.files[0].name: list0.h
c5aa993b 9620 files.files[0].dir: /srcdir
357e46e7 9621 files.files[1].name: list0.c
c5aa993b 9622 files.files[1].dir: /srcdir
c906108c
SS
9623
9624 The line number information for list0.c has to end up in a single
4f1520fb
FR
9625 subfile, so that `break /srcdir/list0.c:1' works as expected.
9626 start_subfile will ensure that this happens provided that we pass the
9627 concatenation of files.files[1].dir and files.files[1].name as the
9628 subfile's name. */
c906108c
SS
9629
9630static void
4f1520fb 9631dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 9632{
4f1520fb
FR
9633 char *fullname;
9634
9635 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
9636 `start_symtab' will always pass the contents of DW_AT_comp_dir as
9637 second argument to start_subfile. To be consistent, we do the
9638 same here. In order not to lose the line information directory,
9639 we concatenate it to the filename when it makes sense.
9640 Note that the Dwarf3 standard says (speaking of filenames in line
9641 information): ``The directory index is ignored for file names
9642 that represent full path names''. Thus ignoring dirname in the
9643 `else' branch below isn't an issue. */
c906108c 9644
d5166ae1 9645 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
9646 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
9647 else
9648 fullname = filename;
c906108c 9649
4f1520fb
FR
9650 start_subfile (fullname, comp_dir);
9651
9652 if (fullname != filename)
9653 xfree (fullname);
c906108c
SS
9654}
9655
4c2df51b
DJ
9656static void
9657var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 9658 struct dwarf2_cu *cu)
4c2df51b 9659{
e7c27a73
DJ
9660 struct objfile *objfile = cu->objfile;
9661 struct comp_unit_head *cu_header = &cu->header;
9662
4c2df51b
DJ
9663 /* NOTE drow/2003-01-30: There used to be a comment and some special
9664 code here to turn a symbol with DW_AT_external and a
9665 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
9666 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
9667 with some versions of binutils) where shared libraries could have
9668 relocations against symbols in their debug information - the
9669 minimal symbol would have the right address, but the debug info
9670 would not. It's no longer necessary, because we will explicitly
9671 apply relocations when we read in the debug information now. */
9672
9673 /* A DW_AT_location attribute with no contents indicates that a
9674 variable has been optimized away. */
9675 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
9676 {
9677 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
9678 return;
9679 }
9680
9681 /* Handle one degenerate form of location expression specially, to
9682 preserve GDB's previous behavior when section offsets are
9683 specified. If this is just a DW_OP_addr then mark this symbol
9684 as LOC_STATIC. */
9685
9686 if (attr_form_is_block (attr)
9687 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
9688 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
9689 {
891d2f0b 9690 unsigned int dummy;
4c2df51b
DJ
9691
9692 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 9693 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 9694 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
9695 fixup_symbol_section (sym, objfile);
9696 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
9697 SYMBOL_SECTION (sym));
4c2df51b
DJ
9698 return;
9699 }
9700
9701 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
9702 expression evaluator, and use LOC_COMPUTED only when necessary
9703 (i.e. when the value of a register or memory location is
9704 referenced, or a thread-local block, etc.). Then again, it might
9705 not be worthwhile. I'm assuming that it isn't unless performance
9706 or memory numbers show me otherwise. */
9707
e7c27a73 9708 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
9709 SYMBOL_CLASS (sym) = LOC_COMPUTED;
9710}
9711
c906108c
SS
9712/* Given a pointer to a DWARF information entry, figure out if we need
9713 to make a symbol table entry for it, and if so, create a new entry
9714 and return a pointer to it.
9715 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 9716 used the passed type. */
c906108c
SS
9717
9718static struct symbol *
e7c27a73 9719new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 9720{
e7c27a73 9721 struct objfile *objfile = cu->objfile;
c906108c
SS
9722 struct symbol *sym = NULL;
9723 char *name;
9724 struct attribute *attr = NULL;
9725 struct attribute *attr2 = NULL;
e142c38c 9726 CORE_ADDR baseaddr;
edb3359d 9727 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
9728
9729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9730
94af9270 9731 name = dwarf2_name (die, cu);
c906108c
SS
9732 if (name)
9733 {
94af9270
KS
9734 const char *linkagename;
9735
4a146b47 9736 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
9737 sizeof (struct symbol));
9738 OBJSTAT (objfile, n_syms++);
9739 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
9740
9741 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 9742 SYMBOL_LANGUAGE (sym) = cu->language;
94af9270
KS
9743 linkagename = dwarf2_physname (name, die, cu);
9744 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 9745
f55ee35c
JK
9746 /* Fortran does not have mangling standard and the mangling does differ
9747 between gfortran, iFort etc. */
9748 if (cu->language == language_fortran
9749 && sym->ginfo.language_specific.cplus_specific.demangled_name == NULL)
9750 sym->ginfo.language_specific.cplus_specific.demangled_name
9751 = (char *) dwarf2_full_name (name, die, cu);
9752
c906108c 9753 /* Default assumptions.
c5aa993b 9754 Use the passed type or decode it from the die. */
176620f1 9755 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 9756 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
9757 if (type != NULL)
9758 SYMBOL_TYPE (sym) = type;
9759 else
e7c27a73 9760 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
9761 attr = dwarf2_attr (die,
9762 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
9763 cu);
c906108c
SS
9764 if (attr)
9765 {
9766 SYMBOL_LINE (sym) = DW_UNSND (attr);
9767 }
cb1df416 9768
edb3359d
DJ
9769 attr = dwarf2_attr (die,
9770 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
9771 cu);
cb1df416
DJ
9772 if (attr)
9773 {
9774 int file_index = DW_UNSND (attr);
9a619af0 9775
cb1df416
DJ
9776 if (cu->line_header == NULL
9777 || file_index > cu->line_header->num_file_names)
9778 complaint (&symfile_complaints,
9779 _("file index out of range"));
1c3d648d 9780 else if (file_index > 0)
cb1df416
DJ
9781 {
9782 struct file_entry *fe;
9a619af0 9783
cb1df416
DJ
9784 fe = &cu->line_header->file_names[file_index - 1];
9785 SYMBOL_SYMTAB (sym) = fe->symtab;
9786 }
9787 }
9788
c906108c
SS
9789 switch (die->tag)
9790 {
9791 case DW_TAG_label:
e142c38c 9792 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
9793 if (attr)
9794 {
9795 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
9796 }
0f5238ed
TT
9797 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
9798 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 9799 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 9800 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
9801 break;
9802 case DW_TAG_subprogram:
9803 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
9804 finish_block. */
9805 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 9806 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
9807 if ((attr2 && (DW_UNSND (attr2) != 0))
9808 || cu->language == language_ada)
c906108c 9809 {
2cfa0c8d
JB
9810 /* Subprograms marked external are stored as a global symbol.
9811 Ada subprograms, whether marked external or not, are always
9812 stored as a global symbol, because we want to be able to
9813 access them globally. For instance, we want to be able
9814 to break on a nested subprogram without having to
9815 specify the context. */
c906108c
SS
9816 add_symbol_to_list (sym, &global_symbols);
9817 }
9818 else
9819 {
e142c38c 9820 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
9821 }
9822 break;
edb3359d
DJ
9823 case DW_TAG_inlined_subroutine:
9824 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
9825 finish_block. */
9826 SYMBOL_CLASS (sym) = LOC_BLOCK;
9827 SYMBOL_INLINED (sym) = 1;
9828 /* Do not add the symbol to any lists. It will be found via
9829 BLOCK_FUNCTION from the blockvector. */
9830 break;
c906108c 9831 case DW_TAG_variable:
254e6b9e 9832 case DW_TAG_member:
c906108c
SS
9833 /* Compilation with minimal debug info may result in variables
9834 with missing type entries. Change the misleading `void' type
9835 to something sensible. */
9836 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 9837 SYMBOL_TYPE (sym)
46bf5051 9838 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 9839
e142c38c 9840 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
9841 /* In the case of DW_TAG_member, we should only be called for
9842 static const members. */
9843 if (die->tag == DW_TAG_member)
9844 {
3863f96c
DE
9845 /* dwarf2_add_field uses die_is_declaration,
9846 so we do the same. */
254e6b9e
DE
9847 gdb_assert (die_is_declaration (die, cu));
9848 gdb_assert (attr);
9849 }
c906108c
SS
9850 if (attr)
9851 {
e7c27a73 9852 dwarf2_const_value (attr, sym, cu);
e142c38c 9853 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
9854 if (attr2 && (DW_UNSND (attr2) != 0))
9855 add_symbol_to_list (sym, &global_symbols);
9856 else
e142c38c 9857 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
9858 break;
9859 }
e142c38c 9860 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
9861 if (attr)
9862 {
e7c27a73 9863 var_decode_location (attr, sym, cu);
e142c38c 9864 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 9865 if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68
TT
9866 {
9867 struct pending **list_to_add;
9868
f55ee35c
JK
9869 /* Workaround gfortran PR debug/40040 - it uses
9870 DW_AT_location for variables in -fPIC libraries which may
9871 get overriden by other libraries/executable and get
9872 a different address. Resolve it by the minimal symbol
9873 which may come from inferior's executable using copy
9874 relocation. Make this workaround only for gfortran as for
9875 other compilers GDB cannot guess the minimal symbol
9876 Fortran mangling kind. */
9877 if (cu->language == language_fortran && die->parent
9878 && die->parent->tag == DW_TAG_module
9879 && cu->producer
9880 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
9881 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
9882
1c809c68
TT
9883 /* A variable with DW_AT_external is never static,
9884 but it may be block-scoped. */
9885 list_to_add = (cu->list_in_scope == &file_symbols
9886 ? &global_symbols : cu->list_in_scope);
9887 add_symbol_to_list (sym, list_to_add);
9888 }
c906108c 9889 else
e142c38c 9890 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
9891 }
9892 else
9893 {
9894 /* We do not know the address of this symbol.
c5aa993b
JM
9895 If it is an external symbol and we have type information
9896 for it, enter the symbol as a LOC_UNRESOLVED symbol.
9897 The address of the variable will then be determined from
9898 the minimal symbol table whenever the variable is
9899 referenced. */
e142c38c 9900 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 9901 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 9902 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 9903 {
0fe7935b
DJ
9904 struct pending **list_to_add;
9905
9906 /* A variable with DW_AT_external is never static, but it
9907 may be block-scoped. */
9908 list_to_add = (cu->list_in_scope == &file_symbols
9909 ? &global_symbols : cu->list_in_scope);
9910
c906108c 9911 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
0fe7935b 9912 add_symbol_to_list (sym, list_to_add);
c906108c 9913 }
442ddf59
JK
9914 else if (!die_is_declaration (die, cu))
9915 {
9916 /* Use the default LOC_OPTIMIZED_OUT class. */
9917 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
9918 add_symbol_to_list (sym, cu->list_in_scope);
9919 }
c906108c
SS
9920 }
9921 break;
9922 case DW_TAG_formal_parameter:
edb3359d
DJ
9923 /* If we are inside a function, mark this as an argument. If
9924 not, we might be looking at an argument to an inlined function
9925 when we do not have enough information to show inlined frames;
9926 pretend it's a local variable in that case so that the user can
9927 still see it. */
9928 if (context_stack_depth > 0
9929 && context_stack[context_stack_depth - 1].name != NULL)
9930 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 9931 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
9932 if (attr)
9933 {
e7c27a73 9934 var_decode_location (attr, sym, cu);
c906108c 9935 }
e142c38c 9936 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
9937 if (attr)
9938 {
e7c27a73 9939 dwarf2_const_value (attr, sym, cu);
c906108c 9940 }
f346a30d
PM
9941 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
9942 if (attr && DW_UNSND (attr))
9943 {
9944 struct type *ref_type;
9945
9946 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
9947 SYMBOL_TYPE (sym) = ref_type;
9948 }
9949
e142c38c 9950 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
9951 break;
9952 case DW_TAG_unspecified_parameters:
9953 /* From varargs functions; gdb doesn't seem to have any
9954 interest in this information, so just ignore it for now.
9955 (FIXME?) */
9956 break;
9957 case DW_TAG_class_type:
680b30c7 9958 case DW_TAG_interface_type:
c906108c
SS
9959 case DW_TAG_structure_type:
9960 case DW_TAG_union_type:
72019c9c 9961 case DW_TAG_set_type:
c906108c
SS
9962 case DW_TAG_enumeration_type:
9963 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 9964 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 9965
63d06c5c 9966 {
987504bb 9967 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
9968 really ever be static objects: otherwise, if you try
9969 to, say, break of a class's method and you're in a file
9970 which doesn't mention that class, it won't work unless
9971 the check for all static symbols in lookup_symbol_aux
9972 saves you. See the OtherFileClass tests in
9973 gdb.c++/namespace.exp. */
9974
9975 struct pending **list_to_add;
9976
e142c38c 9977 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
9978 && (cu->language == language_cplus
9979 || cu->language == language_java)
e142c38c 9980 ? &global_symbols : cu->list_in_scope);
6e70227d 9981
63d06c5c
DC
9982 add_symbol_to_list (sym, list_to_add);
9983
9984 /* The semantics of C++ state that "struct foo { ... }" also
987504bb 9985 defines a typedef for "foo". A Java class declaration also
5eeb2539 9986 defines a typedef for the class. */
987504bb 9987 if (cu->language == language_cplus
8c6860bb
JB
9988 || cu->language == language_java
9989 || cu->language == language_ada)
63d06c5c 9990 {
d8151005
DJ
9991 /* The symbol's name is already allocated along with
9992 this objfile, so we don't need to duplicate it for
9993 the type. */
63d06c5c 9994 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 9995 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
9996 }
9997 }
c906108c
SS
9998 break;
9999 case DW_TAG_typedef:
63d06c5c
DC
10000 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 10002 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 10003 break;
c906108c 10004 case DW_TAG_base_type:
a02abb62 10005 case DW_TAG_subrange_type:
90e7c2c5
PM
10006 case DW_TAG_const_type:
10007 case DW_TAG_volatile_type:
c906108c 10008 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 10009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 10010 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
10011 break;
10012 case DW_TAG_enumerator:
e142c38c 10013 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
10014 if (attr)
10015 {
e7c27a73 10016 dwarf2_const_value (attr, sym, cu);
c906108c 10017 }
63d06c5c
DC
10018 {
10019 /* NOTE: carlton/2003-11-10: See comment above in the
10020 DW_TAG_class_type, etc. block. */
10021
10022 struct pending **list_to_add;
10023
e142c38c 10024 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
10025 && (cu->language == language_cplus
10026 || cu->language == language_java)
e142c38c 10027 ? &global_symbols : cu->list_in_scope);
6e70227d 10028
63d06c5c
DC
10029 add_symbol_to_list (sym, list_to_add);
10030 }
c906108c 10031 break;
5c4e30ca
DC
10032 case DW_TAG_namespace:
10033 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
10034 add_symbol_to_list (sym, &global_symbols);
10035 break;
c906108c
SS
10036 default:
10037 /* Not a tag we recognize. Hopefully we aren't processing
10038 trash data, but since we must specifically ignore things
10039 we don't recognize, there is nothing else we should do at
10040 this point. */
e2e0b3e5 10041 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 10042 dwarf_tag_name (die->tag));
c906108c
SS
10043 break;
10044 }
df8a16a1
DJ
10045
10046 /* For the benefit of old versions of GCC, check for anonymous
10047 namespaces based on the demangled name. */
10048 if (!processing_has_namespace_info
94af9270 10049 && cu->language == language_cplus)
df8a16a1 10050 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
10051 }
10052 return (sym);
10053}
10054
10055/* Copy constant value from an attribute to a symbol. */
10056
10057static void
107d2387 10058dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 10059 struct dwarf2_cu *cu)
c906108c 10060{
e7c27a73
DJ
10061 struct objfile *objfile = cu->objfile;
10062 struct comp_unit_head *cu_header = &cu->header;
e17a4113
UW
10063 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
10064 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
c906108c
SS
10065 struct dwarf_block *blk;
10066
10067 switch (attr->form)
10068 {
10069 case DW_FORM_addr:
ac56253d
TT
10070 {
10071 struct dwarf2_locexpr_baton *baton;
10072 gdb_byte *data;
10073
10074 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
10075 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
10076 cu_header->addr_size,
10077 TYPE_LENGTH (SYMBOL_TYPE
10078 (sym)));
10079 /* Symbols of this form are reasonably rare, so we just
10080 piggyback on the existing location code rather than writing
10081 a new implementation of symbol_computed_ops. */
10082 baton = obstack_alloc (&objfile->objfile_obstack,
10083 sizeof (struct dwarf2_locexpr_baton));
10084 baton->per_cu = cu->per_cu;
10085 gdb_assert (baton->per_cu);
10086
10087 baton->size = 2 + cu_header->addr_size;
10088 data = obstack_alloc (&objfile->objfile_obstack, baton->size);
10089 baton->data = data;
10090
10091 data[0] = DW_OP_addr;
10092 store_unsigned_integer (&data[1], cu_header->addr_size,
10093 byte_order, DW_ADDR (attr));
10094 data[cu_header->addr_size + 1] = DW_OP_stack_value;
10095
10096 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
10097 SYMBOL_LOCATION_BATON (sym) = baton;
10098 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10099 }
c906108c 10100 break;
4ac36638 10101 case DW_FORM_string:
93b5768b
PA
10102 case DW_FORM_strp:
10103 /* DW_STRING is already allocated on the obstack, point directly
10104 to it. */
10105 SYMBOL_VALUE_BYTES (sym) = (gdb_byte *) DW_STRING (attr);
10106 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
10107 break;
c906108c
SS
10108 case DW_FORM_block1:
10109 case DW_FORM_block2:
10110 case DW_FORM_block4:
10111 case DW_FORM_block:
2dc7f7b3 10112 case DW_FORM_exprloc:
c906108c
SS
10113 blk = DW_BLOCK (attr);
10114 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
3567439c 10115 dwarf2_const_value_length_mismatch_complaint (SYMBOL_PRINT_NAME (sym),
4d3c2250
KB
10116 blk->size,
10117 TYPE_LENGTH (SYMBOL_TYPE
10118 (sym)));
4e38b386 10119 SYMBOL_VALUE_BYTES (sym) =
4a146b47 10120 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
10121 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
10122 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
10123 break;
2df3850c
JM
10124
10125 /* The DW_AT_const_value attributes are supposed to carry the
10126 symbol's value "represented as it would be on the target
10127 architecture." By the time we get here, it's already been
10128 converted to host endianness, so we just need to sign- or
10129 zero-extend it as appropriate. */
10130 case DW_FORM_data1:
10131 dwarf2_const_value_data (attr, sym, 8);
10132 break;
c906108c 10133 case DW_FORM_data2:
2df3850c
JM
10134 dwarf2_const_value_data (attr, sym, 16);
10135 break;
c906108c 10136 case DW_FORM_data4:
2df3850c
JM
10137 dwarf2_const_value_data (attr, sym, 32);
10138 break;
c906108c 10139 case DW_FORM_data8:
2df3850c
JM
10140 dwarf2_const_value_data (attr, sym, 64);
10141 break;
10142
c906108c 10143 case DW_FORM_sdata:
2df3850c
JM
10144 SYMBOL_VALUE (sym) = DW_SND (attr);
10145 SYMBOL_CLASS (sym) = LOC_CONST;
10146 break;
10147
c906108c
SS
10148 case DW_FORM_udata:
10149 SYMBOL_VALUE (sym) = DW_UNSND (attr);
10150 SYMBOL_CLASS (sym) = LOC_CONST;
10151 break;
2df3850c 10152
c906108c 10153 default:
4d3c2250 10154 complaint (&symfile_complaints,
e2e0b3e5 10155 _("unsupported const value attribute form: '%s'"),
4d3c2250 10156 dwarf_form_name (attr->form));
c906108c
SS
10157 SYMBOL_VALUE (sym) = 0;
10158 SYMBOL_CLASS (sym) = LOC_CONST;
10159 break;
10160 }
10161}
10162
2df3850c
JM
10163
10164/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
10165 or zero-extend it as appropriate for the symbol's type. */
10166static void
10167dwarf2_const_value_data (struct attribute *attr,
10168 struct symbol *sym,
10169 int bits)
10170{
10171 LONGEST l = DW_UNSND (attr);
10172
10173 if (bits < sizeof (l) * 8)
10174 {
10175 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
10176 l &= ((LONGEST) 1 << bits) - 1;
10177 else
bf9198f1 10178 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
10179 }
10180
10181 SYMBOL_VALUE (sym) = l;
10182 SYMBOL_CLASS (sym) = LOC_CONST;
10183}
10184
10185
c906108c
SS
10186/* Return the type of the die in question using its DW_AT_type attribute. */
10187
10188static struct type *
e7c27a73 10189die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10190{
c906108c
SS
10191 struct attribute *type_attr;
10192 struct die_info *type_die;
c906108c 10193
e142c38c 10194 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
10195 if (!type_attr)
10196 {
10197 /* A missing DW_AT_type represents a void type. */
46bf5051 10198 return objfile_type (cu->objfile)->builtin_void;
c906108c 10199 }
348e048f
DE
10200
10201 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10b3939b 10202
33ac96f0 10203 return tag_type_to_type (type_die, cu);
c906108c
SS
10204}
10205
b4ba55a1
JB
10206/* True iff CU's producer generates GNAT Ada auxiliary information
10207 that allows to find parallel types through that information instead
10208 of having to do expensive parallel lookups by type name. */
10209
10210static int
10211need_gnat_info (struct dwarf2_cu *cu)
10212{
10213 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
10214 of GNAT produces this auxiliary information, without any indication
10215 that it is produced. Part of enhancing the FSF version of GNAT
10216 to produce that information will be to put in place an indicator
10217 that we can use in order to determine whether the descriptive type
10218 info is available or not. One suggestion that has been made is
10219 to use a new attribute, attached to the CU die. For now, assume
10220 that the descriptive type info is not available. */
10221 return 0;
10222}
10223
10224
10225/* Return the auxiliary type of the die in question using its
10226 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
10227 attribute is not present. */
10228
10229static struct type *
10230die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
10231{
b4ba55a1
JB
10232 struct attribute *type_attr;
10233 struct die_info *type_die;
10234
10235 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
10236 if (!type_attr)
10237 return NULL;
10238
10239 type_die = follow_die_ref (die, type_attr, &cu);
33ac96f0 10240 return tag_type_to_type (type_die, cu);
b4ba55a1
JB
10241}
10242
10243/* If DIE has a descriptive_type attribute, then set the TYPE's
10244 descriptive type accordingly. */
10245
10246static void
10247set_descriptive_type (struct type *type, struct die_info *die,
10248 struct dwarf2_cu *cu)
10249{
10250 struct type *descriptive_type = die_descriptive_type (die, cu);
10251
10252 if (descriptive_type)
10253 {
10254 ALLOCATE_GNAT_AUX_TYPE (type);
10255 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
10256 }
10257}
10258
c906108c
SS
10259/* Return the containing type of the die in question using its
10260 DW_AT_containing_type attribute. */
10261
10262static struct type *
e7c27a73 10263die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10264{
c906108c 10265 struct attribute *type_attr;
33ac96f0 10266 struct die_info *type_die;
c906108c 10267
e142c38c 10268 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
10269 if (!type_attr)
10270 error (_("Dwarf Error: Problem turning containing type into gdb type "
10271 "[in module %s]"), cu->objfile->name);
10272
10273 type_die = follow_die_ref_or_sig (die, type_attr, &cu);
10274 return tag_type_to_type (type_die, cu);
c906108c
SS
10275}
10276
c906108c 10277static struct type *
e7c27a73 10278tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10279{
f792889a
DJ
10280 struct type *this_type;
10281
10282 this_type = read_type_die (die, cu);
10283 if (!this_type)
c906108c 10284 {
b00fdb78
TT
10285 char *message, *saved;
10286
10287 /* read_type_die already issued a complaint. */
10288 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
10289 cu->objfile->name,
10290 cu->header.offset,
10291 die->offset);
10292 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
10293 message, strlen (message));
10294 xfree (message);
10295
10296 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 10297 }
f792889a 10298 return this_type;
c906108c
SS
10299}
10300
f792889a 10301static struct type *
e7c27a73 10302read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 10303{
f792889a
DJ
10304 struct type *this_type;
10305
10306 this_type = get_die_type (die, cu);
10307 if (this_type)
10308 return this_type;
10309
c906108c
SS
10310 switch (die->tag)
10311 {
10312 case DW_TAG_class_type:
680b30c7 10313 case DW_TAG_interface_type:
c906108c
SS
10314 case DW_TAG_structure_type:
10315 case DW_TAG_union_type:
f792889a 10316 this_type = read_structure_type (die, cu);
c906108c
SS
10317 break;
10318 case DW_TAG_enumeration_type:
f792889a 10319 this_type = read_enumeration_type (die, cu);
c906108c
SS
10320 break;
10321 case DW_TAG_subprogram:
10322 case DW_TAG_subroutine_type:
edb3359d 10323 case DW_TAG_inlined_subroutine:
f792889a 10324 this_type = read_subroutine_type (die, cu);
c906108c
SS
10325 break;
10326 case DW_TAG_array_type:
f792889a 10327 this_type = read_array_type (die, cu);
c906108c 10328 break;
72019c9c 10329 case DW_TAG_set_type:
f792889a 10330 this_type = read_set_type (die, cu);
72019c9c 10331 break;
c906108c 10332 case DW_TAG_pointer_type:
f792889a 10333 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
10334 break;
10335 case DW_TAG_ptr_to_member_type:
f792889a 10336 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
10337 break;
10338 case DW_TAG_reference_type:
f792889a 10339 this_type = read_tag_reference_type (die, cu);
c906108c
SS
10340 break;
10341 case DW_TAG_const_type:
f792889a 10342 this_type = read_tag_const_type (die, cu);
c906108c
SS
10343 break;
10344 case DW_TAG_volatile_type:
f792889a 10345 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
10346 break;
10347 case DW_TAG_string_type:
f792889a 10348 this_type = read_tag_string_type (die, cu);
c906108c
SS
10349 break;
10350 case DW_TAG_typedef:
f792889a 10351 this_type = read_typedef (die, cu);
c906108c 10352 break;
a02abb62 10353 case DW_TAG_subrange_type:
f792889a 10354 this_type = read_subrange_type (die, cu);
a02abb62 10355 break;
c906108c 10356 case DW_TAG_base_type:
f792889a 10357 this_type = read_base_type (die, cu);
c906108c 10358 break;
81a17f79 10359 case DW_TAG_unspecified_type:
f792889a 10360 this_type = read_unspecified_type (die, cu);
81a17f79 10361 break;
0114d602
DJ
10362 case DW_TAG_namespace:
10363 this_type = read_namespace_type (die, cu);
10364 break;
f55ee35c
JK
10365 case DW_TAG_module:
10366 this_type = read_module_type (die, cu);
10367 break;
c906108c 10368 default:
a1f5b845 10369 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 10370 dwarf_tag_name (die->tag));
c906108c
SS
10371 break;
10372 }
63d06c5c 10373
f792889a 10374 return this_type;
63d06c5c
DC
10375}
10376
fdde2d81 10377/* Return the name of the namespace/class that DIE is defined within,
0114d602 10378 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 10379
0114d602
DJ
10380 For example, if we're within the method foo() in the following
10381 code:
10382
10383 namespace N {
10384 class C {
10385 void foo () {
10386 }
10387 };
10388 }
10389
10390 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
10391
10392static char *
e142c38c 10393determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 10394{
0114d602
DJ
10395 struct die_info *parent, *spec_die;
10396 struct dwarf2_cu *spec_cu;
10397 struct type *parent_type;
63d06c5c 10398
f55ee35c
JK
10399 if (cu->language != language_cplus && cu->language != language_java
10400 && cu->language != language_fortran)
0114d602
DJ
10401 return "";
10402
10403 /* We have to be careful in the presence of DW_AT_specification.
10404 For example, with GCC 3.4, given the code
10405
10406 namespace N {
10407 void foo() {
10408 // Definition of N::foo.
10409 }
10410 }
10411
10412 then we'll have a tree of DIEs like this:
10413
10414 1: DW_TAG_compile_unit
10415 2: DW_TAG_namespace // N
10416 3: DW_TAG_subprogram // declaration of N::foo
10417 4: DW_TAG_subprogram // definition of N::foo
10418 DW_AT_specification // refers to die #3
10419
10420 Thus, when processing die #4, we have to pretend that we're in
10421 the context of its DW_AT_specification, namely the contex of die
10422 #3. */
10423 spec_cu = cu;
10424 spec_die = die_specification (die, &spec_cu);
10425 if (spec_die == NULL)
10426 parent = die->parent;
10427 else
63d06c5c 10428 {
0114d602
DJ
10429 parent = spec_die->parent;
10430 cu = spec_cu;
63d06c5c 10431 }
0114d602
DJ
10432
10433 if (parent == NULL)
10434 return "";
63d06c5c 10435 else
0114d602
DJ
10436 switch (parent->tag)
10437 {
63d06c5c 10438 case DW_TAG_namespace:
0114d602 10439 parent_type = read_type_die (parent, cu);
acebe513
UW
10440 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
10441 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
10442 Work around this problem here. */
10443 if (cu->language == language_cplus
10444 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
10445 return "";
0114d602
DJ
10446 /* We give a name to even anonymous namespaces. */
10447 return TYPE_TAG_NAME (parent_type);
63d06c5c 10448 case DW_TAG_class_type:
680b30c7 10449 case DW_TAG_interface_type:
63d06c5c 10450 case DW_TAG_structure_type:
0114d602 10451 case DW_TAG_union_type:
f55ee35c 10452 case DW_TAG_module:
0114d602
DJ
10453 parent_type = read_type_die (parent, cu);
10454 if (TYPE_TAG_NAME (parent_type) != NULL)
10455 return TYPE_TAG_NAME (parent_type);
10456 else
10457 /* An anonymous structure is only allowed non-static data
10458 members; no typedefs, no member functions, et cetera.
10459 So it does not need a prefix. */
10460 return "";
63d06c5c 10461 default:
8176b9b8 10462 return determine_prefix (parent, cu);
63d06c5c 10463 }
63d06c5c
DC
10464}
10465
987504bb
JJ
10466/* Return a newly-allocated string formed by concatenating PREFIX and
10467 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
10468 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
10469 perform an obconcat, otherwise allocate storage for the result. The CU argument
10470 is used to determine the language and hence, the appropriate separator. */
10471
f55ee35c 10472#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
10473
10474static char *
f55ee35c
JK
10475typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
10476 int physname, struct dwarf2_cu *cu)
63d06c5c 10477{
f55ee35c 10478 const char *lead = "";
5c315b68 10479 const char *sep;
63d06c5c 10480
987504bb
JJ
10481 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
10482 sep = "";
10483 else if (cu->language == language_java)
10484 sep = ".";
f55ee35c
JK
10485 else if (cu->language == language_fortran && physname)
10486 {
10487 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
10488 DW_AT_MIPS_linkage_name is preferred and used instead. */
10489
10490 lead = "__";
10491 sep = "_MOD_";
10492 }
987504bb
JJ
10493 else
10494 sep = "::";
63d06c5c 10495
6dd47d34
DE
10496 if (prefix == NULL)
10497 prefix = "";
10498 if (suffix == NULL)
10499 suffix = "";
10500
987504bb
JJ
10501 if (obs == NULL)
10502 {
10503 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 10504
f55ee35c
JK
10505 strcpy (retval, lead);
10506 strcat (retval, prefix);
6dd47d34
DE
10507 strcat (retval, sep);
10508 strcat (retval, suffix);
63d06c5c
DC
10509 return retval;
10510 }
987504bb
JJ
10511 else
10512 {
10513 /* We have an obstack. */
f55ee35c 10514 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 10515 }
63d06c5c
DC
10516}
10517
c906108c
SS
10518/* Return sibling of die, NULL if no sibling. */
10519
f9aca02d 10520static struct die_info *
fba45db2 10521sibling_die (struct die_info *die)
c906108c 10522{
639d11d3 10523 return die->sibling;
c906108c
SS
10524}
10525
71c25dea
TT
10526/* Get name of a die, return NULL if not found. */
10527
10528static char *
10529dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
10530 struct obstack *obstack)
10531{
10532 if (name && cu->language == language_cplus)
10533 {
10534 char *canon_name = cp_canonicalize_string (name);
10535
10536 if (canon_name != NULL)
10537 {
10538 if (strcmp (canon_name, name) != 0)
10539 name = obsavestring (canon_name, strlen (canon_name),
10540 obstack);
10541 xfree (canon_name);
10542 }
10543 }
10544
10545 return name;
c906108c
SS
10546}
10547
9219021c
DC
10548/* Get name of a die, return NULL if not found. */
10549
10550static char *
e142c38c 10551dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
10552{
10553 struct attribute *attr;
10554
e142c38c 10555 attr = dwarf2_attr (die, DW_AT_name, cu);
71c25dea
TT
10556 if (!attr || !DW_STRING (attr))
10557 return NULL;
10558
10559 switch (die->tag)
10560 {
10561 case DW_TAG_compile_unit:
10562 /* Compilation units have a DW_AT_name that is a filename, not
10563 a source language identifier. */
10564 case DW_TAG_enumeration_type:
10565 case DW_TAG_enumerator:
10566 /* These tags always have simple identifiers already; no need
10567 to canonicalize them. */
10568 return DW_STRING (attr);
907af001 10569
418835cc
KS
10570 case DW_TAG_subprogram:
10571 /* Java constructors will all be named "<init>", so return
10572 the class name when we see this special case. */
10573 if (cu->language == language_java
10574 && DW_STRING (attr) != NULL
10575 && strcmp (DW_STRING (attr), "<init>") == 0)
10576 {
10577 struct dwarf2_cu *spec_cu = cu;
10578 struct die_info *spec_die;
10579
10580 /* GCJ will output '<init>' for Java constructor names.
10581 For this special case, return the name of the parent class. */
10582
10583 /* GCJ may output suprogram DIEs with AT_specification set.
10584 If so, use the name of the specified DIE. */
10585 spec_die = die_specification (die, &spec_cu);
10586 if (spec_die != NULL)
10587 return dwarf2_name (spec_die, spec_cu);
10588
10589 do
10590 {
10591 die = die->parent;
10592 if (die->tag == DW_TAG_class_type)
10593 return dwarf2_name (die, cu);
10594 }
10595 while (die->tag != DW_TAG_compile_unit);
10596 }
907af001
UW
10597 break;
10598
10599 case DW_TAG_class_type:
10600 case DW_TAG_interface_type:
10601 case DW_TAG_structure_type:
10602 case DW_TAG_union_type:
10603 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
10604 structures or unions. These were of the form "._%d" in GCC 4.1,
10605 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
10606 and GCC 4.4. We work around this problem by ignoring these. */
10607 if (strncmp (DW_STRING (attr), "._", 2) == 0
10608 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
10609 return NULL;
10610 break;
10611
71c25dea 10612 default:
907af001
UW
10613 break;
10614 }
10615
10616 if (!DW_STRING_IS_CANONICAL (attr))
10617 {
10618 DW_STRING (attr)
10619 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
10620 &cu->objfile->objfile_obstack);
10621 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 10622 }
907af001 10623 return DW_STRING (attr);
9219021c
DC
10624}
10625
10626/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
10627 is none. *EXT_CU is the CU containing DIE on input, and the CU
10628 containing the return value on output. */
9219021c
DC
10629
10630static struct die_info *
f2f0e013 10631dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
10632{
10633 struct attribute *attr;
9219021c 10634
f2f0e013 10635 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
10636 if (attr == NULL)
10637 return NULL;
10638
f2f0e013 10639 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
10640}
10641
c906108c
SS
10642/* Convert a DIE tag into its string name. */
10643
10644static char *
aa1ee363 10645dwarf_tag_name (unsigned tag)
c906108c
SS
10646{
10647 switch (tag)
10648 {
10649 case DW_TAG_padding:
10650 return "DW_TAG_padding";
10651 case DW_TAG_array_type:
10652 return "DW_TAG_array_type";
10653 case DW_TAG_class_type:
10654 return "DW_TAG_class_type";
10655 case DW_TAG_entry_point:
10656 return "DW_TAG_entry_point";
10657 case DW_TAG_enumeration_type:
10658 return "DW_TAG_enumeration_type";
10659 case DW_TAG_formal_parameter:
10660 return "DW_TAG_formal_parameter";
10661 case DW_TAG_imported_declaration:
10662 return "DW_TAG_imported_declaration";
10663 case DW_TAG_label:
10664 return "DW_TAG_label";
10665 case DW_TAG_lexical_block:
10666 return "DW_TAG_lexical_block";
10667 case DW_TAG_member:
10668 return "DW_TAG_member";
10669 case DW_TAG_pointer_type:
10670 return "DW_TAG_pointer_type";
10671 case DW_TAG_reference_type:
10672 return "DW_TAG_reference_type";
10673 case DW_TAG_compile_unit:
10674 return "DW_TAG_compile_unit";
10675 case DW_TAG_string_type:
10676 return "DW_TAG_string_type";
10677 case DW_TAG_structure_type:
10678 return "DW_TAG_structure_type";
10679 case DW_TAG_subroutine_type:
10680 return "DW_TAG_subroutine_type";
10681 case DW_TAG_typedef:
10682 return "DW_TAG_typedef";
10683 case DW_TAG_union_type:
10684 return "DW_TAG_union_type";
10685 case DW_TAG_unspecified_parameters:
10686 return "DW_TAG_unspecified_parameters";
10687 case DW_TAG_variant:
10688 return "DW_TAG_variant";
10689 case DW_TAG_common_block:
10690 return "DW_TAG_common_block";
10691 case DW_TAG_common_inclusion:
10692 return "DW_TAG_common_inclusion";
10693 case DW_TAG_inheritance:
10694 return "DW_TAG_inheritance";
10695 case DW_TAG_inlined_subroutine:
10696 return "DW_TAG_inlined_subroutine";
10697 case DW_TAG_module:
10698 return "DW_TAG_module";
10699 case DW_TAG_ptr_to_member_type:
10700 return "DW_TAG_ptr_to_member_type";
10701 case DW_TAG_set_type:
10702 return "DW_TAG_set_type";
10703 case DW_TAG_subrange_type:
10704 return "DW_TAG_subrange_type";
10705 case DW_TAG_with_stmt:
10706 return "DW_TAG_with_stmt";
10707 case DW_TAG_access_declaration:
10708 return "DW_TAG_access_declaration";
10709 case DW_TAG_base_type:
10710 return "DW_TAG_base_type";
10711 case DW_TAG_catch_block:
10712 return "DW_TAG_catch_block";
10713 case DW_TAG_const_type:
10714 return "DW_TAG_const_type";
10715 case DW_TAG_constant:
10716 return "DW_TAG_constant";
10717 case DW_TAG_enumerator:
10718 return "DW_TAG_enumerator";
10719 case DW_TAG_file_type:
10720 return "DW_TAG_file_type";
10721 case DW_TAG_friend:
10722 return "DW_TAG_friend";
10723 case DW_TAG_namelist:
10724 return "DW_TAG_namelist";
10725 case DW_TAG_namelist_item:
10726 return "DW_TAG_namelist_item";
10727 case DW_TAG_packed_type:
10728 return "DW_TAG_packed_type";
10729 case DW_TAG_subprogram:
10730 return "DW_TAG_subprogram";
10731 case DW_TAG_template_type_param:
10732 return "DW_TAG_template_type_param";
10733 case DW_TAG_template_value_param:
10734 return "DW_TAG_template_value_param";
10735 case DW_TAG_thrown_type:
10736 return "DW_TAG_thrown_type";
10737 case DW_TAG_try_block:
10738 return "DW_TAG_try_block";
10739 case DW_TAG_variant_part:
10740 return "DW_TAG_variant_part";
10741 case DW_TAG_variable:
10742 return "DW_TAG_variable";
10743 case DW_TAG_volatile_type:
10744 return "DW_TAG_volatile_type";
d9fa45fe
DC
10745 case DW_TAG_dwarf_procedure:
10746 return "DW_TAG_dwarf_procedure";
10747 case DW_TAG_restrict_type:
10748 return "DW_TAG_restrict_type";
10749 case DW_TAG_interface_type:
10750 return "DW_TAG_interface_type";
10751 case DW_TAG_namespace:
10752 return "DW_TAG_namespace";
10753 case DW_TAG_imported_module:
10754 return "DW_TAG_imported_module";
10755 case DW_TAG_unspecified_type:
10756 return "DW_TAG_unspecified_type";
10757 case DW_TAG_partial_unit:
10758 return "DW_TAG_partial_unit";
10759 case DW_TAG_imported_unit:
10760 return "DW_TAG_imported_unit";
b7619582
GF
10761 case DW_TAG_condition:
10762 return "DW_TAG_condition";
10763 case DW_TAG_shared_type:
10764 return "DW_TAG_shared_type";
348e048f
DE
10765 case DW_TAG_type_unit:
10766 return "DW_TAG_type_unit";
c906108c
SS
10767 case DW_TAG_MIPS_loop:
10768 return "DW_TAG_MIPS_loop";
b7619582
GF
10769 case DW_TAG_HP_array_descriptor:
10770 return "DW_TAG_HP_array_descriptor";
c906108c
SS
10771 case DW_TAG_format_label:
10772 return "DW_TAG_format_label";
10773 case DW_TAG_function_template:
10774 return "DW_TAG_function_template";
10775 case DW_TAG_class_template:
10776 return "DW_TAG_class_template";
b7619582
GF
10777 case DW_TAG_GNU_BINCL:
10778 return "DW_TAG_GNU_BINCL";
10779 case DW_TAG_GNU_EINCL:
10780 return "DW_TAG_GNU_EINCL";
10781 case DW_TAG_upc_shared_type:
10782 return "DW_TAG_upc_shared_type";
10783 case DW_TAG_upc_strict_type:
10784 return "DW_TAG_upc_strict_type";
10785 case DW_TAG_upc_relaxed_type:
10786 return "DW_TAG_upc_relaxed_type";
10787 case DW_TAG_PGI_kanji_type:
10788 return "DW_TAG_PGI_kanji_type";
10789 case DW_TAG_PGI_interface_block:
10790 return "DW_TAG_PGI_interface_block";
c906108c
SS
10791 default:
10792 return "DW_TAG_<unknown>";
10793 }
10794}
10795
10796/* Convert a DWARF attribute code into its string name. */
10797
10798static char *
aa1ee363 10799dwarf_attr_name (unsigned attr)
c906108c
SS
10800{
10801 switch (attr)
10802 {
10803 case DW_AT_sibling:
10804 return "DW_AT_sibling";
10805 case DW_AT_location:
10806 return "DW_AT_location";
10807 case DW_AT_name:
10808 return "DW_AT_name";
10809 case DW_AT_ordering:
10810 return "DW_AT_ordering";
10811 case DW_AT_subscr_data:
10812 return "DW_AT_subscr_data";
10813 case DW_AT_byte_size:
10814 return "DW_AT_byte_size";
10815 case DW_AT_bit_offset:
10816 return "DW_AT_bit_offset";
10817 case DW_AT_bit_size:
10818 return "DW_AT_bit_size";
10819 case DW_AT_element_list:
10820 return "DW_AT_element_list";
10821 case DW_AT_stmt_list:
10822 return "DW_AT_stmt_list";
10823 case DW_AT_low_pc:
10824 return "DW_AT_low_pc";
10825 case DW_AT_high_pc:
10826 return "DW_AT_high_pc";
10827 case DW_AT_language:
10828 return "DW_AT_language";
10829 case DW_AT_member:
10830 return "DW_AT_member";
10831 case DW_AT_discr:
10832 return "DW_AT_discr";
10833 case DW_AT_discr_value:
10834 return "DW_AT_discr_value";
10835 case DW_AT_visibility:
10836 return "DW_AT_visibility";
10837 case DW_AT_import:
10838 return "DW_AT_import";
10839 case DW_AT_string_length:
10840 return "DW_AT_string_length";
10841 case DW_AT_common_reference:
10842 return "DW_AT_common_reference";
10843 case DW_AT_comp_dir:
10844 return "DW_AT_comp_dir";
10845 case DW_AT_const_value:
10846 return "DW_AT_const_value";
10847 case DW_AT_containing_type:
10848 return "DW_AT_containing_type";
10849 case DW_AT_default_value:
10850 return "DW_AT_default_value";
10851 case DW_AT_inline:
10852 return "DW_AT_inline";
10853 case DW_AT_is_optional:
10854 return "DW_AT_is_optional";
10855 case DW_AT_lower_bound:
10856 return "DW_AT_lower_bound";
10857 case DW_AT_producer:
10858 return "DW_AT_producer";
10859 case DW_AT_prototyped:
10860 return "DW_AT_prototyped";
10861 case DW_AT_return_addr:
10862 return "DW_AT_return_addr";
10863 case DW_AT_start_scope:
10864 return "DW_AT_start_scope";
09fa0d7c
JK
10865 case DW_AT_bit_stride:
10866 return "DW_AT_bit_stride";
c906108c
SS
10867 case DW_AT_upper_bound:
10868 return "DW_AT_upper_bound";
10869 case DW_AT_abstract_origin:
10870 return "DW_AT_abstract_origin";
10871 case DW_AT_accessibility:
10872 return "DW_AT_accessibility";
10873 case DW_AT_address_class:
10874 return "DW_AT_address_class";
10875 case DW_AT_artificial:
10876 return "DW_AT_artificial";
10877 case DW_AT_base_types:
10878 return "DW_AT_base_types";
10879 case DW_AT_calling_convention:
10880 return "DW_AT_calling_convention";
10881 case DW_AT_count:
10882 return "DW_AT_count";
10883 case DW_AT_data_member_location:
10884 return "DW_AT_data_member_location";
10885 case DW_AT_decl_column:
10886 return "DW_AT_decl_column";
10887 case DW_AT_decl_file:
10888 return "DW_AT_decl_file";
10889 case DW_AT_decl_line:
10890 return "DW_AT_decl_line";
10891 case DW_AT_declaration:
10892 return "DW_AT_declaration";
10893 case DW_AT_discr_list:
10894 return "DW_AT_discr_list";
10895 case DW_AT_encoding:
10896 return "DW_AT_encoding";
10897 case DW_AT_external:
10898 return "DW_AT_external";
10899 case DW_AT_frame_base:
10900 return "DW_AT_frame_base";
10901 case DW_AT_friend:
10902 return "DW_AT_friend";
10903 case DW_AT_identifier_case:
10904 return "DW_AT_identifier_case";
10905 case DW_AT_macro_info:
10906 return "DW_AT_macro_info";
10907 case DW_AT_namelist_items:
10908 return "DW_AT_namelist_items";
10909 case DW_AT_priority:
10910 return "DW_AT_priority";
10911 case DW_AT_segment:
10912 return "DW_AT_segment";
10913 case DW_AT_specification:
10914 return "DW_AT_specification";
10915 case DW_AT_static_link:
10916 return "DW_AT_static_link";
10917 case DW_AT_type:
10918 return "DW_AT_type";
10919 case DW_AT_use_location:
10920 return "DW_AT_use_location";
10921 case DW_AT_variable_parameter:
10922 return "DW_AT_variable_parameter";
10923 case DW_AT_virtuality:
10924 return "DW_AT_virtuality";
10925 case DW_AT_vtable_elem_location:
10926 return "DW_AT_vtable_elem_location";
b7619582 10927 /* DWARF 3 values. */
d9fa45fe
DC
10928 case DW_AT_allocated:
10929 return "DW_AT_allocated";
10930 case DW_AT_associated:
10931 return "DW_AT_associated";
10932 case DW_AT_data_location:
10933 return "DW_AT_data_location";
09fa0d7c
JK
10934 case DW_AT_byte_stride:
10935 return "DW_AT_byte_stride";
d9fa45fe
DC
10936 case DW_AT_entry_pc:
10937 return "DW_AT_entry_pc";
10938 case DW_AT_use_UTF8:
10939 return "DW_AT_use_UTF8";
10940 case DW_AT_extension:
10941 return "DW_AT_extension";
10942 case DW_AT_ranges:
10943 return "DW_AT_ranges";
10944 case DW_AT_trampoline:
10945 return "DW_AT_trampoline";
10946 case DW_AT_call_column:
10947 return "DW_AT_call_column";
10948 case DW_AT_call_file:
10949 return "DW_AT_call_file";
10950 case DW_AT_call_line:
10951 return "DW_AT_call_line";
b7619582
GF
10952 case DW_AT_description:
10953 return "DW_AT_description";
10954 case DW_AT_binary_scale:
10955 return "DW_AT_binary_scale";
10956 case DW_AT_decimal_scale:
10957 return "DW_AT_decimal_scale";
10958 case DW_AT_small:
10959 return "DW_AT_small";
10960 case DW_AT_decimal_sign:
10961 return "DW_AT_decimal_sign";
10962 case DW_AT_digit_count:
10963 return "DW_AT_digit_count";
10964 case DW_AT_picture_string:
10965 return "DW_AT_picture_string";
10966 case DW_AT_mutable:
10967 return "DW_AT_mutable";
10968 case DW_AT_threads_scaled:
10969 return "DW_AT_threads_scaled";
10970 case DW_AT_explicit:
10971 return "DW_AT_explicit";
10972 case DW_AT_object_pointer:
10973 return "DW_AT_object_pointer";
10974 case DW_AT_endianity:
10975 return "DW_AT_endianity";
10976 case DW_AT_elemental:
10977 return "DW_AT_elemental";
10978 case DW_AT_pure:
10979 return "DW_AT_pure";
10980 case DW_AT_recursive:
10981 return "DW_AT_recursive";
348e048f
DE
10982 /* DWARF 4 values. */
10983 case DW_AT_signature:
10984 return "DW_AT_signature";
31ef98ae
TT
10985 case DW_AT_linkage_name:
10986 return "DW_AT_linkage_name";
b7619582 10987 /* SGI/MIPS extensions. */
c764a876 10988#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
10989 case DW_AT_MIPS_fde:
10990 return "DW_AT_MIPS_fde";
c764a876 10991#endif
c906108c
SS
10992 case DW_AT_MIPS_loop_begin:
10993 return "DW_AT_MIPS_loop_begin";
10994 case DW_AT_MIPS_tail_loop_begin:
10995 return "DW_AT_MIPS_tail_loop_begin";
10996 case DW_AT_MIPS_epilog_begin:
10997 return "DW_AT_MIPS_epilog_begin";
10998 case DW_AT_MIPS_loop_unroll_factor:
10999 return "DW_AT_MIPS_loop_unroll_factor";
11000 case DW_AT_MIPS_software_pipeline_depth:
11001 return "DW_AT_MIPS_software_pipeline_depth";
11002 case DW_AT_MIPS_linkage_name:
11003 return "DW_AT_MIPS_linkage_name";
b7619582
GF
11004 case DW_AT_MIPS_stride:
11005 return "DW_AT_MIPS_stride";
11006 case DW_AT_MIPS_abstract_name:
11007 return "DW_AT_MIPS_abstract_name";
11008 case DW_AT_MIPS_clone_origin:
11009 return "DW_AT_MIPS_clone_origin";
11010 case DW_AT_MIPS_has_inlines:
11011 return "DW_AT_MIPS_has_inlines";
b7619582 11012 /* HP extensions. */
c764a876 11013#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
11014 case DW_AT_HP_block_index:
11015 return "DW_AT_HP_block_index";
c764a876 11016#endif
b7619582
GF
11017 case DW_AT_HP_unmodifiable:
11018 return "DW_AT_HP_unmodifiable";
11019 case DW_AT_HP_actuals_stmt_list:
11020 return "DW_AT_HP_actuals_stmt_list";
11021 case DW_AT_HP_proc_per_section:
11022 return "DW_AT_HP_proc_per_section";
11023 case DW_AT_HP_raw_data_ptr:
11024 return "DW_AT_HP_raw_data_ptr";
11025 case DW_AT_HP_pass_by_reference:
11026 return "DW_AT_HP_pass_by_reference";
11027 case DW_AT_HP_opt_level:
11028 return "DW_AT_HP_opt_level";
11029 case DW_AT_HP_prof_version_id:
11030 return "DW_AT_HP_prof_version_id";
11031 case DW_AT_HP_opt_flags:
11032 return "DW_AT_HP_opt_flags";
11033 case DW_AT_HP_cold_region_low_pc:
11034 return "DW_AT_HP_cold_region_low_pc";
11035 case DW_AT_HP_cold_region_high_pc:
11036 return "DW_AT_HP_cold_region_high_pc";
11037 case DW_AT_HP_all_variables_modifiable:
11038 return "DW_AT_HP_all_variables_modifiable";
11039 case DW_AT_HP_linkage_name:
11040 return "DW_AT_HP_linkage_name";
11041 case DW_AT_HP_prof_flags:
11042 return "DW_AT_HP_prof_flags";
11043 /* GNU extensions. */
c906108c
SS
11044 case DW_AT_sf_names:
11045 return "DW_AT_sf_names";
11046 case DW_AT_src_info:
11047 return "DW_AT_src_info";
11048 case DW_AT_mac_info:
11049 return "DW_AT_mac_info";
11050 case DW_AT_src_coords:
11051 return "DW_AT_src_coords";
11052 case DW_AT_body_begin:
11053 return "DW_AT_body_begin";
11054 case DW_AT_body_end:
11055 return "DW_AT_body_end";
f5f8a009
EZ
11056 case DW_AT_GNU_vector:
11057 return "DW_AT_GNU_vector";
b7619582
GF
11058 /* VMS extensions. */
11059 case DW_AT_VMS_rtnbeg_pd_address:
11060 return "DW_AT_VMS_rtnbeg_pd_address";
11061 /* UPC extension. */
11062 case DW_AT_upc_threads_scaled:
11063 return "DW_AT_upc_threads_scaled";
11064 /* PGI (STMicroelectronics) extensions. */
11065 case DW_AT_PGI_lbase:
11066 return "DW_AT_PGI_lbase";
11067 case DW_AT_PGI_soffset:
11068 return "DW_AT_PGI_soffset";
11069 case DW_AT_PGI_lstride:
11070 return "DW_AT_PGI_lstride";
c906108c
SS
11071 default:
11072 return "DW_AT_<unknown>";
11073 }
11074}
11075
11076/* Convert a DWARF value form code into its string name. */
11077
11078static char *
aa1ee363 11079dwarf_form_name (unsigned form)
c906108c
SS
11080{
11081 switch (form)
11082 {
11083 case DW_FORM_addr:
11084 return "DW_FORM_addr";
11085 case DW_FORM_block2:
11086 return "DW_FORM_block2";
11087 case DW_FORM_block4:
11088 return "DW_FORM_block4";
11089 case DW_FORM_data2:
11090 return "DW_FORM_data2";
11091 case DW_FORM_data4:
11092 return "DW_FORM_data4";
11093 case DW_FORM_data8:
11094 return "DW_FORM_data8";
11095 case DW_FORM_string:
11096 return "DW_FORM_string";
11097 case DW_FORM_block:
11098 return "DW_FORM_block";
11099 case DW_FORM_block1:
11100 return "DW_FORM_block1";
11101 case DW_FORM_data1:
11102 return "DW_FORM_data1";
11103 case DW_FORM_flag:
11104 return "DW_FORM_flag";
11105 case DW_FORM_sdata:
11106 return "DW_FORM_sdata";
11107 case DW_FORM_strp:
11108 return "DW_FORM_strp";
11109 case DW_FORM_udata:
11110 return "DW_FORM_udata";
11111 case DW_FORM_ref_addr:
11112 return "DW_FORM_ref_addr";
11113 case DW_FORM_ref1:
11114 return "DW_FORM_ref1";
11115 case DW_FORM_ref2:
11116 return "DW_FORM_ref2";
11117 case DW_FORM_ref4:
11118 return "DW_FORM_ref4";
11119 case DW_FORM_ref8:
11120 return "DW_FORM_ref8";
11121 case DW_FORM_ref_udata:
11122 return "DW_FORM_ref_udata";
11123 case DW_FORM_indirect:
11124 return "DW_FORM_indirect";
348e048f
DE
11125 case DW_FORM_sec_offset:
11126 return "DW_FORM_sec_offset";
11127 case DW_FORM_exprloc:
11128 return "DW_FORM_exprloc";
11129 case DW_FORM_flag_present:
11130 return "DW_FORM_flag_present";
11131 case DW_FORM_sig8:
11132 return "DW_FORM_sig8";
c906108c
SS
11133 default:
11134 return "DW_FORM_<unknown>";
11135 }
11136}
11137
11138/* Convert a DWARF stack opcode into its string name. */
11139
9eae7c52
TT
11140const char *
11141dwarf_stack_op_name (unsigned op, int def)
c906108c
SS
11142{
11143 switch (op)
11144 {
11145 case DW_OP_addr:
11146 return "DW_OP_addr";
11147 case DW_OP_deref:
11148 return "DW_OP_deref";
11149 case DW_OP_const1u:
11150 return "DW_OP_const1u";
11151 case DW_OP_const1s:
11152 return "DW_OP_const1s";
11153 case DW_OP_const2u:
11154 return "DW_OP_const2u";
11155 case DW_OP_const2s:
11156 return "DW_OP_const2s";
11157 case DW_OP_const4u:
11158 return "DW_OP_const4u";
11159 case DW_OP_const4s:
11160 return "DW_OP_const4s";
11161 case DW_OP_const8u:
11162 return "DW_OP_const8u";
11163 case DW_OP_const8s:
11164 return "DW_OP_const8s";
11165 case DW_OP_constu:
11166 return "DW_OP_constu";
11167 case DW_OP_consts:
11168 return "DW_OP_consts";
11169 case DW_OP_dup:
11170 return "DW_OP_dup";
11171 case DW_OP_drop:
11172 return "DW_OP_drop";
11173 case DW_OP_over:
11174 return "DW_OP_over";
11175 case DW_OP_pick:
11176 return "DW_OP_pick";
11177 case DW_OP_swap:
11178 return "DW_OP_swap";
11179 case DW_OP_rot:
11180 return "DW_OP_rot";
11181 case DW_OP_xderef:
11182 return "DW_OP_xderef";
11183 case DW_OP_abs:
11184 return "DW_OP_abs";
11185 case DW_OP_and:
11186 return "DW_OP_and";
11187 case DW_OP_div:
11188 return "DW_OP_div";
11189 case DW_OP_minus:
11190 return "DW_OP_minus";
11191 case DW_OP_mod:
11192 return "DW_OP_mod";
11193 case DW_OP_mul:
11194 return "DW_OP_mul";
11195 case DW_OP_neg:
11196 return "DW_OP_neg";
11197 case DW_OP_not:
11198 return "DW_OP_not";
11199 case DW_OP_or:
11200 return "DW_OP_or";
11201 case DW_OP_plus:
11202 return "DW_OP_plus";
11203 case DW_OP_plus_uconst:
11204 return "DW_OP_plus_uconst";
11205 case DW_OP_shl:
11206 return "DW_OP_shl";
11207 case DW_OP_shr:
11208 return "DW_OP_shr";
11209 case DW_OP_shra:
11210 return "DW_OP_shra";
11211 case DW_OP_xor:
11212 return "DW_OP_xor";
11213 case DW_OP_bra:
11214 return "DW_OP_bra";
11215 case DW_OP_eq:
11216 return "DW_OP_eq";
11217 case DW_OP_ge:
11218 return "DW_OP_ge";
11219 case DW_OP_gt:
11220 return "DW_OP_gt";
11221 case DW_OP_le:
11222 return "DW_OP_le";
11223 case DW_OP_lt:
11224 return "DW_OP_lt";
11225 case DW_OP_ne:
11226 return "DW_OP_ne";
11227 case DW_OP_skip:
11228 return "DW_OP_skip";
11229 case DW_OP_lit0:
11230 return "DW_OP_lit0";
11231 case DW_OP_lit1:
11232 return "DW_OP_lit1";
11233 case DW_OP_lit2:
11234 return "DW_OP_lit2";
11235 case DW_OP_lit3:
11236 return "DW_OP_lit3";
11237 case DW_OP_lit4:
11238 return "DW_OP_lit4";
11239 case DW_OP_lit5:
11240 return "DW_OP_lit5";
11241 case DW_OP_lit6:
11242 return "DW_OP_lit6";
11243 case DW_OP_lit7:
11244 return "DW_OP_lit7";
11245 case DW_OP_lit8:
11246 return "DW_OP_lit8";
11247 case DW_OP_lit9:
11248 return "DW_OP_lit9";
11249 case DW_OP_lit10:
11250 return "DW_OP_lit10";
11251 case DW_OP_lit11:
11252 return "DW_OP_lit11";
11253 case DW_OP_lit12:
11254 return "DW_OP_lit12";
11255 case DW_OP_lit13:
11256 return "DW_OP_lit13";
11257 case DW_OP_lit14:
11258 return "DW_OP_lit14";
11259 case DW_OP_lit15:
11260 return "DW_OP_lit15";
11261 case DW_OP_lit16:
11262 return "DW_OP_lit16";
11263 case DW_OP_lit17:
11264 return "DW_OP_lit17";
11265 case DW_OP_lit18:
11266 return "DW_OP_lit18";
11267 case DW_OP_lit19:
11268 return "DW_OP_lit19";
11269 case DW_OP_lit20:
11270 return "DW_OP_lit20";
11271 case DW_OP_lit21:
11272 return "DW_OP_lit21";
11273 case DW_OP_lit22:
11274 return "DW_OP_lit22";
11275 case DW_OP_lit23:
11276 return "DW_OP_lit23";
11277 case DW_OP_lit24:
11278 return "DW_OP_lit24";
11279 case DW_OP_lit25:
11280 return "DW_OP_lit25";
11281 case DW_OP_lit26:
11282 return "DW_OP_lit26";
11283 case DW_OP_lit27:
11284 return "DW_OP_lit27";
11285 case DW_OP_lit28:
11286 return "DW_OP_lit28";
11287 case DW_OP_lit29:
11288 return "DW_OP_lit29";
11289 case DW_OP_lit30:
11290 return "DW_OP_lit30";
11291 case DW_OP_lit31:
11292 return "DW_OP_lit31";
11293 case DW_OP_reg0:
11294 return "DW_OP_reg0";
11295 case DW_OP_reg1:
11296 return "DW_OP_reg1";
11297 case DW_OP_reg2:
11298 return "DW_OP_reg2";
11299 case DW_OP_reg3:
11300 return "DW_OP_reg3";
11301 case DW_OP_reg4:
11302 return "DW_OP_reg4";
11303 case DW_OP_reg5:
11304 return "DW_OP_reg5";
11305 case DW_OP_reg6:
11306 return "DW_OP_reg6";
11307 case DW_OP_reg7:
11308 return "DW_OP_reg7";
11309 case DW_OP_reg8:
11310 return "DW_OP_reg8";
11311 case DW_OP_reg9:
11312 return "DW_OP_reg9";
11313 case DW_OP_reg10:
11314 return "DW_OP_reg10";
11315 case DW_OP_reg11:
11316 return "DW_OP_reg11";
11317 case DW_OP_reg12:
11318 return "DW_OP_reg12";
11319 case DW_OP_reg13:
11320 return "DW_OP_reg13";
11321 case DW_OP_reg14:
11322 return "DW_OP_reg14";
11323 case DW_OP_reg15:
11324 return "DW_OP_reg15";
11325 case DW_OP_reg16:
11326 return "DW_OP_reg16";
11327 case DW_OP_reg17:
11328 return "DW_OP_reg17";
11329 case DW_OP_reg18:
11330 return "DW_OP_reg18";
11331 case DW_OP_reg19:
11332 return "DW_OP_reg19";
11333 case DW_OP_reg20:
11334 return "DW_OP_reg20";
11335 case DW_OP_reg21:
11336 return "DW_OP_reg21";
11337 case DW_OP_reg22:
11338 return "DW_OP_reg22";
11339 case DW_OP_reg23:
11340 return "DW_OP_reg23";
11341 case DW_OP_reg24:
11342 return "DW_OP_reg24";
11343 case DW_OP_reg25:
11344 return "DW_OP_reg25";
11345 case DW_OP_reg26:
11346 return "DW_OP_reg26";
11347 case DW_OP_reg27:
11348 return "DW_OP_reg27";
11349 case DW_OP_reg28:
11350 return "DW_OP_reg28";
11351 case DW_OP_reg29:
11352 return "DW_OP_reg29";
11353 case DW_OP_reg30:
11354 return "DW_OP_reg30";
11355 case DW_OP_reg31:
11356 return "DW_OP_reg31";
11357 case DW_OP_breg0:
11358 return "DW_OP_breg0";
11359 case DW_OP_breg1:
11360 return "DW_OP_breg1";
11361 case DW_OP_breg2:
11362 return "DW_OP_breg2";
11363 case DW_OP_breg3:
11364 return "DW_OP_breg3";
11365 case DW_OP_breg4:
11366 return "DW_OP_breg4";
11367 case DW_OP_breg5:
11368 return "DW_OP_breg5";
11369 case DW_OP_breg6:
11370 return "DW_OP_breg6";
11371 case DW_OP_breg7:
11372 return "DW_OP_breg7";
11373 case DW_OP_breg8:
11374 return "DW_OP_breg8";
11375 case DW_OP_breg9:
11376 return "DW_OP_breg9";
11377 case DW_OP_breg10:
11378 return "DW_OP_breg10";
11379 case DW_OP_breg11:
11380 return "DW_OP_breg11";
11381 case DW_OP_breg12:
11382 return "DW_OP_breg12";
11383 case DW_OP_breg13:
11384 return "DW_OP_breg13";
11385 case DW_OP_breg14:
11386 return "DW_OP_breg14";
11387 case DW_OP_breg15:
11388 return "DW_OP_breg15";
11389 case DW_OP_breg16:
11390 return "DW_OP_breg16";
11391 case DW_OP_breg17:
11392 return "DW_OP_breg17";
11393 case DW_OP_breg18:
11394 return "DW_OP_breg18";
11395 case DW_OP_breg19:
11396 return "DW_OP_breg19";
11397 case DW_OP_breg20:
11398 return "DW_OP_breg20";
11399 case DW_OP_breg21:
11400 return "DW_OP_breg21";
11401 case DW_OP_breg22:
11402 return "DW_OP_breg22";
11403 case DW_OP_breg23:
11404 return "DW_OP_breg23";
11405 case DW_OP_breg24:
11406 return "DW_OP_breg24";
11407 case DW_OP_breg25:
11408 return "DW_OP_breg25";
11409 case DW_OP_breg26:
11410 return "DW_OP_breg26";
11411 case DW_OP_breg27:
11412 return "DW_OP_breg27";
11413 case DW_OP_breg28:
11414 return "DW_OP_breg28";
11415 case DW_OP_breg29:
11416 return "DW_OP_breg29";
11417 case DW_OP_breg30:
11418 return "DW_OP_breg30";
11419 case DW_OP_breg31:
11420 return "DW_OP_breg31";
11421 case DW_OP_regx:
11422 return "DW_OP_regx";
11423 case DW_OP_fbreg:
11424 return "DW_OP_fbreg";
11425 case DW_OP_bregx:
11426 return "DW_OP_bregx";
11427 case DW_OP_piece:
11428 return "DW_OP_piece";
11429 case DW_OP_deref_size:
11430 return "DW_OP_deref_size";
11431 case DW_OP_xderef_size:
11432 return "DW_OP_xderef_size";
11433 case DW_OP_nop:
11434 return "DW_OP_nop";
b7619582 11435 /* DWARF 3 extensions. */
ed348acc
EZ
11436 case DW_OP_push_object_address:
11437 return "DW_OP_push_object_address";
11438 case DW_OP_call2:
11439 return "DW_OP_call2";
11440 case DW_OP_call4:
11441 return "DW_OP_call4";
11442 case DW_OP_call_ref:
11443 return "DW_OP_call_ref";
b7619582
GF
11444 case DW_OP_form_tls_address:
11445 return "DW_OP_form_tls_address";
11446 case DW_OP_call_frame_cfa:
11447 return "DW_OP_call_frame_cfa";
11448 case DW_OP_bit_piece:
11449 return "DW_OP_bit_piece";
9eae7c52
TT
11450 /* DWARF 4 extensions. */
11451 case DW_OP_implicit_value:
11452 return "DW_OP_implicit_value";
11453 case DW_OP_stack_value:
11454 return "DW_OP_stack_value";
11455 /* GNU extensions. */
ed348acc
EZ
11456 case DW_OP_GNU_push_tls_address:
11457 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
11458 case DW_OP_GNU_uninit:
11459 return "DW_OP_GNU_uninit";
c906108c 11460 default:
9eae7c52 11461 return def ? "OP_<unknown>" : NULL;
c906108c
SS
11462 }
11463}
11464
11465static char *
fba45db2 11466dwarf_bool_name (unsigned mybool)
c906108c
SS
11467{
11468 if (mybool)
11469 return "TRUE";
11470 else
11471 return "FALSE";
11472}
11473
11474/* Convert a DWARF type code into its string name. */
11475
11476static char *
aa1ee363 11477dwarf_type_encoding_name (unsigned enc)
c906108c
SS
11478{
11479 switch (enc)
11480 {
b7619582
GF
11481 case DW_ATE_void:
11482 return "DW_ATE_void";
c906108c
SS
11483 case DW_ATE_address:
11484 return "DW_ATE_address";
11485 case DW_ATE_boolean:
11486 return "DW_ATE_boolean";
11487 case DW_ATE_complex_float:
11488 return "DW_ATE_complex_float";
11489 case DW_ATE_float:
11490 return "DW_ATE_float";
11491 case DW_ATE_signed:
11492 return "DW_ATE_signed";
11493 case DW_ATE_signed_char:
11494 return "DW_ATE_signed_char";
11495 case DW_ATE_unsigned:
11496 return "DW_ATE_unsigned";
11497 case DW_ATE_unsigned_char:
11498 return "DW_ATE_unsigned_char";
b7619582 11499 /* DWARF 3. */
d9fa45fe
DC
11500 case DW_ATE_imaginary_float:
11501 return "DW_ATE_imaginary_float";
b7619582
GF
11502 case DW_ATE_packed_decimal:
11503 return "DW_ATE_packed_decimal";
11504 case DW_ATE_numeric_string:
11505 return "DW_ATE_numeric_string";
11506 case DW_ATE_edited:
11507 return "DW_ATE_edited";
11508 case DW_ATE_signed_fixed:
11509 return "DW_ATE_signed_fixed";
11510 case DW_ATE_unsigned_fixed:
11511 return "DW_ATE_unsigned_fixed";
11512 case DW_ATE_decimal_float:
11513 return "DW_ATE_decimal_float";
75079b2b
TT
11514 /* DWARF 4. */
11515 case DW_ATE_UTF:
11516 return "DW_ATE_UTF";
b7619582
GF
11517 /* HP extensions. */
11518 case DW_ATE_HP_float80:
11519 return "DW_ATE_HP_float80";
11520 case DW_ATE_HP_complex_float80:
11521 return "DW_ATE_HP_complex_float80";
11522 case DW_ATE_HP_float128:
11523 return "DW_ATE_HP_float128";
11524 case DW_ATE_HP_complex_float128:
11525 return "DW_ATE_HP_complex_float128";
11526 case DW_ATE_HP_floathpintel:
11527 return "DW_ATE_HP_floathpintel";
11528 case DW_ATE_HP_imaginary_float80:
11529 return "DW_ATE_HP_imaginary_float80";
11530 case DW_ATE_HP_imaginary_float128:
11531 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
11532 default:
11533 return "DW_ATE_<unknown>";
11534 }
11535}
11536
11537/* Convert a DWARF call frame info operation to its string name. */
11538
11539#if 0
11540static char *
aa1ee363 11541dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
11542{
11543 switch (cfi_opc)
11544 {
11545 case DW_CFA_advance_loc:
11546 return "DW_CFA_advance_loc";
11547 case DW_CFA_offset:
11548 return "DW_CFA_offset";
11549 case DW_CFA_restore:
11550 return "DW_CFA_restore";
11551 case DW_CFA_nop:
11552 return "DW_CFA_nop";
11553 case DW_CFA_set_loc:
11554 return "DW_CFA_set_loc";
11555 case DW_CFA_advance_loc1:
11556 return "DW_CFA_advance_loc1";
11557 case DW_CFA_advance_loc2:
11558 return "DW_CFA_advance_loc2";
11559 case DW_CFA_advance_loc4:
11560 return "DW_CFA_advance_loc4";
11561 case DW_CFA_offset_extended:
11562 return "DW_CFA_offset_extended";
11563 case DW_CFA_restore_extended:
11564 return "DW_CFA_restore_extended";
11565 case DW_CFA_undefined:
11566 return "DW_CFA_undefined";
11567 case DW_CFA_same_value:
11568 return "DW_CFA_same_value";
11569 case DW_CFA_register:
11570 return "DW_CFA_register";
11571 case DW_CFA_remember_state:
11572 return "DW_CFA_remember_state";
11573 case DW_CFA_restore_state:
11574 return "DW_CFA_restore_state";
11575 case DW_CFA_def_cfa:
11576 return "DW_CFA_def_cfa";
11577 case DW_CFA_def_cfa_register:
11578 return "DW_CFA_def_cfa_register";
11579 case DW_CFA_def_cfa_offset:
11580 return "DW_CFA_def_cfa_offset";
b7619582 11581 /* DWARF 3. */
985cb1a3
JM
11582 case DW_CFA_def_cfa_expression:
11583 return "DW_CFA_def_cfa_expression";
11584 case DW_CFA_expression:
11585 return "DW_CFA_expression";
11586 case DW_CFA_offset_extended_sf:
11587 return "DW_CFA_offset_extended_sf";
11588 case DW_CFA_def_cfa_sf:
11589 return "DW_CFA_def_cfa_sf";
11590 case DW_CFA_def_cfa_offset_sf:
11591 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
11592 case DW_CFA_val_offset:
11593 return "DW_CFA_val_offset";
11594 case DW_CFA_val_offset_sf:
11595 return "DW_CFA_val_offset_sf";
11596 case DW_CFA_val_expression:
11597 return "DW_CFA_val_expression";
11598 /* SGI/MIPS specific. */
c906108c
SS
11599 case DW_CFA_MIPS_advance_loc8:
11600 return "DW_CFA_MIPS_advance_loc8";
b7619582 11601 /* GNU extensions. */
985cb1a3
JM
11602 case DW_CFA_GNU_window_save:
11603 return "DW_CFA_GNU_window_save";
11604 case DW_CFA_GNU_args_size:
11605 return "DW_CFA_GNU_args_size";
11606 case DW_CFA_GNU_negative_offset_extended:
11607 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
11608 default:
11609 return "DW_CFA_<unknown>";
11610 }
11611}
11612#endif
11613
f9aca02d 11614static void
d97bc12b 11615dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
11616{
11617 unsigned int i;
11618
d97bc12b
DE
11619 print_spaces (indent, f);
11620 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 11621 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
11622
11623 if (die->parent != NULL)
11624 {
11625 print_spaces (indent, f);
11626 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
11627 die->parent->offset);
11628 }
11629
11630 print_spaces (indent, f);
11631 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 11632 dwarf_bool_name (die->child != NULL));
c906108c 11633
d97bc12b
DE
11634 print_spaces (indent, f);
11635 fprintf_unfiltered (f, " attributes:\n");
11636
c906108c
SS
11637 for (i = 0; i < die->num_attrs; ++i)
11638 {
d97bc12b
DE
11639 print_spaces (indent, f);
11640 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
11641 dwarf_attr_name (die->attrs[i].name),
11642 dwarf_form_name (die->attrs[i].form));
d97bc12b 11643
c906108c
SS
11644 switch (die->attrs[i].form)
11645 {
11646 case DW_FORM_ref_addr:
11647 case DW_FORM_addr:
d97bc12b 11648 fprintf_unfiltered (f, "address: ");
5af949e3 11649 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
11650 break;
11651 case DW_FORM_block2:
11652 case DW_FORM_block4:
11653 case DW_FORM_block:
11654 case DW_FORM_block1:
d97bc12b 11655 fprintf_unfiltered (f, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 11656 break;
2dc7f7b3
TT
11657 case DW_FORM_exprloc:
11658 fprintf_unfiltered (f, "expression: size %u",
11659 DW_BLOCK (&die->attrs[i])->size);
11660 break;
10b3939b
DJ
11661 case DW_FORM_ref1:
11662 case DW_FORM_ref2:
11663 case DW_FORM_ref4:
d97bc12b 11664 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
11665 (long) (DW_ADDR (&die->attrs[i])));
11666 break;
c906108c
SS
11667 case DW_FORM_data1:
11668 case DW_FORM_data2:
11669 case DW_FORM_data4:
ce5d95e1 11670 case DW_FORM_data8:
c906108c
SS
11671 case DW_FORM_udata:
11672 case DW_FORM_sdata:
43bbcdc2
PH
11673 fprintf_unfiltered (f, "constant: %s",
11674 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 11675 break;
2dc7f7b3
TT
11676 case DW_FORM_sec_offset:
11677 fprintf_unfiltered (f, "section offset: %s",
11678 pulongest (DW_UNSND (&die->attrs[i])));
11679 break;
348e048f
DE
11680 case DW_FORM_sig8:
11681 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
11682 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
11683 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
11684 else
11685 fprintf_unfiltered (f, "signatured type, offset: unknown");
11686 break;
c906108c 11687 case DW_FORM_string:
4bdf3d34 11688 case DW_FORM_strp:
8285870a 11689 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 11690 DW_STRING (&die->attrs[i])
8285870a
JK
11691 ? DW_STRING (&die->attrs[i]) : "",
11692 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
11693 break;
11694 case DW_FORM_flag:
11695 if (DW_UNSND (&die->attrs[i]))
d97bc12b 11696 fprintf_unfiltered (f, "flag: TRUE");
c906108c 11697 else
d97bc12b 11698 fprintf_unfiltered (f, "flag: FALSE");
c906108c 11699 break;
2dc7f7b3
TT
11700 case DW_FORM_flag_present:
11701 fprintf_unfiltered (f, "flag: TRUE");
11702 break;
a8329558
KW
11703 case DW_FORM_indirect:
11704 /* the reader will have reduced the indirect form to
11705 the "base form" so this form should not occur */
d97bc12b 11706 fprintf_unfiltered (f, "unexpected attribute form: DW_FORM_indirect");
a8329558 11707 break;
c906108c 11708 default:
d97bc12b 11709 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 11710 die->attrs[i].form);
d97bc12b 11711 break;
c906108c 11712 }
d97bc12b 11713 fprintf_unfiltered (f, "\n");
c906108c
SS
11714 }
11715}
11716
f9aca02d 11717static void
d97bc12b 11718dump_die_for_error (struct die_info *die)
c906108c 11719{
d97bc12b
DE
11720 dump_die_shallow (gdb_stderr, 0, die);
11721}
11722
11723static void
11724dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
11725{
11726 int indent = level * 4;
11727
11728 gdb_assert (die != NULL);
11729
11730 if (level >= max_level)
11731 return;
11732
11733 dump_die_shallow (f, indent, die);
11734
11735 if (die->child != NULL)
c906108c 11736 {
d97bc12b
DE
11737 print_spaces (indent, f);
11738 fprintf_unfiltered (f, " Children:");
11739 if (level + 1 < max_level)
11740 {
11741 fprintf_unfiltered (f, "\n");
11742 dump_die_1 (f, level + 1, max_level, die->child);
11743 }
11744 else
11745 {
11746 fprintf_unfiltered (f, " [not printed, max nesting level reached]\n");
11747 }
11748 }
11749
11750 if (die->sibling != NULL && level > 0)
11751 {
11752 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
11753 }
11754}
11755
d97bc12b
DE
11756/* This is called from the pdie macro in gdbinit.in.
11757 It's not static so gcc will keep a copy callable from gdb. */
11758
11759void
11760dump_die (struct die_info *die, int max_level)
11761{
11762 dump_die_1 (gdb_stdlog, 0, max_level, die);
11763}
11764
f9aca02d 11765static void
51545339 11766store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11767{
51545339 11768 void **slot;
c906108c 11769
51545339
DJ
11770 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
11771
11772 *slot = die;
c906108c
SS
11773}
11774
93311388
DE
11775static int
11776is_ref_attr (struct attribute *attr)
c906108c 11777{
c906108c
SS
11778 switch (attr->form)
11779 {
11780 case DW_FORM_ref_addr:
c906108c
SS
11781 case DW_FORM_ref1:
11782 case DW_FORM_ref2:
11783 case DW_FORM_ref4:
613e1657 11784 case DW_FORM_ref8:
c906108c 11785 case DW_FORM_ref_udata:
93311388 11786 return 1;
c906108c 11787 default:
93311388 11788 return 0;
c906108c 11789 }
93311388
DE
11790}
11791
11792static unsigned int
11793dwarf2_get_ref_die_offset (struct attribute *attr)
11794{
11795 if (is_ref_attr (attr))
11796 return DW_ADDR (attr);
11797
11798 complaint (&symfile_complaints,
11799 _("unsupported die ref attribute form: '%s'"),
11800 dwarf_form_name (attr->form));
11801 return 0;
c906108c
SS
11802}
11803
43bbcdc2
PH
11804/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
11805 * the value held by the attribute is not constant. */
a02abb62 11806
43bbcdc2 11807static LONGEST
a02abb62
JB
11808dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
11809{
11810 if (attr->form == DW_FORM_sdata)
11811 return DW_SND (attr);
11812 else if (attr->form == DW_FORM_udata
11813 || attr->form == DW_FORM_data1
11814 || attr->form == DW_FORM_data2
11815 || attr->form == DW_FORM_data4
11816 || attr->form == DW_FORM_data8)
11817 return DW_UNSND (attr);
11818 else
11819 {
e2e0b3e5 11820 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
11821 dwarf_form_name (attr->form));
11822 return default_value;
11823 }
11824}
11825
03dd20cc 11826/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
11827 unit and add it to our queue.
11828 The result is non-zero if PER_CU was queued, otherwise the result is zero
11829 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 11830
348e048f 11831static int
03dd20cc
DJ
11832maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
11833 struct dwarf2_per_cu_data *per_cu)
11834{
11835 /* Mark the dependence relation so that we don't flush PER_CU
11836 too early. */
11837 dwarf2_add_dependence (this_cu, per_cu);
11838
11839 /* If it's already on the queue, we have nothing to do. */
11840 if (per_cu->queued)
348e048f 11841 return 0;
03dd20cc
DJ
11842
11843 /* If the compilation unit is already loaded, just mark it as
11844 used. */
11845 if (per_cu->cu != NULL)
11846 {
11847 per_cu->cu->last_used = 0;
348e048f 11848 return 0;
03dd20cc
DJ
11849 }
11850
11851 /* Add it to the queue. */
11852 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
11853
11854 return 1;
11855}
11856
11857/* Follow reference or signature attribute ATTR of SRC_DIE.
11858 On entry *REF_CU is the CU of SRC_DIE.
11859 On exit *REF_CU is the CU of the result. */
11860
11861static struct die_info *
11862follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
11863 struct dwarf2_cu **ref_cu)
11864{
11865 struct die_info *die;
11866
11867 if (is_ref_attr (attr))
11868 die = follow_die_ref (src_die, attr, ref_cu);
11869 else if (attr->form == DW_FORM_sig8)
11870 die = follow_die_sig (src_die, attr, ref_cu);
11871 else
11872 {
11873 dump_die_for_error (src_die);
11874 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
11875 (*ref_cu)->objfile->name);
11876 }
11877
11878 return die;
03dd20cc
DJ
11879}
11880
5c631832
JK
11881/* Follow reference OFFSET.
11882 On entry *REF_CU is the CU of source DIE referencing OFFSET.
f504f079
DE
11883 On exit *REF_CU is the CU of the result. */
11884
f9aca02d 11885static struct die_info *
5c631832 11886follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 11887{
10b3939b 11888 struct die_info temp_die;
f2f0e013 11889 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 11890
348e048f
DE
11891 gdb_assert (cu->per_cu != NULL);
11892
348e048f
DE
11893 if (cu->per_cu->from_debug_types)
11894 {
11895 /* .debug_types CUs cannot reference anything outside their CU.
11896 If they need to, they have to reference a signatured type via
11897 DW_FORM_sig8. */
11898 if (! offset_in_cu_p (&cu->header, offset))
5c631832 11899 return NULL;
348e048f
DE
11900 target_cu = cu;
11901 }
11902 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
11903 {
11904 struct dwarf2_per_cu_data *per_cu;
9a619af0 11905
45452591 11906 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
11907
11908 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
11909 if (maybe_queue_comp_unit (cu, per_cu))
11910 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 11911
10b3939b
DJ
11912 target_cu = per_cu->cu;
11913 }
11914 else
11915 target_cu = cu;
c906108c 11916
f2f0e013 11917 *ref_cu = target_cu;
51545339 11918 temp_die.offset = offset;
5c631832
JK
11919 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
11920}
10b3939b 11921
5c631832
JK
11922/* Follow reference attribute ATTR of SRC_DIE.
11923 On entry *REF_CU is the CU of SRC_DIE.
11924 On exit *REF_CU is the CU of the result. */
11925
11926static struct die_info *
11927follow_die_ref (struct die_info *src_die, struct attribute *attr,
11928 struct dwarf2_cu **ref_cu)
11929{
11930 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11931 struct dwarf2_cu *cu = *ref_cu;
11932 struct die_info *die;
11933
11934 die = follow_die_offset (offset, ref_cu);
11935 if (!die)
11936 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
11937 "at 0x%x [in module %s]"),
11938 offset, src_die->offset, cu->objfile->name);
348e048f 11939
5c631832
JK
11940 return die;
11941}
11942
11943/* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
11944 value is intended for DW_OP_call*. */
11945
11946struct dwarf2_locexpr_baton
11947dwarf2_fetch_die_location_block (unsigned int offset,
11948 struct dwarf2_per_cu_data *per_cu)
11949{
11950 struct dwarf2_cu *cu = per_cu->cu;
11951 struct die_info *die;
11952 struct attribute *attr;
11953 struct dwarf2_locexpr_baton retval;
11954
11955 die = follow_die_offset (offset, &cu);
11956 if (!die)
11957 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
11958 offset, per_cu->cu->objfile->name);
11959
11960 attr = dwarf2_attr (die, DW_AT_location, cu);
11961 if (!attr)
11962 {
11963 /* DWARF: "If there is no such attribute, then there is no effect.". */
11964
11965 retval.data = NULL;
11966 retval.size = 0;
11967 }
11968 else
11969 {
11970 if (!attr_form_is_block (attr))
11971 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
11972 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
11973 offset, per_cu->cu->objfile->name);
11974
11975 retval.data = DW_BLOCK (attr)->data;
11976 retval.size = DW_BLOCK (attr)->size;
11977 }
11978 retval.per_cu = cu->per_cu;
11979 return retval;
348e048f
DE
11980}
11981
11982/* Follow the signature attribute ATTR in SRC_DIE.
11983 On entry *REF_CU is the CU of SRC_DIE.
11984 On exit *REF_CU is the CU of the result. */
11985
11986static struct die_info *
11987follow_die_sig (struct die_info *src_die, struct attribute *attr,
11988 struct dwarf2_cu **ref_cu)
11989{
11990 struct objfile *objfile = (*ref_cu)->objfile;
11991 struct die_info temp_die;
11992 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11993 struct dwarf2_cu *sig_cu;
11994 struct die_info *die;
11995
11996 /* sig_type will be NULL if the signatured type is missing from
11997 the debug info. */
11998 if (sig_type == NULL)
11999 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
12000 "at 0x%x [in module %s]"),
12001 src_die->offset, objfile->name);
12002
12003 /* If necessary, add it to the queue and load its DIEs. */
12004
12005 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
12006 read_signatured_type (objfile, sig_type);
12007
12008 gdb_assert (sig_type->per_cu.cu != NULL);
12009
12010 sig_cu = sig_type->per_cu.cu;
12011 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
12012 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
12013 if (die)
12014 {
12015 *ref_cu = sig_cu;
12016 return die;
12017 }
12018
12019 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced from DIE "
12020 "at 0x%x [in module %s]"),
12021 sig_type->type_offset, src_die->offset, objfile->name);
12022}
12023
12024/* Given an offset of a signatured type, return its signatured_type. */
12025
12026static struct signatured_type *
12027lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
12028{
12029 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
12030 unsigned int length, initial_length_size;
12031 unsigned int sig_offset;
12032 struct signatured_type find_entry, *type_sig;
12033
12034 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
12035 sig_offset = (initial_length_size
12036 + 2 /*version*/
12037 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
12038 + 1 /*address_size*/);
12039 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
12040 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
12041
12042 /* This is only used to lookup previously recorded types.
12043 If we didn't find it, it's our bug. */
12044 gdb_assert (type_sig != NULL);
12045 gdb_assert (offset == type_sig->offset);
12046
12047 return type_sig;
12048}
12049
12050/* Read in signatured type at OFFSET and build its CU and die(s). */
12051
12052static void
12053read_signatured_type_at_offset (struct objfile *objfile,
12054 unsigned int offset)
12055{
12056 struct signatured_type *type_sig;
12057
be391dca
TT
12058 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
12059
348e048f
DE
12060 /* We have the section offset, but we need the signature to do the
12061 hash table lookup. */
12062 type_sig = lookup_signatured_type_at_offset (objfile, offset);
12063
12064 gdb_assert (type_sig->per_cu.cu == NULL);
12065
12066 read_signatured_type (objfile, type_sig);
12067
12068 gdb_assert (type_sig->per_cu.cu != NULL);
12069}
12070
12071/* Read in a signatured type and build its CU and DIEs. */
12072
12073static void
12074read_signatured_type (struct objfile *objfile,
12075 struct signatured_type *type_sig)
12076{
12077 gdb_byte *types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
12078 struct die_reader_specs reader_specs;
12079 struct dwarf2_cu *cu;
12080 ULONGEST signature;
12081 struct cleanup *back_to, *free_cu_cleanup;
12082 struct attribute *attr;
12083
12084 gdb_assert (type_sig->per_cu.cu == NULL);
12085
12086 cu = xmalloc (sizeof (struct dwarf2_cu));
12087 memset (cu, 0, sizeof (struct dwarf2_cu));
12088 obstack_init (&cu->comp_unit_obstack);
12089 cu->objfile = objfile;
12090 type_sig->per_cu.cu = cu;
12091 cu->per_cu = &type_sig->per_cu;
12092
12093 /* If an error occurs while loading, release our storage. */
12094 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
12095
12096 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
12097 types_ptr, objfile->obfd);
12098 gdb_assert (signature == type_sig->signature);
12099
12100 cu->die_hash
12101 = htab_create_alloc_ex (cu->header.length / 12,
12102 die_hash,
12103 die_eq,
12104 NULL,
12105 &cu->comp_unit_obstack,
12106 hashtab_obstack_allocate,
12107 dummy_obstack_deallocate);
12108
12109 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
12110 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
12111
12112 init_cu_die_reader (&reader_specs, cu);
12113
12114 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
12115 NULL /*parent*/);
12116
12117 /* We try not to read any attributes in this function, because not
12118 all objfiles needed for references have been loaded yet, and symbol
12119 table processing isn't initialized. But we have to set the CU language,
12120 or we won't be able to build types correctly. */
12121 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
12122 if (attr)
12123 set_cu_language (DW_UNSND (attr), cu);
12124 else
12125 set_cu_language (language_minimal, cu);
12126
12127 do_cleanups (back_to);
12128
12129 /* We've successfully allocated this compilation unit. Let our caller
12130 clean it up when finished with it. */
12131 discard_cleanups (free_cu_cleanup);
12132
12133 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
12134 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
12135}
12136
c906108c
SS
12137/* Decode simple location descriptions.
12138 Given a pointer to a dwarf block that defines a location, compute
12139 the location and return the value.
12140
4cecd739
DJ
12141 NOTE drow/2003-11-18: This function is called in two situations
12142 now: for the address of static or global variables (partial symbols
12143 only) and for offsets into structures which are expected to be
12144 (more or less) constant. The partial symbol case should go away,
12145 and only the constant case should remain. That will let this
12146 function complain more accurately. A few special modes are allowed
12147 without complaint for global variables (for instance, global
12148 register values and thread-local values).
c906108c
SS
12149
12150 A location description containing no operations indicates that the
4cecd739 12151 object is optimized out. The return value is 0 for that case.
6b992462
DJ
12152 FIXME drow/2003-11-16: No callers check for this case any more; soon all
12153 callers will only want a very basic result and this can become a
12154 complaint.
c906108c 12155
c906108c
SS
12156 Note that stack[0] is unused except as a default error return.
12157 Note that stack overflow is not yet handled. */
12158
12159static CORE_ADDR
e7c27a73 12160decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 12161{
e7c27a73 12162 struct objfile *objfile = cu->objfile;
c906108c
SS
12163 int i;
12164 int size = blk->size;
fe1b8b76 12165 gdb_byte *data = blk->data;
c906108c
SS
12166 CORE_ADDR stack[64];
12167 int stacki;
12168 unsigned int bytes_read, unsnd;
fe1b8b76 12169 gdb_byte op;
c906108c
SS
12170
12171 i = 0;
12172 stacki = 0;
12173 stack[stacki] = 0;
c906108c
SS
12174
12175 while (i < size)
12176 {
c906108c
SS
12177 op = data[i++];
12178 switch (op)
12179 {
f1bea926
JM
12180 case DW_OP_lit0:
12181 case DW_OP_lit1:
12182 case DW_OP_lit2:
12183 case DW_OP_lit3:
12184 case DW_OP_lit4:
12185 case DW_OP_lit5:
12186 case DW_OP_lit6:
12187 case DW_OP_lit7:
12188 case DW_OP_lit8:
12189 case DW_OP_lit9:
12190 case DW_OP_lit10:
12191 case DW_OP_lit11:
12192 case DW_OP_lit12:
12193 case DW_OP_lit13:
12194 case DW_OP_lit14:
12195 case DW_OP_lit15:
12196 case DW_OP_lit16:
12197 case DW_OP_lit17:
12198 case DW_OP_lit18:
12199 case DW_OP_lit19:
12200 case DW_OP_lit20:
12201 case DW_OP_lit21:
12202 case DW_OP_lit22:
12203 case DW_OP_lit23:
12204 case DW_OP_lit24:
12205 case DW_OP_lit25:
12206 case DW_OP_lit26:
12207 case DW_OP_lit27:
12208 case DW_OP_lit28:
12209 case DW_OP_lit29:
12210 case DW_OP_lit30:
12211 case DW_OP_lit31:
12212 stack[++stacki] = op - DW_OP_lit0;
12213 break;
12214
c906108c
SS
12215 case DW_OP_reg0:
12216 case DW_OP_reg1:
12217 case DW_OP_reg2:
12218 case DW_OP_reg3:
12219 case DW_OP_reg4:
12220 case DW_OP_reg5:
12221 case DW_OP_reg6:
12222 case DW_OP_reg7:
12223 case DW_OP_reg8:
12224 case DW_OP_reg9:
12225 case DW_OP_reg10:
12226 case DW_OP_reg11:
12227 case DW_OP_reg12:
12228 case DW_OP_reg13:
12229 case DW_OP_reg14:
12230 case DW_OP_reg15:
12231 case DW_OP_reg16:
12232 case DW_OP_reg17:
12233 case DW_OP_reg18:
12234 case DW_OP_reg19:
12235 case DW_OP_reg20:
12236 case DW_OP_reg21:
12237 case DW_OP_reg22:
12238 case DW_OP_reg23:
12239 case DW_OP_reg24:
12240 case DW_OP_reg25:
12241 case DW_OP_reg26:
12242 case DW_OP_reg27:
12243 case DW_OP_reg28:
12244 case DW_OP_reg29:
12245 case DW_OP_reg30:
12246 case DW_OP_reg31:
c906108c 12247 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
12248 if (i < size)
12249 dwarf2_complex_location_expr_complaint ();
c906108c
SS
12250 break;
12251
12252 case DW_OP_regx:
c906108c
SS
12253 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
12254 i += bytes_read;
c906108c 12255 stack[++stacki] = unsnd;
4cecd739
DJ
12256 if (i < size)
12257 dwarf2_complex_location_expr_complaint ();
c906108c
SS
12258 break;
12259
12260 case DW_OP_addr:
107d2387 12261 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 12262 cu, &bytes_read);
107d2387 12263 i += bytes_read;
c906108c
SS
12264 break;
12265
12266 case DW_OP_const1u:
12267 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
12268 i += 1;
12269 break;
12270
12271 case DW_OP_const1s:
12272 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
12273 i += 1;
12274 break;
12275
12276 case DW_OP_const2u:
12277 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
12278 i += 2;
12279 break;
12280
12281 case DW_OP_const2s:
12282 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
12283 i += 2;
12284 break;
12285
12286 case DW_OP_const4u:
12287 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
12288 i += 4;
12289 break;
12290
12291 case DW_OP_const4s:
12292 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
12293 i += 4;
12294 break;
12295
12296 case DW_OP_constu:
12297 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 12298 &bytes_read);
c906108c
SS
12299 i += bytes_read;
12300 break;
12301
12302 case DW_OP_consts:
12303 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
12304 i += bytes_read;
12305 break;
12306
f1bea926
JM
12307 case DW_OP_dup:
12308 stack[stacki + 1] = stack[stacki];
12309 stacki++;
12310 break;
12311
c906108c
SS
12312 case DW_OP_plus:
12313 stack[stacki - 1] += stack[stacki];
12314 stacki--;
12315 break;
12316
12317 case DW_OP_plus_uconst:
12318 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
12319 i += bytes_read;
12320 break;
12321
12322 case DW_OP_minus:
f1bea926 12323 stack[stacki - 1] -= stack[stacki];
c906108c
SS
12324 stacki--;
12325 break;
12326
7a292a7a 12327 case DW_OP_deref:
7a292a7a 12328 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
12329 this using GDB's address_class enum. This is valid for partial
12330 global symbols, although the variable's address will be bogus
12331 in the psymtab. */
7a292a7a 12332 if (i < size)
4d3c2250 12333 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
12334 break;
12335
9d774e44 12336 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
12337 /* The top of the stack has the offset from the beginning
12338 of the thread control block at which the variable is located. */
12339 /* Nothing should follow this operator, so the top of stack would
12340 be returned. */
4cecd739
DJ
12341 /* This is valid for partial global symbols, but the variable's
12342 address will be bogus in the psymtab. */
9d774e44 12343 if (i < size)
4d3c2250 12344 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
12345 break;
12346
42be36b3
CT
12347 case DW_OP_GNU_uninit:
12348 break;
12349
c906108c 12350 default:
e2e0b3e5 12351 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9eae7c52 12352 dwarf_stack_op_name (op, 1));
c906108c
SS
12353 return (stack[stacki]);
12354 }
12355 }
12356 return (stack[stacki]);
12357}
12358
12359/* memory allocation interface */
12360
c906108c 12361static struct dwarf_block *
7b5a2f43 12362dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
12363{
12364 struct dwarf_block *blk;
12365
12366 blk = (struct dwarf_block *)
7b5a2f43 12367 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
12368 return (blk);
12369}
12370
12371static struct abbrev_info *
f3dd6933 12372dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
12373{
12374 struct abbrev_info *abbrev;
12375
f3dd6933
DJ
12376 abbrev = (struct abbrev_info *)
12377 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
12378 memset (abbrev, 0, sizeof (struct abbrev_info));
12379 return (abbrev);
12380}
12381
12382static struct die_info *
b60c80d6 12383dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
12384{
12385 struct die_info *die;
b60c80d6
DJ
12386 size_t size = sizeof (struct die_info);
12387
12388 if (num_attrs > 1)
12389 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 12390
b60c80d6 12391 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
12392 memset (die, 0, sizeof (struct die_info));
12393 return (die);
12394}
2e276125
JB
12395
12396\f
12397/* Macro support. */
12398
12399
12400/* Return the full name of file number I in *LH's file name table.
12401 Use COMP_DIR as the name of the current directory of the
12402 compilation. The result is allocated using xmalloc; the caller is
12403 responsible for freeing it. */
12404static char *
12405file_full_name (int file, struct line_header *lh, const char *comp_dir)
12406{
6a83a1e6
EZ
12407 /* Is the file number a valid index into the line header's file name
12408 table? Remember that file numbers start with one, not zero. */
12409 if (1 <= file && file <= lh->num_file_names)
12410 {
12411 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 12412
6a83a1e6
EZ
12413 if (IS_ABSOLUTE_PATH (fe->name))
12414 return xstrdup (fe->name);
12415 else
12416 {
12417 const char *dir;
12418 int dir_len;
12419 char *full_name;
12420
12421 if (fe->dir_index)
12422 dir = lh->include_dirs[fe->dir_index - 1];
12423 else
12424 dir = comp_dir;
12425
12426 if (dir)
12427 {
12428 dir_len = strlen (dir);
12429 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
12430 strcpy (full_name, dir);
12431 full_name[dir_len] = '/';
12432 strcpy (full_name + dir_len + 1, fe->name);
12433 return full_name;
12434 }
12435 else
12436 return xstrdup (fe->name);
12437 }
12438 }
2e276125
JB
12439 else
12440 {
6a83a1e6
EZ
12441 /* The compiler produced a bogus file number. We can at least
12442 record the macro definitions made in the file, even if we
12443 won't be able to find the file by name. */
12444 char fake_name[80];
9a619af0 12445
6a83a1e6 12446 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 12447
6e70227d 12448 complaint (&symfile_complaints,
6a83a1e6
EZ
12449 _("bad file number in macro information (%d)"),
12450 file);
2e276125 12451
6a83a1e6 12452 return xstrdup (fake_name);
2e276125
JB
12453 }
12454}
12455
12456
12457static struct macro_source_file *
12458macro_start_file (int file, int line,
12459 struct macro_source_file *current_file,
12460 const char *comp_dir,
12461 struct line_header *lh, struct objfile *objfile)
12462{
12463 /* The full name of this source file. */
12464 char *full_name = file_full_name (file, lh, comp_dir);
12465
12466 /* We don't create a macro table for this compilation unit
12467 at all until we actually get a filename. */
12468 if (! pending_macros)
4a146b47 12469 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 12470 objfile->macro_cache);
2e276125
JB
12471
12472 if (! current_file)
12473 /* If we have no current file, then this must be the start_file
12474 directive for the compilation unit's main source file. */
12475 current_file = macro_set_main (pending_macros, full_name);
12476 else
12477 current_file = macro_include (current_file, line, full_name);
12478
12479 xfree (full_name);
6e70227d 12480
2e276125
JB
12481 return current_file;
12482}
12483
12484
12485/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
12486 followed by a null byte. */
12487static char *
12488copy_string (const char *buf, int len)
12489{
12490 char *s = xmalloc (len + 1);
9a619af0 12491
2e276125
JB
12492 memcpy (s, buf, len);
12493 s[len] = '\0';
2e276125
JB
12494 return s;
12495}
12496
12497
12498static const char *
12499consume_improper_spaces (const char *p, const char *body)
12500{
12501 if (*p == ' ')
12502 {
4d3c2250 12503 complaint (&symfile_complaints,
e2e0b3e5 12504 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 12505 body);
2e276125
JB
12506
12507 while (*p == ' ')
12508 p++;
12509 }
12510
12511 return p;
12512}
12513
12514
12515static void
12516parse_macro_definition (struct macro_source_file *file, int line,
12517 const char *body)
12518{
12519 const char *p;
12520
12521 /* The body string takes one of two forms. For object-like macro
12522 definitions, it should be:
12523
12524 <macro name> " " <definition>
12525
12526 For function-like macro definitions, it should be:
12527
12528 <macro name> "() " <definition>
12529 or
12530 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
12531
12532 Spaces may appear only where explicitly indicated, and in the
12533 <definition>.
12534
12535 The Dwarf 2 spec says that an object-like macro's name is always
12536 followed by a space, but versions of GCC around March 2002 omit
6e70227d 12537 the space when the macro's definition is the empty string.
2e276125
JB
12538
12539 The Dwarf 2 spec says that there should be no spaces between the
12540 formal arguments in a function-like macro's formal argument list,
12541 but versions of GCC around March 2002 include spaces after the
12542 commas. */
12543
12544
12545 /* Find the extent of the macro name. The macro name is terminated
12546 by either a space or null character (for an object-like macro) or
12547 an opening paren (for a function-like macro). */
12548 for (p = body; *p; p++)
12549 if (*p == ' ' || *p == '(')
12550 break;
12551
12552 if (*p == ' ' || *p == '\0')
12553 {
12554 /* It's an object-like macro. */
12555 int name_len = p - body;
12556 char *name = copy_string (body, name_len);
12557 const char *replacement;
12558
12559 if (*p == ' ')
12560 replacement = body + name_len + 1;
12561 else
12562 {
4d3c2250 12563 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
12564 replacement = body + name_len;
12565 }
6e70227d 12566
2e276125
JB
12567 macro_define_object (file, line, name, replacement);
12568
12569 xfree (name);
12570 }
12571 else if (*p == '(')
12572 {
12573 /* It's a function-like macro. */
12574 char *name = copy_string (body, p - body);
12575 int argc = 0;
12576 int argv_size = 1;
12577 char **argv = xmalloc (argv_size * sizeof (*argv));
12578
12579 p++;
12580
12581 p = consume_improper_spaces (p, body);
12582
12583 /* Parse the formal argument list. */
12584 while (*p && *p != ')')
12585 {
12586 /* Find the extent of the current argument name. */
12587 const char *arg_start = p;
12588
12589 while (*p && *p != ',' && *p != ')' && *p != ' ')
12590 p++;
12591
12592 if (! *p || p == arg_start)
4d3c2250 12593 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
12594 else
12595 {
12596 /* Make sure argv has room for the new argument. */
12597 if (argc >= argv_size)
12598 {
12599 argv_size *= 2;
12600 argv = xrealloc (argv, argv_size * sizeof (*argv));
12601 }
12602
12603 argv[argc++] = copy_string (arg_start, p - arg_start);
12604 }
12605
12606 p = consume_improper_spaces (p, body);
12607
12608 /* Consume the comma, if present. */
12609 if (*p == ',')
12610 {
12611 p++;
12612
12613 p = consume_improper_spaces (p, body);
12614 }
12615 }
12616
12617 if (*p == ')')
12618 {
12619 p++;
12620
12621 if (*p == ' ')
12622 /* Perfectly formed definition, no complaints. */
12623 macro_define_function (file, line, name,
6e70227d 12624 argc, (const char **) argv,
2e276125
JB
12625 p + 1);
12626 else if (*p == '\0')
12627 {
12628 /* Complain, but do define it. */
4d3c2250 12629 dwarf2_macro_malformed_definition_complaint (body);
2e276125 12630 macro_define_function (file, line, name,
6e70227d 12631 argc, (const char **) argv,
2e276125
JB
12632 p);
12633 }
12634 else
12635 /* Just complain. */
4d3c2250 12636 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
12637 }
12638 else
12639 /* Just complain. */
4d3c2250 12640 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
12641
12642 xfree (name);
12643 {
12644 int i;
12645
12646 for (i = 0; i < argc; i++)
12647 xfree (argv[i]);
12648 }
12649 xfree (argv);
12650 }
12651 else
4d3c2250 12652 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
12653}
12654
12655
12656static void
12657dwarf_decode_macros (struct line_header *lh, unsigned int offset,
12658 char *comp_dir, bfd *abfd,
e7c27a73 12659 struct dwarf2_cu *cu)
2e276125 12660{
fe1b8b76 12661 gdb_byte *mac_ptr, *mac_end;
2e276125 12662 struct macro_source_file *current_file = 0;
757a13d0
JK
12663 enum dwarf_macinfo_record_type macinfo_type;
12664 int at_commandline;
2e276125 12665
be391dca
TT
12666 dwarf2_read_section (dwarf2_per_objfile->objfile,
12667 &dwarf2_per_objfile->macinfo);
dce234bc 12668 if (dwarf2_per_objfile->macinfo.buffer == NULL)
2e276125 12669 {
e2e0b3e5 12670 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
12671 return;
12672 }
12673
757a13d0
JK
12674 /* First pass: Find the name of the base filename.
12675 This filename is needed in order to process all macros whose definition
12676 (or undefinition) comes from the command line. These macros are defined
12677 before the first DW_MACINFO_start_file entry, and yet still need to be
12678 associated to the base file.
12679
12680 To determine the base file name, we scan the macro definitions until we
12681 reach the first DW_MACINFO_start_file entry. We then initialize
12682 CURRENT_FILE accordingly so that any macro definition found before the
12683 first DW_MACINFO_start_file can still be associated to the base file. */
12684
dce234bc
PP
12685 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
12686 mac_end = dwarf2_per_objfile->macinfo.buffer
12687 + dwarf2_per_objfile->macinfo.size;
2e276125 12688
757a13d0 12689 do
2e276125 12690 {
2e276125
JB
12691 /* Do we at least have room for a macinfo type byte? */
12692 if (mac_ptr >= mac_end)
12693 {
757a13d0
JK
12694 /* Complaint is printed during the second pass as GDB will probably
12695 stop the first pass earlier upon finding DW_MACINFO_start_file. */
12696 break;
2e276125
JB
12697 }
12698
12699 macinfo_type = read_1_byte (abfd, mac_ptr);
12700 mac_ptr++;
12701
12702 switch (macinfo_type)
12703 {
12704 /* A zero macinfo type indicates the end of the macro
12705 information. */
12706 case 0:
757a13d0
JK
12707 break;
12708
12709 case DW_MACINFO_define:
12710 case DW_MACINFO_undef:
12711 /* Only skip the data by MAC_PTR. */
12712 {
12713 unsigned int bytes_read;
12714
12715 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12716 mac_ptr += bytes_read;
12717 read_string (abfd, mac_ptr, &bytes_read);
12718 mac_ptr += bytes_read;
12719 }
12720 break;
12721
12722 case DW_MACINFO_start_file:
12723 {
12724 unsigned int bytes_read;
12725 int line, file;
12726
12727 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12728 mac_ptr += bytes_read;
12729 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12730 mac_ptr += bytes_read;
12731
12732 current_file = macro_start_file (file, line, current_file, comp_dir,
12733 lh, cu->objfile);
12734 }
12735 break;
12736
12737 case DW_MACINFO_end_file:
12738 /* No data to skip by MAC_PTR. */
12739 break;
12740
12741 case DW_MACINFO_vendor_ext:
12742 /* Only skip the data by MAC_PTR. */
12743 {
12744 unsigned int bytes_read;
12745
12746 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12747 mac_ptr += bytes_read;
12748 read_string (abfd, mac_ptr, &bytes_read);
12749 mac_ptr += bytes_read;
12750 }
12751 break;
12752
12753 default:
12754 break;
12755 }
12756 } while (macinfo_type != 0 && current_file == NULL);
12757
12758 /* Second pass: Process all entries.
12759
12760 Use the AT_COMMAND_LINE flag to determine whether we are still processing
12761 command-line macro definitions/undefinitions. This flag is unset when we
12762 reach the first DW_MACINFO_start_file entry. */
12763
dce234bc 12764 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
757a13d0
JK
12765
12766 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
12767 GDB is still reading the definitions from command line. First
12768 DW_MACINFO_start_file will need to be ignored as it was already executed
12769 to create CURRENT_FILE for the main source holding also the command line
12770 definitions. On first met DW_MACINFO_start_file this flag is reset to
12771 normally execute all the remaining DW_MACINFO_start_file macinfos. */
12772
12773 at_commandline = 1;
12774
12775 do
12776 {
12777 /* Do we at least have room for a macinfo type byte? */
12778 if (mac_ptr >= mac_end)
12779 {
12780 dwarf2_macros_too_long_complaint ();
12781 break;
12782 }
12783
12784 macinfo_type = read_1_byte (abfd, mac_ptr);
12785 mac_ptr++;
12786
12787 switch (macinfo_type)
12788 {
12789 /* A zero macinfo type indicates the end of the macro
12790 information. */
12791 case 0:
12792 break;
2e276125
JB
12793
12794 case DW_MACINFO_define:
12795 case DW_MACINFO_undef:
12796 {
891d2f0b 12797 unsigned int bytes_read;
2e276125
JB
12798 int line;
12799 char *body;
12800
12801 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12802 mac_ptr += bytes_read;
12803 body = read_string (abfd, mac_ptr, &bytes_read);
12804 mac_ptr += bytes_read;
12805
12806 if (! current_file)
757a13d0
JK
12807 {
12808 /* DWARF violation as no main source is present. */
12809 complaint (&symfile_complaints,
12810 _("debug info with no main source gives macro %s "
12811 "on line %d: %s"),
6e70227d
DE
12812 macinfo_type == DW_MACINFO_define ?
12813 _("definition") :
905e0470
PM
12814 macinfo_type == DW_MACINFO_undef ?
12815 _("undefinition") :
12816 _("something-or-other"), line, body);
757a13d0
JK
12817 break;
12818 }
12819 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
4d3c2250 12820 complaint (&symfile_complaints,
757a13d0
JK
12821 _("debug info gives %s macro %s with %s line %d: %s"),
12822 at_commandline ? _("command-line") : _("in-file"),
905e0470 12823 macinfo_type == DW_MACINFO_define ?
6e70227d 12824 _("definition") :
905e0470
PM
12825 macinfo_type == DW_MACINFO_undef ?
12826 _("undefinition") :
12827 _("something-or-other"),
757a13d0
JK
12828 line == 0 ? _("zero") : _("non-zero"), line, body);
12829
12830 if (macinfo_type == DW_MACINFO_define)
12831 parse_macro_definition (current_file, line, body);
12832 else if (macinfo_type == DW_MACINFO_undef)
12833 macro_undef (current_file, line, body);
2e276125
JB
12834 }
12835 break;
12836
12837 case DW_MACINFO_start_file:
12838 {
891d2f0b 12839 unsigned int bytes_read;
2e276125
JB
12840 int line, file;
12841
12842 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12843 mac_ptr += bytes_read;
12844 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12845 mac_ptr += bytes_read;
12846
757a13d0
JK
12847 if ((line == 0 && !at_commandline) || (line != 0 && at_commandline))
12848 complaint (&symfile_complaints,
12849 _("debug info gives source %d included "
12850 "from %s at %s line %d"),
12851 file, at_commandline ? _("command-line") : _("file"),
12852 line == 0 ? _("zero") : _("non-zero"), line);
12853
12854 if (at_commandline)
12855 {
12856 /* This DW_MACINFO_start_file was executed in the pass one. */
12857 at_commandline = 0;
12858 }
12859 else
12860 current_file = macro_start_file (file, line,
12861 current_file, comp_dir,
12862 lh, cu->objfile);
2e276125
JB
12863 }
12864 break;
12865
12866 case DW_MACINFO_end_file:
12867 if (! current_file)
4d3c2250 12868 complaint (&symfile_complaints,
e2e0b3e5 12869 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
12870 else
12871 {
12872 current_file = current_file->included_by;
12873 if (! current_file)
12874 {
12875 enum dwarf_macinfo_record_type next_type;
12876
12877 /* GCC circa March 2002 doesn't produce the zero
12878 type byte marking the end of the compilation
12879 unit. Complain if it's not there, but exit no
12880 matter what. */
12881
12882 /* Do we at least have room for a macinfo type byte? */
12883 if (mac_ptr >= mac_end)
12884 {
4d3c2250 12885 dwarf2_macros_too_long_complaint ();
2e276125
JB
12886 return;
12887 }
12888
12889 /* We don't increment mac_ptr here, so this is just
12890 a look-ahead. */
12891 next_type = read_1_byte (abfd, mac_ptr);
12892 if (next_type != 0)
4d3c2250 12893 complaint (&symfile_complaints,
e2e0b3e5 12894 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
12895
12896 return;
12897 }
12898 }
12899 break;
12900
12901 case DW_MACINFO_vendor_ext:
12902 {
891d2f0b 12903 unsigned int bytes_read;
2e276125
JB
12904 int constant;
12905 char *string;
12906
12907 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
12908 mac_ptr += bytes_read;
12909 string = read_string (abfd, mac_ptr, &bytes_read);
12910 mac_ptr += bytes_read;
12911
12912 /* We don't recognize any vendor extensions. */
12913 }
12914 break;
12915 }
757a13d0 12916 } while (macinfo_type != 0);
2e276125 12917}
8e19ed76
PS
12918
12919/* Check if the attribute's form is a DW_FORM_block*
12920 if so return true else false. */
12921static int
12922attr_form_is_block (struct attribute *attr)
12923{
12924 return (attr == NULL ? 0 :
12925 attr->form == DW_FORM_block1
12926 || attr->form == DW_FORM_block2
12927 || attr->form == DW_FORM_block4
2dc7f7b3
TT
12928 || attr->form == DW_FORM_block
12929 || attr->form == DW_FORM_exprloc);
8e19ed76 12930}
4c2df51b 12931
c6a0999f
JB
12932/* Return non-zero if ATTR's value is a section offset --- classes
12933 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
12934 You may use DW_UNSND (attr) to retrieve such offsets.
12935
12936 Section 7.5.4, "Attribute Encodings", explains that no attribute
12937 may have a value that belongs to more than one of these classes; it
12938 would be ambiguous if we did, because we use the same forms for all
12939 of them. */
3690dd37
JB
12940static int
12941attr_form_is_section_offset (struct attribute *attr)
12942{
12943 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
12944 || attr->form == DW_FORM_data8
12945 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
12946}
12947
12948
12949/* Return non-zero if ATTR's value falls in the 'constant' class, or
12950 zero otherwise. When this function returns true, you can apply
12951 dwarf2_get_attr_constant_value to it.
12952
12953 However, note that for some attributes you must check
12954 attr_form_is_section_offset before using this test. DW_FORM_data4
12955 and DW_FORM_data8 are members of both the constant class, and of
12956 the classes that contain offsets into other debug sections
12957 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
12958 that, if an attribute's can be either a constant or one of the
12959 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
12960 taken as section offsets, not constants. */
12961static int
12962attr_form_is_constant (struct attribute *attr)
12963{
12964 switch (attr->form)
12965 {
12966 case DW_FORM_sdata:
12967 case DW_FORM_udata:
12968 case DW_FORM_data1:
12969 case DW_FORM_data2:
12970 case DW_FORM_data4:
12971 case DW_FORM_data8:
12972 return 1;
12973 default:
12974 return 0;
12975 }
12976}
12977
4c2df51b
DJ
12978static void
12979dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 12980 struct dwarf2_cu *cu)
4c2df51b 12981{
3690dd37 12982 if (attr_form_is_section_offset (attr)
99bcc461
DJ
12983 /* ".debug_loc" may not exist at all, or the offset may be outside
12984 the section. If so, fall through to the complaint in the
12985 other branch. */
dce234bc 12986 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
4c2df51b 12987 {
0d53c4c4 12988 struct dwarf2_loclist_baton *baton;
4c2df51b 12989
4a146b47 12990 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 12991 sizeof (struct dwarf2_loclist_baton));
ae0d2f24
UW
12992 baton->per_cu = cu->per_cu;
12993 gdb_assert (baton->per_cu);
4c2df51b 12994
be391dca
TT
12995 dwarf2_read_section (dwarf2_per_objfile->objfile,
12996 &dwarf2_per_objfile->loc);
12997
0d53c4c4
DJ
12998 /* We don't know how long the location list is, but make sure we
12999 don't run off the edge of the section. */
dce234bc
PP
13000 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
13001 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
d00adf39
DE
13002 baton->base_address = cu->base_address;
13003 if (cu->base_known == 0)
0d53c4c4 13004 complaint (&symfile_complaints,
e2e0b3e5 13005 _("Location list used without specifying the CU base address."));
4c2df51b 13006
768a979c 13007 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
13008 SYMBOL_LOCATION_BATON (sym) = baton;
13009 }
13010 else
13011 {
13012 struct dwarf2_locexpr_baton *baton;
13013
4a146b47 13014 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 13015 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
13016 baton->per_cu = cu->per_cu;
13017 gdb_assert (baton->per_cu);
0d53c4c4
DJ
13018
13019 if (attr_form_is_block (attr))
13020 {
13021 /* Note that we're just copying the block's data pointer
13022 here, not the actual data. We're still pointing into the
6502dd73
DJ
13023 info_buffer for SYM's objfile; right now we never release
13024 that buffer, but when we do clean up properly this may
13025 need to change. */
0d53c4c4
DJ
13026 baton->size = DW_BLOCK (attr)->size;
13027 baton->data = DW_BLOCK (attr)->data;
13028 }
13029 else
13030 {
13031 dwarf2_invalid_attrib_class_complaint ("location description",
13032 SYMBOL_NATURAL_NAME (sym));
13033 baton->size = 0;
13034 baton->data = NULL;
13035 }
6e70227d 13036
768a979c 13037 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
13038 SYMBOL_LOCATION_BATON (sym) = baton;
13039 }
4c2df51b 13040}
6502dd73 13041
9aa1f1e3
TT
13042/* Return the OBJFILE associated with the compilation unit CU. If CU
13043 came from a separate debuginfo file, then the master objfile is
13044 returned. */
ae0d2f24
UW
13045
13046struct objfile *
13047dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
13048{
9291a0cd 13049 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
13050
13051 /* Return the master objfile, so that we can report and look up the
13052 correct file containing this variable. */
13053 if (objfile->separate_debug_objfile_backlink)
13054 objfile = objfile->separate_debug_objfile_backlink;
13055
13056 return objfile;
13057}
13058
13059/* Return the address size given in the compilation unit header for CU. */
13060
13061CORE_ADDR
13062dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
13063{
13064 if (per_cu->cu)
13065 return per_cu->cu->header.addr_size;
13066 else
13067 {
13068 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 13069 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
13070 struct dwarf2_per_objfile *per_objfile
13071 = objfile_data (objfile, dwarf2_objfile_data_key);
dce234bc 13072 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
ae0d2f24 13073 struct comp_unit_head cu_header;
9a619af0 13074
ae0d2f24
UW
13075 memset (&cu_header, 0, sizeof cu_header);
13076 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
13077 return cu_header.addr_size;
13078 }
13079}
13080
9eae7c52
TT
13081/* Return the offset size given in the compilation unit header for CU. */
13082
13083int
13084dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
13085{
13086 if (per_cu->cu)
13087 return per_cu->cu->header.offset_size;
13088 else
13089 {
13090 /* If the CU is not currently read in, we re-read its header. */
9291a0cd 13091 struct objfile *objfile = per_cu->objfile;
9eae7c52
TT
13092 struct dwarf2_per_objfile *per_objfile
13093 = objfile_data (objfile, dwarf2_objfile_data_key);
13094 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
13095 struct comp_unit_head cu_header;
13096
13097 memset (&cu_header, 0, sizeof cu_header);
13098 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
13099 return cu_header.offset_size;
13100 }
13101}
13102
9aa1f1e3
TT
13103/* Return the text offset of the CU. The returned offset comes from
13104 this CU's objfile. If this objfile came from a separate debuginfo
13105 file, then the offset may be different from the corresponding
13106 offset in the parent objfile. */
13107
13108CORE_ADDR
13109dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
13110{
13111 struct objfile *objfile = per_cu->psymtab->objfile;
13112
13113 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13114}
13115
348e048f
DE
13116/* Locate the .debug_info compilation unit from CU's objfile which contains
13117 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
13118
13119static struct dwarf2_per_cu_data *
c764a876 13120dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
13121 struct objfile *objfile)
13122{
13123 struct dwarf2_per_cu_data *this_cu;
13124 int low, high;
13125
ae038cb0
DJ
13126 low = 0;
13127 high = dwarf2_per_objfile->n_comp_units - 1;
13128 while (high > low)
13129 {
13130 int mid = low + (high - low) / 2;
9a619af0 13131
ae038cb0
DJ
13132 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
13133 high = mid;
13134 else
13135 low = mid + 1;
13136 }
13137 gdb_assert (low == high);
13138 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
13139 {
10b3939b 13140 if (low == 0)
8a3fe4f8
AC
13141 error (_("Dwarf Error: could not find partial DIE containing "
13142 "offset 0x%lx [in module %s]"),
10b3939b
DJ
13143 (long) offset, bfd_get_filename (objfile->obfd));
13144
ae038cb0
DJ
13145 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
13146 return dwarf2_per_objfile->all_comp_units[low-1];
13147 }
13148 else
13149 {
13150 this_cu = dwarf2_per_objfile->all_comp_units[low];
13151 if (low == dwarf2_per_objfile->n_comp_units - 1
13152 && offset >= this_cu->offset + this_cu->length)
c764a876 13153 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
13154 gdb_assert (offset < this_cu->offset + this_cu->length);
13155 return this_cu;
13156 }
13157}
13158
10b3939b
DJ
13159/* Locate the compilation unit from OBJFILE which is located at exactly
13160 OFFSET. Raises an error on failure. */
13161
ae038cb0 13162static struct dwarf2_per_cu_data *
c764a876 13163dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
13164{
13165 struct dwarf2_per_cu_data *this_cu;
9a619af0 13166
ae038cb0
DJ
13167 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
13168 if (this_cu->offset != offset)
c764a876 13169 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
13170 return this_cu;
13171}
13172
93311388
DE
13173/* Malloc space for a dwarf2_cu for OBJFILE and initialize it. */
13174
13175static struct dwarf2_cu *
13176alloc_one_comp_unit (struct objfile *objfile)
13177{
13178 struct dwarf2_cu *cu = xcalloc (1, sizeof (struct dwarf2_cu));
13179 cu->objfile = objfile;
13180 obstack_init (&cu->comp_unit_obstack);
13181 return cu;
13182}
13183
ae038cb0
DJ
13184/* Release one cached compilation unit, CU. We unlink it from the tree
13185 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
13186 the caller is responsible for that.
13187 NOTE: DATA is a void * because this function is also used as a
13188 cleanup routine. */
ae038cb0
DJ
13189
13190static void
13191free_one_comp_unit (void *data)
13192{
13193 struct dwarf2_cu *cu = data;
13194
13195 if (cu->per_cu != NULL)
13196 cu->per_cu->cu = NULL;
13197 cu->per_cu = NULL;
13198
13199 obstack_free (&cu->comp_unit_obstack, NULL);
13200
13201 xfree (cu);
13202}
13203
72bf9492 13204/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
13205 when we're finished with it. We can't free the pointer itself, but be
13206 sure to unlink it from the cache. Also release any associated storage
13207 and perform cache maintenance.
72bf9492
DJ
13208
13209 Only used during partial symbol parsing. */
13210
13211static void
13212free_stack_comp_unit (void *data)
13213{
13214 struct dwarf2_cu *cu = data;
13215
13216 obstack_free (&cu->comp_unit_obstack, NULL);
13217 cu->partial_dies = NULL;
ae038cb0
DJ
13218
13219 if (cu->per_cu != NULL)
13220 {
13221 /* This compilation unit is on the stack in our caller, so we
13222 should not xfree it. Just unlink it. */
13223 cu->per_cu->cu = NULL;
13224 cu->per_cu = NULL;
13225
13226 /* If we had a per-cu pointer, then we may have other compilation
13227 units loaded, so age them now. */
13228 age_cached_comp_units ();
13229 }
13230}
13231
13232/* Free all cached compilation units. */
13233
13234static void
13235free_cached_comp_units (void *data)
13236{
13237 struct dwarf2_per_cu_data *per_cu, **last_chain;
13238
13239 per_cu = dwarf2_per_objfile->read_in_chain;
13240 last_chain = &dwarf2_per_objfile->read_in_chain;
13241 while (per_cu != NULL)
13242 {
13243 struct dwarf2_per_cu_data *next_cu;
13244
13245 next_cu = per_cu->cu->read_in_chain;
13246
13247 free_one_comp_unit (per_cu->cu);
13248 *last_chain = next_cu;
13249
13250 per_cu = next_cu;
13251 }
13252}
13253
13254/* Increase the age counter on each cached compilation unit, and free
13255 any that are too old. */
13256
13257static void
13258age_cached_comp_units (void)
13259{
13260 struct dwarf2_per_cu_data *per_cu, **last_chain;
13261
13262 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
13263 per_cu = dwarf2_per_objfile->read_in_chain;
13264 while (per_cu != NULL)
13265 {
13266 per_cu->cu->last_used ++;
13267 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
13268 dwarf2_mark (per_cu->cu);
13269 per_cu = per_cu->cu->read_in_chain;
13270 }
13271
13272 per_cu = dwarf2_per_objfile->read_in_chain;
13273 last_chain = &dwarf2_per_objfile->read_in_chain;
13274 while (per_cu != NULL)
13275 {
13276 struct dwarf2_per_cu_data *next_cu;
13277
13278 next_cu = per_cu->cu->read_in_chain;
13279
13280 if (!per_cu->cu->mark)
13281 {
13282 free_one_comp_unit (per_cu->cu);
13283 *last_chain = next_cu;
13284 }
13285 else
13286 last_chain = &per_cu->cu->read_in_chain;
13287
13288 per_cu = next_cu;
13289 }
13290}
13291
13292/* Remove a single compilation unit from the cache. */
13293
13294static void
13295free_one_cached_comp_unit (void *target_cu)
13296{
13297 struct dwarf2_per_cu_data *per_cu, **last_chain;
13298
13299 per_cu = dwarf2_per_objfile->read_in_chain;
13300 last_chain = &dwarf2_per_objfile->read_in_chain;
13301 while (per_cu != NULL)
13302 {
13303 struct dwarf2_per_cu_data *next_cu;
13304
13305 next_cu = per_cu->cu->read_in_chain;
13306
13307 if (per_cu->cu == target_cu)
13308 {
13309 free_one_comp_unit (per_cu->cu);
13310 *last_chain = next_cu;
13311 break;
13312 }
13313 else
13314 last_chain = &per_cu->cu->read_in_chain;
13315
13316 per_cu = next_cu;
13317 }
13318}
13319
fe3e1990
DJ
13320/* Release all extra memory associated with OBJFILE. */
13321
13322void
13323dwarf2_free_objfile (struct objfile *objfile)
13324{
13325 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
13326
13327 if (dwarf2_per_objfile == NULL)
13328 return;
13329
13330 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
13331 free_cached_comp_units (NULL);
13332
9291a0cd
TT
13333 if (dwarf2_per_objfile->using_index)
13334 {
13335 int i;
13336
13337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
13338 {
13339 int j;
13340 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
13341
13342 if (!cu->v.quick->lines)
13343 continue;
13344
13345 for (j = 0; j < cu->v.quick->lines->num_file_names; ++j)
13346 {
13347 if (cu->v.quick->file_names)
13348 xfree ((void *) cu->v.quick->file_names[j]);
13349 if (cu->v.quick->full_names)
13350 xfree ((void *) cu->v.quick->full_names[j]);
13351 }
13352
13353 free_line_header (cu->v.quick->lines);
13354 }
13355 }
13356
fe3e1990
DJ
13357 /* Everything else should be on the objfile obstack. */
13358}
13359
1c379e20
DJ
13360/* A pair of DIE offset and GDB type pointer. We store these
13361 in a hash table separate from the DIEs, and preserve them
13362 when the DIEs are flushed out of cache. */
13363
13364struct dwarf2_offset_and_type
13365{
13366 unsigned int offset;
13367 struct type *type;
13368};
13369
13370/* Hash function for a dwarf2_offset_and_type. */
13371
13372static hashval_t
13373offset_and_type_hash (const void *item)
13374{
13375 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 13376
1c379e20
DJ
13377 return ofs->offset;
13378}
13379
13380/* Equality function for a dwarf2_offset_and_type. */
13381
13382static int
13383offset_and_type_eq (const void *item_lhs, const void *item_rhs)
13384{
13385 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
13386 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 13387
1c379e20
DJ
13388 return ofs_lhs->offset == ofs_rhs->offset;
13389}
13390
13391/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
13392 table if necessary. For convenience, return TYPE.
13393
13394 The DIEs reading must have careful ordering to:
13395 * Not cause infite loops trying to read in DIEs as a prerequisite for
13396 reading current DIE.
13397 * Not trying to dereference contents of still incompletely read in types
13398 while reading in other DIEs.
13399 * Enable referencing still incompletely read in types just by a pointer to
13400 the type without accessing its fields.
13401
13402 Therefore caller should follow these rules:
13403 * Try to fetch any prerequisite types we may need to build this DIE type
13404 before building the type and calling set_die_type.
13405 * After building typer call set_die_type for current DIE as soon as
13406 possible before fetching more types to complete the current type.
13407 * Make the type as complete as possible before fetching more types. */
1c379e20 13408
f792889a 13409static struct type *
1c379e20
DJ
13410set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
13411{
13412 struct dwarf2_offset_and_type **slot, ofs;
13413
b4ba55a1
JB
13414 /* For Ada types, make sure that the gnat-specific data is always
13415 initialized (if not already set). There are a few types where
13416 we should not be doing so, because the type-specific area is
13417 already used to hold some other piece of info (eg: TYPE_CODE_FLT
13418 where the type-specific area is used to store the floatformat).
13419 But this is not a problem, because the gnat-specific information
13420 is actually not needed for these types. */
13421 if (need_gnat_info (cu)
13422 && TYPE_CODE (type) != TYPE_CODE_FUNC
13423 && TYPE_CODE (type) != TYPE_CODE_FLT
13424 && !HAVE_GNAT_AUX_INFO (type))
13425 INIT_GNAT_SPECIFIC (type);
13426
f792889a
DJ
13427 if (cu->type_hash == NULL)
13428 {
13429 gdb_assert (cu->per_cu != NULL);
13430 cu->per_cu->type_hash
13431 = htab_create_alloc_ex (cu->header.length / 24,
13432 offset_and_type_hash,
13433 offset_and_type_eq,
13434 NULL,
13435 &cu->objfile->objfile_obstack,
13436 hashtab_obstack_allocate,
13437 dummy_obstack_deallocate);
13438 cu->type_hash = cu->per_cu->type_hash;
13439 }
1c379e20
DJ
13440
13441 ofs.offset = die->offset;
13442 ofs.type = type;
13443 slot = (struct dwarf2_offset_and_type **)
f792889a 13444 htab_find_slot_with_hash (cu->type_hash, &ofs, ofs.offset, INSERT);
7e314c57
JK
13445 if (*slot)
13446 complaint (&symfile_complaints,
13447 _("A problem internal to GDB: DIE 0x%x has type already set"),
13448 die->offset);
1c379e20
DJ
13449 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
13450 **slot = ofs;
f792889a 13451 return type;
1c379e20
DJ
13452}
13453
f792889a
DJ
13454/* Find the type for DIE in CU's type_hash, or return NULL if DIE does
13455 not have a saved type. */
1c379e20
DJ
13456
13457static struct type *
f792889a 13458get_die_type (struct die_info *die, struct dwarf2_cu *cu)
1c379e20
DJ
13459{
13460 struct dwarf2_offset_and_type *slot, ofs;
f792889a
DJ
13461 htab_t type_hash = cu->type_hash;
13462
13463 if (type_hash == NULL)
13464 return NULL;
1c379e20
DJ
13465
13466 ofs.offset = die->offset;
13467 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
13468 if (slot)
13469 return slot->type;
13470 else
13471 return NULL;
13472}
13473
10b3939b
DJ
13474/* Add a dependence relationship from CU to REF_PER_CU. */
13475
13476static void
13477dwarf2_add_dependence (struct dwarf2_cu *cu,
13478 struct dwarf2_per_cu_data *ref_per_cu)
13479{
13480 void **slot;
13481
13482 if (cu->dependencies == NULL)
13483 cu->dependencies
13484 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
13485 NULL, &cu->comp_unit_obstack,
13486 hashtab_obstack_allocate,
13487 dummy_obstack_deallocate);
13488
13489 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
13490 if (*slot == NULL)
13491 *slot = ref_per_cu;
13492}
1c379e20 13493
f504f079
DE
13494/* Subroutine of dwarf2_mark to pass to htab_traverse.
13495 Set the mark field in every compilation unit in the
ae038cb0
DJ
13496 cache that we must keep because we are keeping CU. */
13497
10b3939b
DJ
13498static int
13499dwarf2_mark_helper (void **slot, void *data)
13500{
13501 struct dwarf2_per_cu_data *per_cu;
13502
13503 per_cu = (struct dwarf2_per_cu_data *) *slot;
13504 if (per_cu->cu->mark)
13505 return 1;
13506 per_cu->cu->mark = 1;
13507
13508 if (per_cu->cu->dependencies != NULL)
13509 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
13510
13511 return 1;
13512}
13513
f504f079
DE
13514/* Set the mark field in CU and in every other compilation unit in the
13515 cache that we must keep because we are keeping CU. */
13516
ae038cb0
DJ
13517static void
13518dwarf2_mark (struct dwarf2_cu *cu)
13519{
13520 if (cu->mark)
13521 return;
13522 cu->mark = 1;
10b3939b
DJ
13523 if (cu->dependencies != NULL)
13524 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
13525}
13526
13527static void
13528dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
13529{
13530 while (per_cu)
13531 {
13532 per_cu->cu->mark = 0;
13533 per_cu = per_cu->cu->read_in_chain;
13534 }
72bf9492
DJ
13535}
13536
72bf9492
DJ
13537/* Trivial hash function for partial_die_info: the hash value of a DIE
13538 is its offset in .debug_info for this objfile. */
13539
13540static hashval_t
13541partial_die_hash (const void *item)
13542{
13543 const struct partial_die_info *part_die = item;
9a619af0 13544
72bf9492
DJ
13545 return part_die->offset;
13546}
13547
13548/* Trivial comparison function for partial_die_info structures: two DIEs
13549 are equal if they have the same offset. */
13550
13551static int
13552partial_die_eq (const void *item_lhs, const void *item_rhs)
13553{
13554 const struct partial_die_info *part_die_lhs = item_lhs;
13555 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 13556
72bf9492
DJ
13557 return part_die_lhs->offset == part_die_rhs->offset;
13558}
13559
ae038cb0
DJ
13560static struct cmd_list_element *set_dwarf2_cmdlist;
13561static struct cmd_list_element *show_dwarf2_cmdlist;
13562
13563static void
13564set_dwarf2_cmd (char *args, int from_tty)
13565{
13566 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
13567}
13568
13569static void
13570show_dwarf2_cmd (char *args, int from_tty)
6e70227d 13571{
ae038cb0
DJ
13572 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
13573}
13574
dce234bc
PP
13575/* If section described by INFO was mmapped, munmap it now. */
13576
13577static void
13578munmap_section_buffer (struct dwarf2_section_info *info)
13579{
13580 if (info->was_mmapped)
13581 {
13582#ifdef HAVE_MMAP
13583 intptr_t begin = (intptr_t) info->buffer;
13584 intptr_t map_begin = begin & ~(pagesize - 1);
13585 size_t map_length = info->size + begin - map_begin;
9a619af0 13586
dce234bc
PP
13587 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
13588#else
13589 /* Without HAVE_MMAP, we should never be here to begin with. */
13590 gdb_assert (0);
13591#endif
13592 }
13593}
13594
13595/* munmap debug sections for OBJFILE, if necessary. */
13596
13597static void
c1bd65d0 13598dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
13599{
13600 struct dwarf2_per_objfile *data = d;
9a619af0 13601
dce234bc
PP
13602 munmap_section_buffer (&data->info);
13603 munmap_section_buffer (&data->abbrev);
13604 munmap_section_buffer (&data->line);
13605 munmap_section_buffer (&data->str);
13606 munmap_section_buffer (&data->macinfo);
13607 munmap_section_buffer (&data->ranges);
13608 munmap_section_buffer (&data->loc);
13609 munmap_section_buffer (&data->frame);
13610 munmap_section_buffer (&data->eh_frame);
9291a0cd
TT
13611 munmap_section_buffer (&data->gdb_index);
13612}
13613
13614\f
13615
13616/* The contents of the hash table we create when building the string
13617 table. */
13618struct strtab_entry
13619{
13620 offset_type offset;
13621 const char *str;
13622};
13623
13624/* Hash function for a strtab_entry. */
13625static hashval_t
13626hash_strtab_entry (const void *e)
13627{
13628 const struct strtab_entry *entry = e;
13629 return mapped_index_string_hash (entry->str);
13630}
13631
13632/* Equality function for a strtab_entry. */
13633static int
13634eq_strtab_entry (const void *a, const void *b)
13635{
13636 const struct strtab_entry *ea = a;
13637 const struct strtab_entry *eb = b;
13638 return !strcmp (ea->str, eb->str);
13639}
13640
13641/* Create a strtab_entry hash table. */
13642static htab_t
13643create_strtab (void)
13644{
13645 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
13646 xfree, xcalloc, xfree);
13647}
13648
13649/* Add a string to the constant pool. Return the string's offset in
13650 host order. */
13651static offset_type
13652add_string (htab_t table, struct obstack *cpool, const char *str)
13653{
13654 void **slot;
13655 struct strtab_entry entry;
13656 struct strtab_entry *result;
13657
13658 entry.str = str;
13659 slot = htab_find_slot (table, &entry, INSERT);
13660 if (*slot)
13661 result = *slot;
13662 else
13663 {
13664 result = XNEW (struct strtab_entry);
13665 result->offset = obstack_object_size (cpool);
13666 result->str = str;
13667 obstack_grow_str0 (cpool, str);
13668 *slot = result;
13669 }
13670 return result->offset;
13671}
13672
13673/* An entry in the symbol table. */
13674struct symtab_index_entry
13675{
13676 /* The name of the symbol. */
13677 const char *name;
13678 /* The offset of the name in the constant pool. */
13679 offset_type index_offset;
13680 /* A sorted vector of the indices of all the CUs that hold an object
13681 of this name. */
13682 VEC (offset_type) *cu_indices;
13683};
13684
13685/* The symbol table. This is a power-of-2-sized hash table. */
13686struct mapped_symtab
13687{
13688 offset_type n_elements;
13689 offset_type size;
13690 struct symtab_index_entry **data;
13691};
13692
13693/* Hash function for a symtab_index_entry. */
13694static hashval_t
13695hash_symtab_entry (const void *e)
13696{
13697 const struct symtab_index_entry *entry = e;
13698 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
13699 sizeof (offset_type) * VEC_length (offset_type,
13700 entry->cu_indices),
13701 0);
13702}
13703
13704/* Equality function for a symtab_index_entry. */
13705static int
13706eq_symtab_entry (const void *a, const void *b)
13707{
13708 const struct symtab_index_entry *ea = a;
13709 const struct symtab_index_entry *eb = b;
13710 int len = VEC_length (offset_type, ea->cu_indices);
13711 if (len != VEC_length (offset_type, eb->cu_indices))
13712 return 0;
13713 return !memcmp (VEC_address (offset_type, ea->cu_indices),
13714 VEC_address (offset_type, eb->cu_indices),
13715 sizeof (offset_type) * len);
13716}
13717
13718/* Destroy a symtab_index_entry. */
13719static void
13720delete_symtab_entry (void *p)
13721{
13722 struct symtab_index_entry *entry = p;
13723 VEC_free (offset_type, entry->cu_indices);
13724 xfree (entry);
13725}
13726
13727/* Create a hash table holding symtab_index_entry objects. */
13728static htab_t
13729create_index_table (void)
13730{
13731 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
13732 delete_symtab_entry, xcalloc, xfree);
13733}
13734
13735/* Create a new mapped symtab object. */
13736static struct mapped_symtab *
13737create_mapped_symtab (void)
13738{
13739 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
13740 symtab->n_elements = 0;
13741 symtab->size = 1024;
13742 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
13743 return symtab;
13744}
13745
13746/* Destroy a mapped_symtab. */
13747static void
13748cleanup_mapped_symtab (void *p)
13749{
13750 struct mapped_symtab *symtab = p;
13751 /* The contents of the array are freed when the other hash table is
13752 destroyed. */
13753 xfree (symtab->data);
13754 xfree (symtab);
13755}
13756
13757/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
13758 the slot. */
13759static struct symtab_index_entry **
13760find_slot (struct mapped_symtab *symtab, const char *name)
13761{
13762 offset_type index, step, hash = mapped_index_string_hash (name);
13763
13764 index = hash & (symtab->size - 1);
13765 step = ((hash * 17) & (symtab->size - 1)) | 1;
13766
13767 for (;;)
13768 {
13769 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
13770 return &symtab->data[index];
13771 index = (index + step) & (symtab->size - 1);
13772 }
13773}
13774
13775/* Expand SYMTAB's hash table. */
13776static void
13777hash_expand (struct mapped_symtab *symtab)
13778{
13779 offset_type old_size = symtab->size;
13780 offset_type i;
13781 struct symtab_index_entry **old_entries = symtab->data;
13782
13783 symtab->size *= 2;
13784 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
13785
13786 for (i = 0; i < old_size; ++i)
13787 {
13788 if (old_entries[i])
13789 {
13790 struct symtab_index_entry **slot = find_slot (symtab,
13791 old_entries[i]->name);
13792 *slot = old_entries[i];
13793 }
13794 }
13795
13796 xfree (old_entries);
13797}
13798
13799/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
13800 is the index of the CU in which the symbol appears. */
13801static void
13802add_index_entry (struct mapped_symtab *symtab, const char *name,
13803 offset_type cu_index)
13804{
13805 struct symtab_index_entry **slot;
13806
13807 ++symtab->n_elements;
13808 if (4 * symtab->n_elements / 3 >= symtab->size)
13809 hash_expand (symtab);
13810
13811 slot = find_slot (symtab, name);
13812 if (!*slot)
13813 {
13814 *slot = XNEW (struct symtab_index_entry);
13815 (*slot)->name = name;
13816 (*slot)->cu_indices = NULL;
13817 }
13818 /* Don't push an index twice. Due to how we add entries we only
13819 have to check the last one. */
13820 if (VEC_empty (offset_type, (*slot)->cu_indices)
13821 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
13822 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
13823}
13824
13825/* Add a vector of indices to the constant pool. */
13826static offset_type
13827add_indices_to_cpool (htab_t index_table, struct obstack *cpool,
13828 struct symtab_index_entry *entry)
13829{
13830 void **slot;
13831
13832 slot = htab_find_slot (index_table, entry, INSERT);
13833 if (!*slot)
13834 {
13835 offset_type len = VEC_length (offset_type, entry->cu_indices);
13836 offset_type val = MAYBE_SWAP (len);
13837 offset_type iter;
13838 int i;
13839
13840 *slot = entry;
13841 entry->index_offset = obstack_object_size (cpool);
13842
13843 obstack_grow (cpool, &val, sizeof (val));
13844 for (i = 0;
13845 VEC_iterate (offset_type, entry->cu_indices, i, iter);
13846 ++i)
13847 {
13848 val = MAYBE_SWAP (iter);
13849 obstack_grow (cpool, &val, sizeof (val));
13850 }
13851 }
13852 else
13853 {
13854 struct symtab_index_entry *old_entry = *slot;
13855 entry->index_offset = old_entry->index_offset;
13856 entry = old_entry;
13857 }
13858 return entry->index_offset;
13859}
13860
13861/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
13862 constant pool entries going into the obstack CPOOL. */
13863static void
13864write_hash_table (struct mapped_symtab *symtab,
13865 struct obstack *output, struct obstack *cpool)
13866{
13867 offset_type i;
13868 htab_t index_table;
13869 htab_t str_table;
13870
13871 index_table = create_index_table ();
13872 str_table = create_strtab ();
13873 /* We add all the index vectors to the constant pool first, to
13874 ensure alignment is ok. */
13875 for (i = 0; i < symtab->size; ++i)
13876 {
13877 if (symtab->data[i])
13878 add_indices_to_cpool (index_table, cpool, symtab->data[i]);
13879 }
13880
13881 /* Now write out the hash table. */
13882 for (i = 0; i < symtab->size; ++i)
13883 {
13884 offset_type str_off, vec_off;
13885
13886 if (symtab->data[i])
13887 {
13888 str_off = add_string (str_table, cpool, symtab->data[i]->name);
13889 vec_off = symtab->data[i]->index_offset;
13890 }
13891 else
13892 {
13893 /* While 0 is a valid constant pool index, it is not valid
13894 to have 0 for both offsets. */
13895 str_off = 0;
13896 vec_off = 0;
13897 }
13898
13899 str_off = MAYBE_SWAP (str_off);
13900 vec_off = MAYBE_SWAP (vec_off);
13901
13902 obstack_grow (output, &str_off, sizeof (str_off));
13903 obstack_grow (output, &vec_off, sizeof (vec_off));
13904 }
13905
13906 htab_delete (str_table);
13907 htab_delete (index_table);
13908}
13909
13910/* Write an address entry to ADDR_OBSTACK. The addresses are taken
13911 from PST; CU_INDEX is the index of the CU in the vector of all
13912 CUs. */
13913static void
13914add_address_entry (struct objfile *objfile,
13915 struct obstack *addr_obstack, struct partial_symtab *pst,
13916 unsigned int cu_index)
13917{
13918 offset_type offset;
13919 char addr[8];
13920 CORE_ADDR baseaddr;
13921
13922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13923
13924 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->textlow - baseaddr);
13925 obstack_grow (addr_obstack, addr, 8);
13926 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, pst->texthigh - baseaddr);
13927 obstack_grow (addr_obstack, addr, 8);
13928 offset = MAYBE_SWAP (cu_index);
13929 obstack_grow (addr_obstack, &offset, sizeof (offset_type));
13930}
13931
13932/* Add a list of partial symbols to SYMTAB. */
13933static void
13934write_psymbols (struct mapped_symtab *symtab,
13935 struct partial_symbol **psymp,
13936 int count,
13937 offset_type cu_index)
13938{
13939 for (; count-- > 0; ++psymp)
13940 {
13941 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
13942 error (_("Ada is not currently supported by the index"));
13943 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
13944 }
13945}
13946
13947/* Write the contents of an ("unfinished") obstack to FILE. Throw an
13948 exception if there is an error. */
13949static void
13950write_obstack (FILE *file, struct obstack *obstack)
13951{
13952 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
13953 file)
13954 != obstack_object_size (obstack))
13955 error (_("couldn't data write to file"));
13956}
13957
13958/* Unlink a file if the argument is not NULL. */
13959static void
13960unlink_if_set (void *p)
13961{
13962 char **filename = p;
13963 if (*filename)
13964 unlink (*filename);
13965}
13966
13967/* Create an index file for OBJFILE in the directory DIR. */
13968static void
13969write_psymtabs_to_index (struct objfile *objfile, const char *dir)
13970{
13971 struct cleanup *cleanup;
13972 char *filename, *cleanup_filename;
13973 struct obstack contents, addr_obstack, constant_pool, symtab_obstack, cu_list;
13974 int i;
13975 FILE *out_file;
13976 struct mapped_symtab *symtab;
13977 offset_type val, size_of_contents, total_len;
13978 struct stat st;
13979 char buf[8];
13980
13981 if (!objfile->psymtabs)
13982 return;
13983 if (dwarf2_per_objfile->using_index)
13984 error (_("Cannot use an index to create the index"));
13985
13986 if (stat (objfile->name, &st) < 0)
13987 perror_with_name (_("Could not stat"));
13988
13989 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
13990 INDEX_SUFFIX, (char *) NULL);
13991 cleanup = make_cleanup (xfree, filename);
13992
13993 out_file = fopen (filename, "wb");
13994 if (!out_file)
13995 error (_("Can't open `%s' for writing"), filename);
13996
13997 cleanup_filename = filename;
13998 make_cleanup (unlink_if_set, &cleanup_filename);
13999
14000 symtab = create_mapped_symtab ();
14001 make_cleanup (cleanup_mapped_symtab, symtab);
14002
14003 obstack_init (&addr_obstack);
14004 make_cleanup_obstack_free (&addr_obstack);
14005
14006 obstack_init (&cu_list);
14007 make_cleanup_obstack_free (&cu_list);
14008
14009 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
14010 {
14011 struct dwarf2_per_cu_data *cu = dwarf2_per_objfile->all_comp_units[i];
14012 struct partial_symtab *psymtab = cu->v.psymtab;
14013 gdb_byte val[8];
14014
14015 write_psymbols (symtab,
14016 objfile->global_psymbols.list + psymtab->globals_offset,
14017 psymtab->n_global_syms, i);
14018 write_psymbols (symtab,
14019 objfile->static_psymbols.list + psymtab->statics_offset,
14020 psymtab->n_static_syms, i);
14021
14022 add_address_entry (objfile, &addr_obstack, psymtab, i);
14023
14024 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->offset);
14025 obstack_grow (&cu_list, val, 8);
14026 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, cu->length);
14027 obstack_grow (&cu_list, val, 8);
14028 }
14029
14030 obstack_init (&constant_pool);
14031 make_cleanup_obstack_free (&constant_pool);
14032 obstack_init (&symtab_obstack);
14033 make_cleanup_obstack_free (&symtab_obstack);
14034 write_hash_table (symtab, &symtab_obstack, &constant_pool);
14035
14036 obstack_init (&contents);
14037 make_cleanup_obstack_free (&contents);
14038 size_of_contents = 5 * sizeof (offset_type);
14039 total_len = size_of_contents;
14040
14041 /* The version number. */
14042 val = MAYBE_SWAP (1);
14043 obstack_grow (&contents, &val, sizeof (val));
14044
14045 /* The offset of the CU list from the start of the file. */
14046 val = MAYBE_SWAP (total_len);
14047 obstack_grow (&contents, &val, sizeof (val));
14048 total_len += obstack_object_size (&cu_list);
14049
14050 /* The offset of the address table from the start of the file. */
14051 val = MAYBE_SWAP (total_len);
14052 obstack_grow (&contents, &val, sizeof (val));
14053 total_len += obstack_object_size (&addr_obstack);
14054
14055 /* The offset of the symbol table from the start of the file. */
14056 val = MAYBE_SWAP (total_len);
14057 obstack_grow (&contents, &val, sizeof (val));
14058 total_len += obstack_object_size (&symtab_obstack);
14059
14060 /* The offset of the constant pool from the start of the file. */
14061 val = MAYBE_SWAP (total_len);
14062 obstack_grow (&contents, &val, sizeof (val));
14063 total_len += obstack_object_size (&constant_pool);
14064
14065 gdb_assert (obstack_object_size (&contents) == size_of_contents);
14066
14067 write_obstack (out_file, &contents);
14068 write_obstack (out_file, &cu_list);
14069 write_obstack (out_file, &addr_obstack);
14070 write_obstack (out_file, &symtab_obstack);
14071 write_obstack (out_file, &constant_pool);
14072
14073 fclose (out_file);
14074
14075 /* We want to keep the file, so we set cleanup_filename to NULL
14076 here. See unlink_if_set. */
14077 cleanup_filename = NULL;
14078
14079 do_cleanups (cleanup);
14080}
14081
14082/* The mapped index file format is designed to be directly mmap()able
14083 on any architecture. In most cases, a datum is represented using a
14084 little-endian 32-bit integer value, called an offset_type. Big
14085 endian machines must byte-swap the values before using them.
14086 Exceptions to this rule are noted. The data is laid out such that
14087 alignment is always respected.
14088
14089 A mapped index consists of several sections.
14090
14091 1. The file header. This is a sequence of values, of offset_type
14092 unless otherwise noted:
14093 [0] The version number. Currently 1.
14094 [1] The offset, from the start of the file, of the CU list.
14095 [2] The offset, from the start of the file, of the address section.
14096 [3] The offset, from the start of the file, of the symbol table.
14097 [4] The offset, from the start of the file, of the constant pool.
14098
14099 2. The CU list. This is a sequence of pairs of 64-bit
14100 little-endian values. The first element in each pair is the offset
14101 of a CU in the .debug_info section. The second element in each
14102 pair is the length of that CU. References to a CU elsewhere in the
14103 map are done using a CU index, which is just the 0-based index into
14104 this table.
14105
14106 3. The address section. The address section consists of a sequence
14107 of address entries. Each address entry has three elements.
14108 [0] The low address. This is a 64-bit little-endian value.
14109 [1] The high address. This is a 64-bit little-endian value.
14110 [2] The CU index. This is an offset_type value.
14111
14112 4. The symbol table. This is a hash table. The size of the hash
14113 table is always a power of 2. The initial hash and the step are
14114 currently defined by the `find_slot' function.
14115
14116 Each slot in the hash table consists of a pair of offset_type
14117 values. The first value is the offset of the symbol's name in the
14118 constant pool. The second value is the offset of the CU vector in
14119 the constant pool.
14120
14121 If both values are 0, then this slot in the hash table is empty.
14122 This is ok because while 0 is a valid constant pool index, it
14123 cannot be a valid index for both a string and a CU vector.
14124
14125 A string in the constant pool is stored as a \0-terminated string,
14126 as you'd expect.
14127
14128 A CU vector in the constant pool is a sequence of offset_type
14129 values. The first value is the number of CU indices in the vector.
14130 Each subsequent value is the index of a CU in the CU list. This
14131 element in the hash table is used to indicate which CUs define the
14132 symbol.
14133
14134 5. The constant pool. This is simply a bunch of bytes. It is
14135 organized so that alignment is correct: CU vectors are stored
14136 first, followed by strings. */
14137static void
14138save_gdb_index_command (char *arg, int from_tty)
14139{
14140 struct objfile *objfile;
14141
14142 if (!arg || !*arg)
14143 error (_("usage: maintenance save-gdb-index DIRECTORY"));
14144
14145 ALL_OBJFILES (objfile)
14146 {
14147 struct stat st;
14148
14149 /* If the objfile does not correspond to an actual file, skip it. */
14150 if (stat (objfile->name, &st) < 0)
14151 continue;
14152
14153 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14154 if (dwarf2_per_objfile)
14155 {
14156 volatile struct gdb_exception except;
14157
14158 TRY_CATCH (except, RETURN_MASK_ERROR)
14159 {
14160 write_psymtabs_to_index (objfile, arg);
14161 }
14162 if (except.reason < 0)
14163 exception_fprintf (gdb_stderr, except,
14164 _("Error while writing index for `%s': "),
14165 objfile->name);
14166 }
14167 }
dce234bc
PP
14168}
14169
9291a0cd
TT
14170\f
14171
9eae7c52
TT
14172int dwarf2_always_disassemble;
14173
14174static void
14175show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
14176 struct cmd_list_element *c, const char *value)
14177{
14178 fprintf_filtered (file, _("\
14179Whether to always disassemble DWARF expressions is %s.\n"),
14180 value);
14181}
14182
6502dd73
DJ
14183void _initialize_dwarf2_read (void);
14184
14185void
14186_initialize_dwarf2_read (void)
14187{
dce234bc 14188 dwarf2_objfile_data_key
c1bd65d0 14189 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 14190
1bedd215
AC
14191 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
14192Set DWARF 2 specific variables.\n\
14193Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
14194 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
14195 0/*allow-unknown*/, &maintenance_set_cmdlist);
14196
1bedd215
AC
14197 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
14198Show DWARF 2 specific variables\n\
14199Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
14200 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
14201 0/*allow-unknown*/, &maintenance_show_cmdlist);
14202
14203 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
14204 &dwarf2_max_cache_age, _("\
14205Set the upper bound on the age of cached dwarf2 compilation units."), _("\
14206Show the upper bound on the age of cached dwarf2 compilation units."), _("\
14207A higher limit means that cached compilation units will be stored\n\
14208in memory longer, and more total memory will be used. Zero disables\n\
14209caching, which can slow down startup."),
2c5b56ce 14210 NULL,
920d2a44 14211 show_dwarf2_max_cache_age,
2c5b56ce 14212 &set_dwarf2_cmdlist,
ae038cb0 14213 &show_dwarf2_cmdlist);
d97bc12b 14214
9eae7c52
TT
14215 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
14216 &dwarf2_always_disassemble, _("\
14217Set whether `info address' always disassembles DWARF expressions."), _("\
14218Show whether `info address' always disassembles DWARF expressions."), _("\
14219When enabled, DWARF expressions are always printed in an assembly-like\n\
14220syntax. When disabled, expressions will be printed in a more\n\
14221conversational style, when possible."),
14222 NULL,
14223 show_dwarf2_always_disassemble,
14224 &set_dwarf2_cmdlist,
14225 &show_dwarf2_cmdlist);
14226
d97bc12b
DE
14227 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
14228Set debugging of the dwarf2 DIE reader."), _("\
14229Show debugging of the dwarf2 DIE reader."), _("\
14230When enabled (non-zero), DIEs are dumped after they are read in.\n\
14231The value is the maximum depth to print."),
14232 NULL,
14233 NULL,
14234 &setdebuglist, &showdebuglist);
9291a0cd
TT
14235
14236 add_cmd ("gdb-index", class_files, save_gdb_index_command,
14237 _("Save a .gdb-index file"),
14238 &save_cmdlist);
6502dd73 14239}