]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarf2read.c
2007-09-04 Michael Snyder <msnyder@access-company.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca
DJ
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
107d2387 68#if 0
357e46e7 69/* .debug_info header for a compilation unit
c906108c
SS
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 83#endif
c906108c
SS
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
6502dd73
DJ
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
fe1b8b76
JB
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
ae038cb0 165
10b3939b
DJ
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
ae038cb0
DJ
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
6502dd73
DJ
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 183
086df311
DJ
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
c906108c
SS
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
af34e669 206#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
209
210/* local data types */
211
57349743
JB
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
107d2387
AC
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
c906108c 219struct comp_unit_head
a738430d
MK
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
57349743 226
a738430d
MK
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
57349743 229
a738430d
MK
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
57349743 232
a738430d
MK
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
57349743 236
a738430d
MK
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
fe1b8b76 239 gdb_byte *cu_head_ptr;
57349743 240
a738430d
MK
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
fe1b8b76 243 gdb_byte *first_die_ptr;
af34e669 244
a738430d
MK
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
0d53c4c4 247
a738430d
MK
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
0d53c4c4 250
a738430d
MK
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
c906108c 254
10b3939b
DJ
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
e7c27a73
DJ
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 269 should logically be moved to the dwarf2_cu structure. */
e7c27a73 270 struct comp_unit_head header;
e142c38c
DJ
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
b0f35d58
DL
278 const char *producer;
279
e142c38c
DJ
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* Maintain an array of referenced fundamental types for the current
292 compilation unit being read. For DWARF version 1, we have to construct
293 the fundamental types on the fly, since no information about the
294 fundamental types is supplied. Each such fundamental type is created by
295 calling a language dependent routine to create the type, and then a
296 pointer to that type is then placed in the array at the index specified
297 by it's FT_<TYPENAME> value. The array has a fixed size set by the
298 FT_NUM_MEMBERS compile time constant, which is the number of predefined
299 fundamental types gdb knows how to construct. */
300 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
f3dd6933
DJ
301
302 /* DWARF abbreviation table associated with this compilation unit. */
303 struct abbrev_info **dwarf2_abbrevs;
304
305 /* Storage for the abbrev table. */
306 struct obstack abbrev_obstack;
72bf9492
DJ
307
308 /* Hash table holding all the loaded partial DIEs. */
309 htab_t partial_dies;
310
311 /* Storage for things with the same lifetime as this read-in compilation
312 unit, including partial DIEs. */
313 struct obstack comp_unit_obstack;
314
ae038cb0
DJ
315 /* When multiple dwarf2_cu structures are living in memory, this field
316 chains them all together, so that they can be released efficiently.
317 We will probably also want a generation counter so that most-recently-used
318 compilation units are cached... */
319 struct dwarf2_per_cu_data *read_in_chain;
320
321 /* Backchain to our per_cu entry if the tree has been built. */
322 struct dwarf2_per_cu_data *per_cu;
323
324 /* How many compilation units ago was this CU last referenced? */
325 int last_used;
326
10b3939b
DJ
327 /* A hash table of die offsets for following references. */
328 struct die_info *die_ref_table[REF_HASH_SIZE];
329
330 /* Full DIEs if read in. */
331 struct die_info *dies;
332
333 /* A set of pointers to dwarf2_per_cu_data objects for compilation
334 units referenced by this one. Only set during full symbol processing;
335 partial symbol tables do not have dependencies. */
336 htab_t dependencies;
337
cb1df416
DJ
338 /* Header data from the line table, during full symbol processing. */
339 struct line_header *line_header;
340
ae038cb0
DJ
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
72bf9492
DJ
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
e7c27a73
DJ
353};
354
10b3939b
DJ
355/* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
ae038cb0
DJ
361struct dwarf2_per_cu_data
362{
5afb4e99 363 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
5afb4e99 367 unsigned long length : 30;
ae038cb0
DJ
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
5afb4e99
DJ
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
ae038cb0
DJ
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
1c379e20
DJ
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
1c379e20 386 htab_t type_hash;
10b3939b 387
31ffec48
DJ
388 /* The partial symbol table associated with this compilation unit,
389 or NULL for partial units (which do not have an associated
390 symtab). */
10b3939b 391 struct partial_symtab *psymtab;
ae038cb0
DJ
392};
393
debd256d
JB
394/* The line number information for a compilation unit (found in the
395 .debug_line section) begins with a "statement program header",
396 which contains the following information. */
397struct line_header
398{
399 unsigned int total_length;
400 unsigned short version;
401 unsigned int header_length;
402 unsigned char minimum_instruction_length;
403 unsigned char default_is_stmt;
404 int line_base;
405 unsigned char line_range;
406 unsigned char opcode_base;
407
408 /* standard_opcode_lengths[i] is the number of operands for the
409 standard opcode whose value is i. This means that
410 standard_opcode_lengths[0] is unused, and the last meaningful
411 element is standard_opcode_lengths[opcode_base - 1]. */
412 unsigned char *standard_opcode_lengths;
413
414 /* The include_directories table. NOTE! These strings are not
415 allocated with xmalloc; instead, they are pointers into
416 debug_line_buffer. If you try to free them, `free' will get
417 indigestion. */
418 unsigned int num_include_dirs, include_dirs_size;
419 char **include_dirs;
420
421 /* The file_names table. NOTE! These strings are not allocated
422 with xmalloc; instead, they are pointers into debug_line_buffer.
423 Don't try to free them directly. */
424 unsigned int num_file_names, file_names_size;
425 struct file_entry
c906108c 426 {
debd256d
JB
427 char *name;
428 unsigned int dir_index;
429 unsigned int mod_time;
430 unsigned int length;
aaa75496 431 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 432 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
433 } *file_names;
434
435 /* The start and end of the statement program following this
6502dd73 436 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 437 gdb_byte *statement_program_start, *statement_program_end;
debd256d 438};
c906108c
SS
439
440/* When we construct a partial symbol table entry we only
441 need this much information. */
442struct partial_die_info
443 {
72bf9492 444 /* Offset of this DIE. */
c906108c 445 unsigned int offset;
72bf9492
DJ
446
447 /* DWARF-2 tag for this DIE. */
448 ENUM_BITFIELD(dwarf_tag) tag : 16;
449
450 /* Language code associated with this DIE. This is only used
451 for the compilation unit DIE. */
452 unsigned int language : 8;
453
454 /* Assorted flags describing the data found in this DIE. */
455 unsigned int has_children : 1;
456 unsigned int is_external : 1;
457 unsigned int is_declaration : 1;
458 unsigned int has_type : 1;
459 unsigned int has_specification : 1;
aaa75496 460 unsigned int has_stmt_list : 1;
72bf9492
DJ
461 unsigned int has_pc_info : 1;
462
463 /* Flag set if the SCOPE field of this structure has been
464 computed. */
465 unsigned int scope_set : 1;
466
fa4028e9
JB
467 /* Flag set if the DIE has a byte_size attribute. */
468 unsigned int has_byte_size : 1;
469
72bf9492
DJ
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
c906108c 473 char *name;
57c22c6c 474 char *dirname;
72bf9492
DJ
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
72bf9492
DJ
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
fe1b8b76 490 gdb_byte *sibling;
72bf9492
DJ
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
aaa75496
JB
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
72bf9492
DJ
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
503 };
504
505/* This data structure holds the information of an abbrev. */
506struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
c906108c
SS
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522/* This data structure holds a complete die structure. */
523struct die_info
524 {
c5aa993b 525 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
639d11d3
DC
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
78ba4af6 540
c5aa993b 541 struct type *type; /* Cached type information */
c906108c
SS
542 };
543
544/* Attributes have a name and a value */
545struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
ce5d95e1
JB
553 unsigned long unsnd;
554 long int snd;
c906108c
SS
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
5fb290d7
DJ
560struct function_range
561{
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566};
567
c906108c
SS
568/* Get at parts of an attribute structure */
569
570#define DW_STRING(attr) ((attr)->u.str)
571#define DW_UNSND(attr) ((attr)->u.unsnd)
572#define DW_BLOCK(attr) ((attr)->u.blk)
573#define DW_SND(attr) ((attr)->u.snd)
574#define DW_ADDR(attr) ((attr)->u.addr)
575
576/* Blocks are a bunch of untyped bytes. */
577struct dwarf_block
578 {
579 unsigned int size;
fe1b8b76 580 gdb_byte *data;
c906108c
SS
581 };
582
c906108c
SS
583#ifndef ATTR_ALLOC_CHUNK
584#define ATTR_ALLOC_CHUNK 4
585#endif
586
c906108c
SS
587/* Allocate fields for structs, unions and enums in this size. */
588#ifndef DW_FIELD_ALLOC_CHUNK
589#define DW_FIELD_ALLOC_CHUNK 4
590#endif
591
c906108c
SS
592/* A zeroed version of a partial die for initialization purposes. */
593static struct partial_die_info zeroed_partial_die;
594
c906108c
SS
595/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598static int bits_per_byte = 8;
599
600/* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603struct field_info
c5aa993b
JM
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
c906108c 614
c5aa993b
JM
615 /* Number of fields. */
616 int nfields;
c906108c 617
c5aa993b
JM
618 /* Number of baseclasses. */
619 int nbaseclasses;
c906108c 620
c5aa993b
JM
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
c906108c 623
c5aa993b
JM
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
c906108c 632
c5aa993b
JM
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
c906108c 643
c5aa993b
JM
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
c906108c 647
10b3939b
DJ
648/* One item on the queue of compilation units to read in full symbols
649 for. */
650struct dwarf2_queue_item
651{
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654};
655
656/* The current queue. */
657static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
ae038cb0
DJ
659/* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664static int dwarf2_max_cache_age = 5;
920d2a44
AC
665static void
666show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668{
669 fprintf_filtered (file, _("\
670The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672}
673
ae038cb0 674
c906108c
SS
675/* Various complaints about symbol reading that don't abort the process */
676
4d3c2250
KB
677static void
678dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 679{
4d3c2250 680 complaint (&symfile_complaints,
e2e0b3e5 681 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
682}
683
25e43795
DJ
684static void
685dwarf2_debug_line_missing_file_complaint (void)
686{
687 complaint (&symfile_complaints,
688 _(".debug_line section has line data without a file"));
689}
690
4d3c2250
KB
691static void
692dwarf2_complex_location_expr_complaint (void)
2e276125 693{
e2e0b3e5 694 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
695}
696
4d3c2250
KB
697static void
698dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
699 int arg3)
2e276125 700{
4d3c2250 701 complaint (&symfile_complaints,
e2e0b3e5 702 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
703 arg2, arg3);
704}
705
706static void
707dwarf2_macros_too_long_complaint (void)
2e276125 708{
4d3c2250 709 complaint (&symfile_complaints,
e2e0b3e5 710 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
711}
712
713static void
714dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 715{
4d3c2250 716 complaint (&symfile_complaints,
e2e0b3e5 717 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
718 arg1);
719}
720
721static void
722dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 723{
4d3c2250 724 complaint (&symfile_complaints,
e2e0b3e5 725 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 726}
c906108c 727
c906108c
SS
728/* local function prototypes */
729
4efb68b1 730static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
731
732#if 0
a14ed312 733static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
734#endif
735
aaa75496
JB
736static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
737 struct objfile *);
738
739static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
740 struct partial_die_info *,
741 struct partial_symtab *);
742
a14ed312 743static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 744
72bf9492
DJ
745static void scan_partial_symbols (struct partial_die_info *,
746 CORE_ADDR *, CORE_ADDR *,
747 struct dwarf2_cu *);
c906108c 748
72bf9492
DJ
749static void add_partial_symbol (struct partial_die_info *,
750 struct dwarf2_cu *);
63d06c5c 751
72bf9492 752static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 753
72bf9492
DJ
754static void add_partial_namespace (struct partial_die_info *pdi,
755 CORE_ADDR *lowpc, CORE_ADDR *highpc,
756 struct dwarf2_cu *cu);
63d06c5c 757
72bf9492
DJ
758static void add_partial_enumeration (struct partial_die_info *enum_pdi,
759 struct dwarf2_cu *cu);
91c24f0a 760
fe1b8b76
JB
761static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
762 gdb_byte *info_ptr,
763 bfd *abfd,
764 struct dwarf2_cu *cu);
91c24f0a 765
a14ed312 766static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 767
a14ed312 768static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 769
fe1b8b76 770gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 771
e7c27a73 772static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 773
f3dd6933 774static void dwarf2_free_abbrev_table (void *);
c906108c 775
fe1b8b76 776static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 777 struct dwarf2_cu *);
72bf9492 778
57349743 779static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 780 struct dwarf2_cu *);
c906108c 781
fe1b8b76 782static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
783 struct dwarf2_cu *);
784
fe1b8b76
JB
785static gdb_byte *read_partial_die (struct partial_die_info *,
786 struct abbrev_info *abbrev, unsigned int,
787 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 788
72bf9492 789static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 790 struct dwarf2_cu *);
72bf9492
DJ
791
792static void fixup_partial_die (struct partial_die_info *,
793 struct dwarf2_cu *);
794
fe1b8b76
JB
795static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
796 struct dwarf2_cu *, int *);
c906108c 797
fe1b8b76
JB
798static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
799 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 800
fe1b8b76
JB
801static gdb_byte *read_attribute_value (struct attribute *, unsigned,
802 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 803
fe1b8b76 804static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 805
fe1b8b76 806static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 807
fe1b8b76 808static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 809
fe1b8b76 810static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 811
fe1b8b76 812static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 813
fe1b8b76 814static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 815 unsigned int *);
c906108c 816
fe1b8b76 817static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 818 struct comp_unit_head *, unsigned int *);
613e1657 819
fe1b8b76 820static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 821 unsigned int *);
613e1657 822
fe1b8b76 823static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 824
fe1b8b76 825static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 826
fe1b8b76
JB
827static char *read_indirect_string (bfd *, gdb_byte *,
828 const struct comp_unit_head *,
829 unsigned int *);
4bdf3d34 830
fe1b8b76 831static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 832
fe1b8b76 833static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 834
fe1b8b76 835static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 836
e142c38c 837static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 838
e142c38c
DJ
839static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
840 struct dwarf2_cu *);
c906108c 841
05cf31d1
JB
842static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
843 struct dwarf2_cu *cu);
844
e142c38c 845static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 846
e142c38c
DJ
847static struct die_info *die_specification (struct die_info *die,
848 struct dwarf2_cu *);
63d06c5c 849
debd256d
JB
850static void free_line_header (struct line_header *lh);
851
aaa75496
JB
852static void add_file_name (struct line_header *, char *, unsigned int,
853 unsigned int, unsigned int);
854
debd256d
JB
855static struct line_header *(dwarf_decode_line_header
856 (unsigned int offset,
e7c27a73 857 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
858
859static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 860 struct dwarf2_cu *, struct partial_symtab *);
c906108c 861
4f1520fb 862static void dwarf2_start_subfile (char *, char *, char *);
c906108c 863
a14ed312 864static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 865 struct dwarf2_cu *);
c906108c 866
a14ed312 867static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 868 struct dwarf2_cu *);
c906108c 869
2df3850c
JM
870static void dwarf2_const_value_data (struct attribute *attr,
871 struct symbol *sym,
872 int bits);
873
e7c27a73 874static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 875
e7c27a73
DJ
876static struct type *die_containing_type (struct die_info *,
877 struct dwarf2_cu *);
c906108c 878
e7c27a73 879static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73 881static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 882
086ed43d 883static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 884
fe1b8b76
JB
885static char *typename_concat (struct obstack *,
886 const char *prefix,
887 const char *suffix,
987504bb 888 struct dwarf2_cu *);
63d06c5c 889
e7c27a73 890static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 891
e7c27a73 892static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 893
a02abb62
JB
894static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
895
e7c27a73 896static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 897
e7c27a73 898static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 899
e7c27a73 900static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 901
a14ed312 902static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 903 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 904
fae299cd
DC
905static void get_scope_pc_bounds (struct die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 struct dwarf2_cu *);
908
a14ed312 909static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 910 struct dwarf2_cu *);
c906108c 911
a14ed312 912static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 913 struct type *, struct dwarf2_cu *);
c906108c 914
a14ed312 915static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 916 struct die_info *, struct type *,
e7c27a73 917 struct dwarf2_cu *);
c906108c 918
a14ed312 919static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 920 struct type *, struct dwarf2_cu *);
c906108c 921
134d01f1
DJ
922static void read_structure_type (struct die_info *, struct dwarf2_cu *);
923
924static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 925
8176b9b8
DC
926static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
927
e7c27a73 928static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 929
e7c27a73 930static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 931
38d518c9 932static const char *namespace_name (struct die_info *die,
e142c38c 933 int *is_anonymous, struct dwarf2_cu *);
38d518c9 934
134d01f1
DJ
935static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
936
937static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 938
e7c27a73 939static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
c906108c 940
e7c27a73 941static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 942
e7c27a73 943static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 944
7ca2d3a3
DL
945static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
946 struct dwarf2_cu *);
947
e7c27a73 948static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 949
e7c27a73
DJ
950static void read_tag_ptr_to_member_type (struct die_info *,
951 struct dwarf2_cu *);
c906108c 952
e7c27a73 953static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 954
e7c27a73 955static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 956
e7c27a73 957static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 958
e7c27a73 959static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 960
e7c27a73 961static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 962
fe1b8b76 963static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 964
fe1b8b76 965static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 966 struct dwarf2_cu *,
fe1b8b76 967 gdb_byte **new_info_ptr,
639d11d3
DC
968 struct die_info *parent);
969
fe1b8b76 970static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 971 struct dwarf2_cu *,
fe1b8b76 972 gdb_byte **new_info_ptr,
639d11d3
DC
973 struct die_info *parent);
974
a14ed312 975static void free_die_list (struct die_info *);
c906108c 976
e7c27a73 977static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 978
e142c38c 979static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 980
e142c38c 981static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 982
e142c38c
DJ
983static struct die_info *dwarf2_extension (struct die_info *die,
984 struct dwarf2_cu *);
9219021c 985
a14ed312 986static char *dwarf_tag_name (unsigned int);
c906108c 987
a14ed312 988static char *dwarf_attr_name (unsigned int);
c906108c 989
a14ed312 990static char *dwarf_form_name (unsigned int);
c906108c 991
a14ed312 992static char *dwarf_stack_op_name (unsigned int);
c906108c 993
a14ed312 994static char *dwarf_bool_name (unsigned int);
c906108c 995
a14ed312 996static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
997
998#if 0
a14ed312 999static char *dwarf_cfi_name (unsigned int);
c906108c 1000
a14ed312 1001struct die_info *copy_die (struct die_info *);
c906108c
SS
1002#endif
1003
f9aca02d 1004static struct die_info *sibling_die (struct die_info *);
c906108c 1005
f9aca02d 1006static void dump_die (struct die_info *);
c906108c 1007
f9aca02d 1008static void dump_die_list (struct die_info *);
c906108c 1009
10b3939b
DJ
1010static void store_in_ref_table (unsigned int, struct die_info *,
1011 struct dwarf2_cu *);
c906108c 1012
e142c38c
DJ
1013static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1014 struct dwarf2_cu *);
c906108c 1015
a02abb62
JB
1016static int dwarf2_get_attr_constant_value (struct attribute *, int);
1017
10b3939b
DJ
1018static struct die_info *follow_die_ref (struct die_info *,
1019 struct attribute *,
1020 struct dwarf2_cu *);
c906108c 1021
e142c38c
DJ
1022static struct type *dwarf2_fundamental_type (struct objfile *, int,
1023 struct dwarf2_cu *);
c906108c
SS
1024
1025/* memory allocation interface */
1026
7b5a2f43 1027static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1028
f3dd6933 1029static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1030
a14ed312 1031static struct die_info *dwarf_alloc_die (void);
c906108c 1032
e142c38c 1033static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1034
e142c38c
DJ
1035static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1036 struct dwarf2_cu *);
5fb290d7 1037
2e276125 1038static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1039 char *, bfd *, struct dwarf2_cu *);
2e276125 1040
8e19ed76
PS
1041static int attr_form_is_block (struct attribute *);
1042
93e7bd98
DJ
1043static void dwarf2_symbol_mark_computed (struct attribute *attr,
1044 struct symbol *sym,
1045 struct dwarf2_cu *cu);
4c2df51b 1046
fe1b8b76
JB
1047static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1048 struct dwarf2_cu *cu);
4bb7a0a7 1049
72bf9492
DJ
1050static void free_stack_comp_unit (void *);
1051
72bf9492
DJ
1052static hashval_t partial_die_hash (const void *item);
1053
1054static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1055
ae038cb0
DJ
1056static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1057 (unsigned long offset, struct objfile *objfile);
1058
1059static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1060 (unsigned long offset, struct objfile *objfile);
1061
1062static void free_one_comp_unit (void *);
1063
1064static void free_cached_comp_units (void *);
1065
1066static void age_cached_comp_units (void);
1067
1068static void free_one_cached_comp_unit (void *);
1069
1c379e20
DJ
1070static void set_die_type (struct die_info *, struct type *,
1071 struct dwarf2_cu *);
1072
1c379e20
DJ
1073static void reset_die_and_siblings_types (struct die_info *,
1074 struct dwarf2_cu *);
1c379e20 1075
ae038cb0
DJ
1076static void create_all_comp_units (struct objfile *);
1077
31ffec48
DJ
1078static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1079 struct objfile *);
10b3939b
DJ
1080
1081static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1082
1083static void dwarf2_add_dependence (struct dwarf2_cu *,
1084 struct dwarf2_per_cu_data *);
1085
ae038cb0
DJ
1086static void dwarf2_mark (struct dwarf2_cu *);
1087
1088static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1089
72019c9c
GM
1090static void read_set_type (struct die_info *, struct dwarf2_cu *);
1091
1092
c906108c
SS
1093/* Try to locate the sections we need for DWARF 2 debugging
1094 information and return true if we have enough to do something. */
1095
1096int
6502dd73 1097dwarf2_has_info (struct objfile *objfile)
c906108c 1098{
6502dd73
DJ
1099 struct dwarf2_per_objfile *data;
1100
1101 /* Initialize per-objfile state. */
1102 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1103 memset (data, 0, sizeof (*data));
1104 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1105 dwarf2_per_objfile = data;
1106
188dd5d6
DJ
1107 dwarf_info_section = 0;
1108 dwarf_abbrev_section = 0;
1109 dwarf_line_section = 0;
1110 dwarf_str_section = 0;
1111 dwarf_macinfo_section = 0;
1112 dwarf_frame_section = 0;
1113 dwarf_eh_frame_section = 0;
1114 dwarf_ranges_section = 0;
1115 dwarf_loc_section = 0;
af34e669 1116
6502dd73 1117 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1118 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1119}
1120
1121/* This function is mapped across the sections and remembers the
1122 offset and size of each of the debugging sections we are interested
1123 in. */
1124
1125static void
72dca2f5 1126dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1127{
6314a349 1128 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1129 {
2c500098 1130 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1131 dwarf_info_section = sectp;
c906108c 1132 }
6314a349 1133 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1134 {
2c500098 1135 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1136 dwarf_abbrev_section = sectp;
c906108c 1137 }
6314a349 1138 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1139 {
2c500098 1140 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1141 dwarf_line_section = sectp;
c906108c 1142 }
6314a349 1143 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1144 {
2c500098 1145 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1146 dwarf_pubnames_section = sectp;
c906108c 1147 }
6314a349 1148 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1149 {
2c500098 1150 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1151 dwarf_aranges_section = sectp;
c906108c 1152 }
6314a349 1153 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1154 {
2c500098 1155 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1156 dwarf_loc_section = sectp;
c906108c 1157 }
6314a349 1158 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1159 {
2c500098 1160 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1161 dwarf_macinfo_section = sectp;
c906108c 1162 }
6314a349 1163 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1164 {
2c500098 1165 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1166 dwarf_str_section = sectp;
c906108c 1167 }
6314a349 1168 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1169 {
2c500098 1170 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1171 dwarf_frame_section = sectp;
b6af0555 1172 }
6314a349 1173 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1174 {
3799ccc6
EZ
1175 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1176 if (aflag & SEC_HAS_CONTENTS)
1177 {
2c500098 1178 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1179 dwarf_eh_frame_section = sectp;
1180 }
b6af0555 1181 }
6314a349 1182 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1183 {
2c500098 1184 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1185 dwarf_ranges_section = sectp;
af34e669 1186 }
72dca2f5
FR
1187
1188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1189 && bfd_section_vma (abfd, sectp) == 0)
1190 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1191}
1192
1193/* Build a partial symbol table. */
1194
1195void
fba45db2 1196dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1197{
c906108c
SS
1198 /* We definitely need the .debug_info and .debug_abbrev sections */
1199
6502dd73
DJ
1200 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1201 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1202
1203 if (dwarf_line_section)
6502dd73 1204 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1205 else
6502dd73 1206 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1207
188dd5d6 1208 if (dwarf_str_section)
6502dd73 1209 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1210 else
6502dd73 1211 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1212
188dd5d6 1213 if (dwarf_macinfo_section)
6502dd73 1214 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1215 dwarf_macinfo_section);
2e276125 1216 else
6502dd73 1217 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1218
188dd5d6 1219 if (dwarf_ranges_section)
6502dd73 1220 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1221 else
6502dd73 1222 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1223
188dd5d6 1224 if (dwarf_loc_section)
6502dd73 1225 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1226 else
6502dd73 1227 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1228
ef96bde8
EZ
1229 if (mainline
1230 || (objfile->global_psymbols.size == 0
1231 && objfile->static_psymbols.size == 0))
c906108c
SS
1232 {
1233 init_psymbol_list (objfile, 1024);
1234 }
1235
1236#if 0
1237 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1238 {
d4f3574e 1239 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1240 .debug_pubnames sections */
1241
d4f3574e 1242 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1243 }
1244 else
1245#endif
1246 /* only test this case for now */
c5aa993b 1247 {
c906108c 1248 /* In this case we have to work a bit harder */
d4f3574e 1249 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1250 }
1251}
1252
1253#if 0
1254/* Build the partial symbol table from the information in the
1255 .debug_pubnames and .debug_aranges sections. */
1256
1257static void
fba45db2 1258dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1259{
1260 bfd *abfd = objfile->obfd;
1261 char *aranges_buffer, *pubnames_buffer;
1262 char *aranges_ptr, *pubnames_ptr;
1263 unsigned int entry_length, version, info_offset, info_size;
1264
1265 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1266 dwarf_pubnames_section);
c906108c 1267 pubnames_ptr = pubnames_buffer;
6502dd73 1268 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1269 {
613e1657 1270 struct comp_unit_head cu_header;
891d2f0b 1271 unsigned int bytes_read;
613e1657
KB
1272
1273 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1274 &bytes_read);
613e1657 1275 pubnames_ptr += bytes_read;
c906108c
SS
1276 version = read_1_byte (abfd, pubnames_ptr);
1277 pubnames_ptr += 1;
1278 info_offset = read_4_bytes (abfd, pubnames_ptr);
1279 pubnames_ptr += 4;
1280 info_size = read_4_bytes (abfd, pubnames_ptr);
1281 pubnames_ptr += 4;
1282 }
1283
1284 aranges_buffer = dwarf2_read_section (objfile,
086df311 1285 dwarf_aranges_section);
c906108c
SS
1286
1287}
1288#endif
1289
107d2387 1290/* Read in the comp unit header information from the debug_info at
917c78fc 1291 info_ptr. */
107d2387 1292
fe1b8b76 1293static gdb_byte *
107d2387 1294read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1295 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1296{
1297 int signed_addr;
891d2f0b 1298 unsigned int bytes_read;
613e1657
KB
1299 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1300 &bytes_read);
1301 info_ptr += bytes_read;
107d2387
AC
1302 cu_header->version = read_2_bytes (abfd, info_ptr);
1303 info_ptr += 2;
613e1657
KB
1304 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1305 &bytes_read);
1306 info_ptr += bytes_read;
107d2387
AC
1307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1308 info_ptr += 1;
1309 signed_addr = bfd_get_sign_extend_vma (abfd);
1310 if (signed_addr < 0)
8e65ff28 1311 internal_error (__FILE__, __LINE__,
e2e0b3e5 1312 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1313 cu_header->signed_addr_p = signed_addr;
1314 return info_ptr;
1315}
1316
fe1b8b76
JB
1317static gdb_byte *
1318partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1319 bfd *abfd)
1320{
fe1b8b76 1321 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1322
1323 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1324
2b949cb6 1325 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1326 error (_("Dwarf Error: wrong version in compilation unit header "
1327 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1328 2, bfd_get_filename (abfd));
1329
1330 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1331 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1332 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1333 (long) header->abbrev_offset,
1334 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1335 bfd_get_filename (abfd));
1336
1337 if (beg_of_comp_unit + header->length + header->initial_length_size
1338 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1339 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1340 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1341 (long) header->length,
1342 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1343 bfd_get_filename (abfd));
1344
1345 return info_ptr;
1346}
1347
aaa75496
JB
1348/* Allocate a new partial symtab for file named NAME and mark this new
1349 partial symtab as being an include of PST. */
1350
1351static void
1352dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1353 struct objfile *objfile)
1354{
1355 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1356
1357 subpst->section_offsets = pst->section_offsets;
1358 subpst->textlow = 0;
1359 subpst->texthigh = 0;
1360
1361 subpst->dependencies = (struct partial_symtab **)
1362 obstack_alloc (&objfile->objfile_obstack,
1363 sizeof (struct partial_symtab *));
1364 subpst->dependencies[0] = pst;
1365 subpst->number_of_dependencies = 1;
1366
1367 subpst->globals_offset = 0;
1368 subpst->n_global_syms = 0;
1369 subpst->statics_offset = 0;
1370 subpst->n_static_syms = 0;
1371 subpst->symtab = NULL;
1372 subpst->read_symtab = pst->read_symtab;
1373 subpst->readin = 0;
1374
1375 /* No private part is necessary for include psymtabs. This property
1376 can be used to differentiate between such include psymtabs and
10b3939b 1377 the regular ones. */
58a9656e 1378 subpst->read_symtab_private = NULL;
aaa75496
JB
1379}
1380
1381/* Read the Line Number Program data and extract the list of files
1382 included by the source file represented by PST. Build an include
1383 partial symtab for each of these included files.
1384
1385 This procedure assumes that there *is* a Line Number Program in
1386 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1387 before calling this procedure. */
1388
1389static void
1390dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1391 struct partial_die_info *pdi,
1392 struct partial_symtab *pst)
1393{
1394 struct objfile *objfile = cu->objfile;
1395 bfd *abfd = objfile->obfd;
1396 struct line_header *lh;
1397
1398 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1399 if (lh == NULL)
1400 return; /* No linetable, so no includes. */
1401
1402 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1403
1404 free_line_header (lh);
1405}
1406
1407
c906108c
SS
1408/* Build the partial symbol table by doing a quick pass through the
1409 .debug_info and .debug_abbrev sections. */
1410
1411static void
fba45db2 1412dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1413{
1414 /* Instead of reading this into a big buffer, we should probably use
1415 mmap() on architectures that support it. (FIXME) */
1416 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1417 gdb_byte *info_ptr;
1418 gdb_byte *beg_of_comp_unit;
c906108c
SS
1419 struct partial_die_info comp_unit_die;
1420 struct partial_symtab *pst;
ae038cb0 1421 struct cleanup *back_to;
e142c38c 1422 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1423
6502dd73 1424 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1425
ae038cb0
DJ
1426 /* Any cached compilation units will be linked by the per-objfile
1427 read_in_chain. Make sure to free them when we're done. */
1428 back_to = make_cleanup (free_cached_comp_units, NULL);
1429
10b3939b
DJ
1430 create_all_comp_units (objfile);
1431
6502dd73 1432 /* Since the objects we're extracting from .debug_info vary in
af703f96 1433 length, only the individual functions to extract them (like
72bf9492 1434 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1435 the buffer is large enough to hold another complete object.
1436
6502dd73
DJ
1437 At the moment, they don't actually check that. If .debug_info
1438 holds just one extra byte after the last compilation unit's dies,
1439 then read_comp_unit_head will happily read off the end of the
1440 buffer. read_partial_die is similarly casual. Those functions
1441 should be fixed.
af703f96
JB
1442
1443 For this loop condition, simply checking whether there's any data
1444 left at all should be sufficient. */
6502dd73
DJ
1445 while (info_ptr < (dwarf2_per_objfile->info_buffer
1446 + dwarf2_per_objfile->info_size))
c906108c 1447 {
f3dd6933 1448 struct cleanup *back_to_inner;
e7c27a73 1449 struct dwarf2_cu cu;
72bf9492
DJ
1450 struct abbrev_info *abbrev;
1451 unsigned int bytes_read;
1452 struct dwarf2_per_cu_data *this_cu;
1453
c906108c 1454 beg_of_comp_unit = info_ptr;
c906108c 1455
72bf9492
DJ
1456 memset (&cu, 0, sizeof (cu));
1457
1458 obstack_init (&cu.comp_unit_obstack);
1459
1460 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1461
e7c27a73 1462 cu.objfile = objfile;
72bf9492 1463 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1464
57349743 1465 /* Complete the cu_header */
6502dd73 1466 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1467 cu.header.first_die_ptr = info_ptr;
1468 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1469
e142c38c
DJ
1470 cu.list_in_scope = &file_symbols;
1471
c906108c 1472 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1473 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1474 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1475
10b3939b 1476 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1477
c906108c 1478 /* Read the compilation unit die */
72bf9492
DJ
1479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1480 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1481 abfd, info_ptr, &cu);
c906108c 1482
31ffec48
DJ
1483 if (comp_unit_die.tag == DW_TAG_partial_unit)
1484 {
1485 info_ptr = (beg_of_comp_unit + cu.header.length
1486 + cu.header.initial_length_size);
1487 do_cleanups (back_to_inner);
1488 continue;
1489 }
1490
c906108c 1491 /* Set the language we're debugging */
e142c38c 1492 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1493
1494 /* Allocate a new partial symbol table structure */
d4f3574e 1495 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1496 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1497 comp_unit_die.lowpc,
1498 objfile->global_psymbols.next,
1499 objfile->static_psymbols.next);
1500
ae038cb0
DJ
1501 if (comp_unit_die.dirname)
1502 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1503
10b3939b
DJ
1504 pst->read_symtab_private = (char *) this_cu;
1505
613e1657 1506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1507
1508 /* Store the function that reads in the rest of the symbol table */
1509 pst->read_symtab = dwarf2_psymtab_to_symtab;
1510
10b3939b
DJ
1511 /* If this compilation unit was already read in, free the
1512 cached copy in order to read it in again. This is
1513 necessary because we skipped some symbols when we first
1514 read in the compilation unit (see load_partial_dies).
1515 This problem could be avoided, but the benefit is
1516 unclear. */
1517 if (this_cu->cu != NULL)
1518 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1519
10b3939b 1520 cu.per_cu = this_cu;
ae038cb0 1521
10b3939b
DJ
1522 /* Note that this is a pointer to our stack frame, being
1523 added to a global data structure. It will be cleaned up
1524 in free_stack_comp_unit when we finish with this
1525 compilation unit. */
1526 this_cu->cu = &cu;
ae038cb0 1527
10b3939b 1528 this_cu->psymtab = pst;
ae038cb0 1529
c906108c
SS
1530 /* Check if comp unit has_children.
1531 If so, read the rest of the partial symbols from this comp unit.
1532 If not, there's no more debug_info for this comp unit. */
1533 if (comp_unit_die.has_children)
1534 {
72bf9492
DJ
1535 struct partial_die_info *first_die;
1536
91c24f0a
DC
1537 lowpc = ((CORE_ADDR) -1);
1538 highpc = ((CORE_ADDR) 0);
1539
72bf9492
DJ
1540 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1541
1542 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1543
91c24f0a
DC
1544 /* If we didn't find a lowpc, set it to highpc to avoid
1545 complaints from `maint check'. */
1546 if (lowpc == ((CORE_ADDR) -1))
1547 lowpc = highpc;
72bf9492 1548
c906108c
SS
1549 /* If the compilation unit didn't have an explicit address range,
1550 then use the information extracted from its child dies. */
0b010bcc 1551 if (! comp_unit_die.has_pc_info)
c906108c 1552 {
c5aa993b 1553 comp_unit_die.lowpc = lowpc;
c906108c
SS
1554 comp_unit_die.highpc = highpc;
1555 }
1556 }
c5aa993b 1557 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1558 pst->texthigh = comp_unit_die.highpc + baseaddr;
1559
1560 pst->n_global_syms = objfile->global_psymbols.next -
1561 (objfile->global_psymbols.list + pst->globals_offset);
1562 pst->n_static_syms = objfile->static_psymbols.next -
1563 (objfile->static_psymbols.list + pst->statics_offset);
1564 sort_pst_symbols (pst);
1565
1566 /* If there is already a psymtab or symtab for a file of this
1567 name, remove it. (If there is a symtab, more drastic things
1568 also happen.) This happens in VxWorks. */
1569 free_named_symtabs (pst->filename);
1570
dd373385
EZ
1571 info_ptr = beg_of_comp_unit + cu.header.length
1572 + cu.header.initial_length_size;
1573
aaa75496
JB
1574 if (comp_unit_die.has_stmt_list)
1575 {
1576 /* Get the list of files included in the current compilation unit,
1577 and build a psymtab for each of them. */
1578 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1579 }
1580
f3dd6933 1581 do_cleanups (back_to_inner);
c906108c 1582 }
ae038cb0
DJ
1583 do_cleanups (back_to);
1584}
1585
1586/* Load the DIEs for a secondary CU into memory. */
1587
1588static void
1589load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1590{
1591 bfd *abfd = objfile->obfd;
fe1b8b76 1592 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1593 struct partial_die_info comp_unit_die;
1594 struct dwarf2_cu *cu;
1595 struct abbrev_info *abbrev;
1596 unsigned int bytes_read;
1597 struct cleanup *back_to;
1598
1599 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1600 beg_of_comp_unit = info_ptr;
1601
1602 cu = xmalloc (sizeof (struct dwarf2_cu));
1603 memset (cu, 0, sizeof (struct dwarf2_cu));
1604
1605 obstack_init (&cu->comp_unit_obstack);
1606
1607 cu->objfile = objfile;
1608 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1609
1610 /* Complete the cu_header. */
1611 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1612 cu->header.first_die_ptr = info_ptr;
1613 cu->header.cu_head_ptr = beg_of_comp_unit;
1614
1615 /* Read the abbrevs for this compilation unit into a table. */
1616 dwarf2_read_abbrevs (abfd, cu);
1617 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1618
1619 /* Read the compilation unit die. */
1620 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1621 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1622 abfd, info_ptr, cu);
1623
1624 /* Set the language we're debugging. */
1625 set_cu_language (comp_unit_die.language, cu);
1626
1627 /* Link this compilation unit into the compilation unit tree. */
1628 this_cu->cu = cu;
1629 cu->per_cu = this_cu;
1630
1631 /* Check if comp unit has_children.
1632 If so, read the rest of the partial symbols from this comp unit.
1633 If not, there's no more debug_info for this comp unit. */
1634 if (comp_unit_die.has_children)
1635 load_partial_dies (abfd, info_ptr, 0, cu);
1636
1637 do_cleanups (back_to);
1638}
1639
1640/* Create a list of all compilation units in OBJFILE. We do this only
1641 if an inter-comp-unit reference is found; presumably if there is one,
1642 there will be many, and one will occur early in the .debug_info section.
1643 So there's no point in building this list incrementally. */
1644
1645static void
1646create_all_comp_units (struct objfile *objfile)
1647{
1648 int n_allocated;
1649 int n_comp_units;
1650 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1651 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1652
1653 n_comp_units = 0;
1654 n_allocated = 10;
1655 all_comp_units = xmalloc (n_allocated
1656 * sizeof (struct dwarf2_per_cu_data *));
1657
1658 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1659 {
1660 struct comp_unit_head cu_header;
fe1b8b76 1661 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1662 struct dwarf2_per_cu_data *this_cu;
1663 unsigned long offset;
891d2f0b 1664 unsigned int bytes_read;
ae038cb0
DJ
1665
1666 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1667
1668 /* Read just enough information to find out where the next
1669 compilation unit is. */
dd373385 1670 cu_header.initial_length_size = 0;
ae038cb0
DJ
1671 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1672 &cu_header, &bytes_read);
1673
1674 /* Save the compilation unit for later lookup. */
1675 this_cu = obstack_alloc (&objfile->objfile_obstack,
1676 sizeof (struct dwarf2_per_cu_data));
1677 memset (this_cu, 0, sizeof (*this_cu));
1678 this_cu->offset = offset;
1679 this_cu->length = cu_header.length + cu_header.initial_length_size;
1680
1681 if (n_comp_units == n_allocated)
1682 {
1683 n_allocated *= 2;
1684 all_comp_units = xrealloc (all_comp_units,
1685 n_allocated
1686 * sizeof (struct dwarf2_per_cu_data *));
1687 }
1688 all_comp_units[n_comp_units++] = this_cu;
1689
1690 info_ptr = info_ptr + this_cu->length;
1691 }
1692
1693 dwarf2_per_objfile->all_comp_units
1694 = obstack_alloc (&objfile->objfile_obstack,
1695 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1696 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1697 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1698 xfree (all_comp_units);
1699 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1700}
1701
72bf9492
DJ
1702/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1703 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1704 in CU. */
c906108c 1705
72bf9492
DJ
1706static void
1707scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1708 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1709{
e7c27a73 1710 struct objfile *objfile = cu->objfile;
c906108c 1711 bfd *abfd = objfile->obfd;
72bf9492 1712 struct partial_die_info *pdi;
c906108c 1713
91c24f0a
DC
1714 /* Now, march along the PDI's, descending into ones which have
1715 interesting children but skipping the children of the other ones,
1716 until we reach the end of the compilation unit. */
c906108c 1717
72bf9492 1718 pdi = first_die;
91c24f0a 1719
72bf9492
DJ
1720 while (pdi != NULL)
1721 {
1722 fixup_partial_die (pdi, cu);
c906108c 1723
91c24f0a
DC
1724 /* Anonymous namespaces have no name but have interesting
1725 children, so we need to look at them. Ditto for anonymous
1726 enums. */
933c6fe4 1727
72bf9492
DJ
1728 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1729 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1730 {
72bf9492 1731 switch (pdi->tag)
c906108c
SS
1732 {
1733 case DW_TAG_subprogram:
72bf9492 1734 if (pdi->has_pc_info)
c906108c 1735 {
72bf9492 1736 if (pdi->lowpc < *lowpc)
c906108c 1737 {
72bf9492 1738 *lowpc = pdi->lowpc;
c906108c 1739 }
72bf9492 1740 if (pdi->highpc > *highpc)
c906108c 1741 {
72bf9492 1742 *highpc = pdi->highpc;
c906108c 1743 }
72bf9492 1744 if (!pdi->is_declaration)
c906108c 1745 {
72bf9492 1746 add_partial_symbol (pdi, cu);
c906108c
SS
1747 }
1748 }
1749 break;
1750 case DW_TAG_variable:
1751 case DW_TAG_typedef:
91c24f0a 1752 case DW_TAG_union_type:
72bf9492 1753 if (!pdi->is_declaration)
63d06c5c 1754 {
72bf9492 1755 add_partial_symbol (pdi, cu);
63d06c5c
DC
1756 }
1757 break;
c906108c
SS
1758 case DW_TAG_class_type:
1759 case DW_TAG_structure_type:
72bf9492 1760 if (!pdi->is_declaration)
c906108c 1761 {
72bf9492 1762 add_partial_symbol (pdi, cu);
c906108c
SS
1763 }
1764 break;
91c24f0a 1765 case DW_TAG_enumeration_type:
72bf9492
DJ
1766 if (!pdi->is_declaration)
1767 add_partial_enumeration (pdi, cu);
c906108c
SS
1768 break;
1769 case DW_TAG_base_type:
a02abb62 1770 case DW_TAG_subrange_type:
c906108c 1771 /* File scope base type definitions are added to the partial
c5aa993b 1772 symbol table. */
72bf9492 1773 add_partial_symbol (pdi, cu);
c906108c 1774 break;
d9fa45fe 1775 case DW_TAG_namespace:
72bf9492 1776 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1777 break;
c906108c
SS
1778 default:
1779 break;
1780 }
1781 }
1782
72bf9492
DJ
1783 /* If the die has a sibling, skip to the sibling. */
1784
1785 pdi = pdi->die_sibling;
1786 }
1787}
1788
1789/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1790
72bf9492 1791 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1792 name is concatenated with "::" and the partial DIE's name. For
1793 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1794 Enumerators are an exception; they use the scope of their parent
1795 enumeration type, i.e. the name of the enumeration type is not
1796 prepended to the enumerator.
91c24f0a 1797
72bf9492
DJ
1798 There are two complexities. One is DW_AT_specification; in this
1799 case "parent" means the parent of the target of the specification,
1800 instead of the direct parent of the DIE. The other is compilers
1801 which do not emit DW_TAG_namespace; in this case we try to guess
1802 the fully qualified name of structure types from their members'
1803 linkage names. This must be done using the DIE's children rather
1804 than the children of any DW_AT_specification target. We only need
1805 to do this for structures at the top level, i.e. if the target of
1806 any DW_AT_specification (if any; otherwise the DIE itself) does not
1807 have a parent. */
1808
1809/* Compute the scope prefix associated with PDI's parent, in
1810 compilation unit CU. The result will be allocated on CU's
1811 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1812 field. NULL is returned if no prefix is necessary. */
1813static char *
1814partial_die_parent_scope (struct partial_die_info *pdi,
1815 struct dwarf2_cu *cu)
1816{
1817 char *grandparent_scope;
1818 struct partial_die_info *parent, *real_pdi;
91c24f0a 1819
72bf9492
DJ
1820 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1821 then this means the parent of the specification DIE. */
1822
1823 real_pdi = pdi;
72bf9492 1824 while (real_pdi->has_specification)
10b3939b 1825 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1826
1827 parent = real_pdi->die_parent;
1828 if (parent == NULL)
1829 return NULL;
1830
1831 if (parent->scope_set)
1832 return parent->scope;
1833
1834 fixup_partial_die (parent, cu);
1835
10b3939b 1836 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1837
1838 if (parent->tag == DW_TAG_namespace
1839 || parent->tag == DW_TAG_structure_type
1840 || parent->tag == DW_TAG_class_type
1841 || parent->tag == DW_TAG_union_type)
1842 {
1843 if (grandparent_scope == NULL)
1844 parent->scope = parent->name;
1845 else
987504bb
JJ
1846 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1847 parent->name, cu);
72bf9492
DJ
1848 }
1849 else if (parent->tag == DW_TAG_enumeration_type)
1850 /* Enumerators should not get the name of the enumeration as a prefix. */
1851 parent->scope = grandparent_scope;
1852 else
1853 {
1854 /* FIXME drow/2004-04-01: What should we be doing with
1855 function-local names? For partial symbols, we should probably be
1856 ignoring them. */
1857 complaint (&symfile_complaints,
e2e0b3e5 1858 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1859 parent->tag, pdi->offset);
1860 parent->scope = grandparent_scope;
c906108c
SS
1861 }
1862
72bf9492
DJ
1863 parent->scope_set = 1;
1864 return parent->scope;
1865}
1866
1867/* Return the fully scoped name associated with PDI, from compilation unit
1868 CU. The result will be allocated with malloc. */
1869static char *
1870partial_die_full_name (struct partial_die_info *pdi,
1871 struct dwarf2_cu *cu)
1872{
1873 char *parent_scope;
1874
1875 parent_scope = partial_die_parent_scope (pdi, cu);
1876 if (parent_scope == NULL)
1877 return NULL;
1878 else
987504bb 1879 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1880}
1881
1882static void
72bf9492 1883add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1884{
e7c27a73 1885 struct objfile *objfile = cu->objfile;
c906108c 1886 CORE_ADDR addr = 0;
decbce07 1887 char *actual_name = NULL;
72bf9492 1888 const char *my_prefix;
5c4e30ca 1889 const struct partial_symbol *psym = NULL;
e142c38c 1890 CORE_ADDR baseaddr;
72bf9492 1891 int built_actual_name = 0;
e142c38c
DJ
1892
1893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1894
72bf9492 1895 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1896 {
72bf9492
DJ
1897 actual_name = partial_die_full_name (pdi, cu);
1898 if (actual_name)
1899 built_actual_name = 1;
63d06c5c
DC
1900 }
1901
72bf9492
DJ
1902 if (actual_name == NULL)
1903 actual_name = pdi->name;
1904
c906108c
SS
1905 switch (pdi->tag)
1906 {
1907 case DW_TAG_subprogram:
1908 if (pdi->is_external)
1909 {
38d518c9 1910 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1911 mst_text, objfile); */
38d518c9 1912 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1913 VAR_DOMAIN, LOC_BLOCK,
1914 &objfile->global_psymbols,
1915 0, pdi->lowpc + baseaddr,
e142c38c 1916 cu->language, objfile);
c906108c
SS
1917 }
1918 else
1919 {
38d518c9 1920 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1921 mst_file_text, objfile); */
38d518c9 1922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1923 VAR_DOMAIN, LOC_BLOCK,
1924 &objfile->static_psymbols,
1925 0, pdi->lowpc + baseaddr,
e142c38c 1926 cu->language, objfile);
c906108c
SS
1927 }
1928 break;
1929 case DW_TAG_variable:
1930 if (pdi->is_external)
1931 {
1932 /* Global Variable.
1933 Don't enter into the minimal symbol tables as there is
1934 a minimal symbol table entry from the ELF symbols already.
1935 Enter into partial symbol table if it has a location
1936 descriptor or a type.
1937 If the location descriptor is missing, new_symbol will create
1938 a LOC_UNRESOLVED symbol, the address of the variable will then
1939 be determined from the minimal symbol table whenever the variable
1940 is referenced.
1941 The address for the partial symbol table entry is not
1942 used by GDB, but it comes in handy for debugging partial symbol
1943 table building. */
1944
1945 if (pdi->locdesc)
e7c27a73 1946 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1947 if (pdi->locdesc || pdi->has_type)
38d518c9 1948 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1949 VAR_DOMAIN, LOC_STATIC,
1950 &objfile->global_psymbols,
1951 0, addr + baseaddr,
e142c38c 1952 cu->language, objfile);
c906108c
SS
1953 }
1954 else
1955 {
1956 /* Static Variable. Skip symbols without location descriptors. */
1957 if (pdi->locdesc == NULL)
decbce07
MS
1958 {
1959 if (built_actual_name)
1960 xfree (actual_name);
1961 return;
1962 }
e7c27a73 1963 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1964 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1965 mst_file_data, objfile); */
38d518c9 1966 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1967 VAR_DOMAIN, LOC_STATIC,
1968 &objfile->static_psymbols,
1969 0, addr + baseaddr,
e142c38c 1970 cu->language, objfile);
c906108c
SS
1971 }
1972 break;
1973 case DW_TAG_typedef:
1974 case DW_TAG_base_type:
a02abb62 1975 case DW_TAG_subrange_type:
38d518c9 1976 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1977 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1978 &objfile->static_psymbols,
e142c38c 1979 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1980 break;
72bf9492
DJ
1981 case DW_TAG_namespace:
1982 add_psymbol_to_list (actual_name, strlen (actual_name),
1983 VAR_DOMAIN, LOC_TYPEDEF,
1984 &objfile->global_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
c906108c
SS
1987 case DW_TAG_class_type:
1988 case DW_TAG_structure_type:
1989 case DW_TAG_union_type:
1990 case DW_TAG_enumeration_type:
fa4028e9
JB
1991 /* Skip external references. The DWARF standard says in the section
1992 about "Structure, Union, and Class Type Entries": "An incomplete
1993 structure, union or class type is represented by a structure,
1994 union or class entry that does not have a byte size attribute
1995 and that has a DW_AT_declaration attribute." */
1996 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
1997 {
1998 if (built_actual_name)
1999 xfree (actual_name);
2000 return;
2001 }
fa4028e9 2002
63d06c5c
DC
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
38d518c9 2005 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2006 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
63d06c5c
DC
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
e142c38c 2011 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2012
987504bb 2013 if (cu->language == language_cplus
8c6860bb
JB
2014 || cu->language == language_java
2015 || cu->language == language_ada)
c906108c 2016 {
987504bb 2017 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2018 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2019 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2020 &objfile->global_psymbols,
e142c38c 2021 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2022 }
2023 break;
2024 case DW_TAG_enumerator:
38d518c9 2025 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2026 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
f6fe98ef
DJ
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
e142c38c 2031 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2032 break;
2033 default:
2034 break;
2035 }
5c4e30ca
DC
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
72bf9492
DJ
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
e142c38c 2046 if (cu->language == language_cplus
72bf9492 2047 && cu->has_namespace_info == 0
5c4e30ca
DC
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
72bf9492
DJ
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
c906108c
SS
2055}
2056
72bf9492
DJ
2057/* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2059 name listed in the die. */
2060
2061static int
72bf9492 2062pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2063{
63d06c5c
DC
2064 switch (tag)
2065 {
72bf9492 2066 case DW_TAG_namespace:
63d06c5c
DC
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077}
2078
5c4e30ca
DC
2079/* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
91c24f0a 2082
72bf9492
DJ
2083static void
2084add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2086 struct dwarf2_cu *cu)
91c24f0a 2087{
e7c27a73 2088 struct objfile *objfile = cu->objfile;
5c4e30ca 2089
72bf9492 2090 /* Add a symbol for the namespace. */
e7c27a73 2091
72bf9492 2092 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2093
2094 /* Now scan partial symbols in that namespace. */
2095
91c24f0a 2096 if (pdi->has_children)
72bf9492 2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2098}
2099
72bf9492
DJ
2100/* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
63d06c5c 2103
72bf9492
DJ
2104static void
2105guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
63d06c5c 2107{
987504bb
JJ
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
72bf9492 2110 && cu->has_namespace_info == 0
63d06c5c
DC
2111 && struct_pdi->has_children)
2112 {
63d06c5c
DC
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
134d01f1 2117 prefix (but see comment in read_structure_type). */
63d06c5c 2118
72bf9492
DJ
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
5d51ca54 2121
72bf9492
DJ
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
5d51ca54 2125
72bf9492 2126 real_pdi = struct_pdi;
72bf9492 2127 while (real_pdi->has_specification)
10b3939b 2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2129
72bf9492
DJ
2130 if (real_pdi->die_parent != NULL)
2131 return;
63d06c5c 2132
72bf9492
DJ
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2136 {
72bf9492 2137 char *actual_class_name
31c27f77
JJ
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
63d06c5c 2140 if (actual_class_name != NULL)
72bf9492
DJ
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
63d06c5c
DC
2148 break;
2149 }
72bf9492
DJ
2150
2151 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2152 }
2153 }
63d06c5c
DC
2154}
2155
91c24f0a
DC
2156/* Read a partial die corresponding to an enumeration type. */
2157
72bf9492
DJ
2158static void
2159add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
91c24f0a 2161{
e7c27a73 2162 struct objfile *objfile = cu->objfile;
91c24f0a 2163 bfd *abfd = objfile->obfd;
72bf9492 2164 struct partial_die_info *pdi;
91c24f0a
DC
2165
2166 if (enum_pdi->name != NULL)
72bf9492
DJ
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
91c24f0a 2171 {
72bf9492 2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2174 else
72bf9492
DJ
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
91c24f0a 2177 }
91c24f0a
DC
2178}
2179
4bb7a0a7
DJ
2180/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185static struct abbrev_info *
fe1b8b76 2186peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2187 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2188{
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
8a3fe4f8 2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206}
2207
2208/* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
fe1b8b76
JB
2212static gdb_byte *
2213skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2214{
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226}
2227
2228/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
fe1b8b76
JB
2234static gdb_byte *
2235skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2236 struct dwarf2_cu *cu)
2237{
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2252 else
6502dd73
DJ
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
8a3fe4f8 2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326}
2327
2328/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
91c24f0a 2330
fe1b8b76
JB
2331static gdb_byte *
2332locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2333 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2334{
2335 /* Do we know the sibling already? */
72bf9492 2336
91c24f0a
DC
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
4bb7a0a7 2345 /* Skip the children the long way. */
91c24f0a 2346
4bb7a0a7 2347 return skip_children (info_ptr, cu);
91c24f0a
DC
2348}
2349
c906108c
SS
2350/* Expand this partial symbol table into a full symbol table. */
2351
2352static void
fba45db2 2353dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2354{
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
8a3fe4f8 2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
a3f17187 2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2367 gdb_flush (gdb_stdout);
2368 }
2369
10b3939b
DJ
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
c906108c
SS
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
a3f17187 2378 printf_filtered (_("done.\n"));
c906108c
SS
2379 }
2380 }
2381}
2382
10b3939b
DJ
2383/* Add PER_CU to the queue. */
2384
2385static void
2386queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387{
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401}
2402
2403/* Process the queue. */
2404
2405static void
2406process_queue (struct objfile *objfile)
2407{
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
31ffec48 2418 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
31ffec48 2425 if (item->per_cu->type_hash)
10b3939b
DJ
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
31ffec48 2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443}
2444
2445/* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449static void
2450dwarf2_release_queue (void *dummy)
2451{
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472}
2473
2474/* Read in full symbols for PST, and anything it depends on. */
2475
c906108c 2476static void
fba45db2 2477psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2478{
10b3939b 2479 struct dwarf2_per_cu_data *per_cu;
c906108c 2480 struct cleanup *back_to;
aaa75496
JB
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
a3f17187 2489 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
10b3939b
DJ
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
aaa75496
JB
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
c906108c 2510
10b3939b
DJ
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522}
2523
2524/* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526static struct dwarf2_cu *
31ffec48 2527load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2528{
31ffec48 2529 bfd *abfd = objfile->obfd;
10b3939b
DJ
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
fe1b8b76 2532 gdb_byte *info_ptr;
10b3939b
DJ
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
6502dd73 2536
c906108c 2537 /* Set local variables from the partial symbol table info. */
10b3939b 2538 offset = per_cu->offset;
6502dd73
DJ
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2541
10b3939b
DJ
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2544
10b3939b
DJ
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2547
31ffec48 2548 cu->objfile = objfile;
e7c27a73 2549
c906108c 2550 /* read in the comp_unit header */
10b3939b 2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2552
2553 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
c906108c 2558
10b3939b
DJ
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
e142c38c 2561
10b3939b
DJ
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
e142c38c 2578
10b3939b
DJ
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
c906108c 2582
10b3939b
DJ
2583 return cu;
2584}
2585
2586/* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589static void
2590process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591{
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
c906108c 2611
0d53c4c4
DJ
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
10b3939b
DJ
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
0d53c4c4 2620
10b3939b 2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2622 if (attr)
2623 {
10b3939b
DJ
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
0d53c4c4
DJ
2626 }
2627 else
2628 {
10b3939b 2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2630 if (attr)
2631 {
10b3939b
DJ
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
0d53c4c4
DJ
2634 }
2635 }
2636
c906108c 2637 /* Do line number decoding in read_file_scope () */
10b3939b 2638 process_die (cu->dies, cu);
c906108c 2639
fae299cd
DC
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
10b3939b 2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2644
613e1657 2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
10b3939b 2651 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2652 {
10b3939b 2653 symtab->language = cu->language;
c906108c
SS
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
c906108c
SS
2657
2658 do_cleanups (back_to);
2659}
2660
2661/* Process a die and its children. */
2662
2663static void
e7c27a73 2664process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2665{
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
e7c27a73 2671 read_file_scope (die, cu);
c906108c
SS
2672 break;
2673 case DW_TAG_subprogram:
e7c27a73
DJ
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
c906108c
SS
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
c5aa993b
JM
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2681 break;
2682 case DW_TAG_lexical_block:
14898363
L
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
e7c27a73 2685 read_lexical_block_scope (die, cu);
c906108c
SS
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
134d01f1
DJ
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
c906108c
SS
2692 break;
2693 case DW_TAG_enumeration_type:
134d01f1
DJ
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
c906108c 2696 break;
134d01f1
DJ
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
c906108c 2701 case DW_TAG_subroutine_type:
e7c27a73 2702 read_subroutine_type (die, cu);
c906108c 2703 break;
72019c9c
GM
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
c906108c 2707 case DW_TAG_array_type:
e7c27a73 2708 read_array_type (die, cu);
c906108c
SS
2709 break;
2710 case DW_TAG_pointer_type:
e7c27a73 2711 read_tag_pointer_type (die, cu);
c906108c
SS
2712 break;
2713 case DW_TAG_ptr_to_member_type:
e7c27a73 2714 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2715 break;
2716 case DW_TAG_reference_type:
e7c27a73 2717 read_tag_reference_type (die, cu);
c906108c
SS
2718 break;
2719 case DW_TAG_string_type:
e7c27a73 2720 read_tag_string_type (die, cu);
c906108c 2721 break;
134d01f1
DJ
2722 /* END FIXME */
2723
c906108c 2724 case DW_TAG_base_type:
e7c27a73 2725 read_base_type (die, cu);
134d01f1
DJ
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
c906108c 2729 break;
a02abb62
JB
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
134d01f1
DJ
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
a02abb62 2735 break;
c906108c 2736 case DW_TAG_common_block:
e7c27a73 2737 read_common_block (die, cu);
c906108c
SS
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
d9fa45fe 2741 case DW_TAG_namespace:
63d06c5c 2742 processing_has_namespace_info = 1;
e7c27a73 2743 read_namespace (die, cu);
d9fa45fe
DC
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
63d06c5c 2753 processing_has_namespace_info = 1;
639d11d3 2754 gdb_assert (die->child == NULL);
d9fa45fe 2755 break;
c906108c 2756 default:
e7c27a73 2757 new_symbol (die, NULL, cu);
c906108c
SS
2758 break;
2759 }
2760}
2761
5fb290d7 2762static void
e142c38c 2763initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2764{
e142c38c 2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2766}
2767
cb1df416
DJ
2768static void
2769free_cu_line_header (void *arg)
2770{
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775}
2776
c906108c 2777static void
e7c27a73 2778read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2779{
e7c27a73
DJ
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
debd256d 2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
e1024ff1 2786 char *name = NULL;
c906108c
SS
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
debd256d 2790 struct line_header *line_header = 0;
e142c38c
DJ
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2794
fae299cd 2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2acceee2 2799 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
e142c38c 2804 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
e1024ff1 2809
e142c38c 2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2811 if (attr)
e1024ff1
DJ
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2814 {
e1024ff1
DJ
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
c906108c 2824
e1024ff1
DJ
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
c906108c
SS
2827 }
2828
e1024ff1
DJ
2829 if (name == NULL)
2830 name = "<unknown>";
2831
e142c38c 2832 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2833 if (attr)
2834 {
e142c38c 2835 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2836 }
2837
b0f35d58
DL
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
303b6f5d 2841
c906108c
SS
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
c906108c
SS
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
e142c38c 2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c906108c
SS
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
303b6f5d 2851 record_producer (cu->producer);
c906108c 2852
e142c38c 2853 initialize_cu_func_list (cu);
c906108c 2854
cb1df416
DJ
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
e142c38c 2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2859 if (attr)
2860 {
debd256d 2861 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2863 if (line_header)
2864 {
cb1df416
DJ
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
aaa75496 2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2868 }
5fb290d7 2869 }
debd256d 2870
cb1df416
DJ
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2e276125
JB
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
e142c38c 2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2887 if (attr && line_header)
2e276125
JB
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2891 comp_dir, abfd, cu);
2e276125 2892 }
debd256d 2893 do_cleanups (back_to);
5fb290d7
DJ
2894}
2895
2896static void
e142c38c
DJ
2897add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
5fb290d7
DJ
2899{
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
7b5a2f43 2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
e142c38c
DJ
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
5fb290d7 2912 else
e142c38c 2913 cu->last_fn->next = thisfn;
5fb290d7 2914
e142c38c 2915 cu->last_fn = thisfn;
c906108c
SS
2916}
2917
2918static void
e7c27a73 2919read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2920{
e7c27a73 2921 struct objfile *objfile = cu->objfile;
52f0bd74 2922 struct context_stack *new;
c906108c
SS
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
fdde2d81
DC
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
e142c38c 2930 CORE_ADDR baseaddr;
c906108c 2931
e142c38c
DJ
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
e7c27a73 2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2939 return;
2940
987504bb
JJ
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
fdde2d81 2943 {
086ed43d 2944 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2945
2a35147e
JB
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
fdde2d81
DC
2967
2968 if (spec_die != NULL)
2969 {
e142c38c 2970 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
c906108c
SS
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
5fb290d7 2979 /* Record the function range for dwarf_decode_lines. */
e142c38c 2980 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2981
c906108c 2982 new = push_context (0, lowpc);
e7c27a73 2983 new->name = new_symbol (die, die->type, cu);
4c2df51b 2984
4cecd739
DJ
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
e142c38c 2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2988 if (attr)
c034e007
AC
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
e7c27a73 2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2999
e142c38c 3000 cu->list_in_scope = &local_symbols;
c906108c 3001
639d11d3 3002 if (die->child != NULL)
c906108c 3003 {
639d11d3 3004 child_die = die->child;
c906108c
SS
3005 while (child_die && child_die->tag)
3006 {
e7c27a73 3007 process_die (child_die, cu);
c906108c
SS
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
208d8187
JB
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
921e78cf
JB
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
e142c38c 3027 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
c906108c
SS
3032}
3033
3034/* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037static void
e7c27a73 3038read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3039{
e7c27a73 3040 struct objfile *objfile = cu->objfile;
52f0bd74 3041 struct context_stack *new;
c906108c
SS
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
e142c38c
DJ
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
e7c27a73 3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
639d11d3 3059 if (die->child != NULL)
c906108c 3060 {
639d11d3 3061 child_die = die->child;
c906108c
SS
3062 while (child_die && child_die->tag)
3063 {
e7c27a73 3064 process_die (child_die, cu);
c906108c
SS
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076}
3077
af34e669
DJ
3078/* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3081static int
af34e669 3082dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 3084{
e7c27a73
DJ
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
c906108c 3087 struct attribute *attr;
af34e669
DJ
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
c906108c 3092
e142c38c 3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3094 if (attr)
af34e669
DJ
3095 {
3096 high = DW_ADDR (attr);
e142c38c 3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
c906108c 3107 else
af34e669 3108 {
e142c38c 3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3115 .debug_ranges section. */
af34e669
DJ
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
0d53c4c4
DJ
3118 CORE_ADDR base;
3119 int found_base;
891d2f0b 3120 unsigned int dummy;
fe1b8b76 3121 gdb_byte *buffer;
af34e669
DJ
3122 CORE_ADDR marker;
3123 int low_set;
3124
0d53c4c4
DJ
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
a604369a 3127
6502dd73 3128 if (offset >= dwarf2_per_objfile->ranges_size)
a604369a
KB
3129 {
3130 complaint (&symfile_complaints,
e2e0b3e5 3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
a604369a
KB
3132 offset);
3133 return 0;
3134 }
6502dd73 3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
af34e669 3136
af34e669 3137 /* Read in the largest possible address. */
e7c27a73 3138 marker = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
e7c27a73 3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
e7c27a73 3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
af34e669 3156 buffer += addr_size;
e7c27a73 3157 range_end = read_address (obfd, buffer, cu, &dummy);
af34e669
DJ
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
e7c27a73 3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
af34e669
DJ
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
e2e0b3e5 3183 _("Invalid .debug_ranges data (no base address)"));
af34e669
DJ
3184 return 0;
3185 }
3186
8f05cde5
DJ
3187 range_beginning += base;
3188 range_end += base;
3189
af34e669
DJ
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
c906108c
SS
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
72dca2f5 3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
af34e669 3234 return ret;
c906108c
SS
3235}
3236
fae299cd
DC
3237/* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241static void
3242get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245{
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297}
3298
c906108c
SS
3299/* Add an aggregate field to the field list. */
3300
3301static void
107d2387 3302dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3303 struct dwarf2_cu *cu)
3304{
3305 struct objfile *objfile = cu->objfile;
c906108c
SS
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3313 make_cleanup (xfree, new_field);
c906108c
SS
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
e142c38c 3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
e142c38c 3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
a9a9bd0f 3338
e142c38c 3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3340 {
a9a9bd0f
DC
3341 /* Data member other than a C++ static data member. */
3342
c906108c 3343 /* Get type of field. */
e7c27a73 3344 fp->type = die_type (die, cu);
c906108c 3345
01ad7f36
DJ
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
c906108c 3348 /* Get bit size of field (zero if none). */
e142c38c 3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
e142c38c 3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
e7c27a73 3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
c906108c
SS
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
e142c38c 3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
c906108c
SS
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
c906108c
SS
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
e142c38c 3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
e142c38c 3413 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
d8151005
DJ
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
c906108c
SS
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3422 pointer or virtual base class pointer) to private. */
e142c38c 3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
a9a9bd0f 3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3430 {
a9a9bd0f
DC
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
c906108c 3438 char *physname;
c906108c 3439
a9a9bd0f 3440 /* Get name of field. */
e142c38c 3441 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
c906108c
SS
3445 return;
3446
2df3850c 3447 /* Get physical name. */
e142c38c 3448 physname = dwarf2_linkage_name (die, cu);
c906108c 3449
d8151005
DJ
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3453 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3454 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
e142c38c 3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3460 if (attr)
e7c27a73 3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3462 * bits_per_byte);
c906108c 3463 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3464 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3465 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469}
3470
3471/* Create the vector of fields, and attach it to the type. */
3472
3473static void
fba45db2 3474dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3475 struct dwarf2_cu *cu)
c906108c
SS
3476{
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3508 unsigned char *pointer;
c906108c
SS
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
c5aa993b
JM
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
c906108c 3528
c5aa993b
JM
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
c906108c 3532
c5aa993b
JM
3533 case DW_ACCESS_public:
3534 break;
c906108c 3535
c5aa993b
JM
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
e2e0b3e5 3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3540 fip->fields->accessibility);
c5aa993b
JM
3541 }
3542 break;
c906108c
SS
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
c5aa993b
JM
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
c906108c
SS
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556}
3557
c906108c
SS
3558/* Add a member function to the proper fieldlist. */
3559
3560static void
107d2387 3561dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3562 struct type *type, struct dwarf2_cu *cu)
c906108c 3563{
e7c27a73 3564 struct objfile *objfile = cu->objfile;
c906108c
SS
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
2df3850c 3573 /* Get name of member function. */
e142c38c 3574 attr = dwarf2_attr (die, DW_AT_name, cu);
2df3850c
JM
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
c906108c 3577 else
2df3850c 3578 return;
c906108c 3579
2df3850c 3580 /* Get the mangled name. */
e142c38c 3581 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
27bfe10e 3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3600 * sizeof (struct fnfieldlist));
c906108c 3601 if (fip->nfnfields == 0)
c13c43fd 3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3614 make_cleanup (xfree, new_fnfield);
c906108c
SS
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
d8151005
DJ
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
c906108c
SS
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
c906108c 3628 int nparams = TYPE_NFIELDS (die->type);
c906108c 3629
e26fb1d7
DC
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
c906108c
SS
3637
3638 /* Handle static member functions.
c5aa993b
JM
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
e2e0b3e5 3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3649 physname);
c906108c
SS
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3653 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
e142c38c 3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
c5aa993b
JM
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
c906108c
SS
3670 }
3671 }
3672
b02dede2 3673 /* Check for artificial methods. */
e142c38c 3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
c906108c 3678 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3680 if (attr)
8e19ed76
PS
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
e7c27a73 3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76
PS
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
4d3c2250 3689 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3690 }
3691 else
3692 {
4d3c2250
KB
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
8e19ed76
PS
3695 }
3696 }
c906108c
SS
3697}
3698
3699/* Create the vector of member function fields, and attach it to the type. */
3700
3701static void
fba45db2 3702dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3703 struct dwarf2_cu *cu)
c906108c
SS
3704{
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3724 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731}
3732
1168df01
JB
3733/* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735static int
3736is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737{
3738 static const char vptr[] = "_vptr";
987504bb 3739 static const char vtable[] = "vtable";
1168df01 3740
987504bb
JJ
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3746 return 1;
3747
3748 return 0;
3749}
3750
c0dd20ea
DJ
3751/* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
c0dd20ea
DJ
3758
3759static int
3760quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761{
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
0d5de010 3812 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816}
1168df01 3817
c906108c
SS
3818/* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834static void
134d01f1 3835read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3836{
e7c27a73 3837 struct objfile *objfile = cu->objfile;
c906108c
SS
3838 struct type *type;
3839 struct attribute *attr;
63d06c5c
DC
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
c906108c 3842
134d01f1
DJ
3843 if (die->type)
3844 return;
3845
c0dd20ea
DJ
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
c906108c 3848
c0dd20ea 3849 type = alloc_type (objfile);
c906108c 3850 INIT_CPLUS_SPECIFIC (type);
e142c38c 3851 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
3852 if (attr && DW_STRING (attr))
3853 {
987504bb
JJ
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
63d06c5c 3856 {
8176b9b8
DC
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
d8151005
DJ
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
8176b9b8 3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
63d06c5c 3869 }
c906108c
SS
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 3883 in gdbtypes.h. */
c906108c
SS
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
e142c38c 3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
d77b6808 3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
c906108c
SS
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
1c379e20 3904 set_die_type (die, type, cu);
c906108c 3905
e142c38c 3906 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
639d11d3 3914 child_die = die->child;
c906108c
SS
3915
3916 while (child_die && child_die->tag)
3917 {
a9a9bd0f
DC
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
c906108c 3920 {
a9a9bd0f
DC
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
e7c27a73 3926 dwarf2_add_field (&fi, child_die, cu);
c906108c 3927 }
8713b1b1 3928 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
3929 {
3930 /* C++ member function. */
134d01f1 3931 read_type_die (child_die, cu);
e7c27a73 3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
e7c27a73 3937 dwarf2_add_field (&fi, child_die, cu);
c906108c 3938 }
c906108c
SS
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
e7c27a73 3944 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
3945 if (fi.nfnfields)
3946 {
e7c27a73 3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 3948
c5aa993b 3949 /* Get the type which refers to the base class (possibly this
c906108c
SS
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
e142c38c 3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 3954 {
e7c27a73 3955 struct type *t = die_containing_type (die, cu);
c906108c
SS
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
c906108c
SS
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
1168df01 3969 if (is_vtable_name (fieldname, cu))
c906108c
SS
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 3978 complaint (&symfile_complaints,
e2e0b3e5 3979 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
c906108c
SS
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
f6235d4c
EZ
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
c906108c
SS
4010 }
4011
c906108c
SS
4012 do_cleanups (back_to);
4013 }
63d06c5c
DC
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
c906108c
SS
4018}
4019
134d01f1
DJ
4020static void
4021process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022{
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
90aeadfc 4025 struct die_info *child_die = die->child;
c906108c 4026
134d01f1
DJ
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4029
90aeadfc
DC
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
134d01f1 4036
90aeadfc
DC
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
134d01f1 4042 {
90aeadfc 4043 /* Do nothing. */
134d01f1 4044 }
90aeadfc
DC
4045 else
4046 process_die (child_die, cu);
134d01f1 4047
90aeadfc 4048 child_die = sibling_die (child_die);
134d01f1
DJ
4049 }
4050
fa4028e9
JB
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
90aeadfc
DC
4056 new_symbol (die, die->type, cu);
4057
134d01f1
DJ
4058 processing_current_prefix = previous_prefix;
4059}
4060
4061/* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
c906108c
SS
4063
4064static void
134d01f1 4065read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4066{
e7c27a73 4067 struct objfile *objfile = cu->objfile;
c906108c 4068 struct type *type;
c906108c 4069 struct attribute *attr;
134d01f1
DJ
4070
4071 if (die->type)
4072 return;
c906108c
SS
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
e142c38c 4077 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4078 if (attr && DW_STRING (attr))
4079 {
d8151005 4080 char *name = DW_STRING (attr);
63d06c5c
DC
4081
4082 if (processing_has_namespace_info)
4083 {
987504bb
JJ
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
63d06c5c
DC
4087 }
4088 else
4089 {
d8151005
DJ
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
63d06c5c 4093 }
c906108c
SS
4094 }
4095
e142c38c 4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
1c379e20 4106 set_die_type (die, type, cu);
134d01f1
DJ
4107}
4108
8176b9b8 4109/* Determine the name of the type represented by DIE, which should be
987504bb 4110 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4111 is responsible for xfree()'ing it. */
4112
4113static char *
4114determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115{
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
72bf9492 4132 guess_structure_name. */
8176b9b8
DC
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
31c27f77
JJ
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
8176b9b8
DC
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
8176b9b8
DC
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166}
4167
134d01f1
DJ
4168/* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174static void
4175process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176{
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
c906108c
SS
4185 num_fields = 0;
4186 fields = NULL;
639d11d3 4187 if (die->child != NULL)
c906108c 4188 {
639d11d3 4189 child_die = die->child;
c906108c
SS
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
e7c27a73 4194 process_die (child_die, cu);
c906108c
SS
4195 }
4196 else
4197 {
e142c38c 4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
c906108c
SS
4199 if (attr)
4200 {
134d01f1 4201 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4210 * sizeof (struct field));
c906108c
SS
4211 }
4212
22abf04a 4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
134d01f1
DJ
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4232 sizeof (struct field) * num_fields);
b8c9b27d 4233 xfree (fields);
c906108c
SS
4234 }
4235 if (unsigned_enum)
134d01f1 4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4237 }
134d01f1
DJ
4238
4239 new_symbol (die, die->type, cu);
c906108c
SS
4240}
4241
4242/* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246static void
e7c27a73 4247read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4248{
e7c27a73 4249 struct objfile *objfile = cu->objfile;
c906108c
SS
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
e7c27a73 4264 element_type = die_type (die, cu);
c906108c
SS
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
639d11d3 4268 if (die->child == NULL)
c906108c 4269 {
e142c38c 4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4271 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
c906108c
SS
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4278 child_die = die->child;
c906108c
SS
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
a02abb62 4283 read_subrange_type (child_die, cu);
c906108c 4284
a02abb62
JB
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
c906108c
SS
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
7ca2d3a3 4305
c906108c 4306 type = element_type;
7ca2d3a3
DL
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
c906108c 4319
f5f8a009
EZ
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
e142c38c 4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009
EZ
4327 if (attr)
4328 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4329
714e295e
JB
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
c906108c
SS
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
1c379e20 4337 set_die_type (die, type, cu);
c906108c
SS
4338}
4339
7ca2d3a3
DL
4340static enum dwarf_array_dim_ordering
4341read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342{
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372}
4373
72019c9c
GM
4374/* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377static void
4378read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379{
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382}
7ca2d3a3 4383
c906108c
SS
4384/* First cut: install each common block member as a global variable. */
4385
4386static void
e7c27a73 4387read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4388{
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
e142c38c 4394 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4395 if (attr)
4396 {
8e19ed76
PS
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
e7c27a73 4400 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76
PS
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4d3c2250 4404 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4405 }
4406 else
4407 {
4d3c2250
KB
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
8e19ed76 4410 }
c906108c 4411 }
639d11d3 4412 if (die->child != NULL)
c906108c 4413 {
639d11d3 4414 child_die = die->child;
c906108c
SS
4415 while (child_die && child_die->tag)
4416 {
e7c27a73 4417 sym = new_symbol (child_die, NULL, cu);
e142c38c 4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4422 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428}
4429
d9fa45fe
DC
4430/* Read a C++ namespace. */
4431
d9fa45fe 4432static void
e7c27a73 4433read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4434{
e7c27a73 4435 struct objfile *objfile = cu->objfile;
38d518c9 4436 const char *previous_prefix = processing_current_prefix;
63d06c5c 4437 const char *name;
9219021c
DC
4438 int is_anonymous;
4439 struct die_info *current_die;
987504bb 4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4441
e142c38c 4442 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4443
4444 /* Now build the name of the current namespace. */
4445
38d518c9 4446 if (previous_prefix[0] == '\0')
9219021c 4447 {
38d518c9 4448 processing_current_prefix = name;
9219021c
DC
4449 }
4450 else
4451 {
987504bb
JJ
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
38d518c9 4454 processing_current_prefix = temp_name;
9219021c
DC
4455 }
4456
5c4e30ca
DC
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
9219021c 4460
e142c38c 4461 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4468 (char *) processing_current_prefix,
5c4e30ca
DC
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
e7c27a73 4472 new_symbol (die, type, cu);
1c379e20 4473 set_die_type (die, type, cu);
5c4e30ca
DC
4474
4475 if (is_anonymous)
38d518c9
EZ
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
5c4e30ca 4479 }
9219021c 4480
639d11d3 4481 if (die->child != NULL)
d9fa45fe 4482 {
639d11d3 4483 struct die_info *child_die = die->child;
d9fa45fe
DC
4484
4485 while (child_die && child_die->tag)
4486 {
e7c27a73 4487 process_die (child_die, cu);
d9fa45fe
DC
4488 child_die = sibling_die (child_die);
4489 }
4490 }
9219021c 4491
38d518c9 4492 processing_current_prefix = previous_prefix;
987504bb 4493 do_cleanups (back_to);
38d518c9
EZ
4494}
4495
4496/* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500static const char *
e142c38c 4501namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4502{
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
e142c38c 4510 current_die = dwarf2_extension (die, cu))
38d518c9 4511 {
e142c38c 4512 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
d9fa45fe
DC
4524}
4525
c906108c
SS
4526/* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529static void
e7c27a73 4530read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4531{
e7c27a73 4532 struct comp_unit_head *cu_header = &cu->header;
c906108c 4533 struct type *type;
8b2dbe47
KB
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
c906108c
SS
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
e7c27a73 4543 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4544
e142c38c 4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
c906108c 4548 else
8b2dbe47
KB
4549 byte_size = cu_header->addr_size;
4550
e142c38c 4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4561 {
849957d9 4562 if (gdbarch_address_class_type_flags_p (current_gdbarch))
8b2dbe47
KB
4563 {
4564 int type_flags;
4565
849957d9
UW
4566 type_flags = gdbarch_address_class_type_flags
4567 (current_gdbarch, byte_size, addr_class);
8b2dbe47
KB
4568 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4569 type = make_type_with_address_space (type, type_flags);
4570 }
4571 else if (TYPE_LENGTH (type) != byte_size)
4572 {
e2e0b3e5 4573 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4574 }
4575 else {
4576 /* Should we also complain about unhandled address classes? */
4577 }
c906108c 4578 }
8b2dbe47
KB
4579
4580 TYPE_LENGTH (type) = byte_size;
1c379e20 4581 set_die_type (die, type, cu);
c906108c
SS
4582}
4583
4584/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4585 the user defined type vector. */
4586
4587static void
e7c27a73 4588read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4589{
e7c27a73 4590 struct objfile *objfile = cu->objfile;
c906108c
SS
4591 struct type *type;
4592 struct type *to_type;
4593 struct type *domain;
4594
4595 if (die->type)
4596 {
4597 return;
4598 }
4599
e7c27a73
DJ
4600 to_type = die_type (die, cu);
4601 domain = die_containing_type (die, cu);
0d5de010
DJ
4602
4603 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4604 type = lookup_methodptr_type (to_type);
4605 else
4606 type = lookup_memberptr_type (to_type, domain);
c906108c 4607
1c379e20 4608 set_die_type (die, type, cu);
c906108c
SS
4609}
4610
4611/* Extract all information from a DW_TAG_reference_type DIE and add to
4612 the user defined type vector. */
4613
4614static void
e7c27a73 4615read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4616{
e7c27a73 4617 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4618 struct type *type;
4619 struct attribute *attr;
4620
4621 if (die->type)
4622 {
4623 return;
4624 }
4625
e7c27a73 4626 type = lookup_reference_type (die_type (die, cu));
e142c38c 4627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4628 if (attr)
4629 {
4630 TYPE_LENGTH (type) = DW_UNSND (attr);
4631 }
4632 else
4633 {
107d2387 4634 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4635 }
1c379e20 4636 set_die_type (die, type, cu);
c906108c
SS
4637}
4638
4639static void
e7c27a73 4640read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4641{
090c42a4
JB
4642 struct type *base_type;
4643
c906108c
SS
4644 if (die->type)
4645 {
4646 return;
4647 }
4648
e7c27a73 4649 base_type = die_type (die, cu);
1c379e20
DJ
4650 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4651 cu);
c906108c
SS
4652}
4653
4654static void
e7c27a73 4655read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4656{
090c42a4
JB
4657 struct type *base_type;
4658
c906108c
SS
4659 if (die->type)
4660 {
4661 return;
4662 }
4663
e7c27a73 4664 base_type = die_type (die, cu);
1c379e20
DJ
4665 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4666 cu);
c906108c
SS
4667}
4668
4669/* Extract all information from a DW_TAG_string_type DIE and add to
4670 the user defined type vector. It isn't really a user defined type,
4671 but it behaves like one, with other DIE's using an AT_user_def_type
4672 attribute to reference it. */
4673
4674static void
e7c27a73 4675read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4676{
e7c27a73 4677 struct objfile *objfile = cu->objfile;
c906108c
SS
4678 struct type *type, *range_type, *index_type, *char_type;
4679 struct attribute *attr;
4680 unsigned int length;
4681
4682 if (die->type)
4683 {
4684 return;
4685 }
4686
e142c38c 4687 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4688 if (attr)
4689 {
4690 length = DW_UNSND (attr);
4691 }
4692 else
4693 {
b21b22e0 4694 /* check for the DW_AT_byte_size attribute */
e142c38c 4695 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4696 if (attr)
4697 {
4698 length = DW_UNSND (attr);
4699 }
4700 else
4701 {
4702 length = 1;
4703 }
c906108c 4704 }
e142c38c 4705 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
c906108c 4706 range_type = create_range_type (NULL, index_type, 1, length);
e142c38c 4707 if (cu->language == language_fortran)
b21b22e0
PS
4708 {
4709 /* Need to create a unique string type for bounds
4710 information */
4711 type = create_string_type (0, range_type);
4712 }
4713 else
4714 {
e142c38c 4715 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
b21b22e0
PS
4716 type = create_string_type (char_type, range_type);
4717 }
1c379e20 4718 set_die_type (die, type, cu);
c906108c
SS
4719}
4720
4721/* Handle DIES due to C code like:
4722
4723 struct foo
c5aa993b
JM
4724 {
4725 int (*funcp)(int a, long l);
4726 int b;
4727 };
c906108c
SS
4728
4729 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4730 */
c906108c
SS
4731
4732static void
e7c27a73 4733read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4734{
4735 struct type *type; /* Type that this function returns */
4736 struct type *ftype; /* Function that returns above type */
4737 struct attribute *attr;
4738
4739 /* Decode the type that this subroutine returns */
4740 if (die->type)
4741 {
4742 return;
4743 }
e7c27a73 4744 type = die_type (die, cu);
1326e61b 4745 ftype = make_function_type (type, (struct type **) 0);
c906108c 4746
987504bb 4747 /* All functions in C++ and Java have prototypes. */
e142c38c 4748 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4749 if ((attr && (DW_UNSND (attr) != 0))
987504bb
JJ
4750 || cu->language == language_cplus
4751 || cu->language == language_java)
c906108c
SS
4752 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4753
639d11d3 4754 if (die->child != NULL)
c906108c
SS
4755 {
4756 struct die_info *child_die;
4757 int nparams = 0;
4758 int iparams = 0;
4759
4760 /* Count the number of parameters.
4761 FIXME: GDB currently ignores vararg functions, but knows about
4762 vararg member functions. */
639d11d3 4763 child_die = die->child;
c906108c
SS
4764 while (child_die && child_die->tag)
4765 {
4766 if (child_die->tag == DW_TAG_formal_parameter)
4767 nparams++;
4768 else if (child_die->tag == DW_TAG_unspecified_parameters)
4769 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4770 child_die = sibling_die (child_die);
4771 }
4772
4773 /* Allocate storage for parameters and fill them in. */
4774 TYPE_NFIELDS (ftype) = nparams;
4775 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4776 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4777
639d11d3 4778 child_die = die->child;
c906108c
SS
4779 while (child_die && child_die->tag)
4780 {
4781 if (child_die->tag == DW_TAG_formal_parameter)
4782 {
4783 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4784 member functions. G++ helps GDB by marking the first
4785 parameter for non-static member functions (which is the
4786 this pointer) as artificial. We pass this information
4787 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4788 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4789 if (attr)
4790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4791 else
4792 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4793 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4794 iparams++;
4795 }
4796 child_die = sibling_die (child_die);
4797 }
4798 }
4799
1c379e20 4800 set_die_type (die, ftype, cu);
c906108c
SS
4801}
4802
4803static void
e7c27a73 4804read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4805{
e7c27a73 4806 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4807 struct attribute *attr;
4808 char *name = NULL;
c906108c
SS
4809
4810 if (!die->type)
4811 {
e142c38c 4812 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c 4813 if (attr && DW_STRING (attr))
2f038fcb
FF
4814 {
4815 name = DW_STRING (attr);
4816 }
1c379e20
DJ
4817 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4818 TYPE_FLAG_TARGET_STUB, name, objfile),
4819 cu);
e7c27a73 4820 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4821 }
4822}
4823
4824/* Find a representation of a given base type and install
4825 it in the TYPE field of the die. */
4826
4827static void
e7c27a73 4828read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4829{
e7c27a73 4830 struct objfile *objfile = cu->objfile;
c906108c
SS
4831 struct type *type;
4832 struct attribute *attr;
4833 int encoding = 0, size = 0;
4834
4835 /* If we've already decoded this die, this is a no-op. */
4836 if (die->type)
4837 {
4838 return;
4839 }
4840
e142c38c 4841 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4842 if (attr)
4843 {
4844 encoding = DW_UNSND (attr);
4845 }
e142c38c 4846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4847 if (attr)
4848 {
4849 size = DW_UNSND (attr);
4850 }
e142c38c 4851 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
4852 if (attr && DW_STRING (attr))
4853 {
4854 enum type_code code = TYPE_CODE_INT;
f5ef7c67 4855 int type_flags = 0;
c906108c
SS
4856
4857 switch (encoding)
4858 {
4859 case DW_ATE_address:
4860 /* Turn DW_ATE_address into a void * pointer. */
4861 code = TYPE_CODE_PTR;
f5ef7c67 4862 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4863 break;
4864 case DW_ATE_boolean:
4865 code = TYPE_CODE_BOOL;
f5ef7c67 4866 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4867 break;
4868 case DW_ATE_complex_float:
4869 code = TYPE_CODE_COMPLEX;
4870 break;
4871 case DW_ATE_float:
4872 code = TYPE_CODE_FLT;
4873 break;
4874 case DW_ATE_signed:
c906108c
SS
4875 break;
4876 case DW_ATE_unsigned:
72019c9c
GM
4877 type_flags |= TYPE_FLAG_UNSIGNED;
4878 break;
4879 case DW_ATE_signed_char:
4880 if (cu->language == language_m2)
4881 code = TYPE_CODE_CHAR;
4882 break;
4883 case DW_ATE_unsigned_char:
4884 if (cu->language == language_m2)
4885 code = TYPE_CODE_CHAR;
f5ef7c67 4886 type_flags |= TYPE_FLAG_UNSIGNED;
c906108c
SS
4887 break;
4888 default:
e2e0b3e5 4889 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4d3c2250 4890 dwarf_type_encoding_name (encoding));
c906108c
SS
4891 break;
4892 }
f5ef7c67 4893 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
c906108c 4894 if (encoding == DW_ATE_address)
e142c38c
DJ
4895 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4896 cu);
f65ca430
DJ
4897 else if (encoding == DW_ATE_complex_float)
4898 {
4899 if (size == 32)
4900 TYPE_TARGET_TYPE (type)
e142c38c 4901 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
f65ca430
DJ
4902 else if (size == 16)
4903 TYPE_TARGET_TYPE (type)
e142c38c 4904 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
f65ca430
DJ
4905 else if (size == 8)
4906 TYPE_TARGET_TYPE (type)
e142c38c 4907 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
f65ca430 4908 }
c906108c
SS
4909 }
4910 else
4911 {
e7c27a73 4912 type = dwarf_base_type (encoding, size, cu);
c906108c 4913 }
1c379e20 4914 set_die_type (die, type, cu);
c906108c
SS
4915}
4916
a02abb62
JB
4917/* Read the given DW_AT_subrange DIE. */
4918
4919static void
4920read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4921{
4922 struct type *base_type;
4923 struct type *range_type;
4924 struct attribute *attr;
4925 int low = 0;
4926 int high = -1;
4927
4928 /* If we have already decoded this die, then nothing more to do. */
4929 if (die->type)
4930 return;
4931
4932 base_type = die_type (die, cu);
3d1f72c2 4933 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
4934 {
4935 complaint (&symfile_complaints,
e2e0b3e5 4936 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6
UW
4937 base_type
4938 = dwarf_base_type (DW_ATE_signed,
4939 gdbarch_addr_bit (current_gdbarch) / 8, cu);
a02abb62
JB
4940 }
4941
e142c38c 4942 if (cu->language == language_fortran)
a02abb62
JB
4943 {
4944 /* FORTRAN implies a lower bound of 1, if not given. */
4945 low = 1;
4946 }
4947
dd5e6932
DJ
4948 /* FIXME: For variable sized arrays either of these could be
4949 a variable rather than a constant value. We'll allow it,
4950 but we don't know how to handle it. */
e142c38c 4951 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
4952 if (attr)
4953 low = dwarf2_get_attr_constant_value (attr, 0);
4954
e142c38c 4955 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
4956 if (attr)
4957 {
4958 if (attr->form == DW_FORM_block1)
4959 {
4960 /* GCC encodes arrays with unspecified or dynamic length
4961 with a DW_FORM_block1 attribute.
4962 FIXME: GDB does not yet know how to handle dynamic
4963 arrays properly, treat them as arrays with unspecified
4964 length for now.
4965
4966 FIXME: jimb/2003-09-22: GDB does not really know
4967 how to handle arrays of unspecified length
4968 either; we just represent them as zero-length
4969 arrays. Choose an appropriate upper bound given
4970 the lower bound we've computed above. */
4971 high = low - 1;
4972 }
4973 else
4974 high = dwarf2_get_attr_constant_value (attr, 1);
4975 }
4976
4977 range_type = create_range_type (NULL, base_type, low, high);
4978
e142c38c 4979 attr = dwarf2_attr (die, DW_AT_name, cu);
a02abb62
JB
4980 if (attr && DW_STRING (attr))
4981 TYPE_NAME (range_type) = DW_STRING (attr);
4982
e142c38c 4983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
4984 if (attr)
4985 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4986
1c379e20 4987 set_die_type (die, range_type, cu);
a02abb62
JB
4988}
4989
81a17f79
JB
4990static void
4991read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4992{
4993 struct type *type;
4994 struct attribute *attr;
4995
4996 if (die->type)
4997 return;
4998
4999 /* For now, we only support the C meaning of an unspecified type: void. */
5000
5001 attr = dwarf2_attr (die, DW_AT_name, cu);
5002 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5003 cu->objfile);
5004
5005 set_die_type (die, type, cu);
5006}
a02abb62 5007
c906108c
SS
5008/* Read a whole compilation unit into a linked list of dies. */
5009
f9aca02d 5010static struct die_info *
fe1b8b76 5011read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5012{
e7c27a73 5013 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5014}
5015
5016/* Read a single die and all its descendents. Set the die's sibling
5017 field to NULL; set other fields in the die correctly, and set all
5018 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5019 location of the info_ptr after reading all of those dies. PARENT
5020 is the parent of the die in question. */
5021
5022static struct die_info *
fe1b8b76 5023read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5024 struct dwarf2_cu *cu,
fe1b8b76 5025 gdb_byte **new_info_ptr,
639d11d3
DC
5026 struct die_info *parent)
5027{
5028 struct die_info *die;
fe1b8b76 5029 gdb_byte *cur_ptr;
639d11d3
DC
5030 int has_children;
5031
e7c27a73 5032 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5033 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5034
5035 if (has_children)
5036 {
e7c27a73 5037 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5038 new_info_ptr, die);
5039 }
5040 else
5041 {
5042 die->child = NULL;
5043 *new_info_ptr = cur_ptr;
5044 }
5045
5046 die->sibling = NULL;
5047 die->parent = parent;
5048 return die;
5049}
5050
5051/* Read a die, all of its descendents, and all of its siblings; set
5052 all of the fields of all of the dies correctly. Arguments are as
5053 in read_die_and_children. */
5054
5055static struct die_info *
fe1b8b76 5056read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5057 struct dwarf2_cu *cu,
fe1b8b76 5058 gdb_byte **new_info_ptr,
639d11d3
DC
5059 struct die_info *parent)
5060{
5061 struct die_info *first_die, *last_sibling;
fe1b8b76 5062 gdb_byte *cur_ptr;
639d11d3 5063
c906108c 5064 cur_ptr = info_ptr;
639d11d3
DC
5065 first_die = last_sibling = NULL;
5066
5067 while (1)
c906108c 5068 {
639d11d3 5069 struct die_info *die
e7c27a73 5070 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5071
5072 if (!first_die)
c906108c 5073 {
639d11d3 5074 first_die = die;
c906108c 5075 }
639d11d3 5076 else
c906108c 5077 {
639d11d3 5078 last_sibling->sibling = die;
c906108c
SS
5079 }
5080
639d11d3 5081 if (die->tag == 0)
c906108c 5082 {
639d11d3
DC
5083 *new_info_ptr = cur_ptr;
5084 return first_die;
c906108c
SS
5085 }
5086 else
5087 {
639d11d3 5088 last_sibling = die;
c906108c
SS
5089 }
5090 }
c906108c
SS
5091}
5092
5093/* Free a linked list of dies. */
5094
5095static void
fba45db2 5096free_die_list (struct die_info *dies)
c906108c
SS
5097{
5098 struct die_info *die, *next;
5099
5100 die = dies;
5101 while (die)
5102 {
639d11d3
DC
5103 if (die->child != NULL)
5104 free_die_list (die->child);
5105 next = die->sibling;
b8c9b27d
KB
5106 xfree (die->attrs);
5107 xfree (die);
c906108c
SS
5108 die = next;
5109 }
5110}
5111
5112/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5113 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5114
fe1b8b76 5115gdb_byte *
188dd5d6 5116dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5117{
5118 bfd *abfd = objfile->obfd;
fe1b8b76 5119 gdb_byte *buf, *retbuf;
2c500098 5120 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5121
5122 if (size == 0)
5123 return NULL;
5124
fe1b8b76
JB
5125 buf = obstack_alloc (&objfile->objfile_obstack, size);
5126 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5127 if (retbuf != NULL)
5128 return retbuf;
5129
188dd5d6
DJ
5130 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5131 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5132 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5133 bfd_get_filename (abfd));
5134
c906108c
SS
5135 return buf;
5136}
5137
5138/* In DWARF version 2, the description of the debugging information is
5139 stored in a separate .debug_abbrev section. Before we read any
5140 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5141 in a hash table. This function also sets flags in CU describing
5142 the data found in the abbrev table. */
c906108c
SS
5143
5144static void
e7c27a73 5145dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5146{
e7c27a73 5147 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5148 gdb_byte *abbrev_ptr;
c906108c
SS
5149 struct abbrev_info *cur_abbrev;
5150 unsigned int abbrev_number, bytes_read, abbrev_name;
5151 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5152 struct attr_abbrev *cur_attrs;
5153 unsigned int allocated_attrs;
c906108c 5154
57349743 5155 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5156 obstack_init (&cu->abbrev_obstack);
5157 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5158 (ABBREV_HASH_SIZE
5159 * sizeof (struct abbrev_info *)));
5160 memset (cu->dwarf2_abbrevs, 0,
5161 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5162
6502dd73 5163 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5164 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5165 abbrev_ptr += bytes_read;
5166
f3dd6933
DJ
5167 allocated_attrs = ATTR_ALLOC_CHUNK;
5168 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5169
c906108c
SS
5170 /* loop until we reach an abbrev number of 0 */
5171 while (abbrev_number)
5172 {
f3dd6933 5173 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5174
5175 /* read in abbrev header */
5176 cur_abbrev->number = abbrev_number;
5177 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5178 abbrev_ptr += bytes_read;
5179 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5180 abbrev_ptr += 1;
5181
72bf9492
DJ
5182 if (cur_abbrev->tag == DW_TAG_namespace)
5183 cu->has_namespace_info = 1;
5184
c906108c
SS
5185 /* now read in declarations */
5186 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5187 abbrev_ptr += bytes_read;
5188 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5189 abbrev_ptr += bytes_read;
5190 while (abbrev_name)
5191 {
f3dd6933 5192 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5193 {
f3dd6933
DJ
5194 allocated_attrs += ATTR_ALLOC_CHUNK;
5195 cur_attrs
5196 = xrealloc (cur_attrs, (allocated_attrs
5197 * sizeof (struct attr_abbrev)));
c906108c 5198 }
ae038cb0
DJ
5199
5200 /* Record whether this compilation unit might have
5201 inter-compilation-unit references. If we don't know what form
5202 this attribute will have, then it might potentially be a
5203 DW_FORM_ref_addr, so we conservatively expect inter-CU
5204 references. */
5205
5206 if (abbrev_form == DW_FORM_ref_addr
5207 || abbrev_form == DW_FORM_indirect)
5208 cu->has_form_ref_addr = 1;
5209
f3dd6933
DJ
5210 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5211 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5212 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5213 abbrev_ptr += bytes_read;
5214 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5215 abbrev_ptr += bytes_read;
5216 }
5217
f3dd6933
DJ
5218 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5219 (cur_abbrev->num_attrs
5220 * sizeof (struct attr_abbrev)));
5221 memcpy (cur_abbrev->attrs, cur_attrs,
5222 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5223
c906108c 5224 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5225 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5226 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5227
5228 /* Get next abbreviation.
5229 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5230 always properly terminated with an abbrev number of 0.
5231 Exit loop if we encounter an abbreviation which we have
5232 already read (which means we are about to read the abbreviations
5233 for the next compile unit) or if the end of the abbreviation
5234 table is reached. */
6502dd73
DJ
5235 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5236 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5237 break;
5238 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5239 abbrev_ptr += bytes_read;
e7c27a73 5240 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5241 break;
5242 }
f3dd6933
DJ
5243
5244 xfree (cur_attrs);
c906108c
SS
5245}
5246
f3dd6933 5247/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5248
c906108c 5249static void
f3dd6933 5250dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5251{
f3dd6933 5252 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5253
f3dd6933
DJ
5254 obstack_free (&cu->abbrev_obstack, NULL);
5255 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5256}
5257
5258/* Lookup an abbrev_info structure in the abbrev hash table. */
5259
5260static struct abbrev_info *
e7c27a73 5261dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5262{
5263 unsigned int hash_number;
5264 struct abbrev_info *abbrev;
5265
5266 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5267 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5268
5269 while (abbrev)
5270 {
5271 if (abbrev->number == number)
5272 return abbrev;
5273 else
5274 abbrev = abbrev->next;
5275 }
5276 return NULL;
5277}
5278
72bf9492
DJ
5279/* Returns nonzero if TAG represents a type that we might generate a partial
5280 symbol for. */
5281
5282static int
5283is_type_tag_for_partial (int tag)
5284{
5285 switch (tag)
5286 {
5287#if 0
5288 /* Some types that would be reasonable to generate partial symbols for,
5289 that we don't at present. */
5290 case DW_TAG_array_type:
5291 case DW_TAG_file_type:
5292 case DW_TAG_ptr_to_member_type:
5293 case DW_TAG_set_type:
5294 case DW_TAG_string_type:
5295 case DW_TAG_subroutine_type:
5296#endif
5297 case DW_TAG_base_type:
5298 case DW_TAG_class_type:
5299 case DW_TAG_enumeration_type:
5300 case DW_TAG_structure_type:
5301 case DW_TAG_subrange_type:
5302 case DW_TAG_typedef:
5303 case DW_TAG_union_type:
5304 return 1;
5305 default:
5306 return 0;
5307 }
5308}
5309
5310/* Load all DIEs that are interesting for partial symbols into memory. */
5311
5312static struct partial_die_info *
fe1b8b76 5313load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5314 struct dwarf2_cu *cu)
5315{
5316 struct partial_die_info *part_die;
5317 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5318 struct abbrev_info *abbrev;
5319 unsigned int bytes_read;
5afb4e99 5320 unsigned int load_all = 0;
72bf9492
DJ
5321
5322 int nesting_level = 1;
5323
5324 parent_die = NULL;
5325 last_die = NULL;
5326
5afb4e99
DJ
5327 if (cu->per_cu && cu->per_cu->load_all_dies)
5328 load_all = 1;
5329
72bf9492
DJ
5330 cu->partial_dies
5331 = htab_create_alloc_ex (cu->header.length / 12,
5332 partial_die_hash,
5333 partial_die_eq,
5334 NULL,
5335 &cu->comp_unit_obstack,
5336 hashtab_obstack_allocate,
5337 dummy_obstack_deallocate);
5338
5339 part_die = obstack_alloc (&cu->comp_unit_obstack,
5340 sizeof (struct partial_die_info));
5341
5342 while (1)
5343 {
5344 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5345
5346 /* A NULL abbrev means the end of a series of children. */
5347 if (abbrev == NULL)
5348 {
5349 if (--nesting_level == 0)
5350 {
5351 /* PART_DIE was probably the last thing allocated on the
5352 comp_unit_obstack, so we could call obstack_free
5353 here. We don't do that because the waste is small,
5354 and will be cleaned up when we're done with this
5355 compilation unit. This way, we're also more robust
5356 against other users of the comp_unit_obstack. */
5357 return first_die;
5358 }
5359 info_ptr += bytes_read;
5360 last_die = parent_die;
5361 parent_die = parent_die->die_parent;
5362 continue;
5363 }
5364
5afb4e99
DJ
5365 /* Check whether this DIE is interesting enough to save. Normally
5366 we would not be interested in members here, but there may be
5367 later variables referencing them via DW_AT_specification (for
5368 static members). */
5369 if (!load_all
5370 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5371 && abbrev->tag != DW_TAG_enumerator
5372 && abbrev->tag != DW_TAG_subprogram
5373 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5374 && abbrev->tag != DW_TAG_namespace
5375 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5376 {
5377 /* Otherwise we skip to the next sibling, if any. */
5378 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5379 continue;
5380 }
5381
5382 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5383 abfd, info_ptr, cu);
5384
5385 /* This two-pass algorithm for processing partial symbols has a
5386 high cost in cache pressure. Thus, handle some simple cases
5387 here which cover the majority of C partial symbols. DIEs
5388 which neither have specification tags in them, nor could have
5389 specification tags elsewhere pointing at them, can simply be
5390 processed and discarded.
5391
5392 This segment is also optional; scan_partial_symbols and
5393 add_partial_symbol will handle these DIEs if we chain
5394 them in normally. When compilers which do not emit large
5395 quantities of duplicate debug information are more common,
5396 this code can probably be removed. */
5397
5398 /* Any complete simple types at the top level (pretty much all
5399 of them, for a language without namespaces), can be processed
5400 directly. */
5401 if (parent_die == NULL
5402 && part_die->has_specification == 0
5403 && part_die->is_declaration == 0
5404 && (part_die->tag == DW_TAG_typedef
5405 || part_die->tag == DW_TAG_base_type
5406 || part_die->tag == DW_TAG_subrange_type))
5407 {
5408 if (building_psymtab && part_die->name != NULL)
5409 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5410 VAR_DOMAIN, LOC_TYPEDEF,
5411 &cu->objfile->static_psymbols,
5412 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5413 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5414 continue;
5415 }
5416
5417 /* If we're at the second level, and we're an enumerator, and
5418 our parent has no specification (meaning possibly lives in a
5419 namespace elsewhere), then we can add the partial symbol now
5420 instead of queueing it. */
5421 if (part_die->tag == DW_TAG_enumerator
5422 && parent_die != NULL
5423 && parent_die->die_parent == NULL
5424 && parent_die->tag == DW_TAG_enumeration_type
5425 && parent_die->has_specification == 0)
5426 {
5427 if (part_die->name == NULL)
e2e0b3e5 5428 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5429 else if (building_psymtab)
5430 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5431 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5432 (cu->language == language_cplus
5433 || cu->language == language_java)
72bf9492
DJ
5434 ? &cu->objfile->global_psymbols
5435 : &cu->objfile->static_psymbols,
5436 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5437
5438 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5439 continue;
5440 }
5441
5442 /* We'll save this DIE so link it in. */
5443 part_die->die_parent = parent_die;
5444 part_die->die_sibling = NULL;
5445 part_die->die_child = NULL;
5446
5447 if (last_die && last_die == parent_die)
5448 last_die->die_child = part_die;
5449 else if (last_die)
5450 last_die->die_sibling = part_die;
5451
5452 last_die = part_die;
5453
5454 if (first_die == NULL)
5455 first_die = part_die;
5456
5457 /* Maybe add the DIE to the hash table. Not all DIEs that we
5458 find interesting need to be in the hash table, because we
5459 also have the parent/sibling/child chains; only those that we
5460 might refer to by offset later during partial symbol reading.
5461
5462 For now this means things that might have be the target of a
5463 DW_AT_specification, DW_AT_abstract_origin, or
5464 DW_AT_extension. DW_AT_extension will refer only to
5465 namespaces; DW_AT_abstract_origin refers to functions (and
5466 many things under the function DIE, but we do not recurse
5467 into function DIEs during partial symbol reading) and
5468 possibly variables as well; DW_AT_specification refers to
5469 declarations. Declarations ought to have the DW_AT_declaration
5470 flag. It happens that GCC forgets to put it in sometimes, but
5471 only for functions, not for types.
5472
5473 Adding more things than necessary to the hash table is harmless
5474 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5475 wasted time in find_partial_die, when we reread the compilation
5476 unit with load_all_dies set. */
72bf9492 5477
5afb4e99
DJ
5478 if (load_all
5479 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5480 || abbrev->tag == DW_TAG_variable
5481 || abbrev->tag == DW_TAG_namespace
5482 || part_die->is_declaration)
5483 {
5484 void **slot;
5485
5486 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5487 part_die->offset, INSERT);
5488 *slot = part_die;
5489 }
5490
5491 part_die = obstack_alloc (&cu->comp_unit_obstack,
5492 sizeof (struct partial_die_info));
5493
5494 /* For some DIEs we want to follow their children (if any). For C
5495 we have no reason to follow the children of structures; for other
5496 languages we have to, both so that we can get at method physnames
5497 to infer fully qualified class names, and for DW_AT_specification. */
5498 if (last_die->has_children
5afb4e99
DJ
5499 && (load_all
5500 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5501 || last_die->tag == DW_TAG_enumeration_type
5502 || (cu->language != language_c
5503 && (last_die->tag == DW_TAG_class_type
5504 || last_die->tag == DW_TAG_structure_type
5505 || last_die->tag == DW_TAG_union_type))))
5506 {
5507 nesting_level++;
5508 parent_die = last_die;
5509 continue;
5510 }
5511
5512 /* Otherwise we skip to the next sibling, if any. */
5513 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5514
5515 /* Back to the top, do it again. */
5516 }
5517}
5518
c906108c
SS
5519/* Read a minimal amount of information into the minimal die structure. */
5520
fe1b8b76 5521static gdb_byte *
72bf9492
DJ
5522read_partial_die (struct partial_die_info *part_die,
5523 struct abbrev_info *abbrev,
5524 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5525 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5526{
72bf9492 5527 unsigned int bytes_read, i;
c906108c 5528 struct attribute attr;
c5aa993b 5529 int has_low_pc_attr = 0;
c906108c
SS
5530 int has_high_pc_attr = 0;
5531
72bf9492 5532 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5533
6502dd73 5534 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5535
5536 info_ptr += abbrev_len;
5537
5538 if (abbrev == NULL)
5539 return info_ptr;
5540
c906108c
SS
5541 part_die->tag = abbrev->tag;
5542 part_die->has_children = abbrev->has_children;
c906108c
SS
5543
5544 for (i = 0; i < abbrev->num_attrs; ++i)
5545 {
e7c27a73 5546 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5547
5548 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5549 partial symbol table. */
c906108c
SS
5550 switch (attr.name)
5551 {
5552 case DW_AT_name:
5553
5554 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5555 if (part_die->name == NULL)
5556 part_die->name = DW_STRING (&attr);
5557 break;
57c22c6c
BR
5558 case DW_AT_comp_dir:
5559 if (part_die->dirname == NULL)
5560 part_die->dirname = DW_STRING (&attr);
5561 break;
c906108c
SS
5562 case DW_AT_MIPS_linkage_name:
5563 part_die->name = DW_STRING (&attr);
5564 break;
5565 case DW_AT_low_pc:
5566 has_low_pc_attr = 1;
5567 part_die->lowpc = DW_ADDR (&attr);
5568 break;
5569 case DW_AT_high_pc:
5570 has_high_pc_attr = 1;
5571 part_die->highpc = DW_ADDR (&attr);
5572 break;
5573 case DW_AT_location:
8e19ed76
PS
5574 /* Support the .debug_loc offsets */
5575 if (attr_form_is_block (&attr))
5576 {
5577 part_die->locdesc = DW_BLOCK (&attr);
5578 }
5579 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5580 {
4d3c2250 5581 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5582 }
5583 else
5584 {
4d3c2250
KB
5585 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5586 "partial symbol information");
8e19ed76 5587 }
c906108c
SS
5588 break;
5589 case DW_AT_language:
5590 part_die->language = DW_UNSND (&attr);
5591 break;
5592 case DW_AT_external:
5593 part_die->is_external = DW_UNSND (&attr);
5594 break;
5595 case DW_AT_declaration:
5596 part_die->is_declaration = DW_UNSND (&attr);
5597 break;
5598 case DW_AT_type:
5599 part_die->has_type = 1;
5600 break;
5601 case DW_AT_abstract_origin:
5602 case DW_AT_specification:
72bf9492
DJ
5603 case DW_AT_extension:
5604 part_die->has_specification = 1;
5605 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5606 break;
5607 case DW_AT_sibling:
5608 /* Ignore absolute siblings, they might point outside of
5609 the current compile unit. */
5610 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5611 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5612 else
6502dd73
DJ
5613 part_die->sibling = dwarf2_per_objfile->info_buffer
5614 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5615 break;
aaa75496
JB
5616 case DW_AT_stmt_list:
5617 part_die->has_stmt_list = 1;
5618 part_die->line_offset = DW_UNSND (&attr);
5619 break;
fa4028e9
JB
5620 case DW_AT_byte_size:
5621 part_die->has_byte_size = 1;
5622 break;
c906108c
SS
5623 default:
5624 break;
5625 }
5626 }
5627
c906108c
SS
5628 /* When using the GNU linker, .gnu.linkonce. sections are used to
5629 eliminate duplicate copies of functions and vtables and such.
5630 The linker will arbitrarily choose one and discard the others.
5631 The AT_*_pc values for such functions refer to local labels in
5632 these sections. If the section from that file was discarded, the
5633 labels are not in the output, so the relocs get a value of 0.
5634 If this is a discarded function, mark the pc bounds as invalid,
5635 so that GDB will ignore it. */
5636 if (has_low_pc_attr && has_high_pc_attr
5637 && part_die->lowpc < part_die->highpc
5638 && (part_die->lowpc != 0
72dca2f5 5639 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5640 part_die->has_pc_info = 1;
c906108c
SS
5641 return info_ptr;
5642}
5643
72bf9492
DJ
5644/* Find a cached partial DIE at OFFSET in CU. */
5645
5646static struct partial_die_info *
5647find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5648{
5649 struct partial_die_info *lookup_die = NULL;
5650 struct partial_die_info part_die;
5651
5652 part_die.offset = offset;
5653 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5654
72bf9492
DJ
5655 return lookup_die;
5656}
5657
5658/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5659
5660static struct partial_die_info *
10b3939b 5661find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5662{
5afb4e99
DJ
5663 struct dwarf2_per_cu_data *per_cu = NULL;
5664 struct partial_die_info *pd = NULL;
72bf9492
DJ
5665
5666 if (offset >= cu->header.offset
5667 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5668 {
5669 pd = find_partial_die_in_comp_unit (offset, cu);
5670 if (pd != NULL)
5671 return pd;
5672 }
72bf9492 5673
ae038cb0
DJ
5674 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5675
ae038cb0
DJ
5676 if (per_cu->cu == NULL)
5677 {
5678 load_comp_unit (per_cu, cu->objfile);
5679 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5680 dwarf2_per_objfile->read_in_chain = per_cu;
5681 }
5682
5683 per_cu->cu->last_used = 0;
5afb4e99
DJ
5684 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5685
5686 if (pd == NULL && per_cu->load_all_dies == 0)
5687 {
5688 struct cleanup *back_to;
5689 struct partial_die_info comp_unit_die;
5690 struct abbrev_info *abbrev;
5691 unsigned int bytes_read;
5692 char *info_ptr;
5693
5694 per_cu->load_all_dies = 1;
5695
5696 /* Re-read the DIEs. */
5697 back_to = make_cleanup (null_cleanup, 0);
5698 if (per_cu->cu->dwarf2_abbrevs == NULL)
5699 {
5700 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5701 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5702 }
5703 info_ptr = per_cu->cu->header.first_die_ptr;
5704 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5705 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5706 per_cu->cu->objfile->obfd, info_ptr,
5707 per_cu->cu);
5708 if (comp_unit_die.has_children)
5709 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5710 do_cleanups (back_to);
5711
5712 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5713 }
5714
5715 if (pd == NULL)
5716 internal_error (__FILE__, __LINE__,
5717 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5718 offset, bfd_get_filename (cu->objfile->obfd));
5719 return pd;
72bf9492
DJ
5720}
5721
5722/* Adjust PART_DIE before generating a symbol for it. This function
5723 may set the is_external flag or change the DIE's name. */
5724
5725static void
5726fixup_partial_die (struct partial_die_info *part_die,
5727 struct dwarf2_cu *cu)
5728{
5729 /* If we found a reference attribute and the DIE has no name, try
5730 to find a name in the referred to DIE. */
5731
5732 if (part_die->name == NULL && part_die->has_specification)
5733 {
5734 struct partial_die_info *spec_die;
72bf9492 5735
10b3939b 5736 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5737
10b3939b 5738 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5739
5740 if (spec_die->name)
5741 {
5742 part_die->name = spec_die->name;
5743
5744 /* Copy DW_AT_external attribute if it is set. */
5745 if (spec_die->is_external)
5746 part_die->is_external = spec_die->is_external;
5747 }
5748 }
5749
5750 /* Set default names for some unnamed DIEs. */
5751 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5752 || part_die->tag == DW_TAG_class_type))
5753 part_die->name = "(anonymous class)";
5754
5755 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5756 part_die->name = "(anonymous namespace)";
5757
5758 if (part_die->tag == DW_TAG_structure_type
5759 || part_die->tag == DW_TAG_class_type
5760 || part_die->tag == DW_TAG_union_type)
5761 guess_structure_name (part_die, cu);
5762}
5763
639d11d3
DC
5764/* Read the die from the .debug_info section buffer. Set DIEP to
5765 point to a newly allocated die with its information, except for its
5766 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5767 whether the die has children or not. */
c906108c 5768
fe1b8b76
JB
5769static gdb_byte *
5770read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5771 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5772{
5773 unsigned int abbrev_number, bytes_read, i, offset;
5774 struct abbrev_info *abbrev;
5775 struct die_info *die;
5776
6502dd73 5777 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5778 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5779 info_ptr += bytes_read;
5780 if (!abbrev_number)
5781 {
5782 die = dwarf_alloc_die ();
5783 die->tag = 0;
5784 die->abbrev = abbrev_number;
5785 die->type = NULL;
5786 *diep = die;
639d11d3 5787 *has_children = 0;
c906108c
SS
5788 return info_ptr;
5789 }
5790
e7c27a73 5791 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5792 if (!abbrev)
5793 {
8a3fe4f8 5794 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5795 abbrev_number,
639d11d3 5796 bfd_get_filename (abfd));
c906108c
SS
5797 }
5798 die = dwarf_alloc_die ();
5799 die->offset = offset;
5800 die->tag = abbrev->tag;
c906108c
SS
5801 die->abbrev = abbrev_number;
5802 die->type = NULL;
5803
5804 die->num_attrs = abbrev->num_attrs;
5805 die->attrs = (struct attribute *)
5806 xmalloc (die->num_attrs * sizeof (struct attribute));
5807
5808 for (i = 0; i < abbrev->num_attrs; ++i)
5809 {
5810 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5811 abfd, info_ptr, cu);
10b3939b
DJ
5812
5813 /* If this attribute is an absolute reference to a different
5814 compilation unit, make sure that compilation unit is loaded
5815 also. */
5816 if (die->attrs[i].form == DW_FORM_ref_addr
5817 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5818 || (DW_ADDR (&die->attrs[i])
5819 >= cu->header.offset + cu->header.length)))
5820 {
5821 struct dwarf2_per_cu_data *per_cu;
5822 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5823 cu->objfile);
5824
5825 /* Mark the dependence relation so that we don't flush PER_CU
5826 too early. */
5827 dwarf2_add_dependence (cu, per_cu);
5828
5829 /* If it's already on the queue, we have nothing to do. */
5830 if (per_cu->queued)
5831 continue;
5832
5833 /* If the compilation unit is already loaded, just mark it as
5834 used. */
5835 if (per_cu->cu != NULL)
5836 {
5837 per_cu->cu->last_used = 0;
5838 continue;
5839 }
5840
5841 /* Add it to the queue. */
5842 queue_comp_unit (per_cu);
5843 }
c906108c
SS
5844 }
5845
5846 *diep = die;
639d11d3 5847 *has_children = abbrev->has_children;
c906108c
SS
5848 return info_ptr;
5849}
5850
a8329558 5851/* Read an attribute value described by an attribute form. */
c906108c 5852
fe1b8b76 5853static gdb_byte *
a8329558 5854read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5855 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5856 struct dwarf2_cu *cu)
c906108c 5857{
e7c27a73 5858 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5859 unsigned int bytes_read;
5860 struct dwarf_block *blk;
5861
a8329558
KW
5862 attr->form = form;
5863 switch (form)
c906108c
SS
5864 {
5865 case DW_FORM_addr:
5866 case DW_FORM_ref_addr:
e7c27a73 5867 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 5868 info_ptr += bytes_read;
c906108c
SS
5869 break;
5870 case DW_FORM_block2:
7b5a2f43 5871 blk = dwarf_alloc_block (cu);
c906108c
SS
5872 blk->size = read_2_bytes (abfd, info_ptr);
5873 info_ptr += 2;
5874 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5875 info_ptr += blk->size;
5876 DW_BLOCK (attr) = blk;
5877 break;
5878 case DW_FORM_block4:
7b5a2f43 5879 blk = dwarf_alloc_block (cu);
c906108c
SS
5880 blk->size = read_4_bytes (abfd, info_ptr);
5881 info_ptr += 4;
5882 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5883 info_ptr += blk->size;
5884 DW_BLOCK (attr) = blk;
5885 break;
5886 case DW_FORM_data2:
5887 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5888 info_ptr += 2;
5889 break;
5890 case DW_FORM_data4:
5891 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5892 info_ptr += 4;
5893 break;
5894 case DW_FORM_data8:
5895 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5896 info_ptr += 8;
5897 break;
5898 case DW_FORM_string:
5899 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5900 info_ptr += bytes_read;
5901 break;
4bdf3d34
JJ
5902 case DW_FORM_strp:
5903 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5904 &bytes_read);
5905 info_ptr += bytes_read;
5906 break;
c906108c 5907 case DW_FORM_block:
7b5a2f43 5908 blk = dwarf_alloc_block (cu);
c906108c
SS
5909 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5910 info_ptr += bytes_read;
5911 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5912 info_ptr += blk->size;
5913 DW_BLOCK (attr) = blk;
5914 break;
5915 case DW_FORM_block1:
7b5a2f43 5916 blk = dwarf_alloc_block (cu);
c906108c
SS
5917 blk->size = read_1_byte (abfd, info_ptr);
5918 info_ptr += 1;
5919 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5920 info_ptr += blk->size;
5921 DW_BLOCK (attr) = blk;
5922 break;
5923 case DW_FORM_data1:
5924 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5925 info_ptr += 1;
5926 break;
5927 case DW_FORM_flag:
5928 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5929 info_ptr += 1;
5930 break;
5931 case DW_FORM_sdata:
5932 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5933 info_ptr += bytes_read;
5934 break;
5935 case DW_FORM_udata:
5936 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5937 info_ptr += bytes_read;
5938 break;
5939 case DW_FORM_ref1:
10b3939b 5940 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
5941 info_ptr += 1;
5942 break;
5943 case DW_FORM_ref2:
10b3939b 5944 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
5945 info_ptr += 2;
5946 break;
5947 case DW_FORM_ref4:
10b3939b 5948 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
5949 info_ptr += 4;
5950 break;
613e1657 5951 case DW_FORM_ref8:
10b3939b 5952 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
5953 info_ptr += 8;
5954 break;
c906108c 5955 case DW_FORM_ref_udata:
10b3939b
DJ
5956 DW_ADDR (attr) = (cu->header.offset
5957 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
5958 info_ptr += bytes_read;
5959 break;
c906108c 5960 case DW_FORM_indirect:
a8329558
KW
5961 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5962 info_ptr += bytes_read;
e7c27a73 5963 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 5964 break;
c906108c 5965 default:
8a3fe4f8 5966 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
5967 dwarf_form_name (form),
5968 bfd_get_filename (abfd));
c906108c
SS
5969 }
5970 return info_ptr;
5971}
5972
a8329558
KW
5973/* Read an attribute described by an abbreviated attribute. */
5974
fe1b8b76 5975static gdb_byte *
a8329558 5976read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 5977 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
5978{
5979 attr->name = abbrev->name;
e7c27a73 5980 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
5981}
5982
c906108c
SS
5983/* read dwarf information from a buffer */
5984
5985static unsigned int
fe1b8b76 5986read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 5987{
fe1b8b76 5988 return bfd_get_8 (abfd, buf);
c906108c
SS
5989}
5990
5991static int
fe1b8b76 5992read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 5993{
fe1b8b76 5994 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
5995}
5996
5997static unsigned int
fe1b8b76 5998read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 5999{
fe1b8b76 6000 return bfd_get_16 (abfd, buf);
c906108c
SS
6001}
6002
6003static int
fe1b8b76 6004read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6005{
fe1b8b76 6006 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6007}
6008
6009static unsigned int
fe1b8b76 6010read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6011{
fe1b8b76 6012 return bfd_get_32 (abfd, buf);
c906108c
SS
6013}
6014
6015static int
fe1b8b76 6016read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6017{
fe1b8b76 6018 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6019}
6020
ce5d95e1 6021static unsigned long
fe1b8b76 6022read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6023{
fe1b8b76 6024 return bfd_get_64 (abfd, buf);
c906108c
SS
6025}
6026
6027static CORE_ADDR
fe1b8b76 6028read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6029 unsigned int *bytes_read)
c906108c 6030{
e7c27a73 6031 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6032 CORE_ADDR retval = 0;
6033
107d2387 6034 if (cu_header->signed_addr_p)
c906108c 6035 {
107d2387
AC
6036 switch (cu_header->addr_size)
6037 {
6038 case 2:
fe1b8b76 6039 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6040 break;
6041 case 4:
fe1b8b76 6042 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6043 break;
6044 case 8:
fe1b8b76 6045 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6046 break;
6047 default:
8e65ff28 6048 internal_error (__FILE__, __LINE__,
e2e0b3e5 6049 _("read_address: bad switch, signed [in module %s]"),
659b0389 6050 bfd_get_filename (abfd));
107d2387
AC
6051 }
6052 }
6053 else
6054 {
6055 switch (cu_header->addr_size)
6056 {
6057 case 2:
fe1b8b76 6058 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6059 break;
6060 case 4:
fe1b8b76 6061 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6062 break;
6063 case 8:
fe1b8b76 6064 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6065 break;
6066 default:
8e65ff28 6067 internal_error (__FILE__, __LINE__,
e2e0b3e5 6068 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6069 bfd_get_filename (abfd));
107d2387 6070 }
c906108c 6071 }
64367e0a 6072
107d2387
AC
6073 *bytes_read = cu_header->addr_size;
6074 return retval;
c906108c
SS
6075}
6076
f7ef9339 6077/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6078 specification allows the initial length to take up either 4 bytes
6079 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6080 bytes describe the length and all offsets will be 8 bytes in length
6081 instead of 4.
6082
f7ef9339
KB
6083 An older, non-standard 64-bit format is also handled by this
6084 function. The older format in question stores the initial length
6085 as an 8-byte quantity without an escape value. Lengths greater
6086 than 2^32 aren't very common which means that the initial 4 bytes
6087 is almost always zero. Since a length value of zero doesn't make
6088 sense for the 32-bit format, this initial zero can be considered to
6089 be an escape value which indicates the presence of the older 64-bit
6090 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6091 greater than 4GB. If it becomes necessary to handle lengths
6092 somewhat larger than 4GB, we could allow other small values (such
6093 as the non-sensical values of 1, 2, and 3) to also be used as
6094 escape values indicating the presence of the old format.
f7ef9339 6095
917c78fc
MK
6096 The value returned via bytes_read should be used to increment the
6097 relevant pointer after calling read_initial_length().
613e1657
KB
6098
6099 As a side effect, this function sets the fields initial_length_size
6100 and offset_size in cu_header to the values appropriate for the
6101 length field. (The format of the initial length field determines
dd373385 6102 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6103
6104 [ Note: read_initial_length() and read_offset() are based on the
6105 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6106 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6107 from:
6108
f7ef9339 6109 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6110
6111 This document is only a draft and is subject to change. (So beware.)
6112
f7ef9339 6113 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6114 determined empirically by examining 64-bit ELF files produced by
6115 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6116
6117 - Kevin, July 16, 2002
613e1657
KB
6118 ] */
6119
6120static LONGEST
fe1b8b76 6121read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6122 unsigned int *bytes_read)
613e1657 6123{
fe1b8b76 6124 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6125
dd373385 6126 if (length == 0xffffffff)
613e1657 6127 {
fe1b8b76 6128 length = bfd_get_64 (abfd, buf + 4);
613e1657 6129 *bytes_read = 12;
613e1657 6130 }
dd373385 6131 else if (length == 0)
f7ef9339 6132 {
dd373385 6133 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6134 length = bfd_get_64 (abfd, buf);
f7ef9339 6135 *bytes_read = 8;
f7ef9339 6136 }
613e1657
KB
6137 else
6138 {
6139 *bytes_read = 4;
613e1657
KB
6140 }
6141
dd373385
EZ
6142 if (cu_header)
6143 {
6144 gdb_assert (cu_header->initial_length_size == 0
6145 || cu_header->initial_length_size == 4
6146 || cu_header->initial_length_size == 8
6147 || cu_header->initial_length_size == 12);
6148
6149 if (cu_header->initial_length_size != 0
6150 && cu_header->initial_length_size != *bytes_read)
6151 complaint (&symfile_complaints,
6152 _("intermixed 32-bit and 64-bit DWARF sections"));
6153
6154 cu_header->initial_length_size = *bytes_read;
6155 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6156 }
6157
6158 return length;
613e1657
KB
6159}
6160
6161/* Read an offset from the data stream. The size of the offset is
917c78fc 6162 given by cu_header->offset_size. */
613e1657
KB
6163
6164static LONGEST
fe1b8b76 6165read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6166 unsigned int *bytes_read)
613e1657
KB
6167{
6168 LONGEST retval = 0;
6169
6170 switch (cu_header->offset_size)
6171 {
6172 case 4:
fe1b8b76 6173 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6174 *bytes_read = 4;
6175 break;
6176 case 8:
fe1b8b76 6177 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6178 *bytes_read = 8;
6179 break;
6180 default:
8e65ff28 6181 internal_error (__FILE__, __LINE__,
e2e0b3e5 6182 _("read_offset: bad switch [in module %s]"),
659b0389 6183 bfd_get_filename (abfd));
613e1657
KB
6184 }
6185
917c78fc 6186 return retval;
613e1657
KB
6187}
6188
fe1b8b76
JB
6189static gdb_byte *
6190read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6191{
6192 /* If the size of a host char is 8 bits, we can return a pointer
6193 to the buffer, otherwise we have to copy the data to a buffer
6194 allocated on the temporary obstack. */
4bdf3d34 6195 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6196 return buf;
c906108c
SS
6197}
6198
6199static char *
fe1b8b76 6200read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6201{
6202 /* If the size of a host char is 8 bits, we can return a pointer
6203 to the string, otherwise we have to copy the string to a buffer
6204 allocated on the temporary obstack. */
4bdf3d34 6205 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6206 if (*buf == '\0')
6207 {
6208 *bytes_read_ptr = 1;
6209 return NULL;
6210 }
fe1b8b76
JB
6211 *bytes_read_ptr = strlen ((char *) buf) + 1;
6212 return (char *) buf;
4bdf3d34
JJ
6213}
6214
6215static char *
fe1b8b76 6216read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6217 const struct comp_unit_head *cu_header,
6218 unsigned int *bytes_read_ptr)
6219{
6220 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6221 bytes_read_ptr);
c906108c 6222
6502dd73 6223 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6224 {
8a3fe4f8 6225 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6226 bfd_get_filename (abfd));
4bdf3d34 6227 return NULL;
c906108c 6228 }
6502dd73 6229 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6230 {
8a3fe4f8 6231 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6232 bfd_get_filename (abfd));
c906108c
SS
6233 return NULL;
6234 }
4bdf3d34 6235 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6236 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6237 return NULL;
fe1b8b76 6238 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6239}
6240
ce5d95e1 6241static unsigned long
fe1b8b76 6242read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6243{
ce5d95e1
JB
6244 unsigned long result;
6245 unsigned int num_read;
c906108c
SS
6246 int i, shift;
6247 unsigned char byte;
6248
6249 result = 0;
6250 shift = 0;
6251 num_read = 0;
6252 i = 0;
6253 while (1)
6254 {
fe1b8b76 6255 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6256 buf++;
6257 num_read++;
ce5d95e1 6258 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6259 if ((byte & 128) == 0)
6260 {
6261 break;
6262 }
6263 shift += 7;
6264 }
6265 *bytes_read_ptr = num_read;
6266 return result;
6267}
6268
ce5d95e1 6269static long
fe1b8b76 6270read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6271{
ce5d95e1 6272 long result;
77e0b926 6273 int i, shift, num_read;
c906108c
SS
6274 unsigned char byte;
6275
6276 result = 0;
6277 shift = 0;
c906108c
SS
6278 num_read = 0;
6279 i = 0;
6280 while (1)
6281 {
fe1b8b76 6282 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6283 buf++;
6284 num_read++;
ce5d95e1 6285 result |= ((long)(byte & 127) << shift);
c906108c
SS
6286 shift += 7;
6287 if ((byte & 128) == 0)
6288 {
6289 break;
6290 }
6291 }
77e0b926
DJ
6292 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6293 result |= -(((long)1) << shift);
c906108c
SS
6294 *bytes_read_ptr = num_read;
6295 return result;
6296}
6297
4bb7a0a7
DJ
6298/* Return a pointer to just past the end of an LEB128 number in BUF. */
6299
fe1b8b76
JB
6300static gdb_byte *
6301skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6302{
6303 int byte;
6304
6305 while (1)
6306 {
fe1b8b76 6307 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6308 buf++;
6309 if ((byte & 128) == 0)
6310 return buf;
6311 }
6312}
6313
c906108c 6314static void
e142c38c 6315set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6316{
6317 switch (lang)
6318 {
6319 case DW_LANG_C89:
6320 case DW_LANG_C:
e142c38c 6321 cu->language = language_c;
c906108c
SS
6322 break;
6323 case DW_LANG_C_plus_plus:
e142c38c 6324 cu->language = language_cplus;
c906108c
SS
6325 break;
6326 case DW_LANG_Fortran77:
6327 case DW_LANG_Fortran90:
b21b22e0 6328 case DW_LANG_Fortran95:
e142c38c 6329 cu->language = language_fortran;
c906108c
SS
6330 break;
6331 case DW_LANG_Mips_Assembler:
e142c38c 6332 cu->language = language_asm;
c906108c 6333 break;
bebd888e 6334 case DW_LANG_Java:
e142c38c 6335 cu->language = language_java;
bebd888e 6336 break;
c906108c 6337 case DW_LANG_Ada83:
8aaf0b47 6338 case DW_LANG_Ada95:
bc5f45f8
JB
6339 cu->language = language_ada;
6340 break;
72019c9c
GM
6341 case DW_LANG_Modula2:
6342 cu->language = language_m2;
6343 break;
fe8e67fd
PM
6344 case DW_LANG_Pascal83:
6345 cu->language = language_pascal;
6346 break;
c906108c
SS
6347 case DW_LANG_Cobol74:
6348 case DW_LANG_Cobol85:
c906108c 6349 default:
e142c38c 6350 cu->language = language_minimal;
c906108c
SS
6351 break;
6352 }
e142c38c 6353 cu->language_defn = language_def (cu->language);
c906108c
SS
6354}
6355
6356/* Return the named attribute or NULL if not there. */
6357
6358static struct attribute *
e142c38c 6359dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6360{
6361 unsigned int i;
6362 struct attribute *spec = NULL;
6363
6364 for (i = 0; i < die->num_attrs; ++i)
6365 {
6366 if (die->attrs[i].name == name)
10b3939b 6367 return &die->attrs[i];
c906108c
SS
6368 if (die->attrs[i].name == DW_AT_specification
6369 || die->attrs[i].name == DW_AT_abstract_origin)
6370 spec = &die->attrs[i];
6371 }
c906108c 6372
10b3939b
DJ
6373 if (spec)
6374 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6375
c906108c
SS
6376 return NULL;
6377}
6378
05cf31d1
JB
6379/* Return non-zero iff the attribute NAME is defined for the given DIE,
6380 and holds a non-zero value. This function should only be used for
6381 DW_FORM_flag attributes. */
6382
6383static int
6384dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6385{
6386 struct attribute *attr = dwarf2_attr (die, name, cu);
6387
6388 return (attr && DW_UNSND (attr));
6389}
6390
3ca72b44 6391static int
e142c38c 6392die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6393{
05cf31d1
JB
6394 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6395 which value is non-zero. However, we have to be careful with
6396 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6397 (via dwarf2_flag_true_p) follows this attribute. So we may
6398 end up accidently finding a declaration attribute that belongs
6399 to a different DIE referenced by the specification attribute,
6400 even though the given DIE does not have a declaration attribute. */
6401 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6402 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6403}
6404
63d06c5c
DC
6405/* Return the die giving the specification for DIE, if there is
6406 one. */
6407
6408static struct die_info *
e142c38c 6409die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6410{
e142c38c 6411 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6412
6413 if (spec_attr == NULL)
6414 return NULL;
6415 else
10b3939b 6416 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6417}
c906108c 6418
debd256d
JB
6419/* Free the line_header structure *LH, and any arrays and strings it
6420 refers to. */
6421static void
6422free_line_header (struct line_header *lh)
6423{
6424 if (lh->standard_opcode_lengths)
a8bc7b56 6425 xfree (lh->standard_opcode_lengths);
debd256d
JB
6426
6427 /* Remember that all the lh->file_names[i].name pointers are
6428 pointers into debug_line_buffer, and don't need to be freed. */
6429 if (lh->file_names)
a8bc7b56 6430 xfree (lh->file_names);
debd256d
JB
6431
6432 /* Similarly for the include directory names. */
6433 if (lh->include_dirs)
a8bc7b56 6434 xfree (lh->include_dirs);
debd256d 6435
a8bc7b56 6436 xfree (lh);
debd256d
JB
6437}
6438
6439
6440/* Add an entry to LH's include directory table. */
6441static void
6442add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6443{
debd256d
JB
6444 /* Grow the array if necessary. */
6445 if (lh->include_dirs_size == 0)
c5aa993b 6446 {
debd256d
JB
6447 lh->include_dirs_size = 1; /* for testing */
6448 lh->include_dirs = xmalloc (lh->include_dirs_size
6449 * sizeof (*lh->include_dirs));
6450 }
6451 else if (lh->num_include_dirs >= lh->include_dirs_size)
6452 {
6453 lh->include_dirs_size *= 2;
6454 lh->include_dirs = xrealloc (lh->include_dirs,
6455 (lh->include_dirs_size
6456 * sizeof (*lh->include_dirs)));
c5aa993b 6457 }
c906108c 6458
debd256d
JB
6459 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6460}
6461
6462
6463/* Add an entry to LH's file name table. */
6464static void
6465add_file_name (struct line_header *lh,
6466 char *name,
6467 unsigned int dir_index,
6468 unsigned int mod_time,
6469 unsigned int length)
6470{
6471 struct file_entry *fe;
6472
6473 /* Grow the array if necessary. */
6474 if (lh->file_names_size == 0)
6475 {
6476 lh->file_names_size = 1; /* for testing */
6477 lh->file_names = xmalloc (lh->file_names_size
6478 * sizeof (*lh->file_names));
6479 }
6480 else if (lh->num_file_names >= lh->file_names_size)
6481 {
6482 lh->file_names_size *= 2;
6483 lh->file_names = xrealloc (lh->file_names,
6484 (lh->file_names_size
6485 * sizeof (*lh->file_names)));
6486 }
6487
6488 fe = &lh->file_names[lh->num_file_names++];
6489 fe->name = name;
6490 fe->dir_index = dir_index;
6491 fe->mod_time = mod_time;
6492 fe->length = length;
aaa75496 6493 fe->included_p = 0;
cb1df416 6494 fe->symtab = NULL;
debd256d
JB
6495}
6496
6497
6498/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6499 .debug_line, according to the endianness of ABFD. Return a pointer
6500 to a struct line_header, allocated using xmalloc.
debd256d
JB
6501
6502 NOTE: the strings in the include directory and file name tables of
6503 the returned object point into debug_line_buffer, and must not be
6504 freed. */
6505static struct line_header *
6506dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6507 struct dwarf2_cu *cu)
debd256d
JB
6508{
6509 struct cleanup *back_to;
6510 struct line_header *lh;
fe1b8b76 6511 gdb_byte *line_ptr;
891d2f0b 6512 unsigned int bytes_read;
debd256d
JB
6513 int i;
6514 char *cur_dir, *cur_file;
6515
6502dd73 6516 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6517 {
e2e0b3e5 6518 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6519 return 0;
6520 }
6521
a738430d
MK
6522 /* Make sure that at least there's room for the total_length field.
6523 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6524 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6525 {
4d3c2250 6526 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6527 return 0;
6528 }
6529
6530 lh = xmalloc (sizeof (*lh));
6531 memset (lh, 0, sizeof (*lh));
6532 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6533 (void *) lh);
6534
6502dd73 6535 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6536
a738430d 6537 /* Read in the header. */
dd373385
EZ
6538 lh->total_length =
6539 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6540 line_ptr += bytes_read;
6502dd73
DJ
6541 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6542 + dwarf2_per_objfile->line_size))
debd256d 6543 {
4d3c2250 6544 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6545 return 0;
6546 }
6547 lh->statement_program_end = line_ptr + lh->total_length;
6548 lh->version = read_2_bytes (abfd, line_ptr);
6549 line_ptr += 2;
e7c27a73 6550 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6551 line_ptr += bytes_read;
6552 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6553 line_ptr += 1;
6554 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6555 line_ptr += 1;
6556 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6557 line_ptr += 1;
6558 lh->line_range = read_1_byte (abfd, line_ptr);
6559 line_ptr += 1;
6560 lh->opcode_base = read_1_byte (abfd, line_ptr);
6561 line_ptr += 1;
6562 lh->standard_opcode_lengths
fe1b8b76 6563 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6564
6565 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6566 for (i = 1; i < lh->opcode_base; ++i)
6567 {
6568 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6569 line_ptr += 1;
6570 }
6571
a738430d 6572 /* Read directory table. */
debd256d
JB
6573 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6574 {
6575 line_ptr += bytes_read;
6576 add_include_dir (lh, cur_dir);
6577 }
6578 line_ptr += bytes_read;
6579
a738430d 6580 /* Read file name table. */
debd256d
JB
6581 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6582 {
6583 unsigned int dir_index, mod_time, length;
6584
6585 line_ptr += bytes_read;
6586 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6587 line_ptr += bytes_read;
6588 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6589 line_ptr += bytes_read;
6590 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6591 line_ptr += bytes_read;
6592
6593 add_file_name (lh, cur_file, dir_index, mod_time, length);
6594 }
6595 line_ptr += bytes_read;
6596 lh->statement_program_start = line_ptr;
6597
6502dd73
DJ
6598 if (line_ptr > (dwarf2_per_objfile->line_buffer
6599 + dwarf2_per_objfile->line_size))
4d3c2250 6600 complaint (&symfile_complaints,
e2e0b3e5 6601 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6602
6603 discard_cleanups (back_to);
6604 return lh;
6605}
c906108c 6606
5fb290d7
DJ
6607/* This function exists to work around a bug in certain compilers
6608 (particularly GCC 2.95), in which the first line number marker of a
6609 function does not show up until after the prologue, right before
6610 the second line number marker. This function shifts ADDRESS down
6611 to the beginning of the function if necessary, and is called on
6612 addresses passed to record_line. */
6613
6614static CORE_ADDR
e142c38c 6615check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6616{
6617 struct function_range *fn;
6618
6619 /* Find the function_range containing address. */
e142c38c 6620 if (!cu->first_fn)
5fb290d7
DJ
6621 return address;
6622
e142c38c
DJ
6623 if (!cu->cached_fn)
6624 cu->cached_fn = cu->first_fn;
5fb290d7 6625
e142c38c 6626 fn = cu->cached_fn;
5fb290d7
DJ
6627 while (fn)
6628 if (fn->lowpc <= address && fn->highpc > address)
6629 goto found;
6630 else
6631 fn = fn->next;
6632
e142c38c
DJ
6633 fn = cu->first_fn;
6634 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6635 if (fn->lowpc <= address && fn->highpc > address)
6636 goto found;
6637 else
6638 fn = fn->next;
6639
6640 return address;
6641
6642 found:
6643 if (fn->seen_line)
6644 return address;
6645 if (address != fn->lowpc)
4d3c2250 6646 complaint (&symfile_complaints,
e2e0b3e5 6647 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6648 (unsigned long) address, fn->name);
5fb290d7
DJ
6649 fn->seen_line = 1;
6650 return fn->lowpc;
6651}
6652
aaa75496
JB
6653/* Decode the Line Number Program (LNP) for the given line_header
6654 structure and CU. The actual information extracted and the type
6655 of structures created from the LNP depends on the value of PST.
6656
6657 1. If PST is NULL, then this procedure uses the data from the program
6658 to create all necessary symbol tables, and their linetables.
6659 The compilation directory of the file is passed in COMP_DIR,
6660 and must not be NULL.
6661
6662 2. If PST is not NULL, this procedure reads the program to determine
6663 the list of files included by the unit represented by PST, and
6664 builds all the associated partial symbol tables. In this case,
6665 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6666 is not used to compute the full name of the symtab, and therefore
6667 omitting it when building the partial symtab does not introduce
6668 the potential for inconsistency - a partial symtab and its associated
6669 symbtab having a different fullname -). */
debd256d 6670
c906108c 6671static void
debd256d 6672dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6673 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6674{
a8c50c1f 6675 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6676 gdb_byte *line_end;
a8c50c1f 6677 unsigned int bytes_read, extended_len;
c906108c 6678 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6679 CORE_ADDR baseaddr;
6680 struct objfile *objfile = cu->objfile;
aaa75496 6681 const int decode_for_pst_p = (pst != NULL);
cb1df416 6682 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6683
6684 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6685
debd256d
JB
6686 line_ptr = lh->statement_program_start;
6687 line_end = lh->statement_program_end;
c906108c
SS
6688
6689 /* Read the statement sequences until there's nothing left. */
6690 while (line_ptr < line_end)
6691 {
6692 /* state machine registers */
6693 CORE_ADDR address = 0;
6694 unsigned int file = 1;
6695 unsigned int line = 1;
6696 unsigned int column = 0;
debd256d 6697 int is_stmt = lh->default_is_stmt;
c906108c
SS
6698 int basic_block = 0;
6699 int end_sequence = 0;
6700
aaa75496 6701 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6702 {
aaa75496 6703 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6704 /* lh->include_dirs and lh->file_names are 0-based, but the
6705 directory and file name numbers in the statement program
6706 are 1-based. */
6707 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6708 char *dir = NULL;
a738430d 6709
debd256d
JB
6710 if (fe->dir_index)
6711 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6712
6713 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6714 }
6715
a738430d 6716 /* Decode the table. */
c5aa993b 6717 while (!end_sequence)
c906108c
SS
6718 {
6719 op_code = read_1_byte (abfd, line_ptr);
6720 line_ptr += 1;
9aa1fe7e 6721
debd256d 6722 if (op_code >= lh->opcode_base)
a738430d
MK
6723 {
6724 /* Special operand. */
debd256d
JB
6725 adj_opcode = op_code - lh->opcode_base;
6726 address += (adj_opcode / lh->line_range)
6727 * lh->minimum_instruction_length;
6728 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6729 if (lh->num_file_names < file)
6730 dwarf2_debug_line_missing_file_complaint ();
6731 else
6732 {
6733 lh->file_names[file - 1].included_p = 1;
6734 if (!decode_for_pst_p)
6735 {
6736 if (last_subfile != current_subfile)
6737 {
6738 if (last_subfile)
6739 record_line (last_subfile, 0, address);
6740 last_subfile = current_subfile;
6741 }
6742 /* Append row to matrix using current values. */
6743 record_line (current_subfile, line,
6744 check_cu_functions (address, cu));
366da635 6745 }
25e43795 6746 }
9aa1fe7e
GK
6747 basic_block = 1;
6748 }
6749 else switch (op_code)
c906108c
SS
6750 {
6751 case DW_LNS_extended_op:
a8c50c1f 6752 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 6753 line_ptr += bytes_read;
a8c50c1f 6754 extended_end = line_ptr + extended_len;
c906108c
SS
6755 extended_op = read_1_byte (abfd, line_ptr);
6756 line_ptr += 1;
6757 switch (extended_op)
6758 {
6759 case DW_LNE_end_sequence:
6760 end_sequence = 1;
25e43795
DJ
6761
6762 if (lh->num_file_names < file)
6763 dwarf2_debug_line_missing_file_complaint ();
6764 else
6765 {
6766 lh->file_names[file - 1].included_p = 1;
6767 if (!decode_for_pst_p)
6768 record_line (current_subfile, 0, address);
6769 }
c906108c
SS
6770 break;
6771 case DW_LNE_set_address:
e7c27a73 6772 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6773 line_ptr += bytes_read;
6774 address += baseaddr;
c906108c
SS
6775 break;
6776 case DW_LNE_define_file:
debd256d
JB
6777 {
6778 char *cur_file;
6779 unsigned int dir_index, mod_time, length;
6780
6781 cur_file = read_string (abfd, line_ptr, &bytes_read);
6782 line_ptr += bytes_read;
6783 dir_index =
6784 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6785 line_ptr += bytes_read;
6786 mod_time =
6787 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6788 line_ptr += bytes_read;
6789 length =
6790 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6791 line_ptr += bytes_read;
6792 add_file_name (lh, cur_file, dir_index, mod_time, length);
6793 }
c906108c
SS
6794 break;
6795 default:
4d3c2250 6796 complaint (&symfile_complaints,
e2e0b3e5 6797 _("mangled .debug_line section"));
debd256d 6798 return;
c906108c 6799 }
a8c50c1f
DJ
6800 /* Make sure that we parsed the extended op correctly. If e.g.
6801 we expected a different address size than the producer used,
6802 we may have read the wrong number of bytes. */
6803 if (line_ptr != extended_end)
6804 {
6805 complaint (&symfile_complaints,
6806 _("mangled .debug_line section"));
6807 return;
6808 }
c906108c
SS
6809 break;
6810 case DW_LNS_copy:
25e43795
DJ
6811 if (lh->num_file_names < file)
6812 dwarf2_debug_line_missing_file_complaint ();
6813 else
366da635 6814 {
25e43795
DJ
6815 lh->file_names[file - 1].included_p = 1;
6816 if (!decode_for_pst_p)
6817 {
6818 if (last_subfile != current_subfile)
6819 {
6820 if (last_subfile)
6821 record_line (last_subfile, 0, address);
6822 last_subfile = current_subfile;
6823 }
6824 record_line (current_subfile, line,
6825 check_cu_functions (address, cu));
6826 }
366da635 6827 }
c906108c
SS
6828 basic_block = 0;
6829 break;
6830 case DW_LNS_advance_pc:
debd256d 6831 address += lh->minimum_instruction_length
c906108c
SS
6832 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6833 line_ptr += bytes_read;
6834 break;
6835 case DW_LNS_advance_line:
6836 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6837 line_ptr += bytes_read;
6838 break;
6839 case DW_LNS_set_file:
debd256d 6840 {
a738430d
MK
6841 /* The arrays lh->include_dirs and lh->file_names are
6842 0-based, but the directory and file name numbers in
6843 the statement program are 1-based. */
debd256d 6844 struct file_entry *fe;
4f1520fb 6845 char *dir = NULL;
a738430d 6846
debd256d
JB
6847 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6848 line_ptr += bytes_read;
25e43795
DJ
6849 if (lh->num_file_names < file)
6850 dwarf2_debug_line_missing_file_complaint ();
6851 else
6852 {
6853 fe = &lh->file_names[file - 1];
6854 if (fe->dir_index)
6855 dir = lh->include_dirs[fe->dir_index - 1];
6856 if (!decode_for_pst_p)
6857 {
6858 last_subfile = current_subfile;
6859 dwarf2_start_subfile (fe->name, dir, comp_dir);
6860 }
6861 }
debd256d 6862 }
c906108c
SS
6863 break;
6864 case DW_LNS_set_column:
6865 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6866 line_ptr += bytes_read;
6867 break;
6868 case DW_LNS_negate_stmt:
6869 is_stmt = (!is_stmt);
6870 break;
6871 case DW_LNS_set_basic_block:
6872 basic_block = 1;
6873 break;
c2c6d25f
JM
6874 /* Add to the address register of the state machine the
6875 address increment value corresponding to special opcode
a738430d
MK
6876 255. I.e., this value is scaled by the minimum
6877 instruction length since special opcode 255 would have
6878 scaled the the increment. */
c906108c 6879 case DW_LNS_const_add_pc:
debd256d
JB
6880 address += (lh->minimum_instruction_length
6881 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
6882 break;
6883 case DW_LNS_fixed_advance_pc:
6884 address += read_2_bytes (abfd, line_ptr);
6885 line_ptr += 2;
6886 break;
9aa1fe7e 6887 default:
a738430d
MK
6888 {
6889 /* Unknown standard opcode, ignore it. */
9aa1fe7e 6890 int i;
a738430d 6891
debd256d 6892 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
6893 {
6894 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6895 line_ptr += bytes_read;
6896 }
6897 }
c906108c
SS
6898 }
6899 }
6900 }
aaa75496
JB
6901
6902 if (decode_for_pst_p)
6903 {
6904 int file_index;
6905
6906 /* Now that we're done scanning the Line Header Program, we can
6907 create the psymtab of each included file. */
6908 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6909 if (lh->file_names[file_index].included_p == 1)
6910 {
5b5464ad
JB
6911 const struct file_entry fe = lh->file_names [file_index];
6912 char *include_name = fe.name;
6913 char *dir_name = NULL;
6914 char *pst_filename = pst->filename;
6915
6916 if (fe.dir_index)
6917 dir_name = lh->include_dirs[fe.dir_index - 1];
6918
6919 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6920 {
1754f103
MK
6921 include_name = concat (dir_name, SLASH_STRING,
6922 include_name, (char *)NULL);
5b5464ad
JB
6923 make_cleanup (xfree, include_name);
6924 }
6925
6926 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6927 {
1754f103
MK
6928 pst_filename = concat (pst->dirname, SLASH_STRING,
6929 pst_filename, (char *)NULL);
5b5464ad
JB
6930 make_cleanup (xfree, pst_filename);
6931 }
6932
6933 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
6934 dwarf2_create_include_psymtab (include_name, pst, objfile);
6935 }
6936 }
cb1df416
DJ
6937 else
6938 {
6939 /* Make sure a symtab is created for every file, even files
6940 which contain only variables (i.e. no code with associated
6941 line numbers). */
6942
6943 int i;
6944 struct file_entry *fe;
6945
6946 for (i = 0; i < lh->num_file_names; i++)
6947 {
6948 char *dir = NULL;
6949 fe = &lh->file_names[i];
6950 if (fe->dir_index)
6951 dir = lh->include_dirs[fe->dir_index - 1];
6952 dwarf2_start_subfile (fe->name, dir, comp_dir);
6953
6954 /* Skip the main file; we don't need it, and it must be
6955 allocated last, so that it will show up before the
6956 non-primary symtabs in the objfile's symtab list. */
6957 if (current_subfile == first_subfile)
6958 continue;
6959
6960 if (current_subfile->symtab == NULL)
6961 current_subfile->symtab = allocate_symtab (current_subfile->name,
6962 cu->objfile);
6963 fe->symtab = current_subfile->symtab;
6964 }
6965 }
c906108c
SS
6966}
6967
6968/* Start a subfile for DWARF. FILENAME is the name of the file and
6969 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
6970 or NULL if not known. COMP_DIR is the compilation directory for the
6971 linetable's compilation unit or NULL if not known.
c906108c
SS
6972 This routine tries to keep line numbers from identical absolute and
6973 relative file names in a common subfile.
6974
6975 Using the `list' example from the GDB testsuite, which resides in
6976 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6977 of /srcdir/list0.c yields the following debugging information for list0.c:
6978
c5aa993b
JM
6979 DW_AT_name: /srcdir/list0.c
6980 DW_AT_comp_dir: /compdir
357e46e7 6981 files.files[0].name: list0.h
c5aa993b 6982 files.files[0].dir: /srcdir
357e46e7 6983 files.files[1].name: list0.c
c5aa993b 6984 files.files[1].dir: /srcdir
c906108c
SS
6985
6986 The line number information for list0.c has to end up in a single
4f1520fb
FR
6987 subfile, so that `break /srcdir/list0.c:1' works as expected.
6988 start_subfile will ensure that this happens provided that we pass the
6989 concatenation of files.files[1].dir and files.files[1].name as the
6990 subfile's name. */
c906108c
SS
6991
6992static void
4f1520fb 6993dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 6994{
4f1520fb
FR
6995 char *fullname;
6996
6997 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6998 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6999 second argument to start_subfile. To be consistent, we do the
7000 same here. In order not to lose the line information directory,
7001 we concatenate it to the filename when it makes sense.
7002 Note that the Dwarf3 standard says (speaking of filenames in line
7003 information): ``The directory index is ignored for file names
7004 that represent full path names''. Thus ignoring dirname in the
7005 `else' branch below isn't an issue. */
c906108c 7006
d5166ae1 7007 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7008 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7009 else
7010 fullname = filename;
c906108c 7011
4f1520fb
FR
7012 start_subfile (fullname, comp_dir);
7013
7014 if (fullname != filename)
7015 xfree (fullname);
c906108c
SS
7016}
7017
4c2df51b
DJ
7018static void
7019var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7020 struct dwarf2_cu *cu)
4c2df51b 7021{
e7c27a73
DJ
7022 struct objfile *objfile = cu->objfile;
7023 struct comp_unit_head *cu_header = &cu->header;
7024
4c2df51b
DJ
7025 /* NOTE drow/2003-01-30: There used to be a comment and some special
7026 code here to turn a symbol with DW_AT_external and a
7027 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7028 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7029 with some versions of binutils) where shared libraries could have
7030 relocations against symbols in their debug information - the
7031 minimal symbol would have the right address, but the debug info
7032 would not. It's no longer necessary, because we will explicitly
7033 apply relocations when we read in the debug information now. */
7034
7035 /* A DW_AT_location attribute with no contents indicates that a
7036 variable has been optimized away. */
7037 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7038 {
7039 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7040 return;
7041 }
7042
7043 /* Handle one degenerate form of location expression specially, to
7044 preserve GDB's previous behavior when section offsets are
7045 specified. If this is just a DW_OP_addr then mark this symbol
7046 as LOC_STATIC. */
7047
7048 if (attr_form_is_block (attr)
7049 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7050 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7051 {
891d2f0b 7052 unsigned int dummy;
4c2df51b
DJ
7053
7054 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7055 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7056 fixup_symbol_section (sym, objfile);
7057 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7058 SYMBOL_SECTION (sym));
7059 SYMBOL_CLASS (sym) = LOC_STATIC;
7060 return;
7061 }
7062
7063 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7064 expression evaluator, and use LOC_COMPUTED only when necessary
7065 (i.e. when the value of a register or memory location is
7066 referenced, or a thread-local block, etc.). Then again, it might
7067 not be worthwhile. I'm assuming that it isn't unless performance
7068 or memory numbers show me otherwise. */
7069
e7c27a73 7070 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7071 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7072}
7073
c906108c
SS
7074/* Given a pointer to a DWARF information entry, figure out if we need
7075 to make a symbol table entry for it, and if so, create a new entry
7076 and return a pointer to it.
7077 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7078 used the passed type. */
c906108c
SS
7079
7080static struct symbol *
e7c27a73 7081new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7082{
e7c27a73 7083 struct objfile *objfile = cu->objfile;
c906108c
SS
7084 struct symbol *sym = NULL;
7085 char *name;
7086 struct attribute *attr = NULL;
7087 struct attribute *attr2 = NULL;
e142c38c
DJ
7088 CORE_ADDR baseaddr;
7089
7090 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7091
5c4e30ca 7092 if (die->tag != DW_TAG_namespace)
e142c38c 7093 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7094 else
7095 name = TYPE_NAME (type);
7096
c906108c
SS
7097 if (name)
7098 {
4a146b47 7099 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7100 sizeof (struct symbol));
7101 OBJSTAT (objfile, n_syms++);
7102 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7103
7104 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7105 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7106 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7107
7108 /* Default assumptions.
c5aa993b 7109 Use the passed type or decode it from the die. */
176620f1 7110 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7111 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7112 if (type != NULL)
7113 SYMBOL_TYPE (sym) = type;
7114 else
e7c27a73 7115 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7116 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7117 if (attr)
7118 {
7119 SYMBOL_LINE (sym) = DW_UNSND (attr);
7120 }
cb1df416
DJ
7121
7122 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7123 if (attr)
7124 {
7125 int file_index = DW_UNSND (attr);
7126 if (cu->line_header == NULL
7127 || file_index > cu->line_header->num_file_names)
7128 complaint (&symfile_complaints,
7129 _("file index out of range"));
1c3d648d 7130 else if (file_index > 0)
cb1df416
DJ
7131 {
7132 struct file_entry *fe;
7133 fe = &cu->line_header->file_names[file_index - 1];
7134 SYMBOL_SYMTAB (sym) = fe->symtab;
7135 }
7136 }
7137
c906108c
SS
7138 switch (die->tag)
7139 {
7140 case DW_TAG_label:
e142c38c 7141 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7142 if (attr)
7143 {
7144 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7145 }
7146 SYMBOL_CLASS (sym) = LOC_LABEL;
7147 break;
7148 case DW_TAG_subprogram:
7149 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7150 finish_block. */
7151 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7152 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7153 if (attr2 && (DW_UNSND (attr2) != 0))
7154 {
7155 add_symbol_to_list (sym, &global_symbols);
7156 }
7157 else
7158 {
e142c38c 7159 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7160 }
7161 break;
7162 case DW_TAG_variable:
7163 /* Compilation with minimal debug info may result in variables
7164 with missing type entries. Change the misleading `void' type
7165 to something sensible. */
7166 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499
UW
7167 SYMBOL_TYPE (sym)
7168 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7169
e142c38c 7170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7171 if (attr)
7172 {
e7c27a73 7173 dwarf2_const_value (attr, sym, cu);
e142c38c 7174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7175 if (attr2 && (DW_UNSND (attr2) != 0))
7176 add_symbol_to_list (sym, &global_symbols);
7177 else
e142c38c 7178 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7179 break;
7180 }
e142c38c 7181 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7182 if (attr)
7183 {
e7c27a73 7184 var_decode_location (attr, sym, cu);
e142c38c 7185 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7186 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7187 add_symbol_to_list (sym, &global_symbols);
c906108c 7188 else
e142c38c 7189 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7190 }
7191 else
7192 {
7193 /* We do not know the address of this symbol.
c5aa993b
JM
7194 If it is an external symbol and we have type information
7195 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7196 The address of the variable will then be determined from
7197 the minimal symbol table whenever the variable is
7198 referenced. */
e142c38c 7199 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7200 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7201 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7202 {
7203 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7204 add_symbol_to_list (sym, &global_symbols);
7205 }
7206 }
7207 break;
7208 case DW_TAG_formal_parameter:
e142c38c 7209 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7210 if (attr)
7211 {
e7c27a73 7212 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7213 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7214 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7215 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7216 }
e142c38c 7217 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7218 if (attr)
7219 {
e7c27a73 7220 dwarf2_const_value (attr, sym, cu);
c906108c 7221 }
e142c38c 7222 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7223 break;
7224 case DW_TAG_unspecified_parameters:
7225 /* From varargs functions; gdb doesn't seem to have any
7226 interest in this information, so just ignore it for now.
7227 (FIXME?) */
7228 break;
7229 case DW_TAG_class_type:
7230 case DW_TAG_structure_type:
7231 case DW_TAG_union_type:
72019c9c 7232 case DW_TAG_set_type:
c906108c
SS
7233 case DW_TAG_enumeration_type:
7234 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7235 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7236
63d06c5c
DC
7237 /* Make sure that the symbol includes appropriate enclosing
7238 classes/namespaces in its name. These are calculated in
134d01f1 7239 read_structure_type, and the correct name is saved in
63d06c5c
DC
7240 the type. */
7241
987504bb
JJ
7242 if (cu->language == language_cplus
7243 || cu->language == language_java)
c906108c 7244 {
63d06c5c
DC
7245 struct type *type = SYMBOL_TYPE (sym);
7246
7247 if (TYPE_TAG_NAME (type) != NULL)
7248 {
7249 /* FIXME: carlton/2003-11-10: Should this use
7250 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7251 arises further down in this function.) */
7252 /* The type's name is already allocated along with
7253 this objfile, so we don't need to duplicate it
7254 for the symbol. */
7255 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7256 }
c906108c 7257 }
63d06c5c
DC
7258
7259 {
987504bb 7260 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7261 really ever be static objects: otherwise, if you try
7262 to, say, break of a class's method and you're in a file
7263 which doesn't mention that class, it won't work unless
7264 the check for all static symbols in lookup_symbol_aux
7265 saves you. See the OtherFileClass tests in
7266 gdb.c++/namespace.exp. */
7267
7268 struct pending **list_to_add;
7269
e142c38c 7270 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7271 && (cu->language == language_cplus
7272 || cu->language == language_java)
e142c38c 7273 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7274
7275 add_symbol_to_list (sym, list_to_add);
7276
7277 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7278 defines a typedef for "foo". A Java class declaration also
7279 defines a typedef for the class. Synthesize a typedef symbol
7280 so that "ptype foo" works as expected. */
7281 if (cu->language == language_cplus
8c6860bb
JB
7282 || cu->language == language_java
7283 || cu->language == language_ada)
63d06c5c
DC
7284 {
7285 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7286 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7287 sizeof (struct symbol));
7288 *typedef_sym = *sym;
7289 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7290 /* The symbol's name is already allocated along with
7291 this objfile, so we don't need to duplicate it for
7292 the type. */
63d06c5c 7293 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7294 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7295 add_symbol_to_list (typedef_sym, list_to_add);
7296 }
7297 }
c906108c
SS
7298 break;
7299 case DW_TAG_typedef:
63d06c5c
DC
7300 if (processing_has_namespace_info
7301 && processing_current_prefix[0] != '\0')
7302 {
987504bb
JJ
7303 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7304 processing_current_prefix,
7305 name, cu);
63d06c5c
DC
7306 }
7307 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7309 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7310 break;
c906108c 7311 case DW_TAG_base_type:
a02abb62 7312 case DW_TAG_subrange_type:
c906108c 7313 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7314 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7315 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7316 break;
7317 case DW_TAG_enumerator:
63d06c5c
DC
7318 if (processing_has_namespace_info
7319 && processing_current_prefix[0] != '\0')
7320 {
987504bb
JJ
7321 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7322 processing_current_prefix,
7323 name, cu);
63d06c5c 7324 }
e142c38c 7325 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7326 if (attr)
7327 {
e7c27a73 7328 dwarf2_const_value (attr, sym, cu);
c906108c 7329 }
63d06c5c
DC
7330 {
7331 /* NOTE: carlton/2003-11-10: See comment above in the
7332 DW_TAG_class_type, etc. block. */
7333
7334 struct pending **list_to_add;
7335
e142c38c 7336 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7337 && (cu->language == language_cplus
7338 || cu->language == language_java)
e142c38c 7339 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7340
7341 add_symbol_to_list (sym, list_to_add);
7342 }
c906108c 7343 break;
5c4e30ca
DC
7344 case DW_TAG_namespace:
7345 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7346 add_symbol_to_list (sym, &global_symbols);
7347 break;
c906108c
SS
7348 default:
7349 /* Not a tag we recognize. Hopefully we aren't processing
7350 trash data, but since we must specifically ignore things
7351 we don't recognize, there is nothing else we should do at
7352 this point. */
e2e0b3e5 7353 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7354 dwarf_tag_name (die->tag));
c906108c
SS
7355 break;
7356 }
7357 }
7358 return (sym);
7359}
7360
7361/* Copy constant value from an attribute to a symbol. */
7362
7363static void
107d2387 7364dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7365 struct dwarf2_cu *cu)
c906108c 7366{
e7c27a73
DJ
7367 struct objfile *objfile = cu->objfile;
7368 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7369 struct dwarf_block *blk;
7370
7371 switch (attr->form)
7372 {
7373 case DW_FORM_addr:
107d2387 7374 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7375 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7376 cu_header->addr_size,
7377 TYPE_LENGTH (SYMBOL_TYPE
7378 (sym)));
4e38b386 7379 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7380 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7381 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7382 it's body - store_unsigned_integer. */
7383 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7384 DW_ADDR (attr));
c906108c
SS
7385 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7386 break;
7387 case DW_FORM_block1:
7388 case DW_FORM_block2:
7389 case DW_FORM_block4:
7390 case DW_FORM_block:
7391 blk = DW_BLOCK (attr);
7392 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7393 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7394 blk->size,
7395 TYPE_LENGTH (SYMBOL_TYPE
7396 (sym)));
4e38b386 7397 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7398 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7399 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7400 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7401 break;
2df3850c
JM
7402
7403 /* The DW_AT_const_value attributes are supposed to carry the
7404 symbol's value "represented as it would be on the target
7405 architecture." By the time we get here, it's already been
7406 converted to host endianness, so we just need to sign- or
7407 zero-extend it as appropriate. */
7408 case DW_FORM_data1:
7409 dwarf2_const_value_data (attr, sym, 8);
7410 break;
c906108c 7411 case DW_FORM_data2:
2df3850c
JM
7412 dwarf2_const_value_data (attr, sym, 16);
7413 break;
c906108c 7414 case DW_FORM_data4:
2df3850c
JM
7415 dwarf2_const_value_data (attr, sym, 32);
7416 break;
c906108c 7417 case DW_FORM_data8:
2df3850c
JM
7418 dwarf2_const_value_data (attr, sym, 64);
7419 break;
7420
c906108c 7421 case DW_FORM_sdata:
2df3850c
JM
7422 SYMBOL_VALUE (sym) = DW_SND (attr);
7423 SYMBOL_CLASS (sym) = LOC_CONST;
7424 break;
7425
c906108c
SS
7426 case DW_FORM_udata:
7427 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7428 SYMBOL_CLASS (sym) = LOC_CONST;
7429 break;
2df3850c 7430
c906108c 7431 default:
4d3c2250 7432 complaint (&symfile_complaints,
e2e0b3e5 7433 _("unsupported const value attribute form: '%s'"),
4d3c2250 7434 dwarf_form_name (attr->form));
c906108c
SS
7435 SYMBOL_VALUE (sym) = 0;
7436 SYMBOL_CLASS (sym) = LOC_CONST;
7437 break;
7438 }
7439}
7440
2df3850c
JM
7441
7442/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7443 or zero-extend it as appropriate for the symbol's type. */
7444static void
7445dwarf2_const_value_data (struct attribute *attr,
7446 struct symbol *sym,
7447 int bits)
7448{
7449 LONGEST l = DW_UNSND (attr);
7450
7451 if (bits < sizeof (l) * 8)
7452 {
7453 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7454 l &= ((LONGEST) 1 << bits) - 1;
7455 else
bf9198f1 7456 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7457 }
7458
7459 SYMBOL_VALUE (sym) = l;
7460 SYMBOL_CLASS (sym) = LOC_CONST;
7461}
7462
7463
c906108c
SS
7464/* Return the type of the die in question using its DW_AT_type attribute. */
7465
7466static struct type *
e7c27a73 7467die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7468{
7469 struct type *type;
7470 struct attribute *type_attr;
7471 struct die_info *type_die;
c906108c 7472
e142c38c 7473 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7474 if (!type_attr)
7475 {
7476 /* A missing DW_AT_type represents a void type. */
e142c38c 7477 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
c906108c
SS
7478 }
7479 else
10b3939b
DJ
7480 type_die = follow_die_ref (die, type_attr, cu);
7481
e7c27a73 7482 type = tag_type_to_type (type_die, cu);
c906108c
SS
7483 if (!type)
7484 {
7485 dump_die (type_die);
8a3fe4f8 7486 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7487 cu->objfile->name);
c906108c
SS
7488 }
7489 return type;
7490}
7491
7492/* Return the containing type of the die in question using its
7493 DW_AT_containing_type attribute. */
7494
7495static struct type *
e7c27a73 7496die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7497{
7498 struct type *type = NULL;
7499 struct attribute *type_attr;
7500 struct die_info *type_die = NULL;
c906108c 7501
e142c38c 7502 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7503 if (type_attr)
7504 {
10b3939b 7505 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7506 type = tag_type_to_type (type_die, cu);
c906108c
SS
7507 }
7508 if (!type)
7509 {
7510 if (type_die)
7511 dump_die (type_die);
8a3fe4f8 7512 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7513 cu->objfile->name);
c906108c
SS
7514 }
7515 return type;
7516}
7517
c906108c 7518static struct type *
e7c27a73 7519tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7520{
7521 if (die->type)
7522 {
7523 return die->type;
7524 }
7525 else
7526 {
e7c27a73 7527 read_type_die (die, cu);
c906108c
SS
7528 if (!die->type)
7529 {
7530 dump_die (die);
8a3fe4f8 7531 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7532 cu->objfile->name);
c906108c
SS
7533 }
7534 return die->type;
7535 }
7536}
7537
7538static void
e7c27a73 7539read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7540{
e142c38c 7541 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7542 const char *old_prefix = processing_current_prefix;
7543 struct cleanup *back_to = make_cleanup (xfree, prefix);
7544 processing_current_prefix = prefix;
7545
c906108c
SS
7546 switch (die->tag)
7547 {
7548 case DW_TAG_class_type:
7549 case DW_TAG_structure_type:
7550 case DW_TAG_union_type:
134d01f1 7551 read_structure_type (die, cu);
c906108c
SS
7552 break;
7553 case DW_TAG_enumeration_type:
134d01f1 7554 read_enumeration_type (die, cu);
c906108c
SS
7555 break;
7556 case DW_TAG_subprogram:
7557 case DW_TAG_subroutine_type:
e7c27a73 7558 read_subroutine_type (die, cu);
c906108c
SS
7559 break;
7560 case DW_TAG_array_type:
e7c27a73 7561 read_array_type (die, cu);
c906108c 7562 break;
72019c9c
GM
7563 case DW_TAG_set_type:
7564 read_set_type (die, cu);
7565 break;
c906108c 7566 case DW_TAG_pointer_type:
e7c27a73 7567 read_tag_pointer_type (die, cu);
c906108c
SS
7568 break;
7569 case DW_TAG_ptr_to_member_type:
e7c27a73 7570 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7571 break;
7572 case DW_TAG_reference_type:
e7c27a73 7573 read_tag_reference_type (die, cu);
c906108c
SS
7574 break;
7575 case DW_TAG_const_type:
e7c27a73 7576 read_tag_const_type (die, cu);
c906108c
SS
7577 break;
7578 case DW_TAG_volatile_type:
e7c27a73 7579 read_tag_volatile_type (die, cu);
c906108c
SS
7580 break;
7581 case DW_TAG_string_type:
e7c27a73 7582 read_tag_string_type (die, cu);
c906108c
SS
7583 break;
7584 case DW_TAG_typedef:
e7c27a73 7585 read_typedef (die, cu);
c906108c 7586 break;
a02abb62
JB
7587 case DW_TAG_subrange_type:
7588 read_subrange_type (die, cu);
7589 break;
c906108c 7590 case DW_TAG_base_type:
e7c27a73 7591 read_base_type (die, cu);
c906108c 7592 break;
81a17f79
JB
7593 case DW_TAG_unspecified_type:
7594 read_unspecified_type (die, cu);
7595 break;
c906108c 7596 default:
a1f5b845 7597 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7598 dwarf_tag_name (die->tag));
c906108c
SS
7599 break;
7600 }
63d06c5c
DC
7601
7602 processing_current_prefix = old_prefix;
7603 do_cleanups (back_to);
7604}
7605
fdde2d81
DC
7606/* Return the name of the namespace/class that DIE is defined within,
7607 or "" if we can't tell. The caller should xfree the result. */
7608
7609/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7610 therein) for an example of how to use this function to deal with
7611 DW_AT_specification. */
7612
7613static char *
e142c38c 7614determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7615{
7616 struct die_info *parent;
7617
987504bb
JJ
7618 if (cu->language != language_cplus
7619 && cu->language != language_java)
63d06c5c
DC
7620 return NULL;
7621
7622 parent = die->parent;
7623
7624 if (parent == NULL)
7625 {
8176b9b8 7626 return xstrdup ("");
63d06c5c
DC
7627 }
7628 else
7629 {
63d06c5c
DC
7630 switch (parent->tag) {
7631 case DW_TAG_namespace:
7632 {
8176b9b8
DC
7633 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7634 before doing this check? */
7635 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7636 {
7637 return xstrdup (TYPE_TAG_NAME (parent->type));
7638 }
7639 else
7640 {
7641 int dummy;
7642 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7643 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7644 namespace_name (parent, &dummy,
987504bb
JJ
7645 cu),
7646 cu);
8176b9b8
DC
7647 xfree (parent_prefix);
7648 return retval;
7649 }
63d06c5c
DC
7650 }
7651 break;
7652 case DW_TAG_class_type:
7653 case DW_TAG_structure_type:
7654 {
8176b9b8 7655 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7656 {
8176b9b8 7657 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7658 }
7659 else
8176b9b8
DC
7660 {
7661 const char *old_prefix = processing_current_prefix;
7662 char *new_prefix = determine_prefix (parent, cu);
7663 char *retval;
7664
7665 processing_current_prefix = new_prefix;
7666 retval = determine_class_name (parent, cu);
7667 processing_current_prefix = old_prefix;
7668
7669 xfree (new_prefix);
7670 return retval;
7671 }
63d06c5c 7672 }
63d06c5c 7673 default:
8176b9b8 7674 return determine_prefix (parent, cu);
63d06c5c 7675 }
63d06c5c
DC
7676 }
7677}
7678
987504bb
JJ
7679/* Return a newly-allocated string formed by concatenating PREFIX and
7680 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7681 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7682 perform an obconcat, otherwise allocate storage for the result. The CU argument
7683 is used to determine the language and hence, the appropriate separator. */
7684
7685#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7686
7687static char *
987504bb
JJ
7688typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7689 struct dwarf2_cu *cu)
63d06c5c 7690{
987504bb 7691 char *sep;
63d06c5c 7692
987504bb
JJ
7693 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7694 sep = "";
7695 else if (cu->language == language_java)
7696 sep = ".";
7697 else
7698 sep = "::";
63d06c5c 7699
987504bb
JJ
7700 if (obs == NULL)
7701 {
7702 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7703 retval[0] = '\0';
7704
7705 if (prefix)
7706 {
7707 strcpy (retval, prefix);
7708 strcat (retval, sep);
7709 }
7710 if (suffix)
7711 strcat (retval, suffix);
7712
63d06c5c
DC
7713 return retval;
7714 }
987504bb
JJ
7715 else
7716 {
7717 /* We have an obstack. */
7718 return obconcat (obs, prefix, sep, suffix);
7719 }
63d06c5c
DC
7720}
7721
c906108c 7722static struct type *
e7c27a73 7723dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
c906108c 7724{
e7c27a73
DJ
7725 struct objfile *objfile = cu->objfile;
7726
c906108c
SS
7727 /* FIXME - this should not produce a new (struct type *)
7728 every time. It should cache base types. */
7729 struct type *type;
7730 switch (encoding)
7731 {
7732 case DW_ATE_address:
e142c38c 7733 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
c906108c
SS
7734 return type;
7735 case DW_ATE_boolean:
e142c38c 7736 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
c906108c
SS
7737 return type;
7738 case DW_ATE_complex_float:
7739 if (size == 16)
7740 {
e142c38c 7741 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
c906108c
SS
7742 }
7743 else
7744 {
e142c38c 7745 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
c906108c
SS
7746 }
7747 return type;
7748 case DW_ATE_float:
7749 if (size == 8)
7750 {
e142c38c 7751 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
c906108c
SS
7752 }
7753 else
7754 {
e142c38c 7755 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
c906108c
SS
7756 }
7757 return type;
7758 case DW_ATE_signed:
7759 switch (size)
7760 {
7761 case 1:
e142c38c 7762 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7763 break;
7764 case 2:
e142c38c 7765 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
c906108c
SS
7766 break;
7767 default:
7768 case 4:
e142c38c 7769 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7770 break;
7771 }
7772 return type;
7773 case DW_ATE_signed_char:
e142c38c 7774 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
c906108c
SS
7775 return type;
7776 case DW_ATE_unsigned:
7777 switch (size)
7778 {
7779 case 1:
e142c38c 7780 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7781 break;
7782 case 2:
e142c38c 7783 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
c906108c
SS
7784 break;
7785 default:
7786 case 4:
e142c38c 7787 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
c906108c
SS
7788 break;
7789 }
7790 return type;
7791 case DW_ATE_unsigned_char:
e142c38c 7792 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
c906108c
SS
7793 return type;
7794 default:
e142c38c 7795 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
c906108c
SS
7796 return type;
7797 }
7798}
7799
7800#if 0
7801struct die_info *
fba45db2 7802copy_die (struct die_info *old_die)
c906108c
SS
7803{
7804 struct die_info *new_die;
7805 int i, num_attrs;
7806
7807 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7808 memset (new_die, 0, sizeof (struct die_info));
7809
7810 new_die->tag = old_die->tag;
7811 new_die->has_children = old_die->has_children;
7812 new_die->abbrev = old_die->abbrev;
7813 new_die->offset = old_die->offset;
7814 new_die->type = NULL;
7815
7816 num_attrs = old_die->num_attrs;
7817 new_die->num_attrs = num_attrs;
7818 new_die->attrs = (struct attribute *)
7819 xmalloc (num_attrs * sizeof (struct attribute));
7820
7821 for (i = 0; i < old_die->num_attrs; ++i)
7822 {
7823 new_die->attrs[i].name = old_die->attrs[i].name;
7824 new_die->attrs[i].form = old_die->attrs[i].form;
7825 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7826 }
7827
7828 new_die->next = NULL;
7829 return new_die;
7830}
7831#endif
7832
7833/* Return sibling of die, NULL if no sibling. */
7834
f9aca02d 7835static struct die_info *
fba45db2 7836sibling_die (struct die_info *die)
c906108c 7837{
639d11d3 7838 return die->sibling;
c906108c
SS
7839}
7840
7841/* Get linkage name of a die, return NULL if not found. */
7842
7843static char *
e142c38c 7844dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7845{
7846 struct attribute *attr;
7847
e142c38c 7848 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7849 if (attr && DW_STRING (attr))
7850 return DW_STRING (attr);
e142c38c 7851 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7852 if (attr && DW_STRING (attr))
7853 return DW_STRING (attr);
7854 return NULL;
7855}
7856
9219021c
DC
7857/* Get name of a die, return NULL if not found. */
7858
7859static char *
e142c38c 7860dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7861{
7862 struct attribute *attr;
7863
e142c38c 7864 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7865 if (attr && DW_STRING (attr))
7866 return DW_STRING (attr);
7867 return NULL;
7868}
7869
7870/* Return the die that this die in an extension of, or NULL if there
7871 is none. */
7872
7873static struct die_info *
e142c38c 7874dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7875{
7876 struct attribute *attr;
9219021c 7877
e142c38c 7878 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7879 if (attr == NULL)
7880 return NULL;
7881
10b3939b 7882 return follow_die_ref (die, attr, cu);
9219021c
DC
7883}
7884
c906108c
SS
7885/* Convert a DIE tag into its string name. */
7886
7887static char *
aa1ee363 7888dwarf_tag_name (unsigned tag)
c906108c
SS
7889{
7890 switch (tag)
7891 {
7892 case DW_TAG_padding:
7893 return "DW_TAG_padding";
7894 case DW_TAG_array_type:
7895 return "DW_TAG_array_type";
7896 case DW_TAG_class_type:
7897 return "DW_TAG_class_type";
7898 case DW_TAG_entry_point:
7899 return "DW_TAG_entry_point";
7900 case DW_TAG_enumeration_type:
7901 return "DW_TAG_enumeration_type";
7902 case DW_TAG_formal_parameter:
7903 return "DW_TAG_formal_parameter";
7904 case DW_TAG_imported_declaration:
7905 return "DW_TAG_imported_declaration";
7906 case DW_TAG_label:
7907 return "DW_TAG_label";
7908 case DW_TAG_lexical_block:
7909 return "DW_TAG_lexical_block";
7910 case DW_TAG_member:
7911 return "DW_TAG_member";
7912 case DW_TAG_pointer_type:
7913 return "DW_TAG_pointer_type";
7914 case DW_TAG_reference_type:
7915 return "DW_TAG_reference_type";
7916 case DW_TAG_compile_unit:
7917 return "DW_TAG_compile_unit";
7918 case DW_TAG_string_type:
7919 return "DW_TAG_string_type";
7920 case DW_TAG_structure_type:
7921 return "DW_TAG_structure_type";
7922 case DW_TAG_subroutine_type:
7923 return "DW_TAG_subroutine_type";
7924 case DW_TAG_typedef:
7925 return "DW_TAG_typedef";
7926 case DW_TAG_union_type:
7927 return "DW_TAG_union_type";
7928 case DW_TAG_unspecified_parameters:
7929 return "DW_TAG_unspecified_parameters";
7930 case DW_TAG_variant:
7931 return "DW_TAG_variant";
7932 case DW_TAG_common_block:
7933 return "DW_TAG_common_block";
7934 case DW_TAG_common_inclusion:
7935 return "DW_TAG_common_inclusion";
7936 case DW_TAG_inheritance:
7937 return "DW_TAG_inheritance";
7938 case DW_TAG_inlined_subroutine:
7939 return "DW_TAG_inlined_subroutine";
7940 case DW_TAG_module:
7941 return "DW_TAG_module";
7942 case DW_TAG_ptr_to_member_type:
7943 return "DW_TAG_ptr_to_member_type";
7944 case DW_TAG_set_type:
7945 return "DW_TAG_set_type";
7946 case DW_TAG_subrange_type:
7947 return "DW_TAG_subrange_type";
7948 case DW_TAG_with_stmt:
7949 return "DW_TAG_with_stmt";
7950 case DW_TAG_access_declaration:
7951 return "DW_TAG_access_declaration";
7952 case DW_TAG_base_type:
7953 return "DW_TAG_base_type";
7954 case DW_TAG_catch_block:
7955 return "DW_TAG_catch_block";
7956 case DW_TAG_const_type:
7957 return "DW_TAG_const_type";
7958 case DW_TAG_constant:
7959 return "DW_TAG_constant";
7960 case DW_TAG_enumerator:
7961 return "DW_TAG_enumerator";
7962 case DW_TAG_file_type:
7963 return "DW_TAG_file_type";
7964 case DW_TAG_friend:
7965 return "DW_TAG_friend";
7966 case DW_TAG_namelist:
7967 return "DW_TAG_namelist";
7968 case DW_TAG_namelist_item:
7969 return "DW_TAG_namelist_item";
7970 case DW_TAG_packed_type:
7971 return "DW_TAG_packed_type";
7972 case DW_TAG_subprogram:
7973 return "DW_TAG_subprogram";
7974 case DW_TAG_template_type_param:
7975 return "DW_TAG_template_type_param";
7976 case DW_TAG_template_value_param:
7977 return "DW_TAG_template_value_param";
7978 case DW_TAG_thrown_type:
7979 return "DW_TAG_thrown_type";
7980 case DW_TAG_try_block:
7981 return "DW_TAG_try_block";
7982 case DW_TAG_variant_part:
7983 return "DW_TAG_variant_part";
7984 case DW_TAG_variable:
7985 return "DW_TAG_variable";
7986 case DW_TAG_volatile_type:
7987 return "DW_TAG_volatile_type";
d9fa45fe
DC
7988 case DW_TAG_dwarf_procedure:
7989 return "DW_TAG_dwarf_procedure";
7990 case DW_TAG_restrict_type:
7991 return "DW_TAG_restrict_type";
7992 case DW_TAG_interface_type:
7993 return "DW_TAG_interface_type";
7994 case DW_TAG_namespace:
7995 return "DW_TAG_namespace";
7996 case DW_TAG_imported_module:
7997 return "DW_TAG_imported_module";
7998 case DW_TAG_unspecified_type:
7999 return "DW_TAG_unspecified_type";
8000 case DW_TAG_partial_unit:
8001 return "DW_TAG_partial_unit";
8002 case DW_TAG_imported_unit:
8003 return "DW_TAG_imported_unit";
b7619582
GF
8004 case DW_TAG_condition:
8005 return "DW_TAG_condition";
8006 case DW_TAG_shared_type:
8007 return "DW_TAG_shared_type";
c906108c
SS
8008 case DW_TAG_MIPS_loop:
8009 return "DW_TAG_MIPS_loop";
b7619582
GF
8010 case DW_TAG_HP_array_descriptor:
8011 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8012 case DW_TAG_format_label:
8013 return "DW_TAG_format_label";
8014 case DW_TAG_function_template:
8015 return "DW_TAG_function_template";
8016 case DW_TAG_class_template:
8017 return "DW_TAG_class_template";
b7619582
GF
8018 case DW_TAG_GNU_BINCL:
8019 return "DW_TAG_GNU_BINCL";
8020 case DW_TAG_GNU_EINCL:
8021 return "DW_TAG_GNU_EINCL";
8022 case DW_TAG_upc_shared_type:
8023 return "DW_TAG_upc_shared_type";
8024 case DW_TAG_upc_strict_type:
8025 return "DW_TAG_upc_strict_type";
8026 case DW_TAG_upc_relaxed_type:
8027 return "DW_TAG_upc_relaxed_type";
8028 case DW_TAG_PGI_kanji_type:
8029 return "DW_TAG_PGI_kanji_type";
8030 case DW_TAG_PGI_interface_block:
8031 return "DW_TAG_PGI_interface_block";
c906108c
SS
8032 default:
8033 return "DW_TAG_<unknown>";
8034 }
8035}
8036
8037/* Convert a DWARF attribute code into its string name. */
8038
8039static char *
aa1ee363 8040dwarf_attr_name (unsigned attr)
c906108c
SS
8041{
8042 switch (attr)
8043 {
8044 case DW_AT_sibling:
8045 return "DW_AT_sibling";
8046 case DW_AT_location:
8047 return "DW_AT_location";
8048 case DW_AT_name:
8049 return "DW_AT_name";
8050 case DW_AT_ordering:
8051 return "DW_AT_ordering";
8052 case DW_AT_subscr_data:
8053 return "DW_AT_subscr_data";
8054 case DW_AT_byte_size:
8055 return "DW_AT_byte_size";
8056 case DW_AT_bit_offset:
8057 return "DW_AT_bit_offset";
8058 case DW_AT_bit_size:
8059 return "DW_AT_bit_size";
8060 case DW_AT_element_list:
8061 return "DW_AT_element_list";
8062 case DW_AT_stmt_list:
8063 return "DW_AT_stmt_list";
8064 case DW_AT_low_pc:
8065 return "DW_AT_low_pc";
8066 case DW_AT_high_pc:
8067 return "DW_AT_high_pc";
8068 case DW_AT_language:
8069 return "DW_AT_language";
8070 case DW_AT_member:
8071 return "DW_AT_member";
8072 case DW_AT_discr:
8073 return "DW_AT_discr";
8074 case DW_AT_discr_value:
8075 return "DW_AT_discr_value";
8076 case DW_AT_visibility:
8077 return "DW_AT_visibility";
8078 case DW_AT_import:
8079 return "DW_AT_import";
8080 case DW_AT_string_length:
8081 return "DW_AT_string_length";
8082 case DW_AT_common_reference:
8083 return "DW_AT_common_reference";
8084 case DW_AT_comp_dir:
8085 return "DW_AT_comp_dir";
8086 case DW_AT_const_value:
8087 return "DW_AT_const_value";
8088 case DW_AT_containing_type:
8089 return "DW_AT_containing_type";
8090 case DW_AT_default_value:
8091 return "DW_AT_default_value";
8092 case DW_AT_inline:
8093 return "DW_AT_inline";
8094 case DW_AT_is_optional:
8095 return "DW_AT_is_optional";
8096 case DW_AT_lower_bound:
8097 return "DW_AT_lower_bound";
8098 case DW_AT_producer:
8099 return "DW_AT_producer";
8100 case DW_AT_prototyped:
8101 return "DW_AT_prototyped";
8102 case DW_AT_return_addr:
8103 return "DW_AT_return_addr";
8104 case DW_AT_start_scope:
8105 return "DW_AT_start_scope";
8106 case DW_AT_stride_size:
8107 return "DW_AT_stride_size";
8108 case DW_AT_upper_bound:
8109 return "DW_AT_upper_bound";
8110 case DW_AT_abstract_origin:
8111 return "DW_AT_abstract_origin";
8112 case DW_AT_accessibility:
8113 return "DW_AT_accessibility";
8114 case DW_AT_address_class:
8115 return "DW_AT_address_class";
8116 case DW_AT_artificial:
8117 return "DW_AT_artificial";
8118 case DW_AT_base_types:
8119 return "DW_AT_base_types";
8120 case DW_AT_calling_convention:
8121 return "DW_AT_calling_convention";
8122 case DW_AT_count:
8123 return "DW_AT_count";
8124 case DW_AT_data_member_location:
8125 return "DW_AT_data_member_location";
8126 case DW_AT_decl_column:
8127 return "DW_AT_decl_column";
8128 case DW_AT_decl_file:
8129 return "DW_AT_decl_file";
8130 case DW_AT_decl_line:
8131 return "DW_AT_decl_line";
8132 case DW_AT_declaration:
8133 return "DW_AT_declaration";
8134 case DW_AT_discr_list:
8135 return "DW_AT_discr_list";
8136 case DW_AT_encoding:
8137 return "DW_AT_encoding";
8138 case DW_AT_external:
8139 return "DW_AT_external";
8140 case DW_AT_frame_base:
8141 return "DW_AT_frame_base";
8142 case DW_AT_friend:
8143 return "DW_AT_friend";
8144 case DW_AT_identifier_case:
8145 return "DW_AT_identifier_case";
8146 case DW_AT_macro_info:
8147 return "DW_AT_macro_info";
8148 case DW_AT_namelist_items:
8149 return "DW_AT_namelist_items";
8150 case DW_AT_priority:
8151 return "DW_AT_priority";
8152 case DW_AT_segment:
8153 return "DW_AT_segment";
8154 case DW_AT_specification:
8155 return "DW_AT_specification";
8156 case DW_AT_static_link:
8157 return "DW_AT_static_link";
8158 case DW_AT_type:
8159 return "DW_AT_type";
8160 case DW_AT_use_location:
8161 return "DW_AT_use_location";
8162 case DW_AT_variable_parameter:
8163 return "DW_AT_variable_parameter";
8164 case DW_AT_virtuality:
8165 return "DW_AT_virtuality";
8166 case DW_AT_vtable_elem_location:
8167 return "DW_AT_vtable_elem_location";
b7619582 8168 /* DWARF 3 values. */
d9fa45fe
DC
8169 case DW_AT_allocated:
8170 return "DW_AT_allocated";
8171 case DW_AT_associated:
8172 return "DW_AT_associated";
8173 case DW_AT_data_location:
8174 return "DW_AT_data_location";
8175 case DW_AT_stride:
8176 return "DW_AT_stride";
8177 case DW_AT_entry_pc:
8178 return "DW_AT_entry_pc";
8179 case DW_AT_use_UTF8:
8180 return "DW_AT_use_UTF8";
8181 case DW_AT_extension:
8182 return "DW_AT_extension";
8183 case DW_AT_ranges:
8184 return "DW_AT_ranges";
8185 case DW_AT_trampoline:
8186 return "DW_AT_trampoline";
8187 case DW_AT_call_column:
8188 return "DW_AT_call_column";
8189 case DW_AT_call_file:
8190 return "DW_AT_call_file";
8191 case DW_AT_call_line:
8192 return "DW_AT_call_line";
b7619582
GF
8193 case DW_AT_description:
8194 return "DW_AT_description";
8195 case DW_AT_binary_scale:
8196 return "DW_AT_binary_scale";
8197 case DW_AT_decimal_scale:
8198 return "DW_AT_decimal_scale";
8199 case DW_AT_small:
8200 return "DW_AT_small";
8201 case DW_AT_decimal_sign:
8202 return "DW_AT_decimal_sign";
8203 case DW_AT_digit_count:
8204 return "DW_AT_digit_count";
8205 case DW_AT_picture_string:
8206 return "DW_AT_picture_string";
8207 case DW_AT_mutable:
8208 return "DW_AT_mutable";
8209 case DW_AT_threads_scaled:
8210 return "DW_AT_threads_scaled";
8211 case DW_AT_explicit:
8212 return "DW_AT_explicit";
8213 case DW_AT_object_pointer:
8214 return "DW_AT_object_pointer";
8215 case DW_AT_endianity:
8216 return "DW_AT_endianity";
8217 case DW_AT_elemental:
8218 return "DW_AT_elemental";
8219 case DW_AT_pure:
8220 return "DW_AT_pure";
8221 case DW_AT_recursive:
8222 return "DW_AT_recursive";
c906108c 8223#ifdef MIPS
b7619582 8224 /* SGI/MIPS extensions. */
c906108c
SS
8225 case DW_AT_MIPS_fde:
8226 return "DW_AT_MIPS_fde";
8227 case DW_AT_MIPS_loop_begin:
8228 return "DW_AT_MIPS_loop_begin";
8229 case DW_AT_MIPS_tail_loop_begin:
8230 return "DW_AT_MIPS_tail_loop_begin";
8231 case DW_AT_MIPS_epilog_begin:
8232 return "DW_AT_MIPS_epilog_begin";
8233 case DW_AT_MIPS_loop_unroll_factor:
8234 return "DW_AT_MIPS_loop_unroll_factor";
8235 case DW_AT_MIPS_software_pipeline_depth:
8236 return "DW_AT_MIPS_software_pipeline_depth";
8237 case DW_AT_MIPS_linkage_name:
8238 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8239 case DW_AT_MIPS_stride:
8240 return "DW_AT_MIPS_stride";
8241 case DW_AT_MIPS_abstract_name:
8242 return "DW_AT_MIPS_abstract_name";
8243 case DW_AT_MIPS_clone_origin:
8244 return "DW_AT_MIPS_clone_origin";
8245 case DW_AT_MIPS_has_inlines:
8246 return "DW_AT_MIPS_has_inlines";
8247#endif
8248 /* HP extensions. */
8249 case DW_AT_HP_block_index:
8250 return "DW_AT_HP_block_index";
8251 case DW_AT_HP_unmodifiable:
8252 return "DW_AT_HP_unmodifiable";
8253 case DW_AT_HP_actuals_stmt_list:
8254 return "DW_AT_HP_actuals_stmt_list";
8255 case DW_AT_HP_proc_per_section:
8256 return "DW_AT_HP_proc_per_section";
8257 case DW_AT_HP_raw_data_ptr:
8258 return "DW_AT_HP_raw_data_ptr";
8259 case DW_AT_HP_pass_by_reference:
8260 return "DW_AT_HP_pass_by_reference";
8261 case DW_AT_HP_opt_level:
8262 return "DW_AT_HP_opt_level";
8263 case DW_AT_HP_prof_version_id:
8264 return "DW_AT_HP_prof_version_id";
8265 case DW_AT_HP_opt_flags:
8266 return "DW_AT_HP_opt_flags";
8267 case DW_AT_HP_cold_region_low_pc:
8268 return "DW_AT_HP_cold_region_low_pc";
8269 case DW_AT_HP_cold_region_high_pc:
8270 return "DW_AT_HP_cold_region_high_pc";
8271 case DW_AT_HP_all_variables_modifiable:
8272 return "DW_AT_HP_all_variables_modifiable";
8273 case DW_AT_HP_linkage_name:
8274 return "DW_AT_HP_linkage_name";
8275 case DW_AT_HP_prof_flags:
8276 return "DW_AT_HP_prof_flags";
8277 /* GNU extensions. */
c906108c
SS
8278 case DW_AT_sf_names:
8279 return "DW_AT_sf_names";
8280 case DW_AT_src_info:
8281 return "DW_AT_src_info";
8282 case DW_AT_mac_info:
8283 return "DW_AT_mac_info";
8284 case DW_AT_src_coords:
8285 return "DW_AT_src_coords";
8286 case DW_AT_body_begin:
8287 return "DW_AT_body_begin";
8288 case DW_AT_body_end:
8289 return "DW_AT_body_end";
f5f8a009
EZ
8290 case DW_AT_GNU_vector:
8291 return "DW_AT_GNU_vector";
b7619582
GF
8292 /* VMS extensions. */
8293 case DW_AT_VMS_rtnbeg_pd_address:
8294 return "DW_AT_VMS_rtnbeg_pd_address";
8295 /* UPC extension. */
8296 case DW_AT_upc_threads_scaled:
8297 return "DW_AT_upc_threads_scaled";
8298 /* PGI (STMicroelectronics) extensions. */
8299 case DW_AT_PGI_lbase:
8300 return "DW_AT_PGI_lbase";
8301 case DW_AT_PGI_soffset:
8302 return "DW_AT_PGI_soffset";
8303 case DW_AT_PGI_lstride:
8304 return "DW_AT_PGI_lstride";
c906108c
SS
8305 default:
8306 return "DW_AT_<unknown>";
8307 }
8308}
8309
8310/* Convert a DWARF value form code into its string name. */
8311
8312static char *
aa1ee363 8313dwarf_form_name (unsigned form)
c906108c
SS
8314{
8315 switch (form)
8316 {
8317 case DW_FORM_addr:
8318 return "DW_FORM_addr";
8319 case DW_FORM_block2:
8320 return "DW_FORM_block2";
8321 case DW_FORM_block4:
8322 return "DW_FORM_block4";
8323 case DW_FORM_data2:
8324 return "DW_FORM_data2";
8325 case DW_FORM_data4:
8326 return "DW_FORM_data4";
8327 case DW_FORM_data8:
8328 return "DW_FORM_data8";
8329 case DW_FORM_string:
8330 return "DW_FORM_string";
8331 case DW_FORM_block:
8332 return "DW_FORM_block";
8333 case DW_FORM_block1:
8334 return "DW_FORM_block1";
8335 case DW_FORM_data1:
8336 return "DW_FORM_data1";
8337 case DW_FORM_flag:
8338 return "DW_FORM_flag";
8339 case DW_FORM_sdata:
8340 return "DW_FORM_sdata";
8341 case DW_FORM_strp:
8342 return "DW_FORM_strp";
8343 case DW_FORM_udata:
8344 return "DW_FORM_udata";
8345 case DW_FORM_ref_addr:
8346 return "DW_FORM_ref_addr";
8347 case DW_FORM_ref1:
8348 return "DW_FORM_ref1";
8349 case DW_FORM_ref2:
8350 return "DW_FORM_ref2";
8351 case DW_FORM_ref4:
8352 return "DW_FORM_ref4";
8353 case DW_FORM_ref8:
8354 return "DW_FORM_ref8";
8355 case DW_FORM_ref_udata:
8356 return "DW_FORM_ref_udata";
8357 case DW_FORM_indirect:
8358 return "DW_FORM_indirect";
8359 default:
8360 return "DW_FORM_<unknown>";
8361 }
8362}
8363
8364/* Convert a DWARF stack opcode into its string name. */
8365
8366static char *
aa1ee363 8367dwarf_stack_op_name (unsigned op)
c906108c
SS
8368{
8369 switch (op)
8370 {
8371 case DW_OP_addr:
8372 return "DW_OP_addr";
8373 case DW_OP_deref:
8374 return "DW_OP_deref";
8375 case DW_OP_const1u:
8376 return "DW_OP_const1u";
8377 case DW_OP_const1s:
8378 return "DW_OP_const1s";
8379 case DW_OP_const2u:
8380 return "DW_OP_const2u";
8381 case DW_OP_const2s:
8382 return "DW_OP_const2s";
8383 case DW_OP_const4u:
8384 return "DW_OP_const4u";
8385 case DW_OP_const4s:
8386 return "DW_OP_const4s";
8387 case DW_OP_const8u:
8388 return "DW_OP_const8u";
8389 case DW_OP_const8s:
8390 return "DW_OP_const8s";
8391 case DW_OP_constu:
8392 return "DW_OP_constu";
8393 case DW_OP_consts:
8394 return "DW_OP_consts";
8395 case DW_OP_dup:
8396 return "DW_OP_dup";
8397 case DW_OP_drop:
8398 return "DW_OP_drop";
8399 case DW_OP_over:
8400 return "DW_OP_over";
8401 case DW_OP_pick:
8402 return "DW_OP_pick";
8403 case DW_OP_swap:
8404 return "DW_OP_swap";
8405 case DW_OP_rot:
8406 return "DW_OP_rot";
8407 case DW_OP_xderef:
8408 return "DW_OP_xderef";
8409 case DW_OP_abs:
8410 return "DW_OP_abs";
8411 case DW_OP_and:
8412 return "DW_OP_and";
8413 case DW_OP_div:
8414 return "DW_OP_div";
8415 case DW_OP_minus:
8416 return "DW_OP_minus";
8417 case DW_OP_mod:
8418 return "DW_OP_mod";
8419 case DW_OP_mul:
8420 return "DW_OP_mul";
8421 case DW_OP_neg:
8422 return "DW_OP_neg";
8423 case DW_OP_not:
8424 return "DW_OP_not";
8425 case DW_OP_or:
8426 return "DW_OP_or";
8427 case DW_OP_plus:
8428 return "DW_OP_plus";
8429 case DW_OP_plus_uconst:
8430 return "DW_OP_plus_uconst";
8431 case DW_OP_shl:
8432 return "DW_OP_shl";
8433 case DW_OP_shr:
8434 return "DW_OP_shr";
8435 case DW_OP_shra:
8436 return "DW_OP_shra";
8437 case DW_OP_xor:
8438 return "DW_OP_xor";
8439 case DW_OP_bra:
8440 return "DW_OP_bra";
8441 case DW_OP_eq:
8442 return "DW_OP_eq";
8443 case DW_OP_ge:
8444 return "DW_OP_ge";
8445 case DW_OP_gt:
8446 return "DW_OP_gt";
8447 case DW_OP_le:
8448 return "DW_OP_le";
8449 case DW_OP_lt:
8450 return "DW_OP_lt";
8451 case DW_OP_ne:
8452 return "DW_OP_ne";
8453 case DW_OP_skip:
8454 return "DW_OP_skip";
8455 case DW_OP_lit0:
8456 return "DW_OP_lit0";
8457 case DW_OP_lit1:
8458 return "DW_OP_lit1";
8459 case DW_OP_lit2:
8460 return "DW_OP_lit2";
8461 case DW_OP_lit3:
8462 return "DW_OP_lit3";
8463 case DW_OP_lit4:
8464 return "DW_OP_lit4";
8465 case DW_OP_lit5:
8466 return "DW_OP_lit5";
8467 case DW_OP_lit6:
8468 return "DW_OP_lit6";
8469 case DW_OP_lit7:
8470 return "DW_OP_lit7";
8471 case DW_OP_lit8:
8472 return "DW_OP_lit8";
8473 case DW_OP_lit9:
8474 return "DW_OP_lit9";
8475 case DW_OP_lit10:
8476 return "DW_OP_lit10";
8477 case DW_OP_lit11:
8478 return "DW_OP_lit11";
8479 case DW_OP_lit12:
8480 return "DW_OP_lit12";
8481 case DW_OP_lit13:
8482 return "DW_OP_lit13";
8483 case DW_OP_lit14:
8484 return "DW_OP_lit14";
8485 case DW_OP_lit15:
8486 return "DW_OP_lit15";
8487 case DW_OP_lit16:
8488 return "DW_OP_lit16";
8489 case DW_OP_lit17:
8490 return "DW_OP_lit17";
8491 case DW_OP_lit18:
8492 return "DW_OP_lit18";
8493 case DW_OP_lit19:
8494 return "DW_OP_lit19";
8495 case DW_OP_lit20:
8496 return "DW_OP_lit20";
8497 case DW_OP_lit21:
8498 return "DW_OP_lit21";
8499 case DW_OP_lit22:
8500 return "DW_OP_lit22";
8501 case DW_OP_lit23:
8502 return "DW_OP_lit23";
8503 case DW_OP_lit24:
8504 return "DW_OP_lit24";
8505 case DW_OP_lit25:
8506 return "DW_OP_lit25";
8507 case DW_OP_lit26:
8508 return "DW_OP_lit26";
8509 case DW_OP_lit27:
8510 return "DW_OP_lit27";
8511 case DW_OP_lit28:
8512 return "DW_OP_lit28";
8513 case DW_OP_lit29:
8514 return "DW_OP_lit29";
8515 case DW_OP_lit30:
8516 return "DW_OP_lit30";
8517 case DW_OP_lit31:
8518 return "DW_OP_lit31";
8519 case DW_OP_reg0:
8520 return "DW_OP_reg0";
8521 case DW_OP_reg1:
8522 return "DW_OP_reg1";
8523 case DW_OP_reg2:
8524 return "DW_OP_reg2";
8525 case DW_OP_reg3:
8526 return "DW_OP_reg3";
8527 case DW_OP_reg4:
8528 return "DW_OP_reg4";
8529 case DW_OP_reg5:
8530 return "DW_OP_reg5";
8531 case DW_OP_reg6:
8532 return "DW_OP_reg6";
8533 case DW_OP_reg7:
8534 return "DW_OP_reg7";
8535 case DW_OP_reg8:
8536 return "DW_OP_reg8";
8537 case DW_OP_reg9:
8538 return "DW_OP_reg9";
8539 case DW_OP_reg10:
8540 return "DW_OP_reg10";
8541 case DW_OP_reg11:
8542 return "DW_OP_reg11";
8543 case DW_OP_reg12:
8544 return "DW_OP_reg12";
8545 case DW_OP_reg13:
8546 return "DW_OP_reg13";
8547 case DW_OP_reg14:
8548 return "DW_OP_reg14";
8549 case DW_OP_reg15:
8550 return "DW_OP_reg15";
8551 case DW_OP_reg16:
8552 return "DW_OP_reg16";
8553 case DW_OP_reg17:
8554 return "DW_OP_reg17";
8555 case DW_OP_reg18:
8556 return "DW_OP_reg18";
8557 case DW_OP_reg19:
8558 return "DW_OP_reg19";
8559 case DW_OP_reg20:
8560 return "DW_OP_reg20";
8561 case DW_OP_reg21:
8562 return "DW_OP_reg21";
8563 case DW_OP_reg22:
8564 return "DW_OP_reg22";
8565 case DW_OP_reg23:
8566 return "DW_OP_reg23";
8567 case DW_OP_reg24:
8568 return "DW_OP_reg24";
8569 case DW_OP_reg25:
8570 return "DW_OP_reg25";
8571 case DW_OP_reg26:
8572 return "DW_OP_reg26";
8573 case DW_OP_reg27:
8574 return "DW_OP_reg27";
8575 case DW_OP_reg28:
8576 return "DW_OP_reg28";
8577 case DW_OP_reg29:
8578 return "DW_OP_reg29";
8579 case DW_OP_reg30:
8580 return "DW_OP_reg30";
8581 case DW_OP_reg31:
8582 return "DW_OP_reg31";
8583 case DW_OP_breg0:
8584 return "DW_OP_breg0";
8585 case DW_OP_breg1:
8586 return "DW_OP_breg1";
8587 case DW_OP_breg2:
8588 return "DW_OP_breg2";
8589 case DW_OP_breg3:
8590 return "DW_OP_breg3";
8591 case DW_OP_breg4:
8592 return "DW_OP_breg4";
8593 case DW_OP_breg5:
8594 return "DW_OP_breg5";
8595 case DW_OP_breg6:
8596 return "DW_OP_breg6";
8597 case DW_OP_breg7:
8598 return "DW_OP_breg7";
8599 case DW_OP_breg8:
8600 return "DW_OP_breg8";
8601 case DW_OP_breg9:
8602 return "DW_OP_breg9";
8603 case DW_OP_breg10:
8604 return "DW_OP_breg10";
8605 case DW_OP_breg11:
8606 return "DW_OP_breg11";
8607 case DW_OP_breg12:
8608 return "DW_OP_breg12";
8609 case DW_OP_breg13:
8610 return "DW_OP_breg13";
8611 case DW_OP_breg14:
8612 return "DW_OP_breg14";
8613 case DW_OP_breg15:
8614 return "DW_OP_breg15";
8615 case DW_OP_breg16:
8616 return "DW_OP_breg16";
8617 case DW_OP_breg17:
8618 return "DW_OP_breg17";
8619 case DW_OP_breg18:
8620 return "DW_OP_breg18";
8621 case DW_OP_breg19:
8622 return "DW_OP_breg19";
8623 case DW_OP_breg20:
8624 return "DW_OP_breg20";
8625 case DW_OP_breg21:
8626 return "DW_OP_breg21";
8627 case DW_OP_breg22:
8628 return "DW_OP_breg22";
8629 case DW_OP_breg23:
8630 return "DW_OP_breg23";
8631 case DW_OP_breg24:
8632 return "DW_OP_breg24";
8633 case DW_OP_breg25:
8634 return "DW_OP_breg25";
8635 case DW_OP_breg26:
8636 return "DW_OP_breg26";
8637 case DW_OP_breg27:
8638 return "DW_OP_breg27";
8639 case DW_OP_breg28:
8640 return "DW_OP_breg28";
8641 case DW_OP_breg29:
8642 return "DW_OP_breg29";
8643 case DW_OP_breg30:
8644 return "DW_OP_breg30";
8645 case DW_OP_breg31:
8646 return "DW_OP_breg31";
8647 case DW_OP_regx:
8648 return "DW_OP_regx";
8649 case DW_OP_fbreg:
8650 return "DW_OP_fbreg";
8651 case DW_OP_bregx:
8652 return "DW_OP_bregx";
8653 case DW_OP_piece:
8654 return "DW_OP_piece";
8655 case DW_OP_deref_size:
8656 return "DW_OP_deref_size";
8657 case DW_OP_xderef_size:
8658 return "DW_OP_xderef_size";
8659 case DW_OP_nop:
8660 return "DW_OP_nop";
b7619582 8661 /* DWARF 3 extensions. */
ed348acc
EZ
8662 case DW_OP_push_object_address:
8663 return "DW_OP_push_object_address";
8664 case DW_OP_call2:
8665 return "DW_OP_call2";
8666 case DW_OP_call4:
8667 return "DW_OP_call4";
8668 case DW_OP_call_ref:
8669 return "DW_OP_call_ref";
b7619582
GF
8670 /* GNU extensions. */
8671 case DW_OP_form_tls_address:
8672 return "DW_OP_form_tls_address";
8673 case DW_OP_call_frame_cfa:
8674 return "DW_OP_call_frame_cfa";
8675 case DW_OP_bit_piece:
8676 return "DW_OP_bit_piece";
ed348acc
EZ
8677 case DW_OP_GNU_push_tls_address:
8678 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8679 case DW_OP_GNU_uninit:
8680 return "DW_OP_GNU_uninit";
b7619582
GF
8681 /* HP extensions. */
8682 case DW_OP_HP_is_value:
8683 return "DW_OP_HP_is_value";
8684 case DW_OP_HP_fltconst4:
8685 return "DW_OP_HP_fltconst4";
8686 case DW_OP_HP_fltconst8:
8687 return "DW_OP_HP_fltconst8";
8688 case DW_OP_HP_mod_range:
8689 return "DW_OP_HP_mod_range";
8690 case DW_OP_HP_unmod_range:
8691 return "DW_OP_HP_unmod_range";
8692 case DW_OP_HP_tls:
8693 return "DW_OP_HP_tls";
c906108c
SS
8694 default:
8695 return "OP_<unknown>";
8696 }
8697}
8698
8699static char *
fba45db2 8700dwarf_bool_name (unsigned mybool)
c906108c
SS
8701{
8702 if (mybool)
8703 return "TRUE";
8704 else
8705 return "FALSE";
8706}
8707
8708/* Convert a DWARF type code into its string name. */
8709
8710static char *
aa1ee363 8711dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8712{
8713 switch (enc)
8714 {
b7619582
GF
8715 case DW_ATE_void:
8716 return "DW_ATE_void";
c906108c
SS
8717 case DW_ATE_address:
8718 return "DW_ATE_address";
8719 case DW_ATE_boolean:
8720 return "DW_ATE_boolean";
8721 case DW_ATE_complex_float:
8722 return "DW_ATE_complex_float";
8723 case DW_ATE_float:
8724 return "DW_ATE_float";
8725 case DW_ATE_signed:
8726 return "DW_ATE_signed";
8727 case DW_ATE_signed_char:
8728 return "DW_ATE_signed_char";
8729 case DW_ATE_unsigned:
8730 return "DW_ATE_unsigned";
8731 case DW_ATE_unsigned_char:
8732 return "DW_ATE_unsigned_char";
b7619582 8733 /* DWARF 3. */
d9fa45fe
DC
8734 case DW_ATE_imaginary_float:
8735 return "DW_ATE_imaginary_float";
b7619582
GF
8736 case DW_ATE_packed_decimal:
8737 return "DW_ATE_packed_decimal";
8738 case DW_ATE_numeric_string:
8739 return "DW_ATE_numeric_string";
8740 case DW_ATE_edited:
8741 return "DW_ATE_edited";
8742 case DW_ATE_signed_fixed:
8743 return "DW_ATE_signed_fixed";
8744 case DW_ATE_unsigned_fixed:
8745 return "DW_ATE_unsigned_fixed";
8746 case DW_ATE_decimal_float:
8747 return "DW_ATE_decimal_float";
8748 /* HP extensions. */
8749 case DW_ATE_HP_float80:
8750 return "DW_ATE_HP_float80";
8751 case DW_ATE_HP_complex_float80:
8752 return "DW_ATE_HP_complex_float80";
8753 case DW_ATE_HP_float128:
8754 return "DW_ATE_HP_float128";
8755 case DW_ATE_HP_complex_float128:
8756 return "DW_ATE_HP_complex_float128";
8757 case DW_ATE_HP_floathpintel:
8758 return "DW_ATE_HP_floathpintel";
8759 case DW_ATE_HP_imaginary_float80:
8760 return "DW_ATE_HP_imaginary_float80";
8761 case DW_ATE_HP_imaginary_float128:
8762 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8763 default:
8764 return "DW_ATE_<unknown>";
8765 }
8766}
8767
8768/* Convert a DWARF call frame info operation to its string name. */
8769
8770#if 0
8771static char *
aa1ee363 8772dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8773{
8774 switch (cfi_opc)
8775 {
8776 case DW_CFA_advance_loc:
8777 return "DW_CFA_advance_loc";
8778 case DW_CFA_offset:
8779 return "DW_CFA_offset";
8780 case DW_CFA_restore:
8781 return "DW_CFA_restore";
8782 case DW_CFA_nop:
8783 return "DW_CFA_nop";
8784 case DW_CFA_set_loc:
8785 return "DW_CFA_set_loc";
8786 case DW_CFA_advance_loc1:
8787 return "DW_CFA_advance_loc1";
8788 case DW_CFA_advance_loc2:
8789 return "DW_CFA_advance_loc2";
8790 case DW_CFA_advance_loc4:
8791 return "DW_CFA_advance_loc4";
8792 case DW_CFA_offset_extended:
8793 return "DW_CFA_offset_extended";
8794 case DW_CFA_restore_extended:
8795 return "DW_CFA_restore_extended";
8796 case DW_CFA_undefined:
8797 return "DW_CFA_undefined";
8798 case DW_CFA_same_value:
8799 return "DW_CFA_same_value";
8800 case DW_CFA_register:
8801 return "DW_CFA_register";
8802 case DW_CFA_remember_state:
8803 return "DW_CFA_remember_state";
8804 case DW_CFA_restore_state:
8805 return "DW_CFA_restore_state";
8806 case DW_CFA_def_cfa:
8807 return "DW_CFA_def_cfa";
8808 case DW_CFA_def_cfa_register:
8809 return "DW_CFA_def_cfa_register";
8810 case DW_CFA_def_cfa_offset:
8811 return "DW_CFA_def_cfa_offset";
b7619582 8812 /* DWARF 3. */
985cb1a3
JM
8813 case DW_CFA_def_cfa_expression:
8814 return "DW_CFA_def_cfa_expression";
8815 case DW_CFA_expression:
8816 return "DW_CFA_expression";
8817 case DW_CFA_offset_extended_sf:
8818 return "DW_CFA_offset_extended_sf";
8819 case DW_CFA_def_cfa_sf:
8820 return "DW_CFA_def_cfa_sf";
8821 case DW_CFA_def_cfa_offset_sf:
8822 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8823 case DW_CFA_val_offset:
8824 return "DW_CFA_val_offset";
8825 case DW_CFA_val_offset_sf:
8826 return "DW_CFA_val_offset_sf";
8827 case DW_CFA_val_expression:
8828 return "DW_CFA_val_expression";
8829 /* SGI/MIPS specific. */
c906108c
SS
8830 case DW_CFA_MIPS_advance_loc8:
8831 return "DW_CFA_MIPS_advance_loc8";
b7619582 8832 /* GNU extensions. */
985cb1a3
JM
8833 case DW_CFA_GNU_window_save:
8834 return "DW_CFA_GNU_window_save";
8835 case DW_CFA_GNU_args_size:
8836 return "DW_CFA_GNU_args_size";
8837 case DW_CFA_GNU_negative_offset_extended:
8838 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8839 default:
8840 return "DW_CFA_<unknown>";
8841 }
8842}
8843#endif
8844
f9aca02d 8845static void
fba45db2 8846dump_die (struct die_info *die)
c906108c
SS
8847{
8848 unsigned int i;
8849
48cd0caa 8850 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8851 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8852 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8853 dwarf_bool_name (die->child != NULL));
c906108c 8854
48cd0caa 8855 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8856 for (i = 0; i < die->num_attrs; ++i)
8857 {
48cd0caa 8858 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8859 dwarf_attr_name (die->attrs[i].name),
8860 dwarf_form_name (die->attrs[i].form));
8861 switch (die->attrs[i].form)
8862 {
8863 case DW_FORM_ref_addr:
8864 case DW_FORM_addr:
48cd0caa 8865 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8866 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8867 break;
8868 case DW_FORM_block2:
8869 case DW_FORM_block4:
8870 case DW_FORM_block:
8871 case DW_FORM_block1:
48cd0caa 8872 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8873 break;
10b3939b
DJ
8874 case DW_FORM_ref1:
8875 case DW_FORM_ref2:
8876 case DW_FORM_ref4:
8877 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8878 (long) (DW_ADDR (&die->attrs[i])));
8879 break;
c906108c
SS
8880 case DW_FORM_data1:
8881 case DW_FORM_data2:
8882 case DW_FORM_data4:
ce5d95e1 8883 case DW_FORM_data8:
c906108c
SS
8884 case DW_FORM_udata:
8885 case DW_FORM_sdata:
48cd0caa 8886 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8887 break;
8888 case DW_FORM_string:
4bdf3d34 8889 case DW_FORM_strp:
48cd0caa 8890 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8891 DW_STRING (&die->attrs[i])
c5aa993b 8892 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8893 break;
8894 case DW_FORM_flag:
8895 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8896 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8897 else
48cd0caa 8898 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8899 break;
a8329558
KW
8900 case DW_FORM_indirect:
8901 /* the reader will have reduced the indirect form to
8902 the "base form" so this form should not occur */
48cd0caa 8903 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8904 break;
c906108c 8905 default:
48cd0caa 8906 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8907 die->attrs[i].form);
c906108c 8908 }
48cd0caa 8909 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8910 }
8911}
8912
f9aca02d 8913static void
fba45db2 8914dump_die_list (struct die_info *die)
c906108c
SS
8915{
8916 while (die)
8917 {
8918 dump_die (die);
639d11d3
DC
8919 if (die->child != NULL)
8920 dump_die_list (die->child);
8921 if (die->sibling != NULL)
8922 dump_die_list (die->sibling);
c906108c
SS
8923 }
8924}
8925
f9aca02d 8926static void
10b3939b
DJ
8927store_in_ref_table (unsigned int offset, struct die_info *die,
8928 struct dwarf2_cu *cu)
c906108c
SS
8929{
8930 int h;
8931 struct die_info *old;
8932
8933 h = (offset % REF_HASH_SIZE);
10b3939b 8934 old = cu->die_ref_table[h];
c906108c 8935 die->next_ref = old;
10b3939b 8936 cu->die_ref_table[h] = die;
c906108c
SS
8937}
8938
8939static unsigned int
e142c38c 8940dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
8941{
8942 unsigned int result = 0;
8943
8944 switch (attr->form)
8945 {
8946 case DW_FORM_ref_addr:
c906108c
SS
8947 case DW_FORM_ref1:
8948 case DW_FORM_ref2:
8949 case DW_FORM_ref4:
613e1657 8950 case DW_FORM_ref8:
c906108c 8951 case DW_FORM_ref_udata:
10b3939b 8952 result = DW_ADDR (attr);
c906108c
SS
8953 break;
8954 default:
4d3c2250 8955 complaint (&symfile_complaints,
e2e0b3e5 8956 _("unsupported die ref attribute form: '%s'"),
4d3c2250 8957 dwarf_form_name (attr->form));
c906108c
SS
8958 }
8959 return result;
8960}
8961
a02abb62
JB
8962/* Return the constant value held by the given attribute. Return -1
8963 if the value held by the attribute is not constant. */
8964
8965static int
8966dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8967{
8968 if (attr->form == DW_FORM_sdata)
8969 return DW_SND (attr);
8970 else if (attr->form == DW_FORM_udata
8971 || attr->form == DW_FORM_data1
8972 || attr->form == DW_FORM_data2
8973 || attr->form == DW_FORM_data4
8974 || attr->form == DW_FORM_data8)
8975 return DW_UNSND (attr);
8976 else
8977 {
e2e0b3e5 8978 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
8979 dwarf_form_name (attr->form));
8980 return default_value;
8981 }
8982}
8983
f9aca02d 8984static struct die_info *
10b3939b
DJ
8985follow_die_ref (struct die_info *src_die, struct attribute *attr,
8986 struct dwarf2_cu *cu)
c906108c
SS
8987{
8988 struct die_info *die;
10b3939b 8989 unsigned int offset;
c906108c 8990 int h;
10b3939b
DJ
8991 struct die_info temp_die;
8992 struct dwarf2_cu *target_cu;
8993
8994 offset = dwarf2_get_ref_die_offset (attr, cu);
8995
8996 if (DW_ADDR (attr) < cu->header.offset
8997 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8998 {
8999 struct dwarf2_per_cu_data *per_cu;
9000 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9001 cu->objfile);
9002 target_cu = per_cu->cu;
9003 }
9004 else
9005 target_cu = cu;
c906108c
SS
9006
9007 h = (offset % REF_HASH_SIZE);
10b3939b 9008 die = target_cu->die_ref_table[h];
c906108c
SS
9009 while (die)
9010 {
9011 if (die->offset == offset)
10b3939b 9012 return die;
c906108c
SS
9013 die = die->next_ref;
9014 }
10b3939b 9015
8a3fe4f8
AC
9016 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9017 "at 0x%lx [in module %s]"),
10b3939b
DJ
9018 (long) src_die->offset, (long) offset, cu->objfile->name);
9019
c906108c
SS
9020 return NULL;
9021}
9022
9023static struct type *
e142c38c
DJ
9024dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9025 struct dwarf2_cu *cu)
c906108c
SS
9026{
9027 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9028 {
8a3fe4f8 9029 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
659b0389 9030 typeid, objfile->name);
c906108c
SS
9031 }
9032
9033 /* Look for this particular type in the fundamental type vector. If
9034 one is not found, create and install one appropriate for the
9035 current language and the current target machine. */
9036
e142c38c 9037 if (cu->ftypes[typeid] == NULL)
c906108c 9038 {
e142c38c 9039 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
c906108c
SS
9040 }
9041
e142c38c 9042 return (cu->ftypes[typeid]);
c906108c
SS
9043}
9044
9045/* Decode simple location descriptions.
9046 Given a pointer to a dwarf block that defines a location, compute
9047 the location and return the value.
9048
4cecd739
DJ
9049 NOTE drow/2003-11-18: This function is called in two situations
9050 now: for the address of static or global variables (partial symbols
9051 only) and for offsets into structures which are expected to be
9052 (more or less) constant. The partial symbol case should go away,
9053 and only the constant case should remain. That will let this
9054 function complain more accurately. A few special modes are allowed
9055 without complaint for global variables (for instance, global
9056 register values and thread-local values).
c906108c
SS
9057
9058 A location description containing no operations indicates that the
4cecd739 9059 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9060 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9061 callers will only want a very basic result and this can become a
9062 complaint.
c906108c 9063
c906108c
SS
9064 Note that stack[0] is unused except as a default error return.
9065 Note that stack overflow is not yet handled. */
9066
9067static CORE_ADDR
e7c27a73 9068decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9069{
e7c27a73
DJ
9070 struct objfile *objfile = cu->objfile;
9071 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9072 int i;
9073 int size = blk->size;
fe1b8b76 9074 gdb_byte *data = blk->data;
c906108c
SS
9075 CORE_ADDR stack[64];
9076 int stacki;
9077 unsigned int bytes_read, unsnd;
fe1b8b76 9078 gdb_byte op;
c906108c
SS
9079
9080 i = 0;
9081 stacki = 0;
9082 stack[stacki] = 0;
c906108c
SS
9083
9084 while (i < size)
9085 {
c906108c
SS
9086 op = data[i++];
9087 switch (op)
9088 {
f1bea926
JM
9089 case DW_OP_lit0:
9090 case DW_OP_lit1:
9091 case DW_OP_lit2:
9092 case DW_OP_lit3:
9093 case DW_OP_lit4:
9094 case DW_OP_lit5:
9095 case DW_OP_lit6:
9096 case DW_OP_lit7:
9097 case DW_OP_lit8:
9098 case DW_OP_lit9:
9099 case DW_OP_lit10:
9100 case DW_OP_lit11:
9101 case DW_OP_lit12:
9102 case DW_OP_lit13:
9103 case DW_OP_lit14:
9104 case DW_OP_lit15:
9105 case DW_OP_lit16:
9106 case DW_OP_lit17:
9107 case DW_OP_lit18:
9108 case DW_OP_lit19:
9109 case DW_OP_lit20:
9110 case DW_OP_lit21:
9111 case DW_OP_lit22:
9112 case DW_OP_lit23:
9113 case DW_OP_lit24:
9114 case DW_OP_lit25:
9115 case DW_OP_lit26:
9116 case DW_OP_lit27:
9117 case DW_OP_lit28:
9118 case DW_OP_lit29:
9119 case DW_OP_lit30:
9120 case DW_OP_lit31:
9121 stack[++stacki] = op - DW_OP_lit0;
9122 break;
9123
c906108c
SS
9124 case DW_OP_reg0:
9125 case DW_OP_reg1:
9126 case DW_OP_reg2:
9127 case DW_OP_reg3:
9128 case DW_OP_reg4:
9129 case DW_OP_reg5:
9130 case DW_OP_reg6:
9131 case DW_OP_reg7:
9132 case DW_OP_reg8:
9133 case DW_OP_reg9:
9134 case DW_OP_reg10:
9135 case DW_OP_reg11:
9136 case DW_OP_reg12:
9137 case DW_OP_reg13:
9138 case DW_OP_reg14:
9139 case DW_OP_reg15:
9140 case DW_OP_reg16:
9141 case DW_OP_reg17:
9142 case DW_OP_reg18:
9143 case DW_OP_reg19:
9144 case DW_OP_reg20:
9145 case DW_OP_reg21:
9146 case DW_OP_reg22:
9147 case DW_OP_reg23:
9148 case DW_OP_reg24:
9149 case DW_OP_reg25:
9150 case DW_OP_reg26:
9151 case DW_OP_reg27:
9152 case DW_OP_reg28:
9153 case DW_OP_reg29:
9154 case DW_OP_reg30:
9155 case DW_OP_reg31:
c906108c 9156 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9157 if (i < size)
9158 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9159 break;
9160
9161 case DW_OP_regx:
c906108c
SS
9162 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9163 i += bytes_read;
c906108c 9164 stack[++stacki] = unsnd;
4cecd739
DJ
9165 if (i < size)
9166 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9167 break;
9168
9169 case DW_OP_addr:
107d2387 9170 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9171 cu, &bytes_read);
107d2387 9172 i += bytes_read;
c906108c
SS
9173 break;
9174
9175 case DW_OP_const1u:
9176 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9177 i += 1;
9178 break;
9179
9180 case DW_OP_const1s:
9181 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9182 i += 1;
9183 break;
9184
9185 case DW_OP_const2u:
9186 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9187 i += 2;
9188 break;
9189
9190 case DW_OP_const2s:
9191 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9192 i += 2;
9193 break;
9194
9195 case DW_OP_const4u:
9196 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9197 i += 4;
9198 break;
9199
9200 case DW_OP_const4s:
9201 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9202 i += 4;
9203 break;
9204
9205 case DW_OP_constu:
9206 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9207 &bytes_read);
c906108c
SS
9208 i += bytes_read;
9209 break;
9210
9211 case DW_OP_consts:
9212 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9213 i += bytes_read;
9214 break;
9215
f1bea926
JM
9216 case DW_OP_dup:
9217 stack[stacki + 1] = stack[stacki];
9218 stacki++;
9219 break;
9220
c906108c
SS
9221 case DW_OP_plus:
9222 stack[stacki - 1] += stack[stacki];
9223 stacki--;
9224 break;
9225
9226 case DW_OP_plus_uconst:
9227 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9228 i += bytes_read;
9229 break;
9230
9231 case DW_OP_minus:
f1bea926 9232 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9233 stacki--;
9234 break;
9235
7a292a7a 9236 case DW_OP_deref:
7a292a7a 9237 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9238 this using GDB's address_class enum. This is valid for partial
9239 global symbols, although the variable's address will be bogus
9240 in the psymtab. */
7a292a7a 9241 if (i < size)
4d3c2250 9242 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9243 break;
9244
9d774e44 9245 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9246 /* The top of the stack has the offset from the beginning
9247 of the thread control block at which the variable is located. */
9248 /* Nothing should follow this operator, so the top of stack would
9249 be returned. */
4cecd739
DJ
9250 /* This is valid for partial global symbols, but the variable's
9251 address will be bogus in the psymtab. */
9d774e44 9252 if (i < size)
4d3c2250 9253 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9254 break;
9255
42be36b3
CT
9256 case DW_OP_GNU_uninit:
9257 break;
9258
c906108c 9259 default:
e2e0b3e5 9260 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9261 dwarf_stack_op_name (op));
c906108c
SS
9262 return (stack[stacki]);
9263 }
9264 }
9265 return (stack[stacki]);
9266}
9267
9268/* memory allocation interface */
9269
c906108c 9270static struct dwarf_block *
7b5a2f43 9271dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9272{
9273 struct dwarf_block *blk;
9274
9275 blk = (struct dwarf_block *)
7b5a2f43 9276 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9277 return (blk);
9278}
9279
9280static struct abbrev_info *
f3dd6933 9281dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9282{
9283 struct abbrev_info *abbrev;
9284
f3dd6933
DJ
9285 abbrev = (struct abbrev_info *)
9286 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9287 memset (abbrev, 0, sizeof (struct abbrev_info));
9288 return (abbrev);
9289}
9290
9291static struct die_info *
fba45db2 9292dwarf_alloc_die (void)
c906108c
SS
9293{
9294 struct die_info *die;
9295
9296 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9297 memset (die, 0, sizeof (struct die_info));
9298 return (die);
9299}
2e276125
JB
9300
9301\f
9302/* Macro support. */
9303
9304
9305/* Return the full name of file number I in *LH's file name table.
9306 Use COMP_DIR as the name of the current directory of the
9307 compilation. The result is allocated using xmalloc; the caller is
9308 responsible for freeing it. */
9309static char *
9310file_full_name (int file, struct line_header *lh, const char *comp_dir)
9311{
6a83a1e6
EZ
9312 /* Is the file number a valid index into the line header's file name
9313 table? Remember that file numbers start with one, not zero. */
9314 if (1 <= file && file <= lh->num_file_names)
9315 {
9316 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9317
6a83a1e6
EZ
9318 if (IS_ABSOLUTE_PATH (fe->name))
9319 return xstrdup (fe->name);
9320 else
9321 {
9322 const char *dir;
9323 int dir_len;
9324 char *full_name;
9325
9326 if (fe->dir_index)
9327 dir = lh->include_dirs[fe->dir_index - 1];
9328 else
9329 dir = comp_dir;
9330
9331 if (dir)
9332 {
9333 dir_len = strlen (dir);
9334 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9335 strcpy (full_name, dir);
9336 full_name[dir_len] = '/';
9337 strcpy (full_name + dir_len + 1, fe->name);
9338 return full_name;
9339 }
9340 else
9341 return xstrdup (fe->name);
9342 }
9343 }
2e276125
JB
9344 else
9345 {
6a83a1e6
EZ
9346 /* The compiler produced a bogus file number. We can at least
9347 record the macro definitions made in the file, even if we
9348 won't be able to find the file by name. */
9349 char fake_name[80];
9350 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9351
6a83a1e6
EZ
9352 complaint (&symfile_complaints,
9353 _("bad file number in macro information (%d)"),
9354 file);
2e276125 9355
6a83a1e6 9356 return xstrdup (fake_name);
2e276125
JB
9357 }
9358}
9359
9360
9361static struct macro_source_file *
9362macro_start_file (int file, int line,
9363 struct macro_source_file *current_file,
9364 const char *comp_dir,
9365 struct line_header *lh, struct objfile *objfile)
9366{
9367 /* The full name of this source file. */
9368 char *full_name = file_full_name (file, lh, comp_dir);
9369
9370 /* We don't create a macro table for this compilation unit
9371 at all until we actually get a filename. */
9372 if (! pending_macros)
4a146b47 9373 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9374 objfile->macro_cache);
2e276125
JB
9375
9376 if (! current_file)
9377 /* If we have no current file, then this must be the start_file
9378 directive for the compilation unit's main source file. */
9379 current_file = macro_set_main (pending_macros, full_name);
9380 else
9381 current_file = macro_include (current_file, line, full_name);
9382
9383 xfree (full_name);
9384
9385 return current_file;
9386}
9387
9388
9389/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9390 followed by a null byte. */
9391static char *
9392copy_string (const char *buf, int len)
9393{
9394 char *s = xmalloc (len + 1);
9395 memcpy (s, buf, len);
9396 s[len] = '\0';
9397
9398 return s;
9399}
9400
9401
9402static const char *
9403consume_improper_spaces (const char *p, const char *body)
9404{
9405 if (*p == ' ')
9406 {
4d3c2250 9407 complaint (&symfile_complaints,
e2e0b3e5 9408 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9409 body);
2e276125
JB
9410
9411 while (*p == ' ')
9412 p++;
9413 }
9414
9415 return p;
9416}
9417
9418
9419static void
9420parse_macro_definition (struct macro_source_file *file, int line,
9421 const char *body)
9422{
9423 const char *p;
9424
9425 /* The body string takes one of two forms. For object-like macro
9426 definitions, it should be:
9427
9428 <macro name> " " <definition>
9429
9430 For function-like macro definitions, it should be:
9431
9432 <macro name> "() " <definition>
9433 or
9434 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9435
9436 Spaces may appear only where explicitly indicated, and in the
9437 <definition>.
9438
9439 The Dwarf 2 spec says that an object-like macro's name is always
9440 followed by a space, but versions of GCC around March 2002 omit
9441 the space when the macro's definition is the empty string.
9442
9443 The Dwarf 2 spec says that there should be no spaces between the
9444 formal arguments in a function-like macro's formal argument list,
9445 but versions of GCC around March 2002 include spaces after the
9446 commas. */
9447
9448
9449 /* Find the extent of the macro name. The macro name is terminated
9450 by either a space or null character (for an object-like macro) or
9451 an opening paren (for a function-like macro). */
9452 for (p = body; *p; p++)
9453 if (*p == ' ' || *p == '(')
9454 break;
9455
9456 if (*p == ' ' || *p == '\0')
9457 {
9458 /* It's an object-like macro. */
9459 int name_len = p - body;
9460 char *name = copy_string (body, name_len);
9461 const char *replacement;
9462
9463 if (*p == ' ')
9464 replacement = body + name_len + 1;
9465 else
9466 {
4d3c2250 9467 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9468 replacement = body + name_len;
9469 }
9470
9471 macro_define_object (file, line, name, replacement);
9472
9473 xfree (name);
9474 }
9475 else if (*p == '(')
9476 {
9477 /* It's a function-like macro. */
9478 char *name = copy_string (body, p - body);
9479 int argc = 0;
9480 int argv_size = 1;
9481 char **argv = xmalloc (argv_size * sizeof (*argv));
9482
9483 p++;
9484
9485 p = consume_improper_spaces (p, body);
9486
9487 /* Parse the formal argument list. */
9488 while (*p && *p != ')')
9489 {
9490 /* Find the extent of the current argument name. */
9491 const char *arg_start = p;
9492
9493 while (*p && *p != ',' && *p != ')' && *p != ' ')
9494 p++;
9495
9496 if (! *p || p == arg_start)
4d3c2250 9497 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9498 else
9499 {
9500 /* Make sure argv has room for the new argument. */
9501 if (argc >= argv_size)
9502 {
9503 argv_size *= 2;
9504 argv = xrealloc (argv, argv_size * sizeof (*argv));
9505 }
9506
9507 argv[argc++] = copy_string (arg_start, p - arg_start);
9508 }
9509
9510 p = consume_improper_spaces (p, body);
9511
9512 /* Consume the comma, if present. */
9513 if (*p == ',')
9514 {
9515 p++;
9516
9517 p = consume_improper_spaces (p, body);
9518 }
9519 }
9520
9521 if (*p == ')')
9522 {
9523 p++;
9524
9525 if (*p == ' ')
9526 /* Perfectly formed definition, no complaints. */
9527 macro_define_function (file, line, name,
9528 argc, (const char **) argv,
9529 p + 1);
9530 else if (*p == '\0')
9531 {
9532 /* Complain, but do define it. */
4d3c2250 9533 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9534 macro_define_function (file, line, name,
9535 argc, (const char **) argv,
9536 p);
9537 }
9538 else
9539 /* Just complain. */
4d3c2250 9540 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9541 }
9542 else
9543 /* Just complain. */
4d3c2250 9544 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9545
9546 xfree (name);
9547 {
9548 int i;
9549
9550 for (i = 0; i < argc; i++)
9551 xfree (argv[i]);
9552 }
9553 xfree (argv);
9554 }
9555 else
4d3c2250 9556 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9557}
9558
9559
9560static void
9561dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9562 char *comp_dir, bfd *abfd,
e7c27a73 9563 struct dwarf2_cu *cu)
2e276125 9564{
fe1b8b76 9565 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9566 struct macro_source_file *current_file = 0;
9567
6502dd73 9568 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9569 {
e2e0b3e5 9570 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9571 return;
9572 }
9573
6502dd73
DJ
9574 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9575 mac_end = dwarf2_per_objfile->macinfo_buffer
9576 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9577
9578 for (;;)
9579 {
9580 enum dwarf_macinfo_record_type macinfo_type;
9581
9582 /* Do we at least have room for a macinfo type byte? */
9583 if (mac_ptr >= mac_end)
9584 {
4d3c2250 9585 dwarf2_macros_too_long_complaint ();
2e276125
JB
9586 return;
9587 }
9588
9589 macinfo_type = read_1_byte (abfd, mac_ptr);
9590 mac_ptr++;
9591
9592 switch (macinfo_type)
9593 {
9594 /* A zero macinfo type indicates the end of the macro
9595 information. */
9596 case 0:
9597 return;
9598
9599 case DW_MACINFO_define:
9600 case DW_MACINFO_undef:
9601 {
891d2f0b 9602 unsigned int bytes_read;
2e276125
JB
9603 int line;
9604 char *body;
9605
9606 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9607 mac_ptr += bytes_read;
9608 body = read_string (abfd, mac_ptr, &bytes_read);
9609 mac_ptr += bytes_read;
9610
9611 if (! current_file)
4d3c2250 9612 complaint (&symfile_complaints,
e2e0b3e5 9613 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9614 macinfo_type ==
9615 DW_MACINFO_define ? "definition" : macinfo_type ==
9616 DW_MACINFO_undef ? "undefinition" :
9617 "something-or-other", body);
2e276125
JB
9618 else
9619 {
9620 if (macinfo_type == DW_MACINFO_define)
9621 parse_macro_definition (current_file, line, body);
9622 else if (macinfo_type == DW_MACINFO_undef)
9623 macro_undef (current_file, line, body);
9624 }
9625 }
9626 break;
9627
9628 case DW_MACINFO_start_file:
9629 {
891d2f0b 9630 unsigned int bytes_read;
2e276125
JB
9631 int line, file;
9632
9633 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9634 mac_ptr += bytes_read;
9635 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9636 mac_ptr += bytes_read;
9637
9638 current_file = macro_start_file (file, line,
9639 current_file, comp_dir,
e7c27a73 9640 lh, cu->objfile);
2e276125
JB
9641 }
9642 break;
9643
9644 case DW_MACINFO_end_file:
9645 if (! current_file)
4d3c2250 9646 complaint (&symfile_complaints,
e2e0b3e5 9647 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9648 else
9649 {
9650 current_file = current_file->included_by;
9651 if (! current_file)
9652 {
9653 enum dwarf_macinfo_record_type next_type;
9654
9655 /* GCC circa March 2002 doesn't produce the zero
9656 type byte marking the end of the compilation
9657 unit. Complain if it's not there, but exit no
9658 matter what. */
9659
9660 /* Do we at least have room for a macinfo type byte? */
9661 if (mac_ptr >= mac_end)
9662 {
4d3c2250 9663 dwarf2_macros_too_long_complaint ();
2e276125
JB
9664 return;
9665 }
9666
9667 /* We don't increment mac_ptr here, so this is just
9668 a look-ahead. */
9669 next_type = read_1_byte (abfd, mac_ptr);
9670 if (next_type != 0)
4d3c2250 9671 complaint (&symfile_complaints,
e2e0b3e5 9672 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9673
9674 return;
9675 }
9676 }
9677 break;
9678
9679 case DW_MACINFO_vendor_ext:
9680 {
891d2f0b 9681 unsigned int bytes_read;
2e276125
JB
9682 int constant;
9683 char *string;
9684
9685 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9686 mac_ptr += bytes_read;
9687 string = read_string (abfd, mac_ptr, &bytes_read);
9688 mac_ptr += bytes_read;
9689
9690 /* We don't recognize any vendor extensions. */
9691 }
9692 break;
9693 }
9694 }
9695}
8e19ed76
PS
9696
9697/* Check if the attribute's form is a DW_FORM_block*
9698 if so return true else false. */
9699static int
9700attr_form_is_block (struct attribute *attr)
9701{
9702 return (attr == NULL ? 0 :
9703 attr->form == DW_FORM_block1
9704 || attr->form == DW_FORM_block2
9705 || attr->form == DW_FORM_block4
9706 || attr->form == DW_FORM_block);
9707}
4c2df51b
DJ
9708
9709static void
9710dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9711 struct dwarf2_cu *cu)
4c2df51b 9712{
93e7bd98
DJ
9713 struct objfile *objfile = cu->objfile;
9714
9715 /* Save the master objfile, so that we can report and look up the
9716 correct file containing this variable. */
9717 if (objfile->separate_debug_objfile_backlink)
9718 objfile = objfile->separate_debug_objfile_backlink;
9719
99bcc461
DJ
9720 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9721 /* ".debug_loc" may not exist at all, or the offset may be outside
9722 the section. If so, fall through to the complaint in the
9723 other branch. */
9724 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9725 {
0d53c4c4 9726 struct dwarf2_loclist_baton *baton;
4c2df51b 9727
4a146b47 9728 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9729 sizeof (struct dwarf2_loclist_baton));
93e7bd98 9730 baton->objfile = objfile;
4c2df51b 9731
0d53c4c4
DJ
9732 /* We don't know how long the location list is, but make sure we
9733 don't run off the edge of the section. */
6502dd73
DJ
9734 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9735 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9736 baton->base_address = cu->header.base_address;
9737 if (cu->header.base_known == 0)
0d53c4c4 9738 complaint (&symfile_complaints,
e2e0b3e5 9739 _("Location list used without specifying the CU base address."));
4c2df51b 9740
a67af2b9 9741 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9742 SYMBOL_LOCATION_BATON (sym) = baton;
9743 }
9744 else
9745 {
9746 struct dwarf2_locexpr_baton *baton;
9747
4a146b47 9748 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9749 sizeof (struct dwarf2_locexpr_baton));
93e7bd98 9750 baton->objfile = objfile;
0d53c4c4
DJ
9751
9752 if (attr_form_is_block (attr))
9753 {
9754 /* Note that we're just copying the block's data pointer
9755 here, not the actual data. We're still pointing into the
6502dd73
DJ
9756 info_buffer for SYM's objfile; right now we never release
9757 that buffer, but when we do clean up properly this may
9758 need to change. */
0d53c4c4
DJ
9759 baton->size = DW_BLOCK (attr)->size;
9760 baton->data = DW_BLOCK (attr)->data;
9761 }
9762 else
9763 {
9764 dwarf2_invalid_attrib_class_complaint ("location description",
9765 SYMBOL_NATURAL_NAME (sym));
9766 baton->size = 0;
9767 baton->data = NULL;
9768 }
9769
a67af2b9 9770 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9771 SYMBOL_LOCATION_BATON (sym) = baton;
9772 }
4c2df51b 9773}
6502dd73 9774
ae038cb0 9775/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9776 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9777
9778static struct dwarf2_per_cu_data *
9779dwarf2_find_containing_comp_unit (unsigned long offset,
9780 struct objfile *objfile)
9781{
9782 struct dwarf2_per_cu_data *this_cu;
9783 int low, high;
9784
ae038cb0
DJ
9785 low = 0;
9786 high = dwarf2_per_objfile->n_comp_units - 1;
9787 while (high > low)
9788 {
9789 int mid = low + (high - low) / 2;
9790 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9791 high = mid;
9792 else
9793 low = mid + 1;
9794 }
9795 gdb_assert (low == high);
9796 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9797 {
10b3939b 9798 if (low == 0)
8a3fe4f8
AC
9799 error (_("Dwarf Error: could not find partial DIE containing "
9800 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9801 (long) offset, bfd_get_filename (objfile->obfd));
9802
ae038cb0
DJ
9803 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9804 return dwarf2_per_objfile->all_comp_units[low-1];
9805 }
9806 else
9807 {
9808 this_cu = dwarf2_per_objfile->all_comp_units[low];
9809 if (low == dwarf2_per_objfile->n_comp_units - 1
9810 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9811 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9812 gdb_assert (offset < this_cu->offset + this_cu->length);
9813 return this_cu;
9814 }
9815}
9816
10b3939b
DJ
9817/* Locate the compilation unit from OBJFILE which is located at exactly
9818 OFFSET. Raises an error on failure. */
9819
ae038cb0
DJ
9820static struct dwarf2_per_cu_data *
9821dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9822{
9823 struct dwarf2_per_cu_data *this_cu;
9824 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9825 if (this_cu->offset != offset)
8a3fe4f8 9826 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9827 return this_cu;
9828}
9829
9830/* Release one cached compilation unit, CU. We unlink it from the tree
9831 of compilation units, but we don't remove it from the read_in_chain;
9832 the caller is responsible for that. */
9833
9834static void
9835free_one_comp_unit (void *data)
9836{
9837 struct dwarf2_cu *cu = data;
9838
9839 if (cu->per_cu != NULL)
9840 cu->per_cu->cu = NULL;
9841 cu->per_cu = NULL;
9842
9843 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9844 if (cu->dies)
9845 free_die_list (cu->dies);
ae038cb0
DJ
9846
9847 xfree (cu);
9848}
9849
72bf9492 9850/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9851 when we're finished with it. We can't free the pointer itself, but be
9852 sure to unlink it from the cache. Also release any associated storage
9853 and perform cache maintenance.
72bf9492
DJ
9854
9855 Only used during partial symbol parsing. */
9856
9857static void
9858free_stack_comp_unit (void *data)
9859{
9860 struct dwarf2_cu *cu = data;
9861
9862 obstack_free (&cu->comp_unit_obstack, NULL);
9863 cu->partial_dies = NULL;
ae038cb0
DJ
9864
9865 if (cu->per_cu != NULL)
9866 {
9867 /* This compilation unit is on the stack in our caller, so we
9868 should not xfree it. Just unlink it. */
9869 cu->per_cu->cu = NULL;
9870 cu->per_cu = NULL;
9871
9872 /* If we had a per-cu pointer, then we may have other compilation
9873 units loaded, so age them now. */
9874 age_cached_comp_units ();
9875 }
9876}
9877
9878/* Free all cached compilation units. */
9879
9880static void
9881free_cached_comp_units (void *data)
9882{
9883 struct dwarf2_per_cu_data *per_cu, **last_chain;
9884
9885 per_cu = dwarf2_per_objfile->read_in_chain;
9886 last_chain = &dwarf2_per_objfile->read_in_chain;
9887 while (per_cu != NULL)
9888 {
9889 struct dwarf2_per_cu_data *next_cu;
9890
9891 next_cu = per_cu->cu->read_in_chain;
9892
9893 free_one_comp_unit (per_cu->cu);
9894 *last_chain = next_cu;
9895
9896 per_cu = next_cu;
9897 }
9898}
9899
9900/* Increase the age counter on each cached compilation unit, and free
9901 any that are too old. */
9902
9903static void
9904age_cached_comp_units (void)
9905{
9906 struct dwarf2_per_cu_data *per_cu, **last_chain;
9907
9908 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9909 per_cu = dwarf2_per_objfile->read_in_chain;
9910 while (per_cu != NULL)
9911 {
9912 per_cu->cu->last_used ++;
9913 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9914 dwarf2_mark (per_cu->cu);
9915 per_cu = per_cu->cu->read_in_chain;
9916 }
9917
9918 per_cu = dwarf2_per_objfile->read_in_chain;
9919 last_chain = &dwarf2_per_objfile->read_in_chain;
9920 while (per_cu != NULL)
9921 {
9922 struct dwarf2_per_cu_data *next_cu;
9923
9924 next_cu = per_cu->cu->read_in_chain;
9925
9926 if (!per_cu->cu->mark)
9927 {
9928 free_one_comp_unit (per_cu->cu);
9929 *last_chain = next_cu;
9930 }
9931 else
9932 last_chain = &per_cu->cu->read_in_chain;
9933
9934 per_cu = next_cu;
9935 }
9936}
9937
9938/* Remove a single compilation unit from the cache. */
9939
9940static void
9941free_one_cached_comp_unit (void *target_cu)
9942{
9943 struct dwarf2_per_cu_data *per_cu, **last_chain;
9944
9945 per_cu = dwarf2_per_objfile->read_in_chain;
9946 last_chain = &dwarf2_per_objfile->read_in_chain;
9947 while (per_cu != NULL)
9948 {
9949 struct dwarf2_per_cu_data *next_cu;
9950
9951 next_cu = per_cu->cu->read_in_chain;
9952
9953 if (per_cu->cu == target_cu)
9954 {
9955 free_one_comp_unit (per_cu->cu);
9956 *last_chain = next_cu;
9957 break;
9958 }
9959 else
9960 last_chain = &per_cu->cu->read_in_chain;
9961
9962 per_cu = next_cu;
9963 }
9964}
9965
1c379e20
DJ
9966/* A pair of DIE offset and GDB type pointer. We store these
9967 in a hash table separate from the DIEs, and preserve them
9968 when the DIEs are flushed out of cache. */
9969
9970struct dwarf2_offset_and_type
9971{
9972 unsigned int offset;
9973 struct type *type;
9974};
9975
9976/* Hash function for a dwarf2_offset_and_type. */
9977
9978static hashval_t
9979offset_and_type_hash (const void *item)
9980{
9981 const struct dwarf2_offset_and_type *ofs = item;
9982 return ofs->offset;
9983}
9984
9985/* Equality function for a dwarf2_offset_and_type. */
9986
9987static int
9988offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9989{
9990 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9991 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9992 return ofs_lhs->offset == ofs_rhs->offset;
9993}
9994
9995/* Set the type associated with DIE to TYPE. Save it in CU's hash
9996 table if necessary. */
9997
9998static void
9999set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10000{
10001 struct dwarf2_offset_and_type **slot, ofs;
10002
10003 die->type = type;
10004
10005 if (cu->per_cu == NULL)
10006 return;
10007
10008 if (cu->per_cu->type_hash == NULL)
10009 cu->per_cu->type_hash
10010 = htab_create_alloc_ex (cu->header.length / 24,
10011 offset_and_type_hash,
10012 offset_and_type_eq,
10013 NULL,
10014 &cu->objfile->objfile_obstack,
10015 hashtab_obstack_allocate,
10016 dummy_obstack_deallocate);
10017
10018 ofs.offset = die->offset;
10019 ofs.type = type;
10020 slot = (struct dwarf2_offset_and_type **)
10021 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10022 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10023 **slot = ofs;
10024}
10025
1c379e20
DJ
10026/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10027 have a saved type. */
10028
10029static struct type *
10030get_die_type (struct die_info *die, htab_t type_hash)
10031{
10032 struct dwarf2_offset_and_type *slot, ofs;
10033
10034 ofs.offset = die->offset;
10035 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10036 if (slot)
10037 return slot->type;
10038 else
10039 return NULL;
10040}
10041
10042/* Restore the types of the DIE tree starting at START_DIE from the hash
10043 table saved in CU. */
10044
10045static void
10046reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10047{
10048 struct die_info *die;
10049
10050 if (cu->per_cu->type_hash == NULL)
10051 return;
10052
10053 for (die = start_die; die != NULL; die = die->sibling)
10054 {
10055 die->type = get_die_type (die, cu->per_cu->type_hash);
10056 if (die->child != NULL)
10057 reset_die_and_siblings_types (die->child, cu);
10058 }
10059}
10060
10b3939b
DJ
10061/* Set the mark field in CU and in every other compilation unit in the
10062 cache that we must keep because we are keeping CU. */
10063
10064/* Add a dependence relationship from CU to REF_PER_CU. */
10065
10066static void
10067dwarf2_add_dependence (struct dwarf2_cu *cu,
10068 struct dwarf2_per_cu_data *ref_per_cu)
10069{
10070 void **slot;
10071
10072 if (cu->dependencies == NULL)
10073 cu->dependencies
10074 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10075 NULL, &cu->comp_unit_obstack,
10076 hashtab_obstack_allocate,
10077 dummy_obstack_deallocate);
10078
10079 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10080 if (*slot == NULL)
10081 *slot = ref_per_cu;
10082}
1c379e20 10083
ae038cb0
DJ
10084/* Set the mark field in CU and in every other compilation unit in the
10085 cache that we must keep because we are keeping CU. */
10086
10b3939b
DJ
10087static int
10088dwarf2_mark_helper (void **slot, void *data)
10089{
10090 struct dwarf2_per_cu_data *per_cu;
10091
10092 per_cu = (struct dwarf2_per_cu_data *) *slot;
10093 if (per_cu->cu->mark)
10094 return 1;
10095 per_cu->cu->mark = 1;
10096
10097 if (per_cu->cu->dependencies != NULL)
10098 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10099
10100 return 1;
10101}
10102
ae038cb0
DJ
10103static void
10104dwarf2_mark (struct dwarf2_cu *cu)
10105{
10106 if (cu->mark)
10107 return;
10108 cu->mark = 1;
10b3939b
DJ
10109 if (cu->dependencies != NULL)
10110 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10111}
10112
10113static void
10114dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10115{
10116 while (per_cu)
10117 {
10118 per_cu->cu->mark = 0;
10119 per_cu = per_cu->cu->read_in_chain;
10120 }
72bf9492
DJ
10121}
10122
72bf9492
DJ
10123/* Trivial hash function for partial_die_info: the hash value of a DIE
10124 is its offset in .debug_info for this objfile. */
10125
10126static hashval_t
10127partial_die_hash (const void *item)
10128{
10129 const struct partial_die_info *part_die = item;
10130 return part_die->offset;
10131}
10132
10133/* Trivial comparison function for partial_die_info structures: two DIEs
10134 are equal if they have the same offset. */
10135
10136static int
10137partial_die_eq (const void *item_lhs, const void *item_rhs)
10138{
10139 const struct partial_die_info *part_die_lhs = item_lhs;
10140 const struct partial_die_info *part_die_rhs = item_rhs;
10141 return part_die_lhs->offset == part_die_rhs->offset;
10142}
10143
ae038cb0
DJ
10144static struct cmd_list_element *set_dwarf2_cmdlist;
10145static struct cmd_list_element *show_dwarf2_cmdlist;
10146
10147static void
10148set_dwarf2_cmd (char *args, int from_tty)
10149{
10150 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10151}
10152
10153static void
10154show_dwarf2_cmd (char *args, int from_tty)
10155{
10156 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10157}
10158
6502dd73
DJ
10159void _initialize_dwarf2_read (void);
10160
10161void
10162_initialize_dwarf2_read (void)
10163{
10164 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10165
1bedd215
AC
10166 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10167Set DWARF 2 specific variables.\n\
10168Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10169 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10170 0/*allow-unknown*/, &maintenance_set_cmdlist);
10171
1bedd215
AC
10172 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10173Show DWARF 2 specific variables\n\
10174Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10175 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10176 0/*allow-unknown*/, &maintenance_show_cmdlist);
10177
10178 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10179 &dwarf2_max_cache_age, _("\
10180Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10181Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10182A higher limit means that cached compilation units will be stored\n\
10183in memory longer, and more total memory will be used. Zero disables\n\
10184caching, which can slow down startup."),
2c5b56ce 10185 NULL,
920d2a44 10186 show_dwarf2_max_cache_age,
2c5b56ce 10187 &set_dwarf2_cmdlist,
ae038cb0 10188 &show_dwarf2_cmdlist);
6502dd73 10189}