]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarfread.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
c906108c 1/* DWARF debugging format support for GDB.
1bac305b 2
6aba47ca
DJ
3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2007 Free Software Foundation, Inc.
1bac305b 5
c906108c
SS
6 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
7 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c 25
5ae7ca1d
MC
26/*
27 If you are looking for DWARF-2 support, you are in the wrong file.
013be872
MC
28 Go look in dwarf2read.c. This file is for the original DWARF,
29 also known as DWARF-1.
30
31 DWARF-1 is slowly headed for obsoletion.
32
b2a871dd 33 In gcc 3.4.0, support for dwarf-1 has been removed.
013be872
MC
34
35 In gcc 3.3.2, these targets prefer dwarf-1:
36
37 i[34567]86-sequent-ptx4*
38 i[34567]86-sequent-sysv4*
39 mips-sni-sysv4
40 sparc-hal-solaris2*
41
42 In gcc 3.2.2, these targets prefer dwarf-1:
43
44 i[34567]86-dg-dgux*
45 i[34567]86-sequent-ptx4*
46 i[34567]86-sequent-sysv4*
47 m88k-dg-dgux*
48 mips-sni-sysv4
49 sparc-hal-solaris2*
50
51 In gcc 2.95.3, these targets prefer dwarf-1:
52
53 i[34567]86-dg-dgux*
54 i[34567]86-ncr-sysv4*
55 i[34567]86-sequent-ptx4*
56 i[34567]86-sequent-sysv4*
57 i[34567]86-*-osf1*
58 i[34567]86-*-sco3.2v5*
59 i[34567]86-*-sysv4*
60 i860-alliant-*
61 i860-*-sysv4*
62 m68k-atari-sysv4*
63 m68k-cbm-sysv4*
64 m68k-*-sysv4*
65 m88k-dg-dgux*
66 m88k-*-sysv4*
67 mips-sni-sysv4
68 mips-*-gnu*
69 sh-*-elf*
70 sh-*-rtemself*
71 sparc-hal-solaris2*
72 sparc-*-sysv4*
73
74 Some non-gcc compilers produce dwarf-1:
75
76 PR gdb/1179 was from a user with Diab C++ 4.3.
b2a871dd
MC
77 On 2003-07-25 the gdb list received a report from a user
78 with Diab Compiler 4.4b.
013be872 79 Other users have also reported using Diab compilers with dwarf-1.
b2a871dd
MC
80
81 Diab Compiler Suite 5.0.1 supports dwarf-2/dwarf-3 for C and C++.
82 (Diab(tm) Compiler Suite 5.0.1 Release Notes, DOC-14691-ZD-00,
83 Wind River Systems, 2002-07-31).
84
013be872
MC
85 On 2003-06-09 the gdb list received a report from a user
86 with Absoft ProFortran f77 which is dwarf-1.
87
9cbc6ef0 88 Absoft ProFortran Linux[sic] Fortran User Guide (no version,
b2a871dd
MC
89 but copyright dates are 1991-2001) says that Absoft ProFortran
90 supports -gdwarf1 and -gdwarf2.
91
92 -- chastain 2004-04-24
5ae7ca1d
MC
93*/
94
c906108c
SS
95/*
96
c5aa993b
JM
97 FIXME: Do we need to generate dependencies in partial symtabs?
98 (Perhaps we don't need to).
c906108c 99
c5aa993b
JM
100 FIXME: Resolve minor differences between what information we put in the
101 partial symbol table and what dbxread puts in. For example, we don't yet
102 put enum constants there. And dbxread seems to invent a lot of typedefs
103 we never see. Use the new printpsym command to see the partial symbol table
104 contents.
c906108c 105
c5aa993b
JM
106 FIXME: Figure out a better way to tell gdb about the name of the function
107 contain the user's entry point (I.E. main())
c906108c 108
c5aa993b
JM
109 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
110 other things to work on, if you get bored. :-)
c906108c 111
c5aa993b 112 */
c906108c
SS
113
114#include "defs.h"
115#include "symtab.h"
116#include "gdbtypes.h"
c906108c
SS
117#include "objfiles.h"
118#include "elf/dwarf.h"
119#include "buildsym.h"
120#include "demangle.h"
c5aa993b 121#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
c906108c
SS
122#include "language.h"
123#include "complaints.h"
124
125#include <fcntl.h>
126#include "gdb_string.h"
127
128/* Some macros to provide DIE info for complaints. */
129
130#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
131#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
132
133/* Complaints that can be issued during DWARF debug info reading. */
134
23136709
KB
135static void
136bad_die_ref_complaint (int arg1, const char *arg2, int arg3)
c906108c 137{
23136709 138 complaint (&symfile_complaints,
e2e0b3e5 139 _("DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit"),
23136709
KB
140 arg1, arg2, arg3);
141}
c906108c 142
23136709
KB
143static void
144unknown_attribute_form_complaint (int arg1, const char *arg2, int arg3)
c906108c 145{
23136709 146 complaint (&symfile_complaints,
e2e0b3e5 147 _("DIE @ 0x%x \"%s\", unknown attribute form (0x%x)"), arg1, arg2,
23136709
KB
148 arg3);
149}
c906108c 150
23136709
KB
151static void
152dup_user_type_definition_complaint (int arg1, const char *arg2)
c906108c 153{
23136709 154 complaint (&symfile_complaints,
e2e0b3e5 155 _("DIE @ 0x%x \"%s\", internal error: duplicate user type definition"),
23136709
KB
156 arg1, arg2);
157}
c906108c 158
23136709
KB
159static void
160bad_array_element_type_complaint (int arg1, const char *arg2, int arg3)
c906108c 161{
23136709 162 complaint (&symfile_complaints,
e2e0b3e5 163 _("DIE @ 0x%x \"%s\", bad array element type attribute 0x%x"), arg1,
23136709
KB
164 arg2, arg3);
165}
c906108c
SS
166
167typedef unsigned int DIE_REF; /* Reference to a DIE */
168
169#ifndef GCC_PRODUCER
170#define GCC_PRODUCER "GNU C "
171#endif
172
173#ifndef GPLUS_PRODUCER
174#define GPLUS_PRODUCER "GNU C++ "
175#endif
176
177#ifndef LCC_PRODUCER
178#define LCC_PRODUCER "NCR C/C++"
179#endif
180
c906108c
SS
181/* Flags to target_to_host() that tell whether or not the data object is
182 expected to be signed. Used, for example, when fetching a signed
183 integer in the target environment which is used as a signed integer
184 in the host environment, and the two environments have different sized
185 ints. In this case, *somebody* has to sign extend the smaller sized
186 int. */
187
188#define GET_UNSIGNED 0 /* No sign extension required */
189#define GET_SIGNED 1 /* Sign extension required */
190
191/* Defines for things which are specified in the document "DWARF Debugging
192 Information Format" published by UNIX International, Programming Languages
193 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
194
195#define SIZEOF_DIE_LENGTH 4
196#define SIZEOF_DIE_TAG 2
197#define SIZEOF_ATTRIBUTE 2
198#define SIZEOF_FORMAT_SPECIFIER 1
199#define SIZEOF_FMT_FT 2
200#define SIZEOF_LINETBL_LENGTH 4
201#define SIZEOF_LINETBL_LINENO 4
202#define SIZEOF_LINETBL_STMT 2
203#define SIZEOF_LINETBL_DELTA 4
204#define SIZEOF_LOC_ATOM_CODE 1
205
206#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
207
208/* Macros that return the sizes of various types of data in the target
209 environment.
210
211 FIXME: Currently these are just compile time constants (as they are in
212 other parts of gdb as well). They need to be able to get the right size
213 either from the bfd or possibly from the DWARF info. It would be nice if
214 the DWARF producer inserted DIES that describe the fundamental types in
215 the target environment into the DWARF info, similar to the way dbx stabs
216 producers produce information about their fundamental types. */
217
218#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
219#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
220
221/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
222 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
223 However, the Issue 2 DWARF specification from AT&T defines it as
224 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
225 For backwards compatibility with the AT&T compiler produced executables
226 we define AT_short_element_list for this variant. */
227
228#define AT_short_element_list (0x00f0|FORM_BLOCK2)
229
c906108c
SS
230/* The DWARF debugging information consists of two major pieces,
231 one is a block of DWARF Information Entries (DIE's) and the other
232 is a line number table. The "struct dieinfo" structure contains
233 the information for a single DIE, the one currently being processed.
234
235 In order to make it easier to randomly access the attribute fields
236 of the current DIE, which are specifically unordered within the DIE,
237 each DIE is scanned and an instance of the "struct dieinfo"
238 structure is initialized.
239
240 Initialization is done in two levels. The first, done by basicdieinfo(),
241 just initializes those fields that are vital to deciding whether or not
242 to use this DIE, how to skip past it, etc. The second, done by the
243 function completedieinfo(), fills in the rest of the information.
244
245 Attributes which have block forms are not interpreted at the time
246 the DIE is scanned, instead we just save pointers to the start
247 of their value fields.
248
249 Some fields have a flag <name>_p that is set when the value of the
250 field is valid (I.E. we found a matching attribute in the DIE). Since
251 we may want to test for the presence of some attributes in the DIE,
252 such as AT_low_pc, without restricting the values of the field,
253 we need someway to note that we found such an attribute.
c5aa993b 254
c906108c 255 */
c5aa993b 256
c906108c
SS
257typedef char BLOCK;
258
c5aa993b
JM
259struct dieinfo
260 {
261 char *die; /* Pointer to the raw DIE data */
262 unsigned long die_length; /* Length of the raw DIE data */
263 DIE_REF die_ref; /* Offset of this DIE */
264 unsigned short die_tag; /* Tag for this DIE */
265 unsigned long at_padding;
266 unsigned long at_sibling;
267 BLOCK *at_location;
268 char *at_name;
269 unsigned short at_fund_type;
270 BLOCK *at_mod_fund_type;
271 unsigned long at_user_def_type;
272 BLOCK *at_mod_u_d_type;
273 unsigned short at_ordering;
274 BLOCK *at_subscr_data;
275 unsigned long at_byte_size;
276 unsigned short at_bit_offset;
277 unsigned long at_bit_size;
278 BLOCK *at_element_list;
279 unsigned long at_stmt_list;
280 CORE_ADDR at_low_pc;
281 CORE_ADDR at_high_pc;
282 unsigned long at_language;
283 unsigned long at_member;
284 unsigned long at_discr;
285 BLOCK *at_discr_value;
286 BLOCK *at_string_length;
287 char *at_comp_dir;
288 char *at_producer;
289 unsigned long at_start_scope;
290 unsigned long at_stride_size;
291 unsigned long at_src_info;
292 char *at_prototyped;
293 unsigned int has_at_low_pc:1;
294 unsigned int has_at_stmt_list:1;
295 unsigned int has_at_byte_size:1;
296 unsigned int short_element_list:1;
297
298 /* Kludge to identify register variables */
299
300 unsigned int isreg;
301
302 /* Kludge to identify optimized out variables */
303
304 unsigned int optimized_out;
305
306 /* Kludge to identify basereg references.
307 Nonzero if we have an offset relative to a basereg. */
308
309 unsigned int offreg;
310
311 /* Kludge to identify which base register is it relative to. */
312
313 unsigned int basereg;
314 };
c906108c 315
c5aa993b 316static int diecount; /* Approximate count of dies for compilation unit */
c906108c
SS
317static struct dieinfo *curdie; /* For warnings and such */
318
c5aa993b
JM
319static char *dbbase; /* Base pointer to dwarf info */
320static int dbsize; /* Size of dwarf info in bytes */
321static int dbroff; /* Relative offset from start of .debug section */
322static char *lnbase; /* Base pointer to line section */
c906108c
SS
323
324/* This value is added to each symbol value. FIXME: Generalize to
325 the section_offsets structure used by dbxread (once this is done,
326 pass the appropriate section number to end_symtab). */
327static CORE_ADDR baseaddr; /* Add to each symbol value */
328
329/* The section offsets used in the current psymtab or symtab. FIXME,
330 only used to pass one value (baseaddr) at the moment. */
331static struct section_offsets *base_section_offsets;
332
333/* We put a pointer to this structure in the read_symtab_private field
334 of the psymtab. */
335
c5aa993b
JM
336struct dwfinfo
337 {
338 /* Always the absolute file offset to the start of the ".debug"
339 section for the file containing the DIE's being accessed. */
340 file_ptr dbfoff;
341 /* Relative offset from the start of the ".debug" section to the
342 first DIE to be accessed. When building the partial symbol
343 table, this value will be zero since we are accessing the
344 entire ".debug" section. When expanding a partial symbol
345 table entry, this value will be the offset to the first
346 DIE for the compilation unit containing the symbol that
347 triggers the expansion. */
348 int dbroff;
349 /* The size of the chunk of DIE's being examined, in bytes. */
350 int dblength;
351 /* The absolute file offset to the line table fragment. Ignored
352 when building partial symbol tables, but used when expanding
353 them, and contains the absolute file offset to the fragment
354 of the ".line" section containing the line numbers for the
355 current compilation unit. */
356 file_ptr lnfoff;
357 };
c906108c
SS
358
359#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
360#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
361#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
362#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
363
364/* The generic symbol table building routines have separate lists for
365 file scope symbols and all all other scopes (local scopes). So
366 we need to select the right one to pass to add_symbol_to_list().
367 We do it by keeping a pointer to the correct list in list_in_scope.
368
369 FIXME: The original dwarf code just treated the file scope as the first
370 local scope, and all other local scopes as nested local scopes, and worked
371 fine. Check to see if we really need to distinguish these in buildsym.c */
372
373struct pending **list_in_scope = &file_symbols;
374
375/* DIES which have user defined types or modified user defined types refer to
376 other DIES for the type information. Thus we need to associate the offset
377 of a DIE for a user defined type with a pointer to the type information.
378
379 Originally this was done using a simple but expensive algorithm, with an
380 array of unsorted structures, each containing an offset/type-pointer pair.
381 This array was scanned linearly each time a lookup was done. The result
382 was that gdb was spending over half it's startup time munging through this
383 array of pointers looking for a structure that had the right offset member.
384
385 The second attempt used the same array of structures, but the array was
386 sorted using qsort each time a new offset/type was recorded, and a binary
387 search was used to find the type pointer for a given DIE offset. This was
388 even slower, due to the overhead of sorting the array each time a new
389 offset/type pair was entered.
390
391 The third attempt uses a fixed size array of type pointers, indexed by a
392 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
393 we can divide any DIE offset by 4 to obtain a unique index into this fixed
394 size array. Since each element is a 4 byte pointer, it takes exactly as
395 much memory to hold this array as to hold the DWARF info for a given
396 compilation unit. But it gets freed as soon as we are done with it.
397 This has worked well in practice, as a reasonable tradeoff between memory
398 consumption and speed, without having to resort to much more complicated
399 algorithms. */
400
401static struct type **utypes; /* Pointer to array of user type pointers */
402static int numutypes; /* Max number of user type pointers */
403
404/* Maintain an array of referenced fundamental types for the current
405 compilation unit being read. For DWARF version 1, we have to construct
406 the fundamental types on the fly, since no information about the
407 fundamental types is supplied. Each such fundamental type is created by
408 calling a language dependent routine to create the type, and then a
409 pointer to that type is then placed in the array at the index specified
410 by it's FT_<TYPENAME> value. The array has a fixed size set by the
411 FT_NUM_MEMBERS compile time constant, which is the number of predefined
412 fundamental types gdb knows how to construct. */
413
c5aa993b 414static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
c906108c
SS
415
416/* Record the language for the compilation unit which is currently being
417 processed. We know it once we have seen the TAG_compile_unit DIE,
418 and we need it while processing the DIE's for that compilation unit.
419 It is eventually saved in the symtab structure, but we don't finalize
420 the symtab struct until we have processed all the DIE's for the
421 compilation unit. We also need to get and save a pointer to the
422 language struct for this language, so we can call the language
423 dependent routines for doing things such as creating fundamental
424 types. */
425
426static enum language cu_language;
427static const struct language_defn *cu_language_defn;
428
429/* Forward declarations of static functions so we don't have to worry
430 about ordering within this file. */
431
4efb68b1 432static void free_utypes (void *);
c906108c 433
a14ed312 434static int attribute_size (unsigned int);
c906108c 435
a14ed312 436static CORE_ADDR target_to_host (char *, int, int, struct objfile *);
c906108c 437
a14ed312 438static void add_enum_psymbol (struct dieinfo *, struct objfile *);
c906108c 439
a14ed312 440static void handle_producer (char *);
c906108c 441
570b8f7c
AC
442static void read_file_scope (struct dieinfo *, char *, char *,
443 struct objfile *);
c906108c 444
570b8f7c
AC
445static void read_func_scope (struct dieinfo *, char *, char *,
446 struct objfile *);
c906108c 447
570b8f7c
AC
448static void read_lexical_block_scope (struct dieinfo *, char *, char *,
449 struct objfile *);
c906108c 450
a14ed312 451static void scan_partial_symbols (char *, char *, struct objfile *);
c906108c 452
570b8f7c
AC
453static void scan_compilation_units (char *, char *, file_ptr, file_ptr,
454 struct objfile *);
c906108c 455
a14ed312 456static void add_partial_symbol (struct dieinfo *, struct objfile *);
c906108c 457
a14ed312 458static void basicdieinfo (struct dieinfo *, char *, struct objfile *);
c906108c 459
a14ed312 460static void completedieinfo (struct dieinfo *, struct objfile *);
c906108c 461
a14ed312 462static void dwarf_psymtab_to_symtab (struct partial_symtab *);
c906108c 463
a14ed312 464static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 465
a14ed312 466static void read_ofile_symtab (struct partial_symtab *);
c906108c 467
a14ed312 468static void process_dies (char *, char *, struct objfile *);
c906108c 469
570b8f7c
AC
470static void read_structure_scope (struct dieinfo *, char *, char *,
471 struct objfile *);
c906108c 472
a14ed312 473static struct type *decode_array_element_type (char *);
c906108c 474
a14ed312 475static struct type *decode_subscript_data_item (char *, char *);
c906108c 476
a14ed312 477static void dwarf_read_array_type (struct dieinfo *);
c906108c 478
a14ed312 479static void read_tag_pointer_type (struct dieinfo *dip);
c906108c 480
a14ed312 481static void read_tag_string_type (struct dieinfo *dip);
c906108c 482
a14ed312 483static void read_subroutine_type (struct dieinfo *, char *, char *);
c906108c 484
570b8f7c
AC
485static void read_enumeration (struct dieinfo *, char *, char *,
486 struct objfile *);
c906108c 487
a14ed312
KB
488static struct type *struct_type (struct dieinfo *, char *, char *,
489 struct objfile *);
c906108c 490
a14ed312 491static struct type *enum_type (struct dieinfo *, struct objfile *);
c906108c 492
a14ed312 493static void decode_line_numbers (char *);
c906108c 494
a14ed312 495static struct type *decode_die_type (struct dieinfo *);
c906108c 496
a14ed312 497static struct type *decode_mod_fund_type (char *);
c906108c 498
a14ed312 499static struct type *decode_mod_u_d_type (char *);
c906108c 500
a14ed312 501static struct type *decode_modified_type (char *, unsigned int, int);
c906108c 502
a14ed312 503static struct type *decode_fund_type (unsigned int);
c906108c 504
a14ed312 505static char *create_name (char *, struct obstack *);
c906108c 506
a14ed312 507static struct type *lookup_utype (DIE_REF);
c906108c 508
a14ed312 509static struct type *alloc_utype (DIE_REF, struct type *);
c906108c 510
a14ed312 511static struct symbol *new_symbol (struct dieinfo *, struct objfile *);
c906108c 512
570b8f7c
AC
513static void synthesize_typedef (struct dieinfo *, struct objfile *,
514 struct type *);
c906108c 515
a14ed312 516static int locval (struct dieinfo *);
c906108c 517
a14ed312 518static void set_cu_language (struct dieinfo *);
c906108c 519
a14ed312 520static struct type *dwarf_fundamental_type (struct objfile *, int);
c906108c
SS
521
522
523/*
524
c5aa993b 525 LOCAL FUNCTION
c906108c 526
c5aa993b 527 dwarf_fundamental_type -- lookup or create a fundamental type
c906108c 528
c5aa993b 529 SYNOPSIS
c906108c 530
c5aa993b
JM
531 struct type *
532 dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c 533
c5aa993b 534 DESCRIPTION
c906108c 535
c5aa993b
JM
536 DWARF version 1 doesn't supply any fundamental type information,
537 so gdb has to construct such types. It has a fixed number of
538 fundamental types that it knows how to construct, which is the
539 union of all types that it knows how to construct for all languages
540 that it knows about. These are enumerated in gdbtypes.h.
c906108c 541
c5aa993b
JM
542 As an example, assume we find a DIE that references a DWARF
543 fundamental type of FT_integer. We first look in the ftypes
544 array to see if we already have such a type, indexed by the
545 gdb internal value of FT_INTEGER. If so, we simply return a
546 pointer to that type. If not, then we ask an appropriate
547 language dependent routine to create a type FT_INTEGER, using
548 defaults reasonable for the current target machine, and install
549 that type in ftypes for future reference.
c906108c 550
c5aa993b 551 RETURNS
c906108c 552
c5aa993b 553 Pointer to a fundamental type.
c906108c 554
c5aa993b 555 */
c906108c
SS
556
557static struct type *
fba45db2 558dwarf_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
559{
560 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
561 {
8a3fe4f8 562 error (_("internal error - invalid fundamental type id %d"), typeid);
c906108c
SS
563 }
564
565 /* Look for this particular type in the fundamental type vector. If one is
566 not found, create and install one appropriate for the current language
567 and the current target machine. */
568
569 if (ftypes[typeid] == NULL)
570 {
c5aa993b 571 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
c906108c
SS
572 }
573
574 return (ftypes[typeid]);
575}
576
577/*
578
c5aa993b 579 LOCAL FUNCTION
c906108c 580
c5aa993b 581 set_cu_language -- set local copy of language for compilation unit
c906108c 582
c5aa993b 583 SYNOPSIS
c906108c 584
c5aa993b
JM
585 void
586 set_cu_language (struct dieinfo *dip)
c906108c 587
c5aa993b 588 DESCRIPTION
c906108c 589
c5aa993b
JM
590 Decode the language attribute for a compilation unit DIE and
591 remember what the language was. We use this at various times
592 when processing DIE's for a given compilation unit.
c906108c 593
c5aa993b 594 RETURNS
c906108c 595
c5aa993b 596 No return value.
c906108c
SS
597
598 */
599
600static void
fba45db2 601set_cu_language (struct dieinfo *dip)
c906108c 602{
c5aa993b 603 switch (dip->at_language)
c906108c 604 {
c5aa993b
JM
605 case LANG_C89:
606 case LANG_C:
607 cu_language = language_c;
608 break;
609 case LANG_C_PLUS_PLUS:
610 cu_language = language_cplus;
611 break;
c5aa993b
JM
612 case LANG_MODULA2:
613 cu_language = language_m2;
614 break;
615 case LANG_FORTRAN77:
616 case LANG_FORTRAN90:
617 cu_language = language_fortran;
618 break;
619 case LANG_ADA83:
620 case LANG_COBOL74:
621 case LANG_COBOL85:
622 case LANG_PASCAL83:
623 /* We don't know anything special about these yet. */
624 cu_language = language_unknown;
625 break;
626 default:
627 /* If no at_language, try to deduce one from the filename */
628 cu_language = deduce_language_from_filename (dip->at_name);
629 break;
c906108c
SS
630 }
631 cu_language_defn = language_def (cu_language);
632}
633
634/*
635
c5aa993b 636 GLOBAL FUNCTION
c906108c 637
c5aa993b 638 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
c906108c 639
c5aa993b 640 SYNOPSIS
c906108c 641
c5aa993b 642 void dwarf_build_psymtabs (struct objfile *objfile,
c5aa993b
JM
643 int mainline, file_ptr dbfoff, unsigned int dbfsize,
644 file_ptr lnoffset, unsigned int lnsize)
c906108c 645
c5aa993b 646 DESCRIPTION
c906108c 647
c5aa993b
JM
648 This function is called upon to build partial symtabs from files
649 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
c906108c 650
c5aa993b
JM
651 It is passed a bfd* containing the DIES
652 and line number information, the corresponding filename for that
653 file, a base address for relocating the symbols, a flag indicating
654 whether or not this debugging information is from a "main symbol
655 table" rather than a shared library or dynamically linked file,
656 and file offset/size pairs for the DIE information and line number
657 information.
c906108c 658
c5aa993b 659 RETURNS
c906108c 660
c5aa993b 661 No return value.
c906108c
SS
662
663 */
664
665void
fba45db2
KB
666dwarf_build_psymtabs (struct objfile *objfile, int mainline, file_ptr dbfoff,
667 unsigned int dbfsize, file_ptr lnoffset,
668 unsigned int lnsize)
c906108c
SS
669{
670 bfd *abfd = objfile->obfd;
671 struct cleanup *back_to;
c5aa993b 672
c906108c
SS
673 current_objfile = objfile;
674 dbsize = dbfsize;
675 dbbase = xmalloc (dbsize);
676 dbroff = 0;
677 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
3a42e9d0 678 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 679 {
b8c9b27d 680 xfree (dbbase);
8a3fe4f8 681 error (_("can't read DWARF data from '%s'"), bfd_get_filename (abfd));
c906108c 682 }
b8c9b27d 683 back_to = make_cleanup (xfree, dbbase);
c5aa993b 684
c906108c
SS
685 /* If we are reinitializing, or if we have never loaded syms yet, init.
686 Since we have no idea how many DIES we are looking at, we just guess
687 some arbitrary value. */
c5aa993b 688
ef96bde8
EZ
689 if (mainline
690 || (objfile->global_psymbols.size == 0
691 && objfile->static_psymbols.size == 0))
c906108c
SS
692 {
693 init_psymbol_list (objfile, 1024);
694 }
c5aa993b 695
c906108c
SS
696 /* Save the relocation factor where everybody can see it. */
697
d4f3574e
SS
698 base_section_offsets = objfile->section_offsets;
699 baseaddr = ANOFFSET (objfile->section_offsets, 0);
c906108c
SS
700
701 /* Follow the compilation unit sibling chain, building a partial symbol
702 table entry for each one. Save enough information about each compilation
703 unit to locate the full DWARF information later. */
c5aa993b 704
c906108c 705 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
c5aa993b 706
c906108c
SS
707 do_cleanups (back_to);
708 current_objfile = NULL;
709}
710
711/*
712
c5aa993b 713 LOCAL FUNCTION
c906108c 714
c5aa993b 715 read_lexical_block_scope -- process all dies in a lexical block
c906108c 716
c5aa993b 717 SYNOPSIS
c906108c 718
c5aa993b
JM
719 static void read_lexical_block_scope (struct dieinfo *dip,
720 char *thisdie, char *enddie)
c906108c 721
c5aa993b 722 DESCRIPTION
c906108c 723
c5aa993b
JM
724 Process all the DIES contained within a lexical block scope.
725 Start a new scope, process the dies, and then close the scope.
c906108c
SS
726
727 */
728
729static void
fba45db2
KB
730read_lexical_block_scope (struct dieinfo *dip, char *thisdie, char *enddie,
731 struct objfile *objfile)
c906108c 732{
b59661bd 733 struct context_stack *new;
c906108c 734
c5aa993b
JM
735 push_context (0, dip->at_low_pc);
736 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
737 new = pop_context ();
738 if (local_symbols != NULL)
739 {
c5aa993b
JM
740 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
741 dip->at_high_pc, objfile);
c906108c 742 }
c5aa993b 743 local_symbols = new->locals;
c906108c
SS
744}
745
746/*
747
c5aa993b 748 LOCAL FUNCTION
c906108c 749
c5aa993b 750 lookup_utype -- look up a user defined type from die reference
c906108c 751
c5aa993b 752 SYNOPSIS
c906108c 753
c5aa993b 754 static type *lookup_utype (DIE_REF die_ref)
c906108c 755
c5aa993b 756 DESCRIPTION
c906108c 757
c5aa993b
JM
758 Given a DIE reference, lookup the user defined type associated with
759 that DIE, if it has been registered already. If not registered, then
760 return NULL. Alloc_utype() can be called to register an empty
761 type for this reference, which will be filled in later when the
762 actual referenced DIE is processed.
c906108c
SS
763 */
764
765static struct type *
fba45db2 766lookup_utype (DIE_REF die_ref)
c906108c
SS
767{
768 struct type *type = NULL;
769 int utypeidx;
c5aa993b 770
c906108c
SS
771 utypeidx = (die_ref - dbroff) / 4;
772 if ((utypeidx < 0) || (utypeidx >= numutypes))
773 {
23136709 774 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
775 }
776 else
777 {
778 type = *(utypes + utypeidx);
779 }
780 return (type);
781}
782
783
784/*
785
c5aa993b 786 LOCAL FUNCTION
c906108c 787
c5aa993b 788 alloc_utype -- add a user defined type for die reference
c906108c 789
c5aa993b 790 SYNOPSIS
c906108c 791
c5aa993b 792 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c 793
c5aa993b 794 DESCRIPTION
c906108c 795
c5aa993b
JM
796 Given a die reference DIE_REF, and a possible pointer to a user
797 defined type UTYPEP, register that this reference has a user
798 defined type and either use the specified type in UTYPEP or
799 make a new empty type that will be filled in later.
c906108c 800
c5aa993b
JM
801 We should only be called after calling lookup_utype() to verify that
802 there is not currently a type registered for DIE_REF.
c906108c
SS
803 */
804
805static struct type *
fba45db2 806alloc_utype (DIE_REF die_ref, struct type *utypep)
c906108c
SS
807{
808 struct type **typep;
809 int utypeidx;
c5aa993b 810
c906108c
SS
811 utypeidx = (die_ref - dbroff) / 4;
812 typep = utypes + utypeidx;
813 if ((utypeidx < 0) || (utypeidx >= numutypes))
814 {
815 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
23136709 816 bad_die_ref_complaint (DIE_ID, DIE_NAME, die_ref);
c906108c
SS
817 }
818 else if (*typep != NULL)
819 {
820 utypep = *typep;
23136709 821 complaint (&symfile_complaints,
e2e0b3e5 822 _("DIE @ 0x%x \"%s\", internal error: duplicate user type allocation"),
23136709 823 DIE_ID, DIE_NAME);
c906108c
SS
824 }
825 else
826 {
827 if (utypep == NULL)
828 {
829 utypep = alloc_type (current_objfile);
830 }
831 *typep = utypep;
832 }
833 return (utypep);
834}
835
836/*
837
c5aa993b 838 LOCAL FUNCTION
c906108c 839
c5aa993b 840 free_utypes -- free the utypes array and reset pointer & count
c906108c 841
c5aa993b 842 SYNOPSIS
c906108c 843
4efb68b1 844 static void free_utypes (void *dummy)
c906108c 845
c5aa993b 846 DESCRIPTION
c906108c 847
c5aa993b
JM
848 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
849 and set numutypes back to zero. This ensures that the utypes does not get
850 referenced after being freed.
c906108c
SS
851 */
852
853static void
4efb68b1 854free_utypes (void *dummy)
c906108c 855{
b8c9b27d 856 xfree (utypes);
c906108c
SS
857 utypes = NULL;
858 numutypes = 0;
859}
860
861
862/*
863
c5aa993b 864 LOCAL FUNCTION
c906108c 865
c5aa993b 866 decode_die_type -- return a type for a specified die
c906108c 867
c5aa993b 868 SYNOPSIS
c906108c 869
c5aa993b 870 static struct type *decode_die_type (struct dieinfo *dip)
c906108c 871
c5aa993b 872 DESCRIPTION
c906108c 873
c5aa993b
JM
874 Given a pointer to a die information structure DIP, decode the
875 type of the die and return a pointer to the decoded type. All
876 dies without specific types default to type int.
c906108c
SS
877 */
878
879static struct type *
fba45db2 880decode_die_type (struct dieinfo *dip)
c906108c
SS
881{
882 struct type *type = NULL;
c5aa993b
JM
883
884 if (dip->at_fund_type != 0)
c906108c 885 {
c5aa993b 886 type = decode_fund_type (dip->at_fund_type);
c906108c 887 }
c5aa993b 888 else if (dip->at_mod_fund_type != NULL)
c906108c 889 {
c5aa993b 890 type = decode_mod_fund_type (dip->at_mod_fund_type);
c906108c 891 }
c5aa993b 892 else if (dip->at_user_def_type)
c906108c 893 {
b59661bd
AC
894 type = lookup_utype (dip->at_user_def_type);
895 if (type == NULL)
c906108c 896 {
c5aa993b 897 type = alloc_utype (dip->at_user_def_type, NULL);
c906108c
SS
898 }
899 }
c5aa993b 900 else if (dip->at_mod_u_d_type)
c906108c 901 {
c5aa993b 902 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
c906108c
SS
903 }
904 else
905 {
906 type = dwarf_fundamental_type (current_objfile, FT_VOID);
907 }
908 return (type);
909}
910
911/*
912
c5aa993b 913 LOCAL FUNCTION
c906108c 914
c5aa993b 915 struct_type -- compute and return the type for a struct or union
c906108c 916
c5aa993b 917 SYNOPSIS
c906108c 918
c5aa993b
JM
919 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
920 char *enddie, struct objfile *objfile)
c906108c 921
c5aa993b 922 DESCRIPTION
c906108c 923
c5aa993b
JM
924 Given pointer to a die information structure for a die which
925 defines a union or structure (and MUST define one or the other),
926 and pointers to the raw die data that define the range of dies which
927 define the members, compute and return the user defined type for the
928 structure or union.
c906108c
SS
929 */
930
931static struct type *
fba45db2
KB
932struct_type (struct dieinfo *dip, char *thisdie, char *enddie,
933 struct objfile *objfile)
c906108c
SS
934{
935 struct type *type;
c5aa993b
JM
936 struct nextfield
937 {
938 struct nextfield *next;
939 struct field field;
940 };
c906108c
SS
941 struct nextfield *list = NULL;
942 struct nextfield *new;
943 int nfields = 0;
944 int n;
945 struct dieinfo mbr;
946 char *nextdie;
947 int anonymous_size;
c5aa993b 948
b59661bd
AC
949 type = lookup_utype (dip->die_ref);
950 if (type == NULL)
c906108c
SS
951 {
952 /* No forward references created an empty type, so install one now */
c5aa993b 953 type = alloc_utype (dip->die_ref, NULL);
c906108c 954 }
c5aa993b
JM
955 INIT_CPLUS_SPECIFIC (type);
956 switch (dip->die_tag)
c906108c 957 {
c5aa993b
JM
958 case TAG_class_type:
959 TYPE_CODE (type) = TYPE_CODE_CLASS;
960 break;
961 case TAG_structure_type:
962 TYPE_CODE (type) = TYPE_CODE_STRUCT;
963 break;
964 case TAG_union_type:
965 TYPE_CODE (type) = TYPE_CODE_UNION;
966 break;
967 default:
968 /* Should never happen */
969 TYPE_CODE (type) = TYPE_CODE_UNDEF;
23136709 970 complaint (&symfile_complaints,
e2e0b3e5 971 _("DIE @ 0x%x \"%s\", missing class, structure, or union tag"),
23136709 972 DIE_ID, DIE_NAME);
c5aa993b 973 break;
c906108c
SS
974 }
975 /* Some compilers try to be helpful by inventing "fake" names for
976 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
977 Thanks, but no thanks... */
c5aa993b
JM
978 if (dip->at_name != NULL
979 && *dip->at_name != '~'
980 && *dip->at_name != '.')
c906108c 981 {
b99607ea 982 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 983 "", "", dip->at_name);
c906108c
SS
984 }
985 /* Use whatever size is known. Zero is a valid size. We might however
986 wish to check has_at_byte_size to make sure that some byte size was
987 given explicitly, but DWARF doesn't specify that explicit sizes of
988 zero have to present, so complaining about missing sizes should
989 probably not be the default. */
c5aa993b
JM
990 TYPE_LENGTH (type) = dip->at_byte_size;
991 thisdie += dip->die_length;
c906108c
SS
992 while (thisdie < enddie)
993 {
994 basicdieinfo (&mbr, thisdie, objfile);
995 completedieinfo (&mbr, objfile);
996 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
997 {
998 break;
999 }
1000 else if (mbr.at_sibling != 0)
1001 {
1002 nextdie = dbbase + mbr.at_sibling - dbroff;
1003 }
1004 else
1005 {
1006 nextdie = thisdie + mbr.die_length;
1007 }
1008 switch (mbr.die_tag)
1009 {
1010 case TAG_member:
fba3138e
DJ
1011 /* Static fields can be either TAG_global_variable (GCC) or else
1012 TAG_member with no location (Diab). We could treat the latter like
1013 the former... but since we don't support the former, just avoid
1014 crashing on the latter for now. */
1015 if (mbr.at_location == NULL)
1016 break;
1017
c906108c
SS
1018 /* Get space to record the next field's data. */
1019 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1020 new->next = list;
c906108c
SS
1021 list = new;
1022 /* Save the data. */
c5aa993b
JM
1023 list->field.name =
1024 obsavestring (mbr.at_name, strlen (mbr.at_name),
b99607ea 1025 &objfile->objfile_obstack);
c906108c
SS
1026 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1027 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
01ad7f36 1028 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1029 /* Handle bit fields. */
1030 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1031 if (BITS_BIG_ENDIAN)
1032 {
1033 /* For big endian bits, the at_bit_offset gives the
c5aa993b
JM
1034 additional bit offset from the MSB of the containing
1035 anonymous object to the MSB of the field. We don't
1036 have to do anything special since we don't need to
1037 know the size of the anonymous object. */
c906108c
SS
1038 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1039 }
1040 else
1041 {
1042 /* For little endian bits, we need to have a non-zero
c5aa993b
JM
1043 at_bit_size, so that we know we are in fact dealing
1044 with a bitfield. Compute the bit offset to the MSB
1045 of the anonymous object, subtract off the number of
1046 bits from the MSB of the field to the MSB of the
1047 object, and then subtract off the number of bits of
1048 the field itself. The result is the bit offset of
1049 the LSB of the field. */
c906108c
SS
1050 if (mbr.at_bit_size > 0)
1051 {
1052 if (mbr.has_at_byte_size)
1053 {
1054 /* The size of the anonymous object containing
c5aa993b
JM
1055 the bit field is explicit, so use the
1056 indicated size (in bytes). */
c906108c
SS
1057 anonymous_size = mbr.at_byte_size;
1058 }
1059 else
1060 {
1061 /* The size of the anonymous object containing
c5aa993b
JM
1062 the bit field matches the size of an object
1063 of the bit field's type. DWARF allows
1064 at_byte_size to be left out in such cases, as
1065 a debug information size optimization. */
1066 anonymous_size = TYPE_LENGTH (list->field.type);
c906108c
SS
1067 }
1068 FIELD_BITPOS (list->field) +=
1069 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1070 }
1071 }
1072 nfields++;
1073 break;
1074 default:
1075 process_dies (thisdie, nextdie, objfile);
1076 break;
1077 }
1078 thisdie = nextdie;
1079 }
1080 /* Now create the vector of fields, and record how big it is. We may
1081 not even have any fields, if this DIE was generated due to a reference
1082 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1083 set, which clues gdb in to the fact that it needs to search elsewhere
1084 for the full structure definition. */
1085 if (nfields == 0)
1086 {
1087 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1088 }
1089 else
1090 {
1091 TYPE_NFIELDS (type) = nfields;
1092 TYPE_FIELDS (type) = (struct field *)
1093 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1094 /* Copy the saved-up fields into the field vector. */
c5aa993b 1095 for (n = nfields; list; list = list->next)
c906108c 1096 {
c5aa993b
JM
1097 TYPE_FIELD (type, --n) = list->field;
1098 }
c906108c
SS
1099 }
1100 return (type);
1101}
1102
1103/*
1104
c5aa993b 1105 LOCAL FUNCTION
c906108c 1106
c5aa993b 1107 read_structure_scope -- process all dies within struct or union
c906108c 1108
c5aa993b 1109 SYNOPSIS
c906108c 1110
c5aa993b
JM
1111 static void read_structure_scope (struct dieinfo *dip,
1112 char *thisdie, char *enddie, struct objfile *objfile)
c906108c 1113
c5aa993b 1114 DESCRIPTION
c906108c 1115
c5aa993b
JM
1116 Called when we find the DIE that starts a structure or union
1117 scope (definition) to process all dies that define the members
1118 of the structure or union. DIP is a pointer to the die info
1119 struct for the DIE that names the structure or union.
c906108c 1120
c5aa993b
JM
1121 NOTES
1122
1123 Note that we need to call struct_type regardless of whether or not
1124 the DIE has an at_name attribute, since it might be an anonymous
1125 structure or union. This gets the type entered into our set of
1126 user defined types.
1127
1128 However, if the structure is incomplete (an opaque struct/union)
1129 then suppress creating a symbol table entry for it since gdb only
1130 wants to find the one with the complete definition. Note that if
1131 it is complete, we just call new_symbol, which does it's own
1132 checking about whether the struct/union is anonymous or not (and
1133 suppresses creating a symbol table entry itself).
c906108c 1134
c906108c
SS
1135 */
1136
1137static void
fba45db2
KB
1138read_structure_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1139 struct objfile *objfile)
c906108c
SS
1140{
1141 struct type *type;
1142 struct symbol *sym;
c5aa993b 1143
c906108c 1144 type = struct_type (dip, thisdie, enddie, objfile);
74a9bb82 1145 if (!TYPE_STUB (type))
c906108c
SS
1146 {
1147 sym = new_symbol (dip, objfile);
1148 if (sym != NULL)
1149 {
1150 SYMBOL_TYPE (sym) = type;
1151 if (cu_language == language_cplus)
1152 {
1153 synthesize_typedef (dip, objfile, type);
1154 }
1155 }
1156 }
1157}
1158
1159/*
1160
c5aa993b 1161 LOCAL FUNCTION
c906108c 1162
c5aa993b 1163 decode_array_element_type -- decode type of the array elements
c906108c 1164
c5aa993b 1165 SYNOPSIS
c906108c 1166
c5aa993b 1167 static struct type *decode_array_element_type (char *scan, char *end)
c906108c 1168
c5aa993b 1169 DESCRIPTION
c906108c 1170
c5aa993b
JM
1171 As the last step in decoding the array subscript information for an
1172 array DIE, we need to decode the type of the array elements. We are
1173 passed a pointer to this last part of the subscript information and
1174 must return the appropriate type. If the type attribute is not
1175 recognized, just warn about the problem and return type int.
c906108c
SS
1176 */
1177
1178static struct type *
fba45db2 1179decode_array_element_type (char *scan)
c906108c
SS
1180{
1181 struct type *typep;
1182 DIE_REF die_ref;
1183 unsigned short attribute;
1184 unsigned short fundtype;
1185 int nbytes;
c5aa993b 1186
c906108c
SS
1187 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1188 current_objfile);
1189 scan += SIZEOF_ATTRIBUTE;
b59661bd
AC
1190 nbytes = attribute_size (attribute);
1191 if (nbytes == -1)
c906108c 1192 {
23136709 1193 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c906108c
SS
1194 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1195 }
1196 else
1197 {
1198 switch (attribute)
1199 {
c5aa993b
JM
1200 case AT_fund_type:
1201 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1202 current_objfile);
1203 typep = decode_fund_type (fundtype);
1204 break;
1205 case AT_mod_fund_type:
1206 typep = decode_mod_fund_type (scan);
1207 break;
1208 case AT_user_def_type:
1209 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1210 current_objfile);
b59661bd
AC
1211 typep = lookup_utype (die_ref);
1212 if (typep == NULL)
c5aa993b
JM
1213 {
1214 typep = alloc_utype (die_ref, NULL);
1215 }
1216 break;
1217 case AT_mod_u_d_type:
1218 typep = decode_mod_u_d_type (scan);
1219 break;
1220 default:
23136709 1221 bad_array_element_type_complaint (DIE_ID, DIE_NAME, attribute);
c5aa993b
JM
1222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1223 break;
1224 }
c906108c
SS
1225 }
1226 return (typep);
1227}
1228
1229/*
1230
c5aa993b 1231 LOCAL FUNCTION
c906108c 1232
c5aa993b 1233 decode_subscript_data_item -- decode array subscript item
c906108c 1234
c5aa993b 1235 SYNOPSIS
c906108c 1236
c5aa993b
JM
1237 static struct type *
1238 decode_subscript_data_item (char *scan, char *end)
c906108c 1239
c5aa993b 1240 DESCRIPTION
c906108c 1241
c5aa993b
JM
1242 The array subscripts and the data type of the elements of an
1243 array are described by a list of data items, stored as a block
1244 of contiguous bytes. There is a data item describing each array
1245 dimension, and a final data item describing the element type.
1246 The data items are ordered the same as their appearance in the
1247 source (I.E. leftmost dimension first, next to leftmost second,
1248 etc).
c906108c 1249
c5aa993b
JM
1250 The data items describing each array dimension consist of four
1251 parts: (1) a format specifier, (2) type type of the subscript
1252 index, (3) a description of the low bound of the array dimension,
1253 and (4) a description of the high bound of the array dimension.
c906108c 1254
c5aa993b
JM
1255 The last data item is the description of the type of each of
1256 the array elements.
c906108c 1257
c5aa993b
JM
1258 We are passed a pointer to the start of the block of bytes
1259 containing the remaining data items, and a pointer to the first
1260 byte past the data. This function recursively decodes the
1261 remaining data items and returns a type.
c906108c 1262
c5aa993b
JM
1263 If we somehow fail to decode some data, we complain about it
1264 and return a type "array of int".
c906108c 1265
c5aa993b
JM
1266 BUGS
1267 FIXME: This code only implements the forms currently used
1268 by the AT&T and GNU C compilers.
c906108c 1269
c5aa993b
JM
1270 The end pointer is supplied for error checking, maybe we should
1271 use it for that...
c906108c
SS
1272 */
1273
1274static struct type *
fba45db2 1275decode_subscript_data_item (char *scan, char *end)
c906108c
SS
1276{
1277 struct type *typep = NULL; /* Array type we are building */
1278 struct type *nexttype; /* Type of each element (may be array) */
1279 struct type *indextype; /* Type of this index */
1280 struct type *rangetype;
1281 unsigned int format;
1282 unsigned short fundtype;
1283 unsigned long lowbound;
1284 unsigned long highbound;
1285 int nbytes;
c5aa993b 1286
c906108c
SS
1287 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1288 current_objfile);
1289 scan += SIZEOF_FORMAT_SPECIFIER;
1290 switch (format)
1291 {
1292 case FMT_ET:
1293 typep = decode_array_element_type (scan);
1294 break;
1295 case FMT_FT_C_C:
1296 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1297 current_objfile);
1298 indextype = decode_fund_type (fundtype);
1299 scan += SIZEOF_FMT_FT;
1300 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1301 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1302 scan += nbytes;
1303 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1304 scan += nbytes;
1305 nexttype = decode_subscript_data_item (scan, end);
1306 if (nexttype == NULL)
1307 {
1308 /* Munged subscript data or other problem, fake it. */
23136709 1309 complaint (&symfile_complaints,
e2e0b3e5 1310 _("DIE @ 0x%x \"%s\", can't decode subscript data items"),
23136709 1311 DIE_ID, DIE_NAME);
c906108c
SS
1312 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1313 }
1314 rangetype = create_range_type ((struct type *) NULL, indextype,
c5aa993b 1315 lowbound, highbound);
c906108c
SS
1316 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1317 break;
1318 case FMT_FT_C_X:
1319 case FMT_FT_X_C:
1320 case FMT_FT_X_X:
1321 case FMT_UT_C_C:
1322 case FMT_UT_C_X:
1323 case FMT_UT_X_C:
1324 case FMT_UT_X_X:
23136709 1325 complaint (&symfile_complaints,
e2e0b3e5 1326 _("DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet"),
23136709 1327 DIE_ID, DIE_NAME, format);
c906108c
SS
1328 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1329 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1330 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1331 break;
1332 default:
23136709 1333 complaint (&symfile_complaints,
e2e0b3e5 1334 _("DIE @ 0x%x \"%s\", unknown array subscript format %x"), DIE_ID,
23136709 1335 DIE_NAME, format);
c906108c
SS
1336 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1337 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1338 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1339 break;
1340 }
1341 return (typep);
1342}
1343
1344/*
1345
c5aa993b 1346 LOCAL FUNCTION
c906108c 1347
c5aa993b 1348 dwarf_read_array_type -- read TAG_array_type DIE
c906108c 1349
c5aa993b 1350 SYNOPSIS
c906108c 1351
c5aa993b 1352 static void dwarf_read_array_type (struct dieinfo *dip)
c906108c 1353
c5aa993b 1354 DESCRIPTION
c906108c 1355
c5aa993b
JM
1356 Extract all information from a TAG_array_type DIE and add to
1357 the user defined type vector.
c906108c
SS
1358 */
1359
1360static void
fba45db2 1361dwarf_read_array_type (struct dieinfo *dip)
c906108c
SS
1362{
1363 struct type *type;
1364 struct type *utype;
1365 char *sub;
1366 char *subend;
1367 unsigned short blocksz;
1368 int nbytes;
c5aa993b
JM
1369
1370 if (dip->at_ordering != ORD_row_major)
c906108c
SS
1371 {
1372 /* FIXME: Can gdb even handle column major arrays? */
23136709 1373 complaint (&symfile_complaints,
e2e0b3e5 1374 _("DIE @ 0x%x \"%s\", array not row major; not handled correctly"),
23136709 1375 DIE_ID, DIE_NAME);
c906108c 1376 }
b59661bd
AC
1377 sub = dip->at_subscr_data;
1378 if (sub != NULL)
c906108c
SS
1379 {
1380 nbytes = attribute_size (AT_subscr_data);
1381 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1382 subend = sub + nbytes + blocksz;
1383 sub += nbytes;
1384 type = decode_subscript_data_item (sub, subend);
b59661bd
AC
1385 utype = lookup_utype (dip->die_ref);
1386 if (utype == NULL)
c906108c
SS
1387 {
1388 /* Install user defined type that has not been referenced yet. */
c5aa993b 1389 alloc_utype (dip->die_ref, type);
c906108c
SS
1390 }
1391 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1392 {
1393 /* Ick! A forward ref has already generated a blank type in our
1394 slot, and this type probably already has things pointing to it
1395 (which is what caused it to be created in the first place).
1396 If it's just a place holder we can plop our fully defined type
1397 on top of it. We can't recover the space allocated for our
1398 new type since it might be on an obstack, but we could reuse
1399 it if we kept a list of them, but it might not be worth it
1400 (FIXME). */
1401 *utype = *type;
1402 }
1403 else
1404 {
1405 /* Double ick! Not only is a type already in our slot, but
1406 someone has decorated it. Complain and leave it alone. */
23136709 1407 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1408 }
1409 }
1410}
1411
1412/*
1413
c5aa993b 1414 LOCAL FUNCTION
c906108c 1415
c5aa993b 1416 read_tag_pointer_type -- read TAG_pointer_type DIE
c906108c 1417
c5aa993b 1418 SYNOPSIS
c906108c 1419
c5aa993b 1420 static void read_tag_pointer_type (struct dieinfo *dip)
c906108c 1421
c5aa993b 1422 DESCRIPTION
c906108c 1423
c5aa993b
JM
1424 Extract all information from a TAG_pointer_type DIE and add to
1425 the user defined type vector.
c906108c
SS
1426 */
1427
1428static void
fba45db2 1429read_tag_pointer_type (struct dieinfo *dip)
c906108c
SS
1430{
1431 struct type *type;
1432 struct type *utype;
c5aa993b 1433
c906108c 1434 type = decode_die_type (dip);
b59661bd
AC
1435 utype = lookup_utype (dip->die_ref);
1436 if (utype == NULL)
c906108c
SS
1437 {
1438 utype = lookup_pointer_type (type);
c5aa993b 1439 alloc_utype (dip->die_ref, utype);
c906108c
SS
1440 }
1441 else
1442 {
1443 TYPE_TARGET_TYPE (utype) = type;
1444 TYPE_POINTER_TYPE (type) = utype;
1445
1446 /* We assume the machine has only one representation for pointers! */
1447 /* FIXME: Possably a poor assumption */
c5aa993b 1448 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
c906108c
SS
1449 TYPE_CODE (utype) = TYPE_CODE_PTR;
1450 }
1451}
1452
1453/*
1454
c5aa993b 1455 LOCAL FUNCTION
c906108c 1456
c5aa993b 1457 read_tag_string_type -- read TAG_string_type DIE
c906108c 1458
c5aa993b 1459 SYNOPSIS
c906108c 1460
c5aa993b 1461 static void read_tag_string_type (struct dieinfo *dip)
c906108c 1462
c5aa993b 1463 DESCRIPTION
c906108c 1464
c5aa993b
JM
1465 Extract all information from a TAG_string_type DIE and add to
1466 the user defined type vector. It isn't really a user defined
1467 type, but it behaves like one, with other DIE's using an
1468 AT_user_def_type attribute to reference it.
c906108c
SS
1469 */
1470
1471static void
fba45db2 1472read_tag_string_type (struct dieinfo *dip)
c906108c
SS
1473{
1474 struct type *utype;
1475 struct type *indextype;
1476 struct type *rangetype;
1477 unsigned long lowbound = 0;
1478 unsigned long highbound;
1479
c5aa993b 1480 if (dip->has_at_byte_size)
c906108c
SS
1481 {
1482 /* A fixed bounds string */
c5aa993b 1483 highbound = dip->at_byte_size - 1;
c906108c
SS
1484 }
1485 else
1486 {
1487 /* A varying length string. Stub for now. (FIXME) */
1488 highbound = 1;
1489 }
1490 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1491 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1492 highbound);
c5aa993b
JM
1493
1494 utype = lookup_utype (dip->die_ref);
c906108c
SS
1495 if (utype == NULL)
1496 {
1497 /* No type defined, go ahead and create a blank one to use. */
c5aa993b 1498 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
c906108c
SS
1499 }
1500 else
1501 {
1502 /* Already a type in our slot due to a forward reference. Make sure it
c5aa993b 1503 is a blank one. If not, complain and leave it alone. */
c906108c
SS
1504 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1505 {
23136709 1506 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1507 return;
1508 }
1509 }
1510
1511 /* Create the string type using the blank type we either found or created. */
1512 utype = create_string_type (utype, rangetype);
1513}
1514
1515/*
1516
c5aa993b 1517 LOCAL FUNCTION
c906108c 1518
c5aa993b 1519 read_subroutine_type -- process TAG_subroutine_type dies
c906108c 1520
c5aa993b 1521 SYNOPSIS
c906108c 1522
c5aa993b
JM
1523 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1524 char *enddie)
c906108c 1525
c5aa993b 1526 DESCRIPTION
c906108c 1527
c5aa993b 1528 Handle DIES due to C code like:
c906108c 1529
c5aa993b
JM
1530 struct foo {
1531 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1532 int b;
1533 };
c906108c 1534
c5aa993b 1535 NOTES
c906108c 1536
c5aa993b
JM
1537 The parameter DIES are currently ignored. See if gdb has a way to
1538 include this info in it's type system, and decode them if so. Is
1539 this what the type structure's "arg_types" field is for? (FIXME)
c906108c
SS
1540 */
1541
1542static void
fba45db2 1543read_subroutine_type (struct dieinfo *dip, char *thisdie, char *enddie)
c906108c
SS
1544{
1545 struct type *type; /* Type that this function returns */
1546 struct type *ftype; /* Function that returns above type */
c5aa993b 1547
c906108c
SS
1548 /* Decode the type that this subroutine returns */
1549
1550 type = decode_die_type (dip);
1551
1552 /* Check to see if we already have a partially constructed user
1553 defined type for this DIE, from a forward reference. */
1554
b59661bd
AC
1555 ftype = lookup_utype (dip->die_ref);
1556 if (ftype == NULL)
c906108c
SS
1557 {
1558 /* This is the first reference to one of these types. Make
c5aa993b 1559 a new one and place it in the user defined types. */
c906108c 1560 ftype = lookup_function_type (type);
c5aa993b 1561 alloc_utype (dip->die_ref, ftype);
c906108c
SS
1562 }
1563 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1564 {
1565 /* We have an existing partially constructed type, so bash it
c5aa993b 1566 into the correct type. */
c906108c
SS
1567 TYPE_TARGET_TYPE (ftype) = type;
1568 TYPE_LENGTH (ftype) = 1;
1569 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1570 }
1571 else
1572 {
23136709 1573 dup_user_type_definition_complaint (DIE_ID, DIE_NAME);
c906108c
SS
1574 }
1575}
1576
1577/*
1578
c5aa993b 1579 LOCAL FUNCTION
c906108c 1580
c5aa993b 1581 read_enumeration -- process dies which define an enumeration
c906108c 1582
c5aa993b 1583 SYNOPSIS
c906108c 1584
c5aa993b
JM
1585 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1586 char *enddie, struct objfile *objfile)
c906108c 1587
c5aa993b 1588 DESCRIPTION
c906108c 1589
c5aa993b
JM
1590 Given a pointer to a die which begins an enumeration, process all
1591 the dies that define the members of the enumeration.
c906108c 1592
c5aa993b 1593 NOTES
c906108c 1594
c5aa993b
JM
1595 Note that we need to call enum_type regardless of whether or not we
1596 have a symbol, since we might have an enum without a tag name (thus
1597 no symbol for the tagname).
c906108c
SS
1598 */
1599
1600static void
fba45db2
KB
1601read_enumeration (struct dieinfo *dip, char *thisdie, char *enddie,
1602 struct objfile *objfile)
c906108c
SS
1603{
1604 struct type *type;
1605 struct symbol *sym;
c5aa993b 1606
c906108c
SS
1607 type = enum_type (dip, objfile);
1608 sym = new_symbol (dip, objfile);
1609 if (sym != NULL)
1610 {
1611 SYMBOL_TYPE (sym) = type;
1612 if (cu_language == language_cplus)
1613 {
1614 synthesize_typedef (dip, objfile, type);
1615 }
1616 }
1617}
1618
1619/*
1620
c5aa993b 1621 LOCAL FUNCTION
c906108c 1622
c5aa993b 1623 enum_type -- decode and return a type for an enumeration
c906108c 1624
c5aa993b 1625 SYNOPSIS
c906108c 1626
c5aa993b 1627 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c 1628
c5aa993b 1629 DESCRIPTION
c906108c 1630
c5aa993b
JM
1631 Given a pointer to a die information structure for the die which
1632 starts an enumeration, process all the dies that define the members
1633 of the enumeration and return a type pointer for the enumeration.
c906108c 1634
c5aa993b 1635 At the same time, for each member of the enumeration, create a
176620f1 1636 symbol for it with domain VAR_DOMAIN and class LOC_CONST,
c5aa993b 1637 and give it the type of the enumeration itself.
c906108c 1638
c5aa993b 1639 NOTES
c906108c 1640
c5aa993b
JM
1641 Note that the DWARF specification explicitly mandates that enum
1642 constants occur in reverse order from the source program order,
1643 for "consistency" and because this ordering is easier for many
1644 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1645 Entries). Because gdb wants to see the enum members in program
1646 source order, we have to ensure that the order gets reversed while
1647 we are processing them.
c906108c
SS
1648 */
1649
1650static struct type *
fba45db2 1651enum_type (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
1652{
1653 struct type *type;
c5aa993b
JM
1654 struct nextfield
1655 {
1656 struct nextfield *next;
1657 struct field field;
1658 };
c906108c
SS
1659 struct nextfield *list = NULL;
1660 struct nextfield *new;
1661 int nfields = 0;
1662 int n;
1663 char *scan;
1664 char *listend;
1665 unsigned short blocksz;
1666 struct symbol *sym;
1667 int nbytes;
1668 int unsigned_enum = 1;
c5aa993b 1669
b59661bd
AC
1670 type = lookup_utype (dip->die_ref);
1671 if (type == NULL)
c906108c
SS
1672 {
1673 /* No forward references created an empty type, so install one now */
c5aa993b 1674 type = alloc_utype (dip->die_ref, NULL);
c906108c
SS
1675 }
1676 TYPE_CODE (type) = TYPE_CODE_ENUM;
1677 /* Some compilers try to be helpful by inventing "fake" names for
1678 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1679 Thanks, but no thanks... */
c5aa993b
JM
1680 if (dip->at_name != NULL
1681 && *dip->at_name != '~'
1682 && *dip->at_name != '.')
c906108c 1683 {
b99607ea 1684 TYPE_TAG_NAME (type) = obconcat (&objfile->objfile_obstack,
c5aa993b 1685 "", "", dip->at_name);
c906108c 1686 }
c5aa993b 1687 if (dip->at_byte_size != 0)
c906108c 1688 {
c5aa993b 1689 TYPE_LENGTH (type) = dip->at_byte_size;
c906108c 1690 }
b59661bd
AC
1691 scan = dip->at_element_list;
1692 if (scan != NULL)
c906108c 1693 {
c5aa993b 1694 if (dip->short_element_list)
c906108c
SS
1695 {
1696 nbytes = attribute_size (AT_short_element_list);
1697 }
1698 else
1699 {
1700 nbytes = attribute_size (AT_element_list);
1701 }
1702 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1703 listend = scan + nbytes + blocksz;
1704 scan += nbytes;
1705 while (scan < listend)
1706 {
1707 new = (struct nextfield *) alloca (sizeof (struct nextfield));
c5aa993b 1708 new->next = list;
c906108c
SS
1709 list = new;
1710 FIELD_TYPE (list->field) = NULL;
1711 FIELD_BITSIZE (list->field) = 0;
01ad7f36 1712 FIELD_STATIC_KIND (list->field) = 0;
c906108c
SS
1713 FIELD_BITPOS (list->field) =
1714 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1715 objfile);
1716 scan += TARGET_FT_LONG_SIZE (objfile);
c5aa993b 1717 list->field.name = obsavestring (scan, strlen (scan),
b99607ea 1718 &objfile->objfile_obstack);
c906108c
SS
1719 scan += strlen (scan) + 1;
1720 nfields++;
1721 /* Handcraft a new symbol for this enum member. */
4a146b47 1722 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
1723 sizeof (struct symbol));
1724 memset (sym, 0, sizeof (struct symbol));
22abf04a 1725 DEPRECATED_SYMBOL_NAME (sym) = create_name (list->field.name,
4a146b47 1726 &objfile->objfile_obstack);
c906108c 1727 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
176620f1 1728 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
1729 SYMBOL_CLASS (sym) = LOC_CONST;
1730 SYMBOL_TYPE (sym) = type;
1731 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1732 if (SYMBOL_VALUE (sym) < 0)
1733 unsigned_enum = 0;
1734 add_symbol_to_list (sym, list_in_scope);
1735 }
1736 /* Now create the vector of fields, and record how big it is. This is
c5aa993b
JM
1737 where we reverse the order, by pulling the members off the list in
1738 reverse order from how they were inserted. If we have no fields
1739 (this is apparently possible in C++) then skip building a field
1740 vector. */
c906108c
SS
1741 if (nfields > 0)
1742 {
1743 if (unsigned_enum)
1744 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1745 TYPE_NFIELDS (type) = nfields;
1746 TYPE_FIELDS (type) = (struct field *)
4a146b47 1747 obstack_alloc (&objfile->objfile_obstack, sizeof (struct field) * nfields);
c906108c 1748 /* Copy the saved-up fields into the field vector. */
c5aa993b 1749 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
c906108c 1750 {
c5aa993b
JM
1751 TYPE_FIELD (type, n++) = list->field;
1752 }
c906108c
SS
1753 }
1754 }
1755 return (type);
1756}
1757
1758/*
1759
c5aa993b 1760 LOCAL FUNCTION
c906108c 1761
c5aa993b 1762 read_func_scope -- process all dies within a function scope
c906108c 1763
c5aa993b 1764 DESCRIPTION
c906108c 1765
c5aa993b
JM
1766 Process all dies within a given function scope. We are passed
1767 a die information structure pointer DIP for the die which
1768 starts the function scope, and pointers into the raw die data
1769 that define the dies within the function scope.
1770
1771 For now, we ignore lexical block scopes within the function.
1772 The problem is that AT&T cc does not define a DWARF lexical
1773 block scope for the function itself, while gcc defines a
1774 lexical block scope for the function. We need to think about
1775 how to handle this difference, or if it is even a problem.
1776 (FIXME)
c906108c
SS
1777 */
1778
1779static void
fba45db2
KB
1780read_func_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1781 struct objfile *objfile)
c906108c 1782{
b59661bd 1783 struct context_stack *new;
c5aa993b 1784
c906108c
SS
1785 /* AT_name is absent if the function is described with an
1786 AT_abstract_origin tag.
1787 Ignore the function description for now to avoid GDB core dumps.
1788 FIXME: Add code to handle AT_abstract_origin tags properly. */
c5aa993b 1789 if (dip->at_name == NULL)
c906108c 1790 {
e2e0b3e5 1791 complaint (&symfile_complaints, _("DIE @ 0x%x, AT_name tag missing"),
23136709 1792 DIE_ID);
c906108c
SS
1793 return;
1794 }
1795
c5aa993b
JM
1796 new = push_context (0, dip->at_low_pc);
1797 new->name = new_symbol (dip, objfile);
c906108c 1798 list_in_scope = &local_symbols;
c5aa993b 1799 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c
SS
1800 new = pop_context ();
1801 /* Make a block for the local symbols within. */
c5aa993b
JM
1802 finish_block (new->name, &local_symbols, new->old_blocks,
1803 new->start_addr, dip->at_high_pc, objfile);
c906108c
SS
1804 list_in_scope = &file_symbols;
1805}
1806
1807
1808/*
1809
c5aa993b 1810 LOCAL FUNCTION
c906108c 1811
c5aa993b 1812 handle_producer -- process the AT_producer attribute
c906108c 1813
c5aa993b 1814 DESCRIPTION
c906108c 1815
c5aa993b
JM
1816 Perform any operations that depend on finding a particular
1817 AT_producer attribute.
c906108c
SS
1818
1819 */
1820
1821static void
fba45db2 1822handle_producer (char *producer)
c906108c
SS
1823{
1824
1825 /* If this compilation unit was compiled with g++ or gcc, then set the
1826 processing_gcc_compilation flag. */
1827
cb137aa5 1828 if (DEPRECATED_STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
c906108c
SS
1829 {
1830 char version = producer[strlen (GCC_PRODUCER)];
1831 processing_gcc_compilation = (version == '2' ? 2 : 1);
1832 }
1833 else
1834 {
1835 processing_gcc_compilation =
bf896cb0 1836 strncmp (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)) == 0;
c906108c
SS
1837 }
1838
1839 /* Select a demangling style if we can identify the producer and if
1840 the current style is auto. We leave the current style alone if it
1841 is not auto. We also leave the demangling style alone if we find a
1842 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1843
1844 if (AUTO_DEMANGLING)
1845 {
cb137aa5 1846 if (DEPRECATED_STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
c906108c 1847 {
8052a17a
JM
1848#if 0
1849 /* For now, stay with AUTO_DEMANGLING for g++ output, as we don't
1850 know whether it will use the old style or v3 mangling. */
c906108c 1851 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
8052a17a 1852#endif
c906108c 1853 }
cb137aa5 1854 else if (DEPRECATED_STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
c906108c
SS
1855 {
1856 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1857 }
1858 }
1859}
1860
1861
1862/*
1863
c5aa993b 1864 LOCAL FUNCTION
c906108c 1865
c5aa993b 1866 read_file_scope -- process all dies within a file scope
c906108c 1867
c5aa993b
JM
1868 DESCRIPTION
1869
1870 Process all dies within a given file scope. We are passed a
1871 pointer to the die information structure for the die which
1872 starts the file scope, and pointers into the raw die data which
1873 mark the range of dies within the file scope.
c906108c 1874
c5aa993b
JM
1875 When the partial symbol table is built, the file offset for the line
1876 number table for each compilation unit is saved in the partial symbol
1877 table entry for that compilation unit. As the symbols for each
1878 compilation unit are read, the line number table is read into memory
1879 and the variable lnbase is set to point to it. Thus all we have to
1880 do is use lnbase to access the line number table for the current
1881 compilation unit.
c906108c
SS
1882 */
1883
1884static void
fba45db2
KB
1885read_file_scope (struct dieinfo *dip, char *thisdie, char *enddie,
1886 struct objfile *objfile)
c906108c
SS
1887{
1888 struct cleanup *back_to;
1889 struct symtab *symtab;
c5aa993b 1890
c906108c 1891 set_cu_language (dip);
c5aa993b 1892 if (dip->at_producer != NULL)
c906108c 1893 {
c5aa993b 1894 handle_producer (dip->at_producer);
c906108c
SS
1895 }
1896 numutypes = (enddie - thisdie) / 4;
1897 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1898 back_to = make_cleanup (free_utypes, NULL);
1899 memset (utypes, 0, numutypes * sizeof (struct type *));
1900 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
c5aa993b 1901 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
c906108c
SS
1902 record_debugformat ("DWARF 1");
1903 decode_line_numbers (lnbase);
c5aa993b 1904 process_dies (thisdie + dip->die_length, enddie, objfile);
c906108c 1905
c5aa993b 1906 symtab = end_symtab (dip->at_high_pc, objfile, 0);
c906108c
SS
1907 if (symtab != NULL)
1908 {
c5aa993b
JM
1909 symtab->language = cu_language;
1910 }
c906108c
SS
1911 do_cleanups (back_to);
1912}
1913
1914/*
1915
c5aa993b 1916 LOCAL FUNCTION
c906108c 1917
c5aa993b 1918 process_dies -- process a range of DWARF Information Entries
c906108c 1919
c5aa993b 1920 SYNOPSIS
c906108c 1921
c5aa993b
JM
1922 static void process_dies (char *thisdie, char *enddie,
1923 struct objfile *objfile)
c906108c 1924
c5aa993b 1925 DESCRIPTION
c906108c 1926
c5aa993b
JM
1927 Process all DIE's in a specified range. May be (and almost
1928 certainly will be) called recursively.
c906108c
SS
1929 */
1930
1931static void
fba45db2 1932process_dies (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
1933{
1934 char *nextdie;
1935 struct dieinfo di;
c5aa993b 1936
c906108c
SS
1937 while (thisdie < enddie)
1938 {
1939 basicdieinfo (&di, thisdie, objfile);
1940 if (di.die_length < SIZEOF_DIE_LENGTH)
1941 {
1942 break;
1943 }
1944 else if (di.die_tag == TAG_padding)
1945 {
1946 nextdie = thisdie + di.die_length;
1947 }
1948 else
1949 {
1950 completedieinfo (&di, objfile);
1951 if (di.at_sibling != 0)
1952 {
1953 nextdie = dbbase + di.at_sibling - dbroff;
1954 }
1955 else
1956 {
1957 nextdie = thisdie + di.die_length;
1958 }
c906108c 1959 /* I think that these are always text, not data, addresses. */
181c1381
RE
1960 di.at_low_pc = SMASH_TEXT_ADDRESS (di.at_low_pc);
1961 di.at_high_pc = SMASH_TEXT_ADDRESS (di.at_high_pc);
c906108c
SS
1962 switch (di.die_tag)
1963 {
1964 case TAG_compile_unit:
1965 /* Skip Tag_compile_unit if we are already inside a compilation
c5aa993b
JM
1966 unit, we are unable to handle nested compilation units
1967 properly (FIXME). */
c906108c
SS
1968 if (current_subfile == NULL)
1969 read_file_scope (&di, thisdie, nextdie, objfile);
1970 else
1971 nextdie = thisdie + di.die_length;
1972 break;
1973 case TAG_global_subroutine:
1974 case TAG_subroutine:
1975 if (di.has_at_low_pc)
1976 {
1977 read_func_scope (&di, thisdie, nextdie, objfile);
1978 }
1979 break;
1980 case TAG_lexical_block:
1981 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
1982 break;
1983 case TAG_class_type:
1984 case TAG_structure_type:
1985 case TAG_union_type:
1986 read_structure_scope (&di, thisdie, nextdie, objfile);
1987 break;
1988 case TAG_enumeration_type:
1989 read_enumeration (&di, thisdie, nextdie, objfile);
1990 break;
1991 case TAG_subroutine_type:
1992 read_subroutine_type (&di, thisdie, nextdie);
1993 break;
1994 case TAG_array_type:
1995 dwarf_read_array_type (&di);
1996 break;
1997 case TAG_pointer_type:
1998 read_tag_pointer_type (&di);
1999 break;
2000 case TAG_string_type:
2001 read_tag_string_type (&di);
2002 break;
2003 default:
2004 new_symbol (&di, objfile);
2005 break;
2006 }
2007 }
2008 thisdie = nextdie;
2009 }
2010}
2011
2012/*
2013
c5aa993b 2014 LOCAL FUNCTION
c906108c 2015
c5aa993b 2016 decode_line_numbers -- decode a line number table fragment
c906108c 2017
c5aa993b 2018 SYNOPSIS
c906108c 2019
c5aa993b
JM
2020 static void decode_line_numbers (char *tblscan, char *tblend,
2021 long length, long base, long line, long pc)
c906108c 2022
c5aa993b 2023 DESCRIPTION
c906108c 2024
c5aa993b 2025 Translate the DWARF line number information to gdb form.
c906108c 2026
c5aa993b
JM
2027 The ".line" section contains one or more line number tables, one for
2028 each ".line" section from the objects that were linked.
c906108c 2029
c5aa993b
JM
2030 The AT_stmt_list attribute for each TAG_source_file entry in the
2031 ".debug" section contains the offset into the ".line" section for the
2032 start of the table for that file.
c906108c 2033
c5aa993b 2034 The table itself has the following structure:
c906108c 2035
c5aa993b
JM
2036 <table length><base address><source statement entry>
2037 4 bytes 4 bytes 10 bytes
c906108c 2038
c5aa993b
JM
2039 The table length is the total size of the table, including the 4 bytes
2040 for the length information.
c906108c 2041
c5aa993b
JM
2042 The base address is the address of the first instruction generated
2043 for the source file.
c906108c 2044
c5aa993b 2045 Each source statement entry has the following structure:
c906108c 2046
c5aa993b
JM
2047 <line number><statement position><address delta>
2048 4 bytes 2 bytes 4 bytes
c906108c 2049
c5aa993b
JM
2050 The line number is relative to the start of the file, starting with
2051 line 1.
c906108c 2052
c5aa993b
JM
2053 The statement position either -1 (0xFFFF) or the number of characters
2054 from the beginning of the line to the beginning of the statement.
c906108c 2055
c5aa993b
JM
2056 The address delta is the difference between the base address and
2057 the address of the first instruction for the statement.
c906108c 2058
c5aa993b
JM
2059 Note that we must copy the bytes from the packed table to our local
2060 variables before attempting to use them, to avoid alignment problems
2061 on some machines, particularly RISC processors.
c906108c 2062
c5aa993b 2063 BUGS
c906108c 2064
c5aa993b
JM
2065 Does gdb expect the line numbers to be sorted? They are now by
2066 chance/luck, but are not required to be. (FIXME)
c906108c 2067
c5aa993b
JM
2068 The line with number 0 is unused, gdb apparently can discover the
2069 span of the last line some other way. How? (FIXME)
c906108c
SS
2070 */
2071
2072static void
fba45db2 2073decode_line_numbers (char *linetable)
c906108c
SS
2074{
2075 char *tblscan;
2076 char *tblend;
2077 unsigned long length;
2078 unsigned long base;
2079 unsigned long line;
2080 unsigned long pc;
c5aa993b 2081
c906108c
SS
2082 if (linetable != NULL)
2083 {
2084 tblscan = tblend = linetable;
2085 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2086 current_objfile);
2087 tblscan += SIZEOF_LINETBL_LENGTH;
2088 tblend += length;
2089 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2090 GET_UNSIGNED, current_objfile);
2091 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2092 base += baseaddr;
2093 while (tblscan < tblend)
2094 {
2095 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2096 current_objfile);
2097 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2098 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2099 current_objfile);
2100 tblscan += SIZEOF_LINETBL_DELTA;
2101 pc += base;
2102 if (line != 0)
2103 {
2104 record_line (current_subfile, line, pc);
2105 }
2106 }
2107 }
2108}
2109
2110/*
2111
c5aa993b 2112 LOCAL FUNCTION
c906108c 2113
c5aa993b 2114 locval -- compute the value of a location attribute
c906108c 2115
c5aa993b 2116 SYNOPSIS
c906108c 2117
c5aa993b 2118 static int locval (struct dieinfo *dip)
c906108c 2119
c5aa993b 2120 DESCRIPTION
c906108c 2121
c5aa993b
JM
2122 Given pointer to a string of bytes that define a location, compute
2123 the location and return the value.
2124 A location description containing no atoms indicates that the
2125 object is optimized out. The optimized_out flag is set for those,
2126 the return value is meaningless.
c906108c 2127
c5aa993b
JM
2128 When computing values involving the current value of the frame pointer,
2129 the value zero is used, which results in a value relative to the frame
2130 pointer, rather than the absolute value. This is what GDB wants
2131 anyway.
c906108c 2132
c5aa993b
JM
2133 When the result is a register number, the isreg flag is set, otherwise
2134 it is cleared. This is a kludge until we figure out a better
2135 way to handle the problem. Gdb's design does not mesh well with the
2136 DWARF notion of a location computing interpreter, which is a shame
2137 because the flexibility goes unused.
2138
2139 NOTES
2140
2141 Note that stack[0] is unused except as a default error return.
2142 Note that stack overflow is not yet handled.
c906108c
SS
2143 */
2144
2145static int
fba45db2 2146locval (struct dieinfo *dip)
c906108c
SS
2147{
2148 unsigned short nbytes;
2149 unsigned short locsize;
2150 auto long stack[64];
2151 int stacki;
2152 char *loc;
2153 char *end;
2154 int loc_atom_code;
2155 int loc_value_size;
c5aa993b
JM
2156
2157 loc = dip->at_location;
c906108c
SS
2158 nbytes = attribute_size (AT_location);
2159 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2160 loc += nbytes;
2161 end = loc + locsize;
2162 stacki = 0;
2163 stack[stacki] = 0;
c5aa993b
JM
2164 dip->isreg = 0;
2165 dip->offreg = 0;
2166 dip->optimized_out = 1;
c906108c
SS
2167 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2168 while (loc < end)
2169 {
c5aa993b 2170 dip->optimized_out = 0;
c906108c
SS
2171 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2172 current_objfile);
2173 loc += SIZEOF_LOC_ATOM_CODE;
2174 switch (loc_atom_code)
2175 {
c5aa993b
JM
2176 case 0:
2177 /* error */
2178 loc = end;
2179 break;
2180 case OP_REG:
2181 /* push register (number) */
2182 stack[++stacki]
2183 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2184 GET_UNSIGNED,
2185 current_objfile));
2186 loc += loc_value_size;
2187 dip->isreg = 1;
2188 break;
2189 case OP_BASEREG:
2190 /* push value of register (number) */
2191 /* Actually, we compute the value as if register has 0, so the
2192 value ends up being the offset from that register. */
2193 dip->offreg = 1;
2194 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2195 current_objfile);
2196 loc += loc_value_size;
2197 stack[++stacki] = 0;
2198 break;
2199 case OP_ADDR:
2200 /* push address (relocated address) */
2201 stack[++stacki] = target_to_host (loc, loc_value_size,
2202 GET_UNSIGNED, current_objfile);
2203 loc += loc_value_size;
2204 break;
2205 case OP_CONST:
2206 /* push constant (number) FIXME: signed or unsigned! */
2207 stack[++stacki] = target_to_host (loc, loc_value_size,
2208 GET_SIGNED, current_objfile);
2209 loc += loc_value_size;
2210 break;
2211 case OP_DEREF2:
2212 /* pop, deref and push 2 bytes (as a long) */
23136709 2213 complaint (&symfile_complaints,
e2e0b3e5 2214 _("DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%lx not handled"),
23136709 2215 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2216 break;
2217 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
23136709 2218 complaint (&symfile_complaints,
e2e0b3e5 2219 _("DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%lx not handled"),
23136709 2220 DIE_ID, DIE_NAME, stack[stacki]);
c5aa993b
JM
2221 break;
2222 case OP_ADD: /* pop top 2 items, add, push result */
2223 stack[stacki - 1] += stack[stacki];
2224 stacki--;
2225 break;
c906108c
SS
2226 }
2227 }
2228 return (stack[stacki]);
2229}
2230
2231/*
2232
c5aa993b 2233 LOCAL FUNCTION
c906108c 2234
c5aa993b 2235 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
c906108c 2236
c5aa993b 2237 SYNOPSIS
c906108c 2238
c5aa993b 2239 static void read_ofile_symtab (struct partial_symtab *pst)
c906108c 2240
c5aa993b 2241 DESCRIPTION
c906108c 2242
c5aa993b
JM
2243 When expanding a partial symbol table entry to a full symbol table
2244 entry, this is the function that gets called to read in the symbols
2245 for the compilation unit. A pointer to the newly constructed symtab,
2246 which is now the new first one on the objfile's symtab list, is
2247 stashed in the partial symbol table entry.
c906108c
SS
2248 */
2249
2250static void
fba45db2 2251read_ofile_symtab (struct partial_symtab *pst)
c906108c
SS
2252{
2253 struct cleanup *back_to;
2254 unsigned long lnsize;
2255 file_ptr foffset;
2256 bfd *abfd;
2257 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2258
c5aa993b
JM
2259 abfd = pst->objfile->obfd;
2260 current_objfile = pst->objfile;
c906108c
SS
2261
2262 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2263 unit, seek to the location in the file, and read in all the DIE's. */
2264
2265 diecount = 0;
2266 dbsize = DBLENGTH (pst);
2267 dbbase = xmalloc (dbsize);
c5aa993b
JM
2268 dbroff = DBROFF (pst);
2269 foffset = DBFOFF (pst) + dbroff;
c906108c
SS
2270 base_section_offsets = pst->section_offsets;
2271 baseaddr = ANOFFSET (pst->section_offsets, 0);
2272 if (bfd_seek (abfd, foffset, SEEK_SET) ||
3a42e9d0 2273 (bfd_bread (dbbase, dbsize, abfd) != dbsize))
c906108c 2274 {
b8c9b27d 2275 xfree (dbbase);
8a3fe4f8 2276 error (_("can't read DWARF data"));
c906108c 2277 }
b8c9b27d 2278 back_to = make_cleanup (xfree, dbbase);
c906108c
SS
2279
2280 /* If there is a line number table associated with this compilation unit
2281 then read the size of this fragment in bytes, from the fragment itself.
2282 Allocate a buffer for the fragment and read it in for future
2283 processing. */
2284
2285 lnbase = NULL;
2286 if (LNFOFF (pst))
2287 {
2288 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
4efb68b1 2289 (bfd_bread (lnsizedata, sizeof (lnsizedata), abfd)
3a42e9d0 2290 != sizeof (lnsizedata)))
c906108c 2291 {
8a3fe4f8 2292 error (_("can't read DWARF line number table size"));
c906108c
SS
2293 }
2294 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
c5aa993b 2295 GET_UNSIGNED, pst->objfile);
c906108c
SS
2296 lnbase = xmalloc (lnsize);
2297 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
3a42e9d0 2298 (bfd_bread (lnbase, lnsize, abfd) != lnsize))
c906108c 2299 {
b8c9b27d 2300 xfree (lnbase);
8a3fe4f8 2301 error (_("can't read DWARF line numbers"));
c906108c 2302 }
b8c9b27d 2303 make_cleanup (xfree, lnbase);
c906108c
SS
2304 }
2305
c5aa993b 2306 process_dies (dbbase, dbbase + dbsize, pst->objfile);
c906108c
SS
2307 do_cleanups (back_to);
2308 current_objfile = NULL;
c5aa993b 2309 pst->symtab = pst->objfile->symtabs;
c906108c
SS
2310}
2311
2312/*
2313
c5aa993b 2314 LOCAL FUNCTION
c906108c 2315
c5aa993b 2316 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
c906108c 2317
c5aa993b 2318 SYNOPSIS
c906108c 2319
c5aa993b 2320 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2321
c5aa993b 2322 DESCRIPTION
c906108c 2323
c5aa993b
JM
2324 Called once for each partial symbol table entry that needs to be
2325 expanded into a full symbol table entry.
c906108c 2326
c5aa993b 2327 */
c906108c
SS
2328
2329static void
fba45db2 2330psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c
SS
2331{
2332 int i;
2333 struct cleanup *old_chain;
c5aa993b 2334
c906108c
SS
2335 if (pst != NULL)
2336 {
2337 if (pst->readin)
2338 {
8a3fe4f8 2339 warning (_("psymtab for %s already read in. Shouldn't happen."),
c5aa993b 2340 pst->filename);
c906108c
SS
2341 }
2342 else
2343 {
2344 /* Read in all partial symtabs on which this one is dependent */
c5aa993b 2345 for (i = 0; i < pst->number_of_dependencies; i++)
c906108c 2346 {
c5aa993b 2347 if (!pst->dependencies[i]->readin)
c906108c
SS
2348 {
2349 /* Inform about additional files that need to be read in. */
2350 if (info_verbose)
2351 {
a3f17187
AC
2352 /* FIXME: i18n: Need to make this a single
2353 string. */
c906108c
SS
2354 fputs_filtered (" ", gdb_stdout);
2355 wrap_here ("");
2356 fputs_filtered ("and ", gdb_stdout);
2357 wrap_here ("");
2358 printf_filtered ("%s...",
c5aa993b 2359 pst->dependencies[i]->filename);
c906108c 2360 wrap_here ("");
c5aa993b 2361 gdb_flush (gdb_stdout); /* Flush output */
c906108c 2362 }
c5aa993b 2363 psymtab_to_symtab_1 (pst->dependencies[i]);
c906108c 2364 }
c5aa993b
JM
2365 }
2366 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
c906108c
SS
2367 {
2368 buildsym_init ();
a0b3c4fd 2369 old_chain = make_cleanup (really_free_pendings, 0);
c906108c
SS
2370 read_ofile_symtab (pst);
2371 if (info_verbose)
2372 {
a3f17187 2373 printf_filtered (_("%d DIE's, sorting..."), diecount);
c906108c
SS
2374 wrap_here ("");
2375 gdb_flush (gdb_stdout);
2376 }
c906108c
SS
2377 do_cleanups (old_chain);
2378 }
c5aa993b 2379 pst->readin = 1;
c906108c
SS
2380 }
2381 }
2382}
2383
2384/*
2385
c5aa993b 2386 LOCAL FUNCTION
c906108c 2387
c5aa993b 2388 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
c906108c 2389
c5aa993b 2390 SYNOPSIS
c906108c 2391
c5aa993b 2392 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 2393
c5aa993b 2394 DESCRIPTION
c906108c 2395
c5aa993b
JM
2396 This is the DWARF support entry point for building a full symbol
2397 table entry from a partial symbol table entry. We are passed a
2398 pointer to the partial symbol table entry that needs to be expanded.
c906108c 2399
c5aa993b 2400 */
c906108c
SS
2401
2402static void
fba45db2 2403dwarf_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2404{
2405
2406 if (pst != NULL)
2407 {
c5aa993b 2408 if (pst->readin)
c906108c 2409 {
8a3fe4f8 2410 warning (_("psymtab for %s already read in. Shouldn't happen."),
c5aa993b 2411 pst->filename);
c906108c
SS
2412 }
2413 else
2414 {
c5aa993b 2415 if (DBLENGTH (pst) || pst->number_of_dependencies)
c906108c
SS
2416 {
2417 /* Print the message now, before starting serious work, to avoid
c5aa993b 2418 disconcerting pauses. */
c906108c
SS
2419 if (info_verbose)
2420 {
a3f17187 2421 printf_filtered (_("Reading in symbols for %s..."),
c5aa993b 2422 pst->filename);
c906108c
SS
2423 gdb_flush (gdb_stdout);
2424 }
c5aa993b 2425
c906108c 2426 psymtab_to_symtab_1 (pst);
c5aa993b
JM
2427
2428#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2429 we need to do an equivalent or is this something peculiar to
2430 stabs/a.out format.
2431 Match with global symbols. This only needs to be done once,
2432 after all of the symtabs and dependencies have been read in.
2433 */
2434 scan_file_globals (pst->objfile);
c906108c 2435#endif
c5aa993b 2436
c906108c
SS
2437 /* Finish up the verbose info message. */
2438 if (info_verbose)
2439 {
a3f17187 2440 printf_filtered (_("done.\n"));
c906108c
SS
2441 gdb_flush (gdb_stdout);
2442 }
2443 }
2444 }
2445 }
2446}
2447
2448/*
2449
c5aa993b 2450 LOCAL FUNCTION
c906108c 2451
c5aa993b 2452 add_enum_psymbol -- add enumeration members to partial symbol table
c906108c 2453
c5aa993b 2454 DESCRIPTION
c906108c 2455
c5aa993b
JM
2456 Given pointer to a DIE that is known to be for an enumeration,
2457 extract the symbolic names of the enumeration members and add
2458 partial symbols for them.
2459 */
c906108c
SS
2460
2461static void
fba45db2 2462add_enum_psymbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2463{
2464 char *scan;
2465 char *listend;
2466 unsigned short blocksz;
2467 int nbytes;
c5aa993b 2468
b59661bd
AC
2469 scan = dip->at_element_list;
2470 if (scan != NULL)
c906108c 2471 {
c5aa993b 2472 if (dip->short_element_list)
c906108c
SS
2473 {
2474 nbytes = attribute_size (AT_short_element_list);
2475 }
2476 else
2477 {
2478 nbytes = attribute_size (AT_element_list);
2479 }
2480 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2481 scan += nbytes;
2482 listend = scan + blocksz;
2483 while (scan < listend)
2484 {
2485 scan += TARGET_FT_LONG_SIZE (objfile);
176620f1 2486 add_psymbol_to_list (scan, strlen (scan), VAR_DOMAIN, LOC_CONST,
c5aa993b 2487 &objfile->static_psymbols, 0, 0, cu_language,
c906108c
SS
2488 objfile);
2489 scan += strlen (scan) + 1;
2490 }
2491 }
2492}
2493
2494/*
2495
c5aa993b 2496 LOCAL FUNCTION
c906108c 2497
c5aa993b 2498 add_partial_symbol -- add symbol to partial symbol table
c906108c 2499
c5aa993b 2500 DESCRIPTION
c906108c 2501
c5aa993b
JM
2502 Given a DIE, if it is one of the types that we want to
2503 add to a partial symbol table, finish filling in the die info
2504 and then add a partial symbol table entry for it.
c906108c 2505
c5aa993b 2506 NOTES
c906108c 2507
c5aa993b
JM
2508 The caller must ensure that the DIE has a valid name attribute.
2509 */
c906108c
SS
2510
2511static void
fba45db2 2512add_partial_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c 2513{
c5aa993b 2514 switch (dip->die_tag)
c906108c
SS
2515 {
2516 case TAG_global_subroutine:
c5aa993b 2517 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2518 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2519 &objfile->global_psymbols,
2520 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2521 break;
2522 case TAG_global_variable:
c5aa993b 2523 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2524 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2525 &objfile->global_psymbols,
c906108c
SS
2526 0, 0, cu_language, objfile);
2527 break;
2528 case TAG_subroutine:
c5aa993b 2529 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2530 VAR_DOMAIN, LOC_BLOCK,
c5aa993b
JM
2531 &objfile->static_psymbols,
2532 0, dip->at_low_pc, cu_language, objfile);
c906108c
SS
2533 break;
2534 case TAG_local_variable:
c5aa993b 2535 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2536 VAR_DOMAIN, LOC_STATIC,
c5aa993b 2537 &objfile->static_psymbols,
c906108c
SS
2538 0, 0, cu_language, objfile);
2539 break;
2540 case TAG_typedef:
c5aa993b 2541 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2542 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2543 &objfile->static_psymbols,
c906108c
SS
2544 0, 0, cu_language, objfile);
2545 break;
2546 case TAG_class_type:
2547 case TAG_structure_type:
2548 case TAG_union_type:
2549 case TAG_enumeration_type:
2550 /* Do not add opaque aggregate definitions to the psymtab. */
c5aa993b 2551 if (!dip->has_at_byte_size)
c906108c 2552 break;
c5aa993b 2553 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2554 STRUCT_DOMAIN, LOC_TYPEDEF,
c5aa993b 2555 &objfile->static_psymbols,
c906108c
SS
2556 0, 0, cu_language, objfile);
2557 if (cu_language == language_cplus)
2558 {
2559 /* For C++, these implicitly act as typedefs as well. */
c5aa993b 2560 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
176620f1 2561 VAR_DOMAIN, LOC_TYPEDEF,
c5aa993b 2562 &objfile->static_psymbols,
c906108c
SS
2563 0, 0, cu_language, objfile);
2564 }
2565 break;
2566 }
2567}
9846de1b 2568/* *INDENT-OFF* */
c906108c
SS
2569/*
2570
2571LOCAL FUNCTION
2572
2573 scan_partial_symbols -- scan DIE's within a single compilation unit
2574
2575DESCRIPTION
2576
2577 Process the DIE's within a single compilation unit, looking for
2578 interesting DIE's that contribute to the partial symbol table entry
2579 for this compilation unit.
2580
2581NOTES
2582
2583 There are some DIE's that may appear both at file scope and within
2584 the scope of a function. We are only interested in the ones at file
2585 scope, and the only way to tell them apart is to keep track of the
2586 scope. For example, consider the test case:
2587
2588 static int i;
2589 main () { int j; }
2590
2591 for which the relevant DWARF segment has the structure:
2592
2593 0x51:
2594 0x23 global subrtn sibling 0x9b
2595 name main
2596 fund_type FT_integer
2597 low_pc 0x800004cc
2598 high_pc 0x800004d4
2599
2600 0x74:
2601 0x23 local var sibling 0x97
2602 name j
2603 fund_type FT_integer
2604 location OP_BASEREG 0xe
2605 OP_CONST 0xfffffffc
2606 OP_ADD
2607 0x97:
2608 0x4
2609
2610 0x9b:
2611 0x1d local var sibling 0xb8
2612 name i
2613 fund_type FT_integer
2614 location OP_ADDR 0x800025dc
2615
2616 0xb8:
2617 0x4
2618
2619 We want to include the symbol 'i' in the partial symbol table, but
2620 not the symbol 'j'. In essence, we want to skip all the dies within
2621 the scope of a TAG_global_subroutine DIE.
2622
2623 Don't attempt to add anonymous structures or unions since they have
2624 no name. Anonymous enumerations however are processed, because we
2625 want to extract their member names (the check for a tag name is
2626 done later).
2627
2628 Also, for variables and subroutines, check that this is the place
2629 where the actual definition occurs, rather than just a reference
2630 to an external.
2631 */
9846de1b 2632/* *INDENT-ON* */
c906108c 2633
c5aa993b
JM
2634
2635
c906108c 2636static void
fba45db2 2637scan_partial_symbols (char *thisdie, char *enddie, struct objfile *objfile)
c906108c
SS
2638{
2639 char *nextdie;
2640 char *temp;
2641 struct dieinfo di;
c5aa993b 2642
c906108c
SS
2643 while (thisdie < enddie)
2644 {
2645 basicdieinfo (&di, thisdie, objfile);
2646 if (di.die_length < SIZEOF_DIE_LENGTH)
2647 {
2648 break;
2649 }
2650 else
2651 {
2652 nextdie = thisdie + di.die_length;
2653 /* To avoid getting complete die information for every die, we
2654 only do it (below) for the cases we are interested in. */
2655 switch (di.die_tag)
2656 {
2657 case TAG_global_subroutine:
2658 case TAG_subroutine:
2659 completedieinfo (&di, objfile);
2660 if (di.at_name && (di.has_at_low_pc || di.at_location))
2661 {
2662 add_partial_symbol (&di, objfile);
2663 /* If there is a sibling attribute, adjust the nextdie
2664 pointer to skip the entire scope of the subroutine.
2665 Apply some sanity checking to make sure we don't
2666 overrun or underrun the range of remaining DIE's */
2667 if (di.at_sibling != 0)
2668 {
2669 temp = dbbase + di.at_sibling - dbroff;
2670 if ((temp < thisdie) || (temp >= enddie))
2671 {
23136709
KB
2672 bad_die_ref_complaint (DIE_ID, DIE_NAME,
2673 di.at_sibling);
c906108c
SS
2674 }
2675 else
2676 {
2677 nextdie = temp;
2678 }
2679 }
2680 }
2681 break;
2682 case TAG_global_variable:
2683 case TAG_local_variable:
2684 completedieinfo (&di, objfile);
2685 if (di.at_name && (di.has_at_low_pc || di.at_location))
2686 {
2687 add_partial_symbol (&di, objfile);
2688 }
2689 break;
2690 case TAG_typedef:
2691 case TAG_class_type:
2692 case TAG_structure_type:
2693 case TAG_union_type:
2694 completedieinfo (&di, objfile);
2695 if (di.at_name)
2696 {
2697 add_partial_symbol (&di, objfile);
2698 }
2699 break;
2700 case TAG_enumeration_type:
2701 completedieinfo (&di, objfile);
2702 if (di.at_name)
2703 {
2704 add_partial_symbol (&di, objfile);
2705 }
2706 add_enum_psymbol (&di, objfile);
2707 break;
2708 }
2709 }
2710 thisdie = nextdie;
2711 }
2712}
2713
2714/*
2715
c5aa993b 2716 LOCAL FUNCTION
c906108c 2717
c5aa993b 2718 scan_compilation_units -- build a psymtab entry for each compilation
c906108c 2719
c5aa993b 2720 DESCRIPTION
c906108c 2721
c5aa993b
JM
2722 This is the top level dwarf parsing routine for building partial
2723 symbol tables.
c906108c 2724
c5aa993b
JM
2725 It scans from the beginning of the DWARF table looking for the first
2726 TAG_compile_unit DIE, and then follows the sibling chain to locate
2727 each additional TAG_compile_unit DIE.
2728
2729 For each TAG_compile_unit DIE it creates a partial symtab structure,
2730 calls a subordinate routine to collect all the compilation unit's
2731 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2732 new partial symtab structure into the partial symbol table. It also
2733 records the appropriate information in the partial symbol table entry
2734 to allow the chunk of DIE's and line number table for this compilation
2735 unit to be located and re-read later, to generate a complete symbol
2736 table entry for the compilation unit.
2737
2738 Thus it effectively partitions up a chunk of DIE's for multiple
2739 compilation units into smaller DIE chunks and line number tables,
2740 and associates them with a partial symbol table entry.
2741
2742 NOTES
c906108c 2743
c5aa993b
JM
2744 If any compilation unit has no line number table associated with
2745 it for some reason (a missing at_stmt_list attribute, rather than
2746 just one with a value of zero, which is valid) then we ensure that
2747 the recorded file offset is zero so that the routine which later
2748 reads line number table fragments knows that there is no fragment
2749 to read.
c906108c 2750
c5aa993b 2751 RETURNS
c906108c 2752
c5aa993b 2753 Returns no value.
c906108c
SS
2754
2755 */
2756
2757static void
fba45db2
KB
2758scan_compilation_units (char *thisdie, char *enddie, file_ptr dbfoff,
2759 file_ptr lnoffset, struct objfile *objfile)
c906108c
SS
2760{
2761 char *nextdie;
2762 struct dieinfo di;
2763 struct partial_symtab *pst;
2764 int culength;
2765 int curoff;
2766 file_ptr curlnoffset;
2767
2768 while (thisdie < enddie)
2769 {
2770 basicdieinfo (&di, thisdie, objfile);
2771 if (di.die_length < SIZEOF_DIE_LENGTH)
2772 {
2773 break;
2774 }
2775 else if (di.die_tag != TAG_compile_unit)
2776 {
2777 nextdie = thisdie + di.die_length;
2778 }
2779 else
2780 {
2781 completedieinfo (&di, objfile);
2782 set_cu_language (&di);
2783 if (di.at_sibling != 0)
2784 {
2785 nextdie = dbbase + di.at_sibling - dbroff;
2786 }
2787 else
2788 {
2789 nextdie = thisdie + di.die_length;
2790 }
2791 curoff = thisdie - dbbase;
2792 culength = nextdie - thisdie;
2793 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2794
2795 /* First allocate a new partial symbol table structure */
2796
2797 pst = start_psymtab_common (objfile, base_section_offsets,
2798 di.at_name, di.at_low_pc,
c5aa993b
JM
2799 objfile->global_psymbols.next,
2800 objfile->static_psymbols.next);
c906108c 2801
c5aa993b
JM
2802 pst->texthigh = di.at_high_pc;
2803 pst->read_symtab_private = (char *)
8b92e4d5 2804 obstack_alloc (&objfile->objfile_obstack,
c5aa993b 2805 sizeof (struct dwfinfo));
c906108c
SS
2806 DBFOFF (pst) = dbfoff;
2807 DBROFF (pst) = curoff;
2808 DBLENGTH (pst) = culength;
c5aa993b
JM
2809 LNFOFF (pst) = curlnoffset;
2810 pst->read_symtab = dwarf_psymtab_to_symtab;
c906108c
SS
2811
2812 /* Now look for partial symbols */
2813
2814 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2815
c5aa993b
JM
2816 pst->n_global_syms = objfile->global_psymbols.next -
2817 (objfile->global_psymbols.list + pst->globals_offset);
2818 pst->n_static_syms = objfile->static_psymbols.next -
2819 (objfile->static_psymbols.list + pst->statics_offset);
c906108c
SS
2820 sort_pst_symbols (pst);
2821 /* If there is already a psymtab or symtab for a file of this name,
2822 remove it. (If there is a symtab, more drastic things also
2823 happen.) This happens in VxWorks. */
c5aa993b 2824 free_named_symtabs (pst->filename);
c906108c 2825 }
c5aa993b 2826 thisdie = nextdie;
c906108c
SS
2827 }
2828}
2829
2830/*
2831
c5aa993b 2832 LOCAL FUNCTION
c906108c 2833
c5aa993b 2834 new_symbol -- make a symbol table entry for a new symbol
c906108c 2835
c5aa993b 2836 SYNOPSIS
c906108c 2837
c5aa993b
JM
2838 static struct symbol *new_symbol (struct dieinfo *dip,
2839 struct objfile *objfile)
c906108c 2840
c5aa993b 2841 DESCRIPTION
c906108c 2842
c5aa993b
JM
2843 Given a pointer to a DWARF information entry, figure out if we need
2844 to make a symbol table entry for it, and if so, create a new entry
2845 and return a pointer to it.
c906108c
SS
2846 */
2847
2848static struct symbol *
fba45db2 2849new_symbol (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
2850{
2851 struct symbol *sym = NULL;
c5aa993b
JM
2852
2853 if (dip->at_name != NULL)
c906108c 2854 {
4a146b47 2855 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
2856 sizeof (struct symbol));
2857 OBJSTAT (objfile, n_syms++);
2858 memset (sym, 0, sizeof (struct symbol));
c906108c 2859 /* default assumptions */
176620f1 2860 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2861 SYMBOL_CLASS (sym) = LOC_STATIC;
2862 SYMBOL_TYPE (sym) = decode_die_type (dip);
2863
2864 /* If this symbol is from a C++ compilation, then attempt to cache the
c5aa993b
JM
2865 demangled form for future reference. This is a typical time versus
2866 space tradeoff, that was decided in favor of time because it sped up
2867 C++ symbol lookups by a factor of about 20. */
c906108c
SS
2868
2869 SYMBOL_LANGUAGE (sym) = cu_language;
2de7ced7 2870 SYMBOL_SET_NAMES (sym, dip->at_name, strlen (dip->at_name), objfile);
c5aa993b 2871 switch (dip->die_tag)
c906108c
SS
2872 {
2873 case TAG_label:
c5aa993b 2874 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c
SS
2875 SYMBOL_CLASS (sym) = LOC_LABEL;
2876 break;
2877 case TAG_global_subroutine:
2878 case TAG_subroutine:
c5aa993b 2879 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
c906108c 2880 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
c5aa993b 2881 if (dip->at_prototyped)
c906108c
SS
2882 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2883 SYMBOL_CLASS (sym) = LOC_BLOCK;
c5aa993b 2884 if (dip->die_tag == TAG_global_subroutine)
c906108c
SS
2885 {
2886 add_symbol_to_list (sym, &global_symbols);
2887 }
2888 else
2889 {
2890 add_symbol_to_list (sym, list_in_scope);
2891 }
2892 break;
2893 case TAG_global_variable:
c5aa993b 2894 if (dip->at_location != NULL)
c906108c
SS
2895 {
2896 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2897 add_symbol_to_list (sym, &global_symbols);
2898 SYMBOL_CLASS (sym) = LOC_STATIC;
2899 SYMBOL_VALUE (sym) += baseaddr;
2900 }
2901 break;
2902 case TAG_local_variable:
c5aa993b 2903 if (dip->at_location != NULL)
c906108c
SS
2904 {
2905 int loc = locval (dip);
c5aa993b 2906 if (dip->optimized_out)
c906108c
SS
2907 {
2908 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2909 }
c5aa993b 2910 else if (dip->isreg)
c906108c
SS
2911 {
2912 SYMBOL_CLASS (sym) = LOC_REGISTER;
2913 }
c5aa993b 2914 else if (dip->offreg)
c906108c
SS
2915 {
2916 SYMBOL_CLASS (sym) = LOC_BASEREG;
c5aa993b 2917 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2918 }
2919 else
2920 {
2921 SYMBOL_CLASS (sym) = LOC_STATIC;
2922 SYMBOL_VALUE (sym) += baseaddr;
2923 }
2924 if (SYMBOL_CLASS (sym) == LOC_STATIC)
2925 {
2926 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
2927 which may store to a bigger location than SYMBOL_VALUE. */
2928 SYMBOL_VALUE_ADDRESS (sym) = loc;
2929 }
2930 else
2931 {
2932 SYMBOL_VALUE (sym) = loc;
2933 }
2934 add_symbol_to_list (sym, list_in_scope);
2935 }
2936 break;
2937 case TAG_formal_parameter:
c5aa993b 2938 if (dip->at_location != NULL)
c906108c
SS
2939 {
2940 SYMBOL_VALUE (sym) = locval (dip);
2941 }
2942 add_symbol_to_list (sym, list_in_scope);
c5aa993b 2943 if (dip->isreg)
c906108c
SS
2944 {
2945 SYMBOL_CLASS (sym) = LOC_REGPARM;
2946 }
c5aa993b 2947 else if (dip->offreg)
c906108c
SS
2948 {
2949 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
c5aa993b 2950 SYMBOL_BASEREG (sym) = dip->basereg;
c906108c
SS
2951 }
2952 else
2953 {
2954 SYMBOL_CLASS (sym) = LOC_ARG;
2955 }
2956 break;
2957 case TAG_unspecified_parameters:
2958 /* From varargs functions; gdb doesn't seem to have any interest in
2959 this information, so just ignore it for now. (FIXME?) */
2960 break;
2961 case TAG_class_type:
2962 case TAG_structure_type:
2963 case TAG_union_type:
2964 case TAG_enumeration_type:
2965 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2966 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c
SS
2967 add_symbol_to_list (sym, list_in_scope);
2968 break;
2969 case TAG_typedef:
2970 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 2971 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
2972 add_symbol_to_list (sym, list_in_scope);
2973 break;
2974 default:
2975 /* Not a tag we recognize. Hopefully we aren't processing trash
2976 data, but since we must specifically ignore things we don't
2977 recognize, there is nothing else we should do at this point. */
2978 break;
2979 }
2980 }
2981 return (sym);
2982}
2983
2984/*
2985
c5aa993b 2986 LOCAL FUNCTION
c906108c 2987
c5aa993b 2988 synthesize_typedef -- make a symbol table entry for a "fake" typedef
c906108c 2989
c5aa993b 2990 SYNOPSIS
c906108c 2991
c5aa993b
JM
2992 static void synthesize_typedef (struct dieinfo *dip,
2993 struct objfile *objfile,
2994 struct type *type);
c906108c 2995
c5aa993b 2996 DESCRIPTION
c906108c 2997
c5aa993b
JM
2998 Given a pointer to a DWARF information entry, synthesize a typedef
2999 for the name in the DIE, using the specified type.
c906108c 3000
c5aa993b
JM
3001 This is used for C++ class, structs, unions, and enumerations to
3002 set up the tag name as a type.
c906108c
SS
3003
3004 */
3005
3006static void
fba45db2
KB
3007synthesize_typedef (struct dieinfo *dip, struct objfile *objfile,
3008 struct type *type)
c906108c
SS
3009{
3010 struct symbol *sym = NULL;
c5aa993b
JM
3011
3012 if (dip->at_name != NULL)
c906108c
SS
3013 {
3014 sym = (struct symbol *)
4a146b47 3015 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
c906108c
SS
3016 OBJSTAT (objfile, n_syms++);
3017 memset (sym, 0, sizeof (struct symbol));
22abf04a 3018 DEPRECATED_SYMBOL_NAME (sym) = create_name (dip->at_name,
4a146b47 3019 &objfile->objfile_obstack);
c906108c
SS
3020 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3021 SYMBOL_TYPE (sym) = type;
3022 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 3023 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
c906108c
SS
3024 add_symbol_to_list (sym, list_in_scope);
3025 }
3026}
3027
3028/*
3029
c5aa993b 3030 LOCAL FUNCTION
c906108c 3031
c5aa993b 3032 decode_mod_fund_type -- decode a modified fundamental type
c906108c 3033
c5aa993b 3034 SYNOPSIS
c906108c 3035
c5aa993b 3036 static struct type *decode_mod_fund_type (char *typedata)
c906108c 3037
c5aa993b 3038 DESCRIPTION
c906108c 3039
c5aa993b
JM
3040 Decode a block of data containing a modified fundamental
3041 type specification. TYPEDATA is a pointer to the block,
3042 which starts with a length containing the size of the rest
3043 of the block. At the end of the block is a fundmental type
3044 code value that gives the fundamental type. Everything
3045 in between are type modifiers.
c906108c 3046
c5aa993b
JM
3047 We simply compute the number of modifiers and call the general
3048 function decode_modified_type to do the actual work.
3049 */
c906108c
SS
3050
3051static struct type *
fba45db2 3052decode_mod_fund_type (char *typedata)
c906108c
SS
3053{
3054 struct type *typep = NULL;
3055 unsigned short modcount;
3056 int nbytes;
c5aa993b 3057
c906108c
SS
3058 /* Get the total size of the block, exclusive of the size itself */
3059
3060 nbytes = attribute_size (AT_mod_fund_type);
3061 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3062 typedata += nbytes;
3063
3064 /* Deduct the size of the fundamental type bytes at the end of the block. */
3065
3066 modcount -= attribute_size (AT_fund_type);
3067
3068 /* Now do the actual decoding */
3069
3070 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3071 return (typep);
3072}
3073
3074/*
3075
c5aa993b 3076 LOCAL FUNCTION
c906108c 3077
c5aa993b 3078 decode_mod_u_d_type -- decode a modified user defined type
c906108c 3079
c5aa993b 3080 SYNOPSIS
c906108c 3081
c5aa993b 3082 static struct type *decode_mod_u_d_type (char *typedata)
c906108c 3083
c5aa993b 3084 DESCRIPTION
c906108c 3085
c5aa993b
JM
3086 Decode a block of data containing a modified user defined
3087 type specification. TYPEDATA is a pointer to the block,
3088 which consists of a two byte length, containing the size
3089 of the rest of the block. At the end of the block is a
3090 four byte value that gives a reference to a user defined type.
3091 Everything in between are type modifiers.
c906108c 3092
c5aa993b
JM
3093 We simply compute the number of modifiers and call the general
3094 function decode_modified_type to do the actual work.
3095 */
c906108c
SS
3096
3097static struct type *
fba45db2 3098decode_mod_u_d_type (char *typedata)
c906108c
SS
3099{
3100 struct type *typep = NULL;
3101 unsigned short modcount;
3102 int nbytes;
c5aa993b 3103
c906108c
SS
3104 /* Get the total size of the block, exclusive of the size itself */
3105
3106 nbytes = attribute_size (AT_mod_u_d_type);
3107 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3108 typedata += nbytes;
3109
3110 /* Deduct the size of the reference type bytes at the end of the block. */
3111
3112 modcount -= attribute_size (AT_user_def_type);
3113
3114 /* Now do the actual decoding */
3115
3116 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3117 return (typep);
3118}
3119
3120/*
3121
c5aa993b 3122 LOCAL FUNCTION
c906108c 3123
c5aa993b 3124 decode_modified_type -- decode modified user or fundamental type
c906108c 3125
c5aa993b 3126 SYNOPSIS
c906108c 3127
c5aa993b
JM
3128 static struct type *decode_modified_type (char *modifiers,
3129 unsigned short modcount, int mtype)
c906108c 3130
c5aa993b 3131 DESCRIPTION
c906108c 3132
c5aa993b
JM
3133 Decode a modified type, either a modified fundamental type or
3134 a modified user defined type. MODIFIERS is a pointer to the
3135 block of bytes that define MODCOUNT modifiers. Immediately
3136 following the last modifier is a short containing the fundamental
3137 type or a long containing the reference to the user defined
3138 type. Which one is determined by MTYPE, which is either
3139 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3140 type we are generating.
c906108c 3141
c5aa993b
JM
3142 We call ourself recursively to generate each modified type,`
3143 until MODCOUNT reaches zero, at which point we have consumed
3144 all the modifiers and generate either the fundamental type or
3145 user defined type. When the recursion unwinds, each modifier
3146 is applied in turn to generate the full modified type.
3147
3148 NOTES
c906108c 3149
c5aa993b
JM
3150 If we find a modifier that we don't recognize, and it is not one
3151 of those reserved for application specific use, then we issue a
3152 warning and simply ignore the modifier.
c906108c 3153
c5aa993b 3154 BUGS
c906108c 3155
c5aa993b 3156 We currently ignore MOD_const and MOD_volatile. (FIXME)
c906108c
SS
3157
3158 */
3159
3160static struct type *
fba45db2 3161decode_modified_type (char *modifiers, unsigned int modcount, int mtype)
c906108c
SS
3162{
3163 struct type *typep = NULL;
3164 unsigned short fundtype;
3165 DIE_REF die_ref;
3166 char modifier;
3167 int nbytes;
c5aa993b 3168
c906108c
SS
3169 if (modcount == 0)
3170 {
3171 switch (mtype)
3172 {
3173 case AT_mod_fund_type:
3174 nbytes = attribute_size (AT_fund_type);
3175 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3176 current_objfile);
3177 typep = decode_fund_type (fundtype);
3178 break;
3179 case AT_mod_u_d_type:
3180 nbytes = attribute_size (AT_user_def_type);
3181 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3182 current_objfile);
b59661bd
AC
3183 typep = lookup_utype (die_ref);
3184 if (typep == NULL)
c906108c
SS
3185 {
3186 typep = alloc_utype (die_ref, NULL);
3187 }
3188 break;
3189 default:
23136709 3190 complaint (&symfile_complaints,
e2e0b3e5 3191 _("DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)"),
23136709 3192 DIE_ID, DIE_NAME, mtype);
c906108c
SS
3193 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3194 break;
3195 }
3196 }
3197 else
3198 {
3199 modifier = *modifiers++;
3200 typep = decode_modified_type (modifiers, --modcount, mtype);
3201 switch (modifier)
3202 {
c5aa993b
JM
3203 case MOD_pointer_to:
3204 typep = lookup_pointer_type (typep);
3205 break;
3206 case MOD_reference_to:
3207 typep = lookup_reference_type (typep);
3208 break;
3209 case MOD_const:
23136709 3210 complaint (&symfile_complaints,
e2e0b3e5 3211 _("DIE @ 0x%x \"%s\", type modifier 'const' ignored"), DIE_ID,
23136709 3212 DIE_NAME); /* FIXME */
c5aa993b
JM
3213 break;
3214 case MOD_volatile:
23136709 3215 complaint (&symfile_complaints,
e2e0b3e5 3216 _("DIE @ 0x%x \"%s\", type modifier 'volatile' ignored"),
23136709 3217 DIE_ID, DIE_NAME); /* FIXME */
c5aa993b
JM
3218 break;
3219 default:
3cb3398d
EZ
3220 if (!(MOD_lo_user <= (unsigned char) modifier))
3221#if 0
3222/* This part of the test would always be true, and it triggers a compiler
3223 warning. */
c5aa993b 3224 && (unsigned char) modifier <= MOD_hi_user))
3cb3398d 3225#endif
c5aa993b 3226 {
23136709 3227 complaint (&symfile_complaints,
e2e0b3e5 3228 _("DIE @ 0x%x \"%s\", unknown type modifier %u"), DIE_ID,
23136709 3229 DIE_NAME, modifier);
c5aa993b
JM
3230 }
3231 break;
c906108c
SS
3232 }
3233 }
3234 return (typep);
3235}
3236
3237/*
3238
c5aa993b 3239 LOCAL FUNCTION
c906108c 3240
c5aa993b 3241 decode_fund_type -- translate basic DWARF type to gdb base type
c906108c 3242
c5aa993b 3243 DESCRIPTION
c906108c 3244
c5aa993b
JM
3245 Given an integer that is one of the fundamental DWARF types,
3246 translate it to one of the basic internal gdb types and return
3247 a pointer to the appropriate gdb type (a "struct type *").
c906108c 3248
c5aa993b 3249 NOTES
c906108c 3250
c5aa993b
JM
3251 For robustness, if we are asked to translate a fundamental
3252 type that we are unprepared to deal with, we return int so
3253 callers can always depend upon a valid type being returned,
3254 and so gdb may at least do something reasonable by default.
3255 If the type is not in the range of those types defined as
3256 application specific types, we also issue a warning.
3257 */
c906108c
SS
3258
3259static struct type *
fba45db2 3260decode_fund_type (unsigned int fundtype)
c906108c
SS
3261{
3262 struct type *typep = NULL;
c5aa993b 3263
c906108c
SS
3264 switch (fundtype)
3265 {
3266
3267 case FT_void:
3268 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3269 break;
c5aa993b 3270
c906108c
SS
3271 case FT_boolean: /* Was FT_set in AT&T version */
3272 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3273 break;
3274
3275 case FT_pointer: /* (void *) */
3276 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3277 typep = lookup_pointer_type (typep);
3278 break;
c5aa993b 3279
c906108c
SS
3280 case FT_char:
3281 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3282 break;
c5aa993b 3283
c906108c
SS
3284 case FT_signed_char:
3285 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3286 break;
3287
3288 case FT_unsigned_char:
3289 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3290 break;
c5aa993b 3291
c906108c
SS
3292 case FT_short:
3293 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3294 break;
3295
3296 case FT_signed_short:
3297 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3298 break;
c5aa993b 3299
c906108c
SS
3300 case FT_unsigned_short:
3301 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3302 break;
c5aa993b 3303
c906108c
SS
3304 case FT_integer:
3305 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3306 break;
3307
3308 case FT_signed_integer:
3309 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3310 break;
c5aa993b 3311
c906108c
SS
3312 case FT_unsigned_integer:
3313 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3314 break;
c5aa993b 3315
c906108c
SS
3316 case FT_long:
3317 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3318 break;
3319
3320 case FT_signed_long:
3321 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3322 break;
c5aa993b 3323
c906108c
SS
3324 case FT_unsigned_long:
3325 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3326 break;
c5aa993b 3327
c906108c
SS
3328 case FT_long_long:
3329 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3330 break;
3331
3332 case FT_signed_long_long:
3333 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3334 break;
3335
3336 case FT_unsigned_long_long:
3337 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3338 break;
3339
3340 case FT_float:
3341 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3342 break;
c5aa993b 3343
c906108c
SS
3344 case FT_dbl_prec_float:
3345 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3346 break;
c5aa993b 3347
c906108c
SS
3348 case FT_ext_prec_float:
3349 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3350 break;
c5aa993b 3351
c906108c
SS
3352 case FT_complex:
3353 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3354 break;
c5aa993b 3355
c906108c
SS
3356 case FT_dbl_prec_complex:
3357 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3358 break;
c5aa993b 3359
c906108c
SS
3360 case FT_ext_prec_complex:
3361 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3362 break;
c5aa993b 3363
c906108c
SS
3364 }
3365
3366 if (typep == NULL)
3367 {
3368 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3369 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3370 {
23136709 3371 complaint (&symfile_complaints,
e2e0b3e5 3372 _("DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x"),
23136709 3373 DIE_ID, DIE_NAME, fundtype);
c906108c
SS
3374 }
3375 }
c5aa993b 3376
c906108c
SS
3377 return (typep);
3378}
3379
3380/*
3381
c5aa993b 3382 LOCAL FUNCTION
c906108c 3383
c5aa993b 3384 create_name -- allocate a fresh copy of a string on an obstack
c906108c 3385
c5aa993b 3386 DESCRIPTION
c906108c 3387
c5aa993b
JM
3388 Given a pointer to a string and a pointer to an obstack, allocates
3389 a fresh copy of the string on the specified obstack.
c906108c 3390
c5aa993b 3391 */
c906108c
SS
3392
3393static char *
fba45db2 3394create_name (char *name, struct obstack *obstackp)
c906108c
SS
3395{
3396 int length;
3397 char *newname;
3398
3399 length = strlen (name) + 1;
3400 newname = (char *) obstack_alloc (obstackp, length);
3401 strcpy (newname, name);
3402 return (newname);
3403}
3404
3405/*
3406
c5aa993b 3407 LOCAL FUNCTION
c906108c 3408
c5aa993b 3409 basicdieinfo -- extract the minimal die info from raw die data
c906108c 3410
c5aa993b 3411 SYNOPSIS
c906108c 3412
c5aa993b
JM
3413 void basicdieinfo (char *diep, struct dieinfo *dip,
3414 struct objfile *objfile)
c906108c 3415
c5aa993b 3416 DESCRIPTION
c906108c 3417
c5aa993b
JM
3418 Given a pointer to raw DIE data, and a pointer to an instance of a
3419 die info structure, this function extracts the basic information
3420 from the DIE data required to continue processing this DIE, along
3421 with some bookkeeping information about the DIE.
c906108c 3422
c5aa993b
JM
3423 The information we absolutely must have includes the DIE tag,
3424 and the DIE length. If we need the sibling reference, then we
3425 will have to call completedieinfo() to process all the remaining
3426 DIE information.
c906108c 3427
c5aa993b
JM
3428 Note that since there is no guarantee that the data is properly
3429 aligned in memory for the type of access required (indirection
3430 through anything other than a char pointer), and there is no
3431 guarantee that it is in the same byte order as the gdb host,
3432 we call a function which deals with both alignment and byte
3433 swapping issues. Possibly inefficient, but quite portable.
c906108c 3434
c5aa993b
JM
3435 We also take care of some other basic things at this point, such
3436 as ensuring that the instance of the die info structure starts
3437 out completely zero'd and that curdie is initialized for use
3438 in error reporting if we have a problem with the current die.
c906108c 3439
c5aa993b
JM
3440 NOTES
3441
3442 All DIE's must have at least a valid length, thus the minimum
3443 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3444 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3445 are forced to be TAG_padding DIES.
c906108c 3446
c5aa993b
JM
3447 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3448 that if a padding DIE is used for alignment and the amount needed is
3449 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3450 enough to align to the next alignment boundry.
3451
3452 We do some basic sanity checking here, such as verifying that the
3453 length of the die would not cause it to overrun the recorded end of
3454 the buffer holding the DIE info. If we find a DIE that is either
3455 too small or too large, we force it's length to zero which should
3456 cause the caller to take appropriate action.
c906108c
SS
3457 */
3458
3459static void
fba45db2 3460basicdieinfo (struct dieinfo *dip, char *diep, struct objfile *objfile)
c906108c
SS
3461{
3462 curdie = dip;
3463 memset (dip, 0, sizeof (struct dieinfo));
c5aa993b
JM
3464 dip->die = diep;
3465 dip->die_ref = dbroff + (diep - dbbase);
3466 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3467 objfile);
3468 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3469 ((diep + dip->die_length) > (dbbase + dbsize)))
c906108c 3470 {
23136709 3471 complaint (&symfile_complaints,
e2e0b3e5 3472 _("DIE @ 0x%x \"%s\", malformed DIE, bad length (%ld bytes)"),
23136709 3473 DIE_ID, DIE_NAME, dip->die_length);
c5aa993b 3474 dip->die_length = 0;
c906108c 3475 }
c5aa993b 3476 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
c906108c 3477 {
c5aa993b 3478 dip->die_tag = TAG_padding;
c906108c
SS
3479 }
3480 else
3481 {
3482 diep += SIZEOF_DIE_LENGTH;
c5aa993b
JM
3483 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3484 objfile);
c906108c
SS
3485 }
3486}
3487
3488/*
3489
c5aa993b 3490 LOCAL FUNCTION
c906108c 3491
c5aa993b 3492 completedieinfo -- finish reading the information for a given DIE
c906108c 3493
c5aa993b 3494 SYNOPSIS
c906108c 3495
c5aa993b 3496 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c 3497
c5aa993b 3498 DESCRIPTION
c906108c 3499
c5aa993b
JM
3500 Given a pointer to an already partially initialized die info structure,
3501 scan the raw DIE data and finish filling in the die info structure
3502 from the various attributes found.
c906108c 3503
c5aa993b
JM
3504 Note that since there is no guarantee that the data is properly
3505 aligned in memory for the type of access required (indirection
3506 through anything other than a char pointer), and there is no
3507 guarantee that it is in the same byte order as the gdb host,
3508 we call a function which deals with both alignment and byte
3509 swapping issues. Possibly inefficient, but quite portable.
c906108c 3510
c5aa993b
JM
3511 NOTES
3512
3513 Each time we are called, we increment the diecount variable, which
3514 keeps an approximate count of the number of dies processed for
3515 each compilation unit. This information is presented to the user
3516 if the info_verbose flag is set.
c906108c
SS
3517
3518 */
3519
3520static void
fba45db2 3521completedieinfo (struct dieinfo *dip, struct objfile *objfile)
c906108c
SS
3522{
3523 char *diep; /* Current pointer into raw DIE data */
3524 char *end; /* Terminate DIE scan here */
3525 unsigned short attr; /* Current attribute being scanned */
3526 unsigned short form; /* Form of the attribute */
3527 int nbytes; /* Size of next field to read */
c5aa993b 3528
c906108c 3529 diecount++;
c5aa993b
JM
3530 diep = dip->die;
3531 end = diep + dip->die_length;
c906108c
SS
3532 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3533 while (diep < end)
3534 {
3535 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3536 diep += SIZEOF_ATTRIBUTE;
b59661bd
AC
3537 nbytes = attribute_size (attr);
3538 if (nbytes == -1)
c906108c 3539 {
23136709 3540 complaint (&symfile_complaints,
e2e0b3e5 3541 _("DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes"),
23136709 3542 DIE_ID, DIE_NAME);
c906108c
SS
3543 diep = end;
3544 continue;
3545 }
3546 switch (attr)
3547 {
3548 case AT_fund_type:
c5aa993b
JM
3549 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3550 objfile);
c906108c
SS
3551 break;
3552 case AT_ordering:
c5aa993b
JM
3553 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3554 objfile);
c906108c
SS
3555 break;
3556 case AT_bit_offset:
c5aa993b
JM
3557 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3558 objfile);
c906108c
SS
3559 break;
3560 case AT_sibling:
c5aa993b
JM
3561 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3562 objfile);
c906108c
SS
3563 break;
3564 case AT_stmt_list:
c5aa993b
JM
3565 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3566 objfile);
3567 dip->has_at_stmt_list = 1;
c906108c
SS
3568 break;
3569 case AT_low_pc:
c5aa993b
JM
3570 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3571 objfile);
3572 dip->at_low_pc += baseaddr;
3573 dip->has_at_low_pc = 1;
c906108c
SS
3574 break;
3575 case AT_high_pc:
c5aa993b
JM
3576 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3577 objfile);
3578 dip->at_high_pc += baseaddr;
c906108c
SS
3579 break;
3580 case AT_language:
c5aa993b
JM
3581 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 objfile);
c906108c
SS
3583 break;
3584 case AT_user_def_type:
c5aa993b
JM
3585 dip->at_user_def_type = target_to_host (diep, nbytes,
3586 GET_UNSIGNED, objfile);
c906108c
SS
3587 break;
3588 case AT_byte_size:
c5aa993b
JM
3589 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3590 objfile);
3591 dip->has_at_byte_size = 1;
c906108c
SS
3592 break;
3593 case AT_bit_size:
c5aa993b
JM
3594 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3595 objfile);
c906108c
SS
3596 break;
3597 case AT_member:
c5aa993b
JM
3598 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3599 objfile);
c906108c
SS
3600 break;
3601 case AT_discr:
c5aa993b
JM
3602 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3603 objfile);
c906108c
SS
3604 break;
3605 case AT_location:
c5aa993b 3606 dip->at_location = diep;
c906108c
SS
3607 break;
3608 case AT_mod_fund_type:
c5aa993b 3609 dip->at_mod_fund_type = diep;
c906108c
SS
3610 break;
3611 case AT_subscr_data:
c5aa993b 3612 dip->at_subscr_data = diep;
c906108c
SS
3613 break;
3614 case AT_mod_u_d_type:
c5aa993b 3615 dip->at_mod_u_d_type = diep;
c906108c
SS
3616 break;
3617 case AT_element_list:
c5aa993b
JM
3618 dip->at_element_list = diep;
3619 dip->short_element_list = 0;
c906108c
SS
3620 break;
3621 case AT_short_element_list:
c5aa993b
JM
3622 dip->at_element_list = diep;
3623 dip->short_element_list = 1;
c906108c
SS
3624 break;
3625 case AT_discr_value:
c5aa993b 3626 dip->at_discr_value = diep;
c906108c
SS
3627 break;
3628 case AT_string_length:
c5aa993b 3629 dip->at_string_length = diep;
c906108c
SS
3630 break;
3631 case AT_name:
c5aa993b 3632 dip->at_name = diep;
c906108c
SS
3633 break;
3634 case AT_comp_dir:
3635 /* For now, ignore any "hostname:" portion, since gdb doesn't
3636 know how to deal with it. (FIXME). */
c5aa993b
JM
3637 dip->at_comp_dir = strrchr (diep, ':');
3638 if (dip->at_comp_dir != NULL)
c906108c 3639 {
c5aa993b 3640 dip->at_comp_dir++;
c906108c
SS
3641 }
3642 else
3643 {
c5aa993b 3644 dip->at_comp_dir = diep;
c906108c
SS
3645 }
3646 break;
3647 case AT_producer:
c5aa993b 3648 dip->at_producer = diep;
c906108c
SS
3649 break;
3650 case AT_start_scope:
c5aa993b
JM
3651 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
c906108c
SS
3653 break;
3654 case AT_stride_size:
c5aa993b
JM
3655 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
c906108c
SS
3657 break;
3658 case AT_src_info:
c5aa993b
JM
3659 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
c906108c
SS
3661 break;
3662 case AT_prototyped:
c5aa993b 3663 dip->at_prototyped = diep;
c906108c
SS
3664 break;
3665 default:
3666 /* Found an attribute that we are unprepared to handle. However
3667 it is specifically one of the design goals of DWARF that
3668 consumers should ignore unknown attributes. As long as the
3669 form is one that we recognize (so we know how to skip it),
3670 we can just ignore the unknown attribute. */
3671 break;
3672 }
3673 form = FORM_FROM_ATTR (attr);
3674 switch (form)
3675 {
3676 case FORM_DATA2:
3677 diep += 2;
3678 break;
3679 case FORM_DATA4:
3680 case FORM_REF:
3681 diep += 4;
3682 break;
3683 case FORM_DATA8:
3684 diep += 8;
3685 break;
3686 case FORM_ADDR:
3687 diep += TARGET_FT_POINTER_SIZE (objfile);
3688 break;
3689 case FORM_BLOCK2:
3690 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3691 break;
3692 case FORM_BLOCK4:
3693 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3694 break;
3695 case FORM_STRING:
3696 diep += strlen (diep) + 1;
3697 break;
3698 default:
23136709 3699 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c906108c
SS
3700 diep = end;
3701 break;
3702 }
3703 }
3704}
3705
3706/*
3707
c5aa993b 3708 LOCAL FUNCTION
c906108c 3709
c5aa993b 3710 target_to_host -- swap in target data to host
c906108c 3711
c5aa993b 3712 SYNOPSIS
c906108c 3713
c5aa993b
JM
3714 target_to_host (char *from, int nbytes, int signextend,
3715 struct objfile *objfile)
c906108c 3716
c5aa993b 3717 DESCRIPTION
c906108c 3718
c5aa993b
JM
3719 Given pointer to data in target format in FROM, a byte count for
3720 the size of the data in NBYTES, a flag indicating whether or not
3721 the data is signed in SIGNEXTEND, and a pointer to the current
3722 objfile in OBJFILE, convert the data to host format and return
3723 the converted value.
c906108c 3724
c5aa993b 3725 NOTES
c906108c 3726
c5aa993b
JM
3727 FIXME: If we read data that is known to be signed, and expect to
3728 use it as signed data, then we need to explicitly sign extend the
3729 result until the bfd library is able to do this for us.
c906108c 3730
c5aa993b 3731 FIXME: Would a 32 bit target ever need an 8 byte result?
c906108c
SS
3732
3733 */
3734
3735static CORE_ADDR
fba45db2
KB
3736target_to_host (char *from, int nbytes, int signextend, /* FIXME: Unused */
3737 struct objfile *objfile)
c906108c
SS
3738{
3739 CORE_ADDR rtnval;
3740
3741 switch (nbytes)
3742 {
c5aa993b
JM
3743 case 8:
3744 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3745 break;
3746 case 4:
3747 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3748 break;
3749 case 2:
3750 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3751 break;
3752 case 1:
3753 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3754 break;
3755 default:
23136709 3756 complaint (&symfile_complaints,
e2e0b3e5 3757 _("DIE @ 0x%x \"%s\", no bfd support for %d byte data object"),
23136709 3758 DIE_ID, DIE_NAME, nbytes);
c5aa993b
JM
3759 rtnval = 0;
3760 break;
c906108c
SS
3761 }
3762 return (rtnval);
3763}
3764
3765/*
3766
c5aa993b 3767 LOCAL FUNCTION
c906108c 3768
c5aa993b 3769 attribute_size -- compute size of data for a DWARF attribute
c906108c 3770
c5aa993b 3771 SYNOPSIS
c906108c 3772
c5aa993b 3773 static int attribute_size (unsigned int attr)
c906108c 3774
c5aa993b 3775 DESCRIPTION
c906108c 3776
c5aa993b
JM
3777 Given a DWARF attribute in ATTR, compute the size of the first
3778 piece of data associated with this attribute and return that
3779 size.
c906108c 3780
c5aa993b 3781 Returns -1 for unrecognized attributes.
c906108c
SS
3782
3783 */
3784
3785static int
fba45db2 3786attribute_size (unsigned int attr)
c906108c
SS
3787{
3788 int nbytes; /* Size of next data for this attribute */
3789 unsigned short form; /* Form of the attribute */
3790
3791 form = FORM_FROM_ATTR (attr);
3792 switch (form)
3793 {
c5aa993b
JM
3794 case FORM_STRING: /* A variable length field is next */
3795 nbytes = 0;
3796 break;
3797 case FORM_DATA2: /* Next 2 byte field is the data itself */
3798 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3799 nbytes = 2;
3800 break;
3801 case FORM_DATA4: /* Next 4 byte field is the data itself */
3802 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3803 case FORM_REF: /* Next 4 byte field is a DIE offset */
3804 nbytes = 4;
3805 break;
3806 case FORM_DATA8: /* Next 8 byte field is the data itself */
3807 nbytes = 8;
3808 break;
3809 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3810 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3811 break;
3812 default:
23136709 3813 unknown_attribute_form_complaint (DIE_ID, DIE_NAME, form);
c5aa993b
JM
3814 nbytes = -1;
3815 break;
3816 }
c906108c
SS
3817 return (nbytes);
3818}