]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dwarfread.c
Update FSF address.
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
CommitLineData
35f5886e 1/* DWARF debugging format support for GDB.
bbcc95bd 2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
1ab3bf1b 3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
35f5886e
FF
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
6c9638b4 20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
35f5886e
FF
21
22/*
23
9745ba07
JK
24FIXME: Do we need to generate dependencies in partial symtabs?
25(Perhaps we don't need to).
35f5886e 26
35f5886e
FF
27FIXME: Resolve minor differences between what information we put in the
28partial symbol table and what dbxread puts in. For example, we don't yet
29put enum constants there. And dbxread seems to invent a lot of typedefs
30we never see. Use the new printpsym command to see the partial symbol table
31contents.
32
35f5886e
FF
33FIXME: Figure out a better way to tell gdb about the name of the function
34contain the user's entry point (I.E. main())
35
35f5886e
FF
36FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37other things to work on, if you get bored. :-)
38
39*/
4d315a07 40
d747e0af 41#include "defs.h"
35f5886e 42#include "symtab.h"
1ab3bf1b 43#include "gdbtypes.h"
35f5886e 44#include "symfile.h"
5e2e79f8 45#include "objfiles.h"
f5f0679a 46#include "elf/dwarf.h"
4d315a07 47#include "buildsym.h"
2dbde378 48#include "demangle.h"
bf229b4e
FF
49#include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50#include "language.h"
51b80b00 51#include "complaints.h"
35f5886e 52
d5931d79 53#include <fcntl.h>
2b576293 54#include "gdb_string.h"
51b80b00 55
d5931d79
JG
56#ifndef NO_SYS_FILE
57#include <sys/file.h>
58#endif
59
60/* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61#ifndef L_SET
62#define L_SET 0
63#endif
64
51b80b00
FF
65/* Some macros to provide DIE info for complaints. */
66
67#define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68#define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70/* Complaints that can be issued during DWARF debug info reading. */
71
72struct complaint no_bfd_get_N =
73{
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75};
76
77struct complaint malformed_die =
78{
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80};
81
82struct complaint bad_die_ref =
83{
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85};
86
87struct complaint unknown_attribute_form =
88{
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90};
91
92struct complaint unknown_attribute_length =
93{
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95};
96
97struct complaint unexpected_fund_type =
98{
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100};
101
102struct complaint unknown_type_modifier =
103{
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105};
106
107struct complaint volatile_ignored =
108{
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110};
111
112struct complaint const_ignored =
113{
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115};
116
117struct complaint botched_modified_type =
118{
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120};
121
122struct complaint op_deref2 =
123{
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125};
126
127struct complaint op_deref4 =
128{
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130};
131
132struct complaint basereg_not_handled =
133{
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135};
136
137struct complaint dup_user_type_allocation =
138{
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140};
141
142struct complaint dup_user_type_definition =
143{
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145};
146
147struct complaint missing_tag =
148{
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150};
151
152struct complaint bad_array_element_type =
153{
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155};
156
157struct complaint subscript_data_items =
158{
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160};
161
162struct complaint unhandled_array_subscript_format =
163{
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165};
166
167struct complaint unknown_array_subscript_format =
168{
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170};
171
172struct complaint not_row_major =
173{
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175};
35f5886e 176
13b5a7ff 177typedef unsigned int DIE_REF; /* Reference to a DIE */
35f5886e 178
4d315a07
FF
179#ifndef GCC_PRODUCER
180#define GCC_PRODUCER "GNU C "
181#endif
35f5886e 182
2dbde378
FF
183#ifndef GPLUS_PRODUCER
184#define GPLUS_PRODUCER "GNU C++ "
185#endif
186
187#ifndef LCC_PRODUCER
3dc755fb 188#define LCC_PRODUCER "NCR C/C++"
2dbde378
FF
189#endif
190
93bb6e65
FF
191#ifndef CHILL_PRODUCER
192#define CHILL_PRODUCER "GNU Chill "
193#endif
93bb6e65 194
84bdfea6
PS
195/* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196#ifndef DWARF_REG_TO_REGNUM
197#define DWARF_REG_TO_REGNUM(num) (num)
198#endif
199
13b5a7ff
FF
200/* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207#define GET_UNSIGNED 0 /* No sign extension required */
208#define GET_SIGNED 1 /* Sign extension required */
209
210/* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214#define SIZEOF_DIE_LENGTH 4
215#define SIZEOF_DIE_TAG 2
216#define SIZEOF_ATTRIBUTE 2
217#define SIZEOF_FORMAT_SPECIFIER 1
218#define SIZEOF_FMT_FT 2
219#define SIZEOF_LINETBL_LENGTH 4
220#define SIZEOF_LINETBL_LINENO 4
221#define SIZEOF_LINETBL_STMT 2
222#define SIZEOF_LINETBL_DELTA 4
223#define SIZEOF_LOC_ATOM_CODE 1
224
225#define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227/* Macros that return the sizes of various types of data in the target
228 environment.
229
2d6d969c
FF
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237#define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238#define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
95967e73 239
768be6e1
FF
240/* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247#define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249/* External variables referenced. */
250
35f5886e 251extern int info_verbose; /* From main.c; nonzero => verbose */
318bf84f 252extern char *warning_pre_print; /* From utils.c */
35f5886e
FF
253
254/* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
13b5a7ff 260 of the current DIE, which are specifically unordered within the DIE,
35f5886e
FF
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
2d6186f4 276 such as AT_low_pc, without restricting the values of the field,
35f5886e
FF
277 we need someway to note that we found such an attribute.
278
279 */
280
281typedef char BLOCK;
282
283struct dieinfo {
13b5a7ff
FF
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
306d27ca
DE
303 CORE_ADDR at_low_pc;
304 CORE_ADDR at_high_pc;
13b5a7ff
FF
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
13b5a7ff
FF
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
13b5a7ff
FF
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
50055e94 318 unsigned int has_at_byte_size:1;
13b5a7ff 319 unsigned int short_element_list:1;
35f5886e
FF
320};
321
322static int diecount; /* Approximate count of dies for compilation unit */
323static struct dieinfo *curdie; /* For warnings and such */
324
325static char *dbbase; /* Base pointer to dwarf info */
4090fe1c 326static int dbsize; /* Size of dwarf info in bytes */
35f5886e
FF
327static int dbroff; /* Relative offset from start of .debug section */
328static char *lnbase; /* Base pointer to line section */
329static int isreg; /* Kludge to identify register variables */
bbcc95bd 330static int optimized_out; /* Kludge to identify optimized out variables */
a1c8d76e
JK
331/* Kludge to identify basereg references. Nonzero if we have an offset
332 relative to a basereg. */
333static int offreg;
334/* Which base register is it relative to? */
335static int basereg;
35f5886e 336
2670f34d 337/* This value is added to each symbol value. FIXME: Generalize to
3c02636b
JK
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
35f5886e
FF
340static CORE_ADDR baseaddr; /* Add to each symbol value */
341
2670f34d
JG
342/* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344static struct section_offsets *base_section_offsets;
345
f133a597
JK
346/* We put a pointer to this structure in the read_symtab_private field
347 of the psymtab. */
35f5886e
FF
348
349struct dwfinfo {
989d9cba
JK
350 /* Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed. */
352 file_ptr dbfoff;
353 /* Relative offset from the start of the ".debug" section to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion. */
360 int dbroff;
361 /* The size of the chunk of DIE's being examined, in bytes. */
362 int dblength;
363 /* The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit. */
368 file_ptr lnfoff;
35f5886e
FF
369};
370
371#define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
372#define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
373#define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
374#define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
375
4d315a07
FF
376/* The generic symbol table building routines have separate lists for
377 file scope symbols and all all other scopes (local scopes). So
378 we need to select the right one to pass to add_symbol_to_list().
379 We do it by keeping a pointer to the correct list in list_in_scope.
35f5886e 380
4d315a07
FF
381 FIXME: The original dwarf code just treated the file scope as the first
382 local scope, and all other local scopes as nested local scopes, and worked
383 fine. Check to see if we really need to distinguish these in buildsym.c */
35f5886e 384
99140c31 385struct pending **list_in_scope = &file_symbols;
35f5886e
FF
386
387/* DIES which have user defined types or modified user defined types refer to
388 other DIES for the type information. Thus we need to associate the offset
389 of a DIE for a user defined type with a pointer to the type information.
390
391 Originally this was done using a simple but expensive algorithm, with an
392 array of unsorted structures, each containing an offset/type-pointer pair.
393 This array was scanned linearly each time a lookup was done. The result
394 was that gdb was spending over half it's startup time munging through this
395 array of pointers looking for a structure that had the right offset member.
396
397 The second attempt used the same array of structures, but the array was
398 sorted using qsort each time a new offset/type was recorded, and a binary
399 search was used to find the type pointer for a given DIE offset. This was
400 even slower, due to the overhead of sorting the array each time a new
401 offset/type pair was entered.
402
403 The third attempt uses a fixed size array of type pointers, indexed by a
404 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
405 we can divide any DIE offset by 4 to obtain a unique index into this fixed
406 size array. Since each element is a 4 byte pointer, it takes exactly as
407 much memory to hold this array as to hold the DWARF info for a given
bf229b4e
FF
408 compilation unit. But it gets freed as soon as we are done with it.
409 This has worked well in practice, as a reasonable tradeoff between memory
410 consumption and speed, without having to resort to much more complicated
411 algorithms. */
35f5886e
FF
412
413static struct type **utypes; /* Pointer to array of user type pointers */
414static int numutypes; /* Max number of user type pointers */
415
bf229b4e
FF
416/* Maintain an array of referenced fundamental types for the current
417 compilation unit being read. For DWARF version 1, we have to construct
418 the fundamental types on the fly, since no information about the
419 fundamental types is supplied. Each such fundamental type is created by
420 calling a language dependent routine to create the type, and then a
421 pointer to that type is then placed in the array at the index specified
422 by it's FT_<TYPENAME> value. The array has a fixed size set by the
423 FT_NUM_MEMBERS compile time constant, which is the number of predefined
424 fundamental types gdb knows how to construct. */
425
426static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
427
95ff889e
FF
428/* Record the language for the compilation unit which is currently being
429 processed. We know it once we have seen the TAG_compile_unit DIE,
430 and we need it while processing the DIE's for that compilation unit.
431 It is eventually saved in the symtab structure, but we don't finalize
432 the symtab struct until we have processed all the DIE's for the
bf229b4e
FF
433 compilation unit. We also need to get and save a pointer to the
434 language struct for this language, so we can call the language
435 dependent routines for doing things such as creating fundamental
436 types. */
95ff889e
FF
437
438static enum language cu_language;
bf229b4e 439static const struct language_defn *cu_language_defn;
95ff889e 440
35f5886e 441/* Forward declarations of static functions so we don't have to worry
1ab3bf1b
JG
442 about ordering within this file. */
443
13b5a7ff
FF
444static int
445attribute_size PARAMS ((unsigned int));
446
306d27ca 447static CORE_ADDR
13b5a7ff 448target_to_host PARAMS ((char *, int, int, struct objfile *));
95967e73 449
1ab3bf1b
JG
450static void
451add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
452
2dbde378
FF
453static void
454handle_producer PARAMS ((char *));
455
1ab3bf1b
JG
456static void
457read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e 458
58050209 459static void
1ab3bf1b 460read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
461
462static void
1ab3bf1b
JG
463read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
464 struct objfile *));
35f5886e 465
35f5886e 466static void
1ab3bf1b 467scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
35f5886e 468
35f5886e 469static void
d5931d79
JG
470scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 file_ptr, struct objfile *));
35f5886e
FF
472
473static void
1ab3bf1b 474add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 475
35f5886e 476static void
95967e73 477basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
35f5886e
FF
478
479static void
95967e73 480completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
1ab3bf1b
JG
481
482static void
483dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
484
485static void
486psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
35f5886e 487
c701c14c 488static void
1ab3bf1b 489read_ofile_symtab PARAMS ((struct partial_symtab *));
35f5886e
FF
490
491static void
1ab3bf1b 492process_dies PARAMS ((char *, char *, struct objfile *));
35f5886e
FF
493
494static void
1ab3bf1b
JG
495read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
496 struct objfile *));
35f5886e
FF
497
498static struct type *
84ffdec2 499decode_array_element_type PARAMS ((char *));
35f5886e
FF
500
501static struct type *
85f0a848 502decode_subscript_data_item PARAMS ((char *, char *));
35f5886e
FF
503
504static void
1ab3bf1b 505dwarf_read_array_type PARAMS ((struct dieinfo *));
35f5886e 506
9e4c1921 507static void
1ab3bf1b 508read_tag_pointer_type PARAMS ((struct dieinfo *dip));
9e4c1921 509
ec16f701
FF
510static void
511read_tag_string_type PARAMS ((struct dieinfo *dip));
512
35f5886e 513static void
1ab3bf1b 514read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
35f5886e
FF
515
516static void
1ab3bf1b 517read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
518
519static struct type *
1ab3bf1b 520struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
35f5886e
FF
521
522static struct type *
1ab3bf1b 523enum_type PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 524
35f5886e 525static void
1ab3bf1b 526decode_line_numbers PARAMS ((char *));
35f5886e
FF
527
528static struct type *
1ab3bf1b 529decode_die_type PARAMS ((struct dieinfo *));
35f5886e
FF
530
531static struct type *
1ab3bf1b 532decode_mod_fund_type PARAMS ((char *));
35f5886e
FF
533
534static struct type *
1ab3bf1b 535decode_mod_u_d_type PARAMS ((char *));
35f5886e
FF
536
537static struct type *
1c92ca6f 538decode_modified_type PARAMS ((char *, unsigned int, int));
35f5886e
FF
539
540static struct type *
1ab3bf1b 541decode_fund_type PARAMS ((unsigned int));
35f5886e
FF
542
543static char *
1ab3bf1b 544create_name PARAMS ((char *, struct obstack *));
35f5886e 545
35f5886e 546static struct type *
13b5a7ff 547lookup_utype PARAMS ((DIE_REF));
35f5886e
FF
548
549static struct type *
13b5a7ff 550alloc_utype PARAMS ((DIE_REF, struct type *));
35f5886e
FF
551
552static struct symbol *
1ab3bf1b 553new_symbol PARAMS ((struct dieinfo *, struct objfile *));
35f5886e 554
95ff889e
FF
555static void
556synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
557 struct type *));
558
35f5886e 559static int
1ab3bf1b 560locval PARAMS ((char *));
35f5886e 561
95ff889e
FF
562static void
563set_cu_language PARAMS ((struct dieinfo *));
564
bf229b4e
FF
565static struct type *
566dwarf_fundamental_type PARAMS ((struct objfile *, int));
567
568
569/*
570
571LOCAL FUNCTION
572
573 dwarf_fundamental_type -- lookup or create a fundamental type
574
575SYNOPSIS
576
577 struct type *
578 dwarf_fundamental_type (struct objfile *objfile, int typeid)
579
580DESCRIPTION
581
582 DWARF version 1 doesn't supply any fundamental type information,
583 so gdb has to construct such types. It has a fixed number of
584 fundamental types that it knows how to construct, which is the
585 union of all types that it knows how to construct for all languages
586 that it knows about. These are enumerated in gdbtypes.h.
587
588 As an example, assume we find a DIE that references a DWARF
589 fundamental type of FT_integer. We first look in the ftypes
590 array to see if we already have such a type, indexed by the
591 gdb internal value of FT_INTEGER. If so, we simply return a
592 pointer to that type. If not, then we ask an appropriate
593 language dependent routine to create a type FT_INTEGER, using
594 defaults reasonable for the current target machine, and install
595 that type in ftypes for future reference.
596
597RETURNS
598
599 Pointer to a fundamental type.
600
601*/
602
603static struct type *
604dwarf_fundamental_type (objfile, typeid)
605 struct objfile *objfile;
606 int typeid;
607{
608 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
609 {
610 error ("internal error - invalid fundamental type id %d", typeid);
611 }
612
613 /* Look for this particular type in the fundamental type vector. If one is
614 not found, create and install one appropriate for the current language
615 and the current target machine. */
616
617 if (ftypes[typeid] == NULL)
618 {
619 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
620 }
621
622 return (ftypes[typeid]);
623}
624
95ff889e
FF
625/*
626
627LOCAL FUNCTION
628
629 set_cu_language -- set local copy of language for compilation unit
630
631SYNOPSIS
632
633 void
634 set_cu_language (struct dieinfo *dip)
635
636DESCRIPTION
637
638 Decode the language attribute for a compilation unit DIE and
639 remember what the language was. We use this at various times
640 when processing DIE's for a given compilation unit.
641
642RETURNS
643
644 No return value.
645
646 */
647
648static void
649set_cu_language (dip)
650 struct dieinfo *dip;
651{
652 switch (dip -> at_language)
653 {
654 case LANG_C89:
655 case LANG_C:
656 cu_language = language_c;
657 break;
658 case LANG_C_PLUS_PLUS:
659 cu_language = language_cplus;
660 break;
e58de8a2
FF
661 case LANG_CHILL:
662 cu_language = language_chill;
663 break;
664 case LANG_MODULA2:
665 cu_language = language_m2;
666 break;
95ff889e
FF
667 case LANG_ADA83:
668 case LANG_COBOL74:
669 case LANG_COBOL85:
670 case LANG_FORTRAN77:
671 case LANG_FORTRAN90:
672 case LANG_PASCAL83:
2e4964ad 673 /* We don't know anything special about these yet. */
95ff889e
FF
674 cu_language = language_unknown;
675 break;
2e4964ad
FF
676 default:
677 /* If no at_language, try to deduce one from the filename */
678 cu_language = deduce_language_from_filename (dip -> at_name);
679 break;
95ff889e 680 }
bf229b4e 681 cu_language_defn = language_def (cu_language);
95ff889e
FF
682}
683
35f5886e
FF
684/*
685
686GLOBAL FUNCTION
687
688 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
689
690SYNOPSIS
691
d5931d79 692 void dwarf_build_psymtabs (struct objfile *objfile,
2670f34d 693 struct section_offsets *section_offsets,
d5931d79
JG
694 int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 file_ptr lnoffset, unsigned int lnsize)
35f5886e
FF
696
697DESCRIPTION
698
699 This function is called upon to build partial symtabs from files
700 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
701
d5931d79 702 It is passed a bfd* containing the DIES
35f5886e
FF
703 and line number information, the corresponding filename for that
704 file, a base address for relocating the symbols, a flag indicating
705 whether or not this debugging information is from a "main symbol
706 table" rather than a shared library or dynamically linked file,
707 and file offset/size pairs for the DIE information and line number
708 information.
709
710RETURNS
711
712 No return value.
713
714 */
715
716void
d5931d79
JG
717dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
718 lnoffset, lnsize)
719 struct objfile *objfile;
2670f34d 720 struct section_offsets *section_offsets;
1ab3bf1b 721 int mainline;
d5931d79 722 file_ptr dbfoff;
4090fe1c 723 unsigned int dbfsize;
d5931d79 724 file_ptr lnoffset;
1ab3bf1b 725 unsigned int lnsize;
35f5886e 726{
d5931d79 727 bfd *abfd = objfile->obfd;
35f5886e
FF
728 struct cleanup *back_to;
729
95967e73 730 current_objfile = objfile;
4090fe1c 731 dbsize = dbfsize;
35f5886e
FF
732 dbbase = xmalloc (dbsize);
733 dbroff = 0;
d5931d79
JG
734 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
735 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
736 {
737 free (dbbase);
d5931d79 738 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
35f5886e
FF
739 }
740 back_to = make_cleanup (free, dbbase);
741
742 /* If we are reinitializing, or if we have never loaded syms yet, init.
743 Since we have no idea how many DIES we are looking at, we just guess
744 some arbitrary value. */
745
13b5a7ff
FF
746 if (mainline || objfile -> global_psymbols.size == 0 ||
747 objfile -> static_psymbols.size == 0)
35f5886e 748 {
1ab3bf1b 749 init_psymbol_list (objfile, 1024);
35f5886e
FF
750 }
751
84ffdec2 752 /* Save the relocation factor where everybody can see it. */
f8b76e70 753
2670f34d
JG
754 base_section_offsets = section_offsets;
755 baseaddr = ANOFFSET (section_offsets, 0);
f8b76e70 756
35f5886e
FF
757 /* Follow the compilation unit sibling chain, building a partial symbol
758 table entry for each one. Save enough information about each compilation
759 unit to locate the full DWARF information later. */
760
d5931d79 761 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
35f5886e 762
35f5886e 763 do_cleanups (back_to);
95967e73 764 current_objfile = NULL;
35f5886e
FF
765}
766
35f5886e
FF
767/*
768
35f5886e
FF
769LOCAL FUNCTION
770
771 read_lexical_block_scope -- process all dies in a lexical block
772
773SYNOPSIS
774
775 static void read_lexical_block_scope (struct dieinfo *dip,
776 char *thisdie, char *enddie)
777
778DESCRIPTION
779
780 Process all the DIES contained within a lexical block scope.
781 Start a new scope, process the dies, and then close the scope.
782
783 */
784
785static void
1ab3bf1b
JG
786read_lexical_block_scope (dip, thisdie, enddie, objfile)
787 struct dieinfo *dip;
788 char *thisdie;
789 char *enddie;
790 struct objfile *objfile;
35f5886e 791{
4d315a07
FF
792 register struct context_stack *new;
793
4ed3a9ea 794 push_context (0, dip -> at_low_pc);
13b5a7ff 795 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
796 new = pop_context ();
797 if (local_symbols != NULL)
798 {
799 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
1ab3bf1b 800 dip -> at_high_pc, objfile);
4d315a07
FF
801 }
802 local_symbols = new -> locals;
35f5886e
FF
803}
804
805/*
806
807LOCAL FUNCTION
808
809 lookup_utype -- look up a user defined type from die reference
810
811SYNOPSIS
812
13b5a7ff 813 static type *lookup_utype (DIE_REF die_ref)
35f5886e
FF
814
815DESCRIPTION
816
817 Given a DIE reference, lookup the user defined type associated with
818 that DIE, if it has been registered already. If not registered, then
819 return NULL. Alloc_utype() can be called to register an empty
820 type for this reference, which will be filled in later when the
821 actual referenced DIE is processed.
822 */
823
824static struct type *
13b5a7ff
FF
825lookup_utype (die_ref)
826 DIE_REF die_ref;
35f5886e
FF
827{
828 struct type *type = NULL;
829 int utypeidx;
830
13b5a7ff 831 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
833 {
51b80b00 834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
835 }
836 else
837 {
838 type = *(utypes + utypeidx);
839 }
840 return (type);
841}
842
843
844/*
845
846LOCAL FUNCTION
847
848 alloc_utype -- add a user defined type for die reference
849
850SYNOPSIS
851
13b5a7ff 852 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
35f5886e
FF
853
854DESCRIPTION
855
13b5a7ff 856 Given a die reference DIE_REF, and a possible pointer to a user
35f5886e
FF
857 defined type UTYPEP, register that this reference has a user
858 defined type and either use the specified type in UTYPEP or
859 make a new empty type that will be filled in later.
860
861 We should only be called after calling lookup_utype() to verify that
13b5a7ff 862 there is not currently a type registered for DIE_REF.
35f5886e
FF
863 */
864
865static struct type *
13b5a7ff
FF
866alloc_utype (die_ref, utypep)
867 DIE_REF die_ref;
1ab3bf1b 868 struct type *utypep;
35f5886e
FF
869{
870 struct type **typep;
871 int utypeidx;
872
13b5a7ff 873 utypeidx = (die_ref - dbroff) / 4;
35f5886e
FF
874 typep = utypes + utypeidx;
875 if ((utypeidx < 0) || (utypeidx >= numutypes))
876 {
bf229b4e 877 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
51b80b00 878 complain (&bad_die_ref, DIE_ID, DIE_NAME);
35f5886e
FF
879 }
880 else if (*typep != NULL)
881 {
882 utypep = *typep;
51b80b00 883 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
35f5886e
FF
884 }
885 else
886 {
887 if (utypep == NULL)
888 {
8050a57b 889 utypep = alloc_type (current_objfile);
35f5886e
FF
890 }
891 *typep = utypep;
892 }
893 return (utypep);
894}
895
896/*
897
898LOCAL FUNCTION
899
900 decode_die_type -- return a type for a specified die
901
902SYNOPSIS
903
904 static struct type *decode_die_type (struct dieinfo *dip)
905
906DESCRIPTION
907
908 Given a pointer to a die information structure DIP, decode the
909 type of the die and return a pointer to the decoded type. All
910 dies without specific types default to type int.
911 */
912
913static struct type *
1ab3bf1b
JG
914decode_die_type (dip)
915 struct dieinfo *dip;
35f5886e
FF
916{
917 struct type *type = NULL;
918
919 if (dip -> at_fund_type != 0)
920 {
921 type = decode_fund_type (dip -> at_fund_type);
922 }
923 else if (dip -> at_mod_fund_type != NULL)
924 {
925 type = decode_mod_fund_type (dip -> at_mod_fund_type);
926 }
927 else if (dip -> at_user_def_type)
928 {
929 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
930 {
931 type = alloc_utype (dip -> at_user_def_type, NULL);
932 }
933 }
934 else if (dip -> at_mod_u_d_type)
935 {
936 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
937 }
938 else
939 {
bf229b4e 940 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
941 }
942 return (type);
943}
944
945/*
946
947LOCAL FUNCTION
948
949 struct_type -- compute and return the type for a struct or union
950
951SYNOPSIS
952
953 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
8b5b6fae 954 char *enddie, struct objfile *objfile)
35f5886e
FF
955
956DESCRIPTION
957
958 Given pointer to a die information structure for a die which
715cafcb
FF
959 defines a union or structure (and MUST define one or the other),
960 and pointers to the raw die data that define the range of dies which
961 define the members, compute and return the user defined type for the
962 structure or union.
35f5886e
FF
963 */
964
965static struct type *
1ab3bf1b
JG
966struct_type (dip, thisdie, enddie, objfile)
967 struct dieinfo *dip;
968 char *thisdie;
969 char *enddie;
970 struct objfile *objfile;
35f5886e
FF
971{
972 struct type *type;
973 struct nextfield {
974 struct nextfield *next;
975 struct field field;
976 };
977 struct nextfield *list = NULL;
978 struct nextfield *new;
979 int nfields = 0;
980 int n;
35f5886e 981 struct dieinfo mbr;
8b5b6fae 982 char *nextdie;
50055e94 983 int anonymous_size;
35f5886e 984
13b5a7ff 985 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 986 {
5edf98d7 987 /* No forward references created an empty type, so install one now */
13b5a7ff 988 type = alloc_utype (dip -> die_ref, NULL);
35f5886e 989 }
a3723a43 990 INIT_CPLUS_SPECIFIC(type);
13b5a7ff 991 switch (dip -> die_tag)
35f5886e 992 {
95ff889e
FF
993 case TAG_class_type:
994 TYPE_CODE (type) = TYPE_CODE_CLASS;
95ff889e 995 break;
715cafcb 996 case TAG_structure_type:
5edf98d7 997 TYPE_CODE (type) = TYPE_CODE_STRUCT;
715cafcb
FF
998 break;
999 case TAG_union_type:
1000 TYPE_CODE (type) = TYPE_CODE_UNION;
715cafcb
FF
1001 break;
1002 default:
1003 /* Should never happen */
1004 TYPE_CODE (type) = TYPE_CODE_UNDEF;
51b80b00 1005 complain (&missing_tag, DIE_ID, DIE_NAME);
715cafcb 1006 break;
35f5886e 1007 }
5edf98d7
FF
1008 /* Some compilers try to be helpful by inventing "fake" names for
1009 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1010 Thanks, but no thanks... */
715cafcb
FF
1011 if (dip -> at_name != NULL
1012 && *dip -> at_name != '~'
1013 && *dip -> at_name != '.')
35f5886e 1014 {
b2bebdb0
JK
1015 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1016 "", "", dip -> at_name);
35f5886e 1017 }
50055e94
FF
1018 /* Use whatever size is known. Zero is a valid size. We might however
1019 wish to check has_at_byte_size to make sure that some byte size was
1020 given explicitly, but DWARF doesn't specify that explicit sizes of
1021 zero have to present, so complaining about missing sizes should
1022 probably not be the default. */
1023 TYPE_LENGTH (type) = dip -> at_byte_size;
13b5a7ff 1024 thisdie += dip -> die_length;
35f5886e
FF
1025 while (thisdie < enddie)
1026 {
95967e73
FF
1027 basicdieinfo (&mbr, thisdie, objfile);
1028 completedieinfo (&mbr, objfile);
13b5a7ff 1029 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
35f5886e
FF
1030 {
1031 break;
1032 }
8b5b6fae
FF
1033 else if (mbr.at_sibling != 0)
1034 {
1035 nextdie = dbbase + mbr.at_sibling - dbroff;
1036 }
1037 else
1038 {
13b5a7ff 1039 nextdie = thisdie + mbr.die_length;
8b5b6fae 1040 }
13b5a7ff 1041 switch (mbr.die_tag)
35f5886e
FF
1042 {
1043 case TAG_member:
1044 /* Get space to record the next field's data. */
1045 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1046 new -> next = list;
1047 list = new;
1048 /* Save the data. */
50e0dc41
FF
1049 list -> field.name =
1050 obsavestring (mbr.at_name, strlen (mbr.at_name),
1051 &objfile -> type_obstack);
35f5886e
FF
1052 list -> field.type = decode_die_type (&mbr);
1053 list -> field.bitpos = 8 * locval (mbr.at_location);
4db8e515
FF
1054 /* Handle bit fields. */
1055 list -> field.bitsize = mbr.at_bit_size;
b8176214 1056 if (BITS_BIG_ENDIAN)
4db8e515 1057 {
b8176214
ILT
1058 /* For big endian bits, the at_bit_offset gives the
1059 additional bit offset from the MSB of the containing
1060 anonymous object to the MSB of the field. We don't
1061 have to do anything special since we don't need to
1062 know the size of the anonymous object. */
1063 list -> field.bitpos += mbr.at_bit_offset;
1064 }
1065 else
1066 {
1067 /* For little endian bits, we need to have a non-zero
1068 at_bit_size, so that we know we are in fact dealing
1069 with a bitfield. Compute the bit offset to the MSB
1070 of the anonymous object, subtract off the number of
1071 bits from the MSB of the field to the MSB of the
1072 object, and then subtract off the number of bits of
1073 the field itself. The result is the bit offset of
1074 the LSB of the field. */
1075 if (mbr.at_bit_size > 0)
50055e94 1076 {
b8176214
ILT
1077 if (mbr.has_at_byte_size)
1078 {
1079 /* The size of the anonymous object containing
1080 the bit field is explicit, so use the
1081 indicated size (in bytes). */
1082 anonymous_size = mbr.at_byte_size;
1083 }
1084 else
1085 {
1086 /* The size of the anonymous object containing
1087 the bit field matches the size of an object
1088 of the bit field's type. DWARF allows
1089 at_byte_size to be left out in such cases, as
1090 a debug information size optimization. */
1091 anonymous_size = TYPE_LENGTH (list -> field.type);
1092 }
1093 list -> field.bitpos +=
1094 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
50055e94 1095 }
4db8e515 1096 }
35f5886e
FF
1097 nfields++;
1098 break;
1099 default:
8b5b6fae 1100 process_dies (thisdie, nextdie, objfile);
35f5886e
FF
1101 break;
1102 }
8b5b6fae 1103 thisdie = nextdie;
35f5886e 1104 }
5edf98d7
FF
1105 /* Now create the vector of fields, and record how big it is. We may
1106 not even have any fields, if this DIE was generated due to a reference
1107 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1108 set, which clues gdb in to the fact that it needs to search elsewhere
1109 for the full structure definition. */
1110 if (nfields == 0)
35f5886e 1111 {
5edf98d7
FF
1112 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1113 }
1114 else
1115 {
1116 TYPE_NFIELDS (type) = nfields;
1117 TYPE_FIELDS (type) = (struct field *)
dac9734e 1118 TYPE_ALLOC (type, sizeof (struct field) * nfields);
5edf98d7
FF
1119 /* Copy the saved-up fields into the field vector. */
1120 for (n = nfields; list; list = list -> next)
1121 {
1122 TYPE_FIELD (type, --n) = list -> field;
1123 }
1124 }
35f5886e
FF
1125 return (type);
1126}
1127
1128/*
1129
1130LOCAL FUNCTION
1131
1132 read_structure_scope -- process all dies within struct or union
1133
1134SYNOPSIS
1135
1136 static void read_structure_scope (struct dieinfo *dip,
8b5b6fae 1137 char *thisdie, char *enddie, struct objfile *objfile)
35f5886e
FF
1138
1139DESCRIPTION
1140
1141 Called when we find the DIE that starts a structure or union
1142 scope (definition) to process all dies that define the members
1143 of the structure or union. DIP is a pointer to the die info
1144 struct for the DIE that names the structure or union.
1145
1146NOTES
1147
1148 Note that we need to call struct_type regardless of whether or not
84ce6717
FF
1149 the DIE has an at_name attribute, since it might be an anonymous
1150 structure or union. This gets the type entered into our set of
1151 user defined types.
1152
1153 However, if the structure is incomplete (an opaque struct/union)
1154 then suppress creating a symbol table entry for it since gdb only
1155 wants to find the one with the complete definition. Note that if
1156 it is complete, we just call new_symbol, which does it's own
1157 checking about whether the struct/union is anonymous or not (and
1158 suppresses creating a symbol table entry itself).
1159
35f5886e
FF
1160 */
1161
1162static void
1ab3bf1b
JG
1163read_structure_scope (dip, thisdie, enddie, objfile)
1164 struct dieinfo *dip;
1165 char *thisdie;
1166 char *enddie;
1167 struct objfile *objfile;
35f5886e
FF
1168{
1169 struct type *type;
1170 struct symbol *sym;
1171
8b5b6fae 1172 type = struct_type (dip, thisdie, enddie, objfile);
84ce6717 1173 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
35f5886e 1174 {
95ff889e
FF
1175 sym = new_symbol (dip, objfile);
1176 if (sym != NULL)
84ce6717
FF
1177 {
1178 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1179 if (cu_language == language_cplus)
1180 {
1181 synthesize_typedef (dip, objfile, type);
1182 }
84ce6717 1183 }
35f5886e
FF
1184 }
1185}
1186
1187/*
1188
1189LOCAL FUNCTION
1190
1191 decode_array_element_type -- decode type of the array elements
1192
1193SYNOPSIS
1194
1195 static struct type *decode_array_element_type (char *scan, char *end)
1196
1197DESCRIPTION
1198
1199 As the last step in decoding the array subscript information for an
1200 array DIE, we need to decode the type of the array elements. We are
1201 passed a pointer to this last part of the subscript information and
1202 must return the appropriate type. If the type attribute is not
1203 recognized, just warn about the problem and return type int.
1204 */
1205
1206static struct type *
84ffdec2 1207decode_array_element_type (scan)
1ab3bf1b 1208 char *scan;
35f5886e
FF
1209{
1210 struct type *typep;
13b5a7ff
FF
1211 DIE_REF die_ref;
1212 unsigned short attribute;
35f5886e 1213 unsigned short fundtype;
13b5a7ff 1214 int nbytes;
35f5886e 1215
13b5a7ff
FF
1216 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1217 current_objfile);
1218 scan += SIZEOF_ATTRIBUTE;
1219 if ((nbytes = attribute_size (attribute)) == -1)
1220 {
51b80b00 1221 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1223 }
1224 else
1225 {
1226 switch (attribute)
1227 {
1228 case AT_fund_type:
1229 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1230 current_objfile);
1231 typep = decode_fund_type (fundtype);
1232 break;
1233 case AT_mod_fund_type:
1234 typep = decode_mod_fund_type (scan);
1235 break;
1236 case AT_user_def_type:
1237 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1238 current_objfile);
1239 if ((typep = lookup_utype (die_ref)) == NULL)
1240 {
1241 typep = alloc_utype (die_ref, NULL);
1242 }
1243 break;
1244 case AT_mod_u_d_type:
1245 typep = decode_mod_u_d_type (scan);
1246 break;
1247 default:
51b80b00 1248 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
bf229b4e 1249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
13b5a7ff
FF
1250 break;
1251 }
35f5886e
FF
1252 }
1253 return (typep);
1254}
1255
1256/*
1257
1258LOCAL FUNCTION
1259
85f0a848 1260 decode_subscript_data_item -- decode array subscript item
35f5886e
FF
1261
1262SYNOPSIS
1263
85f0a848
FF
1264 static struct type *
1265 decode_subscript_data_item (char *scan, char *end)
35f5886e
FF
1266
1267DESCRIPTION
1268
1269 The array subscripts and the data type of the elements of an
1270 array are described by a list of data items, stored as a block
1271 of contiguous bytes. There is a data item describing each array
1272 dimension, and a final data item describing the element type.
1273 The data items are ordered the same as their appearance in the
1274 source (I.E. leftmost dimension first, next to leftmost second,
1275 etc).
1276
85f0a848
FF
1277 The data items describing each array dimension consist of four
1278 parts: (1) a format specifier, (2) type type of the subscript
1279 index, (3) a description of the low bound of the array dimension,
1280 and (4) a description of the high bound of the array dimension.
1281
1282 The last data item is the description of the type of each of
1283 the array elements.
1284
35f5886e 1285 We are passed a pointer to the start of the block of bytes
85f0a848
FF
1286 containing the remaining data items, and a pointer to the first
1287 byte past the data. This function recursively decodes the
1288 remaining data items and returns a type.
1289
1290 If we somehow fail to decode some data, we complain about it
1291 and return a type "array of int".
35f5886e
FF
1292
1293BUGS
1294 FIXME: This code only implements the forms currently used
1295 by the AT&T and GNU C compilers.
1296
1297 The end pointer is supplied for error checking, maybe we should
1298 use it for that...
1299 */
1300
1301static struct type *
85f0a848 1302decode_subscript_data_item (scan, end)
1ab3bf1b
JG
1303 char *scan;
1304 char *end;
35f5886e 1305{
85f0a848
FF
1306 struct type *typep = NULL; /* Array type we are building */
1307 struct type *nexttype; /* Type of each element (may be array) */
1308 struct type *indextype; /* Type of this index */
a8a69e63 1309 struct type *rangetype;
13b5a7ff
FF
1310 unsigned int format;
1311 unsigned short fundtype;
1312 unsigned long lowbound;
1313 unsigned long highbound;
1314 int nbytes;
35f5886e 1315
13b5a7ff
FF
1316 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1317 current_objfile);
1318 scan += SIZEOF_FORMAT_SPECIFIER;
35f5886e
FF
1319 switch (format)
1320 {
1321 case FMT_ET:
84ffdec2 1322 typep = decode_array_element_type (scan);
35f5886e
FF
1323 break;
1324 case FMT_FT_C_C:
13b5a7ff
FF
1325 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1326 current_objfile);
85f0a848 1327 indextype = decode_fund_type (fundtype);
13b5a7ff 1328 scan += SIZEOF_FMT_FT;
160be0de
FF
1329 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1330 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1331 scan += nbytes;
1332 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1333 scan += nbytes;
85f0a848
FF
1334 nexttype = decode_subscript_data_item (scan, end);
1335 if (nexttype == NULL)
35f5886e 1336 {
85f0a848 1337 /* Munged subscript data or other problem, fake it. */
51b80b00 1338 complain (&subscript_data_items, DIE_ID, DIE_NAME);
85f0a848
FF
1339 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1340 }
a8a69e63
FF
1341 rangetype = create_range_type ((struct type *) NULL, indextype,
1342 lowbound, highbound);
1343 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1344 break;
1345 case FMT_FT_C_X:
1346 case FMT_FT_X_C:
1347 case FMT_FT_X_X:
1348 case FMT_UT_C_C:
1349 case FMT_UT_C_X:
1350 case FMT_UT_X_C:
1351 case FMT_UT_X_X:
51b80b00 1352 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1353 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1354 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1355 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1356 break;
1357 default:
51b80b00 1358 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
a8a69e63
FF
1359 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1360 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1361 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
35f5886e
FF
1362 break;
1363 }
1364 return (typep);
1365}
1366
1367/*
1368
1369LOCAL FUNCTION
1370
4d315a07 1371 dwarf_read_array_type -- read TAG_array_type DIE
35f5886e
FF
1372
1373SYNOPSIS
1374
4d315a07 1375 static void dwarf_read_array_type (struct dieinfo *dip)
35f5886e
FF
1376
1377DESCRIPTION
1378
1379 Extract all information from a TAG_array_type DIE and add to
1380 the user defined type vector.
1381 */
1382
1383static void
1ab3bf1b
JG
1384dwarf_read_array_type (dip)
1385 struct dieinfo *dip;
35f5886e
FF
1386{
1387 struct type *type;
af213624 1388 struct type *utype;
35f5886e
FF
1389 char *sub;
1390 char *subend;
13b5a7ff
FF
1391 unsigned short blocksz;
1392 int nbytes;
35f5886e
FF
1393
1394 if (dip -> at_ordering != ORD_row_major)
1395 {
1396 /* FIXME: Can gdb even handle column major arrays? */
51b80b00 1397 complain (&not_row_major, DIE_ID, DIE_NAME);
35f5886e
FF
1398 }
1399 if ((sub = dip -> at_subscr_data) != NULL)
1400 {
13b5a7ff
FF
1401 nbytes = attribute_size (AT_subscr_data);
1402 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1403 subend = sub + nbytes + blocksz;
1404 sub += nbytes;
85f0a848
FF
1405 type = decode_subscript_data_item (sub, subend);
1406 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1407 {
85f0a848
FF
1408 /* Install user defined type that has not been referenced yet. */
1409 alloc_utype (dip -> die_ref, type);
1410 }
1411 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1412 {
1413 /* Ick! A forward ref has already generated a blank type in our
1414 slot, and this type probably already has things pointing to it
1415 (which is what caused it to be created in the first place).
1416 If it's just a place holder we can plop our fully defined type
1417 on top of it. We can't recover the space allocated for our
1418 new type since it might be on an obstack, but we could reuse
1419 it if we kept a list of them, but it might not be worth it
1420 (FIXME). */
1421 *utype = *type;
35f5886e
FF
1422 }
1423 else
1424 {
85f0a848
FF
1425 /* Double ick! Not only is a type already in our slot, but
1426 someone has decorated it. Complain and leave it alone. */
51b80b00 1427 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
35f5886e
FF
1428 }
1429 }
1430}
1431
1432/*
1433
9e4c1921
FF
1434LOCAL FUNCTION
1435
1436 read_tag_pointer_type -- read TAG_pointer_type DIE
1437
1438SYNOPSIS
1439
1440 static void read_tag_pointer_type (struct dieinfo *dip)
1441
1442DESCRIPTION
1443
1444 Extract all information from a TAG_pointer_type DIE and add to
1445 the user defined type vector.
1446 */
1447
1448static void
1ab3bf1b
JG
1449read_tag_pointer_type (dip)
1450 struct dieinfo *dip;
9e4c1921
FF
1451{
1452 struct type *type;
1453 struct type *utype;
9e4c1921
FF
1454
1455 type = decode_die_type (dip);
13b5a7ff 1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
9e4c1921
FF
1457 {
1458 utype = lookup_pointer_type (type);
4ed3a9ea 1459 alloc_utype (dip -> die_ref, utype);
9e4c1921
FF
1460 }
1461 else
1462 {
1463 TYPE_TARGET_TYPE (utype) = type;
1464 TYPE_POINTER_TYPE (type) = utype;
1465
1466 /* We assume the machine has only one representation for pointers! */
1467 /* FIXME: This confuses host<->target data representations, and is a
1468 poor assumption besides. */
1469
1470 TYPE_LENGTH (utype) = sizeof (char *);
1471 TYPE_CODE (utype) = TYPE_CODE_PTR;
1472 }
1473}
1474
1475/*
1476
ec16f701
FF
1477LOCAL FUNCTION
1478
1479 read_tag_string_type -- read TAG_string_type DIE
1480
1481SYNOPSIS
1482
1483 static void read_tag_string_type (struct dieinfo *dip)
1484
1485DESCRIPTION
1486
1487 Extract all information from a TAG_string_type DIE and add to
1488 the user defined type vector. It isn't really a user defined
1489 type, but it behaves like one, with other DIE's using an
1490 AT_user_def_type attribute to reference it.
1491 */
1492
1493static void
1494read_tag_string_type (dip)
1495 struct dieinfo *dip;
1496{
1497 struct type *utype;
1498 struct type *indextype;
1499 struct type *rangetype;
1500 unsigned long lowbound = 0;
1501 unsigned long highbound;
1502
b6236d6e 1503 if (dip -> has_at_byte_size)
ec16f701 1504 {
b6236d6e
FF
1505 /* A fixed bounds string */
1506 highbound = dip -> at_byte_size - 1;
ec16f701
FF
1507 }
1508 else
1509 {
b6236d6e
FF
1510 /* A varying length string. Stub for now. (FIXME) */
1511 highbound = 1;
1512 }
1513 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1514 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1515 highbound);
1516
1517 utype = lookup_utype (dip -> die_ref);
1518 if (utype == NULL)
1519 {
1520 /* No type defined, go ahead and create a blank one to use. */
1521 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1522 }
1523 else
1524 {
1525 /* Already a type in our slot due to a forward reference. Make sure it
1526 is a blank one. If not, complain and leave it alone. */
1527 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
ec16f701 1528 {
b6236d6e
FF
1529 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1530 return;
ec16f701 1531 }
ec16f701 1532 }
b6236d6e
FF
1533
1534 /* Create the string type using the blank type we either found or created. */
1535 utype = create_string_type (utype, rangetype);
ec16f701
FF
1536}
1537
1538/*
1539
35f5886e
FF
1540LOCAL FUNCTION
1541
1542 read_subroutine_type -- process TAG_subroutine_type dies
1543
1544SYNOPSIS
1545
1546 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1547 char *enddie)
1548
1549DESCRIPTION
1550
1551 Handle DIES due to C code like:
1552
1553 struct foo {
1554 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1555 int b;
1556 };
1557
1558NOTES
1559
1560 The parameter DIES are currently ignored. See if gdb has a way to
1561 include this info in it's type system, and decode them if so. Is
1562 this what the type structure's "arg_types" field is for? (FIXME)
1563 */
1564
1565static void
1ab3bf1b
JG
1566read_subroutine_type (dip, thisdie, enddie)
1567 struct dieinfo *dip;
1568 char *thisdie;
1569 char *enddie;
35f5886e 1570{
af213624
FF
1571 struct type *type; /* Type that this function returns */
1572 struct type *ftype; /* Function that returns above type */
35f5886e 1573
af213624
FF
1574 /* Decode the type that this subroutine returns */
1575
35f5886e 1576 type = decode_die_type (dip);
af213624
FF
1577
1578 /* Check to see if we already have a partially constructed user
1579 defined type for this DIE, from a forward reference. */
1580
13b5a7ff 1581 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
af213624
FF
1582 {
1583 /* This is the first reference to one of these types. Make
1584 a new one and place it in the user defined types. */
1585 ftype = lookup_function_type (type);
4ed3a9ea 1586 alloc_utype (dip -> die_ref, ftype);
af213624 1587 }
85f0a848 1588 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
af213624
FF
1589 {
1590 /* We have an existing partially constructed type, so bash it
1591 into the correct type. */
1592 TYPE_TARGET_TYPE (ftype) = type;
af213624
FF
1593 TYPE_LENGTH (ftype) = 1;
1594 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1595 }
85f0a848
FF
1596 else
1597 {
51b80b00 1598 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
85f0a848 1599 }
35f5886e
FF
1600}
1601
1602/*
1603
1604LOCAL FUNCTION
1605
1606 read_enumeration -- process dies which define an enumeration
1607
1608SYNOPSIS
1609
1610 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1ab3bf1b 1611 char *enddie, struct objfile *objfile)
35f5886e
FF
1612
1613DESCRIPTION
1614
1615 Given a pointer to a die which begins an enumeration, process all
1616 the dies that define the members of the enumeration.
1617
1618NOTES
1619
1620 Note that we need to call enum_type regardless of whether or not we
1621 have a symbol, since we might have an enum without a tag name (thus
1622 no symbol for the tagname).
1623 */
1624
1625static void
1ab3bf1b
JG
1626read_enumeration (dip, thisdie, enddie, objfile)
1627 struct dieinfo *dip;
1628 char *thisdie;
1629 char *enddie;
1630 struct objfile *objfile;
35f5886e
FF
1631{
1632 struct type *type;
1633 struct symbol *sym;
1634
1ab3bf1b 1635 type = enum_type (dip, objfile);
95ff889e
FF
1636 sym = new_symbol (dip, objfile);
1637 if (sym != NULL)
35f5886e
FF
1638 {
1639 SYMBOL_TYPE (sym) = type;
95ff889e
FF
1640 if (cu_language == language_cplus)
1641 {
1642 synthesize_typedef (dip, objfile, type);
1643 }
35f5886e
FF
1644 }
1645}
1646
1647/*
1648
1649LOCAL FUNCTION
1650
1651 enum_type -- decode and return a type for an enumeration
1652
1653SYNOPSIS
1654
1ab3bf1b 1655 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
1656
1657DESCRIPTION
1658
1659 Given a pointer to a die information structure for the die which
1660 starts an enumeration, process all the dies that define the members
1661 of the enumeration and return a type pointer for the enumeration.
98618bf7 1662
715cafcb
FF
1663 At the same time, for each member of the enumeration, create a
1664 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1665 and give it the type of the enumeration itself.
1666
1667NOTES
1668
98618bf7
FF
1669 Note that the DWARF specification explicitly mandates that enum
1670 constants occur in reverse order from the source program order,
1671 for "consistency" and because this ordering is easier for many
1ab3bf1b 1672 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
715cafcb
FF
1673 Entries). Because gdb wants to see the enum members in program
1674 source order, we have to ensure that the order gets reversed while
98618bf7 1675 we are processing them.
35f5886e
FF
1676 */
1677
1678static struct type *
1ab3bf1b
JG
1679enum_type (dip, objfile)
1680 struct dieinfo *dip;
1681 struct objfile *objfile;
35f5886e
FF
1682{
1683 struct type *type;
1684 struct nextfield {
1685 struct nextfield *next;
1686 struct field field;
1687 };
1688 struct nextfield *list = NULL;
1689 struct nextfield *new;
1690 int nfields = 0;
1691 int n;
35f5886e
FF
1692 char *scan;
1693 char *listend;
13b5a7ff 1694 unsigned short blocksz;
715cafcb 1695 struct symbol *sym;
13b5a7ff 1696 int nbytes;
35f5886e 1697
13b5a7ff 1698 if ((type = lookup_utype (dip -> die_ref)) == NULL)
35f5886e 1699 {
84ce6717 1700 /* No forward references created an empty type, so install one now */
13b5a7ff 1701 type = alloc_utype (dip -> die_ref, NULL);
35f5886e
FF
1702 }
1703 TYPE_CODE (type) = TYPE_CODE_ENUM;
84ce6717
FF
1704 /* Some compilers try to be helpful by inventing "fake" names for
1705 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1706 Thanks, but no thanks... */
715cafcb
FF
1707 if (dip -> at_name != NULL
1708 && *dip -> at_name != '~'
1709 && *dip -> at_name != '.')
35f5886e 1710 {
b2bebdb0
JK
1711 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1712 "", "", dip -> at_name);
35f5886e 1713 }
715cafcb 1714 if (dip -> at_byte_size != 0)
35f5886e
FF
1715 {
1716 TYPE_LENGTH (type) = dip -> at_byte_size;
35f5886e 1717 }
35f5886e
FF
1718 if ((scan = dip -> at_element_list) != NULL)
1719 {
768be6e1
FF
1720 if (dip -> short_element_list)
1721 {
13b5a7ff 1722 nbytes = attribute_size (AT_short_element_list);
768be6e1
FF
1723 }
1724 else
1725 {
13b5a7ff 1726 nbytes = attribute_size (AT_element_list);
768be6e1 1727 }
13b5a7ff
FF
1728 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1729 listend = scan + nbytes + blocksz;
1730 scan += nbytes;
35f5886e
FF
1731 while (scan < listend)
1732 {
1733 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1734 new -> next = list;
1735 list = new;
1736 list -> field.type = NULL;
1737 list -> field.bitsize = 0;
13b5a7ff
FF
1738 list -> field.bitpos =
1739 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1740 objfile);
1741 scan += TARGET_FT_LONG_SIZE (objfile);
50e0dc41
FF
1742 list -> field.name = obsavestring (scan, strlen (scan),
1743 &objfile -> type_obstack);
35f5886e
FF
1744 scan += strlen (scan) + 1;
1745 nfields++;
715cafcb 1746 /* Handcraft a new symbol for this enum member. */
1ab3bf1b 1747 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
715cafcb 1748 sizeof (struct symbol));
4ed3a9ea 1749 memset (sym, 0, sizeof (struct symbol));
13b5a7ff
FF
1750 SYMBOL_NAME (sym) = create_name (list -> field.name,
1751 &objfile->symbol_obstack);
7532cf10 1752 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
715cafcb
FF
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 SYMBOL_CLASS (sym) = LOC_CONST;
1755 SYMBOL_TYPE (sym) = type;
1756 SYMBOL_VALUE (sym) = list -> field.bitpos;
4d315a07 1757 add_symbol_to_list (sym, list_in_scope);
35f5886e 1758 }
84ce6717 1759 /* Now create the vector of fields, and record how big it is. This is
0efe20a6 1760 where we reverse the order, by pulling the members off the list in
84ce6717
FF
1761 reverse order from how they were inserted. If we have no fields
1762 (this is apparently possible in C++) then skip building a field
1763 vector. */
1764 if (nfields > 0)
1765 {
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1ab3bf1b 1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
84ce6717
FF
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1771 {
1772 TYPE_FIELD (type, n++) = list -> field;
1773 }
1774 }
35f5886e 1775 }
35f5886e
FF
1776 return (type);
1777}
1778
1779/*
1780
1781LOCAL FUNCTION
1782
1783 read_func_scope -- process all dies within a function scope
1784
35f5886e
FF
1785DESCRIPTION
1786
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1791
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1797 (FIXME)
1798 */
1799
1800static void
1ab3bf1b
JG
1801read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1803 char *thisdie;
1804 char *enddie;
1805 struct objfile *objfile;
35f5886e 1806{
4d315a07 1807 register struct context_stack *new;
35f5886e 1808
5e2e79f8
FF
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1811 {
5e2e79f8
FF
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
35f5886e 1814 }
4d315a07 1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
35f5886e 1816 {
5e2e79f8
FF
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
35f5886e 1819 }
4d315a07 1820 new = push_context (0, dip -> at_low_pc);
1ab3bf1b 1821 new -> name = new_symbol (dip, objfile);
4d315a07 1822 list_in_scope = &local_symbols;
13b5a7ff 1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
4d315a07
FF
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1ab3bf1b 1827 new -> start_addr, dip -> at_high_pc, objfile);
4d315a07 1828 list_in_scope = &file_symbols;
35f5886e
FF
1829}
1830
2dbde378
FF
1831
1832/*
1833
1834LOCAL FUNCTION
1835
1836 handle_producer -- process the AT_producer attribute
1837
1838DESCRIPTION
1839
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1842
1843 */
1844
1845static void
1846handle_producer (producer)
1847 char *producer;
1848{
1849
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1852
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
93bb6e65 1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
2dbde378
FF
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1857
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1862
3dc755fb 1863 if (AUTO_DEMANGLING)
2dbde378
FF
1864 {
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1866 {
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1868 }
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1870 {
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1872 }
2dbde378 1873 }
2dbde378
FF
1874}
1875
1876
35f5886e
FF
1877/*
1878
1879LOCAL FUNCTION
1880
1881 read_file_scope -- process all dies within a file scope
1882
35f5886e
FF
1883DESCRIPTION
1884
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1889
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1896 compilation unit.
1897 */
1898
1899static void
1ab3bf1b
JG
1900read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1902 char *thisdie;
1903 char *enddie;
1904 struct objfile *objfile;
35f5886e
FF
1905{
1906 struct cleanup *back_to;
4d315a07 1907 struct symtab *symtab;
35f5886e 1908
5e2e79f8
FF
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
35f5886e 1911 {
5e2e79f8
FF
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
35f5886e 1914 }
95ff889e 1915 set_cu_language (dip);
4d315a07
FF
1916 if (dip -> at_producer != NULL)
1917 {
2dbde378 1918 handle_producer (dip -> at_producer);
4d315a07 1919 }
35f5886e
FF
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
4ed3a9ea 1923 memset (utypes, 0, numutypes * sizeof (struct type *));
bf229b4e 1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
d4902ab0 1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
35f5886e 1926 decode_line_numbers (lnbase);
13b5a7ff 1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
3c02636b
JK
1928
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
7b5d9650 1930 if (symtab != NULL)
4d315a07 1931 {
95ff889e 1932 symtab -> language = cu_language;
7b5d9650 1933 }
35f5886e
FF
1934 do_cleanups (back_to);
1935 utypes = NULL;
1936 numutypes = 0;
1937}
1938
1939/*
1940
35f5886e
FF
1941LOCAL FUNCTION
1942
1943 process_dies -- process a range of DWARF Information Entries
1944
1945SYNOPSIS
1946
8b5b6fae
FF
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
35f5886e
FF
1949
1950DESCRIPTION
1951
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1954 */
1955
1956static void
1ab3bf1b
JG
1957process_dies (thisdie, enddie, objfile)
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
35f5886e
FF
1961{
1962 char *nextdie;
1963 struct dieinfo di;
1964
1965 while (thisdie < enddie)
1966 {
95967e73 1967 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 1968 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
1969 {
1970 break;
1971 }
13b5a7ff 1972 else if (di.die_tag == TAG_padding)
35f5886e 1973 {
13b5a7ff 1974 nextdie = thisdie + di.die_length;
35f5886e
FF
1975 }
1976 else
1977 {
95967e73 1978 completedieinfo (&di, objfile);
35f5886e
FF
1979 if (di.at_sibling != 0)
1980 {
1981 nextdie = dbbase + di.at_sibling - dbroff;
1982 }
1983 else
1984 {
13b5a7ff 1985 nextdie = thisdie + di.die_length;
35f5886e 1986 }
9fdb3f7a
JK
1987#ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1991#endif
13b5a7ff 1992 switch (di.die_tag)
35f5886e
FF
1993 {
1994 case TAG_compile_unit:
4386eff2
PS
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2000 else
2001 nextdie = thisdie + di.die_length;
35f5886e
FF
2002 break;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2d6186f4 2005 if (di.has_at_low_pc)
35f5886e 2006 {
a048c8f5 2007 read_func_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2008 }
2009 break;
2010 case TAG_lexical_block:
a048c8f5 2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
35f5886e 2012 break;
95ff889e 2013 case TAG_class_type:
35f5886e
FF
2014 case TAG_structure_type:
2015 case TAG_union_type:
8b5b6fae 2016 read_structure_scope (&di, thisdie, nextdie, objfile);
35f5886e
FF
2017 break;
2018 case TAG_enumeration_type:
1ab3bf1b 2019 read_enumeration (&di, thisdie, nextdie, objfile);
35f5886e
FF
2020 break;
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2023 break;
2024 case TAG_array_type:
4d315a07 2025 dwarf_read_array_type (&di);
35f5886e 2026 break;
9e4c1921
FF
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2029 break;
ec16f701
FF
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2032 break;
35f5886e 2033 default:
4ed3a9ea 2034 new_symbol (&di, objfile);
35f5886e
FF
2035 break;
2036 }
2037 }
2038 thisdie = nextdie;
2039 }
2040}
2041
2042/*
2043
35f5886e
FF
2044LOCAL FUNCTION
2045
2046 decode_line_numbers -- decode a line number table fragment
2047
2048SYNOPSIS
2049
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2052
2053DESCRIPTION
2054
2055 Translate the DWARF line number information to gdb form.
2056
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2059
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2063
2064 The table itself has the following structure:
2065
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2068
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2071
2072 The base address is the address of the first instruction generated
2073 for the source file.
2074
2075 Each source statement entry has the following structure:
2076
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2079
2080 The line number is relative to the start of the file, starting with
2081 line 1.
2082
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2085
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2088
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2092
2093BUGS
2094
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2097
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2100 */
2101
2102static void
1ab3bf1b
JG
2103decode_line_numbers (linetable)
2104 char *linetable;
35f5886e
FF
2105{
2106 char *tblscan;
2107 char *tblend;
13b5a7ff
FF
2108 unsigned long length;
2109 unsigned long base;
2110 unsigned long line;
2111 unsigned long pc;
35f5886e
FF
2112
2113 if (linetable != NULL)
2114 {
2115 tblscan = tblend = linetable;
13b5a7ff
FF
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2117 current_objfile);
2118 tblscan += SIZEOF_LINETBL_LENGTH;
35f5886e 2119 tblend += length;
13b5a7ff
FF
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
35f5886e 2123 base += baseaddr;
35f5886e
FF
2124 while (tblscan < tblend)
2125 {
13b5a7ff
FF
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2130 current_objfile);
2131 tblscan += SIZEOF_LINETBL_DELTA;
35f5886e 2132 pc += base;
13b5a7ff 2133 if (line != 0)
35f5886e 2134 {
4d315a07 2135 record_line (current_subfile, line, pc);
35f5886e
FF
2136 }
2137 }
2138 }
2139}
2140
2141/*
2142
35f5886e
FF
2143LOCAL FUNCTION
2144
2145 locval -- compute the value of a location attribute
2146
2147SYNOPSIS
2148
2149 static int locval (char *loc)
2150
2151DESCRIPTION
2152
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
bbcc95bd
PS
2155 A location description containing no atoms indicates that the
2156 object is optimized out. The global optimized_out flag is set for
2157 those, the return value is meaningless.
35f5886e
FF
2158
2159 When computing values involving the current value of the frame pointer,
2160 the value zero is used, which results in a value relative to the frame
2161 pointer, rather than the absolute value. This is what GDB wants
2162 anyway.
2163
2164 When the result is a register number, the global isreg flag is set,
2165 otherwise it is cleared. This is a kludge until we figure out a better
2166 way to handle the problem. Gdb's design does not mesh well with the
2167 DWARF notion of a location computing interpreter, which is a shame
2168 because the flexibility goes unused.
2169
2170NOTES
2171
2172 Note that stack[0] is unused except as a default error return.
2173 Note that stack overflow is not yet handled.
2174 */
2175
2176static int
1ab3bf1b
JG
2177locval (loc)
2178 char *loc;
35f5886e
FF
2179{
2180 unsigned short nbytes;
13b5a7ff
FF
2181 unsigned short locsize;
2182 auto long stack[64];
35f5886e
FF
2183 int stacki;
2184 char *end;
13b5a7ff
FF
2185 int loc_atom_code;
2186 int loc_value_size;
35f5886e 2187
13b5a7ff
FF
2188 nbytes = attribute_size (AT_location);
2189 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2190 loc += nbytes;
2191 end = loc + locsize;
35f5886e
FF
2192 stacki = 0;
2193 stack[stacki] = 0;
2194 isreg = 0;
a5bd5ba6 2195 offreg = 0;
bbcc95bd 2196 optimized_out = 1;
13b5a7ff
FF
2197 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2198 while (loc < end)
35f5886e 2199 {
bbcc95bd 2200 optimized_out = 0;
13b5a7ff
FF
2201 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2202 current_objfile);
2203 loc += SIZEOF_LOC_ATOM_CODE;
2204 switch (loc_atom_code)
2205 {
2206 case 0:
2207 /* error */
2208 loc = end;
2209 break;
2210 case OP_REG:
2211 /* push register (number) */
84bdfea6
PS
2212 stack[++stacki]
2213 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2214 GET_UNSIGNED,
2215 current_objfile));
13b5a7ff
FF
2216 loc += loc_value_size;
2217 isreg = 1;
2218 break;
2219 case OP_BASEREG:
2220 /* push value of register (number) */
a1c8d76e
JK
2221 /* Actually, we compute the value as if register has 0, so the
2222 value ends up being the offset from that register. */
13b5a7ff 2223 offreg = 1;
a1c8d76e
JK
2224 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2225 current_objfile);
13b5a7ff 2226 loc += loc_value_size;
a1c8d76e 2227 stack[++stacki] = 0;
13b5a7ff
FF
2228 break;
2229 case OP_ADDR:
2230 /* push address (relocated address) */
2231 stack[++stacki] = target_to_host (loc, loc_value_size,
2232 GET_UNSIGNED, current_objfile);
2233 loc += loc_value_size;
2234 break;
2235 case OP_CONST:
2236 /* push constant (number) FIXME: signed or unsigned! */
2237 stack[++stacki] = target_to_host (loc, loc_value_size,
2238 GET_SIGNED, current_objfile);
2239 loc += loc_value_size;
2240 break;
2241 case OP_DEREF2:
2242 /* pop, deref and push 2 bytes (as a long) */
51b80b00 2243 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2244 break;
2245 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
51b80b00 2246 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
13b5a7ff
FF
2247 break;
2248 case OP_ADD: /* pop top 2 items, add, push result */
2249 stack[stacki - 1] += stack[stacki];
2250 stacki--;
2251 break;
2252 }
35f5886e
FF
2253 }
2254 return (stack[stacki]);
2255}
2256
2257/*
2258
2259LOCAL FUNCTION
2260
2261 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2262
2263SYNOPSIS
2264
c701c14c 2265 static void read_ofile_symtab (struct partial_symtab *pst)
35f5886e
FF
2266
2267DESCRIPTION
2268
1ab3bf1b
JG
2269 When expanding a partial symbol table entry to a full symbol table
2270 entry, this is the function that gets called to read in the symbols
c701c14c
FF
2271 for the compilation unit. A pointer to the newly constructed symtab,
2272 which is now the new first one on the objfile's symtab list, is
2273 stashed in the partial symbol table entry.
35f5886e
FF
2274 */
2275
c701c14c 2276static void
1ab3bf1b
JG
2277read_ofile_symtab (pst)
2278 struct partial_symtab *pst;
35f5886e
FF
2279{
2280 struct cleanup *back_to;
13b5a7ff 2281 unsigned long lnsize;
d5931d79 2282 file_ptr foffset;
1ab3bf1b 2283 bfd *abfd;
13b5a7ff 2284 char lnsizedata[SIZEOF_LINETBL_LENGTH];
1ab3bf1b
JG
2285
2286 abfd = pst -> objfile -> obfd;
2287 current_objfile = pst -> objfile;
2288
35f5886e
FF
2289 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2290 unit, seek to the location in the file, and read in all the DIE's. */
2291
2292 diecount = 0;
4090fe1c
FF
2293 dbsize = DBLENGTH (pst);
2294 dbbase = xmalloc (dbsize);
35f5886e
FF
2295 dbroff = DBROFF(pst);
2296 foffset = DBFOFF(pst) + dbroff;
2670f34d
JG
2297 base_section_offsets = pst->section_offsets;
2298 baseaddr = ANOFFSET (pst->section_offsets, 0);
d5931d79 2299 if (bfd_seek (abfd, foffset, L_SET) ||
4090fe1c 2300 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
35f5886e
FF
2301 {
2302 free (dbbase);
2303 error ("can't read DWARF data");
2304 }
2305 back_to = make_cleanup (free, dbbase);
2306
2307 /* If there is a line number table associated with this compilation unit
13b5a7ff
FF
2308 then read the size of this fragment in bytes, from the fragment itself.
2309 Allocate a buffer for the fragment and read it in for future
35f5886e
FF
2310 processing. */
2311
2312 lnbase = NULL;
2313 if (LNFOFF (pst))
2314 {
d5931d79 2315 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
13b5a7ff
FF
2316 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2317 sizeof (lnsizedata)))
35f5886e
FF
2318 {
2319 error ("can't read DWARF line number table size");
2320 }
13b5a7ff
FF
2321 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2322 GET_UNSIGNED, pst -> objfile);
35f5886e 2323 lnbase = xmalloc (lnsize);
d5931d79 2324 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
a048c8f5 2325 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
35f5886e
FF
2326 {
2327 free (lnbase);
2328 error ("can't read DWARF line numbers");
2329 }
2330 make_cleanup (free, lnbase);
2331 }
2332
4090fe1c 2333 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
35f5886e 2334 do_cleanups (back_to);
1ab3bf1b 2335 current_objfile = NULL;
c701c14c 2336 pst -> symtab = pst -> objfile -> symtabs;
35f5886e
FF
2337}
2338
2339/*
2340
2341LOCAL FUNCTION
2342
2343 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2344
2345SYNOPSIS
2346
a048c8f5 2347 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
35f5886e
FF
2348
2349DESCRIPTION
2350
2351 Called once for each partial symbol table entry that needs to be
2352 expanded into a full symbol table entry.
2353
2354*/
2355
2356static void
1ab3bf1b
JG
2357psymtab_to_symtab_1 (pst)
2358 struct partial_symtab *pst;
35f5886e
FF
2359{
2360 int i;
d07734e3 2361 struct cleanup *old_chain;
35f5886e 2362
1ab3bf1b 2363 if (pst != NULL)
35f5886e 2364 {
1ab3bf1b 2365 if (pst->readin)
35f5886e 2366 {
318bf84f 2367 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b
JG
2368 pst -> filename);
2369 }
2370 else
2371 {
2372 /* Read in all partial symtabs on which this one is dependent */
2373 for (i = 0; i < pst -> number_of_dependencies; i++)
2374 {
2375 if (!pst -> dependencies[i] -> readin)
2376 {
2377 /* Inform about additional files that need to be read in. */
2378 if (info_verbose)
2379 {
199b2450 2380 fputs_filtered (" ", gdb_stdout);
1ab3bf1b 2381 wrap_here ("");
199b2450 2382 fputs_filtered ("and ", gdb_stdout);
1ab3bf1b
JG
2383 wrap_here ("");
2384 printf_filtered ("%s...",
2385 pst -> dependencies[i] -> filename);
2386 wrap_here ("");
199b2450 2387 gdb_flush (gdb_stdout); /* Flush output */
1ab3bf1b
JG
2388 }
2389 psymtab_to_symtab_1 (pst -> dependencies[i]);
2390 }
2391 }
2392 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2393 {
d07734e3
FF
2394 buildsym_init ();
2395 old_chain = make_cleanup (really_free_pendings, 0);
c701c14c 2396 read_ofile_symtab (pst);
1ab3bf1b
JG
2397 if (info_verbose)
2398 {
2399 printf_filtered ("%d DIE's, sorting...", diecount);
2400 wrap_here ("");
199b2450 2401 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2402 }
2403 sort_symtab_syms (pst -> symtab);
d07734e3 2404 do_cleanups (old_chain);
1ab3bf1b
JG
2405 }
2406 pst -> readin = 1;
35f5886e 2407 }
35f5886e 2408 }
35f5886e
FF
2409}
2410
2411/*
2412
2413LOCAL FUNCTION
2414
2415 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2416
2417SYNOPSIS
2418
2419 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2420
2421DESCRIPTION
2422
2423 This is the DWARF support entry point for building a full symbol
2424 table entry from a partial symbol table entry. We are passed a
2425 pointer to the partial symbol table entry that needs to be expanded.
2426
2427*/
2428
2429static void
1ab3bf1b
JG
2430dwarf_psymtab_to_symtab (pst)
2431 struct partial_symtab *pst;
35f5886e 2432{
7d9884b9 2433
1ab3bf1b 2434 if (pst != NULL)
35f5886e 2435 {
1ab3bf1b 2436 if (pst -> readin)
35f5886e 2437 {
318bf84f 2438 warning ("psymtab for %s already read in. Shouldn't happen.",
1ab3bf1b 2439 pst -> filename);
35f5886e 2440 }
1ab3bf1b 2441 else
35f5886e 2442 {
1ab3bf1b
JG
2443 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2444 {
2445 /* Print the message now, before starting serious work, to avoid
2446 disconcerting pauses. */
2447 if (info_verbose)
2448 {
2449 printf_filtered ("Reading in symbols for %s...",
2450 pst -> filename);
199b2450 2451 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2452 }
2453
2454 psymtab_to_symtab_1 (pst);
2455
2456#if 0 /* FIXME: Check to see what dbxread is doing here and see if
2457 we need to do an equivalent or is this something peculiar to
2458 stabs/a.out format.
2459 Match with global symbols. This only needs to be done once,
2460 after all of the symtabs and dependencies have been read in.
2461 */
2462 scan_file_globals (pst -> objfile);
2463#endif
2464
2465 /* Finish up the verbose info message. */
2466 if (info_verbose)
2467 {
2468 printf_filtered ("done.\n");
199b2450 2469 gdb_flush (gdb_stdout);
1ab3bf1b
JG
2470 }
2471 }
35f5886e
FF
2472 }
2473 }
2474}
2475
2476/*
2477
715cafcb
FF
2478LOCAL FUNCTION
2479
2480 add_enum_psymbol -- add enumeration members to partial symbol table
2481
2482DESCRIPTION
2483
2484 Given pointer to a DIE that is known to be for an enumeration,
2485 extract the symbolic names of the enumeration members and add
2486 partial symbols for them.
2487*/
2488
2489static void
1ab3bf1b
JG
2490add_enum_psymbol (dip, objfile)
2491 struct dieinfo *dip;
2492 struct objfile *objfile;
715cafcb
FF
2493{
2494 char *scan;
2495 char *listend;
13b5a7ff
FF
2496 unsigned short blocksz;
2497 int nbytes;
715cafcb
FF
2498
2499 if ((scan = dip -> at_element_list) != NULL)
2500 {
2501 if (dip -> short_element_list)
2502 {
13b5a7ff 2503 nbytes = attribute_size (AT_short_element_list);
715cafcb
FF
2504 }
2505 else
2506 {
13b5a7ff 2507 nbytes = attribute_size (AT_element_list);
715cafcb 2508 }
13b5a7ff
FF
2509 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2510 scan += nbytes;
2511 listend = scan + blocksz;
715cafcb
FF
2512 while (scan < listend)
2513 {
13b5a7ff 2514 scan += TARGET_FT_LONG_SIZE (objfile);
b440b1e9 2515 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2e4964ad
FF
2516 objfile -> static_psymbols, 0, cu_language,
2517 objfile);
715cafcb
FF
2518 scan += strlen (scan) + 1;
2519 }
2520 }
2521}
2522
2523/*
2524
35f5886e
FF
2525LOCAL FUNCTION
2526
2527 add_partial_symbol -- add symbol to partial symbol table
2528
2529DESCRIPTION
2530
2531 Given a DIE, if it is one of the types that we want to
2532 add to a partial symbol table, finish filling in the die info
2533 and then add a partial symbol table entry for it.
2534
95ff889e
FF
2535NOTES
2536
2537 The caller must ensure that the DIE has a valid name attribute.
35f5886e
FF
2538*/
2539
2540static void
1ab3bf1b
JG
2541add_partial_symbol (dip, objfile)
2542 struct dieinfo *dip;
2543 struct objfile *objfile;
35f5886e 2544{
13b5a7ff 2545 switch (dip -> die_tag)
35f5886e
FF
2546 {
2547 case TAG_global_subroutine:
b440b1e9 2548 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2549 VAR_NAMESPACE, LOC_BLOCK,
2550 objfile -> global_psymbols,
2e4964ad 2551 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2552 break;
2553 case TAG_global_variable:
b440b1e9 2554 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2555 VAR_NAMESPACE, LOC_STATIC,
2556 objfile -> global_psymbols,
2e4964ad 2557 0, cu_language, objfile);
35f5886e
FF
2558 break;
2559 case TAG_subroutine:
b440b1e9 2560 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2561 VAR_NAMESPACE, LOC_BLOCK,
2562 objfile -> static_psymbols,
2e4964ad 2563 dip -> at_low_pc, cu_language, objfile);
35f5886e
FF
2564 break;
2565 case TAG_local_variable:
b440b1e9 2566 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2567 VAR_NAMESPACE, LOC_STATIC,
2568 objfile -> static_psymbols,
2e4964ad 2569 0, cu_language, objfile);
35f5886e
FF
2570 break;
2571 case TAG_typedef:
b440b1e9 2572 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2573 VAR_NAMESPACE, LOC_TYPEDEF,
2574 objfile -> static_psymbols,
2e4964ad 2575 0, cu_language, objfile);
35f5886e 2576 break;
95ff889e 2577 case TAG_class_type:
35f5886e
FF
2578 case TAG_structure_type:
2579 case TAG_union_type:
95ff889e 2580 case TAG_enumeration_type:
4386eff2
PS
2581 /* Do not add opaque aggregate definitions to the psymtab. */
2582 if (!dip -> has_at_byte_size)
2583 break;
b440b1e9 2584 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
1ab3bf1b
JG
2585 STRUCT_NAMESPACE, LOC_TYPEDEF,
2586 objfile -> static_psymbols,
2e4964ad 2587 0, cu_language, objfile);
95ff889e 2588 if (cu_language == language_cplus)
715cafcb 2589 {
95ff889e 2590 /* For C++, these implicitly act as typedefs as well. */
b440b1e9 2591 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
95ff889e 2592 VAR_NAMESPACE, LOC_TYPEDEF,
1ab3bf1b 2593 objfile -> static_psymbols,
2e4964ad 2594 0, cu_language, objfile);
715cafcb 2595 }
715cafcb 2596 break;
35f5886e
FF
2597 }
2598}
2599
2600/*
2601
2602LOCAL FUNCTION
2603
2604 scan_partial_symbols -- scan DIE's within a single compilation unit
2605
2606DESCRIPTION
2607
2608 Process the DIE's within a single compilation unit, looking for
2609 interesting DIE's that contribute to the partial symbol table entry
a679650f 2610 for this compilation unit.
35f5886e 2611
2d6186f4
FF
2612NOTES
2613
a679650f
FF
2614 There are some DIE's that may appear both at file scope and within
2615 the scope of a function. We are only interested in the ones at file
2616 scope, and the only way to tell them apart is to keep track of the
2617 scope. For example, consider the test case:
2618
2619 static int i;
2620 main () { int j; }
2621
2622 for which the relevant DWARF segment has the structure:
2623
2624 0x51:
2625 0x23 global subrtn sibling 0x9b
2626 name main
2627 fund_type FT_integer
2628 low_pc 0x800004cc
2629 high_pc 0x800004d4
2630
2631 0x74:
2632 0x23 local var sibling 0x97
2633 name j
2634 fund_type FT_integer
2635 location OP_BASEREG 0xe
2636 OP_CONST 0xfffffffc
2637 OP_ADD
2638 0x97:
2639 0x4
2640
2641 0x9b:
2642 0x1d local var sibling 0xb8
2643 name i
2644 fund_type FT_integer
2645 location OP_ADDR 0x800025dc
2646
2647 0xb8:
2648 0x4
2649
2650 We want to include the symbol 'i' in the partial symbol table, but
2651 not the symbol 'j'. In essence, we want to skip all the dies within
2652 the scope of a TAG_global_subroutine DIE.
2653
715cafcb
FF
2654 Don't attempt to add anonymous structures or unions since they have
2655 no name. Anonymous enumerations however are processed, because we
2656 want to extract their member names (the check for a tag name is
2657 done later).
2d6186f4 2658
715cafcb
FF
2659 Also, for variables and subroutines, check that this is the place
2660 where the actual definition occurs, rather than just a reference
2661 to an external.
35f5886e
FF
2662 */
2663
2664static void
1ab3bf1b
JG
2665scan_partial_symbols (thisdie, enddie, objfile)
2666 char *thisdie;
2667 char *enddie;
2668 struct objfile *objfile;
35f5886e
FF
2669{
2670 char *nextdie;
a679650f 2671 char *temp;
35f5886e
FF
2672 struct dieinfo di;
2673
2674 while (thisdie < enddie)
2675 {
95967e73 2676 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2677 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2678 {
2679 break;
2680 }
2681 else
2682 {
13b5a7ff 2683 nextdie = thisdie + di.die_length;
715cafcb
FF
2684 /* To avoid getting complete die information for every die, we
2685 only do it (below) for the cases we are interested in. */
13b5a7ff 2686 switch (di.die_tag)
35f5886e
FF
2687 {
2688 case TAG_global_subroutine:
35f5886e 2689 case TAG_subroutine:
a679650f
FF
2690 completedieinfo (&di, objfile);
2691 if (di.at_name && (di.has_at_low_pc || di.at_location))
2692 {
2693 add_partial_symbol (&di, objfile);
2694 /* If there is a sibling attribute, adjust the nextdie
2695 pointer to skip the entire scope of the subroutine.
2696 Apply some sanity checking to make sure we don't
2697 overrun or underrun the range of remaining DIE's */
2698 if (di.at_sibling != 0)
2699 {
2700 temp = dbbase + di.at_sibling - dbroff;
2701 if ((temp < thisdie) || (temp >= enddie))
2702 {
51b80b00
FF
2703 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2704 di.at_sibling);
a679650f
FF
2705 }
2706 else
2707 {
2708 nextdie = temp;
2709 }
2710 }
2711 }
2712 break;
2d6186f4 2713 case TAG_global_variable:
35f5886e 2714 case TAG_local_variable:
95967e73 2715 completedieinfo (&di, objfile);
2d6186f4
FF
2716 if (di.at_name && (di.has_at_low_pc || di.at_location))
2717 {
1ab3bf1b 2718 add_partial_symbol (&di, objfile);
2d6186f4
FF
2719 }
2720 break;
35f5886e 2721 case TAG_typedef:
95ff889e 2722 case TAG_class_type:
35f5886e
FF
2723 case TAG_structure_type:
2724 case TAG_union_type:
95967e73 2725 completedieinfo (&di, objfile);
2d6186f4 2726 if (di.at_name)
35f5886e 2727 {
1ab3bf1b 2728 add_partial_symbol (&di, objfile);
35f5886e
FF
2729 }
2730 break;
715cafcb 2731 case TAG_enumeration_type:
95967e73 2732 completedieinfo (&di, objfile);
95ff889e
FF
2733 if (di.at_name)
2734 {
2735 add_partial_symbol (&di, objfile);
2736 }
2737 add_enum_psymbol (&di, objfile);
715cafcb 2738 break;
35f5886e
FF
2739 }
2740 }
2741 thisdie = nextdie;
2742 }
2743}
2744
2745/*
2746
2747LOCAL FUNCTION
2748
2749 scan_compilation_units -- build a psymtab entry for each compilation
2750
2751DESCRIPTION
2752
2753 This is the top level dwarf parsing routine for building partial
2754 symbol tables.
2755
2756 It scans from the beginning of the DWARF table looking for the first
2757 TAG_compile_unit DIE, and then follows the sibling chain to locate
2758 each additional TAG_compile_unit DIE.
2759
2760 For each TAG_compile_unit DIE it creates a partial symtab structure,
2761 calls a subordinate routine to collect all the compilation unit's
2762 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2763 new partial symtab structure into the partial symbol table. It also
2764 records the appropriate information in the partial symbol table entry
2765 to allow the chunk of DIE's and line number table for this compilation
2766 unit to be located and re-read later, to generate a complete symbol
2767 table entry for the compilation unit.
2768
2769 Thus it effectively partitions up a chunk of DIE's for multiple
2770 compilation units into smaller DIE chunks and line number tables,
2771 and associates them with a partial symbol table entry.
2772
2773NOTES
2774
2775 If any compilation unit has no line number table associated with
2776 it for some reason (a missing at_stmt_list attribute, rather than
2777 just one with a value of zero, which is valid) then we ensure that
2778 the recorded file offset is zero so that the routine which later
2779 reads line number table fragments knows that there is no fragment
2780 to read.
2781
2782RETURNS
2783
2784 Returns no value.
2785
2786 */
2787
2788static void
d5931d79 2789scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
1ab3bf1b
JG
2790 char *thisdie;
2791 char *enddie;
d5931d79
JG
2792 file_ptr dbfoff;
2793 file_ptr lnoffset;
1ab3bf1b 2794 struct objfile *objfile;
35f5886e
FF
2795{
2796 char *nextdie;
2797 struct dieinfo di;
2798 struct partial_symtab *pst;
2799 int culength;
2800 int curoff;
d5931d79 2801 file_ptr curlnoffset;
35f5886e
FF
2802
2803 while (thisdie < enddie)
2804 {
95967e73 2805 basicdieinfo (&di, thisdie, objfile);
13b5a7ff 2806 if (di.die_length < SIZEOF_DIE_LENGTH)
35f5886e
FF
2807 {
2808 break;
2809 }
13b5a7ff 2810 else if (di.die_tag != TAG_compile_unit)
35f5886e 2811 {
13b5a7ff 2812 nextdie = thisdie + di.die_length;
35f5886e
FF
2813 }
2814 else
2815 {
95967e73 2816 completedieinfo (&di, objfile);
95ff889e 2817 set_cu_language (&di);
35f5886e
FF
2818 if (di.at_sibling != 0)
2819 {
2820 nextdie = dbbase + di.at_sibling - dbroff;
2821 }
2822 else
2823 {
13b5a7ff 2824 nextdie = thisdie + di.die_length;
35f5886e
FF
2825 }
2826 curoff = thisdie - dbbase;
2827 culength = nextdie - thisdie;
2d6186f4 2828 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
1ab3bf1b
JG
2829
2830 /* First allocate a new partial symbol table structure */
2831
95ff889e
FF
2832 pst = start_psymtab_common (objfile, base_section_offsets,
2833 di.at_name, di.at_low_pc,
1ab3bf1b
JG
2834 objfile -> global_psymbols.next,
2835 objfile -> static_psymbols.next);
2836
2837 pst -> texthigh = di.at_high_pc;
2838 pst -> read_symtab_private = (char *)
2839 obstack_alloc (&objfile -> psymbol_obstack,
2840 sizeof (struct dwfinfo));
2841 DBFOFF (pst) = dbfoff;
2842 DBROFF (pst) = curoff;
2843 DBLENGTH (pst) = culength;
2844 LNFOFF (pst) = curlnoffset;
2845 pst -> read_symtab = dwarf_psymtab_to_symtab;
2846
2847 /* Now look for partial symbols */
2848
13b5a7ff 2849 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
1ab3bf1b
JG
2850
2851 pst -> n_global_syms = objfile -> global_psymbols.next -
2852 (objfile -> global_psymbols.list + pst -> globals_offset);
2853 pst -> n_static_syms = objfile -> static_psymbols.next -
2854 (objfile -> static_psymbols.list + pst -> statics_offset);
2855 sort_pst_symbols (pst);
35f5886e
FF
2856 /* If there is already a psymtab or symtab for a file of this name,
2857 remove it. (If there is a symtab, more drastic things also
2858 happen.) This happens in VxWorks. */
2859 free_named_symtabs (pst -> filename);
35f5886e
FF
2860 }
2861 thisdie = nextdie;
2862 }
2863}
2864
2865/*
2866
2867LOCAL FUNCTION
2868
2869 new_symbol -- make a symbol table entry for a new symbol
2870
2871SYNOPSIS
2872
1ab3bf1b
JG
2873 static struct symbol *new_symbol (struct dieinfo *dip,
2874 struct objfile *objfile)
35f5886e
FF
2875
2876DESCRIPTION
2877
2878 Given a pointer to a DWARF information entry, figure out if we need
2879 to make a symbol table entry for it, and if so, create a new entry
2880 and return a pointer to it.
2881 */
2882
2883static struct symbol *
1ab3bf1b
JG
2884new_symbol (dip, objfile)
2885 struct dieinfo *dip;
2886 struct objfile *objfile;
35f5886e
FF
2887{
2888 struct symbol *sym = NULL;
2889
2890 if (dip -> at_name != NULL)
2891 {
1ab3bf1b 2892 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
35f5886e 2893 sizeof (struct symbol));
4ed3a9ea 2894 memset (sym, 0, sizeof (struct symbol));
95ff889e
FF
2895 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2896 &objfile->symbol_obstack);
35f5886e
FF
2897 /* default assumptions */
2898 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2899 SYMBOL_CLASS (sym) = LOC_STATIC;
2900 SYMBOL_TYPE (sym) = decode_die_type (dip);
2e4964ad
FF
2901
2902 /* If this symbol is from a C++ compilation, then attempt to cache the
2903 demangled form for future reference. This is a typical time versus
2904 space tradeoff, that was decided in favor of time because it sped up
2905 C++ symbol lookups by a factor of about 20. */
2906
2907 SYMBOL_LANGUAGE (sym) = cu_language;
7532cf10 2908 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
13b5a7ff 2909 switch (dip -> die_tag)
35f5886e
FF
2910 {
2911 case TAG_label:
4d315a07 2912 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2913 SYMBOL_CLASS (sym) = LOC_LABEL;
2914 break;
2915 case TAG_global_subroutine:
2916 case TAG_subroutine:
4d315a07 2917 SYMBOL_VALUE (sym) = dip -> at_low_pc;
35f5886e
FF
2918 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2919 SYMBOL_CLASS (sym) = LOC_BLOCK;
13b5a7ff 2920 if (dip -> die_tag == TAG_global_subroutine)
35f5886e
FF
2921 {
2922 add_symbol_to_list (sym, &global_symbols);
2923 }
2924 else
2925 {
4d315a07 2926 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2927 }
2928 break;
2929 case TAG_global_variable:
35f5886e
FF
2930 if (dip -> at_location != NULL)
2931 {
2932 SYMBOL_VALUE (sym) = locval (dip -> at_location);
35f5886e
FF
2933 add_symbol_to_list (sym, &global_symbols);
2934 SYMBOL_CLASS (sym) = LOC_STATIC;
2935 SYMBOL_VALUE (sym) += baseaddr;
2936 }
a5bd5ba6
FF
2937 break;
2938 case TAG_local_variable:
2939 if (dip -> at_location != NULL)
35f5886e 2940 {
a5bd5ba6 2941 SYMBOL_VALUE (sym) = locval (dip -> at_location);
4d315a07 2942 add_symbol_to_list (sym, list_in_scope);
bbcc95bd
PS
2943 if (optimized_out)
2944 {
2945 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2946 }
2947 else if (isreg)
a5bd5ba6
FF
2948 {
2949 SYMBOL_CLASS (sym) = LOC_REGISTER;
2950 }
2951 else if (offreg)
35f5886e 2952 {
a1c8d76e
JK
2953 SYMBOL_CLASS (sym) = LOC_BASEREG;
2954 SYMBOL_BASEREG (sym) = basereg;
35f5886e
FF
2955 }
2956 else
2957 {
2958 SYMBOL_CLASS (sym) = LOC_STATIC;
2959 SYMBOL_VALUE (sym) += baseaddr;
2960 }
2961 }
2962 break;
2963 case TAG_formal_parameter:
2964 if (dip -> at_location != NULL)
2965 {
2966 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2967 }
4d315a07 2968 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2969 if (isreg)
2970 {
2971 SYMBOL_CLASS (sym) = LOC_REGPARM;
2972 }
a1c8d76e
JK
2973 else if (offreg)
2974 {
2975 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2976 SYMBOL_BASEREG (sym) = basereg;
2977 }
35f5886e
FF
2978 else
2979 {
2980 SYMBOL_CLASS (sym) = LOC_ARG;
2981 }
2982 break;
2983 case TAG_unspecified_parameters:
2984 /* From varargs functions; gdb doesn't seem to have any interest in
2985 this information, so just ignore it for now. (FIXME?) */
2986 break;
95ff889e 2987 case TAG_class_type:
35f5886e
FF
2988 case TAG_structure_type:
2989 case TAG_union_type:
2990 case TAG_enumeration_type:
2991 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2992 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
4d315a07 2993 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2994 break;
2995 case TAG_typedef:
2996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2997 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4d315a07 2998 add_symbol_to_list (sym, list_in_scope);
35f5886e
FF
2999 break;
3000 default:
3001 /* Not a tag we recognize. Hopefully we aren't processing trash
3002 data, but since we must specifically ignore things we don't
3003 recognize, there is nothing else we should do at this point. */
3004 break;
3005 }
3006 }
3007 return (sym);
3008}
3009
3010/*
3011
95ff889e
FF
3012LOCAL FUNCTION
3013
3014 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3015
3016SYNOPSIS
3017
3018 static void synthesize_typedef (struct dieinfo *dip,
3019 struct objfile *objfile,
3020 struct type *type);
3021
3022DESCRIPTION
3023
3024 Given a pointer to a DWARF information entry, synthesize a typedef
3025 for the name in the DIE, using the specified type.
3026
3027 This is used for C++ class, structs, unions, and enumerations to
3028 set up the tag name as a type.
3029
3030 */
3031
3032static void
3033synthesize_typedef (dip, objfile, type)
3034 struct dieinfo *dip;
3035 struct objfile *objfile;
3036 struct type *type;
3037{
3038 struct symbol *sym = NULL;
3039
3040 if (dip -> at_name != NULL)
3041 {
3042 sym = (struct symbol *)
3043 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3044 memset (sym, 0, sizeof (struct symbol));
3045 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3046 &objfile->symbol_obstack);
7532cf10 3047 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
95ff889e
FF
3048 SYMBOL_TYPE (sym) = type;
3049 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3050 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3051 add_symbol_to_list (sym, list_in_scope);
3052 }
3053}
3054
3055/*
3056
35f5886e
FF
3057LOCAL FUNCTION
3058
3059 decode_mod_fund_type -- decode a modified fundamental type
3060
3061SYNOPSIS
3062
3063 static struct type *decode_mod_fund_type (char *typedata)
3064
3065DESCRIPTION
3066
3067 Decode a block of data containing a modified fundamental
3068 type specification. TYPEDATA is a pointer to the block,
13b5a7ff
FF
3069 which starts with a length containing the size of the rest
3070 of the block. At the end of the block is a fundmental type
3071 code value that gives the fundamental type. Everything
35f5886e
FF
3072 in between are type modifiers.
3073
3074 We simply compute the number of modifiers and call the general
3075 function decode_modified_type to do the actual work.
3076*/
3077
3078static struct type *
1ab3bf1b
JG
3079decode_mod_fund_type (typedata)
3080 char *typedata;
35f5886e
FF
3081{
3082 struct type *typep = NULL;
3083 unsigned short modcount;
13b5a7ff 3084 int nbytes;
35f5886e
FF
3085
3086 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3087
3088 nbytes = attribute_size (AT_mod_fund_type);
3089 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3090 typedata += nbytes;
3091
35f5886e 3092 /* Deduct the size of the fundamental type bytes at the end of the block. */
13b5a7ff
FF
3093
3094 modcount -= attribute_size (AT_fund_type);
3095
35f5886e 3096 /* Now do the actual decoding */
13b5a7ff
FF
3097
3098 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
35f5886e
FF
3099 return (typep);
3100}
3101
3102/*
3103
3104LOCAL FUNCTION
3105
3106 decode_mod_u_d_type -- decode a modified user defined type
3107
3108SYNOPSIS
3109
3110 static struct type *decode_mod_u_d_type (char *typedata)
3111
3112DESCRIPTION
3113
3114 Decode a block of data containing a modified user defined
3115 type specification. TYPEDATA is a pointer to the block,
3116 which consists of a two byte length, containing the size
3117 of the rest of the block. At the end of the block is a
3118 four byte value that gives a reference to a user defined type.
3119 Everything in between are type modifiers.
3120
3121 We simply compute the number of modifiers and call the general
3122 function decode_modified_type to do the actual work.
3123*/
3124
3125static struct type *
1ab3bf1b
JG
3126decode_mod_u_d_type (typedata)
3127 char *typedata;
35f5886e
FF
3128{
3129 struct type *typep = NULL;
3130 unsigned short modcount;
13b5a7ff 3131 int nbytes;
35f5886e
FF
3132
3133 /* Get the total size of the block, exclusive of the size itself */
13b5a7ff
FF
3134
3135 nbytes = attribute_size (AT_mod_u_d_type);
3136 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3137 typedata += nbytes;
3138
35f5886e 3139 /* Deduct the size of the reference type bytes at the end of the block. */
13b5a7ff
FF
3140
3141 modcount -= attribute_size (AT_user_def_type);
3142
35f5886e 3143 /* Now do the actual decoding */
13b5a7ff
FF
3144
3145 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
35f5886e
FF
3146 return (typep);
3147}
3148
3149/*
3150
3151LOCAL FUNCTION
3152
3153 decode_modified_type -- decode modified user or fundamental type
3154
3155SYNOPSIS
3156
1c92ca6f 3157 static struct type *decode_modified_type (char *modifiers,
35f5886e
FF
3158 unsigned short modcount, int mtype)
3159
3160DESCRIPTION
3161
3162 Decode a modified type, either a modified fundamental type or
3163 a modified user defined type. MODIFIERS is a pointer to the
3164 block of bytes that define MODCOUNT modifiers. Immediately
3165 following the last modifier is a short containing the fundamental
3166 type or a long containing the reference to the user defined
3167 type. Which one is determined by MTYPE, which is either
3168 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3169 type we are generating.
3170
3171 We call ourself recursively to generate each modified type,`
3172 until MODCOUNT reaches zero, at which point we have consumed
3173 all the modifiers and generate either the fundamental type or
3174 user defined type. When the recursion unwinds, each modifier
3175 is applied in turn to generate the full modified type.
3176
3177NOTES
3178
3179 If we find a modifier that we don't recognize, and it is not one
3180 of those reserved for application specific use, then we issue a
3181 warning and simply ignore the modifier.
3182
3183BUGS
3184
3185 We currently ignore MOD_const and MOD_volatile. (FIXME)
3186
3187 */
3188
3189static struct type *
1ab3bf1b 3190decode_modified_type (modifiers, modcount, mtype)
1c92ca6f 3191 char *modifiers;
1ab3bf1b
JG
3192 unsigned int modcount;
3193 int mtype;
35f5886e
FF
3194{
3195 struct type *typep = NULL;
3196 unsigned short fundtype;
13b5a7ff 3197 DIE_REF die_ref;
1c92ca6f 3198 char modifier;
13b5a7ff 3199 int nbytes;
35f5886e
FF
3200
3201 if (modcount == 0)
3202 {
3203 switch (mtype)
3204 {
3205 case AT_mod_fund_type:
13b5a7ff
FF
3206 nbytes = attribute_size (AT_fund_type);
3207 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3208 current_objfile);
35f5886e
FF
3209 typep = decode_fund_type (fundtype);
3210 break;
3211 case AT_mod_u_d_type:
13b5a7ff
FF
3212 nbytes = attribute_size (AT_user_def_type);
3213 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3214 current_objfile);
3215 if ((typep = lookup_utype (die_ref)) == NULL)
35f5886e 3216 {
13b5a7ff 3217 typep = alloc_utype (die_ref, NULL);
35f5886e
FF
3218 }
3219 break;
3220 default:
51b80b00 3221 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
bf229b4e 3222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
35f5886e
FF
3223 break;
3224 }
3225 }
3226 else
3227 {
3228 modifier = *modifiers++;
3229 typep = decode_modified_type (modifiers, --modcount, mtype);
3230 switch (modifier)
3231 {
13b5a7ff
FF
3232 case MOD_pointer_to:
3233 typep = lookup_pointer_type (typep);
3234 break;
3235 case MOD_reference_to:
3236 typep = lookup_reference_type (typep);
3237 break;
3238 case MOD_const:
51b80b00 3239 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3240 break;
3241 case MOD_volatile:
51b80b00 3242 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
13b5a7ff
FF
3243 break;
3244 default:
1c92ca6f
FF
3245 if (!(MOD_lo_user <= (unsigned char) modifier
3246 && (unsigned char) modifier <= MOD_hi_user))
13b5a7ff 3247 {
51b80b00 3248 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
13b5a7ff
FF
3249 }
3250 break;
35f5886e
FF
3251 }
3252 }
3253 return (typep);
3254}
3255
3256/*
3257
3258LOCAL FUNCTION
3259
3260 decode_fund_type -- translate basic DWARF type to gdb base type
3261
3262DESCRIPTION
3263
3264 Given an integer that is one of the fundamental DWARF types,
3265 translate it to one of the basic internal gdb types and return
3266 a pointer to the appropriate gdb type (a "struct type *").
3267
3268NOTES
3269
85f0a848
FF
3270 For robustness, if we are asked to translate a fundamental
3271 type that we are unprepared to deal with, we return int so
3272 callers can always depend upon a valid type being returned,
3273 and so gdb may at least do something reasonable by default.
3274 If the type is not in the range of those types defined as
3275 application specific types, we also issue a warning.
35f5886e
FF
3276*/
3277
3278static struct type *
1ab3bf1b
JG
3279decode_fund_type (fundtype)
3280 unsigned int fundtype;
35f5886e
FF
3281{
3282 struct type *typep = NULL;
3283
3284 switch (fundtype)
3285 {
3286
3287 case FT_void:
bf229b4e 3288 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
35f5886e
FF
3289 break;
3290
1ab3bf1b 3291 case FT_boolean: /* Was FT_set in AT&T version */
bf229b4e 3292 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
1ab3bf1b
JG
3293 break;
3294
35f5886e 3295 case FT_pointer: /* (void *) */
bf229b4e 3296 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
1ab3bf1b 3297 typep = lookup_pointer_type (typep);
35f5886e
FF
3298 break;
3299
3300 case FT_char:
bf229b4e 3301 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
1ab3bf1b
JG
3302 break;
3303
35f5886e 3304 case FT_signed_char:
bf229b4e 3305 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1ab3bf1b
JG
3306 break;
3307
3308 case FT_unsigned_char:
bf229b4e 3309 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
35f5886e
FF
3310 break;
3311
3312 case FT_short:
bf229b4e 3313 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
1ab3bf1b
JG
3314 break;
3315
35f5886e 3316 case FT_signed_short:
bf229b4e 3317 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
1ab3bf1b
JG
3318 break;
3319
3320 case FT_unsigned_short:
bf229b4e 3321 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
35f5886e
FF
3322 break;
3323
3324 case FT_integer:
bf229b4e 3325 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1ab3bf1b
JG
3326 break;
3327
35f5886e 3328 case FT_signed_integer:
bf229b4e 3329 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
1ab3bf1b
JG
3330 break;
3331
3332 case FT_unsigned_integer:
bf229b4e 3333 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
35f5886e
FF
3334 break;
3335
3336 case FT_long:
bf229b4e 3337 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
1ab3bf1b
JG
3338 break;
3339
35f5886e 3340 case FT_signed_long:
bf229b4e 3341 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
35f5886e
FF
3342 break;
3343
1ab3bf1b 3344 case FT_unsigned_long:
bf229b4e 3345 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
35f5886e
FF
3346 break;
3347
1ab3bf1b 3348 case FT_long_long:
bf229b4e 3349 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
35f5886e 3350 break;
1ab3bf1b
JG
3351
3352 case FT_signed_long_long:
bf229b4e 3353 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
35f5886e 3354 break;
1ab3bf1b
JG
3355
3356 case FT_unsigned_long_long:
bf229b4e 3357 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
35f5886e 3358 break;
1ab3bf1b
JG
3359
3360 case FT_float:
bf229b4e 3361 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
35f5886e
FF
3362 break;
3363
1ab3bf1b 3364 case FT_dbl_prec_float:
bf229b4e 3365 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
35f5886e
FF
3366 break;
3367
3368 case FT_ext_prec_float:
bf229b4e 3369 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
35f5886e
FF
3370 break;
3371
3372 case FT_complex:
bf229b4e 3373 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
35f5886e
FF
3374 break;
3375
3376 case FT_dbl_prec_complex:
bf229b4e 3377 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
35f5886e
FF
3378 break;
3379
1ab3bf1b 3380 case FT_ext_prec_complex:
bf229b4e 3381 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
35f5886e 3382 break;
1ab3bf1b 3383
35f5886e
FF
3384 }
3385
85f0a848 3386 if (typep == NULL)
35f5886e 3387 {
85f0a848
FF
3388 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3389 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3390 {
51b80b00 3391 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
85f0a848 3392 }
35f5886e
FF
3393 }
3394
3395 return (typep);
3396}
3397
3398/*
3399
3400LOCAL FUNCTION
3401
3402 create_name -- allocate a fresh copy of a string on an obstack
3403
3404DESCRIPTION
3405
3406 Given a pointer to a string and a pointer to an obstack, allocates
3407 a fresh copy of the string on the specified obstack.
3408
3409*/
3410
3411static char *
1ab3bf1b
JG
3412create_name (name, obstackp)
3413 char *name;
3414 struct obstack *obstackp;
35f5886e
FF
3415{
3416 int length;
3417 char *newname;
3418
3419 length = strlen (name) + 1;
3420 newname = (char *) obstack_alloc (obstackp, length);
4ed3a9ea 3421 strcpy (newname, name);
35f5886e
FF
3422 return (newname);
3423}
3424
3425/*
3426
3427LOCAL FUNCTION
3428
3429 basicdieinfo -- extract the minimal die info from raw die data
3430
3431SYNOPSIS
3432
95967e73
FF
3433 void basicdieinfo (char *diep, struct dieinfo *dip,
3434 struct objfile *objfile)
35f5886e
FF
3435
3436DESCRIPTION
3437
3438 Given a pointer to raw DIE data, and a pointer to an instance of a
3439 die info structure, this function extracts the basic information
3440 from the DIE data required to continue processing this DIE, along
3441 with some bookkeeping information about the DIE.
3442
3443 The information we absolutely must have includes the DIE tag,
3444 and the DIE length. If we need the sibling reference, then we
3445 will have to call completedieinfo() to process all the remaining
3446 DIE information.
3447
3448 Note that since there is no guarantee that the data is properly
3449 aligned in memory for the type of access required (indirection
95967e73
FF
3450 through anything other than a char pointer), and there is no
3451 guarantee that it is in the same byte order as the gdb host,
3452 we call a function which deals with both alignment and byte
3453 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3454
3455 We also take care of some other basic things at this point, such
3456 as ensuring that the instance of the die info structure starts
3457 out completely zero'd and that curdie is initialized for use
3458 in error reporting if we have a problem with the current die.
3459
3460NOTES
3461
3462 All DIE's must have at least a valid length, thus the minimum
13b5a7ff
FF
3463 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3464 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
35f5886e
FF
3465 are forced to be TAG_padding DIES.
3466
13b5a7ff
FF
3467 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3468 that if a padding DIE is used for alignment and the amount needed is
3469 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3470 enough to align to the next alignment boundry.
4090fe1c
FF
3471
3472 We do some basic sanity checking here, such as verifying that the
3473 length of the die would not cause it to overrun the recorded end of
3474 the buffer holding the DIE info. If we find a DIE that is either
3475 too small or too large, we force it's length to zero which should
3476 cause the caller to take appropriate action.
35f5886e
FF
3477 */
3478
3479static void
95967e73 3480basicdieinfo (dip, diep, objfile)
1ab3bf1b
JG
3481 struct dieinfo *dip;
3482 char *diep;
95967e73 3483 struct objfile *objfile;
35f5886e
FF
3484{
3485 curdie = dip;
4ed3a9ea 3486 memset (dip, 0, sizeof (struct dieinfo));
35f5886e 3487 dip -> die = diep;
13b5a7ff
FF
3488 dip -> die_ref = dbroff + (diep - dbbase);
3489 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3490 objfile);
4090fe1c
FF
3491 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3492 ((diep + dip -> die_length) > (dbbase + dbsize)))
35f5886e 3493 {
51b80b00 3494 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
4090fe1c 3495 dip -> die_length = 0;
35f5886e 3496 }
13b5a7ff 3497 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
35f5886e 3498 {
13b5a7ff 3499 dip -> die_tag = TAG_padding;
35f5886e
FF
3500 }
3501 else
3502 {
13b5a7ff
FF
3503 diep += SIZEOF_DIE_LENGTH;
3504 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3505 objfile);
35f5886e
FF
3506 }
3507}
3508
3509/*
3510
3511LOCAL FUNCTION
3512
3513 completedieinfo -- finish reading the information for a given DIE
3514
3515SYNOPSIS
3516
95967e73 3517 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
35f5886e
FF
3518
3519DESCRIPTION
3520
3521 Given a pointer to an already partially initialized die info structure,
3522 scan the raw DIE data and finish filling in the die info structure
3523 from the various attributes found.
3524
3525 Note that since there is no guarantee that the data is properly
3526 aligned in memory for the type of access required (indirection
95967e73
FF
3527 through anything other than a char pointer), and there is no
3528 guarantee that it is in the same byte order as the gdb host,
3529 we call a function which deals with both alignment and byte
3530 swapping issues. Possibly inefficient, but quite portable.
35f5886e
FF
3531
3532NOTES
3533
3534 Each time we are called, we increment the diecount variable, which
3535 keeps an approximate count of the number of dies processed for
3536 each compilation unit. This information is presented to the user
3537 if the info_verbose flag is set.
3538
3539 */
3540
3541static void
95967e73 3542completedieinfo (dip, objfile)
1ab3bf1b 3543 struct dieinfo *dip;
95967e73 3544 struct objfile *objfile;
35f5886e
FF
3545{
3546 char *diep; /* Current pointer into raw DIE data */
3547 char *end; /* Terminate DIE scan here */
3548 unsigned short attr; /* Current attribute being scanned */
3549 unsigned short form; /* Form of the attribute */
13b5a7ff 3550 int nbytes; /* Size of next field to read */
35f5886e
FF
3551
3552 diecount++;
3553 diep = dip -> die;
13b5a7ff
FF
3554 end = diep + dip -> die_length;
3555 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
35f5886e
FF
3556 while (diep < end)
3557 {
13b5a7ff
FF
3558 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3559 diep += SIZEOF_ATTRIBUTE;
3560 if ((nbytes = attribute_size (attr)) == -1)
3561 {
51b80b00 3562 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
13b5a7ff
FF
3563 diep = end;
3564 continue;
3565 }
35f5886e
FF
3566 switch (attr)
3567 {
3568 case AT_fund_type:
13b5a7ff
FF
3569 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3570 objfile);
35f5886e
FF
3571 break;
3572 case AT_ordering:
13b5a7ff
FF
3573 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3574 objfile);
35f5886e
FF
3575 break;
3576 case AT_bit_offset:
13b5a7ff
FF
3577 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3578 objfile);
35f5886e 3579 break;
35f5886e 3580 case AT_sibling:
13b5a7ff
FF
3581 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 objfile);
35f5886e
FF
3583 break;
3584 case AT_stmt_list:
13b5a7ff
FF
3585 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3586 objfile);
2d6186f4 3587 dip -> has_at_stmt_list = 1;
35f5886e
FF
3588 break;
3589 case AT_low_pc:
13b5a7ff
FF
3590 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3591 objfile);
4d315a07 3592 dip -> at_low_pc += baseaddr;
2d6186f4 3593 dip -> has_at_low_pc = 1;
35f5886e
FF
3594 break;
3595 case AT_high_pc:
13b5a7ff
FF
3596 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
4d315a07 3598 dip -> at_high_pc += baseaddr;
35f5886e
FF
3599 break;
3600 case AT_language:
13b5a7ff
FF
3601 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
35f5886e
FF
3603 break;
3604 case AT_user_def_type:
13b5a7ff
FF
3605 dip -> at_user_def_type = target_to_host (diep, nbytes,
3606 GET_UNSIGNED, objfile);
35f5886e
FF
3607 break;
3608 case AT_byte_size:
13b5a7ff
FF
3609 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
50055e94 3611 dip -> has_at_byte_size = 1;
35f5886e
FF
3612 break;
3613 case AT_bit_size:
13b5a7ff
FF
3614 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
35f5886e
FF
3616 break;
3617 case AT_member:
13b5a7ff
FF
3618 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
35f5886e
FF
3620 break;
3621 case AT_discr:
13b5a7ff
FF
3622 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
35f5886e 3624 break;
35f5886e
FF
3625 case AT_location:
3626 dip -> at_location = diep;
3627 break;
3628 case AT_mod_fund_type:
3629 dip -> at_mod_fund_type = diep;
3630 break;
3631 case AT_subscr_data:
3632 dip -> at_subscr_data = diep;
3633 break;
3634 case AT_mod_u_d_type:
3635 dip -> at_mod_u_d_type = diep;
3636 break;
35f5886e
FF
3637 case AT_element_list:
3638 dip -> at_element_list = diep;
768be6e1
FF
3639 dip -> short_element_list = 0;
3640 break;
3641 case AT_short_element_list:
3642 dip -> at_element_list = diep;
3643 dip -> short_element_list = 1;
35f5886e
FF
3644 break;
3645 case AT_discr_value:
3646 dip -> at_discr_value = diep;
3647 break;
3648 case AT_string_length:
3649 dip -> at_string_length = diep;
3650 break;
3651 case AT_name:
3652 dip -> at_name = diep;
3653 break;
3654 case AT_comp_dir:
d4902ab0
FF
3655 /* For now, ignore any "hostname:" portion, since gdb doesn't
3656 know how to deal with it. (FIXME). */
3657 dip -> at_comp_dir = strrchr (diep, ':');
3658 if (dip -> at_comp_dir != NULL)
3659 {
3660 dip -> at_comp_dir++;
3661 }
3662 else
3663 {
3664 dip -> at_comp_dir = diep;
3665 }
35f5886e
FF
3666 break;
3667 case AT_producer:
3668 dip -> at_producer = diep;
3669 break;
35f5886e 3670 case AT_start_scope:
13b5a7ff
FF
3671 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
35f5886e
FF
3673 break;
3674 case AT_stride_size:
13b5a7ff
FF
3675 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
35f5886e
FF
3677 break;
3678 case AT_src_info:
13b5a7ff
FF
3679 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3680 objfile);
35f5886e
FF
3681 break;
3682 case AT_prototyped:
13b5a7ff 3683 dip -> at_prototyped = diep;
35f5886e 3684 break;
35f5886e
FF
3685 default:
3686 /* Found an attribute that we are unprepared to handle. However
3687 it is specifically one of the design goals of DWARF that
3688 consumers should ignore unknown attributes. As long as the
3689 form is one that we recognize (so we know how to skip it),
3690 we can just ignore the unknown attribute. */
3691 break;
3692 }
13b5a7ff 3693 form = FORM_FROM_ATTR (attr);
35f5886e
FF
3694 switch (form)
3695 {
3696 case FORM_DATA2:
13b5a7ff 3697 diep += 2;
35f5886e
FF
3698 break;
3699 case FORM_DATA4:
13b5a7ff
FF
3700 case FORM_REF:
3701 diep += 4;
35f5886e
FF
3702 break;
3703 case FORM_DATA8:
13b5a7ff 3704 diep += 8;
35f5886e
FF
3705 break;
3706 case FORM_ADDR:
13b5a7ff 3707 diep += TARGET_FT_POINTER_SIZE (objfile);
35f5886e
FF
3708 break;
3709 case FORM_BLOCK2:
13b5a7ff 3710 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3711 break;
3712 case FORM_BLOCK4:
13b5a7ff 3713 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
35f5886e
FF
3714 break;
3715 case FORM_STRING:
3716 diep += strlen (diep) + 1;
3717 break;
3718 default:
51b80b00 3719 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
35f5886e
FF
3720 diep = end;
3721 break;
3722 }
3723 }
3724}
95967e73 3725
13b5a7ff 3726/*
95967e73 3727
13b5a7ff
FF
3728LOCAL FUNCTION
3729
3730 target_to_host -- swap in target data to host
3731
3732SYNOPSIS
3733
3734 target_to_host (char *from, int nbytes, int signextend,
3735 struct objfile *objfile)
3736
3737DESCRIPTION
3738
3739 Given pointer to data in target format in FROM, a byte count for
3740 the size of the data in NBYTES, a flag indicating whether or not
3741 the data is signed in SIGNEXTEND, and a pointer to the current
3742 objfile in OBJFILE, convert the data to host format and return
3743 the converted value.
3744
3745NOTES
3746
3747 FIXME: If we read data that is known to be signed, and expect to
3748 use it as signed data, then we need to explicitly sign extend the
3749 result until the bfd library is able to do this for us.
3750
306d27ca
DE
3751 FIXME: Would a 32 bit target ever need an 8 byte result?
3752
13b5a7ff
FF
3753 */
3754
306d27ca 3755static CORE_ADDR
13b5a7ff 3756target_to_host (from, nbytes, signextend, objfile)
95967e73
FF
3757 char *from;
3758 int nbytes;
13b5a7ff 3759 int signextend; /* FIXME: Unused */
95967e73
FF
3760 struct objfile *objfile;
3761{
306d27ca 3762 CORE_ADDR rtnval;
95967e73
FF
3763
3764 switch (nbytes)
3765 {
95967e73 3766 case 8:
13b5a7ff 3767 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
95967e73 3768 break;
95967e73 3769 case 4:
13b5a7ff 3770 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3771 break;
3772 case 2:
13b5a7ff 3773 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3774 break;
3775 case 1:
13b5a7ff 3776 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
95967e73
FF
3777 break;
3778 default:
51b80b00 3779 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
13b5a7ff 3780 rtnval = 0;
95967e73
FF
3781 break;
3782 }
13b5a7ff 3783 return (rtnval);
95967e73
FF
3784}
3785
13b5a7ff
FF
3786/*
3787
3788LOCAL FUNCTION
3789
3790 attribute_size -- compute size of data for a DWARF attribute
3791
3792SYNOPSIS
3793
3794 static int attribute_size (unsigned int attr)
3795
3796DESCRIPTION
3797
3798 Given a DWARF attribute in ATTR, compute the size of the first
3799 piece of data associated with this attribute and return that
3800 size.
3801
3802 Returns -1 for unrecognized attributes.
3803
3804 */
3805
3806static int
3807attribute_size (attr)
3808 unsigned int attr;
3809{
3810 int nbytes; /* Size of next data for this attribute */
3811 unsigned short form; /* Form of the attribute */
3812
3813 form = FORM_FROM_ATTR (attr);
3814 switch (form)
3815 {
3816 case FORM_STRING: /* A variable length field is next */
3817 nbytes = 0;
3818 break;
3819 case FORM_DATA2: /* Next 2 byte field is the data itself */
3820 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3821 nbytes = 2;
3822 break;
3823 case FORM_DATA4: /* Next 4 byte field is the data itself */
3824 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3825 case FORM_REF: /* Next 4 byte field is a DIE offset */
3826 nbytes = 4;
3827 break;
3828 case FORM_DATA8: /* Next 8 byte field is the data itself */
3829 nbytes = 8;
3830 break;
3831 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3832 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3833 break;
3834 default:
51b80b00 3835 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
13b5a7ff
FF
3836 nbytes = -1;
3837 break;
3838 }
3839 return (nbytes);
3840}