]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
213516ef 3 Copyright (C) 1991-2023 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "demangle.h"
33#include "psympriv.h"
34#include "filenames.h"
35#include "probe.h"
36#include "arch-utils.h"
07be84bf 37#include "gdbtypes.h"
4de283e4 38#include "value.h"
07be84bf 39#include "infcall.h"
4de283e4 40#include "gdbthread.h"
00431a78 41#include "inferior.h"
4de283e4
TT
42#include "regcache.h"
43#include "bcache.h"
44#include "gdb_bfd.h"
45#include "build-id.h"
f00aae0f 46#include "location.h"
4de283e4 47#include "auxv.h"
0e8f53ba 48#include "mdebugread.h"
30d1f018 49#include "ctfread.h"
31edb802 50#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
51#include "gdbsupport/scoped_fd.h"
52#include "debuginfod-support.h"
70182375 53#include "dwarf2/public.h"
c906108c
SS
54
55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b 61 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 62 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 63 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 64 };
c906108c 65
814cf43a
TT
66/* Type for per-BFD data. */
67
68typedef std::vector<std::unique_ptr<probe>> elfread_data;
69
5d9cf8a4 70/* Per-BFD data for probe info. */
55aa24fb 71
08b8a139 72static const registry<bfd>::key<elfread_data> probe_key;
55aa24fb 73
07be84bf
JK
74/* Minimal symbols located at the GOT entries for .plt - that is the real
75 pointer where the given entry will jump to. It gets updated by the real
76 function address during lazy ld.so resolving in the inferior. These
77 minimal symbols are indexed for <tab>-completion. */
78
79#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
80
31d99776
DJ
81/* Locate the segments in ABFD. */
82
62982abd 83static symfile_segment_data_up
31d99776
DJ
84elf_symfile_segments (bfd *abfd)
85{
86 Elf_Internal_Phdr *phdrs, **segments;
87 long phdrs_size;
88 int num_phdrs, num_segments, num_sections, i;
89 asection *sect;
31d99776
DJ
90
91 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
92 if (phdrs_size == -1)
93 return NULL;
94
224c3ddb 95 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
96 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
97 if (num_phdrs == -1)
98 return NULL;
99
100 num_segments = 0;
8d749320 101 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
102 for (i = 0; i < num_phdrs; i++)
103 if (phdrs[i].p_type == PT_LOAD)
104 segments[num_segments++] = &phdrs[i];
105
106 if (num_segments == 0)
107 return NULL;
108
62982abd 109 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 110 data->segments.reserve (num_segments);
31d99776
DJ
111
112 for (i = 0; i < num_segments; i++)
68b888ff 113 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
114
115 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
116
117 /* All elements are initialized to 0 (map to no segment). */
118 data->segment_info.resize (num_sections);
31d99776
DJ
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
31d99776 123
fd361982 124 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
125 continue;
126
62b74cb8 127 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
128
129 for (j = 0; j < num_segments; j++)
62b74cb8 130 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
131 {
132 data->segment_info[i] = j + 1;
133 break;
134 }
135
ad09a548
DJ
136 /* We should have found a segment for every non-empty section.
137 If we haven't, we will not relocate this section by any
138 offsets we apply to the segments. As an exception, do not
139 warn about SHT_NOBITS sections; in normal ELF execution
140 environments, SHT_NOBITS means zero-initialized and belongs
141 in a segment, but in no-OS environments some tools (e.g. ARM
142 RealView) use SHT_NOBITS for uninitialized data. Since it is
143 uninitialized, it doesn't need a program header. Such
144 binaries are not relocatable. */
25f4c262
KS
145
146 /* Exclude debuginfo files from this warning, too, since those
147 are often not strictly compliant with the standard. See, e.g.,
148 ld/24717 for more discussion. */
149 if (!is_debuginfo_file (abfd)
150 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
152 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
153 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
08f93a1a 179elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 180{
7ce59000 181 if (strcmp (sectp->name, ".stab") == 0)
c906108c 182 {
c5aa993b 183 ei->stabsect = sectp;
c906108c 184 }
6314a349 185 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 186 {
c5aa993b 187 ei->mdebugsect = sectp;
c906108c 188 }
30d1f018
WP
189 else if (strcmp (sectp->name, ".ctf") == 0)
190 {
191 ei->ctfsect = sectp;
192 }
c906108c
SS
193}
194
c906108c 195static struct minimal_symbol *
8dddcb8f 196record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 197 gdb::string_view name, bool copy_name,
04a679b8 198 CORE_ADDR address,
f594e5e9
MC
199 enum minimal_symbol_type ms_type,
200 asection *bfd_section, struct objfile *objfile)
c906108c 201{
08feed99 202 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 203
0875794a
JK
204 if (ms_type == mst_text || ms_type == mst_file_text
205 || ms_type == mst_text_gnu_ifunc)
85ddcc70 206 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 207
44e4c775
AB
208 /* We only setup section information for allocatable sections. Usually
209 we'd only expect to find msymbols for allocatable sections, but if the
210 ELF is malformed then this might not be the case. In that case don't
211 create an msymbol that references an uninitialised section object. */
212 int section_index = 0;
213 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
98badbfd 214 section_index = gdb_bfd_section_index (objfile->obfd.get (), bfd_section);
44e4c775 215
4b610737 216 struct minimal_symbol *result
44e4c775 217 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
218 if ((objfile->flags & OBJF_MAINLINE) == 0
219 && (ms_type == mst_data || ms_type == mst_bss))
220 result->maybe_copied = 1;
221
222 return result;
c906108c
SS
223}
224
7f86f058 225/* Read the symbol table of an ELF file.
c906108c 226
62553543 227 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
c906108c 230
c5aa993b
JM
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
7f86f058 235 in data structures hung off the objfile's private data. */
c906108c 236
6f610d07
UW
237#define ST_REGULAR 0
238#define ST_DYNAMIC 1
239#define ST_SYNTHETIC 2
240
c906108c 241static void
8dddcb8f
TT
242elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
04a679b8 244 long number_of_symbols, asymbol **symbol_table,
ce6c454e 245 bool copy_names)
c906108c 246{
08feed99 247 struct gdbarch *gdbarch = objfile->arch ();
c906108c 248 asymbol *sym;
c906108c 249 long i;
c906108c
SS
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
18a94d75
DE
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
0af1e9a5 254 const char *filesymname = "";
98badbfd 255 int stripped = (bfd_get_symcount (objfile->obfd.get ()) == 0);
3e29f34a
MR
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 258
0cc7b392 259 for (i = 0; i < number_of_symbols; i++)
c906108c 260 {
0cc7b392
DJ
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
c906108c 263 {
0cc7b392 264 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 265 that are null strings (may happen). */
0cc7b392
DJ
266 continue;
267 }
c906108c 268
28a4e64d
TT
269 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
270
74763737
DJ
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
98badbfd 274 if (bfd_is_target_special_symbol (objfile->obfd.get (), sym))
60c5725c
DJ
275 {
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 continue;
279 }
74763737 280
6f610d07 281 if (type == ST_DYNAMIC
45dfa85a 282 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
283 && (sym->flags & BSF_FUNCTION))
284 {
285 struct minimal_symbol *msym;
98badbfd 286 bfd *abfd = objfile->obfd.get ();
dea91a5c 287 asection *sect;
0cc7b392
DJ
288
289 /* Symbol is a reference to a function defined in
290 a shared library.
291 If its value is non zero then it is usually the address
292 of the corresponding entry in the procedure linkage table,
293 plus the desired section offset.
294 If its value is zero then the dynamic linker has to resolve
0963b4bd 295 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
296 for this symbol in the executable file, so we skip it. */
297 symaddr = sym->value;
298 if (symaddr == 0)
299 continue;
02c75f72
UW
300
301 /* sym->section is the undefined section. However, we want to
302 record the section where the PLT stub resides with the
303 minimal symbol. Search the section table for the one that
304 covers the stub's address. */
305 for (sect = abfd->sections; sect != NULL; sect = sect->next)
306 {
fd361982 307 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
308 continue;
309
fd361982
AM
310 if (symaddr >= bfd_section_vma (sect)
311 && symaddr < bfd_section_vma (sect)
312 + bfd_section_size (sect))
02c75f72
UW
313 break;
314 }
315 if (!sect)
316 continue;
317
828cfa8d
JB
318 /* On ia64-hpux, we have discovered that the system linker
319 adds undefined symbols with nonzero addresses that cannot
320 be right (their address points inside the code of another
321 function in the .text section). This creates problems
322 when trying to determine which symbol corresponds to
323 a given address.
324
325 We try to detect those buggy symbols by checking which
326 section we think they correspond to. Normally, PLT symbols
327 are stored inside their own section, and the typical name
328 for that section is ".plt". So, if there is a ".plt"
329 section, and yet the section name of our symbol does not
330 start with ".plt", we ignore that symbol. */
61012eef 331 if (!startswith (sect->name, ".plt")
828cfa8d
JB
332 && bfd_get_section_by_name (abfd, ".plt") != NULL)
333 continue;
334
0cc7b392 335 msym = record_minimal_symbol
31edb802 336 (reader, sym->name, copy_names,
04a679b8 337 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 338 if (msym != NULL)
9b807e7b
MR
339 {
340 msym->filename = filesymname;
3e29f34a
MR
341 if (elf_make_msymbol_special_p)
342 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 343 }
0cc7b392
DJ
344 continue;
345 }
c906108c 346
0cc7b392
DJ
347 /* If it is a nonstripped executable, do not enter dynamic
348 symbols, as the dynamic symbol table is usually a subset
349 of the main symbol table. */
6f610d07 350 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
351 continue;
352 if (sym->flags & BSF_FILE)
be1e3d3e 353 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
354 else if (sym->flags & BSF_SECTION_SYM)
355 continue;
bb869963
SDJ
356 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
357 | BSF_GNU_UNIQUE))
0cc7b392
DJ
358 {
359 struct minimal_symbol *msym;
360
361 /* Select global/local/weak symbols. Note that bfd puts abs
362 symbols in their own section, so all symbols we are
0963b4bd
MS
363 interested in will have a section. */
364 /* Bfd symbols are section relative. */
0cc7b392 365 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
366 /* For non-absolute symbols, use the type of the section
367 they are relative to, to intuit text/data. Bfd provides
0963b4bd 368 no way of figuring this out for absolute symbols. */
45dfa85a 369 if (sym->section == bfd_abs_section_ptr)
c906108c 370 {
0cc7b392
DJ
371 /* This is a hack to get the minimal symbol type
372 right for Irix 5, which has absolute addresses
6f610d07
UW
373 with special section indices for dynamic symbols.
374
375 NOTE: uweigand-20071112: Synthetic symbols do not
376 have an ELF-private part, so do not touch those. */
dea91a5c 377 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
28a4e64d 378 elf_sym->internal_elf_sym.st_shndx;
0cc7b392
DJ
379
380 switch (shndx)
c906108c 381 {
0cc7b392
DJ
382 case SHN_MIPS_TEXT:
383 ms_type = mst_text;
384 break;
385 case SHN_MIPS_DATA:
386 ms_type = mst_data;
387 break;
388 case SHN_MIPS_ACOMMON:
389 ms_type = mst_bss;
390 break;
391 default:
392 ms_type = mst_abs;
393 }
394
395 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 396 symbols, relocate all others by section offset. */
0cc7b392
DJ
397 if (ms_type != mst_abs)
398 {
399 if (sym->name[0] == '.')
400 continue;
c906108c 401 }
0cc7b392
DJ
402 }
403 else if (sym->section->flags & SEC_CODE)
404 {
bb869963 405 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 406 {
0875794a
JK
407 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
408 ms_type = mst_text_gnu_ifunc;
409 else
410 ms_type = mst_text;
0cc7b392 411 }
90359a16
JK
412 /* The BSF_SYNTHETIC check is there to omit ppc64 function
413 descriptors mistaken for static functions starting with 'L'.
414 */
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
416 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
417 || ((sym->flags & BSF_LOCAL)
418 && sym->name[0] == '$'
419 && sym->name[1] == 'L'))
420 /* Looks like a compiler-generated label. Skip
421 it. The assembler should be skipping these (to
422 keep executables small), but apparently with
423 gcc on the (deleted) delta m88k SVR4, it loses.
424 So to have us check too should be harmless (but
425 I encourage people to fix this in the assembler
426 instead of adding checks here). */
427 continue;
428 else
429 {
430 ms_type = mst_file_text;
c906108c 431 }
0cc7b392
DJ
432 }
433 else if (sym->section->flags & SEC_ALLOC)
434 {
bb869963 435 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 436 {
f50776aa
PA
437 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
438 {
439 ms_type = mst_data_gnu_ifunc;
440 }
441 else if (sym->section->flags & SEC_LOAD)
c906108c 442 {
0cc7b392 443 ms_type = mst_data;
c906108c 444 }
c906108c
SS
445 else
446 {
0cc7b392 447 ms_type = mst_bss;
c906108c
SS
448 }
449 }
0cc7b392 450 else if (sym->flags & BSF_LOCAL)
c906108c 451 {
0cc7b392
DJ
452 if (sym->section->flags & SEC_LOAD)
453 {
454 ms_type = mst_file_data;
c906108c
SS
455 }
456 else
457 {
0cc7b392 458 ms_type = mst_file_bss;
c906108c
SS
459 }
460 }
461 else
462 {
0cc7b392 463 ms_type = mst_unknown;
c906108c 464 }
0cc7b392
DJ
465 }
466 else
467 {
468 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 469 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
470 hob with actions like finding what function the PC
471 is in. Ignore them if they aren't text, data, or bss. */
472 /* ms_type = mst_unknown; */
0963b4bd 473 continue; /* Skip this symbol. */
0cc7b392
DJ
474 }
475 msym = record_minimal_symbol
31edb802 476 (reader, sym->name, copy_names, symaddr,
0cc7b392 477 ms_type, sym->section, objfile);
6f610d07 478
0cc7b392
DJ
479 if (msym)
480 {
6f610d07 481 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 482 ELF-private part. */
6f610d07 483 if (type != ST_SYNTHETIC)
24c274a1
AM
484 {
485 /* Pass symbol size field in via BFD. FIXME!!! */
5bbfd12d 486 msym->set_size (elf_sym->internal_elf_sym.st_size);
24c274a1 487 }
dea91a5c 488
a103a963 489 msym->filename = filesymname;
3e29f34a
MR
490 if (elf_make_msymbol_special_p)
491 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 492 }
2eaf8d2a 493
715c6909
TT
494 /* If we see a default versioned symbol, install it under
495 its version-less name. */
496 if (msym != NULL)
497 {
498 const char *atsign = strchr (sym->name, '@');
28a4e64d
TT
499 bool is_at_symbol = atsign != nullptr && atsign > sym->name;
500 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0;
501 int len = is_at_symbol ? atsign - sym->name : 0;
502
503 if (is_at_symbol
504 && !is_plt
505 && (elf_sym->version & VERSYM_HIDDEN) == 0)
506 record_minimal_symbol (reader,
507 gdb::string_view (sym->name, len),
508 true, symaddr, ms_type, sym->section,
509 objfile);
510 else if (is_plt)
2eaf8d2a 511 {
28a4e64d
TT
512 /* For @plt symbols, also record a trampoline to the
513 destination symbol. The @plt symbol will be used
514 in disassembly, and the trampoline will be used
515 when we are trying to find the target. */
516 if (ms_type == mst_text && type == ST_SYNTHETIC)
2eaf8d2a 517 {
28a4e64d
TT
518 struct minimal_symbol *mtramp;
519
520 mtramp = record_minimal_symbol
521 (reader, gdb::string_view (sym->name, len), true,
522 symaddr, mst_solib_trampoline, sym->section, objfile);
523 if (mtramp)
524 {
5bbfd12d 525 mtramp->set_size (msym->size());
28a4e64d
TT
526 mtramp->created_by_gdb = 1;
527 mtramp->filename = filesymname;
528 if (elf_make_msymbol_special_p)
529 gdbarch_elf_make_msymbol_special (gdbarch,
530 sym, mtramp);
531 }
2eaf8d2a
DJ
532 }
533 }
534 }
c906108c 535 }
c906108c
SS
536 }
537}
538
07be84bf
JK
539/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
540 for later look ups of which function to call when user requests
541 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
542 library defining `function' we cannot yet know while reading OBJFILE which
543 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
544 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
545
546static void
8dddcb8f
TT
547elf_rel_plt_read (minimal_symbol_reader &reader,
548 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf 549{
98badbfd 550 bfd *obfd = objfile->obfd.get ();
07be84bf 551 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 552 asection *relplt, *got_plt;
07be84bf 553 bfd_size_type reloc_count, reloc;
08feed99 554 struct gdbarch *gdbarch = objfile->arch ();
07be84bf 555 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
df86565b 556 size_t ptr_size = ptr_type->length ();
07be84bf
JK
557
558 if (objfile->separate_debug_objfile_backlink)
559 return;
560
07be84bf
JK
561 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
562 if (got_plt == NULL)
4b7d1f7f
WN
563 {
564 /* For platforms where there is no separate .got.plt. */
565 got_plt = bfd_get_section_by_name (obfd, ".got");
566 if (got_plt == NULL)
567 return;
568 }
07be84bf 569
02e169e2
PA
570 /* Depending on system, we may find jump slots in a relocation
571 section for either .got.plt or .plt. */
572 asection *plt = bfd_get_section_by_name (obfd, ".plt");
573 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
574
575 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
576
07be84bf
JK
577 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
578 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
579 {
580 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
581
582 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
583 {
584 if (this_hdr.sh_info == plt_elf_idx
585 || this_hdr.sh_info == got_plt_elf_idx)
586 break;
587 }
588 }
07be84bf
JK
589 if (relplt == NULL)
590 return;
591
592 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
593 return;
594
26fcd5d7 595 std::string string_buffer;
07be84bf 596
02e169e2
PA
597 /* Does ADDRESS reside in SECTION of OBFD? */
598 auto within_section = [obfd] (asection *section, CORE_ADDR address)
599 {
600 if (section == NULL)
601 return false;
602
fd361982
AM
603 return (bfd_section_vma (section) <= address
604 && (address < bfd_section_vma (section)
605 + bfd_section_size (section)));
02e169e2
PA
606 };
607
07be84bf
JK
608 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
609 for (reloc = 0; reloc < reloc_count; reloc++)
610 {
22e048c9 611 const char *name;
07be84bf
JK
612 struct minimal_symbol *msym;
613 CORE_ADDR address;
26fcd5d7 614 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 615 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
616
617 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
618 address = relplt->relocation[reloc].address;
619
02e169e2
PA
620 asection *msym_section;
621
622 /* Does the pointer reside in either the .got.plt or .plt
623 sections? */
624 if (within_section (got_plt, address))
625 msym_section = got_plt;
626 else if (within_section (plt, address))
627 msym_section = plt;
628 else
07be84bf
JK
629 continue;
630
f50776aa
PA
631 /* We cannot check if NAME is a reference to
632 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
633 symbol is undefined and the objfile having NAME defined may
634 not yet have been loaded. */
07be84bf 635
26fcd5d7
TT
636 string_buffer.assign (name);
637 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 638
31edb802 639 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
640 true, address, mst_slot_got_plt,
641 msym_section, objfile);
07be84bf 642 if (msym)
5bbfd12d 643 msym->set_size (ptr_size);
07be84bf 644 }
07be84bf
JK
645}
646
647/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
648
08b8a139 649static const registry<objfile>::key<htab, htab_deleter>
8127a2fa 650 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
651
652/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
653
654struct elf_gnu_ifunc_cache
655{
656 /* This is always a function entry address, not a function descriptor. */
657 CORE_ADDR addr;
658
659 char name[1];
660};
661
662/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
663
664static hashval_t
665elf_gnu_ifunc_cache_hash (const void *a_voidp)
666{
9a3c8263
SM
667 const struct elf_gnu_ifunc_cache *a
668 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
669
670 return htab_hash_string (a->name);
671}
672
673/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
674
675static int
676elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
677{
9a3c8263
SM
678 const struct elf_gnu_ifunc_cache *a
679 = (const struct elf_gnu_ifunc_cache *) a_voidp;
680 const struct elf_gnu_ifunc_cache *b
681 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
682
683 return strcmp (a->name, b->name) == 0;
684}
685
686/* Record the target function address of a STT_GNU_IFUNC function NAME is the
687 function entry address ADDR. Return 1 if NAME and ADDR are considered as
688 valid and therefore they were successfully recorded, return 0 otherwise.
689
690 Function does not expect a duplicate entry. Use
691 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
692 exists. */
693
694static int
695elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
696{
7cbd4a93 697 struct bound_minimal_symbol msym;
07be84bf
JK
698 struct objfile *objfile;
699 htab_t htab;
700 struct elf_gnu_ifunc_cache entry_local, *entry_p;
701 void **slot;
702
703 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 704 if (msym.minsym == NULL)
07be84bf 705 return 0;
4aeddc50 706 if (msym.value_address () != addr)
07be84bf 707 return 0;
e27d198c 708 objfile = msym.objfile;
07be84bf
JK
709
710 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 711 resolution and it has no use for GDB. */
c9d95fa3 712 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
713 size_t len = strlen (target_name);
714
715 /* Note we check the symbol's name instead of checking whether the
716 symbol is in the .plt section because some systems have @plt
717 symbols in the .text section. */
718 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
719 return 0;
720
8127a2fa 721 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
722 if (htab == NULL)
723 {
8127a2fa
TT
724 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
725 elf_gnu_ifunc_cache_eq,
726 NULL, xcalloc, xfree);
727 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
728 }
729
730 entry_local.addr = addr;
731 obstack_grow (&objfile->objfile_obstack, &entry_local,
732 offsetof (struct elf_gnu_ifunc_cache, name));
733 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
734 entry_p
735 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
736
737 slot = htab_find_slot (htab, entry_p, INSERT);
738 if (*slot != NULL)
739 {
9a3c8263
SM
740 struct elf_gnu_ifunc_cache *entry_found_p
741 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 742 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
743
744 if (entry_found_p->addr != addr)
745 {
746 /* This case indicates buggy inferior program, the resolved address
747 should never change. */
748
749 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
750 "function_address from %s to %s"),
751 name, paddress (gdbarch, entry_found_p->addr),
752 paddress (gdbarch, addr));
753 }
754
755 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
756 }
757 *slot = entry_p;
758
759 return 1;
760}
761
762/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
763 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
764 is not NULL) and the function returns 1. It returns 0 otherwise.
765
766 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
767 function. */
768
769static int
770elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
771{
1dc9084f
MM
772 int found = 0;
773
774 /* FIXME: we only search the initial namespace.
775
776 To search other namespaces, we would need to provide context, e.g. in
777 form of an objfile in that namespace. */
778 gdbarch_iterate_over_objfiles_in_search_order
779 (target_gdbarch (),
780 [name, &addr_p, &found] (struct objfile *objfile)
781 {
782 htab_t htab;
783 elf_gnu_ifunc_cache *entry_p;
784 void **slot;
785
786 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
787 if (htab == NULL)
788 return 0;
789
790 entry_p = ((elf_gnu_ifunc_cache *)
791 alloca (sizeof (*entry_p) + strlen (name)));
792 strcpy (entry_p->name, name);
793
794 slot = htab_find_slot (htab, entry_p, NO_INSERT);
795 if (slot == NULL)
796 return 0;
797 entry_p = (elf_gnu_ifunc_cache *) *slot;
798 gdb_assert (entry_p != NULL);
799
800 if (addr_p)
801 *addr_p = entry_p->addr;
802
803 found = 1;
804 return 1;
805 }, nullptr);
806
807 return found;
07be84bf
JK
808}
809
810/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
811 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
812 is not NULL) and the function returns 1. It returns 0 otherwise.
813
814 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
815 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
816 prevent cache entries duplicates. */
817
818static int
819elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
820{
821 char *name_got_plt;
07be84bf 822 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
1dc9084f 823 int found = 0;
07be84bf 824
224c3ddb 825 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
826 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
827
1dc9084f
MM
828 /* FIXME: we only search the initial namespace.
829
830 To search other namespaces, we would need to provide context, e.g. in
831 form of an objfile in that namespace. */
832 gdbarch_iterate_over_objfiles_in_search_order
833 (target_gdbarch (),
834 [name, name_got_plt, &addr_p, &found] (struct objfile *objfile)
835 {
836 bfd *obfd = objfile->obfd.get ();
837 struct gdbarch *gdbarch = objfile->arch ();
838 type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
839 size_t ptr_size = ptr_type->length ();
840 CORE_ADDR pointer_address, addr;
841 asection *plt;
842 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
843 bound_minimal_symbol msym;
844
845 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
846 if (msym.minsym == NULL)
847 return 0;
848 if (msym.minsym->type () != mst_slot_got_plt)
849 return 0;
850 pointer_address = msym.value_address ();
851
852 plt = bfd_get_section_by_name (obfd, ".plt");
853 if (plt == NULL)
854 return 0;
855
856 if (msym.minsym->size () != ptr_size)
857 return 0;
858 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
859 return 0;
860 addr = extract_typed_address (buf, ptr_type);
861 addr = gdbarch_convert_from_func_ptr_addr
862 (gdbarch, addr, current_inferior ()->top_target ());
863 addr = gdbarch_addr_bits_remove (gdbarch, addr);
864
865 if (elf_gnu_ifunc_record_cache (name, addr))
866 {
867 if (addr_p != NULL)
868 *addr_p = addr;
869
870 found = 1;
871 return 1;
872 }
873
874 return 0;
875 }, nullptr);
876
877 return found;
07be84bf
JK
878}
879
880/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
881 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 882 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
883
884 Both the elf_objfile_gnu_ifunc_cache_data hash table and
885 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
886
ececd218 887static bool
07be84bf
JK
888elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
889{
890 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 891 return true;
dea91a5c 892
07be84bf 893 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 894 return true;
07be84bf 895
ececd218 896 return false;
07be84bf
JK
897}
898
899/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
900 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
901 is the entry point of the resolved STT_GNU_IFUNC target function to call.
902 */
903
904static CORE_ADDR
905elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
906{
2c02bd72 907 const char *name_at_pc;
07be84bf
JK
908 CORE_ADDR start_at_pc, address;
909 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
910 struct value *function, *address_val;
e1b2624a
AA
911 CORE_ADDR hwcap = 0;
912 struct value *hwcap_val;
07be84bf
JK
913
914 /* Try first any non-intrusive methods without an inferior call. */
915
916 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
917 && start_at_pc == pc)
918 {
919 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
920 return address;
921 }
922 else
923 name_at_pc = NULL;
924
925 function = allocate_value (func_func_type);
1a088441 926 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
927 set_value_address (function, pc);
928
e1b2624a
AA
929 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
930 parameter. FUNCTION is the function entry address. ADDRESS may be a
931 function descriptor. */
07be84bf 932
82d23ca8 933 target_auxv_search (AT_HWCAP, &hwcap);
e1b2624a
AA
934 hwcap_val = value_from_longest (builtin_type (gdbarch)
935 ->builtin_unsigned_long, hwcap);
e71585ff 936 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 937 address = value_as_address (address_val);
328d42d8
SM
938 address = gdbarch_convert_from_func_ptr_addr
939 (gdbarch, address, current_inferior ()->top_target ());
4b7d1f7f 940 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
941
942 if (name_at_pc)
943 elf_gnu_ifunc_record_cache (name_at_pc, address);
944
945 return address;
946}
947
0e30163f
JK
948/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
949
950static void
74421c0b 951elf_gnu_ifunc_resolver_stop (code_breakpoint *b)
0e30163f
JK
952{
953 struct breakpoint *b_return;
bd2b40ac 954 frame_info_ptr prev_frame = get_prev_frame (get_current_frame ());
0e30163f
JK
955 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
956 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 957 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
958
959 gdb_assert (b->type == bp_gnu_ifunc_resolver);
960
961 for (b_return = b->related_breakpoint; b_return != b;
962 b_return = b_return->related_breakpoint)
963 {
964 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
965 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
966 gdb_assert (frame_id_p (b_return->frame_id));
967
968 if (b_return->thread == thread_id
969 && b_return->loc->requested_address == prev_pc
a0cbd650 970 && b_return->frame_id == prev_frame_id)
0e30163f
JK
971 break;
972 }
973
974 if (b_return == b)
975 {
0e30163f
JK
976 /* No need to call find_pc_line for symbols resolving as this is only
977 a helper breakpointer never shown to the user. */
978
51abb421 979 symtab_and_line sal;
0e30163f
JK
980 sal.pspace = current_inferior ()->pspace;
981 sal.pc = prev_pc;
982 sal.section = find_pc_overlay (sal.pc);
983 sal.explicit_pc = 1;
454dafbd
TT
984 b_return
985 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
986 prev_frame_id,
987 bp_gnu_ifunc_resolver_return).release ();
0e30163f 988
c70a6932
JK
989 /* set_momentary_breakpoint invalidates PREV_FRAME. */
990 prev_frame = NULL;
991
0e30163f
JK
992 /* Add new b_return to the ring list b->related_breakpoint. */
993 gdb_assert (b_return->related_breakpoint == b_return);
994 b_return->related_breakpoint = b->related_breakpoint;
995 b->related_breakpoint = b_return;
996 }
997}
998
999/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1000
1001static void
74421c0b 1002elf_gnu_ifunc_resolver_return_stop (code_breakpoint *b)
0e30163f 1003{
00431a78 1004 thread_info *thread = inferior_thread ();
0e30163f
JK
1005 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1006 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
27710edb 1007 struct type *value_type = func_func_type->target_type ();
00431a78 1008 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 1009 struct value *func_func;
0e30163f
JK
1010 struct value *value;
1011 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
1012
1013 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1014
0e30163f
JK
1015 while (b->related_breakpoint != b)
1016 {
1017 struct breakpoint *b_next = b->related_breakpoint;
1018
1019 switch (b->type)
1020 {
1021 case bp_gnu_ifunc_resolver:
1022 break;
1023 case bp_gnu_ifunc_resolver_return:
1024 delete_breakpoint (b);
1025 break;
1026 default:
f34652de 1027 internal_error (_("handle_inferior_event: Invalid "
0e30163f
JK
1028 "gnu-indirect-function breakpoint type %d"),
1029 (int) b->type);
1030 }
74421c0b 1031 b = (code_breakpoint *) b_next;
0e30163f
JK
1032 }
1033 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1034 gdb_assert (b->loc->next == NULL);
1035
1036 func_func = allocate_value (func_func_type);
1a088441 1037 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1038 set_value_address (func_func, b->loc->related_address);
1039
1040 value = allocate_value (value_type);
1041 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
50888e42 1042 value_contents_raw (value).data (), NULL);
6a3a010b 1043 resolved_address = value_as_address (value);
328d42d8
SM
1044 resolved_pc = gdbarch_convert_from_func_ptr_addr
1045 (gdbarch, resolved_address, current_inferior ()->top_target ());
4b7d1f7f 1046 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1047
f8eba3c6 1048 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
709438c7 1049 elf_gnu_ifunc_record_cache (b->locspec->to_string (), resolved_pc);
0e30163f 1050
0e30163f 1051 b->type = bp_breakpoint;
6c5b2ebe 1052 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1053 find_function_start_sal (resolved_pc, NULL, true),
1054 {});
0e30163f
JK
1055}
1056
2750ef27
TT
1057/* A helper function for elf_symfile_read that reads the minimal
1058 symbols. */
c906108c
SS
1059
1060static void
5f6cac40
TT
1061elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1062 const struct elfinfo *ei)
c906108c 1063{
98badbfd 1064 bfd *synth_abfd, *abfd = objfile->obfd.get ();
62553543
EZ
1065 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1066 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1067 asymbol *synthsyms;
c906108c 1068
2ab317fb
SM
1069 symtab_create_debug_printf ("reading minimal symbols of objfile %s",
1070 objfile_name (objfile));
45cfd468 1071
5f6cac40
TT
1072 /* If we already have minsyms, then we can skip some work here.
1073 However, if there were stabs or mdebug sections, we go ahead and
1074 redo all the work anyway, because the psym readers for those
1075 kinds of debuginfo need extra information found here. This can
1076 go away once all types of symbols are in the per-BFD object. */
1077 if (objfile->per_bfd->minsyms_read
1078 && ei->stabsect == NULL
30d1f018
WP
1079 && ei->mdebugsect == NULL
1080 && ei->ctfsect == NULL)
5f6cac40 1081 {
2ab317fb 1082 symtab_create_debug_printf ("minimal symbols were previously read");
5f6cac40
TT
1083 return;
1084 }
1085
d25e8719 1086 minimal_symbol_reader reader (objfile);
c906108c 1087
18a94d75 1088 /* Process the normal ELF symbol table first. */
c906108c 1089
98badbfd 1090 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd.get ());
62553543 1091 if (storage_needed < 0)
3e43a32a 1092 error (_("Can't read symbols from %s: %s"),
98badbfd 1093 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1094 bfd_errmsg (bfd_get_error ()));
1095
1096 if (storage_needed > 0)
1097 {
80c57053
JK
1098 /* Memory gets permanently referenced from ABFD after
1099 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1100
224c3ddb 1101 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1102 symcount = bfd_canonicalize_symtab (objfile->obfd.get (), symbol_table);
62553543
EZ
1103
1104 if (symcount < 0)
3e43a32a 1105 error (_("Can't read symbols from %s: %s"),
98badbfd 1106 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1107 bfd_errmsg (bfd_get_error ()));
1108
ce6c454e
TT
1109 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1110 false);
62553543 1111 }
c906108c
SS
1112
1113 /* Add the dynamic symbols. */
1114
98badbfd 1115 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd.get ());
62553543
EZ
1116
1117 if (storage_needed > 0)
1118 {
3f1eff0a
JK
1119 /* Memory gets permanently referenced from ABFD after
1120 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1121 It happens only in the case when elf_slurp_reloc_table sees
1122 asection->relocation NULL. Determining which section is asection is
1123 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1124 implementation detail, though. */
1125
224c3ddb 1126 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1127 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd.get (),
62553543
EZ
1128 dyn_symbol_table);
1129
1130 if (dynsymcount < 0)
3e43a32a 1131 error (_("Can't read symbols from %s: %s"),
98badbfd 1132 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1133 bfd_errmsg (bfd_get_error ()));
1134
8dddcb8f 1135 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1136 dyn_symbol_table, false);
07be84bf 1137
8dddcb8f 1138 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1139 }
1140
63524580
JK
1141 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1142 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1143
1144 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1145 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1146 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1147 read the code address from .opd while it reads the .symtab section from
1148 a separate debug info file as the .opd section is SHT_NOBITS there.
1149
1150 With SYNTH_ABFD the .opd section will be read from the original
1151 backlinked binary where it is valid. */
1152
1153 if (objfile->separate_debug_objfile_backlink)
98badbfd 1154 synth_abfd = objfile->separate_debug_objfile_backlink->obfd.get ();
63524580
JK
1155 else
1156 synth_abfd = abfd;
1157
62553543
EZ
1158 /* Add synthetic symbols - for instance, names for any PLT entries. */
1159
63524580 1160 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1161 dynsymcount, dyn_symbol_table,
1162 &synthsyms);
1163 if (synthcount > 0)
1164 {
62553543
EZ
1165 long i;
1166
b22e99fd 1167 std::unique_ptr<asymbol *[]>
d1e4a624 1168 synth_symbol_table (new asymbol *[synthcount]);
62553543 1169 for (i = 0; i < synthcount; i++)
9f20e3da 1170 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1171 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1172 synth_symbol_table.get (), true);
ba713918
AL
1173
1174 xfree (synthsyms);
1175 synthsyms = NULL;
62553543 1176 }
c906108c 1177
7134143f
DJ
1178 /* Install any minimal symbols that have been collected as the current
1179 minimal symbols for this objfile. The debug readers below this point
1180 should not generate new minimal symbols; if they do it's their
1181 responsibility to install them. "mdebug" appears to be the only one
1182 which will do this. */
1183
d25e8719 1184 reader.install ();
7134143f 1185
2ab317fb 1186 symtab_create_debug_printf ("done reading minimal symbols");
2750ef27
TT
1187}
1188
d955d179
TV
1189/* Dwarf-specific helper for elf_symfile_read. Return true if we managed to
1190 load dwarf debug info. */
1191
1192static bool
1193elf_symfile_read_dwarf2 (struct objfile *objfile,
1194 symfile_add_flags symfile_flags)
1195{
1196 bool has_dwarf2 = true;
1197
1198 if (dwarf2_has_info (objfile, NULL, true))
1199 dwarf2_initialize_objfile (objfile);
1200 /* If the file has its own symbol tables it has no separate debug
1201 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1202 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1203 `.note.gnu.build-id'.
1204
1205 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1206 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1207 an objfile via find_separate_debug_file_in_section there was no separate
1208 debug info available. Therefore do not attempt to search for another one,
1209 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1210 be NULL and we would possibly violate it. */
1211
1212 else if (!objfile->has_partial_symbols ()
1213 && objfile->separate_debug_objfile == NULL
1214 && objfile->separate_debug_objfile_backlink == NULL)
1215 {
1216 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1217
1218 if (debugfile.empty ())
1219 debugfile = find_separate_debug_file_by_debuglink (objfile);
1220
1221 if (!debugfile.empty ())
1222 {
1223 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1224
1225 symbol_file_add_separate (debug_bfd, debugfile.c_str (),
1226 symfile_flags, objfile);
1227 }
1228 else
1229 {
1230 has_dwarf2 = false;
1231 const struct bfd_build_id *build_id
1232 = build_id_bfd_get (objfile->obfd.get ());
1233 const char *filename = bfd_get_filename (objfile->obfd.get ());
1234
1235 if (build_id != nullptr)
1236 {
1237 gdb::unique_xmalloc_ptr<char> symfile_path;
1238 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1239 build_id->size,
1240 filename,
1241 &symfile_path));
1242
1243 if (fd.get () >= 0)
1244 {
1245 /* File successfully retrieved from server. */
1246 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1247
1248 if (debug_bfd == nullptr)
1249 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1250 filename);
1251 else if (build_id_verify (debug_bfd.get (), build_id->size,
1252 build_id->data))
1253 {
1254 symbol_file_add_separate (debug_bfd, symfile_path.get (),
1255 symfile_flags, objfile);
1256 has_dwarf2 = true;
1257 }
1258 }
1259 }
1260 }
1261 }
1262
1263 return has_dwarf2;
1264}
1265
2750ef27
TT
1266/* Scan and build partial symbols for a symbol file.
1267 We have been initialized by a call to elf_symfile_init, which
1268 currently does nothing.
1269
2750ef27
TT
1270 This function only does the minimum work necessary for letting the
1271 user "name" things symbolically; it does not read the entire symtab.
1272 Instead, it reads the external and static symbols and puts them in partial
1273 symbol tables. When more extensive information is requested of a
1274 file, the corresponding partial symbol table is mutated into a full
1275 fledged symbol table by going back and reading the symbols
1276 for real.
1277
1278 We look for sections with specific names, to tell us what debug
1279 format to look for: FIXME!!!
1280
1281 elfstab_build_psymtabs() handles STABS symbols;
1282 mdebug_build_psymtabs() handles ECOFF debugging information.
1283
1284 Note that ELF files have a "minimal" symbol table, which looks a lot
1285 like a COFF symbol table, but has only the minimal information necessary
1286 for linking. We process this also, and use the information to
1287 build gdb's minimal symbol table. This gives us some minimal debugging
1288 capability even for files compiled without -g. */
1289
1290static void
b15cc25c 1291elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27 1292{
98badbfd 1293 bfd *abfd = objfile->obfd.get ();
2750ef27
TT
1294 struct elfinfo ei;
1295
2750ef27 1296 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1297 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1298 {
1299 for (asection *sect : gdb_bfd_sections (abfd))
1300 elf_locate_sections (sect, &ei);
1301 }
c906108c 1302
5f6cac40
TT
1303 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1304
c906108c
SS
1305 /* ELF debugging information is inserted into the psymtab in the
1306 order of least informative first - most informative last. Since
1307 the psymtab table is searched `most recent insertion first' this
1308 increases the probability that more detailed debug information
1309 for a section is found.
1310
1311 For instance, an object file might contain both .mdebug (XCOFF)
1312 and .debug_info (DWARF2) sections then .mdebug is inserted first
1313 (searched last) and DWARF2 is inserted last (searched first). If
1314 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1315 an included file XCOFF info is useless. */
c906108c
SS
1316
1317 if (ei.mdebugsect)
1318 {
1319 const struct ecoff_debug_swap *swap;
1320
1321 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1322 information. */
c906108c
SS
1323 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1324 if (swap)
d4f3574e 1325 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1326 }
1327 if (ei.stabsect)
1328 {
1329 asection *str_sect;
1330
1331 /* Stab sections have an associated string table that looks like
dda83cd7 1332 a separate section. */
c906108c
SS
1333 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1334
1335 /* FIXME should probably warn about a stab section without a stabstr. */
1336 if (str_sect)
1337 elfstab_build_psymtabs (objfile,
086df311 1338 ei.stabsect,
c906108c 1339 str_sect->filepos,
fd361982 1340 bfd_section_size (str_sect));
c906108c 1341 }
9291a0cd 1342
d955d179 1343 bool has_dwarf2 = elf_symfile_read_dwarf2 (objfile, symfile_flags);
30d1f018
WP
1344
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1347 {
1348 elfctf_build_psymtabs (objfile);
9cce227f 1349 }
c906108c
SS
1350}
1351
c906108c
SS
1352/* Initialize anything that needs initializing when a completely new symbol
1353 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1354 shared library). */
c906108c
SS
1355
1356static void
fba45db2 1357elf_new_init (struct objfile *ignore)
c906108c 1358{
c906108c
SS
1359}
1360
1361/* Perform any local cleanups required when we are done with a particular
1362 objfile. I.E, we are in the process of discarding all symbol information
1363 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1364 objfile struct from the global list of known objfiles. */
c906108c
SS
1365
1366static void
fba45db2 1367elf_symfile_finish (struct objfile *objfile)
c906108c 1368{
c906108c
SS
1369}
1370
db7a9bcd 1371/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1372
1373static void
fba45db2 1374elf_symfile_init (struct objfile *objfile)
c906108c
SS
1375{
1376 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1377 find this causes a significant slowdown in gdb then we could
1378 set it in the debug symbol readers only when necessary. */
1379 objfile->flags |= OBJF_REORDERED;
1380}
1381
55aa24fb
SDJ
1382/* Implementation of `sym_get_probes', as documented in symfile.h. */
1383
814cf43a 1384static const elfread_data &
55aa24fb
SDJ
1385elf_get_probes (struct objfile *objfile)
1386{
98badbfd 1387 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd.get ());
55aa24fb 1388
aaa63a31 1389 if (probes_per_bfd == NULL)
55aa24fb 1390 {
98badbfd 1391 probes_per_bfd = probe_key.emplace (objfile->obfd.get ());
55aa24fb
SDJ
1392
1393 /* Here we try to gather information about all types of probes from the
1394 objfile. */
935676c9 1395 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1396 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1397 }
1398
aaa63a31 1399 return *probes_per_bfd;
55aa24fb
SDJ
1400}
1401
c906108c 1402\f
55aa24fb
SDJ
1403
1404/* Implementation `sym_probe_fns', as documented in symfile.h. */
1405
1406static const struct sym_probe_fns elf_probe_fns =
1407{
25f9533e 1408 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1409};
1410
c906108c
SS
1411/* Register that we are able to handle ELF object file formats. */
1412
00b5771c 1413static const struct sym_fns elf_sym_fns =
c906108c 1414{
3e43a32a
MS
1415 elf_new_init, /* init anything gbl to entire symtab */
1416 elf_symfile_init, /* read initial info, setup for sym_read() */
1417 elf_symfile_read, /* read a symbol file into symtab */
1418 elf_symfile_finish, /* finished with file, cleanup */
1419 default_symfile_offsets, /* Translate ext. to int. relocation */
1420 elf_symfile_segments, /* Get segment information from a file. */
1421 NULL,
1422 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1423 &elf_probe_fns, /* sym_probe_fns */
927aa2e7
JK
1424};
1425
07be84bf
JK
1426/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1427
1428static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1429{
1430 elf_gnu_ifunc_resolve_addr,
1431 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1432 elf_gnu_ifunc_resolver_stop,
1433 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1434};
1435
6c265988 1436void _initialize_elfread ();
c906108c 1437void
6c265988 1438_initialize_elfread ()
c906108c 1439{
c256e171 1440 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1441
07be84bf 1442 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1443}