]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
gdb: merge debug symbol file lookup code from coffread & elfread paths
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
213516ef 3 Copyright (C) 1991-2023 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4 32#include "demangle.h"
4de283e4
TT
33#include "filenames.h"
34#include "probe.h"
35#include "arch-utils.h"
07be84bf 36#include "gdbtypes.h"
4de283e4 37#include "value.h"
07be84bf 38#include "infcall.h"
4de283e4 39#include "gdbthread.h"
00431a78 40#include "inferior.h"
4de283e4
TT
41#include "regcache.h"
42#include "bcache.h"
43#include "gdb_bfd.h"
f00aae0f 44#include "location.h"
4de283e4 45#include "auxv.h"
0e8f53ba 46#include "mdebugread.h"
30d1f018 47#include "ctfread.h"
31edb802 48#include "gdbsupport/gdb_string_view.h"
0d79cdc4 49#include "gdbsupport/scoped_fd.h"
70182375 50#include "dwarf2/public.h"
0d5adb56
TV
51#include "cli/cli-cmds.h"
52
53/* Whether ctf should always be read, or only if no dwarf is present. */
54static bool always_read_ctf;
c906108c
SS
55
56/* The struct elfinfo is available only during ELF symbol table and
6426a772 57 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
58 It's local to elf_symfile_read. */
59
c5aa993b
JM
60struct elfinfo
61 {
c5aa993b 62 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 63 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 64 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 65 };
c906108c 66
814cf43a
TT
67/* Type for per-BFD data. */
68
69typedef std::vector<std::unique_ptr<probe>> elfread_data;
70
5d9cf8a4 71/* Per-BFD data for probe info. */
55aa24fb 72
08b8a139 73static const registry<bfd>::key<elfread_data> probe_key;
55aa24fb 74
07be84bf
JK
75/* Minimal symbols located at the GOT entries for .plt - that is the real
76 pointer where the given entry will jump to. It gets updated by the real
77 function address during lazy ld.so resolving in the inferior. These
78 minimal symbols are indexed for <tab>-completion. */
79
80#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
81
31d99776
DJ
82/* Locate the segments in ABFD. */
83
62982abd 84static symfile_segment_data_up
31d99776
DJ
85elf_symfile_segments (bfd *abfd)
86{
87 Elf_Internal_Phdr *phdrs, **segments;
88 long phdrs_size;
89 int num_phdrs, num_segments, num_sections, i;
90 asection *sect;
31d99776
DJ
91
92 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
93 if (phdrs_size == -1)
94 return NULL;
95
224c3ddb 96 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
97 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
98 if (num_phdrs == -1)
99 return NULL;
100
101 num_segments = 0;
8d749320 102 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
103 for (i = 0; i < num_phdrs; i++)
104 if (phdrs[i].p_type == PT_LOAD)
105 segments[num_segments++] = &phdrs[i];
106
107 if (num_segments == 0)
108 return NULL;
109
62982abd 110 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 111 data->segments.reserve (num_segments);
31d99776
DJ
112
113 for (i = 0; i < num_segments; i++)
68b888ff 114 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
115
116 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
117
118 /* All elements are initialized to 0 (map to no segment). */
119 data->segment_info.resize (num_sections);
31d99776
DJ
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
31d99776 124
fd361982 125 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
126 continue;
127
62b74cb8 128 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
129
130 for (j = 0; j < num_segments; j++)
62b74cb8 131 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
132 {
133 data->segment_info[i] = j + 1;
134 break;
135 }
136
ad09a548
DJ
137 /* We should have found a segment for every non-empty section.
138 If we haven't, we will not relocate this section by any
139 offsets we apply to the segments. As an exception, do not
140 warn about SHT_NOBITS sections; in normal ELF execution
141 environments, SHT_NOBITS means zero-initialized and belongs
142 in a segment, but in no-OS environments some tools (e.g. ARM
143 RealView) use SHT_NOBITS for uninitialized data. Since it is
144 uninitialized, it doesn't need a program header. Such
145 binaries are not relocatable. */
25f4c262
KS
146
147 /* Exclude debuginfo files from this warning, too, since those
148 are often not strictly compliant with the standard. See, e.g.,
149 ld/24717 for more discussion. */
150 if (!is_debuginfo_file (abfd)
151 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 152 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
153 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
154 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
155 }
156
157 return data;
158}
159
c906108c
SS
160/* We are called once per section from elf_symfile_read. We
161 need to examine each section we are passed, check to see
162 if it is something we are interested in processing, and
163 if so, stash away some access information for the section.
164
165 For now we recognize the dwarf debug information sections and
166 line number sections from matching their section names. The
167 ELF definition is no real help here since it has no direct
168 knowledge of DWARF (by design, so any debugging format can be
169 used).
170
171 We also recognize the ".stab" sections used by the Sun compilers
172 released with Solaris 2.
173
174 FIXME: The section names should not be hardwired strings (what
175 should they be? I don't think most object file formats have enough
0963b4bd 176 section flags to specify what kind of debug section it is.
c906108c
SS
177 -kingdon). */
178
179static void
08f93a1a 180elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 181{
7ce59000 182 if (strcmp (sectp->name, ".stab") == 0)
c906108c 183 {
c5aa993b 184 ei->stabsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c 189 }
30d1f018
WP
190 else if (strcmp (sectp->name, ".ctf") == 0)
191 {
192 ei->ctfsect = sectp;
193 }
c906108c
SS
194}
195
c906108c 196static struct minimal_symbol *
8dddcb8f 197record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 198 gdb::string_view name, bool copy_name,
9675da25 199 unrelocated_addr address,
f594e5e9
MC
200 enum minimal_symbol_type ms_type,
201 asection *bfd_section, struct objfile *objfile)
c906108c 202{
08feed99 203 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 204
0875794a
JK
205 if (ms_type == mst_text || ms_type == mst_file_text
206 || ms_type == mst_text_gnu_ifunc)
9675da25
TT
207 address
208 = unrelocated_addr (gdbarch_addr_bits_remove (gdbarch,
209 CORE_ADDR (address)));
c906108c 210
44e4c775
AB
211 /* We only setup section information for allocatable sections. Usually
212 we'd only expect to find msymbols for allocatable sections, but if the
213 ELF is malformed then this might not be the case. In that case don't
214 create an msymbol that references an uninitialised section object. */
215 int section_index = 0;
dd2532ad
TT
216 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC
217 || bfd_section == bfd_abs_section_ptr)
98badbfd 218 section_index = gdb_bfd_section_index (objfile->obfd.get (), bfd_section);
44e4c775 219
62669649 220 return reader.record_full (name, copy_name, address, ms_type, section_index);
c906108c
SS
221}
222
7f86f058 223/* Read the symbol table of an ELF file.
c906108c 224
62553543 225 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
226 symbol table contains regular, dynamic, or synthetic symbols, add all
227 the global function and data symbols to the minimal symbol table.
c906108c 228
c5aa993b
JM
229 In stabs-in-ELF, as implemented by Sun, there are some local symbols
230 defined in the ELF symbol table, which can be used to locate
231 the beginnings of sections from each ".o" file that was linked to
232 form the executable objfile. We gather any such info and record it
7f86f058 233 in data structures hung off the objfile's private data. */
c906108c 234
6f610d07
UW
235#define ST_REGULAR 0
236#define ST_DYNAMIC 1
237#define ST_SYNTHETIC 2
238
c906108c 239static void
8dddcb8f
TT
240elf_symtab_read (minimal_symbol_reader &reader,
241 struct objfile *objfile, int type,
04a679b8 242 long number_of_symbols, asymbol **symbol_table,
ce6c454e 243 bool copy_names)
c906108c 244{
08feed99 245 struct gdbarch *gdbarch = objfile->arch ();
c906108c 246 asymbol *sym;
c906108c 247 long i;
c906108c
SS
248 CORE_ADDR symaddr;
249 enum minimal_symbol_type ms_type;
18a94d75
DE
250 /* Name of the last file symbol. This is either a constant string or is
251 saved on the objfile's filename cache. */
0af1e9a5 252 const char *filesymname = "";
98badbfd 253 int stripped = (bfd_get_symcount (objfile->obfd.get ()) == 0);
3e29f34a
MR
254 int elf_make_msymbol_special_p
255 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 256
0cc7b392 257 for (i = 0; i < number_of_symbols; i++)
c906108c 258 {
0cc7b392
DJ
259 sym = symbol_table[i];
260 if (sym->name == NULL || *sym->name == '\0')
c906108c 261 {
0cc7b392 262 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 263 that are null strings (may happen). */
0cc7b392
DJ
264 continue;
265 }
c906108c 266
28a4e64d
TT
267 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
268
74763737
DJ
269 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
270 symbols which do not correspond to objects in the symbol table,
271 but have some other target-specific meaning. */
98badbfd 272 if (bfd_is_target_special_symbol (objfile->obfd.get (), sym))
60c5725c
DJ
273 {
274 if (gdbarch_record_special_symbol_p (gdbarch))
275 gdbarch_record_special_symbol (gdbarch, objfile, sym);
276 continue;
277 }
74763737 278
6f610d07 279 if (type == ST_DYNAMIC
45dfa85a 280 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
281 && (sym->flags & BSF_FUNCTION))
282 {
283 struct minimal_symbol *msym;
98badbfd 284 bfd *abfd = objfile->obfd.get ();
dea91a5c 285 asection *sect;
0cc7b392
DJ
286
287 /* Symbol is a reference to a function defined in
288 a shared library.
289 If its value is non zero then it is usually the address
290 of the corresponding entry in the procedure linkage table,
291 plus the desired section offset.
292 If its value is zero then the dynamic linker has to resolve
0963b4bd 293 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
294 for this symbol in the executable file, so we skip it. */
295 symaddr = sym->value;
296 if (symaddr == 0)
297 continue;
02c75f72
UW
298
299 /* sym->section is the undefined section. However, we want to
300 record the section where the PLT stub resides with the
301 minimal symbol. Search the section table for the one that
302 covers the stub's address. */
303 for (sect = abfd->sections; sect != NULL; sect = sect->next)
304 {
fd361982 305 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
306 continue;
307
fd361982
AM
308 if (symaddr >= bfd_section_vma (sect)
309 && symaddr < bfd_section_vma (sect)
310 + bfd_section_size (sect))
02c75f72
UW
311 break;
312 }
313 if (!sect)
314 continue;
315
828cfa8d
JB
316 /* On ia64-hpux, we have discovered that the system linker
317 adds undefined symbols with nonzero addresses that cannot
318 be right (their address points inside the code of another
319 function in the .text section). This creates problems
320 when trying to determine which symbol corresponds to
321 a given address.
322
323 We try to detect those buggy symbols by checking which
324 section we think they correspond to. Normally, PLT symbols
325 are stored inside their own section, and the typical name
326 for that section is ".plt". So, if there is a ".plt"
327 section, and yet the section name of our symbol does not
328 start with ".plt", we ignore that symbol. */
61012eef 329 if (!startswith (sect->name, ".plt")
828cfa8d
JB
330 && bfd_get_section_by_name (abfd, ".plt") != NULL)
331 continue;
332
0cc7b392 333 msym = record_minimal_symbol
31edb802 334 (reader, sym->name, copy_names,
9675da25
TT
335 unrelocated_addr (symaddr),
336 mst_solib_trampoline, sect, objfile);
0cc7b392 337 if (msym != NULL)
9b807e7b
MR
338 {
339 msym->filename = filesymname;
3e29f34a
MR
340 if (elf_make_msymbol_special_p)
341 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 342 }
0cc7b392
DJ
343 continue;
344 }
c906108c 345
0cc7b392
DJ
346 /* If it is a nonstripped executable, do not enter dynamic
347 symbols, as the dynamic symbol table is usually a subset
348 of the main symbol table. */
6f610d07 349 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
350 continue;
351 if (sym->flags & BSF_FILE)
be1e3d3e 352 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
353 else if (sym->flags & BSF_SECTION_SYM)
354 continue;
bb869963
SDJ
355 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
356 | BSF_GNU_UNIQUE))
0cc7b392
DJ
357 {
358 struct minimal_symbol *msym;
359
360 /* Select global/local/weak symbols. Note that bfd puts abs
361 symbols in their own section, so all symbols we are
0963b4bd
MS
362 interested in will have a section. */
363 /* Bfd symbols are section relative. */
0cc7b392 364 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
365 /* For non-absolute symbols, use the type of the section
366 they are relative to, to intuit text/data. Bfd provides
0963b4bd 367 no way of figuring this out for absolute symbols. */
45dfa85a 368 if (sym->section == bfd_abs_section_ptr)
c906108c 369 {
0cc7b392
DJ
370 /* This is a hack to get the minimal symbol type
371 right for Irix 5, which has absolute addresses
6f610d07
UW
372 with special section indices for dynamic symbols.
373
374 NOTE: uweigand-20071112: Synthetic symbols do not
375 have an ELF-private part, so do not touch those. */
dea91a5c 376 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
28a4e64d 377 elf_sym->internal_elf_sym.st_shndx;
0cc7b392
DJ
378
379 switch (shndx)
c906108c 380 {
0cc7b392
DJ
381 case SHN_MIPS_TEXT:
382 ms_type = mst_text;
383 break;
384 case SHN_MIPS_DATA:
385 ms_type = mst_data;
386 break;
387 case SHN_MIPS_ACOMMON:
388 ms_type = mst_bss;
389 break;
390 default:
391 ms_type = mst_abs;
392 }
393
394 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 395 symbols, relocate all others by section offset. */
0cc7b392
DJ
396 if (ms_type != mst_abs)
397 {
398 if (sym->name[0] == '.')
399 continue;
c906108c 400 }
0cc7b392
DJ
401 }
402 else if (sym->section->flags & SEC_CODE)
403 {
bb869963 404 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 405 {
0875794a
JK
406 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
407 ms_type = mst_text_gnu_ifunc;
408 else
409 ms_type = mst_text;
0cc7b392 410 }
90359a16
JK
411 /* The BSF_SYNTHETIC check is there to omit ppc64 function
412 descriptors mistaken for static functions starting with 'L'.
413 */
414 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
415 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
416 || ((sym->flags & BSF_LOCAL)
417 && sym->name[0] == '$'
418 && sym->name[1] == 'L'))
419 /* Looks like a compiler-generated label. Skip
420 it. The assembler should be skipping these (to
421 keep executables small), but apparently with
422 gcc on the (deleted) delta m88k SVR4, it loses.
423 So to have us check too should be harmless (but
424 I encourage people to fix this in the assembler
425 instead of adding checks here). */
426 continue;
427 else
428 {
429 ms_type = mst_file_text;
c906108c 430 }
0cc7b392
DJ
431 }
432 else if (sym->section->flags & SEC_ALLOC)
433 {
bb869963 434 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 435 {
f50776aa
PA
436 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
437 {
438 ms_type = mst_data_gnu_ifunc;
439 }
440 else if (sym->section->flags & SEC_LOAD)
c906108c 441 {
0cc7b392 442 ms_type = mst_data;
c906108c 443 }
c906108c
SS
444 else
445 {
0cc7b392 446 ms_type = mst_bss;
c906108c
SS
447 }
448 }
0cc7b392 449 else if (sym->flags & BSF_LOCAL)
c906108c 450 {
0cc7b392
DJ
451 if (sym->section->flags & SEC_LOAD)
452 {
453 ms_type = mst_file_data;
c906108c
SS
454 }
455 else
456 {
0cc7b392 457 ms_type = mst_file_bss;
c906108c
SS
458 }
459 }
460 else
461 {
0cc7b392 462 ms_type = mst_unknown;
c906108c 463 }
0cc7b392
DJ
464 }
465 else
466 {
467 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 468 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
469 hob with actions like finding what function the PC
470 is in. Ignore them if they aren't text, data, or bss. */
471 /* ms_type = mst_unknown; */
0963b4bd 472 continue; /* Skip this symbol. */
0cc7b392
DJ
473 }
474 msym = record_minimal_symbol
9675da25 475 (reader, sym->name, copy_names, unrelocated_addr (symaddr),
0cc7b392 476 ms_type, sym->section, objfile);
6f610d07 477
0cc7b392
DJ
478 if (msym)
479 {
6f610d07 480 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 481 ELF-private part. */
6f610d07 482 if (type != ST_SYNTHETIC)
24c274a1
AM
483 {
484 /* Pass symbol size field in via BFD. FIXME!!! */
5bbfd12d 485 msym->set_size (elf_sym->internal_elf_sym.st_size);
24c274a1 486 }
dea91a5c 487
a103a963 488 msym->filename = filesymname;
3e29f34a
MR
489 if (elf_make_msymbol_special_p)
490 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 491 }
2eaf8d2a 492
715c6909
TT
493 /* If we see a default versioned symbol, install it under
494 its version-less name. */
495 if (msym != NULL)
496 {
497 const char *atsign = strchr (sym->name, '@');
28a4e64d
TT
498 bool is_at_symbol = atsign != nullptr && atsign > sym->name;
499 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0;
500 int len = is_at_symbol ? atsign - sym->name : 0;
501
502 if (is_at_symbol
503 && !is_plt
504 && (elf_sym->version & VERSYM_HIDDEN) == 0)
505 record_minimal_symbol (reader,
506 gdb::string_view (sym->name, len),
9675da25
TT
507 true, unrelocated_addr (symaddr),
508 ms_type, sym->section, objfile);
28a4e64d 509 else if (is_plt)
2eaf8d2a 510 {
28a4e64d
TT
511 /* For @plt symbols, also record a trampoline to the
512 destination symbol. The @plt symbol will be used
513 in disassembly, and the trampoline will be used
514 when we are trying to find the target. */
515 if (ms_type == mst_text && type == ST_SYNTHETIC)
2eaf8d2a 516 {
28a4e64d
TT
517 struct minimal_symbol *mtramp;
518
519 mtramp = record_minimal_symbol
520 (reader, gdb::string_view (sym->name, len), true,
9675da25
TT
521 unrelocated_addr (symaddr),
522 mst_solib_trampoline, sym->section, objfile);
28a4e64d
TT
523 if (mtramp)
524 {
5bbfd12d 525 mtramp->set_size (msym->size());
28a4e64d
TT
526 mtramp->created_by_gdb = 1;
527 mtramp->filename = filesymname;
528 if (elf_make_msymbol_special_p)
529 gdbarch_elf_make_msymbol_special (gdbarch,
530 sym, mtramp);
531 }
2eaf8d2a
DJ
532 }
533 }
534 }
c906108c 535 }
c906108c
SS
536 }
537}
538
07be84bf
JK
539/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
540 for later look ups of which function to call when user requests
541 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
542 library defining `function' we cannot yet know while reading OBJFILE which
543 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
544 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
545
546static void
8dddcb8f
TT
547elf_rel_plt_read (minimal_symbol_reader &reader,
548 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf 549{
98badbfd 550 bfd *obfd = objfile->obfd.get ();
07be84bf 551 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 552 asection *relplt, *got_plt;
07be84bf 553 bfd_size_type reloc_count, reloc;
08feed99 554 struct gdbarch *gdbarch = objfile->arch ();
07be84bf 555 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
df86565b 556 size_t ptr_size = ptr_type->length ();
07be84bf
JK
557
558 if (objfile->separate_debug_objfile_backlink)
559 return;
560
07be84bf
JK
561 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
562 if (got_plt == NULL)
4b7d1f7f
WN
563 {
564 /* For platforms where there is no separate .got.plt. */
565 got_plt = bfd_get_section_by_name (obfd, ".got");
566 if (got_plt == NULL)
567 return;
568 }
07be84bf 569
02e169e2
PA
570 /* Depending on system, we may find jump slots in a relocation
571 section for either .got.plt or .plt. */
572 asection *plt = bfd_get_section_by_name (obfd, ".plt");
573 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
574
575 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
576
07be84bf
JK
577 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
578 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
579 {
580 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
581
582 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
583 {
584 if (this_hdr.sh_info == plt_elf_idx
585 || this_hdr.sh_info == got_plt_elf_idx)
586 break;
587 }
588 }
07be84bf
JK
589 if (relplt == NULL)
590 return;
591
592 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
593 return;
594
26fcd5d7 595 std::string string_buffer;
07be84bf 596
02e169e2
PA
597 /* Does ADDRESS reside in SECTION of OBFD? */
598 auto within_section = [obfd] (asection *section, CORE_ADDR address)
599 {
600 if (section == NULL)
601 return false;
602
fd361982
AM
603 return (bfd_section_vma (section) <= address
604 && (address < bfd_section_vma (section)
605 + bfd_section_size (section)));
02e169e2
PA
606 };
607
07be84bf
JK
608 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
609 for (reloc = 0; reloc < reloc_count; reloc++)
610 {
22e048c9 611 const char *name;
07be84bf
JK
612 struct minimal_symbol *msym;
613 CORE_ADDR address;
26fcd5d7 614 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 615 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
616
617 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
618 address = relplt->relocation[reloc].address;
619
02e169e2
PA
620 asection *msym_section;
621
622 /* Does the pointer reside in either the .got.plt or .plt
623 sections? */
624 if (within_section (got_plt, address))
625 msym_section = got_plt;
626 else if (within_section (plt, address))
627 msym_section = plt;
628 else
07be84bf
JK
629 continue;
630
f50776aa
PA
631 /* We cannot check if NAME is a reference to
632 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
633 symbol is undefined and the objfile having NAME defined may
634 not yet have been loaded. */
07be84bf 635
26fcd5d7
TT
636 string_buffer.assign (name);
637 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 638
31edb802 639 msym = record_minimal_symbol (reader, string_buffer,
9675da25
TT
640 true, unrelocated_addr (address),
641 mst_slot_got_plt, msym_section, objfile);
07be84bf 642 if (msym)
5bbfd12d 643 msym->set_size (ptr_size);
07be84bf 644 }
07be84bf
JK
645}
646
647/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
648
08b8a139 649static const registry<objfile>::key<htab, htab_deleter>
8127a2fa 650 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
651
652/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
653
654struct elf_gnu_ifunc_cache
655{
656 /* This is always a function entry address, not a function descriptor. */
657 CORE_ADDR addr;
658
659 char name[1];
660};
661
662/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
663
664static hashval_t
665elf_gnu_ifunc_cache_hash (const void *a_voidp)
666{
9a3c8263
SM
667 const struct elf_gnu_ifunc_cache *a
668 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
669
670 return htab_hash_string (a->name);
671}
672
673/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
674
675static int
676elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
677{
9a3c8263
SM
678 const struct elf_gnu_ifunc_cache *a
679 = (const struct elf_gnu_ifunc_cache *) a_voidp;
680 const struct elf_gnu_ifunc_cache *b
681 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
682
683 return strcmp (a->name, b->name) == 0;
684}
685
686/* Record the target function address of a STT_GNU_IFUNC function NAME is the
687 function entry address ADDR. Return 1 if NAME and ADDR are considered as
688 valid and therefore they were successfully recorded, return 0 otherwise.
689
690 Function does not expect a duplicate entry. Use
691 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
692 exists. */
693
694static int
695elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
696{
7cbd4a93 697 struct bound_minimal_symbol msym;
07be84bf
JK
698 struct objfile *objfile;
699 htab_t htab;
700 struct elf_gnu_ifunc_cache entry_local, *entry_p;
701 void **slot;
702
703 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 704 if (msym.minsym == NULL)
07be84bf 705 return 0;
4aeddc50 706 if (msym.value_address () != addr)
07be84bf 707 return 0;
e27d198c 708 objfile = msym.objfile;
07be84bf
JK
709
710 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 711 resolution and it has no use for GDB. */
c9d95fa3 712 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
713 size_t len = strlen (target_name);
714
715 /* Note we check the symbol's name instead of checking whether the
716 symbol is in the .plt section because some systems have @plt
717 symbols in the .text section. */
718 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
719 return 0;
720
600b5fc2
HL
721 if (strcmp (target_name, "_PROCEDURE_LINKAGE_TABLE_") == 0)
722 return 0;
723
8127a2fa 724 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
725 if (htab == NULL)
726 {
8127a2fa
TT
727 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
728 elf_gnu_ifunc_cache_eq,
729 NULL, xcalloc, xfree);
730 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
731 }
732
733 entry_local.addr = addr;
734 obstack_grow (&objfile->objfile_obstack, &entry_local,
735 offsetof (struct elf_gnu_ifunc_cache, name));
736 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
737 entry_p
738 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
739
740 slot = htab_find_slot (htab, entry_p, INSERT);
741 if (*slot != NULL)
742 {
9a3c8263
SM
743 struct elf_gnu_ifunc_cache *entry_found_p
744 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 745 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
746
747 if (entry_found_p->addr != addr)
748 {
749 /* This case indicates buggy inferior program, the resolved address
750 should never change. */
751
752 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
753 "function_address from %s to %s"),
754 name, paddress (gdbarch, entry_found_p->addr),
755 paddress (gdbarch, addr));
756 }
757
758 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
759 }
760 *slot = entry_p;
761
762 return 1;
763}
764
765/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
766 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
767 is not NULL) and the function returns 1. It returns 0 otherwise.
768
769 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
770 function. */
771
772static int
773elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
774{
1dc9084f
MM
775 int found = 0;
776
777 /* FIXME: we only search the initial namespace.
778
779 To search other namespaces, we would need to provide context, e.g. in
780 form of an objfile in that namespace. */
781 gdbarch_iterate_over_objfiles_in_search_order
99d9c3b9 782 (current_inferior ()->arch (),
1dc9084f
MM
783 [name, &addr_p, &found] (struct objfile *objfile)
784 {
785 htab_t htab;
786 elf_gnu_ifunc_cache *entry_p;
787 void **slot;
788
789 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
790 if (htab == NULL)
791 return 0;
792
793 entry_p = ((elf_gnu_ifunc_cache *)
794 alloca (sizeof (*entry_p) + strlen (name)));
795 strcpy (entry_p->name, name);
796
797 slot = htab_find_slot (htab, entry_p, NO_INSERT);
798 if (slot == NULL)
799 return 0;
800 entry_p = (elf_gnu_ifunc_cache *) *slot;
801 gdb_assert (entry_p != NULL);
802
803 if (addr_p)
804 *addr_p = entry_p->addr;
805
806 found = 1;
807 return 1;
808 }, nullptr);
809
810 return found;
07be84bf
JK
811}
812
813/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
814 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
815 is not NULL) and the function returns 1. It returns 0 otherwise.
816
817 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
818 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
819 prevent cache entries duplicates. */
820
821static int
822elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
823{
824 char *name_got_plt;
07be84bf 825 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
1dc9084f 826 int found = 0;
07be84bf 827
224c3ddb 828 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
829 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
830
1dc9084f
MM
831 /* FIXME: we only search the initial namespace.
832
833 To search other namespaces, we would need to provide context, e.g. in
834 form of an objfile in that namespace. */
835 gdbarch_iterate_over_objfiles_in_search_order
99d9c3b9 836 (current_inferior ()->arch (),
1dc9084f
MM
837 [name, name_got_plt, &addr_p, &found] (struct objfile *objfile)
838 {
839 bfd *obfd = objfile->obfd.get ();
840 struct gdbarch *gdbarch = objfile->arch ();
841 type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
842 size_t ptr_size = ptr_type->length ();
843 CORE_ADDR pointer_address, addr;
844 asection *plt;
845 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
846 bound_minimal_symbol msym;
847
848 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
849 if (msym.minsym == NULL)
850 return 0;
851 if (msym.minsym->type () != mst_slot_got_plt)
852 return 0;
853 pointer_address = msym.value_address ();
854
855 plt = bfd_get_section_by_name (obfd, ".plt");
856 if (plt == NULL)
857 return 0;
858
859 if (msym.minsym->size () != ptr_size)
860 return 0;
861 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
862 return 0;
863 addr = extract_typed_address (buf, ptr_type);
864 addr = gdbarch_convert_from_func_ptr_addr
865 (gdbarch, addr, current_inferior ()->top_target ());
866 addr = gdbarch_addr_bits_remove (gdbarch, addr);
867
868 if (elf_gnu_ifunc_record_cache (name, addr))
869 {
870 if (addr_p != NULL)
871 *addr_p = addr;
872
873 found = 1;
874 return 1;
875 }
876
877 return 0;
878 }, nullptr);
879
880 return found;
07be84bf
JK
881}
882
883/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
884 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 885 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
886
887 Both the elf_objfile_gnu_ifunc_cache_data hash table and
888 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
889
ececd218 890static bool
07be84bf
JK
891elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
892{
893 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 894 return true;
dea91a5c 895
07be84bf 896 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 897 return true;
07be84bf 898
ececd218 899 return false;
07be84bf
JK
900}
901
902/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
903 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
904 is the entry point of the resolved STT_GNU_IFUNC target function to call.
905 */
906
907static CORE_ADDR
908elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
909{
2c02bd72 910 const char *name_at_pc;
07be84bf
JK
911 CORE_ADDR start_at_pc, address;
912 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
913 struct value *function, *address_val;
e1b2624a
AA
914 CORE_ADDR hwcap = 0;
915 struct value *hwcap_val;
07be84bf
JK
916
917 /* Try first any non-intrusive methods without an inferior call. */
918
919 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
920 && start_at_pc == pc)
921 {
922 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
923 return address;
924 }
925 else
926 name_at_pc = NULL;
927
317c3ed9 928 function = value::allocate (func_func_type);
6f9c9d71 929 function->set_lval (lval_memory);
9feb2d07 930 function->set_address (pc);
07be84bf 931
e1b2624a
AA
932 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
933 parameter. FUNCTION is the function entry address. ADDRESS may be a
934 function descriptor. */
07be84bf 935
82d23ca8 936 target_auxv_search (AT_HWCAP, &hwcap);
e1b2624a
AA
937 hwcap_val = value_from_longest (builtin_type (gdbarch)
938 ->builtin_unsigned_long, hwcap);
e71585ff 939 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 940 address = value_as_address (address_val);
328d42d8
SM
941 address = gdbarch_convert_from_func_ptr_addr
942 (gdbarch, address, current_inferior ()->top_target ());
4b7d1f7f 943 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
944
945 if (name_at_pc)
946 elf_gnu_ifunc_record_cache (name_at_pc, address);
947
948 return address;
949}
950
0e30163f
JK
951/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
952
953static void
74421c0b 954elf_gnu_ifunc_resolver_stop (code_breakpoint *b)
0e30163f
JK
955{
956 struct breakpoint *b_return;
bd2b40ac 957 frame_info_ptr prev_frame = get_prev_frame (get_current_frame ());
0e30163f
JK
958 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
959 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 960 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
961
962 gdb_assert (b->type == bp_gnu_ifunc_resolver);
963
964 for (b_return = b->related_breakpoint; b_return != b;
965 b_return = b_return->related_breakpoint)
966 {
967 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
9dc1523b 968 gdb_assert (b_return->has_single_location ());
0e30163f
JK
969 gdb_assert (frame_id_p (b_return->frame_id));
970
971 if (b_return->thread == thread_id
f5951b9f 972 && b_return->first_loc ().requested_address == prev_pc
a0cbd650 973 && b_return->frame_id == prev_frame_id)
0e30163f
JK
974 break;
975 }
976
977 if (b_return == b)
978 {
0e30163f
JK
979 /* No need to call find_pc_line for symbols resolving as this is only
980 a helper breakpointer never shown to the user. */
981
51abb421 982 symtab_and_line sal;
0e30163f
JK
983 sal.pspace = current_inferior ()->pspace;
984 sal.pc = prev_pc;
985 sal.section = find_pc_overlay (sal.pc);
986 sal.explicit_pc = 1;
454dafbd
TT
987 b_return
988 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
989 prev_frame_id,
990 bp_gnu_ifunc_resolver_return).release ();
0e30163f 991
c70a6932
JK
992 /* set_momentary_breakpoint invalidates PREV_FRAME. */
993 prev_frame = NULL;
994
0e30163f
JK
995 /* Add new b_return to the ring list b->related_breakpoint. */
996 gdb_assert (b_return->related_breakpoint == b_return);
997 b_return->related_breakpoint = b->related_breakpoint;
998 b->related_breakpoint = b_return;
999 }
1000}
1001
1002/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1003
1004static void
74421c0b 1005elf_gnu_ifunc_resolver_return_stop (code_breakpoint *b)
0e30163f 1006{
00431a78 1007 thread_info *thread = inferior_thread ();
0e30163f
JK
1008 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1009 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
27710edb 1010 struct type *value_type = func_func_type->target_type ();
00431a78 1011 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 1012 struct value *func_func;
0e30163f
JK
1013 struct value *value;
1014 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
1015
1016 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1017
0e30163f
JK
1018 while (b->related_breakpoint != b)
1019 {
1020 struct breakpoint *b_next = b->related_breakpoint;
1021
1022 switch (b->type)
1023 {
1024 case bp_gnu_ifunc_resolver:
1025 break;
1026 case bp_gnu_ifunc_resolver_return:
1027 delete_breakpoint (b);
1028 break;
1029 default:
f34652de 1030 internal_error (_("handle_inferior_event: Invalid "
0e30163f
JK
1031 "gnu-indirect-function breakpoint type %d"),
1032 (int) b->type);
1033 }
6a9196a6 1034 b = gdb::checked_static_cast<code_breakpoint *> (b_next);
0e30163f
JK
1035 }
1036 gdb_assert (b->type == bp_gnu_ifunc_resolver);
9dc1523b 1037 gdb_assert (b->has_single_location ());
6a3a010b 1038
317c3ed9 1039 func_func = value::allocate (func_func_type);
6f9c9d71 1040 func_func->set_lval (lval_memory);
f5951b9f 1041 func_func->set_address (b->first_loc ().related_address);
6a3a010b 1042
317c3ed9 1043 value = value::allocate (value_type);
4e1d2f58
TT
1044 gdbarch_return_value_as_value (gdbarch, func_func, value_type, regcache,
1045 &value, NULL);
6a3a010b 1046 resolved_address = value_as_address (value);
328d42d8
SM
1047 resolved_pc = gdbarch_convert_from_func_ptr_addr
1048 (gdbarch, resolved_address, current_inferior ()->top_target ());
4b7d1f7f 1049 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1050
f8eba3c6 1051 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
709438c7 1052 elf_gnu_ifunc_record_cache (b->locspec->to_string (), resolved_pc);
0e30163f 1053
0e30163f 1054 b->type = bp_breakpoint;
6c5b2ebe 1055 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1056 find_function_start_sal (resolved_pc, NULL, true),
1057 {});
0e30163f
JK
1058}
1059
2750ef27
TT
1060/* A helper function for elf_symfile_read that reads the minimal
1061 symbols. */
c906108c
SS
1062
1063static void
5f6cac40
TT
1064elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1065 const struct elfinfo *ei)
c906108c 1066{
98badbfd 1067 bfd *synth_abfd, *abfd = objfile->obfd.get ();
62553543
EZ
1068 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1069 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1070 asymbol *synthsyms;
c906108c 1071
2ab317fb
SM
1072 symtab_create_debug_printf ("reading minimal symbols of objfile %s",
1073 objfile_name (objfile));
45cfd468 1074
5f6cac40
TT
1075 /* If we already have minsyms, then we can skip some work here.
1076 However, if there were stabs or mdebug sections, we go ahead and
1077 redo all the work anyway, because the psym readers for those
1078 kinds of debuginfo need extra information found here. This can
1079 go away once all types of symbols are in the per-BFD object. */
1080 if (objfile->per_bfd->minsyms_read
1081 && ei->stabsect == NULL
30d1f018
WP
1082 && ei->mdebugsect == NULL
1083 && ei->ctfsect == NULL)
5f6cac40 1084 {
2ab317fb 1085 symtab_create_debug_printf ("minimal symbols were previously read");
5f6cac40
TT
1086 return;
1087 }
1088
d25e8719 1089 minimal_symbol_reader reader (objfile);
c906108c 1090
18a94d75 1091 /* Process the normal ELF symbol table first. */
c906108c 1092
98badbfd 1093 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd.get ());
62553543 1094 if (storage_needed < 0)
3e43a32a 1095 error (_("Can't read symbols from %s: %s"),
98badbfd 1096 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1097 bfd_errmsg (bfd_get_error ()));
1098
1099 if (storage_needed > 0)
1100 {
80c57053
JK
1101 /* Memory gets permanently referenced from ABFD after
1102 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1103
224c3ddb 1104 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1105 symcount = bfd_canonicalize_symtab (objfile->obfd.get (), symbol_table);
62553543
EZ
1106
1107 if (symcount < 0)
3e43a32a 1108 error (_("Can't read symbols from %s: %s"),
98badbfd 1109 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1110 bfd_errmsg (bfd_get_error ()));
1111
ce6c454e
TT
1112 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1113 false);
62553543 1114 }
c906108c
SS
1115
1116 /* Add the dynamic symbols. */
1117
98badbfd 1118 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd.get ());
62553543
EZ
1119
1120 if (storage_needed > 0)
1121 {
3f1eff0a
JK
1122 /* Memory gets permanently referenced from ABFD after
1123 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1124 It happens only in the case when elf_slurp_reloc_table sees
1125 asection->relocation NULL. Determining which section is asection is
1126 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1127 implementation detail, though. */
1128
224c3ddb 1129 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1130 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd.get (),
62553543
EZ
1131 dyn_symbol_table);
1132
1133 if (dynsymcount < 0)
3e43a32a 1134 error (_("Can't read symbols from %s: %s"),
98badbfd 1135 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1136 bfd_errmsg (bfd_get_error ()));
1137
8dddcb8f 1138 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1139 dyn_symbol_table, false);
07be84bf 1140
8dddcb8f 1141 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1142 }
1143
63524580
JK
1144 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1145 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1146
1147 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1148 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1149 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1150 read the code address from .opd while it reads the .symtab section from
1151 a separate debug info file as the .opd section is SHT_NOBITS there.
1152
1153 With SYNTH_ABFD the .opd section will be read from the original
1154 backlinked binary where it is valid. */
1155
1156 if (objfile->separate_debug_objfile_backlink)
98badbfd 1157 synth_abfd = objfile->separate_debug_objfile_backlink->obfd.get ();
63524580
JK
1158 else
1159 synth_abfd = abfd;
1160
62553543
EZ
1161 /* Add synthetic symbols - for instance, names for any PLT entries. */
1162
63524580 1163 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1164 dynsymcount, dyn_symbol_table,
1165 &synthsyms);
1166 if (synthcount > 0)
1167 {
62553543
EZ
1168 long i;
1169
b22e99fd 1170 std::unique_ptr<asymbol *[]>
d1e4a624 1171 synth_symbol_table (new asymbol *[synthcount]);
62553543 1172 for (i = 0; i < synthcount; i++)
9f20e3da 1173 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1174 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1175 synth_symbol_table.get (), true);
ba713918
AL
1176
1177 xfree (synthsyms);
1178 synthsyms = NULL;
62553543 1179 }
c906108c 1180
7134143f
DJ
1181 /* Install any minimal symbols that have been collected as the current
1182 minimal symbols for this objfile. The debug readers below this point
1183 should not generate new minimal symbols; if they do it's their
1184 responsibility to install them. "mdebug" appears to be the only one
1185 which will do this. */
1186
d25e8719 1187 reader.install ();
7134143f 1188
2ab317fb 1189 symtab_create_debug_printf ("done reading minimal symbols");
2750ef27
TT
1190}
1191
d955d179
TV
1192/* Dwarf-specific helper for elf_symfile_read. Return true if we managed to
1193 load dwarf debug info. */
1194
1195static bool
1196elf_symfile_read_dwarf2 (struct objfile *objfile,
1197 symfile_add_flags symfile_flags)
1198{
1199 bool has_dwarf2 = true;
1200
1201 if (dwarf2_has_info (objfile, NULL, true))
1202 dwarf2_initialize_objfile (objfile);
1203 /* If the file has its own symbol tables it has no separate debug
1204 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1205 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1206 `.note.gnu.build-id'.
1207
1208 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1209 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1210 an objfile via find_separate_debug_file_in_section there was no separate
1211 debug info available. Therefore do not attempt to search for another one,
1212 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1213 be NULL and we would possibly violate it. */
1214
1215 else if (!objfile->has_partial_symbols ()
1216 && objfile->separate_debug_objfile == NULL
1217 && objfile->separate_debug_objfile_backlink == NULL)
1218 {
27807da5
AB
1219 if (objfile->find_and_add_separate_symbol_file (symfile_flags))
1220 gdb_assert (objfile->separate_debug_objfile != nullptr);
d955d179 1221 else
27807da5 1222 has_dwarf2 = false;
d955d179
TV
1223 }
1224
1225 return has_dwarf2;
1226}
1227
2750ef27
TT
1228/* Scan and build partial symbols for a symbol file.
1229 We have been initialized by a call to elf_symfile_init, which
1230 currently does nothing.
1231
2750ef27
TT
1232 This function only does the minimum work necessary for letting the
1233 user "name" things symbolically; it does not read the entire symtab.
1234 Instead, it reads the external and static symbols and puts them in partial
1235 symbol tables. When more extensive information is requested of a
1236 file, the corresponding partial symbol table is mutated into a full
1237 fledged symbol table by going back and reading the symbols
1238 for real.
1239
1240 We look for sections with specific names, to tell us what debug
1241 format to look for: FIXME!!!
1242
1243 elfstab_build_psymtabs() handles STABS symbols;
1244 mdebug_build_psymtabs() handles ECOFF debugging information.
1245
1246 Note that ELF files have a "minimal" symbol table, which looks a lot
1247 like a COFF symbol table, but has only the minimal information necessary
1248 for linking. We process this also, and use the information to
1249 build gdb's minimal symbol table. This gives us some minimal debugging
1250 capability even for files compiled without -g. */
1251
1252static void
b15cc25c 1253elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27 1254{
98badbfd 1255 bfd *abfd = objfile->obfd.get ();
2750ef27
TT
1256 struct elfinfo ei;
1257
2750ef27 1258 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1259 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1260 {
1261 for (asection *sect : gdb_bfd_sections (abfd))
1262 elf_locate_sections (sect, &ei);
1263 }
c906108c 1264
5f6cac40
TT
1265 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1266
c906108c
SS
1267 /* ELF debugging information is inserted into the psymtab in the
1268 order of least informative first - most informative last. Since
1269 the psymtab table is searched `most recent insertion first' this
1270 increases the probability that more detailed debug information
1271 for a section is found.
1272
1273 For instance, an object file might contain both .mdebug (XCOFF)
1274 and .debug_info (DWARF2) sections then .mdebug is inserted first
1275 (searched last) and DWARF2 is inserted last (searched first). If
1276 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1277 an included file XCOFF info is useless. */
c906108c
SS
1278
1279 if (ei.mdebugsect)
1280 {
1281 const struct ecoff_debug_swap *swap;
1282
1283 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1284 information. */
c906108c
SS
1285 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1286 if (swap)
d4f3574e 1287 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1288 }
1289 if (ei.stabsect)
1290 {
1291 asection *str_sect;
1292
1293 /* Stab sections have an associated string table that looks like
dda83cd7 1294 a separate section. */
c906108c
SS
1295 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1296
1297 /* FIXME should probably warn about a stab section without a stabstr. */
1298 if (str_sect)
1299 elfstab_build_psymtabs (objfile,
086df311 1300 ei.stabsect,
c906108c 1301 str_sect->filepos,
fd361982 1302 bfd_section_size (str_sect));
c906108c 1303 }
9291a0cd 1304
0d5adb56
TV
1305 /* Read the CTF section only if there is no DWARF info. */
1306 if (always_read_ctf && ei.ctfsect)
1307 {
1308 elfctf_build_psymtabs (objfile);
1309 }
1310
d955d179 1311 bool has_dwarf2 = elf_symfile_read_dwarf2 (objfile, symfile_flags);
30d1f018
WP
1312
1313 /* Read the CTF section only if there is no DWARF info. */
0d5adb56 1314 if (!always_read_ctf && !has_dwarf2 && ei.ctfsect)
30d1f018
WP
1315 {
1316 elfctf_build_psymtabs (objfile);
9cce227f 1317 }
62669649
KB
1318
1319 /* Copy relocations are used by some ABIs using the ELF format, so
1320 set the objfile flag indicating this fact. */
1321 objfile->object_format_has_copy_relocs = true;
c906108c
SS
1322}
1323
c906108c
SS
1324/* Initialize anything that needs initializing when a completely new symbol
1325 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1326 shared library). */
c906108c
SS
1327
1328static void
fba45db2 1329elf_new_init (struct objfile *ignore)
c906108c 1330{
c906108c
SS
1331}
1332
1333/* Perform any local cleanups required when we are done with a particular
1334 objfile. I.E, we are in the process of discarding all symbol information
1335 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1336 objfile struct from the global list of known objfiles. */
c906108c
SS
1337
1338static void
fba45db2 1339elf_symfile_finish (struct objfile *objfile)
c906108c 1340{
c906108c
SS
1341}
1342
db7a9bcd 1343/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1344
1345static void
fba45db2 1346elf_symfile_init (struct objfile *objfile)
c906108c 1347{
c906108c
SS
1348}
1349
55aa24fb
SDJ
1350/* Implementation of `sym_get_probes', as documented in symfile.h. */
1351
814cf43a 1352static const elfread_data &
55aa24fb
SDJ
1353elf_get_probes (struct objfile *objfile)
1354{
98badbfd 1355 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd.get ());
55aa24fb 1356
aaa63a31 1357 if (probes_per_bfd == NULL)
55aa24fb 1358 {
98badbfd 1359 probes_per_bfd = probe_key.emplace (objfile->obfd.get ());
55aa24fb
SDJ
1360
1361 /* Here we try to gather information about all types of probes from the
1362 objfile. */
935676c9 1363 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1364 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1365 }
1366
aaa63a31 1367 return *probes_per_bfd;
55aa24fb
SDJ
1368}
1369
c906108c 1370\f
55aa24fb
SDJ
1371
1372/* Implementation `sym_probe_fns', as documented in symfile.h. */
1373
1374static const struct sym_probe_fns elf_probe_fns =
1375{
25f9533e 1376 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1377};
1378
c906108c
SS
1379/* Register that we are able to handle ELF object file formats. */
1380
00b5771c 1381static const struct sym_fns elf_sym_fns =
c906108c 1382{
3e43a32a
MS
1383 elf_new_init, /* init anything gbl to entire symtab */
1384 elf_symfile_init, /* read initial info, setup for sym_read() */
1385 elf_symfile_read, /* read a symbol file into symtab */
1386 elf_symfile_finish, /* finished with file, cleanup */
1387 default_symfile_offsets, /* Translate ext. to int. relocation */
1388 elf_symfile_segments, /* Get segment information from a file. */
1389 NULL,
1390 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1391 &elf_probe_fns, /* sym_probe_fns */
927aa2e7
JK
1392};
1393
07be84bf
JK
1394/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1395
1396static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1397{
1398 elf_gnu_ifunc_resolve_addr,
1399 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1400 elf_gnu_ifunc_resolver_stop,
1401 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1402};
1403
6c265988 1404void _initialize_elfread ();
c906108c 1405void
6c265988 1406_initialize_elfread ()
c906108c 1407{
c256e171 1408 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1409
07be84bf 1410 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
0d5adb56
TV
1411
1412 /* Add "set always-read-ctf on/off". */
1413 add_setshow_boolean_cmd ("always-read-ctf", class_support, &always_read_ctf,
1414 _("\
1415Set whether CTF is always read."),
1416 _("\
1417Show whether CTF is always read."),
1418 _("\
1419When off, CTF is only read if DWARF is not present. When on, CTF is read\
1420 regardless of whether DWARF is present."),
1421 nullptr /* set_func */, nullptr /* show_func */,
1422 &setlist, &showlist);
c906108c 1423}