]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
daily update
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
28e7fd62 3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
24#include "gdb_string.h"
25#include "elf-bfd.h"
31d99776
DJ
26#include "elf/common.h"
27#include "elf/internal.h"
c906108c
SS
28#include "elf/mips.h"
29#include "symtab.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "buildsym.h"
33#include "stabsread.h"
34#include "gdb-stabs.h"
35#include "complaints.h"
36#include "demangle.h"
ccefe4c4 37#include "psympriv.h"
0ba1096a 38#include "filenames.h"
55aa24fb
SDJ
39#include "probe.h"
40#include "arch-utils.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
0af1e9a5 46#include "bcache.h"
cbb099e8 47#include "gdb_bfd.h"
c906108c 48
a14ed312 49extern void _initialize_elfread (void);
392a587b 50
b11896a5 51/* Forward declarations. */
00b5771c 52static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 53static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 54
c906108c 55/* The struct elfinfo is available only during ELF symbol table and
6426a772 56 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
57 It's local to elf_symfile_read. */
58
c5aa993b
JM
59struct elfinfo
60 {
c5aa993b
JM
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *stabindexsect; /* Section pointer for .stab.index section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
c906108c 65
55aa24fb
SDJ
66/* Per-objfile data for probe info. */
67
68static const struct objfile_data *probe_key = NULL;
69
12b9c64f 70static void free_elfinfo (void *);
c906108c 71
07be84bf
JK
72/* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
31d99776
DJ
79/* Locate the segments in ABFD. */
80
81static struct symfile_segment_data *
82elf_symfile_segments (bfd *abfd)
83{
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
a366c65a 135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
12b9c64f 179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 180{
52f0bd74 181 struct elfinfo *ei;
c906108c
SS
182
183 ei = (struct elfinfo *) eip;
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".stab.index") == 0)
c906108c 189 {
c5aa993b 190 ei->stabindexsect = sectp;
c906108c 191 }
6314a349 192 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 193 {
c5aa993b 194 ei->mdebugsect = sectp;
c906108c
SS
195 }
196}
197
c906108c 198static struct minimal_symbol *
04a679b8
TT
199record_minimal_symbol (const char *name, int name_len, int copy_name,
200 CORE_ADDR address,
f594e5e9
MC
201 enum minimal_symbol_type ms_type,
202 asection *bfd_section, struct objfile *objfile)
c906108c 203{
5e2b427d
UW
204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
205
0875794a
JK
206 if (ms_type == mst_text || ms_type == mst_file_text
207 || ms_type == mst_text_gnu_ifunc)
85ddcc70 208 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 209
04a679b8 210 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
65cf3563
TT
211 ms_type,
212 gdb_bfd_section_index (objfile->obfd,
213 bfd_section),
e6dc44a8 214 objfile);
c906108c
SS
215}
216
7f86f058 217/* Read the symbol table of an ELF file.
c906108c 218
62553543 219 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
220 symbol table contains regular, dynamic, or synthetic symbols, add all
221 the global function and data symbols to the minimal symbol table.
c906108c 222
c5aa993b
JM
223 In stabs-in-ELF, as implemented by Sun, there are some local symbols
224 defined in the ELF symbol table, which can be used to locate
225 the beginnings of sections from each ".o" file that was linked to
226 form the executable objfile. We gather any such info and record it
7f86f058 227 in data structures hung off the objfile's private data. */
c906108c 228
6f610d07
UW
229#define ST_REGULAR 0
230#define ST_DYNAMIC 1
231#define ST_SYNTHETIC 2
232
c906108c 233static void
6f610d07 234elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
235 long number_of_symbols, asymbol **symbol_table,
236 int copy_names)
c906108c 237{
5e2b427d 238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 239 asymbol *sym;
c906108c 240 long i;
c906108c 241 CORE_ADDR symaddr;
d4f3574e 242 CORE_ADDR offset;
c906108c
SS
243 enum minimal_symbol_type ms_type;
244 /* If sectinfo is nonNULL, it contains section info that should end up
245 filed in the objfile. */
246 struct stab_section_info *sectinfo = NULL;
247 /* If filesym is nonzero, it points to a file symbol, but we haven't
248 seen any section info for it yet. */
249 asymbol *filesym = 0;
1c9e8358 250 /* Name of filesym. This is either a constant string or is saved on
0af1e9a5
TT
251 the objfile's filename cache. */
252 const char *filesymname = "";
d2f4b8fe 253 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 254 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
c5aa993b 255
0cc7b392 256 for (i = 0; i < number_of_symbols; i++)
c906108c 257 {
0cc7b392
DJ
258 sym = symbol_table[i];
259 if (sym->name == NULL || *sym->name == '\0')
c906108c 260 {
0cc7b392 261 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 262 that are null strings (may happen). */
0cc7b392
DJ
263 continue;
264 }
c906108c 265
74763737
DJ
266 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
267 symbols which do not correspond to objects in the symbol table,
268 but have some other target-specific meaning. */
269 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
270 {
271 if (gdbarch_record_special_symbol_p (gdbarch))
272 gdbarch_record_special_symbol (gdbarch, objfile, sym);
273 continue;
274 }
74763737 275
65cf3563
TT
276 offset = ANOFFSET (objfile->section_offsets,
277 gdb_bfd_section_index (objfile->obfd, sym->section));
6f610d07 278 if (type == ST_DYNAMIC
45dfa85a 279 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
280 && (sym->flags & BSF_FUNCTION))
281 {
282 struct minimal_symbol *msym;
02c75f72 283 bfd *abfd = objfile->obfd;
dea91a5c 284 asection *sect;
0cc7b392
DJ
285
286 /* Symbol is a reference to a function defined in
287 a shared library.
288 If its value is non zero then it is usually the address
289 of the corresponding entry in the procedure linkage table,
290 plus the desired section offset.
291 If its value is zero then the dynamic linker has to resolve
0963b4bd 292 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
293 for this symbol in the executable file, so we skip it. */
294 symaddr = sym->value;
295 if (symaddr == 0)
296 continue;
02c75f72
UW
297
298 /* sym->section is the undefined section. However, we want to
299 record the section where the PLT stub resides with the
300 minimal symbol. Search the section table for the one that
301 covers the stub's address. */
302 for (sect = abfd->sections; sect != NULL; sect = sect->next)
303 {
304 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
305 continue;
306
307 if (symaddr >= bfd_get_section_vma (abfd, sect)
308 && symaddr < bfd_get_section_vma (abfd, sect)
309 + bfd_get_section_size (sect))
310 break;
311 }
312 if (!sect)
313 continue;
314
828cfa8d
JB
315 /* On ia64-hpux, we have discovered that the system linker
316 adds undefined symbols with nonzero addresses that cannot
317 be right (their address points inside the code of another
318 function in the .text section). This creates problems
319 when trying to determine which symbol corresponds to
320 a given address.
321
322 We try to detect those buggy symbols by checking which
323 section we think they correspond to. Normally, PLT symbols
324 are stored inside their own section, and the typical name
325 for that section is ".plt". So, if there is a ".plt"
326 section, and yet the section name of our symbol does not
327 start with ".plt", we ignore that symbol. */
328 if (strncmp (sect->name, ".plt", 4) != 0
329 && bfd_get_section_by_name (abfd, ".plt") != NULL)
330 continue;
331
65cf3563
TT
332 symaddr += ANOFFSET (objfile->section_offsets,
333 gdb_bfd_section_index (objfile->obfd, sect));
02c75f72 334
0cc7b392 335 msym = record_minimal_symbol
04a679b8
TT
336 (sym->name, strlen (sym->name), copy_names,
337 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
338 if (msym != NULL)
339 msym->filename = filesymname;
0cc7b392
DJ
340 continue;
341 }
c906108c 342
0cc7b392
DJ
343 /* If it is a nonstripped executable, do not enter dynamic
344 symbols, as the dynamic symbol table is usually a subset
345 of the main symbol table. */
6f610d07 346 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
347 continue;
348 if (sym->flags & BSF_FILE)
349 {
350 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
351 Chain any old one onto the objfile; remember new sym. */
352 if (sectinfo != NULL)
c906108c 353 {
0cc7b392
DJ
354 sectinfo->next = dbx->stab_section_info;
355 dbx->stab_section_info = sectinfo;
356 sectinfo = NULL;
357 }
358 filesym = sym;
0af1e9a5 359 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
706e3705 360 objfile->per_bfd->filename_cache);
0cc7b392
DJ
361 }
362 else if (sym->flags & BSF_SECTION_SYM)
363 continue;
bb869963
SDJ
364 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
365 | BSF_GNU_UNIQUE))
0cc7b392
DJ
366 {
367 struct minimal_symbol *msym;
368
369 /* Select global/local/weak symbols. Note that bfd puts abs
370 symbols in their own section, so all symbols we are
0963b4bd
MS
371 interested in will have a section. */
372 /* Bfd symbols are section relative. */
0cc7b392 373 symaddr = sym->value + sym->section->vma;
45148c2e
UW
374 /* Relocate all non-absolute and non-TLS symbols by the
375 section offset. */
45dfa85a 376 if (sym->section != bfd_abs_section_ptr
45148c2e 377 && !(sym->section->flags & SEC_THREAD_LOCAL))
0cc7b392
DJ
378 {
379 symaddr += offset;
c906108c 380 }
0cc7b392
DJ
381 /* For non-absolute symbols, use the type of the section
382 they are relative to, to intuit text/data. Bfd provides
0963b4bd 383 no way of figuring this out for absolute symbols. */
45dfa85a 384 if (sym->section == bfd_abs_section_ptr)
c906108c 385 {
0cc7b392
DJ
386 /* This is a hack to get the minimal symbol type
387 right for Irix 5, which has absolute addresses
6f610d07
UW
388 with special section indices for dynamic symbols.
389
390 NOTE: uweigand-20071112: Synthetic symbols do not
391 have an ELF-private part, so do not touch those. */
dea91a5c 392 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
393 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
394
395 switch (shndx)
c906108c 396 {
0cc7b392
DJ
397 case SHN_MIPS_TEXT:
398 ms_type = mst_text;
399 break;
400 case SHN_MIPS_DATA:
401 ms_type = mst_data;
402 break;
403 case SHN_MIPS_ACOMMON:
404 ms_type = mst_bss;
405 break;
406 default:
407 ms_type = mst_abs;
408 }
409
410 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 411 symbols, relocate all others by section offset. */
0cc7b392
DJ
412 if (ms_type != mst_abs)
413 {
414 if (sym->name[0] == '.')
415 continue;
d4f3574e 416 symaddr += offset;
c906108c 417 }
0cc7b392
DJ
418 }
419 else if (sym->section->flags & SEC_CODE)
420 {
bb869963 421 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 422 {
0875794a
JK
423 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
424 ms_type = mst_text_gnu_ifunc;
425 else
426 ms_type = mst_text;
0cc7b392 427 }
90359a16
JK
428 /* The BSF_SYNTHETIC check is there to omit ppc64 function
429 descriptors mistaken for static functions starting with 'L'.
430 */
431 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
432 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
433 || ((sym->flags & BSF_LOCAL)
434 && sym->name[0] == '$'
435 && sym->name[1] == 'L'))
436 /* Looks like a compiler-generated label. Skip
437 it. The assembler should be skipping these (to
438 keep executables small), but apparently with
439 gcc on the (deleted) delta m88k SVR4, it loses.
440 So to have us check too should be harmless (but
441 I encourage people to fix this in the assembler
442 instead of adding checks here). */
443 continue;
444 else
445 {
446 ms_type = mst_file_text;
c906108c 447 }
0cc7b392
DJ
448 }
449 else if (sym->section->flags & SEC_ALLOC)
450 {
bb869963 451 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 452 {
0cc7b392 453 if (sym->section->flags & SEC_LOAD)
c906108c 454 {
0cc7b392 455 ms_type = mst_data;
c906108c 456 }
c906108c
SS
457 else
458 {
0cc7b392 459 ms_type = mst_bss;
c906108c
SS
460 }
461 }
0cc7b392 462 else if (sym->flags & BSF_LOCAL)
c906108c 463 {
0cc7b392
DJ
464 /* Named Local variable in a Data section.
465 Check its name for stabs-in-elf. */
466 int special_local_sect;
d7f9d729 467
0cc7b392
DJ
468 if (strcmp ("Bbss.bss", sym->name) == 0)
469 special_local_sect = SECT_OFF_BSS (objfile);
470 else if (strcmp ("Ddata.data", sym->name) == 0)
471 special_local_sect = SECT_OFF_DATA (objfile);
472 else if (strcmp ("Drodata.rodata", sym->name) == 0)
473 special_local_sect = SECT_OFF_RODATA (objfile);
474 else
475 special_local_sect = -1;
476 if (special_local_sect >= 0)
c906108c 477 {
0cc7b392
DJ
478 /* Found a special local symbol. Allocate a
479 sectinfo, if needed, and fill it in. */
480 if (sectinfo == NULL)
c906108c 481 {
0cc7b392
DJ
482 int max_index;
483 size_t size;
484
25c2f6ab
PP
485 max_index = SECT_OFF_BSS (objfile);
486 if (objfile->sect_index_data > max_index)
487 max_index = objfile->sect_index_data;
488 if (objfile->sect_index_rodata > max_index)
489 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
490
491 /* max_index is the largest index we'll
492 use into this array, so we must
493 allocate max_index+1 elements for it.
494 However, 'struct stab_section_info'
495 already includes one element, so we
496 need to allocate max_index aadditional
497 elements. */
dea91a5c 498 size = (sizeof (struct stab_section_info)
c05d19c5 499 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
500 sectinfo = (struct stab_section_info *)
501 xmalloc (size);
502 memset (sectinfo, 0, size);
503 sectinfo->num_sections = max_index;
504 if (filesym == NULL)
c906108c 505 {
0cc7b392 506 complaint (&symfile_complaints,
3e43a32a
MS
507 _("elf/stab section information %s "
508 "without a preceding file symbol"),
0cc7b392
DJ
509 sym->name);
510 }
511 else
512 {
513 sectinfo->filename =
514 (char *) filesym->name;
c906108c 515 }
c906108c 516 }
0cc7b392
DJ
517 if (sectinfo->sections[special_local_sect] != 0)
518 complaint (&symfile_complaints,
3e43a32a
MS
519 _("duplicated elf/stab section "
520 "information for %s"),
0cc7b392
DJ
521 sectinfo->filename);
522 /* BFD symbols are section relative. */
523 symaddr = sym->value + sym->section->vma;
524 /* Relocate non-absolute symbols by the
525 section offset. */
45dfa85a 526 if (sym->section != bfd_abs_section_ptr)
0cc7b392
DJ
527 symaddr += offset;
528 sectinfo->sections[special_local_sect] = symaddr;
529 /* The special local symbols don't go in the
530 minimal symbol table, so ignore this one. */
531 continue;
532 }
533 /* Not a special stabs-in-elf symbol, do regular
534 symbol processing. */
535 if (sym->section->flags & SEC_LOAD)
536 {
537 ms_type = mst_file_data;
c906108c
SS
538 }
539 else
540 {
0cc7b392 541 ms_type = mst_file_bss;
c906108c
SS
542 }
543 }
544 else
545 {
0cc7b392 546 ms_type = mst_unknown;
c906108c 547 }
0cc7b392
DJ
548 }
549 else
550 {
551 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 552 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
553 hob with actions like finding what function the PC
554 is in. Ignore them if they aren't text, data, or bss. */
555 /* ms_type = mst_unknown; */
0963b4bd 556 continue; /* Skip this symbol. */
0cc7b392
DJ
557 }
558 msym = record_minimal_symbol
04a679b8 559 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 560 ms_type, sym->section, objfile);
6f610d07 561
0cc7b392
DJ
562 if (msym)
563 {
6f610d07 564 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 565 ELF-private part. */
6f610d07 566 if (type != ST_SYNTHETIC)
24c274a1
AM
567 {
568 /* Pass symbol size field in via BFD. FIXME!!! */
569 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
570 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
571 }
dea91a5c 572
a103a963
DJ
573 msym->filename = filesymname;
574 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 575 }
2eaf8d2a 576
715c6909
TT
577 /* If we see a default versioned symbol, install it under
578 its version-less name. */
579 if (msym != NULL)
580 {
581 const char *atsign = strchr (sym->name, '@');
582
583 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
584 {
585 int len = atsign - sym->name;
586
587 record_minimal_symbol (sym->name, len, 1, symaddr,
588 ms_type, sym->section, objfile);
589 }
590 }
591
2eaf8d2a
DJ
592 /* For @plt symbols, also record a trampoline to the
593 destination symbol. The @plt symbol will be used in
594 disassembly, and the trampoline will be used when we are
595 trying to find the target. */
596 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
597 {
598 int len = strlen (sym->name);
599
600 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
601 {
2eaf8d2a
DJ
602 struct minimal_symbol *mtramp;
603
04a679b8
TT
604 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
605 symaddr,
2eaf8d2a
DJ
606 mst_solib_trampoline,
607 sym->section, objfile);
608 if (mtramp)
609 {
d9eaeb59 610 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 611 mtramp->created_by_gdb = 1;
2eaf8d2a
DJ
612 mtramp->filename = filesymname;
613 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
614 }
615 }
616 }
c906108c 617 }
c906108c
SS
618 }
619}
620
07be84bf
JK
621/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
622 for later look ups of which function to call when user requests
623 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
624 library defining `function' we cannot yet know while reading OBJFILE which
625 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
626 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
627
628static void
629elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
630{
631 bfd *obfd = objfile->obfd;
632 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
633 asection *plt, *relplt, *got_plt;
07be84bf
JK
634 int plt_elf_idx;
635 bfd_size_type reloc_count, reloc;
636 char *string_buffer = NULL;
637 size_t string_buffer_size = 0;
638 struct cleanup *back_to;
df6d5441 639 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
640 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
641 size_t ptr_size = TYPE_LENGTH (ptr_type);
642
643 if (objfile->separate_debug_objfile_backlink)
644 return;
645
646 plt = bfd_get_section_by_name (obfd, ".plt");
647 if (plt == NULL)
648 return;
649 plt_elf_idx = elf_section_data (plt)->this_idx;
650
651 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
652 if (got_plt == NULL)
653 return;
654
655 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
656 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
657 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
658 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
659 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
660 break;
661 if (relplt == NULL)
662 return;
663
664 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
665 return;
666
667 back_to = make_cleanup (free_current_contents, &string_buffer);
668
669 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
670 for (reloc = 0; reloc < reloc_count; reloc++)
671 {
22e048c9 672 const char *name;
07be84bf
JK
673 struct minimal_symbol *msym;
674 CORE_ADDR address;
675 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
676 size_t name_len;
677
678 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
679 name_len = strlen (name);
680 address = relplt->relocation[reloc].address;
681
682 /* Does the pointer reside in the .got.plt section? */
683 if (!(bfd_get_section_vma (obfd, got_plt) <= address
684 && address < bfd_get_section_vma (obfd, got_plt)
685 + bfd_get_section_size (got_plt)))
686 continue;
687
688 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
689 OBJFILE the symbol is undefined and the objfile having NAME defined
690 may not yet have been loaded. */
691
3807f613 692 if (string_buffer_size < name_len + got_suffix_len + 1)
07be84bf
JK
693 {
694 string_buffer_size = 2 * (name_len + got_suffix_len);
695 string_buffer = xrealloc (string_buffer, string_buffer_size);
696 }
697 memcpy (string_buffer, name, name_len);
698 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
3807f613 699 got_suffix_len + 1);
07be84bf
JK
700
701 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
702 1, address, mst_slot_got_plt, got_plt,
703 objfile);
704 if (msym)
d9eaeb59 705 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf
JK
706 }
707
708 do_cleanups (back_to);
709}
710
711/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
712
713static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
714
715/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
716
717struct elf_gnu_ifunc_cache
718{
719 /* This is always a function entry address, not a function descriptor. */
720 CORE_ADDR addr;
721
722 char name[1];
723};
724
725/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
726
727static hashval_t
728elf_gnu_ifunc_cache_hash (const void *a_voidp)
729{
730 const struct elf_gnu_ifunc_cache *a = a_voidp;
731
732 return htab_hash_string (a->name);
733}
734
735/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
736
737static int
738elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
739{
740 const struct elf_gnu_ifunc_cache *a = a_voidp;
741 const struct elf_gnu_ifunc_cache *b = b_voidp;
742
743 return strcmp (a->name, b->name) == 0;
744}
745
746/* Record the target function address of a STT_GNU_IFUNC function NAME is the
747 function entry address ADDR. Return 1 if NAME and ADDR are considered as
748 valid and therefore they were successfully recorded, return 0 otherwise.
749
750 Function does not expect a duplicate entry. Use
751 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
752 exists. */
753
754static int
755elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
756{
7cbd4a93 757 struct bound_minimal_symbol msym;
07be84bf
JK
758 asection *sect;
759 struct objfile *objfile;
760 htab_t htab;
761 struct elf_gnu_ifunc_cache entry_local, *entry_p;
762 void **slot;
763
764 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 765 if (msym.minsym == NULL)
07be84bf 766 return 0;
7cbd4a93 767 if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr)
07be84bf
JK
768 return 0;
769 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
e27d198c
TT
770 sect = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
771 objfile = msym.objfile;
07be84bf
JK
772
773 /* If .plt jumps back to .plt the symbol is still deferred for later
774 resolution and it has no use for GDB. Besides ".text" this symbol can
775 reside also in ".opd" for ppc64 function descriptor. */
776 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
777 return 0;
778
779 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
780 if (htab == NULL)
781 {
782 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
783 elf_gnu_ifunc_cache_eq,
784 NULL, &objfile->objfile_obstack,
785 hashtab_obstack_allocate,
786 dummy_obstack_deallocate);
787 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
788 }
789
790 entry_local.addr = addr;
791 obstack_grow (&objfile->objfile_obstack, &entry_local,
792 offsetof (struct elf_gnu_ifunc_cache, name));
793 obstack_grow_str0 (&objfile->objfile_obstack, name);
794 entry_p = obstack_finish (&objfile->objfile_obstack);
795
796 slot = htab_find_slot (htab, entry_p, INSERT);
797 if (*slot != NULL)
798 {
799 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
df6d5441 800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
801
802 if (entry_found_p->addr != addr)
803 {
804 /* This case indicates buggy inferior program, the resolved address
805 should never change. */
806
807 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
808 "function_address from %s to %s"),
809 name, paddress (gdbarch, entry_found_p->addr),
810 paddress (gdbarch, addr));
811 }
812
813 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
814 }
815 *slot = entry_p;
816
817 return 1;
818}
819
820/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
821 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
822 is not NULL) and the function returns 1. It returns 0 otherwise.
823
824 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
825 function. */
826
827static int
828elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
829{
830 struct objfile *objfile;
831
832 ALL_PSPACE_OBJFILES (current_program_space, objfile)
833 {
834 htab_t htab;
835 struct elf_gnu_ifunc_cache *entry_p;
836 void **slot;
837
838 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
839 if (htab == NULL)
840 continue;
841
842 entry_p = alloca (sizeof (*entry_p) + strlen (name));
843 strcpy (entry_p->name, name);
844
845 slot = htab_find_slot (htab, entry_p, NO_INSERT);
846 if (slot == NULL)
847 continue;
848 entry_p = *slot;
849 gdb_assert (entry_p != NULL);
850
851 if (addr_p)
852 *addr_p = entry_p->addr;
853 return 1;
854 }
855
856 return 0;
857}
858
859/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
860 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
861 is not NULL) and the function returns 1. It returns 0 otherwise.
862
863 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
864 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
865 prevent cache entries duplicates. */
866
867static int
868elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
869{
870 char *name_got_plt;
871 struct objfile *objfile;
872 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
873
874 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
875 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
876
877 ALL_PSPACE_OBJFILES (current_program_space, objfile)
878 {
879 bfd *obfd = objfile->obfd;
df6d5441 880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
881 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
882 size_t ptr_size = TYPE_LENGTH (ptr_type);
883 CORE_ADDR pointer_address, addr;
884 asection *plt;
885 gdb_byte *buf = alloca (ptr_size);
886 struct minimal_symbol *msym;
887
888 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
889 if (msym == NULL)
890 continue;
891 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
892 continue;
893 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
894
895 plt = bfd_get_section_by_name (obfd, ".plt");
896 if (plt == NULL)
897 continue;
898
899 if (MSYMBOL_SIZE (msym) != ptr_size)
900 continue;
901 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
902 continue;
903 addr = extract_typed_address (buf, ptr_type);
904 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
905 &current_target);
906
907 if (addr_p)
908 *addr_p = addr;
909 if (elf_gnu_ifunc_record_cache (name, addr))
910 return 1;
911 }
912
913 return 0;
914}
915
916/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
917 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
918 is not NULL) and the function returns 1. It returns 0 otherwise.
919
920 Both the elf_objfile_gnu_ifunc_cache_data hash table and
921 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
922
923static int
924elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
925{
926 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
927 return 1;
dea91a5c 928
07be84bf
JK
929 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
930 return 1;
931
932 return 0;
933}
934
935/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
936 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
937 is the entry point of the resolved STT_GNU_IFUNC target function to call.
938 */
939
940static CORE_ADDR
941elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
942{
2c02bd72 943 const char *name_at_pc;
07be84bf
JK
944 CORE_ADDR start_at_pc, address;
945 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
946 struct value *function, *address_val;
947
948 /* Try first any non-intrusive methods without an inferior call. */
949
950 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
951 && start_at_pc == pc)
952 {
953 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
954 return address;
955 }
956 else
957 name_at_pc = NULL;
958
959 function = allocate_value (func_func_type);
960 set_value_address (function, pc);
961
962 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
963 function entry address. ADDRESS may be a function descriptor. */
964
965 address_val = call_function_by_hand (function, 0, NULL);
966 address = value_as_address (address_val);
967 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
968 &current_target);
969
970 if (name_at_pc)
971 elf_gnu_ifunc_record_cache (name_at_pc, address);
972
973 return address;
974}
975
0e30163f
JK
976/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
977
978static void
979elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
980{
981 struct breakpoint *b_return;
982 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
983 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
984 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
985 int thread_id = pid_to_thread_id (inferior_ptid);
986
987 gdb_assert (b->type == bp_gnu_ifunc_resolver);
988
989 for (b_return = b->related_breakpoint; b_return != b;
990 b_return = b_return->related_breakpoint)
991 {
992 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
993 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
994 gdb_assert (frame_id_p (b_return->frame_id));
995
996 if (b_return->thread == thread_id
997 && b_return->loc->requested_address == prev_pc
998 && frame_id_eq (b_return->frame_id, prev_frame_id))
999 break;
1000 }
1001
1002 if (b_return == b)
1003 {
1004 struct symtab_and_line sal;
1005
1006 /* No need to call find_pc_line for symbols resolving as this is only
1007 a helper breakpointer never shown to the user. */
1008
1009 init_sal (&sal);
1010 sal.pspace = current_inferior ()->pspace;
1011 sal.pc = prev_pc;
1012 sal.section = find_pc_overlay (sal.pc);
1013 sal.explicit_pc = 1;
1014 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1015 prev_frame_id,
1016 bp_gnu_ifunc_resolver_return);
1017
c70a6932
JK
1018 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1019 prev_frame = NULL;
1020
0e30163f
JK
1021 /* Add new b_return to the ring list b->related_breakpoint. */
1022 gdb_assert (b_return->related_breakpoint == b_return);
1023 b_return->related_breakpoint = b->related_breakpoint;
1024 b->related_breakpoint = b_return;
1025 }
1026}
1027
1028/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1029
1030static void
1031elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1032{
1033 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1034 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1035 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1036 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 1037 struct value *func_func;
0e30163f
JK
1038 struct value *value;
1039 CORE_ADDR resolved_address, resolved_pc;
1040 struct symtab_and_line sal;
f1310107 1041 struct symtabs_and_lines sals, sals_end;
0e30163f
JK
1042
1043 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1044
0e30163f
JK
1045 while (b->related_breakpoint != b)
1046 {
1047 struct breakpoint *b_next = b->related_breakpoint;
1048
1049 switch (b->type)
1050 {
1051 case bp_gnu_ifunc_resolver:
1052 break;
1053 case bp_gnu_ifunc_resolver_return:
1054 delete_breakpoint (b);
1055 break;
1056 default:
1057 internal_error (__FILE__, __LINE__,
1058 _("handle_inferior_event: Invalid "
1059 "gnu-indirect-function breakpoint type %d"),
1060 (int) b->type);
1061 }
1062 b = b_next;
1063 }
1064 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1065 gdb_assert (b->loc->next == NULL);
1066
1067 func_func = allocate_value (func_func_type);
1068 set_value_address (func_func, b->loc->related_address);
1069
1070 value = allocate_value (value_type);
1071 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1072 value_contents_raw (value), NULL);
1073 resolved_address = value_as_address (value);
1074 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1075 resolved_address,
1076 &current_target);
0e30163f 1077
f8eba3c6 1078 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
0e30163f
JK
1079 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1080
1081 sal = find_pc_line (resolved_pc, 0);
1082 sals.nelts = 1;
1083 sals.sals = &sal;
f1310107 1084 sals_end.nelts = 0;
0e30163f
JK
1085
1086 b->type = bp_breakpoint;
f1310107 1087 update_breakpoint_locations (b, sals, sals_end);
0e30163f
JK
1088}
1089
874f5765
TG
1090/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1091
bfada189 1092static const struct elf_build_id *
874f5765
TG
1093build_id_bfd_get (bfd *abfd)
1094{
874f5765
TG
1095 if (!bfd_check_format (abfd, bfd_object)
1096 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
c0355132 1097 || elf_tdata (abfd)->build_id == NULL)
874f5765
TG
1098 return NULL;
1099
c0355132 1100 return elf_tdata (abfd)->build_id;
874f5765
TG
1101}
1102
1103/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1104
1105static int
bfada189 1106build_id_verify (const char *filename, const struct elf_build_id *check)
874f5765
TG
1107{
1108 bfd *abfd;
bfada189 1109 const struct elf_build_id *found;
874f5765
TG
1110 int retval = 0;
1111
1112 /* We expect to be silent on the non-existing files. */
08d2cd74 1113 abfd = gdb_bfd_open_maybe_remote (filename);
874f5765
TG
1114 if (abfd == NULL)
1115 return 0;
1116
1117 found = build_id_bfd_get (abfd);
1118
1119 if (found == NULL)
1120 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1121 else if (found->size != check->size
1122 || memcmp (found->data, check->data, found->size) != 0)
3e43a32a
MS
1123 warning (_("File \"%s\" has a different build-id, file skipped"),
1124 filename);
874f5765
TG
1125 else
1126 retval = 1;
1127
cbb099e8 1128 gdb_bfd_unref (abfd);
874f5765 1129
874f5765
TG
1130 return retval;
1131}
1132
1133static char *
bfada189 1134build_id_to_debug_filename (const struct elf_build_id *build_id)
874f5765
TG
1135{
1136 char *link, *debugdir, *retval = NULL;
e4ab2fad
JK
1137 VEC (char_ptr) *debugdir_vec;
1138 struct cleanup *back_to;
1139 int ix;
874f5765
TG
1140
1141 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1142 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1143 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1144
1145 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1146 cause "/.build-id/..." lookups. */
1147
e4ab2fad
JK
1148 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1149 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1150
1151 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
874f5765 1152 {
e4ab2fad 1153 size_t debugdir_len = strlen (debugdir);
bfada189 1154 const gdb_byte *data = build_id->data;
874f5765 1155 size_t size = build_id->size;
e4ab2fad 1156 char *s;
874f5765 1157
e4ab2fad
JK
1158 memcpy (link, debugdir, debugdir_len);
1159 s = &link[debugdir_len];
874f5765
TG
1160 s += sprintf (s, "/.build-id/");
1161 if (size > 0)
1162 {
1163 size--;
1164 s += sprintf (s, "%02x", (unsigned) *data++);
1165 }
1166 if (size > 0)
1167 *s++ = '/';
1168 while (size-- > 0)
1169 s += sprintf (s, "%02x", (unsigned) *data++);
1170 strcpy (s, ".debug");
1171
1172 /* lrealpath() is expensive even for the usually non-existent files. */
1173 if (access (link, F_OK) == 0)
1174 retval = lrealpath (link);
1175
1176 if (retval != NULL && !build_id_verify (retval, build_id))
1177 {
1178 xfree (retval);
1179 retval = NULL;
1180 }
1181
1182 if (retval != NULL)
1183 break;
874f5765 1184 }
874f5765 1185
e4ab2fad 1186 do_cleanups (back_to);
874f5765
TG
1187 return retval;
1188}
1189
1190static char *
1191find_separate_debug_file_by_buildid (struct objfile *objfile)
1192{
bfada189 1193 const struct elf_build_id *build_id;
874f5765
TG
1194
1195 build_id = build_id_bfd_get (objfile->obfd);
1196 if (build_id != NULL)
1197 {
1198 char *build_id_name;
1199
1200 build_id_name = build_id_to_debug_filename (build_id);
874f5765 1201 /* Prevent looping on a stripped .debug file. */
0ba1096a
KT
1202 if (build_id_name != NULL
1203 && filename_cmp (build_id_name, objfile->name) == 0)
874f5765
TG
1204 {
1205 warning (_("\"%s\": separate debug info file has no debug info"),
1206 build_id_name);
1207 xfree (build_id_name);
1208 }
1209 else if (build_id_name != NULL)
1210 return build_id_name;
1211 }
1212 return NULL;
1213}
1214
c906108c 1215/* Scan and build partial symbols for a symbol file.
dea91a5c 1216 We have been initialized by a call to elf_symfile_init, which
c906108c
SS
1217 currently does nothing.
1218
1219 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1220 in each section. We simplify it down to a single offset for all
1221 symbols. FIXME.
1222
c906108c
SS
1223 This function only does the minimum work necessary for letting the
1224 user "name" things symbolically; it does not read the entire symtab.
1225 Instead, it reads the external and static symbols and puts them in partial
1226 symbol tables. When more extensive information is requested of a
1227 file, the corresponding partial symbol table is mutated into a full
1228 fledged symbol table by going back and reading the symbols
1229 for real.
1230
1231 We look for sections with specific names, to tell us what debug
1232 format to look for: FIXME!!!
1233
c906108c
SS
1234 elfstab_build_psymtabs() handles STABS symbols;
1235 mdebug_build_psymtabs() handles ECOFF debugging information.
1236
1237 Note that ELF files have a "minimal" symbol table, which looks a lot
1238 like a COFF symbol table, but has only the minimal information necessary
1239 for linking. We process this also, and use the information to
1240 build gdb's minimal symbol table. This gives us some minimal debugging
1241 capability even for files compiled without -g. */
1242
1243static void
f4352531 1244elf_symfile_read (struct objfile *objfile, int symfile_flags)
c906108c 1245{
63524580 1246 bfd *synth_abfd, *abfd = objfile->obfd;
c906108c
SS
1247 struct elfinfo ei;
1248 struct cleanup *back_to;
62553543
EZ
1249 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1250 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1251 asymbol *synthsyms;
d2f4b8fe 1252 struct dbx_symfile_info *dbx;
c906108c 1253
45cfd468
DE
1254 if (symtab_create_debug)
1255 {
1256 fprintf_unfiltered (gdb_stdlog,
1257 "Reading minimal symbols of objfile %s ...\n",
1258 objfile->name);
1259 }
1260
c906108c 1261 init_minimal_symbol_collection ();
56e290f4 1262 back_to = make_cleanup_discard_minimal_symbols ();
c906108c
SS
1263
1264 memset ((char *) &ei, 0, sizeof (ei));
1265
0963b4bd 1266 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1267 dbx = XCNEW (struct dbx_symfile_info);
1268 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
12b9c64f 1269 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1270
3e43a32a 1271 /* Process the normal ELF symbol table first. This may write some
d2f4b8fe
TT
1272 chain of info into the dbx_symfile_info of the objfile, which can
1273 later be used by elfstab_offset_sections. */
c906108c 1274
62553543
EZ
1275 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1276 if (storage_needed < 0)
3e43a32a
MS
1277 error (_("Can't read symbols from %s: %s"),
1278 bfd_get_filename (objfile->obfd),
62553543
EZ
1279 bfd_errmsg (bfd_get_error ()));
1280
1281 if (storage_needed > 0)
1282 {
1283 symbol_table = (asymbol **) xmalloc (storage_needed);
1284 make_cleanup (xfree, symbol_table);
1285 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1286
1287 if (symcount < 0)
3e43a32a
MS
1288 error (_("Can't read symbols from %s: %s"),
1289 bfd_get_filename (objfile->obfd),
62553543
EZ
1290 bfd_errmsg (bfd_get_error ()));
1291
04a679b8 1292 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1293 }
c906108c
SS
1294
1295 /* Add the dynamic symbols. */
1296
62553543
EZ
1297 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1298
1299 if (storage_needed > 0)
1300 {
3f1eff0a
JK
1301 /* Memory gets permanently referenced from ABFD after
1302 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1303 It happens only in the case when elf_slurp_reloc_table sees
1304 asection->relocation NULL. Determining which section is asection is
1305 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1306 implementation detail, though. */
1307
1308 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1309 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1310 dyn_symbol_table);
1311
1312 if (dynsymcount < 0)
3e43a32a
MS
1313 error (_("Can't read symbols from %s: %s"),
1314 bfd_get_filename (objfile->obfd),
62553543
EZ
1315 bfd_errmsg (bfd_get_error ()));
1316
04a679b8 1317 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1318
1319 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1320 }
1321
63524580
JK
1322 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1323 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1324
1325 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1326 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1327 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1328 read the code address from .opd while it reads the .symtab section from
1329 a separate debug info file as the .opd section is SHT_NOBITS there.
1330
1331 With SYNTH_ABFD the .opd section will be read from the original
1332 backlinked binary where it is valid. */
1333
1334 if (objfile->separate_debug_objfile_backlink)
1335 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1336 else
1337 synth_abfd = abfd;
1338
62553543
EZ
1339 /* Add synthetic symbols - for instance, names for any PLT entries. */
1340
63524580 1341 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1342 dynsymcount, dyn_symbol_table,
1343 &synthsyms);
1344 if (synthcount > 0)
1345 {
1346 asymbol **synth_symbol_table;
1347 long i;
1348
1349 make_cleanup (xfree, synthsyms);
1350 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1351 for (i = 0; i < synthcount; i++)
9f20e3da 1352 synth_symbol_table[i] = synthsyms + i;
62553543 1353 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1354 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1355 synth_symbol_table, 1);
62553543 1356 }
c906108c 1357
7134143f
DJ
1358 /* Install any minimal symbols that have been collected as the current
1359 minimal symbols for this objfile. The debug readers below this point
1360 should not generate new minimal symbols; if they do it's their
1361 responsibility to install them. "mdebug" appears to be the only one
1362 which will do this. */
1363
1364 install_minimal_symbols (objfile);
1365 do_cleanups (back_to);
1366
c906108c 1367 /* Now process debugging information, which is contained in
0963b4bd 1368 special ELF sections. */
c906108c 1369
0963b4bd 1370 /* We first have to find them... */
12b9c64f 1371 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1372
1373 /* ELF debugging information is inserted into the psymtab in the
1374 order of least informative first - most informative last. Since
1375 the psymtab table is searched `most recent insertion first' this
1376 increases the probability that more detailed debug information
1377 for a section is found.
1378
1379 For instance, an object file might contain both .mdebug (XCOFF)
1380 and .debug_info (DWARF2) sections then .mdebug is inserted first
1381 (searched last) and DWARF2 is inserted last (searched first). If
1382 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1383 an included file XCOFF info is useless. */
c906108c
SS
1384
1385 if (ei.mdebugsect)
1386 {
1387 const struct ecoff_debug_swap *swap;
1388
1389 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1390 information. */
c906108c
SS
1391 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1392 if (swap)
d4f3574e 1393 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1394 }
1395 if (ei.stabsect)
1396 {
1397 asection *str_sect;
1398
1399 /* Stab sections have an associated string table that looks like
c5aa993b 1400 a separate section. */
c906108c
SS
1401 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1402
1403 /* FIXME should probably warn about a stab section without a stabstr. */
1404 if (str_sect)
1405 elfstab_build_psymtabs (objfile,
086df311 1406 ei.stabsect,
c906108c
SS
1407 str_sect->filepos,
1408 bfd_section_size (abfd, str_sect));
1409 }
9291a0cd 1410
7b6c814e
DE
1411 if (symtab_create_debug)
1412 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1413
251d32d9 1414 if (dwarf2_has_info (objfile, NULL))
b11896a5 1415 {
3e03848b
JK
1416 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1417 information present in OBJFILE. If there is such debug info present
1418 never use .gdb_index. */
1419
1420 if (!objfile_has_partial_symbols (objfile)
1421 && dwarf2_initialize_objfile (objfile))
b11896a5
TT
1422 objfile->sf = &elf_sym_fns_gdb_index;
1423 else
1424 {
1425 /* It is ok to do this even if the stabs reader made some
1426 partial symbols, because OBJF_PSYMTABS_READ has not been
1427 set, and so our lazy reader function will still be called
1428 when needed. */
1429 objfile->sf = &elf_sym_fns_lazy_psyms;
1430 }
1431 }
3e43a32a
MS
1432 /* If the file has its own symbol tables it has no separate debug
1433 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1434 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1435 `.note.gnu.build-id'.
1436
1437 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1438 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1439 an objfile via find_separate_debug_file_in_section there was no separate
1440 debug info available. Therefore do not attempt to search for another one,
1441 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1442 be NULL and we would possibly violate it. */
1443
1444 else if (!objfile_has_partial_symbols (objfile)
1445 && objfile->separate_debug_objfile == NULL
1446 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f
TG
1447 {
1448 char *debugfile;
1449
1450 debugfile = find_separate_debug_file_by_buildid (objfile);
1451
1452 if (debugfile == NULL)
1453 debugfile = find_separate_debug_file_by_debuglink (objfile);
1454
1455 if (debugfile)
1456 {
8ac244b4 1457 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
9cce227f 1458 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1459
8ac244b4 1460 make_cleanup_bfd_unref (abfd);
9cce227f 1461 symbol_file_add_separate (abfd, symfile_flags, objfile);
8ac244b4 1462 do_cleanups (cleanup);
9cce227f
TG
1463 }
1464 }
c906108c
SS
1465}
1466
b11896a5
TT
1467/* Callback to lazily read psymtabs. */
1468
1469static void
1470read_psyms (struct objfile *objfile)
1471{
251d32d9 1472 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1473 dwarf2_build_psymtabs (objfile);
1474}
1475
d2f4b8fe
TT
1476/* This cleans up the objfile's dbx symfile info, and the chain of
1477 stab_section_info's, that might be dangling from it. */
c906108c
SS
1478
1479static void
12b9c64f 1480free_elfinfo (void *objp)
c906108c 1481{
c5aa993b 1482 struct objfile *objfile = (struct objfile *) objp;
d2f4b8fe 1483 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1484 struct stab_section_info *ssi, *nssi;
1485
1486 ssi = dbxinfo->stab_section_info;
1487 while (ssi)
1488 {
1489 nssi = ssi->next;
2dc74dc1 1490 xfree (ssi);
c906108c
SS
1491 ssi = nssi;
1492 }
1493
1494 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1495}
1496
1497
1498/* Initialize anything that needs initializing when a completely new symbol
1499 file is specified (not just adding some symbols from another file, e.g. a
1500 shared library).
1501
3e43a32a
MS
1502 We reinitialize buildsym, since we may be reading stabs from an ELF
1503 file. */
c906108c
SS
1504
1505static void
fba45db2 1506elf_new_init (struct objfile *ignore)
c906108c
SS
1507{
1508 stabsread_new_init ();
1509 buildsym_new_init ();
1510}
1511
1512/* Perform any local cleanups required when we are done with a particular
1513 objfile. I.E, we are in the process of discarding all symbol information
1514 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1515 objfile struct from the global list of known objfiles. */
c906108c
SS
1516
1517static void
fba45db2 1518elf_symfile_finish (struct objfile *objfile)
c906108c 1519{
fe3e1990 1520 dwarf2_free_objfile (objfile);
c906108c
SS
1521}
1522
1523/* ELF specific initialization routine for reading symbols.
1524
1525 It is passed a pointer to a struct sym_fns which contains, among other
1526 things, the BFD for the file whose symbols are being read, and a slot for
1527 a pointer to "private data" which we can fill with goodies.
1528
1529 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1530 just a stub. */
c906108c
SS
1531
1532static void
fba45db2 1533elf_symfile_init (struct objfile *objfile)
c906108c
SS
1534{
1535 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1536 find this causes a significant slowdown in gdb then we could
1537 set it in the debug symbol readers only when necessary. */
1538 objfile->flags |= OBJF_REORDERED;
1539}
1540
1541/* When handling an ELF file that contains Sun STABS debug info,
1542 some of the debug info is relative to the particular chunk of the
1543 section that was generated in its individual .o file. E.g.
1544 offsets to static variables are relative to the start of the data
1545 segment *for that module before linking*. This information is
1546 painfully squirreled away in the ELF symbol table as local symbols
1547 with wierd names. Go get 'em when needed. */
1548
1549void
fba45db2 1550elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1551{
72b9f47f 1552 const char *filename = pst->filename;
d2f4b8fe 1553 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
c906108c
SS
1554 struct stab_section_info *maybe = dbx->stab_section_info;
1555 struct stab_section_info *questionable = 0;
1556 int i;
c906108c
SS
1557
1558 /* The ELF symbol info doesn't include path names, so strip the path
1559 (if any) from the psymtab filename. */
0ba1096a 1560 filename = lbasename (filename);
c906108c
SS
1561
1562 /* FIXME: This linear search could speed up significantly
1563 if it was chained in the right order to match how we search it,
0963b4bd 1564 and if we unchained when we found a match. */
c906108c
SS
1565 for (; maybe; maybe = maybe->next)
1566 {
1567 if (filename[0] == maybe->filename[0]
0ba1096a 1568 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1569 {
1570 /* We found a match. But there might be several source files
1571 (from different directories) with the same name. */
1572 if (0 == maybe->found)
1573 break;
c5aa993b 1574 questionable = maybe; /* Might use it later. */
c906108c
SS
1575 }
1576 }
1577
1578 if (maybe == 0 && questionable != 0)
1579 {
23136709 1580 complaint (&symfile_complaints,
3e43a32a
MS
1581 _("elf/stab section information questionable for %s"),
1582 filename);
c906108c
SS
1583 maybe = questionable;
1584 }
1585
1586 if (maybe)
1587 {
1588 /* Found it! Allocate a new psymtab struct, and fill it in. */
1589 maybe->found++;
1590 pst->section_offsets = (struct section_offsets *)
dea91a5c 1591 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1592 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1593 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1594 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1595 return;
1596 }
1597
1598 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1599 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1600 complaint (&symfile_complaints,
e2e0b3e5 1601 _("elf/stab section information missing for %s"), filename);
c906108c 1602}
55aa24fb
SDJ
1603
1604/* Implementation of `sym_get_probes', as documented in symfile.h. */
1605
1606static VEC (probe_p) *
1607elf_get_probes (struct objfile *objfile)
1608{
1609 VEC (probe_p) *probes_per_objfile;
1610
1611 /* Have we parsed this objfile's probes already? */
1612 probes_per_objfile = objfile_data (objfile, probe_key);
1613
1614 if (!probes_per_objfile)
1615 {
1616 int ix;
1617 const struct probe_ops *probe_ops;
1618
1619 /* Here we try to gather information about all types of probes from the
1620 objfile. */
1621 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1622 ix++)
1623 probe_ops->get_probes (&probes_per_objfile, objfile);
1624
1625 if (probes_per_objfile == NULL)
1626 {
1627 VEC_reserve (probe_p, probes_per_objfile, 1);
1628 gdb_assert (probes_per_objfile != NULL);
1629 }
1630
1631 set_objfile_data (objfile, probe_key, probes_per_objfile);
1632 }
1633
1634 return probes_per_objfile;
1635}
1636
1637/* Implementation of `sym_get_probe_argument_count', as documented in
1638 symfile.h. */
1639
1640static unsigned
6bac7473 1641elf_get_probe_argument_count (struct probe *probe)
55aa24fb 1642{
6bac7473 1643 return probe->pops->get_probe_argument_count (probe);
55aa24fb
SDJ
1644}
1645
25f9533e
SDJ
1646/* Implementation of `sym_can_evaluate_probe_arguments', as documented in
1647 symfile.h. */
1648
1649static int
1650elf_can_evaluate_probe_arguments (struct probe *probe)
1651{
1652 return probe->pops->can_evaluate_probe_arguments (probe);
1653}
1654
55aa24fb
SDJ
1655/* Implementation of `sym_evaluate_probe_argument', as documented in
1656 symfile.h. */
1657
1658static struct value *
6bac7473 1659elf_evaluate_probe_argument (struct probe *probe, unsigned n)
55aa24fb 1660{
6bac7473 1661 return probe->pops->evaluate_probe_argument (probe, n);
55aa24fb
SDJ
1662}
1663
1664/* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1665
1666static void
6bac7473 1667elf_compile_to_ax (struct probe *probe,
55aa24fb
SDJ
1668 struct agent_expr *expr,
1669 struct axs_value *value,
1670 unsigned n)
1671{
6bac7473 1672 probe->pops->compile_to_ax (probe, expr, value, n);
55aa24fb
SDJ
1673}
1674
1675/* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1676
1677static void
1678elf_symfile_relocate_probe (struct objfile *objfile,
3189cb12
DE
1679 const struct section_offsets *new_offsets,
1680 const struct section_offsets *delta)
55aa24fb
SDJ
1681{
1682 int ix;
1683 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1684 struct probe *probe;
1685
1686 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1687 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1688}
1689
1690/* Helper function used to free the space allocated for storing SystemTap
1691 probe information. */
1692
1693static void
1694probe_key_free (struct objfile *objfile, void *d)
1695{
1696 int ix;
1697 VEC (probe_p) *probes = d;
1698 struct probe *probe;
1699
1700 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1701 probe->pops->destroy (probe);
1702
1703 VEC_free (probe_p, probes);
1704}
1705
c906108c 1706\f
55aa24fb
SDJ
1707
1708/* Implementation `sym_probe_fns', as documented in symfile.h. */
1709
1710static const struct sym_probe_fns elf_probe_fns =
1711{
25f9533e
SDJ
1712 elf_get_probes, /* sym_get_probes */
1713 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1714 elf_can_evaluate_probe_arguments, /* sym_can_evaluate_probe_arguments */
1715 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1716 elf_compile_to_ax, /* sym_compile_to_ax */
1717 elf_symfile_relocate_probe, /* sym_relocate_probe */
55aa24fb
SDJ
1718};
1719
c906108c
SS
1720/* Register that we are able to handle ELF object file formats. */
1721
00b5771c 1722static const struct sym_fns elf_sym_fns =
c906108c
SS
1723{
1724 bfd_target_elf_flavour,
3e43a32a
MS
1725 elf_new_init, /* init anything gbl to entire symtab */
1726 elf_symfile_init, /* read initial info, setup for sym_read() */
1727 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1728 NULL, /* sym_read_psymbols */
1729 elf_symfile_finish, /* finished with file, cleanup */
1730 default_symfile_offsets, /* Translate ext. to int. relocation */
1731 elf_symfile_segments, /* Get segment information from a file. */
1732 NULL,
1733 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1734 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1735 &psym_functions
1736};
1737
1738/* The same as elf_sym_fns, but not registered and lazily reads
1739 psymbols. */
1740
1741static const struct sym_fns elf_sym_fns_lazy_psyms =
1742{
1743 bfd_target_elf_flavour,
1744 elf_new_init, /* init anything gbl to entire symtab */
1745 elf_symfile_init, /* read initial info, setup for sym_read() */
1746 elf_symfile_read, /* read a symbol file into symtab */
1747 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1748 elf_symfile_finish, /* finished with file, cleanup */
1749 default_symfile_offsets, /* Translate ext. to int. relocation */
1750 elf_symfile_segments, /* Get segment information from a file. */
1751 NULL,
1752 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1753 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1754 &psym_functions
c906108c
SS
1755};
1756
9291a0cd
TT
1757/* The same as elf_sym_fns, but not registered and uses the
1758 DWARF-specific GNU index rather than psymtab. */
00b5771c 1759static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd
TT
1760{
1761 bfd_target_elf_flavour,
3e43a32a
MS
1762 elf_new_init, /* init anything gbl to entire symab */
1763 elf_symfile_init, /* read initial info, setup for sym_red() */
1764 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1765 NULL, /* sym_read_psymbols */
3e43a32a
MS
1766 elf_symfile_finish, /* finished with file, cleanup */
1767 default_symfile_offsets, /* Translate ext. to int. relocatin */
1768 elf_symfile_segments, /* Get segment information from a file. */
1769 NULL,
1770 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1771 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1772 &dwarf2_gdb_index_functions
9291a0cd
TT
1773};
1774
07be84bf
JK
1775/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1776
1777static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1778{
1779 elf_gnu_ifunc_resolve_addr,
1780 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1781 elf_gnu_ifunc_resolver_stop,
1782 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1783};
1784
c906108c 1785void
fba45db2 1786_initialize_elfread (void)
c906108c 1787{
55aa24fb 1788 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
c906108c 1789 add_symtab_fns (&elf_sym_fns);
07be84bf
JK
1790
1791 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1792 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1793}