]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
[symtab/27831] Fix OBJF_MAINLINE assert
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
213516ef 3 Copyright (C) 1991-2023 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4 32#include "demangle.h"
4de283e4
TT
33#include "filenames.h"
34#include "probe.h"
35#include "arch-utils.h"
07be84bf 36#include "gdbtypes.h"
4de283e4 37#include "value.h"
07be84bf 38#include "infcall.h"
4de283e4 39#include "gdbthread.h"
00431a78 40#include "inferior.h"
4de283e4
TT
41#include "regcache.h"
42#include "bcache.h"
43#include "gdb_bfd.h"
44#include "build-id.h"
f00aae0f 45#include "location.h"
4de283e4 46#include "auxv.h"
0e8f53ba 47#include "mdebugread.h"
30d1f018 48#include "ctfread.h"
31edb802 49#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
50#include "gdbsupport/scoped_fd.h"
51#include "debuginfod-support.h"
70182375 52#include "dwarf2/public.h"
0d5adb56
TV
53#include "cli/cli-cmds.h"
54
55/* Whether ctf should always be read, or only if no dwarf is present. */
56static bool always_read_ctf;
c906108c
SS
57
58/* The struct elfinfo is available only during ELF symbol table and
6426a772 59 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
60 It's local to elf_symfile_read. */
61
c5aa993b
JM
62struct elfinfo
63 {
c5aa993b 64 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 65 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 66 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 67 };
c906108c 68
814cf43a
TT
69/* Type for per-BFD data. */
70
71typedef std::vector<std::unique_ptr<probe>> elfread_data;
72
5d9cf8a4 73/* Per-BFD data for probe info. */
55aa24fb 74
08b8a139 75static const registry<bfd>::key<elfread_data> probe_key;
55aa24fb 76
07be84bf
JK
77/* Minimal symbols located at the GOT entries for .plt - that is the real
78 pointer where the given entry will jump to. It gets updated by the real
79 function address during lazy ld.so resolving in the inferior. These
80 minimal symbols are indexed for <tab>-completion. */
81
82#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
83
31d99776
DJ
84/* Locate the segments in ABFD. */
85
62982abd 86static symfile_segment_data_up
31d99776
DJ
87elf_symfile_segments (bfd *abfd)
88{
89 Elf_Internal_Phdr *phdrs, **segments;
90 long phdrs_size;
91 int num_phdrs, num_segments, num_sections, i;
92 asection *sect;
31d99776
DJ
93
94 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
95 if (phdrs_size == -1)
96 return NULL;
97
224c3ddb 98 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
99 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
100 if (num_phdrs == -1)
101 return NULL;
102
103 num_segments = 0;
8d749320 104 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
105 for (i = 0; i < num_phdrs; i++)
106 if (phdrs[i].p_type == PT_LOAD)
107 segments[num_segments++] = &phdrs[i];
108
109 if (num_segments == 0)
110 return NULL;
111
62982abd 112 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 113 data->segments.reserve (num_segments);
31d99776
DJ
114
115 for (i = 0; i < num_segments; i++)
68b888ff 116 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
117
118 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
119
120 /* All elements are initialized to 0 (map to no segment). */
121 data->segment_info.resize (num_sections);
31d99776
DJ
122
123 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
124 {
125 int j;
31d99776 126
fd361982 127 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
128 continue;
129
62b74cb8 130 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
131
132 for (j = 0; j < num_segments; j++)
62b74cb8 133 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
ad09a548
DJ
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
25f4c262
KS
148
149 /* Exclude debuginfo files from this warning, too, since those
150 are often not strictly compliant with the standard. See, e.g.,
151 ld/24717 for more discussion. */
152 if (!is_debuginfo_file (abfd)
153 && bfd_section_size (sect) > 0 && j == num_segments
fd361982 154 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
9d3ab915
KS
155 warning (_("Loadable section \"%s\" outside of ELF segments\n in %s"),
156 bfd_section_name (sect), bfd_get_filename (abfd));
31d99776
DJ
157 }
158
159 return data;
160}
161
c906108c
SS
162/* We are called once per section from elf_symfile_read. We
163 need to examine each section we are passed, check to see
164 if it is something we are interested in processing, and
165 if so, stash away some access information for the section.
166
167 For now we recognize the dwarf debug information sections and
168 line number sections from matching their section names. The
169 ELF definition is no real help here since it has no direct
170 knowledge of DWARF (by design, so any debugging format can be
171 used).
172
173 We also recognize the ".stab" sections used by the Sun compilers
174 released with Solaris 2.
175
176 FIXME: The section names should not be hardwired strings (what
177 should they be? I don't think most object file formats have enough
0963b4bd 178 section flags to specify what kind of debug section it is.
c906108c
SS
179 -kingdon). */
180
181static void
08f93a1a 182elf_locate_sections (asection *sectp, struct elfinfo *ei)
c906108c 183{
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 189 {
c5aa993b 190 ei->mdebugsect = sectp;
c906108c 191 }
30d1f018
WP
192 else if (strcmp (sectp->name, ".ctf") == 0)
193 {
194 ei->ctfsect = sectp;
195 }
c906108c
SS
196}
197
c906108c 198static struct minimal_symbol *
8dddcb8f 199record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 200 gdb::string_view name, bool copy_name,
9675da25 201 unrelocated_addr address,
f594e5e9
MC
202 enum minimal_symbol_type ms_type,
203 asection *bfd_section, struct objfile *objfile)
c906108c 204{
08feed99 205 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 206
0875794a
JK
207 if (ms_type == mst_text || ms_type == mst_file_text
208 || ms_type == mst_text_gnu_ifunc)
9675da25
TT
209 address
210 = unrelocated_addr (gdbarch_addr_bits_remove (gdbarch,
211 CORE_ADDR (address)));
c906108c 212
44e4c775
AB
213 /* We only setup section information for allocatable sections. Usually
214 we'd only expect to find msymbols for allocatable sections, but if the
215 ELF is malformed then this might not be the case. In that case don't
216 create an msymbol that references an uninitialised section object. */
217 int section_index = 0;
dd2532ad
TT
218 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC
219 || bfd_section == bfd_abs_section_ptr)
98badbfd 220 section_index = gdb_bfd_section_index (objfile->obfd.get (), bfd_section);
44e4c775 221
62669649 222 return reader.record_full (name, copy_name, address, ms_type, section_index);
c906108c
SS
223}
224
7f86f058 225/* Read the symbol table of an ELF file.
c906108c 226
62553543 227 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
228 symbol table contains regular, dynamic, or synthetic symbols, add all
229 the global function and data symbols to the minimal symbol table.
c906108c 230
c5aa993b
JM
231 In stabs-in-ELF, as implemented by Sun, there are some local symbols
232 defined in the ELF symbol table, which can be used to locate
233 the beginnings of sections from each ".o" file that was linked to
234 form the executable objfile. We gather any such info and record it
7f86f058 235 in data structures hung off the objfile's private data. */
c906108c 236
6f610d07
UW
237#define ST_REGULAR 0
238#define ST_DYNAMIC 1
239#define ST_SYNTHETIC 2
240
c906108c 241static void
8dddcb8f
TT
242elf_symtab_read (minimal_symbol_reader &reader,
243 struct objfile *objfile, int type,
04a679b8 244 long number_of_symbols, asymbol **symbol_table,
ce6c454e 245 bool copy_names)
c906108c 246{
08feed99 247 struct gdbarch *gdbarch = objfile->arch ();
c906108c 248 asymbol *sym;
c906108c 249 long i;
c906108c
SS
250 CORE_ADDR symaddr;
251 enum minimal_symbol_type ms_type;
18a94d75
DE
252 /* Name of the last file symbol. This is either a constant string or is
253 saved on the objfile's filename cache. */
0af1e9a5 254 const char *filesymname = "";
98badbfd 255 int stripped = (bfd_get_symcount (objfile->obfd.get ()) == 0);
3e29f34a
MR
256 int elf_make_msymbol_special_p
257 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 258
0cc7b392 259 for (i = 0; i < number_of_symbols; i++)
c906108c 260 {
0cc7b392
DJ
261 sym = symbol_table[i];
262 if (sym->name == NULL || *sym->name == '\0')
c906108c 263 {
0cc7b392 264 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 265 that are null strings (may happen). */
0cc7b392
DJ
266 continue;
267 }
c906108c 268
28a4e64d
TT
269 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
270
74763737
DJ
271 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
272 symbols which do not correspond to objects in the symbol table,
273 but have some other target-specific meaning. */
98badbfd 274 if (bfd_is_target_special_symbol (objfile->obfd.get (), sym))
60c5725c
DJ
275 {
276 if (gdbarch_record_special_symbol_p (gdbarch))
277 gdbarch_record_special_symbol (gdbarch, objfile, sym);
278 continue;
279 }
74763737 280
6f610d07 281 if (type == ST_DYNAMIC
45dfa85a 282 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
283 && (sym->flags & BSF_FUNCTION))
284 {
285 struct minimal_symbol *msym;
98badbfd 286 bfd *abfd = objfile->obfd.get ();
dea91a5c 287 asection *sect;
0cc7b392
DJ
288
289 /* Symbol is a reference to a function defined in
290 a shared library.
291 If its value is non zero then it is usually the address
292 of the corresponding entry in the procedure linkage table,
293 plus the desired section offset.
294 If its value is zero then the dynamic linker has to resolve
0963b4bd 295 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
296 for this symbol in the executable file, so we skip it. */
297 symaddr = sym->value;
298 if (symaddr == 0)
299 continue;
02c75f72
UW
300
301 /* sym->section is the undefined section. However, we want to
302 record the section where the PLT stub resides with the
303 minimal symbol. Search the section table for the one that
304 covers the stub's address. */
305 for (sect = abfd->sections; sect != NULL; sect = sect->next)
306 {
fd361982 307 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
308 continue;
309
fd361982
AM
310 if (symaddr >= bfd_section_vma (sect)
311 && symaddr < bfd_section_vma (sect)
312 + bfd_section_size (sect))
02c75f72
UW
313 break;
314 }
315 if (!sect)
316 continue;
317
828cfa8d
JB
318 /* On ia64-hpux, we have discovered that the system linker
319 adds undefined symbols with nonzero addresses that cannot
320 be right (their address points inside the code of another
321 function in the .text section). This creates problems
322 when trying to determine which symbol corresponds to
323 a given address.
324
325 We try to detect those buggy symbols by checking which
326 section we think they correspond to. Normally, PLT symbols
327 are stored inside their own section, and the typical name
328 for that section is ".plt". So, if there is a ".plt"
329 section, and yet the section name of our symbol does not
330 start with ".plt", we ignore that symbol. */
61012eef 331 if (!startswith (sect->name, ".plt")
828cfa8d
JB
332 && bfd_get_section_by_name (abfd, ".plt") != NULL)
333 continue;
334
0cc7b392 335 msym = record_minimal_symbol
31edb802 336 (reader, sym->name, copy_names,
9675da25
TT
337 unrelocated_addr (symaddr),
338 mst_solib_trampoline, sect, objfile);
0cc7b392 339 if (msym != NULL)
9b807e7b
MR
340 {
341 msym->filename = filesymname;
3e29f34a
MR
342 if (elf_make_msymbol_special_p)
343 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 344 }
0cc7b392
DJ
345 continue;
346 }
c906108c 347
0cc7b392
DJ
348 /* If it is a nonstripped executable, do not enter dynamic
349 symbols, as the dynamic symbol table is usually a subset
350 of the main symbol table. */
6f610d07 351 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
352 continue;
353 if (sym->flags & BSF_FILE)
be1e3d3e 354 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
bb869963
SDJ
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
0cc7b392
DJ
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
0963b4bd
MS
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
0cc7b392 366 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
0963b4bd 369 no way of figuring this out for absolute symbols. */
45dfa85a 370 if (sym->section == bfd_abs_section_ptr)
c906108c 371 {
0cc7b392
DJ
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
6f610d07
UW
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
dea91a5c 378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
28a4e64d 379 elf_sym->internal_elf_sym.st_shndx;
0cc7b392
DJ
380
381 switch (shndx)
c906108c 382 {
0cc7b392
DJ
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 397 symbols, relocate all others by section offset. */
0cc7b392
DJ
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
c906108c 402 }
0cc7b392
DJ
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
bb869963 406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 407 {
0875794a
JK
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
0cc7b392 412 }
90359a16
JK
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
c906108c 432 }
0cc7b392
DJ
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
bb869963 436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 437 {
f50776aa
PA
438 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
439 {
440 ms_type = mst_data_gnu_ifunc;
441 }
442 else if (sym->section->flags & SEC_LOAD)
c906108c 443 {
0cc7b392 444 ms_type = mst_data;
c906108c 445 }
c906108c
SS
446 else
447 {
0cc7b392 448 ms_type = mst_bss;
c906108c
SS
449 }
450 }
0cc7b392 451 else if (sym->flags & BSF_LOCAL)
c906108c 452 {
0cc7b392
DJ
453 if (sym->section->flags & SEC_LOAD)
454 {
455 ms_type = mst_file_data;
c906108c
SS
456 }
457 else
458 {
0cc7b392 459 ms_type = mst_file_bss;
c906108c
SS
460 }
461 }
462 else
463 {
0cc7b392 464 ms_type = mst_unknown;
c906108c 465 }
0cc7b392
DJ
466 }
467 else
468 {
469 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 470 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
471 hob with actions like finding what function the PC
472 is in. Ignore them if they aren't text, data, or bss. */
473 /* ms_type = mst_unknown; */
0963b4bd 474 continue; /* Skip this symbol. */
0cc7b392
DJ
475 }
476 msym = record_minimal_symbol
9675da25 477 (reader, sym->name, copy_names, unrelocated_addr (symaddr),
0cc7b392 478 ms_type, sym->section, objfile);
6f610d07 479
0cc7b392
DJ
480 if (msym)
481 {
6f610d07 482 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 483 ELF-private part. */
6f610d07 484 if (type != ST_SYNTHETIC)
24c274a1
AM
485 {
486 /* Pass symbol size field in via BFD. FIXME!!! */
5bbfd12d 487 msym->set_size (elf_sym->internal_elf_sym.st_size);
24c274a1 488 }
dea91a5c 489
a103a963 490 msym->filename = filesymname;
3e29f34a
MR
491 if (elf_make_msymbol_special_p)
492 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 493 }
2eaf8d2a 494
715c6909
TT
495 /* If we see a default versioned symbol, install it under
496 its version-less name. */
497 if (msym != NULL)
498 {
499 const char *atsign = strchr (sym->name, '@');
28a4e64d
TT
500 bool is_at_symbol = atsign != nullptr && atsign > sym->name;
501 bool is_plt = is_at_symbol && strcmp (atsign, "@plt") == 0;
502 int len = is_at_symbol ? atsign - sym->name : 0;
503
504 if (is_at_symbol
505 && !is_plt
506 && (elf_sym->version & VERSYM_HIDDEN) == 0)
507 record_minimal_symbol (reader,
508 gdb::string_view (sym->name, len),
9675da25
TT
509 true, unrelocated_addr (symaddr),
510 ms_type, sym->section, objfile);
28a4e64d 511 else if (is_plt)
2eaf8d2a 512 {
28a4e64d
TT
513 /* For @plt symbols, also record a trampoline to the
514 destination symbol. The @plt symbol will be used
515 in disassembly, and the trampoline will be used
516 when we are trying to find the target. */
517 if (ms_type == mst_text && type == ST_SYNTHETIC)
2eaf8d2a 518 {
28a4e64d
TT
519 struct minimal_symbol *mtramp;
520
521 mtramp = record_minimal_symbol
522 (reader, gdb::string_view (sym->name, len), true,
9675da25
TT
523 unrelocated_addr (symaddr),
524 mst_solib_trampoline, sym->section, objfile);
28a4e64d
TT
525 if (mtramp)
526 {
5bbfd12d 527 mtramp->set_size (msym->size());
28a4e64d
TT
528 mtramp->created_by_gdb = 1;
529 mtramp->filename = filesymname;
530 if (elf_make_msymbol_special_p)
531 gdbarch_elf_make_msymbol_special (gdbarch,
532 sym, mtramp);
533 }
2eaf8d2a
DJ
534 }
535 }
536 }
c906108c 537 }
c906108c
SS
538 }
539}
540
07be84bf
JK
541/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
542 for later look ups of which function to call when user requests
543 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
544 library defining `function' we cannot yet know while reading OBJFILE which
545 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
546 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
547
548static void
8dddcb8f
TT
549elf_rel_plt_read (minimal_symbol_reader &reader,
550 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf 551{
98badbfd 552 bfd *obfd = objfile->obfd.get ();
07be84bf 553 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 554 asection *relplt, *got_plt;
07be84bf 555 bfd_size_type reloc_count, reloc;
08feed99 556 struct gdbarch *gdbarch = objfile->arch ();
07be84bf 557 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
df86565b 558 size_t ptr_size = ptr_type->length ();
07be84bf
JK
559
560 if (objfile->separate_debug_objfile_backlink)
561 return;
562
07be84bf
JK
563 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
564 if (got_plt == NULL)
4b7d1f7f
WN
565 {
566 /* For platforms where there is no separate .got.plt. */
567 got_plt = bfd_get_section_by_name (obfd, ".got");
568 if (got_plt == NULL)
569 return;
570 }
07be84bf 571
02e169e2
PA
572 /* Depending on system, we may find jump slots in a relocation
573 section for either .got.plt or .plt. */
574 asection *plt = bfd_get_section_by_name (obfd, ".plt");
575 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
576
577 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
578
07be84bf
JK
579 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
580 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
581 {
582 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
583
584 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
585 {
586 if (this_hdr.sh_info == plt_elf_idx
587 || this_hdr.sh_info == got_plt_elf_idx)
588 break;
589 }
590 }
07be84bf
JK
591 if (relplt == NULL)
592 return;
593
594 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
595 return;
596
26fcd5d7 597 std::string string_buffer;
07be84bf 598
02e169e2
PA
599 /* Does ADDRESS reside in SECTION of OBFD? */
600 auto within_section = [obfd] (asection *section, CORE_ADDR address)
601 {
602 if (section == NULL)
603 return false;
604
fd361982
AM
605 return (bfd_section_vma (section) <= address
606 && (address < bfd_section_vma (section)
607 + bfd_section_size (section)));
02e169e2
PA
608 };
609
07be84bf
JK
610 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
611 for (reloc = 0; reloc < reloc_count; reloc++)
612 {
22e048c9 613 const char *name;
07be84bf
JK
614 struct minimal_symbol *msym;
615 CORE_ADDR address;
26fcd5d7 616 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 617 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
618
619 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
620 address = relplt->relocation[reloc].address;
621
02e169e2
PA
622 asection *msym_section;
623
624 /* Does the pointer reside in either the .got.plt or .plt
625 sections? */
626 if (within_section (got_plt, address))
627 msym_section = got_plt;
628 else if (within_section (plt, address))
629 msym_section = plt;
630 else
07be84bf
JK
631 continue;
632
f50776aa
PA
633 /* We cannot check if NAME is a reference to
634 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
635 symbol is undefined and the objfile having NAME defined may
636 not yet have been loaded. */
07be84bf 637
26fcd5d7
TT
638 string_buffer.assign (name);
639 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 640
31edb802 641 msym = record_minimal_symbol (reader, string_buffer,
9675da25
TT
642 true, unrelocated_addr (address),
643 mst_slot_got_plt, msym_section, objfile);
07be84bf 644 if (msym)
5bbfd12d 645 msym->set_size (ptr_size);
07be84bf 646 }
07be84bf
JK
647}
648
649/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
650
08b8a139 651static const registry<objfile>::key<htab, htab_deleter>
8127a2fa 652 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
653
654/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
655
656struct elf_gnu_ifunc_cache
657{
658 /* This is always a function entry address, not a function descriptor. */
659 CORE_ADDR addr;
660
661 char name[1];
662};
663
664/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
665
666static hashval_t
667elf_gnu_ifunc_cache_hash (const void *a_voidp)
668{
9a3c8263
SM
669 const struct elf_gnu_ifunc_cache *a
670 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
671
672 return htab_hash_string (a->name);
673}
674
675/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
676
677static int
678elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
679{
9a3c8263
SM
680 const struct elf_gnu_ifunc_cache *a
681 = (const struct elf_gnu_ifunc_cache *) a_voidp;
682 const struct elf_gnu_ifunc_cache *b
683 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
684
685 return strcmp (a->name, b->name) == 0;
686}
687
688/* Record the target function address of a STT_GNU_IFUNC function NAME is the
689 function entry address ADDR. Return 1 if NAME and ADDR are considered as
690 valid and therefore they were successfully recorded, return 0 otherwise.
691
692 Function does not expect a duplicate entry. Use
693 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
694 exists. */
695
696static int
697elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
698{
7cbd4a93 699 struct bound_minimal_symbol msym;
07be84bf
JK
700 struct objfile *objfile;
701 htab_t htab;
702 struct elf_gnu_ifunc_cache entry_local, *entry_p;
703 void **slot;
704
705 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 706 if (msym.minsym == NULL)
07be84bf 707 return 0;
4aeddc50 708 if (msym.value_address () != addr)
07be84bf 709 return 0;
e27d198c 710 objfile = msym.objfile;
07be84bf
JK
711
712 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 713 resolution and it has no use for GDB. */
c9d95fa3 714 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
715 size_t len = strlen (target_name);
716
717 /* Note we check the symbol's name instead of checking whether the
718 symbol is in the .plt section because some systems have @plt
719 symbols in the .text section. */
720 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
721 return 0;
722
600b5fc2
HL
723 if (strcmp (target_name, "_PROCEDURE_LINKAGE_TABLE_") == 0)
724 return 0;
725
8127a2fa 726 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
727 if (htab == NULL)
728 {
8127a2fa
TT
729 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
730 elf_gnu_ifunc_cache_eq,
731 NULL, xcalloc, xfree);
732 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
733 }
734
735 entry_local.addr = addr;
736 obstack_grow (&objfile->objfile_obstack, &entry_local,
737 offsetof (struct elf_gnu_ifunc_cache, name));
738 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
739 entry_p
740 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
741
742 slot = htab_find_slot (htab, entry_p, INSERT);
743 if (*slot != NULL)
744 {
9a3c8263
SM
745 struct elf_gnu_ifunc_cache *entry_found_p
746 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 747 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
748
749 if (entry_found_p->addr != addr)
750 {
751 /* This case indicates buggy inferior program, the resolved address
752 should never change. */
753
754 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
755 "function_address from %s to %s"),
756 name, paddress (gdbarch, entry_found_p->addr),
757 paddress (gdbarch, addr));
758 }
759
760 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
761 }
762 *slot = entry_p;
763
764 return 1;
765}
766
767/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
768 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
769 is not NULL) and the function returns 1. It returns 0 otherwise.
770
771 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
772 function. */
773
774static int
775elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
776{
1dc9084f
MM
777 int found = 0;
778
779 /* FIXME: we only search the initial namespace.
780
781 To search other namespaces, we would need to provide context, e.g. in
782 form of an objfile in that namespace. */
783 gdbarch_iterate_over_objfiles_in_search_order
784 (target_gdbarch (),
785 [name, &addr_p, &found] (struct objfile *objfile)
786 {
787 htab_t htab;
788 elf_gnu_ifunc_cache *entry_p;
789 void **slot;
790
791 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
792 if (htab == NULL)
793 return 0;
794
795 entry_p = ((elf_gnu_ifunc_cache *)
796 alloca (sizeof (*entry_p) + strlen (name)));
797 strcpy (entry_p->name, name);
798
799 slot = htab_find_slot (htab, entry_p, NO_INSERT);
800 if (slot == NULL)
801 return 0;
802 entry_p = (elf_gnu_ifunc_cache *) *slot;
803 gdb_assert (entry_p != NULL);
804
805 if (addr_p)
806 *addr_p = entry_p->addr;
807
808 found = 1;
809 return 1;
810 }, nullptr);
811
812 return found;
07be84bf
JK
813}
814
815/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
816 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
817 is not NULL) and the function returns 1. It returns 0 otherwise.
818
819 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
820 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
821 prevent cache entries duplicates. */
822
823static int
824elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
825{
826 char *name_got_plt;
07be84bf 827 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
1dc9084f 828 int found = 0;
07be84bf 829
224c3ddb 830 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
831 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
832
1dc9084f
MM
833 /* FIXME: we only search the initial namespace.
834
835 To search other namespaces, we would need to provide context, e.g. in
836 form of an objfile in that namespace. */
837 gdbarch_iterate_over_objfiles_in_search_order
838 (target_gdbarch (),
839 [name, name_got_plt, &addr_p, &found] (struct objfile *objfile)
840 {
841 bfd *obfd = objfile->obfd.get ();
842 struct gdbarch *gdbarch = objfile->arch ();
843 type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
844 size_t ptr_size = ptr_type->length ();
845 CORE_ADDR pointer_address, addr;
846 asection *plt;
847 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
848 bound_minimal_symbol msym;
849
850 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
851 if (msym.minsym == NULL)
852 return 0;
853 if (msym.minsym->type () != mst_slot_got_plt)
854 return 0;
855 pointer_address = msym.value_address ();
856
857 plt = bfd_get_section_by_name (obfd, ".plt");
858 if (plt == NULL)
859 return 0;
860
861 if (msym.minsym->size () != ptr_size)
862 return 0;
863 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
864 return 0;
865 addr = extract_typed_address (buf, ptr_type);
866 addr = gdbarch_convert_from_func_ptr_addr
867 (gdbarch, addr, current_inferior ()->top_target ());
868 addr = gdbarch_addr_bits_remove (gdbarch, addr);
869
870 if (elf_gnu_ifunc_record_cache (name, addr))
871 {
872 if (addr_p != NULL)
873 *addr_p = addr;
874
875 found = 1;
876 return 1;
877 }
878
879 return 0;
880 }, nullptr);
881
882 return found;
07be84bf
JK
883}
884
885/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
886 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 887 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
888
889 Both the elf_objfile_gnu_ifunc_cache_data hash table and
890 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
891
ececd218 892static bool
07be84bf
JK
893elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
894{
895 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 896 return true;
dea91a5c 897
07be84bf 898 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 899 return true;
07be84bf 900
ececd218 901 return false;
07be84bf
JK
902}
903
904/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
905 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
906 is the entry point of the resolved STT_GNU_IFUNC target function to call.
907 */
908
909static CORE_ADDR
910elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
911{
2c02bd72 912 const char *name_at_pc;
07be84bf
JK
913 CORE_ADDR start_at_pc, address;
914 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
915 struct value *function, *address_val;
e1b2624a
AA
916 CORE_ADDR hwcap = 0;
917 struct value *hwcap_val;
07be84bf
JK
918
919 /* Try first any non-intrusive methods without an inferior call. */
920
921 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
922 && start_at_pc == pc)
923 {
924 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
925 return address;
926 }
927 else
928 name_at_pc = NULL;
929
317c3ed9 930 function = value::allocate (func_func_type);
6f9c9d71 931 function->set_lval (lval_memory);
9feb2d07 932 function->set_address (pc);
07be84bf 933
e1b2624a
AA
934 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
935 parameter. FUNCTION is the function entry address. ADDRESS may be a
936 function descriptor. */
07be84bf 937
82d23ca8 938 target_auxv_search (AT_HWCAP, &hwcap);
e1b2624a
AA
939 hwcap_val = value_from_longest (builtin_type (gdbarch)
940 ->builtin_unsigned_long, hwcap);
e71585ff 941 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 942 address = value_as_address (address_val);
328d42d8
SM
943 address = gdbarch_convert_from_func_ptr_addr
944 (gdbarch, address, current_inferior ()->top_target ());
4b7d1f7f 945 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
946
947 if (name_at_pc)
948 elf_gnu_ifunc_record_cache (name_at_pc, address);
949
950 return address;
951}
952
0e30163f
JK
953/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
954
955static void
74421c0b 956elf_gnu_ifunc_resolver_stop (code_breakpoint *b)
0e30163f
JK
957{
958 struct breakpoint *b_return;
bd2b40ac 959 frame_info_ptr prev_frame = get_prev_frame (get_current_frame ());
0e30163f
JK
960 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
961 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 962 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
963
964 gdb_assert (b->type == bp_gnu_ifunc_resolver);
965
966 for (b_return = b->related_breakpoint; b_return != b;
967 b_return = b_return->related_breakpoint)
968 {
969 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
9dc1523b 970 gdb_assert (b_return->has_single_location ());
0e30163f
JK
971 gdb_assert (frame_id_p (b_return->frame_id));
972
973 if (b_return->thread == thread_id
f5951b9f 974 && b_return->first_loc ().requested_address == prev_pc
a0cbd650 975 && b_return->frame_id == prev_frame_id)
0e30163f
JK
976 break;
977 }
978
979 if (b_return == b)
980 {
0e30163f
JK
981 /* No need to call find_pc_line for symbols resolving as this is only
982 a helper breakpointer never shown to the user. */
983
51abb421 984 symtab_and_line sal;
0e30163f
JK
985 sal.pspace = current_inferior ()->pspace;
986 sal.pc = prev_pc;
987 sal.section = find_pc_overlay (sal.pc);
988 sal.explicit_pc = 1;
454dafbd
TT
989 b_return
990 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
991 prev_frame_id,
992 bp_gnu_ifunc_resolver_return).release ();
0e30163f 993
c70a6932
JK
994 /* set_momentary_breakpoint invalidates PREV_FRAME. */
995 prev_frame = NULL;
996
0e30163f
JK
997 /* Add new b_return to the ring list b->related_breakpoint. */
998 gdb_assert (b_return->related_breakpoint == b_return);
999 b_return->related_breakpoint = b->related_breakpoint;
1000 b->related_breakpoint = b_return;
1001 }
1002}
1003
1004/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1005
1006static void
74421c0b 1007elf_gnu_ifunc_resolver_return_stop (code_breakpoint *b)
0e30163f 1008{
00431a78 1009 thread_info *thread = inferior_thread ();
0e30163f
JK
1010 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1011 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
27710edb 1012 struct type *value_type = func_func_type->target_type ();
00431a78 1013 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 1014 struct value *func_func;
0e30163f
JK
1015 struct value *value;
1016 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
1017
1018 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1019
0e30163f
JK
1020 while (b->related_breakpoint != b)
1021 {
1022 struct breakpoint *b_next = b->related_breakpoint;
1023
1024 switch (b->type)
1025 {
1026 case bp_gnu_ifunc_resolver:
1027 break;
1028 case bp_gnu_ifunc_resolver_return:
1029 delete_breakpoint (b);
1030 break;
1031 default:
f34652de 1032 internal_error (_("handle_inferior_event: Invalid "
0e30163f
JK
1033 "gnu-indirect-function breakpoint type %d"),
1034 (int) b->type);
1035 }
74421c0b 1036 b = (code_breakpoint *) b_next;
0e30163f
JK
1037 }
1038 gdb_assert (b->type == bp_gnu_ifunc_resolver);
9dc1523b 1039 gdb_assert (b->has_single_location ());
6a3a010b 1040
317c3ed9 1041 func_func = value::allocate (func_func_type);
6f9c9d71 1042 func_func->set_lval (lval_memory);
f5951b9f 1043 func_func->set_address (b->first_loc ().related_address);
6a3a010b 1044
317c3ed9 1045 value = value::allocate (value_type);
4e1d2f58
TT
1046 gdbarch_return_value_as_value (gdbarch, func_func, value_type, regcache,
1047 &value, NULL);
6a3a010b 1048 resolved_address = value_as_address (value);
328d42d8
SM
1049 resolved_pc = gdbarch_convert_from_func_ptr_addr
1050 (gdbarch, resolved_address, current_inferior ()->top_target ());
4b7d1f7f 1051 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1052
f8eba3c6 1053 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
709438c7 1054 elf_gnu_ifunc_record_cache (b->locspec->to_string (), resolved_pc);
0e30163f 1055
0e30163f 1056 b->type = bp_breakpoint;
6c5b2ebe 1057 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1058 find_function_start_sal (resolved_pc, NULL, true),
1059 {});
0e30163f
JK
1060}
1061
2750ef27
TT
1062/* A helper function for elf_symfile_read that reads the minimal
1063 symbols. */
c906108c
SS
1064
1065static void
5f6cac40
TT
1066elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1067 const struct elfinfo *ei)
c906108c 1068{
98badbfd 1069 bfd *synth_abfd, *abfd = objfile->obfd.get ();
62553543
EZ
1070 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1071 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1072 asymbol *synthsyms;
c906108c 1073
2ab317fb
SM
1074 symtab_create_debug_printf ("reading minimal symbols of objfile %s",
1075 objfile_name (objfile));
45cfd468 1076
5f6cac40
TT
1077 /* If we already have minsyms, then we can skip some work here.
1078 However, if there were stabs or mdebug sections, we go ahead and
1079 redo all the work anyway, because the psym readers for those
1080 kinds of debuginfo need extra information found here. This can
1081 go away once all types of symbols are in the per-BFD object. */
1082 if (objfile->per_bfd->minsyms_read
1083 && ei->stabsect == NULL
30d1f018
WP
1084 && ei->mdebugsect == NULL
1085 && ei->ctfsect == NULL)
5f6cac40 1086 {
2ab317fb 1087 symtab_create_debug_printf ("minimal symbols were previously read");
5f6cac40
TT
1088 return;
1089 }
1090
d25e8719 1091 minimal_symbol_reader reader (objfile);
c906108c 1092
18a94d75 1093 /* Process the normal ELF symbol table first. */
c906108c 1094
98badbfd 1095 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd.get ());
62553543 1096 if (storage_needed < 0)
3e43a32a 1097 error (_("Can't read symbols from %s: %s"),
98badbfd 1098 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1099 bfd_errmsg (bfd_get_error ()));
1100
1101 if (storage_needed > 0)
1102 {
80c57053
JK
1103 /* Memory gets permanently referenced from ABFD after
1104 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1105
224c3ddb 1106 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1107 symcount = bfd_canonicalize_symtab (objfile->obfd.get (), symbol_table);
62553543
EZ
1108
1109 if (symcount < 0)
3e43a32a 1110 error (_("Can't read symbols from %s: %s"),
98badbfd 1111 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1112 bfd_errmsg (bfd_get_error ()));
1113
ce6c454e
TT
1114 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1115 false);
62553543 1116 }
c906108c
SS
1117
1118 /* Add the dynamic symbols. */
1119
98badbfd 1120 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd.get ());
62553543
EZ
1121
1122 if (storage_needed > 0)
1123 {
3f1eff0a
JK
1124 /* Memory gets permanently referenced from ABFD after
1125 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1126 It happens only in the case when elf_slurp_reloc_table sees
1127 asection->relocation NULL. Determining which section is asection is
1128 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1129 implementation detail, though. */
1130
224c3ddb 1131 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
98badbfd 1132 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd.get (),
62553543
EZ
1133 dyn_symbol_table);
1134
1135 if (dynsymcount < 0)
3e43a32a 1136 error (_("Can't read symbols from %s: %s"),
98badbfd 1137 bfd_get_filename (objfile->obfd.get ()),
62553543
EZ
1138 bfd_errmsg (bfd_get_error ()));
1139
8dddcb8f 1140 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1141 dyn_symbol_table, false);
07be84bf 1142
8dddcb8f 1143 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1144 }
1145
63524580
JK
1146 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1147 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1148
1149 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1150 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1151 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1152 read the code address from .opd while it reads the .symtab section from
1153 a separate debug info file as the .opd section is SHT_NOBITS there.
1154
1155 With SYNTH_ABFD the .opd section will be read from the original
1156 backlinked binary where it is valid. */
1157
1158 if (objfile->separate_debug_objfile_backlink)
98badbfd 1159 synth_abfd = objfile->separate_debug_objfile_backlink->obfd.get ();
63524580
JK
1160 else
1161 synth_abfd = abfd;
1162
62553543
EZ
1163 /* Add synthetic symbols - for instance, names for any PLT entries. */
1164
63524580 1165 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1166 dynsymcount, dyn_symbol_table,
1167 &synthsyms);
1168 if (synthcount > 0)
1169 {
62553543
EZ
1170 long i;
1171
b22e99fd 1172 std::unique_ptr<asymbol *[]>
d1e4a624 1173 synth_symbol_table (new asymbol *[synthcount]);
62553543 1174 for (i = 0; i < synthcount; i++)
9f20e3da 1175 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1176 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1177 synth_symbol_table.get (), true);
ba713918
AL
1178
1179 xfree (synthsyms);
1180 synthsyms = NULL;
62553543 1181 }
c906108c 1182
7134143f
DJ
1183 /* Install any minimal symbols that have been collected as the current
1184 minimal symbols for this objfile. The debug readers below this point
1185 should not generate new minimal symbols; if they do it's their
1186 responsibility to install them. "mdebug" appears to be the only one
1187 which will do this. */
1188
d25e8719 1189 reader.install ();
7134143f 1190
2ab317fb 1191 symtab_create_debug_printf ("done reading minimal symbols");
2750ef27
TT
1192}
1193
d955d179
TV
1194/* Dwarf-specific helper for elf_symfile_read. Return true if we managed to
1195 load dwarf debug info. */
1196
1197static bool
1198elf_symfile_read_dwarf2 (struct objfile *objfile,
1199 symfile_add_flags symfile_flags)
1200{
1201 bool has_dwarf2 = true;
1202
1203 if (dwarf2_has_info (objfile, NULL, true))
1204 dwarf2_initialize_objfile (objfile);
1205 /* If the file has its own symbol tables it has no separate debug
1206 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1207 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1208 `.note.gnu.build-id'.
1209
1210 .gnu_debugdata is !objfile::has_partial_symbols because it contains only
1211 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1212 an objfile via find_separate_debug_file_in_section there was no separate
1213 debug info available. Therefore do not attempt to search for another one,
1214 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1215 be NULL and we would possibly violate it. */
1216
1217 else if (!objfile->has_partial_symbols ()
1218 && objfile->separate_debug_objfile == NULL
1219 && objfile->separate_debug_objfile_backlink == NULL)
1220 {
34f997c8 1221 deferred_warnings warnings;
6647f05d
AH
1222
1223 std::string debugfile
34f997c8 1224 = find_separate_debug_file_by_buildid (objfile, &warnings);
d955d179
TV
1225
1226 if (debugfile.empty ())
34f997c8 1227 debugfile = find_separate_debug_file_by_debuglink (objfile, &warnings);
d955d179
TV
1228
1229 if (!debugfile.empty ())
1230 {
f96328ac
TT
1231 gdb_bfd_ref_ptr debug_bfd
1232 (symfile_bfd_open_no_error (debugfile.c_str ()));
d955d179 1233
f96328ac
TT
1234 if (debug_bfd != nullptr)
1235 symbol_file_add_separate (debug_bfd, debugfile.c_str (),
1236 symfile_flags, objfile);
d955d179
TV
1237 }
1238 else
1239 {
1240 has_dwarf2 = false;
1241 const struct bfd_build_id *build_id
1242 = build_id_bfd_get (objfile->obfd.get ());
1243 const char *filename = bfd_get_filename (objfile->obfd.get ());
1244
1245 if (build_id != nullptr)
1246 {
1247 gdb::unique_xmalloc_ptr<char> symfile_path;
1248 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1249 build_id->size,
1250 filename,
1251 &symfile_path));
1252
1253 if (fd.get () >= 0)
1254 {
1255 /* File successfully retrieved from server. */
f96328ac
TT
1256 gdb_bfd_ref_ptr debug_bfd
1257 (symfile_bfd_open_no_error (symfile_path.get ()));
d955d179 1258
f96328ac
TT
1259 if (debug_bfd != nullptr
1260 && build_id_verify (debug_bfd.get (), build_id->size,
1261 build_id->data))
d955d179
TV
1262 {
1263 symbol_file_add_separate (debug_bfd, symfile_path.get (),
1264 symfile_flags, objfile);
1265 has_dwarf2 = true;
1266 }
1267 }
1268 }
1269 }
34f997c8
AB
1270 /* If all the methods to collect the debuginfo failed, print the
1271 warnings, this is a no-op if there are no warnings. */
1272 if (debugfile.empty () && !has_dwarf2)
1273 warnings.emit ();
d955d179
TV
1274 }
1275
1276 return has_dwarf2;
1277}
1278
2750ef27
TT
1279/* Scan and build partial symbols for a symbol file.
1280 We have been initialized by a call to elf_symfile_init, which
1281 currently does nothing.
1282
2750ef27
TT
1283 This function only does the minimum work necessary for letting the
1284 user "name" things symbolically; it does not read the entire symtab.
1285 Instead, it reads the external and static symbols and puts them in partial
1286 symbol tables. When more extensive information is requested of a
1287 file, the corresponding partial symbol table is mutated into a full
1288 fledged symbol table by going back and reading the symbols
1289 for real.
1290
1291 We look for sections with specific names, to tell us what debug
1292 format to look for: FIXME!!!
1293
1294 elfstab_build_psymtabs() handles STABS symbols;
1295 mdebug_build_psymtabs() handles ECOFF debugging information.
1296
1297 Note that ELF files have a "minimal" symbol table, which looks a lot
1298 like a COFF symbol table, but has only the minimal information necessary
1299 for linking. We process this also, and use the information to
1300 build gdb's minimal symbol table. This gives us some minimal debugging
1301 capability even for files compiled without -g. */
1302
1303static void
b15cc25c 1304elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27 1305{
98badbfd 1306 bfd *abfd = objfile->obfd.get ();
2750ef27
TT
1307 struct elfinfo ei;
1308
2750ef27 1309 memset ((char *) &ei, 0, sizeof (ei));
97cbe998 1310 if (!(objfile->flags & OBJF_READNEVER))
08f93a1a
TT
1311 {
1312 for (asection *sect : gdb_bfd_sections (abfd))
1313 elf_locate_sections (sect, &ei);
1314 }
c906108c 1315
5f6cac40
TT
1316 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1317
c906108c
SS
1318 /* ELF debugging information is inserted into the psymtab in the
1319 order of least informative first - most informative last. Since
1320 the psymtab table is searched `most recent insertion first' this
1321 increases the probability that more detailed debug information
1322 for a section is found.
1323
1324 For instance, an object file might contain both .mdebug (XCOFF)
1325 and .debug_info (DWARF2) sections then .mdebug is inserted first
1326 (searched last) and DWARF2 is inserted last (searched first). If
1327 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1328 an included file XCOFF info is useless. */
c906108c
SS
1329
1330 if (ei.mdebugsect)
1331 {
1332 const struct ecoff_debug_swap *swap;
1333
1334 /* .mdebug section, presumably holding ECOFF debugging
dda83cd7 1335 information. */
c906108c
SS
1336 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1337 if (swap)
d4f3574e 1338 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1339 }
1340 if (ei.stabsect)
1341 {
1342 asection *str_sect;
1343
1344 /* Stab sections have an associated string table that looks like
dda83cd7 1345 a separate section. */
c906108c
SS
1346 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1347
1348 /* FIXME should probably warn about a stab section without a stabstr. */
1349 if (str_sect)
1350 elfstab_build_psymtabs (objfile,
086df311 1351 ei.stabsect,
c906108c 1352 str_sect->filepos,
fd361982 1353 bfd_section_size (str_sect));
c906108c 1354 }
9291a0cd 1355
0d5adb56
TV
1356 /* Read the CTF section only if there is no DWARF info. */
1357 if (always_read_ctf && ei.ctfsect)
1358 {
1359 elfctf_build_psymtabs (objfile);
1360 }
1361
d955d179 1362 bool has_dwarf2 = elf_symfile_read_dwarf2 (objfile, symfile_flags);
30d1f018
WP
1363
1364 /* Read the CTF section only if there is no DWARF info. */
0d5adb56 1365 if (!always_read_ctf && !has_dwarf2 && ei.ctfsect)
30d1f018
WP
1366 {
1367 elfctf_build_psymtabs (objfile);
9cce227f 1368 }
62669649
KB
1369
1370 /* Copy relocations are used by some ABIs using the ELF format, so
1371 set the objfile flag indicating this fact. */
1372 objfile->object_format_has_copy_relocs = true;
c906108c
SS
1373}
1374
c906108c
SS
1375/* Initialize anything that needs initializing when a completely new symbol
1376 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1377 shared library). */
c906108c
SS
1378
1379static void
fba45db2 1380elf_new_init (struct objfile *ignore)
c906108c 1381{
c906108c
SS
1382}
1383
1384/* Perform any local cleanups required when we are done with a particular
1385 objfile. I.E, we are in the process of discarding all symbol information
1386 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1387 objfile struct from the global list of known objfiles. */
c906108c
SS
1388
1389static void
fba45db2 1390elf_symfile_finish (struct objfile *objfile)
c906108c 1391{
c906108c
SS
1392}
1393
db7a9bcd 1394/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1395
1396static void
fba45db2 1397elf_symfile_init (struct objfile *objfile)
c906108c 1398{
c906108c
SS
1399}
1400
55aa24fb
SDJ
1401/* Implementation of `sym_get_probes', as documented in symfile.h. */
1402
814cf43a 1403static const elfread_data &
55aa24fb
SDJ
1404elf_get_probes (struct objfile *objfile)
1405{
98badbfd 1406 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd.get ());
55aa24fb 1407
aaa63a31 1408 if (probes_per_bfd == NULL)
55aa24fb 1409 {
98badbfd 1410 probes_per_bfd = probe_key.emplace (objfile->obfd.get ());
55aa24fb
SDJ
1411
1412 /* Here we try to gather information about all types of probes from the
1413 objfile. */
935676c9 1414 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1415 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1416 }
1417
aaa63a31 1418 return *probes_per_bfd;
55aa24fb
SDJ
1419}
1420
c906108c 1421\f
55aa24fb
SDJ
1422
1423/* Implementation `sym_probe_fns', as documented in symfile.h. */
1424
1425static const struct sym_probe_fns elf_probe_fns =
1426{
25f9533e 1427 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1428};
1429
c906108c
SS
1430/* Register that we are able to handle ELF object file formats. */
1431
00b5771c 1432static const struct sym_fns elf_sym_fns =
c906108c 1433{
3e43a32a
MS
1434 elf_new_init, /* init anything gbl to entire symtab */
1435 elf_symfile_init, /* read initial info, setup for sym_read() */
1436 elf_symfile_read, /* read a symbol file into symtab */
1437 elf_symfile_finish, /* finished with file, cleanup */
1438 default_symfile_offsets, /* Translate ext. to int. relocation */
1439 elf_symfile_segments, /* Get segment information from a file. */
1440 NULL,
1441 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1442 &elf_probe_fns, /* sym_probe_fns */
927aa2e7
JK
1443};
1444
07be84bf
JK
1445/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1446
1447static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1448{
1449 elf_gnu_ifunc_resolve_addr,
1450 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1451 elf_gnu_ifunc_resolver_stop,
1452 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1453};
1454
6c265988 1455void _initialize_elfread ();
c906108c 1456void
6c265988 1457_initialize_elfread ()
c906108c 1458{
c256e171 1459 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1460
07be84bf 1461 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
0d5adb56
TV
1462
1463 /* Add "set always-read-ctf on/off". */
1464 add_setshow_boolean_cmd ("always-read-ctf", class_support, &always_read_ctf,
1465 _("\
1466Set whether CTF is always read."),
1467 _("\
1468Show whether CTF is always read."),
1469 _("\
1470When off, CTF is only read if DWARF is not present. When on, CTF is read\
1471 regardless of whether DWARF is present."),
1472 nullptr /* set_func */, nullptr /* show_func */,
1473 &setlist, &showlist);
c906108c 1474}