]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
Stop assuming no-debug-info functions return int
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
61baf725 3 Copyright (C) 1991-2017 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c
SS
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "buildsym.h"
32#include "stabsread.h"
33#include "gdb-stabs.h"
34#include "complaints.h"
35#include "demangle.h"
ccefe4c4 36#include "psympriv.h"
0ba1096a 37#include "filenames.h"
55aa24fb
SDJ
38#include "probe.h"
39#include "arch-utils.h"
07be84bf
JK
40#include "gdbtypes.h"
41#include "value.h"
42#include "infcall.h"
0e30163f
JK
43#include "gdbthread.h"
44#include "regcache.h"
0af1e9a5 45#include "bcache.h"
cbb099e8 46#include "gdb_bfd.h"
dc294be5 47#include "build-id.h"
f00aae0f 48#include "location.h"
e1b2624a 49#include "auxv.h"
c906108c 50
a14ed312 51extern void _initialize_elfread (void);
392a587b 52
b11896a5 53/* Forward declarations. */
e36122e9
TT
54extern const struct sym_fns elf_sym_fns_gdb_index;
55extern const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 56
c906108c 57/* The struct elfinfo is available only during ELF symbol table and
6426a772 58 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
59 It's local to elf_symfile_read. */
60
c5aa993b
JM
61struct elfinfo
62 {
c5aa993b 63 asection *stabsect; /* Section pointer for .stab section */
c5aa993b
JM
64 asection *mdebugsect; /* Section pointer for .mdebug section */
65 };
c906108c 66
5d9cf8a4 67/* Per-BFD data for probe info. */
55aa24fb 68
5d9cf8a4 69static const struct bfd_data *probe_key = NULL;
55aa24fb 70
07be84bf
JK
71/* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
31d99776
DJ
78/* Locate the segments in ABFD. */
79
80static struct symfile_segment_data *
81elf_symfile_segments (bfd *abfd)
82{
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
224c3ddb 93 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
8d749320 99 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
41bf6aca 107 data = XCNEW (struct symfile_segment_data);
31d99776 108 data->num_segments = num_segments;
fc270c35
TT
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
31d99776
DJ
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
fc270c35 119 data->segment_info = XCNEWVEC (int, num_sections);
31d99776
DJ
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
a366c65a 134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
ad09a548
DJ
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
28ee876a 151 warning (_("Loadable section \"%s\" outside of ELF segments"),
31d99776
DJ
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156}
157
c906108c
SS
158/* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
0963b4bd 174 section flags to specify what kind of debug section it is.
c906108c
SS
175 -kingdon). */
176
177static void
12b9c64f 178elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 179{
52f0bd74 180 struct elfinfo *ei;
c906108c
SS
181
182 ei = (struct elfinfo *) eip;
7ce59000 183 if (strcmp (sectp->name, ".stab") == 0)
c906108c 184 {
c5aa993b 185 ei->stabsect = sectp;
c906108c 186 }
6314a349 187 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 188 {
c5aa993b 189 ei->mdebugsect = sectp;
c906108c
SS
190 }
191}
192
c906108c 193static struct minimal_symbol *
8dddcb8f 194record_minimal_symbol (minimal_symbol_reader &reader,
ce6c454e 195 const char *name, int name_len, bool copy_name,
04a679b8 196 CORE_ADDR address,
f594e5e9
MC
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
c906108c 199{
5e2b427d
UW
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
0875794a
JK
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
85ddcc70 204 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 205
8dddcb8f
TT
206 return reader.record_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section));
c906108c
SS
210}
211
7f86f058 212/* Read the symbol table of an ELF file.
c906108c 213
62553543 214 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
c906108c 217
c5aa993b
JM
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
7f86f058 222 in data structures hung off the objfile's private data. */
c906108c 223
6f610d07
UW
224#define ST_REGULAR 0
225#define ST_DYNAMIC 1
226#define ST_SYNTHETIC 2
227
c906108c 228static void
8dddcb8f
TT
229elf_symtab_read (minimal_symbol_reader &reader,
230 struct objfile *objfile, int type,
04a679b8 231 long number_of_symbols, asymbol **symbol_table,
ce6c454e 232 bool copy_names)
c906108c 233{
5e2b427d 234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 235 asymbol *sym;
c906108c 236 long i;
c906108c
SS
237 CORE_ADDR symaddr;
238 enum minimal_symbol_type ms_type;
18a94d75
DE
239 /* Name of the last file symbol. This is either a constant string or is
240 saved on the objfile's filename cache. */
0af1e9a5 241 const char *filesymname = "";
d2f4b8fe 242 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
d4f3574e 243 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
244 int elf_make_msymbol_special_p
245 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 246
0cc7b392 247 for (i = 0; i < number_of_symbols; i++)
c906108c 248 {
0cc7b392
DJ
249 sym = symbol_table[i];
250 if (sym->name == NULL || *sym->name == '\0')
c906108c 251 {
0cc7b392 252 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 253 that are null strings (may happen). */
0cc7b392
DJ
254 continue;
255 }
c906108c 256
74763737
DJ
257 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
258 symbols which do not correspond to objects in the symbol table,
259 but have some other target-specific meaning. */
260 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
261 {
262 if (gdbarch_record_special_symbol_p (gdbarch))
263 gdbarch_record_special_symbol (gdbarch, objfile, sym);
264 continue;
265 }
74763737 266
6f610d07 267 if (type == ST_DYNAMIC
45dfa85a 268 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
269 && (sym->flags & BSF_FUNCTION))
270 {
271 struct minimal_symbol *msym;
02c75f72 272 bfd *abfd = objfile->obfd;
dea91a5c 273 asection *sect;
0cc7b392
DJ
274
275 /* Symbol is a reference to a function defined in
276 a shared library.
277 If its value is non zero then it is usually the address
278 of the corresponding entry in the procedure linkage table,
279 plus the desired section offset.
280 If its value is zero then the dynamic linker has to resolve
0963b4bd 281 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
282 for this symbol in the executable file, so we skip it. */
283 symaddr = sym->value;
284 if (symaddr == 0)
285 continue;
02c75f72
UW
286
287 /* sym->section is the undefined section. However, we want to
288 record the section where the PLT stub resides with the
289 minimal symbol. Search the section table for the one that
290 covers the stub's address. */
291 for (sect = abfd->sections; sect != NULL; sect = sect->next)
292 {
293 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
294 continue;
295
296 if (symaddr >= bfd_get_section_vma (abfd, sect)
297 && symaddr < bfd_get_section_vma (abfd, sect)
298 + bfd_get_section_size (sect))
299 break;
300 }
301 if (!sect)
302 continue;
303
828cfa8d
JB
304 /* On ia64-hpux, we have discovered that the system linker
305 adds undefined symbols with nonzero addresses that cannot
306 be right (their address points inside the code of another
307 function in the .text section). This creates problems
308 when trying to determine which symbol corresponds to
309 a given address.
310
311 We try to detect those buggy symbols by checking which
312 section we think they correspond to. Normally, PLT symbols
313 are stored inside their own section, and the typical name
314 for that section is ".plt". So, if there is a ".plt"
315 section, and yet the section name of our symbol does not
316 start with ".plt", we ignore that symbol. */
61012eef 317 if (!startswith (sect->name, ".plt")
828cfa8d
JB
318 && bfd_get_section_by_name (abfd, ".plt") != NULL)
319 continue;
320
0cc7b392 321 msym = record_minimal_symbol
8dddcb8f 322 (reader, sym->name, strlen (sym->name), copy_names,
04a679b8 323 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 324 if (msym != NULL)
9b807e7b
MR
325 {
326 msym->filename = filesymname;
3e29f34a
MR
327 if (elf_make_msymbol_special_p)
328 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 329 }
0cc7b392
DJ
330 continue;
331 }
c906108c 332
0cc7b392
DJ
333 /* If it is a nonstripped executable, do not enter dynamic
334 symbols, as the dynamic symbol table is usually a subset
335 of the main symbol table. */
6f610d07 336 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
337 continue;
338 if (sym->flags & BSF_FILE)
339 {
9a3c8263
SM
340 filesymname
341 = (const char *) bcache (sym->name, strlen (sym->name) + 1,
342 objfile->per_bfd->filename_cache);
0cc7b392
DJ
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
bb869963
SDJ
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
0cc7b392
DJ
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
0963b4bd
MS
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
0cc7b392 355 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
0963b4bd 358 no way of figuring this out for absolute symbols. */
45dfa85a 359 if (sym->section == bfd_abs_section_ptr)
c906108c 360 {
0cc7b392
DJ
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
6f610d07
UW
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
dea91a5c 367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
c906108c 371 {
0cc7b392
DJ
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 386 symbols, relocate all others by section offset. */
0cc7b392
DJ
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
c906108c 391 }
0cc7b392
DJ
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
bb869963 395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 396 {
0875794a
JK
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
0cc7b392 401 }
90359a16
JK
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
c906108c 421 }
0cc7b392
DJ
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
bb869963 425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 426 {
0cc7b392 427 if (sym->section->flags & SEC_LOAD)
c906108c 428 {
0cc7b392 429 ms_type = mst_data;
c906108c 430 }
c906108c
SS
431 else
432 {
0cc7b392 433 ms_type = mst_bss;
c906108c
SS
434 }
435 }
0cc7b392 436 else if (sym->flags & BSF_LOCAL)
c906108c 437 {
0cc7b392
DJ
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
c906108c
SS
441 }
442 else
443 {
0cc7b392 444 ms_type = mst_file_bss;
c906108c
SS
445 }
446 }
447 else
448 {
0cc7b392 449 ms_type = mst_unknown;
c906108c 450 }
0cc7b392
DJ
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 455 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
0963b4bd 459 continue; /* Skip this symbol. */
0cc7b392
DJ
460 }
461 msym = record_minimal_symbol
8dddcb8f 462 (reader, sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 463 ms_type, sym->section, objfile);
6f610d07 464
0cc7b392
DJ
465 if (msym)
466 {
6f610d07 467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 468 ELF-private part. */
6f610d07 469 if (type != ST_SYNTHETIC)
24c274a1
AM
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
dea91a5c 475
a103a963 476 msym->filename = filesymname;
3e29f34a
MR
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 479 }
2eaf8d2a 480
715c6909
TT
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
ce6c454e 491 record_minimal_symbol (reader, sym->name, len, true, symaddr,
715c6909
TT
492 ms_type, sym->section, objfile);
493 }
494 }
495
2eaf8d2a
DJ
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
2eaf8d2a
DJ
506 struct minimal_symbol *mtramp;
507
ce6c454e
TT
508 mtramp = record_minimal_symbol (reader, sym->name, len - 4,
509 true, symaddr,
2eaf8d2a
DJ
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
d9eaeb59 514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 515 mtramp->created_by_gdb = 1;
2eaf8d2a 516 mtramp->filename = filesymname;
3e29f34a
MR
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
2eaf8d2a
DJ
520 }
521 }
522 }
c906108c 523 }
c906108c
SS
524 }
525}
526
07be84bf
JK
527/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534static void
8dddcb8f
TT
535elf_rel_plt_read (minimal_symbol_reader &reader,
536 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
537{
538 bfd *obfd = objfile->obfd;
539 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
540 asection *plt, *relplt, *got_plt;
07be84bf
JK
541 int plt_elf_idx;
542 bfd_size_type reloc_count, reloc;
df6d5441 543 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
544 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
545 size_t ptr_size = TYPE_LENGTH (ptr_type);
546
547 if (objfile->separate_debug_objfile_backlink)
548 return;
549
550 plt = bfd_get_section_by_name (obfd, ".plt");
551 if (plt == NULL)
552 return;
553 plt_elf_idx = elf_section_data (plt)->this_idx;
554
555 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
556 if (got_plt == NULL)
4b7d1f7f
WN
557 {
558 /* For platforms where there is no separate .got.plt. */
559 got_plt = bfd_get_section_by_name (obfd, ".got");
560 if (got_plt == NULL)
561 return;
562 }
07be84bf
JK
563
564 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
565 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
566 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
567 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
568 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
569 break;
570 if (relplt == NULL)
571 return;
572
573 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
574 return;
575
26fcd5d7 576 std::string string_buffer;
07be84bf
JK
577
578 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
579 for (reloc = 0; reloc < reloc_count; reloc++)
580 {
22e048c9 581 const char *name;
07be84bf
JK
582 struct minimal_symbol *msym;
583 CORE_ADDR address;
26fcd5d7 584 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 585 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
586
587 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
588 address = relplt->relocation[reloc].address;
589
590 /* Does the pointer reside in the .got.plt section? */
591 if (!(bfd_get_section_vma (obfd, got_plt) <= address
592 && address < bfd_get_section_vma (obfd, got_plt)
593 + bfd_get_section_size (got_plt)))
594 continue;
595
596 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
597 OBJFILE the symbol is undefined and the objfile having NAME defined
598 may not yet have been loaded. */
599
26fcd5d7
TT
600 string_buffer.assign (name);
601 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 602
26fcd5d7
TT
603 msym = record_minimal_symbol (reader, string_buffer.c_str (),
604 string_buffer.size (),
ce6c454e 605 true, address, mst_slot_got_plt, got_plt,
07be84bf
JK
606 objfile);
607 if (msym)
d9eaeb59 608 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 609 }
07be84bf
JK
610}
611
612/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
613
614static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
615
616/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
617
618struct elf_gnu_ifunc_cache
619{
620 /* This is always a function entry address, not a function descriptor. */
621 CORE_ADDR addr;
622
623 char name[1];
624};
625
626/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
627
628static hashval_t
629elf_gnu_ifunc_cache_hash (const void *a_voidp)
630{
9a3c8263
SM
631 const struct elf_gnu_ifunc_cache *a
632 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
633
634 return htab_hash_string (a->name);
635}
636
637/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
638
639static int
640elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
641{
9a3c8263
SM
642 const struct elf_gnu_ifunc_cache *a
643 = (const struct elf_gnu_ifunc_cache *) a_voidp;
644 const struct elf_gnu_ifunc_cache *b
645 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
646
647 return strcmp (a->name, b->name) == 0;
648}
649
650/* Record the target function address of a STT_GNU_IFUNC function NAME is the
651 function entry address ADDR. Return 1 if NAME and ADDR are considered as
652 valid and therefore they were successfully recorded, return 0 otherwise.
653
654 Function does not expect a duplicate entry. Use
655 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
656 exists. */
657
658static int
659elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
660{
7cbd4a93 661 struct bound_minimal_symbol msym;
07be84bf
JK
662 asection *sect;
663 struct objfile *objfile;
664 htab_t htab;
665 struct elf_gnu_ifunc_cache entry_local, *entry_p;
666 void **slot;
667
668 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 669 if (msym.minsym == NULL)
07be84bf 670 return 0;
77e371c0 671 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf
JK
672 return 0;
673 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
efd66ac6 674 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
e27d198c 675 objfile = msym.objfile;
07be84bf
JK
676
677 /* If .plt jumps back to .plt the symbol is still deferred for later
678 resolution and it has no use for GDB. Besides ".text" this symbol can
679 reside also in ".opd" for ppc64 function descriptor. */
680 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
681 return 0;
682
9a3c8263 683 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
684 if (htab == NULL)
685 {
686 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
687 elf_gnu_ifunc_cache_eq,
688 NULL, &objfile->objfile_obstack,
689 hashtab_obstack_allocate,
690 dummy_obstack_deallocate);
691 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
692 }
693
694 entry_local.addr = addr;
695 obstack_grow (&objfile->objfile_obstack, &entry_local,
696 offsetof (struct elf_gnu_ifunc_cache, name));
697 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
698 entry_p
699 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
700
701 slot = htab_find_slot (htab, entry_p, INSERT);
702 if (*slot != NULL)
703 {
9a3c8263
SM
704 struct elf_gnu_ifunc_cache *entry_found_p
705 = (struct elf_gnu_ifunc_cache *) *slot;
df6d5441 706 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
707
708 if (entry_found_p->addr != addr)
709 {
710 /* This case indicates buggy inferior program, the resolved address
711 should never change. */
712
713 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
714 "function_address from %s to %s"),
715 name, paddress (gdbarch, entry_found_p->addr),
716 paddress (gdbarch, addr));
717 }
718
719 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
720 }
721 *slot = entry_p;
722
723 return 1;
724}
725
726/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
727 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
728 is not NULL) and the function returns 1. It returns 0 otherwise.
729
730 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
731 function. */
732
733static int
734elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
735{
736 struct objfile *objfile;
737
738 ALL_PSPACE_OBJFILES (current_program_space, objfile)
739 {
740 htab_t htab;
741 struct elf_gnu_ifunc_cache *entry_p;
742 void **slot;
743
9a3c8263 744 htab = (htab_t) objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
07be84bf
JK
745 if (htab == NULL)
746 continue;
747
224c3ddb
SM
748 entry_p = ((struct elf_gnu_ifunc_cache *)
749 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
750 strcpy (entry_p->name, name);
751
752 slot = htab_find_slot (htab, entry_p, NO_INSERT);
753 if (slot == NULL)
754 continue;
9a3c8263 755 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
756 gdb_assert (entry_p != NULL);
757
758 if (addr_p)
759 *addr_p = entry_p->addr;
760 return 1;
761 }
762
763 return 0;
764}
765
766/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
767 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
768 is not NULL) and the function returns 1. It returns 0 otherwise.
769
770 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
771 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
772 prevent cache entries duplicates. */
773
774static int
775elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
776{
777 char *name_got_plt;
778 struct objfile *objfile;
779 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
780
224c3ddb 781 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
782 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
783
784 ALL_PSPACE_OBJFILES (current_program_space, objfile)
785 {
786 bfd *obfd = objfile->obfd;
df6d5441 787 struct gdbarch *gdbarch = get_objfile_arch (objfile);
07be84bf
JK
788 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
789 size_t ptr_size = TYPE_LENGTH (ptr_type);
790 CORE_ADDR pointer_address, addr;
791 asection *plt;
224c3ddb 792 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 793 struct bound_minimal_symbol msym;
07be84bf
JK
794
795 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 796 if (msym.minsym == NULL)
07be84bf 797 continue;
3b7344d5 798 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 799 continue;
77e371c0 800 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
801
802 plt = bfd_get_section_by_name (obfd, ".plt");
803 if (plt == NULL)
804 continue;
805
3b7344d5 806 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
807 continue;
808 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
809 continue;
810 addr = extract_typed_address (buf, ptr_type);
811 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
812 &current_target);
4b7d1f7f 813 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf
JK
814
815 if (addr_p)
816 *addr_p = addr;
817 if (elf_gnu_ifunc_record_cache (name, addr))
818 return 1;
819 }
820
821 return 0;
822}
823
824/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
825 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
826 is not NULL) and the function returns 1. It returns 0 otherwise.
827
828 Both the elf_objfile_gnu_ifunc_cache_data hash table and
829 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
830
831static int
832elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
833{
834 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
835 return 1;
dea91a5c 836
07be84bf
JK
837 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
838 return 1;
839
840 return 0;
841}
842
843/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
844 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
845 is the entry point of the resolved STT_GNU_IFUNC target function to call.
846 */
847
848static CORE_ADDR
849elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
850{
2c02bd72 851 const char *name_at_pc;
07be84bf
JK
852 CORE_ADDR start_at_pc, address;
853 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
854 struct value *function, *address_val;
e1b2624a
AA
855 CORE_ADDR hwcap = 0;
856 struct value *hwcap_val;
07be84bf
JK
857
858 /* Try first any non-intrusive methods without an inferior call. */
859
860 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
861 && start_at_pc == pc)
862 {
863 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
864 return address;
865 }
866 else
867 name_at_pc = NULL;
868
869 function = allocate_value (func_func_type);
1a088441 870 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
871 set_value_address (function, pc);
872
e1b2624a
AA
873 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
874 parameter. FUNCTION is the function entry address. ADDRESS may be a
875 function descriptor. */
07be84bf 876
e1b2624a
AA
877 target_auxv_search (&current_target, AT_HWCAP, &hwcap);
878 hwcap_val = value_from_longest (builtin_type (gdbarch)
879 ->builtin_unsigned_long, hwcap);
7022349d 880 address_val = call_function_by_hand (function, NULL, 1, &hwcap_val);
07be84bf
JK
881 address = value_as_address (address_val);
882 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
883 &current_target);
4b7d1f7f 884 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
885
886 if (name_at_pc)
887 elf_gnu_ifunc_record_cache (name_at_pc, address);
888
889 return address;
890}
891
0e30163f
JK
892/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
893
894static void
895elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
896{
897 struct breakpoint *b_return;
898 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
899 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
900 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
5d5658a1 901 int thread_id = ptid_to_global_thread_id (inferior_ptid);
0e30163f
JK
902
903 gdb_assert (b->type == bp_gnu_ifunc_resolver);
904
905 for (b_return = b->related_breakpoint; b_return != b;
906 b_return = b_return->related_breakpoint)
907 {
908 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
909 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
910 gdb_assert (frame_id_p (b_return->frame_id));
911
912 if (b_return->thread == thread_id
913 && b_return->loc->requested_address == prev_pc
914 && frame_id_eq (b_return->frame_id, prev_frame_id))
915 break;
916 }
917
918 if (b_return == b)
919 {
0e30163f
JK
920 /* No need to call find_pc_line for symbols resolving as this is only
921 a helper breakpointer never shown to the user. */
922
51abb421 923 symtab_and_line sal;
0e30163f
JK
924 sal.pspace = current_inferior ()->pspace;
925 sal.pc = prev_pc;
926 sal.section = find_pc_overlay (sal.pc);
927 sal.explicit_pc = 1;
928 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
929 prev_frame_id,
930 bp_gnu_ifunc_resolver_return);
931
c70a6932
JK
932 /* set_momentary_breakpoint invalidates PREV_FRAME. */
933 prev_frame = NULL;
934
0e30163f
JK
935 /* Add new b_return to the ring list b->related_breakpoint. */
936 gdb_assert (b_return->related_breakpoint == b_return);
937 b_return->related_breakpoint = b->related_breakpoint;
938 b->related_breakpoint = b_return;
939 }
940}
941
942/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
943
944static void
945elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
946{
947 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
948 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
949 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
950 struct regcache *regcache = get_thread_regcache (inferior_ptid);
6a3a010b 951 struct value *func_func;
0e30163f
JK
952 struct value *value;
953 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
954
955 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
956
0e30163f
JK
957 while (b->related_breakpoint != b)
958 {
959 struct breakpoint *b_next = b->related_breakpoint;
960
961 switch (b->type)
962 {
963 case bp_gnu_ifunc_resolver:
964 break;
965 case bp_gnu_ifunc_resolver_return:
966 delete_breakpoint (b);
967 break;
968 default:
969 internal_error (__FILE__, __LINE__,
970 _("handle_inferior_event: Invalid "
971 "gnu-indirect-function breakpoint type %d"),
972 (int) b->type);
973 }
974 b = b_next;
975 }
976 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
977 gdb_assert (b->loc->next == NULL);
978
979 func_func = allocate_value (func_func_type);
1a088441 980 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
981 set_value_address (func_func, b->loc->related_address);
982
983 value = allocate_value (value_type);
984 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
985 value_contents_raw (value), NULL);
986 resolved_address = value_as_address (value);
987 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
988 resolved_address,
989 &current_target);
4b7d1f7f 990 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 991
f8eba3c6 992 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 993 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 994 resolved_pc);
0e30163f 995
0e30163f 996 b->type = bp_breakpoint;
6c5b2ebe
PA
997 update_breakpoint_locations (b, current_program_space,
998 find_pc_line (resolved_pc, 0), {});
0e30163f
JK
999}
1000
2750ef27
TT
1001/* A helper function for elf_symfile_read that reads the minimal
1002 symbols. */
c906108c
SS
1003
1004static void
5f6cac40
TT
1005elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1006 const struct elfinfo *ei)
c906108c 1007{
63524580 1008 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1009 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1010 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1011 asymbol *synthsyms;
d2f4b8fe 1012 struct dbx_symfile_info *dbx;
c906108c 1013
45cfd468
DE
1014 if (symtab_create_debug)
1015 {
1016 fprintf_unfiltered (gdb_stdlog,
1017 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1018 objfile_name (objfile));
45cfd468
DE
1019 }
1020
5f6cac40
TT
1021 /* If we already have minsyms, then we can skip some work here.
1022 However, if there were stabs or mdebug sections, we go ahead and
1023 redo all the work anyway, because the psym readers for those
1024 kinds of debuginfo need extra information found here. This can
1025 go away once all types of symbols are in the per-BFD object. */
1026 if (objfile->per_bfd->minsyms_read
1027 && ei->stabsect == NULL
1028 && ei->mdebugsect == NULL)
1029 {
1030 if (symtab_create_debug)
1031 fprintf_unfiltered (gdb_stdlog,
1032 "... minimal symbols previously read\n");
1033 return;
1034 }
1035
d25e8719 1036 minimal_symbol_reader reader (objfile);
c906108c 1037
0963b4bd 1038 /* Allocate struct to keep track of the symfile. */
d2f4b8fe
TT
1039 dbx = XCNEW (struct dbx_symfile_info);
1040 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
c906108c 1041
18a94d75 1042 /* Process the normal ELF symbol table first. */
c906108c 1043
62553543
EZ
1044 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1045 if (storage_needed < 0)
3e43a32a
MS
1046 error (_("Can't read symbols from %s: %s"),
1047 bfd_get_filename (objfile->obfd),
62553543
EZ
1048 bfd_errmsg (bfd_get_error ()));
1049
1050 if (storage_needed > 0)
1051 {
80c57053
JK
1052 /* Memory gets permanently referenced from ABFD after
1053 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1054
224c3ddb 1055 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1056 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1057
1058 if (symcount < 0)
3e43a32a
MS
1059 error (_("Can't read symbols from %s: %s"),
1060 bfd_get_filename (objfile->obfd),
62553543
EZ
1061 bfd_errmsg (bfd_get_error ()));
1062
ce6c454e
TT
1063 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1064 false);
62553543 1065 }
c906108c
SS
1066
1067 /* Add the dynamic symbols. */
1068
62553543
EZ
1069 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1070
1071 if (storage_needed > 0)
1072 {
3f1eff0a
JK
1073 /* Memory gets permanently referenced from ABFD after
1074 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1075 It happens only in the case when elf_slurp_reloc_table sees
1076 asection->relocation NULL. Determining which section is asection is
1077 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1078 implementation detail, though. */
1079
224c3ddb 1080 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1081 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1082 dyn_symbol_table);
1083
1084 if (dynsymcount < 0)
3e43a32a
MS
1085 error (_("Can't read symbols from %s: %s"),
1086 bfd_get_filename (objfile->obfd),
62553543
EZ
1087 bfd_errmsg (bfd_get_error ()));
1088
8dddcb8f 1089 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1090 dyn_symbol_table, false);
07be84bf 1091
8dddcb8f 1092 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1093 }
1094
63524580
JK
1095 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1096 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1097
1098 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1099 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1100 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1101 read the code address from .opd while it reads the .symtab section from
1102 a separate debug info file as the .opd section is SHT_NOBITS there.
1103
1104 With SYNTH_ABFD the .opd section will be read from the original
1105 backlinked binary where it is valid. */
1106
1107 if (objfile->separate_debug_objfile_backlink)
1108 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1109 else
1110 synth_abfd = abfd;
1111
62553543
EZ
1112 /* Add synthetic symbols - for instance, names for any PLT entries. */
1113
63524580 1114 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1115 dynsymcount, dyn_symbol_table,
1116 &synthsyms);
1117 if (synthcount > 0)
1118 {
62553543
EZ
1119 long i;
1120
b22e99fd 1121 std::unique_ptr<asymbol *[]>
d1e4a624 1122 synth_symbol_table (new asymbol *[synthcount]);
62553543 1123 for (i = 0; i < synthcount; i++)
9f20e3da 1124 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1125 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1126 synth_symbol_table.get (), true);
ba713918
AL
1127
1128 xfree (synthsyms);
1129 synthsyms = NULL;
62553543 1130 }
c906108c 1131
7134143f
DJ
1132 /* Install any minimal symbols that have been collected as the current
1133 minimal symbols for this objfile. The debug readers below this point
1134 should not generate new minimal symbols; if they do it's their
1135 responsibility to install them. "mdebug" appears to be the only one
1136 which will do this. */
1137
d25e8719 1138 reader.install ();
7134143f 1139
4f00dda3
DE
1140 if (symtab_create_debug)
1141 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1142}
1143
1144/* Scan and build partial symbols for a symbol file.
1145 We have been initialized by a call to elf_symfile_init, which
1146 currently does nothing.
1147
2750ef27
TT
1148 This function only does the minimum work necessary for letting the
1149 user "name" things symbolically; it does not read the entire symtab.
1150 Instead, it reads the external and static symbols and puts them in partial
1151 symbol tables. When more extensive information is requested of a
1152 file, the corresponding partial symbol table is mutated into a full
1153 fledged symbol table by going back and reading the symbols
1154 for real.
1155
1156 We look for sections with specific names, to tell us what debug
1157 format to look for: FIXME!!!
1158
1159 elfstab_build_psymtabs() handles STABS symbols;
1160 mdebug_build_psymtabs() handles ECOFF debugging information.
1161
1162 Note that ELF files have a "minimal" symbol table, which looks a lot
1163 like a COFF symbol table, but has only the minimal information necessary
1164 for linking. We process this also, and use the information to
1165 build gdb's minimal symbol table. This gives us some minimal debugging
1166 capability even for files compiled without -g. */
1167
1168static void
b15cc25c 1169elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1170{
1171 bfd *abfd = objfile->obfd;
1172 struct elfinfo ei;
1173
2750ef27 1174 memset ((char *) &ei, 0, sizeof (ei));
12b9c64f 1175 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1176
5f6cac40
TT
1177 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1178
c906108c
SS
1179 /* ELF debugging information is inserted into the psymtab in the
1180 order of least informative first - most informative last. Since
1181 the psymtab table is searched `most recent insertion first' this
1182 increases the probability that more detailed debug information
1183 for a section is found.
1184
1185 For instance, an object file might contain both .mdebug (XCOFF)
1186 and .debug_info (DWARF2) sections then .mdebug is inserted first
1187 (searched last) and DWARF2 is inserted last (searched first). If
1188 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1189 an included file XCOFF info is useless. */
c906108c
SS
1190
1191 if (ei.mdebugsect)
1192 {
1193 const struct ecoff_debug_swap *swap;
1194
1195 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1196 information. */
c906108c
SS
1197 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1198 if (swap)
d4f3574e 1199 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1200 }
1201 if (ei.stabsect)
1202 {
1203 asection *str_sect;
1204
1205 /* Stab sections have an associated string table that looks like
c5aa993b 1206 a separate section. */
c906108c
SS
1207 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1208
1209 /* FIXME should probably warn about a stab section without a stabstr. */
1210 if (str_sect)
1211 elfstab_build_psymtabs (objfile,
086df311 1212 ei.stabsect,
c906108c
SS
1213 str_sect->filepos,
1214 bfd_section_size (abfd, str_sect));
1215 }
9291a0cd 1216
251d32d9 1217 if (dwarf2_has_info (objfile, NULL))
b11896a5 1218 {
3e03848b
JK
1219 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1220 information present in OBJFILE. If there is such debug info present
1221 never use .gdb_index. */
1222
1223 if (!objfile_has_partial_symbols (objfile)
1224 && dwarf2_initialize_objfile (objfile))
8fb8eb5c 1225 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
b11896a5
TT
1226 else
1227 {
1228 /* It is ok to do this even if the stabs reader made some
1229 partial symbols, because OBJF_PSYMTABS_READ has not been
1230 set, and so our lazy reader function will still be called
1231 when needed. */
8fb8eb5c 1232 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1233 }
1234 }
3e43a32a
MS
1235 /* If the file has its own symbol tables it has no separate debug
1236 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1237 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1238 `.note.gnu.build-id'.
1239
1240 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1241 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1242 an objfile via find_separate_debug_file_in_section there was no separate
1243 debug info available. Therefore do not attempt to search for another one,
1244 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1245 be NULL and we would possibly violate it. */
1246
1247 else if (!objfile_has_partial_symbols (objfile)
1248 && objfile->separate_debug_objfile == NULL
1249 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1250 {
192b62ce
TT
1251 gdb::unique_xmalloc_ptr<char> debugfile
1252 (find_separate_debug_file_by_buildid (objfile));
9cce227f
TG
1253
1254 if (debugfile == NULL)
192b62ce 1255 debugfile.reset (find_separate_debug_file_by_debuglink (objfile));
9cce227f 1256
192b62ce 1257 if (debugfile != NULL)
9cce227f 1258 {
192b62ce 1259 gdb_bfd_ref_ptr abfd (symfile_bfd_open (debugfile.get ()));
d7f9d729 1260
192b62ce
TT
1261 symbol_file_add_separate (abfd.get (), debugfile.get (),
1262 symfile_flags, objfile);
9cce227f
TG
1263 }
1264 }
c906108c
SS
1265}
1266
b11896a5
TT
1267/* Callback to lazily read psymtabs. */
1268
1269static void
1270read_psyms (struct objfile *objfile)
1271{
251d32d9 1272 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1273 dwarf2_build_psymtabs (objfile);
1274}
1275
c906108c
SS
1276/* Initialize anything that needs initializing when a completely new symbol
1277 file is specified (not just adding some symbols from another file, e.g. a
1278 shared library).
1279
3e43a32a
MS
1280 We reinitialize buildsym, since we may be reading stabs from an ELF
1281 file. */
c906108c
SS
1282
1283static void
fba45db2 1284elf_new_init (struct objfile *ignore)
c906108c
SS
1285{
1286 stabsread_new_init ();
1287 buildsym_new_init ();
1288}
1289
1290/* Perform any local cleanups required when we are done with a particular
1291 objfile. I.E, we are in the process of discarding all symbol information
1292 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1293 objfile struct from the global list of known objfiles. */
c906108c
SS
1294
1295static void
fba45db2 1296elf_symfile_finish (struct objfile *objfile)
c906108c 1297{
fe3e1990 1298 dwarf2_free_objfile (objfile);
c906108c
SS
1299}
1300
db7a9bcd 1301/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1302
1303static void
fba45db2 1304elf_symfile_init (struct objfile *objfile)
c906108c
SS
1305{
1306 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1307 find this causes a significant slowdown in gdb then we could
1308 set it in the debug symbol readers only when necessary. */
1309 objfile->flags |= OBJF_REORDERED;
1310}
1311
55aa24fb
SDJ
1312/* Implementation of `sym_get_probes', as documented in symfile.h. */
1313
1314static VEC (probe_p) *
1315elf_get_probes (struct objfile *objfile)
1316{
5d9cf8a4 1317 VEC (probe_p) *probes_per_bfd;
55aa24fb
SDJ
1318
1319 /* Have we parsed this objfile's probes already? */
9a3c8263 1320 probes_per_bfd = (VEC (probe_p) *) bfd_data (objfile->obfd, probe_key);
55aa24fb 1321
5d9cf8a4 1322 if (!probes_per_bfd)
55aa24fb
SDJ
1323 {
1324 int ix;
1325 const struct probe_ops *probe_ops;
1326
1327 /* Here we try to gather information about all types of probes from the
1328 objfile. */
1329 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1330 ix++)
5d9cf8a4 1331 probe_ops->get_probes (&probes_per_bfd, objfile);
55aa24fb 1332
5d9cf8a4 1333 if (probes_per_bfd == NULL)
55aa24fb 1334 {
5d9cf8a4
TT
1335 VEC_reserve (probe_p, probes_per_bfd, 1);
1336 gdb_assert (probes_per_bfd != NULL);
55aa24fb
SDJ
1337 }
1338
5d9cf8a4 1339 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
55aa24fb
SDJ
1340 }
1341
5d9cf8a4 1342 return probes_per_bfd;
55aa24fb
SDJ
1343}
1344
55aa24fb
SDJ
1345/* Helper function used to free the space allocated for storing SystemTap
1346 probe information. */
1347
1348static void
5d9cf8a4 1349probe_key_free (bfd *abfd, void *d)
55aa24fb
SDJ
1350{
1351 int ix;
9a3c8263 1352 VEC (probe_p) *probes = (VEC (probe_p) *) d;
55aa24fb
SDJ
1353 struct probe *probe;
1354
1355 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1356 probe->pops->destroy (probe);
1357
1358 VEC_free (probe_p, probes);
1359}
1360
c906108c 1361\f
55aa24fb
SDJ
1362
1363/* Implementation `sym_probe_fns', as documented in symfile.h. */
1364
1365static const struct sym_probe_fns elf_probe_fns =
1366{
25f9533e 1367 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1368};
1369
c906108c
SS
1370/* Register that we are able to handle ELF object file formats. */
1371
00b5771c 1372static const struct sym_fns elf_sym_fns =
c906108c 1373{
3e43a32a
MS
1374 elf_new_init, /* init anything gbl to entire symtab */
1375 elf_symfile_init, /* read initial info, setup for sym_read() */
1376 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1377 NULL, /* sym_read_psymbols */
1378 elf_symfile_finish, /* finished with file, cleanup */
1379 default_symfile_offsets, /* Translate ext. to int. relocation */
1380 elf_symfile_segments, /* Get segment information from a file. */
1381 NULL,
1382 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1383 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1384 &psym_functions
1385};
1386
1387/* The same as elf_sym_fns, but not registered and lazily reads
1388 psymbols. */
1389
e36122e9 1390const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1391{
b11896a5
TT
1392 elf_new_init, /* init anything gbl to entire symtab */
1393 elf_symfile_init, /* read initial info, setup for sym_read() */
1394 elf_symfile_read, /* read a symbol file into symtab */
1395 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1396 elf_symfile_finish, /* finished with file, cleanup */
1397 default_symfile_offsets, /* Translate ext. to int. relocation */
1398 elf_symfile_segments, /* Get segment information from a file. */
1399 NULL,
1400 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1401 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1402 &psym_functions
c906108c
SS
1403};
1404
9291a0cd
TT
1405/* The same as elf_sym_fns, but not registered and uses the
1406 DWARF-specific GNU index rather than psymtab. */
e36122e9 1407const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1408{
3e43a32a
MS
1409 elf_new_init, /* init anything gbl to entire symab */
1410 elf_symfile_init, /* read initial info, setup for sym_red() */
1411 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1412 NULL, /* sym_read_psymbols */
3e43a32a
MS
1413 elf_symfile_finish, /* finished with file, cleanup */
1414 default_symfile_offsets, /* Translate ext. to int. relocatin */
1415 elf_symfile_segments, /* Get segment information from a file. */
1416 NULL,
1417 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1418 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1419 &dwarf2_gdb_index_functions
9291a0cd
TT
1420};
1421
07be84bf
JK
1422/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1423
1424static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1425{
1426 elf_gnu_ifunc_resolve_addr,
1427 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1428 elf_gnu_ifunc_resolver_stop,
1429 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1430};
1431
c906108c 1432void
fba45db2 1433_initialize_elfread (void)
c906108c 1434{
5d9cf8a4 1435 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
c256e171 1436 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf
JK
1437
1438 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1439 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1440}