]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/elfread.c
2011-03-31 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
6aba47ca 3 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
7b6bb8da 4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 5 Free Software Foundation, Inc.
1bac305b 6
c906108c
SS
7 Written by Fred Fish at Cygnus Support.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "bfd.h"
26#include "gdb_string.h"
27#include "elf-bfd.h"
31d99776
DJ
28#include "elf/common.h"
29#include "elf/internal.h"
c906108c
SS
30#include "elf/mips.h"
31#include "symtab.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "buildsym.h"
35#include "stabsread.h"
36#include "gdb-stabs.h"
37#include "complaints.h"
38#include "demangle.h"
ccefe4c4 39#include "psympriv.h"
0ba1096a 40#include "filenames.h"
07be84bf
JK
41#include "gdbtypes.h"
42#include "value.h"
43#include "infcall.h"
0e30163f
JK
44#include "gdbthread.h"
45#include "regcache.h"
c906108c 46
a14ed312 47extern void _initialize_elfread (void);
392a587b 48
b11896a5 49/* Forward declarations. */
00b5771c 50static const struct sym_fns elf_sym_fns_gdb_index;
b11896a5 51static const struct sym_fns elf_sym_fns_lazy_psyms;
9291a0cd 52
c906108c 53/* The struct elfinfo is available only during ELF symbol table and
6426a772 54 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
55 It's local to elf_symfile_read. */
56
c5aa993b
JM
57struct elfinfo
58 {
c5aa993b
JM
59 asection *stabsect; /* Section pointer for .stab section */
60 asection *stabindexsect; /* Section pointer for .stab.index section */
61 asection *mdebugsect; /* Section pointer for .mdebug section */
62 };
c906108c 63
12b9c64f 64static void free_elfinfo (void *);
c906108c 65
07be84bf
JK
66/* Minimal symbols located at the GOT entries for .plt - that is the real
67 pointer where the given entry will jump to. It gets updated by the real
68 function address during lazy ld.so resolving in the inferior. These
69 minimal symbols are indexed for <tab>-completion. */
70
71#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
72
31d99776
DJ
73/* Locate the segments in ABFD. */
74
75static struct symfile_segment_data *
76elf_symfile_segments (bfd *abfd)
77{
78 Elf_Internal_Phdr *phdrs, **segments;
79 long phdrs_size;
80 int num_phdrs, num_segments, num_sections, i;
81 asection *sect;
82 struct symfile_segment_data *data;
83
84 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
85 if (phdrs_size == -1)
86 return NULL;
87
88 phdrs = alloca (phdrs_size);
89 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
90 if (num_phdrs == -1)
91 return NULL;
92
93 num_segments = 0;
94 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
95 for (i = 0; i < num_phdrs; i++)
96 if (phdrs[i].p_type == PT_LOAD)
97 segments[num_segments++] = &phdrs[i];
98
99 if (num_segments == 0)
100 return NULL;
101
102 data = XZALLOC (struct symfile_segment_data);
103 data->num_segments = num_segments;
104 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
105 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
106
107 for (i = 0; i < num_segments; i++)
108 {
109 data->segment_bases[i] = segments[i]->p_vaddr;
110 data->segment_sizes[i] = segments[i]->p_memsz;
111 }
112
113 num_sections = bfd_count_sections (abfd);
114 data->segment_info = XCALLOC (num_sections, int);
115
116 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
117 {
118 int j;
119 CORE_ADDR vma;
120
121 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
122 continue;
123
124 vma = bfd_get_section_vma (abfd, sect);
125
126 for (j = 0; j < num_segments; j++)
127 if (segments[j]->p_memsz > 0
128 && vma >= segments[j]->p_vaddr
a366c65a 129 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
31d99776
DJ
130 {
131 data->segment_info[i] = j + 1;
132 break;
133 }
134
ad09a548
DJ
135 /* We should have found a segment for every non-empty section.
136 If we haven't, we will not relocate this section by any
137 offsets we apply to the segments. As an exception, do not
138 warn about SHT_NOBITS sections; in normal ELF execution
139 environments, SHT_NOBITS means zero-initialized and belongs
140 in a segment, but in no-OS environments some tools (e.g. ARM
141 RealView) use SHT_NOBITS for uninitialized data. Since it is
142 uninitialized, it doesn't need a program header. Such
143 binaries are not relocatable. */
144 if (bfd_get_section_size (sect) > 0 && j == num_segments
145 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
31d99776
DJ
146 warning (_("Loadable segment \"%s\" outside of ELF segments"),
147 bfd_section_name (abfd, sect));
148 }
149
150 return data;
151}
152
c906108c
SS
153/* We are called once per section from elf_symfile_read. We
154 need to examine each section we are passed, check to see
155 if it is something we are interested in processing, and
156 if so, stash away some access information for the section.
157
158 For now we recognize the dwarf debug information sections and
159 line number sections from matching their section names. The
160 ELF definition is no real help here since it has no direct
161 knowledge of DWARF (by design, so any debugging format can be
162 used).
163
164 We also recognize the ".stab" sections used by the Sun compilers
165 released with Solaris 2.
166
167 FIXME: The section names should not be hardwired strings (what
168 should they be? I don't think most object file formats have enough
0963b4bd 169 section flags to specify what kind of debug section it is.
c906108c
SS
170 -kingdon). */
171
172static void
12b9c64f 173elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 174{
52f0bd74 175 struct elfinfo *ei;
c906108c
SS
176
177 ei = (struct elfinfo *) eip;
7ce59000 178 if (strcmp (sectp->name, ".stab") == 0)
c906108c 179 {
c5aa993b 180 ei->stabsect = sectp;
c906108c 181 }
6314a349 182 else if (strcmp (sectp->name, ".stab.index") == 0)
c906108c 183 {
c5aa993b 184 ei->stabindexsect = sectp;
c906108c 185 }
6314a349 186 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 187 {
c5aa993b 188 ei->mdebugsect = sectp;
c906108c
SS
189 }
190}
191
c906108c 192static struct minimal_symbol *
04a679b8
TT
193record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
f594e5e9
MC
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
c906108c 197{
5e2b427d
UW
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
0875794a
JK
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
5e2b427d 202 address = gdbarch_smash_text_address (gdbarch, address);
c906108c 203
04a679b8
TT
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type, bfd_section->index,
206 bfd_section, objfile);
c906108c
SS
207}
208
209/*
210
c5aa993b 211 LOCAL FUNCTION
c906108c 212
c5aa993b 213 elf_symtab_read -- read the symbol table of an ELF file
c906108c 214
c5aa993b 215 SYNOPSIS
c906108c 216
6f610d07 217 void elf_symtab_read (struct objfile *objfile, int type,
62553543 218 long number_of_symbols, asymbol **symbol_table)
c906108c 219
c5aa993b 220 DESCRIPTION
c906108c 221
62553543 222 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
223 symbol table contains regular, dynamic, or synthetic symbols, add all
224 the global function and data symbols to the minimal symbol table.
c906108c 225
c5aa993b
JM
226 In stabs-in-ELF, as implemented by Sun, there are some local symbols
227 defined in the ELF symbol table, which can be used to locate
228 the beginnings of sections from each ".o" file that was linked to
229 form the executable objfile. We gather any such info and record it
230 in data structures hung off the objfile's private data.
c906108c 231
c5aa993b 232 */
c906108c 233
6f610d07
UW
234#define ST_REGULAR 0
235#define ST_DYNAMIC 1
236#define ST_SYNTHETIC 2
237
c906108c 238static void
6f610d07 239elf_symtab_read (struct objfile *objfile, int type,
04a679b8
TT
240 long number_of_symbols, asymbol **symbol_table,
241 int copy_names)
c906108c 242{
5e2b427d 243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 244 asymbol *sym;
c906108c 245 long i;
c906108c 246 CORE_ADDR symaddr;
d4f3574e 247 CORE_ADDR offset;
c906108c
SS
248 enum minimal_symbol_type ms_type;
249 /* If sectinfo is nonNULL, it contains section info that should end up
250 filed in the objfile. */
251 struct stab_section_info *sectinfo = NULL;
252 /* If filesym is nonzero, it points to a file symbol, but we haven't
253 seen any section info for it yet. */
254 asymbol *filesym = 0;
1c9e8358
TT
255 /* Name of filesym. This is either a constant string or is saved on
256 the objfile's obstack. */
257 char *filesymname = "";
0a6ddd08 258 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
d4f3574e 259 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
69feea6f 260 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
c5aa993b 261
0cc7b392 262 for (i = 0; i < number_of_symbols; i++)
c906108c 263 {
0cc7b392
DJ
264 sym = symbol_table[i];
265 if (sym->name == NULL || *sym->name == '\0')
c906108c 266 {
0cc7b392 267 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 268 that are null strings (may happen). */
0cc7b392
DJ
269 continue;
270 }
c906108c 271
74763737
DJ
272 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
273 symbols which do not correspond to objects in the symbol table,
274 but have some other target-specific meaning. */
275 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
276 {
277 if (gdbarch_record_special_symbol_p (gdbarch))
278 gdbarch_record_special_symbol (gdbarch, objfile, sym);
279 continue;
280 }
74763737 281
0cc7b392 282 offset = ANOFFSET (objfile->section_offsets, sym->section->index);
6f610d07 283 if (type == ST_DYNAMIC
0cc7b392
DJ
284 && sym->section == &bfd_und_section
285 && (sym->flags & BSF_FUNCTION))
286 {
287 struct minimal_symbol *msym;
02c75f72
UW
288 bfd *abfd = objfile->obfd;
289 asection *sect;
0cc7b392
DJ
290
291 /* Symbol is a reference to a function defined in
292 a shared library.
293 If its value is non zero then it is usually the address
294 of the corresponding entry in the procedure linkage table,
295 plus the desired section offset.
296 If its value is zero then the dynamic linker has to resolve
0963b4bd 297 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
298 for this symbol in the executable file, so we skip it. */
299 symaddr = sym->value;
300 if (symaddr == 0)
301 continue;
02c75f72
UW
302
303 /* sym->section is the undefined section. However, we want to
304 record the section where the PLT stub resides with the
305 minimal symbol. Search the section table for the one that
306 covers the stub's address. */
307 for (sect = abfd->sections; sect != NULL; sect = sect->next)
308 {
309 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
310 continue;
311
312 if (symaddr >= bfd_get_section_vma (abfd, sect)
313 && symaddr < bfd_get_section_vma (abfd, sect)
314 + bfd_get_section_size (sect))
315 break;
316 }
317 if (!sect)
318 continue;
319
320 symaddr += ANOFFSET (objfile->section_offsets, sect->index);
321
0cc7b392 322 msym = record_minimal_symbol
04a679b8
TT
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392
DJ
325 if (msym != NULL)
326 msym->filename = filesymname;
0cc7b392
DJ
327 continue;
328 }
c906108c 329
0cc7b392
DJ
330 /* If it is a nonstripped executable, do not enter dynamic
331 symbols, as the dynamic symbol table is usually a subset
332 of the main symbol table. */
6f610d07 333 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
334 continue;
335 if (sym->flags & BSF_FILE)
336 {
337 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
338 Chain any old one onto the objfile; remember new sym. */
339 if (sectinfo != NULL)
c906108c 340 {
0cc7b392
DJ
341 sectinfo->next = dbx->stab_section_info;
342 dbx->stab_section_info = sectinfo;
343 sectinfo = NULL;
344 }
345 filesym = sym;
0cc7b392
DJ
346 filesymname =
347 obsavestring ((char *) filesym->name, strlen (filesym->name),
348 &objfile->objfile_obstack);
0cc7b392
DJ
349 }
350 else if (sym->flags & BSF_SECTION_SYM)
351 continue;
352 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK))
353 {
354 struct minimal_symbol *msym;
355
356 /* Select global/local/weak symbols. Note that bfd puts abs
357 symbols in their own section, so all symbols we are
0963b4bd
MS
358 interested in will have a section. */
359 /* Bfd symbols are section relative. */
0cc7b392 360 symaddr = sym->value + sym->section->vma;
45148c2e
UW
361 /* Relocate all non-absolute and non-TLS symbols by the
362 section offset. */
363 if (sym->section != &bfd_abs_section
364 && !(sym->section->flags & SEC_THREAD_LOCAL))
0cc7b392
DJ
365 {
366 symaddr += offset;
c906108c 367 }
0cc7b392
DJ
368 /* For non-absolute symbols, use the type of the section
369 they are relative to, to intuit text/data. Bfd provides
0963b4bd 370 no way of figuring this out for absolute symbols. */
0cc7b392 371 if (sym->section == &bfd_abs_section)
c906108c 372 {
0cc7b392
DJ
373 /* This is a hack to get the minimal symbol type
374 right for Irix 5, which has absolute addresses
6f610d07
UW
375 with special section indices for dynamic symbols.
376
377 NOTE: uweigand-20071112: Synthetic symbols do not
378 have an ELF-private part, so do not touch those. */
4fbb74a6 379 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
380 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
381
382 switch (shndx)
c906108c 383 {
0cc7b392
DJ
384 case SHN_MIPS_TEXT:
385 ms_type = mst_text;
386 break;
387 case SHN_MIPS_DATA:
388 ms_type = mst_data;
389 break;
390 case SHN_MIPS_ACOMMON:
391 ms_type = mst_bss;
392 break;
393 default:
394 ms_type = mst_abs;
395 }
396
397 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 398 symbols, relocate all others by section offset. */
0cc7b392
DJ
399 if (ms_type != mst_abs)
400 {
401 if (sym->name[0] == '.')
402 continue;
d4f3574e 403 symaddr += offset;
c906108c 404 }
0cc7b392
DJ
405 }
406 else if (sym->section->flags & SEC_CODE)
407 {
08232497 408 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 409 {
0875794a
JK
410 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
411 ms_type = mst_text_gnu_ifunc;
412 else
413 ms_type = mst_text;
0cc7b392
DJ
414 }
415 else if ((sym->name[0] == '.' && sym->name[1] == 'L')
416 || ((sym->flags & BSF_LOCAL)
417 && sym->name[0] == '$'
418 && sym->name[1] == 'L'))
419 /* Looks like a compiler-generated label. Skip
420 it. The assembler should be skipping these (to
421 keep executables small), but apparently with
422 gcc on the (deleted) delta m88k SVR4, it loses.
423 So to have us check too should be harmless (but
424 I encourage people to fix this in the assembler
425 instead of adding checks here). */
426 continue;
427 else
428 {
429 ms_type = mst_file_text;
c906108c 430 }
0cc7b392
DJ
431 }
432 else if (sym->section->flags & SEC_ALLOC)
433 {
434 if (sym->flags & (BSF_GLOBAL | BSF_WEAK))
c906108c 435 {
0cc7b392 436 if (sym->section->flags & SEC_LOAD)
c906108c 437 {
0cc7b392 438 ms_type = mst_data;
c906108c 439 }
c906108c
SS
440 else
441 {
0cc7b392 442 ms_type = mst_bss;
c906108c
SS
443 }
444 }
0cc7b392 445 else if (sym->flags & BSF_LOCAL)
c906108c 446 {
0cc7b392
DJ
447 /* Named Local variable in a Data section.
448 Check its name for stabs-in-elf. */
449 int special_local_sect;
d7f9d729 450
0cc7b392
DJ
451 if (strcmp ("Bbss.bss", sym->name) == 0)
452 special_local_sect = SECT_OFF_BSS (objfile);
453 else if (strcmp ("Ddata.data", sym->name) == 0)
454 special_local_sect = SECT_OFF_DATA (objfile);
455 else if (strcmp ("Drodata.rodata", sym->name) == 0)
456 special_local_sect = SECT_OFF_RODATA (objfile);
457 else
458 special_local_sect = -1;
459 if (special_local_sect >= 0)
c906108c 460 {
0cc7b392
DJ
461 /* Found a special local symbol. Allocate a
462 sectinfo, if needed, and fill it in. */
463 if (sectinfo == NULL)
c906108c 464 {
0cc7b392
DJ
465 int max_index;
466 size_t size;
467
25c2f6ab
PP
468 max_index = SECT_OFF_BSS (objfile);
469 if (objfile->sect_index_data > max_index)
470 max_index = objfile->sect_index_data;
471 if (objfile->sect_index_rodata > max_index)
472 max_index = objfile->sect_index_rodata;
0cc7b392
DJ
473
474 /* max_index is the largest index we'll
475 use into this array, so we must
476 allocate max_index+1 elements for it.
477 However, 'struct stab_section_info'
478 already includes one element, so we
479 need to allocate max_index aadditional
480 elements. */
481 size = (sizeof (struct stab_section_info)
c05d19c5 482 + (sizeof (CORE_ADDR) * max_index));
0cc7b392
DJ
483 sectinfo = (struct stab_section_info *)
484 xmalloc (size);
69feea6f 485 make_cleanup (xfree, sectinfo);
0cc7b392
DJ
486 memset (sectinfo, 0, size);
487 sectinfo->num_sections = max_index;
488 if (filesym == NULL)
c906108c 489 {
0cc7b392 490 complaint (&symfile_complaints,
3e43a32a
MS
491 _("elf/stab section information %s "
492 "without a preceding file symbol"),
0cc7b392
DJ
493 sym->name);
494 }
495 else
496 {
497 sectinfo->filename =
498 (char *) filesym->name;
c906108c 499 }
c906108c 500 }
0cc7b392
DJ
501 if (sectinfo->sections[special_local_sect] != 0)
502 complaint (&symfile_complaints,
3e43a32a
MS
503 _("duplicated elf/stab section "
504 "information for %s"),
0cc7b392
DJ
505 sectinfo->filename);
506 /* BFD symbols are section relative. */
507 symaddr = sym->value + sym->section->vma;
508 /* Relocate non-absolute symbols by the
509 section offset. */
510 if (sym->section != &bfd_abs_section)
511 symaddr += offset;
512 sectinfo->sections[special_local_sect] = symaddr;
513 /* The special local symbols don't go in the
514 minimal symbol table, so ignore this one. */
515 continue;
516 }
517 /* Not a special stabs-in-elf symbol, do regular
518 symbol processing. */
519 if (sym->section->flags & SEC_LOAD)
520 {
521 ms_type = mst_file_data;
c906108c
SS
522 }
523 else
524 {
0cc7b392 525 ms_type = mst_file_bss;
c906108c
SS
526 }
527 }
528 else
529 {
0cc7b392 530 ms_type = mst_unknown;
c906108c 531 }
0cc7b392
DJ
532 }
533 else
534 {
535 /* FIXME: Solaris2 shared libraries include lots of
536 odd "absolute" and "undefined" symbols, that play
537 hob with actions like finding what function the PC
538 is in. Ignore them if they aren't text, data, or bss. */
539 /* ms_type = mst_unknown; */
0963b4bd 540 continue; /* Skip this symbol. */
0cc7b392
DJ
541 }
542 msym = record_minimal_symbol
04a679b8 543 (sym->name, strlen (sym->name), copy_names, symaddr,
0cc7b392 544 ms_type, sym->section, objfile);
6f610d07 545
0cc7b392
DJ
546 if (msym)
547 {
548 /* Pass symbol size field in via BFD. FIXME!!! */
6f610d07
UW
549 elf_symbol_type *elf_sym;
550
551 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
552 ELF-private part. However, in some cases (e.g. synthetic
553 'dot' symbols on ppc64) the udata.p entry is set to point back
554 to the original ELF symbol it was derived from. Get the size
555 from that symbol. */
556 if (type != ST_SYNTHETIC)
557 elf_sym = (elf_symbol_type *) sym;
558 else
559 elf_sym = (elf_symbol_type *) sym->udata.p;
560
561 if (elf_sym)
562 MSYMBOL_SIZE(msym) = elf_sym->internal_elf_sym.st_size;
a103a963
DJ
563
564 msym->filename = filesymname;
565 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 566 }
2eaf8d2a
DJ
567
568 /* For @plt symbols, also record a trampoline to the
569 destination symbol. The @plt symbol will be used in
570 disassembly, and the trampoline will be used when we are
571 trying to find the target. */
572 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
573 {
574 int len = strlen (sym->name);
575
576 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
577 {
2eaf8d2a
DJ
578 struct minimal_symbol *mtramp;
579
04a679b8
TT
580 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
581 symaddr,
2eaf8d2a
DJ
582 mst_solib_trampoline,
583 sym->section, objfile);
584 if (mtramp)
585 {
586 MSYMBOL_SIZE (mtramp) = MSYMBOL_SIZE (msym);
587 mtramp->filename = filesymname;
588 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
589 }
590 }
591 }
c906108c 592 }
c906108c 593 }
69feea6f 594 do_cleanups (back_to);
c906108c
SS
595}
596
07be84bf
JK
597/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
598 for later look ups of which function to call when user requests
599 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
600 library defining `function' we cannot yet know while reading OBJFILE which
601 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
602 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
603
604static void
605elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
606{
607 bfd *obfd = objfile->obfd;
608 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
609 asection *plt, *relplt, *got_plt;
610 unsigned u;
611 int plt_elf_idx;
612 bfd_size_type reloc_count, reloc;
613 char *string_buffer = NULL;
614 size_t string_buffer_size = 0;
615 struct cleanup *back_to;
616 struct gdbarch *gdbarch = objfile->gdbarch;
617 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
618 size_t ptr_size = TYPE_LENGTH (ptr_type);
619
620 if (objfile->separate_debug_objfile_backlink)
621 return;
622
623 plt = bfd_get_section_by_name (obfd, ".plt");
624 if (plt == NULL)
625 return;
626 plt_elf_idx = elf_section_data (plt)->this_idx;
627
628 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
629 if (got_plt == NULL)
630 return;
631
632 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
633 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
634 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
635 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
636 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
637 break;
638 if (relplt == NULL)
639 return;
640
641 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
642 return;
643
644 back_to = make_cleanup (free_current_contents, &string_buffer);
645
646 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
647 for (reloc = 0; reloc < reloc_count; reloc++)
648 {
649 const char *name, *name_got_plt;
650 struct minimal_symbol *msym;
651 CORE_ADDR address;
652 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
653 size_t name_len;
654
655 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
656 name_len = strlen (name);
657 address = relplt->relocation[reloc].address;
658
659 /* Does the pointer reside in the .got.plt section? */
660 if (!(bfd_get_section_vma (obfd, got_plt) <= address
661 && address < bfd_get_section_vma (obfd, got_plt)
662 + bfd_get_section_size (got_plt)))
663 continue;
664
665 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
666 OBJFILE the symbol is undefined and the objfile having NAME defined
667 may not yet have been loaded. */
668
669 if (string_buffer_size < name_len + got_suffix_len)
670 {
671 string_buffer_size = 2 * (name_len + got_suffix_len);
672 string_buffer = xrealloc (string_buffer, string_buffer_size);
673 }
674 memcpy (string_buffer, name, name_len);
675 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
676 got_suffix_len);
677
678 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
679 1, address, mst_slot_got_plt, got_plt,
680 objfile);
681 if (msym)
682 MSYMBOL_SIZE (msym) = ptr_size;
683 }
684
685 do_cleanups (back_to);
686}
687
688/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
689
690static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
691
692/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
693
694struct elf_gnu_ifunc_cache
695{
696 /* This is always a function entry address, not a function descriptor. */
697 CORE_ADDR addr;
698
699 char name[1];
700};
701
702/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
703
704static hashval_t
705elf_gnu_ifunc_cache_hash (const void *a_voidp)
706{
707 const struct elf_gnu_ifunc_cache *a = a_voidp;
708
709 return htab_hash_string (a->name);
710}
711
712/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
713
714static int
715elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
716{
717 const struct elf_gnu_ifunc_cache *a = a_voidp;
718 const struct elf_gnu_ifunc_cache *b = b_voidp;
719
720 return strcmp (a->name, b->name) == 0;
721}
722
723/* Record the target function address of a STT_GNU_IFUNC function NAME is the
724 function entry address ADDR. Return 1 if NAME and ADDR are considered as
725 valid and therefore they were successfully recorded, return 0 otherwise.
726
727 Function does not expect a duplicate entry. Use
728 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
729 exists. */
730
731static int
732elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
733{
734 struct minimal_symbol *msym;
735 asection *sect;
736 struct objfile *objfile;
737 htab_t htab;
738 struct elf_gnu_ifunc_cache entry_local, *entry_p;
739 void **slot;
740
741 msym = lookup_minimal_symbol_by_pc (addr);
742 if (msym == NULL)
743 return 0;
744 if (SYMBOL_VALUE_ADDRESS (msym) != addr)
745 return 0;
746 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
747 sect = SYMBOL_OBJ_SECTION (msym)->the_bfd_section;
748 objfile = SYMBOL_OBJ_SECTION (msym)->objfile;
749
750 /* If .plt jumps back to .plt the symbol is still deferred for later
751 resolution and it has no use for GDB. Besides ".text" this symbol can
752 reside also in ".opd" for ppc64 function descriptor. */
753 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
754 return 0;
755
756 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
757 if (htab == NULL)
758 {
759 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
760 elf_gnu_ifunc_cache_eq,
761 NULL, &objfile->objfile_obstack,
762 hashtab_obstack_allocate,
763 dummy_obstack_deallocate);
764 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
765 }
766
767 entry_local.addr = addr;
768 obstack_grow (&objfile->objfile_obstack, &entry_local,
769 offsetof (struct elf_gnu_ifunc_cache, name));
770 obstack_grow_str0 (&objfile->objfile_obstack, name);
771 entry_p = obstack_finish (&objfile->objfile_obstack);
772
773 slot = htab_find_slot (htab, entry_p, INSERT);
774 if (*slot != NULL)
775 {
776 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
777 struct gdbarch *gdbarch = objfile->gdbarch;
778
779 if (entry_found_p->addr != addr)
780 {
781 /* This case indicates buggy inferior program, the resolved address
782 should never change. */
783
784 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
785 "function_address from %s to %s"),
786 name, paddress (gdbarch, entry_found_p->addr),
787 paddress (gdbarch, addr));
788 }
789
790 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
791 }
792 *slot = entry_p;
793
794 return 1;
795}
796
797/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
798 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
799 is not NULL) and the function returns 1. It returns 0 otherwise.
800
801 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
802 function. */
803
804static int
805elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
806{
807 struct objfile *objfile;
808
809 ALL_PSPACE_OBJFILES (current_program_space, objfile)
810 {
811 htab_t htab;
812 struct elf_gnu_ifunc_cache *entry_p;
813 void **slot;
814
815 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
816 if (htab == NULL)
817 continue;
818
819 entry_p = alloca (sizeof (*entry_p) + strlen (name));
820 strcpy (entry_p->name, name);
821
822 slot = htab_find_slot (htab, entry_p, NO_INSERT);
823 if (slot == NULL)
824 continue;
825 entry_p = *slot;
826 gdb_assert (entry_p != NULL);
827
828 if (addr_p)
829 *addr_p = entry_p->addr;
830 return 1;
831 }
832
833 return 0;
834}
835
836/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
837 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
838 is not NULL) and the function returns 1. It returns 0 otherwise.
839
840 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
841 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
842 prevent cache entries duplicates. */
843
844static int
845elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
846{
847 char *name_got_plt;
848 struct objfile *objfile;
849 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
850
851 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
852 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
853
854 ALL_PSPACE_OBJFILES (current_program_space, objfile)
855 {
856 bfd *obfd = objfile->obfd;
857 struct gdbarch *gdbarch = objfile->gdbarch;
858 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
859 size_t ptr_size = TYPE_LENGTH (ptr_type);
860 CORE_ADDR pointer_address, addr;
861 asection *plt;
862 gdb_byte *buf = alloca (ptr_size);
863 struct minimal_symbol *msym;
864
865 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
866 if (msym == NULL)
867 continue;
868 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
869 continue;
870 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
871
872 plt = bfd_get_section_by_name (obfd, ".plt");
873 if (plt == NULL)
874 continue;
875
876 if (MSYMBOL_SIZE (msym) != ptr_size)
877 continue;
878 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
879 continue;
880 addr = extract_typed_address (buf, ptr_type);
881 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
882 &current_target);
883
884 if (addr_p)
885 *addr_p = addr;
886 if (elf_gnu_ifunc_record_cache (name, addr))
887 return 1;
888 }
889
890 return 0;
891}
892
893/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
894 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
895 is not NULL) and the function returns 1. It returns 0 otherwise.
896
897 Both the elf_objfile_gnu_ifunc_cache_data hash table and
898 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
899
900static int
901elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
902{
903 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
904 return 1;
905
906 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
907 return 1;
908
909 return 0;
910}
911
912/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
913 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
914 is the entry point of the resolved STT_GNU_IFUNC target function to call.
915 */
916
917static CORE_ADDR
918elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
919{
920 char *name_at_pc;
921 CORE_ADDR start_at_pc, address;
922 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
923 struct value *function, *address_val;
924
925 /* Try first any non-intrusive methods without an inferior call. */
926
927 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
928 && start_at_pc == pc)
929 {
930 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
931 return address;
932 }
933 else
934 name_at_pc = NULL;
935
936 function = allocate_value (func_func_type);
937 set_value_address (function, pc);
938
939 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
940 function entry address. ADDRESS may be a function descriptor. */
941
942 address_val = call_function_by_hand (function, 0, NULL);
943 address = value_as_address (address_val);
944 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
945 &current_target);
946
947 if (name_at_pc)
948 elf_gnu_ifunc_record_cache (name_at_pc, address);
949
950 return address;
951}
952
0e30163f
JK
953/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
954
955static void
956elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
957{
958 struct breakpoint *b_return;
959 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
960 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
961 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
962 int thread_id = pid_to_thread_id (inferior_ptid);
963
964 gdb_assert (b->type == bp_gnu_ifunc_resolver);
965
966 for (b_return = b->related_breakpoint; b_return != b;
967 b_return = b_return->related_breakpoint)
968 {
969 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
970 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
971 gdb_assert (frame_id_p (b_return->frame_id));
972
973 if (b_return->thread == thread_id
974 && b_return->loc->requested_address == prev_pc
975 && frame_id_eq (b_return->frame_id, prev_frame_id))
976 break;
977 }
978
979 if (b_return == b)
980 {
981 struct symtab_and_line sal;
982
983 /* No need to call find_pc_line for symbols resolving as this is only
984 a helper breakpointer never shown to the user. */
985
986 init_sal (&sal);
987 sal.pspace = current_inferior ()->pspace;
988 sal.pc = prev_pc;
989 sal.section = find_pc_overlay (sal.pc);
990 sal.explicit_pc = 1;
991 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
992 prev_frame_id,
993 bp_gnu_ifunc_resolver_return);
994
995 /* Add new b_return to the ring list b->related_breakpoint. */
996 gdb_assert (b_return->related_breakpoint == b_return);
997 b_return->related_breakpoint = b->related_breakpoint;
998 b->related_breakpoint = b_return;
999 }
1000}
1001
1002/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1003
1004static void
1005elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1006{
1007 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1008 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1009 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1010 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1011 struct value *value;
1012 CORE_ADDR resolved_address, resolved_pc;
1013 struct symtab_and_line sal;
1014 struct symtabs_and_lines sals;
1015
1016 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1017
1018 value = allocate_value (value_type);
1019 gdbarch_return_value (gdbarch, func_func_type, value_type, regcache,
1020 value_contents_raw (value), NULL);
1021 resolved_address = value_as_address (value);
1022 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1023 resolved_address,
1024 &current_target);
1025
1026 while (b->related_breakpoint != b)
1027 {
1028 struct breakpoint *b_next = b->related_breakpoint;
1029
1030 switch (b->type)
1031 {
1032 case bp_gnu_ifunc_resolver:
1033 break;
1034 case bp_gnu_ifunc_resolver_return:
1035 delete_breakpoint (b);
1036 break;
1037 default:
1038 internal_error (__FILE__, __LINE__,
1039 _("handle_inferior_event: Invalid "
1040 "gnu-indirect-function breakpoint type %d"),
1041 (int) b->type);
1042 }
1043 b = b_next;
1044 }
1045 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1046
1047 gdb_assert (current_program_space == b->pspace);
1048 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1049
1050 sal = find_pc_line (resolved_pc, 0);
1051 sals.nelts = 1;
1052 sals.sals = &sal;
1053
1054 b->type = bp_breakpoint;
1055 update_breakpoint_locations (b, sals);
1056}
1057
874f5765
TG
1058struct build_id
1059 {
1060 size_t size;
1061 gdb_byte data[1];
1062 };
1063
1064/* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1065
1066static struct build_id *
1067build_id_bfd_get (bfd *abfd)
1068{
1069 struct build_id *retval;
1070
1071 if (!bfd_check_format (abfd, bfd_object)
1072 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1073 || elf_tdata (abfd)->build_id == NULL)
1074 return NULL;
1075
1076 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1077 retval->size = elf_tdata (abfd)->build_id_size;
1078 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1079
1080 return retval;
1081}
1082
1083/* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1084
1085static int
1086build_id_verify (const char *filename, struct build_id *check)
1087{
1088 bfd *abfd;
1089 struct build_id *found = NULL;
1090 int retval = 0;
1091
1092 /* We expect to be silent on the non-existing files. */
1093 abfd = bfd_open_maybe_remote (filename);
1094 if (abfd == NULL)
1095 return 0;
1096
1097 found = build_id_bfd_get (abfd);
1098
1099 if (found == NULL)
1100 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1101 else if (found->size != check->size
1102 || memcmp (found->data, check->data, found->size) != 0)
3e43a32a
MS
1103 warning (_("File \"%s\" has a different build-id, file skipped"),
1104 filename);
874f5765
TG
1105 else
1106 retval = 1;
1107
516ba659 1108 gdb_bfd_close_or_warn (abfd);
874f5765
TG
1109
1110 xfree (found);
1111
1112 return retval;
1113}
1114
1115static char *
1116build_id_to_debug_filename (struct build_id *build_id)
1117{
1118 char *link, *debugdir, *retval = NULL;
1119
1120 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1121 link = alloca (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1122 + 2 * build_id->size + (sizeof ".debug" - 1) + 1);
1123
1124 /* Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1125 cause "/.build-id/..." lookups. */
1126
1127 debugdir = debug_file_directory;
1128 do
1129 {
1130 char *s, *debugdir_end;
1131 gdb_byte *data = build_id->data;
1132 size_t size = build_id->size;
1133
1134 while (*debugdir == DIRNAME_SEPARATOR)
1135 debugdir++;
1136
1137 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1138 if (debugdir_end == NULL)
1139 debugdir_end = &debugdir[strlen (debugdir)];
1140
1141 memcpy (link, debugdir, debugdir_end - debugdir);
1142 s = &link[debugdir_end - debugdir];
1143 s += sprintf (s, "/.build-id/");
1144 if (size > 0)
1145 {
1146 size--;
1147 s += sprintf (s, "%02x", (unsigned) *data++);
1148 }
1149 if (size > 0)
1150 *s++ = '/';
1151 while (size-- > 0)
1152 s += sprintf (s, "%02x", (unsigned) *data++);
1153 strcpy (s, ".debug");
1154
1155 /* lrealpath() is expensive even for the usually non-existent files. */
1156 if (access (link, F_OK) == 0)
1157 retval = lrealpath (link);
1158
1159 if (retval != NULL && !build_id_verify (retval, build_id))
1160 {
1161 xfree (retval);
1162 retval = NULL;
1163 }
1164
1165 if (retval != NULL)
1166 break;
1167
1168 debugdir = debugdir_end;
1169 }
1170 while (*debugdir != 0);
1171
1172 return retval;
1173}
1174
1175static char *
1176find_separate_debug_file_by_buildid (struct objfile *objfile)
1177{
874f5765
TG
1178 struct build_id *build_id;
1179
1180 build_id = build_id_bfd_get (objfile->obfd);
1181 if (build_id != NULL)
1182 {
1183 char *build_id_name;
1184
1185 build_id_name = build_id_to_debug_filename (build_id);
1186 xfree (build_id);
1187 /* Prevent looping on a stripped .debug file. */
0ba1096a
KT
1188 if (build_id_name != NULL
1189 && filename_cmp (build_id_name, objfile->name) == 0)
874f5765
TG
1190 {
1191 warning (_("\"%s\": separate debug info file has no debug info"),
1192 build_id_name);
1193 xfree (build_id_name);
1194 }
1195 else if (build_id_name != NULL)
1196 return build_id_name;
1197 }
1198 return NULL;
1199}
1200
c906108c
SS
1201/* Scan and build partial symbols for a symbol file.
1202 We have been initialized by a call to elf_symfile_init, which
1203 currently does nothing.
1204
1205 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1206 in each section. We simplify it down to a single offset for all
1207 symbols. FIXME.
1208
c906108c
SS
1209 This function only does the minimum work necessary for letting the
1210 user "name" things symbolically; it does not read the entire symtab.
1211 Instead, it reads the external and static symbols and puts them in partial
1212 symbol tables. When more extensive information is requested of a
1213 file, the corresponding partial symbol table is mutated into a full
1214 fledged symbol table by going back and reading the symbols
1215 for real.
1216
1217 We look for sections with specific names, to tell us what debug
1218 format to look for: FIXME!!!
1219
c906108c
SS
1220 elfstab_build_psymtabs() handles STABS symbols;
1221 mdebug_build_psymtabs() handles ECOFF debugging information.
1222
1223 Note that ELF files have a "minimal" symbol table, which looks a lot
1224 like a COFF symbol table, but has only the minimal information necessary
1225 for linking. We process this also, and use the information to
1226 build gdb's minimal symbol table. This gives us some minimal debugging
1227 capability even for files compiled without -g. */
1228
1229static void
f4352531 1230elf_symfile_read (struct objfile *objfile, int symfile_flags)
c906108c
SS
1231{
1232 bfd *abfd = objfile->obfd;
1233 struct elfinfo ei;
1234 struct cleanup *back_to;
62553543
EZ
1235 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1236 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1237 asymbol *synthsyms;
c906108c
SS
1238
1239 init_minimal_symbol_collection ();
56e290f4 1240 back_to = make_cleanup_discard_minimal_symbols ();
c906108c
SS
1241
1242 memset ((char *) &ei, 0, sizeof (ei));
1243
0963b4bd 1244 /* Allocate struct to keep track of the symfile. */
0a6ddd08 1245 objfile->deprecated_sym_stab_info = (struct dbx_symfile_info *)
7936743b 1246 xmalloc (sizeof (struct dbx_symfile_info));
3e43a32a
MS
1247 memset ((char *) objfile->deprecated_sym_stab_info,
1248 0, sizeof (struct dbx_symfile_info));
12b9c64f 1249 make_cleanup (free_elfinfo, (void *) objfile);
c906108c 1250
3e43a32a
MS
1251 /* Process the normal ELF symbol table first. This may write some
1252 chain of info into the dbx_symfile_info in
1253 objfile->deprecated_sym_stab_info, which can later be used by
1254 elfstab_offset_sections. */
c906108c 1255
62553543
EZ
1256 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1257 if (storage_needed < 0)
3e43a32a
MS
1258 error (_("Can't read symbols from %s: %s"),
1259 bfd_get_filename (objfile->obfd),
62553543
EZ
1260 bfd_errmsg (bfd_get_error ()));
1261
1262 if (storage_needed > 0)
1263 {
1264 symbol_table = (asymbol **) xmalloc (storage_needed);
1265 make_cleanup (xfree, symbol_table);
1266 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1267
1268 if (symcount < 0)
3e43a32a
MS
1269 error (_("Can't read symbols from %s: %s"),
1270 bfd_get_filename (objfile->obfd),
62553543
EZ
1271 bfd_errmsg (bfd_get_error ()));
1272
04a679b8 1273 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
62553543 1274 }
c906108c
SS
1275
1276 /* Add the dynamic symbols. */
1277
62553543
EZ
1278 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1279
1280 if (storage_needed > 0)
1281 {
3f1eff0a
JK
1282 /* Memory gets permanently referenced from ABFD after
1283 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1284 It happens only in the case when elf_slurp_reloc_table sees
1285 asection->relocation NULL. Determining which section is asection is
1286 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1287 implementation detail, though. */
1288
1289 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
62553543
EZ
1290 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1291 dyn_symbol_table);
1292
1293 if (dynsymcount < 0)
3e43a32a
MS
1294 error (_("Can't read symbols from %s: %s"),
1295 bfd_get_filename (objfile->obfd),
62553543
EZ
1296 bfd_errmsg (bfd_get_error ()));
1297
04a679b8 1298 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
07be84bf
JK
1299
1300 elf_rel_plt_read (objfile, dyn_symbol_table);
62553543
EZ
1301 }
1302
1303 /* Add synthetic symbols - for instance, names for any PLT entries. */
1304
1305 synthcount = bfd_get_synthetic_symtab (abfd, symcount, symbol_table,
1306 dynsymcount, dyn_symbol_table,
1307 &synthsyms);
1308 if (synthcount > 0)
1309 {
1310 asymbol **synth_symbol_table;
1311 long i;
1312
1313 make_cleanup (xfree, synthsyms);
1314 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1315 for (i = 0; i < synthcount; i++)
9f20e3da 1316 synth_symbol_table[i] = synthsyms + i;
62553543 1317 make_cleanup (xfree, synth_symbol_table);
3e43a32a
MS
1318 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1319 synth_symbol_table, 1);
62553543 1320 }
c906108c 1321
7134143f
DJ
1322 /* Install any minimal symbols that have been collected as the current
1323 minimal symbols for this objfile. The debug readers below this point
1324 should not generate new minimal symbols; if they do it's their
1325 responsibility to install them. "mdebug" appears to be the only one
1326 which will do this. */
1327
1328 install_minimal_symbols (objfile);
1329 do_cleanups (back_to);
1330
c906108c 1331 /* Now process debugging information, which is contained in
0963b4bd 1332 special ELF sections. */
c906108c 1333
0963b4bd 1334 /* We first have to find them... */
12b9c64f 1335 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c
SS
1336
1337 /* ELF debugging information is inserted into the psymtab in the
1338 order of least informative first - most informative last. Since
1339 the psymtab table is searched `most recent insertion first' this
1340 increases the probability that more detailed debug information
1341 for a section is found.
1342
1343 For instance, an object file might contain both .mdebug (XCOFF)
1344 and .debug_info (DWARF2) sections then .mdebug is inserted first
1345 (searched last) and DWARF2 is inserted last (searched first). If
1346 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1347 an included file XCOFF info is useless. */
c906108c
SS
1348
1349 if (ei.mdebugsect)
1350 {
1351 const struct ecoff_debug_swap *swap;
1352
1353 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1354 information. */
c906108c
SS
1355 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1356 if (swap)
d4f3574e 1357 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1358 }
1359 if (ei.stabsect)
1360 {
1361 asection *str_sect;
1362
1363 /* Stab sections have an associated string table that looks like
c5aa993b 1364 a separate section. */
c906108c
SS
1365 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1366
1367 /* FIXME should probably warn about a stab section without a stabstr. */
1368 if (str_sect)
1369 elfstab_build_psymtabs (objfile,
086df311 1370 ei.stabsect,
c906108c
SS
1371 str_sect->filepos,
1372 bfd_section_size (abfd, str_sect));
1373 }
9291a0cd 1374
b11896a5
TT
1375 if (dwarf2_has_info (objfile))
1376 {
1377 if (dwarf2_initialize_objfile (objfile))
1378 objfile->sf = &elf_sym_fns_gdb_index;
1379 else
1380 {
1381 /* It is ok to do this even if the stabs reader made some
1382 partial symbols, because OBJF_PSYMTABS_READ has not been
1383 set, and so our lazy reader function will still be called
1384 when needed. */
1385 objfile->sf = &elf_sym_fns_lazy_psyms;
1386 }
1387 }
3e43a32a
MS
1388 /* If the file has its own symbol tables it has no separate debug
1389 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1390 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1391 `.note.gnu.build-id'. */
b11896a5 1392 else if (!objfile_has_partial_symbols (objfile))
9cce227f
TG
1393 {
1394 char *debugfile;
1395
1396 debugfile = find_separate_debug_file_by_buildid (objfile);
1397
1398 if (debugfile == NULL)
1399 debugfile = find_separate_debug_file_by_debuglink (objfile);
1400
1401 if (debugfile)
1402 {
1403 bfd *abfd = symfile_bfd_open (debugfile);
d7f9d729 1404
9cce227f
TG
1405 symbol_file_add_separate (abfd, symfile_flags, objfile);
1406 xfree (debugfile);
1407 }
1408 }
c906108c
SS
1409}
1410
b11896a5
TT
1411/* Callback to lazily read psymtabs. */
1412
1413static void
1414read_psyms (struct objfile *objfile)
1415{
1416 if (dwarf2_has_info (objfile))
1417 dwarf2_build_psymtabs (objfile);
1418}
1419
0a6ddd08
AC
1420/* This cleans up the objfile's deprecated_sym_stab_info pointer, and
1421 the chain of stab_section_info's, that might be dangling from
1422 it. */
c906108c
SS
1423
1424static void
12b9c64f 1425free_elfinfo (void *objp)
c906108c 1426{
c5aa993b 1427 struct objfile *objfile = (struct objfile *) objp;
0a6ddd08 1428 struct dbx_symfile_info *dbxinfo = objfile->deprecated_sym_stab_info;
c906108c
SS
1429 struct stab_section_info *ssi, *nssi;
1430
1431 ssi = dbxinfo->stab_section_info;
1432 while (ssi)
1433 {
1434 nssi = ssi->next;
2dc74dc1 1435 xfree (ssi);
c906108c
SS
1436 ssi = nssi;
1437 }
1438
1439 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1440}
1441
1442
1443/* Initialize anything that needs initializing when a completely new symbol
1444 file is specified (not just adding some symbols from another file, e.g. a
1445 shared library).
1446
3e43a32a
MS
1447 We reinitialize buildsym, since we may be reading stabs from an ELF
1448 file. */
c906108c
SS
1449
1450static void
fba45db2 1451elf_new_init (struct objfile *ignore)
c906108c
SS
1452{
1453 stabsread_new_init ();
1454 buildsym_new_init ();
1455}
1456
1457/* Perform any local cleanups required when we are done with a particular
1458 objfile. I.E, we are in the process of discarding all symbol information
1459 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1460 objfile struct from the global list of known objfiles. */
c906108c
SS
1461
1462static void
fba45db2 1463elf_symfile_finish (struct objfile *objfile)
c906108c 1464{
0a6ddd08 1465 if (objfile->deprecated_sym_stab_info != NULL)
c906108c 1466 {
0a6ddd08 1467 xfree (objfile->deprecated_sym_stab_info);
c906108c 1468 }
fe3e1990
DJ
1469
1470 dwarf2_free_objfile (objfile);
c906108c
SS
1471}
1472
1473/* ELF specific initialization routine for reading symbols.
1474
1475 It is passed a pointer to a struct sym_fns which contains, among other
1476 things, the BFD for the file whose symbols are being read, and a slot for
1477 a pointer to "private data" which we can fill with goodies.
1478
1479 For now at least, we have nothing in particular to do, so this function is
0963b4bd 1480 just a stub. */
c906108c
SS
1481
1482static void
fba45db2 1483elf_symfile_init (struct objfile *objfile)
c906108c
SS
1484{
1485 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1486 find this causes a significant slowdown in gdb then we could
1487 set it in the debug symbol readers only when necessary. */
1488 objfile->flags |= OBJF_REORDERED;
1489}
1490
1491/* When handling an ELF file that contains Sun STABS debug info,
1492 some of the debug info is relative to the particular chunk of the
1493 section that was generated in its individual .o file. E.g.
1494 offsets to static variables are relative to the start of the data
1495 segment *for that module before linking*. This information is
1496 painfully squirreled away in the ELF symbol table as local symbols
1497 with wierd names. Go get 'em when needed. */
1498
1499void
fba45db2 1500elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
c906108c 1501{
72b9f47f 1502 const char *filename = pst->filename;
0a6ddd08 1503 struct dbx_symfile_info *dbx = objfile->deprecated_sym_stab_info;
c906108c
SS
1504 struct stab_section_info *maybe = dbx->stab_section_info;
1505 struct stab_section_info *questionable = 0;
1506 int i;
c906108c
SS
1507
1508 /* The ELF symbol info doesn't include path names, so strip the path
1509 (if any) from the psymtab filename. */
0ba1096a 1510 filename = lbasename (filename);
c906108c
SS
1511
1512 /* FIXME: This linear search could speed up significantly
1513 if it was chained in the right order to match how we search it,
0963b4bd 1514 and if we unchained when we found a match. */
c906108c
SS
1515 for (; maybe; maybe = maybe->next)
1516 {
1517 if (filename[0] == maybe->filename[0]
0ba1096a 1518 && filename_cmp (filename, maybe->filename) == 0)
c906108c
SS
1519 {
1520 /* We found a match. But there might be several source files
1521 (from different directories) with the same name. */
1522 if (0 == maybe->found)
1523 break;
c5aa993b 1524 questionable = maybe; /* Might use it later. */
c906108c
SS
1525 }
1526 }
1527
1528 if (maybe == 0 && questionable != 0)
1529 {
23136709 1530 complaint (&symfile_complaints,
3e43a32a
MS
1531 _("elf/stab section information questionable for %s"),
1532 filename);
c906108c
SS
1533 maybe = questionable;
1534 }
1535
1536 if (maybe)
1537 {
1538 /* Found it! Allocate a new psymtab struct, and fill it in. */
1539 maybe->found++;
1540 pst->section_offsets = (struct section_offsets *)
8b92e4d5 1541 obstack_alloc (&objfile->objfile_obstack,
a39a16c4
MM
1542 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1543 for (i = 0; i < maybe->num_sections; i++)
a4c8257b 1544 (pst->section_offsets)->offsets[i] = maybe->sections[i];
c906108c
SS
1545 return;
1546 }
1547
1548 /* We were unable to find any offsets for this file. Complain. */
c5aa993b 1549 if (dbx->stab_section_info) /* If there *is* any info, */
23136709 1550 complaint (&symfile_complaints,
e2e0b3e5 1551 _("elf/stab section information missing for %s"), filename);
c906108c
SS
1552}
1553\f
1554/* Register that we are able to handle ELF object file formats. */
1555
00b5771c 1556static const struct sym_fns elf_sym_fns =
c906108c
SS
1557{
1558 bfd_target_elf_flavour,
3e43a32a
MS
1559 elf_new_init, /* init anything gbl to entire symtab */
1560 elf_symfile_init, /* read initial info, setup for sym_read() */
1561 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1562 NULL, /* sym_read_psymbols */
1563 elf_symfile_finish, /* finished with file, cleanup */
1564 default_symfile_offsets, /* Translate ext. to int. relocation */
1565 elf_symfile_segments, /* Get segment information from a file. */
1566 NULL,
1567 default_symfile_relocate, /* Relocate a debug section. */
1568 &psym_functions
1569};
1570
1571/* The same as elf_sym_fns, but not registered and lazily reads
1572 psymbols. */
1573
1574static const struct sym_fns elf_sym_fns_lazy_psyms =
1575{
1576 bfd_target_elf_flavour,
1577 elf_new_init, /* init anything gbl to entire symtab */
1578 elf_symfile_init, /* read initial info, setup for sym_read() */
1579 elf_symfile_read, /* read a symbol file into symtab */
1580 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1581 elf_symfile_finish, /* finished with file, cleanup */
1582 default_symfile_offsets, /* Translate ext. to int. relocation */
1583 elf_symfile_segments, /* Get segment information from a file. */
1584 NULL,
1585 default_symfile_relocate, /* Relocate a debug section. */
00b5771c 1586 &psym_functions
c906108c
SS
1587};
1588
9291a0cd
TT
1589/* The same as elf_sym_fns, but not registered and uses the
1590 DWARF-specific GNU index rather than psymtab. */
00b5771c 1591static const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd
TT
1592{
1593 bfd_target_elf_flavour,
3e43a32a
MS
1594 elf_new_init, /* init anything gbl to entire symab */
1595 elf_symfile_init, /* read initial info, setup for sym_red() */
1596 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1597 NULL, /* sym_read_psymbols */
3e43a32a
MS
1598 elf_symfile_finish, /* finished with file, cleanup */
1599 default_symfile_offsets, /* Translate ext. to int. relocatin */
1600 elf_symfile_segments, /* Get segment information from a file. */
1601 NULL,
1602 default_symfile_relocate, /* Relocate a debug section. */
00b5771c 1603 &dwarf2_gdb_index_functions
9291a0cd
TT
1604};
1605
07be84bf
JK
1606/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1607
1608static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1609{
1610 elf_gnu_ifunc_resolve_addr,
1611 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1612 elf_gnu_ifunc_resolver_stop,
1613 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1614};
1615
c906108c 1616void
fba45db2 1617_initialize_elfread (void)
c906108c
SS
1618{
1619 add_symtab_fns (&elf_sym_fns);
07be84bf
JK
1620
1621 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1622 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1623}