]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
Fix an illegal memory access when parsing an ELF file containing corrupt symbol versi...
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
4a94e368 3 Copyright (C) 2002-2022 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
4de283e4
TT
21#include "inferior.h"
22#include "gdbcore.h"
456f8b9d 23#include "arch-utils.h"
4de283e4
TT
24#include "regcache.h"
25#include "frame.h"
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "trad-frame.h"
dcc6aaff 29#include "dis-asm.h"
4de283e4
TT
30#include "sim-regno.h"
31#include "gdb/sim-frv.h"
f16f7b7c 32#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
4de283e4 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
d55e5aa6 36#include "osabi.h"
4de283e4 37#include "infcall.h"
d55e5aa6 38#include "solib.h"
4de283e4
TT
39#include "frv-tdep.h"
40#include "objfiles.h"
76eb8ef1 41#include "gdbarch.h"
456f8b9d 42
1cb761c7 43struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 44 {
1cb761c7
KB
45 /* The previous frame's inner-most stack address. Used as this
46 frame ID's stack_addr. */
47 CORE_ADDR prev_sp;
456f8b9d 48
1cb761c7
KB
49 /* The frame's base, optionally used by the high-level debug info. */
50 CORE_ADDR base;
8baa6f92
KB
51
52 /* Table indicating the location of each and every register. */
098caef4 53 trad_frame_saved_reg *saved_regs;
456f8b9d
DB
54 };
55
456f8b9d
DB
56/* A structure describing a particular variant of the FRV.
57 We allocate and initialize one of these structures when we create
58 the gdbarch object for a variant.
59
60 At the moment, all the FR variants we support differ only in which
61 registers are present; the portable code of GDB knows that
62 registers whose names are the empty string don't exist, so the
63 `register_names' array captures all the per-variant information we
64 need.
65
66 in the future, if we need to have per-variant maps for raw size,
67 virtual type, etc., we should replace register_names with an array
68 of structures, each of which gives all the necessary info for one
69 register. Don't stick parallel arrays in here --- that's so
70 Fortran. */
ab25d9bb 71struct frv_gdbarch_tdep : gdbarch_tdep_base
456f8b9d 72{
7e295833 73 /* Which ABI is in use? */
345bd07c 74 enum frv_abi frv_abi {};
7e295833 75
456f8b9d 76 /* How many general-purpose registers does this variant have? */
345bd07c 77 int num_gprs = 0;
456f8b9d
DB
78
79 /* How many floating-point registers does this variant have? */
345bd07c 80 int num_fprs = 0;
456f8b9d
DB
81
82 /* How many hardware watchpoints can it support? */
345bd07c 83 int num_hw_watchpoints = 0;
456f8b9d
DB
84
85 /* How many hardware breakpoints can it support? */
345bd07c 86 int num_hw_breakpoints = 0;
456f8b9d
DB
87
88 /* Register names. */
345bd07c 89 const char **register_names = nullptr;
456f8b9d
DB
90};
91
7e295833
KB
92/* Return the FR-V ABI associated with GDBARCH. */
93enum frv_abi
94frv_abi (struct gdbarch *gdbarch)
95{
08106042 96 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 97 return tdep->frv_abi;
7e295833
KB
98}
99
100/* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103int
104frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
dda83cd7 105 CORE_ADDR *exec_addr)
7e295833
KB
106{
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
594f7785
UW
111 struct regcache *regcache = get_current_regcache ();
112
7e295833
KB
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
594f7785 116 regcache_cooked_read_unsigned (regcache,
7e295833
KB
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129}
456f8b9d
DB
130
131/* Allocate a new variant structure, and set up default values for all
132 the fields. */
345bd07c 133static frv_gdbarch_tdep *
5ae5f592 134new_variant (void)
456f8b9d 135{
456f8b9d 136 int r;
456f8b9d 137
345bd07c 138 frv_gdbarch_tdep *var = new frv_gdbarch_tdep;
8d749320 139
7e295833 140 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
141 var->num_gprs = 64;
142 var->num_fprs = 64;
143 var->num_hw_watchpoints = 0;
144 var->num_hw_breakpoints = 0;
145
146 /* By default, don't supply any general-purpose or floating-point
147 register names. */
6a748db6 148 var->register_names
a121b7c1
PA
149 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
150 * sizeof (const char *));
6a748db6 151 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
152 var->register_names[r] = "";
153
526eef89 154 /* Do, however, supply default names for the known special-purpose
456f8b9d 155 registers. */
456f8b9d
DB
156
157 var->register_names[pc_regnum] = "pc";
158 var->register_names[lr_regnum] = "lr";
159 var->register_names[lcr_regnum] = "lcr";
160
161 var->register_names[psr_regnum] = "psr";
162 var->register_names[ccr_regnum] = "ccr";
163 var->register_names[cccr_regnum] = "cccr";
164 var->register_names[tbr_regnum] = "tbr";
165
166 /* Debug registers. */
167 var->register_names[brr_regnum] = "brr";
168 var->register_names[dbar0_regnum] = "dbar0";
169 var->register_names[dbar1_regnum] = "dbar1";
170 var->register_names[dbar2_regnum] = "dbar2";
171 var->register_names[dbar3_regnum] = "dbar3";
172
526eef89
KB
173 /* iacc0 (Only found on MB93405.) */
174 var->register_names[iacc0h_regnum] = "iacc0h";
175 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 176 var->register_names[iacc0_regnum] = "iacc0";
526eef89 177
8b67aa36
KB
178 /* fsr0 (Found on FR555 and FR501.) */
179 var->register_names[fsr0_regnum] = "fsr0";
180
181 /* acc0 - acc7. The architecture provides for the possibility of many
182 more (up to 64 total), but we don't want to make that big of a hole
183 in the G packet. If we need more in the future, we'll add them
184 elsewhere. */
185 for (r = acc0_regnum; r <= acc7_regnum; r++)
8579fd13
AB
186 var->register_names[r]
187 = xstrprintf ("acc%d", r - acc0_regnum).release ();
8b67aa36
KB
188
189 /* accg0 - accg7: These are one byte registers. The remote protocol
190 provides the raw values packed four into a slot. accg0123 and
191 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
192 We don't provide names for accg0123 and accg4567 since the user will
193 likely not want to see these raw values. */
194
195 for (r = accg0_regnum; r <= accg7_regnum; r++)
8579fd13
AB
196 var->register_names[r]
197 = xstrprintf ("accg%d", r - accg0_regnum).release ();
8b67aa36
KB
198
199 /* msr0 and msr1. */
200
201 var->register_names[msr0_regnum] = "msr0";
202 var->register_names[msr1_regnum] = "msr1";
203
204 /* gner and fner registers. */
205 var->register_names[gner0_regnum] = "gner0";
206 var->register_names[gner1_regnum] = "gner1";
207 var->register_names[fner0_regnum] = "fner0";
208 var->register_names[fner1_regnum] = "fner1";
209
456f8b9d
DB
210 return var;
211}
212
213
214/* Indicate that the variant VAR has NUM_GPRS general-purpose
215 registers, and fill in the names array appropriately. */
216static void
345bd07c 217set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
456f8b9d
DB
218{
219 int r;
220
221 var->num_gprs = num_gprs;
222
223 for (r = 0; r < num_gprs; ++r)
224 {
225 char buf[20];
226
08850b56 227 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
228 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
229 }
230}
231
232
233/* Indicate that the variant VAR has NUM_FPRS floating-point
234 registers, and fill in the names array appropriately. */
235static void
345bd07c 236set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
456f8b9d
DB
237{
238 int r;
239
240 var->num_fprs = num_fprs;
241
242 for (r = 0; r < num_fprs; ++r)
243 {
244 char buf[20];
245
08850b56 246 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
247 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
248 }
249}
250
7e295833 251static void
345bd07c 252set_variant_abi_fdpic (frv_gdbarch_tdep *var)
7e295833
KB
253{
254 var->frv_abi = FRV_ABI_FDPIC;
255 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
256 var->register_names[fdpic_loadmap_interp_regnum]
257 = xstrdup ("loadmap_interp");
7e295833 258}
456f8b9d 259
b2d6d697 260static void
345bd07c 261set_variant_scratch_registers (frv_gdbarch_tdep *var)
b2d6d697
KB
262{
263 var->register_names[scr0_regnum] = xstrdup ("scr0");
264 var->register_names[scr1_regnum] = xstrdup ("scr1");
265 var->register_names[scr2_regnum] = xstrdup ("scr2");
266 var->register_names[scr3_regnum] = xstrdup ("scr3");
267}
268
456f8b9d 269static const char *
d93859e2 270frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d 271{
08106042 272 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 273 return tdep->register_names[reg];
456f8b9d
DB
274}
275
526eef89 276
456f8b9d 277static struct type *
7f398216 278frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 279{
526eef89 280 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 281 return builtin_type (gdbarch)->builtin_float;
6a748db6 282 else if (reg == iacc0_regnum)
df4df182 283 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 284 else
df4df182 285 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
286}
287
05d1431c 288static enum register_status
849d0ba8 289frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
dda83cd7 290 int reg, gdb_byte *buffer)
6a748db6 291{
05d1431c
PA
292 enum register_status status;
293
6a748db6
KB
294 if (reg == iacc0_regnum)
295 {
03f50fc8 296 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 297 if (status == REG_VALID)
03f50fc8 298 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 299 }
8b67aa36
KB
300 else if (accg0_regnum <= reg && reg <= accg7_regnum)
301 {
302 /* The accg raw registers have four values in each slot with the
dda83cd7 303 lowest register number occupying the first byte. */
8b67aa36
KB
304
305 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
306 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 307 gdb_byte buf[4];
8b67aa36 308
03f50fc8 309 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
310 if (status == REG_VALID)
311 {
312 memset (buffer, 0, 4);
313 /* FR-V is big endian, so put the requested byte in the
314 first byte of the buffer allocated to hold the
315 pseudo-register. */
316 buffer[0] = buf[byte_num];
317 }
8b67aa36 318 }
05d1431c
PA
319 else
320 gdb_assert_not_reached ("invalid pseudo register number");
321
322 return status;
6a748db6
KB
323}
324
325static void
326frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
dda83cd7 327 int reg, const gdb_byte *buffer)
6a748db6
KB
328{
329 if (reg == iacc0_regnum)
330 {
10eaee5f
SM
331 regcache->raw_write (iacc0h_regnum, buffer);
332 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 333 }
8b67aa36
KB
334 else if (accg0_regnum <= reg && reg <= accg7_regnum)
335 {
336 /* The accg raw registers have four values in each slot with the
dda83cd7 337 lowest register number occupying the first byte. */
8b67aa36
KB
338
339 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
340 int byte_num = (reg - accg0_regnum) % 4;
e362b510 341 gdb_byte buf[4];
8b67aa36 342
0b883586 343 regcache->raw_read (raw_regnum, buf);
8b67aa36 344 buf[byte_num] = ((bfd_byte *) buffer)[0];
10eaee5f 345 regcache->raw_write (raw_regnum, buf);
8b67aa36 346 }
6a748db6
KB
347}
348
526eef89 349static int
e7faf938 350frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
351{
352 static const int spr_map[] =
353 {
354 H_SPR_PSR, /* psr_regnum */
355 H_SPR_CCR, /* ccr_regnum */
356 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
357 -1, /* fdpic_loadmap_exec_regnum */
358 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
359 -1, /* 134 */
360 H_SPR_TBR, /* tbr_regnum */
361 H_SPR_BRR, /* brr_regnum */
362 H_SPR_DBAR0, /* dbar0_regnum */
363 H_SPR_DBAR1, /* dbar1_regnum */
364 H_SPR_DBAR2, /* dbar2_regnum */
365 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
366 H_SPR_SCR0, /* scr0_regnum */
367 H_SPR_SCR1, /* scr1_regnum */
368 H_SPR_SCR2, /* scr2_regnum */
369 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
370 H_SPR_LR, /* lr_regnum */
371 H_SPR_LCR, /* lcr_regnum */
372 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
373 H_SPR_IACC0L, /* iacc0l_regnum */
374 H_SPR_FSR0, /* fsr0_regnum */
375 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
376 -1, /* acc0_regnum */
377 -1, /* acc1_regnum */
378 -1, /* acc2_regnum */
379 -1, /* acc3_regnum */
380 -1, /* acc4_regnum */
381 -1, /* acc5_regnum */
382 -1, /* acc6_regnum */
383 -1, /* acc7_regnum */
384 -1, /* acc0123_regnum */
385 -1, /* acc4567_regnum */
386 H_SPR_MSR0, /* msr0_regnum */
387 H_SPR_MSR1, /* msr1_regnum */
388 H_SPR_GNER0, /* gner0_regnum */
389 H_SPR_GNER1, /* gner1_regnum */
390 H_SPR_FNER0, /* fner0_regnum */
391 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
392 };
393
e7faf938 394 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
395
396 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
397 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
398 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
399 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
400 else if (pc_regnum == reg)
401 return SIM_FRV_PC_REGNUM;
402 else if (reg >= first_spr_regnum
dda83cd7 403 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
526eef89
KB
404 {
405 int spr_reg_offset = spr_map[reg - first_spr_regnum];
406
407 if (spr_reg_offset < 0)
408 return SIM_REGNO_DOES_NOT_EXIST;
409 else
410 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
411 }
412
e2e0b3e5 413 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
414}
415
04180708 416constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 417
04180708 418typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 419
46a16dba
KB
420/* Define the maximum number of instructions which may be packed into a
421 bundle (VLIW instruction). */
422static const int max_instrs_per_bundle = 8;
423
424/* Define the size (in bytes) of an FR-V instruction. */
425static const int frv_instr_size = 4;
426
427/* Adjust a breakpoint's address to account for the FR-V architecture's
428 constraint that a break instruction must not appear as any but the
429 first instruction in the bundle. */
430static CORE_ADDR
1208538e 431frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
432{
433 int count = max_instrs_per_bundle;
434 CORE_ADDR addr = bpaddr - frv_instr_size;
435 CORE_ADDR func_start = get_pc_function_start (bpaddr);
436
437 /* Find the end of the previous packing sequence. This will be indicated
438 by either attempting to access some inaccessible memory or by finding
0963b4bd 439 an instruction word whose packing bit is set to one. */
46a16dba
KB
440 while (count-- > 0 && addr >= func_start)
441 {
948f8e3d 442 gdb_byte instr[frv_instr_size];
46a16dba
KB
443 int status;
444
8defab1a 445 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
446
447 if (status != 0)
448 break;
449
450 /* This is a big endian architecture, so byte zero will have most
dda83cd7
SM
451 significant byte. The most significant bit of this byte is the
452 packing bit. */
46a16dba
KB
453 if (instr[0] & 0x80)
454 break;
455
456 addr -= frv_instr_size;
457 }
458
459 if (count > 0)
460 bpaddr = addr + frv_instr_size;
461
462 return bpaddr;
463}
464
456f8b9d
DB
465
466/* Return true if REG is a caller-saves ("scratch") register,
467 false otherwise. */
468static int
469is_caller_saves_reg (int reg)
470{
471 return ((4 <= reg && reg <= 7)
dda83cd7
SM
472 || (14 <= reg && reg <= 15)
473 || (32 <= reg && reg <= 47));
456f8b9d
DB
474}
475
476
477/* Return true if REG is a callee-saves register, false otherwise. */
478static int
479is_callee_saves_reg (int reg)
480{
481 return ((16 <= reg && reg <= 31)
dda83cd7 482 || (48 <= reg && reg <= 63));
456f8b9d
DB
483}
484
485
486/* Return true if REG is an argument register, false otherwise. */
487static int
488is_argument_reg (int reg)
489{
490 return (8 <= reg && reg <= 13);
491}
492
456f8b9d
DB
493/* Scan an FR-V prologue, starting at PC, until frame->PC.
494 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
495 We assume FRAME's saved_regs array has already been allocated and cleared.
496 Return the first PC value after the prologue.
497
498 Note that, for unoptimized code, we almost don't need this function
499 at all; all arguments and locals live on the stack, so we just need
500 the FP to find everything. The catch: structures passed by value
501 have their addresses living in registers; they're never spilled to
502 the stack. So if you ever want to be able to get to these
503 arguments in any frame but the top, you'll need to do this serious
504 prologue analysis. */
505static CORE_ADDR
d80b854b 506frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
bd2b40ac 507 frame_info_ptr this_frame,
dda83cd7 508 struct frv_unwind_cache *info)
456f8b9d 509{
e17a4113
UW
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511
456f8b9d
DB
512 /* When writing out instruction bitpatterns, we use the following
513 letters to label instruction fields:
514 P - The parallel bit. We don't use this.
515 J - The register number of GRj in the instruction description.
516 K - The register number of GRk in the instruction description.
517 I - The register number of GRi.
85102364 518 S - a signed immediate offset.
456f8b9d
DB
519 U - an unsigned immediate offset.
520
521 The dots below the numbers indicate where hex digit boundaries
522 fall, to make it easier to check the numbers. */
523
524 /* Non-zero iff we've seen the instruction that initializes the
525 frame pointer for this function's frame. */
526 int fp_set = 0;
527
528 /* If fp_set is non_zero, then this is the distance from
529 the stack pointer to frame pointer: fp = sp + fp_offset. */
530 int fp_offset = 0;
531
0963b4bd 532 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
533 int framesize = 0;
534
1cb761c7
KB
535 /* Flag indicating if lr has been saved on the stack. */
536 int lr_saved_on_stack = 0;
537
456f8b9d
DB
538 /* The number of the general-purpose register we saved the return
539 address ("link register") in, or -1 if we haven't moved it yet. */
540 int lr_save_reg = -1;
541
1cb761c7
KB
542 /* Offset (from sp) at which lr has been saved on the stack. */
543
544 int lr_sp_offset = 0;
456f8b9d
DB
545
546 /* If gr_saved[i] is non-zero, then we've noticed that general
547 register i has been saved at gr_sp_offset[i] from the stack
548 pointer. */
549 char gr_saved[64];
550 int gr_sp_offset[64];
551
d40fcd7b
KB
552 /* The address of the most recently scanned prologue instruction. */
553 CORE_ADDR last_prologue_pc;
554
0963b4bd 555 /* The address of the next instruction. */
d40fcd7b
KB
556 CORE_ADDR next_pc;
557
558 /* The upper bound to of the pc values to scan. */
559 CORE_ADDR lim_pc;
560
456f8b9d
DB
561 memset (gr_saved, 0, sizeof (gr_saved));
562
d40fcd7b
KB
563 last_prologue_pc = pc;
564
565 /* Try to compute an upper limit (on how far to scan) based on the
566 line number info. */
d80b854b 567 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
568 /* If there's no line number info, lim_pc will be 0. In that case,
569 set the limit to be 100 instructions away from pc. Hopefully, this
570 will be far enough away to account for the entire prologue. Don't
571 worry about overshooting the end of the function. The scan loop
572 below contains some checks to avoid scanning unreasonably far. */
573 if (lim_pc == 0)
574 lim_pc = pc + 400;
575
576 /* If we have a frame, we don't want to scan past the frame's pc. This
577 will catch those cases where the pc is in the prologue. */
94afd7a6 578 if (this_frame)
d40fcd7b 579 {
94afd7a6 580 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
581 if (frame_pc < lim_pc)
582 lim_pc = frame_pc;
583 }
584
585 /* Scan the prologue. */
586 while (pc < lim_pc)
456f8b9d 587 {
e362b510 588 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
589 LONGEST op;
590
591 if (target_read_memory (pc, buf, sizeof buf) != 0)
592 break;
2a50938a 593 op = extract_signed_integer (buf, byte_order);
1ccda5e9 594
d40fcd7b 595 next_pc = pc + 4;
456f8b9d
DB
596
597 /* The tests in this chain of ifs should be in order of
598 decreasing selectivity, so that more particular patterns get
599 to fire before less particular patterns. */
600
d40fcd7b
KB
601 /* Some sort of control transfer instruction: stop scanning prologue.
602 Integer Conditional Branch:
603 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
604 Floating-point / media Conditional Branch:
605 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
606 LCR Conditional Branch to LR
607 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
608 Integer conditional Branches to LR
609 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
610 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
611 Floating-point/Media Branches to LR
612 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
613 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
614 Jump and Link
615 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
616 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
617 Call
618 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
619 Return from Trap
620 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
621 Integer Conditional Trap
622 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
623 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
624 Floating-point /media Conditional Trap
625 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
626 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
627 Break
628 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
629 Media Trap
630 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
631 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
dda83cd7 632 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
d40fcd7b
KB
633 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
634 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
635 {
636 /* Stop scanning; not in prologue any longer. */
637 break;
638 }
639
640 /* Loading something from memory into fp probably means that
dda83cd7
SM
641 we're in the epilogue. Stop scanning the prologue.
642 ld @(GRi, GRk), fp
d40fcd7b
KB
643 X 000010 0000010 XXXXXX 000100 XXXXXX
644 ldi @(GRi, d12), fp
645 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
646 else if ((op & 0x7ffc0fc0) == 0x04080100
dda83cd7 647 || (op & 0x7ffc0000) == 0x04c80000)
d40fcd7b
KB
648 {
649 break;
650 }
651
456f8b9d
DB
652 /* Setting the FP from the SP:
653 ori sp, 0, fp
654 P 000010 0100010 000001 000000000000 = 0x04881000
655 0 111111 1111111 111111 111111111111 = 0x7fffffff
dda83cd7 656 . . . . . . . .
456f8b9d 657 We treat this as part of the prologue. */
d40fcd7b 658 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
659 {
660 fp_set = 1;
661 fp_offset = 0;
d40fcd7b 662 last_prologue_pc = next_pc;
456f8b9d
DB
663 }
664
665 /* Move the link register to the scratch register grJ, before saving:
dda83cd7
SM
666 movsg lr, grJ
667 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
668 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
669 . . . . . . . .
456f8b9d
DB
670 We treat this as part of the prologue. */
671 else if ((op & 0x7fffffc0) == 0x080d01c0)
dda83cd7
SM
672 {
673 int gr_j = op & 0x3f;
456f8b9d 674
dda83cd7
SM
675 /* If we're moving it to a scratch register, that's fine. */
676 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
677 {
678 lr_save_reg = gr_j;
679 last_prologue_pc = next_pc;
680 }
dda83cd7 681 }
456f8b9d
DB
682
683 /* To save multiple callee-saves registers on the stack, at
dda83cd7 684 offset zero:
456f8b9d
DB
685
686 std grK,@(sp,gr0)
687 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
688 0 000000 1111111 111111 111111 111111 = 0x01ffffff
689
690 stq grK,@(sp,gr0)
691 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
692 0 000000 1111111 111111 111111 111111 = 0x01ffffff
dda83cd7
SM
693 . . . . . . . .
694 We treat this as part of the prologue, and record the register's
456f8b9d
DB
695 saved address in the frame structure. */
696 else if ((op & 0x01ffffff) == 0x000c10c0
dda83cd7 697 || (op & 0x01ffffff) == 0x000c1100)
456f8b9d
DB
698 {
699 int gr_k = ((op >> 25) & 0x3f);
700 int ope = ((op >> 6) & 0x3f);
dda83cd7 701 int count;
456f8b9d
DB
702 int i;
703
dda83cd7
SM
704 /* Is it an std or an stq? */
705 if (ope == 0x03)
706 count = 2;
707 else
708 count = 4;
456f8b9d
DB
709
710 /* Is it really a callee-saves register? */
711 if (is_callee_saves_reg (gr_k))
712 {
713 for (i = 0; i < count; i++)
dda83cd7 714 {
456f8b9d
DB
715 gr_saved[gr_k + i] = 1;
716 gr_sp_offset[gr_k + i] = 4 * i;
717 }
d40fcd7b 718 last_prologue_pc = next_pc;
456f8b9d 719 }
456f8b9d
DB
720 }
721
722 /* Adjusting the stack pointer. (The stack pointer is GR1.)
723 addi sp, S, sp
dda83cd7
SM
724 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
725 0 111111 1111111 111111 000000000000 = 0x7ffff000
726 . . . . . . . .
456f8b9d
DB
727 We treat this as part of the prologue. */
728 else if ((op & 0x7ffff000) == 0x02401000)
dda83cd7 729 {
d40fcd7b
KB
730 if (framesize == 0)
731 {
732 /* Sign-extend the twelve-bit field.
733 (Isn't there a better way to do this?) */
734 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 735
d40fcd7b
KB
736 framesize -= s;
737 last_prologue_pc = pc;
738 }
739 else
740 {
741 /* If the prologue is being adjusted again, we've
dda83cd7 742 likely gone too far; i.e. we're probably in the
d40fcd7b
KB
743 epilogue. */
744 break;
745 }
456f8b9d
DB
746 }
747
748 /* Setting the FP to a constant distance from the SP:
749 addi sp, S, fp
dda83cd7
SM
750 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
751 0 111111 1111111 111111 000000000000 = 0x7ffff000
752 . . . . . . . .
456f8b9d
DB
753 We treat this as part of the prologue. */
754 else if ((op & 0x7ffff000) == 0x04401000)
755 {
756 /* Sign-extend the twelve-bit field.
757 (Isn't there a better way to do this?) */
758 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
759 fp_set = 1;
760 fp_offset = s;
d40fcd7b 761 last_prologue_pc = pc;
456f8b9d
DB
762 }
763
764 /* To spill an argument register to a scratch register:
765 ori GRi, 0, GRk
766 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
767 0 000000 1111111 000000 111111111111 = 0x01fc0fff
768 . . . . . . . .
769 For the time being, we treat this as a prologue instruction,
770 assuming that GRi is an argument register. This one's kind
771 of suspicious, because it seems like it could be part of a
772 legitimate body instruction. But we only come here when the
773 source info wasn't helpful, so we have to do the best we can.
774 Hopefully once GCC and GDB agree on how to emit line number
775 info for prologues, then this code will never come into play. */
776 else if ((op & 0x01fc0fff) == 0x00880000)
777 {
778 int gr_i = ((op >> 12) & 0x3f);
779
dda83cd7 780 /* Make sure that the source is an arg register; if it is, we'll
d40fcd7b
KB
781 treat it as a prologue instruction. */
782 if (is_argument_reg (gr_i))
783 last_prologue_pc = next_pc;
456f8b9d
DB
784 }
785
786 /* To spill 16-bit values to the stack:
787 sthi GRk, @(fp, s)
788 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
789 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7
SM
790 . . . . . . . .
791 And for 8-bit values, we use STB instructions.
456f8b9d
DB
792 stbi GRk, @(fp, s)
793 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
795 . . . . . . . .
dda83cd7
SM
796 We check that GRk is really an argument register, and treat
797 all such as part of the prologue. */
456f8b9d
DB
798 else if ( (op & 0x01fff000) == 0x01442000
799 || (op & 0x01fff000) == 0x01402000)
800 {
801 int gr_k = ((op >> 25) & 0x3f);
802
dda83cd7 803 /* Make sure that GRk is really an argument register; treat
d40fcd7b
KB
804 it as a prologue instruction if so. */
805 if (is_argument_reg (gr_k))
806 last_prologue_pc = next_pc;
456f8b9d
DB
807 }
808
809 /* To save multiple callee-saves register on the stack, at a
dda83cd7 810 non-zero offset:
456f8b9d
DB
811
812 stdi GRk, @(sp, s)
813 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
814 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7 815 . . . . . . . .
456f8b9d
DB
816 stqi GRk, @(sp, s)
817 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
818 0 000000 1111111 111111 000000000000 = 0x01fff000
819 . . . . . . . .
dda83cd7 820 We treat this as part of the prologue, and record the register's
456f8b9d
DB
821 saved address in the frame structure. */
822 else if ((op & 0x01fff000) == 0x014c1000
dda83cd7 823 || (op & 0x01fff000) == 0x01501000)
456f8b9d
DB
824 {
825 int gr_k = ((op >> 25) & 0x3f);
dda83cd7 826 int count;
456f8b9d
DB
827 int i;
828
dda83cd7
SM
829 /* Is it a stdi or a stqi? */
830 if ((op & 0x01fff000) == 0x014c1000)
831 count = 2;
832 else
833 count = 4;
456f8b9d
DB
834
835 /* Is it really a callee-saves register? */
836 if (is_callee_saves_reg (gr_k))
837 {
838 /* Sign-extend the twelve-bit field.
839 (Isn't there a better way to do this?) */
840 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
841
842 for (i = 0; i < count; i++)
843 {
844 gr_saved[gr_k + i] = 1;
845 gr_sp_offset[gr_k + i] = s + (4 * i);
846 }
d40fcd7b 847 last_prologue_pc = next_pc;
456f8b9d 848 }
456f8b9d
DB
849 }
850
851 /* Storing any kind of integer register at any constant offset
dda83cd7 852 from any other register.
456f8b9d
DB
853
854 st GRk, @(GRi, gr0)
dda83cd7
SM
855 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
856 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
857 . . . . . . . .
456f8b9d
DB
858 sti GRk, @(GRi, d12)
859 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
860 0 000000 1111111 000000 000000000000 = 0x01fc0000
dda83cd7
SM
861 . . . . . . . .
862 These could be almost anything, but a lot of prologue
863 instructions fall into this pattern, so let's decode the
864 instruction once, and then work at a higher level. */
456f8b9d 865 else if (((op & 0x01fc0fff) == 0x000c0080)
dda83cd7
SM
866 || ((op & 0x01fc0000) == 0x01480000))
867 {
868 int gr_k = ((op >> 25) & 0x3f);
869 int gr_i = ((op >> 12) & 0x3f);
870 int offset;
871
872 /* Are we storing with gr0 as an offset, or using an
873 immediate value? */
874 if ((op & 0x01fc0fff) == 0x000c0080)
875 offset = 0;
876 else
877 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
878
879 /* If the address isn't relative to the SP or FP, it's not a
880 prologue instruction. */
881 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
882 {
883 /* Do nothing; not a prologue instruction. */
884 }
456f8b9d 885
dda83cd7
SM
886 /* Saving the old FP in the new frame (relative to the SP). */
887 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
888 {
889 gr_saved[fp_regnum] = 1;
dda83cd7 890 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 891 last_prologue_pc = next_pc;
1cb761c7 892 }
456f8b9d 893
dda83cd7
SM
894 /* Saving callee-saves register(s) on the stack, relative to
895 the SP. */
896 else if (gr_i == sp_regnum
897 && is_callee_saves_reg (gr_k))
898 {
899 gr_saved[gr_k] = 1;
1cb761c7
KB
900 if (gr_i == sp_regnum)
901 gr_sp_offset[gr_k] = offset;
902 else
903 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 904 last_prologue_pc = next_pc;
dda83cd7 905 }
456f8b9d 906
dda83cd7
SM
907 /* Saving the scratch register holding the return address. */
908 else if (lr_save_reg != -1
909 && gr_k == lr_save_reg)
1cb761c7
KB
910 {
911 lr_saved_on_stack = 1;
912 if (gr_i == sp_regnum)
913 lr_sp_offset = offset;
914 else
dda83cd7 915 lr_sp_offset = offset + fp_offset;
d40fcd7b 916 last_prologue_pc = next_pc;
1cb761c7 917 }
456f8b9d 918
dda83cd7
SM
919 /* Spilling int-sized arguments to the stack. */
920 else if (is_argument_reg (gr_k))
d40fcd7b 921 last_prologue_pc = next_pc;
dda83cd7 922 }
d40fcd7b 923 pc = next_pc;
456f8b9d
DB
924 }
925
94afd7a6 926 if (this_frame && info)
456f8b9d 927 {
1cb761c7
KB
928 int i;
929 ULONGEST this_base;
456f8b9d
DB
930
931 /* If we know the relationship between the stack and frame
dda83cd7
SM
932 pointers, record the addresses of the registers we noticed.
933 Note that we have to do this as a separate step at the end,
934 because instructions may save relative to the SP, but we need
935 their addresses relative to the FP. */
456f8b9d 936 if (fp_set)
94afd7a6 937 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 938 else
94afd7a6 939 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 940
1cb761c7
KB
941 for (i = 0; i < 64; i++)
942 if (gr_saved[i])
098caef4
LM
943 info->saved_regs[i].set_addr (this_base - fp_offset
944 + gr_sp_offset[i]);
456f8b9d 945
1cb761c7
KB
946 info->prev_sp = this_base - fp_offset + framesize;
947 info->base = this_base;
948
949 /* If LR was saved on the stack, record its location. */
950 if (lr_saved_on_stack)
098caef4
LM
951 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
952 + lr_sp_offset);
1cb761c7
KB
953
954 /* The call instruction moves the caller's PC in the callee's LR.
955 Since this is an unwind, do the reverse. Copy the location of LR
956 into PC (the address / regnum) so that a request for PC will be
957 converted into a request for the LR. */
958 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
959
960 /* Save the previous frame's computed SP value. */
a9a87d35 961 info->saved_regs[sp_regnum].set_value (info->prev_sp);
456f8b9d
DB
962 }
963
d40fcd7b 964 return last_prologue_pc;
456f8b9d
DB
965}
966
967
968static CORE_ADDR
6093d2eb 969frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
970{
971 CORE_ADDR func_addr, func_end, new_pc;
972
973 new_pc = pc;
974
975 /* If the line table has entry for a line *within* the function
976 (i.e., not in the prologue, and not past the end), then that's
977 our location. */
978 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
979 {
980 struct symtab_and_line sal;
981
982 sal = find_pc_line (func_addr, 0);
983
984 if (sal.line != 0 && sal.end < func_end)
985 {
986 new_pc = sal.end;
987 }
988 }
989
990 /* The FR-V prologue is at least five instructions long (twenty bytes).
991 If we didn't find a real source location past that, then
992 do a full analysis of the prologue. */
993 if (new_pc < pc + 20)
d80b854b 994 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
995
996 return new_pc;
997}
998
1cb761c7 999
9bc7b6c6
KB
1000/* Examine the instruction pointed to by PC. If it corresponds to
1001 a call to __main, return the address of the next instruction.
1002 Otherwise, return PC. */
1003
1004static CORE_ADDR
1005frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1006{
e17a4113 1007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1008 gdb_byte buf[4];
1009 unsigned long op;
1010 CORE_ADDR orig_pc = pc;
1011
1012 if (target_read_memory (pc, buf, 4))
1013 return pc;
e17a4113 1014 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1015
1016 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1017 to the call instruction.
1018
1019 Skip over this instruction if present. It won't be present in
0963b4bd 1020 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1021 (This is due to the fact that GR15, the FDPIC register, already
1022 contains the correct value.)
1023
1024 The general form of the LDI is given first, followed by the
1025 specific instruction with the GRi and GRk filled in as FP and
1026 GR15.
1027
1028 ldi @(GRi, d12), GRk
1029 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1030 0 000000 1111111 000000 000000000000 = 0x01fc0000
1031 . . . . . . . .
1032 ldi @(FP, d12), GR15
1033 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1034 0 001111 1111111 000010 000000000000 = 0x7ffff000
1035 . . . . . . . . */
1036
1037 if ((op & 0x7ffff000) == 0x1ec82000)
1038 {
1039 pc += 4;
1040 if (target_read_memory (pc, buf, 4))
1041 return orig_pc;
e17a4113 1042 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1043 }
1044
1045 /* The format of an FRV CALL instruction is as follows:
1046
1047 call label24
1048 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1049 0 000000 1111111 000000000000000000 = 0x01fc0000
dda83cd7 1050 . . . . . . . .
9bc7b6c6
KB
1051
1052 where label24 is constructed by concatenating the H bits with the
1053 L bits. The call target is PC + (4 * sign_ext(label24)). */
1054
1055 if ((op & 0x01fc0000) == 0x003c0000)
1056 {
1057 LONGEST displ;
1058 CORE_ADDR call_dest;
7cbd4a93 1059 struct bound_minimal_symbol s;
9bc7b6c6
KB
1060
1061 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1062 if ((displ & 0x00800000) != 0)
1063 displ |= ~((LONGEST) 0x00ffffff);
1064
1065 call_dest = pc + 4 * displ;
1066 s = lookup_minimal_symbol_by_pc (call_dest);
1067
7cbd4a93 1068 if (s.minsym != NULL
dda83cd7 1069 && s.minsym->linkage_name () != NULL
c9d95fa3 1070 && strcmp (s.minsym->linkage_name (), "__main") == 0)
9bc7b6c6
KB
1071 {
1072 pc += 4;
1073 return pc;
1074 }
1075 }
1076 return orig_pc;
1077}
1078
1079
1cb761c7 1080static struct frv_unwind_cache *
bd2b40ac 1081frv_frame_unwind_cache (frame_info_ptr this_frame,
1cb761c7 1082 void **this_prologue_cache)
456f8b9d 1083{
94afd7a6 1084 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1085 struct frv_unwind_cache *info;
8baa6f92 1086
1cb761c7 1087 if ((*this_prologue_cache))
9a3c8263 1088 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1089
1cb761c7
KB
1090 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1091 (*this_prologue_cache) = info;
94afd7a6 1092 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1093
1cb761c7 1094 /* Prologue analysis does the rest... */
d80b854b
UW
1095 frv_analyze_prologue (gdbarch,
1096 get_frame_func (this_frame), this_frame, info);
456f8b9d 1097
1cb761c7 1098 return info;
456f8b9d
DB
1099}
1100
456f8b9d 1101static void
cd31fb03 1102frv_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1103 gdb_byte *valbuf)
456f8b9d 1104{
ac7936df 1105 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
df86565b 1107 int len = type->length ();
cd31fb03
KB
1108
1109 if (len <= 4)
1110 {
1111 ULONGEST gpr8_val;
1112 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1113 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1114 }
1115 else if (len == 8)
1116 {
1117 ULONGEST regval;
0963b4bd 1118
cd31fb03 1119 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1120 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1121 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1122 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1123 }
1124 else
0963b4bd
MS
1125 internal_error (__FILE__, __LINE__,
1126 _("Illegal return value length: %d"), len);
456f8b9d
DB
1127}
1128
1cb761c7
KB
1129static CORE_ADDR
1130frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1131{
1cb761c7 1132 /* Require dword alignment. */
5b03f266 1133 return align_down (sp, 8);
456f8b9d
DB
1134}
1135
c4d10515
KB
1136static CORE_ADDR
1137find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1138{
e17a4113 1139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1140 CORE_ADDR descr;
948f8e3d 1141 gdb_byte valbuf[4];
35e08e03
KB
1142 CORE_ADDR start_addr;
1143
1144 /* If we can't find the function in the symbol table, then we assume
1145 that the function address is already in descriptor form. */
1146 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1147 || entry_point != start_addr)
1148 return entry_point;
c4d10515
KB
1149
1150 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1151
1152 if (descr != 0)
1153 return descr;
1154
1155 /* Construct a non-canonical descriptor from space allocated on
1156 the stack. */
1157
1158 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1159 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1160 write_memory (descr, valbuf, 4);
e17a4113 1161 store_unsigned_integer (valbuf, 4, byte_order,
dda83cd7 1162 frv_fdpic_find_global_pointer (entry_point));
c4d10515
KB
1163 write_memory (descr + 4, valbuf, 4);
1164 return descr;
1165}
1166
1167static CORE_ADDR
1168frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
dda83cd7 1169 struct target_ops *targ)
c4d10515 1170{
e17a4113 1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1172 CORE_ADDR entry_point;
1173 CORE_ADDR got_address;
1174
e17a4113
UW
1175 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1176 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1177
1178 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1179 return entry_point;
1180 else
1181 return addr;
1182}
1183
456f8b9d 1184static CORE_ADDR
7d9b040b 1185frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1186 struct regcache *regcache, CORE_ADDR bp_addr,
1187 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1188 function_call_return_method return_method,
1189 CORE_ADDR struct_addr)
456f8b9d 1190{
e17a4113 1191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1192 int argreg;
1193 int argnum;
948f8e3d
PA
1194 const gdb_byte *val;
1195 gdb_byte valbuf[4];
456f8b9d
DB
1196 struct value *arg;
1197 struct type *arg_type;
1198 int len;
1199 enum type_code typecode;
1200 CORE_ADDR regval;
1201 int stack_space;
1202 int stack_offset;
c4d10515 1203 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1204 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1205
1206#if 0
1207 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1208 nargs, (int) sp, struct_return, struct_addr);
1209#endif
1210
1211 stack_space = 0;
1212 for (argnum = 0; argnum < nargs; ++argnum)
df86565b 1213 stack_space += align_up (value_type (args[argnum])->length (), 4);
456f8b9d
DB
1214
1215 stack_space -= (6 * 4);
1216 if (stack_space > 0)
1217 sp -= stack_space;
1218
0963b4bd 1219 /* Make sure stack is dword aligned. */
5b03f266 1220 sp = align_down (sp, 8);
456f8b9d
DB
1221
1222 stack_offset = 0;
1223
1224 argreg = 8;
1225
cf84fa6b 1226 if (return_method == return_method_struct)
1cb761c7 1227 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
dda83cd7 1228 struct_addr);
456f8b9d
DB
1229
1230 for (argnum = 0; argnum < nargs; ++argnum)
1231 {
1232 arg = args[argnum];
4991999e 1233 arg_type = check_typedef (value_type (arg));
df86565b 1234 len = arg_type->length ();
78134374 1235 typecode = arg_type->code ();
456f8b9d
DB
1236
1237 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1238 {
e17a4113
UW
1239 store_unsigned_integer (valbuf, 4, byte_order,
1240 value_address (arg));
456f8b9d
DB
1241 typecode = TYPE_CODE_PTR;
1242 len = 4;
1243 val = valbuf;
1244 }
c4d10515
KB
1245 else if (abi == FRV_ABI_FDPIC
1246 && len == 4
dda83cd7 1247 && typecode == TYPE_CODE_PTR
27710edb 1248 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
c4d10515
KB
1249 {
1250 /* The FDPIC ABI requires function descriptors to be passed instead
1251 of entry points. */
e17a4113 1252 CORE_ADDR addr = extract_unsigned_integer
50888e42 1253 (value_contents (arg).data (), 4, byte_order);
e17a4113
UW
1254 addr = find_func_descr (gdbarch, addr);
1255 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1256 typecode = TYPE_CODE_PTR;
1257 len = 4;
1258 val = valbuf;
1259 }
456f8b9d
DB
1260 else
1261 {
50888e42 1262 val = value_contents (arg).data ();
456f8b9d
DB
1263 }
1264
1265 while (len > 0)
1266 {
1267 int partial_len = (len < 4 ? len : 4);
1268
1269 if (argreg < 14)
1270 {
e17a4113 1271 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1272#if 0
1273 printf(" Argnum %d data %x -> reg %d\n",
1274 argnum, (int) regval, argreg);
1275#endif
1cb761c7 1276 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1277 ++argreg;
1278 }
1279 else
1280 {
1281#if 0
1282 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1283 argnum, *((int *)val), stack_offset,
1284 (int) (sp + stack_offset));
456f8b9d
DB
1285#endif
1286 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1287 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1288 }
1289 len -= partial_len;
1290 val += partial_len;
1291 }
1292 }
456f8b9d 1293
1cb761c7
KB
1294 /* Set the return address. For the frv, the return breakpoint is
1295 always at BP_ADDR. */
1296 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1297
c4d10515
KB
1298 if (abi == FRV_ABI_FDPIC)
1299 {
1300 /* Set the GOT register for the FDPIC ABI. */
1301 regcache_cooked_write_unsigned
1302 (regcache, first_gpr_regnum + 15,
dda83cd7 1303 frv_fdpic_find_global_pointer (func_addr));
c4d10515
KB
1304 }
1305
1cb761c7
KB
1306 /* Finally, update the SP register. */
1307 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1308
456f8b9d
DB
1309 return sp;
1310}
1311
1312static void
cd31fb03 1313frv_store_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1314 const gdb_byte *valbuf)
456f8b9d 1315{
df86565b 1316 int len = type->length ();
cd31fb03
KB
1317
1318 if (len <= 4)
1319 {
1320 bfd_byte val[4];
1321 memset (val, 0, sizeof (val));
1322 memcpy (val + (4 - len), valbuf, len);
b66f5587 1323 regcache->cooked_write (8, val);
cd31fb03
KB
1324 }
1325 else if (len == 8)
1326 {
b66f5587
SM
1327 regcache->cooked_write (8, valbuf);
1328 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
cd31fb03 1329 }
456f8b9d
DB
1330 else
1331 internal_error (__FILE__, __LINE__,
dda83cd7 1332 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1333}
1334
63807e1d 1335static enum return_value_convention
6a3a010b 1336frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1337 struct type *valtype, struct regcache *regcache,
1338 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 1339{
78134374
SM
1340 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1341 || valtype->code () == TYPE_CODE_UNION
1342 || valtype->code () == TYPE_CODE_ARRAY;
4c8b6ae0
UW
1343
1344 if (writebuf != NULL)
1345 {
1346 gdb_assert (!struct_return);
1347 frv_store_return_value (valtype, regcache, writebuf);
1348 }
1349
1350 if (readbuf != NULL)
1351 {
1352 gdb_assert (!struct_return);
1353 frv_extract_return_value (valtype, regcache, readbuf);
1354 }
1355
1356 if (struct_return)
1357 return RETURN_VALUE_STRUCT_CONVENTION;
1358 else
1359 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1360}
1361
1cb761c7
KB
1362/* Given a GDB frame, determine the address of the calling function's
1363 frame. This will be used to create a new GDB frame struct. */
1364
1365static void
bd2b40ac 1366frv_frame_this_id (frame_info_ptr this_frame,
1cb761c7
KB
1367 void **this_prologue_cache, struct frame_id *this_id)
1368{
1369 struct frv_unwind_cache *info
94afd7a6 1370 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1371 CORE_ADDR base;
1372 CORE_ADDR func;
3b7344d5 1373 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1374 struct frame_id id;
1375
1376 /* The FUNC is easy. */
94afd7a6 1377 func = get_frame_func (this_frame);
1cb761c7 1378
1cb761c7
KB
1379 /* Check if the stack is empty. */
1380 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
4aeddc50 1381 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1cb761c7
KB
1382 return;
1383
1384 /* Hopefully the prologue analysis either correctly determined the
1385 frame's base (which is the SP from the previous frame), or set
1386 that base to "NULL". */
1387 base = info->prev_sp;
1388 if (base == 0)
1389 return;
1390
1391 id = frame_id_build (base, func);
1cb761c7
KB
1392 (*this_id) = id;
1393}
1394
94afd7a6 1395static struct value *
bd2b40ac 1396frv_frame_prev_register (frame_info_ptr this_frame,
94afd7a6 1397 void **this_prologue_cache, int regnum)
1cb761c7
KB
1398{
1399 struct frv_unwind_cache *info
94afd7a6
UW
1400 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1401 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1402}
1403
1404static const struct frame_unwind frv_frame_unwind = {
a154d838 1405 "frv prologue",
1cb761c7 1406 NORMAL_FRAME,
8fbca658 1407 default_frame_unwind_stop_reason,
1cb761c7 1408 frv_frame_this_id,
94afd7a6
UW
1409 frv_frame_prev_register,
1410 NULL,
1411 default_frame_sniffer
1cb761c7
KB
1412};
1413
1cb761c7 1414static CORE_ADDR
bd2b40ac 1415frv_frame_base_address (frame_info_ptr this_frame, void **this_cache)
1cb761c7
KB
1416{
1417 struct frv_unwind_cache *info
94afd7a6 1418 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1419 return info->base;
1420}
1421
1422static const struct frame_base frv_frame_base = {
1423 &frv_frame_unwind,
1424 frv_frame_base_address,
1425 frv_frame_base_address,
1426 frv_frame_base_address
1427};
1428
456f8b9d
DB
1429static struct gdbarch *
1430frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1431{
1432 struct gdbarch *gdbarch;
7e295833 1433 int elf_flags = 0;
456f8b9d
DB
1434
1435 /* Check to see if we've already built an appropriate architecture
1436 object for this executable. */
1437 arches = gdbarch_list_lookup_by_info (arches, &info);
1438 if (arches)
1439 return arches->gdbarch;
1440
1441 /* Select the right tdep structure for this variant. */
345bd07c 1442 frv_gdbarch_tdep *var = new_variant ();
456f8b9d
DB
1443 switch (info.bfd_arch_info->mach)
1444 {
1445 case bfd_mach_frv:
1446 case bfd_mach_frvsimple:
087ccc6a 1447 case bfd_mach_fr300:
456f8b9d
DB
1448 case bfd_mach_fr500:
1449 case bfd_mach_frvtomcat:
251a3ae3 1450 case bfd_mach_fr550:
456f8b9d
DB
1451 set_variant_num_gprs (var, 64);
1452 set_variant_num_fprs (var, 64);
1453 break;
1454
1455 case bfd_mach_fr400:
b2d6d697 1456 case bfd_mach_fr450:
456f8b9d
DB
1457 set_variant_num_gprs (var, 32);
1458 set_variant_num_fprs (var, 32);
1459 break;
1460
1461 default:
1462 /* Never heard of this variant. */
1463 return 0;
1464 }
7e295833
KB
1465
1466 /* Extract the ELF flags, if available. */
1467 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1468 elf_flags = elf_elfheader (info.abfd)->e_flags;
1469
1470 if (elf_flags & EF_FRV_FDPIC)
1471 set_variant_abi_fdpic (var);
1472
b2d6d697
KB
1473 if (elf_flags & EF_FRV_CPU_FR450)
1474 set_variant_scratch_registers (var);
1475
456f8b9d
DB
1476 gdbarch = gdbarch_alloc (&info, var);
1477
1478 set_gdbarch_short_bit (gdbarch, 16);
1479 set_gdbarch_int_bit (gdbarch, 32);
1480 set_gdbarch_long_bit (gdbarch, 32);
1481 set_gdbarch_long_long_bit (gdbarch, 64);
1482 set_gdbarch_float_bit (gdbarch, 32);
1483 set_gdbarch_double_bit (gdbarch, 64);
1484 set_gdbarch_long_double_bit (gdbarch, 64);
1485 set_gdbarch_ptr_bit (gdbarch, 32);
1486
1487 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1488 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1489
456f8b9d 1490 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1491 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1492 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1493
1494 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1495 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1496 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1497
6a748db6
KB
1498 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1499 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1500
456f8b9d 1501 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1502 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1503 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1504 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1505 set_gdbarch_adjust_breakpoint_address
1506 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1507
4c8b6ae0 1508 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1509
1cb761c7 1510 /* Frame stuff. */
1cb761c7 1511 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1512 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1513 /* We set the sniffer lower down after the OSABI hooks have been
1514 established. */
456f8b9d 1515
1cb761c7
KB
1516 /* Settings for calling functions in the inferior. */
1517 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
456f8b9d
DB
1518
1519 /* Settings that should be unnecessary. */
1520 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1521
456f8b9d
DB
1522 /* Hardware watchpoint / breakpoint support. */
1523 switch (info.bfd_arch_info->mach)
1524 {
1525 case bfd_mach_frv:
1526 case bfd_mach_frvsimple:
087ccc6a 1527 case bfd_mach_fr300:
456f8b9d
DB
1528 case bfd_mach_fr500:
1529 case bfd_mach_frvtomcat:
1530 /* fr500-style hardware debugging support. */
1531 var->num_hw_watchpoints = 4;
1532 var->num_hw_breakpoints = 4;
1533 break;
1534
1535 case bfd_mach_fr400:
b2d6d697 1536 case bfd_mach_fr450:
456f8b9d
DB
1537 /* fr400-style hardware debugging support. */
1538 var->num_hw_watchpoints = 2;
1539 var->num_hw_breakpoints = 4;
1540 break;
1541
1542 default:
1543 /* Otherwise, assume we don't have hardware debugging support. */
1544 var->num_hw_watchpoints = 0;
1545 var->num_hw_breakpoints = 0;
1546 break;
1547 }
1548
c4d10515
KB
1549 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1550 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1551 frv_convert_from_func_ptr_addr);
36482093 1552
9e468e95 1553 set_gdbarch_so_ops (gdbarch, &frv_so_ops);
917630e4 1554
5ecb7103
KB
1555 /* Hook in ABI-specific overrides, if they have been registered. */
1556 gdbarch_init_osabi (info, gdbarch);
1557
5ecb7103 1558 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1559 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1560
186993b4
KB
1561 /* Enable TLS support. */
1562 set_gdbarch_fetch_tls_load_module_address (gdbarch,
dda83cd7 1563 frv_fetch_objfile_link_map);
186993b4 1564
456f8b9d
DB
1565 return gdbarch;
1566}
1567
6c265988 1568void _initialize_frv_tdep ();
456f8b9d 1569void
6c265988 1570_initialize_frv_tdep ()
456f8b9d 1571{
ec29a63c 1572 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1573}