]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
gdb: select suitable thread for gdbarch_adjust_breakpoint_address
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
4a94e368 3 Copyright (C) 2002-2022 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
4de283e4
TT
21#include "inferior.h"
22#include "gdbcore.h"
456f8b9d 23#include "arch-utils.h"
4de283e4
TT
24#include "regcache.h"
25#include "frame.h"
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "trad-frame.h"
dcc6aaff 29#include "dis-asm.h"
4de283e4
TT
30#include "sim-regno.h"
31#include "gdb/sim-frv.h"
f16f7b7c 32#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
4de283e4 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
d55e5aa6 36#include "osabi.h"
4de283e4 37#include "infcall.h"
d55e5aa6 38#include "solib.h"
4de283e4
TT
39#include "frv-tdep.h"
40#include "objfiles.h"
76eb8ef1 41#include "gdbarch.h"
456f8b9d 42
1cb761c7 43struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 44 {
1cb761c7
KB
45 /* The previous frame's inner-most stack address. Used as this
46 frame ID's stack_addr. */
47 CORE_ADDR prev_sp;
456f8b9d 48
1cb761c7
KB
49 /* The frame's base, optionally used by the high-level debug info. */
50 CORE_ADDR base;
8baa6f92
KB
51
52 /* Table indicating the location of each and every register. */
098caef4 53 trad_frame_saved_reg *saved_regs;
456f8b9d
DB
54 };
55
456f8b9d
DB
56/* A structure describing a particular variant of the FRV.
57 We allocate and initialize one of these structures when we create
58 the gdbarch object for a variant.
59
60 At the moment, all the FR variants we support differ only in which
61 registers are present; the portable code of GDB knows that
62 registers whose names are the empty string don't exist, so the
63 `register_names' array captures all the per-variant information we
64 need.
65
66 in the future, if we need to have per-variant maps for raw size,
67 virtual type, etc., we should replace register_names with an array
68 of structures, each of which gives all the necessary info for one
69 register. Don't stick parallel arrays in here --- that's so
70 Fortran. */
345bd07c 71struct frv_gdbarch_tdep : gdbarch_tdep
456f8b9d 72{
7e295833 73 /* Which ABI is in use? */
345bd07c 74 enum frv_abi frv_abi {};
7e295833 75
456f8b9d 76 /* How many general-purpose registers does this variant have? */
345bd07c 77 int num_gprs = 0;
456f8b9d
DB
78
79 /* How many floating-point registers does this variant have? */
345bd07c 80 int num_fprs = 0;
456f8b9d
DB
81
82 /* How many hardware watchpoints can it support? */
345bd07c 83 int num_hw_watchpoints = 0;
456f8b9d
DB
84
85 /* How many hardware breakpoints can it support? */
345bd07c 86 int num_hw_breakpoints = 0;
456f8b9d
DB
87
88 /* Register names. */
345bd07c 89 const char **register_names = nullptr;
456f8b9d
DB
90};
91
7e295833
KB
92/* Return the FR-V ABI associated with GDBARCH. */
93enum frv_abi
94frv_abi (struct gdbarch *gdbarch)
95{
345bd07c
SM
96 frv_gdbarch_tdep *tdep = (frv_gdbarch_tdep *) gdbarch_tdep (gdbarch);
97 return tdep->frv_abi;
7e295833
KB
98}
99
100/* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103int
104frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
dda83cd7 105 CORE_ADDR *exec_addr)
7e295833
KB
106{
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
594f7785
UW
111 struct regcache *regcache = get_current_regcache ();
112
7e295833
KB
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
594f7785 116 regcache_cooked_read_unsigned (regcache,
7e295833
KB
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129}
456f8b9d
DB
130
131/* Allocate a new variant structure, and set up default values for all
132 the fields. */
345bd07c 133static frv_gdbarch_tdep *
5ae5f592 134new_variant (void)
456f8b9d 135{
456f8b9d 136 int r;
456f8b9d 137
345bd07c 138 frv_gdbarch_tdep *var = new frv_gdbarch_tdep;
8d749320 139
7e295833 140 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
141 var->num_gprs = 64;
142 var->num_fprs = 64;
143 var->num_hw_watchpoints = 0;
144 var->num_hw_breakpoints = 0;
145
146 /* By default, don't supply any general-purpose or floating-point
147 register names. */
6a748db6 148 var->register_names
a121b7c1
PA
149 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
150 * sizeof (const char *));
6a748db6 151 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
152 var->register_names[r] = "";
153
526eef89 154 /* Do, however, supply default names for the known special-purpose
456f8b9d 155 registers. */
456f8b9d
DB
156
157 var->register_names[pc_regnum] = "pc";
158 var->register_names[lr_regnum] = "lr";
159 var->register_names[lcr_regnum] = "lcr";
160
161 var->register_names[psr_regnum] = "psr";
162 var->register_names[ccr_regnum] = "ccr";
163 var->register_names[cccr_regnum] = "cccr";
164 var->register_names[tbr_regnum] = "tbr";
165
166 /* Debug registers. */
167 var->register_names[brr_regnum] = "brr";
168 var->register_names[dbar0_regnum] = "dbar0";
169 var->register_names[dbar1_regnum] = "dbar1";
170 var->register_names[dbar2_regnum] = "dbar2";
171 var->register_names[dbar3_regnum] = "dbar3";
172
526eef89
KB
173 /* iacc0 (Only found on MB93405.) */
174 var->register_names[iacc0h_regnum] = "iacc0h";
175 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 176 var->register_names[iacc0_regnum] = "iacc0";
526eef89 177
8b67aa36
KB
178 /* fsr0 (Found on FR555 and FR501.) */
179 var->register_names[fsr0_regnum] = "fsr0";
180
181 /* acc0 - acc7. The architecture provides for the possibility of many
182 more (up to 64 total), but we don't want to make that big of a hole
183 in the G packet. If we need more in the future, we'll add them
184 elsewhere. */
185 for (r = acc0_regnum; r <= acc7_regnum; r++)
8579fd13
AB
186 var->register_names[r]
187 = xstrprintf ("acc%d", r - acc0_regnum).release ();
8b67aa36
KB
188
189 /* accg0 - accg7: These are one byte registers. The remote protocol
190 provides the raw values packed four into a slot. accg0123 and
191 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
192 We don't provide names for accg0123 and accg4567 since the user will
193 likely not want to see these raw values. */
194
195 for (r = accg0_regnum; r <= accg7_regnum; r++)
8579fd13
AB
196 var->register_names[r]
197 = xstrprintf ("accg%d", r - accg0_regnum).release ();
8b67aa36
KB
198
199 /* msr0 and msr1. */
200
201 var->register_names[msr0_regnum] = "msr0";
202 var->register_names[msr1_regnum] = "msr1";
203
204 /* gner and fner registers. */
205 var->register_names[gner0_regnum] = "gner0";
206 var->register_names[gner1_regnum] = "gner1";
207 var->register_names[fner0_regnum] = "fner0";
208 var->register_names[fner1_regnum] = "fner1";
209
456f8b9d
DB
210 return var;
211}
212
213
214/* Indicate that the variant VAR has NUM_GPRS general-purpose
215 registers, and fill in the names array appropriately. */
216static void
345bd07c 217set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
456f8b9d
DB
218{
219 int r;
220
221 var->num_gprs = num_gprs;
222
223 for (r = 0; r < num_gprs; ++r)
224 {
225 char buf[20];
226
08850b56 227 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
228 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
229 }
230}
231
232
233/* Indicate that the variant VAR has NUM_FPRS floating-point
234 registers, and fill in the names array appropriately. */
235static void
345bd07c 236set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
456f8b9d
DB
237{
238 int r;
239
240 var->num_fprs = num_fprs;
241
242 for (r = 0; r < num_fprs; ++r)
243 {
244 char buf[20];
245
08850b56 246 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
247 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
248 }
249}
250
7e295833 251static void
345bd07c 252set_variant_abi_fdpic (frv_gdbarch_tdep *var)
7e295833
KB
253{
254 var->frv_abi = FRV_ABI_FDPIC;
255 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
256 var->register_names[fdpic_loadmap_interp_regnum]
257 = xstrdup ("loadmap_interp");
7e295833 258}
456f8b9d 259
b2d6d697 260static void
345bd07c 261set_variant_scratch_registers (frv_gdbarch_tdep *var)
b2d6d697
KB
262{
263 var->register_names[scr0_regnum] = xstrdup ("scr0");
264 var->register_names[scr1_regnum] = xstrdup ("scr1");
265 var->register_names[scr2_regnum] = xstrdup ("scr2");
266 var->register_names[scr3_regnum] = xstrdup ("scr3");
267}
268
456f8b9d 269static const char *
d93859e2 270frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
271{
272 if (reg < 0)
273 return "?toosmall?";
345bd07c 274
6a748db6 275 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
276 return "?toolarge?";
277
345bd07c
SM
278 frv_gdbarch_tdep *tdep = (frv_gdbarch_tdep *) gdbarch_tdep (gdbarch);
279 return tdep->register_names[reg];
456f8b9d
DB
280}
281
526eef89 282
456f8b9d 283static struct type *
7f398216 284frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 285{
526eef89 286 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 287 return builtin_type (gdbarch)->builtin_float;
6a748db6 288 else if (reg == iacc0_regnum)
df4df182 289 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 290 else
df4df182 291 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
292}
293
05d1431c 294static enum register_status
849d0ba8 295frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
dda83cd7 296 int reg, gdb_byte *buffer)
6a748db6 297{
05d1431c
PA
298 enum register_status status;
299
6a748db6
KB
300 if (reg == iacc0_regnum)
301 {
03f50fc8 302 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 303 if (status == REG_VALID)
03f50fc8 304 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 305 }
8b67aa36
KB
306 else if (accg0_regnum <= reg && reg <= accg7_regnum)
307 {
308 /* The accg raw registers have four values in each slot with the
dda83cd7 309 lowest register number occupying the first byte. */
8b67aa36
KB
310
311 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
312 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 313 gdb_byte buf[4];
8b67aa36 314
03f50fc8 315 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
316 if (status == REG_VALID)
317 {
318 memset (buffer, 0, 4);
319 /* FR-V is big endian, so put the requested byte in the
320 first byte of the buffer allocated to hold the
321 pseudo-register. */
322 buffer[0] = buf[byte_num];
323 }
8b67aa36 324 }
05d1431c
PA
325 else
326 gdb_assert_not_reached ("invalid pseudo register number");
327
328 return status;
6a748db6
KB
329}
330
331static void
332frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
dda83cd7 333 int reg, const gdb_byte *buffer)
6a748db6
KB
334{
335 if (reg == iacc0_regnum)
336 {
10eaee5f
SM
337 regcache->raw_write (iacc0h_regnum, buffer);
338 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 339 }
8b67aa36
KB
340 else if (accg0_regnum <= reg && reg <= accg7_regnum)
341 {
342 /* The accg raw registers have four values in each slot with the
dda83cd7 343 lowest register number occupying the first byte. */
8b67aa36
KB
344
345 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
346 int byte_num = (reg - accg0_regnum) % 4;
e362b510 347 gdb_byte buf[4];
8b67aa36 348
0b883586 349 regcache->raw_read (raw_regnum, buf);
8b67aa36 350 buf[byte_num] = ((bfd_byte *) buffer)[0];
10eaee5f 351 regcache->raw_write (raw_regnum, buf);
8b67aa36 352 }
6a748db6
KB
353}
354
526eef89 355static int
e7faf938 356frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
357{
358 static const int spr_map[] =
359 {
360 H_SPR_PSR, /* psr_regnum */
361 H_SPR_CCR, /* ccr_regnum */
362 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
363 -1, /* fdpic_loadmap_exec_regnum */
364 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
365 -1, /* 134 */
366 H_SPR_TBR, /* tbr_regnum */
367 H_SPR_BRR, /* brr_regnum */
368 H_SPR_DBAR0, /* dbar0_regnum */
369 H_SPR_DBAR1, /* dbar1_regnum */
370 H_SPR_DBAR2, /* dbar2_regnum */
371 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
372 H_SPR_SCR0, /* scr0_regnum */
373 H_SPR_SCR1, /* scr1_regnum */
374 H_SPR_SCR2, /* scr2_regnum */
375 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
376 H_SPR_LR, /* lr_regnum */
377 H_SPR_LCR, /* lcr_regnum */
378 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
379 H_SPR_IACC0L, /* iacc0l_regnum */
380 H_SPR_FSR0, /* fsr0_regnum */
381 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
382 -1, /* acc0_regnum */
383 -1, /* acc1_regnum */
384 -1, /* acc2_regnum */
385 -1, /* acc3_regnum */
386 -1, /* acc4_regnum */
387 -1, /* acc5_regnum */
388 -1, /* acc6_regnum */
389 -1, /* acc7_regnum */
390 -1, /* acc0123_regnum */
391 -1, /* acc4567_regnum */
392 H_SPR_MSR0, /* msr0_regnum */
393 H_SPR_MSR1, /* msr1_regnum */
394 H_SPR_GNER0, /* gner0_regnum */
395 H_SPR_GNER1, /* gner1_regnum */
396 H_SPR_FNER0, /* fner0_regnum */
397 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
398 };
399
e7faf938 400 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
401
402 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
403 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
404 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
405 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
406 else if (pc_regnum == reg)
407 return SIM_FRV_PC_REGNUM;
408 else if (reg >= first_spr_regnum
dda83cd7 409 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
526eef89
KB
410 {
411 int spr_reg_offset = spr_map[reg - first_spr_regnum];
412
413 if (spr_reg_offset < 0)
414 return SIM_REGNO_DOES_NOT_EXIST;
415 else
416 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
417 }
418
e2e0b3e5 419 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
420}
421
04180708 422constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 423
04180708 424typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 425
46a16dba
KB
426/* Define the maximum number of instructions which may be packed into a
427 bundle (VLIW instruction). */
428static const int max_instrs_per_bundle = 8;
429
430/* Define the size (in bytes) of an FR-V instruction. */
431static const int frv_instr_size = 4;
432
433/* Adjust a breakpoint's address to account for the FR-V architecture's
434 constraint that a break instruction must not appear as any but the
435 first instruction in the bundle. */
436static CORE_ADDR
1208538e 437frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
438{
439 int count = max_instrs_per_bundle;
440 CORE_ADDR addr = bpaddr - frv_instr_size;
441 CORE_ADDR func_start = get_pc_function_start (bpaddr);
442
443 /* Find the end of the previous packing sequence. This will be indicated
444 by either attempting to access some inaccessible memory or by finding
0963b4bd 445 an instruction word whose packing bit is set to one. */
46a16dba
KB
446 while (count-- > 0 && addr >= func_start)
447 {
948f8e3d 448 gdb_byte instr[frv_instr_size];
46a16dba
KB
449 int status;
450
8defab1a 451 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
452
453 if (status != 0)
454 break;
455
456 /* This is a big endian architecture, so byte zero will have most
dda83cd7
SM
457 significant byte. The most significant bit of this byte is the
458 packing bit. */
46a16dba
KB
459 if (instr[0] & 0x80)
460 break;
461
462 addr -= frv_instr_size;
463 }
464
465 if (count > 0)
466 bpaddr = addr + frv_instr_size;
467
468 return bpaddr;
469}
470
456f8b9d
DB
471
472/* Return true if REG is a caller-saves ("scratch") register,
473 false otherwise. */
474static int
475is_caller_saves_reg (int reg)
476{
477 return ((4 <= reg && reg <= 7)
dda83cd7
SM
478 || (14 <= reg && reg <= 15)
479 || (32 <= reg && reg <= 47));
456f8b9d
DB
480}
481
482
483/* Return true if REG is a callee-saves register, false otherwise. */
484static int
485is_callee_saves_reg (int reg)
486{
487 return ((16 <= reg && reg <= 31)
dda83cd7 488 || (48 <= reg && reg <= 63));
456f8b9d
DB
489}
490
491
492/* Return true if REG is an argument register, false otherwise. */
493static int
494is_argument_reg (int reg)
495{
496 return (8 <= reg && reg <= 13);
497}
498
456f8b9d
DB
499/* Scan an FR-V prologue, starting at PC, until frame->PC.
500 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
501 We assume FRAME's saved_regs array has already been allocated and cleared.
502 Return the first PC value after the prologue.
503
504 Note that, for unoptimized code, we almost don't need this function
505 at all; all arguments and locals live on the stack, so we just need
506 the FP to find everything. The catch: structures passed by value
507 have their addresses living in registers; they're never spilled to
508 the stack. So if you ever want to be able to get to these
509 arguments in any frame but the top, you'll need to do this serious
510 prologue analysis. */
511static CORE_ADDR
d80b854b
UW
512frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
513 struct frame_info *this_frame,
dda83cd7 514 struct frv_unwind_cache *info)
456f8b9d 515{
e17a4113
UW
516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
517
456f8b9d
DB
518 /* When writing out instruction bitpatterns, we use the following
519 letters to label instruction fields:
520 P - The parallel bit. We don't use this.
521 J - The register number of GRj in the instruction description.
522 K - The register number of GRk in the instruction description.
523 I - The register number of GRi.
85102364 524 S - a signed immediate offset.
456f8b9d
DB
525 U - an unsigned immediate offset.
526
527 The dots below the numbers indicate where hex digit boundaries
528 fall, to make it easier to check the numbers. */
529
530 /* Non-zero iff we've seen the instruction that initializes the
531 frame pointer for this function's frame. */
532 int fp_set = 0;
533
534 /* If fp_set is non_zero, then this is the distance from
535 the stack pointer to frame pointer: fp = sp + fp_offset. */
536 int fp_offset = 0;
537
0963b4bd 538 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
539 int framesize = 0;
540
1cb761c7
KB
541 /* Flag indicating if lr has been saved on the stack. */
542 int lr_saved_on_stack = 0;
543
456f8b9d
DB
544 /* The number of the general-purpose register we saved the return
545 address ("link register") in, or -1 if we haven't moved it yet. */
546 int lr_save_reg = -1;
547
1cb761c7
KB
548 /* Offset (from sp) at which lr has been saved on the stack. */
549
550 int lr_sp_offset = 0;
456f8b9d
DB
551
552 /* If gr_saved[i] is non-zero, then we've noticed that general
553 register i has been saved at gr_sp_offset[i] from the stack
554 pointer. */
555 char gr_saved[64];
556 int gr_sp_offset[64];
557
d40fcd7b
KB
558 /* The address of the most recently scanned prologue instruction. */
559 CORE_ADDR last_prologue_pc;
560
0963b4bd 561 /* The address of the next instruction. */
d40fcd7b
KB
562 CORE_ADDR next_pc;
563
564 /* The upper bound to of the pc values to scan. */
565 CORE_ADDR lim_pc;
566
456f8b9d
DB
567 memset (gr_saved, 0, sizeof (gr_saved));
568
d40fcd7b
KB
569 last_prologue_pc = pc;
570
571 /* Try to compute an upper limit (on how far to scan) based on the
572 line number info. */
d80b854b 573 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
574 /* If there's no line number info, lim_pc will be 0. In that case,
575 set the limit to be 100 instructions away from pc. Hopefully, this
576 will be far enough away to account for the entire prologue. Don't
577 worry about overshooting the end of the function. The scan loop
578 below contains some checks to avoid scanning unreasonably far. */
579 if (lim_pc == 0)
580 lim_pc = pc + 400;
581
582 /* If we have a frame, we don't want to scan past the frame's pc. This
583 will catch those cases where the pc is in the prologue. */
94afd7a6 584 if (this_frame)
d40fcd7b 585 {
94afd7a6 586 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
587 if (frame_pc < lim_pc)
588 lim_pc = frame_pc;
589 }
590
591 /* Scan the prologue. */
592 while (pc < lim_pc)
456f8b9d 593 {
e362b510 594 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
595 LONGEST op;
596
597 if (target_read_memory (pc, buf, sizeof buf) != 0)
598 break;
2a50938a 599 op = extract_signed_integer (buf, byte_order);
1ccda5e9 600
d40fcd7b 601 next_pc = pc + 4;
456f8b9d
DB
602
603 /* The tests in this chain of ifs should be in order of
604 decreasing selectivity, so that more particular patterns get
605 to fire before less particular patterns. */
606
d40fcd7b
KB
607 /* Some sort of control transfer instruction: stop scanning prologue.
608 Integer Conditional Branch:
609 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
610 Floating-point / media Conditional Branch:
611 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
612 LCR Conditional Branch to LR
613 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
614 Integer conditional Branches to LR
615 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
616 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
617 Floating-point/Media Branches to LR
618 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
619 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
620 Jump and Link
621 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
622 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
623 Call
624 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
625 Return from Trap
626 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
627 Integer Conditional Trap
628 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
629 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
630 Floating-point /media Conditional Trap
631 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
632 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
633 Break
634 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
635 Media Trap
636 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
637 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
dda83cd7 638 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
d40fcd7b
KB
639 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
640 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
641 {
642 /* Stop scanning; not in prologue any longer. */
643 break;
644 }
645
646 /* Loading something from memory into fp probably means that
dda83cd7
SM
647 we're in the epilogue. Stop scanning the prologue.
648 ld @(GRi, GRk), fp
d40fcd7b
KB
649 X 000010 0000010 XXXXXX 000100 XXXXXX
650 ldi @(GRi, d12), fp
651 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
652 else if ((op & 0x7ffc0fc0) == 0x04080100
dda83cd7 653 || (op & 0x7ffc0000) == 0x04c80000)
d40fcd7b
KB
654 {
655 break;
656 }
657
456f8b9d
DB
658 /* Setting the FP from the SP:
659 ori sp, 0, fp
660 P 000010 0100010 000001 000000000000 = 0x04881000
661 0 111111 1111111 111111 111111111111 = 0x7fffffff
dda83cd7 662 . . . . . . . .
456f8b9d 663 We treat this as part of the prologue. */
d40fcd7b 664 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
665 {
666 fp_set = 1;
667 fp_offset = 0;
d40fcd7b 668 last_prologue_pc = next_pc;
456f8b9d
DB
669 }
670
671 /* Move the link register to the scratch register grJ, before saving:
dda83cd7
SM
672 movsg lr, grJ
673 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
674 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
675 . . . . . . . .
456f8b9d
DB
676 We treat this as part of the prologue. */
677 else if ((op & 0x7fffffc0) == 0x080d01c0)
dda83cd7
SM
678 {
679 int gr_j = op & 0x3f;
456f8b9d 680
dda83cd7
SM
681 /* If we're moving it to a scratch register, that's fine. */
682 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
683 {
684 lr_save_reg = gr_j;
685 last_prologue_pc = next_pc;
686 }
dda83cd7 687 }
456f8b9d
DB
688
689 /* To save multiple callee-saves registers on the stack, at
dda83cd7 690 offset zero:
456f8b9d
DB
691
692 std grK,@(sp,gr0)
693 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
694 0 000000 1111111 111111 111111 111111 = 0x01ffffff
695
696 stq grK,@(sp,gr0)
697 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
698 0 000000 1111111 111111 111111 111111 = 0x01ffffff
dda83cd7
SM
699 . . . . . . . .
700 We treat this as part of the prologue, and record the register's
456f8b9d
DB
701 saved address in the frame structure. */
702 else if ((op & 0x01ffffff) == 0x000c10c0
dda83cd7 703 || (op & 0x01ffffff) == 0x000c1100)
456f8b9d
DB
704 {
705 int gr_k = ((op >> 25) & 0x3f);
706 int ope = ((op >> 6) & 0x3f);
dda83cd7 707 int count;
456f8b9d
DB
708 int i;
709
dda83cd7
SM
710 /* Is it an std or an stq? */
711 if (ope == 0x03)
712 count = 2;
713 else
714 count = 4;
456f8b9d
DB
715
716 /* Is it really a callee-saves register? */
717 if (is_callee_saves_reg (gr_k))
718 {
719 for (i = 0; i < count; i++)
dda83cd7 720 {
456f8b9d
DB
721 gr_saved[gr_k + i] = 1;
722 gr_sp_offset[gr_k + i] = 4 * i;
723 }
d40fcd7b 724 last_prologue_pc = next_pc;
456f8b9d 725 }
456f8b9d
DB
726 }
727
728 /* Adjusting the stack pointer. (The stack pointer is GR1.)
729 addi sp, S, sp
dda83cd7
SM
730 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
731 0 111111 1111111 111111 000000000000 = 0x7ffff000
732 . . . . . . . .
456f8b9d
DB
733 We treat this as part of the prologue. */
734 else if ((op & 0x7ffff000) == 0x02401000)
dda83cd7 735 {
d40fcd7b
KB
736 if (framesize == 0)
737 {
738 /* Sign-extend the twelve-bit field.
739 (Isn't there a better way to do this?) */
740 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 741
d40fcd7b
KB
742 framesize -= s;
743 last_prologue_pc = pc;
744 }
745 else
746 {
747 /* If the prologue is being adjusted again, we've
dda83cd7 748 likely gone too far; i.e. we're probably in the
d40fcd7b
KB
749 epilogue. */
750 break;
751 }
456f8b9d
DB
752 }
753
754 /* Setting the FP to a constant distance from the SP:
755 addi sp, S, fp
dda83cd7
SM
756 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
757 0 111111 1111111 111111 000000000000 = 0x7ffff000
758 . . . . . . . .
456f8b9d
DB
759 We treat this as part of the prologue. */
760 else if ((op & 0x7ffff000) == 0x04401000)
761 {
762 /* Sign-extend the twelve-bit field.
763 (Isn't there a better way to do this?) */
764 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
765 fp_set = 1;
766 fp_offset = s;
d40fcd7b 767 last_prologue_pc = pc;
456f8b9d
DB
768 }
769
770 /* To spill an argument register to a scratch register:
771 ori GRi, 0, GRk
772 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
773 0 000000 1111111 000000 111111111111 = 0x01fc0fff
774 . . . . . . . .
775 For the time being, we treat this as a prologue instruction,
776 assuming that GRi is an argument register. This one's kind
777 of suspicious, because it seems like it could be part of a
778 legitimate body instruction. But we only come here when the
779 source info wasn't helpful, so we have to do the best we can.
780 Hopefully once GCC and GDB agree on how to emit line number
781 info for prologues, then this code will never come into play. */
782 else if ((op & 0x01fc0fff) == 0x00880000)
783 {
784 int gr_i = ((op >> 12) & 0x3f);
785
dda83cd7 786 /* Make sure that the source is an arg register; if it is, we'll
d40fcd7b
KB
787 treat it as a prologue instruction. */
788 if (is_argument_reg (gr_i))
789 last_prologue_pc = next_pc;
456f8b9d
DB
790 }
791
792 /* To spill 16-bit values to the stack:
793 sthi GRk, @(fp, s)
794 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
795 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7
SM
796 . . . . . . . .
797 And for 8-bit values, we use STB instructions.
456f8b9d
DB
798 stbi GRk, @(fp, s)
799 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
dda83cd7
SM
802 We check that GRk is really an argument register, and treat
803 all such as part of the prologue. */
456f8b9d
DB
804 else if ( (op & 0x01fff000) == 0x01442000
805 || (op & 0x01fff000) == 0x01402000)
806 {
807 int gr_k = ((op >> 25) & 0x3f);
808
dda83cd7 809 /* Make sure that GRk is really an argument register; treat
d40fcd7b
KB
810 it as a prologue instruction if so. */
811 if (is_argument_reg (gr_k))
812 last_prologue_pc = next_pc;
456f8b9d
DB
813 }
814
815 /* To save multiple callee-saves register on the stack, at a
dda83cd7 816 non-zero offset:
456f8b9d
DB
817
818 stdi GRk, @(sp, s)
819 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
820 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7 821 . . . . . . . .
456f8b9d
DB
822 stqi GRk, @(sp, s)
823 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
824 0 000000 1111111 111111 000000000000 = 0x01fff000
825 . . . . . . . .
dda83cd7 826 We treat this as part of the prologue, and record the register's
456f8b9d
DB
827 saved address in the frame structure. */
828 else if ((op & 0x01fff000) == 0x014c1000
dda83cd7 829 || (op & 0x01fff000) == 0x01501000)
456f8b9d
DB
830 {
831 int gr_k = ((op >> 25) & 0x3f);
dda83cd7 832 int count;
456f8b9d
DB
833 int i;
834
dda83cd7
SM
835 /* Is it a stdi or a stqi? */
836 if ((op & 0x01fff000) == 0x014c1000)
837 count = 2;
838 else
839 count = 4;
456f8b9d
DB
840
841 /* Is it really a callee-saves register? */
842 if (is_callee_saves_reg (gr_k))
843 {
844 /* Sign-extend the twelve-bit field.
845 (Isn't there a better way to do this?) */
846 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
847
848 for (i = 0; i < count; i++)
849 {
850 gr_saved[gr_k + i] = 1;
851 gr_sp_offset[gr_k + i] = s + (4 * i);
852 }
d40fcd7b 853 last_prologue_pc = next_pc;
456f8b9d 854 }
456f8b9d
DB
855 }
856
857 /* Storing any kind of integer register at any constant offset
dda83cd7 858 from any other register.
456f8b9d
DB
859
860 st GRk, @(GRi, gr0)
dda83cd7
SM
861 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
862 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
863 . . . . . . . .
456f8b9d
DB
864 sti GRk, @(GRi, d12)
865 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
866 0 000000 1111111 000000 000000000000 = 0x01fc0000
dda83cd7
SM
867 . . . . . . . .
868 These could be almost anything, but a lot of prologue
869 instructions fall into this pattern, so let's decode the
870 instruction once, and then work at a higher level. */
456f8b9d 871 else if (((op & 0x01fc0fff) == 0x000c0080)
dda83cd7
SM
872 || ((op & 0x01fc0000) == 0x01480000))
873 {
874 int gr_k = ((op >> 25) & 0x3f);
875 int gr_i = ((op >> 12) & 0x3f);
876 int offset;
877
878 /* Are we storing with gr0 as an offset, or using an
879 immediate value? */
880 if ((op & 0x01fc0fff) == 0x000c0080)
881 offset = 0;
882 else
883 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
884
885 /* If the address isn't relative to the SP or FP, it's not a
886 prologue instruction. */
887 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
888 {
889 /* Do nothing; not a prologue instruction. */
890 }
456f8b9d 891
dda83cd7
SM
892 /* Saving the old FP in the new frame (relative to the SP). */
893 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
894 {
895 gr_saved[fp_regnum] = 1;
dda83cd7 896 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 897 last_prologue_pc = next_pc;
1cb761c7 898 }
456f8b9d 899
dda83cd7
SM
900 /* Saving callee-saves register(s) on the stack, relative to
901 the SP. */
902 else if (gr_i == sp_regnum
903 && is_callee_saves_reg (gr_k))
904 {
905 gr_saved[gr_k] = 1;
1cb761c7
KB
906 if (gr_i == sp_regnum)
907 gr_sp_offset[gr_k] = offset;
908 else
909 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 910 last_prologue_pc = next_pc;
dda83cd7 911 }
456f8b9d 912
dda83cd7
SM
913 /* Saving the scratch register holding the return address. */
914 else if (lr_save_reg != -1
915 && gr_k == lr_save_reg)
1cb761c7
KB
916 {
917 lr_saved_on_stack = 1;
918 if (gr_i == sp_regnum)
919 lr_sp_offset = offset;
920 else
dda83cd7 921 lr_sp_offset = offset + fp_offset;
d40fcd7b 922 last_prologue_pc = next_pc;
1cb761c7 923 }
456f8b9d 924
dda83cd7
SM
925 /* Spilling int-sized arguments to the stack. */
926 else if (is_argument_reg (gr_k))
d40fcd7b 927 last_prologue_pc = next_pc;
dda83cd7 928 }
d40fcd7b 929 pc = next_pc;
456f8b9d
DB
930 }
931
94afd7a6 932 if (this_frame && info)
456f8b9d 933 {
1cb761c7
KB
934 int i;
935 ULONGEST this_base;
456f8b9d
DB
936
937 /* If we know the relationship between the stack and frame
dda83cd7
SM
938 pointers, record the addresses of the registers we noticed.
939 Note that we have to do this as a separate step at the end,
940 because instructions may save relative to the SP, but we need
941 their addresses relative to the FP. */
456f8b9d 942 if (fp_set)
94afd7a6 943 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 944 else
94afd7a6 945 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 946
1cb761c7
KB
947 for (i = 0; i < 64; i++)
948 if (gr_saved[i])
098caef4
LM
949 info->saved_regs[i].set_addr (this_base - fp_offset
950 + gr_sp_offset[i]);
456f8b9d 951
1cb761c7
KB
952 info->prev_sp = this_base - fp_offset + framesize;
953 info->base = this_base;
954
955 /* If LR was saved on the stack, record its location. */
956 if (lr_saved_on_stack)
098caef4
LM
957 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
958 + lr_sp_offset);
1cb761c7
KB
959
960 /* The call instruction moves the caller's PC in the callee's LR.
961 Since this is an unwind, do the reverse. Copy the location of LR
962 into PC (the address / regnum) so that a request for PC will be
963 converted into a request for the LR. */
964 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
965
966 /* Save the previous frame's computed SP value. */
a9a87d35 967 info->saved_regs[sp_regnum].set_value (info->prev_sp);
456f8b9d
DB
968 }
969
d40fcd7b 970 return last_prologue_pc;
456f8b9d
DB
971}
972
973
974static CORE_ADDR
6093d2eb 975frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
976{
977 CORE_ADDR func_addr, func_end, new_pc;
978
979 new_pc = pc;
980
981 /* If the line table has entry for a line *within* the function
982 (i.e., not in the prologue, and not past the end), then that's
983 our location. */
984 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
985 {
986 struct symtab_and_line sal;
987
988 sal = find_pc_line (func_addr, 0);
989
990 if (sal.line != 0 && sal.end < func_end)
991 {
992 new_pc = sal.end;
993 }
994 }
995
996 /* The FR-V prologue is at least five instructions long (twenty bytes).
997 If we didn't find a real source location past that, then
998 do a full analysis of the prologue. */
999 if (new_pc < pc + 20)
d80b854b 1000 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1001
1002 return new_pc;
1003}
1004
1cb761c7 1005
9bc7b6c6
KB
1006/* Examine the instruction pointed to by PC. If it corresponds to
1007 a call to __main, return the address of the next instruction.
1008 Otherwise, return PC. */
1009
1010static CORE_ADDR
1011frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1012{
e17a4113 1013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1014 gdb_byte buf[4];
1015 unsigned long op;
1016 CORE_ADDR orig_pc = pc;
1017
1018 if (target_read_memory (pc, buf, 4))
1019 return pc;
e17a4113 1020 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1021
1022 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1023 to the call instruction.
1024
1025 Skip over this instruction if present. It won't be present in
0963b4bd 1026 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1027 (This is due to the fact that GR15, the FDPIC register, already
1028 contains the correct value.)
1029
1030 The general form of the LDI is given first, followed by the
1031 specific instruction with the GRi and GRk filled in as FP and
1032 GR15.
1033
1034 ldi @(GRi, d12), GRk
1035 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1036 0 000000 1111111 000000 000000000000 = 0x01fc0000
1037 . . . . . . . .
1038 ldi @(FP, d12), GR15
1039 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1040 0 001111 1111111 000010 000000000000 = 0x7ffff000
1041 . . . . . . . . */
1042
1043 if ((op & 0x7ffff000) == 0x1ec82000)
1044 {
1045 pc += 4;
1046 if (target_read_memory (pc, buf, 4))
1047 return orig_pc;
e17a4113 1048 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1049 }
1050
1051 /* The format of an FRV CALL instruction is as follows:
1052
1053 call label24
1054 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1055 0 000000 1111111 000000000000000000 = 0x01fc0000
dda83cd7 1056 . . . . . . . .
9bc7b6c6
KB
1057
1058 where label24 is constructed by concatenating the H bits with the
1059 L bits. The call target is PC + (4 * sign_ext(label24)). */
1060
1061 if ((op & 0x01fc0000) == 0x003c0000)
1062 {
1063 LONGEST displ;
1064 CORE_ADDR call_dest;
7cbd4a93 1065 struct bound_minimal_symbol s;
9bc7b6c6
KB
1066
1067 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1068 if ((displ & 0x00800000) != 0)
1069 displ |= ~((LONGEST) 0x00ffffff);
1070
1071 call_dest = pc + 4 * displ;
1072 s = lookup_minimal_symbol_by_pc (call_dest);
1073
7cbd4a93 1074 if (s.minsym != NULL
dda83cd7 1075 && s.minsym->linkage_name () != NULL
c9d95fa3 1076 && strcmp (s.minsym->linkage_name (), "__main") == 0)
9bc7b6c6
KB
1077 {
1078 pc += 4;
1079 return pc;
1080 }
1081 }
1082 return orig_pc;
1083}
1084
1085
1cb761c7 1086static struct frv_unwind_cache *
94afd7a6 1087frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1088 void **this_prologue_cache)
456f8b9d 1089{
94afd7a6 1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1091 struct frv_unwind_cache *info;
8baa6f92 1092
1cb761c7 1093 if ((*this_prologue_cache))
9a3c8263 1094 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1095
1cb761c7
KB
1096 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1097 (*this_prologue_cache) = info;
94afd7a6 1098 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1099
1cb761c7 1100 /* Prologue analysis does the rest... */
d80b854b
UW
1101 frv_analyze_prologue (gdbarch,
1102 get_frame_func (this_frame), this_frame, info);
456f8b9d 1103
1cb761c7 1104 return info;
456f8b9d
DB
1105}
1106
456f8b9d 1107static void
cd31fb03 1108frv_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1109 gdb_byte *valbuf)
456f8b9d 1110{
ac7936df 1111 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cd31fb03
KB
1113 int len = TYPE_LENGTH (type);
1114
1115 if (len <= 4)
1116 {
1117 ULONGEST gpr8_val;
1118 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1119 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1120 }
1121 else if (len == 8)
1122 {
1123 ULONGEST regval;
0963b4bd 1124
cd31fb03 1125 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1127 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1129 }
1130 else
0963b4bd
MS
1131 internal_error (__FILE__, __LINE__,
1132 _("Illegal return value length: %d"), len);
456f8b9d
DB
1133}
1134
1cb761c7
KB
1135static CORE_ADDR
1136frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1137{
1cb761c7 1138 /* Require dword alignment. */
5b03f266 1139 return align_down (sp, 8);
456f8b9d
DB
1140}
1141
c4d10515
KB
1142static CORE_ADDR
1143find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1144{
e17a4113 1145 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1146 CORE_ADDR descr;
948f8e3d 1147 gdb_byte valbuf[4];
35e08e03
KB
1148 CORE_ADDR start_addr;
1149
1150 /* If we can't find the function in the symbol table, then we assume
1151 that the function address is already in descriptor form. */
1152 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1153 || entry_point != start_addr)
1154 return entry_point;
c4d10515
KB
1155
1156 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1157
1158 if (descr != 0)
1159 return descr;
1160
1161 /* Construct a non-canonical descriptor from space allocated on
1162 the stack. */
1163
1164 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1165 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1166 write_memory (descr, valbuf, 4);
e17a4113 1167 store_unsigned_integer (valbuf, 4, byte_order,
dda83cd7 1168 frv_fdpic_find_global_pointer (entry_point));
c4d10515
KB
1169 write_memory (descr + 4, valbuf, 4);
1170 return descr;
1171}
1172
1173static CORE_ADDR
1174frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
dda83cd7 1175 struct target_ops *targ)
c4d10515 1176{
e17a4113 1177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1178 CORE_ADDR entry_point;
1179 CORE_ADDR got_address;
1180
e17a4113
UW
1181 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1182 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1183
1184 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1185 return entry_point;
1186 else
1187 return addr;
1188}
1189
456f8b9d 1190static CORE_ADDR
7d9b040b 1191frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1192 struct regcache *regcache, CORE_ADDR bp_addr,
1193 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1194 function_call_return_method return_method,
1195 CORE_ADDR struct_addr)
456f8b9d 1196{
e17a4113 1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1198 int argreg;
1199 int argnum;
948f8e3d
PA
1200 const gdb_byte *val;
1201 gdb_byte valbuf[4];
456f8b9d
DB
1202 struct value *arg;
1203 struct type *arg_type;
1204 int len;
1205 enum type_code typecode;
1206 CORE_ADDR regval;
1207 int stack_space;
1208 int stack_offset;
c4d10515 1209 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1210 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1211
1212#if 0
1213 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1214 nargs, (int) sp, struct_return, struct_addr);
1215#endif
1216
1217 stack_space = 0;
1218 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1219 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1220
1221 stack_space -= (6 * 4);
1222 if (stack_space > 0)
1223 sp -= stack_space;
1224
0963b4bd 1225 /* Make sure stack is dword aligned. */
5b03f266 1226 sp = align_down (sp, 8);
456f8b9d
DB
1227
1228 stack_offset = 0;
1229
1230 argreg = 8;
1231
cf84fa6b 1232 if (return_method == return_method_struct)
1cb761c7 1233 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
dda83cd7 1234 struct_addr);
456f8b9d
DB
1235
1236 for (argnum = 0; argnum < nargs; ++argnum)
1237 {
1238 arg = args[argnum];
4991999e 1239 arg_type = check_typedef (value_type (arg));
456f8b9d 1240 len = TYPE_LENGTH (arg_type);
78134374 1241 typecode = arg_type->code ();
456f8b9d
DB
1242
1243 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1244 {
e17a4113
UW
1245 store_unsigned_integer (valbuf, 4, byte_order,
1246 value_address (arg));
456f8b9d
DB
1247 typecode = TYPE_CODE_PTR;
1248 len = 4;
1249 val = valbuf;
1250 }
c4d10515
KB
1251 else if (abi == FRV_ABI_FDPIC
1252 && len == 4
dda83cd7
SM
1253 && typecode == TYPE_CODE_PTR
1254 && TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_FUNC)
c4d10515
KB
1255 {
1256 /* The FDPIC ABI requires function descriptors to be passed instead
1257 of entry points. */
e17a4113 1258 CORE_ADDR addr = extract_unsigned_integer
50888e42 1259 (value_contents (arg).data (), 4, byte_order);
e17a4113
UW
1260 addr = find_func_descr (gdbarch, addr);
1261 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1262 typecode = TYPE_CODE_PTR;
1263 len = 4;
1264 val = valbuf;
1265 }
456f8b9d
DB
1266 else
1267 {
50888e42 1268 val = value_contents (arg).data ();
456f8b9d
DB
1269 }
1270
1271 while (len > 0)
1272 {
1273 int partial_len = (len < 4 ? len : 4);
1274
1275 if (argreg < 14)
1276 {
e17a4113 1277 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1278#if 0
1279 printf(" Argnum %d data %x -> reg %d\n",
1280 argnum, (int) regval, argreg);
1281#endif
1cb761c7 1282 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1283 ++argreg;
1284 }
1285 else
1286 {
1287#if 0
1288 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1289 argnum, *((int *)val), stack_offset,
1290 (int) (sp + stack_offset));
456f8b9d
DB
1291#endif
1292 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1293 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1294 }
1295 len -= partial_len;
1296 val += partial_len;
1297 }
1298 }
456f8b9d 1299
1cb761c7
KB
1300 /* Set the return address. For the frv, the return breakpoint is
1301 always at BP_ADDR. */
1302 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1303
c4d10515
KB
1304 if (abi == FRV_ABI_FDPIC)
1305 {
1306 /* Set the GOT register for the FDPIC ABI. */
1307 regcache_cooked_write_unsigned
1308 (regcache, first_gpr_regnum + 15,
dda83cd7 1309 frv_fdpic_find_global_pointer (func_addr));
c4d10515
KB
1310 }
1311
1cb761c7
KB
1312 /* Finally, update the SP register. */
1313 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1314
456f8b9d
DB
1315 return sp;
1316}
1317
1318static void
cd31fb03 1319frv_store_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1320 const gdb_byte *valbuf)
456f8b9d 1321{
cd31fb03
KB
1322 int len = TYPE_LENGTH (type);
1323
1324 if (len <= 4)
1325 {
1326 bfd_byte val[4];
1327 memset (val, 0, sizeof (val));
1328 memcpy (val + (4 - len), valbuf, len);
b66f5587 1329 regcache->cooked_write (8, val);
cd31fb03
KB
1330 }
1331 else if (len == 8)
1332 {
b66f5587
SM
1333 regcache->cooked_write (8, valbuf);
1334 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
cd31fb03 1335 }
456f8b9d
DB
1336 else
1337 internal_error (__FILE__, __LINE__,
dda83cd7 1338 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1339}
1340
63807e1d 1341static enum return_value_convention
6a3a010b 1342frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1343 struct type *valtype, struct regcache *regcache,
1344 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 1345{
78134374
SM
1346 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1347 || valtype->code () == TYPE_CODE_UNION
1348 || valtype->code () == TYPE_CODE_ARRAY;
4c8b6ae0
UW
1349
1350 if (writebuf != NULL)
1351 {
1352 gdb_assert (!struct_return);
1353 frv_store_return_value (valtype, regcache, writebuf);
1354 }
1355
1356 if (readbuf != NULL)
1357 {
1358 gdb_assert (!struct_return);
1359 frv_extract_return_value (valtype, regcache, readbuf);
1360 }
1361
1362 if (struct_return)
1363 return RETURN_VALUE_STRUCT_CONVENTION;
1364 else
1365 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1366}
1367
1cb761c7
KB
1368/* Given a GDB frame, determine the address of the calling function's
1369 frame. This will be used to create a new GDB frame struct. */
1370
1371static void
94afd7a6 1372frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1373 void **this_prologue_cache, struct frame_id *this_id)
1374{
1375 struct frv_unwind_cache *info
94afd7a6 1376 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1377 CORE_ADDR base;
1378 CORE_ADDR func;
3b7344d5 1379 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1380 struct frame_id id;
1381
1382 /* The FUNC is easy. */
94afd7a6 1383 func = get_frame_func (this_frame);
1cb761c7 1384
1cb761c7
KB
1385 /* Check if the stack is empty. */
1386 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
4aeddc50 1387 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1cb761c7
KB
1388 return;
1389
1390 /* Hopefully the prologue analysis either correctly determined the
1391 frame's base (which is the SP from the previous frame), or set
1392 that base to "NULL". */
1393 base = info->prev_sp;
1394 if (base == 0)
1395 return;
1396
1397 id = frame_id_build (base, func);
1cb761c7
KB
1398 (*this_id) = id;
1399}
1400
94afd7a6
UW
1401static struct value *
1402frv_frame_prev_register (struct frame_info *this_frame,
1403 void **this_prologue_cache, int regnum)
1cb761c7
KB
1404{
1405 struct frv_unwind_cache *info
94afd7a6
UW
1406 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1407 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1408}
1409
1410static const struct frame_unwind frv_frame_unwind = {
a154d838 1411 "frv prologue",
1cb761c7 1412 NORMAL_FRAME,
8fbca658 1413 default_frame_unwind_stop_reason,
1cb761c7 1414 frv_frame_this_id,
94afd7a6
UW
1415 frv_frame_prev_register,
1416 NULL,
1417 default_frame_sniffer
1cb761c7
KB
1418};
1419
1cb761c7 1420static CORE_ADDR
94afd7a6 1421frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1422{
1423 struct frv_unwind_cache *info
94afd7a6 1424 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1425 return info->base;
1426}
1427
1428static const struct frame_base frv_frame_base = {
1429 &frv_frame_unwind,
1430 frv_frame_base_address,
1431 frv_frame_base_address,
1432 frv_frame_base_address
1433};
1434
456f8b9d
DB
1435static struct gdbarch *
1436frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1437{
1438 struct gdbarch *gdbarch;
7e295833 1439 int elf_flags = 0;
456f8b9d
DB
1440
1441 /* Check to see if we've already built an appropriate architecture
1442 object for this executable. */
1443 arches = gdbarch_list_lookup_by_info (arches, &info);
1444 if (arches)
1445 return arches->gdbarch;
1446
1447 /* Select the right tdep structure for this variant. */
345bd07c 1448 frv_gdbarch_tdep *var = new_variant ();
456f8b9d
DB
1449 switch (info.bfd_arch_info->mach)
1450 {
1451 case bfd_mach_frv:
1452 case bfd_mach_frvsimple:
087ccc6a 1453 case bfd_mach_fr300:
456f8b9d
DB
1454 case bfd_mach_fr500:
1455 case bfd_mach_frvtomcat:
251a3ae3 1456 case bfd_mach_fr550:
456f8b9d
DB
1457 set_variant_num_gprs (var, 64);
1458 set_variant_num_fprs (var, 64);
1459 break;
1460
1461 case bfd_mach_fr400:
b2d6d697 1462 case bfd_mach_fr450:
456f8b9d
DB
1463 set_variant_num_gprs (var, 32);
1464 set_variant_num_fprs (var, 32);
1465 break;
1466
1467 default:
1468 /* Never heard of this variant. */
1469 return 0;
1470 }
7e295833
KB
1471
1472 /* Extract the ELF flags, if available. */
1473 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1474 elf_flags = elf_elfheader (info.abfd)->e_flags;
1475
1476 if (elf_flags & EF_FRV_FDPIC)
1477 set_variant_abi_fdpic (var);
1478
b2d6d697
KB
1479 if (elf_flags & EF_FRV_CPU_FR450)
1480 set_variant_scratch_registers (var);
1481
456f8b9d
DB
1482 gdbarch = gdbarch_alloc (&info, var);
1483
1484 set_gdbarch_short_bit (gdbarch, 16);
1485 set_gdbarch_int_bit (gdbarch, 32);
1486 set_gdbarch_long_bit (gdbarch, 32);
1487 set_gdbarch_long_long_bit (gdbarch, 64);
1488 set_gdbarch_float_bit (gdbarch, 32);
1489 set_gdbarch_double_bit (gdbarch, 64);
1490 set_gdbarch_long_double_bit (gdbarch, 64);
1491 set_gdbarch_ptr_bit (gdbarch, 32);
1492
1493 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1494 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1495
456f8b9d 1496 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1497 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1498 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1499
1500 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1501 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1502 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1503
6a748db6
KB
1504 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1506
456f8b9d 1507 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1508 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1509 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1510 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1511 set_gdbarch_adjust_breakpoint_address
1512 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1513
4c8b6ae0 1514 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1515
1cb761c7 1516 /* Frame stuff. */
1cb761c7 1517 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1518 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1519 /* We set the sniffer lower down after the OSABI hooks have been
1520 established. */
456f8b9d 1521
1cb761c7
KB
1522 /* Settings for calling functions in the inferior. */
1523 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
456f8b9d
DB
1524
1525 /* Settings that should be unnecessary. */
1526 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1527
456f8b9d
DB
1528 /* Hardware watchpoint / breakpoint support. */
1529 switch (info.bfd_arch_info->mach)
1530 {
1531 case bfd_mach_frv:
1532 case bfd_mach_frvsimple:
087ccc6a 1533 case bfd_mach_fr300:
456f8b9d
DB
1534 case bfd_mach_fr500:
1535 case bfd_mach_frvtomcat:
1536 /* fr500-style hardware debugging support. */
1537 var->num_hw_watchpoints = 4;
1538 var->num_hw_breakpoints = 4;
1539 break;
1540
1541 case bfd_mach_fr400:
b2d6d697 1542 case bfd_mach_fr450:
456f8b9d
DB
1543 /* fr400-style hardware debugging support. */
1544 var->num_hw_watchpoints = 2;
1545 var->num_hw_breakpoints = 4;
1546 break;
1547
1548 default:
1549 /* Otherwise, assume we don't have hardware debugging support. */
1550 var->num_hw_watchpoints = 0;
1551 var->num_hw_breakpoints = 0;
1552 break;
1553 }
1554
c4d10515
KB
1555 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1556 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1557 frv_convert_from_func_ptr_addr);
36482093 1558
917630e4
UW
1559 set_solib_ops (gdbarch, &frv_so_ops);
1560
5ecb7103
KB
1561 /* Hook in ABI-specific overrides, if they have been registered. */
1562 gdbarch_init_osabi (info, gdbarch);
1563
5ecb7103 1564 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1565 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1566
186993b4
KB
1567 /* Enable TLS support. */
1568 set_gdbarch_fetch_tls_load_module_address (gdbarch,
dda83cd7 1569 frv_fetch_objfile_link_map);
186993b4 1570
456f8b9d
DB
1571 return gdbarch;
1572}
1573
6c265988 1574void _initialize_frv_tdep ();
456f8b9d 1575void
6c265988 1576_initialize_frv_tdep ()
456f8b9d
DB
1577{
1578 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1579}