]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
gdbarch_breakpoint_from_pc doesn't return NULL
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
618f726f 3 Copyright (C) 2002-2016 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
19
20#include "defs.h"
21#include "inferior.h"
456f8b9d
DB
22#include "gdbcore.h"
23#include "arch-utils.h"
24#include "regcache.h"
8baa6f92 25#include "frame.h"
1cb761c7
KB
26#include "frame-unwind.h"
27#include "frame-base.h"
8baa6f92 28#include "trad-frame.h"
dcc6aaff 29#include "dis-asm.h"
526eef89
KB
30#include "sim-regno.h"
31#include "gdb/sim-frv.h"
32#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
36#include "osabi.h"
7d9b040b 37#include "infcall.h"
917630e4 38#include "solib.h"
7e295833 39#include "frv-tdep.h"
77e371c0 40#include "objfiles.h"
456f8b9d
DB
41
42extern void _initialize_frv_tdep (void);
43
1cb761c7 44struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 45 {
1cb761c7
KB
46 /* The previous frame's inner-most stack address. Used as this
47 frame ID's stack_addr. */
48 CORE_ADDR prev_sp;
456f8b9d 49
1cb761c7
KB
50 /* The frame's base, optionally used by the high-level debug info. */
51 CORE_ADDR base;
8baa6f92
KB
52
53 /* Table indicating the location of each and every register. */
54 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
55 };
56
456f8b9d
DB
57/* A structure describing a particular variant of the FRV.
58 We allocate and initialize one of these structures when we create
59 the gdbarch object for a variant.
60
61 At the moment, all the FR variants we support differ only in which
62 registers are present; the portable code of GDB knows that
63 registers whose names are the empty string don't exist, so the
64 `register_names' array captures all the per-variant information we
65 need.
66
67 in the future, if we need to have per-variant maps for raw size,
68 virtual type, etc., we should replace register_names with an array
69 of structures, each of which gives all the necessary info for one
70 register. Don't stick parallel arrays in here --- that's so
71 Fortran. */
72struct gdbarch_tdep
73{
7e295833
KB
74 /* Which ABI is in use? */
75 enum frv_abi frv_abi;
76
456f8b9d
DB
77 /* How many general-purpose registers does this variant have? */
78 int num_gprs;
79
80 /* How many floating-point registers does this variant have? */
81 int num_fprs;
82
83 /* How many hardware watchpoints can it support? */
84 int num_hw_watchpoints;
85
86 /* How many hardware breakpoints can it support? */
87 int num_hw_breakpoints;
88
89 /* Register names. */
90 char **register_names;
91};
92
7e295833
KB
93/* Return the FR-V ABI associated with GDBARCH. */
94enum frv_abi
95frv_abi (struct gdbarch *gdbarch)
96{
97 return gdbarch_tdep (gdbarch)->frv_abi;
98}
99
100/* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103int
104frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106{
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
594f7785
UW
111 struct regcache *regcache = get_current_regcache ();
112
7e295833
KB
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
594f7785 116 regcache_cooked_read_unsigned (regcache,
7e295833
KB
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129}
456f8b9d
DB
130
131/* Allocate a new variant structure, and set up default values for all
132 the fields. */
133static struct gdbarch_tdep *
5ae5f592 134new_variant (void)
456f8b9d
DB
135{
136 struct gdbarch_tdep *var;
137 int r;
456f8b9d 138
8d749320
SM
139 var = XCNEW (struct gdbarch_tdep);
140
7e295833 141 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
142 var->num_gprs = 64;
143 var->num_fprs = 64;
144 var->num_hw_watchpoints = 0;
145 var->num_hw_breakpoints = 0;
146
147 /* By default, don't supply any general-purpose or floating-point
148 register names. */
6a748db6
KB
149 var->register_names
150 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
151 * sizeof (char *));
152 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
153 var->register_names[r] = "";
154
526eef89 155 /* Do, however, supply default names for the known special-purpose
456f8b9d 156 registers. */
456f8b9d
DB
157
158 var->register_names[pc_regnum] = "pc";
159 var->register_names[lr_regnum] = "lr";
160 var->register_names[lcr_regnum] = "lcr";
161
162 var->register_names[psr_regnum] = "psr";
163 var->register_names[ccr_regnum] = "ccr";
164 var->register_names[cccr_regnum] = "cccr";
165 var->register_names[tbr_regnum] = "tbr";
166
167 /* Debug registers. */
168 var->register_names[brr_regnum] = "brr";
169 var->register_names[dbar0_regnum] = "dbar0";
170 var->register_names[dbar1_regnum] = "dbar1";
171 var->register_names[dbar2_regnum] = "dbar2";
172 var->register_names[dbar3_regnum] = "dbar3";
173
526eef89
KB
174 /* iacc0 (Only found on MB93405.) */
175 var->register_names[iacc0h_regnum] = "iacc0h";
176 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 177 var->register_names[iacc0_regnum] = "iacc0";
526eef89 178
8b67aa36
KB
179 /* fsr0 (Found on FR555 and FR501.) */
180 var->register_names[fsr0_regnum] = "fsr0";
181
182 /* acc0 - acc7. The architecture provides for the possibility of many
183 more (up to 64 total), but we don't want to make that big of a hole
184 in the G packet. If we need more in the future, we'll add them
185 elsewhere. */
186 for (r = acc0_regnum; r <= acc7_regnum; r++)
187 {
188 char *buf;
b435e160 189 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
190 var->register_names[r] = buf;
191 }
192
193 /* accg0 - accg7: These are one byte registers. The remote protocol
194 provides the raw values packed four into a slot. accg0123 and
195 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
196 We don't provide names for accg0123 and accg4567 since the user will
197 likely not want to see these raw values. */
198
199 for (r = accg0_regnum; r <= accg7_regnum; r++)
200 {
201 char *buf;
b435e160 202 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
203 var->register_names[r] = buf;
204 }
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
456f8b9d
DB
217 return var;
218}
219
220
221/* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223static void
224set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
225{
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
08850b56 234 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237}
238
239
240/* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242static void
243set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
244{
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
08850b56 253 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256}
257
7e295833
KB
258static void
259set_variant_abi_fdpic (struct gdbarch_tdep *var)
260{
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
7e295833 265}
456f8b9d 266
b2d6d697
KB
267static void
268set_variant_scratch_registers (struct gdbarch_tdep *var)
269{
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274}
275
456f8b9d 276static const char *
d93859e2 277frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
278{
279 if (reg < 0)
280 return "?toosmall?";
6a748db6 281 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
282 return "?toolarge?";
283
7a22ecfc 284 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
285}
286
526eef89 287
456f8b9d 288static struct type *
7f398216 289frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 290{
526eef89 291 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 292 return builtin_type (gdbarch)->builtin_float;
6a748db6 293 else if (reg == iacc0_regnum)
df4df182 294 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 295 else
df4df182 296 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
297}
298
05d1431c 299static enum register_status
6a748db6 300frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 301 int reg, gdb_byte *buffer)
6a748db6 302{
05d1431c
PA
303 enum register_status status;
304
6a748db6
KB
305 if (reg == iacc0_regnum)
306 {
05d1431c
PA
307 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
308 if (status == REG_VALID)
309 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 310 }
8b67aa36
KB
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 318 gdb_byte buf[4];
8b67aa36 319
05d1431c
PA
320 status = regcache_raw_read (regcache, raw_regnum, buf);
321 if (status == REG_VALID)
322 {
323 memset (buffer, 0, 4);
324 /* FR-V is big endian, so put the requested byte in the
325 first byte of the buffer allocated to hold the
326 pseudo-register. */
327 buffer[0] = buf[byte_num];
328 }
8b67aa36 329 }
05d1431c
PA
330 else
331 gdb_assert_not_reached ("invalid pseudo register number");
332
333 return status;
6a748db6
KB
334}
335
336static void
337frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 338 int reg, const gdb_byte *buffer)
6a748db6
KB
339{
340 if (reg == iacc0_regnum)
341 {
342 regcache_raw_write (regcache, iacc0h_regnum, buffer);
343 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
344 }
8b67aa36
KB
345 else if (accg0_regnum <= reg && reg <= accg7_regnum)
346 {
347 /* The accg raw registers have four values in each slot with the
348 lowest register number occupying the first byte. */
349
350 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
351 int byte_num = (reg - accg0_regnum) % 4;
e362b510 352 gdb_byte buf[4];
8b67aa36
KB
353
354 regcache_raw_read (regcache, raw_regnum, buf);
355 buf[byte_num] = ((bfd_byte *) buffer)[0];
356 regcache_raw_write (regcache, raw_regnum, buf);
357 }
6a748db6
KB
358}
359
526eef89 360static int
e7faf938 361frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
362{
363 static const int spr_map[] =
364 {
365 H_SPR_PSR, /* psr_regnum */
366 H_SPR_CCR, /* ccr_regnum */
367 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
368 -1, /* fdpic_loadmap_exec_regnum */
369 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
370 -1, /* 134 */
371 H_SPR_TBR, /* tbr_regnum */
372 H_SPR_BRR, /* brr_regnum */
373 H_SPR_DBAR0, /* dbar0_regnum */
374 H_SPR_DBAR1, /* dbar1_regnum */
375 H_SPR_DBAR2, /* dbar2_regnum */
376 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
377 H_SPR_SCR0, /* scr0_regnum */
378 H_SPR_SCR1, /* scr1_regnum */
379 H_SPR_SCR2, /* scr2_regnum */
380 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
381 H_SPR_LR, /* lr_regnum */
382 H_SPR_LCR, /* lcr_regnum */
383 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
384 H_SPR_IACC0L, /* iacc0l_regnum */
385 H_SPR_FSR0, /* fsr0_regnum */
386 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
387 -1, /* acc0_regnum */
388 -1, /* acc1_regnum */
389 -1, /* acc2_regnum */
390 -1, /* acc3_regnum */
391 -1, /* acc4_regnum */
392 -1, /* acc5_regnum */
393 -1, /* acc6_regnum */
394 -1, /* acc7_regnum */
395 -1, /* acc0123_regnum */
396 -1, /* acc4567_regnum */
397 H_SPR_MSR0, /* msr0_regnum */
398 H_SPR_MSR1, /* msr1_regnum */
399 H_SPR_GNER0, /* gner0_regnum */
400 H_SPR_GNER1, /* gner1_regnum */
401 H_SPR_FNER0, /* fner0_regnum */
402 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
403 };
404
e7faf938 405 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
406
407 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
408 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
409 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
410 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
411 else if (pc_regnum == reg)
412 return SIM_FRV_PC_REGNUM;
413 else if (reg >= first_spr_regnum
414 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
415 {
416 int spr_reg_offset = spr_map[reg - first_spr_regnum];
417
418 if (spr_reg_offset < 0)
419 return SIM_REGNO_DOES_NOT_EXIST;
420 else
421 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
422 }
423
e2e0b3e5 424 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
425}
426
456f8b9d 427static const unsigned char *
67d57894 428frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
456f8b9d
DB
429{
430 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
431 *lenp = sizeof (breakpoint);
432 return breakpoint;
433}
434
46a16dba
KB
435/* Define the maximum number of instructions which may be packed into a
436 bundle (VLIW instruction). */
437static const int max_instrs_per_bundle = 8;
438
439/* Define the size (in bytes) of an FR-V instruction. */
440static const int frv_instr_size = 4;
441
442/* Adjust a breakpoint's address to account for the FR-V architecture's
443 constraint that a break instruction must not appear as any but the
444 first instruction in the bundle. */
445static CORE_ADDR
1208538e 446frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
447{
448 int count = max_instrs_per_bundle;
449 CORE_ADDR addr = bpaddr - frv_instr_size;
450 CORE_ADDR func_start = get_pc_function_start (bpaddr);
451
452 /* Find the end of the previous packing sequence. This will be indicated
453 by either attempting to access some inaccessible memory or by finding
0963b4bd 454 an instruction word whose packing bit is set to one. */
46a16dba
KB
455 while (count-- > 0 && addr >= func_start)
456 {
948f8e3d 457 gdb_byte instr[frv_instr_size];
46a16dba
KB
458 int status;
459
8defab1a 460 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
461
462 if (status != 0)
463 break;
464
465 /* This is a big endian architecture, so byte zero will have most
466 significant byte. The most significant bit of this byte is the
467 packing bit. */
468 if (instr[0] & 0x80)
469 break;
470
471 addr -= frv_instr_size;
472 }
473
474 if (count > 0)
475 bpaddr = addr + frv_instr_size;
476
477 return bpaddr;
478}
479
456f8b9d
DB
480
481/* Return true if REG is a caller-saves ("scratch") register,
482 false otherwise. */
483static int
484is_caller_saves_reg (int reg)
485{
486 return ((4 <= reg && reg <= 7)
487 || (14 <= reg && reg <= 15)
488 || (32 <= reg && reg <= 47));
489}
490
491
492/* Return true if REG is a callee-saves register, false otherwise. */
493static int
494is_callee_saves_reg (int reg)
495{
496 return ((16 <= reg && reg <= 31)
497 || (48 <= reg && reg <= 63));
498}
499
500
501/* Return true if REG is an argument register, false otherwise. */
502static int
503is_argument_reg (int reg)
504{
505 return (8 <= reg && reg <= 13);
506}
507
456f8b9d
DB
508/* Scan an FR-V prologue, starting at PC, until frame->PC.
509 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
510 We assume FRAME's saved_regs array has already been allocated and cleared.
511 Return the first PC value after the prologue.
512
513 Note that, for unoptimized code, we almost don't need this function
514 at all; all arguments and locals live on the stack, so we just need
515 the FP to find everything. The catch: structures passed by value
516 have their addresses living in registers; they're never spilled to
517 the stack. So if you ever want to be able to get to these
518 arguments in any frame but the top, you'll need to do this serious
519 prologue analysis. */
520static CORE_ADDR
d80b854b
UW
521frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
522 struct frame_info *this_frame,
1cb761c7 523 struct frv_unwind_cache *info)
456f8b9d 524{
e17a4113
UW
525 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
526
456f8b9d
DB
527 /* When writing out instruction bitpatterns, we use the following
528 letters to label instruction fields:
529 P - The parallel bit. We don't use this.
530 J - The register number of GRj in the instruction description.
531 K - The register number of GRk in the instruction description.
532 I - The register number of GRi.
533 S - a signed imediate offset.
534 U - an unsigned immediate offset.
535
536 The dots below the numbers indicate where hex digit boundaries
537 fall, to make it easier to check the numbers. */
538
539 /* Non-zero iff we've seen the instruction that initializes the
540 frame pointer for this function's frame. */
541 int fp_set = 0;
542
543 /* If fp_set is non_zero, then this is the distance from
544 the stack pointer to frame pointer: fp = sp + fp_offset. */
545 int fp_offset = 0;
546
0963b4bd 547 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
548 int framesize = 0;
549
1cb761c7
KB
550 /* Flag indicating if lr has been saved on the stack. */
551 int lr_saved_on_stack = 0;
552
456f8b9d
DB
553 /* The number of the general-purpose register we saved the return
554 address ("link register") in, or -1 if we haven't moved it yet. */
555 int lr_save_reg = -1;
556
1cb761c7
KB
557 /* Offset (from sp) at which lr has been saved on the stack. */
558
559 int lr_sp_offset = 0;
456f8b9d
DB
560
561 /* If gr_saved[i] is non-zero, then we've noticed that general
562 register i has been saved at gr_sp_offset[i] from the stack
563 pointer. */
564 char gr_saved[64];
565 int gr_sp_offset[64];
566
d40fcd7b
KB
567 /* The address of the most recently scanned prologue instruction. */
568 CORE_ADDR last_prologue_pc;
569
0963b4bd 570 /* The address of the next instruction. */
d40fcd7b
KB
571 CORE_ADDR next_pc;
572
573 /* The upper bound to of the pc values to scan. */
574 CORE_ADDR lim_pc;
575
456f8b9d
DB
576 memset (gr_saved, 0, sizeof (gr_saved));
577
d40fcd7b
KB
578 last_prologue_pc = pc;
579
580 /* Try to compute an upper limit (on how far to scan) based on the
581 line number info. */
d80b854b 582 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
583 /* If there's no line number info, lim_pc will be 0. In that case,
584 set the limit to be 100 instructions away from pc. Hopefully, this
585 will be far enough away to account for the entire prologue. Don't
586 worry about overshooting the end of the function. The scan loop
587 below contains some checks to avoid scanning unreasonably far. */
588 if (lim_pc == 0)
589 lim_pc = pc + 400;
590
591 /* If we have a frame, we don't want to scan past the frame's pc. This
592 will catch those cases where the pc is in the prologue. */
94afd7a6 593 if (this_frame)
d40fcd7b 594 {
94afd7a6 595 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
596 if (frame_pc < lim_pc)
597 lim_pc = frame_pc;
598 }
599
600 /* Scan the prologue. */
601 while (pc < lim_pc)
456f8b9d 602 {
e362b510 603 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
604 LONGEST op;
605
606 if (target_read_memory (pc, buf, sizeof buf) != 0)
607 break;
e17a4113 608 op = extract_signed_integer (buf, sizeof buf, byte_order);
1ccda5e9 609
d40fcd7b 610 next_pc = pc + 4;
456f8b9d
DB
611
612 /* The tests in this chain of ifs should be in order of
613 decreasing selectivity, so that more particular patterns get
614 to fire before less particular patterns. */
615
d40fcd7b
KB
616 /* Some sort of control transfer instruction: stop scanning prologue.
617 Integer Conditional Branch:
618 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
619 Floating-point / media Conditional Branch:
620 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
621 LCR Conditional Branch to LR
622 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
623 Integer conditional Branches to LR
624 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
625 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
626 Floating-point/Media Branches to LR
627 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
628 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
629 Jump and Link
630 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
631 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
632 Call
633 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
634 Return from Trap
635 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
636 Integer Conditional Trap
637 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
638 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
639 Floating-point /media Conditional Trap
640 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
641 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
642 Break
643 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
644 Media Trap
645 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
646 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
647 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
648 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
649 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
650 {
651 /* Stop scanning; not in prologue any longer. */
652 break;
653 }
654
655 /* Loading something from memory into fp probably means that
656 we're in the epilogue. Stop scanning the prologue.
657 ld @(GRi, GRk), fp
658 X 000010 0000010 XXXXXX 000100 XXXXXX
659 ldi @(GRi, d12), fp
660 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
661 else if ((op & 0x7ffc0fc0) == 0x04080100
662 || (op & 0x7ffc0000) == 0x04c80000)
663 {
664 break;
665 }
666
456f8b9d
DB
667 /* Setting the FP from the SP:
668 ori sp, 0, fp
669 P 000010 0100010 000001 000000000000 = 0x04881000
670 0 111111 1111111 111111 111111111111 = 0x7fffffff
671 . . . . . . . .
672 We treat this as part of the prologue. */
d40fcd7b 673 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
674 {
675 fp_set = 1;
676 fp_offset = 0;
d40fcd7b 677 last_prologue_pc = next_pc;
456f8b9d
DB
678 }
679
680 /* Move the link register to the scratch register grJ, before saving:
681 movsg lr, grJ
682 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
683 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
684 . . . . . . . .
685 We treat this as part of the prologue. */
686 else if ((op & 0x7fffffc0) == 0x080d01c0)
687 {
688 int gr_j = op & 0x3f;
689
690 /* If we're moving it to a scratch register, that's fine. */
691 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
692 {
693 lr_save_reg = gr_j;
694 last_prologue_pc = next_pc;
695 }
456f8b9d
DB
696 }
697
698 /* To save multiple callee-saves registers on the stack, at
699 offset zero:
700
701 std grK,@(sp,gr0)
702 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704
705 stq grK,@(sp,gr0)
706 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
707 0 000000 1111111 111111 111111 111111 = 0x01ffffff
708 . . . . . . . .
709 We treat this as part of the prologue, and record the register's
710 saved address in the frame structure. */
711 else if ((op & 0x01ffffff) == 0x000c10c0
712 || (op & 0x01ffffff) == 0x000c1100)
713 {
714 int gr_k = ((op >> 25) & 0x3f);
715 int ope = ((op >> 6) & 0x3f);
716 int count;
717 int i;
718
719 /* Is it an std or an stq? */
720 if (ope == 0x03)
721 count = 2;
722 else
723 count = 4;
724
725 /* Is it really a callee-saves register? */
726 if (is_callee_saves_reg (gr_k))
727 {
728 for (i = 0; i < count; i++)
729 {
730 gr_saved[gr_k + i] = 1;
731 gr_sp_offset[gr_k + i] = 4 * i;
732 }
d40fcd7b 733 last_prologue_pc = next_pc;
456f8b9d 734 }
456f8b9d
DB
735 }
736
737 /* Adjusting the stack pointer. (The stack pointer is GR1.)
738 addi sp, S, sp
739 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
740 0 111111 1111111 111111 000000000000 = 0x7ffff000
741 . . . . . . . .
742 We treat this as part of the prologue. */
743 else if ((op & 0x7ffff000) == 0x02401000)
744 {
d40fcd7b
KB
745 if (framesize == 0)
746 {
747 /* Sign-extend the twelve-bit field.
748 (Isn't there a better way to do this?) */
749 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 750
d40fcd7b
KB
751 framesize -= s;
752 last_prologue_pc = pc;
753 }
754 else
755 {
756 /* If the prologue is being adjusted again, we've
757 likely gone too far; i.e. we're probably in the
758 epilogue. */
759 break;
760 }
456f8b9d
DB
761 }
762
763 /* Setting the FP to a constant distance from the SP:
764 addi sp, S, fp
765 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
766 0 111111 1111111 111111 000000000000 = 0x7ffff000
767 . . . . . . . .
768 We treat this as part of the prologue. */
769 else if ((op & 0x7ffff000) == 0x04401000)
770 {
771 /* Sign-extend the twelve-bit field.
772 (Isn't there a better way to do this?) */
773 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
774 fp_set = 1;
775 fp_offset = s;
d40fcd7b 776 last_prologue_pc = pc;
456f8b9d
DB
777 }
778
779 /* To spill an argument register to a scratch register:
780 ori GRi, 0, GRk
781 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
782 0 000000 1111111 000000 111111111111 = 0x01fc0fff
783 . . . . . . . .
784 For the time being, we treat this as a prologue instruction,
785 assuming that GRi is an argument register. This one's kind
786 of suspicious, because it seems like it could be part of a
787 legitimate body instruction. But we only come here when the
788 source info wasn't helpful, so we have to do the best we can.
789 Hopefully once GCC and GDB agree on how to emit line number
790 info for prologues, then this code will never come into play. */
791 else if ((op & 0x01fc0fff) == 0x00880000)
792 {
793 int gr_i = ((op >> 12) & 0x3f);
794
d40fcd7b
KB
795 /* Make sure that the source is an arg register; if it is, we'll
796 treat it as a prologue instruction. */
797 if (is_argument_reg (gr_i))
798 last_prologue_pc = next_pc;
456f8b9d
DB
799 }
800
801 /* To spill 16-bit values to the stack:
802 sthi GRk, @(fp, s)
803 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
804 0 000000 1111111 111111 000000000000 = 0x01fff000
805 . . . . . . . .
806 And for 8-bit values, we use STB instructions.
807 stbi GRk, @(fp, s)
808 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
809 0 000000 1111111 111111 000000000000 = 0x01fff000
810 . . . . . . . .
811 We check that GRk is really an argument register, and treat
812 all such as part of the prologue. */
813 else if ( (op & 0x01fff000) == 0x01442000
814 || (op & 0x01fff000) == 0x01402000)
815 {
816 int gr_k = ((op >> 25) & 0x3f);
817
d40fcd7b
KB
818 /* Make sure that GRk is really an argument register; treat
819 it as a prologue instruction if so. */
820 if (is_argument_reg (gr_k))
821 last_prologue_pc = next_pc;
456f8b9d
DB
822 }
823
824 /* To save multiple callee-saves register on the stack, at a
825 non-zero offset:
826
827 stdi GRk, @(sp, s)
828 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
830 . . . . . . . .
831 stqi GRk, @(sp, s)
832 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
833 0 000000 1111111 111111 000000000000 = 0x01fff000
834 . . . . . . . .
835 We treat this as part of the prologue, and record the register's
836 saved address in the frame structure. */
837 else if ((op & 0x01fff000) == 0x014c1000
838 || (op & 0x01fff000) == 0x01501000)
839 {
840 int gr_k = ((op >> 25) & 0x3f);
841 int count;
842 int i;
843
844 /* Is it a stdi or a stqi? */
845 if ((op & 0x01fff000) == 0x014c1000)
846 count = 2;
847 else
848 count = 4;
849
850 /* Is it really a callee-saves register? */
851 if (is_callee_saves_reg (gr_k))
852 {
853 /* Sign-extend the twelve-bit field.
854 (Isn't there a better way to do this?) */
855 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
856
857 for (i = 0; i < count; i++)
858 {
859 gr_saved[gr_k + i] = 1;
860 gr_sp_offset[gr_k + i] = s + (4 * i);
861 }
d40fcd7b 862 last_prologue_pc = next_pc;
456f8b9d 863 }
456f8b9d
DB
864 }
865
866 /* Storing any kind of integer register at any constant offset
867 from any other register.
868
869 st GRk, @(GRi, gr0)
870 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
871 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
872 . . . . . . . .
873 sti GRk, @(GRi, d12)
874 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
875 0 000000 1111111 000000 000000000000 = 0x01fc0000
876 . . . . . . . .
877 These could be almost anything, but a lot of prologue
878 instructions fall into this pattern, so let's decode the
879 instruction once, and then work at a higher level. */
880 else if (((op & 0x01fc0fff) == 0x000c0080)
881 || ((op & 0x01fc0000) == 0x01480000))
882 {
883 int gr_k = ((op >> 25) & 0x3f);
884 int gr_i = ((op >> 12) & 0x3f);
885 int offset;
886
887 /* Are we storing with gr0 as an offset, or using an
888 immediate value? */
889 if ((op & 0x01fc0fff) == 0x000c0080)
890 offset = 0;
891 else
892 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
893
894 /* If the address isn't relative to the SP or FP, it's not a
895 prologue instruction. */
896 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
897 {
898 /* Do nothing; not a prologue instruction. */
899 }
456f8b9d
DB
900
901 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 902 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
903 {
904 gr_saved[fp_regnum] = 1;
905 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 906 last_prologue_pc = next_pc;
1cb761c7 907 }
456f8b9d
DB
908
909 /* Saving callee-saves register(s) on the stack, relative to
910 the SP. */
911 else if (gr_i == sp_regnum
912 && is_callee_saves_reg (gr_k))
913 {
914 gr_saved[gr_k] = 1;
1cb761c7
KB
915 if (gr_i == sp_regnum)
916 gr_sp_offset[gr_k] = offset;
917 else
918 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 919 last_prologue_pc = next_pc;
456f8b9d
DB
920 }
921
922 /* Saving the scratch register holding the return address. */
923 else if (lr_save_reg != -1
924 && gr_k == lr_save_reg)
1cb761c7
KB
925 {
926 lr_saved_on_stack = 1;
927 if (gr_i == sp_regnum)
928 lr_sp_offset = offset;
929 else
930 lr_sp_offset = offset + fp_offset;
d40fcd7b 931 last_prologue_pc = next_pc;
1cb761c7 932 }
456f8b9d
DB
933
934 /* Spilling int-sized arguments to the stack. */
935 else if (is_argument_reg (gr_k))
d40fcd7b 936 last_prologue_pc = next_pc;
456f8b9d 937 }
d40fcd7b 938 pc = next_pc;
456f8b9d
DB
939 }
940
94afd7a6 941 if (this_frame && info)
456f8b9d 942 {
1cb761c7
KB
943 int i;
944 ULONGEST this_base;
456f8b9d
DB
945
946 /* If we know the relationship between the stack and frame
947 pointers, record the addresses of the registers we noticed.
948 Note that we have to do this as a separate step at the end,
949 because instructions may save relative to the SP, but we need
950 their addresses relative to the FP. */
951 if (fp_set)
94afd7a6 952 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 953 else
94afd7a6 954 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 955
1cb761c7
KB
956 for (i = 0; i < 64; i++)
957 if (gr_saved[i])
958 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 959
1cb761c7
KB
960 info->prev_sp = this_base - fp_offset + framesize;
961 info->base = this_base;
962
963 /* If LR was saved on the stack, record its location. */
964 if (lr_saved_on_stack)
0963b4bd
MS
965 info->saved_regs[lr_regnum].addr
966 = this_base - fp_offset + lr_sp_offset;
1cb761c7
KB
967
968 /* The call instruction moves the caller's PC in the callee's LR.
969 Since this is an unwind, do the reverse. Copy the location of LR
970 into PC (the address / regnum) so that a request for PC will be
971 converted into a request for the LR. */
972 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
973
974 /* Save the previous frame's computed SP value. */
975 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
976 }
977
d40fcd7b 978 return last_prologue_pc;
456f8b9d
DB
979}
980
981
982static CORE_ADDR
6093d2eb 983frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
984{
985 CORE_ADDR func_addr, func_end, new_pc;
986
987 new_pc = pc;
988
989 /* If the line table has entry for a line *within* the function
990 (i.e., not in the prologue, and not past the end), then that's
991 our location. */
992 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
993 {
994 struct symtab_and_line sal;
995
996 sal = find_pc_line (func_addr, 0);
997
998 if (sal.line != 0 && sal.end < func_end)
999 {
1000 new_pc = sal.end;
1001 }
1002 }
1003
1004 /* The FR-V prologue is at least five instructions long (twenty bytes).
1005 If we didn't find a real source location past that, then
1006 do a full analysis of the prologue. */
1007 if (new_pc < pc + 20)
d80b854b 1008 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1009
1010 return new_pc;
1011}
1012
1cb761c7 1013
9bc7b6c6
KB
1014/* Examine the instruction pointed to by PC. If it corresponds to
1015 a call to __main, return the address of the next instruction.
1016 Otherwise, return PC. */
1017
1018static CORE_ADDR
1019frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1020{
e17a4113 1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1022 gdb_byte buf[4];
1023 unsigned long op;
1024 CORE_ADDR orig_pc = pc;
1025
1026 if (target_read_memory (pc, buf, 4))
1027 return pc;
e17a4113 1028 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1029
1030 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1031 to the call instruction.
1032
1033 Skip over this instruction if present. It won't be present in
0963b4bd 1034 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1035 (This is due to the fact that GR15, the FDPIC register, already
1036 contains the correct value.)
1037
1038 The general form of the LDI is given first, followed by the
1039 specific instruction with the GRi and GRk filled in as FP and
1040 GR15.
1041
1042 ldi @(GRi, d12), GRk
1043 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1044 0 000000 1111111 000000 000000000000 = 0x01fc0000
1045 . . . . . . . .
1046 ldi @(FP, d12), GR15
1047 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1048 0 001111 1111111 000010 000000000000 = 0x7ffff000
1049 . . . . . . . . */
1050
1051 if ((op & 0x7ffff000) == 0x1ec82000)
1052 {
1053 pc += 4;
1054 if (target_read_memory (pc, buf, 4))
1055 return orig_pc;
e17a4113 1056 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1057 }
1058
1059 /* The format of an FRV CALL instruction is as follows:
1060
1061 call label24
1062 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1063 0 000000 1111111 000000000000000000 = 0x01fc0000
1064 . . . . . . . .
1065
1066 where label24 is constructed by concatenating the H bits with the
1067 L bits. The call target is PC + (4 * sign_ext(label24)). */
1068
1069 if ((op & 0x01fc0000) == 0x003c0000)
1070 {
1071 LONGEST displ;
1072 CORE_ADDR call_dest;
7cbd4a93 1073 struct bound_minimal_symbol s;
9bc7b6c6
KB
1074
1075 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1076 if ((displ & 0x00800000) != 0)
1077 displ |= ~((LONGEST) 0x00ffffff);
1078
1079 call_dest = pc + 4 * displ;
1080 s = lookup_minimal_symbol_by_pc (call_dest);
1081
7cbd4a93 1082 if (s.minsym != NULL
efd66ac6
TT
1083 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1084 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
9bc7b6c6
KB
1085 {
1086 pc += 4;
1087 return pc;
1088 }
1089 }
1090 return orig_pc;
1091}
1092
1093
1cb761c7 1094static struct frv_unwind_cache *
94afd7a6 1095frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1096 void **this_prologue_cache)
456f8b9d 1097{
94afd7a6 1098 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1099 struct frv_unwind_cache *info;
8baa6f92 1100
1cb761c7 1101 if ((*this_prologue_cache))
9a3c8263 1102 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1103
1cb761c7
KB
1104 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1105 (*this_prologue_cache) = info;
94afd7a6 1106 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1107
1cb761c7 1108 /* Prologue analysis does the rest... */
d80b854b
UW
1109 frv_analyze_prologue (gdbarch,
1110 get_frame_func (this_frame), this_frame, info);
456f8b9d 1111
1cb761c7 1112 return info;
456f8b9d
DB
1113}
1114
456f8b9d 1115static void
cd31fb03 1116frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1117 gdb_byte *valbuf)
456f8b9d 1118{
e17a4113
UW
1119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cd31fb03
KB
1121 int len = TYPE_LENGTH (type);
1122
1123 if (len <= 4)
1124 {
1125 ULONGEST gpr8_val;
1126 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1127 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1128 }
1129 else if (len == 8)
1130 {
1131 ULONGEST regval;
0963b4bd 1132
cd31fb03 1133 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1134 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1135 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1136 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1137 }
1138 else
0963b4bd
MS
1139 internal_error (__FILE__, __LINE__,
1140 _("Illegal return value length: %d"), len);
456f8b9d
DB
1141}
1142
1cb761c7
KB
1143static CORE_ADDR
1144frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1145{
1cb761c7 1146 /* Require dword alignment. */
5b03f266 1147 return align_down (sp, 8);
456f8b9d
DB
1148}
1149
c4d10515
KB
1150static CORE_ADDR
1151find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1152{
e17a4113 1153 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1154 CORE_ADDR descr;
948f8e3d 1155 gdb_byte valbuf[4];
35e08e03
KB
1156 CORE_ADDR start_addr;
1157
1158 /* If we can't find the function in the symbol table, then we assume
1159 that the function address is already in descriptor form. */
1160 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1161 || entry_point != start_addr)
1162 return entry_point;
c4d10515
KB
1163
1164 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1165
1166 if (descr != 0)
1167 return descr;
1168
1169 /* Construct a non-canonical descriptor from space allocated on
1170 the stack. */
1171
1172 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1173 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1174 write_memory (descr, valbuf, 4);
e17a4113 1175 store_unsigned_integer (valbuf, 4, byte_order,
c4d10515
KB
1176 frv_fdpic_find_global_pointer (entry_point));
1177 write_memory (descr + 4, valbuf, 4);
1178 return descr;
1179}
1180
1181static CORE_ADDR
1182frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1183 struct target_ops *targ)
1184{
e17a4113 1185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1186 CORE_ADDR entry_point;
1187 CORE_ADDR got_address;
1188
e17a4113
UW
1189 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1190 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1191
1192 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1193 return entry_point;
1194 else
1195 return addr;
1196}
1197
456f8b9d 1198static CORE_ADDR
7d9b040b 1199frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1200 struct regcache *regcache, CORE_ADDR bp_addr,
1201 int nargs, struct value **args, CORE_ADDR sp,
1202 int struct_return, CORE_ADDR struct_addr)
456f8b9d 1203{
e17a4113 1204 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1205 int argreg;
1206 int argnum;
948f8e3d
PA
1207 const gdb_byte *val;
1208 gdb_byte valbuf[4];
456f8b9d
DB
1209 struct value *arg;
1210 struct type *arg_type;
1211 int len;
1212 enum type_code typecode;
1213 CORE_ADDR regval;
1214 int stack_space;
1215 int stack_offset;
c4d10515 1216 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1217 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1218
1219#if 0
1220 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1221 nargs, (int) sp, struct_return, struct_addr);
1222#endif
1223
1224 stack_space = 0;
1225 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1226 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1227
1228 stack_space -= (6 * 4);
1229 if (stack_space > 0)
1230 sp -= stack_space;
1231
0963b4bd 1232 /* Make sure stack is dword aligned. */
5b03f266 1233 sp = align_down (sp, 8);
456f8b9d
DB
1234
1235 stack_offset = 0;
1236
1237 argreg = 8;
1238
1239 if (struct_return)
1cb761c7
KB
1240 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1241 struct_addr);
456f8b9d
DB
1242
1243 for (argnum = 0; argnum < nargs; ++argnum)
1244 {
1245 arg = args[argnum];
4991999e 1246 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1247 len = TYPE_LENGTH (arg_type);
1248 typecode = TYPE_CODE (arg_type);
1249
1250 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1251 {
e17a4113
UW
1252 store_unsigned_integer (valbuf, 4, byte_order,
1253 value_address (arg));
456f8b9d
DB
1254 typecode = TYPE_CODE_PTR;
1255 len = 4;
1256 val = valbuf;
1257 }
c4d10515
KB
1258 else if (abi == FRV_ABI_FDPIC
1259 && len == 4
1260 && typecode == TYPE_CODE_PTR
1261 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1262 {
1263 /* The FDPIC ABI requires function descriptors to be passed instead
1264 of entry points. */
e17a4113
UW
1265 CORE_ADDR addr = extract_unsigned_integer
1266 (value_contents (arg), 4, byte_order);
1267 addr = find_func_descr (gdbarch, addr);
1268 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1269 typecode = TYPE_CODE_PTR;
1270 len = 4;
1271 val = valbuf;
1272 }
456f8b9d
DB
1273 else
1274 {
948f8e3d 1275 val = value_contents (arg);
456f8b9d
DB
1276 }
1277
1278 while (len > 0)
1279 {
1280 int partial_len = (len < 4 ? len : 4);
1281
1282 if (argreg < 14)
1283 {
e17a4113 1284 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1285#if 0
1286 printf(" Argnum %d data %x -> reg %d\n",
1287 argnum, (int) regval, argreg);
1288#endif
1cb761c7 1289 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1290 ++argreg;
1291 }
1292 else
1293 {
1294#if 0
1295 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1296 argnum, *((int *)val), stack_offset,
1297 (int) (sp + stack_offset));
456f8b9d
DB
1298#endif
1299 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1300 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1301 }
1302 len -= partial_len;
1303 val += partial_len;
1304 }
1305 }
456f8b9d 1306
1cb761c7
KB
1307 /* Set the return address. For the frv, the return breakpoint is
1308 always at BP_ADDR. */
1309 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1310
c4d10515
KB
1311 if (abi == FRV_ABI_FDPIC)
1312 {
1313 /* Set the GOT register for the FDPIC ABI. */
1314 regcache_cooked_write_unsigned
1315 (regcache, first_gpr_regnum + 15,
1316 frv_fdpic_find_global_pointer (func_addr));
1317 }
1318
1cb761c7
KB
1319 /* Finally, update the SP register. */
1320 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1321
456f8b9d
DB
1322 return sp;
1323}
1324
1325static void
cd31fb03 1326frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1327 const gdb_byte *valbuf)
456f8b9d 1328{
cd31fb03
KB
1329 int len = TYPE_LENGTH (type);
1330
1331 if (len <= 4)
1332 {
1333 bfd_byte val[4];
1334 memset (val, 0, sizeof (val));
1335 memcpy (val + (4 - len), valbuf, len);
1336 regcache_cooked_write (regcache, 8, val);
1337 }
1338 else if (len == 8)
1339 {
1340 regcache_cooked_write (regcache, 8, valbuf);
1341 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1342 }
456f8b9d
DB
1343 else
1344 internal_error (__FILE__, __LINE__,
e2e0b3e5 1345 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1346}
1347
63807e1d 1348static enum return_value_convention
6a3a010b 1349frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1350 struct type *valtype, struct regcache *regcache,
1351 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1352{
1353 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1354 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1355 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1356
1357 if (writebuf != NULL)
1358 {
1359 gdb_assert (!struct_return);
1360 frv_store_return_value (valtype, regcache, writebuf);
1361 }
1362
1363 if (readbuf != NULL)
1364 {
1365 gdb_assert (!struct_return);
1366 frv_extract_return_value (valtype, regcache, readbuf);
1367 }
1368
1369 if (struct_return)
1370 return RETURN_VALUE_STRUCT_CONVENTION;
1371 else
1372 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1373}
1374
1cb761c7
KB
1375static CORE_ADDR
1376frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1377{
1378 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1379}
1380
1381/* Given a GDB frame, determine the address of the calling function's
1382 frame. This will be used to create a new GDB frame struct. */
1383
1384static void
94afd7a6 1385frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1386 void **this_prologue_cache, struct frame_id *this_id)
1387{
1388 struct frv_unwind_cache *info
94afd7a6 1389 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1390 CORE_ADDR base;
1391 CORE_ADDR func;
3b7344d5 1392 struct bound_minimal_symbol msym_stack;
1cb761c7
KB
1393 struct frame_id id;
1394
1395 /* The FUNC is easy. */
94afd7a6 1396 func = get_frame_func (this_frame);
1cb761c7 1397
1cb761c7
KB
1398 /* Check if the stack is empty. */
1399 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
77e371c0 1400 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1cb761c7
KB
1401 return;
1402
1403 /* Hopefully the prologue analysis either correctly determined the
1404 frame's base (which is the SP from the previous frame), or set
1405 that base to "NULL". */
1406 base = info->prev_sp;
1407 if (base == 0)
1408 return;
1409
1410 id = frame_id_build (base, func);
1cb761c7
KB
1411 (*this_id) = id;
1412}
1413
94afd7a6
UW
1414static struct value *
1415frv_frame_prev_register (struct frame_info *this_frame,
1416 void **this_prologue_cache, int regnum)
1cb761c7
KB
1417{
1418 struct frv_unwind_cache *info
94afd7a6
UW
1419 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1420 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1421}
1422
1423static const struct frame_unwind frv_frame_unwind = {
1424 NORMAL_FRAME,
8fbca658 1425 default_frame_unwind_stop_reason,
1cb761c7 1426 frv_frame_this_id,
94afd7a6
UW
1427 frv_frame_prev_register,
1428 NULL,
1429 default_frame_sniffer
1cb761c7
KB
1430};
1431
1cb761c7 1432static CORE_ADDR
94afd7a6 1433frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1434{
1435 struct frv_unwind_cache *info
94afd7a6 1436 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1437 return info->base;
1438}
1439
1440static const struct frame_base frv_frame_base = {
1441 &frv_frame_unwind,
1442 frv_frame_base_address,
1443 frv_frame_base_address,
1444 frv_frame_base_address
1445};
1446
1447static CORE_ADDR
1448frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449{
1450 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1451}
1452
1453
94afd7a6
UW
1454/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1455 frame. The frame ID's base needs to match the TOS value saved by
1456 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1cb761c7
KB
1457
1458static struct frame_id
94afd7a6 1459frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1cb761c7 1460{
94afd7a6
UW
1461 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1462 return frame_id_build (sp, get_frame_pc (this_frame));
1cb761c7
KB
1463}
1464
456f8b9d
DB
1465static struct gdbarch *
1466frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1467{
1468 struct gdbarch *gdbarch;
1469 struct gdbarch_tdep *var;
7e295833 1470 int elf_flags = 0;
456f8b9d
DB
1471
1472 /* Check to see if we've already built an appropriate architecture
1473 object for this executable. */
1474 arches = gdbarch_list_lookup_by_info (arches, &info);
1475 if (arches)
1476 return arches->gdbarch;
1477
1478 /* Select the right tdep structure for this variant. */
1479 var = new_variant ();
1480 switch (info.bfd_arch_info->mach)
1481 {
1482 case bfd_mach_frv:
1483 case bfd_mach_frvsimple:
087ccc6a 1484 case bfd_mach_fr300:
456f8b9d
DB
1485 case bfd_mach_fr500:
1486 case bfd_mach_frvtomcat:
251a3ae3 1487 case bfd_mach_fr550:
456f8b9d
DB
1488 set_variant_num_gprs (var, 64);
1489 set_variant_num_fprs (var, 64);
1490 break;
1491
1492 case bfd_mach_fr400:
b2d6d697 1493 case bfd_mach_fr450:
456f8b9d
DB
1494 set_variant_num_gprs (var, 32);
1495 set_variant_num_fprs (var, 32);
1496 break;
1497
1498 default:
1499 /* Never heard of this variant. */
1500 return 0;
1501 }
7e295833
KB
1502
1503 /* Extract the ELF flags, if available. */
1504 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1505 elf_flags = elf_elfheader (info.abfd)->e_flags;
1506
1507 if (elf_flags & EF_FRV_FDPIC)
1508 set_variant_abi_fdpic (var);
1509
b2d6d697
KB
1510 if (elf_flags & EF_FRV_CPU_FR450)
1511 set_variant_scratch_registers (var);
1512
456f8b9d
DB
1513 gdbarch = gdbarch_alloc (&info, var);
1514
1515 set_gdbarch_short_bit (gdbarch, 16);
1516 set_gdbarch_int_bit (gdbarch, 32);
1517 set_gdbarch_long_bit (gdbarch, 32);
1518 set_gdbarch_long_long_bit (gdbarch, 64);
1519 set_gdbarch_float_bit (gdbarch, 32);
1520 set_gdbarch_double_bit (gdbarch, 64);
1521 set_gdbarch_long_double_bit (gdbarch, 64);
1522 set_gdbarch_ptr_bit (gdbarch, 32);
1523
1524 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1525 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1526
456f8b9d 1527 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1528 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1529 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1530
1531 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1532 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1533 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1534
6a748db6
KB
1535 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1536 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1537
456f8b9d 1538 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1539 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
456f8b9d 1540 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1541 set_gdbarch_adjust_breakpoint_address
1542 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1543
4c8b6ae0 1544 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1545
1cb761c7
KB
1546 /* Frame stuff. */
1547 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1548 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1549 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1550 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1551 /* We set the sniffer lower down after the OSABI hooks have been
1552 established. */
456f8b9d 1553
1cb761c7
KB
1554 /* Settings for calling functions in the inferior. */
1555 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
94afd7a6 1556 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
456f8b9d
DB
1557
1558 /* Settings that should be unnecessary. */
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560
456f8b9d
DB
1561 /* Hardware watchpoint / breakpoint support. */
1562 switch (info.bfd_arch_info->mach)
1563 {
1564 case bfd_mach_frv:
1565 case bfd_mach_frvsimple:
087ccc6a 1566 case bfd_mach_fr300:
456f8b9d
DB
1567 case bfd_mach_fr500:
1568 case bfd_mach_frvtomcat:
1569 /* fr500-style hardware debugging support. */
1570 var->num_hw_watchpoints = 4;
1571 var->num_hw_breakpoints = 4;
1572 break;
1573
1574 case bfd_mach_fr400:
b2d6d697 1575 case bfd_mach_fr450:
456f8b9d
DB
1576 /* fr400-style hardware debugging support. */
1577 var->num_hw_watchpoints = 2;
1578 var->num_hw_breakpoints = 4;
1579 break;
1580
1581 default:
1582 /* Otherwise, assume we don't have hardware debugging support. */
1583 var->num_hw_watchpoints = 0;
1584 var->num_hw_breakpoints = 0;
1585 break;
1586 }
1587
36482093 1588 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1589 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1590 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1591 frv_convert_from_func_ptr_addr);
36482093 1592
917630e4
UW
1593 set_solib_ops (gdbarch, &frv_so_ops);
1594
5ecb7103
KB
1595 /* Hook in ABI-specific overrides, if they have been registered. */
1596 gdbarch_init_osabi (info, gdbarch);
1597
5ecb7103 1598 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1599 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1600
186993b4
KB
1601 /* Enable TLS support. */
1602 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1603 frv_fetch_objfile_link_map);
1604
456f8b9d
DB
1605 return gdbarch;
1606}
1607
1608void
1609_initialize_frv_tdep (void)
1610{
1611 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1612}