]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/frv-tdep.c
Fix compile time warning message about optarg parameter shadowing global variable
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
d01e8234 3 Copyright (C) 2002-2025 Free Software Foundation, Inc.
456f8b9d
DB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d 19
ec452525 20#include "extract-store-integer.h"
4de283e4
TT
21#include "inferior.h"
22#include "gdbcore.h"
456f8b9d 23#include "arch-utils.h"
4de283e4
TT
24#include "regcache.h"
25#include "frame.h"
26#include "frame-unwind.h"
27#include "frame-base.h"
a2e3cce3 28#include "solib-frv.h"
4de283e4 29#include "trad-frame.h"
dcc6aaff 30#include "dis-asm.h"
4de283e4 31#include "sim-regno.h"
d026e67e 32#include "sim/sim-frv.h"
4de283e4 33#include "symtab.h"
7e295833
KB
34#include "elf-bfd.h"
35#include "elf/frv.h"
d55e5aa6 36#include "osabi.h"
4de283e4 37#include "infcall.h"
d55e5aa6 38#include "solib.h"
4de283e4
TT
39#include "frv-tdep.h"
40#include "objfiles.h"
76eb8ef1 41#include "gdbarch.h"
456f8b9d 42
883d90a0
TV
43/* Make cgen names unique to prevent ODR conflicts with other targets. */
44#define GDB_CGEN_REMAP_PREFIX frv
45#include "cgen-remap.h"
ef0f16cc 46#include "opcodes/frv-desc.h"
883d90a0 47
1cb761c7 48struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 49 {
1cb761c7
KB
50 /* The previous frame's inner-most stack address. Used as this
51 frame ID's stack_addr. */
52 CORE_ADDR prev_sp;
456f8b9d 53
1cb761c7
KB
54 /* The frame's base, optionally used by the high-level debug info. */
55 CORE_ADDR base;
8baa6f92
KB
56
57 /* Table indicating the location of each and every register. */
098caef4 58 trad_frame_saved_reg *saved_regs;
456f8b9d
DB
59 };
60
456f8b9d
DB
61/* A structure describing a particular variant of the FRV.
62 We allocate and initialize one of these structures when we create
63 the gdbarch object for a variant.
64
65 At the moment, all the FR variants we support differ only in which
66 registers are present; the portable code of GDB knows that
67 registers whose names are the empty string don't exist, so the
68 `register_names' array captures all the per-variant information we
69 need.
70
71 in the future, if we need to have per-variant maps for raw size,
72 virtual type, etc., we should replace register_names with an array
73 of structures, each of which gives all the necessary info for one
74 register. Don't stick parallel arrays in here --- that's so
75 Fortran. */
ab25d9bb 76struct frv_gdbarch_tdep : gdbarch_tdep_base
456f8b9d 77{
7e295833 78 /* Which ABI is in use? */
345bd07c 79 enum frv_abi frv_abi {};
7e295833 80
456f8b9d 81 /* How many general-purpose registers does this variant have? */
345bd07c 82 int num_gprs = 0;
456f8b9d
DB
83
84 /* How many floating-point registers does this variant have? */
345bd07c 85 int num_fprs = 0;
456f8b9d
DB
86
87 /* How many hardware watchpoints can it support? */
345bd07c 88 int num_hw_watchpoints = 0;
456f8b9d
DB
89
90 /* How many hardware breakpoints can it support? */
345bd07c 91 int num_hw_breakpoints = 0;
456f8b9d
DB
92
93 /* Register names. */
345bd07c 94 const char **register_names = nullptr;
456f8b9d
DB
95};
96
2b16913c
SM
97using frv_gdbarch_tdep_up = std::unique_ptr<frv_gdbarch_tdep>;
98
7e295833
KB
99/* Return the FR-V ABI associated with GDBARCH. */
100enum frv_abi
101frv_abi (struct gdbarch *gdbarch)
102{
08106042 103 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 104 return tdep->frv_abi;
7e295833
KB
105}
106
107/* Fetch the interpreter and executable loadmap addresses (for shared
108 library support) for the FDPIC ABI. Return 0 if successful, -1 if
109 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
110int
111frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
dda83cd7 112 CORE_ADDR *exec_addr)
7e295833
KB
113{
114 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
115 return -1;
116 else
117 {
9c742269 118 regcache *regcache = get_thread_regcache (inferior_thread ());
594f7785 119
7e295833
KB
120 if (interp_addr != NULL)
121 {
122 ULONGEST val;
594f7785 123 regcache_cooked_read_unsigned (regcache,
7e295833
KB
124 fdpic_loadmap_interp_regnum, &val);
125 *interp_addr = val;
126 }
127 if (exec_addr != NULL)
128 {
129 ULONGEST val;
594f7785 130 regcache_cooked_read_unsigned (regcache,
7e295833
KB
131 fdpic_loadmap_exec_regnum, &val);
132 *exec_addr = val;
133 }
134 return 0;
135 }
136}
456f8b9d
DB
137
138/* Allocate a new variant structure, and set up default values for all
139 the fields. */
2b16913c
SM
140static frv_gdbarch_tdep_up
141new_variant ()
456f8b9d 142{
456f8b9d 143 int r;
456f8b9d 144
2b16913c 145 frv_gdbarch_tdep_up var (new frv_gdbarch_tdep);
8d749320 146
7e295833 147 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
148 var->num_gprs = 64;
149 var->num_fprs = 64;
150 var->num_hw_watchpoints = 0;
151 var->num_hw_breakpoints = 0;
152
153 /* By default, don't supply any general-purpose or floating-point
154 register names. */
6a748db6 155 var->register_names
a121b7c1
PA
156 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
157 * sizeof (const char *));
6a748db6 158 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
159 var->register_names[r] = "";
160
526eef89 161 /* Do, however, supply default names for the known special-purpose
456f8b9d 162 registers. */
456f8b9d
DB
163
164 var->register_names[pc_regnum] = "pc";
165 var->register_names[lr_regnum] = "lr";
166 var->register_names[lcr_regnum] = "lcr";
167
168 var->register_names[psr_regnum] = "psr";
169 var->register_names[ccr_regnum] = "ccr";
170 var->register_names[cccr_regnum] = "cccr";
171 var->register_names[tbr_regnum] = "tbr";
172
173 /* Debug registers. */
174 var->register_names[brr_regnum] = "brr";
175 var->register_names[dbar0_regnum] = "dbar0";
176 var->register_names[dbar1_regnum] = "dbar1";
177 var->register_names[dbar2_regnum] = "dbar2";
178 var->register_names[dbar3_regnum] = "dbar3";
179
526eef89
KB
180 /* iacc0 (Only found on MB93405.) */
181 var->register_names[iacc0h_regnum] = "iacc0h";
182 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 183 var->register_names[iacc0_regnum] = "iacc0";
526eef89 184
8b67aa36
KB
185 /* fsr0 (Found on FR555 and FR501.) */
186 var->register_names[fsr0_regnum] = "fsr0";
187
188 /* acc0 - acc7. The architecture provides for the possibility of many
189 more (up to 64 total), but we don't want to make that big of a hole
190 in the G packet. If we need more in the future, we'll add them
191 elsewhere. */
192 for (r = acc0_regnum; r <= acc7_regnum; r++)
8579fd13
AB
193 var->register_names[r]
194 = xstrprintf ("acc%d", r - acc0_regnum).release ();
8b67aa36
KB
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
8579fd13
AB
203 var->register_names[r]
204 = xstrprintf ("accg%d", r - accg0_regnum).release ();
8b67aa36
KB
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
456f8b9d
DB
217 return var;
218}
219
220
221/* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223static void
345bd07c 224set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
456f8b9d
DB
225{
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
08850b56 234 xsnprintf (buf, sizeof (buf), "gr%d", r);
456f8b9d
DB
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237}
238
239
240/* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242static void
345bd07c 243set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
456f8b9d
DB
244{
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
08850b56 253 xsnprintf (buf, sizeof (buf), "fr%d", r);
456f8b9d
DB
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256}
257
7e295833 258static void
345bd07c 259set_variant_abi_fdpic (frv_gdbarch_tdep *var)
7e295833
KB
260{
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
0963b4bd
MS
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
7e295833 265}
456f8b9d 266
b2d6d697 267static void
345bd07c 268set_variant_scratch_registers (frv_gdbarch_tdep *var)
b2d6d697
KB
269{
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274}
275
456f8b9d 276static const char *
d93859e2 277frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d 278{
08106042 279 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
345bd07c 280 return tdep->register_names[reg];
456f8b9d
DB
281}
282
526eef89 283
456f8b9d 284static struct type *
7f398216 285frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 286{
526eef89 287 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 288 return builtin_type (gdbarch)->builtin_float;
6a748db6 289 else if (reg == iacc0_regnum)
df4df182 290 return builtin_type (gdbarch)->builtin_int64;
456f8b9d 291 else
df4df182 292 return builtin_type (gdbarch)->builtin_int32;
456f8b9d
DB
293}
294
05d1431c 295static enum register_status
849d0ba8 296frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
dda83cd7 297 int reg, gdb_byte *buffer)
6a748db6 298{
05d1431c
PA
299 enum register_status status;
300
6a748db6
KB
301 if (reg == iacc0_regnum)
302 {
03f50fc8 303 status = regcache->raw_read (iacc0h_regnum, buffer);
05d1431c 304 if (status == REG_VALID)
03f50fc8 305 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 306 }
8b67aa36
KB
307 else if (accg0_regnum <= reg && reg <= accg7_regnum)
308 {
309 /* The accg raw registers have four values in each slot with the
dda83cd7 310 lowest register number occupying the first byte. */
8b67aa36
KB
311
312 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
313 int byte_num = (reg - accg0_regnum) % 4;
05d1431c 314 gdb_byte buf[4];
8b67aa36 315
03f50fc8 316 status = regcache->raw_read (raw_regnum, buf);
05d1431c
PA
317 if (status == REG_VALID)
318 {
319 memset (buffer, 0, 4);
320 /* FR-V is big endian, so put the requested byte in the
321 first byte of the buffer allocated to hold the
322 pseudo-register. */
323 buffer[0] = buf[byte_num];
324 }
8b67aa36 325 }
05d1431c
PA
326 else
327 gdb_assert_not_reached ("invalid pseudo register number");
328
329 return status;
6a748db6
KB
330}
331
332static void
333frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
dda83cd7 334 int reg, const gdb_byte *buffer)
6a748db6
KB
335{
336 if (reg == iacc0_regnum)
337 {
10eaee5f
SM
338 regcache->raw_write (iacc0h_regnum, buffer);
339 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
6a748db6 340 }
8b67aa36
KB
341 else if (accg0_regnum <= reg && reg <= accg7_regnum)
342 {
343 /* The accg raw registers have four values in each slot with the
dda83cd7 344 lowest register number occupying the first byte. */
8b67aa36
KB
345
346 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
347 int byte_num = (reg - accg0_regnum) % 4;
e362b510 348 gdb_byte buf[4];
8b67aa36 349
0b883586 350 regcache->raw_read (raw_regnum, buf);
8b67aa36 351 buf[byte_num] = ((bfd_byte *) buffer)[0];
10eaee5f 352 regcache->raw_write (raw_regnum, buf);
8b67aa36 353 }
6a748db6
KB
354}
355
526eef89 356static int
e7faf938 357frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
358{
359 static const int spr_map[] =
360 {
361 H_SPR_PSR, /* psr_regnum */
362 H_SPR_CCR, /* ccr_regnum */
363 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
364 -1, /* fdpic_loadmap_exec_regnum */
365 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
366 -1, /* 134 */
367 H_SPR_TBR, /* tbr_regnum */
368 H_SPR_BRR, /* brr_regnum */
369 H_SPR_DBAR0, /* dbar0_regnum */
370 H_SPR_DBAR1, /* dbar1_regnum */
371 H_SPR_DBAR2, /* dbar2_regnum */
372 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
373 H_SPR_SCR0, /* scr0_regnum */
374 H_SPR_SCR1, /* scr1_regnum */
375 H_SPR_SCR2, /* scr2_regnum */
376 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
377 H_SPR_LR, /* lr_regnum */
378 H_SPR_LCR, /* lcr_regnum */
379 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
380 H_SPR_IACC0L, /* iacc0l_regnum */
381 H_SPR_FSR0, /* fsr0_regnum */
382 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
383 -1, /* acc0_regnum */
384 -1, /* acc1_regnum */
385 -1, /* acc2_regnum */
386 -1, /* acc3_regnum */
387 -1, /* acc4_regnum */
388 -1, /* acc5_regnum */
389 -1, /* acc6_regnum */
390 -1, /* acc7_regnum */
391 -1, /* acc0123_regnum */
392 -1, /* acc4567_regnum */
393 H_SPR_MSR0, /* msr0_regnum */
394 H_SPR_MSR1, /* msr1_regnum */
395 H_SPR_GNER0, /* gner0_regnum */
396 H_SPR_GNER1, /* gner1_regnum */
397 H_SPR_FNER0, /* fner0_regnum */
398 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
399 };
400
e7faf938 401 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
402
403 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
404 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
405 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
406 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
407 else if (pc_regnum == reg)
408 return SIM_FRV_PC_REGNUM;
409 else if (reg >= first_spr_regnum
dda83cd7 410 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
526eef89
KB
411 {
412 int spr_reg_offset = spr_map[reg - first_spr_regnum];
413
414 if (spr_reg_offset < 0)
415 return SIM_REGNO_DOES_NOT_EXIST;
416 else
417 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
418 }
419
f34652de 420 internal_error (_("Bad register number %d"), reg);
526eef89
KB
421}
422
04180708 423constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
598cc9dc 424
04180708 425typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
456f8b9d 426
46a16dba
KB
427/* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429static const int max_instrs_per_bundle = 8;
430
431/* Define the size (in bytes) of an FR-V instruction. */
432static const int frv_instr_size = 4;
433
434/* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437static CORE_ADDR
1208538e 438frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
439{
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
0963b4bd 446 an instruction word whose packing bit is set to one. */
46a16dba
KB
447 while (count-- > 0 && addr >= func_start)
448 {
948f8e3d 449 gdb_byte instr[frv_instr_size];
46a16dba
KB
450 int status;
451
8defab1a 452 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
dda83cd7
SM
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
46a16dba
KB
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470}
471
456f8b9d
DB
472
473/* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475static int
476is_caller_saves_reg (int reg)
477{
478 return ((4 <= reg && reg <= 7)
dda83cd7
SM
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
456f8b9d
DB
481}
482
483
484/* Return true if REG is a callee-saves register, false otherwise. */
485static int
486is_callee_saves_reg (int reg)
487{
488 return ((16 <= reg && reg <= 31)
dda83cd7 489 || (48 <= reg && reg <= 63));
456f8b9d
DB
490}
491
492
493/* Return true if REG is an argument register, false otherwise. */
494static int
495is_argument_reg (int reg)
496{
497 return (8 <= reg && reg <= 13);
498}
499
456f8b9d
DB
500/* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512static CORE_ADDR
d80b854b 513frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
8480a37e 514 const frame_info_ptr &this_frame,
dda83cd7 515 struct frv_unwind_cache *info)
456f8b9d 516{
e17a4113
UW
517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
518
456f8b9d
DB
519 /* When writing out instruction bitpatterns, we use the following
520 letters to label instruction fields:
521 P - The parallel bit. We don't use this.
522 J - The register number of GRj in the instruction description.
523 K - The register number of GRk in the instruction description.
524 I - The register number of GRi.
85102364 525 S - a signed immediate offset.
456f8b9d
DB
526 U - an unsigned immediate offset.
527
528 The dots below the numbers indicate where hex digit boundaries
529 fall, to make it easier to check the numbers. */
530
531 /* Non-zero iff we've seen the instruction that initializes the
532 frame pointer for this function's frame. */
533 int fp_set = 0;
534
535 /* If fp_set is non_zero, then this is the distance from
536 the stack pointer to frame pointer: fp = sp + fp_offset. */
537 int fp_offset = 0;
538
0963b4bd 539 /* Total size of frame prior to any alloca operations. */
456f8b9d
DB
540 int framesize = 0;
541
1cb761c7
KB
542 /* Flag indicating if lr has been saved on the stack. */
543 int lr_saved_on_stack = 0;
544
456f8b9d
DB
545 /* The number of the general-purpose register we saved the return
546 address ("link register") in, or -1 if we haven't moved it yet. */
547 int lr_save_reg = -1;
548
1cb761c7
KB
549 /* Offset (from sp) at which lr has been saved on the stack. */
550
551 int lr_sp_offset = 0;
456f8b9d
DB
552
553 /* If gr_saved[i] is non-zero, then we've noticed that general
554 register i has been saved at gr_sp_offset[i] from the stack
555 pointer. */
556 char gr_saved[64];
557 int gr_sp_offset[64];
558
d40fcd7b
KB
559 /* The address of the most recently scanned prologue instruction. */
560 CORE_ADDR last_prologue_pc;
561
0963b4bd 562 /* The address of the next instruction. */
d40fcd7b
KB
563 CORE_ADDR next_pc;
564
565 /* The upper bound to of the pc values to scan. */
566 CORE_ADDR lim_pc;
567
456f8b9d
DB
568 memset (gr_saved, 0, sizeof (gr_saved));
569
d40fcd7b
KB
570 last_prologue_pc = pc;
571
572 /* Try to compute an upper limit (on how far to scan) based on the
573 line number info. */
d80b854b 574 lim_pc = skip_prologue_using_sal (gdbarch, pc);
d40fcd7b
KB
575 /* If there's no line number info, lim_pc will be 0. In that case,
576 set the limit to be 100 instructions away from pc. Hopefully, this
577 will be far enough away to account for the entire prologue. Don't
578 worry about overshooting the end of the function. The scan loop
579 below contains some checks to avoid scanning unreasonably far. */
580 if (lim_pc == 0)
581 lim_pc = pc + 400;
582
583 /* If we have a frame, we don't want to scan past the frame's pc. This
584 will catch those cases where the pc is in the prologue. */
94afd7a6 585 if (this_frame)
d40fcd7b 586 {
94afd7a6 587 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
588 if (frame_pc < lim_pc)
589 lim_pc = frame_pc;
590 }
591
592 /* Scan the prologue. */
593 while (pc < lim_pc)
456f8b9d 594 {
e362b510 595 gdb_byte buf[frv_instr_size];
1ccda5e9
KB
596 LONGEST op;
597
598 if (target_read_memory (pc, buf, sizeof buf) != 0)
599 break;
2a50938a 600 op = extract_signed_integer (buf, byte_order);
1ccda5e9 601
d40fcd7b 602 next_pc = pc + 4;
456f8b9d
DB
603
604 /* The tests in this chain of ifs should be in order of
605 decreasing selectivity, so that more particular patterns get
606 to fire before less particular patterns. */
607
d40fcd7b
KB
608 /* Some sort of control transfer instruction: stop scanning prologue.
609 Integer Conditional Branch:
610 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611 Floating-point / media Conditional Branch:
612 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613 LCR Conditional Branch to LR
614 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615 Integer conditional Branches to LR
616 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618 Floating-point/Media Branches to LR
619 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
621 Jump and Link
622 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
624 Call
625 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
626 Return from Trap
627 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628 Integer Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631 Floating-point /media Conditional Trap
632 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
634 Break
635 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
636 Media Trap
637 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
dda83cd7 639 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
d40fcd7b
KB
640 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
641 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
642 {
643 /* Stop scanning; not in prologue any longer. */
644 break;
645 }
646
647 /* Loading something from memory into fp probably means that
dda83cd7
SM
648 we're in the epilogue. Stop scanning the prologue.
649 ld @(GRi, GRk), fp
d40fcd7b
KB
650 X 000010 0000010 XXXXXX 000100 XXXXXX
651 ldi @(GRi, d12), fp
652 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653 else if ((op & 0x7ffc0fc0) == 0x04080100
dda83cd7 654 || (op & 0x7ffc0000) == 0x04c80000)
d40fcd7b
KB
655 {
656 break;
657 }
658
456f8b9d
DB
659 /* Setting the FP from the SP:
660 ori sp, 0, fp
661 P 000010 0100010 000001 000000000000 = 0x04881000
662 0 111111 1111111 111111 111111111111 = 0x7fffffff
dda83cd7 663 . . . . . . . .
456f8b9d 664 We treat this as part of the prologue. */
d40fcd7b 665 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
666 {
667 fp_set = 1;
668 fp_offset = 0;
d40fcd7b 669 last_prologue_pc = next_pc;
456f8b9d
DB
670 }
671
672 /* Move the link register to the scratch register grJ, before saving:
dda83cd7
SM
673 movsg lr, grJ
674 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
676 . . . . . . . .
456f8b9d
DB
677 We treat this as part of the prologue. */
678 else if ((op & 0x7fffffc0) == 0x080d01c0)
dda83cd7
SM
679 {
680 int gr_j = op & 0x3f;
456f8b9d 681
dda83cd7
SM
682 /* If we're moving it to a scratch register, that's fine. */
683 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
684 {
685 lr_save_reg = gr_j;
686 last_prologue_pc = next_pc;
687 }
dda83cd7 688 }
456f8b9d
DB
689
690 /* To save multiple callee-saves registers on the stack, at
dda83cd7 691 offset zero:
456f8b9d
DB
692
693 std grK,@(sp,gr0)
694 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696
697 stq grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
dda83cd7
SM
700 . . . . . . . .
701 We treat this as part of the prologue, and record the register's
456f8b9d
DB
702 saved address in the frame structure. */
703 else if ((op & 0x01ffffff) == 0x000c10c0
dda83cd7 704 || (op & 0x01ffffff) == 0x000c1100)
456f8b9d
DB
705 {
706 int gr_k = ((op >> 25) & 0x3f);
707 int ope = ((op >> 6) & 0x3f);
dda83cd7 708 int count;
456f8b9d
DB
709 int i;
710
dda83cd7
SM
711 /* Is it an std or an stq? */
712 if (ope == 0x03)
713 count = 2;
714 else
715 count = 4;
456f8b9d
DB
716
717 /* Is it really a callee-saves register? */
718 if (is_callee_saves_reg (gr_k))
719 {
720 for (i = 0; i < count; i++)
dda83cd7 721 {
456f8b9d
DB
722 gr_saved[gr_k + i] = 1;
723 gr_sp_offset[gr_k + i] = 4 * i;
724 }
d40fcd7b 725 last_prologue_pc = next_pc;
456f8b9d 726 }
456f8b9d
DB
727 }
728
729 /* Adjusting the stack pointer. (The stack pointer is GR1.)
730 addi sp, S, sp
dda83cd7
SM
731 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732 0 111111 1111111 111111 000000000000 = 0x7ffff000
733 . . . . . . . .
456f8b9d
DB
734 We treat this as part of the prologue. */
735 else if ((op & 0x7ffff000) == 0x02401000)
dda83cd7 736 {
d40fcd7b
KB
737 if (framesize == 0)
738 {
739 /* Sign-extend the twelve-bit field.
740 (Isn't there a better way to do this?) */
741 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 742
d40fcd7b
KB
743 framesize -= s;
744 last_prologue_pc = pc;
745 }
746 else
747 {
748 /* If the prologue is being adjusted again, we've
dda83cd7 749 likely gone too far; i.e. we're probably in the
d40fcd7b
KB
750 epilogue. */
751 break;
752 }
456f8b9d
DB
753 }
754
755 /* Setting the FP to a constant distance from the SP:
756 addi sp, S, fp
dda83cd7
SM
757 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758 0 111111 1111111 111111 000000000000 = 0x7ffff000
759 . . . . . . . .
456f8b9d
DB
760 We treat this as part of the prologue. */
761 else if ((op & 0x7ffff000) == 0x04401000)
762 {
763 /* Sign-extend the twelve-bit field.
764 (Isn't there a better way to do this?) */
765 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
766 fp_set = 1;
767 fp_offset = s;
d40fcd7b 768 last_prologue_pc = pc;
456f8b9d
DB
769 }
770
771 /* To spill an argument register to a scratch register:
772 ori GRi, 0, GRk
773 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774 0 000000 1111111 000000 111111111111 = 0x01fc0fff
775 . . . . . . . .
776 For the time being, we treat this as a prologue instruction,
777 assuming that GRi is an argument register. This one's kind
778 of suspicious, because it seems like it could be part of a
779 legitimate body instruction. But we only come here when the
780 source info wasn't helpful, so we have to do the best we can.
781 Hopefully once GCC and GDB agree on how to emit line number
782 info for prologues, then this code will never come into play. */
783 else if ((op & 0x01fc0fff) == 0x00880000)
784 {
785 int gr_i = ((op >> 12) & 0x3f);
786
dda83cd7 787 /* Make sure that the source is an arg register; if it is, we'll
d40fcd7b
KB
788 treat it as a prologue instruction. */
789 if (is_argument_reg (gr_i))
790 last_prologue_pc = next_pc;
456f8b9d
DB
791 }
792
793 /* To spill 16-bit values to the stack:
794 sthi GRk, @(fp, s)
795 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7
SM
797 . . . . . . . .
798 And for 8-bit values, we use STB instructions.
456f8b9d
DB
799 stbi GRk, @(fp, s)
800 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801 0 000000 1111111 111111 000000000000 = 0x01fff000
802 . . . . . . . .
dda83cd7
SM
803 We check that GRk is really an argument register, and treat
804 all such as part of the prologue. */
456f8b9d
DB
805 else if ( (op & 0x01fff000) == 0x01442000
806 || (op & 0x01fff000) == 0x01402000)
807 {
808 int gr_k = ((op >> 25) & 0x3f);
809
dda83cd7 810 /* Make sure that GRk is really an argument register; treat
d40fcd7b
KB
811 it as a prologue instruction if so. */
812 if (is_argument_reg (gr_k))
813 last_prologue_pc = next_pc;
456f8b9d
DB
814 }
815
816 /* To save multiple callee-saves register on the stack, at a
dda83cd7 817 non-zero offset:
456f8b9d
DB
818
819 stdi GRk, @(sp, s)
820 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
dda83cd7 822 . . . . . . . .
456f8b9d
DB
823 stqi GRk, @(sp, s)
824 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
dda83cd7 827 We treat this as part of the prologue, and record the register's
456f8b9d
DB
828 saved address in the frame structure. */
829 else if ((op & 0x01fff000) == 0x014c1000
dda83cd7 830 || (op & 0x01fff000) == 0x01501000)
456f8b9d
DB
831 {
832 int gr_k = ((op >> 25) & 0x3f);
dda83cd7 833 int count;
456f8b9d
DB
834 int i;
835
dda83cd7
SM
836 /* Is it a stdi or a stqi? */
837 if ((op & 0x01fff000) == 0x014c1000)
838 count = 2;
839 else
840 count = 4;
456f8b9d
DB
841
842 /* Is it really a callee-saves register? */
843 if (is_callee_saves_reg (gr_k))
844 {
845 /* Sign-extend the twelve-bit field.
846 (Isn't there a better way to do this?) */
847 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
849 for (i = 0; i < count; i++)
850 {
851 gr_saved[gr_k + i] = 1;
852 gr_sp_offset[gr_k + i] = s + (4 * i);
853 }
d40fcd7b 854 last_prologue_pc = next_pc;
456f8b9d 855 }
456f8b9d
DB
856 }
857
858 /* Storing any kind of integer register at any constant offset
dda83cd7 859 from any other register.
456f8b9d
DB
860
861 st GRk, @(GRi, gr0)
dda83cd7
SM
862 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
864 . . . . . . . .
456f8b9d
DB
865 sti GRk, @(GRi, d12)
866 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867 0 000000 1111111 000000 000000000000 = 0x01fc0000
dda83cd7
SM
868 . . . . . . . .
869 These could be almost anything, but a lot of prologue
870 instructions fall into this pattern, so let's decode the
871 instruction once, and then work at a higher level. */
456f8b9d 872 else if (((op & 0x01fc0fff) == 0x000c0080)
dda83cd7
SM
873 || ((op & 0x01fc0000) == 0x01480000))
874 {
875 int gr_k = ((op >> 25) & 0x3f);
876 int gr_i = ((op >> 12) & 0x3f);
877 int offset;
878
879 /* Are we storing with gr0 as an offset, or using an
880 immediate value? */
881 if ((op & 0x01fc0fff) == 0x000c0080)
882 offset = 0;
883 else
884 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
885
886 /* If the address isn't relative to the SP or FP, it's not a
887 prologue instruction. */
888 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
889 {
890 /* Do nothing; not a prologue instruction. */
891 }
456f8b9d 892
dda83cd7
SM
893 /* Saving the old FP in the new frame (relative to the SP). */
894 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
895 {
896 gr_saved[fp_regnum] = 1;
dda83cd7 897 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 898 last_prologue_pc = next_pc;
1cb761c7 899 }
456f8b9d 900
dda83cd7
SM
901 /* Saving callee-saves register(s) on the stack, relative to
902 the SP. */
903 else if (gr_i == sp_regnum
904 && is_callee_saves_reg (gr_k))
905 {
906 gr_saved[gr_k] = 1;
1cb761c7
KB
907 if (gr_i == sp_regnum)
908 gr_sp_offset[gr_k] = offset;
909 else
910 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 911 last_prologue_pc = next_pc;
dda83cd7 912 }
456f8b9d 913
dda83cd7
SM
914 /* Saving the scratch register holding the return address. */
915 else if (lr_save_reg != -1
916 && gr_k == lr_save_reg)
1cb761c7
KB
917 {
918 lr_saved_on_stack = 1;
919 if (gr_i == sp_regnum)
920 lr_sp_offset = offset;
921 else
dda83cd7 922 lr_sp_offset = offset + fp_offset;
d40fcd7b 923 last_prologue_pc = next_pc;
1cb761c7 924 }
456f8b9d 925
dda83cd7
SM
926 /* Spilling int-sized arguments to the stack. */
927 else if (is_argument_reg (gr_k))
d40fcd7b 928 last_prologue_pc = next_pc;
dda83cd7 929 }
d40fcd7b 930 pc = next_pc;
456f8b9d
DB
931 }
932
94afd7a6 933 if (this_frame && info)
456f8b9d 934 {
1cb761c7
KB
935 int i;
936 ULONGEST this_base;
456f8b9d
DB
937
938 /* If we know the relationship between the stack and frame
dda83cd7
SM
939 pointers, record the addresses of the registers we noticed.
940 Note that we have to do this as a separate step at the end,
941 because instructions may save relative to the SP, but we need
942 their addresses relative to the FP. */
456f8b9d 943 if (fp_set)
94afd7a6 944 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 945 else
94afd7a6 946 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 947
1cb761c7
KB
948 for (i = 0; i < 64; i++)
949 if (gr_saved[i])
098caef4
LM
950 info->saved_regs[i].set_addr (this_base - fp_offset
951 + gr_sp_offset[i]);
456f8b9d 952
1cb761c7
KB
953 info->prev_sp = this_base - fp_offset + framesize;
954 info->base = this_base;
955
956 /* If LR was saved on the stack, record its location. */
957 if (lr_saved_on_stack)
098caef4
LM
958 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
959 + lr_sp_offset);
1cb761c7
KB
960
961 /* The call instruction moves the caller's PC in the callee's LR.
962 Since this is an unwind, do the reverse. Copy the location of LR
963 into PC (the address / regnum) so that a request for PC will be
964 converted into a request for the LR. */
965 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
966
967 /* Save the previous frame's computed SP value. */
a9a87d35 968 info->saved_regs[sp_regnum].set_value (info->prev_sp);
456f8b9d
DB
969 }
970
d40fcd7b 971 return last_prologue_pc;
456f8b9d
DB
972}
973
974
975static CORE_ADDR
6093d2eb 976frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
977{
978 CORE_ADDR func_addr, func_end, new_pc;
979
980 new_pc = pc;
981
982 /* If the line table has entry for a line *within* the function
983 (i.e., not in the prologue, and not past the end), then that's
984 our location. */
985 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
986 {
987 struct symtab_and_line sal;
988
989 sal = find_pc_line (func_addr, 0);
990
991 if (sal.line != 0 && sal.end < func_end)
992 {
993 new_pc = sal.end;
994 }
995 }
996
997 /* The FR-V prologue is at least five instructions long (twenty bytes).
998 If we didn't find a real source location past that, then
999 do a full analysis of the prologue. */
1000 if (new_pc < pc + 20)
d80b854b 1001 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
456f8b9d
DB
1002
1003 return new_pc;
1004}
1005
1cb761c7 1006
9bc7b6c6
KB
1007/* Examine the instruction pointed to by PC. If it corresponds to
1008 a call to __main, return the address of the next instruction.
1009 Otherwise, return PC. */
1010
1011static CORE_ADDR
1012frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1013{
e17a4113 1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9bc7b6c6
KB
1015 gdb_byte buf[4];
1016 unsigned long op;
1017 CORE_ADDR orig_pc = pc;
1018
1019 if (target_read_memory (pc, buf, 4))
1020 return pc;
e17a4113 1021 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1022
1023 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1024 to the call instruction.
1025
1026 Skip over this instruction if present. It won't be present in
0963b4bd 1027 non-PIC code, and even in PIC code, it might not be present.
9bc7b6c6
KB
1028 (This is due to the fact that GR15, the FDPIC register, already
1029 contains the correct value.)
1030
1031 The general form of the LDI is given first, followed by the
1032 specific instruction with the GRi and GRk filled in as FP and
1033 GR15.
1034
1035 ldi @(GRi, d12), GRk
1036 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1037 0 000000 1111111 000000 000000000000 = 0x01fc0000
1038 . . . . . . . .
1039 ldi @(FP, d12), GR15
1040 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1041 0 001111 1111111 000010 000000000000 = 0x7ffff000
1042 . . . . . . . . */
1043
1044 if ((op & 0x7ffff000) == 0x1ec82000)
1045 {
1046 pc += 4;
1047 if (target_read_memory (pc, buf, 4))
1048 return orig_pc;
e17a4113 1049 op = extract_unsigned_integer (buf, 4, byte_order);
9bc7b6c6
KB
1050 }
1051
1052 /* The format of an FRV CALL instruction is as follows:
1053
1054 call label24
1055 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1056 0 000000 1111111 000000000000000000 = 0x01fc0000
dda83cd7 1057 . . . . . . . .
9bc7b6c6
KB
1058
1059 where label24 is constructed by concatenating the H bits with the
1060 L bits. The call target is PC + (4 * sign_ext(label24)). */
1061
1062 if ((op & 0x01fc0000) == 0x003c0000)
1063 {
1064 LONGEST displ;
1065 CORE_ADDR call_dest;
9bc7b6c6
KB
1066
1067 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1068 if ((displ & 0x00800000) != 0)
1069 displ |= ~((LONGEST) 0x00ffffff);
1070
1071 call_dest = pc + 4 * displ;
03b40f6f 1072 bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
9bc7b6c6 1073
7cbd4a93 1074 if (s.minsym != NULL
dda83cd7 1075 && s.minsym->linkage_name () != NULL
c9d95fa3 1076 && strcmp (s.minsym->linkage_name (), "__main") == 0)
9bc7b6c6
KB
1077 {
1078 pc += 4;
1079 return pc;
1080 }
1081 }
1082 return orig_pc;
1083}
1084
1085
1cb761c7 1086static struct frv_unwind_cache *
8480a37e 1087frv_frame_unwind_cache (const frame_info_ptr &this_frame,
1cb761c7 1088 void **this_prologue_cache)
456f8b9d 1089{
94afd7a6 1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1091 struct frv_unwind_cache *info;
8baa6f92 1092
1cb761c7 1093 if ((*this_prologue_cache))
9a3c8263 1094 return (struct frv_unwind_cache *) (*this_prologue_cache);
456f8b9d 1095
1cb761c7
KB
1096 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1097 (*this_prologue_cache) = info;
94afd7a6 1098 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1099
1cb761c7 1100 /* Prologue analysis does the rest... */
d80b854b
UW
1101 frv_analyze_prologue (gdbarch,
1102 get_frame_func (this_frame), this_frame, info);
456f8b9d 1103
1cb761c7 1104 return info;
456f8b9d
DB
1105}
1106
456f8b9d 1107static void
cd31fb03 1108frv_extract_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1109 gdb_byte *valbuf)
456f8b9d 1110{
ac7936df 1111 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
df86565b 1113 int len = type->length ();
cd31fb03
KB
1114
1115 if (len <= 4)
1116 {
1117 ULONGEST gpr8_val;
1118 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
e17a4113 1119 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
cd31fb03
KB
1120 }
1121 else if (len == 8)
1122 {
1123 ULONGEST regval;
0963b4bd 1124
cd31fb03 1125 regcache_cooked_read_unsigned (regcache, 8, &regval);
e17a4113 1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
cd31fb03 1127 regcache_cooked_read_unsigned (regcache, 9, &regval);
e17a4113 1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
cd31fb03
KB
1129 }
1130 else
f34652de 1131 internal_error (_("Illegal return value length: %d"), len);
456f8b9d
DB
1132}
1133
1cb761c7
KB
1134static CORE_ADDR
1135frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1136{
1cb761c7 1137 /* Require dword alignment. */
5b03f266 1138 return align_down (sp, 8);
456f8b9d
DB
1139}
1140
c4d10515
KB
1141static CORE_ADDR
1142find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1143{
e17a4113 1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515 1145 CORE_ADDR descr;
948f8e3d 1146 gdb_byte valbuf[4];
35e08e03
KB
1147 CORE_ADDR start_addr;
1148
1149 /* If we can't find the function in the symbol table, then we assume
1150 that the function address is already in descriptor form. */
1151 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1152 || entry_point != start_addr)
1153 return entry_point;
c4d10515
KB
1154
1155 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1156
1157 if (descr != 0)
1158 return descr;
1159
1160 /* Construct a non-canonical descriptor from space allocated on
1161 the stack. */
1162
1163 descr = value_as_long (value_allocate_space_in_inferior (8));
e17a4113 1164 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
c4d10515 1165 write_memory (descr, valbuf, 4);
e17a4113 1166 store_unsigned_integer (valbuf, 4, byte_order,
dda83cd7 1167 frv_fdpic_find_global_pointer (entry_point));
c4d10515
KB
1168 write_memory (descr + 4, valbuf, 4);
1169 return descr;
1170}
1171
1172static CORE_ADDR
1173frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
dda83cd7 1174 struct target_ops *targ)
c4d10515 1175{
e17a4113 1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c4d10515
KB
1177 CORE_ADDR entry_point;
1178 CORE_ADDR got_address;
1179
e17a4113
UW
1180 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1181 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
c4d10515
KB
1182
1183 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1184 return entry_point;
1185 else
1186 return addr;
1187}
1188
456f8b9d 1189static CORE_ADDR
7d9b040b 1190frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1191 struct regcache *regcache, CORE_ADDR bp_addr,
1192 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1193 function_call_return_method return_method,
1194 CORE_ADDR struct_addr)
456f8b9d 1195{
e17a4113 1196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456f8b9d
DB
1197 int argreg;
1198 int argnum;
948f8e3d
PA
1199 const gdb_byte *val;
1200 gdb_byte valbuf[4];
456f8b9d
DB
1201 struct value *arg;
1202 struct type *arg_type;
1203 int len;
1204 enum type_code typecode;
1205 CORE_ADDR regval;
1206 int stack_space;
1207 int stack_offset;
c4d10515 1208 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1209 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1210
1211#if 0
1212 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1213 nargs, (int) sp, struct_return, struct_addr);
1214#endif
1215
1216 stack_space = 0;
1217 for (argnum = 0; argnum < nargs; ++argnum)
d0c97917 1218 stack_space += align_up (args[argnum]->type ()->length (), 4);
456f8b9d
DB
1219
1220 stack_space -= (6 * 4);
1221 if (stack_space > 0)
1222 sp -= stack_space;
1223
0963b4bd 1224 /* Make sure stack is dword aligned. */
5b03f266 1225 sp = align_down (sp, 8);
456f8b9d
DB
1226
1227 stack_offset = 0;
1228
1229 argreg = 8;
1230
cf84fa6b 1231 if (return_method == return_method_struct)
1cb761c7 1232 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
dda83cd7 1233 struct_addr);
456f8b9d
DB
1234
1235 for (argnum = 0; argnum < nargs; ++argnum)
1236 {
1237 arg = args[argnum];
d0c97917 1238 arg_type = check_typedef (arg->type ());
df86565b 1239 len = arg_type->length ();
78134374 1240 typecode = arg_type->code ();
456f8b9d
DB
1241
1242 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1243 {
e17a4113 1244 store_unsigned_integer (valbuf, 4, byte_order,
9feb2d07 1245 arg->address ());
456f8b9d
DB
1246 typecode = TYPE_CODE_PTR;
1247 len = 4;
1248 val = valbuf;
1249 }
c4d10515
KB
1250 else if (abi == FRV_ABI_FDPIC
1251 && len == 4
dda83cd7 1252 && typecode == TYPE_CODE_PTR
27710edb 1253 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
c4d10515
KB
1254 {
1255 /* The FDPIC ABI requires function descriptors to be passed instead
1256 of entry points. */
e17a4113 1257 CORE_ADDR addr = extract_unsigned_integer
efaf1ae0 1258 (arg->contents ().data (), 4, byte_order);
e17a4113
UW
1259 addr = find_func_descr (gdbarch, addr);
1260 store_unsigned_integer (valbuf, 4, byte_order, addr);
c4d10515
KB
1261 typecode = TYPE_CODE_PTR;
1262 len = 4;
1263 val = valbuf;
1264 }
456f8b9d
DB
1265 else
1266 {
efaf1ae0 1267 val = arg->contents ().data ();
456f8b9d
DB
1268 }
1269
1270 while (len > 0)
1271 {
1272 int partial_len = (len < 4 ? len : 4);
1273
1274 if (argreg < 14)
1275 {
e17a4113 1276 regval = extract_unsigned_integer (val, partial_len, byte_order);
456f8b9d
DB
1277#if 0
1278 printf(" Argnum %d data %x -> reg %d\n",
1279 argnum, (int) regval, argreg);
1280#endif
1cb761c7 1281 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1282 ++argreg;
1283 }
1284 else
1285 {
1286#if 0
1287 printf(" Argnum %d data %x -> offset %d (%x)\n",
0963b4bd
MS
1288 argnum, *((int *)val), stack_offset,
1289 (int) (sp + stack_offset));
456f8b9d
DB
1290#endif
1291 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1292 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1293 }
1294 len -= partial_len;
1295 val += partial_len;
1296 }
1297 }
456f8b9d 1298
1cb761c7
KB
1299 /* Set the return address. For the frv, the return breakpoint is
1300 always at BP_ADDR. */
1301 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1302
c4d10515
KB
1303 if (abi == FRV_ABI_FDPIC)
1304 {
1305 /* Set the GOT register for the FDPIC ABI. */
1306 regcache_cooked_write_unsigned
1307 (regcache, first_gpr_regnum + 15,
dda83cd7 1308 frv_fdpic_find_global_pointer (func_addr));
c4d10515
KB
1309 }
1310
1cb761c7
KB
1311 /* Finally, update the SP register. */
1312 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1313
456f8b9d
DB
1314 return sp;
1315}
1316
1317static void
cd31fb03 1318frv_store_return_value (struct type *type, struct regcache *regcache,
dda83cd7 1319 const gdb_byte *valbuf)
456f8b9d 1320{
df86565b 1321 int len = type->length ();
cd31fb03
KB
1322
1323 if (len <= 4)
1324 {
1325 bfd_byte val[4];
1326 memset (val, 0, sizeof (val));
1327 memcpy (val + (4 - len), valbuf, len);
b66f5587 1328 regcache->cooked_write (8, val);
cd31fb03
KB
1329 }
1330 else if (len == 8)
1331 {
b66f5587
SM
1332 regcache->cooked_write (8, valbuf);
1333 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
cd31fb03 1334 }
456f8b9d 1335 else
f34652de 1336 internal_error (_("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1337}
1338
63807e1d 1339static enum return_value_convention
6a3a010b 1340frv_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1341 struct type *valtype, struct regcache *regcache,
1342 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 1343{
78134374
SM
1344 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1345 || valtype->code () == TYPE_CODE_UNION
1346 || valtype->code () == TYPE_CODE_ARRAY;
4c8b6ae0
UW
1347
1348 if (writebuf != NULL)
1349 {
1350 gdb_assert (!struct_return);
1351 frv_store_return_value (valtype, regcache, writebuf);
1352 }
1353
1354 if (readbuf != NULL)
1355 {
1356 gdb_assert (!struct_return);
1357 frv_extract_return_value (valtype, regcache, readbuf);
1358 }
1359
1360 if (struct_return)
1361 return RETURN_VALUE_STRUCT_CONVENTION;
1362 else
1363 return RETURN_VALUE_REGISTER_CONVENTION;
456f8b9d
DB
1364}
1365
1cb761c7
KB
1366/* Given a GDB frame, determine the address of the calling function's
1367 frame. This will be used to create a new GDB frame struct. */
1368
1369static void
8480a37e 1370frv_frame_this_id (const frame_info_ptr &this_frame,
1cb761c7
KB
1371 void **this_prologue_cache, struct frame_id *this_id)
1372{
1373 struct frv_unwind_cache *info
94afd7a6 1374 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1375 CORE_ADDR base;
1376 CORE_ADDR func;
1cb761c7
KB
1377 struct frame_id id;
1378
1379 /* The FUNC is easy. */
94afd7a6 1380 func = get_frame_func (this_frame);
1cb761c7 1381
1cb761c7 1382 /* Check if the stack is empty. */
4144d36a
SM
1383 bound_minimal_symbol msym_stack
1384 = lookup_minimal_symbol (current_program_space, "_stack");
4aeddc50 1385 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1cb761c7
KB
1386 return;
1387
1388 /* Hopefully the prologue analysis either correctly determined the
1389 frame's base (which is the SP from the previous frame), or set
1390 that base to "NULL". */
1391 base = info->prev_sp;
1392 if (base == 0)
1393 return;
1394
1395 id = frame_id_build (base, func);
1cb761c7
KB
1396 (*this_id) = id;
1397}
1398
94afd7a6 1399static struct value *
8480a37e 1400frv_frame_prev_register (const frame_info_ptr &this_frame,
94afd7a6 1401 void **this_prologue_cache, int regnum)
1cb761c7
KB
1402{
1403 struct frv_unwind_cache *info
94afd7a6
UW
1404 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1405 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1406}
1407
1239e7cf 1408static const struct frame_unwind_legacy frv_frame_unwind (
a154d838 1409 "frv prologue",
1cb761c7 1410 NORMAL_FRAME,
ce36ef63 1411 FRAME_UNWIND_ARCH,
8fbca658 1412 default_frame_unwind_stop_reason,
1cb761c7 1413 frv_frame_this_id,
94afd7a6
UW
1414 frv_frame_prev_register,
1415 NULL,
1416 default_frame_sniffer
1239e7cf 1417);
1cb761c7 1418
1cb761c7 1419static CORE_ADDR
8480a37e 1420frv_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
1cb761c7
KB
1421{
1422 struct frv_unwind_cache *info
94afd7a6 1423 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1424 return info->base;
1425}
1426
1427static const struct frame_base frv_frame_base = {
1428 &frv_frame_unwind,
1429 frv_frame_base_address,
1430 frv_frame_base_address,
1431 frv_frame_base_address
1432};
1433
456f8b9d
DB
1434static struct gdbarch *
1435frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1436{
7e295833 1437 int elf_flags = 0;
456f8b9d
DB
1438
1439 /* Check to see if we've already built an appropriate architecture
1440 object for this executable. */
1441 arches = gdbarch_list_lookup_by_info (arches, &info);
1442 if (arches)
1443 return arches->gdbarch;
1444
1445 /* Select the right tdep structure for this variant. */
2b16913c
SM
1446 gdbarch *gdbarch = gdbarch_alloc (&info, new_variant ());
1447 frv_gdbarch_tdep *var = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
1448
456f8b9d
DB
1449 switch (info.bfd_arch_info->mach)
1450 {
1451 case bfd_mach_frv:
1452 case bfd_mach_frvsimple:
087ccc6a 1453 case bfd_mach_fr300:
456f8b9d
DB
1454 case bfd_mach_fr500:
1455 case bfd_mach_frvtomcat:
251a3ae3 1456 case bfd_mach_fr550:
456f8b9d
DB
1457 set_variant_num_gprs (var, 64);
1458 set_variant_num_fprs (var, 64);
1459 break;
1460
1461 case bfd_mach_fr400:
b2d6d697 1462 case bfd_mach_fr450:
456f8b9d
DB
1463 set_variant_num_gprs (var, 32);
1464 set_variant_num_fprs (var, 32);
1465 break;
1466
1467 default:
1468 /* Never heard of this variant. */
1469 return 0;
1470 }
7e295833
KB
1471
1472 /* Extract the ELF flags, if available. */
1473 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1474 elf_flags = elf_elfheader (info.abfd)->e_flags;
1475
1476 if (elf_flags & EF_FRV_FDPIC)
1477 set_variant_abi_fdpic (var);
1478
b2d6d697
KB
1479 if (elf_flags & EF_FRV_CPU_FR450)
1480 set_variant_scratch_registers (var);
1481
456f8b9d
DB
1482 set_gdbarch_short_bit (gdbarch, 16);
1483 set_gdbarch_int_bit (gdbarch, 32);
1484 set_gdbarch_long_bit (gdbarch, 32);
1485 set_gdbarch_long_long_bit (gdbarch, 64);
1486 set_gdbarch_float_bit (gdbarch, 32);
1487 set_gdbarch_double_bit (gdbarch, 64);
1488 set_gdbarch_long_double_bit (gdbarch, 64);
1489 set_gdbarch_ptr_bit (gdbarch, 32);
1490
1491 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1492 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1493
456f8b9d 1494 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1495 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1496 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1497
1498 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1499 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1500 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1501
6a748db6 1502 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
7f0f3b0f
SM
1503 set_gdbarch_deprecated_pseudo_register_write (gdbarch,
1504 frv_pseudo_register_write);
6a748db6 1505
456f8b9d 1506 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1507 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
04180708
YQ
1508 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1509 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1208538e
MK
1510 set_gdbarch_adjust_breakpoint_address
1511 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1512
4c8b6ae0 1513 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1514
1cb761c7 1515 /* Frame stuff. */
1cb761c7 1516 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1517 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1518 /* We set the sniffer lower down after the OSABI hooks have been
1519 established. */
456f8b9d 1520
1cb761c7
KB
1521 /* Settings for calling functions in the inferior. */
1522 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
456f8b9d
DB
1523
1524 /* Settings that should be unnecessary. */
1525 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1526
456f8b9d
DB
1527 /* Hardware watchpoint / breakpoint support. */
1528 switch (info.bfd_arch_info->mach)
1529 {
1530 case bfd_mach_frv:
1531 case bfd_mach_frvsimple:
087ccc6a 1532 case bfd_mach_fr300:
456f8b9d
DB
1533 case bfd_mach_fr500:
1534 case bfd_mach_frvtomcat:
1535 /* fr500-style hardware debugging support. */
1536 var->num_hw_watchpoints = 4;
1537 var->num_hw_breakpoints = 4;
1538 break;
1539
1540 case bfd_mach_fr400:
b2d6d697 1541 case bfd_mach_fr450:
456f8b9d
DB
1542 /* fr400-style hardware debugging support. */
1543 var->num_hw_watchpoints = 2;
1544 var->num_hw_breakpoints = 4;
1545 break;
1546
1547 default:
1548 /* Otherwise, assume we don't have hardware debugging support. */
1549 var->num_hw_watchpoints = 0;
1550 var->num_hw_breakpoints = 0;
1551 break;
1552 }
1553
c4d10515
KB
1554 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1555 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1556 frv_convert_from_func_ptr_addr);
36482093 1557
a2e3cce3 1558 set_gdbarch_make_solib_ops (gdbarch, make_frv_solib_ops);
917630e4 1559
5ecb7103
KB
1560 /* Hook in ABI-specific overrides, if they have been registered. */
1561 gdbarch_init_osabi (info, gdbarch);
1562
5ecb7103 1563 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1564 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1565
186993b4
KB
1566 /* Enable TLS support. */
1567 set_gdbarch_fetch_tls_load_module_address (gdbarch,
dda83cd7 1568 frv_fetch_objfile_link_map);
186993b4 1569
456f8b9d
DB
1570 return gdbarch;
1571}
1572
5fe70629 1573INIT_GDB_FILE (frv_tdep)
456f8b9d 1574{
ec29a63c 1575 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1576}