]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
2010-05-13 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
0e05dfcb 492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
1c772458 711# Refresh overlay mapped state for section OSECT.
97030eea 712F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 713
97030eea 714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
715
716# Handle special encoding of static variables in stabs debug info.
97030eea 717F:char *:static_transform_name:char *name:name
203c3895 718# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 719v:int:sofun_address_maybe_missing:::0:0::0
1cded358 720
0508c3ec
HZ
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
3846b520
HZ
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
1cded358
AR
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 737
4aa995e1
PA
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
60c5725c
DJ
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 745
a96d9b2e
SDJ
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
50c71eaf
PA
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
50c71eaf 756v:int:has_global_solist:::0:0::0
2567c7d9
PA
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 769
f870a310
TT
770# Return the "auto" target charset.
771f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
772# Return the "auto" target wide charset.
773f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
774
775# If non-empty, this is a file extension that will be opened in place
776# of the file extension reported by the shared library list.
777#
778# This is most useful for toolchains that use a post-linker tool,
779# where the names of the files run on the target differ in extension
780# compared to the names of the files GDB should load for debug info.
781v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
782
783# If true, the target OS has DOS-based file system semantics. That
784# is, absolute paths include a drive name, and the backslash is
785# considered a directory separator.
786v:int:has_dos_based_file_system:::0:0::0
104c1213 787EOF
104c1213
JM
788}
789
0b8f9e4d
AC
790#
791# The .log file
792#
793exec > new-gdbarch.log
34620563 794function_list | while do_read
0b8f9e4d
AC
795do
796 cat <<EOF
2f9b146e 797${class} ${returntype} ${function} ($formal)
104c1213 798EOF
3d9a5942
AC
799 for r in ${read}
800 do
801 eval echo \"\ \ \ \ ${r}=\${${r}}\"
802 done
f0d4cc9e 803 if class_is_predicate_p && fallback_default_p
0b8f9e4d 804 then
66d659b1 805 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
806 kill $$
807 exit 1
808 fi
72e74a21 809 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
810 then
811 echo "Error: postdefault is useless when invalid_p=0" 1>&2
812 kill $$
813 exit 1
814 fi
a72293e2
AC
815 if class_is_multiarch_p
816 then
817 if class_is_predicate_p ; then :
818 elif test "x${predefault}" = "x"
819 then
2f9b146e 820 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
821 kill $$
822 exit 1
823 fi
824 fi
3d9a5942 825 echo ""
0b8f9e4d
AC
826done
827
828exec 1>&2
829compare_new gdbarch.log
830
104c1213
JM
831
832copyright ()
833{
834cat <<EOF
59233f88
AC
835/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
836
104c1213 837/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 838
f801e1e0
MS
839 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
840 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
841
842 This file is part of GDB.
843
844 This program is free software; you can redistribute it and/or modify
845 it under the terms of the GNU General Public License as published by
50efebf8 846 the Free Software Foundation; either version 3 of the License, or
104c1213 847 (at your option) any later version.
50efebf8 848
104c1213
JM
849 This program is distributed in the hope that it will be useful,
850 but WITHOUT ANY WARRANTY; without even the implied warranty of
851 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
852 GNU General Public License for more details.
50efebf8 853
104c1213 854 You should have received a copy of the GNU General Public License
50efebf8 855 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 856
104c1213
JM
857/* This file was created with the aid of \`\`gdbarch.sh''.
858
52204a0b 859 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
860 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
861 against the existing \`\`gdbarch.[hc]''. Any differences found
862 being reported.
863
864 If editing this file, please also run gdbarch.sh and merge any
52204a0b 865 changes into that script. Conversely, when making sweeping changes
104c1213
JM
866 to this file, modifying gdbarch.sh and using its output may prove
867 easier. */
868
869EOF
870}
871
872#
873# The .h file
874#
875
876exec > new-gdbarch.h
877copyright
878cat <<EOF
879#ifndef GDBARCH_H
880#define GDBARCH_H
881
da3331ec
AC
882struct floatformat;
883struct ui_file;
104c1213
JM
884struct frame_info;
885struct value;
b6af0555 886struct objfile;
1c772458 887struct obj_section;
a2cf933a 888struct minimal_symbol;
049ee0e4 889struct regcache;
b59ff9d5 890struct reggroup;
6ce6d90f 891struct regset;
a89aa300 892struct disassemble_info;
e2d0e7eb 893struct target_ops;
030f20e1 894struct obstack;
8181d85f 895struct bp_target_info;
424163ea 896struct target_desc;
237fc4c9 897struct displaced_step_closure;
17ea7499 898struct core_regset_section;
a96d9b2e 899struct syscall;
104c1213 900
9e2ace22
JB
901/* The architecture associated with the connection to the target.
902
903 The architecture vector provides some information that is really
904 a property of the target: The layout of certain packets, for instance;
905 or the solib_ops vector. Etc. To differentiate architecture accesses
906 to per-target properties from per-thread/per-frame/per-objfile properties,
907 accesses to per-target properties should be made through target_gdbarch.
908
909 Eventually, when support for multiple targets is implemented in
910 GDB, this global should be made target-specific. */
1cf3db46 911extern struct gdbarch *target_gdbarch;
104c1213
JM
912EOF
913
914# function typedef's
3d9a5942
AC
915printf "\n"
916printf "\n"
917printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 918function_list | while do_read
104c1213 919do
2ada493a
AC
920 if class_is_info_p
921 then
3d9a5942
AC
922 printf "\n"
923 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
924 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 925 fi
104c1213
JM
926done
927
928# function typedef's
3d9a5942
AC
929printf "\n"
930printf "\n"
931printf "/* The following are initialized by the target dependent code. */\n"
34620563 932function_list | while do_read
104c1213 933do
72e74a21 934 if [ -n "${comment}" ]
34620563
AC
935 then
936 echo "${comment}" | sed \
937 -e '2 s,#,/*,' \
938 -e '3,$ s,#, ,' \
939 -e '$ s,$, */,'
940 fi
412d5987
AC
941
942 if class_is_predicate_p
2ada493a 943 then
412d5987
AC
944 printf "\n"
945 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 946 fi
2ada493a
AC
947 if class_is_variable_p
948 then
3d9a5942
AC
949 printf "\n"
950 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
951 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
952 fi
953 if class_is_function_p
954 then
3d9a5942 955 printf "\n"
72e74a21 956 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
957 then
958 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
959 elif class_is_multiarch_p
960 then
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
962 else
963 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
964 fi
72e74a21 965 if [ "x${formal}" = "xvoid" ]
104c1213 966 then
3d9a5942 967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 968 else
3d9a5942 969 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 970 fi
3d9a5942 971 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 972 fi
104c1213
JM
973done
974
975# close it off
976cat <<EOF
977
a96d9b2e
SDJ
978/* Definition for an unknown syscall, used basically in error-cases. */
979#define UNKNOWN_SYSCALL (-1)
980
104c1213
JM
981extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
982
983
984/* Mechanism for co-ordinating the selection of a specific
985 architecture.
986
987 GDB targets (*-tdep.c) can register an interest in a specific
988 architecture. Other GDB components can register a need to maintain
989 per-architecture data.
990
991 The mechanisms below ensures that there is only a loose connection
992 between the set-architecture command and the various GDB
0fa6923a 993 components. Each component can independently register their need
104c1213
JM
994 to maintain architecture specific data with gdbarch.
995
996 Pragmatics:
997
998 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
999 didn't scale.
1000
1001 The more traditional mega-struct containing architecture specific
1002 data for all the various GDB components was also considered. Since
0fa6923a 1003 GDB is built from a variable number of (fairly independent)
104c1213
JM
1004 components it was determined that the global aproach was not
1005 applicable. */
1006
1007
1008/* Register a new architectural family with GDB.
1009
1010 Register support for the specified ARCHITECTURE with GDB. When
1011 gdbarch determines that the specified architecture has been
1012 selected, the corresponding INIT function is called.
1013
1014 --
1015
1016 The INIT function takes two parameters: INFO which contains the
1017 information available to gdbarch about the (possibly new)
1018 architecture; ARCHES which is a list of the previously created
1019 \`\`struct gdbarch'' for this architecture.
1020
0f79675b 1021 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1022 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1023
1024 The ARCHES parameter is a linked list (sorted most recently used)
1025 of all the previously created architures for this architecture
1026 family. The (possibly NULL) ARCHES->gdbarch can used to access
1027 values from the previously selected architecture for this
59837fe0 1028 architecture family.
104c1213
JM
1029
1030 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1031 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1032 gdbarch'' from the ARCHES list - indicating that the new
1033 architecture is just a synonym for an earlier architecture (see
1034 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1035 - that describes the selected architecture (see gdbarch_alloc()).
1036
1037 The DUMP_TDEP function shall print out all target specific values.
1038 Care should be taken to ensure that the function works in both the
1039 multi-arch and non- multi-arch cases. */
104c1213
JM
1040
1041struct gdbarch_list
1042{
1043 struct gdbarch *gdbarch;
1044 struct gdbarch_list *next;
1045};
1046
1047struct gdbarch_info
1048{
104c1213
JM
1049 /* Use default: NULL (ZERO). */
1050 const struct bfd_arch_info *bfd_arch_info;
1051
428721aa 1052 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1053 int byte_order;
1054
9d4fde75
SS
1055 int byte_order_for_code;
1056
104c1213
JM
1057 /* Use default: NULL (ZERO). */
1058 bfd *abfd;
1059
1060 /* Use default: NULL (ZERO). */
1061 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1062
1063 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1064 enum gdb_osabi osabi;
424163ea
DJ
1065
1066 /* Use default: NULL (ZERO). */
1067 const struct target_desc *target_desc;
104c1213
JM
1068};
1069
1070typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1071typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1072
4b9b3959 1073/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1074extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1075
4b9b3959
AC
1076extern void gdbarch_register (enum bfd_architecture architecture,
1077 gdbarch_init_ftype *,
1078 gdbarch_dump_tdep_ftype *);
1079
104c1213 1080
b4a20239
AC
1081/* Return a freshly allocated, NULL terminated, array of the valid
1082 architecture names. Since architectures are registered during the
1083 _initialize phase this function only returns useful information
1084 once initialization has been completed. */
1085
1086extern const char **gdbarch_printable_names (void);
1087
1088
104c1213
JM
1089/* Helper function. Search the list of ARCHES for a GDBARCH that
1090 matches the information provided by INFO. */
1091
424163ea 1092extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1093
1094
1095/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1096 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1097 parameters. set_gdbarch_*() functions are called to complete the
1098 initialization of the object. */
1099
1100extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1101
1102
4b9b3959
AC
1103/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1104 It is assumed that the caller freeds the \`\`struct
1105 gdbarch_tdep''. */
1106
058f20d5
JB
1107extern void gdbarch_free (struct gdbarch *);
1108
1109
aebd7893
AC
1110/* Helper function. Allocate memory from the \`\`struct gdbarch''
1111 obstack. The memory is freed when the corresponding architecture
1112 is also freed. */
1113
1114extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1115#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1116#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1117
1118
b732d07d 1119/* Helper function. Force an update of the current architecture.
104c1213 1120
b732d07d
AC
1121 The actual architecture selected is determined by INFO, \`\`(gdb) set
1122 architecture'' et.al., the existing architecture and BFD's default
1123 architecture. INFO should be initialized to zero and then selected
1124 fields should be updated.
104c1213 1125
16f33e29
AC
1126 Returns non-zero if the update succeeds */
1127
1128extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1129
1130
ebdba546
AC
1131/* Helper function. Find an architecture matching info.
1132
1133 INFO should be initialized using gdbarch_info_init, relevant fields
1134 set, and then finished using gdbarch_info_fill.
1135
1136 Returns the corresponding architecture, or NULL if no matching
59837fe0 1137 architecture was found. */
ebdba546
AC
1138
1139extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1140
1141
59837fe0 1142/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1143
1144 FIXME: kettenis/20031124: Of the functions that follow, only
1145 gdbarch_from_bfd is supposed to survive. The others will
1146 dissappear since in the future GDB will (hopefully) be truly
1147 multi-arch. However, for now we're still stuck with the concept of
1148 a single active architecture. */
1149
59837fe0 1150extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1151
104c1213
JM
1152
1153/* Register per-architecture data-pointer.
1154
1155 Reserve space for a per-architecture data-pointer. An identifier
1156 for the reserved data-pointer is returned. That identifer should
95160752 1157 be saved in a local static variable.
104c1213 1158
fcc1c85c
AC
1159 Memory for the per-architecture data shall be allocated using
1160 gdbarch_obstack_zalloc. That memory will be deleted when the
1161 corresponding architecture object is deleted.
104c1213 1162
95160752
AC
1163 When a previously created architecture is re-selected, the
1164 per-architecture data-pointer for that previous architecture is
76860b5f 1165 restored. INIT() is not re-called.
104c1213
JM
1166
1167 Multiple registrarants for any architecture are allowed (and
1168 strongly encouraged). */
1169
95160752 1170struct gdbarch_data;
104c1213 1171
030f20e1
AC
1172typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1173extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1174typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1175extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1176extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1177 struct gdbarch_data *data,
1178 void *pointer);
104c1213 1179
451fbdda 1180extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1181
1182
0fa6923a 1183/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1184 byte-order, ...) using information found in the BFD */
1185
1186extern void set_gdbarch_from_file (bfd *);
1187
1188
e514a9d6
JM
1189/* Initialize the current architecture to the "first" one we find on
1190 our list. */
1191
1192extern void initialize_current_architecture (void);
1193
104c1213
JM
1194/* gdbarch trace variable */
1195extern int gdbarch_debug;
1196
4b9b3959 1197extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1198
1199#endif
1200EOF
1201exec 1>&2
1202#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1203compare_new gdbarch.h
104c1213
JM
1204
1205
1206#
1207# C file
1208#
1209
1210exec > new-gdbarch.c
1211copyright
1212cat <<EOF
1213
1214#include "defs.h"
7355ddba 1215#include "arch-utils.h"
104c1213 1216
104c1213 1217#include "gdbcmd.h"
faaf634c 1218#include "inferior.h"
104c1213
JM
1219#include "symcat.h"
1220
f0d4cc9e 1221#include "floatformat.h"
104c1213 1222
95160752 1223#include "gdb_assert.h"
b66d6d2e 1224#include "gdb_string.h"
b59ff9d5 1225#include "reggroups.h"
4be87837 1226#include "osabi.h"
aebd7893 1227#include "gdb_obstack.h"
383f836e 1228#include "observer.h"
a3ecef73 1229#include "regcache.h"
95160752 1230
104c1213
JM
1231/* Static function declarations */
1232
b3cc3077 1233static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1234
104c1213
JM
1235/* Non-zero if we want to trace architecture code. */
1236
1237#ifndef GDBARCH_DEBUG
1238#define GDBARCH_DEBUG 0
1239#endif
1240int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1241static void
1242show_gdbarch_debug (struct ui_file *file, int from_tty,
1243 struct cmd_list_element *c, const char *value)
1244{
1245 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1246}
104c1213 1247
456fcf94 1248static const char *
8da61cc4 1249pformat (const struct floatformat **format)
456fcf94
AC
1250{
1251 if (format == NULL)
1252 return "(null)";
1253 else
8da61cc4
DJ
1254 /* Just print out one of them - this is only for diagnostics. */
1255 return format[0]->name;
456fcf94
AC
1256}
1257
08105857
PA
1258static const char *
1259pstring (const char *string)
1260{
1261 if (string == NULL)
1262 return "(null)";
1263 return string;
1264}
1265
104c1213
JM
1266EOF
1267
1268# gdbarch open the gdbarch object
3d9a5942
AC
1269printf "\n"
1270printf "/* Maintain the struct gdbarch object */\n"
1271printf "\n"
1272printf "struct gdbarch\n"
1273printf "{\n"
76860b5f
AC
1274printf " /* Has this architecture been fully initialized? */\n"
1275printf " int initialized_p;\n"
aebd7893
AC
1276printf "\n"
1277printf " /* An obstack bound to the lifetime of the architecture. */\n"
1278printf " struct obstack *obstack;\n"
1279printf "\n"
3d9a5942 1280printf " /* basic architectural information */\n"
34620563 1281function_list | while do_read
104c1213 1282do
2ada493a
AC
1283 if class_is_info_p
1284 then
3d9a5942 1285 printf " ${returntype} ${function};\n"
2ada493a 1286 fi
104c1213 1287done
3d9a5942
AC
1288printf "\n"
1289printf " /* target specific vector. */\n"
1290printf " struct gdbarch_tdep *tdep;\n"
1291printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1292printf "\n"
1293printf " /* per-architecture data-pointers */\n"
95160752 1294printf " unsigned nr_data;\n"
3d9a5942
AC
1295printf " void **data;\n"
1296printf "\n"
1297printf " /* per-architecture swap-regions */\n"
1298printf " struct gdbarch_swap *swap;\n"
1299printf "\n"
104c1213
JM
1300cat <<EOF
1301 /* Multi-arch values.
1302
1303 When extending this structure you must:
1304
1305 Add the field below.
1306
1307 Declare set/get functions and define the corresponding
1308 macro in gdbarch.h.
1309
1310 gdbarch_alloc(): If zero/NULL is not a suitable default,
1311 initialize the new field.
1312
1313 verify_gdbarch(): Confirm that the target updated the field
1314 correctly.
1315
7e73cedf 1316 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1317 field is dumped out
1318
c0e8c252 1319 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1320 variable (base values on the host's c-type system).
1321
1322 get_gdbarch(): Implement the set/get functions (probably using
1323 the macro's as shortcuts).
1324
1325 */
1326
1327EOF
34620563 1328function_list | while do_read
104c1213 1329do
2ada493a
AC
1330 if class_is_variable_p
1331 then
3d9a5942 1332 printf " ${returntype} ${function};\n"
2ada493a
AC
1333 elif class_is_function_p
1334 then
2f9b146e 1335 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1336 fi
104c1213 1337done
3d9a5942 1338printf "};\n"
104c1213
JM
1339
1340# A pre-initialized vector
3d9a5942
AC
1341printf "\n"
1342printf "\n"
104c1213
JM
1343cat <<EOF
1344/* The default architecture uses host values (for want of a better
1345 choice). */
1346EOF
3d9a5942
AC
1347printf "\n"
1348printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1349printf "\n"
1350printf "struct gdbarch startup_gdbarch =\n"
1351printf "{\n"
76860b5f 1352printf " 1, /* Always initialized. */\n"
aebd7893 1353printf " NULL, /* The obstack. */\n"
3d9a5942 1354printf " /* basic architecture information */\n"
4b9b3959 1355function_list | while do_read
104c1213 1356do
2ada493a
AC
1357 if class_is_info_p
1358 then
ec5cbaec 1359 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1360 fi
104c1213
JM
1361done
1362cat <<EOF
4b9b3959
AC
1363 /* target specific vector and its dump routine */
1364 NULL, NULL,
104c1213
JM
1365 /*per-architecture data-pointers and swap regions */
1366 0, NULL, NULL,
1367 /* Multi-arch values */
1368EOF
34620563 1369function_list | while do_read
104c1213 1370do
2ada493a
AC
1371 if class_is_function_p || class_is_variable_p
1372 then
ec5cbaec 1373 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1374 fi
104c1213
JM
1375done
1376cat <<EOF
c0e8c252 1377 /* startup_gdbarch() */
104c1213 1378};
4b9b3959 1379
1cf3db46 1380struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1381EOF
1382
1383# Create a new gdbarch struct
104c1213 1384cat <<EOF
7de2341d 1385
66b43ecb 1386/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1387 \`\`struct gdbarch_info''. */
1388EOF
3d9a5942 1389printf "\n"
104c1213
JM
1390cat <<EOF
1391struct gdbarch *
1392gdbarch_alloc (const struct gdbarch_info *info,
1393 struct gdbarch_tdep *tdep)
1394{
be7811ad 1395 struct gdbarch *gdbarch;
aebd7893
AC
1396
1397 /* Create an obstack for allocating all the per-architecture memory,
1398 then use that to allocate the architecture vector. */
1399 struct obstack *obstack = XMALLOC (struct obstack);
1400 obstack_init (obstack);
be7811ad
MD
1401 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1402 memset (gdbarch, 0, sizeof (*gdbarch));
1403 gdbarch->obstack = obstack;
85de9627 1404
be7811ad 1405 alloc_gdbarch_data (gdbarch);
85de9627 1406
be7811ad 1407 gdbarch->tdep = tdep;
104c1213 1408EOF
3d9a5942 1409printf "\n"
34620563 1410function_list | while do_read
104c1213 1411do
2ada493a
AC
1412 if class_is_info_p
1413 then
be7811ad 1414 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1415 fi
104c1213 1416done
3d9a5942
AC
1417printf "\n"
1418printf " /* Force the explicit initialization of these. */\n"
34620563 1419function_list | while do_read
104c1213 1420do
2ada493a
AC
1421 if class_is_function_p || class_is_variable_p
1422 then
72e74a21 1423 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1424 then
be7811ad 1425 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1426 fi
2ada493a 1427 fi
104c1213
JM
1428done
1429cat <<EOF
1430 /* gdbarch_alloc() */
1431
be7811ad 1432 return gdbarch;
104c1213
JM
1433}
1434EOF
1435
058f20d5 1436# Free a gdbarch struct.
3d9a5942
AC
1437printf "\n"
1438printf "\n"
058f20d5 1439cat <<EOF
aebd7893
AC
1440/* Allocate extra space using the per-architecture obstack. */
1441
1442void *
1443gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1444{
1445 void *data = obstack_alloc (arch->obstack, size);
1446 memset (data, 0, size);
1447 return data;
1448}
1449
1450
058f20d5
JB
1451/* Free a gdbarch struct. This should never happen in normal
1452 operation --- once you've created a gdbarch, you keep it around.
1453 However, if an architecture's init function encounters an error
1454 building the structure, it may need to clean up a partially
1455 constructed gdbarch. */
4b9b3959 1456
058f20d5
JB
1457void
1458gdbarch_free (struct gdbarch *arch)
1459{
aebd7893 1460 struct obstack *obstack;
95160752 1461 gdb_assert (arch != NULL);
aebd7893
AC
1462 gdb_assert (!arch->initialized_p);
1463 obstack = arch->obstack;
1464 obstack_free (obstack, 0); /* Includes the ARCH. */
1465 xfree (obstack);
058f20d5
JB
1466}
1467EOF
1468
104c1213 1469# verify a new architecture
104c1213 1470cat <<EOF
db446970
AC
1471
1472
1473/* Ensure that all values in a GDBARCH are reasonable. */
1474
104c1213 1475static void
be7811ad 1476verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1477{
f16a1923
AC
1478 struct ui_file *log;
1479 struct cleanup *cleanups;
759ef836 1480 long length;
f16a1923 1481 char *buf;
f16a1923
AC
1482 log = mem_fileopen ();
1483 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1484 /* fundamental */
be7811ad 1485 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1486 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1487 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1488 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1489 /* Check those that need to be defined for the given multi-arch level. */
1490EOF
34620563 1491function_list | while do_read
104c1213 1492do
2ada493a
AC
1493 if class_is_function_p || class_is_variable_p
1494 then
72e74a21 1495 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1496 then
3d9a5942 1497 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1498 elif class_is_predicate_p
1499 then
3d9a5942 1500 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1501 # FIXME: See do_read for potential simplification
72e74a21 1502 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1503 then
3d9a5942 1504 printf " if (${invalid_p})\n"
be7811ad 1505 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1506 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1507 then
be7811ad
MD
1508 printf " if (gdbarch->${function} == ${predefault})\n"
1509 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1510 elif [ -n "${postdefault}" ]
f0d4cc9e 1511 then
be7811ad
MD
1512 printf " if (gdbarch->${function} == 0)\n"
1513 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1514 elif [ -n "${invalid_p}" ]
104c1213 1515 then
4d60522e 1516 printf " if (${invalid_p})\n"
f16a1923 1517 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1518 elif [ -n "${predefault}" ]
104c1213 1519 then
be7811ad 1520 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1521 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1522 fi
2ada493a 1523 fi
104c1213
JM
1524done
1525cat <<EOF
759ef836 1526 buf = ui_file_xstrdup (log, &length);
f16a1923 1527 make_cleanup (xfree, buf);
759ef836 1528 if (length > 0)
f16a1923 1529 internal_error (__FILE__, __LINE__,
85c07804 1530 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1531 buf);
1532 do_cleanups (cleanups);
104c1213
JM
1533}
1534EOF
1535
1536# dump the structure
3d9a5942
AC
1537printf "\n"
1538printf "\n"
104c1213 1539cat <<EOF
4b9b3959
AC
1540/* Print out the details of the current architecture. */
1541
104c1213 1542void
be7811ad 1543gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1544{
b78960be 1545 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1546#if defined (GDB_NM_FILE)
1547 gdb_nm_file = GDB_NM_FILE;
1548#endif
1549 fprintf_unfiltered (file,
1550 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1551 gdb_nm_file);
104c1213 1552EOF
97030eea 1553function_list | sort -t: -k 3 | while do_read
104c1213 1554do
1e9f55d0
AC
1555 # First the predicate
1556 if class_is_predicate_p
1557 then
7996bcec 1558 printf " fprintf_unfiltered (file,\n"
48f7351b 1559 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1560 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1561 fi
48f7351b 1562 # Print the corresponding value.
283354d8 1563 if class_is_function_p
4b9b3959 1564 then
7996bcec 1565 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1566 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1567 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1568 else
48f7351b 1569 # It is a variable
2f9b146e
AC
1570 case "${print}:${returntype}" in
1571 :CORE_ADDR )
0b1553bc
UW
1572 fmt="%s"
1573 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1574 ;;
2f9b146e 1575 :* )
48f7351b 1576 fmt="%s"
623d3eb1 1577 print="plongest (gdbarch->${function})"
48f7351b
AC
1578 ;;
1579 * )
2f9b146e 1580 fmt="%s"
48f7351b
AC
1581 ;;
1582 esac
3d9a5942 1583 printf " fprintf_unfiltered (file,\n"
48f7351b 1584 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1585 printf " ${print});\n"
2ada493a 1586 fi
104c1213 1587done
381323f4 1588cat <<EOF
be7811ad
MD
1589 if (gdbarch->dump_tdep != NULL)
1590 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1591}
1592EOF
104c1213
JM
1593
1594
1595# GET/SET
3d9a5942 1596printf "\n"
104c1213
JM
1597cat <<EOF
1598struct gdbarch_tdep *
1599gdbarch_tdep (struct gdbarch *gdbarch)
1600{
1601 if (gdbarch_debug >= 2)
3d9a5942 1602 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1603 return gdbarch->tdep;
1604}
1605EOF
3d9a5942 1606printf "\n"
34620563 1607function_list | while do_read
104c1213 1608do
2ada493a
AC
1609 if class_is_predicate_p
1610 then
3d9a5942
AC
1611 printf "\n"
1612 printf "int\n"
1613 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1614 printf "{\n"
8de9bdc4 1615 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1616 printf " return ${predicate};\n"
3d9a5942 1617 printf "}\n"
2ada493a
AC
1618 fi
1619 if class_is_function_p
1620 then
3d9a5942
AC
1621 printf "\n"
1622 printf "${returntype}\n"
72e74a21 1623 if [ "x${formal}" = "xvoid" ]
104c1213 1624 then
3d9a5942 1625 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1626 else
3d9a5942 1627 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1628 fi
3d9a5942 1629 printf "{\n"
8de9bdc4 1630 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1631 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1632 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1633 then
1634 # Allow a call to a function with a predicate.
956ac328 1635 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1636 fi
3d9a5942
AC
1637 printf " if (gdbarch_debug >= 2)\n"
1638 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1639 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1640 then
1641 if class_is_multiarch_p
1642 then
1643 params="gdbarch"
1644 else
1645 params=""
1646 fi
1647 else
1648 if class_is_multiarch_p
1649 then
1650 params="gdbarch, ${actual}"
1651 else
1652 params="${actual}"
1653 fi
1654 fi
72e74a21 1655 if [ "x${returntype}" = "xvoid" ]
104c1213 1656 then
4a5c6a1d 1657 printf " gdbarch->${function} (${params});\n"
104c1213 1658 else
4a5c6a1d 1659 printf " return gdbarch->${function} (${params});\n"
104c1213 1660 fi
3d9a5942
AC
1661 printf "}\n"
1662 printf "\n"
1663 printf "void\n"
1664 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1665 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1666 printf "{\n"
1667 printf " gdbarch->${function} = ${function};\n"
1668 printf "}\n"
2ada493a
AC
1669 elif class_is_variable_p
1670 then
3d9a5942
AC
1671 printf "\n"
1672 printf "${returntype}\n"
1673 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1674 printf "{\n"
8de9bdc4 1675 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1676 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1677 then
3d9a5942 1678 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1679 elif [ -n "${invalid_p}" ]
104c1213 1680 then
956ac328
AC
1681 printf " /* Check variable is valid. */\n"
1682 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1683 elif [ -n "${predefault}" ]
104c1213 1684 then
956ac328
AC
1685 printf " /* Check variable changed from pre-default. */\n"
1686 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1687 fi
3d9a5942
AC
1688 printf " if (gdbarch_debug >= 2)\n"
1689 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1690 printf " return gdbarch->${function};\n"
1691 printf "}\n"
1692 printf "\n"
1693 printf "void\n"
1694 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1695 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1696 printf "{\n"
1697 printf " gdbarch->${function} = ${function};\n"
1698 printf "}\n"
2ada493a
AC
1699 elif class_is_info_p
1700 then
3d9a5942
AC
1701 printf "\n"
1702 printf "${returntype}\n"
1703 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1704 printf "{\n"
8de9bdc4 1705 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1706 printf " if (gdbarch_debug >= 2)\n"
1707 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1708 printf " return gdbarch->${function};\n"
1709 printf "}\n"
2ada493a 1710 fi
104c1213
JM
1711done
1712
1713# All the trailing guff
1714cat <<EOF
1715
1716
f44c642f 1717/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1718 modules. */
1719
1720struct gdbarch_data
1721{
95160752 1722 unsigned index;
76860b5f 1723 int init_p;
030f20e1
AC
1724 gdbarch_data_pre_init_ftype *pre_init;
1725 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1726};
1727
1728struct gdbarch_data_registration
1729{
104c1213
JM
1730 struct gdbarch_data *data;
1731 struct gdbarch_data_registration *next;
1732};
1733
f44c642f 1734struct gdbarch_data_registry
104c1213 1735{
95160752 1736 unsigned nr;
104c1213
JM
1737 struct gdbarch_data_registration *registrations;
1738};
1739
f44c642f 1740struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1741{
1742 0, NULL,
1743};
1744
030f20e1
AC
1745static struct gdbarch_data *
1746gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1747 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1748{
1749 struct gdbarch_data_registration **curr;
76860b5f 1750 /* Append the new registraration. */
f44c642f 1751 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1752 (*curr) != NULL;
1753 curr = &(*curr)->next);
1754 (*curr) = XMALLOC (struct gdbarch_data_registration);
1755 (*curr)->next = NULL;
104c1213 1756 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1757 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1758 (*curr)->data->pre_init = pre_init;
1759 (*curr)->data->post_init = post_init;
76860b5f 1760 (*curr)->data->init_p = 1;
104c1213
JM
1761 return (*curr)->data;
1762}
1763
030f20e1
AC
1764struct gdbarch_data *
1765gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1766{
1767 return gdbarch_data_register (pre_init, NULL);
1768}
1769
1770struct gdbarch_data *
1771gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1772{
1773 return gdbarch_data_register (NULL, post_init);
1774}
104c1213 1775
b3cc3077 1776/* Create/delete the gdbarch data vector. */
95160752
AC
1777
1778static void
b3cc3077 1779alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1780{
b3cc3077
JB
1781 gdb_assert (gdbarch->data == NULL);
1782 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1783 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1784}
3c875b6f 1785
76860b5f 1786/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1787 data-pointer. */
1788
95160752 1789void
030f20e1
AC
1790deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1791 struct gdbarch_data *data,
1792 void *pointer)
95160752
AC
1793{
1794 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1795 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1796 gdb_assert (data->pre_init == NULL);
95160752
AC
1797 gdbarch->data[data->index] = pointer;
1798}
1799
104c1213
JM
1800/* Return the current value of the specified per-architecture
1801 data-pointer. */
1802
1803void *
451fbdda 1804gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1805{
451fbdda 1806 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1807 if (gdbarch->data[data->index] == NULL)
76860b5f 1808 {
030f20e1
AC
1809 /* The data-pointer isn't initialized, call init() to get a
1810 value. */
1811 if (data->pre_init != NULL)
1812 /* Mid architecture creation: pass just the obstack, and not
1813 the entire architecture, as that way it isn't possible for
1814 pre-init code to refer to undefined architecture
1815 fields. */
1816 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1817 else if (gdbarch->initialized_p
1818 && data->post_init != NULL)
1819 /* Post architecture creation: pass the entire architecture
1820 (as all fields are valid), but be careful to also detect
1821 recursive references. */
1822 {
1823 gdb_assert (data->init_p);
1824 data->init_p = 0;
1825 gdbarch->data[data->index] = data->post_init (gdbarch);
1826 data->init_p = 1;
1827 }
1828 else
1829 /* The architecture initialization hasn't completed - punt -
1830 hope that the caller knows what they are doing. Once
1831 deprecated_set_gdbarch_data has been initialized, this can be
1832 changed to an internal error. */
1833 return NULL;
76860b5f
AC
1834 gdb_assert (gdbarch->data[data->index] != NULL);
1835 }
451fbdda 1836 return gdbarch->data[data->index];
104c1213
JM
1837}
1838
1839
f44c642f 1840/* Keep a registry of the architectures known by GDB. */
104c1213 1841
4b9b3959 1842struct gdbarch_registration
104c1213
JM
1843{
1844 enum bfd_architecture bfd_architecture;
1845 gdbarch_init_ftype *init;
4b9b3959 1846 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1847 struct gdbarch_list *arches;
4b9b3959 1848 struct gdbarch_registration *next;
104c1213
JM
1849};
1850
f44c642f 1851static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1852
b4a20239
AC
1853static void
1854append_name (const char ***buf, int *nr, const char *name)
1855{
1856 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1857 (*buf)[*nr] = name;
1858 *nr += 1;
1859}
1860
1861const char **
1862gdbarch_printable_names (void)
1863{
7996bcec
AC
1864 /* Accumulate a list of names based on the registed list of
1865 architectures. */
7996bcec
AC
1866 int nr_arches = 0;
1867 const char **arches = NULL;
1868 struct gdbarch_registration *rego;
1869 for (rego = gdbarch_registry;
1870 rego != NULL;
1871 rego = rego->next)
b4a20239 1872 {
7996bcec
AC
1873 const struct bfd_arch_info *ap;
1874 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1875 if (ap == NULL)
1876 internal_error (__FILE__, __LINE__,
85c07804 1877 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1878 do
1879 {
1880 append_name (&arches, &nr_arches, ap->printable_name);
1881 ap = ap->next;
1882 }
1883 while (ap != NULL);
b4a20239 1884 }
7996bcec
AC
1885 append_name (&arches, &nr_arches, NULL);
1886 return arches;
b4a20239
AC
1887}
1888
1889
104c1213 1890void
4b9b3959
AC
1891gdbarch_register (enum bfd_architecture bfd_architecture,
1892 gdbarch_init_ftype *init,
1893 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1894{
4b9b3959 1895 struct gdbarch_registration **curr;
104c1213 1896 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1897 /* Check that BFD recognizes this architecture */
104c1213
JM
1898 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1899 if (bfd_arch_info == NULL)
1900 {
8e65ff28 1901 internal_error (__FILE__, __LINE__,
85c07804 1902 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1903 bfd_architecture);
104c1213
JM
1904 }
1905 /* Check that we haven't seen this architecture before */
f44c642f 1906 for (curr = &gdbarch_registry;
104c1213
JM
1907 (*curr) != NULL;
1908 curr = &(*curr)->next)
1909 {
1910 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1911 internal_error (__FILE__, __LINE__,
85c07804 1912 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1913 bfd_arch_info->printable_name);
104c1213
JM
1914 }
1915 /* log it */
1916 if (gdbarch_debug)
30737ed9 1917 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1918 bfd_arch_info->printable_name,
30737ed9 1919 host_address_to_string (init));
104c1213 1920 /* Append it */
4b9b3959 1921 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1922 (*curr)->bfd_architecture = bfd_architecture;
1923 (*curr)->init = init;
4b9b3959 1924 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1925 (*curr)->arches = NULL;
1926 (*curr)->next = NULL;
4b9b3959
AC
1927}
1928
1929void
1930register_gdbarch_init (enum bfd_architecture bfd_architecture,
1931 gdbarch_init_ftype *init)
1932{
1933 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1934}
104c1213
JM
1935
1936
424163ea 1937/* Look for an architecture using gdbarch_info. */
104c1213
JM
1938
1939struct gdbarch_list *
1940gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1941 const struct gdbarch_info *info)
1942{
1943 for (; arches != NULL; arches = arches->next)
1944 {
1945 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1946 continue;
1947 if (info->byte_order != arches->gdbarch->byte_order)
1948 continue;
4be87837
DJ
1949 if (info->osabi != arches->gdbarch->osabi)
1950 continue;
424163ea
DJ
1951 if (info->target_desc != arches->gdbarch->target_desc)
1952 continue;
104c1213
JM
1953 return arches;
1954 }
1955 return NULL;
1956}
1957
1958
ebdba546 1959/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1960 architecture if needed. Return that new architecture. */
104c1213 1961
59837fe0
UW
1962struct gdbarch *
1963gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1964{
1965 struct gdbarch *new_gdbarch;
4b9b3959 1966 struct gdbarch_registration *rego;
104c1213 1967
b732d07d 1968 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1969 sources: "set ..."; INFOabfd supplied; and the global
1970 defaults. */
1971 gdbarch_info_fill (&info);
4be87837 1972
b732d07d
AC
1973 /* Must have found some sort of architecture. */
1974 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1975
1976 if (gdbarch_debug)
1977 {
1978 fprintf_unfiltered (gdb_stdlog,
59837fe0 1979 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1980 (info.bfd_arch_info != NULL
1981 ? info.bfd_arch_info->printable_name
1982 : "(null)"));
1983 fprintf_unfiltered (gdb_stdlog,
59837fe0 1984 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1985 info.byte_order,
d7449b42 1986 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1987 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1988 : "default"));
4be87837 1989 fprintf_unfiltered (gdb_stdlog,
59837fe0 1990 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1991 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1992 fprintf_unfiltered (gdb_stdlog,
59837fe0 1993 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1994 host_address_to_string (info.abfd));
104c1213 1995 fprintf_unfiltered (gdb_stdlog,
59837fe0 1996 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1997 host_address_to_string (info.tdep_info));
104c1213
JM
1998 }
1999
ebdba546 2000 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2001 for (rego = gdbarch_registry;
2002 rego != NULL;
2003 rego = rego->next)
2004 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2005 break;
2006 if (rego == NULL)
2007 {
2008 if (gdbarch_debug)
59837fe0 2009 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2010 "No matching architecture\n");
b732d07d
AC
2011 return 0;
2012 }
2013
ebdba546 2014 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2015 new_gdbarch = rego->init (info, rego->arches);
2016
ebdba546
AC
2017 /* Did the tdep code like it? No. Reject the change and revert to
2018 the old architecture. */
104c1213
JM
2019 if (new_gdbarch == NULL)
2020 {
2021 if (gdbarch_debug)
59837fe0 2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2023 "Target rejected architecture\n");
2024 return NULL;
104c1213
JM
2025 }
2026
ebdba546
AC
2027 /* Is this a pre-existing architecture (as determined by already
2028 being initialized)? Move it to the front of the architecture
2029 list (keeping the list sorted Most Recently Used). */
2030 if (new_gdbarch->initialized_p)
104c1213 2031 {
ebdba546
AC
2032 struct gdbarch_list **list;
2033 struct gdbarch_list *this;
104c1213 2034 if (gdbarch_debug)
59837fe0 2035 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2036 "Previous architecture %s (%s) selected\n",
2037 host_address_to_string (new_gdbarch),
104c1213 2038 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2039 /* Find the existing arch in the list. */
2040 for (list = &rego->arches;
2041 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2042 list = &(*list)->next);
2043 /* It had better be in the list of architectures. */
2044 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2045 /* Unlink THIS. */
2046 this = (*list);
2047 (*list) = this->next;
2048 /* Insert THIS at the front. */
2049 this->next = rego->arches;
2050 rego->arches = this;
2051 /* Return it. */
2052 return new_gdbarch;
104c1213
JM
2053 }
2054
ebdba546
AC
2055 /* It's a new architecture. */
2056 if (gdbarch_debug)
59837fe0 2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2058 "New architecture %s (%s) selected\n",
2059 host_address_to_string (new_gdbarch),
ebdba546
AC
2060 new_gdbarch->bfd_arch_info->printable_name);
2061
2062 /* Insert the new architecture into the front of the architecture
2063 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2064 {
2065 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2066 this->next = rego->arches;
2067 this->gdbarch = new_gdbarch;
2068 rego->arches = this;
2069 }
104c1213 2070
4b9b3959
AC
2071 /* Check that the newly installed architecture is valid. Plug in
2072 any post init values. */
2073 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2074 verify_gdbarch (new_gdbarch);
ebdba546 2075 new_gdbarch->initialized_p = 1;
104c1213 2076
4b9b3959 2077 if (gdbarch_debug)
ebdba546
AC
2078 gdbarch_dump (new_gdbarch, gdb_stdlog);
2079
2080 return new_gdbarch;
2081}
2082
e487cc15 2083/* Make the specified architecture current. */
ebdba546
AC
2084
2085void
59837fe0 2086deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2087{
2088 gdb_assert (new_gdbarch != NULL);
ebdba546 2089 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2090 target_gdbarch = new_gdbarch;
383f836e 2091 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2092 registers_changed ();
ebdba546 2093}
104c1213 2094
104c1213 2095extern void _initialize_gdbarch (void);
b4a20239 2096
104c1213 2097void
34620563 2098_initialize_gdbarch (void)
104c1213 2099{
85c07804
AC
2100 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2101Set architecture debugging."), _("\\
2102Show architecture debugging."), _("\\
2103When non-zero, architecture debugging is enabled."),
2104 NULL,
920d2a44 2105 show_gdbarch_debug,
85c07804 2106 &setdebuglist, &showdebuglist);
104c1213
JM
2107}
2108EOF
2109
2110# close things off
2111exec 1>&2
2112#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2113compare_new gdbarch.c