]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
2002-12-09 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
181c1381 4# Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
34620563
AC
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
ae45cd16 122 if test -n "${predefault}" -a "${predefault}" != "0"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
34620563 126 else
ae45cd16
AC
127 # filled in later
128 predicate=""
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
66b43ecb
AC
390# Number of bits in a char or unsigned char for the target machine.
391# Just like CHAR_BIT in <limits.h> but describes the target machine.
392# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
393#
394# Number of bits in a short or unsigned short for the target machine.
395v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
396# Number of bits in an int or unsigned int for the target machine.
397v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
398# Number of bits in a long or unsigned long for the target machine.
399v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
400# Number of bits in a long long or unsigned long long for the target
401# machine.
402v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
403# Number of bits in a float for the target machine.
404v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
405# Number of bits in a double for the target machine.
406v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
407# Number of bits in a long double for the target machine.
17ef5d92 408v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
409# For most targets, a pointer on the target and its representation as an
410# address in GDB have the same size and "look the same". For such a
411# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
412# / addr_bit will be set from it.
413#
414# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
415# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
416#
417# ptr_bit is the size of a pointer on the target
66b43ecb 418v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b
DT
419# addr_bit is the size of a target address as represented in gdb
420v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb
AC
421# Number of bits in a BFD_VMA for the target object file format.
422v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 423#
4e409299 424# One if \`char' acts like \`signed char', zero if \`unsigned char'.
2c283bc4 425v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 426#
39f77062
KB
427f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
428f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
be8dfb87 429f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
be8dfb87
AC
430f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
431f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
432# Function for getting target's idea of a frame pointer. FIXME: GDB's
433# whole scheme for dealing with "frames" and "frame pointers" needs a
434# serious shakedown.
435f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 436#
d8124050
AC
437M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
438M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
61a0eb5b 439#
104c1213 440v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
0aba1244 445v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
446
447# GDB's standard (or well known) register numbers. These can map onto
448# a real register or a pseudo (computed) register or not be defined at
1200cd6e
AC
449# all (-1).
450v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
451v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
452v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 453v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
454v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
455v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
456# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
457f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
458# Provide a default mapping from a ecoff register number to a gdb REGNUM.
459f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
460# Provide a default mapping from a DWARF register number to a gdb REGNUM.
461f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
462# Convert from an sdb register number to an internal gdb register number.
463# This should be defined in tm.h, if REGISTER_NAMES is not set up
464# to map one to one onto the sdb register numbers.
465f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
466f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
fa88f677 467f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
468v:2:REGISTER_SIZE:int:register_size::::0:-1
469v:2:REGISTER_BYTES:int:register_bytes::::0:-1
a7e3c2ad 470f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
b2e75d78 471f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213 472v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
b2e75d78 473f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213
JM
474v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
475f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
0ab7a791 476#
903ad3a6 477F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 478m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 479M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 480M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
481# MAP a GDB RAW register number onto a simulator register number. See
482# also include/...-sim.h.
8238d0bf 483f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
2649061d 484F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
485f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
486f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
487# setjmp/longjmp support.
488F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
104c1213 489#
028c194b
AC
490# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
491# much better but at least they are vaguely consistent). The headers
492# and body contain convoluted #if/#else sequences for determine how
493# things should be compiled. Instead of trying to mimic that
494# behaviour here (and hence entrench it further) gdbarch simply
495# reqires that these methods be set up from the word go. This also
496# avoids any potential problems with moving beyond multi-arch partial.
07555a72 497v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
b99fa2d2 498v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
0b8f9e4d
AC
499f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
500v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 501v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 502v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
0b8f9e4d 503v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
ae45cd16
AC
504# NOTE: cagney/2002-11-24: This function with predicate has a valid
505# (callable) initial value. As a consequence, even when the predicate
506# is false, the corresponding function works. This simplifies the
507# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
508# doesn't need to be modified.
509F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
104c1213 510v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
511v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
512v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
513v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
514v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
515f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
97f46953
AC
516F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
517f:2:INIT_FRAME_PC:CORE_ADDR:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
104c1213 518#
f0d4cc9e
AC
519v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
520v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
0b8f9e4d 521f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
a216a322 522F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 523#
6e6d6484 524f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
0b8f9e4d
AC
525f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
526f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
13d01224
AC
527#
528f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
529f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
530f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
104c1213 531#
ac2e2ef7
AC
532f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
533f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 534F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 535#
0b8f9e4d 536f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
6e6d6484 537f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
c0e8c252 538f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
c30e0066 539F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
c0e8c252 540f:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 541#
c0e8c252 542f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
ebba8386
AC
543#
544f::EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
545f::STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
546f::DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
547f::DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
548#
049ee0e4 549F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
26e9b323 550F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 551f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213
JM
552#
553f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
5fdff426 554F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
555#
556f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 557f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 558f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f4f9705a 559f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
0b8f9e4d
AC
560f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
561f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 562v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e02bc4cc 563f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
564v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
565#
0b8f9e4d 566f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
567#
568v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 569f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
104c1213 570f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
7f55af32
AC
571# Define a default FRAME_CHAIN_VALID, in the form that is suitable for
572# most targets. If FRAME_CHAIN_VALID returns zero it means that the
573# given frame is the outermost one and has no caller.
574#
575# XXXX - both default and alternate frame_chain_valid functions are
576# deprecated. New code should use dummy frames and one of the generic
577# functions.
ca0d0b52 578f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::generic_func_frame_chain_valid::0
104c1213 579f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
7d6a26a7
AC
580f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
581f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
104c1213
JM
582f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
583f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
584#
2ada493a 585F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
dc604539 586M:::CORE_ADDR:frame_align:CORE_ADDR address:address
6acf50cd 587v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 588F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 589F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 590v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 591#
52f87c51
AC
592v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
593v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
594v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
875e1767
AC
595f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
596# On some machines there are bits in addresses which are not really
597# part of the address, but are used by the kernel, the hardware, etc.
598# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
599# we get a "real" address such as one would find in a symbol table.
600# This is used only for addresses of instructions, and even then I'm
601# not sure it's used in all contexts. It exists to deal with there
602# being a few stray bits in the PC which would mislead us, not as some
603# sort of generic thing to handle alignment or segmentation (it's
604# possible it should be in TARGET_READ_PC instead).
605f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
606# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
607# ADDR_BITS_REMOVE.
608f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
609# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
610# the target needs software single step. An ISA method to implement it.
611#
612# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
613# using the breakpoint system instead of blatting memory directly (as with rs6000).
614#
615# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
616# single step. If not, then implement single step using breakpoints.
617F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 618f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 619f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
620
621
68e9cc94
CV
622# For SVR4 shared libraries, each call goes through a small piece of
623# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 624# to nonzero if we are currently stopped in one of these.
68e9cc94 625f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
626
627# Some systems also have trampoline code for returning from shared libs.
628f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
629
d7bd68ca
AC
630# Sigtramp is a routine that the kernel calls (which then calls the
631# signal handler). On most machines it is a library routine that is
632# linked into the executable.
633#
634# This macro, given a program counter value and the name of the
635# function in which that PC resides (which can be null if the name is
636# not known), returns nonzero if the PC and name show that we are in
637# sigtramp.
638#
639# On most machines just see if the name is sigtramp (and if we have
640# no name, assume we are not in sigtramp).
641#
642# FIXME: cagney/2002-04-21: The function find_pc_partial_function
643# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
644# This means PC_IN_SIGTRAMP function can't be implemented by doing its
645# own local NAME lookup.
646#
647# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
648# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
649# does not.
650f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 651F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e76cff22 652F::SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
653# A target might have problems with watchpoints as soon as the stack
654# frame of the current function has been destroyed. This mostly happens
655# as the first action in a funtion's epilogue. in_function_epilogue_p()
656# is defined to return a non-zero value if either the given addr is one
657# instruction after the stack destroying instruction up to the trailing
658# return instruction or if we can figure out that the stack frame has
659# already been invalidated regardless of the value of addr. Targets
660# which don't suffer from that problem could just let this functionality
661# untouched.
662m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
663# Given a vector of command-line arguments, return a newly allocated
664# string which, when passed to the create_inferior function, will be
665# parsed (on Unix systems, by the shell) to yield the same vector.
666# This function should call error() if the argument vector is not
667# representable for this target or if this target does not support
668# command-line arguments.
669# ARGC is the number of elements in the vector.
670# ARGV is an array of strings, one per argument.
671m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 672F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
673f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
674f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
31deffe5 675v::NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
c4ed33b9 676v::CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
f74fa174 677v::HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 678F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
5f11f355
AC
679M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:char *:address_class_type_flags_to_name:int type_flags:type_flags:
680M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 681# Is a register in a group
7e20f3fb 682m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
104c1213 683EOF
104c1213
JM
684}
685
0b8f9e4d
AC
686#
687# The .log file
688#
689exec > new-gdbarch.log
34620563 690function_list | while do_read
0b8f9e4d
AC
691do
692 cat <<EOF
104c1213
JM
693${class} ${macro}(${actual})
694 ${returntype} ${function} ($formal)${attrib}
104c1213 695EOF
3d9a5942
AC
696 for r in ${read}
697 do
698 eval echo \"\ \ \ \ ${r}=\${${r}}\"
699 done
f0d4cc9e 700 if class_is_predicate_p && fallback_default_p
0b8f9e4d 701 then
66b43ecb 702 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
703 kill $$
704 exit 1
705 fi
72e74a21 706 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
707 then
708 echo "Error: postdefault is useless when invalid_p=0" 1>&2
709 kill $$
710 exit 1
711 fi
a72293e2
AC
712 if class_is_multiarch_p
713 then
714 if class_is_predicate_p ; then :
715 elif test "x${predefault}" = "x"
716 then
717 echo "Error: pure multi-arch function must have a predefault" 1>&2
718 kill $$
719 exit 1
720 fi
721 fi
3d9a5942 722 echo ""
0b8f9e4d
AC
723done
724
725exec 1>&2
726compare_new gdbarch.log
727
104c1213
JM
728
729copyright ()
730{
731cat <<EOF
59233f88
AC
732/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
733
104c1213 734/* Dynamic architecture support for GDB, the GNU debugger.
181c1381 735 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
736
737 This file is part of GDB.
738
739 This program is free software; you can redistribute it and/or modify
740 it under the terms of the GNU General Public License as published by
741 the Free Software Foundation; either version 2 of the License, or
742 (at your option) any later version.
743
744 This program is distributed in the hope that it will be useful,
745 but WITHOUT ANY WARRANTY; without even the implied warranty of
746 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
747 GNU General Public License for more details.
748
749 You should have received a copy of the GNU General Public License
750 along with this program; if not, write to the Free Software
751 Foundation, Inc., 59 Temple Place - Suite 330,
752 Boston, MA 02111-1307, USA. */
753
104c1213
JM
754/* This file was created with the aid of \`\`gdbarch.sh''.
755
52204a0b 756 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
757 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
758 against the existing \`\`gdbarch.[hc]''. Any differences found
759 being reported.
760
761 If editing this file, please also run gdbarch.sh and merge any
52204a0b 762 changes into that script. Conversely, when making sweeping changes
104c1213
JM
763 to this file, modifying gdbarch.sh and using its output may prove
764 easier. */
765
766EOF
767}
768
769#
770# The .h file
771#
772
773exec > new-gdbarch.h
774copyright
775cat <<EOF
776#ifndef GDBARCH_H
777#define GDBARCH_H
778
2bf0cb65 779#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 780#if !GDB_MULTI_ARCH
67a2b77e 781/* Pull in function declarations refered to, indirectly, via macros. */
fd0407d6 782#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
67a2b77e 783#include "inferior.h" /* For unsigned_address_to_pointer(). */
fd0407d6 784#endif
2bf0cb65 785
104c1213
JM
786struct frame_info;
787struct value;
b6af0555 788struct objfile;
a2cf933a 789struct minimal_symbol;
049ee0e4 790struct regcache;
b59ff9d5 791struct reggroup;
104c1213 792
104c1213
JM
793extern struct gdbarch *current_gdbarch;
794
795
104c1213
JM
796/* If any of the following are defined, the target wasn't correctly
797 converted. */
798
104c1213
JM
799#if GDB_MULTI_ARCH
800#if defined (EXTRA_FRAME_INFO)
801#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
802#endif
803#endif
804
805#if GDB_MULTI_ARCH
806#if defined (FRAME_FIND_SAVED_REGS)
807#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
808#endif
809#endif
83905903
AC
810
811#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
812#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
813#endif
104c1213
JM
814EOF
815
816# function typedef's
3d9a5942
AC
817printf "\n"
818printf "\n"
819printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 820function_list | while do_read
104c1213 821do
2ada493a
AC
822 if class_is_info_p
823 then
3d9a5942
AC
824 printf "\n"
825 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
826 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 827 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
828 printf "#error \"Non multi-arch definition of ${macro}\"\n"
829 printf "#endif\n"
3d9a5942 830 printf "#if GDB_MULTI_ARCH\n"
028c194b 831 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
832 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
833 printf "#endif\n"
834 printf "#endif\n"
2ada493a 835 fi
104c1213
JM
836done
837
838# function typedef's
3d9a5942
AC
839printf "\n"
840printf "\n"
841printf "/* The following are initialized by the target dependent code. */\n"
34620563 842function_list | while do_read
104c1213 843do
72e74a21 844 if [ -n "${comment}" ]
34620563
AC
845 then
846 echo "${comment}" | sed \
847 -e '2 s,#,/*,' \
848 -e '3,$ s,#, ,' \
849 -e '$ s,$, */,'
850 fi
b77be6cf 851 if class_is_multiarch_p
2ada493a 852 then
b77be6cf
AC
853 if class_is_predicate_p
854 then
855 printf "\n"
856 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
857 fi
858 else
859 if class_is_predicate_p
860 then
861 printf "\n"
862 printf "#if defined (${macro})\n"
863 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
864 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 865 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
866 printf "#define ${macro}_P() (1)\n"
867 printf "#endif\n"
eee30e78 868 printf "#endif\n"
b77be6cf
AC
869 printf "\n"
870 printf "/* Default predicate for non- multi-arch targets. */\n"
871 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
872 printf "#define ${macro}_P() (0)\n"
873 printf "#endif\n"
874 printf "\n"
875 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 876 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
877 printf "#error \"Non multi-arch definition of ${macro}\"\n"
878 printf "#endif\n"
028c194b 879 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
880 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
881 printf "#endif\n"
882 fi
4a5c6a1d 883 fi
2ada493a
AC
884 if class_is_variable_p
885 then
f0d4cc9e 886 if fallback_default_p || class_is_predicate_p
33489c5b 887 then
3d9a5942
AC
888 printf "\n"
889 printf "/* Default (value) for non- multi-arch platforms. */\n"
890 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
891 echo "#define ${macro} (${fallbackdefault})" \
892 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 893 printf "#endif\n"
33489c5b 894 fi
3d9a5942
AC
895 printf "\n"
896 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
897 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 898 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
899 printf "#error \"Non multi-arch definition of ${macro}\"\n"
900 printf "#endif\n"
3d9a5942 901 printf "#if GDB_MULTI_ARCH\n"
028c194b 902 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
903 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
904 printf "#endif\n"
905 printf "#endif\n"
2ada493a
AC
906 fi
907 if class_is_function_p
908 then
b77be6cf
AC
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
33489c5b 911 then
3d9a5942
AC
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 915 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 916 then
8e65ff28 917 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
33489c5b 918 else
f0d4cc9e
AC
919 # FIXME: Should be passing current_gdbarch through!
920 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
921 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 922 fi
3d9a5942 923 printf "#endif\n"
33489c5b 924 fi
3d9a5942 925 printf "\n"
72e74a21 926 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
927 then
928 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
929 elif class_is_multiarch_p
930 then
931 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
932 else
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
934 fi
72e74a21 935 if [ "x${formal}" = "xvoid" ]
104c1213 936 then
3d9a5942 937 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 938 else
3d9a5942 939 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 940 fi
3d9a5942 941 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
942 if class_is_multiarch_p ; then :
943 else
028c194b 944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
4a5c6a1d 947 printf "#if GDB_MULTI_ARCH\n"
028c194b 948 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
72e74a21 949 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
950 then
951 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 952 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
953 then
954 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
955 else
956 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
957 fi
958 printf "#endif\n"
959 printf "#endif\n"
104c1213 960 fi
2ada493a 961 fi
104c1213
JM
962done
963
964# close it off
965cat <<EOF
966
967extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
968
969
970/* Mechanism for co-ordinating the selection of a specific
971 architecture.
972
973 GDB targets (*-tdep.c) can register an interest in a specific
974 architecture. Other GDB components can register a need to maintain
975 per-architecture data.
976
977 The mechanisms below ensures that there is only a loose connection
978 between the set-architecture command and the various GDB
0fa6923a 979 components. Each component can independently register their need
104c1213
JM
980 to maintain architecture specific data with gdbarch.
981
982 Pragmatics:
983
984 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
985 didn't scale.
986
987 The more traditional mega-struct containing architecture specific
988 data for all the various GDB components was also considered. Since
0fa6923a 989 GDB is built from a variable number of (fairly independent)
104c1213
JM
990 components it was determined that the global aproach was not
991 applicable. */
992
993
994/* Register a new architectural family with GDB.
995
996 Register support for the specified ARCHITECTURE with GDB. When
997 gdbarch determines that the specified architecture has been
998 selected, the corresponding INIT function is called.
999
1000 --
1001
1002 The INIT function takes two parameters: INFO which contains the
1003 information available to gdbarch about the (possibly new)
1004 architecture; ARCHES which is a list of the previously created
1005 \`\`struct gdbarch'' for this architecture.
1006
0f79675b
AC
1007 The INFO parameter is, as far as possible, be pre-initialized with
1008 information obtained from INFO.ABFD or the previously selected
1009 architecture.
1010
1011 The ARCHES parameter is a linked list (sorted most recently used)
1012 of all the previously created architures for this architecture
1013 family. The (possibly NULL) ARCHES->gdbarch can used to access
1014 values from the previously selected architecture for this
1015 architecture family. The global \`\`current_gdbarch'' shall not be
1016 used.
104c1213
JM
1017
1018 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1019 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1020 gdbarch'' from the ARCHES list - indicating that the new
1021 architecture is just a synonym for an earlier architecture (see
1022 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1023 - that describes the selected architecture (see gdbarch_alloc()).
1024
1025 The DUMP_TDEP function shall print out all target specific values.
1026 Care should be taken to ensure that the function works in both the
1027 multi-arch and non- multi-arch cases. */
104c1213
JM
1028
1029struct gdbarch_list
1030{
1031 struct gdbarch *gdbarch;
1032 struct gdbarch_list *next;
1033};
1034
1035struct gdbarch_info
1036{
104c1213
JM
1037 /* Use default: NULL (ZERO). */
1038 const struct bfd_arch_info *bfd_arch_info;
1039
428721aa 1040 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1041 int byte_order;
1042
1043 /* Use default: NULL (ZERO). */
1044 bfd *abfd;
1045
1046 /* Use default: NULL (ZERO). */
1047 struct gdbarch_tdep_info *tdep_info;
1048};
1049
1050typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1051typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1052
4b9b3959 1053/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1054extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1055
4b9b3959
AC
1056extern void gdbarch_register (enum bfd_architecture architecture,
1057 gdbarch_init_ftype *,
1058 gdbarch_dump_tdep_ftype *);
1059
104c1213 1060
b4a20239
AC
1061/* Return a freshly allocated, NULL terminated, array of the valid
1062 architecture names. Since architectures are registered during the
1063 _initialize phase this function only returns useful information
1064 once initialization has been completed. */
1065
1066extern const char **gdbarch_printable_names (void);
1067
1068
104c1213
JM
1069/* Helper function. Search the list of ARCHES for a GDBARCH that
1070 matches the information provided by INFO. */
1071
1072extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1073
1074
1075/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1076 basic initialization using values obtained from the INFO andTDEP
1077 parameters. set_gdbarch_*() functions are called to complete the
1078 initialization of the object. */
1079
1080extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1081
1082
4b9b3959
AC
1083/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1084 It is assumed that the caller freeds the \`\`struct
1085 gdbarch_tdep''. */
1086
058f20d5
JB
1087extern void gdbarch_free (struct gdbarch *);
1088
1089
b732d07d 1090/* Helper function. Force an update of the current architecture.
104c1213 1091
b732d07d
AC
1092 The actual architecture selected is determined by INFO, \`\`(gdb) set
1093 architecture'' et.al., the existing architecture and BFD's default
1094 architecture. INFO should be initialized to zero and then selected
1095 fields should be updated.
104c1213 1096
16f33e29
AC
1097 Returns non-zero if the update succeeds */
1098
1099extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1100
1101
1102
1103/* Register per-architecture data-pointer.
1104
1105 Reserve space for a per-architecture data-pointer. An identifier
1106 for the reserved data-pointer is returned. That identifer should
95160752 1107 be saved in a local static variable.
104c1213 1108
76860b5f
AC
1109 The per-architecture data-pointer is either initialized explicitly
1110 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1111 gdbarch_data()). FREE() is called to delete either an existing
2af496cb 1112 data-pointer overridden by set_gdbarch_data() or when the
76860b5f 1113 architecture object is being deleted.
104c1213 1114
95160752
AC
1115 When a previously created architecture is re-selected, the
1116 per-architecture data-pointer for that previous architecture is
76860b5f 1117 restored. INIT() is not re-called.
104c1213
JM
1118
1119 Multiple registrarants for any architecture are allowed (and
1120 strongly encouraged). */
1121
95160752 1122struct gdbarch_data;
104c1213 1123
95160752
AC
1124typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1125typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1126 void *pointer);
1127extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1128 gdbarch_data_free_ftype *free);
1129extern void set_gdbarch_data (struct gdbarch *gdbarch,
1130 struct gdbarch_data *data,
1131 void *pointer);
104c1213 1132
451fbdda 1133extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1134
1135
104c1213
JM
1136/* Register per-architecture memory region.
1137
1138 Provide a memory-region swap mechanism. Per-architecture memory
1139 region are created. These memory regions are swapped whenever the
1140 architecture is changed. For a new architecture, the memory region
1141 is initialized with zero (0) and the INIT function is called.
1142
1143 Memory regions are swapped / initialized in the order that they are
1144 registered. NULL DATA and/or INIT values can be specified.
1145
1146 New code should use register_gdbarch_data(). */
1147
1148typedef void (gdbarch_swap_ftype) (void);
1149extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1150#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1151
1152
1153
0fa6923a 1154/* The target-system-dependent byte order is dynamic */
104c1213 1155
104c1213 1156extern int target_byte_order;
104c1213
JM
1157#ifndef TARGET_BYTE_ORDER
1158#define TARGET_BYTE_ORDER (target_byte_order + 0)
1159#endif
1160
1161extern int target_byte_order_auto;
1162#ifndef TARGET_BYTE_ORDER_AUTO
1163#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1164#endif
1165
1166
1167
0fa6923a 1168/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1169
1170extern int target_architecture_auto;
1171#ifndef TARGET_ARCHITECTURE_AUTO
1172#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1173#endif
1174
1175extern const struct bfd_arch_info *target_architecture;
1176#ifndef TARGET_ARCHITECTURE
1177#define TARGET_ARCHITECTURE (target_architecture + 0)
1178#endif
1179
104c1213 1180
0fa6923a 1181/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1182
104c1213 1183extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1184 unsigned int len, disassemble_info *info);
104c1213
JM
1185
1186extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1187 disassemble_info *info);
1188
1189extern void dis_asm_print_address (bfd_vma addr,
1190 disassemble_info *info);
1191
1192extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1193extern disassemble_info tm_print_insn_info;
104c1213
JM
1194#ifndef TARGET_PRINT_INSN_INFO
1195#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1196#endif
1197
1198
1199
0fa6923a 1200/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1201 byte-order, ...) using information found in the BFD */
1202
1203extern void set_gdbarch_from_file (bfd *);
1204
1205
e514a9d6
JM
1206/* Initialize the current architecture to the "first" one we find on
1207 our list. */
1208
1209extern void initialize_current_architecture (void);
1210
ceaa8edf
JB
1211/* For non-multiarched targets, do any initialization of the default
1212 gdbarch object necessary after the _initialize_MODULE functions
1213 have run. */
5ae5f592 1214extern void initialize_non_multiarch (void);
104c1213
JM
1215
1216/* gdbarch trace variable */
1217extern int gdbarch_debug;
1218
4b9b3959 1219extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1220
1221#endif
1222EOF
1223exec 1>&2
1224#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1225compare_new gdbarch.h
104c1213
JM
1226
1227
1228#
1229# C file
1230#
1231
1232exec > new-gdbarch.c
1233copyright
1234cat <<EOF
1235
1236#include "defs.h"
7355ddba 1237#include "arch-utils.h"
104c1213
JM
1238
1239#if GDB_MULTI_ARCH
1240#include "gdbcmd.h"
1241#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1242#else
1243/* Just include everything in sight so that the every old definition
1244 of macro is visible. */
1245#include "gdb_string.h"
1246#include <ctype.h>
1247#include "symtab.h"
1248#include "frame.h"
1249#include "inferior.h"
1250#include "breakpoint.h"
0596389c 1251#include "gdb_wait.h"
104c1213
JM
1252#include "gdbcore.h"
1253#include "gdbcmd.h"
1254#include "target.h"
1255#include "gdbthread.h"
1256#include "annotate.h"
1257#include "symfile.h" /* for overlay functions */
fd0407d6 1258#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1259#endif
1260#include "symcat.h"
1261
f0d4cc9e 1262#include "floatformat.h"
104c1213 1263
95160752 1264#include "gdb_assert.h"
b66d6d2e 1265#include "gdb_string.h"
67c2c32c 1266#include "gdb-events.h"
b59ff9d5 1267#include "reggroups.h"
95160752 1268
104c1213
JM
1269/* Static function declarations */
1270
1271static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1272static void alloc_gdbarch_data (struct gdbarch *);
95160752 1273static void free_gdbarch_data (struct gdbarch *);
104c1213 1274static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1275static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1276static void swapout_gdbarch_swap (struct gdbarch *);
1277static void swapin_gdbarch_swap (struct gdbarch *);
1278
104c1213
JM
1279/* Non-zero if we want to trace architecture code. */
1280
1281#ifndef GDBARCH_DEBUG
1282#define GDBARCH_DEBUG 0
1283#endif
1284int gdbarch_debug = GDBARCH_DEBUG;
1285
1286EOF
1287
1288# gdbarch open the gdbarch object
3d9a5942
AC
1289printf "\n"
1290printf "/* Maintain the struct gdbarch object */\n"
1291printf "\n"
1292printf "struct gdbarch\n"
1293printf "{\n"
76860b5f
AC
1294printf " /* Has this architecture been fully initialized? */\n"
1295printf " int initialized_p;\n"
3d9a5942 1296printf " /* basic architectural information */\n"
34620563 1297function_list | while do_read
104c1213 1298do
2ada493a
AC
1299 if class_is_info_p
1300 then
3d9a5942 1301 printf " ${returntype} ${function};\n"
2ada493a 1302 fi
104c1213 1303done
3d9a5942
AC
1304printf "\n"
1305printf " /* target specific vector. */\n"
1306printf " struct gdbarch_tdep *tdep;\n"
1307printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1308printf "\n"
1309printf " /* per-architecture data-pointers */\n"
95160752 1310printf " unsigned nr_data;\n"
3d9a5942
AC
1311printf " void **data;\n"
1312printf "\n"
1313printf " /* per-architecture swap-regions */\n"
1314printf " struct gdbarch_swap *swap;\n"
1315printf "\n"
104c1213
JM
1316cat <<EOF
1317 /* Multi-arch values.
1318
1319 When extending this structure you must:
1320
1321 Add the field below.
1322
1323 Declare set/get functions and define the corresponding
1324 macro in gdbarch.h.
1325
1326 gdbarch_alloc(): If zero/NULL is not a suitable default,
1327 initialize the new field.
1328
1329 verify_gdbarch(): Confirm that the target updated the field
1330 correctly.
1331
7e73cedf 1332 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1333 field is dumped out
1334
c0e8c252 1335 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1336 variable (base values on the host's c-type system).
1337
1338 get_gdbarch(): Implement the set/get functions (probably using
1339 the macro's as shortcuts).
1340
1341 */
1342
1343EOF
34620563 1344function_list | while do_read
104c1213 1345do
2ada493a
AC
1346 if class_is_variable_p
1347 then
3d9a5942 1348 printf " ${returntype} ${function};\n"
2ada493a
AC
1349 elif class_is_function_p
1350 then
3d9a5942 1351 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1352 fi
104c1213 1353done
3d9a5942 1354printf "};\n"
104c1213
JM
1355
1356# A pre-initialized vector
3d9a5942
AC
1357printf "\n"
1358printf "\n"
104c1213
JM
1359cat <<EOF
1360/* The default architecture uses host values (for want of a better
1361 choice). */
1362EOF
3d9a5942
AC
1363printf "\n"
1364printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1365printf "\n"
1366printf "struct gdbarch startup_gdbarch =\n"
1367printf "{\n"
76860b5f 1368printf " 1, /* Always initialized. */\n"
3d9a5942 1369printf " /* basic architecture information */\n"
4b9b3959 1370function_list | while do_read
104c1213 1371do
2ada493a
AC
1372 if class_is_info_p
1373 then
3d9a5942 1374 printf " ${staticdefault},\n"
2ada493a 1375 fi
104c1213
JM
1376done
1377cat <<EOF
4b9b3959
AC
1378 /* target specific vector and its dump routine */
1379 NULL, NULL,
104c1213
JM
1380 /*per-architecture data-pointers and swap regions */
1381 0, NULL, NULL,
1382 /* Multi-arch values */
1383EOF
34620563 1384function_list | while do_read
104c1213 1385do
2ada493a
AC
1386 if class_is_function_p || class_is_variable_p
1387 then
3d9a5942 1388 printf " ${staticdefault},\n"
2ada493a 1389 fi
104c1213
JM
1390done
1391cat <<EOF
c0e8c252 1392 /* startup_gdbarch() */
104c1213 1393};
4b9b3959 1394
c0e8c252 1395struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1396
1397/* Do any initialization needed for a non-multiarch configuration
1398 after the _initialize_MODULE functions have been run. */
1399void
5ae5f592 1400initialize_non_multiarch (void)
ceaa8edf
JB
1401{
1402 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1403 /* Ensure that all swap areas are zeroed so that they again think
1404 they are starting from scratch. */
1405 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1406 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1407}
104c1213
JM
1408EOF
1409
1410# Create a new gdbarch struct
3d9a5942
AC
1411printf "\n"
1412printf "\n"
104c1213 1413cat <<EOF
66b43ecb 1414/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1415 \`\`struct gdbarch_info''. */
1416EOF
3d9a5942 1417printf "\n"
104c1213
JM
1418cat <<EOF
1419struct gdbarch *
1420gdbarch_alloc (const struct gdbarch_info *info,
1421 struct gdbarch_tdep *tdep)
1422{
85de9627
AC
1423 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1424 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1425 the current local architecture and not the previous global
1426 architecture. This ensures that the new architectures initial
1427 values are not influenced by the previous architecture. Once
1428 everything is parameterised with gdbarch, this will go away. */
1429 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1430 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1431
1432 alloc_gdbarch_data (current_gdbarch);
1433
1434 current_gdbarch->tdep = tdep;
104c1213 1435EOF
3d9a5942 1436printf "\n"
34620563 1437function_list | while do_read
104c1213 1438do
2ada493a
AC
1439 if class_is_info_p
1440 then
85de9627 1441 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1442 fi
104c1213 1443done
3d9a5942
AC
1444printf "\n"
1445printf " /* Force the explicit initialization of these. */\n"
34620563 1446function_list | while do_read
104c1213 1447do
2ada493a
AC
1448 if class_is_function_p || class_is_variable_p
1449 then
72e74a21 1450 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1451 then
85de9627 1452 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1453 fi
2ada493a 1454 fi
104c1213
JM
1455done
1456cat <<EOF
1457 /* gdbarch_alloc() */
1458
85de9627 1459 return current_gdbarch;
104c1213
JM
1460}
1461EOF
1462
058f20d5 1463# Free a gdbarch struct.
3d9a5942
AC
1464printf "\n"
1465printf "\n"
058f20d5
JB
1466cat <<EOF
1467/* Free a gdbarch struct. This should never happen in normal
1468 operation --- once you've created a gdbarch, you keep it around.
1469 However, if an architecture's init function encounters an error
1470 building the structure, it may need to clean up a partially
1471 constructed gdbarch. */
4b9b3959 1472
058f20d5
JB
1473void
1474gdbarch_free (struct gdbarch *arch)
1475{
95160752
AC
1476 gdb_assert (arch != NULL);
1477 free_gdbarch_data (arch);
338d7c5c 1478 xfree (arch);
058f20d5
JB
1479}
1480EOF
1481
104c1213 1482# verify a new architecture
3d9a5942
AC
1483printf "\n"
1484printf "\n"
1485printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1486printf "\n"
104c1213
JM
1487cat <<EOF
1488static void
1489verify_gdbarch (struct gdbarch *gdbarch)
1490{
f16a1923
AC
1491 struct ui_file *log;
1492 struct cleanup *cleanups;
1493 long dummy;
1494 char *buf;
104c1213 1495 /* Only perform sanity checks on a multi-arch target. */
6166d547 1496 if (!GDB_MULTI_ARCH)
104c1213 1497 return;
f16a1923
AC
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1500 /* fundamental */
428721aa 1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1502 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1503 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1505 /* Check those that need to be defined for the given multi-arch level. */
1506EOF
34620563 1507function_list | while do_read
104c1213 1508do
2ada493a
AC
1509 if class_is_function_p || class_is_variable_p
1510 then
72e74a21 1511 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1512 then
3d9a5942 1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1514 elif class_is_predicate_p
1515 then
3d9a5942 1516 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1517 # FIXME: See do_read for potential simplification
72e74a21 1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1519 then
3d9a5942
AC
1520 printf " if (${invalid_p})\n"
1521 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1523 then
3d9a5942
AC
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1526 elif [ -n "${postdefault}" ]
f0d4cc9e 1527 then
3d9a5942
AC
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1530 elif [ -n "${invalid_p}" ]
104c1213 1531 then
50248794 1532 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1533 printf " && (${invalid_p}))\n"
f16a1923 1534 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1535 elif [ -n "${predefault}" ]
104c1213 1536 then
50248794 1537 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1538 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1539 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1540 fi
2ada493a 1541 fi
104c1213
JM
1542done
1543cat <<EOF
f16a1923
AC
1544 buf = ui_file_xstrdup (log, &dummy);
1545 make_cleanup (xfree, buf);
1546 if (strlen (buf) > 0)
1547 internal_error (__FILE__, __LINE__,
1548 "verify_gdbarch: the following are invalid ...%s",
1549 buf);
1550 do_cleanups (cleanups);
104c1213
JM
1551}
1552EOF
1553
1554# dump the structure
3d9a5942
AC
1555printf "\n"
1556printf "\n"
104c1213 1557cat <<EOF
4b9b3959
AC
1558/* Print out the details of the current architecture. */
1559
1560/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1561 just happens to match the global variable \`\`current_gdbarch''. That
1562 way macros refering to that variable get the local and not the global
1563 version - ulgh. Once everything is parameterised with gdbarch, this
1564 will go away. */
1565
104c1213 1566void
4b9b3959 1567gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1568{
4b9b3959
AC
1569 fprintf_unfiltered (file,
1570 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1571 GDB_MULTI_ARCH);
104c1213 1572EOF
9ba8d803 1573function_list | sort -t: -k 3 | while do_read
104c1213 1574do
1e9f55d0
AC
1575 # First the predicate
1576 if class_is_predicate_p
1577 then
1578 if class_is_multiarch_p
1579 then
1580 printf " if (GDB_MULTI_ARCH)\n"
1581 printf " fprintf_unfiltered (file,\n"
1582 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1583 printf " gdbarch_${function}_p (current_gdbarch));\n"
1584 else
1585 printf "#ifdef ${macro}_P\n"
1586 printf " fprintf_unfiltered (file,\n"
1587 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1588 printf " \"${macro}_P()\",\n"
1589 printf " XSTRING (${macro}_P ()));\n"
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1592 printf " ${macro}_P ());\n"
1593 printf "#endif\n"
1594 fi
1595 fi
4a5c6a1d 1596 # multiarch functions don't have macros.
08e45a40
AC
1597 if class_is_multiarch_p
1598 then
1599 printf " if (GDB_MULTI_ARCH)\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1602 printf " (long) current_gdbarch->${function});\n"
1603 continue
1604 fi
06b25f14 1605 # Print the macro definition.
08e45a40 1606 printf "#ifdef ${macro}\n"
72e74a21 1607 if [ "x${returntype}" = "xvoid" ]
63e69063 1608 then
08e45a40 1609 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1610 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1611 fi
2ada493a
AC
1612 if class_is_function_p
1613 then
3d9a5942
AC
1614 printf " fprintf_unfiltered (file,\n"
1615 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1616 printf " \"${macro}(${actual})\",\n"
1617 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1618 else
3d9a5942
AC
1619 printf " fprintf_unfiltered (file,\n"
1620 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1621 printf " XSTRING (${macro}));\n"
4b9b3959 1622 fi
06b25f14 1623 # Print the architecture vector value
08e45a40 1624 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1625 then
08e45a40 1626 printf "#endif\n"
4a5c6a1d 1627 fi
72e74a21 1628 if [ "x${print_p}" = "x()" ]
4b9b3959 1629 then
4a5c6a1d 1630 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1631 elif [ "x${print_p}" = "x0" ]
4b9b3959 1632 then
4a5c6a1d 1633 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1634 elif [ -n "${print_p}" ]
4b9b3959 1635 then
4a5c6a1d 1636 printf " if (${print_p})\n"
3d9a5942
AC
1637 printf " fprintf_unfiltered (file,\n"
1638 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1639 printf " ${print});\n"
4b9b3959
AC
1640 elif class_is_function_p
1641 then
3d9a5942
AC
1642 printf " if (GDB_MULTI_ARCH)\n"
1643 printf " fprintf_unfiltered (file,\n"
1644 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1645 printf " (long) current_gdbarch->${function}\n"
1646 printf " /*${macro} ()*/);\n"
4b9b3959 1647 else
3d9a5942
AC
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1650 printf " ${print});\n"
2ada493a 1651 fi
3d9a5942 1652 printf "#endif\n"
104c1213 1653done
381323f4 1654cat <<EOF
4b9b3959
AC
1655 if (current_gdbarch->dump_tdep != NULL)
1656 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1657}
1658EOF
104c1213
JM
1659
1660
1661# GET/SET
3d9a5942 1662printf "\n"
104c1213
JM
1663cat <<EOF
1664struct gdbarch_tdep *
1665gdbarch_tdep (struct gdbarch *gdbarch)
1666{
1667 if (gdbarch_debug >= 2)
3d9a5942 1668 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1669 return gdbarch->tdep;
1670}
1671EOF
3d9a5942 1672printf "\n"
34620563 1673function_list | while do_read
104c1213 1674do
2ada493a
AC
1675 if class_is_predicate_p
1676 then
3d9a5942
AC
1677 printf "\n"
1678 printf "int\n"
1679 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1680 printf "{\n"
8de9bdc4 1681 printf " gdb_assert (gdbarch != NULL);\n"
ae45cd16 1682 if [ -n "${predicate}" ]
2ada493a 1683 then
ae45cd16 1684 printf " return ${predicate};\n"
2ada493a 1685 else
ae45cd16 1686 printf " return gdbarch->${function} != 0;\n"
2ada493a 1687 fi
3d9a5942 1688 printf "}\n"
2ada493a
AC
1689 fi
1690 if class_is_function_p
1691 then
3d9a5942
AC
1692 printf "\n"
1693 printf "${returntype}\n"
72e74a21 1694 if [ "x${formal}" = "xvoid" ]
104c1213 1695 then
3d9a5942 1696 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1697 else
3d9a5942 1698 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1699 fi
3d9a5942 1700 printf "{\n"
8de9bdc4 1701 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 1702 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1703 printf " internal_error (__FILE__, __LINE__,\n"
1704 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
ae45cd16
AC
1705 if class_is_predicate_p && test -n "${predicate}"
1706 then
1707 # Allow a call to a function with a predicate.
1708 printf " /* Ignore predicate (${predicate}). */\n"
1709 fi
3d9a5942
AC
1710 printf " if (gdbarch_debug >= 2)\n"
1711 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1712 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1713 then
1714 if class_is_multiarch_p
1715 then
1716 params="gdbarch"
1717 else
1718 params=""
1719 fi
1720 else
1721 if class_is_multiarch_p
1722 then
1723 params="gdbarch, ${actual}"
1724 else
1725 params="${actual}"
1726 fi
1727 fi
72e74a21 1728 if [ "x${returntype}" = "xvoid" ]
104c1213 1729 then
4a5c6a1d 1730 printf " gdbarch->${function} (${params});\n"
104c1213 1731 else
4a5c6a1d 1732 printf " return gdbarch->${function} (${params});\n"
104c1213 1733 fi
3d9a5942
AC
1734 printf "}\n"
1735 printf "\n"
1736 printf "void\n"
1737 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1738 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1739 printf "{\n"
1740 printf " gdbarch->${function} = ${function};\n"
1741 printf "}\n"
2ada493a
AC
1742 elif class_is_variable_p
1743 then
3d9a5942
AC
1744 printf "\n"
1745 printf "${returntype}\n"
1746 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1747 printf "{\n"
8de9bdc4 1748 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1749 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1750 then
3d9a5942 1751 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1752 elif [ -n "${invalid_p}" ]
104c1213 1753 then
3d9a5942 1754 printf " if (${invalid_p})\n"
8e65ff28
AC
1755 printf " internal_error (__FILE__, __LINE__,\n"
1756 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1757 elif [ -n "${predefault}" ]
104c1213 1758 then
3d9a5942 1759 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1760 printf " internal_error (__FILE__, __LINE__,\n"
1761 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1762 fi
3d9a5942
AC
1763 printf " if (gdbarch_debug >= 2)\n"
1764 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1765 printf " return gdbarch->${function};\n"
1766 printf "}\n"
1767 printf "\n"
1768 printf "void\n"
1769 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1770 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1771 printf "{\n"
1772 printf " gdbarch->${function} = ${function};\n"
1773 printf "}\n"
2ada493a
AC
1774 elif class_is_info_p
1775 then
3d9a5942
AC
1776 printf "\n"
1777 printf "${returntype}\n"
1778 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1779 printf "{\n"
8de9bdc4 1780 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1781 printf " if (gdbarch_debug >= 2)\n"
1782 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1783 printf " return gdbarch->${function};\n"
1784 printf "}\n"
2ada493a 1785 fi
104c1213
JM
1786done
1787
1788# All the trailing guff
1789cat <<EOF
1790
1791
f44c642f 1792/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1793 modules. */
1794
1795struct gdbarch_data
1796{
95160752 1797 unsigned index;
76860b5f 1798 int init_p;
95160752
AC
1799 gdbarch_data_init_ftype *init;
1800 gdbarch_data_free_ftype *free;
104c1213
JM
1801};
1802
1803struct gdbarch_data_registration
1804{
104c1213
JM
1805 struct gdbarch_data *data;
1806 struct gdbarch_data_registration *next;
1807};
1808
f44c642f 1809struct gdbarch_data_registry
104c1213 1810{
95160752 1811 unsigned nr;
104c1213
JM
1812 struct gdbarch_data_registration *registrations;
1813};
1814
f44c642f 1815struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1816{
1817 0, NULL,
1818};
1819
1820struct gdbarch_data *
95160752
AC
1821register_gdbarch_data (gdbarch_data_init_ftype *init,
1822 gdbarch_data_free_ftype *free)
104c1213
JM
1823{
1824 struct gdbarch_data_registration **curr;
76860b5f 1825 /* Append the new registraration. */
f44c642f 1826 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1827 (*curr) != NULL;
1828 curr = &(*curr)->next);
1829 (*curr) = XMALLOC (struct gdbarch_data_registration);
1830 (*curr)->next = NULL;
104c1213 1831 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1832 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1833 (*curr)->data->init = init;
76860b5f 1834 (*curr)->data->init_p = 1;
95160752 1835 (*curr)->data->free = free;
104c1213
JM
1836 return (*curr)->data;
1837}
1838
1839
b3cc3077 1840/* Create/delete the gdbarch data vector. */
95160752
AC
1841
1842static void
b3cc3077 1843alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1844{
b3cc3077
JB
1845 gdb_assert (gdbarch->data == NULL);
1846 gdbarch->nr_data = gdbarch_data_registry.nr;
1847 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1848}
3c875b6f 1849
b3cc3077
JB
1850static void
1851free_gdbarch_data (struct gdbarch *gdbarch)
1852{
1853 struct gdbarch_data_registration *rego;
1854 gdb_assert (gdbarch->data != NULL);
1855 for (rego = gdbarch_data_registry.registrations;
1856 rego != NULL;
1857 rego = rego->next)
95160752 1858 {
b3cc3077
JB
1859 struct gdbarch_data *data = rego->data;
1860 gdb_assert (data->index < gdbarch->nr_data);
1861 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1862 {
b3cc3077
JB
1863 data->free (gdbarch, gdbarch->data[data->index]);
1864 gdbarch->data[data->index] = NULL;
95160752 1865 }
104c1213 1866 }
b3cc3077
JB
1867 xfree (gdbarch->data);
1868 gdbarch->data = NULL;
104c1213
JM
1869}
1870
1871
76860b5f 1872/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1873 data-pointer. */
1874
95160752
AC
1875void
1876set_gdbarch_data (struct gdbarch *gdbarch,
1877 struct gdbarch_data *data,
1878 void *pointer)
1879{
1880 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1881 if (gdbarch->data[data->index] != NULL)
1882 {
1883 gdb_assert (data->free != NULL);
1884 data->free (gdbarch, gdbarch->data[data->index]);
1885 }
95160752
AC
1886 gdbarch->data[data->index] = pointer;
1887}
1888
104c1213
JM
1889/* Return the current value of the specified per-architecture
1890 data-pointer. */
1891
1892void *
451fbdda 1893gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1894{
451fbdda 1895 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1896 /* The data-pointer isn't initialized, call init() to get a value but
1897 only if the architecture initializaiton has completed. Otherwise
1898 punt - hope that the caller knows what they are doing. */
1899 if (gdbarch->data[data->index] == NULL
1900 && gdbarch->initialized_p)
1901 {
1902 /* Be careful to detect an initialization cycle. */
1903 gdb_assert (data->init_p);
1904 data->init_p = 0;
1905 gdb_assert (data->init != NULL);
1906 gdbarch->data[data->index] = data->init (gdbarch);
1907 data->init_p = 1;
1908 gdb_assert (gdbarch->data[data->index] != NULL);
1909 }
451fbdda 1910 return gdbarch->data[data->index];
104c1213
JM
1911}
1912
1913
1914
f44c642f 1915/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1916
1917struct gdbarch_swap
1918{
1919 void *swap;
1920 struct gdbarch_swap_registration *source;
1921 struct gdbarch_swap *next;
1922};
1923
1924struct gdbarch_swap_registration
1925{
1926 void *data;
1927 unsigned long sizeof_data;
1928 gdbarch_swap_ftype *init;
1929 struct gdbarch_swap_registration *next;
1930};
1931
f44c642f 1932struct gdbarch_swap_registry
104c1213
JM
1933{
1934 int nr;
1935 struct gdbarch_swap_registration *registrations;
1936};
1937
f44c642f 1938struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1939{
1940 0, NULL,
1941};
1942
1943void
1944register_gdbarch_swap (void *data,
1945 unsigned long sizeof_data,
1946 gdbarch_swap_ftype *init)
1947{
1948 struct gdbarch_swap_registration **rego;
f44c642f 1949 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1950 (*rego) != NULL;
1951 rego = &(*rego)->next);
1952 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1953 (*rego)->next = NULL;
1954 (*rego)->init = init;
1955 (*rego)->data = data;
1956 (*rego)->sizeof_data = sizeof_data;
1957}
1958
40af4b0c
AC
1959static void
1960clear_gdbarch_swap (struct gdbarch *gdbarch)
1961{
1962 struct gdbarch_swap *curr;
1963 for (curr = gdbarch->swap;
1964 curr != NULL;
1965 curr = curr->next)
1966 {
1967 memset (curr->source->data, 0, curr->source->sizeof_data);
1968 }
1969}
104c1213
JM
1970
1971static void
1972init_gdbarch_swap (struct gdbarch *gdbarch)
1973{
1974 struct gdbarch_swap_registration *rego;
1975 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1976 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1977 rego != NULL;
1978 rego = rego->next)
1979 {
1980 if (rego->data != NULL)
1981 {
1982 (*curr) = XMALLOC (struct gdbarch_swap);
1983 (*curr)->source = rego;
1984 (*curr)->swap = xmalloc (rego->sizeof_data);
1985 (*curr)->next = NULL;
104c1213
JM
1986 curr = &(*curr)->next;
1987 }
1988 if (rego->init != NULL)
1989 rego->init ();
1990 }
1991}
1992
1993static void
1994swapout_gdbarch_swap (struct gdbarch *gdbarch)
1995{
1996 struct gdbarch_swap *curr;
1997 for (curr = gdbarch->swap;
1998 curr != NULL;
1999 curr = curr->next)
2000 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2001}
2002
2003static void
2004swapin_gdbarch_swap (struct gdbarch *gdbarch)
2005{
2006 struct gdbarch_swap *curr;
2007 for (curr = gdbarch->swap;
2008 curr != NULL;
2009 curr = curr->next)
2010 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2011}
2012
2013
f44c642f 2014/* Keep a registry of the architectures known by GDB. */
104c1213 2015
4b9b3959 2016struct gdbarch_registration
104c1213
JM
2017{
2018 enum bfd_architecture bfd_architecture;
2019 gdbarch_init_ftype *init;
4b9b3959 2020 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2021 struct gdbarch_list *arches;
4b9b3959 2022 struct gdbarch_registration *next;
104c1213
JM
2023};
2024
f44c642f 2025static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2026
b4a20239
AC
2027static void
2028append_name (const char ***buf, int *nr, const char *name)
2029{
2030 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2031 (*buf)[*nr] = name;
2032 *nr += 1;
2033}
2034
2035const char **
2036gdbarch_printable_names (void)
2037{
2038 if (GDB_MULTI_ARCH)
2039 {
2040 /* Accumulate a list of names based on the registed list of
2041 architectures. */
2042 enum bfd_architecture a;
2043 int nr_arches = 0;
2044 const char **arches = NULL;
4b9b3959 2045 struct gdbarch_registration *rego;
f44c642f 2046 for (rego = gdbarch_registry;
b4a20239
AC
2047 rego != NULL;
2048 rego = rego->next)
2049 {
2050 const struct bfd_arch_info *ap;
2051 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2052 if (ap == NULL)
8e65ff28
AC
2053 internal_error (__FILE__, __LINE__,
2054 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2055 do
2056 {
2057 append_name (&arches, &nr_arches, ap->printable_name);
2058 ap = ap->next;
2059 }
2060 while (ap != NULL);
2061 }
2062 append_name (&arches, &nr_arches, NULL);
2063 return arches;
2064 }
2065 else
2066 /* Just return all the architectures that BFD knows. Assume that
2067 the legacy architecture framework supports them. */
2068 return bfd_arch_list ();
2069}
2070
2071
104c1213 2072void
4b9b3959
AC
2073gdbarch_register (enum bfd_architecture bfd_architecture,
2074 gdbarch_init_ftype *init,
2075 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2076{
4b9b3959 2077 struct gdbarch_registration **curr;
104c1213 2078 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2079 /* Check that BFD recognizes this architecture */
104c1213
JM
2080 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2081 if (bfd_arch_info == NULL)
2082 {
8e65ff28
AC
2083 internal_error (__FILE__, __LINE__,
2084 "gdbarch: Attempt to register unknown architecture (%d)",
2085 bfd_architecture);
104c1213
JM
2086 }
2087 /* Check that we haven't seen this architecture before */
f44c642f 2088 for (curr = &gdbarch_registry;
104c1213
JM
2089 (*curr) != NULL;
2090 curr = &(*curr)->next)
2091 {
2092 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch: Duplicate registraration of architecture (%s)",
2095 bfd_arch_info->printable_name);
104c1213
JM
2096 }
2097 /* log it */
2098 if (gdbarch_debug)
2099 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2100 bfd_arch_info->printable_name,
2101 (long) init);
2102 /* Append it */
4b9b3959 2103 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2104 (*curr)->bfd_architecture = bfd_architecture;
2105 (*curr)->init = init;
4b9b3959 2106 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2107 (*curr)->arches = NULL;
2108 (*curr)->next = NULL;
8e1a459b
C
2109 /* When non- multi-arch, install whatever target dump routine we've
2110 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2111 and works regardless of multi-arch. */
2112 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2113 && startup_gdbarch.dump_tdep == NULL)
2114 startup_gdbarch.dump_tdep = dump_tdep;
2115}
2116
2117void
2118register_gdbarch_init (enum bfd_architecture bfd_architecture,
2119 gdbarch_init_ftype *init)
2120{
2121 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2122}
104c1213
JM
2123
2124
2125/* Look for an architecture using gdbarch_info. Base search on only
2126 BFD_ARCH_INFO and BYTE_ORDER. */
2127
2128struct gdbarch_list *
2129gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2130 const struct gdbarch_info *info)
2131{
2132 for (; arches != NULL; arches = arches->next)
2133 {
2134 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2135 continue;
2136 if (info->byte_order != arches->gdbarch->byte_order)
2137 continue;
2138 return arches;
2139 }
2140 return NULL;
2141}
2142
2143
2144/* Update the current architecture. Return ZERO if the update request
2145 failed. */
2146
2147int
16f33e29 2148gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2149{
2150 struct gdbarch *new_gdbarch;
40af4b0c 2151 struct gdbarch *old_gdbarch;
4b9b3959 2152 struct gdbarch_registration *rego;
104c1213 2153
b732d07d
AC
2154 /* Fill in missing parts of the INFO struct using a number of
2155 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2156
2157 /* \`\`(gdb) set architecture ...'' */
2158 if (info.bfd_arch_info == NULL
2159 && !TARGET_ARCHITECTURE_AUTO)
2160 info.bfd_arch_info = TARGET_ARCHITECTURE;
2161 if (info.bfd_arch_info == NULL
2162 && info.abfd != NULL
2163 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2164 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2165 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2166 if (info.bfd_arch_info == NULL)
b732d07d
AC
2167 info.bfd_arch_info = TARGET_ARCHITECTURE;
2168
2169 /* \`\`(gdb) set byte-order ...'' */
428721aa 2170 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2171 && !TARGET_BYTE_ORDER_AUTO)
2172 info.byte_order = TARGET_BYTE_ORDER;
2173 /* From the INFO struct. */
428721aa 2174 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2175 && info.abfd != NULL)
d7449b42 2176 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2177 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2178 : BFD_ENDIAN_UNKNOWN);
b732d07d 2179 /* From the current target. */
428721aa 2180 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2181 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2182
b732d07d
AC
2183 /* Must have found some sort of architecture. */
2184 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2185
2186 if (gdbarch_debug)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
b732d07d 2189 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2190 (info.bfd_arch_info != NULL
2191 ? info.bfd_arch_info->printable_name
2192 : "(null)"));
2193 fprintf_unfiltered (gdb_stdlog,
b732d07d 2194 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2195 info.byte_order,
d7449b42 2196 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2197 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213
JM
2198 : "default"));
2199 fprintf_unfiltered (gdb_stdlog,
b732d07d 2200 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2201 (long) info.abfd);
2202 fprintf_unfiltered (gdb_stdlog,
b732d07d 2203 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2204 (long) info.tdep_info);
2205 }
2206
b732d07d
AC
2207 /* Find the target that knows about this architecture. */
2208 for (rego = gdbarch_registry;
2209 rego != NULL;
2210 rego = rego->next)
2211 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2212 break;
2213 if (rego == NULL)
2214 {
2215 if (gdbarch_debug)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2217 return 0;
2218 }
2219
40af4b0c
AC
2220 /* Swap the data belonging to the old target out setting the
2221 installed data to zero. This stops the ->init() function trying
2222 to refer to the previous architecture's global data structures. */
2223 swapout_gdbarch_swap (current_gdbarch);
2224 clear_gdbarch_swap (current_gdbarch);
2225
2226 /* Save the previously selected architecture, setting the global to
2227 NULL. This stops ->init() trying to use the previous
2228 architecture's configuration. The previous architecture may not
2229 even be of the same architecture family. The most recent
2230 architecture of the same family is found at the head of the
2231 rego->arches list. */
2232 old_gdbarch = current_gdbarch;
2233 current_gdbarch = NULL;
2234
104c1213
JM
2235 /* Ask the target for a replacement architecture. */
2236 new_gdbarch = rego->init (info, rego->arches);
2237
40af4b0c
AC
2238 /* Did the target like it? No. Reject the change and revert to the
2239 old architecture. */
104c1213
JM
2240 if (new_gdbarch == NULL)
2241 {
2242 if (gdbarch_debug)
3d9a5942 2243 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2244 swapin_gdbarch_swap (old_gdbarch);
2245 current_gdbarch = old_gdbarch;
104c1213
JM
2246 return 0;
2247 }
2248
40af4b0c
AC
2249 /* Did the architecture change? No. Oops, put the old architecture
2250 back. */
2251 if (old_gdbarch == new_gdbarch)
104c1213
JM
2252 {
2253 if (gdbarch_debug)
3d9a5942 2254 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2255 (long) new_gdbarch,
2256 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2257 swapin_gdbarch_swap (old_gdbarch);
2258 current_gdbarch = old_gdbarch;
104c1213
JM
2259 return 1;
2260 }
2261
0f79675b
AC
2262 /* Is this a pre-existing architecture? Yes. Move it to the front
2263 of the list of architectures (keeping the list sorted Most
2264 Recently Used) and then copy it in. */
2265 {
2266 struct gdbarch_list **list;
2267 for (list = &rego->arches;
2268 (*list) != NULL;
2269 list = &(*list)->next)
2270 {
2271 if ((*list)->gdbarch == new_gdbarch)
2272 {
2273 struct gdbarch_list *this;
2274 if (gdbarch_debug)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2277 (long) new_gdbarch,
2278 new_gdbarch->bfd_arch_info->printable_name);
2279 /* Unlink this. */
2280 this = (*list);
2281 (*list) = this->next;
2282 /* Insert in the front. */
2283 this->next = rego->arches;
2284 rego->arches = this;
2285 /* Copy the new architecture in. */
2286 current_gdbarch = new_gdbarch;
2287 swapin_gdbarch_swap (new_gdbarch);
2288 architecture_changed_event ();
2289 return 1;
2290 }
2291 }
2292 }
2293
2294 /* Prepend this new architecture to the architecture list (keep the
2295 list sorted Most Recently Used). */
2296 {
2297 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2298 this->next = rego->arches;
2299 this->gdbarch = new_gdbarch;
2300 rego->arches = this;
2301 }
104c1213 2302
76860b5f 2303 /* Switch to this new architecture marking it initialized. */
104c1213 2304 current_gdbarch = new_gdbarch;
76860b5f 2305 current_gdbarch->initialized_p = 1;
104c1213
JM
2306 if (gdbarch_debug)
2307 {
2308 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2309 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2310 (long) new_gdbarch,
2311 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2312 }
2313
4b9b3959
AC
2314 /* Check that the newly installed architecture is valid. Plug in
2315 any post init values. */
2316 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2317 verify_gdbarch (new_gdbarch);
2318
cf17c188
AC
2319 /* Initialize the per-architecture memory (swap) areas.
2320 CURRENT_GDBARCH must be update before these modules are
2321 called. */
2322 init_gdbarch_swap (new_gdbarch);
2323
76860b5f 2324 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2325 must be updated before these modules are called. */
67c2c32c
KS
2326 architecture_changed_event ();
2327
4b9b3959
AC
2328 if (gdbarch_debug)
2329 gdbarch_dump (current_gdbarch, gdb_stdlog);
2330
104c1213
JM
2331 return 1;
2332}
2333
2334
104c1213
JM
2335/* Disassembler */
2336
2337/* Pointer to the target-dependent disassembly function. */
2338int (*tm_print_insn) (bfd_vma, disassemble_info *);
2339disassemble_info tm_print_insn_info;
2340
2341
104c1213 2342extern void _initialize_gdbarch (void);
b4a20239 2343
104c1213 2344void
34620563 2345_initialize_gdbarch (void)
104c1213 2346{
59233f88
AC
2347 struct cmd_list_element *c;
2348
104c1213
JM
2349 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2350 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2351 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2352 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2353 tm_print_insn_info.print_address_func = dis_asm_print_address;
2354
59233f88 2355 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2356 class_maintenance,
2357 var_zinteger,
2358 (char *)&gdbarch_debug,
3d9a5942 2359 "Set architecture debugging.\\n\\
59233f88
AC
2360When non-zero, architecture debugging is enabled.", &setdebuglist),
2361 &showdebuglist);
2362 c = add_set_cmd ("archdebug",
2363 class_maintenance,
2364 var_zinteger,
2365 (char *)&gdbarch_debug,
3d9a5942 2366 "Set architecture debugging.\\n\\
59233f88
AC
2367When non-zero, architecture debugging is enabled.", &setlist);
2368
2369 deprecate_cmd (c, "set debug arch");
2370 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2371}
2372EOF
2373
2374# close things off
2375exec 1>&2
2376#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2377compare_new gdbarch.c