]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Retire the now-unused gdbarch handle_segmentation_fault hook.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
f9e9243a
UW
328# The ABI default bit-size and format for "half", "float", "double", and
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
ea480a30
SM
334v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 342
53375380
PA
343# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344# starting with C++11.
ea480a30 345v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 346# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 347v;int;wchar_signed;;;1;-1;1
53375380 348
9b790ce7
UW
349# Returns the floating-point format to be used for values of length LENGTH.
350# NAME, if non-NULL, is the type name, which may be used to distinguish
351# different target formats of the same length.
ea480a30 352m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 353
52204a0b
DT
354# For most targets, a pointer on the target and its representation as an
355# address in GDB have the same size and "look the same". For such a
17a912b6 356# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
357# / addr_bit will be set from it.
358#
17a912b6 359# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
360# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361# gdbarch_address_to_pointer as well.
52204a0b
DT
362#
363# ptr_bit is the size of a pointer on the target
ea480a30 364v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 365# addr_bit is the size of a target address as represented in gdb
ea480a30 366v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 367#
8da614df
CV
368# dwarf2_addr_size is the target address size as used in the Dwarf debug
369# info. For .debug_frame FDEs, this is supposed to be the target address
370# size from the associated CU header, and which is equivalent to the
371# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372# Unfortunately there is no good way to determine this value. Therefore
373# dwarf2_addr_size simply defaults to the target pointer size.
374#
375# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376# defined using the target's pointer size so far.
377#
378# Note that dwarf2_addr_size only needs to be redefined by a target if the
379# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380# and if Dwarf versions < 4 need to be supported.
ea480a30 381v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 382#
4e409299 383# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 384v;int;char_signed;;;1;-1;1
4e409299 385#
c113ed0c 386F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 387F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
388# Function for getting target's idea of a frame pointer. FIXME: GDB's
389# whole scheme for dealing with "frames" and "frame pointers" needs a
390# serious shakedown.
ea480a30 391m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 392#
849d0ba8 393M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
394# Read a register into a new struct value. If the register is wholly
395# or partly unavailable, this should call mark_value_bytes_unavailable
396# as appropriate. If this is defined, then pseudo_register_read will
397# never be called.
849d0ba8 398M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 399M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 400#
ea480a30 401v;int;num_regs;;;0;-1
0aba1244
EZ
402# This macro gives the number of pseudo-registers that live in the
403# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
404# These pseudo-registers may be aliases for other registers,
405# combinations of other registers, or they may be computed by GDB.
ea480a30 406v;int;num_pseudo_regs;;;0;0;;0
c2169756 407
175ff332
HZ
408# Assemble agent expression bytecode to collect pseudo-register REG.
409# Return -1 if something goes wrong, 0 otherwise.
ea480a30 410M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
411
412# Assemble agent expression bytecode to push the value of pseudo-register
413# REG on the interpreter stack.
414# Return -1 if something goes wrong, 0 otherwise.
ea480a30 415M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 416
272bb05c
JB
417# Some architectures can display additional information for specific
418# signals.
419# UIOUT is the output stream where the handler will place information.
420M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
421
c2169756
AC
422# GDB's standard (or well known) register numbers. These can map onto
423# a real register or a pseudo (computed) register or not be defined at
1200cd6e 424# all (-1).
3e8c568d 425# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
426v;int;sp_regnum;;;-1;-1;;0
427v;int;pc_regnum;;;-1;-1;;0
428v;int;ps_regnum;;;-1;-1;;0
429v;int;fp0_regnum;;;0;-1;;0
88c72b7d 430# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 431m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 432# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 433m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Convert from an sdb register number to an internal gdb register number.
ea480a30 435m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 436# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 437# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
438m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
439m;const char *;register_name;int regnr;regnr;;0
9c04cab7 440
7b9ee6a8
DJ
441# Return the type of a register specified by the architecture. Only
442# the register cache should call this function directly; others should
443# use "register_type".
ea480a30 444M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 445
8bcb5208
AB
446# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
447# a dummy frame. A dummy frame is created before an inferior call,
448# the frame_id returned here must match the frame_id that was built
449# for the inferior call. Usually this means the returned frame_id's
450# stack address should match the address returned by
451# gdbarch_push_dummy_call, and the returned frame_id's code address
452# should match the address at which the breakpoint was set in the dummy
453# frame.
454m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 455# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 456# deprecated_fp_regnum.
ea480a30 457v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 458
cf84fa6b 459M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
460v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
461M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 462
7eb89530 463# Return true if the code of FRAME is writable.
ea480a30 464m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 465
ea480a30
SM
466m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
467m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
468M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
469# MAP a GDB RAW register number onto a simulator register number. See
470# also include/...-sim.h.
ea480a30
SM
471m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
472m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
473m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
474
475# Determine the address where a longjmp will land and save this address
476# in PC. Return nonzero on success.
477#
478# FRAME corresponds to the longjmp frame.
ea480a30 479F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 480
104c1213 481#
ea480a30 482v;int;believe_pcc_promotion;;;;;;;
104c1213 483#
ea480a30
SM
484m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
485f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
486f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 487# Construct a value representing the contents of register REGNUM in
2ed3c037 488# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
489# allocate and return a struct value with all value attributes
490# (but not the value contents) filled in.
ea480a30 491m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 492#
ea480a30
SM
493m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
494m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
495M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 496
6a3a010b
MR
497# Return the return-value convention that will be used by FUNCTION
498# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
499# case the return convention is computed based only on VALTYPE.
500#
501# If READBUF is not NULL, extract the return value and save it in this buffer.
502#
503# If WRITEBUF is not NULL, it contains a return value which will be
504# stored into the appropriate register. This can be used when we want
505# to force the value returned by a function (see the "return" command
506# for instance).
ea480a30 507M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 508
18648a37
YQ
509# Return true if the return value of function is stored in the first hidden
510# parameter. In theory, this feature should be language-dependent, specified
511# by language and its ABI, such as C++. Unfortunately, compiler may
512# implement it to a target-dependent feature. So that we need such hook here
513# to be aware of this in GDB.
ea480a30 514m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 515
ea480a30
SM
516m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
517M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
518# On some platforms, a single function may provide multiple entry points,
519# e.g. one that is used for function-pointer calls and a different one
520# that is used for direct function calls.
521# In order to ensure that breakpoints set on the function will trigger
522# no matter via which entry point the function is entered, a platform
523# may provide the skip_entrypoint callback. It is called with IP set
524# to the main entry point of a function (as determined by the symbol table),
525# and should return the address of the innermost entry point, where the
526# actual breakpoint needs to be set. Note that skip_entrypoint is used
527# by GDB common code even when debugging optimized code, where skip_prologue
528# is not used.
ea480a30 529M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 530
ea480a30
SM
531f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
532m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
533
534# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 535m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
536
537# Return the software breakpoint from KIND. KIND can have target
538# specific meaning like the Z0 kind parameter.
539# SIZE is set to the software breakpoint's length in memory.
ea480a30 540m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 541
833b7ab5
YQ
542# Return the breakpoint kind for this target based on the current
543# processor state (e.g. the current instruction mode on ARM) and the
544# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 545m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 546
ea480a30
SM
547M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
548m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
549m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
550v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
551
552# A function can be addressed by either it's "pointer" (possibly a
553# descriptor address) or "entry point" (first executable instruction).
554# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 555# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
556# a simplified subset of that functionality - the function's address
557# corresponds to the "function pointer" and the function's start
558# corresponds to the "function entry point" - and hence is redundant.
559
ea480a30 560v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 561
123dc839
DJ
562# Return the remote protocol register number associated with this
563# register. Normally the identity mapping.
ea480a30 564m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 565
b2756930 566# Fetch the target specific address used to represent a load module.
ea480a30 567F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
568
569# Return the thread-local address at OFFSET in the thread-local
570# storage for the thread PTID and the shared library or executable
571# file given by LM_ADDR. If that block of thread-local storage hasn't
572# been allocated yet, this function may throw an error. LM_ADDR may
573# be zero for statically linked multithreaded inferiors.
574
575M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 576#
ea480a30 577v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
578m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
579m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
580# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
581# frame-base. Enable frame-base before frame-unwind.
ea480a30 582F;int;frame_num_args;struct frame_info *frame;frame
104c1213 583#
ea480a30
SM
584M;CORE_ADDR;frame_align;CORE_ADDR address;address
585m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
586v;int;frame_red_zone_size
f0d4cc9e 587#
ea480a30 588m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
589# On some machines there are bits in addresses which are not really
590# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 591# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
592# we get a "real" address such as one would find in a symbol table.
593# This is used only for addresses of instructions, and even then I'm
594# not sure it's used in all contexts. It exists to deal with there
595# being a few stray bits in the PC which would mislead us, not as some
596# sort of generic thing to handle alignment or segmentation (it's
597# possible it should be in TARGET_READ_PC instead).
ea480a30 598m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 599
a738ea1d
YQ
600# On some machines, not all bits of an address word are significant.
601# For example, on AArch64, the top bits of an address known as the "tag"
602# are ignored by the kernel, the hardware, etc. and can be regarded as
603# additional data associated with the address.
5969f0db 604v;int;significant_addr_bit;;;;;;0
a738ea1d 605
e6590a1b
UW
606# FIXME/cagney/2001-01-18: This should be split in two. A target method that
607# indicates if the target needs software single step. An ISA method to
608# implement it.
609#
e6590a1b
UW
610# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
611# target can single step. If not, then implement single step using breakpoints.
64c4637f 612#
93f9a11f
YQ
613# Return a vector of addresses on which the software single step
614# breakpoints should be inserted. NULL means software single step is
615# not used.
616# Multiple breakpoints may be inserted for some instructions such as
617# conditional branch. However, each implementation must always evaluate
618# the condition and only put the breakpoint at the branch destination if
619# the condition is true, so that we ensure forward progress when stepping
620# past a conditional branch to self.
a0ff9e1a 621F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 622
3352ef37
AC
623# Return non-zero if the processor is executing a delay slot and a
624# further single-step is needed before the instruction finishes.
ea480a30 625M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 626# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 627# disassembler. Perhaps objdump can handle it?
39503f82 628f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 629f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
630
631
cfd8ab24 632# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
633# evaluates non-zero, this is the address where the debugger will place
634# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 635m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 636# Some systems also have trampoline code for returning from shared libs.
ea480a30 637m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 638
1d509aa6
MM
639# Return true if PC lies inside an indirect branch thunk.
640m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
641
c12260ac
CV
642# A target might have problems with watchpoints as soon as the stack
643# frame of the current function has been destroyed. This mostly happens
c9cf6e20 644# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
645# is defined to return a non-zero value if either the given addr is one
646# instruction after the stack destroying instruction up to the trailing
647# return instruction or if we can figure out that the stack frame has
648# already been invalidated regardless of the value of addr. Targets
649# which don't suffer from that problem could just let this functionality
650# untouched.
ea480a30 651m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
652# Process an ELF symbol in the minimal symbol table in a backend-specific
653# way. Normally this hook is supposed to do nothing, however if required,
654# then this hook can be used to apply tranformations to symbols that are
655# considered special in some way. For example the MIPS backend uses it
656# to interpret \`st_other' information to mark compressed code symbols so
657# that they can be treated in the appropriate manner in the processing of
658# the main symbol table and DWARF-2 records.
ea480a30
SM
659F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
660f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
661# Process a symbol in the main symbol table in a backend-specific way.
662# Normally this hook is supposed to do nothing, however if required,
663# then this hook can be used to apply tranformations to symbols that
664# are considered special in some way. This is currently used by the
665# MIPS backend to make sure compressed code symbols have the ISA bit
666# set. This in turn is needed for symbol values seen in GDB to match
667# the values used at the runtime by the program itself, for function
668# and label references.
ea480a30 669f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
670# Adjust the address retrieved from a DWARF-2 record other than a line
671# entry in a backend-specific way. Normally this hook is supposed to
672# return the address passed unchanged, however if that is incorrect for
673# any reason, then this hook can be used to fix the address up in the
674# required manner. This is currently used by the MIPS backend to make
675# sure addresses in FDE, range records, etc. referring to compressed
676# code have the ISA bit set, matching line information and the symbol
677# table.
ea480a30 678f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
679# Adjust the address updated by a line entry in a backend-specific way.
680# Normally this hook is supposed to return the address passed unchanged,
681# however in the case of inconsistencies in these records, this hook can
682# be used to fix them up in the required manner. This is currently used
683# by the MIPS backend to make sure all line addresses in compressed code
684# are presented with the ISA bit set, which is not always the case. This
685# in turn ensures breakpoint addresses are correctly matched against the
686# stop PC.
ea480a30
SM
687f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
688v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
689# See comment in target.h about continuable, steppable and
690# non-steppable watchpoints.
ea480a30
SM
691v;int;have_nonsteppable_watchpoint;;;0;0;;0
692F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
693M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
694# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
695# FS are passed from the generic execute_cfa_program function.
ea480a30 696m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
697
698# Return the appropriate type_flags for the supplied address class.
699# This function should return 1 if the address class was recognized and
700# type_flags was set, zero otherwise.
ea480a30 701M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 702# Is a register in a group
ea480a30 703m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 704# Fetch the pointer to the ith function argument.
ea480a30 705F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 706
5aa82d05
AA
707# Iterate over all supported register notes in a core file. For each
708# supported register note section, the iterator must call CB and pass
709# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
710# the supported register note sections based on the current register
711# values. Otherwise it should enumerate all supported register note
712# sections.
ea480a30 713M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 714
6432734d 715# Create core file notes
ea480a30 716M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 717
35c2fab7 718# Find core file memory regions
ea480a30 719M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 720
de584861 721# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
722# core file into buffer READBUF with length LEN. Return the number of bytes read
723# (zero indicates failure).
724# failed, otherwise, return the red length of READBUF.
ea480a30 725M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 726
356a5233
JB
727# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
728# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 729# Return the number of bytes read (zero indicates failure).
ea480a30 730M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 731
c0edd9ed 732# How the core target converts a PTID from a core file to a string.
a068643d 733M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 734
4dfc5dbc 735# How the core target extracts the name of a thread from a core file.
ea480a30 736M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 737
382b69bb
JB
738# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
739# from core file into buffer READBUF with length LEN. Return the number
740# of bytes read (zero indicates EOF, a negative value indicates failure).
741M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
742
a78c2d62 743# BFD target to use when generating a core file.
ea480a30 744V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 745
0d5de010
DJ
746# If the elements of C++ vtables are in-place function descriptors rather
747# than normal function pointers (which may point to code or a descriptor),
748# set this to one.
ea480a30 749v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
750
751# Set if the least significant bit of the delta is used instead of the least
752# significant bit of the pfn for pointers to virtual member functions.
ea480a30 753v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
754
755# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 756f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 757
1668ae25 758# The maximum length of an instruction on this architecture in bytes.
ea480a30 759V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
760
761# Copy the instruction at FROM to TO, and make any adjustments
762# necessary to single-step it at that address.
763#
764# REGS holds the state the thread's registers will have before
765# executing the copied instruction; the PC in REGS will refer to FROM,
766# not the copy at TO. The caller should update it to point at TO later.
767#
768# Return a pointer to data of the architecture's choice to be passed
19b187a9 769# to gdbarch_displaced_step_fixup.
237fc4c9
PA
770#
771# For a general explanation of displaced stepping and how GDB uses it,
772# see the comments in infrun.c.
773#
774# The TO area is only guaranteed to have space for
775# gdbarch_max_insn_length (arch) bytes, so this function must not
776# write more bytes than that to that area.
777#
778# If you do not provide this function, GDB assumes that the
779# architecture does not support displaced stepping.
780#
7f03bd92
PA
781# If the instruction cannot execute out of line, return NULL. The
782# core falls back to stepping past the instruction in-line instead in
783# that case.
fdb61c6c 784M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 785
99e40580
UW
786# Return true if GDB should use hardware single-stepping to execute
787# the displaced instruction identified by CLOSURE. If false,
788# GDB will simply restart execution at the displaced instruction
789# location, and it is up to the target to ensure GDB will receive
790# control again (e.g. by placing a software breakpoint instruction
791# into the displaced instruction buffer).
792#
793# The default implementation returns false on all targets that
794# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 795m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 796
237fc4c9
PA
797# Fix up the state resulting from successfully single-stepping a
798# displaced instruction, to give the result we would have gotten from
799# stepping the instruction in its original location.
800#
801# REGS is the register state resulting from single-stepping the
802# displaced instruction.
803#
804# CLOSURE is the result from the matching call to
805# gdbarch_displaced_step_copy_insn.
806#
807# If you provide gdbarch_displaced_step_copy_insn.but not this
808# function, then GDB assumes that no fixup is needed after
809# single-stepping the instruction.
810#
811# For a general explanation of displaced stepping and how GDB uses it,
812# see the comments in infrun.c.
ea480a30 813M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 814
237fc4c9
PA
815# Return the address of an appropriate place to put displaced
816# instructions while we step over them. There need only be one such
817# place, since we're only stepping one thread over a breakpoint at a
818# time.
819#
820# For a general explanation of displaced stepping and how GDB uses it,
821# see the comments in infrun.c.
ea480a30 822m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 823
dde08ee1
PA
824# Relocate an instruction to execute at a different address. OLDLOC
825# is the address in the inferior memory where the instruction to
826# relocate is currently at. On input, TO points to the destination
827# where we want the instruction to be copied (and possibly adjusted)
828# to. On output, it points to one past the end of the resulting
829# instruction(s). The effect of executing the instruction at TO shall
830# be the same as if executing it at FROM. For example, call
831# instructions that implicitly push the return address on the stack
832# should be adjusted to return to the instruction after OLDLOC;
833# relative branches, and other PC-relative instructions need the
834# offset adjusted; etc.
ea480a30 835M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 836
1c772458 837# Refresh overlay mapped state for section OSECT.
ea480a30 838F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 839
ea480a30 840M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 841
203c3895 842# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 843v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 844
0508c3ec
HZ
845# Parse the instruction at ADDR storing in the record execution log
846# the registers REGCACHE and memory ranges that will be affected when
847# the instruction executes, along with their current values.
848# Return -1 if something goes wrong, 0 otherwise.
ea480a30 849M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 850
3846b520
HZ
851# Save process state after a signal.
852# Return -1 if something goes wrong, 0 otherwise.
ea480a30 853M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 854
22203bbf 855# Signal translation: translate inferior's signal (target's) number
86b49880
PA
856# into GDB's representation. The implementation of this method must
857# be host independent. IOW, don't rely on symbols of the NAT_FILE
858# header (the nm-*.h files), the host <signal.h> header, or similar
859# headers. This is mainly used when cross-debugging core files ---
860# "Live" targets hide the translation behind the target interface
1f8cf220 861# (target_wait, target_resume, etc.).
ea480a30 862M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 863
eb14d406
SDJ
864# Signal translation: translate the GDB's internal signal number into
865# the inferior's signal (target's) representation. The implementation
866# of this method must be host independent. IOW, don't rely on symbols
867# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
868# header, or similar headers.
869# Return the target signal number if found, or -1 if the GDB internal
870# signal number is invalid.
ea480a30 871M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 872
4aa995e1
PA
873# Extra signal info inspection.
874#
875# Return a type suitable to inspect extra signal information.
ea480a30 876M;struct type *;get_siginfo_type;void;
4aa995e1 877
60c5725c 878# Record architecture-specific information from the symbol table.
ea480a30 879M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 880
a96d9b2e
SDJ
881# Function for the 'catch syscall' feature.
882
883# Get architecture-specific system calls information from registers.
00431a78 884M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 885
458c8db8 886# The filename of the XML syscall for this architecture.
ea480a30 887v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
888
889# Information about system calls from this architecture
ea480a30 890v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 891
55aa24fb
SDJ
892# SystemTap related fields and functions.
893
05c0465e
SDJ
894# A NULL-terminated array of prefixes used to mark an integer constant
895# on the architecture's assembly.
55aa24fb
SDJ
896# For example, on x86 integer constants are written as:
897#
898# \$10 ;; integer constant 10
899#
900# in this case, this prefix would be the character \`\$\'.
ea480a30 901v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of suffixes used to mark an integer constant
904# on the architecture's assembly.
ea480a30 905v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 906
05c0465e
SDJ
907# A NULL-terminated array of prefixes used to mark a register name on
908# the architecture's assembly.
55aa24fb
SDJ
909# For example, on x86 the register name is written as:
910#
911# \%eax ;; register eax
912#
913# in this case, this prefix would be the character \`\%\'.
ea480a30 914v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of suffixes used to mark a register name on
917# the architecture's assembly.
ea480a30 918v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of prefixes used to mark a register
921# indirection on the architecture's assembly.
55aa24fb
SDJ
922# For example, on x86 the register indirection is written as:
923#
924# \(\%eax\) ;; indirecting eax
925#
926# in this case, this prefix would be the charater \`\(\'.
927#
928# Please note that we use the indirection prefix also for register
929# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 930v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of suffixes used to mark a register
933# indirection on the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register indirection is written as:
935#
936# \(\%eax\) ;; indirecting eax
937#
938# in this case, this prefix would be the charater \`\)\'.
939#
940# Please note that we use the indirection suffix also for register
941# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 942v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 943
05c0465e 944# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
945#
946# For example, on PPC a register is represented by a number in the assembly
947# language (e.g., \`10\' is the 10th general-purpose register). However,
948# inside GDB this same register has an \`r\' appended to its name, so the 10th
949# register would be represented as \`r10\' internally.
ea480a30 950v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
951
952# Suffix used to name a register using GDB's nomenclature.
ea480a30 953v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
954
955# Check if S is a single operand.
956#
957# Single operands can be:
958# \- Literal integers, e.g. \`\$10\' on x86
959# \- Register access, e.g. \`\%eax\' on x86
960# \- Register indirection, e.g. \`\(\%eax\)\' on x86
961# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
962#
963# This function should check for these patterns on the string
964# and return 1 if some were found, or zero otherwise. Please try to match
965# as much info as you can from the string, i.e., if you have to match
966# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 967M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
968
969# Function used to handle a "special case" in the parser.
970#
971# A "special case" is considered to be an unknown token, i.e., a token
972# that the parser does not know how to parse. A good example of special
973# case would be ARM's register displacement syntax:
974#
975# [R0, #4] ;; displacing R0 by 4
976#
977# Since the parser assumes that a register displacement is of the form:
978#
979# <number> <indirection_prefix> <register_name> <indirection_suffix>
980#
981# it means that it will not be able to recognize and parse this odd syntax.
982# Therefore, we should add a special case function that will handle this token.
983#
984# This function should generate the proper expression form of the expression
985# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
986# and so on). It should also return 1 if the parsing was successful, or zero
987# if the token was not recognized as a special token (in this case, returning
988# zero means that the special parser is deferring the parsing to the generic
989# parser), and should advance the buffer pointer (p->arg).
ea480a30 990M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 991
7d7571f0
SDJ
992# Perform arch-dependent adjustments to a register name.
993#
994# In very specific situations, it may be necessary for the register
995# name present in a SystemTap probe's argument to be handled in a
996# special way. For example, on i386, GCC may over-optimize the
997# register allocation and use smaller registers than necessary. In
998# such cases, the client that is reading and evaluating the SystemTap
999# probe (ourselves) will need to actually fetch values from the wider
1000# version of the register in question.
1001#
1002# To illustrate the example, consider the following probe argument
1003# (i386):
1004#
1005# 4@%ax
1006#
1007# This argument says that its value can be found at the %ax register,
1008# which is a 16-bit register. However, the argument's prefix says
1009# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1010# this case, GDB should actually fetch the probe's value from register
1011# %eax, not %ax. In this scenario, this function would actually
1012# replace the register name from %ax to %eax.
1013#
1014# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1015M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1016
8b367e17
JM
1017# DTrace related functions.
1018
1019# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020# NARG must be >= 0.
37eedb39 1021M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1022
1023# True if the given ADDR does not contain the instruction sequence
1024# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1025M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1026
1027# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1028M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1032
50c71eaf
PA
1033# True if the list of shared libraries is one and only for all
1034# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1035# This usually means that all processes, although may or may not share
1036# an address space, will see the same set of symbols at the same
1037# addresses.
ea480a30 1038v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1039
1040# On some targets, even though each inferior has its own private
1041# address space, the debug interface takes care of making breakpoints
1042# visible to all address spaces automatically. For such cases,
1043# this property should be set to true.
ea480a30 1044v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1045
1046# True if inferiors share an address space (e.g., uClinux).
ea480a30 1047m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1048
1049# True if a fast tracepoint can be set at an address.
281d762b 1050m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1051
5f034a78
MK
1052# Guess register state based on tracepoint location. Used for tracepoints
1053# where no registers have been collected, but there's only one location,
1054# allowing us to guess the PC value, and perhaps some other registers.
1055# On entry, regcache has all registers marked as unavailable.
ea480a30 1056m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1057
f870a310 1058# Return the "auto" target charset.
ea480a30 1059f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1060# Return the "auto" target wide charset.
ea480a30 1061f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1062
1063# If non-empty, this is a file extension that will be opened in place
1064# of the file extension reported by the shared library list.
1065#
1066# This is most useful for toolchains that use a post-linker tool,
1067# where the names of the files run on the target differ in extension
1068# compared to the names of the files GDB should load for debug info.
ea480a30 1069v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1070
1071# If true, the target OS has DOS-based file system semantics. That
1072# is, absolute paths include a drive name, and the backslash is
1073# considered a directory separator.
ea480a30 1074v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1075
1076# Generate bytecodes to collect the return address in a frame.
1077# Since the bytecodes run on the target, possibly with GDB not even
1078# connected, the full unwinding machinery is not available, and
1079# typically this function will issue bytecodes for one or more likely
1080# places that the return address may be found.
ea480a30 1081m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1082
3030c96e 1083# Implement the "info proc" command.
ea480a30 1084M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1085
451b7c33
TT
1086# Implement the "info proc" command for core files. Noe that there
1087# are two "info_proc"-like methods on gdbarch -- one for core files,
1088# one for live targets.
ea480a30 1089M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1090
19630284
JB
1091# Iterate over all objfiles in the order that makes the most sense
1092# for the architecture to make global symbol searches.
1093#
1094# CB is a callback function where OBJFILE is the objfile to be searched,
1095# and CB_DATA a pointer to user-defined data (the same data that is passed
1096# when calling this gdbarch method). The iteration stops if this function
1097# returns nonzero.
1098#
1099# CB_DATA is a pointer to some user-defined data to be passed to
1100# the callback.
1101#
1102# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103# inspected when the symbol search was requested.
ea480a30 1104m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1105
7e35103a 1106# Ravenscar arch-dependent ops.
ea480a30 1107v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1108
1109# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1110m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1113m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1116m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1117
5133a315
LM
1118# Return true if there's a program/permanent breakpoint planted in
1119# memory at ADDRESS, return false otherwise.
1120m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1121
27a48a92
MK
1122# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1123# Return 0 if *READPTR is already at the end of the buffer.
1124# Return -1 if there is insufficient buffer for a whole entry.
1125# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1126M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1127
2faa3447
JB
1128# Print the description of a single auxv entry described by TYPE and VAL
1129# to FILE.
ea480a30 1130m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1131
3437254d
PA
1132# Find the address range of the current inferior's vsyscall/vDSO, and
1133# write it to *RANGE. If the vsyscall's length can't be determined, a
1134# range with zero length is returned. Returns true if the vsyscall is
1135# found, false otherwise.
ea480a30 1136m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1137
1138# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1139# PROT has GDB_MMAP_PROT_* bitmask format.
1140# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1141f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1142
7f361056
JK
1143# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1144# Print a warning if it is not possible.
ea480a30 1145f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1146
f208eee0
JK
1147# Return string (caller has to use xfree for it) with options for GCC
1148# to produce code for this target, typically "-m64", "-m32" or "-m31".
1149# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1150# they can override it.
1151m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1152
1153# Return a regular expression that matches names used by this
1154# architecture in GNU configury triplets. The result is statically
1155# allocated and must not be freed. The default implementation simply
1156# returns the BFD architecture name, which is correct in nearly every
1157# case.
ea480a30 1158m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1159
1160# Return the size in 8-bit bytes of an addressable memory unit on this
1161# architecture. This corresponds to the number of 8-bit bytes associated to
1162# each address in memory.
ea480a30 1163m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1164
65b48a81 1165# Functions for allowing a target to modify its disassembler options.
471b9d15 1166v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1167v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1168v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1169
5561fc30
AB
1170# Type alignment override method. Return the architecture specific
1171# alignment required for TYPE. If there is no special handling
1172# required for TYPE then return the value 0, GDB will then apply the
1173# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1174m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1175
aa7ca1bb
AH
1176# Return a string containing any flags for the given PC in the given FRAME.
1177f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1178
104c1213 1179EOF
104c1213
JM
1180}
1181
0b8f9e4d
AC
1182#
1183# The .log file
1184#
41a77cba 1185exec > gdbarch.log
34620563 1186function_list | while do_read
0b8f9e4d
AC
1187do
1188 cat <<EOF
1207375d 1189${class} ${returntype:-} ${function} (${formal:-})
104c1213 1190EOF
3d9a5942
AC
1191 for r in ${read}
1192 do
a6fc5ffc 1193 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1194 done
f0d4cc9e 1195 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1196 then
66d659b1 1197 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1198 kill $$
1199 exit 1
1200 fi
759cea5e 1201 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1202 then
1203 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1204 kill $$
1205 exit 1
1206 fi
a72293e2
AC
1207 if class_is_multiarch_p
1208 then
1209 if class_is_predicate_p ; then :
1210 elif test "x${predefault}" = "x"
1211 then
2f9b146e 1212 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1213 kill $$
1214 exit 1
1215 fi
1216 fi
3d9a5942 1217 echo ""
0b8f9e4d
AC
1218done
1219
1220exec 1>&2
0b8f9e4d 1221
104c1213
JM
1222
1223copyright ()
1224{
1225cat <<EOF
c4bfde41
JK
1226/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1227/* vi:set ro: */
59233f88 1228
104c1213 1229/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1230
e5d78223 1231 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1232
1233 This file is part of GDB.
1234
1235 This program is free software; you can redistribute it and/or modify
1236 it under the terms of the GNU General Public License as published by
50efebf8 1237 the Free Software Foundation; either version 3 of the License, or
104c1213 1238 (at your option) any later version.
618f726f 1239
104c1213
JM
1240 This program is distributed in the hope that it will be useful,
1241 but WITHOUT ANY WARRANTY; without even the implied warranty of
1242 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1243 GNU General Public License for more details.
618f726f 1244
104c1213 1245 You should have received a copy of the GNU General Public License
50efebf8 1246 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1247
41a77cba 1248/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1249
1250EOF
1251}
1252
1253#
1254# The .h file
1255#
1256
1257exec > new-gdbarch.h
1258copyright
1259cat <<EOF
1260#ifndef GDBARCH_H
1261#define GDBARCH_H
1262
a0ff9e1a 1263#include <vector>
eb7a547a 1264#include "frame.h"
65b48a81 1265#include "dis-asm.h"
284a0e3c 1266#include "gdb_obstack.h"
fdb61c6c 1267#include "infrun.h"
fe4b2ee6 1268#include "osabi.h"
eb7a547a 1269
da3331ec
AC
1270struct floatformat;
1271struct ui_file;
104c1213 1272struct value;
b6af0555 1273struct objfile;
1c772458 1274struct obj_section;
a2cf933a 1275struct minimal_symbol;
049ee0e4 1276struct regcache;
b59ff9d5 1277struct reggroup;
6ce6d90f 1278struct regset;
a89aa300 1279struct disassemble_info;
e2d0e7eb 1280struct target_ops;
030f20e1 1281struct obstack;
8181d85f 1282struct bp_target_info;
424163ea 1283struct target_desc;
3e29f34a 1284struct symbol;
a96d9b2e 1285struct syscall;
175ff332 1286struct agent_expr;
6710bf39 1287struct axs_value;
55aa24fb 1288struct stap_parse_info;
37eedb39 1289struct expr_builder;
7e35103a 1290struct ravenscar_arch_ops;
3437254d 1291struct mem_range;
458c8db8 1292struct syscalls_info;
4dfc5dbc 1293struct thread_info;
012b3a21 1294struct ui_out;
104c1213 1295
8a526fa6
PA
1296#include "regcache.h"
1297
6ecd4729
PA
1298/* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1311extern struct gdbarch *target_gdbarch (void);
6ecd4729 1312
19630284
JB
1313/* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
5aa82d05 1318
1528345d
AA
1319/* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1321 pass a buffer - for collects this buffer will need to be created using
1322 COLLECT_SIZE, for supply the existing buffer being read from should
1323 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1324 is used for diagnostic messages. CB_DATA should have been passed
1325 unchanged through the iterator. */
1528345d 1326
5aa82d05 1327typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1328 (const char *sect_name, int supply_size, int collect_size,
1329 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1330
1331/* For a function call, does the function return a value using a
1332 normal value return or a structure return - passing a hidden
1333 argument pointing to storage. For the latter, there are two
1334 cases: language-mandated structure return and target ABI
1335 structure return. */
1336
1337enum function_call_return_method
1338{
1339 /* Standard value return. */
1340 return_method_normal = 0,
1341
1342 /* Language ABI structure return. This is handled
1343 by passing the return location as the first parameter to
1344 the function, even preceding "this". */
1345 return_method_hidden_param,
1346
1347 /* Target ABI struct return. This is target-specific; for instance,
1348 on ia64 the first argument is passed in out0 but the hidden
1349 structure return pointer would normally be passed in r8. */
1350 return_method_struct,
1351};
1352
104c1213
JM
1353EOF
1354
1355# function typedef's
3d9a5942
AC
1356printf "\n"
1357printf "\n"
0963b4bd 1358printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1359function_list | while do_read
104c1213 1360do
2ada493a
AC
1361 if class_is_info_p
1362 then
3d9a5942 1363 printf "\n"
8d113d13
SM
1364 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1365 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1366 fi
104c1213
JM
1367done
1368
1369# function typedef's
3d9a5942
AC
1370printf "\n"
1371printf "\n"
0963b4bd 1372printf "/* The following are initialized by the target dependent code. */\n"
34620563 1373function_list | while do_read
104c1213 1374do
72e74a21 1375 if [ -n "${comment}" ]
34620563
AC
1376 then
1377 echo "${comment}" | sed \
1378 -e '2 s,#,/*,' \
1379 -e '3,$ s,#, ,' \
1380 -e '$ s,$, */,'
1381 fi
412d5987
AC
1382
1383 if class_is_predicate_p
2ada493a 1384 then
412d5987 1385 printf "\n"
8d113d13 1386 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1387 fi
2ada493a
AC
1388 if class_is_variable_p
1389 then
3d9a5942 1390 printf "\n"
8d113d13
SM
1391 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1392 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1393 fi
1394 if class_is_function_p
1395 then
3d9a5942 1396 printf "\n"
72e74a21 1397 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1398 then
8d113d13 1399 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1400 elif class_is_multiarch_p
1401 then
8d113d13 1402 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1403 else
8d113d13 1404 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1405 fi
72e74a21 1406 if [ "x${formal}" = "xvoid" ]
104c1213 1407 then
8d113d13 1408 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1409 else
8d113d13 1410 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1411 fi
8d113d13 1412 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1413 fi
104c1213
JM
1414done
1415
1416# close it off
1417cat <<EOF
1418
1419extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1420
1421
1422/* Mechanism for co-ordinating the selection of a specific
1423 architecture.
1424
1425 GDB targets (*-tdep.c) can register an interest in a specific
1426 architecture. Other GDB components can register a need to maintain
1427 per-architecture data.
1428
1429 The mechanisms below ensures that there is only a loose connection
1430 between the set-architecture command and the various GDB
0fa6923a 1431 components. Each component can independently register their need
104c1213
JM
1432 to maintain architecture specific data with gdbarch.
1433
1434 Pragmatics:
1435
1436 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1437 didn't scale.
1438
1439 The more traditional mega-struct containing architecture specific
1440 data for all the various GDB components was also considered. Since
0fa6923a 1441 GDB is built from a variable number of (fairly independent)
104c1213 1442 components it was determined that the global aproach was not
0963b4bd 1443 applicable. */
104c1213
JM
1444
1445
1446/* Register a new architectural family with GDB.
1447
1448 Register support for the specified ARCHITECTURE with GDB. When
1449 gdbarch determines that the specified architecture has been
1450 selected, the corresponding INIT function is called.
1451
1452 --
1453
1454 The INIT function takes two parameters: INFO which contains the
1455 information available to gdbarch about the (possibly new)
1456 architecture; ARCHES which is a list of the previously created
1457 \`\`struct gdbarch'' for this architecture.
1458
0f79675b 1459 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1460 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1461
1462 The ARCHES parameter is a linked list (sorted most recently used)
1463 of all the previously created architures for this architecture
1464 family. The (possibly NULL) ARCHES->gdbarch can used to access
1465 values from the previously selected architecture for this
59837fe0 1466 architecture family.
104c1213
JM
1467
1468 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1469 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1470 gdbarch'' from the ARCHES list - indicating that the new
1471 architecture is just a synonym for an earlier architecture (see
1472 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1473 - that describes the selected architecture (see gdbarch_alloc()).
1474
1475 The DUMP_TDEP function shall print out all target specific values.
1476 Care should be taken to ensure that the function works in both the
0963b4bd 1477 multi-arch and non- multi-arch cases. */
104c1213
JM
1478
1479struct gdbarch_list
1480{
1481 struct gdbarch *gdbarch;
1482 struct gdbarch_list *next;
1483};
1484
1485struct gdbarch_info
1486{
0963b4bd 1487 /* Use default: NULL (ZERO). */
104c1213
JM
1488 const struct bfd_arch_info *bfd_arch_info;
1489
428721aa 1490 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1491 enum bfd_endian byte_order;
104c1213 1492
94123b4f 1493 enum bfd_endian byte_order_for_code;
9d4fde75 1494
0963b4bd 1495 /* Use default: NULL (ZERO). */
104c1213
JM
1496 bfd *abfd;
1497
0963b4bd 1498 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1499 union
1500 {
1501 /* Architecture-specific information. The generic form for targets
1502 that have extra requirements. */
1503 struct gdbarch_tdep_info *tdep_info;
1504
1505 /* Architecture-specific target description data. Numerous targets
1506 need only this, so give them an easy way to hold it. */
1507 struct tdesc_arch_data *tdesc_data;
1508
1509 /* SPU file system ID. This is a single integer, so using the
1510 generic form would only complicate code. Other targets may
1511 reuse this member if suitable. */
1512 int *id;
1513 };
4be87837
DJ
1514
1515 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1516 enum gdb_osabi osabi;
424163ea
DJ
1517
1518 /* Use default: NULL (ZERO). */
1519 const struct target_desc *target_desc;
104c1213
JM
1520};
1521
1522typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1523typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1524
4b9b3959 1525/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1526extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1527
4b9b3959
AC
1528extern void gdbarch_register (enum bfd_architecture architecture,
1529 gdbarch_init_ftype *,
1530 gdbarch_dump_tdep_ftype *);
1531
104c1213 1532
b4a20239
AC
1533/* Return a freshly allocated, NULL terminated, array of the valid
1534 architecture names. Since architectures are registered during the
1535 _initialize phase this function only returns useful information
0963b4bd 1536 once initialization has been completed. */
b4a20239
AC
1537
1538extern const char **gdbarch_printable_names (void);
1539
1540
104c1213 1541/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1542 matches the information provided by INFO. */
104c1213 1543
424163ea 1544extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1545
1546
1547/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1548 basic initialization using values obtained from the INFO and TDEP
104c1213 1549 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1550 initialization of the object. */
104c1213
JM
1551
1552extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1553
1554
4b9b3959
AC
1555/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1556 It is assumed that the caller freeds the \`\`struct
0963b4bd 1557 gdbarch_tdep''. */
4b9b3959 1558
058f20d5
JB
1559extern void gdbarch_free (struct gdbarch *);
1560
284a0e3c
SM
1561/* Get the obstack owned by ARCH. */
1562
1563extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1564
aebd7893
AC
1565/* Helper function. Allocate memory from the \`\`struct gdbarch''
1566 obstack. The memory is freed when the corresponding architecture
1567 is also freed. */
1568
284a0e3c
SM
1569#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1570 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1571
1572#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1573 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1574
6c214e7c
PP
1575/* Duplicate STRING, returning an equivalent string that's allocated on the
1576 obstack associated with GDBARCH. The string is freed when the corresponding
1577 architecture is also freed. */
1578
1579extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1580
0963b4bd 1581/* Helper function. Force an update of the current architecture.
104c1213 1582
b732d07d
AC
1583 The actual architecture selected is determined by INFO, \`\`(gdb) set
1584 architecture'' et.al., the existing architecture and BFD's default
1585 architecture. INFO should be initialized to zero and then selected
1586 fields should be updated.
104c1213 1587
0963b4bd 1588 Returns non-zero if the update succeeds. */
16f33e29
AC
1589
1590extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1591
1592
ebdba546
AC
1593/* Helper function. Find an architecture matching info.
1594
1595 INFO should be initialized using gdbarch_info_init, relevant fields
1596 set, and then finished using gdbarch_info_fill.
1597
1598 Returns the corresponding architecture, or NULL if no matching
59837fe0 1599 architecture was found. */
ebdba546
AC
1600
1601extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1602
1603
aff68abb 1604/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1605
aff68abb 1606extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1607
104c1213
JM
1608
1609/* Register per-architecture data-pointer.
1610
1611 Reserve space for a per-architecture data-pointer. An identifier
1612 for the reserved data-pointer is returned. That identifer should
95160752 1613 be saved in a local static variable.
104c1213 1614
fcc1c85c
AC
1615 Memory for the per-architecture data shall be allocated using
1616 gdbarch_obstack_zalloc. That memory will be deleted when the
1617 corresponding architecture object is deleted.
104c1213 1618
95160752
AC
1619 When a previously created architecture is re-selected, the
1620 per-architecture data-pointer for that previous architecture is
76860b5f 1621 restored. INIT() is not re-called.
104c1213
JM
1622
1623 Multiple registrarants for any architecture are allowed (and
1624 strongly encouraged). */
1625
95160752 1626struct gdbarch_data;
104c1213 1627
030f20e1
AC
1628typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1629extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1630typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1631extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1632
451fbdda 1633extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1634
1635
0fa6923a 1636/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1637 byte-order, ...) using information found in the BFD. */
104c1213
JM
1638
1639extern void set_gdbarch_from_file (bfd *);
1640
1641
e514a9d6
JM
1642/* Initialize the current architecture to the "first" one we find on
1643 our list. */
1644
1645extern void initialize_current_architecture (void);
1646
104c1213 1647/* gdbarch trace variable */
ccce17b0 1648extern unsigned int gdbarch_debug;
104c1213 1649
4b9b3959 1650extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1651
f6efe3f8
SM
1652/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1653
1654static inline int
1655gdbarch_num_cooked_regs (gdbarch *arch)
1656{
1657 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1658}
1659
104c1213
JM
1660#endif
1661EOF
1662exec 1>&2
41a77cba
SM
1663../move-if-change new-gdbarch.h gdbarch.h
1664rm -f new-gdbarch.h
104c1213
JM
1665
1666
1667#
1668# C file
1669#
1670
1671exec > new-gdbarch.c
1672copyright
1673cat <<EOF
1674
1675#include "defs.h"
7355ddba 1676#include "arch-utils.h"
104c1213 1677
104c1213 1678#include "gdbcmd.h"
faaf634c 1679#include "inferior.h"
104c1213
JM
1680#include "symcat.h"
1681
f0d4cc9e 1682#include "floatformat.h"
b59ff9d5 1683#include "reggroups.h"
4be87837 1684#include "osabi.h"
aebd7893 1685#include "gdb_obstack.h"
0bee6dd4 1686#include "observable.h"
a3ecef73 1687#include "regcache.h"
19630284 1688#include "objfiles.h"
2faa3447 1689#include "auxv.h"
8bcb5208
AB
1690#include "frame-unwind.h"
1691#include "dummy-frame.h"
95160752 1692
104c1213
JM
1693/* Static function declarations */
1694
b3cc3077 1695static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1696
104c1213
JM
1697/* Non-zero if we want to trace architecture code. */
1698
1699#ifndef GDBARCH_DEBUG
1700#define GDBARCH_DEBUG 0
1701#endif
ccce17b0 1702unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1703static void
1704show_gdbarch_debug (struct ui_file *file, int from_tty,
1705 struct cmd_list_element *c, const char *value)
1706{
1707 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1708}
104c1213 1709
456fcf94 1710static const char *
8da61cc4 1711pformat (const struct floatformat **format)
456fcf94
AC
1712{
1713 if (format == NULL)
1714 return "(null)";
1715 else
8da61cc4
DJ
1716 /* Just print out one of them - this is only for diagnostics. */
1717 return format[0]->name;
456fcf94
AC
1718}
1719
08105857
PA
1720static const char *
1721pstring (const char *string)
1722{
1723 if (string == NULL)
1724 return "(null)";
1725 return string;
05c0465e
SDJ
1726}
1727
a121b7c1 1728static const char *
f7bb4e3a
PB
1729pstring_ptr (char **string)
1730{
1731 if (string == NULL || *string == NULL)
1732 return "(null)";
1733 return *string;
1734}
1735
05c0465e
SDJ
1736/* Helper function to print a list of strings, represented as "const
1737 char *const *". The list is printed comma-separated. */
1738
a121b7c1 1739static const char *
05c0465e
SDJ
1740pstring_list (const char *const *list)
1741{
1742 static char ret[100];
1743 const char *const *p;
1744 size_t offset = 0;
1745
1746 if (list == NULL)
1747 return "(null)";
1748
1749 ret[0] = '\0';
1750 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1751 {
1752 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1753 offset += 2 + s;
1754 }
1755
1756 if (offset > 0)
1757 {
1758 gdb_assert (offset - 2 < sizeof (ret));
1759 ret[offset - 2] = '\0';
1760 }
1761
1762 return ret;
08105857
PA
1763}
1764
104c1213
JM
1765EOF
1766
1767# gdbarch open the gdbarch object
3d9a5942 1768printf "\n"
0963b4bd 1769printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1770printf "\n"
1771printf "struct gdbarch\n"
1772printf "{\n"
76860b5f
AC
1773printf " /* Has this architecture been fully initialized? */\n"
1774printf " int initialized_p;\n"
aebd7893
AC
1775printf "\n"
1776printf " /* An obstack bound to the lifetime of the architecture. */\n"
1777printf " struct obstack *obstack;\n"
1778printf "\n"
0963b4bd 1779printf " /* basic architectural information. */\n"
34620563 1780function_list | while do_read
104c1213 1781do
2ada493a
AC
1782 if class_is_info_p
1783 then
8d113d13 1784 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1785 fi
104c1213 1786done
3d9a5942 1787printf "\n"
0963b4bd 1788printf " /* target specific vector. */\n"
3d9a5942
AC
1789printf " struct gdbarch_tdep *tdep;\n"
1790printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1791printf "\n"
0963b4bd 1792printf " /* per-architecture data-pointers. */\n"
95160752 1793printf " unsigned nr_data;\n"
3d9a5942
AC
1794printf " void **data;\n"
1795printf "\n"
104c1213
JM
1796cat <<EOF
1797 /* Multi-arch values.
1798
1799 When extending this structure you must:
1800
1801 Add the field below.
1802
1803 Declare set/get functions and define the corresponding
1804 macro in gdbarch.h.
1805
1806 gdbarch_alloc(): If zero/NULL is not a suitable default,
1807 initialize the new field.
1808
1809 verify_gdbarch(): Confirm that the target updated the field
1810 correctly.
1811
7e73cedf 1812 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1813 field is dumped out
1814
104c1213
JM
1815 get_gdbarch(): Implement the set/get functions (probably using
1816 the macro's as shortcuts).
1817
1818 */
1819
1820EOF
34620563 1821function_list | while do_read
104c1213 1822do
2ada493a
AC
1823 if class_is_variable_p
1824 then
8d113d13 1825 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1826 elif class_is_function_p
1827 then
8d113d13 1828 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1829 fi
104c1213 1830done
3d9a5942 1831printf "};\n"
104c1213 1832
104c1213 1833# Create a new gdbarch struct
104c1213 1834cat <<EOF
7de2341d 1835
66b43ecb 1836/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1837 \`\`struct gdbarch_info''. */
104c1213 1838EOF
3d9a5942 1839printf "\n"
104c1213
JM
1840cat <<EOF
1841struct gdbarch *
1842gdbarch_alloc (const struct gdbarch_info *info,
1843 struct gdbarch_tdep *tdep)
1844{
be7811ad 1845 struct gdbarch *gdbarch;
aebd7893
AC
1846
1847 /* Create an obstack for allocating all the per-architecture memory,
1848 then use that to allocate the architecture vector. */
70ba0933 1849 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1850 obstack_init (obstack);
8d749320 1851 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1852 memset (gdbarch, 0, sizeof (*gdbarch));
1853 gdbarch->obstack = obstack;
85de9627 1854
be7811ad 1855 alloc_gdbarch_data (gdbarch);
85de9627 1856
be7811ad 1857 gdbarch->tdep = tdep;
104c1213 1858EOF
3d9a5942 1859printf "\n"
34620563 1860function_list | while do_read
104c1213 1861do
2ada493a
AC
1862 if class_is_info_p
1863 then
8d113d13 1864 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1865 fi
104c1213 1866done
3d9a5942 1867printf "\n"
0963b4bd 1868printf " /* Force the explicit initialization of these. */\n"
34620563 1869function_list | while do_read
104c1213 1870do
2ada493a
AC
1871 if class_is_function_p || class_is_variable_p
1872 then
759cea5e 1873 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1874 then
8d113d13 1875 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1876 fi
2ada493a 1877 fi
104c1213
JM
1878done
1879cat <<EOF
1880 /* gdbarch_alloc() */
1881
be7811ad 1882 return gdbarch;
104c1213
JM
1883}
1884EOF
1885
058f20d5 1886# Free a gdbarch struct.
3d9a5942
AC
1887printf "\n"
1888printf "\n"
058f20d5 1889cat <<EOF
aebd7893 1890
284a0e3c 1891obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1892{
284a0e3c 1893 return arch->obstack;
aebd7893
AC
1894}
1895
6c214e7c
PP
1896/* See gdbarch.h. */
1897
1898char *
1899gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1900{
1901 return obstack_strdup (arch->obstack, string);
1902}
1903
aebd7893 1904
058f20d5
JB
1905/* Free a gdbarch struct. This should never happen in normal
1906 operation --- once you've created a gdbarch, you keep it around.
1907 However, if an architecture's init function encounters an error
1908 building the structure, it may need to clean up a partially
1909 constructed gdbarch. */
4b9b3959 1910
058f20d5
JB
1911void
1912gdbarch_free (struct gdbarch *arch)
1913{
aebd7893 1914 struct obstack *obstack;
05c547f6 1915
95160752 1916 gdb_assert (arch != NULL);
aebd7893
AC
1917 gdb_assert (!arch->initialized_p);
1918 obstack = arch->obstack;
1919 obstack_free (obstack, 0); /* Includes the ARCH. */
1920 xfree (obstack);
058f20d5
JB
1921}
1922EOF
1923
104c1213 1924# verify a new architecture
104c1213 1925cat <<EOF
db446970
AC
1926
1927
1928/* Ensure that all values in a GDBARCH are reasonable. */
1929
104c1213 1930static void
be7811ad 1931verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1932{
d7e74731 1933 string_file log;
05c547f6 1934
104c1213 1935 /* fundamental */
be7811ad 1936 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1937 log.puts ("\n\tbyte-order");
be7811ad 1938 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1939 log.puts ("\n\tbfd_arch_info");
0963b4bd 1940 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1941EOF
34620563 1942function_list | while do_read
104c1213 1943do
2ada493a
AC
1944 if class_is_function_p || class_is_variable_p
1945 then
72e74a21 1946 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1947 then
8d113d13 1948 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1949 elif class_is_predicate_p
1950 then
8d113d13 1951 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1952 # FIXME: See do_read for potential simplification
759cea5e 1953 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1954 then
8d113d13
SM
1955 printf " if (%s)\n" "$invalid_p"
1956 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 1957 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 1958 then
8d113d13
SM
1959 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1960 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1961 elif [ -n "${postdefault}" ]
f0d4cc9e 1962 then
8d113d13
SM
1963 printf " if (gdbarch->%s == 0)\n" "$function"
1964 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 1965 elif [ -n "${invalid_p}" ]
104c1213 1966 then
8d113d13
SM
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 1969 elif [ -n "${predefault}" ]
104c1213 1970 then
8d113d13
SM
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 1973 fi
2ada493a 1974 fi
104c1213
JM
1975done
1976cat <<EOF
d7e74731 1977 if (!log.empty ())
f16a1923 1978 internal_error (__FILE__, __LINE__,
85c07804 1979 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1980 log.c_str ());
104c1213
JM
1981}
1982EOF
1983
1984# dump the structure
3d9a5942
AC
1985printf "\n"
1986printf "\n"
104c1213 1987cat <<EOF
0963b4bd 1988/* Print out the details of the current architecture. */
4b9b3959 1989
104c1213 1990void
be7811ad 1991gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1992{
b78960be 1993 const char *gdb_nm_file = "<not-defined>";
05c547f6 1994
b78960be
AC
1995#if defined (GDB_NM_FILE)
1996 gdb_nm_file = GDB_NM_FILE;
1997#endif
1998 fprintf_unfiltered (file,
1999 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2000 gdb_nm_file);
104c1213 2001EOF
ea480a30 2002function_list | sort '-t;' -k 3 | while do_read
104c1213 2003do
1e9f55d0
AC
2004 # First the predicate
2005 if class_is_predicate_p
2006 then
7996bcec 2007 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2008 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2009 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2010 fi
48f7351b 2011 # Print the corresponding value.
283354d8 2012 if class_is_function_p
4b9b3959 2013 then
7996bcec 2014 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2015 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2016 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2017 else
48f7351b 2018 # It is a variable
2f9b146e
AC
2019 case "${print}:${returntype}" in
2020 :CORE_ADDR )
0b1553bc
UW
2021 fmt="%s"
2022 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2023 ;;
2f9b146e 2024 :* )
48f7351b 2025 fmt="%s"
623d3eb1 2026 print="plongest (gdbarch->${function})"
48f7351b
AC
2027 ;;
2028 * )
2f9b146e 2029 fmt="%s"
48f7351b
AC
2030 ;;
2031 esac
3d9a5942 2032 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2033 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2034 printf " %s);\n" "$print"
2ada493a 2035 fi
104c1213 2036done
381323f4 2037cat <<EOF
be7811ad
MD
2038 if (gdbarch->dump_tdep != NULL)
2039 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2040}
2041EOF
104c1213
JM
2042
2043
2044# GET/SET
3d9a5942 2045printf "\n"
104c1213
JM
2046cat <<EOF
2047struct gdbarch_tdep *
2048gdbarch_tdep (struct gdbarch *gdbarch)
2049{
2050 if (gdbarch_debug >= 2)
3d9a5942 2051 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2052 return gdbarch->tdep;
2053}
2054EOF
3d9a5942 2055printf "\n"
34620563 2056function_list | while do_read
104c1213 2057do
2ada493a
AC
2058 if class_is_predicate_p
2059 then
3d9a5942
AC
2060 printf "\n"
2061 printf "int\n"
8d113d13 2062 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2063 printf "{\n"
8de9bdc4 2064 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2065 printf " return %s;\n" "$predicate"
3d9a5942 2066 printf "}\n"
2ada493a
AC
2067 fi
2068 if class_is_function_p
2069 then
3d9a5942 2070 printf "\n"
8d113d13 2071 printf "%s\n" "$returntype"
72e74a21 2072 if [ "x${formal}" = "xvoid" ]
104c1213 2073 then
8d113d13 2074 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2075 else
8d113d13 2076 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2077 fi
3d9a5942 2078 printf "{\n"
8de9bdc4 2079 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2080 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2081 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2082 then
2083 # Allow a call to a function with a predicate.
8d113d13 2084 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2085 fi
3d9a5942 2086 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2087 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2088 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2089 then
2090 if class_is_multiarch_p
2091 then
2092 params="gdbarch"
2093 else
2094 params=""
2095 fi
2096 else
2097 if class_is_multiarch_p
2098 then
2099 params="gdbarch, ${actual}"
2100 else
2101 params="${actual}"
2102 fi
2103 fi
72e74a21 2104 if [ "x${returntype}" = "xvoid" ]
104c1213 2105 then
8d113d13 2106 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2107 else
8d113d13 2108 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2109 fi
3d9a5942
AC
2110 printf "}\n"
2111 printf "\n"
2112 printf "void\n"
8d113d13 2113 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2114 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2115 printf "{\n"
8d113d13 2116 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2117 printf "}\n"
2ada493a
AC
2118 elif class_is_variable_p
2119 then
3d9a5942 2120 printf "\n"
8d113d13
SM
2121 printf "%s\n" "$returntype"
2122 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2123 printf "{\n"
8de9bdc4 2124 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2125 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2126 then
8d113d13 2127 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2128 elif [ -n "${invalid_p}" ]
104c1213 2129 then
956ac328 2130 printf " /* Check variable is valid. */\n"
8d113d13 2131 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2132 elif [ -n "${predefault}" ]
104c1213 2133 then
956ac328 2134 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2135 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2136 fi
3d9a5942 2137 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2138 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2139 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2140 printf "}\n"
2141 printf "\n"
2142 printf "void\n"
8d113d13 2143 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2144 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2145 printf "{\n"
8d113d13 2146 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2147 printf "}\n"
2ada493a
AC
2148 elif class_is_info_p
2149 then
3d9a5942 2150 printf "\n"
8d113d13
SM
2151 printf "%s\n" "$returntype"
2152 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2153 printf "{\n"
8de9bdc4 2154 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2155 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2156 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2157 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2158 printf "}\n"
2ada493a 2159 fi
104c1213
JM
2160done
2161
2162# All the trailing guff
2163cat <<EOF
2164
2165
f44c642f 2166/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2167 modules. */
104c1213
JM
2168
2169struct gdbarch_data
2170{
95160752 2171 unsigned index;
76860b5f 2172 int init_p;
030f20e1
AC
2173 gdbarch_data_pre_init_ftype *pre_init;
2174 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2175};
2176
2177struct gdbarch_data_registration
2178{
104c1213
JM
2179 struct gdbarch_data *data;
2180 struct gdbarch_data_registration *next;
2181};
2182
f44c642f 2183struct gdbarch_data_registry
104c1213 2184{
95160752 2185 unsigned nr;
104c1213
JM
2186 struct gdbarch_data_registration *registrations;
2187};
2188
f44c642f 2189struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2190{
2191 0, NULL,
2192};
2193
030f20e1
AC
2194static struct gdbarch_data *
2195gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2196 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2197{
2198 struct gdbarch_data_registration **curr;
05c547f6
MS
2199
2200 /* Append the new registration. */
f44c642f 2201 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2202 (*curr) != NULL;
2203 curr = &(*curr)->next);
70ba0933 2204 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2205 (*curr)->next = NULL;
70ba0933 2206 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2207 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2208 (*curr)->data->pre_init = pre_init;
2209 (*curr)->data->post_init = post_init;
76860b5f 2210 (*curr)->data->init_p = 1;
104c1213
JM
2211 return (*curr)->data;
2212}
2213
030f20e1
AC
2214struct gdbarch_data *
2215gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2216{
2217 return gdbarch_data_register (pre_init, NULL);
2218}
2219
2220struct gdbarch_data *
2221gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2222{
2223 return gdbarch_data_register (NULL, post_init);
2224}
104c1213 2225
0963b4bd 2226/* Create/delete the gdbarch data vector. */
95160752
AC
2227
2228static void
b3cc3077 2229alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2230{
b3cc3077
JB
2231 gdb_assert (gdbarch->data == NULL);
2232 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2233 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2234}
3c875b6f 2235
104c1213 2236/* Return the current value of the specified per-architecture
0963b4bd 2237 data-pointer. */
104c1213
JM
2238
2239void *
451fbdda 2240gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2241{
451fbdda 2242 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2243 if (gdbarch->data[data->index] == NULL)
76860b5f 2244 {
030f20e1
AC
2245 /* The data-pointer isn't initialized, call init() to get a
2246 value. */
2247 if (data->pre_init != NULL)
2248 /* Mid architecture creation: pass just the obstack, and not
2249 the entire architecture, as that way it isn't possible for
2250 pre-init code to refer to undefined architecture
2251 fields. */
2252 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2253 else if (gdbarch->initialized_p
2254 && data->post_init != NULL)
2255 /* Post architecture creation: pass the entire architecture
2256 (as all fields are valid), but be careful to also detect
2257 recursive references. */
2258 {
2259 gdb_assert (data->init_p);
2260 data->init_p = 0;
2261 gdbarch->data[data->index] = data->post_init (gdbarch);
2262 data->init_p = 1;
2263 }
2264 else
3bc98c0c
AB
2265 internal_error (__FILE__, __LINE__,
2266 _("gdbarch post-init data field can only be used "
2267 "after gdbarch is fully initialised"));
76860b5f
AC
2268 gdb_assert (gdbarch->data[data->index] != NULL);
2269 }
451fbdda 2270 return gdbarch->data[data->index];
104c1213
JM
2271}
2272
2273
0963b4bd 2274/* Keep a registry of the architectures known by GDB. */
104c1213 2275
4b9b3959 2276struct gdbarch_registration
104c1213
JM
2277{
2278 enum bfd_architecture bfd_architecture;
2279 gdbarch_init_ftype *init;
4b9b3959 2280 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2281 struct gdbarch_list *arches;
4b9b3959 2282 struct gdbarch_registration *next;
104c1213
JM
2283};
2284
f44c642f 2285static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2286
b4a20239
AC
2287static void
2288append_name (const char ***buf, int *nr, const char *name)
2289{
1dc7a623 2290 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2291 (*buf)[*nr] = name;
2292 *nr += 1;
2293}
2294
2295const char **
2296gdbarch_printable_names (void)
2297{
7996bcec 2298 /* Accumulate a list of names based on the registed list of
0963b4bd 2299 architectures. */
7996bcec
AC
2300 int nr_arches = 0;
2301 const char **arches = NULL;
2302 struct gdbarch_registration *rego;
05c547f6 2303
7996bcec
AC
2304 for (rego = gdbarch_registry;
2305 rego != NULL;
2306 rego = rego->next)
b4a20239 2307 {
7996bcec
AC
2308 const struct bfd_arch_info *ap;
2309 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2310 if (ap == NULL)
2311 internal_error (__FILE__, __LINE__,
85c07804 2312 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2313 do
2314 {
2315 append_name (&arches, &nr_arches, ap->printable_name);
2316 ap = ap->next;
2317 }
2318 while (ap != NULL);
b4a20239 2319 }
7996bcec
AC
2320 append_name (&arches, &nr_arches, NULL);
2321 return arches;
b4a20239
AC
2322}
2323
2324
104c1213 2325void
4b9b3959
AC
2326gdbarch_register (enum bfd_architecture bfd_architecture,
2327 gdbarch_init_ftype *init,
2328 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2329{
4b9b3959 2330 struct gdbarch_registration **curr;
104c1213 2331 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2332
ec3d358c 2333 /* Check that BFD recognizes this architecture */
104c1213
JM
2334 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2335 if (bfd_arch_info == NULL)
2336 {
8e65ff28 2337 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2338 _("gdbarch: Attempt to register "
2339 "unknown architecture (%d)"),
8e65ff28 2340 bfd_architecture);
104c1213 2341 }
0963b4bd 2342 /* Check that we haven't seen this architecture before. */
f44c642f 2343 for (curr = &gdbarch_registry;
104c1213
JM
2344 (*curr) != NULL;
2345 curr = &(*curr)->next)
2346 {
2347 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2348 internal_error (__FILE__, __LINE__,
64b9b334 2349 _("gdbarch: Duplicate registration "
0963b4bd 2350 "of architecture (%s)"),
8e65ff28 2351 bfd_arch_info->printable_name);
104c1213
JM
2352 }
2353 /* log it */
2354 if (gdbarch_debug)
30737ed9 2355 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2356 bfd_arch_info->printable_name,
30737ed9 2357 host_address_to_string (init));
104c1213 2358 /* Append it */
70ba0933 2359 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2360 (*curr)->bfd_architecture = bfd_architecture;
2361 (*curr)->init = init;
4b9b3959 2362 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2363 (*curr)->arches = NULL;
2364 (*curr)->next = NULL;
4b9b3959
AC
2365}
2366
2367void
2368register_gdbarch_init (enum bfd_architecture bfd_architecture,
2369 gdbarch_init_ftype *init)
2370{
2371 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2372}
104c1213
JM
2373
2374
424163ea 2375/* Look for an architecture using gdbarch_info. */
104c1213
JM
2376
2377struct gdbarch_list *
2378gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2379 const struct gdbarch_info *info)
2380{
2381 for (; arches != NULL; arches = arches->next)
2382 {
2383 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2384 continue;
2385 if (info->byte_order != arches->gdbarch->byte_order)
2386 continue;
4be87837
DJ
2387 if (info->osabi != arches->gdbarch->osabi)
2388 continue;
424163ea
DJ
2389 if (info->target_desc != arches->gdbarch->target_desc)
2390 continue;
104c1213
JM
2391 return arches;
2392 }
2393 return NULL;
2394}
2395
2396
ebdba546 2397/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2398 architecture if needed. Return that new architecture. */
104c1213 2399
59837fe0
UW
2400struct gdbarch *
2401gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2402{
2403 struct gdbarch *new_gdbarch;
4b9b3959 2404 struct gdbarch_registration *rego;
104c1213 2405
b732d07d 2406 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2407 sources: "set ..."; INFOabfd supplied; and the global
2408 defaults. */
2409 gdbarch_info_fill (&info);
4be87837 2410
0963b4bd 2411 /* Must have found some sort of architecture. */
b732d07d 2412 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2413
2414 if (gdbarch_debug)
2415 {
2416 fprintf_unfiltered (gdb_stdlog,
59837fe0 2417 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2418 (info.bfd_arch_info != NULL
2419 ? info.bfd_arch_info->printable_name
2420 : "(null)"));
2421 fprintf_unfiltered (gdb_stdlog,
59837fe0 2422 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2423 info.byte_order,
d7449b42 2424 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2425 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2426 : "default"));
4be87837 2427 fprintf_unfiltered (gdb_stdlog,
59837fe0 2428 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2429 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2430 fprintf_unfiltered (gdb_stdlog,
59837fe0 2431 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2432 host_address_to_string (info.abfd));
104c1213 2433 fprintf_unfiltered (gdb_stdlog,
59837fe0 2434 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2435 host_address_to_string (info.tdep_info));
104c1213
JM
2436 }
2437
ebdba546 2438 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2439 for (rego = gdbarch_registry;
2440 rego != NULL;
2441 rego = rego->next)
2442 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2443 break;
2444 if (rego == NULL)
2445 {
2446 if (gdbarch_debug)
59837fe0 2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2448 "No matching architecture\n");
b732d07d
AC
2449 return 0;
2450 }
2451
ebdba546 2452 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2453 new_gdbarch = rego->init (info, rego->arches);
2454
ebdba546
AC
2455 /* Did the tdep code like it? No. Reject the change and revert to
2456 the old architecture. */
104c1213
JM
2457 if (new_gdbarch == NULL)
2458 {
2459 if (gdbarch_debug)
59837fe0 2460 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2461 "Target rejected architecture\n");
2462 return NULL;
104c1213
JM
2463 }
2464
ebdba546
AC
2465 /* Is this a pre-existing architecture (as determined by already
2466 being initialized)? Move it to the front of the architecture
2467 list (keeping the list sorted Most Recently Used). */
2468 if (new_gdbarch->initialized_p)
104c1213 2469 {
ebdba546 2470 struct gdbarch_list **list;
fe978cb0 2471 struct gdbarch_list *self;
104c1213 2472 if (gdbarch_debug)
59837fe0 2473 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2474 "Previous architecture %s (%s) selected\n",
2475 host_address_to_string (new_gdbarch),
104c1213 2476 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2477 /* Find the existing arch in the list. */
2478 for (list = &rego->arches;
2479 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2480 list = &(*list)->next);
2481 /* It had better be in the list of architectures. */
2482 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2483 /* Unlink SELF. */
2484 self = (*list);
2485 (*list) = self->next;
2486 /* Insert SELF at the front. */
2487 self->next = rego->arches;
2488 rego->arches = self;
ebdba546
AC
2489 /* Return it. */
2490 return new_gdbarch;
104c1213
JM
2491 }
2492
ebdba546
AC
2493 /* It's a new architecture. */
2494 if (gdbarch_debug)
59837fe0 2495 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2496 "New architecture %s (%s) selected\n",
2497 host_address_to_string (new_gdbarch),
ebdba546
AC
2498 new_gdbarch->bfd_arch_info->printable_name);
2499
2500 /* Insert the new architecture into the front of the architecture
2501 list (keep the list sorted Most Recently Used). */
0f79675b 2502 {
fe978cb0
PA
2503 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2504 self->next = rego->arches;
2505 self->gdbarch = new_gdbarch;
2506 rego->arches = self;
0f79675b 2507 }
104c1213 2508
4b9b3959
AC
2509 /* Check that the newly installed architecture is valid. Plug in
2510 any post init values. */
2511 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2512 verify_gdbarch (new_gdbarch);
ebdba546 2513 new_gdbarch->initialized_p = 1;
104c1213 2514
4b9b3959 2515 if (gdbarch_debug)
ebdba546
AC
2516 gdbarch_dump (new_gdbarch, gdb_stdlog);
2517
2518 return new_gdbarch;
2519}
2520
e487cc15 2521/* Make the specified architecture current. */
ebdba546
AC
2522
2523void
aff68abb 2524set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2525{
2526 gdb_assert (new_gdbarch != NULL);
ebdba546 2527 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2528 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2529 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2530 registers_changed ();
ebdba546 2531}
104c1213 2532
f5656ead 2533/* Return the current inferior's arch. */
6ecd4729
PA
2534
2535struct gdbarch *
f5656ead 2536target_gdbarch (void)
6ecd4729
PA
2537{
2538 return current_inferior ()->gdbarch;
2539}
2540
a1237872 2541void _initialize_gdbarch ();
104c1213 2542void
a1237872 2543_initialize_gdbarch ()
104c1213 2544{
ccce17b0 2545 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2546Set architecture debugging."), _("\\
2547Show architecture debugging."), _("\\
2548When non-zero, architecture debugging is enabled."),
2549 NULL,
920d2a44 2550 show_gdbarch_debug,
85c07804 2551 &setdebuglist, &showdebuglist);
104c1213
JM
2552}
2553EOF
2554
2555# close things off
2556exec 1>&2
41a77cba
SM
2557../move-if-change new-gdbarch.c gdbarch.c
2558rm -f new-gdbarch.c