]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Error in build_executable_own_libs for non-native target
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
17ea7499
CES
658# Supported register notes in a core file.
659v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
6432734d
UW
661# Create core file notes
662M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
b3ac9c77
SDJ
664# The elfcore writer hook to use to write Linux prpsinfo notes to core
665# files. Most Linux architectures use the same prpsinfo32 or
666# prpsinfo64 layouts, and so won't need to provide this hook, as we
667# call the Linux generic routines in bfd to write prpsinfo notes by
668# default.
669F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
35c2fab7
UW
671# Find core file memory regions
672M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
de584861 674# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
675# core file into buffer READBUF with length LEN. Return the number of bytes read
676# (zero indicates failure).
677# failed, otherwise, return the red length of READBUF.
678M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 679
356a5233
JB
680# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
682# Return the number of bytes read (zero indicates failure).
683M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 684
c0edd9ed 685# How the core target converts a PTID from a core file to a string.
28439f5e
PA
686M:char *:core_pid_to_str:ptid_t ptid:ptid
687
a78c2d62 688# BFD target to use when generating a core file.
86ba1042 689V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 690
0d5de010
DJ
691# If the elements of C++ vtables are in-place function descriptors rather
692# than normal function pointers (which may point to code or a descriptor),
693# set this to one.
97030eea 694v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
695
696# Set if the least significant bit of the delta is used instead of the least
697# significant bit of the pfn for pointers to virtual member functions.
97030eea 698v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
699
700# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 701F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 702
1668ae25 703# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
704V:ULONGEST:max_insn_length:::0:0
705
706# Copy the instruction at FROM to TO, and make any adjustments
707# necessary to single-step it at that address.
708#
709# REGS holds the state the thread's registers will have before
710# executing the copied instruction; the PC in REGS will refer to FROM,
711# not the copy at TO. The caller should update it to point at TO later.
712#
713# Return a pointer to data of the architecture's choice to be passed
714# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715# the instruction's effects have been completely simulated, with the
716# resulting state written back to REGS.
717#
718# For a general explanation of displaced stepping and how GDB uses it,
719# see the comments in infrun.c.
720#
721# The TO area is only guaranteed to have space for
722# gdbarch_max_insn_length (arch) bytes, so this function must not
723# write more bytes than that to that area.
724#
725# If you do not provide this function, GDB assumes that the
726# architecture does not support displaced stepping.
727#
728# If your architecture doesn't need to adjust instructions before
729# single-stepping them, consider using simple_displaced_step_copy_insn
730# here.
731M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
99e40580
UW
733# Return true if GDB should use hardware single-stepping to execute
734# the displaced instruction identified by CLOSURE. If false,
735# GDB will simply restart execution at the displaced instruction
736# location, and it is up to the target to ensure GDB will receive
737# control again (e.g. by placing a software breakpoint instruction
738# into the displaced instruction buffer).
739#
740# The default implementation returns false on all targets that
741# provide a gdbarch_software_single_step routine, and true otherwise.
742m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
237fc4c9
PA
744# Fix up the state resulting from successfully single-stepping a
745# displaced instruction, to give the result we would have gotten from
746# stepping the instruction in its original location.
747#
748# REGS is the register state resulting from single-stepping the
749# displaced instruction.
750#
751# CLOSURE is the result from the matching call to
752# gdbarch_displaced_step_copy_insn.
753#
754# If you provide gdbarch_displaced_step_copy_insn.but not this
755# function, then GDB assumes that no fixup is needed after
756# single-stepping the instruction.
757#
758# For a general explanation of displaced stepping and how GDB uses it,
759# see the comments in infrun.c.
760M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762# Free a closure returned by gdbarch_displaced_step_copy_insn.
763#
764# If you provide gdbarch_displaced_step_copy_insn, you must provide
765# this function as well.
766#
767# If your architecture uses closures that don't need to be freed, then
768# you can use simple_displaced_step_free_closure here.
769#
770# For a general explanation of displaced stepping and how GDB uses it,
771# see the comments in infrun.c.
772m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774# Return the address of an appropriate place to put displaced
775# instructions while we step over them. There need only be one such
776# place, since we're only stepping one thread over a breakpoint at a
777# time.
778#
779# For a general explanation of displaced stepping and how GDB uses it,
780# see the comments in infrun.c.
781m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
dde08ee1
PA
783# Relocate an instruction to execute at a different address. OLDLOC
784# is the address in the inferior memory where the instruction to
785# relocate is currently at. On input, TO points to the destination
786# where we want the instruction to be copied (and possibly adjusted)
787# to. On output, it points to one past the end of the resulting
788# instruction(s). The effect of executing the instruction at TO shall
789# be the same as if executing it at FROM. For example, call
790# instructions that implicitly push the return address on the stack
791# should be adjusted to return to the instruction after OLDLOC;
792# relative branches, and other PC-relative instructions need the
793# offset adjusted; etc.
794M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
1c772458 796# Refresh overlay mapped state for section OSECT.
97030eea 797F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 798
97030eea 799M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
800
801# Handle special encoding of static variables in stabs debug info.
0d5cff50 802F:const char *:static_transform_name:const char *name:name
203c3895 803# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 804v:int:sofun_address_maybe_missing:::0:0::0
1cded358 805
0508c3ec
HZ
806# Parse the instruction at ADDR storing in the record execution log
807# the registers REGCACHE and memory ranges that will be affected when
808# the instruction executes, along with their current values.
809# Return -1 if something goes wrong, 0 otherwise.
810M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
3846b520
HZ
812# Save process state after a signal.
813# Return -1 if something goes wrong, 0 otherwise.
2ea28649 814M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 815
22203bbf 816# Signal translation: translate inferior's signal (target's) number
86b49880
PA
817# into GDB's representation. The implementation of this method must
818# be host independent. IOW, don't rely on symbols of the NAT_FILE
819# header (the nm-*.h files), the host <signal.h> header, or similar
820# headers. This is mainly used when cross-debugging core files ---
821# "Live" targets hide the translation behind the target interface
1f8cf220
PA
822# (target_wait, target_resume, etc.).
823M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 824
eb14d406
SDJ
825# Signal translation: translate the GDB's internal signal number into
826# the inferior's signal (target's) representation. The implementation
827# of this method must be host independent. IOW, don't rely on symbols
828# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829# header, or similar headers.
830# Return the target signal number if found, or -1 if the GDB internal
831# signal number is invalid.
832M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
4aa995e1
PA
834# Extra signal info inspection.
835#
836# Return a type suitable to inspect extra signal information.
837M:struct type *:get_siginfo_type:void:
838
60c5725c
DJ
839# Record architecture-specific information from the symbol table.
840M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 841
a96d9b2e
SDJ
842# Function for the 'catch syscall' feature.
843
844# Get architecture-specific system calls information from registers.
845M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
55aa24fb
SDJ
847# SystemTap related fields and functions.
848
05c0465e
SDJ
849# A NULL-terminated array of prefixes used to mark an integer constant
850# on the architecture's assembly.
55aa24fb
SDJ
851# For example, on x86 integer constants are written as:
852#
853# \$10 ;; integer constant 10
854#
855# in this case, this prefix would be the character \`\$\'.
05c0465e 856v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 857
05c0465e
SDJ
858# A NULL-terminated array of suffixes used to mark an integer constant
859# on the architecture's assembly.
860v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 861
05c0465e
SDJ
862# A NULL-terminated array of prefixes used to mark a register name on
863# the architecture's assembly.
55aa24fb
SDJ
864# For example, on x86 the register name is written as:
865#
866# \%eax ;; register eax
867#
868# in this case, this prefix would be the character \`\%\'.
05c0465e 869v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 870
05c0465e
SDJ
871# A NULL-terminated array of suffixes used to mark a register name on
872# the architecture's assembly.
873v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 874
05c0465e
SDJ
875# A NULL-terminated array of prefixes used to mark a register
876# indirection on the architecture's assembly.
55aa24fb
SDJ
877# For example, on x86 the register indirection is written as:
878#
879# \(\%eax\) ;; indirecting eax
880#
881# in this case, this prefix would be the charater \`\(\'.
882#
883# Please note that we use the indirection prefix also for register
884# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 885v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 886
05c0465e
SDJ
887# A NULL-terminated array of suffixes used to mark a register
888# indirection on the architecture's assembly.
55aa24fb
SDJ
889# For example, on x86 the register indirection is written as:
890#
891# \(\%eax\) ;; indirecting eax
892#
893# in this case, this prefix would be the charater \`\)\'.
894#
895# Please note that we use the indirection suffix also for register
896# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 897v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 898
05c0465e 899# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
900#
901# For example, on PPC a register is represented by a number in the assembly
902# language (e.g., \`10\' is the 10th general-purpose register). However,
903# inside GDB this same register has an \`r\' appended to its name, so the 10th
904# register would be represented as \`r10\' internally.
08af7a40 905v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
906
907# Suffix used to name a register using GDB's nomenclature.
08af7a40 908v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
909
910# Check if S is a single operand.
911#
912# Single operands can be:
913# \- Literal integers, e.g. \`\$10\' on x86
914# \- Register access, e.g. \`\%eax\' on x86
915# \- Register indirection, e.g. \`\(\%eax\)\' on x86
916# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917#
918# This function should check for these patterns on the string
919# and return 1 if some were found, or zero otherwise. Please try to match
920# as much info as you can from the string, i.e., if you have to match
921# something like \`\(\%\', do not match just the \`\(\'.
922M:int:stap_is_single_operand:const char *s:s
923
924# Function used to handle a "special case" in the parser.
925#
926# A "special case" is considered to be an unknown token, i.e., a token
927# that the parser does not know how to parse. A good example of special
928# case would be ARM's register displacement syntax:
929#
930# [R0, #4] ;; displacing R0 by 4
931#
932# Since the parser assumes that a register displacement is of the form:
933#
934# <number> <indirection_prefix> <register_name> <indirection_suffix>
935#
936# it means that it will not be able to recognize and parse this odd syntax.
937# Therefore, we should add a special case function that will handle this token.
938#
939# This function should generate the proper expression form of the expression
940# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941# and so on). It should also return 1 if the parsing was successful, or zero
942# if the token was not recognized as a special token (in this case, returning
943# zero means that the special parser is deferring the parsing to the generic
944# parser), and should advance the buffer pointer (p->arg).
945M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
50c71eaf
PA
948# True if the list of shared libraries is one and only for all
949# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
950# This usually means that all processes, although may or may not share
951# an address space, will see the same set of symbols at the same
952# addresses.
50c71eaf 953v:int:has_global_solist:::0:0::0
2567c7d9
PA
954
955# On some targets, even though each inferior has its own private
956# address space, the debug interface takes care of making breakpoints
957# visible to all address spaces automatically. For such cases,
958# this property should be set to true.
959v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
960
961# True if inferiors share an address space (e.g., uClinux).
962m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
963
964# True if a fast tracepoint can be set at an address.
965m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 966
f870a310
TT
967# Return the "auto" target charset.
968f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969# Return the "auto" target wide charset.
970f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
971
972# If non-empty, this is a file extension that will be opened in place
973# of the file extension reported by the shared library list.
974#
975# This is most useful for toolchains that use a post-linker tool,
976# where the names of the files run on the target differ in extension
977# compared to the names of the files GDB should load for debug info.
978v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
979
980# If true, the target OS has DOS-based file system semantics. That
981# is, absolute paths include a drive name, and the backslash is
982# considered a directory separator.
983v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
984
985# Generate bytecodes to collect the return address in a frame.
986# Since the bytecodes run on the target, possibly with GDB not even
987# connected, the full unwinding machinery is not available, and
988# typically this function will issue bytecodes for one or more likely
989# places that the return address may be found.
990m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
3030c96e 992# Implement the "info proc" command.
7bc112c1 993M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 994
451b7c33
TT
995# Implement the "info proc" command for core files. Noe that there
996# are two "info_proc"-like methods on gdbarch -- one for core files,
997# one for live targets.
7bc112c1 998M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 999
19630284
JB
1000# Iterate over all objfiles in the order that makes the most sense
1001# for the architecture to make global symbol searches.
1002#
1003# CB is a callback function where OBJFILE is the objfile to be searched,
1004# and CB_DATA a pointer to user-defined data (the same data that is passed
1005# when calling this gdbarch method). The iteration stops if this function
1006# returns nonzero.
1007#
1008# CB_DATA is a pointer to some user-defined data to be passed to
1009# the callback.
1010#
1011# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012# inspected when the symbol search was requested.
1013m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
7e35103a
JB
1015# Ravenscar arch-dependent ops.
1016v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1017
1018# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1026
1027# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028# Return 0 if *READPTR is already at the end of the buffer.
1029# Return -1 if there is insufficient buffer for a whole entry.
1030# Return 1 if an entry was read into *TYPEP and *VALP.
1031M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
104c1213 1032EOF
104c1213
JM
1033}
1034
0b8f9e4d
AC
1035#
1036# The .log file
1037#
1038exec > new-gdbarch.log
34620563 1039function_list | while do_read
0b8f9e4d
AC
1040do
1041 cat <<EOF
2f9b146e 1042${class} ${returntype} ${function} ($formal)
104c1213 1043EOF
3d9a5942
AC
1044 for r in ${read}
1045 do
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1047 done
f0d4cc9e 1048 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1049 then
66d659b1 1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1051 kill $$
1052 exit 1
1053 fi
72e74a21 1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1055 then
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1057 kill $$
1058 exit 1
1059 fi
a72293e2
AC
1060 if class_is_multiarch_p
1061 then
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1064 then
2f9b146e 1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1066 kill $$
1067 exit 1
1068 fi
1069 fi
3d9a5942 1070 echo ""
0b8f9e4d
AC
1071done
1072
1073exec 1>&2
1074compare_new gdbarch.log
1075
104c1213
JM
1076
1077copyright ()
1078{
1079cat <<EOF
c4bfde41
JK
1080/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1081/* vi:set ro: */
59233f88 1082
104c1213 1083/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1084
ecd75fc8 1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1086
1087 This file is part of GDB.
1088
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
50efebf8 1091 the Free Software Foundation; either version 3 of the License, or
104c1213 1092 (at your option) any later version.
50efebf8 1093
104c1213
JM
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
50efebf8 1098
104c1213 1099 You should have received a copy of the GNU General Public License
50efebf8 1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1101
104c1213
JM
1102/* This file was created with the aid of \`\`gdbarch.sh''.
1103
52204a0b 1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1107 being reported.
1108
1109 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1110 changes into that script. Conversely, when making sweeping changes
104c1213 1111 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1112 easier. */
104c1213
JM
1113
1114EOF
1115}
1116
1117#
1118# The .h file
1119#
1120
1121exec > new-gdbarch.h
1122copyright
1123cat <<EOF
1124#ifndef GDBARCH_H
1125#define GDBARCH_H
1126
eb7a547a
JB
1127#include "frame.h"
1128
da3331ec
AC
1129struct floatformat;
1130struct ui_file;
104c1213 1131struct value;
b6af0555 1132struct objfile;
1c772458 1133struct obj_section;
a2cf933a 1134struct minimal_symbol;
049ee0e4 1135struct regcache;
b59ff9d5 1136struct reggroup;
6ce6d90f 1137struct regset;
a89aa300 1138struct disassemble_info;
e2d0e7eb 1139struct target_ops;
030f20e1 1140struct obstack;
8181d85f 1141struct bp_target_info;
424163ea 1142struct target_desc;
237fc4c9 1143struct displaced_step_closure;
17ea7499 1144struct core_regset_section;
a96d9b2e 1145struct syscall;
175ff332 1146struct agent_expr;
6710bf39 1147struct axs_value;
55aa24fb 1148struct stap_parse_info;
7e35103a 1149struct ravenscar_arch_ops;
b3ac9c77 1150struct elf_internal_linux_prpsinfo;
104c1213 1151
6ecd4729
PA
1152/* The architecture associated with the inferior through the
1153 connection to the target.
1154
1155 The architecture vector provides some information that is really a
1156 property of the inferior, accessed through a particular target:
1157 ptrace operations; the layout of certain RSP packets; the solib_ops
1158 vector; etc. To differentiate architecture accesses to
1159 per-inferior/target properties from
1160 per-thread/per-frame/per-objfile properties, accesses to
1161 per-inferior/target properties should be made through this
1162 gdbarch. */
1163
1164/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1165extern struct gdbarch *target_gdbarch (void);
6ecd4729 1166
19630284
JB
1167/* Callback type for the 'iterate_over_objfiles_in_search_order'
1168 gdbarch method. */
1169
1170typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1171 (struct objfile *objfile, void *cb_data);
104c1213
JM
1172EOF
1173
1174# function typedef's
3d9a5942
AC
1175printf "\n"
1176printf "\n"
0963b4bd 1177printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1178function_list | while do_read
104c1213 1179do
2ada493a
AC
1180 if class_is_info_p
1181 then
3d9a5942
AC
1182 printf "\n"
1183 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1184 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1185 fi
104c1213
JM
1186done
1187
1188# function typedef's
3d9a5942
AC
1189printf "\n"
1190printf "\n"
0963b4bd 1191printf "/* The following are initialized by the target dependent code. */\n"
34620563 1192function_list | while do_read
104c1213 1193do
72e74a21 1194 if [ -n "${comment}" ]
34620563
AC
1195 then
1196 echo "${comment}" | sed \
1197 -e '2 s,#,/*,' \
1198 -e '3,$ s,#, ,' \
1199 -e '$ s,$, */,'
1200 fi
412d5987
AC
1201
1202 if class_is_predicate_p
2ada493a 1203 then
412d5987
AC
1204 printf "\n"
1205 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1206 fi
2ada493a
AC
1207 if class_is_variable_p
1208 then
3d9a5942
AC
1209 printf "\n"
1210 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1211 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1212 fi
1213 if class_is_function_p
1214 then
3d9a5942 1215 printf "\n"
72e74a21 1216 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1217 then
1218 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1219 elif class_is_multiarch_p
1220 then
1221 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1222 else
1223 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1224 fi
72e74a21 1225 if [ "x${formal}" = "xvoid" ]
104c1213 1226 then
3d9a5942 1227 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1228 else
3d9a5942 1229 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1230 fi
3d9a5942 1231 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1232 fi
104c1213
JM
1233done
1234
1235# close it off
1236cat <<EOF
1237
a96d9b2e
SDJ
1238/* Definition for an unknown syscall, used basically in error-cases. */
1239#define UNKNOWN_SYSCALL (-1)
1240
104c1213
JM
1241extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1242
1243
1244/* Mechanism for co-ordinating the selection of a specific
1245 architecture.
1246
1247 GDB targets (*-tdep.c) can register an interest in a specific
1248 architecture. Other GDB components can register a need to maintain
1249 per-architecture data.
1250
1251 The mechanisms below ensures that there is only a loose connection
1252 between the set-architecture command and the various GDB
0fa6923a 1253 components. Each component can independently register their need
104c1213
JM
1254 to maintain architecture specific data with gdbarch.
1255
1256 Pragmatics:
1257
1258 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1259 didn't scale.
1260
1261 The more traditional mega-struct containing architecture specific
1262 data for all the various GDB components was also considered. Since
0fa6923a 1263 GDB is built from a variable number of (fairly independent)
104c1213 1264 components it was determined that the global aproach was not
0963b4bd 1265 applicable. */
104c1213
JM
1266
1267
1268/* Register a new architectural family with GDB.
1269
1270 Register support for the specified ARCHITECTURE with GDB. When
1271 gdbarch determines that the specified architecture has been
1272 selected, the corresponding INIT function is called.
1273
1274 --
1275
1276 The INIT function takes two parameters: INFO which contains the
1277 information available to gdbarch about the (possibly new)
1278 architecture; ARCHES which is a list of the previously created
1279 \`\`struct gdbarch'' for this architecture.
1280
0f79675b 1281 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1282 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1283
1284 The ARCHES parameter is a linked list (sorted most recently used)
1285 of all the previously created architures for this architecture
1286 family. The (possibly NULL) ARCHES->gdbarch can used to access
1287 values from the previously selected architecture for this
59837fe0 1288 architecture family.
104c1213
JM
1289
1290 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1291 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1292 gdbarch'' from the ARCHES list - indicating that the new
1293 architecture is just a synonym for an earlier architecture (see
1294 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1295 - that describes the selected architecture (see gdbarch_alloc()).
1296
1297 The DUMP_TDEP function shall print out all target specific values.
1298 Care should be taken to ensure that the function works in both the
0963b4bd 1299 multi-arch and non- multi-arch cases. */
104c1213
JM
1300
1301struct gdbarch_list
1302{
1303 struct gdbarch *gdbarch;
1304 struct gdbarch_list *next;
1305};
1306
1307struct gdbarch_info
1308{
0963b4bd 1309 /* Use default: NULL (ZERO). */
104c1213
JM
1310 const struct bfd_arch_info *bfd_arch_info;
1311
428721aa 1312 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1313 enum bfd_endian byte_order;
104c1213 1314
94123b4f 1315 enum bfd_endian byte_order_for_code;
9d4fde75 1316
0963b4bd 1317 /* Use default: NULL (ZERO). */
104c1213
JM
1318 bfd *abfd;
1319
0963b4bd 1320 /* Use default: NULL (ZERO). */
104c1213 1321 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1322
1323 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1324 enum gdb_osabi osabi;
424163ea
DJ
1325
1326 /* Use default: NULL (ZERO). */
1327 const struct target_desc *target_desc;
104c1213
JM
1328};
1329
1330typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1331typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1332
4b9b3959 1333/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1334extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1335
4b9b3959
AC
1336extern void gdbarch_register (enum bfd_architecture architecture,
1337 gdbarch_init_ftype *,
1338 gdbarch_dump_tdep_ftype *);
1339
104c1213 1340
b4a20239
AC
1341/* Return a freshly allocated, NULL terminated, array of the valid
1342 architecture names. Since architectures are registered during the
1343 _initialize phase this function only returns useful information
0963b4bd 1344 once initialization has been completed. */
b4a20239
AC
1345
1346extern const char **gdbarch_printable_names (void);
1347
1348
104c1213 1349/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1350 matches the information provided by INFO. */
104c1213 1351
424163ea 1352extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1353
1354
1355/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1356 basic initialization using values obtained from the INFO and TDEP
104c1213 1357 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1358 initialization of the object. */
104c1213
JM
1359
1360extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1361
1362
4b9b3959
AC
1363/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1364 It is assumed that the caller freeds the \`\`struct
0963b4bd 1365 gdbarch_tdep''. */
4b9b3959 1366
058f20d5
JB
1367extern void gdbarch_free (struct gdbarch *);
1368
1369
aebd7893
AC
1370/* Helper function. Allocate memory from the \`\`struct gdbarch''
1371 obstack. The memory is freed when the corresponding architecture
1372 is also freed. */
1373
1374extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1375#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1376#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1377
1378
0963b4bd 1379/* Helper function. Force an update of the current architecture.
104c1213 1380
b732d07d
AC
1381 The actual architecture selected is determined by INFO, \`\`(gdb) set
1382 architecture'' et.al., the existing architecture and BFD's default
1383 architecture. INFO should be initialized to zero and then selected
1384 fields should be updated.
104c1213 1385
0963b4bd 1386 Returns non-zero if the update succeeds. */
16f33e29
AC
1387
1388extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1389
1390
ebdba546
AC
1391/* Helper function. Find an architecture matching info.
1392
1393 INFO should be initialized using gdbarch_info_init, relevant fields
1394 set, and then finished using gdbarch_info_fill.
1395
1396 Returns the corresponding architecture, or NULL if no matching
59837fe0 1397 architecture was found. */
ebdba546
AC
1398
1399extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1400
1401
aff68abb 1402/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1403
aff68abb 1404extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1405
104c1213
JM
1406
1407/* Register per-architecture data-pointer.
1408
1409 Reserve space for a per-architecture data-pointer. An identifier
1410 for the reserved data-pointer is returned. That identifer should
95160752 1411 be saved in a local static variable.
104c1213 1412
fcc1c85c
AC
1413 Memory for the per-architecture data shall be allocated using
1414 gdbarch_obstack_zalloc. That memory will be deleted when the
1415 corresponding architecture object is deleted.
104c1213 1416
95160752
AC
1417 When a previously created architecture is re-selected, the
1418 per-architecture data-pointer for that previous architecture is
76860b5f 1419 restored. INIT() is not re-called.
104c1213
JM
1420
1421 Multiple registrarants for any architecture are allowed (and
1422 strongly encouraged). */
1423
95160752 1424struct gdbarch_data;
104c1213 1425
030f20e1
AC
1426typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1427extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1428typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1429extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1430extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1431 struct gdbarch_data *data,
1432 void *pointer);
104c1213 1433
451fbdda 1434extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1435
1436
0fa6923a 1437/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1438 byte-order, ...) using information found in the BFD. */
104c1213
JM
1439
1440extern void set_gdbarch_from_file (bfd *);
1441
1442
e514a9d6
JM
1443/* Initialize the current architecture to the "first" one we find on
1444 our list. */
1445
1446extern void initialize_current_architecture (void);
1447
104c1213 1448/* gdbarch trace variable */
ccce17b0 1449extern unsigned int gdbarch_debug;
104c1213 1450
4b9b3959 1451extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1452
1453#endif
1454EOF
1455exec 1>&2
1456#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1457compare_new gdbarch.h
104c1213
JM
1458
1459
1460#
1461# C file
1462#
1463
1464exec > new-gdbarch.c
1465copyright
1466cat <<EOF
1467
1468#include "defs.h"
7355ddba 1469#include "arch-utils.h"
104c1213 1470
104c1213 1471#include "gdbcmd.h"
faaf634c 1472#include "inferior.h"
104c1213
JM
1473#include "symcat.h"
1474
f0d4cc9e 1475#include "floatformat.h"
b59ff9d5 1476#include "reggroups.h"
4be87837 1477#include "osabi.h"
aebd7893 1478#include "gdb_obstack.h"
383f836e 1479#include "observer.h"
a3ecef73 1480#include "regcache.h"
19630284 1481#include "objfiles.h"
95160752 1482
104c1213
JM
1483/* Static function declarations */
1484
b3cc3077 1485static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1486
104c1213
JM
1487/* Non-zero if we want to trace architecture code. */
1488
1489#ifndef GDBARCH_DEBUG
1490#define GDBARCH_DEBUG 0
1491#endif
ccce17b0 1492unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1493static void
1494show_gdbarch_debug (struct ui_file *file, int from_tty,
1495 struct cmd_list_element *c, const char *value)
1496{
1497 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1498}
104c1213 1499
456fcf94 1500static const char *
8da61cc4 1501pformat (const struct floatformat **format)
456fcf94
AC
1502{
1503 if (format == NULL)
1504 return "(null)";
1505 else
8da61cc4
DJ
1506 /* Just print out one of them - this is only for diagnostics. */
1507 return format[0]->name;
456fcf94
AC
1508}
1509
08105857
PA
1510static const char *
1511pstring (const char *string)
1512{
1513 if (string == NULL)
1514 return "(null)";
1515 return string;
05c0465e
SDJ
1516}
1517
1518/* Helper function to print a list of strings, represented as "const
1519 char *const *". The list is printed comma-separated. */
1520
1521static char *
1522pstring_list (const char *const *list)
1523{
1524 static char ret[100];
1525 const char *const *p;
1526 size_t offset = 0;
1527
1528 if (list == NULL)
1529 return "(null)";
1530
1531 ret[0] = '\0';
1532 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1533 {
1534 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1535 offset += 2 + s;
1536 }
1537
1538 if (offset > 0)
1539 {
1540 gdb_assert (offset - 2 < sizeof (ret));
1541 ret[offset - 2] = '\0';
1542 }
1543
1544 return ret;
08105857
PA
1545}
1546
104c1213
JM
1547EOF
1548
1549# gdbarch open the gdbarch object
3d9a5942 1550printf "\n"
0963b4bd 1551printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1552printf "\n"
1553printf "struct gdbarch\n"
1554printf "{\n"
76860b5f
AC
1555printf " /* Has this architecture been fully initialized? */\n"
1556printf " int initialized_p;\n"
aebd7893
AC
1557printf "\n"
1558printf " /* An obstack bound to the lifetime of the architecture. */\n"
1559printf " struct obstack *obstack;\n"
1560printf "\n"
0963b4bd 1561printf " /* basic architectural information. */\n"
34620563 1562function_list | while do_read
104c1213 1563do
2ada493a
AC
1564 if class_is_info_p
1565 then
3d9a5942 1566 printf " ${returntype} ${function};\n"
2ada493a 1567 fi
104c1213 1568done
3d9a5942 1569printf "\n"
0963b4bd 1570printf " /* target specific vector. */\n"
3d9a5942
AC
1571printf " struct gdbarch_tdep *tdep;\n"
1572printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1573printf "\n"
0963b4bd 1574printf " /* per-architecture data-pointers. */\n"
95160752 1575printf " unsigned nr_data;\n"
3d9a5942
AC
1576printf " void **data;\n"
1577printf "\n"
104c1213
JM
1578cat <<EOF
1579 /* Multi-arch values.
1580
1581 When extending this structure you must:
1582
1583 Add the field below.
1584
1585 Declare set/get functions and define the corresponding
1586 macro in gdbarch.h.
1587
1588 gdbarch_alloc(): If zero/NULL is not a suitable default,
1589 initialize the new field.
1590
1591 verify_gdbarch(): Confirm that the target updated the field
1592 correctly.
1593
7e73cedf 1594 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1595 field is dumped out
1596
104c1213
JM
1597 get_gdbarch(): Implement the set/get functions (probably using
1598 the macro's as shortcuts).
1599
1600 */
1601
1602EOF
34620563 1603function_list | while do_read
104c1213 1604do
2ada493a
AC
1605 if class_is_variable_p
1606 then
3d9a5942 1607 printf " ${returntype} ${function};\n"
2ada493a
AC
1608 elif class_is_function_p
1609 then
2f9b146e 1610 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1611 fi
104c1213 1612done
3d9a5942 1613printf "};\n"
104c1213 1614
104c1213 1615# Create a new gdbarch struct
104c1213 1616cat <<EOF
7de2341d 1617
66b43ecb 1618/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1619 \`\`struct gdbarch_info''. */
104c1213 1620EOF
3d9a5942 1621printf "\n"
104c1213
JM
1622cat <<EOF
1623struct gdbarch *
1624gdbarch_alloc (const struct gdbarch_info *info,
1625 struct gdbarch_tdep *tdep)
1626{
be7811ad 1627 struct gdbarch *gdbarch;
aebd7893
AC
1628
1629 /* Create an obstack for allocating all the per-architecture memory,
1630 then use that to allocate the architecture vector. */
70ba0933 1631 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1632 obstack_init (obstack);
be7811ad
MD
1633 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1634 memset (gdbarch, 0, sizeof (*gdbarch));
1635 gdbarch->obstack = obstack;
85de9627 1636
be7811ad 1637 alloc_gdbarch_data (gdbarch);
85de9627 1638
be7811ad 1639 gdbarch->tdep = tdep;
104c1213 1640EOF
3d9a5942 1641printf "\n"
34620563 1642function_list | while do_read
104c1213 1643do
2ada493a
AC
1644 if class_is_info_p
1645 then
be7811ad 1646 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1647 fi
104c1213 1648done
3d9a5942 1649printf "\n"
0963b4bd 1650printf " /* Force the explicit initialization of these. */\n"
34620563 1651function_list | while do_read
104c1213 1652do
2ada493a
AC
1653 if class_is_function_p || class_is_variable_p
1654 then
72e74a21 1655 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1656 then
be7811ad 1657 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1658 fi
2ada493a 1659 fi
104c1213
JM
1660done
1661cat <<EOF
1662 /* gdbarch_alloc() */
1663
be7811ad 1664 return gdbarch;
104c1213
JM
1665}
1666EOF
1667
058f20d5 1668# Free a gdbarch struct.
3d9a5942
AC
1669printf "\n"
1670printf "\n"
058f20d5 1671cat <<EOF
aebd7893
AC
1672/* Allocate extra space using the per-architecture obstack. */
1673
1674void *
1675gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1676{
1677 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1678
aebd7893
AC
1679 memset (data, 0, size);
1680 return data;
1681}
1682
1683
058f20d5
JB
1684/* Free a gdbarch struct. This should never happen in normal
1685 operation --- once you've created a gdbarch, you keep it around.
1686 However, if an architecture's init function encounters an error
1687 building the structure, it may need to clean up a partially
1688 constructed gdbarch. */
4b9b3959 1689
058f20d5
JB
1690void
1691gdbarch_free (struct gdbarch *arch)
1692{
aebd7893 1693 struct obstack *obstack;
05c547f6 1694
95160752 1695 gdb_assert (arch != NULL);
aebd7893
AC
1696 gdb_assert (!arch->initialized_p);
1697 obstack = arch->obstack;
1698 obstack_free (obstack, 0); /* Includes the ARCH. */
1699 xfree (obstack);
058f20d5
JB
1700}
1701EOF
1702
104c1213 1703# verify a new architecture
104c1213 1704cat <<EOF
db446970
AC
1705
1706
1707/* Ensure that all values in a GDBARCH are reasonable. */
1708
104c1213 1709static void
be7811ad 1710verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1711{
f16a1923
AC
1712 struct ui_file *log;
1713 struct cleanup *cleanups;
759ef836 1714 long length;
f16a1923 1715 char *buf;
05c547f6 1716
f16a1923
AC
1717 log = mem_fileopen ();
1718 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1719 /* fundamental */
be7811ad 1720 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1721 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1722 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1723 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1724 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1725EOF
34620563 1726function_list | while do_read
104c1213 1727do
2ada493a
AC
1728 if class_is_function_p || class_is_variable_p
1729 then
72e74a21 1730 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1731 then
3d9a5942 1732 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1733 elif class_is_predicate_p
1734 then
0963b4bd 1735 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1736 # FIXME: See do_read for potential simplification
72e74a21 1737 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1738 then
3d9a5942 1739 printf " if (${invalid_p})\n"
be7811ad 1740 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1741 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1742 then
be7811ad
MD
1743 printf " if (gdbarch->${function} == ${predefault})\n"
1744 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1745 elif [ -n "${postdefault}" ]
f0d4cc9e 1746 then
be7811ad
MD
1747 printf " if (gdbarch->${function} == 0)\n"
1748 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1749 elif [ -n "${invalid_p}" ]
104c1213 1750 then
4d60522e 1751 printf " if (${invalid_p})\n"
f16a1923 1752 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1753 elif [ -n "${predefault}" ]
104c1213 1754 then
be7811ad 1755 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1756 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1757 fi
2ada493a 1758 fi
104c1213
JM
1759done
1760cat <<EOF
759ef836 1761 buf = ui_file_xstrdup (log, &length);
f16a1923 1762 make_cleanup (xfree, buf);
759ef836 1763 if (length > 0)
f16a1923 1764 internal_error (__FILE__, __LINE__,
85c07804 1765 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1766 buf);
1767 do_cleanups (cleanups);
104c1213
JM
1768}
1769EOF
1770
1771# dump the structure
3d9a5942
AC
1772printf "\n"
1773printf "\n"
104c1213 1774cat <<EOF
0963b4bd 1775/* Print out the details of the current architecture. */
4b9b3959 1776
104c1213 1777void
be7811ad 1778gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1779{
b78960be 1780 const char *gdb_nm_file = "<not-defined>";
05c547f6 1781
b78960be
AC
1782#if defined (GDB_NM_FILE)
1783 gdb_nm_file = GDB_NM_FILE;
1784#endif
1785 fprintf_unfiltered (file,
1786 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1787 gdb_nm_file);
104c1213 1788EOF
97030eea 1789function_list | sort -t: -k 3 | while do_read
104c1213 1790do
1e9f55d0
AC
1791 # First the predicate
1792 if class_is_predicate_p
1793 then
7996bcec 1794 printf " fprintf_unfiltered (file,\n"
48f7351b 1795 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1796 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1797 fi
48f7351b 1798 # Print the corresponding value.
283354d8 1799 if class_is_function_p
4b9b3959 1800 then
7996bcec 1801 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1802 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1803 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1804 else
48f7351b 1805 # It is a variable
2f9b146e
AC
1806 case "${print}:${returntype}" in
1807 :CORE_ADDR )
0b1553bc
UW
1808 fmt="%s"
1809 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1810 ;;
2f9b146e 1811 :* )
48f7351b 1812 fmt="%s"
623d3eb1 1813 print="plongest (gdbarch->${function})"
48f7351b
AC
1814 ;;
1815 * )
2f9b146e 1816 fmt="%s"
48f7351b
AC
1817 ;;
1818 esac
3d9a5942 1819 printf " fprintf_unfiltered (file,\n"
48f7351b 1820 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1821 printf " ${print});\n"
2ada493a 1822 fi
104c1213 1823done
381323f4 1824cat <<EOF
be7811ad
MD
1825 if (gdbarch->dump_tdep != NULL)
1826 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1827}
1828EOF
104c1213
JM
1829
1830
1831# GET/SET
3d9a5942 1832printf "\n"
104c1213
JM
1833cat <<EOF
1834struct gdbarch_tdep *
1835gdbarch_tdep (struct gdbarch *gdbarch)
1836{
1837 if (gdbarch_debug >= 2)
3d9a5942 1838 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1839 return gdbarch->tdep;
1840}
1841EOF
3d9a5942 1842printf "\n"
34620563 1843function_list | while do_read
104c1213 1844do
2ada493a
AC
1845 if class_is_predicate_p
1846 then
3d9a5942
AC
1847 printf "\n"
1848 printf "int\n"
1849 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1850 printf "{\n"
8de9bdc4 1851 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1852 printf " return ${predicate};\n"
3d9a5942 1853 printf "}\n"
2ada493a
AC
1854 fi
1855 if class_is_function_p
1856 then
3d9a5942
AC
1857 printf "\n"
1858 printf "${returntype}\n"
72e74a21 1859 if [ "x${formal}" = "xvoid" ]
104c1213 1860 then
3d9a5942 1861 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1862 else
3d9a5942 1863 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1864 fi
3d9a5942 1865 printf "{\n"
8de9bdc4 1866 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1867 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1868 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1869 then
1870 # Allow a call to a function with a predicate.
956ac328 1871 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1872 fi
3d9a5942
AC
1873 printf " if (gdbarch_debug >= 2)\n"
1874 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1875 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1876 then
1877 if class_is_multiarch_p
1878 then
1879 params="gdbarch"
1880 else
1881 params=""
1882 fi
1883 else
1884 if class_is_multiarch_p
1885 then
1886 params="gdbarch, ${actual}"
1887 else
1888 params="${actual}"
1889 fi
1890 fi
72e74a21 1891 if [ "x${returntype}" = "xvoid" ]
104c1213 1892 then
4a5c6a1d 1893 printf " gdbarch->${function} (${params});\n"
104c1213 1894 else
4a5c6a1d 1895 printf " return gdbarch->${function} (${params});\n"
104c1213 1896 fi
3d9a5942
AC
1897 printf "}\n"
1898 printf "\n"
1899 printf "void\n"
1900 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1901 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1902 printf "{\n"
1903 printf " gdbarch->${function} = ${function};\n"
1904 printf "}\n"
2ada493a
AC
1905 elif class_is_variable_p
1906 then
3d9a5942
AC
1907 printf "\n"
1908 printf "${returntype}\n"
1909 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1910 printf "{\n"
8de9bdc4 1911 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1912 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1913 then
3d9a5942 1914 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1915 elif [ -n "${invalid_p}" ]
104c1213 1916 then
956ac328
AC
1917 printf " /* Check variable is valid. */\n"
1918 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1919 elif [ -n "${predefault}" ]
104c1213 1920 then
956ac328
AC
1921 printf " /* Check variable changed from pre-default. */\n"
1922 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1923 fi
3d9a5942
AC
1924 printf " if (gdbarch_debug >= 2)\n"
1925 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1926 printf " return gdbarch->${function};\n"
1927 printf "}\n"
1928 printf "\n"
1929 printf "void\n"
1930 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1931 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1932 printf "{\n"
1933 printf " gdbarch->${function} = ${function};\n"
1934 printf "}\n"
2ada493a
AC
1935 elif class_is_info_p
1936 then
3d9a5942
AC
1937 printf "\n"
1938 printf "${returntype}\n"
1939 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1940 printf "{\n"
8de9bdc4 1941 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1942 printf " if (gdbarch_debug >= 2)\n"
1943 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1944 printf " return gdbarch->${function};\n"
1945 printf "}\n"
2ada493a 1946 fi
104c1213
JM
1947done
1948
1949# All the trailing guff
1950cat <<EOF
1951
1952
f44c642f 1953/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1954 modules. */
104c1213
JM
1955
1956struct gdbarch_data
1957{
95160752 1958 unsigned index;
76860b5f 1959 int init_p;
030f20e1
AC
1960 gdbarch_data_pre_init_ftype *pre_init;
1961 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1962};
1963
1964struct gdbarch_data_registration
1965{
104c1213
JM
1966 struct gdbarch_data *data;
1967 struct gdbarch_data_registration *next;
1968};
1969
f44c642f 1970struct gdbarch_data_registry
104c1213 1971{
95160752 1972 unsigned nr;
104c1213
JM
1973 struct gdbarch_data_registration *registrations;
1974};
1975
f44c642f 1976struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1977{
1978 0, NULL,
1979};
1980
030f20e1
AC
1981static struct gdbarch_data *
1982gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1983 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1984{
1985 struct gdbarch_data_registration **curr;
05c547f6
MS
1986
1987 /* Append the new registration. */
f44c642f 1988 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1989 (*curr) != NULL;
1990 curr = &(*curr)->next);
70ba0933 1991 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 1992 (*curr)->next = NULL;
70ba0933 1993 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 1994 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1995 (*curr)->data->pre_init = pre_init;
1996 (*curr)->data->post_init = post_init;
76860b5f 1997 (*curr)->data->init_p = 1;
104c1213
JM
1998 return (*curr)->data;
1999}
2000
030f20e1
AC
2001struct gdbarch_data *
2002gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2003{
2004 return gdbarch_data_register (pre_init, NULL);
2005}
2006
2007struct gdbarch_data *
2008gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2009{
2010 return gdbarch_data_register (NULL, post_init);
2011}
104c1213 2012
0963b4bd 2013/* Create/delete the gdbarch data vector. */
95160752
AC
2014
2015static void
b3cc3077 2016alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2017{
b3cc3077
JB
2018 gdb_assert (gdbarch->data == NULL);
2019 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2020 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2021}
3c875b6f 2022
76860b5f 2023/* Initialize the current value of the specified per-architecture
0963b4bd 2024 data-pointer. */
b3cc3077 2025
95160752 2026void
030f20e1
AC
2027deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2028 struct gdbarch_data *data,
2029 void *pointer)
95160752
AC
2030{
2031 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2032 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2033 gdb_assert (data->pre_init == NULL);
95160752
AC
2034 gdbarch->data[data->index] = pointer;
2035}
2036
104c1213 2037/* Return the current value of the specified per-architecture
0963b4bd 2038 data-pointer. */
104c1213
JM
2039
2040void *
451fbdda 2041gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2042{
451fbdda 2043 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2044 if (gdbarch->data[data->index] == NULL)
76860b5f 2045 {
030f20e1
AC
2046 /* The data-pointer isn't initialized, call init() to get a
2047 value. */
2048 if (data->pre_init != NULL)
2049 /* Mid architecture creation: pass just the obstack, and not
2050 the entire architecture, as that way it isn't possible for
2051 pre-init code to refer to undefined architecture
2052 fields. */
2053 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2054 else if (gdbarch->initialized_p
2055 && data->post_init != NULL)
2056 /* Post architecture creation: pass the entire architecture
2057 (as all fields are valid), but be careful to also detect
2058 recursive references. */
2059 {
2060 gdb_assert (data->init_p);
2061 data->init_p = 0;
2062 gdbarch->data[data->index] = data->post_init (gdbarch);
2063 data->init_p = 1;
2064 }
2065 else
2066 /* The architecture initialization hasn't completed - punt -
2067 hope that the caller knows what they are doing. Once
2068 deprecated_set_gdbarch_data has been initialized, this can be
2069 changed to an internal error. */
2070 return NULL;
76860b5f
AC
2071 gdb_assert (gdbarch->data[data->index] != NULL);
2072 }
451fbdda 2073 return gdbarch->data[data->index];
104c1213
JM
2074}
2075
2076
0963b4bd 2077/* Keep a registry of the architectures known by GDB. */
104c1213 2078
4b9b3959 2079struct gdbarch_registration
104c1213
JM
2080{
2081 enum bfd_architecture bfd_architecture;
2082 gdbarch_init_ftype *init;
4b9b3959 2083 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2084 struct gdbarch_list *arches;
4b9b3959 2085 struct gdbarch_registration *next;
104c1213
JM
2086};
2087
f44c642f 2088static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2089
b4a20239
AC
2090static void
2091append_name (const char ***buf, int *nr, const char *name)
2092{
2093 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2094 (*buf)[*nr] = name;
2095 *nr += 1;
2096}
2097
2098const char **
2099gdbarch_printable_names (void)
2100{
7996bcec 2101 /* Accumulate a list of names based on the registed list of
0963b4bd 2102 architectures. */
7996bcec
AC
2103 int nr_arches = 0;
2104 const char **arches = NULL;
2105 struct gdbarch_registration *rego;
05c547f6 2106
7996bcec
AC
2107 for (rego = gdbarch_registry;
2108 rego != NULL;
2109 rego = rego->next)
b4a20239 2110 {
7996bcec
AC
2111 const struct bfd_arch_info *ap;
2112 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2113 if (ap == NULL)
2114 internal_error (__FILE__, __LINE__,
85c07804 2115 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2116 do
2117 {
2118 append_name (&arches, &nr_arches, ap->printable_name);
2119 ap = ap->next;
2120 }
2121 while (ap != NULL);
b4a20239 2122 }
7996bcec
AC
2123 append_name (&arches, &nr_arches, NULL);
2124 return arches;
b4a20239
AC
2125}
2126
2127
104c1213 2128void
4b9b3959
AC
2129gdbarch_register (enum bfd_architecture bfd_architecture,
2130 gdbarch_init_ftype *init,
2131 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2132{
4b9b3959 2133 struct gdbarch_registration **curr;
104c1213 2134 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2135
ec3d358c 2136 /* Check that BFD recognizes this architecture */
104c1213
JM
2137 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2138 if (bfd_arch_info == NULL)
2139 {
8e65ff28 2140 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2141 _("gdbarch: Attempt to register "
2142 "unknown architecture (%d)"),
8e65ff28 2143 bfd_architecture);
104c1213 2144 }
0963b4bd 2145 /* Check that we haven't seen this architecture before. */
f44c642f 2146 for (curr = &gdbarch_registry;
104c1213
JM
2147 (*curr) != NULL;
2148 curr = &(*curr)->next)
2149 {
2150 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2151 internal_error (__FILE__, __LINE__,
64b9b334 2152 _("gdbarch: Duplicate registration "
0963b4bd 2153 "of architecture (%s)"),
8e65ff28 2154 bfd_arch_info->printable_name);
104c1213
JM
2155 }
2156 /* log it */
2157 if (gdbarch_debug)
30737ed9 2158 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2159 bfd_arch_info->printable_name,
30737ed9 2160 host_address_to_string (init));
104c1213 2161 /* Append it */
70ba0933 2162 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2163 (*curr)->bfd_architecture = bfd_architecture;
2164 (*curr)->init = init;
4b9b3959 2165 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2166 (*curr)->arches = NULL;
2167 (*curr)->next = NULL;
4b9b3959
AC
2168}
2169
2170void
2171register_gdbarch_init (enum bfd_architecture bfd_architecture,
2172 gdbarch_init_ftype *init)
2173{
2174 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2175}
104c1213
JM
2176
2177
424163ea 2178/* Look for an architecture using gdbarch_info. */
104c1213
JM
2179
2180struct gdbarch_list *
2181gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2182 const struct gdbarch_info *info)
2183{
2184 for (; arches != NULL; arches = arches->next)
2185 {
2186 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2187 continue;
2188 if (info->byte_order != arches->gdbarch->byte_order)
2189 continue;
4be87837
DJ
2190 if (info->osabi != arches->gdbarch->osabi)
2191 continue;
424163ea
DJ
2192 if (info->target_desc != arches->gdbarch->target_desc)
2193 continue;
104c1213
JM
2194 return arches;
2195 }
2196 return NULL;
2197}
2198
2199
ebdba546 2200/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2201 architecture if needed. Return that new architecture. */
104c1213 2202
59837fe0
UW
2203struct gdbarch *
2204gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2205{
2206 struct gdbarch *new_gdbarch;
4b9b3959 2207 struct gdbarch_registration *rego;
104c1213 2208
b732d07d 2209 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2210 sources: "set ..."; INFOabfd supplied; and the global
2211 defaults. */
2212 gdbarch_info_fill (&info);
4be87837 2213
0963b4bd 2214 /* Must have found some sort of architecture. */
b732d07d 2215 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2216
2217 if (gdbarch_debug)
2218 {
2219 fprintf_unfiltered (gdb_stdlog,
59837fe0 2220 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2221 (info.bfd_arch_info != NULL
2222 ? info.bfd_arch_info->printable_name
2223 : "(null)"));
2224 fprintf_unfiltered (gdb_stdlog,
59837fe0 2225 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2226 info.byte_order,
d7449b42 2227 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2228 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2229 : "default"));
4be87837 2230 fprintf_unfiltered (gdb_stdlog,
59837fe0 2231 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2232 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2233 fprintf_unfiltered (gdb_stdlog,
59837fe0 2234 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2235 host_address_to_string (info.abfd));
104c1213 2236 fprintf_unfiltered (gdb_stdlog,
59837fe0 2237 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2238 host_address_to_string (info.tdep_info));
104c1213
JM
2239 }
2240
ebdba546 2241 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2242 for (rego = gdbarch_registry;
2243 rego != NULL;
2244 rego = rego->next)
2245 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2246 break;
2247 if (rego == NULL)
2248 {
2249 if (gdbarch_debug)
59837fe0 2250 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2251 "No matching architecture\n");
b732d07d
AC
2252 return 0;
2253 }
2254
ebdba546 2255 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2256 new_gdbarch = rego->init (info, rego->arches);
2257
ebdba546
AC
2258 /* Did the tdep code like it? No. Reject the change and revert to
2259 the old architecture. */
104c1213
JM
2260 if (new_gdbarch == NULL)
2261 {
2262 if (gdbarch_debug)
59837fe0 2263 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2264 "Target rejected architecture\n");
2265 return NULL;
104c1213
JM
2266 }
2267
ebdba546
AC
2268 /* Is this a pre-existing architecture (as determined by already
2269 being initialized)? Move it to the front of the architecture
2270 list (keeping the list sorted Most Recently Used). */
2271 if (new_gdbarch->initialized_p)
104c1213 2272 {
ebdba546
AC
2273 struct gdbarch_list **list;
2274 struct gdbarch_list *this;
104c1213 2275 if (gdbarch_debug)
59837fe0 2276 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2277 "Previous architecture %s (%s) selected\n",
2278 host_address_to_string (new_gdbarch),
104c1213 2279 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2280 /* Find the existing arch in the list. */
2281 for (list = &rego->arches;
2282 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2283 list = &(*list)->next);
2284 /* It had better be in the list of architectures. */
2285 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2286 /* Unlink THIS. */
2287 this = (*list);
2288 (*list) = this->next;
2289 /* Insert THIS at the front. */
2290 this->next = rego->arches;
2291 rego->arches = this;
2292 /* Return it. */
2293 return new_gdbarch;
104c1213
JM
2294 }
2295
ebdba546
AC
2296 /* It's a new architecture. */
2297 if (gdbarch_debug)
59837fe0 2298 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2299 "New architecture %s (%s) selected\n",
2300 host_address_to_string (new_gdbarch),
ebdba546
AC
2301 new_gdbarch->bfd_arch_info->printable_name);
2302
2303 /* Insert the new architecture into the front of the architecture
2304 list (keep the list sorted Most Recently Used). */
0f79675b 2305 {
70ba0933 2306 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2307 this->next = rego->arches;
2308 this->gdbarch = new_gdbarch;
2309 rego->arches = this;
2310 }
104c1213 2311
4b9b3959
AC
2312 /* Check that the newly installed architecture is valid. Plug in
2313 any post init values. */
2314 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2315 verify_gdbarch (new_gdbarch);
ebdba546 2316 new_gdbarch->initialized_p = 1;
104c1213 2317
4b9b3959 2318 if (gdbarch_debug)
ebdba546
AC
2319 gdbarch_dump (new_gdbarch, gdb_stdlog);
2320
2321 return new_gdbarch;
2322}
2323
e487cc15 2324/* Make the specified architecture current. */
ebdba546
AC
2325
2326void
aff68abb 2327set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2328{
2329 gdb_assert (new_gdbarch != NULL);
ebdba546 2330 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2331 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2332 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2333 registers_changed ();
ebdba546 2334}
104c1213 2335
f5656ead 2336/* Return the current inferior's arch. */
6ecd4729
PA
2337
2338struct gdbarch *
f5656ead 2339target_gdbarch (void)
6ecd4729
PA
2340{
2341 return current_inferior ()->gdbarch;
2342}
2343
104c1213 2344extern void _initialize_gdbarch (void);
b4a20239 2345
104c1213 2346void
34620563 2347_initialize_gdbarch (void)
104c1213 2348{
ccce17b0 2349 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2350Set architecture debugging."), _("\\
2351Show architecture debugging."), _("\\
2352When non-zero, architecture debugging is enabled."),
2353 NULL,
920d2a44 2354 show_gdbarch_debug,
85c07804 2355 &setdebuglist, &showdebuglist);
104c1213
JM
2356}
2357EOF
2358
2359# close things off
2360exec 1>&2
2361#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2362compare_new gdbarch.c