]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
The "record goto" command scans its arguments for "begin", "start", or "end".
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
28e7fd62 5# Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
97030eea 343i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 344i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
f3be58bc 472# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
473M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 475# deprecated_fp_regnum.
97030eea 476v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 477
a86c5fc9 478# See gdbint.texinfo. See infcall.c.
97030eea
UW
479M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480v:int:call_dummy_location::::AT_ENTRY_POINT::0
481M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 482
97030eea
UW
483m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
486# MAP a GDB RAW register number onto a simulator register number. See
487# also include/...-sim.h.
e7faf938 488m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
489m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 491# setjmp/longjmp support.
97030eea 492F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 493#
97030eea 494v:int:believe_pcc_promotion:::::::
104c1213 495#
0abe36f5 496m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 497f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 498f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
499# Construct a value representing the contents of register REGNUM in
500# frame FRAME, interpreted as type TYPE. The routine needs to
501# allocate and return a struct value with all value attributes
502# (but not the value contents) filled in.
97030eea 503f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 504#
9898f801
UW
505m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 507M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 508
6a3a010b
MR
509# Return the return-value convention that will be used by FUNCTION
510# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
511# case the return convention is computed based only on VALTYPE.
512#
513# If READBUF is not NULL, extract the return value and save it in this buffer.
514#
515# If WRITEBUF is not NULL, it contains a return value which will be
516# stored into the appropriate register. This can be used when we want
517# to force the value returned by a function (see the "return" command
518# for instance).
6a3a010b 519M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 520
18648a37
YQ
521# Return true if the return value of function is stored in the first hidden
522# parameter. In theory, this feature should be language-dependent, specified
523# by language and its ABI, such as C++. Unfortunately, compiler may
524# implement it to a target-dependent feature. So that we need such hook here
525# to be aware of this in GDB.
526m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
6093d2eb 528m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 529M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 530f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 531m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
532# Return the adjusted address and kind to use for Z0/Z1 packets.
533# KIND is usually the memory length of the breakpoint, but may have a
534# different target-specific meaning.
0e05dfcb 535m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 536M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
537m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 539v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
540
541# A function can be addressed by either it's "pointer" (possibly a
542# descriptor address) or "entry point" (first executable instruction).
543# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 544# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
545# a simplified subset of that functionality - the function's address
546# corresponds to the "function pointer" and the function's start
547# corresponds to the "function entry point" - and hence is redundant.
548
97030eea 549v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 550
123dc839
DJ
551# Return the remote protocol register number associated with this
552# register. Normally the identity mapping.
97030eea 553m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 554
b2756930 555# Fetch the target specific address used to represent a load module.
97030eea 556F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 557#
97030eea
UW
558v:CORE_ADDR:frame_args_skip:::0:::0
559M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
561# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562# frame-base. Enable frame-base before frame-unwind.
97030eea 563F:int:frame_num_args:struct frame_info *frame:frame
104c1213 564#
97030eea
UW
565M:CORE_ADDR:frame_align:CORE_ADDR address:address
566m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567v:int:frame_red_zone_size
f0d4cc9e 568#
97030eea 569m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
570# On some machines there are bits in addresses which are not really
571# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 572# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
573# we get a "real" address such as one would find in a symbol table.
574# This is used only for addresses of instructions, and even then I'm
575# not sure it's used in all contexts. It exists to deal with there
576# being a few stray bits in the PC which would mislead us, not as some
577# sort of generic thing to handle alignment or segmentation (it's
578# possible it should be in TARGET_READ_PC instead).
24568a2c 579m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
580
581# FIXME/cagney/2001-01-18: This should be split in two. A target method that
582# indicates if the target needs software single step. An ISA method to
583# implement it.
584#
585# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586# breakpoints using the breakpoint system instead of blatting memory directly
587# (as with rs6000).
64c4637f 588#
e6590a1b
UW
589# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590# target can single step. If not, then implement single step using breakpoints.
64c4637f 591#
6f112b18 592# A return value of 1 means that the software_single_step breakpoints
e6590a1b 593# were inserted; 0 means they were not.
97030eea 594F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 595
3352ef37
AC
596# Return non-zero if the processor is executing a delay slot and a
597# further single-step is needed before the instruction finishes.
97030eea 598M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 599# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 600# disassembler. Perhaps objdump can handle it?
97030eea
UW
601f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
603
604
cfd8ab24 605# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
606# evaluates non-zero, this is the address where the debugger will place
607# a step-resume breakpoint to get us past the dynamic linker.
97030eea 608m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 609# Some systems also have trampoline code for returning from shared libs.
2c02bd72 610m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 611
c12260ac
CV
612# A target might have problems with watchpoints as soon as the stack
613# frame of the current function has been destroyed. This mostly happens
614# as the first action in a funtion's epilogue. in_function_epilogue_p()
615# is defined to return a non-zero value if either the given addr is one
616# instruction after the stack destroying instruction up to the trailing
617# return instruction or if we can figure out that the stack frame has
618# already been invalidated regardless of the value of addr. Targets
619# which don't suffer from that problem could just let this functionality
620# untouched.
97030eea 621m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
622f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
624v:int:cannot_step_breakpoint:::0:0::0
625v:int:have_nonsteppable_watchpoint:::0:0::0
626F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 629# Is a register in a group
97030eea 630m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 631# Fetch the pointer to the ith function argument.
97030eea 632F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
633
634# Return the appropriate register set for a core file section with
635# name SECT_NAME and size SECT_SIZE.
97030eea 636M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 637
17ea7499
CES
638# Supported register notes in a core file.
639v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
6432734d
UW
641# Create core file notes
642M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
b3ac9c77
SDJ
644# The elfcore writer hook to use to write Linux prpsinfo notes to core
645# files. Most Linux architectures use the same prpsinfo32 or
646# prpsinfo64 layouts, and so won't need to provide this hook, as we
647# call the Linux generic routines in bfd to write prpsinfo notes by
648# default.
649F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
650
35c2fab7
UW
651# Find core file memory regions
652M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
653
de584861
PA
654# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
655# core file into buffer READBUF with length LEN.
97030eea 656M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 657
c0edd9ed 658# How the core target converts a PTID from a core file to a string.
28439f5e
PA
659M:char *:core_pid_to_str:ptid_t ptid:ptid
660
a78c2d62 661# BFD target to use when generating a core file.
86ba1042 662V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 663
0d5de010
DJ
664# If the elements of C++ vtables are in-place function descriptors rather
665# than normal function pointers (which may point to code or a descriptor),
666# set this to one.
97030eea 667v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
668
669# Set if the least significant bit of the delta is used instead of the least
670# significant bit of the pfn for pointers to virtual member functions.
97030eea 671v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
672
673# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 674F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 675
1668ae25 676# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
677V:ULONGEST:max_insn_length:::0:0
678
679# Copy the instruction at FROM to TO, and make any adjustments
680# necessary to single-step it at that address.
681#
682# REGS holds the state the thread's registers will have before
683# executing the copied instruction; the PC in REGS will refer to FROM,
684# not the copy at TO. The caller should update it to point at TO later.
685#
686# Return a pointer to data of the architecture's choice to be passed
687# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
688# the instruction's effects have been completely simulated, with the
689# resulting state written back to REGS.
690#
691# For a general explanation of displaced stepping and how GDB uses it,
692# see the comments in infrun.c.
693#
694# The TO area is only guaranteed to have space for
695# gdbarch_max_insn_length (arch) bytes, so this function must not
696# write more bytes than that to that area.
697#
698# If you do not provide this function, GDB assumes that the
699# architecture does not support displaced stepping.
700#
701# If your architecture doesn't need to adjust instructions before
702# single-stepping them, consider using simple_displaced_step_copy_insn
703# here.
704M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
705
99e40580
UW
706# Return true if GDB should use hardware single-stepping to execute
707# the displaced instruction identified by CLOSURE. If false,
708# GDB will simply restart execution at the displaced instruction
709# location, and it is up to the target to ensure GDB will receive
710# control again (e.g. by placing a software breakpoint instruction
711# into the displaced instruction buffer).
712#
713# The default implementation returns false on all targets that
714# provide a gdbarch_software_single_step routine, and true otherwise.
715m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
716
237fc4c9
PA
717# Fix up the state resulting from successfully single-stepping a
718# displaced instruction, to give the result we would have gotten from
719# stepping the instruction in its original location.
720#
721# REGS is the register state resulting from single-stepping the
722# displaced instruction.
723#
724# CLOSURE is the result from the matching call to
725# gdbarch_displaced_step_copy_insn.
726#
727# If you provide gdbarch_displaced_step_copy_insn.but not this
728# function, then GDB assumes that no fixup is needed after
729# single-stepping the instruction.
730#
731# For a general explanation of displaced stepping and how GDB uses it,
732# see the comments in infrun.c.
733M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
734
735# Free a closure returned by gdbarch_displaced_step_copy_insn.
736#
737# If you provide gdbarch_displaced_step_copy_insn, you must provide
738# this function as well.
739#
740# If your architecture uses closures that don't need to be freed, then
741# you can use simple_displaced_step_free_closure here.
742#
743# For a general explanation of displaced stepping and how GDB uses it,
744# see the comments in infrun.c.
745m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
746
747# Return the address of an appropriate place to put displaced
748# instructions while we step over them. There need only be one such
749# place, since we're only stepping one thread over a breakpoint at a
750# time.
751#
752# For a general explanation of displaced stepping and how GDB uses it,
753# see the comments in infrun.c.
754m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
755
dde08ee1
PA
756# Relocate an instruction to execute at a different address. OLDLOC
757# is the address in the inferior memory where the instruction to
758# relocate is currently at. On input, TO points to the destination
759# where we want the instruction to be copied (and possibly adjusted)
760# to. On output, it points to one past the end of the resulting
761# instruction(s). The effect of executing the instruction at TO shall
762# be the same as if executing it at FROM. For example, call
763# instructions that implicitly push the return address on the stack
764# should be adjusted to return to the instruction after OLDLOC;
765# relative branches, and other PC-relative instructions need the
766# offset adjusted; etc.
767M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
768
1c772458 769# Refresh overlay mapped state for section OSECT.
97030eea 770F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 771
97030eea 772M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
773
774# Handle special encoding of static variables in stabs debug info.
0d5cff50 775F:const char *:static_transform_name:const char *name:name
203c3895 776# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 777v:int:sofun_address_maybe_missing:::0:0::0
1cded358 778
0508c3ec
HZ
779# Parse the instruction at ADDR storing in the record execution log
780# the registers REGCACHE and memory ranges that will be affected when
781# the instruction executes, along with their current values.
782# Return -1 if something goes wrong, 0 otherwise.
783M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
784
3846b520
HZ
785# Save process state after a signal.
786# Return -1 if something goes wrong, 0 otherwise.
2ea28649 787M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 788
22203bbf 789# Signal translation: translate inferior's signal (target's) number
86b49880
PA
790# into GDB's representation. The implementation of this method must
791# be host independent. IOW, don't rely on symbols of the NAT_FILE
792# header (the nm-*.h files), the host <signal.h> header, or similar
793# headers. This is mainly used when cross-debugging core files ---
794# "Live" targets hide the translation behind the target interface
1f8cf220
PA
795# (target_wait, target_resume, etc.).
796M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 797
4aa995e1
PA
798# Extra signal info inspection.
799#
800# Return a type suitable to inspect extra signal information.
801M:struct type *:get_siginfo_type:void:
802
60c5725c
DJ
803# Record architecture-specific information from the symbol table.
804M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 805
a96d9b2e
SDJ
806# Function for the 'catch syscall' feature.
807
808# Get architecture-specific system calls information from registers.
809M:LONGEST:get_syscall_number:ptid_t ptid:ptid
810
55aa24fb
SDJ
811# SystemTap related fields and functions.
812
813# Prefix used to mark an integer constant on the architecture's assembly
814# For example, on x86 integer constants are written as:
815#
816# \$10 ;; integer constant 10
817#
818# in this case, this prefix would be the character \`\$\'.
08af7a40 819v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
820
821# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 822v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
823
824# Prefix used to mark a register name on the architecture's assembly.
825# For example, on x86 the register name is written as:
826#
827# \%eax ;; register eax
828#
829# in this case, this prefix would be the character \`\%\'.
08af7a40 830v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
831
832# Suffix used to mark a register name on the architecture's assembly
08af7a40 833v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
834
835# Prefix used to mark a register indirection on the architecture's assembly.
836# For example, on x86 the register indirection is written as:
837#
838# \(\%eax\) ;; indirecting eax
839#
840# in this case, this prefix would be the charater \`\(\'.
841#
842# Please note that we use the indirection prefix also for register
843# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 844v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
845
846# Suffix used to mark a register indirection on the architecture's assembly.
847# For example, on x86 the register indirection is written as:
848#
849# \(\%eax\) ;; indirecting eax
850#
851# in this case, this prefix would be the charater \`\)\'.
852#
853# Please note that we use the indirection suffix also for register
854# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 855v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
856
857# Prefix used to name a register using GDB's nomenclature.
858#
859# For example, on PPC a register is represented by a number in the assembly
860# language (e.g., \`10\' is the 10th general-purpose register). However,
861# inside GDB this same register has an \`r\' appended to its name, so the 10th
862# register would be represented as \`r10\' internally.
08af7a40 863v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
864
865# Suffix used to name a register using GDB's nomenclature.
08af7a40 866v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
867
868# Check if S is a single operand.
869#
870# Single operands can be:
871# \- Literal integers, e.g. \`\$10\' on x86
872# \- Register access, e.g. \`\%eax\' on x86
873# \- Register indirection, e.g. \`\(\%eax\)\' on x86
874# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
875#
876# This function should check for these patterns on the string
877# and return 1 if some were found, or zero otherwise. Please try to match
878# as much info as you can from the string, i.e., if you have to match
879# something like \`\(\%\', do not match just the \`\(\'.
880M:int:stap_is_single_operand:const char *s:s
881
882# Function used to handle a "special case" in the parser.
883#
884# A "special case" is considered to be an unknown token, i.e., a token
885# that the parser does not know how to parse. A good example of special
886# case would be ARM's register displacement syntax:
887#
888# [R0, #4] ;; displacing R0 by 4
889#
890# Since the parser assumes that a register displacement is of the form:
891#
892# <number> <indirection_prefix> <register_name> <indirection_suffix>
893#
894# it means that it will not be able to recognize and parse this odd syntax.
895# Therefore, we should add a special case function that will handle this token.
896#
897# This function should generate the proper expression form of the expression
898# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
899# and so on). It should also return 1 if the parsing was successful, or zero
900# if the token was not recognized as a special token (in this case, returning
901# zero means that the special parser is deferring the parsing to the generic
902# parser), and should advance the buffer pointer (p->arg).
903M:int:stap_parse_special_token:struct stap_parse_info *p:p
904
905
50c71eaf
PA
906# True if the list of shared libraries is one and only for all
907# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
908# This usually means that all processes, although may or may not share
909# an address space, will see the same set of symbols at the same
910# addresses.
50c71eaf 911v:int:has_global_solist:::0:0::0
2567c7d9
PA
912
913# On some targets, even though each inferior has its own private
914# address space, the debug interface takes care of making breakpoints
915# visible to all address spaces automatically. For such cases,
916# this property should be set to true.
917v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
918
919# True if inferiors share an address space (e.g., uClinux).
920m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
921
922# True if a fast tracepoint can be set at an address.
923m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 924
f870a310
TT
925# Return the "auto" target charset.
926f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
927# Return the "auto" target wide charset.
928f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
929
930# If non-empty, this is a file extension that will be opened in place
931# of the file extension reported by the shared library list.
932#
933# This is most useful for toolchains that use a post-linker tool,
934# where the names of the files run on the target differ in extension
935# compared to the names of the files GDB should load for debug info.
936v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
937
938# If true, the target OS has DOS-based file system semantics. That
939# is, absolute paths include a drive name, and the backslash is
940# considered a directory separator.
941v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
942
943# Generate bytecodes to collect the return address in a frame.
944# Since the bytecodes run on the target, possibly with GDB not even
945# connected, the full unwinding machinery is not available, and
946# typically this function will issue bytecodes for one or more likely
947# places that the return address may be found.
948m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
949
3030c96e
UW
950# Implement the "info proc" command.
951M:void:info_proc:char *args, enum info_proc_what what:args, what
952
451b7c33
TT
953# Implement the "info proc" command for core files. Noe that there
954# are two "info_proc"-like methods on gdbarch -- one for core files,
955# one for live targets.
956M:void:core_info_proc:char *args, enum info_proc_what what:args, what
957
19630284
JB
958# Iterate over all objfiles in the order that makes the most sense
959# for the architecture to make global symbol searches.
960#
961# CB is a callback function where OBJFILE is the objfile to be searched,
962# and CB_DATA a pointer to user-defined data (the same data that is passed
963# when calling this gdbarch method). The iteration stops if this function
964# returns nonzero.
965#
966# CB_DATA is a pointer to some user-defined data to be passed to
967# the callback.
968#
969# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
970# inspected when the symbol search was requested.
971m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
972
7e35103a
JB
973# Ravenscar arch-dependent ops.
974v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
104c1213 975EOF
104c1213
JM
976}
977
0b8f9e4d
AC
978#
979# The .log file
980#
981exec > new-gdbarch.log
34620563 982function_list | while do_read
0b8f9e4d
AC
983do
984 cat <<EOF
2f9b146e 985${class} ${returntype} ${function} ($formal)
104c1213 986EOF
3d9a5942
AC
987 for r in ${read}
988 do
989 eval echo \"\ \ \ \ ${r}=\${${r}}\"
990 done
f0d4cc9e 991 if class_is_predicate_p && fallback_default_p
0b8f9e4d 992 then
66d659b1 993 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
994 kill $$
995 exit 1
996 fi
72e74a21 997 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
998 then
999 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1000 kill $$
1001 exit 1
1002 fi
a72293e2
AC
1003 if class_is_multiarch_p
1004 then
1005 if class_is_predicate_p ; then :
1006 elif test "x${predefault}" = "x"
1007 then
2f9b146e 1008 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1009 kill $$
1010 exit 1
1011 fi
1012 fi
3d9a5942 1013 echo ""
0b8f9e4d
AC
1014done
1015
1016exec 1>&2
1017compare_new gdbarch.log
1018
104c1213
JM
1019
1020copyright ()
1021{
1022cat <<EOF
c4bfde41
JK
1023/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1024/* vi:set ro: */
59233f88 1025
104c1213 1026/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1027
28e7fd62 1028 Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
1029
1030 This file is part of GDB.
1031
1032 This program is free software; you can redistribute it and/or modify
1033 it under the terms of the GNU General Public License as published by
50efebf8 1034 the Free Software Foundation; either version 3 of the License, or
104c1213 1035 (at your option) any later version.
50efebf8 1036
104c1213
JM
1037 This program is distributed in the hope that it will be useful,
1038 but WITHOUT ANY WARRANTY; without even the implied warranty of
1039 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1040 GNU General Public License for more details.
50efebf8 1041
104c1213 1042 You should have received a copy of the GNU General Public License
50efebf8 1043 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1044
104c1213
JM
1045/* This file was created with the aid of \`\`gdbarch.sh''.
1046
52204a0b 1047 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1048 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1049 against the existing \`\`gdbarch.[hc]''. Any differences found
1050 being reported.
1051
1052 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1053 changes into that script. Conversely, when making sweeping changes
104c1213 1054 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1055 easier. */
104c1213
JM
1056
1057EOF
1058}
1059
1060#
1061# The .h file
1062#
1063
1064exec > new-gdbarch.h
1065copyright
1066cat <<EOF
1067#ifndef GDBARCH_H
1068#define GDBARCH_H
1069
da3331ec
AC
1070struct floatformat;
1071struct ui_file;
104c1213
JM
1072struct frame_info;
1073struct value;
b6af0555 1074struct objfile;
1c772458 1075struct obj_section;
a2cf933a 1076struct minimal_symbol;
049ee0e4 1077struct regcache;
b59ff9d5 1078struct reggroup;
6ce6d90f 1079struct regset;
a89aa300 1080struct disassemble_info;
e2d0e7eb 1081struct target_ops;
030f20e1 1082struct obstack;
8181d85f 1083struct bp_target_info;
424163ea 1084struct target_desc;
237fc4c9 1085struct displaced_step_closure;
17ea7499 1086struct core_regset_section;
a96d9b2e 1087struct syscall;
175ff332 1088struct agent_expr;
6710bf39 1089struct axs_value;
55aa24fb 1090struct stap_parse_info;
7e35103a 1091struct ravenscar_arch_ops;
b3ac9c77 1092struct elf_internal_linux_prpsinfo;
104c1213 1093
6ecd4729
PA
1094/* The architecture associated with the inferior through the
1095 connection to the target.
1096
1097 The architecture vector provides some information that is really a
1098 property of the inferior, accessed through a particular target:
1099 ptrace operations; the layout of certain RSP packets; the solib_ops
1100 vector; etc. To differentiate architecture accesses to
1101 per-inferior/target properties from
1102 per-thread/per-frame/per-objfile properties, accesses to
1103 per-inferior/target properties should be made through this
1104 gdbarch. */
1105
1106/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1107extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1108
1109/* The initial, default architecture. It uses host values (for want of a better
1110 choice). */
1111extern struct gdbarch startup_gdbarch;
1112
19630284
JB
1113
1114/* Callback type for the 'iterate_over_objfiles_in_search_order'
1115 gdbarch method. */
1116
1117typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1118 (struct objfile *objfile, void *cb_data);
104c1213
JM
1119EOF
1120
1121# function typedef's
3d9a5942
AC
1122printf "\n"
1123printf "\n"
0963b4bd 1124printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1125function_list | while do_read
104c1213 1126do
2ada493a
AC
1127 if class_is_info_p
1128 then
3d9a5942
AC
1129 printf "\n"
1130 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1131 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1132 fi
104c1213
JM
1133done
1134
1135# function typedef's
3d9a5942
AC
1136printf "\n"
1137printf "\n"
0963b4bd 1138printf "/* The following are initialized by the target dependent code. */\n"
34620563 1139function_list | while do_read
104c1213 1140do
72e74a21 1141 if [ -n "${comment}" ]
34620563
AC
1142 then
1143 echo "${comment}" | sed \
1144 -e '2 s,#,/*,' \
1145 -e '3,$ s,#, ,' \
1146 -e '$ s,$, */,'
1147 fi
412d5987
AC
1148
1149 if class_is_predicate_p
2ada493a 1150 then
412d5987
AC
1151 printf "\n"
1152 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1153 fi
2ada493a
AC
1154 if class_is_variable_p
1155 then
3d9a5942
AC
1156 printf "\n"
1157 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1158 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1159 fi
1160 if class_is_function_p
1161 then
3d9a5942 1162 printf "\n"
72e74a21 1163 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1164 then
1165 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1166 elif class_is_multiarch_p
1167 then
1168 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1169 else
1170 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1171 fi
72e74a21 1172 if [ "x${formal}" = "xvoid" ]
104c1213 1173 then
3d9a5942 1174 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1175 else
3d9a5942 1176 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1177 fi
3d9a5942 1178 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1179 fi
104c1213
JM
1180done
1181
1182# close it off
1183cat <<EOF
1184
a96d9b2e
SDJ
1185/* Definition for an unknown syscall, used basically in error-cases. */
1186#define UNKNOWN_SYSCALL (-1)
1187
104c1213
JM
1188extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1189
1190
1191/* Mechanism for co-ordinating the selection of a specific
1192 architecture.
1193
1194 GDB targets (*-tdep.c) can register an interest in a specific
1195 architecture. Other GDB components can register a need to maintain
1196 per-architecture data.
1197
1198 The mechanisms below ensures that there is only a loose connection
1199 between the set-architecture command and the various GDB
0fa6923a 1200 components. Each component can independently register their need
104c1213
JM
1201 to maintain architecture specific data with gdbarch.
1202
1203 Pragmatics:
1204
1205 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1206 didn't scale.
1207
1208 The more traditional mega-struct containing architecture specific
1209 data for all the various GDB components was also considered. Since
0fa6923a 1210 GDB is built from a variable number of (fairly independent)
104c1213 1211 components it was determined that the global aproach was not
0963b4bd 1212 applicable. */
104c1213
JM
1213
1214
1215/* Register a new architectural family with GDB.
1216
1217 Register support for the specified ARCHITECTURE with GDB. When
1218 gdbarch determines that the specified architecture has been
1219 selected, the corresponding INIT function is called.
1220
1221 --
1222
1223 The INIT function takes two parameters: INFO which contains the
1224 information available to gdbarch about the (possibly new)
1225 architecture; ARCHES which is a list of the previously created
1226 \`\`struct gdbarch'' for this architecture.
1227
0f79675b 1228 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1229 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1230
1231 The ARCHES parameter is a linked list (sorted most recently used)
1232 of all the previously created architures for this architecture
1233 family. The (possibly NULL) ARCHES->gdbarch can used to access
1234 values from the previously selected architecture for this
59837fe0 1235 architecture family.
104c1213
JM
1236
1237 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1238 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1239 gdbarch'' from the ARCHES list - indicating that the new
1240 architecture is just a synonym for an earlier architecture (see
1241 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1242 - that describes the selected architecture (see gdbarch_alloc()).
1243
1244 The DUMP_TDEP function shall print out all target specific values.
1245 Care should be taken to ensure that the function works in both the
0963b4bd 1246 multi-arch and non- multi-arch cases. */
104c1213
JM
1247
1248struct gdbarch_list
1249{
1250 struct gdbarch *gdbarch;
1251 struct gdbarch_list *next;
1252};
1253
1254struct gdbarch_info
1255{
0963b4bd 1256 /* Use default: NULL (ZERO). */
104c1213
JM
1257 const struct bfd_arch_info *bfd_arch_info;
1258
428721aa 1259 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1260 int byte_order;
1261
9d4fde75
SS
1262 int byte_order_for_code;
1263
0963b4bd 1264 /* Use default: NULL (ZERO). */
104c1213
JM
1265 bfd *abfd;
1266
0963b4bd 1267 /* Use default: NULL (ZERO). */
104c1213 1268 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1269
1270 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1271 enum gdb_osabi osabi;
424163ea
DJ
1272
1273 /* Use default: NULL (ZERO). */
1274 const struct target_desc *target_desc;
104c1213
JM
1275};
1276
1277typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1278typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1279
4b9b3959 1280/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1281extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1282
4b9b3959
AC
1283extern void gdbarch_register (enum bfd_architecture architecture,
1284 gdbarch_init_ftype *,
1285 gdbarch_dump_tdep_ftype *);
1286
104c1213 1287
b4a20239
AC
1288/* Return a freshly allocated, NULL terminated, array of the valid
1289 architecture names. Since architectures are registered during the
1290 _initialize phase this function only returns useful information
0963b4bd 1291 once initialization has been completed. */
b4a20239
AC
1292
1293extern const char **gdbarch_printable_names (void);
1294
1295
104c1213 1296/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1297 matches the information provided by INFO. */
104c1213 1298
424163ea 1299extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1300
1301
1302/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1303 basic initialization using values obtained from the INFO and TDEP
104c1213 1304 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1305 initialization of the object. */
104c1213
JM
1306
1307extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1308
1309
4b9b3959
AC
1310/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1311 It is assumed that the caller freeds the \`\`struct
0963b4bd 1312 gdbarch_tdep''. */
4b9b3959 1313
058f20d5
JB
1314extern void gdbarch_free (struct gdbarch *);
1315
1316
aebd7893
AC
1317/* Helper function. Allocate memory from the \`\`struct gdbarch''
1318 obstack. The memory is freed when the corresponding architecture
1319 is also freed. */
1320
1321extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1322#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1323#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1324
1325
0963b4bd 1326/* Helper function. Force an update of the current architecture.
104c1213 1327
b732d07d
AC
1328 The actual architecture selected is determined by INFO, \`\`(gdb) set
1329 architecture'' et.al., the existing architecture and BFD's default
1330 architecture. INFO should be initialized to zero and then selected
1331 fields should be updated.
104c1213 1332
0963b4bd 1333 Returns non-zero if the update succeeds. */
16f33e29
AC
1334
1335extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1336
1337
ebdba546
AC
1338/* Helper function. Find an architecture matching info.
1339
1340 INFO should be initialized using gdbarch_info_init, relevant fields
1341 set, and then finished using gdbarch_info_fill.
1342
1343 Returns the corresponding architecture, or NULL if no matching
59837fe0 1344 architecture was found. */
ebdba546
AC
1345
1346extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1347
1348
aff68abb 1349/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1350
aff68abb 1351extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1352
104c1213
JM
1353
1354/* Register per-architecture data-pointer.
1355
1356 Reserve space for a per-architecture data-pointer. An identifier
1357 for the reserved data-pointer is returned. That identifer should
95160752 1358 be saved in a local static variable.
104c1213 1359
fcc1c85c
AC
1360 Memory for the per-architecture data shall be allocated using
1361 gdbarch_obstack_zalloc. That memory will be deleted when the
1362 corresponding architecture object is deleted.
104c1213 1363
95160752
AC
1364 When a previously created architecture is re-selected, the
1365 per-architecture data-pointer for that previous architecture is
76860b5f 1366 restored. INIT() is not re-called.
104c1213
JM
1367
1368 Multiple registrarants for any architecture are allowed (and
1369 strongly encouraged). */
1370
95160752 1371struct gdbarch_data;
104c1213 1372
030f20e1
AC
1373typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1374extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1375typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1376extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1377extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1378 struct gdbarch_data *data,
1379 void *pointer);
104c1213 1380
451fbdda 1381extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1382
1383
0fa6923a 1384/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1385 byte-order, ...) using information found in the BFD. */
104c1213
JM
1386
1387extern void set_gdbarch_from_file (bfd *);
1388
1389
e514a9d6
JM
1390/* Initialize the current architecture to the "first" one we find on
1391 our list. */
1392
1393extern void initialize_current_architecture (void);
1394
104c1213 1395/* gdbarch trace variable */
ccce17b0 1396extern unsigned int gdbarch_debug;
104c1213 1397
4b9b3959 1398extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1399
1400#endif
1401EOF
1402exec 1>&2
1403#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1404compare_new gdbarch.h
104c1213
JM
1405
1406
1407#
1408# C file
1409#
1410
1411exec > new-gdbarch.c
1412copyright
1413cat <<EOF
1414
1415#include "defs.h"
7355ddba 1416#include "arch-utils.h"
104c1213 1417
104c1213 1418#include "gdbcmd.h"
faaf634c 1419#include "inferior.h"
104c1213
JM
1420#include "symcat.h"
1421
f0d4cc9e 1422#include "floatformat.h"
104c1213 1423
95160752 1424#include "gdb_assert.h"
b66d6d2e 1425#include "gdb_string.h"
b59ff9d5 1426#include "reggroups.h"
4be87837 1427#include "osabi.h"
aebd7893 1428#include "gdb_obstack.h"
383f836e 1429#include "observer.h"
a3ecef73 1430#include "regcache.h"
19630284 1431#include "objfiles.h"
95160752 1432
104c1213
JM
1433/* Static function declarations */
1434
b3cc3077 1435static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1436
104c1213
JM
1437/* Non-zero if we want to trace architecture code. */
1438
1439#ifndef GDBARCH_DEBUG
1440#define GDBARCH_DEBUG 0
1441#endif
ccce17b0 1442unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1443static void
1444show_gdbarch_debug (struct ui_file *file, int from_tty,
1445 struct cmd_list_element *c, const char *value)
1446{
1447 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1448}
104c1213 1449
456fcf94 1450static const char *
8da61cc4 1451pformat (const struct floatformat **format)
456fcf94
AC
1452{
1453 if (format == NULL)
1454 return "(null)";
1455 else
8da61cc4
DJ
1456 /* Just print out one of them - this is only for diagnostics. */
1457 return format[0]->name;
456fcf94
AC
1458}
1459
08105857
PA
1460static const char *
1461pstring (const char *string)
1462{
1463 if (string == NULL)
1464 return "(null)";
1465 return string;
1466}
1467
104c1213
JM
1468EOF
1469
1470# gdbarch open the gdbarch object
3d9a5942 1471printf "\n"
0963b4bd 1472printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1473printf "\n"
1474printf "struct gdbarch\n"
1475printf "{\n"
76860b5f
AC
1476printf " /* Has this architecture been fully initialized? */\n"
1477printf " int initialized_p;\n"
aebd7893
AC
1478printf "\n"
1479printf " /* An obstack bound to the lifetime of the architecture. */\n"
1480printf " struct obstack *obstack;\n"
1481printf "\n"
0963b4bd 1482printf " /* basic architectural information. */\n"
34620563 1483function_list | while do_read
104c1213 1484do
2ada493a
AC
1485 if class_is_info_p
1486 then
3d9a5942 1487 printf " ${returntype} ${function};\n"
2ada493a 1488 fi
104c1213 1489done
3d9a5942 1490printf "\n"
0963b4bd 1491printf " /* target specific vector. */\n"
3d9a5942
AC
1492printf " struct gdbarch_tdep *tdep;\n"
1493printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1494printf "\n"
0963b4bd 1495printf " /* per-architecture data-pointers. */\n"
95160752 1496printf " unsigned nr_data;\n"
3d9a5942
AC
1497printf " void **data;\n"
1498printf "\n"
104c1213
JM
1499cat <<EOF
1500 /* Multi-arch values.
1501
1502 When extending this structure you must:
1503
1504 Add the field below.
1505
1506 Declare set/get functions and define the corresponding
1507 macro in gdbarch.h.
1508
1509 gdbarch_alloc(): If zero/NULL is not a suitable default,
1510 initialize the new field.
1511
1512 verify_gdbarch(): Confirm that the target updated the field
1513 correctly.
1514
7e73cedf 1515 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1516 field is dumped out
1517
c0e8c252 1518 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1519 variable (base values on the host's c-type system).
1520
1521 get_gdbarch(): Implement the set/get functions (probably using
1522 the macro's as shortcuts).
1523
1524 */
1525
1526EOF
34620563 1527function_list | while do_read
104c1213 1528do
2ada493a
AC
1529 if class_is_variable_p
1530 then
3d9a5942 1531 printf " ${returntype} ${function};\n"
2ada493a
AC
1532 elif class_is_function_p
1533 then
2f9b146e 1534 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1535 fi
104c1213 1536done
3d9a5942 1537printf "};\n"
104c1213
JM
1538
1539# A pre-initialized vector
3d9a5942
AC
1540printf "\n"
1541printf "\n"
104c1213
JM
1542cat <<EOF
1543/* The default architecture uses host values (for want of a better
0963b4bd 1544 choice). */
104c1213 1545EOF
3d9a5942
AC
1546printf "\n"
1547printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1548printf "\n"
1549printf "struct gdbarch startup_gdbarch =\n"
1550printf "{\n"
76860b5f 1551printf " 1, /* Always initialized. */\n"
aebd7893 1552printf " NULL, /* The obstack. */\n"
0963b4bd 1553printf " /* basic architecture information. */\n"
4b9b3959 1554function_list | while do_read
104c1213 1555do
2ada493a
AC
1556 if class_is_info_p
1557 then
ec5cbaec 1558 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1559 fi
104c1213
JM
1560done
1561cat <<EOF
0963b4bd 1562 /* target specific vector and its dump routine. */
4b9b3959 1563 NULL, NULL,
c66fb220
TT
1564 /*per-architecture data-pointers. */
1565 0, NULL,
104c1213
JM
1566 /* Multi-arch values */
1567EOF
34620563 1568function_list | while do_read
104c1213 1569do
2ada493a
AC
1570 if class_is_function_p || class_is_variable_p
1571 then
ec5cbaec 1572 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1573 fi
104c1213
JM
1574done
1575cat <<EOF
c0e8c252 1576 /* startup_gdbarch() */
104c1213 1577};
4b9b3959 1578
104c1213
JM
1579EOF
1580
1581# Create a new gdbarch struct
104c1213 1582cat <<EOF
7de2341d 1583
66b43ecb 1584/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1585 \`\`struct gdbarch_info''. */
104c1213 1586EOF
3d9a5942 1587printf "\n"
104c1213
JM
1588cat <<EOF
1589struct gdbarch *
1590gdbarch_alloc (const struct gdbarch_info *info,
1591 struct gdbarch_tdep *tdep)
1592{
be7811ad 1593 struct gdbarch *gdbarch;
aebd7893
AC
1594
1595 /* Create an obstack for allocating all the per-architecture memory,
1596 then use that to allocate the architecture vector. */
1597 struct obstack *obstack = XMALLOC (struct obstack);
1598 obstack_init (obstack);
be7811ad
MD
1599 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1600 memset (gdbarch, 0, sizeof (*gdbarch));
1601 gdbarch->obstack = obstack;
85de9627 1602
be7811ad 1603 alloc_gdbarch_data (gdbarch);
85de9627 1604
be7811ad 1605 gdbarch->tdep = tdep;
104c1213 1606EOF
3d9a5942 1607printf "\n"
34620563 1608function_list | while do_read
104c1213 1609do
2ada493a
AC
1610 if class_is_info_p
1611 then
be7811ad 1612 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1613 fi
104c1213 1614done
3d9a5942 1615printf "\n"
0963b4bd 1616printf " /* Force the explicit initialization of these. */\n"
34620563 1617function_list | while do_read
104c1213 1618do
2ada493a
AC
1619 if class_is_function_p || class_is_variable_p
1620 then
72e74a21 1621 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1622 then
be7811ad 1623 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1624 fi
2ada493a 1625 fi
104c1213
JM
1626done
1627cat <<EOF
1628 /* gdbarch_alloc() */
1629
be7811ad 1630 return gdbarch;
104c1213
JM
1631}
1632EOF
1633
058f20d5 1634# Free a gdbarch struct.
3d9a5942
AC
1635printf "\n"
1636printf "\n"
058f20d5 1637cat <<EOF
aebd7893
AC
1638/* Allocate extra space using the per-architecture obstack. */
1639
1640void *
1641gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1642{
1643 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1644
aebd7893
AC
1645 memset (data, 0, size);
1646 return data;
1647}
1648
1649
058f20d5
JB
1650/* Free a gdbarch struct. This should never happen in normal
1651 operation --- once you've created a gdbarch, you keep it around.
1652 However, if an architecture's init function encounters an error
1653 building the structure, it may need to clean up a partially
1654 constructed gdbarch. */
4b9b3959 1655
058f20d5
JB
1656void
1657gdbarch_free (struct gdbarch *arch)
1658{
aebd7893 1659 struct obstack *obstack;
05c547f6 1660
95160752 1661 gdb_assert (arch != NULL);
aebd7893
AC
1662 gdb_assert (!arch->initialized_p);
1663 obstack = arch->obstack;
1664 obstack_free (obstack, 0); /* Includes the ARCH. */
1665 xfree (obstack);
058f20d5
JB
1666}
1667EOF
1668
104c1213 1669# verify a new architecture
104c1213 1670cat <<EOF
db446970
AC
1671
1672
1673/* Ensure that all values in a GDBARCH are reasonable. */
1674
104c1213 1675static void
be7811ad 1676verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1677{
f16a1923
AC
1678 struct ui_file *log;
1679 struct cleanup *cleanups;
759ef836 1680 long length;
f16a1923 1681 char *buf;
05c547f6 1682
f16a1923
AC
1683 log = mem_fileopen ();
1684 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1685 /* fundamental */
be7811ad 1686 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1687 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1688 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1689 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1690 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1691EOF
34620563 1692function_list | while do_read
104c1213 1693do
2ada493a
AC
1694 if class_is_function_p || class_is_variable_p
1695 then
72e74a21 1696 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1697 then
3d9a5942 1698 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1699 elif class_is_predicate_p
1700 then
0963b4bd 1701 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1702 # FIXME: See do_read for potential simplification
72e74a21 1703 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1704 then
3d9a5942 1705 printf " if (${invalid_p})\n"
be7811ad 1706 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1707 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1708 then
be7811ad
MD
1709 printf " if (gdbarch->${function} == ${predefault})\n"
1710 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1711 elif [ -n "${postdefault}" ]
f0d4cc9e 1712 then
be7811ad
MD
1713 printf " if (gdbarch->${function} == 0)\n"
1714 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1715 elif [ -n "${invalid_p}" ]
104c1213 1716 then
4d60522e 1717 printf " if (${invalid_p})\n"
f16a1923 1718 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1719 elif [ -n "${predefault}" ]
104c1213 1720 then
be7811ad 1721 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1722 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1723 fi
2ada493a 1724 fi
104c1213
JM
1725done
1726cat <<EOF
759ef836 1727 buf = ui_file_xstrdup (log, &length);
f16a1923 1728 make_cleanup (xfree, buf);
759ef836 1729 if (length > 0)
f16a1923 1730 internal_error (__FILE__, __LINE__,
85c07804 1731 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1732 buf);
1733 do_cleanups (cleanups);
104c1213
JM
1734}
1735EOF
1736
1737# dump the structure
3d9a5942
AC
1738printf "\n"
1739printf "\n"
104c1213 1740cat <<EOF
0963b4bd 1741/* Print out the details of the current architecture. */
4b9b3959 1742
104c1213 1743void
be7811ad 1744gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1745{
b78960be 1746 const char *gdb_nm_file = "<not-defined>";
05c547f6 1747
b78960be
AC
1748#if defined (GDB_NM_FILE)
1749 gdb_nm_file = GDB_NM_FILE;
1750#endif
1751 fprintf_unfiltered (file,
1752 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1753 gdb_nm_file);
104c1213 1754EOF
97030eea 1755function_list | sort -t: -k 3 | while do_read
104c1213 1756do
1e9f55d0
AC
1757 # First the predicate
1758 if class_is_predicate_p
1759 then
7996bcec 1760 printf " fprintf_unfiltered (file,\n"
48f7351b 1761 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1762 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1763 fi
48f7351b 1764 # Print the corresponding value.
283354d8 1765 if class_is_function_p
4b9b3959 1766 then
7996bcec 1767 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1768 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1769 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1770 else
48f7351b 1771 # It is a variable
2f9b146e
AC
1772 case "${print}:${returntype}" in
1773 :CORE_ADDR )
0b1553bc
UW
1774 fmt="%s"
1775 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1776 ;;
2f9b146e 1777 :* )
48f7351b 1778 fmt="%s"
623d3eb1 1779 print="plongest (gdbarch->${function})"
48f7351b
AC
1780 ;;
1781 * )
2f9b146e 1782 fmt="%s"
48f7351b
AC
1783 ;;
1784 esac
3d9a5942 1785 printf " fprintf_unfiltered (file,\n"
48f7351b 1786 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1787 printf " ${print});\n"
2ada493a 1788 fi
104c1213 1789done
381323f4 1790cat <<EOF
be7811ad
MD
1791 if (gdbarch->dump_tdep != NULL)
1792 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1793}
1794EOF
104c1213
JM
1795
1796
1797# GET/SET
3d9a5942 1798printf "\n"
104c1213
JM
1799cat <<EOF
1800struct gdbarch_tdep *
1801gdbarch_tdep (struct gdbarch *gdbarch)
1802{
1803 if (gdbarch_debug >= 2)
3d9a5942 1804 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1805 return gdbarch->tdep;
1806}
1807EOF
3d9a5942 1808printf "\n"
34620563 1809function_list | while do_read
104c1213 1810do
2ada493a
AC
1811 if class_is_predicate_p
1812 then
3d9a5942
AC
1813 printf "\n"
1814 printf "int\n"
1815 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1816 printf "{\n"
8de9bdc4 1817 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1818 printf " return ${predicate};\n"
3d9a5942 1819 printf "}\n"
2ada493a
AC
1820 fi
1821 if class_is_function_p
1822 then
3d9a5942
AC
1823 printf "\n"
1824 printf "${returntype}\n"
72e74a21 1825 if [ "x${formal}" = "xvoid" ]
104c1213 1826 then
3d9a5942 1827 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1828 else
3d9a5942 1829 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1830 fi
3d9a5942 1831 printf "{\n"
8de9bdc4 1832 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1833 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1834 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1835 then
1836 # Allow a call to a function with a predicate.
956ac328 1837 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1838 fi
3d9a5942
AC
1839 printf " if (gdbarch_debug >= 2)\n"
1840 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1841 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1842 then
1843 if class_is_multiarch_p
1844 then
1845 params="gdbarch"
1846 else
1847 params=""
1848 fi
1849 else
1850 if class_is_multiarch_p
1851 then
1852 params="gdbarch, ${actual}"
1853 else
1854 params="${actual}"
1855 fi
1856 fi
72e74a21 1857 if [ "x${returntype}" = "xvoid" ]
104c1213 1858 then
4a5c6a1d 1859 printf " gdbarch->${function} (${params});\n"
104c1213 1860 else
4a5c6a1d 1861 printf " return gdbarch->${function} (${params});\n"
104c1213 1862 fi
3d9a5942
AC
1863 printf "}\n"
1864 printf "\n"
1865 printf "void\n"
1866 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1867 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1868 printf "{\n"
1869 printf " gdbarch->${function} = ${function};\n"
1870 printf "}\n"
2ada493a
AC
1871 elif class_is_variable_p
1872 then
3d9a5942
AC
1873 printf "\n"
1874 printf "${returntype}\n"
1875 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1876 printf "{\n"
8de9bdc4 1877 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1878 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1879 then
3d9a5942 1880 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1881 elif [ -n "${invalid_p}" ]
104c1213 1882 then
956ac328
AC
1883 printf " /* Check variable is valid. */\n"
1884 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1885 elif [ -n "${predefault}" ]
104c1213 1886 then
956ac328
AC
1887 printf " /* Check variable changed from pre-default. */\n"
1888 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1889 fi
3d9a5942
AC
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1892 printf " return gdbarch->${function};\n"
1893 printf "}\n"
1894 printf "\n"
1895 printf "void\n"
1896 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1897 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1898 printf "{\n"
1899 printf " gdbarch->${function} = ${function};\n"
1900 printf "}\n"
2ada493a
AC
1901 elif class_is_info_p
1902 then
3d9a5942
AC
1903 printf "\n"
1904 printf "${returntype}\n"
1905 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1906 printf "{\n"
8de9bdc4 1907 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1908 printf " if (gdbarch_debug >= 2)\n"
1909 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1910 printf " return gdbarch->${function};\n"
1911 printf "}\n"
2ada493a 1912 fi
104c1213
JM
1913done
1914
1915# All the trailing guff
1916cat <<EOF
1917
1918
f44c642f 1919/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1920 modules. */
104c1213
JM
1921
1922struct gdbarch_data
1923{
95160752 1924 unsigned index;
76860b5f 1925 int init_p;
030f20e1
AC
1926 gdbarch_data_pre_init_ftype *pre_init;
1927 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1928};
1929
1930struct gdbarch_data_registration
1931{
104c1213
JM
1932 struct gdbarch_data *data;
1933 struct gdbarch_data_registration *next;
1934};
1935
f44c642f 1936struct gdbarch_data_registry
104c1213 1937{
95160752 1938 unsigned nr;
104c1213
JM
1939 struct gdbarch_data_registration *registrations;
1940};
1941
f44c642f 1942struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1943{
1944 0, NULL,
1945};
1946
030f20e1
AC
1947static struct gdbarch_data *
1948gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1949 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1950{
1951 struct gdbarch_data_registration **curr;
05c547f6
MS
1952
1953 /* Append the new registration. */
f44c642f 1954 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1955 (*curr) != NULL;
1956 curr = &(*curr)->next);
1957 (*curr) = XMALLOC (struct gdbarch_data_registration);
1958 (*curr)->next = NULL;
104c1213 1959 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1960 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1961 (*curr)->data->pre_init = pre_init;
1962 (*curr)->data->post_init = post_init;
76860b5f 1963 (*curr)->data->init_p = 1;
104c1213
JM
1964 return (*curr)->data;
1965}
1966
030f20e1
AC
1967struct gdbarch_data *
1968gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1969{
1970 return gdbarch_data_register (pre_init, NULL);
1971}
1972
1973struct gdbarch_data *
1974gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1975{
1976 return gdbarch_data_register (NULL, post_init);
1977}
104c1213 1978
0963b4bd 1979/* Create/delete the gdbarch data vector. */
95160752
AC
1980
1981static void
b3cc3077 1982alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1983{
b3cc3077
JB
1984 gdb_assert (gdbarch->data == NULL);
1985 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1986 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1987}
3c875b6f 1988
76860b5f 1989/* Initialize the current value of the specified per-architecture
0963b4bd 1990 data-pointer. */
b3cc3077 1991
95160752 1992void
030f20e1
AC
1993deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1994 struct gdbarch_data *data,
1995 void *pointer)
95160752
AC
1996{
1997 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1998 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1999 gdb_assert (data->pre_init == NULL);
95160752
AC
2000 gdbarch->data[data->index] = pointer;
2001}
2002
104c1213 2003/* Return the current value of the specified per-architecture
0963b4bd 2004 data-pointer. */
104c1213
JM
2005
2006void *
451fbdda 2007gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2008{
451fbdda 2009 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2010 if (gdbarch->data[data->index] == NULL)
76860b5f 2011 {
030f20e1
AC
2012 /* The data-pointer isn't initialized, call init() to get a
2013 value. */
2014 if (data->pre_init != NULL)
2015 /* Mid architecture creation: pass just the obstack, and not
2016 the entire architecture, as that way it isn't possible for
2017 pre-init code to refer to undefined architecture
2018 fields. */
2019 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2020 else if (gdbarch->initialized_p
2021 && data->post_init != NULL)
2022 /* Post architecture creation: pass the entire architecture
2023 (as all fields are valid), but be careful to also detect
2024 recursive references. */
2025 {
2026 gdb_assert (data->init_p);
2027 data->init_p = 0;
2028 gdbarch->data[data->index] = data->post_init (gdbarch);
2029 data->init_p = 1;
2030 }
2031 else
2032 /* The architecture initialization hasn't completed - punt -
2033 hope that the caller knows what they are doing. Once
2034 deprecated_set_gdbarch_data has been initialized, this can be
2035 changed to an internal error. */
2036 return NULL;
76860b5f
AC
2037 gdb_assert (gdbarch->data[data->index] != NULL);
2038 }
451fbdda 2039 return gdbarch->data[data->index];
104c1213
JM
2040}
2041
2042
0963b4bd 2043/* Keep a registry of the architectures known by GDB. */
104c1213 2044
4b9b3959 2045struct gdbarch_registration
104c1213
JM
2046{
2047 enum bfd_architecture bfd_architecture;
2048 gdbarch_init_ftype *init;
4b9b3959 2049 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2050 struct gdbarch_list *arches;
4b9b3959 2051 struct gdbarch_registration *next;
104c1213
JM
2052};
2053
f44c642f 2054static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2055
b4a20239
AC
2056static void
2057append_name (const char ***buf, int *nr, const char *name)
2058{
2059 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2060 (*buf)[*nr] = name;
2061 *nr += 1;
2062}
2063
2064const char **
2065gdbarch_printable_names (void)
2066{
7996bcec 2067 /* Accumulate a list of names based on the registed list of
0963b4bd 2068 architectures. */
7996bcec
AC
2069 int nr_arches = 0;
2070 const char **arches = NULL;
2071 struct gdbarch_registration *rego;
05c547f6 2072
7996bcec
AC
2073 for (rego = gdbarch_registry;
2074 rego != NULL;
2075 rego = rego->next)
b4a20239 2076 {
7996bcec
AC
2077 const struct bfd_arch_info *ap;
2078 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2079 if (ap == NULL)
2080 internal_error (__FILE__, __LINE__,
85c07804 2081 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2082 do
2083 {
2084 append_name (&arches, &nr_arches, ap->printable_name);
2085 ap = ap->next;
2086 }
2087 while (ap != NULL);
b4a20239 2088 }
7996bcec
AC
2089 append_name (&arches, &nr_arches, NULL);
2090 return arches;
b4a20239
AC
2091}
2092
2093
104c1213 2094void
4b9b3959
AC
2095gdbarch_register (enum bfd_architecture bfd_architecture,
2096 gdbarch_init_ftype *init,
2097 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2098{
4b9b3959 2099 struct gdbarch_registration **curr;
104c1213 2100 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2101
ec3d358c 2102 /* Check that BFD recognizes this architecture */
104c1213
JM
2103 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2104 if (bfd_arch_info == NULL)
2105 {
8e65ff28 2106 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2107 _("gdbarch: Attempt to register "
2108 "unknown architecture (%d)"),
8e65ff28 2109 bfd_architecture);
104c1213 2110 }
0963b4bd 2111 /* Check that we haven't seen this architecture before. */
f44c642f 2112 for (curr = &gdbarch_registry;
104c1213
JM
2113 (*curr) != NULL;
2114 curr = &(*curr)->next)
2115 {
2116 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2117 internal_error (__FILE__, __LINE__,
64b9b334 2118 _("gdbarch: Duplicate registration "
0963b4bd 2119 "of architecture (%s)"),
8e65ff28 2120 bfd_arch_info->printable_name);
104c1213
JM
2121 }
2122 /* log it */
2123 if (gdbarch_debug)
30737ed9 2124 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2125 bfd_arch_info->printable_name,
30737ed9 2126 host_address_to_string (init));
104c1213 2127 /* Append it */
4b9b3959 2128 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2129 (*curr)->bfd_architecture = bfd_architecture;
2130 (*curr)->init = init;
4b9b3959 2131 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2132 (*curr)->arches = NULL;
2133 (*curr)->next = NULL;
4b9b3959
AC
2134}
2135
2136void
2137register_gdbarch_init (enum bfd_architecture bfd_architecture,
2138 gdbarch_init_ftype *init)
2139{
2140 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2141}
104c1213
JM
2142
2143
424163ea 2144/* Look for an architecture using gdbarch_info. */
104c1213
JM
2145
2146struct gdbarch_list *
2147gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2148 const struct gdbarch_info *info)
2149{
2150 for (; arches != NULL; arches = arches->next)
2151 {
2152 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2153 continue;
2154 if (info->byte_order != arches->gdbarch->byte_order)
2155 continue;
4be87837
DJ
2156 if (info->osabi != arches->gdbarch->osabi)
2157 continue;
424163ea
DJ
2158 if (info->target_desc != arches->gdbarch->target_desc)
2159 continue;
104c1213
JM
2160 return arches;
2161 }
2162 return NULL;
2163}
2164
2165
ebdba546 2166/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2167 architecture if needed. Return that new architecture. */
104c1213 2168
59837fe0
UW
2169struct gdbarch *
2170gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2171{
2172 struct gdbarch *new_gdbarch;
4b9b3959 2173 struct gdbarch_registration *rego;
104c1213 2174
b732d07d 2175 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2176 sources: "set ..."; INFOabfd supplied; and the global
2177 defaults. */
2178 gdbarch_info_fill (&info);
4be87837 2179
0963b4bd 2180 /* Must have found some sort of architecture. */
b732d07d 2181 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2182
2183 if (gdbarch_debug)
2184 {
2185 fprintf_unfiltered (gdb_stdlog,
59837fe0 2186 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2187 (info.bfd_arch_info != NULL
2188 ? info.bfd_arch_info->printable_name
2189 : "(null)"));
2190 fprintf_unfiltered (gdb_stdlog,
59837fe0 2191 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2192 info.byte_order,
d7449b42 2193 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2194 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2195 : "default"));
4be87837 2196 fprintf_unfiltered (gdb_stdlog,
59837fe0 2197 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2198 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2199 fprintf_unfiltered (gdb_stdlog,
59837fe0 2200 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2201 host_address_to_string (info.abfd));
104c1213 2202 fprintf_unfiltered (gdb_stdlog,
59837fe0 2203 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2204 host_address_to_string (info.tdep_info));
104c1213
JM
2205 }
2206
ebdba546 2207 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2208 for (rego = gdbarch_registry;
2209 rego != NULL;
2210 rego = rego->next)
2211 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2212 break;
2213 if (rego == NULL)
2214 {
2215 if (gdbarch_debug)
59837fe0 2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2217 "No matching architecture\n");
b732d07d
AC
2218 return 0;
2219 }
2220
ebdba546 2221 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2222 new_gdbarch = rego->init (info, rego->arches);
2223
ebdba546
AC
2224 /* Did the tdep code like it? No. Reject the change and revert to
2225 the old architecture. */
104c1213
JM
2226 if (new_gdbarch == NULL)
2227 {
2228 if (gdbarch_debug)
59837fe0 2229 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2230 "Target rejected architecture\n");
2231 return NULL;
104c1213
JM
2232 }
2233
ebdba546
AC
2234 /* Is this a pre-existing architecture (as determined by already
2235 being initialized)? Move it to the front of the architecture
2236 list (keeping the list sorted Most Recently Used). */
2237 if (new_gdbarch->initialized_p)
104c1213 2238 {
ebdba546
AC
2239 struct gdbarch_list **list;
2240 struct gdbarch_list *this;
104c1213 2241 if (gdbarch_debug)
59837fe0 2242 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2243 "Previous architecture %s (%s) selected\n",
2244 host_address_to_string (new_gdbarch),
104c1213 2245 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2246 /* Find the existing arch in the list. */
2247 for (list = &rego->arches;
2248 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2249 list = &(*list)->next);
2250 /* It had better be in the list of architectures. */
2251 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2252 /* Unlink THIS. */
2253 this = (*list);
2254 (*list) = this->next;
2255 /* Insert THIS at the front. */
2256 this->next = rego->arches;
2257 rego->arches = this;
2258 /* Return it. */
2259 return new_gdbarch;
104c1213
JM
2260 }
2261
ebdba546
AC
2262 /* It's a new architecture. */
2263 if (gdbarch_debug)
59837fe0 2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2265 "New architecture %s (%s) selected\n",
2266 host_address_to_string (new_gdbarch),
ebdba546
AC
2267 new_gdbarch->bfd_arch_info->printable_name);
2268
2269 /* Insert the new architecture into the front of the architecture
2270 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2271 {
2272 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2273 this->next = rego->arches;
2274 this->gdbarch = new_gdbarch;
2275 rego->arches = this;
2276 }
104c1213 2277
4b9b3959
AC
2278 /* Check that the newly installed architecture is valid. Plug in
2279 any post init values. */
2280 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2281 verify_gdbarch (new_gdbarch);
ebdba546 2282 new_gdbarch->initialized_p = 1;
104c1213 2283
4b9b3959 2284 if (gdbarch_debug)
ebdba546
AC
2285 gdbarch_dump (new_gdbarch, gdb_stdlog);
2286
2287 return new_gdbarch;
2288}
2289
e487cc15 2290/* Make the specified architecture current. */
ebdba546
AC
2291
2292void
aff68abb 2293set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2294{
2295 gdb_assert (new_gdbarch != NULL);
ebdba546 2296 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2297 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2298 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2299 registers_changed ();
ebdba546 2300}
104c1213 2301
f5656ead 2302/* Return the current inferior's arch. */
6ecd4729
PA
2303
2304struct gdbarch *
f5656ead 2305target_gdbarch (void)
6ecd4729
PA
2306{
2307 return current_inferior ()->gdbarch;
2308}
2309
104c1213 2310extern void _initialize_gdbarch (void);
b4a20239 2311
104c1213 2312void
34620563 2313_initialize_gdbarch (void)
104c1213 2314{
ccce17b0 2315 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2316Set architecture debugging."), _("\\
2317Show architecture debugging."), _("\\
2318When non-zero, architecture debugging is enabled."),
2319 NULL,
920d2a44 2320 show_gdbarch_debug,
85c07804 2321 &setdebuglist, &showdebuglist);
104c1213
JM
2322}
2323EOF
2324
2325# close things off
2326exec 1>&2
2327#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2328compare_new gdbarch.c