]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Allocate buffer with proper size in amd64_pseudo_register_{read_value,write}
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
e2882c85 5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 363
f9e9243a
UW
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
367# Each format describes both the big and little endian layouts (if
368# useful).
456fcf94 369
ea480a30
SM
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 378
53375380
PA
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
ea480a30 381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 382# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 383v;int;wchar_signed;;;1;-1;1
53375380 384
9b790ce7
UW
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
ea480a30 388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 389
52204a0b
DT
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
17a912b6 392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
393# / addr_bit will be set from it.
394#
17a912b6 395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
52204a0b
DT
398#
399# ptr_bit is the size of a pointer on the target
ea480a30 400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 401# addr_bit is the size of a target address as represented in gdb
ea480a30 402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 403#
8da614df
CV
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
ea480a30 417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 418#
4e409299 419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 420v;int;char_signed;;;1;-1;1
4e409299 421#
c113ed0c 422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
ea480a30 427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 428#
849d0ba8 429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
849d0ba8 434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 436#
ea480a30 437v;int;num_regs;;;0;-1
0aba1244
EZ
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
ea480a30 442v;int;num_pseudo_regs;;;0;0;;0
c2169756 443
175ff332
HZ
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
ea480a30 446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
ea480a30 451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 452
012b3a21
WT
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
ea480a30 457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 458
c2169756
AC
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
1200cd6e 461# all (-1).
3e8c568d 462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
88c72b7d 467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 471# Convert from an sdb register number to an internal gdb register number.
ea480a30 472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
9c04cab7 477
7b9ee6a8
DJ
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
ea480a30 481M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 482
ea480a30 483M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 484# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 485# deprecated_fp_regnum.
ea480a30 486v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 487
ea480a30
SM
488M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 491
7eb89530 492# Return true if the code of FRAME is writable.
ea480a30 493m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 494
ea480a30
SM
495m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
498# MAP a GDB RAW register number onto a simulator register number. See
499# also include/...-sim.h.
ea480a30
SM
500m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
503
504# Determine the address where a longjmp will land and save this address
505# in PC. Return nonzero on success.
506#
507# FRAME corresponds to the longjmp frame.
ea480a30 508F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 509
104c1213 510#
ea480a30 511v;int;believe_pcc_promotion;;;;;;;
104c1213 512#
ea480a30
SM
513m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 516# Construct a value representing the contents of register REGNUM in
2ed3c037 517# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
518# allocate and return a struct value with all value attributes
519# (but not the value contents) filled in.
ea480a30 520m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 521#
ea480a30
SM
522m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 525
6a3a010b
MR
526# Return the return-value convention that will be used by FUNCTION
527# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
528# case the return convention is computed based only on VALTYPE.
529#
530# If READBUF is not NULL, extract the return value and save it in this buffer.
531#
532# If WRITEBUF is not NULL, it contains a return value which will be
533# stored into the appropriate register. This can be used when we want
534# to force the value returned by a function (see the "return" command
535# for instance).
ea480a30 536M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 537
18648a37
YQ
538# Return true if the return value of function is stored in the first hidden
539# parameter. In theory, this feature should be language-dependent, specified
540# by language and its ABI, such as C++. Unfortunately, compiler may
541# implement it to a target-dependent feature. So that we need such hook here
542# to be aware of this in GDB.
ea480a30 543m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 544
ea480a30
SM
545m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
547# On some platforms, a single function may provide multiple entry points,
548# e.g. one that is used for function-pointer calls and a different one
549# that is used for direct function calls.
550# In order to ensure that breakpoints set on the function will trigger
551# no matter via which entry point the function is entered, a platform
552# may provide the skip_entrypoint callback. It is called with IP set
553# to the main entry point of a function (as determined by the symbol table),
554# and should return the address of the innermost entry point, where the
555# actual breakpoint needs to be set. Note that skip_entrypoint is used
556# by GDB common code even when debugging optimized code, where skip_prologue
557# is not used.
ea480a30 558M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 559
ea480a30
SM
560f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
562
563# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 564m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
565
566# Return the software breakpoint from KIND. KIND can have target
567# specific meaning like the Z0 kind parameter.
568# SIZE is set to the software breakpoint's length in memory.
ea480a30 569m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 570
833b7ab5
YQ
571# Return the breakpoint kind for this target based on the current
572# processor state (e.g. the current instruction mode on ARM) and the
573# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 574m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 575
ea480a30
SM
576M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
580
581# A function can be addressed by either it's "pointer" (possibly a
582# descriptor address) or "entry point" (first executable instruction).
583# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 584# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
585# a simplified subset of that functionality - the function's address
586# corresponds to the "function pointer" and the function's start
587# corresponds to the "function entry point" - and hence is redundant.
588
ea480a30 589v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 590
123dc839
DJ
591# Return the remote protocol register number associated with this
592# register. Normally the identity mapping.
ea480a30 593m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 594
b2756930 595# Fetch the target specific address used to represent a load module.
ea480a30 596F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 597#
ea480a30
SM
598v;CORE_ADDR;frame_args_skip;;;0;;;0
599M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
601# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602# frame-base. Enable frame-base before frame-unwind.
ea480a30 603F;int;frame_num_args;struct frame_info *frame;frame
104c1213 604#
ea480a30
SM
605M;CORE_ADDR;frame_align;CORE_ADDR address;address
606m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607v;int;frame_red_zone_size
f0d4cc9e 608#
ea480a30 609m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
610# On some machines there are bits in addresses which are not really
611# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 612# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
613# we get a "real" address such as one would find in a symbol table.
614# This is used only for addresses of instructions, and even then I'm
615# not sure it's used in all contexts. It exists to deal with there
616# being a few stray bits in the PC which would mislead us, not as some
617# sort of generic thing to handle alignment or segmentation (it's
618# possible it should be in TARGET_READ_PC instead).
ea480a30 619m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 620
a738ea1d
YQ
621# On some machines, not all bits of an address word are significant.
622# For example, on AArch64, the top bits of an address known as the "tag"
623# are ignored by the kernel, the hardware, etc. and can be regarded as
624# additional data associated with the address.
5969f0db 625v;int;significant_addr_bit;;;;;;0
a738ea1d 626
e6590a1b
UW
627# FIXME/cagney/2001-01-18: This should be split in two. A target method that
628# indicates if the target needs software single step. An ISA method to
629# implement it.
630#
e6590a1b
UW
631# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632# target can single step. If not, then implement single step using breakpoints.
64c4637f 633#
93f9a11f
YQ
634# Return a vector of addresses on which the software single step
635# breakpoints should be inserted. NULL means software single step is
636# not used.
637# Multiple breakpoints may be inserted for some instructions such as
638# conditional branch. However, each implementation must always evaluate
639# the condition and only put the breakpoint at the branch destination if
640# the condition is true, so that we ensure forward progress when stepping
641# past a conditional branch to self.
a0ff9e1a 642F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 643
3352ef37
AC
644# Return non-zero if the processor is executing a delay slot and a
645# further single-step is needed before the instruction finishes.
ea480a30 646M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 647# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 648# disassembler. Perhaps objdump can handle it?
39503f82 649f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 650f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
651
652
cfd8ab24 653# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
654# evaluates non-zero, this is the address where the debugger will place
655# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 656m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 657# Some systems also have trampoline code for returning from shared libs.
ea480a30 658m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 659
1d509aa6
MM
660# Return true if PC lies inside an indirect branch thunk.
661m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
c12260ac
CV
663# A target might have problems with watchpoints as soon as the stack
664# frame of the current function has been destroyed. This mostly happens
c9cf6e20 665# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
666# is defined to return a non-zero value if either the given addr is one
667# instruction after the stack destroying instruction up to the trailing
668# return instruction or if we can figure out that the stack frame has
669# already been invalidated regardless of the value of addr. Targets
670# which don't suffer from that problem could just let this functionality
671# untouched.
ea480a30 672m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
673# Process an ELF symbol in the minimal symbol table in a backend-specific
674# way. Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that are
676# considered special in some way. For example the MIPS backend uses it
677# to interpret \`st_other' information to mark compressed code symbols so
678# that they can be treated in the appropriate manner in the processing of
679# the main symbol table and DWARF-2 records.
ea480a30
SM
680F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
682# Process a symbol in the main symbol table in a backend-specific way.
683# Normally this hook is supposed to do nothing, however if required,
684# then this hook can be used to apply tranformations to symbols that
685# are considered special in some way. This is currently used by the
686# MIPS backend to make sure compressed code symbols have the ISA bit
687# set. This in turn is needed for symbol values seen in GDB to match
688# the values used at the runtime by the program itself, for function
689# and label references.
ea480a30 690f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
691# Adjust the address retrieved from a DWARF-2 record other than a line
692# entry in a backend-specific way. Normally this hook is supposed to
693# return the address passed unchanged, however if that is incorrect for
694# any reason, then this hook can be used to fix the address up in the
695# required manner. This is currently used by the MIPS backend to make
696# sure addresses in FDE, range records, etc. referring to compressed
697# code have the ISA bit set, matching line information and the symbol
698# table.
ea480a30 699f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
700# Adjust the address updated by a line entry in a backend-specific way.
701# Normally this hook is supposed to return the address passed unchanged,
702# however in the case of inconsistencies in these records, this hook can
703# be used to fix them up in the required manner. This is currently used
704# by the MIPS backend to make sure all line addresses in compressed code
705# are presented with the ISA bit set, which is not always the case. This
706# in turn ensures breakpoint addresses are correctly matched against the
707# stop PC.
ea480a30
SM
708f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
710# See comment in target.h about continuable, steppable and
711# non-steppable watchpoints.
ea480a30
SM
712v;int;have_nonsteppable_watchpoint;;;0;0;;0
713F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
714M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
715# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
716# FS are passed from the generic execute_cfa_program function.
ea480a30 717m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
718
719# Return the appropriate type_flags for the supplied address class.
720# This function should return 1 if the address class was recognized and
721# type_flags was set, zero otherwise.
ea480a30 722M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 723# Is a register in a group
ea480a30 724m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 725# Fetch the pointer to the ith function argument.
ea480a30 726F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 727
5aa82d05
AA
728# Iterate over all supported register notes in a core file. For each
729# supported register note section, the iterator must call CB and pass
730# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
731# the supported register note sections based on the current register
732# values. Otherwise it should enumerate all supported register note
733# sections.
ea480a30 734M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 735
6432734d 736# Create core file notes
ea480a30 737M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 738
35c2fab7 739# Find core file memory regions
ea480a30 740M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 741
de584861 742# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
743# core file into buffer READBUF with length LEN. Return the number of bytes read
744# (zero indicates failure).
745# failed, otherwise, return the red length of READBUF.
ea480a30 746M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 747
356a5233
JB
748# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
749# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 750# Return the number of bytes read (zero indicates failure).
ea480a30 751M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 752
c0edd9ed 753# How the core target converts a PTID from a core file to a string.
ea480a30 754M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 755
4dfc5dbc 756# How the core target extracts the name of a thread from a core file.
ea480a30 757M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 758
382b69bb
JB
759# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
760# from core file into buffer READBUF with length LEN. Return the number
761# of bytes read (zero indicates EOF, a negative value indicates failure).
762M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
763
a78c2d62 764# BFD target to use when generating a core file.
ea480a30 765V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 766
0d5de010
DJ
767# If the elements of C++ vtables are in-place function descriptors rather
768# than normal function pointers (which may point to code or a descriptor),
769# set this to one.
ea480a30 770v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
771
772# Set if the least significant bit of the delta is used instead of the least
773# significant bit of the pfn for pointers to virtual member functions.
ea480a30 774v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
775
776# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 777f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 778
1668ae25 779# The maximum length of an instruction on this architecture in bytes.
ea480a30 780V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
781
782# Copy the instruction at FROM to TO, and make any adjustments
783# necessary to single-step it at that address.
784#
785# REGS holds the state the thread's registers will have before
786# executing the copied instruction; the PC in REGS will refer to FROM,
787# not the copy at TO. The caller should update it to point at TO later.
788#
789# Return a pointer to data of the architecture's choice to be passed
790# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
791# the instruction's effects have been completely simulated, with the
792# resulting state written back to REGS.
793#
794# For a general explanation of displaced stepping and how GDB uses it,
795# see the comments in infrun.c.
796#
797# The TO area is only guaranteed to have space for
798# gdbarch_max_insn_length (arch) bytes, so this function must not
799# write more bytes than that to that area.
800#
801# If you do not provide this function, GDB assumes that the
802# architecture does not support displaced stepping.
803#
7f03bd92
PA
804# If the instruction cannot execute out of line, return NULL. The
805# core falls back to stepping past the instruction in-line instead in
806# that case.
ea480a30 807M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 808
99e40580
UW
809# Return true if GDB should use hardware single-stepping to execute
810# the displaced instruction identified by CLOSURE. If false,
811# GDB will simply restart execution at the displaced instruction
812# location, and it is up to the target to ensure GDB will receive
813# control again (e.g. by placing a software breakpoint instruction
814# into the displaced instruction buffer).
815#
816# The default implementation returns false on all targets that
817# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 818m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 819
237fc4c9
PA
820# Fix up the state resulting from successfully single-stepping a
821# displaced instruction, to give the result we would have gotten from
822# stepping the instruction in its original location.
823#
824# REGS is the register state resulting from single-stepping the
825# displaced instruction.
826#
827# CLOSURE is the result from the matching call to
828# gdbarch_displaced_step_copy_insn.
829#
830# If you provide gdbarch_displaced_step_copy_insn.but not this
831# function, then GDB assumes that no fixup is needed after
832# single-stepping the instruction.
833#
834# For a general explanation of displaced stepping and how GDB uses it,
835# see the comments in infrun.c.
ea480a30 836M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 837
237fc4c9
PA
838# Return the address of an appropriate place to put displaced
839# instructions while we step over them. There need only be one such
840# place, since we're only stepping one thread over a breakpoint at a
841# time.
842#
843# For a general explanation of displaced stepping and how GDB uses it,
844# see the comments in infrun.c.
ea480a30 845m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 846
dde08ee1
PA
847# Relocate an instruction to execute at a different address. OLDLOC
848# is the address in the inferior memory where the instruction to
849# relocate is currently at. On input, TO points to the destination
850# where we want the instruction to be copied (and possibly adjusted)
851# to. On output, it points to one past the end of the resulting
852# instruction(s). The effect of executing the instruction at TO shall
853# be the same as if executing it at FROM. For example, call
854# instructions that implicitly push the return address on the stack
855# should be adjusted to return to the instruction after OLDLOC;
856# relative branches, and other PC-relative instructions need the
857# offset adjusted; etc.
ea480a30 858M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 859
1c772458 860# Refresh overlay mapped state for section OSECT.
ea480a30 861F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 862
ea480a30 863M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
864
865# Handle special encoding of static variables in stabs debug info.
ea480a30 866F;const char *;static_transform_name;const char *name;name
203c3895 867# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 868v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 869
0508c3ec
HZ
870# Parse the instruction at ADDR storing in the record execution log
871# the registers REGCACHE and memory ranges that will be affected when
872# the instruction executes, along with their current values.
873# Return -1 if something goes wrong, 0 otherwise.
ea480a30 874M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 875
3846b520
HZ
876# Save process state after a signal.
877# Return -1 if something goes wrong, 0 otherwise.
ea480a30 878M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 879
22203bbf 880# Signal translation: translate inferior's signal (target's) number
86b49880
PA
881# into GDB's representation. The implementation of this method must
882# be host independent. IOW, don't rely on symbols of the NAT_FILE
883# header (the nm-*.h files), the host <signal.h> header, or similar
884# headers. This is mainly used when cross-debugging core files ---
885# "Live" targets hide the translation behind the target interface
1f8cf220 886# (target_wait, target_resume, etc.).
ea480a30 887M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 888
eb14d406
SDJ
889# Signal translation: translate the GDB's internal signal number into
890# the inferior's signal (target's) representation. The implementation
891# of this method must be host independent. IOW, don't rely on symbols
892# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
893# header, or similar headers.
894# Return the target signal number if found, or -1 if the GDB internal
895# signal number is invalid.
ea480a30 896M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 897
4aa995e1
PA
898# Extra signal info inspection.
899#
900# Return a type suitable to inspect extra signal information.
ea480a30 901M;struct type *;get_siginfo_type;void;
4aa995e1 902
60c5725c 903# Record architecture-specific information from the symbol table.
ea480a30 904M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 905
a96d9b2e
SDJ
906# Function for the 'catch syscall' feature.
907
908# Get architecture-specific system calls information from registers.
00431a78 909M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 910
458c8db8 911# The filename of the XML syscall for this architecture.
ea480a30 912v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
913
914# Information about system calls from this architecture
ea480a30 915v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 916
55aa24fb
SDJ
917# SystemTap related fields and functions.
918
05c0465e
SDJ
919# A NULL-terminated array of prefixes used to mark an integer constant
920# on the architecture's assembly.
55aa24fb
SDJ
921# For example, on x86 integer constants are written as:
922#
923# \$10 ;; integer constant 10
924#
925# in this case, this prefix would be the character \`\$\'.
ea480a30 926v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of suffixes used to mark an integer constant
929# on the architecture's assembly.
ea480a30 930v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 931
05c0465e
SDJ
932# A NULL-terminated array of prefixes used to mark a register name on
933# the architecture's assembly.
55aa24fb
SDJ
934# For example, on x86 the register name is written as:
935#
936# \%eax ;; register eax
937#
938# in this case, this prefix would be the character \`\%\'.
ea480a30 939v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 940
05c0465e
SDJ
941# A NULL-terminated array of suffixes used to mark a register name on
942# the architecture's assembly.
ea480a30 943v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 944
05c0465e
SDJ
945# A NULL-terminated array of prefixes used to mark a register
946# indirection on the architecture's assembly.
55aa24fb
SDJ
947# For example, on x86 the register indirection is written as:
948#
949# \(\%eax\) ;; indirecting eax
950#
951# in this case, this prefix would be the charater \`\(\'.
952#
953# Please note that we use the indirection prefix also for register
954# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 955v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of suffixes used to mark a register
958# indirection on the architecture's assembly.
55aa24fb
SDJ
959# For example, on x86 the register indirection is written as:
960#
961# \(\%eax\) ;; indirecting eax
962#
963# in this case, this prefix would be the charater \`\)\'.
964#
965# Please note that we use the indirection suffix also for register
966# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 967v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 968
05c0465e 969# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
970#
971# For example, on PPC a register is represented by a number in the assembly
972# language (e.g., \`10\' is the 10th general-purpose register). However,
973# inside GDB this same register has an \`r\' appended to its name, so the 10th
974# register would be represented as \`r10\' internally.
ea480a30 975v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
976
977# Suffix used to name a register using GDB's nomenclature.
ea480a30 978v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
979
980# Check if S is a single operand.
981#
982# Single operands can be:
983# \- Literal integers, e.g. \`\$10\' on x86
984# \- Register access, e.g. \`\%eax\' on x86
985# \- Register indirection, e.g. \`\(\%eax\)\' on x86
986# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
987#
988# This function should check for these patterns on the string
989# and return 1 if some were found, or zero otherwise. Please try to match
990# as much info as you can from the string, i.e., if you have to match
991# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 992M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
993
994# Function used to handle a "special case" in the parser.
995#
996# A "special case" is considered to be an unknown token, i.e., a token
997# that the parser does not know how to parse. A good example of special
998# case would be ARM's register displacement syntax:
999#
1000# [R0, #4] ;; displacing R0 by 4
1001#
1002# Since the parser assumes that a register displacement is of the form:
1003#
1004# <number> <indirection_prefix> <register_name> <indirection_suffix>
1005#
1006# it means that it will not be able to recognize and parse this odd syntax.
1007# Therefore, we should add a special case function that will handle this token.
1008#
1009# This function should generate the proper expression form of the expression
1010# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1011# and so on). It should also return 1 if the parsing was successful, or zero
1012# if the token was not recognized as a special token (in this case, returning
1013# zero means that the special parser is deferring the parsing to the generic
1014# parser), and should advance the buffer pointer (p->arg).
ea480a30 1015M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1016
8b367e17
JM
1017# DTrace related functions.
1018
1019# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1020# NARG must be >= 0.
ea480a30 1021M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1022
1023# True if the given ADDR does not contain the instruction sequence
1024# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1025M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1026
1027# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1028M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1032
50c71eaf
PA
1033# True if the list of shared libraries is one and only for all
1034# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1035# This usually means that all processes, although may or may not share
1036# an address space, will see the same set of symbols at the same
1037# addresses.
ea480a30 1038v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1039
1040# On some targets, even though each inferior has its own private
1041# address space, the debug interface takes care of making breakpoints
1042# visible to all address spaces automatically. For such cases,
1043# this property should be set to true.
ea480a30 1044v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1045
1046# True if inferiors share an address space (e.g., uClinux).
ea480a30 1047m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1048
1049# True if a fast tracepoint can be set at an address.
281d762b 1050m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1051
5f034a78
MK
1052# Guess register state based on tracepoint location. Used for tracepoints
1053# where no registers have been collected, but there's only one location,
1054# allowing us to guess the PC value, and perhaps some other registers.
1055# On entry, regcache has all registers marked as unavailable.
ea480a30 1056m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1057
f870a310 1058# Return the "auto" target charset.
ea480a30 1059f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1060# Return the "auto" target wide charset.
ea480a30 1061f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1062
1063# If non-empty, this is a file extension that will be opened in place
1064# of the file extension reported by the shared library list.
1065#
1066# This is most useful for toolchains that use a post-linker tool,
1067# where the names of the files run on the target differ in extension
1068# compared to the names of the files GDB should load for debug info.
ea480a30 1069v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1070
1071# If true, the target OS has DOS-based file system semantics. That
1072# is, absolute paths include a drive name, and the backslash is
1073# considered a directory separator.
ea480a30 1074v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1075
1076# Generate bytecodes to collect the return address in a frame.
1077# Since the bytecodes run on the target, possibly with GDB not even
1078# connected, the full unwinding machinery is not available, and
1079# typically this function will issue bytecodes for one or more likely
1080# places that the return address may be found.
ea480a30 1081m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1082
3030c96e 1083# Implement the "info proc" command.
ea480a30 1084M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1085
451b7c33
TT
1086# Implement the "info proc" command for core files. Noe that there
1087# are two "info_proc"-like methods on gdbarch -- one for core files,
1088# one for live targets.
ea480a30 1089M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1090
19630284
JB
1091# Iterate over all objfiles in the order that makes the most sense
1092# for the architecture to make global symbol searches.
1093#
1094# CB is a callback function where OBJFILE is the objfile to be searched,
1095# and CB_DATA a pointer to user-defined data (the same data that is passed
1096# when calling this gdbarch method). The iteration stops if this function
1097# returns nonzero.
1098#
1099# CB_DATA is a pointer to some user-defined data to be passed to
1100# the callback.
1101#
1102# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1103# inspected when the symbol search was requested.
ea480a30 1104m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1105
7e35103a 1106# Ravenscar arch-dependent ops.
ea480a30 1107v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1108
1109# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1110m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1113m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1116m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1117
1118# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1119# Return 0 if *READPTR is already at the end of the buffer.
1120# Return -1 if there is insufficient buffer for a whole entry.
1121# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1122M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1123
2faa3447
JB
1124# Print the description of a single auxv entry described by TYPE and VAL
1125# to FILE.
ea480a30 1126m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1127
3437254d
PA
1128# Find the address range of the current inferior's vsyscall/vDSO, and
1129# write it to *RANGE. If the vsyscall's length can't be determined, a
1130# range with zero length is returned. Returns true if the vsyscall is
1131# found, false otherwise.
ea480a30 1132m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1133
1134# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1135# PROT has GDB_MMAP_PROT_* bitmask format.
1136# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1137f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1138
7f361056
JK
1139# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1140# Print a warning if it is not possible.
ea480a30 1141f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1142
f208eee0
JK
1143# Return string (caller has to use xfree for it) with options for GCC
1144# to produce code for this target, typically "-m64", "-m32" or "-m31".
1145# These options are put before CU's DW_AT_producer compilation options so that
1146# they can override it. Method may also return NULL.
ea480a30 1147m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1148
1149# Return a regular expression that matches names used by this
1150# architecture in GNU configury triplets. The result is statically
1151# allocated and must not be freed. The default implementation simply
1152# returns the BFD architecture name, which is correct in nearly every
1153# case.
ea480a30 1154m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1155
1156# Return the size in 8-bit bytes of an addressable memory unit on this
1157# architecture. This corresponds to the number of 8-bit bytes associated to
1158# each address in memory.
ea480a30 1159m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1160
65b48a81 1161# Functions for allowing a target to modify its disassembler options.
471b9d15 1162v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1163v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1164v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1165
2b4424c3
TT
1166# Type alignment.
1167m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1168
104c1213 1169EOF
104c1213
JM
1170}
1171
0b8f9e4d
AC
1172#
1173# The .log file
1174#
1175exec > new-gdbarch.log
34620563 1176function_list | while do_read
0b8f9e4d
AC
1177do
1178 cat <<EOF
2f9b146e 1179${class} ${returntype} ${function} ($formal)
104c1213 1180EOF
3d9a5942
AC
1181 for r in ${read}
1182 do
1183 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1184 done
f0d4cc9e 1185 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1186 then
66d659b1 1187 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1188 kill $$
1189 exit 1
1190 fi
72e74a21 1191 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1192 then
1193 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1194 kill $$
1195 exit 1
1196 fi
a72293e2
AC
1197 if class_is_multiarch_p
1198 then
1199 if class_is_predicate_p ; then :
1200 elif test "x${predefault}" = "x"
1201 then
2f9b146e 1202 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1203 kill $$
1204 exit 1
1205 fi
1206 fi
3d9a5942 1207 echo ""
0b8f9e4d
AC
1208done
1209
1210exec 1>&2
1211compare_new gdbarch.log
1212
104c1213
JM
1213
1214copyright ()
1215{
1216cat <<EOF
c4bfde41
JK
1217/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1218/* vi:set ro: */
59233f88 1219
104c1213 1220/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1221
e2882c85 1222 Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
1223
1224 This file is part of GDB.
1225
1226 This program is free software; you can redistribute it and/or modify
1227 it under the terms of the GNU General Public License as published by
50efebf8 1228 the Free Software Foundation; either version 3 of the License, or
104c1213 1229 (at your option) any later version.
618f726f 1230
104c1213
JM
1231 This program is distributed in the hope that it will be useful,
1232 but WITHOUT ANY WARRANTY; without even the implied warranty of
1233 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1234 GNU General Public License for more details.
618f726f 1235
104c1213 1236 You should have received a copy of the GNU General Public License
50efebf8 1237 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1238
104c1213
JM
1239/* This file was created with the aid of \`\`gdbarch.sh''.
1240
52204a0b 1241 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1242 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1243 against the existing \`\`gdbarch.[hc]''. Any differences found
1244 being reported.
1245
1246 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1247 changes into that script. Conversely, when making sweeping changes
104c1213 1248 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1249 easier. */
104c1213
JM
1250
1251EOF
1252}
1253
1254#
1255# The .h file
1256#
1257
1258exec > new-gdbarch.h
1259copyright
1260cat <<EOF
1261#ifndef GDBARCH_H
1262#define GDBARCH_H
1263
a0ff9e1a 1264#include <vector>
eb7a547a 1265#include "frame.h"
65b48a81 1266#include "dis-asm.h"
284a0e3c 1267#include "gdb_obstack.h"
eb7a547a 1268
da3331ec
AC
1269struct floatformat;
1270struct ui_file;
104c1213 1271struct value;
b6af0555 1272struct objfile;
1c772458 1273struct obj_section;
a2cf933a 1274struct minimal_symbol;
049ee0e4 1275struct regcache;
b59ff9d5 1276struct reggroup;
6ce6d90f 1277struct regset;
a89aa300 1278struct disassemble_info;
e2d0e7eb 1279struct target_ops;
030f20e1 1280struct obstack;
8181d85f 1281struct bp_target_info;
424163ea 1282struct target_desc;
3e29f34a 1283struct symbol;
237fc4c9 1284struct displaced_step_closure;
a96d9b2e 1285struct syscall;
175ff332 1286struct agent_expr;
6710bf39 1287struct axs_value;
55aa24fb 1288struct stap_parse_info;
8b367e17 1289struct parser_state;
7e35103a 1290struct ravenscar_arch_ops;
3437254d 1291struct mem_range;
458c8db8 1292struct syscalls_info;
4dfc5dbc 1293struct thread_info;
012b3a21 1294struct ui_out;
104c1213 1295
8a526fa6
PA
1296#include "regcache.h"
1297
6ecd4729
PA
1298/* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1311extern struct gdbarch *target_gdbarch (void);
6ecd4729 1312
19630284
JB
1313/* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
5aa82d05 1318
1528345d
AA
1319/* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1321 pass a buffer - for collects this buffer will need to be created using
1322 COLLECT_SIZE, for supply the existing buffer being read from should
1323 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1324 is used for diagnostic messages. CB_DATA should have been passed
1325 unchanged through the iterator. */
1528345d 1326
5aa82d05 1327typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1328 (const char *sect_name, int supply_size, int collect_size,
1329 const struct regset *regset, const char *human_name, void *cb_data);
104c1213
JM
1330EOF
1331
1332# function typedef's
3d9a5942
AC
1333printf "\n"
1334printf "\n"
0963b4bd 1335printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1336function_list | while do_read
104c1213 1337do
2ada493a
AC
1338 if class_is_info_p
1339 then
3d9a5942
AC
1340 printf "\n"
1341 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1342 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1343 fi
104c1213
JM
1344done
1345
1346# function typedef's
3d9a5942
AC
1347printf "\n"
1348printf "\n"
0963b4bd 1349printf "/* The following are initialized by the target dependent code. */\n"
34620563 1350function_list | while do_read
104c1213 1351do
72e74a21 1352 if [ -n "${comment}" ]
34620563
AC
1353 then
1354 echo "${comment}" | sed \
1355 -e '2 s,#,/*,' \
1356 -e '3,$ s,#, ,' \
1357 -e '$ s,$, */,'
1358 fi
412d5987
AC
1359
1360 if class_is_predicate_p
2ada493a 1361 then
412d5987
AC
1362 printf "\n"
1363 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1364 fi
2ada493a
AC
1365 if class_is_variable_p
1366 then
3d9a5942
AC
1367 printf "\n"
1368 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1369 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1370 fi
1371 if class_is_function_p
1372 then
3d9a5942 1373 printf "\n"
72e74a21 1374 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1375 then
1376 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1377 elif class_is_multiarch_p
1378 then
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1380 else
1381 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1382 fi
72e74a21 1383 if [ "x${formal}" = "xvoid" ]
104c1213 1384 then
3d9a5942 1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1386 else
3d9a5942 1387 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1388 fi
3d9a5942 1389 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1390 fi
104c1213
JM
1391done
1392
1393# close it off
1394cat <<EOF
1395
a96d9b2e
SDJ
1396/* Definition for an unknown syscall, used basically in error-cases. */
1397#define UNKNOWN_SYSCALL (-1)
1398
104c1213
JM
1399extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1400
1401
1402/* Mechanism for co-ordinating the selection of a specific
1403 architecture.
1404
1405 GDB targets (*-tdep.c) can register an interest in a specific
1406 architecture. Other GDB components can register a need to maintain
1407 per-architecture data.
1408
1409 The mechanisms below ensures that there is only a loose connection
1410 between the set-architecture command and the various GDB
0fa6923a 1411 components. Each component can independently register their need
104c1213
JM
1412 to maintain architecture specific data with gdbarch.
1413
1414 Pragmatics:
1415
1416 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1417 didn't scale.
1418
1419 The more traditional mega-struct containing architecture specific
1420 data for all the various GDB components was also considered. Since
0fa6923a 1421 GDB is built from a variable number of (fairly independent)
104c1213 1422 components it was determined that the global aproach was not
0963b4bd 1423 applicable. */
104c1213
JM
1424
1425
1426/* Register a new architectural family with GDB.
1427
1428 Register support for the specified ARCHITECTURE with GDB. When
1429 gdbarch determines that the specified architecture has been
1430 selected, the corresponding INIT function is called.
1431
1432 --
1433
1434 The INIT function takes two parameters: INFO which contains the
1435 information available to gdbarch about the (possibly new)
1436 architecture; ARCHES which is a list of the previously created
1437 \`\`struct gdbarch'' for this architecture.
1438
0f79675b 1439 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1440 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1441
1442 The ARCHES parameter is a linked list (sorted most recently used)
1443 of all the previously created architures for this architecture
1444 family. The (possibly NULL) ARCHES->gdbarch can used to access
1445 values from the previously selected architecture for this
59837fe0 1446 architecture family.
104c1213
JM
1447
1448 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1449 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1450 gdbarch'' from the ARCHES list - indicating that the new
1451 architecture is just a synonym for an earlier architecture (see
1452 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1453 - that describes the selected architecture (see gdbarch_alloc()).
1454
1455 The DUMP_TDEP function shall print out all target specific values.
1456 Care should be taken to ensure that the function works in both the
0963b4bd 1457 multi-arch and non- multi-arch cases. */
104c1213
JM
1458
1459struct gdbarch_list
1460{
1461 struct gdbarch *gdbarch;
1462 struct gdbarch_list *next;
1463};
1464
1465struct gdbarch_info
1466{
0963b4bd 1467 /* Use default: NULL (ZERO). */
104c1213
JM
1468 const struct bfd_arch_info *bfd_arch_info;
1469
428721aa 1470 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1471 enum bfd_endian byte_order;
104c1213 1472
94123b4f 1473 enum bfd_endian byte_order_for_code;
9d4fde75 1474
0963b4bd 1475 /* Use default: NULL (ZERO). */
104c1213
JM
1476 bfd *abfd;
1477
0963b4bd 1478 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1479 union
1480 {
1481 /* Architecture-specific information. The generic form for targets
1482 that have extra requirements. */
1483 struct gdbarch_tdep_info *tdep_info;
1484
1485 /* Architecture-specific target description data. Numerous targets
1486 need only this, so give them an easy way to hold it. */
1487 struct tdesc_arch_data *tdesc_data;
1488
1489 /* SPU file system ID. This is a single integer, so using the
1490 generic form would only complicate code. Other targets may
1491 reuse this member if suitable. */
1492 int *id;
1493 };
4be87837
DJ
1494
1495 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1496 enum gdb_osabi osabi;
424163ea
DJ
1497
1498 /* Use default: NULL (ZERO). */
1499 const struct target_desc *target_desc;
104c1213
JM
1500};
1501
1502typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1503typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1504
4b9b3959 1505/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1506extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1507
4b9b3959
AC
1508extern void gdbarch_register (enum bfd_architecture architecture,
1509 gdbarch_init_ftype *,
1510 gdbarch_dump_tdep_ftype *);
1511
104c1213 1512
b4a20239
AC
1513/* Return a freshly allocated, NULL terminated, array of the valid
1514 architecture names. Since architectures are registered during the
1515 _initialize phase this function only returns useful information
0963b4bd 1516 once initialization has been completed. */
b4a20239
AC
1517
1518extern const char **gdbarch_printable_names (void);
1519
1520
104c1213 1521/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1522 matches the information provided by INFO. */
104c1213 1523
424163ea 1524extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1525
1526
1527/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1528 basic initialization using values obtained from the INFO and TDEP
104c1213 1529 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1530 initialization of the object. */
104c1213
JM
1531
1532extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1533
1534
4b9b3959
AC
1535/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1536 It is assumed that the caller freeds the \`\`struct
0963b4bd 1537 gdbarch_tdep''. */
4b9b3959 1538
058f20d5
JB
1539extern void gdbarch_free (struct gdbarch *);
1540
284a0e3c
SM
1541/* Get the obstack owned by ARCH. */
1542
1543extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1544
aebd7893
AC
1545/* Helper function. Allocate memory from the \`\`struct gdbarch''
1546 obstack. The memory is freed when the corresponding architecture
1547 is also freed. */
1548
284a0e3c
SM
1549#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1550 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1551
1552#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1553 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1554
6c214e7c
PP
1555/* Duplicate STRING, returning an equivalent string that's allocated on the
1556 obstack associated with GDBARCH. The string is freed when the corresponding
1557 architecture is also freed. */
1558
1559extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1560
0963b4bd 1561/* Helper function. Force an update of the current architecture.
104c1213 1562
b732d07d
AC
1563 The actual architecture selected is determined by INFO, \`\`(gdb) set
1564 architecture'' et.al., the existing architecture and BFD's default
1565 architecture. INFO should be initialized to zero and then selected
1566 fields should be updated.
104c1213 1567
0963b4bd 1568 Returns non-zero if the update succeeds. */
16f33e29
AC
1569
1570extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1571
1572
ebdba546
AC
1573/* Helper function. Find an architecture matching info.
1574
1575 INFO should be initialized using gdbarch_info_init, relevant fields
1576 set, and then finished using gdbarch_info_fill.
1577
1578 Returns the corresponding architecture, or NULL if no matching
59837fe0 1579 architecture was found. */
ebdba546
AC
1580
1581extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1582
1583
aff68abb 1584/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1585
aff68abb 1586extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1587
104c1213
JM
1588
1589/* Register per-architecture data-pointer.
1590
1591 Reserve space for a per-architecture data-pointer. An identifier
1592 for the reserved data-pointer is returned. That identifer should
95160752 1593 be saved in a local static variable.
104c1213 1594
fcc1c85c
AC
1595 Memory for the per-architecture data shall be allocated using
1596 gdbarch_obstack_zalloc. That memory will be deleted when the
1597 corresponding architecture object is deleted.
104c1213 1598
95160752
AC
1599 When a previously created architecture is re-selected, the
1600 per-architecture data-pointer for that previous architecture is
76860b5f 1601 restored. INIT() is not re-called.
104c1213
JM
1602
1603 Multiple registrarants for any architecture are allowed (and
1604 strongly encouraged). */
1605
95160752 1606struct gdbarch_data;
104c1213 1607
030f20e1
AC
1608typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1609extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1610typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1611extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1612extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1613 struct gdbarch_data *data,
1614 void *pointer);
104c1213 1615
451fbdda 1616extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1617
1618
0fa6923a 1619/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1620 byte-order, ...) using information found in the BFD. */
104c1213
JM
1621
1622extern void set_gdbarch_from_file (bfd *);
1623
1624
e514a9d6
JM
1625/* Initialize the current architecture to the "first" one we find on
1626 our list. */
1627
1628extern void initialize_current_architecture (void);
1629
104c1213 1630/* gdbarch trace variable */
ccce17b0 1631extern unsigned int gdbarch_debug;
104c1213 1632
4b9b3959 1633extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1634
1635#endif
1636EOF
1637exec 1>&2
1638#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1639compare_new gdbarch.h
104c1213
JM
1640
1641
1642#
1643# C file
1644#
1645
1646exec > new-gdbarch.c
1647copyright
1648cat <<EOF
1649
1650#include "defs.h"
7355ddba 1651#include "arch-utils.h"
104c1213 1652
104c1213 1653#include "gdbcmd.h"
faaf634c 1654#include "inferior.h"
104c1213
JM
1655#include "symcat.h"
1656
f0d4cc9e 1657#include "floatformat.h"
b59ff9d5 1658#include "reggroups.h"
4be87837 1659#include "osabi.h"
aebd7893 1660#include "gdb_obstack.h"
0bee6dd4 1661#include "observable.h"
a3ecef73 1662#include "regcache.h"
19630284 1663#include "objfiles.h"
2faa3447 1664#include "auxv.h"
95160752 1665
104c1213
JM
1666/* Static function declarations */
1667
b3cc3077 1668static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1669
104c1213
JM
1670/* Non-zero if we want to trace architecture code. */
1671
1672#ifndef GDBARCH_DEBUG
1673#define GDBARCH_DEBUG 0
1674#endif
ccce17b0 1675unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1676static void
1677show_gdbarch_debug (struct ui_file *file, int from_tty,
1678 struct cmd_list_element *c, const char *value)
1679{
1680 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1681}
104c1213 1682
456fcf94 1683static const char *
8da61cc4 1684pformat (const struct floatformat **format)
456fcf94
AC
1685{
1686 if (format == NULL)
1687 return "(null)";
1688 else
8da61cc4
DJ
1689 /* Just print out one of them - this is only for diagnostics. */
1690 return format[0]->name;
456fcf94
AC
1691}
1692
08105857
PA
1693static const char *
1694pstring (const char *string)
1695{
1696 if (string == NULL)
1697 return "(null)";
1698 return string;
05c0465e
SDJ
1699}
1700
a121b7c1 1701static const char *
f7bb4e3a
PB
1702pstring_ptr (char **string)
1703{
1704 if (string == NULL || *string == NULL)
1705 return "(null)";
1706 return *string;
1707}
1708
05c0465e
SDJ
1709/* Helper function to print a list of strings, represented as "const
1710 char *const *". The list is printed comma-separated. */
1711
a121b7c1 1712static const char *
05c0465e
SDJ
1713pstring_list (const char *const *list)
1714{
1715 static char ret[100];
1716 const char *const *p;
1717 size_t offset = 0;
1718
1719 if (list == NULL)
1720 return "(null)";
1721
1722 ret[0] = '\0';
1723 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1724 {
1725 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1726 offset += 2 + s;
1727 }
1728
1729 if (offset > 0)
1730 {
1731 gdb_assert (offset - 2 < sizeof (ret));
1732 ret[offset - 2] = '\0';
1733 }
1734
1735 return ret;
08105857
PA
1736}
1737
104c1213
JM
1738EOF
1739
1740# gdbarch open the gdbarch object
3d9a5942 1741printf "\n"
0963b4bd 1742printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1743printf "\n"
1744printf "struct gdbarch\n"
1745printf "{\n"
76860b5f
AC
1746printf " /* Has this architecture been fully initialized? */\n"
1747printf " int initialized_p;\n"
aebd7893
AC
1748printf "\n"
1749printf " /* An obstack bound to the lifetime of the architecture. */\n"
1750printf " struct obstack *obstack;\n"
1751printf "\n"
0963b4bd 1752printf " /* basic architectural information. */\n"
34620563 1753function_list | while do_read
104c1213 1754do
2ada493a
AC
1755 if class_is_info_p
1756 then
3d9a5942 1757 printf " ${returntype} ${function};\n"
2ada493a 1758 fi
104c1213 1759done
3d9a5942 1760printf "\n"
0963b4bd 1761printf " /* target specific vector. */\n"
3d9a5942
AC
1762printf " struct gdbarch_tdep *tdep;\n"
1763printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1764printf "\n"
0963b4bd 1765printf " /* per-architecture data-pointers. */\n"
95160752 1766printf " unsigned nr_data;\n"
3d9a5942
AC
1767printf " void **data;\n"
1768printf "\n"
104c1213
JM
1769cat <<EOF
1770 /* Multi-arch values.
1771
1772 When extending this structure you must:
1773
1774 Add the field below.
1775
1776 Declare set/get functions and define the corresponding
1777 macro in gdbarch.h.
1778
1779 gdbarch_alloc(): If zero/NULL is not a suitable default,
1780 initialize the new field.
1781
1782 verify_gdbarch(): Confirm that the target updated the field
1783 correctly.
1784
7e73cedf 1785 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1786 field is dumped out
1787
104c1213
JM
1788 get_gdbarch(): Implement the set/get functions (probably using
1789 the macro's as shortcuts).
1790
1791 */
1792
1793EOF
34620563 1794function_list | while do_read
104c1213 1795do
2ada493a
AC
1796 if class_is_variable_p
1797 then
3d9a5942 1798 printf " ${returntype} ${function};\n"
2ada493a
AC
1799 elif class_is_function_p
1800 then
2f9b146e 1801 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1802 fi
104c1213 1803done
3d9a5942 1804printf "};\n"
104c1213 1805
104c1213 1806# Create a new gdbarch struct
104c1213 1807cat <<EOF
7de2341d 1808
66b43ecb 1809/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1810 \`\`struct gdbarch_info''. */
104c1213 1811EOF
3d9a5942 1812printf "\n"
104c1213
JM
1813cat <<EOF
1814struct gdbarch *
1815gdbarch_alloc (const struct gdbarch_info *info,
1816 struct gdbarch_tdep *tdep)
1817{
be7811ad 1818 struct gdbarch *gdbarch;
aebd7893
AC
1819
1820 /* Create an obstack for allocating all the per-architecture memory,
1821 then use that to allocate the architecture vector. */
70ba0933 1822 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1823 obstack_init (obstack);
8d749320 1824 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1825 memset (gdbarch, 0, sizeof (*gdbarch));
1826 gdbarch->obstack = obstack;
85de9627 1827
be7811ad 1828 alloc_gdbarch_data (gdbarch);
85de9627 1829
be7811ad 1830 gdbarch->tdep = tdep;
104c1213 1831EOF
3d9a5942 1832printf "\n"
34620563 1833function_list | while do_read
104c1213 1834do
2ada493a
AC
1835 if class_is_info_p
1836 then
be7811ad 1837 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1838 fi
104c1213 1839done
3d9a5942 1840printf "\n"
0963b4bd 1841printf " /* Force the explicit initialization of these. */\n"
34620563 1842function_list | while do_read
104c1213 1843do
2ada493a
AC
1844 if class_is_function_p || class_is_variable_p
1845 then
72e74a21 1846 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1847 then
be7811ad 1848 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1849 fi
2ada493a 1850 fi
104c1213
JM
1851done
1852cat <<EOF
1853 /* gdbarch_alloc() */
1854
be7811ad 1855 return gdbarch;
104c1213
JM
1856}
1857EOF
1858
058f20d5 1859# Free a gdbarch struct.
3d9a5942
AC
1860printf "\n"
1861printf "\n"
058f20d5 1862cat <<EOF
aebd7893 1863
284a0e3c 1864obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1865{
284a0e3c 1866 return arch->obstack;
aebd7893
AC
1867}
1868
6c214e7c
PP
1869/* See gdbarch.h. */
1870
1871char *
1872gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1873{
1874 return obstack_strdup (arch->obstack, string);
1875}
1876
aebd7893 1877
058f20d5
JB
1878/* Free a gdbarch struct. This should never happen in normal
1879 operation --- once you've created a gdbarch, you keep it around.
1880 However, if an architecture's init function encounters an error
1881 building the structure, it may need to clean up a partially
1882 constructed gdbarch. */
4b9b3959 1883
058f20d5
JB
1884void
1885gdbarch_free (struct gdbarch *arch)
1886{
aebd7893 1887 struct obstack *obstack;
05c547f6 1888
95160752 1889 gdb_assert (arch != NULL);
aebd7893
AC
1890 gdb_assert (!arch->initialized_p);
1891 obstack = arch->obstack;
1892 obstack_free (obstack, 0); /* Includes the ARCH. */
1893 xfree (obstack);
058f20d5
JB
1894}
1895EOF
1896
104c1213 1897# verify a new architecture
104c1213 1898cat <<EOF
db446970
AC
1899
1900
1901/* Ensure that all values in a GDBARCH are reasonable. */
1902
104c1213 1903static void
be7811ad 1904verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1905{
d7e74731 1906 string_file log;
05c547f6 1907
104c1213 1908 /* fundamental */
be7811ad 1909 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1910 log.puts ("\n\tbyte-order");
be7811ad 1911 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1912 log.puts ("\n\tbfd_arch_info");
0963b4bd 1913 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1914EOF
34620563 1915function_list | while do_read
104c1213 1916do
2ada493a
AC
1917 if class_is_function_p || class_is_variable_p
1918 then
72e74a21 1919 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1920 then
3d9a5942 1921 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1922 elif class_is_predicate_p
1923 then
0963b4bd 1924 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1925 # FIXME: See do_read for potential simplification
72e74a21 1926 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1927 then
3d9a5942 1928 printf " if (${invalid_p})\n"
be7811ad 1929 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1930 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1931 then
be7811ad
MD
1932 printf " if (gdbarch->${function} == ${predefault})\n"
1933 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1934 elif [ -n "${postdefault}" ]
f0d4cc9e 1935 then
be7811ad
MD
1936 printf " if (gdbarch->${function} == 0)\n"
1937 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1938 elif [ -n "${invalid_p}" ]
104c1213 1939 then
4d60522e 1940 printf " if (${invalid_p})\n"
d7e74731 1941 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1942 elif [ -n "${predefault}" ]
104c1213 1943 then
be7811ad 1944 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1945 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1946 fi
2ada493a 1947 fi
104c1213
JM
1948done
1949cat <<EOF
d7e74731 1950 if (!log.empty ())
f16a1923 1951 internal_error (__FILE__, __LINE__,
85c07804 1952 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1953 log.c_str ());
104c1213
JM
1954}
1955EOF
1956
1957# dump the structure
3d9a5942
AC
1958printf "\n"
1959printf "\n"
104c1213 1960cat <<EOF
0963b4bd 1961/* Print out the details of the current architecture. */
4b9b3959 1962
104c1213 1963void
be7811ad 1964gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1965{
b78960be 1966 const char *gdb_nm_file = "<not-defined>";
05c547f6 1967
b78960be
AC
1968#if defined (GDB_NM_FILE)
1969 gdb_nm_file = GDB_NM_FILE;
1970#endif
1971 fprintf_unfiltered (file,
1972 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1973 gdb_nm_file);
104c1213 1974EOF
ea480a30 1975function_list | sort '-t;' -k 3 | while do_read
104c1213 1976do
1e9f55d0
AC
1977 # First the predicate
1978 if class_is_predicate_p
1979 then
7996bcec 1980 printf " fprintf_unfiltered (file,\n"
48f7351b 1981 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1982 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1983 fi
48f7351b 1984 # Print the corresponding value.
283354d8 1985 if class_is_function_p
4b9b3959 1986 then
7996bcec 1987 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1988 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1989 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1990 else
48f7351b 1991 # It is a variable
2f9b146e
AC
1992 case "${print}:${returntype}" in
1993 :CORE_ADDR )
0b1553bc
UW
1994 fmt="%s"
1995 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1996 ;;
2f9b146e 1997 :* )
48f7351b 1998 fmt="%s"
623d3eb1 1999 print="plongest (gdbarch->${function})"
48f7351b
AC
2000 ;;
2001 * )
2f9b146e 2002 fmt="%s"
48f7351b
AC
2003 ;;
2004 esac
3d9a5942 2005 printf " fprintf_unfiltered (file,\n"
48f7351b 2006 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2007 printf " ${print});\n"
2ada493a 2008 fi
104c1213 2009done
381323f4 2010cat <<EOF
be7811ad
MD
2011 if (gdbarch->dump_tdep != NULL)
2012 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2013}
2014EOF
104c1213
JM
2015
2016
2017# GET/SET
3d9a5942 2018printf "\n"
104c1213
JM
2019cat <<EOF
2020struct gdbarch_tdep *
2021gdbarch_tdep (struct gdbarch *gdbarch)
2022{
2023 if (gdbarch_debug >= 2)
3d9a5942 2024 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2025 return gdbarch->tdep;
2026}
2027EOF
3d9a5942 2028printf "\n"
34620563 2029function_list | while do_read
104c1213 2030do
2ada493a
AC
2031 if class_is_predicate_p
2032 then
3d9a5942
AC
2033 printf "\n"
2034 printf "int\n"
2035 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2036 printf "{\n"
8de9bdc4 2037 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2038 printf " return ${predicate};\n"
3d9a5942 2039 printf "}\n"
2ada493a
AC
2040 fi
2041 if class_is_function_p
2042 then
3d9a5942
AC
2043 printf "\n"
2044 printf "${returntype}\n"
72e74a21 2045 if [ "x${formal}" = "xvoid" ]
104c1213 2046 then
3d9a5942 2047 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2048 else
3d9a5942 2049 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2050 fi
3d9a5942 2051 printf "{\n"
8de9bdc4 2052 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2053 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2054 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2055 then
2056 # Allow a call to a function with a predicate.
956ac328 2057 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2058 fi
3d9a5942
AC
2059 printf " if (gdbarch_debug >= 2)\n"
2060 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2061 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2062 then
2063 if class_is_multiarch_p
2064 then
2065 params="gdbarch"
2066 else
2067 params=""
2068 fi
2069 else
2070 if class_is_multiarch_p
2071 then
2072 params="gdbarch, ${actual}"
2073 else
2074 params="${actual}"
2075 fi
2076 fi
72e74a21 2077 if [ "x${returntype}" = "xvoid" ]
104c1213 2078 then
4a5c6a1d 2079 printf " gdbarch->${function} (${params});\n"
104c1213 2080 else
4a5c6a1d 2081 printf " return gdbarch->${function} (${params});\n"
104c1213 2082 fi
3d9a5942
AC
2083 printf "}\n"
2084 printf "\n"
2085 printf "void\n"
2086 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2087 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2088 printf "{\n"
2089 printf " gdbarch->${function} = ${function};\n"
2090 printf "}\n"
2ada493a
AC
2091 elif class_is_variable_p
2092 then
3d9a5942
AC
2093 printf "\n"
2094 printf "${returntype}\n"
2095 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2096 printf "{\n"
8de9bdc4 2097 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2098 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2099 then
3d9a5942 2100 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2101 elif [ -n "${invalid_p}" ]
104c1213 2102 then
956ac328
AC
2103 printf " /* Check variable is valid. */\n"
2104 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2105 elif [ -n "${predefault}" ]
104c1213 2106 then
956ac328
AC
2107 printf " /* Check variable changed from pre-default. */\n"
2108 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2109 fi
3d9a5942
AC
2110 printf " if (gdbarch_debug >= 2)\n"
2111 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2112 printf " return gdbarch->${function};\n"
2113 printf "}\n"
2114 printf "\n"
2115 printf "void\n"
2116 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2117 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2118 printf "{\n"
2119 printf " gdbarch->${function} = ${function};\n"
2120 printf "}\n"
2ada493a
AC
2121 elif class_is_info_p
2122 then
3d9a5942
AC
2123 printf "\n"
2124 printf "${returntype}\n"
2125 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2126 printf "{\n"
8de9bdc4 2127 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2128 printf " if (gdbarch_debug >= 2)\n"
2129 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2130 printf " return gdbarch->${function};\n"
2131 printf "}\n"
2ada493a 2132 fi
104c1213
JM
2133done
2134
2135# All the trailing guff
2136cat <<EOF
2137
2138
f44c642f 2139/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2140 modules. */
104c1213
JM
2141
2142struct gdbarch_data
2143{
95160752 2144 unsigned index;
76860b5f 2145 int init_p;
030f20e1
AC
2146 gdbarch_data_pre_init_ftype *pre_init;
2147 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2148};
2149
2150struct gdbarch_data_registration
2151{
104c1213
JM
2152 struct gdbarch_data *data;
2153 struct gdbarch_data_registration *next;
2154};
2155
f44c642f 2156struct gdbarch_data_registry
104c1213 2157{
95160752 2158 unsigned nr;
104c1213
JM
2159 struct gdbarch_data_registration *registrations;
2160};
2161
f44c642f 2162struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2163{
2164 0, NULL,
2165};
2166
030f20e1
AC
2167static struct gdbarch_data *
2168gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2169 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2170{
2171 struct gdbarch_data_registration **curr;
05c547f6
MS
2172
2173 /* Append the new registration. */
f44c642f 2174 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2175 (*curr) != NULL;
2176 curr = &(*curr)->next);
70ba0933 2177 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2178 (*curr)->next = NULL;
70ba0933 2179 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2180 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2181 (*curr)->data->pre_init = pre_init;
2182 (*curr)->data->post_init = post_init;
76860b5f 2183 (*curr)->data->init_p = 1;
104c1213
JM
2184 return (*curr)->data;
2185}
2186
030f20e1
AC
2187struct gdbarch_data *
2188gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2189{
2190 return gdbarch_data_register (pre_init, NULL);
2191}
2192
2193struct gdbarch_data *
2194gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2195{
2196 return gdbarch_data_register (NULL, post_init);
2197}
104c1213 2198
0963b4bd 2199/* Create/delete the gdbarch data vector. */
95160752
AC
2200
2201static void
b3cc3077 2202alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2203{
b3cc3077
JB
2204 gdb_assert (gdbarch->data == NULL);
2205 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2206 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2207}
3c875b6f 2208
76860b5f 2209/* Initialize the current value of the specified per-architecture
0963b4bd 2210 data-pointer. */
b3cc3077 2211
95160752 2212void
030f20e1
AC
2213deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2214 struct gdbarch_data *data,
2215 void *pointer)
95160752
AC
2216{
2217 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2218 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2219 gdb_assert (data->pre_init == NULL);
95160752
AC
2220 gdbarch->data[data->index] = pointer;
2221}
2222
104c1213 2223/* Return the current value of the specified per-architecture
0963b4bd 2224 data-pointer. */
104c1213
JM
2225
2226void *
451fbdda 2227gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2228{
451fbdda 2229 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2230 if (gdbarch->data[data->index] == NULL)
76860b5f 2231 {
030f20e1
AC
2232 /* The data-pointer isn't initialized, call init() to get a
2233 value. */
2234 if (data->pre_init != NULL)
2235 /* Mid architecture creation: pass just the obstack, and not
2236 the entire architecture, as that way it isn't possible for
2237 pre-init code to refer to undefined architecture
2238 fields. */
2239 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2240 else if (gdbarch->initialized_p
2241 && data->post_init != NULL)
2242 /* Post architecture creation: pass the entire architecture
2243 (as all fields are valid), but be careful to also detect
2244 recursive references. */
2245 {
2246 gdb_assert (data->init_p);
2247 data->init_p = 0;
2248 gdbarch->data[data->index] = data->post_init (gdbarch);
2249 data->init_p = 1;
2250 }
2251 else
2252 /* The architecture initialization hasn't completed - punt -
2253 hope that the caller knows what they are doing. Once
2254 deprecated_set_gdbarch_data has been initialized, this can be
2255 changed to an internal error. */
2256 return NULL;
76860b5f
AC
2257 gdb_assert (gdbarch->data[data->index] != NULL);
2258 }
451fbdda 2259 return gdbarch->data[data->index];
104c1213
JM
2260}
2261
2262
0963b4bd 2263/* Keep a registry of the architectures known by GDB. */
104c1213 2264
4b9b3959 2265struct gdbarch_registration
104c1213
JM
2266{
2267 enum bfd_architecture bfd_architecture;
2268 gdbarch_init_ftype *init;
4b9b3959 2269 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2270 struct gdbarch_list *arches;
4b9b3959 2271 struct gdbarch_registration *next;
104c1213
JM
2272};
2273
f44c642f 2274static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2275
b4a20239
AC
2276static void
2277append_name (const char ***buf, int *nr, const char *name)
2278{
1dc7a623 2279 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2280 (*buf)[*nr] = name;
2281 *nr += 1;
2282}
2283
2284const char **
2285gdbarch_printable_names (void)
2286{
7996bcec 2287 /* Accumulate a list of names based on the registed list of
0963b4bd 2288 architectures. */
7996bcec
AC
2289 int nr_arches = 0;
2290 const char **arches = NULL;
2291 struct gdbarch_registration *rego;
05c547f6 2292
7996bcec
AC
2293 for (rego = gdbarch_registry;
2294 rego != NULL;
2295 rego = rego->next)
b4a20239 2296 {
7996bcec
AC
2297 const struct bfd_arch_info *ap;
2298 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2299 if (ap == NULL)
2300 internal_error (__FILE__, __LINE__,
85c07804 2301 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2302 do
2303 {
2304 append_name (&arches, &nr_arches, ap->printable_name);
2305 ap = ap->next;
2306 }
2307 while (ap != NULL);
b4a20239 2308 }
7996bcec
AC
2309 append_name (&arches, &nr_arches, NULL);
2310 return arches;
b4a20239
AC
2311}
2312
2313
104c1213 2314void
4b9b3959
AC
2315gdbarch_register (enum bfd_architecture bfd_architecture,
2316 gdbarch_init_ftype *init,
2317 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2318{
4b9b3959 2319 struct gdbarch_registration **curr;
104c1213 2320 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2321
ec3d358c 2322 /* Check that BFD recognizes this architecture */
104c1213
JM
2323 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2324 if (bfd_arch_info == NULL)
2325 {
8e65ff28 2326 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2327 _("gdbarch: Attempt to register "
2328 "unknown architecture (%d)"),
8e65ff28 2329 bfd_architecture);
104c1213 2330 }
0963b4bd 2331 /* Check that we haven't seen this architecture before. */
f44c642f 2332 for (curr = &gdbarch_registry;
104c1213
JM
2333 (*curr) != NULL;
2334 curr = &(*curr)->next)
2335 {
2336 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2337 internal_error (__FILE__, __LINE__,
64b9b334 2338 _("gdbarch: Duplicate registration "
0963b4bd 2339 "of architecture (%s)"),
8e65ff28 2340 bfd_arch_info->printable_name);
104c1213
JM
2341 }
2342 /* log it */
2343 if (gdbarch_debug)
30737ed9 2344 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2345 bfd_arch_info->printable_name,
30737ed9 2346 host_address_to_string (init));
104c1213 2347 /* Append it */
70ba0933 2348 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2349 (*curr)->bfd_architecture = bfd_architecture;
2350 (*curr)->init = init;
4b9b3959 2351 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2352 (*curr)->arches = NULL;
2353 (*curr)->next = NULL;
4b9b3959
AC
2354}
2355
2356void
2357register_gdbarch_init (enum bfd_architecture bfd_architecture,
2358 gdbarch_init_ftype *init)
2359{
2360 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2361}
104c1213
JM
2362
2363
424163ea 2364/* Look for an architecture using gdbarch_info. */
104c1213
JM
2365
2366struct gdbarch_list *
2367gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2368 const struct gdbarch_info *info)
2369{
2370 for (; arches != NULL; arches = arches->next)
2371 {
2372 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2373 continue;
2374 if (info->byte_order != arches->gdbarch->byte_order)
2375 continue;
4be87837
DJ
2376 if (info->osabi != arches->gdbarch->osabi)
2377 continue;
424163ea
DJ
2378 if (info->target_desc != arches->gdbarch->target_desc)
2379 continue;
104c1213
JM
2380 return arches;
2381 }
2382 return NULL;
2383}
2384
2385
ebdba546 2386/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2387 architecture if needed. Return that new architecture. */
104c1213 2388
59837fe0
UW
2389struct gdbarch *
2390gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2391{
2392 struct gdbarch *new_gdbarch;
4b9b3959 2393 struct gdbarch_registration *rego;
104c1213 2394
b732d07d 2395 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2396 sources: "set ..."; INFOabfd supplied; and the global
2397 defaults. */
2398 gdbarch_info_fill (&info);
4be87837 2399
0963b4bd 2400 /* Must have found some sort of architecture. */
b732d07d 2401 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2402
2403 if (gdbarch_debug)
2404 {
2405 fprintf_unfiltered (gdb_stdlog,
59837fe0 2406 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2407 (info.bfd_arch_info != NULL
2408 ? info.bfd_arch_info->printable_name
2409 : "(null)"));
2410 fprintf_unfiltered (gdb_stdlog,
59837fe0 2411 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2412 info.byte_order,
d7449b42 2413 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2414 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2415 : "default"));
4be87837 2416 fprintf_unfiltered (gdb_stdlog,
59837fe0 2417 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2418 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2419 fprintf_unfiltered (gdb_stdlog,
59837fe0 2420 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2421 host_address_to_string (info.abfd));
104c1213 2422 fprintf_unfiltered (gdb_stdlog,
59837fe0 2423 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2424 host_address_to_string (info.tdep_info));
104c1213
JM
2425 }
2426
ebdba546 2427 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2428 for (rego = gdbarch_registry;
2429 rego != NULL;
2430 rego = rego->next)
2431 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2432 break;
2433 if (rego == NULL)
2434 {
2435 if (gdbarch_debug)
59837fe0 2436 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2437 "No matching architecture\n");
b732d07d
AC
2438 return 0;
2439 }
2440
ebdba546 2441 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2442 new_gdbarch = rego->init (info, rego->arches);
2443
ebdba546
AC
2444 /* Did the tdep code like it? No. Reject the change and revert to
2445 the old architecture. */
104c1213
JM
2446 if (new_gdbarch == NULL)
2447 {
2448 if (gdbarch_debug)
59837fe0 2449 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2450 "Target rejected architecture\n");
2451 return NULL;
104c1213
JM
2452 }
2453
ebdba546
AC
2454 /* Is this a pre-existing architecture (as determined by already
2455 being initialized)? Move it to the front of the architecture
2456 list (keeping the list sorted Most Recently Used). */
2457 if (new_gdbarch->initialized_p)
104c1213 2458 {
ebdba546 2459 struct gdbarch_list **list;
fe978cb0 2460 struct gdbarch_list *self;
104c1213 2461 if (gdbarch_debug)
59837fe0 2462 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2463 "Previous architecture %s (%s) selected\n",
2464 host_address_to_string (new_gdbarch),
104c1213 2465 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2466 /* Find the existing arch in the list. */
2467 for (list = &rego->arches;
2468 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2469 list = &(*list)->next);
2470 /* It had better be in the list of architectures. */
2471 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2472 /* Unlink SELF. */
2473 self = (*list);
2474 (*list) = self->next;
2475 /* Insert SELF at the front. */
2476 self->next = rego->arches;
2477 rego->arches = self;
ebdba546
AC
2478 /* Return it. */
2479 return new_gdbarch;
104c1213
JM
2480 }
2481
ebdba546
AC
2482 /* It's a new architecture. */
2483 if (gdbarch_debug)
59837fe0 2484 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2485 "New architecture %s (%s) selected\n",
2486 host_address_to_string (new_gdbarch),
ebdba546
AC
2487 new_gdbarch->bfd_arch_info->printable_name);
2488
2489 /* Insert the new architecture into the front of the architecture
2490 list (keep the list sorted Most Recently Used). */
0f79675b 2491 {
fe978cb0
PA
2492 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2493 self->next = rego->arches;
2494 self->gdbarch = new_gdbarch;
2495 rego->arches = self;
0f79675b 2496 }
104c1213 2497
4b9b3959
AC
2498 /* Check that the newly installed architecture is valid. Plug in
2499 any post init values. */
2500 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2501 verify_gdbarch (new_gdbarch);
ebdba546 2502 new_gdbarch->initialized_p = 1;
104c1213 2503
4b9b3959 2504 if (gdbarch_debug)
ebdba546
AC
2505 gdbarch_dump (new_gdbarch, gdb_stdlog);
2506
2507 return new_gdbarch;
2508}
2509
e487cc15 2510/* Make the specified architecture current. */
ebdba546
AC
2511
2512void
aff68abb 2513set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2514{
2515 gdb_assert (new_gdbarch != NULL);
ebdba546 2516 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2517 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2518 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2519 registers_changed ();
ebdba546 2520}
104c1213 2521
f5656ead 2522/* Return the current inferior's arch. */
6ecd4729
PA
2523
2524struct gdbarch *
f5656ead 2525target_gdbarch (void)
6ecd4729
PA
2526{
2527 return current_inferior ()->gdbarch;
2528}
2529
104c1213 2530void
34620563 2531_initialize_gdbarch (void)
104c1213 2532{
ccce17b0 2533 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2534Set architecture debugging."), _("\\
2535Show architecture debugging."), _("\\
2536When non-zero, architecture debugging is enabled."),
2537 NULL,
920d2a44 2538 show_gdbarch_debug,
85c07804 2539 &setdebuglist, &showdebuglist);
104c1213
JM
2540}
2541EOF
2542
2543# close things off
2544exec 1>&2
2545#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2546compare_new gdbarch.c