]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
Add zex instruction support for moxie port
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 653
5aa82d05
AA
654# Iterate over all supported register notes in a core file. For each
655# supported register note section, the iterator must call CB and pass
656# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657# the supported register note sections based on the current register
658# values. Otherwise it should enumerate all supported register note
659# sections.
660M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 661
6432734d
UW
662# Create core file notes
663M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
b3ac9c77
SDJ
665# The elfcore writer hook to use to write Linux prpsinfo notes to core
666# files. Most Linux architectures use the same prpsinfo32 or
667# prpsinfo64 layouts, and so won't need to provide this hook, as we
668# call the Linux generic routines in bfd to write prpsinfo notes by
669# default.
670F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
35c2fab7
UW
672# Find core file memory regions
673M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
de584861 675# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
676# core file into buffer READBUF with length LEN. Return the number of bytes read
677# (zero indicates failure).
678# failed, otherwise, return the red length of READBUF.
679M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 680
356a5233
JB
681# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
683# Return the number of bytes read (zero indicates failure).
684M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 685
c0edd9ed 686# How the core target converts a PTID from a core file to a string.
28439f5e
PA
687M:char *:core_pid_to_str:ptid_t ptid:ptid
688
a78c2d62 689# BFD target to use when generating a core file.
86ba1042 690V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 691
0d5de010
DJ
692# If the elements of C++ vtables are in-place function descriptors rather
693# than normal function pointers (which may point to code or a descriptor),
694# set this to one.
97030eea 695v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
696
697# Set if the least significant bit of the delta is used instead of the least
698# significant bit of the pfn for pointers to virtual member functions.
97030eea 699v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
700
701# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 702f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 703
1668ae25 704# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
705V:ULONGEST:max_insn_length:::0:0
706
707# Copy the instruction at FROM to TO, and make any adjustments
708# necessary to single-step it at that address.
709#
710# REGS holds the state the thread's registers will have before
711# executing the copied instruction; the PC in REGS will refer to FROM,
712# not the copy at TO. The caller should update it to point at TO later.
713#
714# Return a pointer to data of the architecture's choice to be passed
715# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716# the instruction's effects have been completely simulated, with the
717# resulting state written back to REGS.
718#
719# For a general explanation of displaced stepping and how GDB uses it,
720# see the comments in infrun.c.
721#
722# The TO area is only guaranteed to have space for
723# gdbarch_max_insn_length (arch) bytes, so this function must not
724# write more bytes than that to that area.
725#
726# If you do not provide this function, GDB assumes that the
727# architecture does not support displaced stepping.
728#
729# If your architecture doesn't need to adjust instructions before
730# single-stepping them, consider using simple_displaced_step_copy_insn
731# here.
732M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
99e40580
UW
734# Return true if GDB should use hardware single-stepping to execute
735# the displaced instruction identified by CLOSURE. If false,
736# GDB will simply restart execution at the displaced instruction
737# location, and it is up to the target to ensure GDB will receive
738# control again (e.g. by placing a software breakpoint instruction
739# into the displaced instruction buffer).
740#
741# The default implementation returns false on all targets that
742# provide a gdbarch_software_single_step routine, and true otherwise.
743m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
237fc4c9
PA
745# Fix up the state resulting from successfully single-stepping a
746# displaced instruction, to give the result we would have gotten from
747# stepping the instruction in its original location.
748#
749# REGS is the register state resulting from single-stepping the
750# displaced instruction.
751#
752# CLOSURE is the result from the matching call to
753# gdbarch_displaced_step_copy_insn.
754#
755# If you provide gdbarch_displaced_step_copy_insn.but not this
756# function, then GDB assumes that no fixup is needed after
757# single-stepping the instruction.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763# Free a closure returned by gdbarch_displaced_step_copy_insn.
764#
765# If you provide gdbarch_displaced_step_copy_insn, you must provide
766# this function as well.
767#
768# If your architecture uses closures that don't need to be freed, then
769# you can use simple_displaced_step_free_closure here.
770#
771# For a general explanation of displaced stepping and how GDB uses it,
772# see the comments in infrun.c.
773m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775# Return the address of an appropriate place to put displaced
776# instructions while we step over them. There need only be one such
777# place, since we're only stepping one thread over a breakpoint at a
778# time.
779#
780# For a general explanation of displaced stepping and how GDB uses it,
781# see the comments in infrun.c.
782m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
dde08ee1
PA
784# Relocate an instruction to execute at a different address. OLDLOC
785# is the address in the inferior memory where the instruction to
786# relocate is currently at. On input, TO points to the destination
787# where we want the instruction to be copied (and possibly adjusted)
788# to. On output, it points to one past the end of the resulting
789# instruction(s). The effect of executing the instruction at TO shall
790# be the same as if executing it at FROM. For example, call
791# instructions that implicitly push the return address on the stack
792# should be adjusted to return to the instruction after OLDLOC;
793# relative branches, and other PC-relative instructions need the
794# offset adjusted; etc.
795M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
1c772458 797# Refresh overlay mapped state for section OSECT.
97030eea 798F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 799
97030eea 800M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
801
802# Handle special encoding of static variables in stabs debug info.
0d5cff50 803F:const char *:static_transform_name:const char *name:name
203c3895 804# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 805v:int:sofun_address_maybe_missing:::0:0::0
1cded358 806
0508c3ec
HZ
807# Parse the instruction at ADDR storing in the record execution log
808# the registers REGCACHE and memory ranges that will be affected when
809# the instruction executes, along with their current values.
810# Return -1 if something goes wrong, 0 otherwise.
811M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
3846b520
HZ
813# Save process state after a signal.
814# Return -1 if something goes wrong, 0 otherwise.
2ea28649 815M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 816
22203bbf 817# Signal translation: translate inferior's signal (target's) number
86b49880
PA
818# into GDB's representation. The implementation of this method must
819# be host independent. IOW, don't rely on symbols of the NAT_FILE
820# header (the nm-*.h files), the host <signal.h> header, or similar
821# headers. This is mainly used when cross-debugging core files ---
822# "Live" targets hide the translation behind the target interface
1f8cf220
PA
823# (target_wait, target_resume, etc.).
824M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 825
eb14d406
SDJ
826# Signal translation: translate the GDB's internal signal number into
827# the inferior's signal (target's) representation. The implementation
828# of this method must be host independent. IOW, don't rely on symbols
829# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830# header, or similar headers.
831# Return the target signal number if found, or -1 if the GDB internal
832# signal number is invalid.
833M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
4aa995e1
PA
835# Extra signal info inspection.
836#
837# Return a type suitable to inspect extra signal information.
838M:struct type *:get_siginfo_type:void:
839
60c5725c
DJ
840# Record architecture-specific information from the symbol table.
841M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 842
a96d9b2e
SDJ
843# Function for the 'catch syscall' feature.
844
845# Get architecture-specific system calls information from registers.
846M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
458c8db8
SDJ
848# The filename of the XML syscall for this architecture.
849v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
850
851# Information about system calls from this architecture
852v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
853
55aa24fb
SDJ
854# SystemTap related fields and functions.
855
05c0465e
SDJ
856# A NULL-terminated array of prefixes used to mark an integer constant
857# on the architecture's assembly.
55aa24fb
SDJ
858# For example, on x86 integer constants are written as:
859#
860# \$10 ;; integer constant 10
861#
862# in this case, this prefix would be the character \`\$\'.
05c0465e 863v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 864
05c0465e
SDJ
865# A NULL-terminated array of suffixes used to mark an integer constant
866# on the architecture's assembly.
867v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 868
05c0465e
SDJ
869# A NULL-terminated array of prefixes used to mark a register name on
870# the architecture's assembly.
55aa24fb
SDJ
871# For example, on x86 the register name is written as:
872#
873# \%eax ;; register eax
874#
875# in this case, this prefix would be the character \`\%\'.
05c0465e 876v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 877
05c0465e
SDJ
878# A NULL-terminated array of suffixes used to mark a register name on
879# the architecture's assembly.
880v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 881
05c0465e
SDJ
882# A NULL-terminated array of prefixes used to mark a register
883# indirection on the architecture's assembly.
55aa24fb
SDJ
884# For example, on x86 the register indirection is written as:
885#
886# \(\%eax\) ;; indirecting eax
887#
888# in this case, this prefix would be the charater \`\(\'.
889#
890# Please note that we use the indirection prefix also for register
891# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 892v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 893
05c0465e
SDJ
894# A NULL-terminated array of suffixes used to mark a register
895# indirection on the architecture's assembly.
55aa24fb
SDJ
896# For example, on x86 the register indirection is written as:
897#
898# \(\%eax\) ;; indirecting eax
899#
900# in this case, this prefix would be the charater \`\)\'.
901#
902# Please note that we use the indirection suffix also for register
903# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 904v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 905
05c0465e 906# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
907#
908# For example, on PPC a register is represented by a number in the assembly
909# language (e.g., \`10\' is the 10th general-purpose register). However,
910# inside GDB this same register has an \`r\' appended to its name, so the 10th
911# register would be represented as \`r10\' internally.
08af7a40 912v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
913
914# Suffix used to name a register using GDB's nomenclature.
08af7a40 915v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
916
917# Check if S is a single operand.
918#
919# Single operands can be:
920# \- Literal integers, e.g. \`\$10\' on x86
921# \- Register access, e.g. \`\%eax\' on x86
922# \- Register indirection, e.g. \`\(\%eax\)\' on x86
923# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
924#
925# This function should check for these patterns on the string
926# and return 1 if some were found, or zero otherwise. Please try to match
927# as much info as you can from the string, i.e., if you have to match
928# something like \`\(\%\', do not match just the \`\(\'.
929M:int:stap_is_single_operand:const char *s:s
930
931# Function used to handle a "special case" in the parser.
932#
933# A "special case" is considered to be an unknown token, i.e., a token
934# that the parser does not know how to parse. A good example of special
935# case would be ARM's register displacement syntax:
936#
937# [R0, #4] ;; displacing R0 by 4
938#
939# Since the parser assumes that a register displacement is of the form:
940#
941# <number> <indirection_prefix> <register_name> <indirection_suffix>
942#
943# it means that it will not be able to recognize and parse this odd syntax.
944# Therefore, we should add a special case function that will handle this token.
945#
946# This function should generate the proper expression form of the expression
947# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
948# and so on). It should also return 1 if the parsing was successful, or zero
949# if the token was not recognized as a special token (in this case, returning
950# zero means that the special parser is deferring the parsing to the generic
951# parser), and should advance the buffer pointer (p->arg).
952M:int:stap_parse_special_token:struct stap_parse_info *p:p
953
954
50c71eaf
PA
955# True if the list of shared libraries is one and only for all
956# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
957# This usually means that all processes, although may or may not share
958# an address space, will see the same set of symbols at the same
959# addresses.
50c71eaf 960v:int:has_global_solist:::0:0::0
2567c7d9
PA
961
962# On some targets, even though each inferior has its own private
963# address space, the debug interface takes care of making breakpoints
964# visible to all address spaces automatically. For such cases,
965# this property should be set to true.
966v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
967
968# True if inferiors share an address space (e.g., uClinux).
969m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
970
971# True if a fast tracepoint can be set at an address.
972m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 973
f870a310
TT
974# Return the "auto" target charset.
975f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
976# Return the "auto" target wide charset.
977f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
978
979# If non-empty, this is a file extension that will be opened in place
980# of the file extension reported by the shared library list.
981#
982# This is most useful for toolchains that use a post-linker tool,
983# where the names of the files run on the target differ in extension
984# compared to the names of the files GDB should load for debug info.
985v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
986
987# If true, the target OS has DOS-based file system semantics. That
988# is, absolute paths include a drive name, and the backslash is
989# considered a directory separator.
990v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
991
992# Generate bytecodes to collect the return address in a frame.
993# Since the bytecodes run on the target, possibly with GDB not even
994# connected, the full unwinding machinery is not available, and
995# typically this function will issue bytecodes for one or more likely
996# places that the return address may be found.
997m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
998
3030c96e 999# Implement the "info proc" command.
7bc112c1 1000M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1001
451b7c33
TT
1002# Implement the "info proc" command for core files. Noe that there
1003# are two "info_proc"-like methods on gdbarch -- one for core files,
1004# one for live targets.
7bc112c1 1005M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1006
19630284
JB
1007# Iterate over all objfiles in the order that makes the most sense
1008# for the architecture to make global symbol searches.
1009#
1010# CB is a callback function where OBJFILE is the objfile to be searched,
1011# and CB_DATA a pointer to user-defined data (the same data that is passed
1012# when calling this gdbarch method). The iteration stops if this function
1013# returns nonzero.
1014#
1015# CB_DATA is a pointer to some user-defined data to be passed to
1016# the callback.
1017#
1018# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1019# inspected when the symbol search was requested.
1020m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1021
7e35103a
JB
1022# Ravenscar arch-dependent ops.
1023v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1024
1025# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1026m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1027
1028# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1029m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1030
1031# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1032m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1033
1034# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1035# Return 0 if *READPTR is already at the end of the buffer.
1036# Return -1 if there is insufficient buffer for a whole entry.
1037# Return 1 if an entry was read into *TYPEP and *VALP.
1038M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1039
1040# Find the address range of the current inferior's vsyscall/vDSO, and
1041# write it to *RANGE. If the vsyscall's length can't be determined, a
1042# range with zero length is returned. Returns true if the vsyscall is
1043# found, false otherwise.
1044m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
104c1213 1045EOF
104c1213
JM
1046}
1047
0b8f9e4d
AC
1048#
1049# The .log file
1050#
1051exec > new-gdbarch.log
34620563 1052function_list | while do_read
0b8f9e4d
AC
1053do
1054 cat <<EOF
2f9b146e 1055${class} ${returntype} ${function} ($formal)
104c1213 1056EOF
3d9a5942
AC
1057 for r in ${read}
1058 do
1059 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1060 done
f0d4cc9e 1061 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1062 then
66d659b1 1063 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1064 kill $$
1065 exit 1
1066 fi
72e74a21 1067 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1068 then
1069 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1070 kill $$
1071 exit 1
1072 fi
a72293e2
AC
1073 if class_is_multiarch_p
1074 then
1075 if class_is_predicate_p ; then :
1076 elif test "x${predefault}" = "x"
1077 then
2f9b146e 1078 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1079 kill $$
1080 exit 1
1081 fi
1082 fi
3d9a5942 1083 echo ""
0b8f9e4d
AC
1084done
1085
1086exec 1>&2
1087compare_new gdbarch.log
1088
104c1213
JM
1089
1090copyright ()
1091{
1092cat <<EOF
c4bfde41
JK
1093/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1094/* vi:set ro: */
59233f88 1095
104c1213 1096/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1097
ecd75fc8 1098 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1099
1100 This file is part of GDB.
1101
1102 This program is free software; you can redistribute it and/or modify
1103 it under the terms of the GNU General Public License as published by
50efebf8 1104 the Free Software Foundation; either version 3 of the License, or
104c1213 1105 (at your option) any later version.
50efebf8 1106
104c1213
JM
1107 This program is distributed in the hope that it will be useful,
1108 but WITHOUT ANY WARRANTY; without even the implied warranty of
1109 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1110 GNU General Public License for more details.
50efebf8 1111
104c1213 1112 You should have received a copy of the GNU General Public License
50efebf8 1113 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1114
104c1213
JM
1115/* This file was created with the aid of \`\`gdbarch.sh''.
1116
52204a0b 1117 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1118 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1119 against the existing \`\`gdbarch.[hc]''. Any differences found
1120 being reported.
1121
1122 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1123 changes into that script. Conversely, when making sweeping changes
104c1213 1124 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1125 easier. */
104c1213
JM
1126
1127EOF
1128}
1129
1130#
1131# The .h file
1132#
1133
1134exec > new-gdbarch.h
1135copyright
1136cat <<EOF
1137#ifndef GDBARCH_H
1138#define GDBARCH_H
1139
eb7a547a
JB
1140#include "frame.h"
1141
da3331ec
AC
1142struct floatformat;
1143struct ui_file;
104c1213 1144struct value;
b6af0555 1145struct objfile;
1c772458 1146struct obj_section;
a2cf933a 1147struct minimal_symbol;
049ee0e4 1148struct regcache;
b59ff9d5 1149struct reggroup;
6ce6d90f 1150struct regset;
a89aa300 1151struct disassemble_info;
e2d0e7eb 1152struct target_ops;
030f20e1 1153struct obstack;
8181d85f 1154struct bp_target_info;
424163ea 1155struct target_desc;
237fc4c9 1156struct displaced_step_closure;
17ea7499 1157struct core_regset_section;
a96d9b2e 1158struct syscall;
175ff332 1159struct agent_expr;
6710bf39 1160struct axs_value;
55aa24fb 1161struct stap_parse_info;
7e35103a 1162struct ravenscar_arch_ops;
b3ac9c77 1163struct elf_internal_linux_prpsinfo;
3437254d 1164struct mem_range;
458c8db8 1165struct syscalls_info;
104c1213 1166
6ecd4729
PA
1167/* The architecture associated with the inferior through the
1168 connection to the target.
1169
1170 The architecture vector provides some information that is really a
1171 property of the inferior, accessed through a particular target:
1172 ptrace operations; the layout of certain RSP packets; the solib_ops
1173 vector; etc. To differentiate architecture accesses to
1174 per-inferior/target properties from
1175 per-thread/per-frame/per-objfile properties, accesses to
1176 per-inferior/target properties should be made through this
1177 gdbarch. */
1178
1179/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1180extern struct gdbarch *target_gdbarch (void);
6ecd4729 1181
19630284
JB
1182/* Callback type for the 'iterate_over_objfiles_in_search_order'
1183 gdbarch method. */
1184
1185typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1186 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1187
1188typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1189 (const char *sect_name, int size, const struct regset *regset,
1190 const char *human_name, void *cb_data);
104c1213
JM
1191EOF
1192
1193# function typedef's
3d9a5942
AC
1194printf "\n"
1195printf "\n"
0963b4bd 1196printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1197function_list | while do_read
104c1213 1198do
2ada493a
AC
1199 if class_is_info_p
1200 then
3d9a5942
AC
1201 printf "\n"
1202 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1203 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1204 fi
104c1213
JM
1205done
1206
1207# function typedef's
3d9a5942
AC
1208printf "\n"
1209printf "\n"
0963b4bd 1210printf "/* The following are initialized by the target dependent code. */\n"
34620563 1211function_list | while do_read
104c1213 1212do
72e74a21 1213 if [ -n "${comment}" ]
34620563
AC
1214 then
1215 echo "${comment}" | sed \
1216 -e '2 s,#,/*,' \
1217 -e '3,$ s,#, ,' \
1218 -e '$ s,$, */,'
1219 fi
412d5987
AC
1220
1221 if class_is_predicate_p
2ada493a 1222 then
412d5987
AC
1223 printf "\n"
1224 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1225 fi
2ada493a
AC
1226 if class_is_variable_p
1227 then
3d9a5942
AC
1228 printf "\n"
1229 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1231 fi
1232 if class_is_function_p
1233 then
3d9a5942 1234 printf "\n"
72e74a21 1235 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1236 then
1237 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1238 elif class_is_multiarch_p
1239 then
1240 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1241 else
1242 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1243 fi
72e74a21 1244 if [ "x${formal}" = "xvoid" ]
104c1213 1245 then
3d9a5942 1246 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1247 else
3d9a5942 1248 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1249 fi
3d9a5942 1250 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1251 fi
104c1213
JM
1252done
1253
1254# close it off
1255cat <<EOF
1256
a96d9b2e
SDJ
1257/* Definition for an unknown syscall, used basically in error-cases. */
1258#define UNKNOWN_SYSCALL (-1)
1259
104c1213
JM
1260extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1261
1262
1263/* Mechanism for co-ordinating the selection of a specific
1264 architecture.
1265
1266 GDB targets (*-tdep.c) can register an interest in a specific
1267 architecture. Other GDB components can register a need to maintain
1268 per-architecture data.
1269
1270 The mechanisms below ensures that there is only a loose connection
1271 between the set-architecture command and the various GDB
0fa6923a 1272 components. Each component can independently register their need
104c1213
JM
1273 to maintain architecture specific data with gdbarch.
1274
1275 Pragmatics:
1276
1277 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1278 didn't scale.
1279
1280 The more traditional mega-struct containing architecture specific
1281 data for all the various GDB components was also considered. Since
0fa6923a 1282 GDB is built from a variable number of (fairly independent)
104c1213 1283 components it was determined that the global aproach was not
0963b4bd 1284 applicable. */
104c1213
JM
1285
1286
1287/* Register a new architectural family with GDB.
1288
1289 Register support for the specified ARCHITECTURE with GDB. When
1290 gdbarch determines that the specified architecture has been
1291 selected, the corresponding INIT function is called.
1292
1293 --
1294
1295 The INIT function takes two parameters: INFO which contains the
1296 information available to gdbarch about the (possibly new)
1297 architecture; ARCHES which is a list of the previously created
1298 \`\`struct gdbarch'' for this architecture.
1299
0f79675b 1300 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1301 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1302
1303 The ARCHES parameter is a linked list (sorted most recently used)
1304 of all the previously created architures for this architecture
1305 family. The (possibly NULL) ARCHES->gdbarch can used to access
1306 values from the previously selected architecture for this
59837fe0 1307 architecture family.
104c1213
JM
1308
1309 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1310 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1311 gdbarch'' from the ARCHES list - indicating that the new
1312 architecture is just a synonym for an earlier architecture (see
1313 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1314 - that describes the selected architecture (see gdbarch_alloc()).
1315
1316 The DUMP_TDEP function shall print out all target specific values.
1317 Care should be taken to ensure that the function works in both the
0963b4bd 1318 multi-arch and non- multi-arch cases. */
104c1213
JM
1319
1320struct gdbarch_list
1321{
1322 struct gdbarch *gdbarch;
1323 struct gdbarch_list *next;
1324};
1325
1326struct gdbarch_info
1327{
0963b4bd 1328 /* Use default: NULL (ZERO). */
104c1213
JM
1329 const struct bfd_arch_info *bfd_arch_info;
1330
428721aa 1331 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1332 enum bfd_endian byte_order;
104c1213 1333
94123b4f 1334 enum bfd_endian byte_order_for_code;
9d4fde75 1335
0963b4bd 1336 /* Use default: NULL (ZERO). */
104c1213
JM
1337 bfd *abfd;
1338
0963b4bd 1339 /* Use default: NULL (ZERO). */
104c1213 1340 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1341
1342 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1343 enum gdb_osabi osabi;
424163ea
DJ
1344
1345 /* Use default: NULL (ZERO). */
1346 const struct target_desc *target_desc;
104c1213
JM
1347};
1348
1349typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1350typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1351
4b9b3959 1352/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1353extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1354
4b9b3959
AC
1355extern void gdbarch_register (enum bfd_architecture architecture,
1356 gdbarch_init_ftype *,
1357 gdbarch_dump_tdep_ftype *);
1358
104c1213 1359
b4a20239
AC
1360/* Return a freshly allocated, NULL terminated, array of the valid
1361 architecture names. Since architectures are registered during the
1362 _initialize phase this function only returns useful information
0963b4bd 1363 once initialization has been completed. */
b4a20239
AC
1364
1365extern const char **gdbarch_printable_names (void);
1366
1367
104c1213 1368/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1369 matches the information provided by INFO. */
104c1213 1370
424163ea 1371extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1372
1373
1374/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1375 basic initialization using values obtained from the INFO and TDEP
104c1213 1376 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1377 initialization of the object. */
104c1213
JM
1378
1379extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1380
1381
4b9b3959
AC
1382/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1383 It is assumed that the caller freeds the \`\`struct
0963b4bd 1384 gdbarch_tdep''. */
4b9b3959 1385
058f20d5
JB
1386extern void gdbarch_free (struct gdbarch *);
1387
1388
aebd7893
AC
1389/* Helper function. Allocate memory from the \`\`struct gdbarch''
1390 obstack. The memory is freed when the corresponding architecture
1391 is also freed. */
1392
1393extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1394#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1395#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1396
1397
0963b4bd 1398/* Helper function. Force an update of the current architecture.
104c1213 1399
b732d07d
AC
1400 The actual architecture selected is determined by INFO, \`\`(gdb) set
1401 architecture'' et.al., the existing architecture and BFD's default
1402 architecture. INFO should be initialized to zero and then selected
1403 fields should be updated.
104c1213 1404
0963b4bd 1405 Returns non-zero if the update succeeds. */
16f33e29
AC
1406
1407extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1408
1409
ebdba546
AC
1410/* Helper function. Find an architecture matching info.
1411
1412 INFO should be initialized using gdbarch_info_init, relevant fields
1413 set, and then finished using gdbarch_info_fill.
1414
1415 Returns the corresponding architecture, or NULL if no matching
59837fe0 1416 architecture was found. */
ebdba546
AC
1417
1418extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1419
1420
aff68abb 1421/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1422
aff68abb 1423extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1424
104c1213
JM
1425
1426/* Register per-architecture data-pointer.
1427
1428 Reserve space for a per-architecture data-pointer. An identifier
1429 for the reserved data-pointer is returned. That identifer should
95160752 1430 be saved in a local static variable.
104c1213 1431
fcc1c85c
AC
1432 Memory for the per-architecture data shall be allocated using
1433 gdbarch_obstack_zalloc. That memory will be deleted when the
1434 corresponding architecture object is deleted.
104c1213 1435
95160752
AC
1436 When a previously created architecture is re-selected, the
1437 per-architecture data-pointer for that previous architecture is
76860b5f 1438 restored. INIT() is not re-called.
104c1213
JM
1439
1440 Multiple registrarants for any architecture are allowed (and
1441 strongly encouraged). */
1442
95160752 1443struct gdbarch_data;
104c1213 1444
030f20e1
AC
1445typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1446extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1447typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1448extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1449extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1450 struct gdbarch_data *data,
1451 void *pointer);
104c1213 1452
451fbdda 1453extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1454
1455
0fa6923a 1456/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1457 byte-order, ...) using information found in the BFD. */
104c1213
JM
1458
1459extern void set_gdbarch_from_file (bfd *);
1460
1461
e514a9d6
JM
1462/* Initialize the current architecture to the "first" one we find on
1463 our list. */
1464
1465extern void initialize_current_architecture (void);
1466
104c1213 1467/* gdbarch trace variable */
ccce17b0 1468extern unsigned int gdbarch_debug;
104c1213 1469
4b9b3959 1470extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1471
1472#endif
1473EOF
1474exec 1>&2
1475#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1476compare_new gdbarch.h
104c1213
JM
1477
1478
1479#
1480# C file
1481#
1482
1483exec > new-gdbarch.c
1484copyright
1485cat <<EOF
1486
1487#include "defs.h"
7355ddba 1488#include "arch-utils.h"
104c1213 1489
104c1213 1490#include "gdbcmd.h"
faaf634c 1491#include "inferior.h"
104c1213
JM
1492#include "symcat.h"
1493
f0d4cc9e 1494#include "floatformat.h"
b59ff9d5 1495#include "reggroups.h"
4be87837 1496#include "osabi.h"
aebd7893 1497#include "gdb_obstack.h"
383f836e 1498#include "observer.h"
a3ecef73 1499#include "regcache.h"
19630284 1500#include "objfiles.h"
95160752 1501
104c1213
JM
1502/* Static function declarations */
1503
b3cc3077 1504static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1505
104c1213
JM
1506/* Non-zero if we want to trace architecture code. */
1507
1508#ifndef GDBARCH_DEBUG
1509#define GDBARCH_DEBUG 0
1510#endif
ccce17b0 1511unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1512static void
1513show_gdbarch_debug (struct ui_file *file, int from_tty,
1514 struct cmd_list_element *c, const char *value)
1515{
1516 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1517}
104c1213 1518
456fcf94 1519static const char *
8da61cc4 1520pformat (const struct floatformat **format)
456fcf94
AC
1521{
1522 if (format == NULL)
1523 return "(null)";
1524 else
8da61cc4
DJ
1525 /* Just print out one of them - this is only for diagnostics. */
1526 return format[0]->name;
456fcf94
AC
1527}
1528
08105857
PA
1529static const char *
1530pstring (const char *string)
1531{
1532 if (string == NULL)
1533 return "(null)";
1534 return string;
05c0465e
SDJ
1535}
1536
1537/* Helper function to print a list of strings, represented as "const
1538 char *const *". The list is printed comma-separated. */
1539
1540static char *
1541pstring_list (const char *const *list)
1542{
1543 static char ret[100];
1544 const char *const *p;
1545 size_t offset = 0;
1546
1547 if (list == NULL)
1548 return "(null)";
1549
1550 ret[0] = '\0';
1551 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1552 {
1553 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1554 offset += 2 + s;
1555 }
1556
1557 if (offset > 0)
1558 {
1559 gdb_assert (offset - 2 < sizeof (ret));
1560 ret[offset - 2] = '\0';
1561 }
1562
1563 return ret;
08105857
PA
1564}
1565
104c1213
JM
1566EOF
1567
1568# gdbarch open the gdbarch object
3d9a5942 1569printf "\n"
0963b4bd 1570printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1571printf "\n"
1572printf "struct gdbarch\n"
1573printf "{\n"
76860b5f
AC
1574printf " /* Has this architecture been fully initialized? */\n"
1575printf " int initialized_p;\n"
aebd7893
AC
1576printf "\n"
1577printf " /* An obstack bound to the lifetime of the architecture. */\n"
1578printf " struct obstack *obstack;\n"
1579printf "\n"
0963b4bd 1580printf " /* basic architectural information. */\n"
34620563 1581function_list | while do_read
104c1213 1582do
2ada493a
AC
1583 if class_is_info_p
1584 then
3d9a5942 1585 printf " ${returntype} ${function};\n"
2ada493a 1586 fi
104c1213 1587done
3d9a5942 1588printf "\n"
0963b4bd 1589printf " /* target specific vector. */\n"
3d9a5942
AC
1590printf " struct gdbarch_tdep *tdep;\n"
1591printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1592printf "\n"
0963b4bd 1593printf " /* per-architecture data-pointers. */\n"
95160752 1594printf " unsigned nr_data;\n"
3d9a5942
AC
1595printf " void **data;\n"
1596printf "\n"
104c1213
JM
1597cat <<EOF
1598 /* Multi-arch values.
1599
1600 When extending this structure you must:
1601
1602 Add the field below.
1603
1604 Declare set/get functions and define the corresponding
1605 macro in gdbarch.h.
1606
1607 gdbarch_alloc(): If zero/NULL is not a suitable default,
1608 initialize the new field.
1609
1610 verify_gdbarch(): Confirm that the target updated the field
1611 correctly.
1612
7e73cedf 1613 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1614 field is dumped out
1615
104c1213
JM
1616 get_gdbarch(): Implement the set/get functions (probably using
1617 the macro's as shortcuts).
1618
1619 */
1620
1621EOF
34620563 1622function_list | while do_read
104c1213 1623do
2ada493a
AC
1624 if class_is_variable_p
1625 then
3d9a5942 1626 printf " ${returntype} ${function};\n"
2ada493a
AC
1627 elif class_is_function_p
1628 then
2f9b146e 1629 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1630 fi
104c1213 1631done
3d9a5942 1632printf "};\n"
104c1213 1633
104c1213 1634# Create a new gdbarch struct
104c1213 1635cat <<EOF
7de2341d 1636
66b43ecb 1637/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1638 \`\`struct gdbarch_info''. */
104c1213 1639EOF
3d9a5942 1640printf "\n"
104c1213
JM
1641cat <<EOF
1642struct gdbarch *
1643gdbarch_alloc (const struct gdbarch_info *info,
1644 struct gdbarch_tdep *tdep)
1645{
be7811ad 1646 struct gdbarch *gdbarch;
aebd7893
AC
1647
1648 /* Create an obstack for allocating all the per-architecture memory,
1649 then use that to allocate the architecture vector. */
70ba0933 1650 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1651 obstack_init (obstack);
be7811ad
MD
1652 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1653 memset (gdbarch, 0, sizeof (*gdbarch));
1654 gdbarch->obstack = obstack;
85de9627 1655
be7811ad 1656 alloc_gdbarch_data (gdbarch);
85de9627 1657
be7811ad 1658 gdbarch->tdep = tdep;
104c1213 1659EOF
3d9a5942 1660printf "\n"
34620563 1661function_list | while do_read
104c1213 1662do
2ada493a
AC
1663 if class_is_info_p
1664 then
be7811ad 1665 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1666 fi
104c1213 1667done
3d9a5942 1668printf "\n"
0963b4bd 1669printf " /* Force the explicit initialization of these. */\n"
34620563 1670function_list | while do_read
104c1213 1671do
2ada493a
AC
1672 if class_is_function_p || class_is_variable_p
1673 then
72e74a21 1674 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1675 then
be7811ad 1676 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1677 fi
2ada493a 1678 fi
104c1213
JM
1679done
1680cat <<EOF
1681 /* gdbarch_alloc() */
1682
be7811ad 1683 return gdbarch;
104c1213
JM
1684}
1685EOF
1686
058f20d5 1687# Free a gdbarch struct.
3d9a5942
AC
1688printf "\n"
1689printf "\n"
058f20d5 1690cat <<EOF
aebd7893
AC
1691/* Allocate extra space using the per-architecture obstack. */
1692
1693void *
1694gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1695{
1696 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1697
aebd7893
AC
1698 memset (data, 0, size);
1699 return data;
1700}
1701
1702
058f20d5
JB
1703/* Free a gdbarch struct. This should never happen in normal
1704 operation --- once you've created a gdbarch, you keep it around.
1705 However, if an architecture's init function encounters an error
1706 building the structure, it may need to clean up a partially
1707 constructed gdbarch. */
4b9b3959 1708
058f20d5
JB
1709void
1710gdbarch_free (struct gdbarch *arch)
1711{
aebd7893 1712 struct obstack *obstack;
05c547f6 1713
95160752 1714 gdb_assert (arch != NULL);
aebd7893
AC
1715 gdb_assert (!arch->initialized_p);
1716 obstack = arch->obstack;
1717 obstack_free (obstack, 0); /* Includes the ARCH. */
1718 xfree (obstack);
058f20d5
JB
1719}
1720EOF
1721
104c1213 1722# verify a new architecture
104c1213 1723cat <<EOF
db446970
AC
1724
1725
1726/* Ensure that all values in a GDBARCH are reasonable. */
1727
104c1213 1728static void
be7811ad 1729verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1730{
f16a1923
AC
1731 struct ui_file *log;
1732 struct cleanup *cleanups;
759ef836 1733 long length;
f16a1923 1734 char *buf;
05c547f6 1735
f16a1923
AC
1736 log = mem_fileopen ();
1737 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1738 /* fundamental */
be7811ad 1739 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1740 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1741 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1742 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1743 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1744EOF
34620563 1745function_list | while do_read
104c1213 1746do
2ada493a
AC
1747 if class_is_function_p || class_is_variable_p
1748 then
72e74a21 1749 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1750 then
3d9a5942 1751 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1752 elif class_is_predicate_p
1753 then
0963b4bd 1754 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1755 # FIXME: See do_read for potential simplification
72e74a21 1756 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1757 then
3d9a5942 1758 printf " if (${invalid_p})\n"
be7811ad 1759 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1760 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1761 then
be7811ad
MD
1762 printf " if (gdbarch->${function} == ${predefault})\n"
1763 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1764 elif [ -n "${postdefault}" ]
f0d4cc9e 1765 then
be7811ad
MD
1766 printf " if (gdbarch->${function} == 0)\n"
1767 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1768 elif [ -n "${invalid_p}" ]
104c1213 1769 then
4d60522e 1770 printf " if (${invalid_p})\n"
f16a1923 1771 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1772 elif [ -n "${predefault}" ]
104c1213 1773 then
be7811ad 1774 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1775 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1776 fi
2ada493a 1777 fi
104c1213
JM
1778done
1779cat <<EOF
759ef836 1780 buf = ui_file_xstrdup (log, &length);
f16a1923 1781 make_cleanup (xfree, buf);
759ef836 1782 if (length > 0)
f16a1923 1783 internal_error (__FILE__, __LINE__,
85c07804 1784 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1785 buf);
1786 do_cleanups (cleanups);
104c1213
JM
1787}
1788EOF
1789
1790# dump the structure
3d9a5942
AC
1791printf "\n"
1792printf "\n"
104c1213 1793cat <<EOF
0963b4bd 1794/* Print out the details of the current architecture. */
4b9b3959 1795
104c1213 1796void
be7811ad 1797gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1798{
b78960be 1799 const char *gdb_nm_file = "<not-defined>";
05c547f6 1800
b78960be
AC
1801#if defined (GDB_NM_FILE)
1802 gdb_nm_file = GDB_NM_FILE;
1803#endif
1804 fprintf_unfiltered (file,
1805 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1806 gdb_nm_file);
104c1213 1807EOF
97030eea 1808function_list | sort -t: -k 3 | while do_read
104c1213 1809do
1e9f55d0
AC
1810 # First the predicate
1811 if class_is_predicate_p
1812 then
7996bcec 1813 printf " fprintf_unfiltered (file,\n"
48f7351b 1814 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1815 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1816 fi
48f7351b 1817 # Print the corresponding value.
283354d8 1818 if class_is_function_p
4b9b3959 1819 then
7996bcec 1820 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1821 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1822 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1823 else
48f7351b 1824 # It is a variable
2f9b146e
AC
1825 case "${print}:${returntype}" in
1826 :CORE_ADDR )
0b1553bc
UW
1827 fmt="%s"
1828 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1829 ;;
2f9b146e 1830 :* )
48f7351b 1831 fmt="%s"
623d3eb1 1832 print="plongest (gdbarch->${function})"
48f7351b
AC
1833 ;;
1834 * )
2f9b146e 1835 fmt="%s"
48f7351b
AC
1836 ;;
1837 esac
3d9a5942 1838 printf " fprintf_unfiltered (file,\n"
48f7351b 1839 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1840 printf " ${print});\n"
2ada493a 1841 fi
104c1213 1842done
381323f4 1843cat <<EOF
be7811ad
MD
1844 if (gdbarch->dump_tdep != NULL)
1845 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1846}
1847EOF
104c1213
JM
1848
1849
1850# GET/SET
3d9a5942 1851printf "\n"
104c1213
JM
1852cat <<EOF
1853struct gdbarch_tdep *
1854gdbarch_tdep (struct gdbarch *gdbarch)
1855{
1856 if (gdbarch_debug >= 2)
3d9a5942 1857 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1858 return gdbarch->tdep;
1859}
1860EOF
3d9a5942 1861printf "\n"
34620563 1862function_list | while do_read
104c1213 1863do
2ada493a
AC
1864 if class_is_predicate_p
1865 then
3d9a5942
AC
1866 printf "\n"
1867 printf "int\n"
1868 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1869 printf "{\n"
8de9bdc4 1870 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1871 printf " return ${predicate};\n"
3d9a5942 1872 printf "}\n"
2ada493a
AC
1873 fi
1874 if class_is_function_p
1875 then
3d9a5942
AC
1876 printf "\n"
1877 printf "${returntype}\n"
72e74a21 1878 if [ "x${formal}" = "xvoid" ]
104c1213 1879 then
3d9a5942 1880 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1881 else
3d9a5942 1882 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1883 fi
3d9a5942 1884 printf "{\n"
8de9bdc4 1885 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1886 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1887 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1888 then
1889 # Allow a call to a function with a predicate.
956ac328 1890 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1891 fi
3d9a5942
AC
1892 printf " if (gdbarch_debug >= 2)\n"
1893 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1894 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1895 then
1896 if class_is_multiarch_p
1897 then
1898 params="gdbarch"
1899 else
1900 params=""
1901 fi
1902 else
1903 if class_is_multiarch_p
1904 then
1905 params="gdbarch, ${actual}"
1906 else
1907 params="${actual}"
1908 fi
1909 fi
72e74a21 1910 if [ "x${returntype}" = "xvoid" ]
104c1213 1911 then
4a5c6a1d 1912 printf " gdbarch->${function} (${params});\n"
104c1213 1913 else
4a5c6a1d 1914 printf " return gdbarch->${function} (${params});\n"
104c1213 1915 fi
3d9a5942
AC
1916 printf "}\n"
1917 printf "\n"
1918 printf "void\n"
1919 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1920 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1921 printf "{\n"
1922 printf " gdbarch->${function} = ${function};\n"
1923 printf "}\n"
2ada493a
AC
1924 elif class_is_variable_p
1925 then
3d9a5942
AC
1926 printf "\n"
1927 printf "${returntype}\n"
1928 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1929 printf "{\n"
8de9bdc4 1930 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1931 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1932 then
3d9a5942 1933 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1934 elif [ -n "${invalid_p}" ]
104c1213 1935 then
956ac328
AC
1936 printf " /* Check variable is valid. */\n"
1937 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1938 elif [ -n "${predefault}" ]
104c1213 1939 then
956ac328
AC
1940 printf " /* Check variable changed from pre-default. */\n"
1941 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1942 fi
3d9a5942
AC
1943 printf " if (gdbarch_debug >= 2)\n"
1944 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1945 printf " return gdbarch->${function};\n"
1946 printf "}\n"
1947 printf "\n"
1948 printf "void\n"
1949 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1950 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1951 printf "{\n"
1952 printf " gdbarch->${function} = ${function};\n"
1953 printf "}\n"
2ada493a
AC
1954 elif class_is_info_p
1955 then
3d9a5942
AC
1956 printf "\n"
1957 printf "${returntype}\n"
1958 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1959 printf "{\n"
8de9bdc4 1960 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1961 printf " if (gdbarch_debug >= 2)\n"
1962 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1963 printf " return gdbarch->${function};\n"
1964 printf "}\n"
2ada493a 1965 fi
104c1213
JM
1966done
1967
1968# All the trailing guff
1969cat <<EOF
1970
1971
f44c642f 1972/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1973 modules. */
104c1213
JM
1974
1975struct gdbarch_data
1976{
95160752 1977 unsigned index;
76860b5f 1978 int init_p;
030f20e1
AC
1979 gdbarch_data_pre_init_ftype *pre_init;
1980 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1981};
1982
1983struct gdbarch_data_registration
1984{
104c1213
JM
1985 struct gdbarch_data *data;
1986 struct gdbarch_data_registration *next;
1987};
1988
f44c642f 1989struct gdbarch_data_registry
104c1213 1990{
95160752 1991 unsigned nr;
104c1213
JM
1992 struct gdbarch_data_registration *registrations;
1993};
1994
f44c642f 1995struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1996{
1997 0, NULL,
1998};
1999
030f20e1
AC
2000static struct gdbarch_data *
2001gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2002 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2003{
2004 struct gdbarch_data_registration **curr;
05c547f6
MS
2005
2006 /* Append the new registration. */
f44c642f 2007 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2008 (*curr) != NULL;
2009 curr = &(*curr)->next);
70ba0933 2010 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2011 (*curr)->next = NULL;
70ba0933 2012 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2013 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2014 (*curr)->data->pre_init = pre_init;
2015 (*curr)->data->post_init = post_init;
76860b5f 2016 (*curr)->data->init_p = 1;
104c1213
JM
2017 return (*curr)->data;
2018}
2019
030f20e1
AC
2020struct gdbarch_data *
2021gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2022{
2023 return gdbarch_data_register (pre_init, NULL);
2024}
2025
2026struct gdbarch_data *
2027gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2028{
2029 return gdbarch_data_register (NULL, post_init);
2030}
104c1213 2031
0963b4bd 2032/* Create/delete the gdbarch data vector. */
95160752
AC
2033
2034static void
b3cc3077 2035alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2036{
b3cc3077
JB
2037 gdb_assert (gdbarch->data == NULL);
2038 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2039 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2040}
3c875b6f 2041
76860b5f 2042/* Initialize the current value of the specified per-architecture
0963b4bd 2043 data-pointer. */
b3cc3077 2044
95160752 2045void
030f20e1
AC
2046deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2047 struct gdbarch_data *data,
2048 void *pointer)
95160752
AC
2049{
2050 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2051 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2052 gdb_assert (data->pre_init == NULL);
95160752
AC
2053 gdbarch->data[data->index] = pointer;
2054}
2055
104c1213 2056/* Return the current value of the specified per-architecture
0963b4bd 2057 data-pointer. */
104c1213
JM
2058
2059void *
451fbdda 2060gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2061{
451fbdda 2062 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2063 if (gdbarch->data[data->index] == NULL)
76860b5f 2064 {
030f20e1
AC
2065 /* The data-pointer isn't initialized, call init() to get a
2066 value. */
2067 if (data->pre_init != NULL)
2068 /* Mid architecture creation: pass just the obstack, and not
2069 the entire architecture, as that way it isn't possible for
2070 pre-init code to refer to undefined architecture
2071 fields. */
2072 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2073 else if (gdbarch->initialized_p
2074 && data->post_init != NULL)
2075 /* Post architecture creation: pass the entire architecture
2076 (as all fields are valid), but be careful to also detect
2077 recursive references. */
2078 {
2079 gdb_assert (data->init_p);
2080 data->init_p = 0;
2081 gdbarch->data[data->index] = data->post_init (gdbarch);
2082 data->init_p = 1;
2083 }
2084 else
2085 /* The architecture initialization hasn't completed - punt -
2086 hope that the caller knows what they are doing. Once
2087 deprecated_set_gdbarch_data has been initialized, this can be
2088 changed to an internal error. */
2089 return NULL;
76860b5f
AC
2090 gdb_assert (gdbarch->data[data->index] != NULL);
2091 }
451fbdda 2092 return gdbarch->data[data->index];
104c1213
JM
2093}
2094
2095
0963b4bd 2096/* Keep a registry of the architectures known by GDB. */
104c1213 2097
4b9b3959 2098struct gdbarch_registration
104c1213
JM
2099{
2100 enum bfd_architecture bfd_architecture;
2101 gdbarch_init_ftype *init;
4b9b3959 2102 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2103 struct gdbarch_list *arches;
4b9b3959 2104 struct gdbarch_registration *next;
104c1213
JM
2105};
2106
f44c642f 2107static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2108
b4a20239
AC
2109static void
2110append_name (const char ***buf, int *nr, const char *name)
2111{
2112 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2113 (*buf)[*nr] = name;
2114 *nr += 1;
2115}
2116
2117const char **
2118gdbarch_printable_names (void)
2119{
7996bcec 2120 /* Accumulate a list of names based on the registed list of
0963b4bd 2121 architectures. */
7996bcec
AC
2122 int nr_arches = 0;
2123 const char **arches = NULL;
2124 struct gdbarch_registration *rego;
05c547f6 2125
7996bcec
AC
2126 for (rego = gdbarch_registry;
2127 rego != NULL;
2128 rego = rego->next)
b4a20239 2129 {
7996bcec
AC
2130 const struct bfd_arch_info *ap;
2131 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2132 if (ap == NULL)
2133 internal_error (__FILE__, __LINE__,
85c07804 2134 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2135 do
2136 {
2137 append_name (&arches, &nr_arches, ap->printable_name);
2138 ap = ap->next;
2139 }
2140 while (ap != NULL);
b4a20239 2141 }
7996bcec
AC
2142 append_name (&arches, &nr_arches, NULL);
2143 return arches;
b4a20239
AC
2144}
2145
2146
104c1213 2147void
4b9b3959
AC
2148gdbarch_register (enum bfd_architecture bfd_architecture,
2149 gdbarch_init_ftype *init,
2150 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2151{
4b9b3959 2152 struct gdbarch_registration **curr;
104c1213 2153 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2154
ec3d358c 2155 /* Check that BFD recognizes this architecture */
104c1213
JM
2156 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2157 if (bfd_arch_info == NULL)
2158 {
8e65ff28 2159 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2160 _("gdbarch: Attempt to register "
2161 "unknown architecture (%d)"),
8e65ff28 2162 bfd_architecture);
104c1213 2163 }
0963b4bd 2164 /* Check that we haven't seen this architecture before. */
f44c642f 2165 for (curr = &gdbarch_registry;
104c1213
JM
2166 (*curr) != NULL;
2167 curr = &(*curr)->next)
2168 {
2169 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2170 internal_error (__FILE__, __LINE__,
64b9b334 2171 _("gdbarch: Duplicate registration "
0963b4bd 2172 "of architecture (%s)"),
8e65ff28 2173 bfd_arch_info->printable_name);
104c1213
JM
2174 }
2175 /* log it */
2176 if (gdbarch_debug)
30737ed9 2177 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2178 bfd_arch_info->printable_name,
30737ed9 2179 host_address_to_string (init));
104c1213 2180 /* Append it */
70ba0933 2181 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2182 (*curr)->bfd_architecture = bfd_architecture;
2183 (*curr)->init = init;
4b9b3959 2184 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2185 (*curr)->arches = NULL;
2186 (*curr)->next = NULL;
4b9b3959
AC
2187}
2188
2189void
2190register_gdbarch_init (enum bfd_architecture bfd_architecture,
2191 gdbarch_init_ftype *init)
2192{
2193 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2194}
104c1213
JM
2195
2196
424163ea 2197/* Look for an architecture using gdbarch_info. */
104c1213
JM
2198
2199struct gdbarch_list *
2200gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2201 const struct gdbarch_info *info)
2202{
2203 for (; arches != NULL; arches = arches->next)
2204 {
2205 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2206 continue;
2207 if (info->byte_order != arches->gdbarch->byte_order)
2208 continue;
4be87837
DJ
2209 if (info->osabi != arches->gdbarch->osabi)
2210 continue;
424163ea
DJ
2211 if (info->target_desc != arches->gdbarch->target_desc)
2212 continue;
104c1213
JM
2213 return arches;
2214 }
2215 return NULL;
2216}
2217
2218
ebdba546 2219/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2220 architecture if needed. Return that new architecture. */
104c1213 2221
59837fe0
UW
2222struct gdbarch *
2223gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2224{
2225 struct gdbarch *new_gdbarch;
4b9b3959 2226 struct gdbarch_registration *rego;
104c1213 2227
b732d07d 2228 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2229 sources: "set ..."; INFOabfd supplied; and the global
2230 defaults. */
2231 gdbarch_info_fill (&info);
4be87837 2232
0963b4bd 2233 /* Must have found some sort of architecture. */
b732d07d 2234 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2235
2236 if (gdbarch_debug)
2237 {
2238 fprintf_unfiltered (gdb_stdlog,
59837fe0 2239 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2240 (info.bfd_arch_info != NULL
2241 ? info.bfd_arch_info->printable_name
2242 : "(null)"));
2243 fprintf_unfiltered (gdb_stdlog,
59837fe0 2244 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2245 info.byte_order,
d7449b42 2246 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2247 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2248 : "default"));
4be87837 2249 fprintf_unfiltered (gdb_stdlog,
59837fe0 2250 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2251 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2252 fprintf_unfiltered (gdb_stdlog,
59837fe0 2253 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2254 host_address_to_string (info.abfd));
104c1213 2255 fprintf_unfiltered (gdb_stdlog,
59837fe0 2256 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2257 host_address_to_string (info.tdep_info));
104c1213
JM
2258 }
2259
ebdba546 2260 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2261 for (rego = gdbarch_registry;
2262 rego != NULL;
2263 rego = rego->next)
2264 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2265 break;
2266 if (rego == NULL)
2267 {
2268 if (gdbarch_debug)
59837fe0 2269 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2270 "No matching architecture\n");
b732d07d
AC
2271 return 0;
2272 }
2273
ebdba546 2274 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2275 new_gdbarch = rego->init (info, rego->arches);
2276
ebdba546
AC
2277 /* Did the tdep code like it? No. Reject the change and revert to
2278 the old architecture. */
104c1213
JM
2279 if (new_gdbarch == NULL)
2280 {
2281 if (gdbarch_debug)
59837fe0 2282 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2283 "Target rejected architecture\n");
2284 return NULL;
104c1213
JM
2285 }
2286
ebdba546
AC
2287 /* Is this a pre-existing architecture (as determined by already
2288 being initialized)? Move it to the front of the architecture
2289 list (keeping the list sorted Most Recently Used). */
2290 if (new_gdbarch->initialized_p)
104c1213 2291 {
ebdba546
AC
2292 struct gdbarch_list **list;
2293 struct gdbarch_list *this;
104c1213 2294 if (gdbarch_debug)
59837fe0 2295 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2296 "Previous architecture %s (%s) selected\n",
2297 host_address_to_string (new_gdbarch),
104c1213 2298 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2299 /* Find the existing arch in the list. */
2300 for (list = &rego->arches;
2301 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2302 list = &(*list)->next);
2303 /* It had better be in the list of architectures. */
2304 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2305 /* Unlink THIS. */
2306 this = (*list);
2307 (*list) = this->next;
2308 /* Insert THIS at the front. */
2309 this->next = rego->arches;
2310 rego->arches = this;
2311 /* Return it. */
2312 return new_gdbarch;
104c1213
JM
2313 }
2314
ebdba546
AC
2315 /* It's a new architecture. */
2316 if (gdbarch_debug)
59837fe0 2317 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2318 "New architecture %s (%s) selected\n",
2319 host_address_to_string (new_gdbarch),
ebdba546
AC
2320 new_gdbarch->bfd_arch_info->printable_name);
2321
2322 /* Insert the new architecture into the front of the architecture
2323 list (keep the list sorted Most Recently Used). */
0f79675b 2324 {
70ba0933 2325 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2326 this->next = rego->arches;
2327 this->gdbarch = new_gdbarch;
2328 rego->arches = this;
2329 }
104c1213 2330
4b9b3959
AC
2331 /* Check that the newly installed architecture is valid. Plug in
2332 any post init values. */
2333 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2334 verify_gdbarch (new_gdbarch);
ebdba546 2335 new_gdbarch->initialized_p = 1;
104c1213 2336
4b9b3959 2337 if (gdbarch_debug)
ebdba546
AC
2338 gdbarch_dump (new_gdbarch, gdb_stdlog);
2339
2340 return new_gdbarch;
2341}
2342
e487cc15 2343/* Make the specified architecture current. */
ebdba546
AC
2344
2345void
aff68abb 2346set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2347{
2348 gdb_assert (new_gdbarch != NULL);
ebdba546 2349 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2350 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2351 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2352 registers_changed ();
ebdba546 2353}
104c1213 2354
f5656ead 2355/* Return the current inferior's arch. */
6ecd4729
PA
2356
2357struct gdbarch *
f5656ead 2358target_gdbarch (void)
6ecd4729
PA
2359{
2360 return current_inferior ()->gdbarch;
2361}
2362
104c1213 2363extern void _initialize_gdbarch (void);
b4a20239 2364
104c1213 2365void
34620563 2366_initialize_gdbarch (void)
104c1213 2367{
ccce17b0 2368 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2369Set architecture debugging."), _("\\
2370Show architecture debugging."), _("\\
2371When non-zero, architecture debugging is enabled."),
2372 NULL,
920d2a44 2373 show_gdbarch_debug,
85c07804 2374 &setdebuglist, &showdebuglist);
104c1213
JM
2375}
2376EOF
2377
2378# close things off
2379exec 1>&2
2380#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2381compare_new gdbarch.c