]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbarch.sh
* config/tc-arm.c (rotate_left): Avoid undefined behaviour when N = 0.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 653
5aa82d05
AA
654# Iterate over all supported register notes in a core file. For each
655# supported register note section, the iterator must call CB and pass
656# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
657# the supported register note sections based on the current register
658# values. Otherwise it should enumerate all supported register note
659# sections.
660M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 661
6432734d
UW
662# Create core file notes
663M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
664
b3ac9c77
SDJ
665# The elfcore writer hook to use to write Linux prpsinfo notes to core
666# files. Most Linux architectures use the same prpsinfo32 or
667# prpsinfo64 layouts, and so won't need to provide this hook, as we
668# call the Linux generic routines in bfd to write prpsinfo notes by
669# default.
670F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
671
35c2fab7
UW
672# Find core file memory regions
673M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
674
de584861 675# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
676# core file into buffer READBUF with length LEN. Return the number of bytes read
677# (zero indicates failure).
678# failed, otherwise, return the red length of READBUF.
679M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 680
356a5233
JB
681# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
682# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
683# Return the number of bytes read (zero indicates failure).
684M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 685
c0edd9ed 686# How the core target converts a PTID from a core file to a string.
28439f5e
PA
687M:char *:core_pid_to_str:ptid_t ptid:ptid
688
a78c2d62 689# BFD target to use when generating a core file.
86ba1042 690V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 691
0d5de010
DJ
692# If the elements of C++ vtables are in-place function descriptors rather
693# than normal function pointers (which may point to code or a descriptor),
694# set this to one.
97030eea 695v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
696
697# Set if the least significant bit of the delta is used instead of the least
698# significant bit of the pfn for pointers to virtual member functions.
97030eea 699v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
700
701# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 702f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 703
1668ae25 704# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
705V:ULONGEST:max_insn_length:::0:0
706
707# Copy the instruction at FROM to TO, and make any adjustments
708# necessary to single-step it at that address.
709#
710# REGS holds the state the thread's registers will have before
711# executing the copied instruction; the PC in REGS will refer to FROM,
712# not the copy at TO. The caller should update it to point at TO later.
713#
714# Return a pointer to data of the architecture's choice to be passed
715# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
716# the instruction's effects have been completely simulated, with the
717# resulting state written back to REGS.
718#
719# For a general explanation of displaced stepping and how GDB uses it,
720# see the comments in infrun.c.
721#
722# The TO area is only guaranteed to have space for
723# gdbarch_max_insn_length (arch) bytes, so this function must not
724# write more bytes than that to that area.
725#
726# If you do not provide this function, GDB assumes that the
727# architecture does not support displaced stepping.
728#
729# If your architecture doesn't need to adjust instructions before
730# single-stepping them, consider using simple_displaced_step_copy_insn
731# here.
732M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
733
99e40580
UW
734# Return true if GDB should use hardware single-stepping to execute
735# the displaced instruction identified by CLOSURE. If false,
736# GDB will simply restart execution at the displaced instruction
737# location, and it is up to the target to ensure GDB will receive
738# control again (e.g. by placing a software breakpoint instruction
739# into the displaced instruction buffer).
740#
741# The default implementation returns false on all targets that
742# provide a gdbarch_software_single_step routine, and true otherwise.
743m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
744
237fc4c9
PA
745# Fix up the state resulting from successfully single-stepping a
746# displaced instruction, to give the result we would have gotten from
747# stepping the instruction in its original location.
748#
749# REGS is the register state resulting from single-stepping the
750# displaced instruction.
751#
752# CLOSURE is the result from the matching call to
753# gdbarch_displaced_step_copy_insn.
754#
755# If you provide gdbarch_displaced_step_copy_insn.but not this
756# function, then GDB assumes that no fixup is needed after
757# single-stepping the instruction.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
762
763# Free a closure returned by gdbarch_displaced_step_copy_insn.
764#
765# If you provide gdbarch_displaced_step_copy_insn, you must provide
766# this function as well.
767#
768# If your architecture uses closures that don't need to be freed, then
769# you can use simple_displaced_step_free_closure here.
770#
771# For a general explanation of displaced stepping and how GDB uses it,
772# see the comments in infrun.c.
773m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
774
775# Return the address of an appropriate place to put displaced
776# instructions while we step over them. There need only be one such
777# place, since we're only stepping one thread over a breakpoint at a
778# time.
779#
780# For a general explanation of displaced stepping and how GDB uses it,
781# see the comments in infrun.c.
782m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
783
dde08ee1
PA
784# Relocate an instruction to execute at a different address. OLDLOC
785# is the address in the inferior memory where the instruction to
786# relocate is currently at. On input, TO points to the destination
787# where we want the instruction to be copied (and possibly adjusted)
788# to. On output, it points to one past the end of the resulting
789# instruction(s). The effect of executing the instruction at TO shall
790# be the same as if executing it at FROM. For example, call
791# instructions that implicitly push the return address on the stack
792# should be adjusted to return to the instruction after OLDLOC;
793# relative branches, and other PC-relative instructions need the
794# offset adjusted; etc.
795M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
796
1c772458 797# Refresh overlay mapped state for section OSECT.
97030eea 798F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 799
97030eea 800M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
801
802# Handle special encoding of static variables in stabs debug info.
0d5cff50 803F:const char *:static_transform_name:const char *name:name
203c3895 804# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 805v:int:sofun_address_maybe_missing:::0:0::0
1cded358 806
0508c3ec
HZ
807# Parse the instruction at ADDR storing in the record execution log
808# the registers REGCACHE and memory ranges that will be affected when
809# the instruction executes, along with their current values.
810# Return -1 if something goes wrong, 0 otherwise.
811M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
812
3846b520
HZ
813# Save process state after a signal.
814# Return -1 if something goes wrong, 0 otherwise.
2ea28649 815M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 816
22203bbf 817# Signal translation: translate inferior's signal (target's) number
86b49880
PA
818# into GDB's representation. The implementation of this method must
819# be host independent. IOW, don't rely on symbols of the NAT_FILE
820# header (the nm-*.h files), the host <signal.h> header, or similar
821# headers. This is mainly used when cross-debugging core files ---
822# "Live" targets hide the translation behind the target interface
1f8cf220
PA
823# (target_wait, target_resume, etc.).
824M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 825
eb14d406
SDJ
826# Signal translation: translate the GDB's internal signal number into
827# the inferior's signal (target's) representation. The implementation
828# of this method must be host independent. IOW, don't rely on symbols
829# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
830# header, or similar headers.
831# Return the target signal number if found, or -1 if the GDB internal
832# signal number is invalid.
833M:int:gdb_signal_to_target:enum gdb_signal signal:signal
834
4aa995e1
PA
835# Extra signal info inspection.
836#
837# Return a type suitable to inspect extra signal information.
838M:struct type *:get_siginfo_type:void:
839
60c5725c
DJ
840# Record architecture-specific information from the symbol table.
841M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 842
a96d9b2e
SDJ
843# Function for the 'catch syscall' feature.
844
845# Get architecture-specific system calls information from registers.
846M:LONGEST:get_syscall_number:ptid_t ptid:ptid
847
55aa24fb
SDJ
848# SystemTap related fields and functions.
849
05c0465e
SDJ
850# A NULL-terminated array of prefixes used to mark an integer constant
851# on the architecture's assembly.
55aa24fb
SDJ
852# For example, on x86 integer constants are written as:
853#
854# \$10 ;; integer constant 10
855#
856# in this case, this prefix would be the character \`\$\'.
05c0465e 857v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 858
05c0465e
SDJ
859# A NULL-terminated array of suffixes used to mark an integer constant
860# on the architecture's assembly.
861v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 862
05c0465e
SDJ
863# A NULL-terminated array of prefixes used to mark a register name on
864# the architecture's assembly.
55aa24fb
SDJ
865# For example, on x86 the register name is written as:
866#
867# \%eax ;; register eax
868#
869# in this case, this prefix would be the character \`\%\'.
05c0465e 870v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 871
05c0465e
SDJ
872# A NULL-terminated array of suffixes used to mark a register name on
873# the architecture's assembly.
874v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 875
05c0465e
SDJ
876# A NULL-terminated array of prefixes used to mark a register
877# indirection on the architecture's assembly.
55aa24fb
SDJ
878# For example, on x86 the register indirection is written as:
879#
880# \(\%eax\) ;; indirecting eax
881#
882# in this case, this prefix would be the charater \`\(\'.
883#
884# Please note that we use the indirection prefix also for register
885# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 886v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 887
05c0465e
SDJ
888# A NULL-terminated array of suffixes used to mark a register
889# indirection on the architecture's assembly.
55aa24fb
SDJ
890# For example, on x86 the register indirection is written as:
891#
892# \(\%eax\) ;; indirecting eax
893#
894# in this case, this prefix would be the charater \`\)\'.
895#
896# Please note that we use the indirection suffix also for register
897# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 898v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 899
05c0465e 900# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
901#
902# For example, on PPC a register is represented by a number in the assembly
903# language (e.g., \`10\' is the 10th general-purpose register). However,
904# inside GDB this same register has an \`r\' appended to its name, so the 10th
905# register would be represented as \`r10\' internally.
08af7a40 906v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
907
908# Suffix used to name a register using GDB's nomenclature.
08af7a40 909v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
910
911# Check if S is a single operand.
912#
913# Single operands can be:
914# \- Literal integers, e.g. \`\$10\' on x86
915# \- Register access, e.g. \`\%eax\' on x86
916# \- Register indirection, e.g. \`\(\%eax\)\' on x86
917# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
918#
919# This function should check for these patterns on the string
920# and return 1 if some were found, or zero otherwise. Please try to match
921# as much info as you can from the string, i.e., if you have to match
922# something like \`\(\%\', do not match just the \`\(\'.
923M:int:stap_is_single_operand:const char *s:s
924
925# Function used to handle a "special case" in the parser.
926#
927# A "special case" is considered to be an unknown token, i.e., a token
928# that the parser does not know how to parse. A good example of special
929# case would be ARM's register displacement syntax:
930#
931# [R0, #4] ;; displacing R0 by 4
932#
933# Since the parser assumes that a register displacement is of the form:
934#
935# <number> <indirection_prefix> <register_name> <indirection_suffix>
936#
937# it means that it will not be able to recognize and parse this odd syntax.
938# Therefore, we should add a special case function that will handle this token.
939#
940# This function should generate the proper expression form of the expression
941# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
942# and so on). It should also return 1 if the parsing was successful, or zero
943# if the token was not recognized as a special token (in this case, returning
944# zero means that the special parser is deferring the parsing to the generic
945# parser), and should advance the buffer pointer (p->arg).
946M:int:stap_parse_special_token:struct stap_parse_info *p:p
947
948
50c71eaf
PA
949# True if the list of shared libraries is one and only for all
950# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
951# This usually means that all processes, although may or may not share
952# an address space, will see the same set of symbols at the same
953# addresses.
50c71eaf 954v:int:has_global_solist:::0:0::0
2567c7d9
PA
955
956# On some targets, even though each inferior has its own private
957# address space, the debug interface takes care of making breakpoints
958# visible to all address spaces automatically. For such cases,
959# this property should be set to true.
960v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
961
962# True if inferiors share an address space (e.g., uClinux).
963m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
964
965# True if a fast tracepoint can be set at an address.
966m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 967
f870a310
TT
968# Return the "auto" target charset.
969f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
970# Return the "auto" target wide charset.
971f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
972
973# If non-empty, this is a file extension that will be opened in place
974# of the file extension reported by the shared library list.
975#
976# This is most useful for toolchains that use a post-linker tool,
977# where the names of the files run on the target differ in extension
978# compared to the names of the files GDB should load for debug info.
979v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
980
981# If true, the target OS has DOS-based file system semantics. That
982# is, absolute paths include a drive name, and the backslash is
983# considered a directory separator.
984v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
985
986# Generate bytecodes to collect the return address in a frame.
987# Since the bytecodes run on the target, possibly with GDB not even
988# connected, the full unwinding machinery is not available, and
989# typically this function will issue bytecodes for one or more likely
990# places that the return address may be found.
991m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
992
3030c96e 993# Implement the "info proc" command.
7bc112c1 994M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 995
451b7c33
TT
996# Implement the "info proc" command for core files. Noe that there
997# are two "info_proc"-like methods on gdbarch -- one for core files,
998# one for live targets.
7bc112c1 999M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1000
19630284
JB
1001# Iterate over all objfiles in the order that makes the most sense
1002# for the architecture to make global symbol searches.
1003#
1004# CB is a callback function where OBJFILE is the objfile to be searched,
1005# and CB_DATA a pointer to user-defined data (the same data that is passed
1006# when calling this gdbarch method). The iteration stops if this function
1007# returns nonzero.
1008#
1009# CB_DATA is a pointer to some user-defined data to be passed to
1010# the callback.
1011#
1012# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1013# inspected when the symbol search was requested.
1014m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1015
7e35103a
JB
1016# Ravenscar arch-dependent ops.
1017v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1018
1019# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1020m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1021
1022# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1023m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1024
1025# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1026m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1027
1028# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1029# Return 0 if *READPTR is already at the end of the buffer.
1030# Return -1 if there is insufficient buffer for a whole entry.
1031# Return 1 if an entry was read into *TYPEP and *VALP.
1032M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1033
1034# Find the address range of the current inferior's vsyscall/vDSO, and
1035# write it to *RANGE. If the vsyscall's length can't be determined, a
1036# range with zero length is returned. Returns true if the vsyscall is
1037# found, false otherwise.
1038m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
104c1213 1039EOF
104c1213
JM
1040}
1041
0b8f9e4d
AC
1042#
1043# The .log file
1044#
1045exec > new-gdbarch.log
34620563 1046function_list | while do_read
0b8f9e4d
AC
1047do
1048 cat <<EOF
2f9b146e 1049${class} ${returntype} ${function} ($formal)
104c1213 1050EOF
3d9a5942
AC
1051 for r in ${read}
1052 do
1053 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1054 done
f0d4cc9e 1055 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1056 then
66d659b1 1057 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1058 kill $$
1059 exit 1
1060 fi
72e74a21 1061 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1062 then
1063 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1064 kill $$
1065 exit 1
1066 fi
a72293e2
AC
1067 if class_is_multiarch_p
1068 then
1069 if class_is_predicate_p ; then :
1070 elif test "x${predefault}" = "x"
1071 then
2f9b146e 1072 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1073 kill $$
1074 exit 1
1075 fi
1076 fi
3d9a5942 1077 echo ""
0b8f9e4d
AC
1078done
1079
1080exec 1>&2
1081compare_new gdbarch.log
1082
104c1213
JM
1083
1084copyright ()
1085{
1086cat <<EOF
c4bfde41
JK
1087/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1088/* vi:set ro: */
59233f88 1089
104c1213 1090/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1091
ecd75fc8 1092 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1093
1094 This file is part of GDB.
1095
1096 This program is free software; you can redistribute it and/or modify
1097 it under the terms of the GNU General Public License as published by
50efebf8 1098 the Free Software Foundation; either version 3 of the License, or
104c1213 1099 (at your option) any later version.
50efebf8 1100
104c1213
JM
1101 This program is distributed in the hope that it will be useful,
1102 but WITHOUT ANY WARRANTY; without even the implied warranty of
1103 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1104 GNU General Public License for more details.
50efebf8 1105
104c1213 1106 You should have received a copy of the GNU General Public License
50efebf8 1107 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1108
104c1213
JM
1109/* This file was created with the aid of \`\`gdbarch.sh''.
1110
52204a0b 1111 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1112 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1113 against the existing \`\`gdbarch.[hc]''. Any differences found
1114 being reported.
1115
1116 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1117 changes into that script. Conversely, when making sweeping changes
104c1213 1118 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1119 easier. */
104c1213
JM
1120
1121EOF
1122}
1123
1124#
1125# The .h file
1126#
1127
1128exec > new-gdbarch.h
1129copyright
1130cat <<EOF
1131#ifndef GDBARCH_H
1132#define GDBARCH_H
1133
eb7a547a
JB
1134#include "frame.h"
1135
da3331ec
AC
1136struct floatformat;
1137struct ui_file;
104c1213 1138struct value;
b6af0555 1139struct objfile;
1c772458 1140struct obj_section;
a2cf933a 1141struct minimal_symbol;
049ee0e4 1142struct regcache;
b59ff9d5 1143struct reggroup;
6ce6d90f 1144struct regset;
a89aa300 1145struct disassemble_info;
e2d0e7eb 1146struct target_ops;
030f20e1 1147struct obstack;
8181d85f 1148struct bp_target_info;
424163ea 1149struct target_desc;
237fc4c9 1150struct displaced_step_closure;
17ea7499 1151struct core_regset_section;
a96d9b2e 1152struct syscall;
175ff332 1153struct agent_expr;
6710bf39 1154struct axs_value;
55aa24fb 1155struct stap_parse_info;
7e35103a 1156struct ravenscar_arch_ops;
b3ac9c77 1157struct elf_internal_linux_prpsinfo;
3437254d 1158struct mem_range;
104c1213 1159
6ecd4729
PA
1160/* The architecture associated with the inferior through the
1161 connection to the target.
1162
1163 The architecture vector provides some information that is really a
1164 property of the inferior, accessed through a particular target:
1165 ptrace operations; the layout of certain RSP packets; the solib_ops
1166 vector; etc. To differentiate architecture accesses to
1167 per-inferior/target properties from
1168 per-thread/per-frame/per-objfile properties, accesses to
1169 per-inferior/target properties should be made through this
1170 gdbarch. */
1171
1172/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1173extern struct gdbarch *target_gdbarch (void);
6ecd4729 1174
19630284
JB
1175/* Callback type for the 'iterate_over_objfiles_in_search_order'
1176 gdbarch method. */
1177
1178typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1179 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1180
1181typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1182 (const char *sect_name, int size, const struct regset *regset,
1183 const char *human_name, void *cb_data);
104c1213
JM
1184EOF
1185
1186# function typedef's
3d9a5942
AC
1187printf "\n"
1188printf "\n"
0963b4bd 1189printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1190function_list | while do_read
104c1213 1191do
2ada493a
AC
1192 if class_is_info_p
1193 then
3d9a5942
AC
1194 printf "\n"
1195 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1196 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1197 fi
104c1213
JM
1198done
1199
1200# function typedef's
3d9a5942
AC
1201printf "\n"
1202printf "\n"
0963b4bd 1203printf "/* The following are initialized by the target dependent code. */\n"
34620563 1204function_list | while do_read
104c1213 1205do
72e74a21 1206 if [ -n "${comment}" ]
34620563
AC
1207 then
1208 echo "${comment}" | sed \
1209 -e '2 s,#,/*,' \
1210 -e '3,$ s,#, ,' \
1211 -e '$ s,$, */,'
1212 fi
412d5987
AC
1213
1214 if class_is_predicate_p
2ada493a 1215 then
412d5987
AC
1216 printf "\n"
1217 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1218 fi
2ada493a
AC
1219 if class_is_variable_p
1220 then
3d9a5942
AC
1221 printf "\n"
1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1223 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1224 fi
1225 if class_is_function_p
1226 then
3d9a5942 1227 printf "\n"
72e74a21 1228 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1229 then
1230 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1231 elif class_is_multiarch_p
1232 then
1233 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1234 else
1235 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1236 fi
72e74a21 1237 if [ "x${formal}" = "xvoid" ]
104c1213 1238 then
3d9a5942 1239 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1240 else
3d9a5942 1241 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1242 fi
3d9a5942 1243 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1244 fi
104c1213
JM
1245done
1246
1247# close it off
1248cat <<EOF
1249
a96d9b2e
SDJ
1250/* Definition for an unknown syscall, used basically in error-cases. */
1251#define UNKNOWN_SYSCALL (-1)
1252
104c1213
JM
1253extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1254
1255
1256/* Mechanism for co-ordinating the selection of a specific
1257 architecture.
1258
1259 GDB targets (*-tdep.c) can register an interest in a specific
1260 architecture. Other GDB components can register a need to maintain
1261 per-architecture data.
1262
1263 The mechanisms below ensures that there is only a loose connection
1264 between the set-architecture command and the various GDB
0fa6923a 1265 components. Each component can independently register their need
104c1213
JM
1266 to maintain architecture specific data with gdbarch.
1267
1268 Pragmatics:
1269
1270 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1271 didn't scale.
1272
1273 The more traditional mega-struct containing architecture specific
1274 data for all the various GDB components was also considered. Since
0fa6923a 1275 GDB is built from a variable number of (fairly independent)
104c1213 1276 components it was determined that the global aproach was not
0963b4bd 1277 applicable. */
104c1213
JM
1278
1279
1280/* Register a new architectural family with GDB.
1281
1282 Register support for the specified ARCHITECTURE with GDB. When
1283 gdbarch determines that the specified architecture has been
1284 selected, the corresponding INIT function is called.
1285
1286 --
1287
1288 The INIT function takes two parameters: INFO which contains the
1289 information available to gdbarch about the (possibly new)
1290 architecture; ARCHES which is a list of the previously created
1291 \`\`struct gdbarch'' for this architecture.
1292
0f79675b 1293 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1294 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1295
1296 The ARCHES parameter is a linked list (sorted most recently used)
1297 of all the previously created architures for this architecture
1298 family. The (possibly NULL) ARCHES->gdbarch can used to access
1299 values from the previously selected architecture for this
59837fe0 1300 architecture family.
104c1213
JM
1301
1302 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1303 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1304 gdbarch'' from the ARCHES list - indicating that the new
1305 architecture is just a synonym for an earlier architecture (see
1306 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1307 - that describes the selected architecture (see gdbarch_alloc()).
1308
1309 The DUMP_TDEP function shall print out all target specific values.
1310 Care should be taken to ensure that the function works in both the
0963b4bd 1311 multi-arch and non- multi-arch cases. */
104c1213
JM
1312
1313struct gdbarch_list
1314{
1315 struct gdbarch *gdbarch;
1316 struct gdbarch_list *next;
1317};
1318
1319struct gdbarch_info
1320{
0963b4bd 1321 /* Use default: NULL (ZERO). */
104c1213
JM
1322 const struct bfd_arch_info *bfd_arch_info;
1323
428721aa 1324 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1325 enum bfd_endian byte_order;
104c1213 1326
94123b4f 1327 enum bfd_endian byte_order_for_code;
9d4fde75 1328
0963b4bd 1329 /* Use default: NULL (ZERO). */
104c1213
JM
1330 bfd *abfd;
1331
0963b4bd 1332 /* Use default: NULL (ZERO). */
104c1213 1333 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1334
1335 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1336 enum gdb_osabi osabi;
424163ea
DJ
1337
1338 /* Use default: NULL (ZERO). */
1339 const struct target_desc *target_desc;
104c1213
JM
1340};
1341
1342typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1343typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1344
4b9b3959 1345/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1346extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1347
4b9b3959
AC
1348extern void gdbarch_register (enum bfd_architecture architecture,
1349 gdbarch_init_ftype *,
1350 gdbarch_dump_tdep_ftype *);
1351
104c1213 1352
b4a20239
AC
1353/* Return a freshly allocated, NULL terminated, array of the valid
1354 architecture names. Since architectures are registered during the
1355 _initialize phase this function only returns useful information
0963b4bd 1356 once initialization has been completed. */
b4a20239
AC
1357
1358extern const char **gdbarch_printable_names (void);
1359
1360
104c1213 1361/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1362 matches the information provided by INFO. */
104c1213 1363
424163ea 1364extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1365
1366
1367/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1368 basic initialization using values obtained from the INFO and TDEP
104c1213 1369 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1370 initialization of the object. */
104c1213
JM
1371
1372extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1373
1374
4b9b3959
AC
1375/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1376 It is assumed that the caller freeds the \`\`struct
0963b4bd 1377 gdbarch_tdep''. */
4b9b3959 1378
058f20d5
JB
1379extern void gdbarch_free (struct gdbarch *);
1380
1381
aebd7893
AC
1382/* Helper function. Allocate memory from the \`\`struct gdbarch''
1383 obstack. The memory is freed when the corresponding architecture
1384 is also freed. */
1385
1386extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1387#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1388#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1389
1390
0963b4bd 1391/* Helper function. Force an update of the current architecture.
104c1213 1392
b732d07d
AC
1393 The actual architecture selected is determined by INFO, \`\`(gdb) set
1394 architecture'' et.al., the existing architecture and BFD's default
1395 architecture. INFO should be initialized to zero and then selected
1396 fields should be updated.
104c1213 1397
0963b4bd 1398 Returns non-zero if the update succeeds. */
16f33e29
AC
1399
1400extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1401
1402
ebdba546
AC
1403/* Helper function. Find an architecture matching info.
1404
1405 INFO should be initialized using gdbarch_info_init, relevant fields
1406 set, and then finished using gdbarch_info_fill.
1407
1408 Returns the corresponding architecture, or NULL if no matching
59837fe0 1409 architecture was found. */
ebdba546
AC
1410
1411extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1412
1413
aff68abb 1414/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1415
aff68abb 1416extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1417
104c1213
JM
1418
1419/* Register per-architecture data-pointer.
1420
1421 Reserve space for a per-architecture data-pointer. An identifier
1422 for the reserved data-pointer is returned. That identifer should
95160752 1423 be saved in a local static variable.
104c1213 1424
fcc1c85c
AC
1425 Memory for the per-architecture data shall be allocated using
1426 gdbarch_obstack_zalloc. That memory will be deleted when the
1427 corresponding architecture object is deleted.
104c1213 1428
95160752
AC
1429 When a previously created architecture is re-selected, the
1430 per-architecture data-pointer for that previous architecture is
76860b5f 1431 restored. INIT() is not re-called.
104c1213
JM
1432
1433 Multiple registrarants for any architecture are allowed (and
1434 strongly encouraged). */
1435
95160752 1436struct gdbarch_data;
104c1213 1437
030f20e1
AC
1438typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1439extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1440typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1441extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1442extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1443 struct gdbarch_data *data,
1444 void *pointer);
104c1213 1445
451fbdda 1446extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1447
1448
0fa6923a 1449/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1450 byte-order, ...) using information found in the BFD. */
104c1213
JM
1451
1452extern void set_gdbarch_from_file (bfd *);
1453
1454
e514a9d6
JM
1455/* Initialize the current architecture to the "first" one we find on
1456 our list. */
1457
1458extern void initialize_current_architecture (void);
1459
104c1213 1460/* gdbarch trace variable */
ccce17b0 1461extern unsigned int gdbarch_debug;
104c1213 1462
4b9b3959 1463extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1464
1465#endif
1466EOF
1467exec 1>&2
1468#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1469compare_new gdbarch.h
104c1213
JM
1470
1471
1472#
1473# C file
1474#
1475
1476exec > new-gdbarch.c
1477copyright
1478cat <<EOF
1479
1480#include "defs.h"
7355ddba 1481#include "arch-utils.h"
104c1213 1482
104c1213 1483#include "gdbcmd.h"
faaf634c 1484#include "inferior.h"
104c1213
JM
1485#include "symcat.h"
1486
f0d4cc9e 1487#include "floatformat.h"
b59ff9d5 1488#include "reggroups.h"
4be87837 1489#include "osabi.h"
aebd7893 1490#include "gdb_obstack.h"
383f836e 1491#include "observer.h"
a3ecef73 1492#include "regcache.h"
19630284 1493#include "objfiles.h"
95160752 1494
104c1213
JM
1495/* Static function declarations */
1496
b3cc3077 1497static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1498
104c1213
JM
1499/* Non-zero if we want to trace architecture code. */
1500
1501#ifndef GDBARCH_DEBUG
1502#define GDBARCH_DEBUG 0
1503#endif
ccce17b0 1504unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1505static void
1506show_gdbarch_debug (struct ui_file *file, int from_tty,
1507 struct cmd_list_element *c, const char *value)
1508{
1509 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1510}
104c1213 1511
456fcf94 1512static const char *
8da61cc4 1513pformat (const struct floatformat **format)
456fcf94
AC
1514{
1515 if (format == NULL)
1516 return "(null)";
1517 else
8da61cc4
DJ
1518 /* Just print out one of them - this is only for diagnostics. */
1519 return format[0]->name;
456fcf94
AC
1520}
1521
08105857
PA
1522static const char *
1523pstring (const char *string)
1524{
1525 if (string == NULL)
1526 return "(null)";
1527 return string;
05c0465e
SDJ
1528}
1529
1530/* Helper function to print a list of strings, represented as "const
1531 char *const *". The list is printed comma-separated. */
1532
1533static char *
1534pstring_list (const char *const *list)
1535{
1536 static char ret[100];
1537 const char *const *p;
1538 size_t offset = 0;
1539
1540 if (list == NULL)
1541 return "(null)";
1542
1543 ret[0] = '\0';
1544 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1545 {
1546 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1547 offset += 2 + s;
1548 }
1549
1550 if (offset > 0)
1551 {
1552 gdb_assert (offset - 2 < sizeof (ret));
1553 ret[offset - 2] = '\0';
1554 }
1555
1556 return ret;
08105857
PA
1557}
1558
104c1213
JM
1559EOF
1560
1561# gdbarch open the gdbarch object
3d9a5942 1562printf "\n"
0963b4bd 1563printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1564printf "\n"
1565printf "struct gdbarch\n"
1566printf "{\n"
76860b5f
AC
1567printf " /* Has this architecture been fully initialized? */\n"
1568printf " int initialized_p;\n"
aebd7893
AC
1569printf "\n"
1570printf " /* An obstack bound to the lifetime of the architecture. */\n"
1571printf " struct obstack *obstack;\n"
1572printf "\n"
0963b4bd 1573printf " /* basic architectural information. */\n"
34620563 1574function_list | while do_read
104c1213 1575do
2ada493a
AC
1576 if class_is_info_p
1577 then
3d9a5942 1578 printf " ${returntype} ${function};\n"
2ada493a 1579 fi
104c1213 1580done
3d9a5942 1581printf "\n"
0963b4bd 1582printf " /* target specific vector. */\n"
3d9a5942
AC
1583printf " struct gdbarch_tdep *tdep;\n"
1584printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1585printf "\n"
0963b4bd 1586printf " /* per-architecture data-pointers. */\n"
95160752 1587printf " unsigned nr_data;\n"
3d9a5942
AC
1588printf " void **data;\n"
1589printf "\n"
104c1213
JM
1590cat <<EOF
1591 /* Multi-arch values.
1592
1593 When extending this structure you must:
1594
1595 Add the field below.
1596
1597 Declare set/get functions and define the corresponding
1598 macro in gdbarch.h.
1599
1600 gdbarch_alloc(): If zero/NULL is not a suitable default,
1601 initialize the new field.
1602
1603 verify_gdbarch(): Confirm that the target updated the field
1604 correctly.
1605
7e73cedf 1606 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1607 field is dumped out
1608
104c1213
JM
1609 get_gdbarch(): Implement the set/get functions (probably using
1610 the macro's as shortcuts).
1611
1612 */
1613
1614EOF
34620563 1615function_list | while do_read
104c1213 1616do
2ada493a
AC
1617 if class_is_variable_p
1618 then
3d9a5942 1619 printf " ${returntype} ${function};\n"
2ada493a
AC
1620 elif class_is_function_p
1621 then
2f9b146e 1622 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1623 fi
104c1213 1624done
3d9a5942 1625printf "};\n"
104c1213 1626
104c1213 1627# Create a new gdbarch struct
104c1213 1628cat <<EOF
7de2341d 1629
66b43ecb 1630/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1631 \`\`struct gdbarch_info''. */
104c1213 1632EOF
3d9a5942 1633printf "\n"
104c1213
JM
1634cat <<EOF
1635struct gdbarch *
1636gdbarch_alloc (const struct gdbarch_info *info,
1637 struct gdbarch_tdep *tdep)
1638{
be7811ad 1639 struct gdbarch *gdbarch;
aebd7893
AC
1640
1641 /* Create an obstack for allocating all the per-architecture memory,
1642 then use that to allocate the architecture vector. */
70ba0933 1643 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1644 obstack_init (obstack);
be7811ad
MD
1645 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1646 memset (gdbarch, 0, sizeof (*gdbarch));
1647 gdbarch->obstack = obstack;
85de9627 1648
be7811ad 1649 alloc_gdbarch_data (gdbarch);
85de9627 1650
be7811ad 1651 gdbarch->tdep = tdep;
104c1213 1652EOF
3d9a5942 1653printf "\n"
34620563 1654function_list | while do_read
104c1213 1655do
2ada493a
AC
1656 if class_is_info_p
1657 then
be7811ad 1658 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1659 fi
104c1213 1660done
3d9a5942 1661printf "\n"
0963b4bd 1662printf " /* Force the explicit initialization of these. */\n"
34620563 1663function_list | while do_read
104c1213 1664do
2ada493a
AC
1665 if class_is_function_p || class_is_variable_p
1666 then
72e74a21 1667 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1668 then
be7811ad 1669 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1670 fi
2ada493a 1671 fi
104c1213
JM
1672done
1673cat <<EOF
1674 /* gdbarch_alloc() */
1675
be7811ad 1676 return gdbarch;
104c1213
JM
1677}
1678EOF
1679
058f20d5 1680# Free a gdbarch struct.
3d9a5942
AC
1681printf "\n"
1682printf "\n"
058f20d5 1683cat <<EOF
aebd7893
AC
1684/* Allocate extra space using the per-architecture obstack. */
1685
1686void *
1687gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1688{
1689 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1690
aebd7893
AC
1691 memset (data, 0, size);
1692 return data;
1693}
1694
1695
058f20d5
JB
1696/* Free a gdbarch struct. This should never happen in normal
1697 operation --- once you've created a gdbarch, you keep it around.
1698 However, if an architecture's init function encounters an error
1699 building the structure, it may need to clean up a partially
1700 constructed gdbarch. */
4b9b3959 1701
058f20d5
JB
1702void
1703gdbarch_free (struct gdbarch *arch)
1704{
aebd7893 1705 struct obstack *obstack;
05c547f6 1706
95160752 1707 gdb_assert (arch != NULL);
aebd7893
AC
1708 gdb_assert (!arch->initialized_p);
1709 obstack = arch->obstack;
1710 obstack_free (obstack, 0); /* Includes the ARCH. */
1711 xfree (obstack);
058f20d5
JB
1712}
1713EOF
1714
104c1213 1715# verify a new architecture
104c1213 1716cat <<EOF
db446970
AC
1717
1718
1719/* Ensure that all values in a GDBARCH are reasonable. */
1720
104c1213 1721static void
be7811ad 1722verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1723{
f16a1923
AC
1724 struct ui_file *log;
1725 struct cleanup *cleanups;
759ef836 1726 long length;
f16a1923 1727 char *buf;
05c547f6 1728
f16a1923
AC
1729 log = mem_fileopen ();
1730 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1731 /* fundamental */
be7811ad 1732 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1733 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1734 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1735 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1736 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1737EOF
34620563 1738function_list | while do_read
104c1213 1739do
2ada493a
AC
1740 if class_is_function_p || class_is_variable_p
1741 then
72e74a21 1742 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1743 then
3d9a5942 1744 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1745 elif class_is_predicate_p
1746 then
0963b4bd 1747 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1748 # FIXME: See do_read for potential simplification
72e74a21 1749 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1750 then
3d9a5942 1751 printf " if (${invalid_p})\n"
be7811ad 1752 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1753 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1754 then
be7811ad
MD
1755 printf " if (gdbarch->${function} == ${predefault})\n"
1756 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1757 elif [ -n "${postdefault}" ]
f0d4cc9e 1758 then
be7811ad
MD
1759 printf " if (gdbarch->${function} == 0)\n"
1760 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1761 elif [ -n "${invalid_p}" ]
104c1213 1762 then
4d60522e 1763 printf " if (${invalid_p})\n"
f16a1923 1764 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1765 elif [ -n "${predefault}" ]
104c1213 1766 then
be7811ad 1767 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1768 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1769 fi
2ada493a 1770 fi
104c1213
JM
1771done
1772cat <<EOF
759ef836 1773 buf = ui_file_xstrdup (log, &length);
f16a1923 1774 make_cleanup (xfree, buf);
759ef836 1775 if (length > 0)
f16a1923 1776 internal_error (__FILE__, __LINE__,
85c07804 1777 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1778 buf);
1779 do_cleanups (cleanups);
104c1213
JM
1780}
1781EOF
1782
1783# dump the structure
3d9a5942
AC
1784printf "\n"
1785printf "\n"
104c1213 1786cat <<EOF
0963b4bd 1787/* Print out the details of the current architecture. */
4b9b3959 1788
104c1213 1789void
be7811ad 1790gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1791{
b78960be 1792 const char *gdb_nm_file = "<not-defined>";
05c547f6 1793
b78960be
AC
1794#if defined (GDB_NM_FILE)
1795 gdb_nm_file = GDB_NM_FILE;
1796#endif
1797 fprintf_unfiltered (file,
1798 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1799 gdb_nm_file);
104c1213 1800EOF
97030eea 1801function_list | sort -t: -k 3 | while do_read
104c1213 1802do
1e9f55d0
AC
1803 # First the predicate
1804 if class_is_predicate_p
1805 then
7996bcec 1806 printf " fprintf_unfiltered (file,\n"
48f7351b 1807 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1808 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1809 fi
48f7351b 1810 # Print the corresponding value.
283354d8 1811 if class_is_function_p
4b9b3959 1812 then
7996bcec 1813 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1814 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1815 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1816 else
48f7351b 1817 # It is a variable
2f9b146e
AC
1818 case "${print}:${returntype}" in
1819 :CORE_ADDR )
0b1553bc
UW
1820 fmt="%s"
1821 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1822 ;;
2f9b146e 1823 :* )
48f7351b 1824 fmt="%s"
623d3eb1 1825 print="plongest (gdbarch->${function})"
48f7351b
AC
1826 ;;
1827 * )
2f9b146e 1828 fmt="%s"
48f7351b
AC
1829 ;;
1830 esac
3d9a5942 1831 printf " fprintf_unfiltered (file,\n"
48f7351b 1832 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1833 printf " ${print});\n"
2ada493a 1834 fi
104c1213 1835done
381323f4 1836cat <<EOF
be7811ad
MD
1837 if (gdbarch->dump_tdep != NULL)
1838 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1839}
1840EOF
104c1213
JM
1841
1842
1843# GET/SET
3d9a5942 1844printf "\n"
104c1213
JM
1845cat <<EOF
1846struct gdbarch_tdep *
1847gdbarch_tdep (struct gdbarch *gdbarch)
1848{
1849 if (gdbarch_debug >= 2)
3d9a5942 1850 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1851 return gdbarch->tdep;
1852}
1853EOF
3d9a5942 1854printf "\n"
34620563 1855function_list | while do_read
104c1213 1856do
2ada493a
AC
1857 if class_is_predicate_p
1858 then
3d9a5942
AC
1859 printf "\n"
1860 printf "int\n"
1861 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1862 printf "{\n"
8de9bdc4 1863 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1864 printf " return ${predicate};\n"
3d9a5942 1865 printf "}\n"
2ada493a
AC
1866 fi
1867 if class_is_function_p
1868 then
3d9a5942
AC
1869 printf "\n"
1870 printf "${returntype}\n"
72e74a21 1871 if [ "x${formal}" = "xvoid" ]
104c1213 1872 then
3d9a5942 1873 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1874 else
3d9a5942 1875 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1876 fi
3d9a5942 1877 printf "{\n"
8de9bdc4 1878 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1879 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1880 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1881 then
1882 # Allow a call to a function with a predicate.
956ac328 1883 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1884 fi
3d9a5942
AC
1885 printf " if (gdbarch_debug >= 2)\n"
1886 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1887 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1888 then
1889 if class_is_multiarch_p
1890 then
1891 params="gdbarch"
1892 else
1893 params=""
1894 fi
1895 else
1896 if class_is_multiarch_p
1897 then
1898 params="gdbarch, ${actual}"
1899 else
1900 params="${actual}"
1901 fi
1902 fi
72e74a21 1903 if [ "x${returntype}" = "xvoid" ]
104c1213 1904 then
4a5c6a1d 1905 printf " gdbarch->${function} (${params});\n"
104c1213 1906 else
4a5c6a1d 1907 printf " return gdbarch->${function} (${params});\n"
104c1213 1908 fi
3d9a5942
AC
1909 printf "}\n"
1910 printf "\n"
1911 printf "void\n"
1912 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1913 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1914 printf "{\n"
1915 printf " gdbarch->${function} = ${function};\n"
1916 printf "}\n"
2ada493a
AC
1917 elif class_is_variable_p
1918 then
3d9a5942
AC
1919 printf "\n"
1920 printf "${returntype}\n"
1921 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1922 printf "{\n"
8de9bdc4 1923 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1924 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1925 then
3d9a5942 1926 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1927 elif [ -n "${invalid_p}" ]
104c1213 1928 then
956ac328
AC
1929 printf " /* Check variable is valid. */\n"
1930 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1931 elif [ -n "${predefault}" ]
104c1213 1932 then
956ac328
AC
1933 printf " /* Check variable changed from pre-default. */\n"
1934 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1935 fi
3d9a5942
AC
1936 printf " if (gdbarch_debug >= 2)\n"
1937 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1938 printf " return gdbarch->${function};\n"
1939 printf "}\n"
1940 printf "\n"
1941 printf "void\n"
1942 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1943 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1944 printf "{\n"
1945 printf " gdbarch->${function} = ${function};\n"
1946 printf "}\n"
2ada493a
AC
1947 elif class_is_info_p
1948 then
3d9a5942
AC
1949 printf "\n"
1950 printf "${returntype}\n"
1951 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1952 printf "{\n"
8de9bdc4 1953 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1954 printf " if (gdbarch_debug >= 2)\n"
1955 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1956 printf " return gdbarch->${function};\n"
1957 printf "}\n"
2ada493a 1958 fi
104c1213
JM
1959done
1960
1961# All the trailing guff
1962cat <<EOF
1963
1964
f44c642f 1965/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1966 modules. */
104c1213
JM
1967
1968struct gdbarch_data
1969{
95160752 1970 unsigned index;
76860b5f 1971 int init_p;
030f20e1
AC
1972 gdbarch_data_pre_init_ftype *pre_init;
1973 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1974};
1975
1976struct gdbarch_data_registration
1977{
104c1213
JM
1978 struct gdbarch_data *data;
1979 struct gdbarch_data_registration *next;
1980};
1981
f44c642f 1982struct gdbarch_data_registry
104c1213 1983{
95160752 1984 unsigned nr;
104c1213
JM
1985 struct gdbarch_data_registration *registrations;
1986};
1987
f44c642f 1988struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1989{
1990 0, NULL,
1991};
1992
030f20e1
AC
1993static struct gdbarch_data *
1994gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1995 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1996{
1997 struct gdbarch_data_registration **curr;
05c547f6
MS
1998
1999 /* Append the new registration. */
f44c642f 2000 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2001 (*curr) != NULL;
2002 curr = &(*curr)->next);
70ba0933 2003 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2004 (*curr)->next = NULL;
70ba0933 2005 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2006 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2007 (*curr)->data->pre_init = pre_init;
2008 (*curr)->data->post_init = post_init;
76860b5f 2009 (*curr)->data->init_p = 1;
104c1213
JM
2010 return (*curr)->data;
2011}
2012
030f20e1
AC
2013struct gdbarch_data *
2014gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2015{
2016 return gdbarch_data_register (pre_init, NULL);
2017}
2018
2019struct gdbarch_data *
2020gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2021{
2022 return gdbarch_data_register (NULL, post_init);
2023}
104c1213 2024
0963b4bd 2025/* Create/delete the gdbarch data vector. */
95160752
AC
2026
2027static void
b3cc3077 2028alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2029{
b3cc3077
JB
2030 gdb_assert (gdbarch->data == NULL);
2031 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2032 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2033}
3c875b6f 2034
76860b5f 2035/* Initialize the current value of the specified per-architecture
0963b4bd 2036 data-pointer. */
b3cc3077 2037
95160752 2038void
030f20e1
AC
2039deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2040 struct gdbarch_data *data,
2041 void *pointer)
95160752
AC
2042{
2043 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2044 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2045 gdb_assert (data->pre_init == NULL);
95160752
AC
2046 gdbarch->data[data->index] = pointer;
2047}
2048
104c1213 2049/* Return the current value of the specified per-architecture
0963b4bd 2050 data-pointer. */
104c1213
JM
2051
2052void *
451fbdda 2053gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2054{
451fbdda 2055 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2056 if (gdbarch->data[data->index] == NULL)
76860b5f 2057 {
030f20e1
AC
2058 /* The data-pointer isn't initialized, call init() to get a
2059 value. */
2060 if (data->pre_init != NULL)
2061 /* Mid architecture creation: pass just the obstack, and not
2062 the entire architecture, as that way it isn't possible for
2063 pre-init code to refer to undefined architecture
2064 fields. */
2065 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2066 else if (gdbarch->initialized_p
2067 && data->post_init != NULL)
2068 /* Post architecture creation: pass the entire architecture
2069 (as all fields are valid), but be careful to also detect
2070 recursive references. */
2071 {
2072 gdb_assert (data->init_p);
2073 data->init_p = 0;
2074 gdbarch->data[data->index] = data->post_init (gdbarch);
2075 data->init_p = 1;
2076 }
2077 else
2078 /* The architecture initialization hasn't completed - punt -
2079 hope that the caller knows what they are doing. Once
2080 deprecated_set_gdbarch_data has been initialized, this can be
2081 changed to an internal error. */
2082 return NULL;
76860b5f
AC
2083 gdb_assert (gdbarch->data[data->index] != NULL);
2084 }
451fbdda 2085 return gdbarch->data[data->index];
104c1213
JM
2086}
2087
2088
0963b4bd 2089/* Keep a registry of the architectures known by GDB. */
104c1213 2090
4b9b3959 2091struct gdbarch_registration
104c1213
JM
2092{
2093 enum bfd_architecture bfd_architecture;
2094 gdbarch_init_ftype *init;
4b9b3959 2095 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2096 struct gdbarch_list *arches;
4b9b3959 2097 struct gdbarch_registration *next;
104c1213
JM
2098};
2099
f44c642f 2100static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2101
b4a20239
AC
2102static void
2103append_name (const char ***buf, int *nr, const char *name)
2104{
2105 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2106 (*buf)[*nr] = name;
2107 *nr += 1;
2108}
2109
2110const char **
2111gdbarch_printable_names (void)
2112{
7996bcec 2113 /* Accumulate a list of names based on the registed list of
0963b4bd 2114 architectures. */
7996bcec
AC
2115 int nr_arches = 0;
2116 const char **arches = NULL;
2117 struct gdbarch_registration *rego;
05c547f6 2118
7996bcec
AC
2119 for (rego = gdbarch_registry;
2120 rego != NULL;
2121 rego = rego->next)
b4a20239 2122 {
7996bcec
AC
2123 const struct bfd_arch_info *ap;
2124 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2125 if (ap == NULL)
2126 internal_error (__FILE__, __LINE__,
85c07804 2127 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2128 do
2129 {
2130 append_name (&arches, &nr_arches, ap->printable_name);
2131 ap = ap->next;
2132 }
2133 while (ap != NULL);
b4a20239 2134 }
7996bcec
AC
2135 append_name (&arches, &nr_arches, NULL);
2136 return arches;
b4a20239
AC
2137}
2138
2139
104c1213 2140void
4b9b3959
AC
2141gdbarch_register (enum bfd_architecture bfd_architecture,
2142 gdbarch_init_ftype *init,
2143 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2144{
4b9b3959 2145 struct gdbarch_registration **curr;
104c1213 2146 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2147
ec3d358c 2148 /* Check that BFD recognizes this architecture */
104c1213
JM
2149 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2150 if (bfd_arch_info == NULL)
2151 {
8e65ff28 2152 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2153 _("gdbarch: Attempt to register "
2154 "unknown architecture (%d)"),
8e65ff28 2155 bfd_architecture);
104c1213 2156 }
0963b4bd 2157 /* Check that we haven't seen this architecture before. */
f44c642f 2158 for (curr = &gdbarch_registry;
104c1213
JM
2159 (*curr) != NULL;
2160 curr = &(*curr)->next)
2161 {
2162 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2163 internal_error (__FILE__, __LINE__,
64b9b334 2164 _("gdbarch: Duplicate registration "
0963b4bd 2165 "of architecture (%s)"),
8e65ff28 2166 bfd_arch_info->printable_name);
104c1213
JM
2167 }
2168 /* log it */
2169 if (gdbarch_debug)
30737ed9 2170 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2171 bfd_arch_info->printable_name,
30737ed9 2172 host_address_to_string (init));
104c1213 2173 /* Append it */
70ba0933 2174 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2175 (*curr)->bfd_architecture = bfd_architecture;
2176 (*curr)->init = init;
4b9b3959 2177 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2178 (*curr)->arches = NULL;
2179 (*curr)->next = NULL;
4b9b3959
AC
2180}
2181
2182void
2183register_gdbarch_init (enum bfd_architecture bfd_architecture,
2184 gdbarch_init_ftype *init)
2185{
2186 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2187}
104c1213
JM
2188
2189
424163ea 2190/* Look for an architecture using gdbarch_info. */
104c1213
JM
2191
2192struct gdbarch_list *
2193gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2194 const struct gdbarch_info *info)
2195{
2196 for (; arches != NULL; arches = arches->next)
2197 {
2198 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2199 continue;
2200 if (info->byte_order != arches->gdbarch->byte_order)
2201 continue;
4be87837
DJ
2202 if (info->osabi != arches->gdbarch->osabi)
2203 continue;
424163ea
DJ
2204 if (info->target_desc != arches->gdbarch->target_desc)
2205 continue;
104c1213
JM
2206 return arches;
2207 }
2208 return NULL;
2209}
2210
2211
ebdba546 2212/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2213 architecture if needed. Return that new architecture. */
104c1213 2214
59837fe0
UW
2215struct gdbarch *
2216gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2217{
2218 struct gdbarch *new_gdbarch;
4b9b3959 2219 struct gdbarch_registration *rego;
104c1213 2220
b732d07d 2221 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2222 sources: "set ..."; INFOabfd supplied; and the global
2223 defaults. */
2224 gdbarch_info_fill (&info);
4be87837 2225
0963b4bd 2226 /* Must have found some sort of architecture. */
b732d07d 2227 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2228
2229 if (gdbarch_debug)
2230 {
2231 fprintf_unfiltered (gdb_stdlog,
59837fe0 2232 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2233 (info.bfd_arch_info != NULL
2234 ? info.bfd_arch_info->printable_name
2235 : "(null)"));
2236 fprintf_unfiltered (gdb_stdlog,
59837fe0 2237 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2238 info.byte_order,
d7449b42 2239 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2240 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2241 : "default"));
4be87837 2242 fprintf_unfiltered (gdb_stdlog,
59837fe0 2243 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2244 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2245 fprintf_unfiltered (gdb_stdlog,
59837fe0 2246 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2247 host_address_to_string (info.abfd));
104c1213 2248 fprintf_unfiltered (gdb_stdlog,
59837fe0 2249 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2250 host_address_to_string (info.tdep_info));
104c1213
JM
2251 }
2252
ebdba546 2253 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2254 for (rego = gdbarch_registry;
2255 rego != NULL;
2256 rego = rego->next)
2257 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2258 break;
2259 if (rego == NULL)
2260 {
2261 if (gdbarch_debug)
59837fe0 2262 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2263 "No matching architecture\n");
b732d07d
AC
2264 return 0;
2265 }
2266
ebdba546 2267 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2268 new_gdbarch = rego->init (info, rego->arches);
2269
ebdba546
AC
2270 /* Did the tdep code like it? No. Reject the change and revert to
2271 the old architecture. */
104c1213
JM
2272 if (new_gdbarch == NULL)
2273 {
2274 if (gdbarch_debug)
59837fe0 2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2276 "Target rejected architecture\n");
2277 return NULL;
104c1213
JM
2278 }
2279
ebdba546
AC
2280 /* Is this a pre-existing architecture (as determined by already
2281 being initialized)? Move it to the front of the architecture
2282 list (keeping the list sorted Most Recently Used). */
2283 if (new_gdbarch->initialized_p)
104c1213 2284 {
ebdba546
AC
2285 struct gdbarch_list **list;
2286 struct gdbarch_list *this;
104c1213 2287 if (gdbarch_debug)
59837fe0 2288 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2289 "Previous architecture %s (%s) selected\n",
2290 host_address_to_string (new_gdbarch),
104c1213 2291 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2292 /* Find the existing arch in the list. */
2293 for (list = &rego->arches;
2294 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2295 list = &(*list)->next);
2296 /* It had better be in the list of architectures. */
2297 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2298 /* Unlink THIS. */
2299 this = (*list);
2300 (*list) = this->next;
2301 /* Insert THIS at the front. */
2302 this->next = rego->arches;
2303 rego->arches = this;
2304 /* Return it. */
2305 return new_gdbarch;
104c1213
JM
2306 }
2307
ebdba546
AC
2308 /* It's a new architecture. */
2309 if (gdbarch_debug)
59837fe0 2310 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2311 "New architecture %s (%s) selected\n",
2312 host_address_to_string (new_gdbarch),
ebdba546
AC
2313 new_gdbarch->bfd_arch_info->printable_name);
2314
2315 /* Insert the new architecture into the front of the architecture
2316 list (keep the list sorted Most Recently Used). */
0f79675b 2317 {
70ba0933 2318 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2319 this->next = rego->arches;
2320 this->gdbarch = new_gdbarch;
2321 rego->arches = this;
2322 }
104c1213 2323
4b9b3959
AC
2324 /* Check that the newly installed architecture is valid. Plug in
2325 any post init values. */
2326 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2327 verify_gdbarch (new_gdbarch);
ebdba546 2328 new_gdbarch->initialized_p = 1;
104c1213 2329
4b9b3959 2330 if (gdbarch_debug)
ebdba546
AC
2331 gdbarch_dump (new_gdbarch, gdb_stdlog);
2332
2333 return new_gdbarch;
2334}
2335
e487cc15 2336/* Make the specified architecture current. */
ebdba546
AC
2337
2338void
aff68abb 2339set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2340{
2341 gdb_assert (new_gdbarch != NULL);
ebdba546 2342 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2343 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2344 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2345 registers_changed ();
ebdba546 2346}
104c1213 2347
f5656ead 2348/* Return the current inferior's arch. */
6ecd4729
PA
2349
2350struct gdbarch *
f5656ead 2351target_gdbarch (void)
6ecd4729
PA
2352{
2353 return current_inferior ()->gdbarch;
2354}
2355
104c1213 2356extern void _initialize_gdbarch (void);
b4a20239 2357
104c1213 2358void
34620563 2359_initialize_gdbarch (void)
104c1213 2360{
ccce17b0 2361 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2362Set architecture debugging."), _("\\
2363Show architecture debugging."), _("\\
2364When non-zero, architecture debugging is enabled."),
2365 NULL,
920d2a44 2366 show_gdbarch_debug,
85c07804 2367 &setdebuglist, &showdebuglist);
104c1213
JM
2368}
2369EOF
2370
2371# close things off
2372exec 1>&2
2373#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2374compare_new gdbarch.c