]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
0fb0cc75 4 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4f2aea11 5
c906108c
SS
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
ae5a43e0 40#include "hashtab.h"
c906108c 41
ac3aafc7 42
8da61cc4
DJ
43/* Floatformat pairs. */
44const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
45 &floatformat_ieee_single_big,
46 &floatformat_ieee_single_little
47};
48const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
49 &floatformat_ieee_double_big,
50 &floatformat_ieee_double_little
51};
52const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
53 &floatformat_ieee_double_big,
54 &floatformat_ieee_double_littlebyte_bigword
55};
56const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
57 &floatformat_i387_ext,
58 &floatformat_i387_ext
59};
60const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
61 &floatformat_m68881_ext,
62 &floatformat_m68881_ext
63};
64const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_arm_ext_big,
66 &floatformat_arm_ext_littlebyte_bigword
67};
68const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ia64_spill_big,
70 &floatformat_ia64_spill_little
71};
72const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ia64_quad_big,
74 &floatformat_ia64_quad_little
75};
76const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_vax_f,
78 &floatformat_vax_f
79};
80const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_vax_d,
82 &floatformat_vax_d
83};
b14d30e1
JM
84const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ibm_long_double,
86 &floatformat_ibm_long_double
87};
8da61cc4 88
8da61cc4 89
c906108c 90int opaque_type_resolution = 1;
920d2a44
AC
91static void
92show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
93 struct cmd_list_element *c,
94 const char *value)
920d2a44
AC
95{
96 fprintf_filtered (file, _("\
97Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
98 value);
99}
100
5d161b24 101int overload_debug = 0;
920d2a44
AC
102static void
103show_overload_debug (struct ui_file *file, int from_tty,
104 struct cmd_list_element *c, const char *value)
105{
7ba81444
MS
106 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
107 value);
920d2a44 108}
c906108c 109
c5aa993b
JM
110struct extra
111 {
112 char str[128];
113 int len;
7ba81444 114 }; /* Maximum extension is 128! FIXME */
c906108c 115
a14ed312 116static void print_bit_vector (B_TYPE *, int);
ad2f7632 117static void print_arg_types (struct field *, int, int);
a14ed312
KB
118static void dump_fn_fieldlists (struct type *, int);
119static void print_cplus_stuff (struct type *, int);
7a292a7a 120
c906108c 121
e9bb382b
UW
122/* Allocate a new OBJFILE-associated type structure and fill it
123 with some defaults. Space for the type structure is allocated
124 on the objfile's objfile_obstack. */
c906108c
SS
125
126struct type *
fba45db2 127alloc_type (struct objfile *objfile)
c906108c 128{
52f0bd74 129 struct type *type;
c906108c 130
e9bb382b
UW
131 gdb_assert (objfile != NULL);
132
7ba81444 133 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
134 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
135 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
136 struct main_type);
137 OBJSTAT (objfile, n_types++);
c906108c 138
e9bb382b
UW
139 TYPE_OBJFILE_OWNED (type) = 1;
140 TYPE_OWNER (type).objfile = objfile;
c906108c 141
7ba81444 142 /* Initialize the fields that might not be zero. */
c906108c
SS
143
144 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 145 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 146 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 147
c16abbde 148 return type;
c906108c
SS
149}
150
e9bb382b
UW
151/* Allocate a new GDBARCH-associated type structure and fill it
152 with some defaults. Space for the type structure is allocated
153 on the heap. */
154
155struct type *
156alloc_type_arch (struct gdbarch *gdbarch)
157{
158 struct type *type;
159
160 gdb_assert (gdbarch != NULL);
161
162 /* Alloc the structure and start off with all fields zeroed. */
163
164 type = XZALLOC (struct type);
165 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
166
167 TYPE_OBJFILE_OWNED (type) = 0;
168 TYPE_OWNER (type).gdbarch = gdbarch;
169
170 /* Initialize the fields that might not be zero. */
171
172 TYPE_CODE (type) = TYPE_CODE_UNDEF;
173 TYPE_VPTR_FIELDNO (type) = -1;
174 TYPE_CHAIN (type) = type; /* Chain back to itself. */
175
176 return type;
177}
178
179/* If TYPE is objfile-associated, allocate a new type structure
180 associated with the same objfile. If TYPE is gdbarch-associated,
181 allocate a new type structure associated with the same gdbarch. */
182
183struct type *
184alloc_type_copy (const struct type *type)
185{
186 if (TYPE_OBJFILE_OWNED (type))
187 return alloc_type (TYPE_OWNER (type).objfile);
188 else
189 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
190}
191
192/* If TYPE is gdbarch-associated, return that architecture.
193 If TYPE is objfile-associated, return that objfile's architecture. */
194
195struct gdbarch *
196get_type_arch (const struct type *type)
197{
198 if (TYPE_OBJFILE_OWNED (type))
199 return get_objfile_arch (TYPE_OWNER (type).objfile);
200 else
201 return TYPE_OWNER (type).gdbarch;
202}
203
204
2fdde8f8
DJ
205/* Alloc a new type instance structure, fill it with some defaults,
206 and point it at OLDTYPE. Allocate the new type instance from the
207 same place as OLDTYPE. */
208
209static struct type *
210alloc_type_instance (struct type *oldtype)
211{
212 struct type *type;
213
214 /* Allocate the structure. */
215
e9bb382b 216 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 217 type = XZALLOC (struct type);
2fdde8f8 218 else
1deafd4e
PA
219 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
220 struct type);
221
2fdde8f8
DJ
222 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
223
224 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
225
c16abbde 226 return type;
2fdde8f8
DJ
227}
228
229/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 230 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
231static void
232smash_type (struct type *type)
233{
e9bb382b
UW
234 int objfile_owned = TYPE_OBJFILE_OWNED (type);
235 union type_owner owner = TYPE_OWNER (type);
236
2fdde8f8
DJ
237 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
238
e9bb382b
UW
239 /* Restore owner information. */
240 TYPE_OBJFILE_OWNED (type) = objfile_owned;
241 TYPE_OWNER (type) = owner;
242
2fdde8f8
DJ
243 /* For now, delete the rings. */
244 TYPE_CHAIN (type) = type;
245
246 /* For now, leave the pointer/reference types alone. */
247}
248
c906108c
SS
249/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
250 to a pointer to memory where the pointer type should be stored.
251 If *TYPEPTR is zero, update it to point to the pointer type we return.
252 We allocate new memory if needed. */
253
254struct type *
fba45db2 255make_pointer_type (struct type *type, struct type **typeptr)
c906108c 256{
52f0bd74 257 struct type *ntype; /* New type */
053cb41b 258 struct type *chain;
c906108c
SS
259
260 ntype = TYPE_POINTER_TYPE (type);
261
c5aa993b 262 if (ntype)
c906108c 263 {
c5aa993b 264 if (typeptr == 0)
7ba81444
MS
265 return ntype; /* Don't care about alloc,
266 and have new type. */
c906108c 267 else if (*typeptr == 0)
c5aa993b 268 {
7ba81444 269 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 270 return ntype;
c5aa993b 271 }
c906108c
SS
272 }
273
274 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
275 {
e9bb382b 276 ntype = alloc_type_copy (type);
c906108c
SS
277 if (typeptr)
278 *typeptr = ntype;
279 }
7ba81444 280 else /* We have storage, but need to reset it. */
c906108c
SS
281 {
282 ntype = *typeptr;
053cb41b 283 chain = TYPE_CHAIN (ntype);
2fdde8f8 284 smash_type (ntype);
053cb41b 285 TYPE_CHAIN (ntype) = chain;
c906108c
SS
286 }
287
288 TYPE_TARGET_TYPE (ntype) = type;
289 TYPE_POINTER_TYPE (type) = ntype;
290
7ba81444
MS
291 /* FIXME! Assume the machine has only one representation for
292 pointers! */
c906108c 293
50810684
UW
294 TYPE_LENGTH (ntype)
295 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
296 TYPE_CODE (ntype) = TYPE_CODE_PTR;
297
67b2adb2 298 /* Mark pointers as unsigned. The target converts between pointers
76e71323 299 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 300 gdbarch_address_to_pointer. */
876cecd0 301 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 302
c906108c
SS
303 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
304 TYPE_POINTER_TYPE (type) = ntype;
305
053cb41b
JB
306 /* Update the length of all the other variants of this type. */
307 chain = TYPE_CHAIN (ntype);
308 while (chain != ntype)
309 {
310 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
311 chain = TYPE_CHAIN (chain);
312 }
313
c906108c
SS
314 return ntype;
315}
316
317/* Given a type TYPE, return a type of pointers to that type.
318 May need to construct such a type if this is the first use. */
319
320struct type *
fba45db2 321lookup_pointer_type (struct type *type)
c906108c 322{
c5aa993b 323 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
324}
325
7ba81444
MS
326/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
327 points to a pointer to memory where the reference type should be
328 stored. If *TYPEPTR is zero, update it to point to the reference
329 type we return. We allocate new memory if needed. */
c906108c
SS
330
331struct type *
fba45db2 332make_reference_type (struct type *type, struct type **typeptr)
c906108c 333{
52f0bd74 334 struct type *ntype; /* New type */
1e98b326 335 struct type *chain;
c906108c
SS
336
337 ntype = TYPE_REFERENCE_TYPE (type);
338
c5aa993b 339 if (ntype)
c906108c 340 {
c5aa993b 341 if (typeptr == 0)
7ba81444
MS
342 return ntype; /* Don't care about alloc,
343 and have new type. */
c906108c 344 else if (*typeptr == 0)
c5aa993b 345 {
7ba81444 346 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 347 return ntype;
c5aa993b 348 }
c906108c
SS
349 }
350
351 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
352 {
e9bb382b 353 ntype = alloc_type_copy (type);
c906108c
SS
354 if (typeptr)
355 *typeptr = ntype;
356 }
7ba81444 357 else /* We have storage, but need to reset it. */
c906108c
SS
358 {
359 ntype = *typeptr;
1e98b326 360 chain = TYPE_CHAIN (ntype);
2fdde8f8 361 smash_type (ntype);
1e98b326 362 TYPE_CHAIN (ntype) = chain;
c906108c
SS
363 }
364
365 TYPE_TARGET_TYPE (ntype) = type;
366 TYPE_REFERENCE_TYPE (type) = ntype;
367
7ba81444
MS
368 /* FIXME! Assume the machine has only one representation for
369 references, and that it matches the (only) representation for
370 pointers! */
c906108c 371
50810684
UW
372 TYPE_LENGTH (ntype) =
373 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 374 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 375
c906108c
SS
376 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
377 TYPE_REFERENCE_TYPE (type) = ntype;
378
1e98b326
JB
379 /* Update the length of all the other variants of this type. */
380 chain = TYPE_CHAIN (ntype);
381 while (chain != ntype)
382 {
383 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
384 chain = TYPE_CHAIN (chain);
385 }
386
c906108c
SS
387 return ntype;
388}
389
7ba81444
MS
390/* Same as above, but caller doesn't care about memory allocation
391 details. */
c906108c
SS
392
393struct type *
fba45db2 394lookup_reference_type (struct type *type)
c906108c 395{
c5aa993b 396 return make_reference_type (type, (struct type **) 0);
c906108c
SS
397}
398
7ba81444
MS
399/* Lookup a function type that returns type TYPE. TYPEPTR, if
400 nonzero, points to a pointer to memory where the function type
401 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 402 function type we return. We allocate new memory if needed. */
c906108c
SS
403
404struct type *
0c8b41f1 405make_function_type (struct type *type, struct type **typeptr)
c906108c 406{
52f0bd74 407 struct type *ntype; /* New type */
c906108c
SS
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
e9bb382b 411 ntype = alloc_type_copy (type);
c906108c
SS
412 if (typeptr)
413 *typeptr = ntype;
414 }
7ba81444 415 else /* We have storage, but need to reset it. */
c906108c
SS
416 {
417 ntype = *typeptr;
2fdde8f8 418 smash_type (ntype);
c906108c
SS
419 }
420
421 TYPE_TARGET_TYPE (ntype) = type;
422
423 TYPE_LENGTH (ntype) = 1;
424 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 425
c906108c
SS
426 return ntype;
427}
428
429
430/* Given a type TYPE, return a type of functions that return that type.
431 May need to construct such a type if this is the first use. */
432
433struct type *
fba45db2 434lookup_function_type (struct type *type)
c906108c 435{
0c8b41f1 436 return make_function_type (type, (struct type **) 0);
c906108c
SS
437}
438
47663de5
MS
439/* Identify address space identifier by name --
440 return the integer flag defined in gdbtypes.h. */
441extern int
50810684 442address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 443{
8b2dbe47 444 int type_flags;
7ba81444 445 /* Check for known address space delimiters. */
47663de5 446 if (!strcmp (space_identifier, "code"))
876cecd0 447 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 448 else if (!strcmp (space_identifier, "data"))
876cecd0 449 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
450 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
451 && gdbarch_address_class_name_to_type_flags (gdbarch,
452 space_identifier,
453 &type_flags))
8b2dbe47 454 return type_flags;
47663de5 455 else
8a3fe4f8 456 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
457}
458
459/* Identify address space identifier by integer flag as defined in
7ba81444 460 gdbtypes.h -- return the string version of the adress space name. */
47663de5 461
321432c0 462const char *
50810684 463address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 464{
876cecd0 465 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 466 return "code";
876cecd0 467 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 468 return "data";
876cecd0 469 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
470 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
471 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
472 else
473 return NULL;
474}
475
2fdde8f8 476/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
477
478 If STORAGE is non-NULL, create the new type instance there.
479 STORAGE must be in the same obstack as TYPE. */
47663de5 480
b9362cc7 481static struct type *
2fdde8f8
DJ
482make_qualified_type (struct type *type, int new_flags,
483 struct type *storage)
47663de5
MS
484{
485 struct type *ntype;
486
487 ntype = type;
5f61c20e
JK
488 do
489 {
490 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
491 return ntype;
492 ntype = TYPE_CHAIN (ntype);
493 }
494 while (ntype != type);
47663de5 495
2fdde8f8
DJ
496 /* Create a new type instance. */
497 if (storage == NULL)
498 ntype = alloc_type_instance (type);
499 else
500 {
7ba81444
MS
501 /* If STORAGE was provided, it had better be in the same objfile
502 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
503 if one objfile is freed and the other kept, we'd have
504 dangling pointers. */
ad766c0a
JB
505 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
506
2fdde8f8
DJ
507 ntype = storage;
508 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
509 TYPE_CHAIN (ntype) = ntype;
510 }
47663de5
MS
511
512 /* Pointers or references to the original type are not relevant to
2fdde8f8 513 the new type. */
47663de5
MS
514 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
515 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 516
2fdde8f8
DJ
517 /* Chain the new qualified type to the old type. */
518 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
519 TYPE_CHAIN (type) = ntype;
520
521 /* Now set the instance flags and return the new type. */
522 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 523
ab5d3da6
KB
524 /* Set length of new type to that of the original type. */
525 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
526
47663de5
MS
527 return ntype;
528}
529
2fdde8f8
DJ
530/* Make an address-space-delimited variant of a type -- a type that
531 is identical to the one supplied except that it has an address
532 space attribute attached to it (such as "code" or "data").
533
7ba81444
MS
534 The space attributes "code" and "data" are for Harvard
535 architectures. The address space attributes are for architectures
536 which have alternately sized pointers or pointers with alternate
537 representations. */
2fdde8f8
DJ
538
539struct type *
540make_type_with_address_space (struct type *type, int space_flag)
541{
542 struct type *ntype;
543 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
544 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
545 | TYPE_INSTANCE_FLAG_DATA_SPACE
546 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
547 | space_flag);
548
549 return make_qualified_type (type, new_flags, NULL);
550}
c906108c
SS
551
552/* Make a "c-v" variant of a type -- a type that is identical to the
553 one supplied except that it may have const or volatile attributes
554 CNST is a flag for setting the const attribute
555 VOLTL is a flag for setting the volatile attribute
556 TYPE is the base type whose variant we are creating.
c906108c 557
ad766c0a
JB
558 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
559 storage to hold the new qualified type; *TYPEPTR and TYPE must be
560 in the same objfile. Otherwise, allocate fresh memory for the new
561 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
562 new type we construct. */
c906108c 563struct type *
7ba81444
MS
564make_cv_type (int cnst, int voltl,
565 struct type *type,
566 struct type **typeptr)
c906108c 567{
52f0bd74
AC
568 struct type *ntype; /* New type */
569 struct type *tmp_type = type; /* tmp type */
c906108c
SS
570 struct objfile *objfile;
571
2fdde8f8 572 int new_flags = (TYPE_INSTANCE_FLAGS (type)
876cecd0 573 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 574
c906108c 575 if (cnst)
876cecd0 576 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
577
578 if (voltl)
876cecd0 579 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 580
2fdde8f8 581 if (typeptr && *typeptr != NULL)
a02fd225 582 {
ad766c0a
JB
583 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
584 a C-V variant chain that threads across objfiles: if one
585 objfile gets freed, then the other has a broken C-V chain.
586
587 This code used to try to copy over the main type from TYPE to
588 *TYPEPTR if they were in different objfiles, but that's
589 wrong, too: TYPE may have a field list or member function
590 lists, which refer to types of their own, etc. etc. The
591 whole shebang would need to be copied over recursively; you
592 can't have inter-objfile pointers. The only thing to do is
593 to leave stub types as stub types, and look them up afresh by
594 name each time you encounter them. */
595 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
596 }
597
7ba81444
MS
598 ntype = make_qualified_type (type, new_flags,
599 typeptr ? *typeptr : NULL);
c906108c 600
2fdde8f8
DJ
601 if (typeptr != NULL)
602 *typeptr = ntype;
a02fd225 603
2fdde8f8 604 return ntype;
a02fd225 605}
c906108c 606
2fdde8f8
DJ
607/* Replace the contents of ntype with the type *type. This changes the
608 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
609 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 610
cda6c68a
JB
611 In order to build recursive types, it's inevitable that we'll need
612 to update types in place --- but this sort of indiscriminate
613 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
614 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
615 clear if more steps are needed. */
dd6bda65
DJ
616void
617replace_type (struct type *ntype, struct type *type)
618{
ab5d3da6 619 struct type *chain;
dd6bda65 620
ad766c0a
JB
621 /* These two types had better be in the same objfile. Otherwise,
622 the assignment of one type's main type structure to the other
623 will produce a type with references to objects (names; field
624 lists; etc.) allocated on an objfile other than its own. */
625 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
626
2fdde8f8 627 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 628
7ba81444
MS
629 /* The type length is not a part of the main type. Update it for
630 each type on the variant chain. */
ab5d3da6 631 chain = ntype;
5f61c20e
JK
632 do
633 {
634 /* Assert that this element of the chain has no address-class bits
635 set in its flags. Such type variants might have type lengths
636 which are supposed to be different from the non-address-class
637 variants. This assertion shouldn't ever be triggered because
638 symbol readers which do construct address-class variants don't
639 call replace_type(). */
640 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
641
642 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
643 chain = TYPE_CHAIN (chain);
644 }
645 while (ntype != chain);
ab5d3da6 646
2fdde8f8
DJ
647 /* Assert that the two types have equivalent instance qualifiers.
648 This should be true for at least all of our debug readers. */
649 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
650}
651
c906108c
SS
652/* Implement direct support for MEMBER_TYPE in GNU C++.
653 May need to construct such a type if this is the first use.
654 The TYPE is the type of the member. The DOMAIN is the type
655 of the aggregate that the member belongs to. */
656
657struct type *
0d5de010 658lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 659{
52f0bd74 660 struct type *mtype;
c906108c 661
e9bb382b 662 mtype = alloc_type_copy (type);
0d5de010 663 smash_to_memberptr_type (mtype, domain, type);
c16abbde 664 return mtype;
c906108c
SS
665}
666
0d5de010
DJ
667/* Return a pointer-to-method type, for a method of type TO_TYPE. */
668
669struct type *
670lookup_methodptr_type (struct type *to_type)
671{
672 struct type *mtype;
673
e9bb382b 674 mtype = alloc_type_copy (to_type);
0d5de010
DJ
675 TYPE_TARGET_TYPE (mtype) = to_type;
676 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
ad4820ab 677 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
0d5de010
DJ
678 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
679 return mtype;
680}
681
7ba81444
MS
682/* Allocate a stub method whose return type is TYPE. This apparently
683 happens for speed of symbol reading, since parsing out the
684 arguments to the method is cpu-intensive, the way we are doing it.
685 So, we will fill in arguments later. This always returns a fresh
686 type. */
c906108c
SS
687
688struct type *
fba45db2 689allocate_stub_method (struct type *type)
c906108c
SS
690{
691 struct type *mtype;
692
e9bb382b
UW
693 mtype = alloc_type_copy (type);
694 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
695 TYPE_LENGTH (mtype) = 1;
696 TYPE_STUB (mtype) = 1;
c906108c
SS
697 TYPE_TARGET_TYPE (mtype) = type;
698 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 699 return mtype;
c906108c
SS
700}
701
7ba81444
MS
702/* Create a range type using either a blank type supplied in
703 RESULT_TYPE, or creating a new type, inheriting the objfile from
704 INDEX_TYPE.
c906108c 705
7ba81444
MS
706 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
707 to HIGH_BOUND, inclusive.
c906108c 708
7ba81444
MS
709 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
710 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
711
712struct type *
fba45db2
KB
713create_range_type (struct type *result_type, struct type *index_type,
714 int low_bound, int high_bound)
c906108c
SS
715{
716 if (result_type == NULL)
e9bb382b 717 result_type = alloc_type_copy (index_type);
c906108c
SS
718 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
719 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 720 if (TYPE_STUB (index_type))
876cecd0 721 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
722 else
723 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
724 TYPE_NFIELDS (result_type) = 2;
1deafd4e
PA
725 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type,
726 TYPE_NFIELDS (result_type)
727 * sizeof (struct field));
262452ec
JK
728 TYPE_LOW_BOUND (result_type) = low_bound;
729 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 730
c5aa993b 731 if (low_bound >= 0)
876cecd0 732 TYPE_UNSIGNED (result_type) = 1;
c906108c 733
262452ec 734 return result_type;
c906108c
SS
735}
736
7ba81444
MS
737/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
738 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
739 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
740
741int
fba45db2 742get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
743{
744 CHECK_TYPEDEF (type);
745 switch (TYPE_CODE (type))
746 {
747 case TYPE_CODE_RANGE:
748 *lowp = TYPE_LOW_BOUND (type);
749 *highp = TYPE_HIGH_BOUND (type);
750 return 1;
751 case TYPE_CODE_ENUM:
752 if (TYPE_NFIELDS (type) > 0)
753 {
754 /* The enums may not be sorted by value, so search all
755 entries */
756 int i;
757
758 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
759 for (i = 0; i < TYPE_NFIELDS (type); i++)
760 {
761 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
762 *lowp = TYPE_FIELD_BITPOS (type, i);
763 if (TYPE_FIELD_BITPOS (type, i) > *highp)
764 *highp = TYPE_FIELD_BITPOS (type, i);
765 }
766
7ba81444 767 /* Set unsigned indicator if warranted. */
c5aa993b 768 if (*lowp >= 0)
c906108c 769 {
876cecd0 770 TYPE_UNSIGNED (type) = 1;
c906108c
SS
771 }
772 }
773 else
774 {
775 *lowp = 0;
776 *highp = -1;
777 }
778 return 0;
779 case TYPE_CODE_BOOL:
780 *lowp = 0;
781 *highp = 1;
782 return 0;
783 case TYPE_CODE_INT:
c5aa993b 784 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
785 return -1;
786 if (!TYPE_UNSIGNED (type))
787 {
c5aa993b 788 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
789 *highp = -*lowp - 1;
790 return 0;
791 }
7ba81444 792 /* ... fall through for unsigned ints ... */
c906108c
SS
793 case TYPE_CODE_CHAR:
794 *lowp = 0;
795 /* This round-about calculation is to avoid shifting by
7b83ea04 796 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 797 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
798 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
799 *highp = (*highp - 1) | *highp;
800 return 0;
801 default:
802 return -1;
803 }
804}
805
7ba81444
MS
806/* Create an array type using either a blank type supplied in
807 RESULT_TYPE, or creating a new type, inheriting the objfile from
808 RANGE_TYPE.
c906108c
SS
809
810 Elements will be of type ELEMENT_TYPE, the indices will be of type
811 RANGE_TYPE.
812
7ba81444
MS
813 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
814 sure it is TYPE_CODE_UNDEF before we bash it into an array
815 type? */
c906108c
SS
816
817struct type *
7ba81444
MS
818create_array_type (struct type *result_type,
819 struct type *element_type,
fba45db2 820 struct type *range_type)
c906108c
SS
821{
822 LONGEST low_bound, high_bound;
823
824 if (result_type == NULL)
e9bb382b
UW
825 result_type = alloc_type_copy (range_type);
826
c906108c
SS
827 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
828 TYPE_TARGET_TYPE (result_type) = element_type;
829 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
830 low_bound = high_bound = 0;
831 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
832 /* Be careful when setting the array length. Ada arrays can be
833 empty arrays with the high_bound being smaller than the low_bound.
834 In such cases, the array length should be zero. */
835 if (high_bound < low_bound)
836 TYPE_LENGTH (result_type) = 0;
837 else
838 TYPE_LENGTH (result_type) =
839 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
840 TYPE_NFIELDS (result_type) = 1;
841 TYPE_FIELDS (result_type) =
1deafd4e 842 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 843 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
844 TYPE_VPTR_FIELDNO (result_type) = -1;
845
846 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
847 if (TYPE_LENGTH (result_type) == 0)
876cecd0 848 TYPE_TARGET_STUB (result_type) = 1;
c906108c 849
c16abbde 850 return result_type;
c906108c
SS
851}
852
e3506a9f
UW
853struct type *
854lookup_array_range_type (struct type *element_type,
855 int low_bound, int high_bound)
856{
50810684 857 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
858 struct type *index_type = builtin_type (gdbarch)->builtin_int;
859 struct type *range_type
860 = create_range_type (NULL, index_type, low_bound, high_bound);
861 return create_array_type (NULL, element_type, range_type);
862}
863
7ba81444
MS
864/* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
c906108c
SS
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
7ba81444
MS
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
c906108c
SS
875
876struct type *
3b7538c0
UW
877create_string_type (struct type *result_type,
878 struct type *string_char_type,
7ba81444 879 struct type *range_type)
c906108c
SS
880{
881 result_type = create_array_type (result_type,
f290d38e 882 string_char_type,
c906108c
SS
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 885 return result_type;
c906108c
SS
886}
887
e3506a9f
UW
888struct type *
889lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891{
892 struct type *result_type;
893 result_type = lookup_array_range_type (string_char_type,
894 low_bound, high_bound);
895 TYPE_CODE (result_type) = TYPE_CODE_STRING;
896 return result_type;
897}
898
c906108c 899struct type *
fba45db2 900create_set_type (struct type *result_type, struct type *domain_type)
c906108c 901{
c906108c 902 if (result_type == NULL)
e9bb382b
UW
903 result_type = alloc_type_copy (domain_type);
904
c906108c
SS
905 TYPE_CODE (result_type) = TYPE_CODE_SET;
906 TYPE_NFIELDS (result_type) = 1;
1deafd4e 907 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 908
74a9bb82 909 if (!TYPE_STUB (domain_type))
c906108c 910 {
f9780d5b 911 LONGEST low_bound, high_bound, bit_length;
c906108c
SS
912 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
913 low_bound = high_bound = 0;
914 bit_length = high_bound - low_bound + 1;
915 TYPE_LENGTH (result_type)
916 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 917 if (low_bound >= 0)
876cecd0 918 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
919 }
920 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
921
c16abbde 922 return result_type;
c906108c
SS
923}
924
ea37ba09
DJ
925/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
926 and any array types nested inside it. */
927
928void
929make_vector_type (struct type *array_type)
930{
931 struct type *inner_array, *elt_type;
932 int flags;
933
934 /* Find the innermost array type, in case the array is
935 multi-dimensional. */
936 inner_array = array_type;
937 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
938 inner_array = TYPE_TARGET_TYPE (inner_array);
939
940 elt_type = TYPE_TARGET_TYPE (inner_array);
941 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
942 {
943 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
944 elt_type = make_qualified_type (elt_type, flags, NULL);
945 TYPE_TARGET_TYPE (inner_array) = elt_type;
946 }
947
876cecd0 948 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
949}
950
794ac428 951struct type *
ac3aafc7
EZ
952init_vector_type (struct type *elt_type, int n)
953{
954 struct type *array_type;
e3506a9f 955 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 956 make_vector_type (array_type);
ac3aafc7
EZ
957 return array_type;
958}
959
0d5de010
DJ
960/* Smash TYPE to be a type of pointers to members of DOMAIN with type
961 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
962 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
963 TYPE doesn't include the offset (that's the value of the MEMBER
964 itself), but does include the structure type into which it points
965 (for some reason).
c906108c 966
7ba81444
MS
967 When "smashing" the type, we preserve the objfile that the old type
968 pointed to, since we aren't changing where the type is actually
c906108c
SS
969 allocated. */
970
971void
0d5de010
DJ
972smash_to_memberptr_type (struct type *type, struct type *domain,
973 struct type *to_type)
c906108c 974{
2fdde8f8 975 smash_type (type);
c906108c
SS
976 TYPE_TARGET_TYPE (type) = to_type;
977 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
978 /* Assume that a data member pointer is the same size as a normal
979 pointer. */
50810684
UW
980 TYPE_LENGTH (type)
981 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 982 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
983}
984
985/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
986 METHOD just means `function that gets an extra "this" argument'.
987
7ba81444
MS
988 When "smashing" the type, we preserve the objfile that the old type
989 pointed to, since we aren't changing where the type is actually
c906108c
SS
990 allocated. */
991
992void
fba45db2 993smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
994 struct type *to_type, struct field *args,
995 int nargs, int varargs)
c906108c 996{
2fdde8f8 997 smash_type (type);
c906108c
SS
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1000 TYPE_FIELDS (type) = args;
1001 TYPE_NFIELDS (type) = nargs;
1002 if (varargs)
876cecd0 1003 TYPE_VARARGS (type) = 1;
c906108c
SS
1004 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1005 TYPE_CODE (type) = TYPE_CODE_METHOD;
1006}
1007
1008/* Return a typename for a struct/union/enum type without "struct ",
1009 "union ", or "enum ". If the type has a NULL name, return NULL. */
1010
1011char *
aa1ee363 1012type_name_no_tag (const struct type *type)
c906108c
SS
1013{
1014 if (TYPE_TAG_NAME (type) != NULL)
1015 return TYPE_TAG_NAME (type);
1016
7ba81444
MS
1017 /* Is there code which expects this to return the name if there is
1018 no tag name? My guess is that this is mainly used for C++ in
1019 cases where the two will always be the same. */
c906108c
SS
1020 return TYPE_NAME (type);
1021}
1022
7ba81444
MS
1023/* Lookup a typedef or primitive type named NAME, visible in lexical
1024 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1025 suitably defined. */
c906108c
SS
1026
1027struct type *
e6c014f2
UW
1028lookup_typename (const struct language_defn *language,
1029 struct gdbarch *gdbarch, char *name,
1030 struct block *block, int noerr)
c906108c 1031{
52f0bd74
AC
1032 struct symbol *sym;
1033 struct type *tmp;
c906108c 1034
2570f2b7 1035 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1036 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1037 {
e6c014f2 1038 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1039 if (tmp)
1040 {
c16abbde 1041 return tmp;
c906108c
SS
1042 }
1043 else if (!tmp && noerr)
1044 {
c16abbde 1045 return NULL;
c906108c
SS
1046 }
1047 else
1048 {
8a3fe4f8 1049 error (_("No type named %s."), name);
c906108c
SS
1050 }
1051 }
1052 return (SYMBOL_TYPE (sym));
1053}
1054
1055struct type *
e6c014f2
UW
1056lookup_unsigned_typename (const struct language_defn *language,
1057 struct gdbarch *gdbarch, char *name)
c906108c
SS
1058{
1059 char *uns = alloca (strlen (name) + 10);
1060
1061 strcpy (uns, "unsigned ");
1062 strcpy (uns + 9, name);
e6c014f2 1063 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1064}
1065
1066struct type *
e6c014f2
UW
1067lookup_signed_typename (const struct language_defn *language,
1068 struct gdbarch *gdbarch, char *name)
c906108c
SS
1069{
1070 struct type *t;
1071 char *uns = alloca (strlen (name) + 8);
1072
1073 strcpy (uns, "signed ");
1074 strcpy (uns + 7, name);
e6c014f2 1075 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1076 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1077 if (t != NULL)
1078 return t;
e6c014f2 1079 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1080}
1081
1082/* Lookup a structure type named "struct NAME",
1083 visible in lexical block BLOCK. */
1084
1085struct type *
fba45db2 1086lookup_struct (char *name, struct block *block)
c906108c 1087{
52f0bd74 1088 struct symbol *sym;
c906108c 1089
2570f2b7 1090 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1091
1092 if (sym == NULL)
1093 {
8a3fe4f8 1094 error (_("No struct type named %s."), name);
c906108c
SS
1095 }
1096 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1097 {
7ba81444
MS
1098 error (_("This context has class, union or enum %s, not a struct."),
1099 name);
c906108c
SS
1100 }
1101 return (SYMBOL_TYPE (sym));
1102}
1103
1104/* Lookup a union type named "union NAME",
1105 visible in lexical block BLOCK. */
1106
1107struct type *
fba45db2 1108lookup_union (char *name, struct block *block)
c906108c 1109{
52f0bd74 1110 struct symbol *sym;
c5aa993b 1111 struct type *t;
c906108c 1112
2570f2b7 1113 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1114
1115 if (sym == NULL)
8a3fe4f8 1116 error (_("No union type named %s."), name);
c906108c 1117
c5aa993b 1118 t = SYMBOL_TYPE (sym);
c906108c
SS
1119
1120 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1121 return t;
c906108c
SS
1122
1123 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1124 * a further "declared_type" field to discover it is really a union.
1125 */
c5aa993b
JM
1126 if (HAVE_CPLUS_STRUCT (t))
1127 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c16abbde 1128 return t;
c906108c 1129
7ba81444
MS
1130 /* If we get here, it's not a union. */
1131 error (_("This context has class, struct or enum %s, not a union."),
1132 name);
c906108c
SS
1133}
1134
1135
1136/* Lookup an enum type named "enum NAME",
1137 visible in lexical block BLOCK. */
1138
1139struct type *
fba45db2 1140lookup_enum (char *name, struct block *block)
c906108c 1141{
52f0bd74 1142 struct symbol *sym;
c906108c 1143
2570f2b7 1144 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1145 if (sym == NULL)
1146 {
8a3fe4f8 1147 error (_("No enum type named %s."), name);
c906108c
SS
1148 }
1149 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1150 {
7ba81444
MS
1151 error (_("This context has class, struct or union %s, not an enum."),
1152 name);
c906108c
SS
1153 }
1154 return (SYMBOL_TYPE (sym));
1155}
1156
1157/* Lookup a template type named "template NAME<TYPE>",
1158 visible in lexical block BLOCK. */
1159
1160struct type *
7ba81444
MS
1161lookup_template_type (char *name, struct type *type,
1162 struct block *block)
c906108c
SS
1163{
1164 struct symbol *sym;
7ba81444
MS
1165 char *nam = (char *)
1166 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1167 strcpy (nam, name);
1168 strcat (nam, "<");
0004e5a2 1169 strcat (nam, TYPE_NAME (type));
7ba81444 1170 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1171
2570f2b7 1172 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1173
1174 if (sym == NULL)
1175 {
8a3fe4f8 1176 error (_("No template type named %s."), name);
c906108c
SS
1177 }
1178 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1179 {
7ba81444
MS
1180 error (_("This context has class, union or enum %s, not a struct."),
1181 name);
c906108c
SS
1182 }
1183 return (SYMBOL_TYPE (sym));
1184}
1185
7ba81444
MS
1186/* Given a type TYPE, lookup the type of the component of type named
1187 NAME.
c906108c 1188
7ba81444
MS
1189 TYPE can be either a struct or union, or a pointer or reference to
1190 a struct or union. If it is a pointer or reference, its target
1191 type is automatically used. Thus '.' and '->' are interchangable,
1192 as specified for the definitions of the expression element types
1193 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1194
1195 If NOERR is nonzero, return zero if NAME is not suitably defined.
1196 If NAME is the name of a baseclass type, return that type. */
1197
1198struct type *
fba45db2 1199lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1200{
1201 int i;
1202
1203 for (;;)
1204 {
1205 CHECK_TYPEDEF (type);
1206 if (TYPE_CODE (type) != TYPE_CODE_PTR
1207 && TYPE_CODE (type) != TYPE_CODE_REF)
1208 break;
1209 type = TYPE_TARGET_TYPE (type);
1210 }
1211
687d6395
MS
1212 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1213 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c
SS
1214 {
1215 target_terminal_ours ();
1216 gdb_flush (gdb_stdout);
1217 fprintf_unfiltered (gdb_stderr, "Type ");
1218 type_print (type, "", gdb_stderr, -1);
8a3fe4f8 1219 error (_(" is not a structure or union type."));
c906108c
SS
1220 }
1221
1222#if 0
7ba81444
MS
1223 /* FIXME: This change put in by Michael seems incorrect for the case
1224 where the structure tag name is the same as the member name.
1225 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1226 foo; } bell;" Disabled by fnf. */
c906108c
SS
1227 {
1228 char *typename;
1229
1230 typename = type_name_no_tag (type);
762f08a3 1231 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1232 return type;
1233 }
1234#endif
1235
1236 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1237 {
1238 char *t_field_name = TYPE_FIELD_NAME (type, i);
1239
db577aea 1240 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1241 {
1242 return TYPE_FIELD_TYPE (type, i);
1243 }
1244 }
1245
1246 /* OK, it's not in this class. Recursively check the baseclasses. */
1247 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1248 {
1249 struct type *t;
1250
9733fc94 1251 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1252 if (t != NULL)
1253 {
1254 return t;
1255 }
1256 }
1257
1258 if (noerr)
1259 {
1260 return NULL;
1261 }
c5aa993b 1262
c906108c
SS
1263 target_terminal_ours ();
1264 gdb_flush (gdb_stdout);
1265 fprintf_unfiltered (gdb_stderr, "Type ");
1266 type_print (type, "", gdb_stderr, -1);
1267 fprintf_unfiltered (gdb_stderr, " has no component named ");
1268 fputs_filtered (name, gdb_stderr);
8a3fe4f8 1269 error (("."));
c5aa993b 1270 return (struct type *) -1; /* For lint */
c906108c
SS
1271}
1272
81fe8080
DE
1273/* Lookup the vptr basetype/fieldno values for TYPE.
1274 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1275 vptr_fieldno. Also, if found and basetype is from the same objfile,
1276 cache the results.
1277 If not found, return -1 and ignore BASETYPEP.
1278 Callers should be aware that in some cases (for example,
c906108c 1279 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1280 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1281 this function will not be able to find the
7ba81444 1282 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1283 vptr_basetype will remain NULL or incomplete. */
c906108c 1284
81fe8080
DE
1285int
1286get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1287{
1288 CHECK_TYPEDEF (type);
1289
1290 if (TYPE_VPTR_FIELDNO (type) < 0)
1291 {
1292 int i;
1293
7ba81444
MS
1294 /* We must start at zero in case the first (and only) baseclass
1295 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1296 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1297 {
81fe8080
DE
1298 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1299 int fieldno;
1300 struct type *basetype;
1301
1302 fieldno = get_vptr_fieldno (baseclass, &basetype);
1303 if (fieldno >= 0)
c906108c 1304 {
81fe8080
DE
1305 /* If the type comes from a different objfile we can't cache
1306 it, it may have a different lifetime. PR 2384 */
5ef73790 1307 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1308 {
1309 TYPE_VPTR_FIELDNO (type) = fieldno;
1310 TYPE_VPTR_BASETYPE (type) = basetype;
1311 }
1312 if (basetypep)
1313 *basetypep = basetype;
1314 return fieldno;
c906108c
SS
1315 }
1316 }
81fe8080
DE
1317
1318 /* Not found. */
1319 return -1;
1320 }
1321 else
1322 {
1323 if (basetypep)
1324 *basetypep = TYPE_VPTR_BASETYPE (type);
1325 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1326 }
1327}
1328
44e1a9eb
DJ
1329static void
1330stub_noname_complaint (void)
1331{
e2e0b3e5 1332 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1333}
1334
c906108c
SS
1335/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1336
1337 If this is a stubbed struct (i.e. declared as struct foo *), see if
1338 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1339 definition, so we can use it in future. There used to be a comment
1340 (but not any code) that if we don't find a full definition, we'd
1341 set a flag so we don't spend time in the future checking the same
1342 type. That would be a mistake, though--we might load in more
1343 symbols which contain a full definition for the type.
c906108c 1344
7b83ea04 1345 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1346 often enough to merit such treatment. */
1347
7ba81444
MS
1348/* Find the real type of TYPE. This function returns the real type,
1349 after removing all layers of typedefs and completing opaque or stub
1350 types. Completion changes the TYPE argument, but stripping of
1351 typedefs does not. */
c906108c
SS
1352
1353struct type *
a02fd225 1354check_typedef (struct type *type)
c906108c
SS
1355{
1356 struct type *orig_type = type;
a02fd225
DJ
1357 int is_const, is_volatile;
1358
423c0af8
MS
1359 gdb_assert (type);
1360
c906108c
SS
1361 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1362 {
1363 if (!TYPE_TARGET_TYPE (type))
1364 {
c5aa993b 1365 char *name;
c906108c
SS
1366 struct symbol *sym;
1367
1368 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1369 reading a symtab. Infinite recursion is one danger. */
c906108c
SS
1370 if (currently_reading_symtab)
1371 return type;
1372
1373 name = type_name_no_tag (type);
7ba81444
MS
1374 /* FIXME: shouldn't we separately check the TYPE_NAME and
1375 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1376 VAR_DOMAIN as appropriate? (this code was written before
1377 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1378 if (name == NULL)
1379 {
23136709 1380 stub_noname_complaint ();
c906108c
SS
1381 return type;
1382 }
2570f2b7 1383 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1384 if (sym)
1385 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1386 else /* TYPE_CODE_UNDEF */
e9bb382b 1387 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1388 }
1389 type = TYPE_TARGET_TYPE (type);
1390 }
1391
a02fd225
DJ
1392 is_const = TYPE_CONST (type);
1393 is_volatile = TYPE_VOLATILE (type);
1394
7ba81444
MS
1395 /* If this is a struct/class/union with no fields, then check
1396 whether a full definition exists somewhere else. This is for
1397 systems where a type definition with no fields is issued for such
1398 types, instead of identifying them as stub types in the first
1399 place. */
c5aa993b 1400
7ba81444
MS
1401 if (TYPE_IS_OPAQUE (type)
1402 && opaque_type_resolution
1403 && !currently_reading_symtab)
c906108c 1404 {
c5aa993b
JM
1405 char *name = type_name_no_tag (type);
1406 struct type *newtype;
c906108c
SS
1407 if (name == NULL)
1408 {
23136709 1409 stub_noname_complaint ();
c906108c
SS
1410 return type;
1411 }
1412 newtype = lookup_transparent_type (name);
ad766c0a 1413
c906108c 1414 if (newtype)
ad766c0a 1415 {
7ba81444
MS
1416 /* If the resolved type and the stub are in the same
1417 objfile, then replace the stub type with the real deal.
1418 But if they're in separate objfiles, leave the stub
1419 alone; we'll just look up the transparent type every time
1420 we call check_typedef. We can't create pointers between
1421 types allocated to different objfiles, since they may
1422 have different lifetimes. Trying to copy NEWTYPE over to
1423 TYPE's objfile is pointless, too, since you'll have to
1424 move over any other types NEWTYPE refers to, which could
1425 be an unbounded amount of stuff. */
ad766c0a
JB
1426 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1427 make_cv_type (is_const, is_volatile, newtype, &type);
1428 else
1429 type = newtype;
1430 }
c906108c 1431 }
7ba81444
MS
1432 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1433 types. */
74a9bb82 1434 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1435 {
c5aa993b 1436 char *name = type_name_no_tag (type);
c906108c 1437 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1438 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1439 as appropriate? (this code was written before TYPE_NAME and
1440 TYPE_TAG_NAME were separate). */
c906108c
SS
1441 struct symbol *sym;
1442 if (name == NULL)
1443 {
23136709 1444 stub_noname_complaint ();
c906108c
SS
1445 return type;
1446 }
2570f2b7 1447 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1448 if (sym)
c26f2453
JB
1449 {
1450 /* Same as above for opaque types, we can replace the stub
1451 with the complete type only if they are int the same
1452 objfile. */
1453 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
7ba81444
MS
1454 make_cv_type (is_const, is_volatile,
1455 SYMBOL_TYPE (sym), &type);
c26f2453
JB
1456 else
1457 type = SYMBOL_TYPE (sym);
1458 }
c906108c
SS
1459 }
1460
74a9bb82 1461 if (TYPE_TARGET_STUB (type))
c906108c
SS
1462 {
1463 struct type *range_type;
1464 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1465
74a9bb82 1466 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1467 {
7ba81444 1468 /* Empty. */
c5aa993b 1469 }
c906108c
SS
1470 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1471 && TYPE_NFIELDS (type) == 1
262452ec 1472 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1473 == TYPE_CODE_RANGE))
1474 {
1475 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1476 number of elements and the target type's length.
1477 Watch out for Ada null Ada arrays where the high bound
1478 is smaller than the low bound. */
262452ec
JK
1479 const int low_bound = TYPE_LOW_BOUND (range_type);
1480 const int high_bound = TYPE_HIGH_BOUND (range_type);
ab0d6e0d
JB
1481 int nb_elements;
1482
1483 if (high_bound < low_bound)
1484 nb_elements = 0;
1485 else
1486 nb_elements = high_bound - low_bound + 1;
1487
1488 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
876cecd0 1489 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1490 }
1491 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1492 {
1493 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1494 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1495 }
1496 }
7ba81444 1497 /* Cache TYPE_LENGTH for future use. */
c906108c
SS
1498 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1499 return type;
1500}
1501
7ba81444 1502/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1503 occurs, silently return a void type. */
c91ecb25 1504
b9362cc7 1505static struct type *
48319d1f 1506safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1507{
1508 struct ui_file *saved_gdb_stderr;
1509 struct type *type;
1510
7ba81444 1511 /* Suppress error messages. */
c91ecb25
ND
1512 saved_gdb_stderr = gdb_stderr;
1513 gdb_stderr = ui_file_new ();
1514
7ba81444 1515 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1516 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1517 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1518
7ba81444 1519 /* Stop suppressing error messages. */
c91ecb25
ND
1520 ui_file_delete (gdb_stderr);
1521 gdb_stderr = saved_gdb_stderr;
1522
1523 return type;
1524}
1525
c906108c
SS
1526/* Ugly hack to convert method stubs into method types.
1527
7ba81444
MS
1528 He ain't kiddin'. This demangles the name of the method into a
1529 string including argument types, parses out each argument type,
1530 generates a string casting a zero to that type, evaluates the
1531 string, and stuffs the resulting type into an argtype vector!!!
1532 Then it knows the type of the whole function (including argument
1533 types for overloading), which info used to be in the stab's but was
1534 removed to hack back the space required for them. */
c906108c 1535
de17c821 1536static void
fba45db2 1537check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1538{
50810684 1539 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1540 struct fn_field *f;
1541 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1542 char *demangled_name = cplus_demangle (mangled_name,
1543 DMGL_PARAMS | DMGL_ANSI);
1544 char *argtypetext, *p;
1545 int depth = 0, argcount = 1;
ad2f7632 1546 struct field *argtypes;
c906108c
SS
1547 struct type *mtype;
1548
1549 /* Make sure we got back a function string that we can use. */
1550 if (demangled_name)
1551 p = strchr (demangled_name, '(');
502dcf4e
AC
1552 else
1553 p = NULL;
c906108c
SS
1554
1555 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1556 error (_("Internal: Cannot demangle mangled name `%s'."),
1557 mangled_name);
c906108c
SS
1558
1559 /* Now, read in the parameters that define this type. */
1560 p += 1;
1561 argtypetext = p;
1562 while (*p)
1563 {
070ad9f0 1564 if (*p == '(' || *p == '<')
c906108c
SS
1565 {
1566 depth += 1;
1567 }
070ad9f0 1568 else if (*p == ')' || *p == '>')
c906108c
SS
1569 {
1570 depth -= 1;
1571 }
1572 else if (*p == ',' && depth == 0)
1573 {
1574 argcount += 1;
1575 }
1576
1577 p += 1;
1578 }
1579
ad2f7632
DJ
1580 /* If we read one argument and it was ``void'', don't count it. */
1581 if (strncmp (argtypetext, "(void)", 6) == 0)
1582 argcount -= 1;
c906108c 1583
ad2f7632
DJ
1584 /* We need one extra slot, for the THIS pointer. */
1585
1586 argtypes = (struct field *)
1587 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1588 p = argtypetext;
4a1970e4
DJ
1589
1590 /* Add THIS pointer for non-static methods. */
1591 f = TYPE_FN_FIELDLIST1 (type, method_id);
1592 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1593 argcount = 0;
1594 else
1595 {
ad2f7632 1596 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1597 argcount = 1;
1598 }
c906108c 1599
c5aa993b 1600 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1601 {
1602 depth = 0;
1603 while (*p)
1604 {
1605 if (depth <= 0 && (*p == ',' || *p == ')'))
1606 {
ad2f7632
DJ
1607 /* Avoid parsing of ellipsis, they will be handled below.
1608 Also avoid ``void'' as above. */
1609 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1610 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1611 {
ad2f7632 1612 argtypes[argcount].type =
48319d1f 1613 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1614 argcount += 1;
1615 }
1616 argtypetext = p + 1;
1617 }
1618
070ad9f0 1619 if (*p == '(' || *p == '<')
c906108c
SS
1620 {
1621 depth += 1;
1622 }
070ad9f0 1623 else if (*p == ')' || *p == '>')
c906108c
SS
1624 {
1625 depth -= 1;
1626 }
1627
1628 p += 1;
1629 }
1630 }
1631
c906108c
SS
1632 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1633
1634 /* Now update the old "stub" type into a real type. */
1635 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1636 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1637 TYPE_FIELDS (mtype) = argtypes;
1638 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1639 TYPE_STUB (mtype) = 0;
c906108c 1640 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1641 if (p[-2] == '.')
876cecd0 1642 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1643
1644 xfree (demangled_name);
c906108c
SS
1645}
1646
7ba81444
MS
1647/* This is the external interface to check_stub_method, above. This
1648 function unstubs all of the signatures for TYPE's METHOD_ID method
1649 name. After calling this function TYPE_FN_FIELD_STUB will be
1650 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1651 correct.
de17c821
DJ
1652
1653 This function unfortunately can not die until stabs do. */
1654
1655void
1656check_stub_method_group (struct type *type, int method_id)
1657{
1658 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1659 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1660 int j, found_stub = 0;
de17c821
DJ
1661
1662 for (j = 0; j < len; j++)
1663 if (TYPE_FN_FIELD_STUB (f, j))
1664 {
1665 found_stub = 1;
1666 check_stub_method (type, method_id, j);
1667 }
1668
7ba81444
MS
1669 /* GNU v3 methods with incorrect names were corrected when we read
1670 in type information, because it was cheaper to do it then. The
1671 only GNU v2 methods with incorrect method names are operators and
1672 destructors; destructors were also corrected when we read in type
1673 information.
de17c821
DJ
1674
1675 Therefore the only thing we need to handle here are v2 operator
1676 names. */
1677 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1678 {
1679 int ret;
1680 char dem_opname[256];
1681
7ba81444
MS
1682 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1683 method_id),
de17c821
DJ
1684 dem_opname, DMGL_ANSI);
1685 if (!ret)
7ba81444
MS
1686 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1687 method_id),
de17c821
DJ
1688 dem_opname, 0);
1689 if (ret)
1690 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1691 }
1692}
1693
c906108c
SS
1694const struct cplus_struct_type cplus_struct_default;
1695
1696void
fba45db2 1697allocate_cplus_struct_type (struct type *type)
c906108c
SS
1698{
1699 if (!HAVE_CPLUS_STRUCT (type))
1700 {
1701 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1702 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1703 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1704 }
1705}
1706
1707/* Helper function to initialize the standard scalar types.
1708
e9bb382b
UW
1709 If NAME is non-NULL, then we make a copy of the string pointed
1710 to by name in the objfile_obstack for that objfile, and initialize
1711 the type name to that copy. There are places (mipsread.c in particular),
1712 where init_type is called with a NULL value for NAME). */
c906108c
SS
1713
1714struct type *
7ba81444
MS
1715init_type (enum type_code code, int length, int flags,
1716 char *name, struct objfile *objfile)
c906108c 1717{
52f0bd74 1718 struct type *type;
c906108c
SS
1719
1720 type = alloc_type (objfile);
1721 TYPE_CODE (type) = code;
1722 TYPE_LENGTH (type) = length;
876cecd0
TT
1723
1724 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1725 if (flags & TYPE_FLAG_UNSIGNED)
1726 TYPE_UNSIGNED (type) = 1;
1727 if (flags & TYPE_FLAG_NOSIGN)
1728 TYPE_NOSIGN (type) = 1;
1729 if (flags & TYPE_FLAG_STUB)
1730 TYPE_STUB (type) = 1;
1731 if (flags & TYPE_FLAG_TARGET_STUB)
1732 TYPE_TARGET_STUB (type) = 1;
1733 if (flags & TYPE_FLAG_STATIC)
1734 TYPE_STATIC (type) = 1;
1735 if (flags & TYPE_FLAG_PROTOTYPED)
1736 TYPE_PROTOTYPED (type) = 1;
1737 if (flags & TYPE_FLAG_INCOMPLETE)
1738 TYPE_INCOMPLETE (type) = 1;
1739 if (flags & TYPE_FLAG_VARARGS)
1740 TYPE_VARARGS (type) = 1;
1741 if (flags & TYPE_FLAG_VECTOR)
1742 TYPE_VECTOR (type) = 1;
1743 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1744 TYPE_STUB_SUPPORTED (type) = 1;
1745 if (flags & TYPE_FLAG_NOTTEXT)
1746 TYPE_NOTTEXT (type) = 1;
1747 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1748 TYPE_FIXED_INSTANCE (type) = 1;
1749
e9bb382b
UW
1750 if (name)
1751 TYPE_NAME (type) = obsavestring (name, strlen (name),
1752 &objfile->objfile_obstack);
c906108c
SS
1753
1754 /* C++ fancies. */
1755
973ccf8b 1756 if (name && strcmp (name, "char") == 0)
876cecd0 1757 TYPE_NOSIGN (type) = 1;
973ccf8b 1758
5c4e30ca
DC
1759 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1760 || code == TYPE_CODE_NAMESPACE)
c906108c
SS
1761 {
1762 INIT_CPLUS_SPECIFIC (type);
1763 }
c16abbde 1764 return type;
c906108c
SS
1765}
1766
c906108c 1767int
fba45db2 1768can_dereference (struct type *t)
c906108c 1769{
7ba81444
MS
1770 /* FIXME: Should we return true for references as well as
1771 pointers? */
c906108c
SS
1772 CHECK_TYPEDEF (t);
1773 return
1774 (t != NULL
1775 && TYPE_CODE (t) == TYPE_CODE_PTR
1776 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1777}
1778
adf40b2e 1779int
fba45db2 1780is_integral_type (struct type *t)
adf40b2e
JM
1781{
1782 CHECK_TYPEDEF (t);
1783 return
1784 ((t != NULL)
d4f3574e
SS
1785 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1786 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1787 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1788 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1789 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1790 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1791}
1792
7b83ea04 1793/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1794 Return 1 if so, and 0 if not.
1795 Note: callers may want to check for identity of the types before
1796 calling this function -- identical types are considered to satisfy
7ba81444 1797 the ancestor relationship even if they're identical. */
c906108c
SS
1798
1799int
fba45db2 1800is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1801{
1802 int i;
c5aa993b 1803
c906108c
SS
1804 CHECK_TYPEDEF (base);
1805 CHECK_TYPEDEF (dclass);
1806
1807 if (base == dclass)
1808 return 1;
687d6395
MS
1809 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1810 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
6b1ba9a0 1811 return 1;
c906108c
SS
1812
1813 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1814 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1815 return 1;
1816
1817 return 0;
1818}
c906108c
SS
1819\f
1820
c5aa993b 1821
c906108c
SS
1822/* Functions for overload resolution begin here */
1823
1824/* Compare two badness vectors A and B and return the result.
7ba81444
MS
1825 0 => A and B are identical
1826 1 => A and B are incomparable
1827 2 => A is better than B
1828 3 => A is worse than B */
c906108c
SS
1829
1830int
fba45db2 1831compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
1832{
1833 int i;
1834 int tmp;
c5aa993b
JM
1835 short found_pos = 0; /* any positives in c? */
1836 short found_neg = 0; /* any negatives in c? */
1837
1838 /* differing lengths => incomparable */
c906108c
SS
1839 if (a->length != b->length)
1840 return 1;
1841
c5aa993b
JM
1842 /* Subtract b from a */
1843 for (i = 0; i < a->length; i++)
c906108c
SS
1844 {
1845 tmp = a->rank[i] - b->rank[i];
1846 if (tmp > 0)
c5aa993b 1847 found_pos = 1;
c906108c 1848 else if (tmp < 0)
c5aa993b 1849 found_neg = 1;
c906108c
SS
1850 }
1851
1852 if (found_pos)
1853 {
1854 if (found_neg)
c5aa993b 1855 return 1; /* incomparable */
c906108c 1856 else
c5aa993b 1857 return 3; /* A > B */
c906108c 1858 }
c5aa993b
JM
1859 else
1860 /* no positives */
c906108c
SS
1861 {
1862 if (found_neg)
c5aa993b 1863 return 2; /* A < B */
c906108c 1864 else
c5aa993b 1865 return 0; /* A == B */
c906108c
SS
1866 }
1867}
1868
7ba81444
MS
1869/* Rank a function by comparing its parameter types (PARMS, length
1870 NPARMS), to the types of an argument list (ARGS, length NARGS).
1871 Return a pointer to a badness vector. This has NARGS + 1
1872 entries. */
c906108c
SS
1873
1874struct badness_vector *
7ba81444
MS
1875rank_function (struct type **parms, int nparms,
1876 struct type **args, int nargs)
c906108c
SS
1877{
1878 int i;
c5aa993b 1879 struct badness_vector *bv;
c906108c
SS
1880 int min_len = nparms < nargs ? nparms : nargs;
1881
1882 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 1883 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
1884 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1885
1886 /* First compare the lengths of the supplied lists.
7ba81444 1887 If there is a mismatch, set it to a high value. */
c5aa993b 1888
c906108c 1889 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
1890 arguments and ellipsis parameter lists, we should consider those
1891 and rank the length-match more finely. */
c906108c
SS
1892
1893 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1894
1895 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
1896 for (i = 1; i <= min_len; i++)
1897 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 1898
c5aa993b
JM
1899 /* If more arguments than parameters, add dummy entries */
1900 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
1901 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1902
1903 return bv;
1904}
1905
973ccf8b
DJ
1906/* Compare the names of two integer types, assuming that any sign
1907 qualifiers have been checked already. We do it this way because
1908 there may be an "int" in the name of one of the types. */
1909
1910static int
1911integer_types_same_name_p (const char *first, const char *second)
1912{
1913 int first_p, second_p;
1914
7ba81444
MS
1915 /* If both are shorts, return 1; if neither is a short, keep
1916 checking. */
973ccf8b
DJ
1917 first_p = (strstr (first, "short") != NULL);
1918 second_p = (strstr (second, "short") != NULL);
1919 if (first_p && second_p)
1920 return 1;
1921 if (first_p || second_p)
1922 return 0;
1923
1924 /* Likewise for long. */
1925 first_p = (strstr (first, "long") != NULL);
1926 second_p = (strstr (second, "long") != NULL);
1927 if (first_p && second_p)
1928 return 1;
1929 if (first_p || second_p)
1930 return 0;
1931
1932 /* Likewise for char. */
1933 first_p = (strstr (first, "char") != NULL);
1934 second_p = (strstr (second, "char") != NULL);
1935 if (first_p && second_p)
1936 return 1;
1937 if (first_p || second_p)
1938 return 0;
1939
1940 /* They must both be ints. */
1941 return 1;
1942}
1943
c906108c
SS
1944/* Compare one type (PARM) for compatibility with another (ARG).
1945 * PARM is intended to be the parameter type of a function; and
1946 * ARG is the supplied argument's type. This function tests if
1947 * the latter can be converted to the former.
1948 *
1949 * Return 0 if they are identical types;
1950 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
1951 * PARM is to ARG. The higher the return value, the worse the match.
1952 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c
SS
1953
1954int
fba45db2 1955rank_one_type (struct type *parm, struct type *arg)
c906108c 1956{
7ba81444 1957 /* Identical type pointers. */
c906108c 1958 /* However, this still doesn't catch all cases of same type for arg
7ba81444
MS
1959 and param. The reason is that builtin types are different from
1960 the same ones constructed from the object. */
c906108c
SS
1961 if (parm == arg)
1962 return 0;
1963
1964 /* Resolve typedefs */
1965 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
1966 parm = check_typedef (parm);
1967 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
1968 arg = check_typedef (arg);
1969
070ad9f0 1970 /*
7ba81444
MS
1971 Well, damnit, if the names are exactly the same, I'll say they
1972 are exactly the same. This happens when we generate method
1973 stubs. The types won't point to the same address, but they
070ad9f0
DB
1974 really are the same.
1975 */
1976
687d6395
MS
1977 if (TYPE_NAME (parm) && TYPE_NAME (arg)
1978 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
7ba81444 1979 return 0;
070ad9f0 1980
7ba81444 1981 /* Check if identical after resolving typedefs. */
c906108c
SS
1982 if (parm == arg)
1983 return 0;
1984
db577aea 1985 /* See through references, since we can almost make non-references
7ba81444 1986 references. */
db577aea 1987 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 1988 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
1989 + REFERENCE_CONVERSION_BADNESS);
1990 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 1991 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 1992 + REFERENCE_CONVERSION_BADNESS);
5d161b24 1993 if (overload_debug)
7ba81444
MS
1994 /* Debugging only. */
1995 fprintf_filtered (gdb_stderr,
1996 "------ Arg is %s [%d], parm is %s [%d]\n",
1997 TYPE_NAME (arg), TYPE_CODE (arg),
1998 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
1999
2000 /* x -> y means arg of type x being supplied for parameter of type y */
2001
2002 switch (TYPE_CODE (parm))
2003 {
c5aa993b
JM
2004 case TYPE_CODE_PTR:
2005 switch (TYPE_CODE (arg))
2006 {
2007 case TYPE_CODE_PTR:
66c53f2b
KS
2008 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2009 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
c5aa993b
JM
2010 return VOID_PTR_CONVERSION_BADNESS;
2011 else
7ba81444
MS
2012 return rank_one_type (TYPE_TARGET_TYPE (parm),
2013 TYPE_TARGET_TYPE (arg));
c5aa993b 2014 case TYPE_CODE_ARRAY:
7ba81444
MS
2015 return rank_one_type (TYPE_TARGET_TYPE (parm),
2016 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2017 case TYPE_CODE_FUNC:
2018 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2019 case TYPE_CODE_INT:
2020 case TYPE_CODE_ENUM:
4f2aea11 2021 case TYPE_CODE_FLAGS:
c5aa993b
JM
2022 case TYPE_CODE_CHAR:
2023 case TYPE_CODE_RANGE:
2024 case TYPE_CODE_BOOL:
2025 return POINTER_CONVERSION_BADNESS;
2026 default:
2027 return INCOMPATIBLE_TYPE_BADNESS;
2028 }
2029 case TYPE_CODE_ARRAY:
2030 switch (TYPE_CODE (arg))
2031 {
2032 case TYPE_CODE_PTR:
2033 case TYPE_CODE_ARRAY:
7ba81444
MS
2034 return rank_one_type (TYPE_TARGET_TYPE (parm),
2035 TYPE_TARGET_TYPE (arg));
c5aa993b
JM
2036 default:
2037 return INCOMPATIBLE_TYPE_BADNESS;
2038 }
2039 case TYPE_CODE_FUNC:
2040 switch (TYPE_CODE (arg))
2041 {
2042 case TYPE_CODE_PTR: /* funcptr -> func */
2043 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2044 default:
2045 return INCOMPATIBLE_TYPE_BADNESS;
2046 }
2047 case TYPE_CODE_INT:
2048 switch (TYPE_CODE (arg))
2049 {
2050 case TYPE_CODE_INT:
2051 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2052 {
2053 /* Deal with signed, unsigned, and plain chars and
7ba81444 2054 signed and unsigned ints. */
c5aa993b
JM
2055 if (TYPE_NOSIGN (parm))
2056 {
2057 /* This case only for character types */
7ba81444
MS
2058 if (TYPE_NOSIGN (arg))
2059 return 0; /* plain char -> plain char */
2060 else /* signed/unsigned char -> plain char */
2061 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2062 }
2063 else if (TYPE_UNSIGNED (parm))
2064 {
2065 if (TYPE_UNSIGNED (arg))
2066 {
7ba81444
MS
2067 /* unsigned int -> unsigned int, or
2068 unsigned long -> unsigned long */
2069 if (integer_types_same_name_p (TYPE_NAME (parm),
2070 TYPE_NAME (arg)))
973ccf8b 2071 return 0;
7ba81444
MS
2072 else if (integer_types_same_name_p (TYPE_NAME (arg),
2073 "int")
2074 && integer_types_same_name_p (TYPE_NAME (parm),
2075 "long"))
c5aa993b
JM
2076 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2077 else
1c5cb38e 2078 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
c5aa993b
JM
2079 }
2080 else
2081 {
7ba81444
MS
2082 if (integer_types_same_name_p (TYPE_NAME (arg),
2083 "long")
2084 && integer_types_same_name_p (TYPE_NAME (parm),
2085 "int"))
1c5cb38e 2086 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
c5aa993b
JM
2087 else
2088 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2089 }
2090 }
2091 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2092 {
7ba81444
MS
2093 if (integer_types_same_name_p (TYPE_NAME (parm),
2094 TYPE_NAME (arg)))
c5aa993b 2095 return 0;
7ba81444
MS
2096 else if (integer_types_same_name_p (TYPE_NAME (arg),
2097 "int")
2098 && integer_types_same_name_p (TYPE_NAME (parm),
2099 "long"))
c5aa993b
JM
2100 return INTEGER_PROMOTION_BADNESS;
2101 else
1c5cb38e 2102 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2103 }
2104 else
1c5cb38e 2105 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2106 }
2107 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2108 return INTEGER_PROMOTION_BADNESS;
2109 else
1c5cb38e 2110 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2111 case TYPE_CODE_ENUM:
4f2aea11 2112 case TYPE_CODE_FLAGS:
c5aa993b
JM
2113 case TYPE_CODE_CHAR:
2114 case TYPE_CODE_RANGE:
2115 case TYPE_CODE_BOOL:
2116 return INTEGER_PROMOTION_BADNESS;
2117 case TYPE_CODE_FLT:
2118 return INT_FLOAT_CONVERSION_BADNESS;
2119 case TYPE_CODE_PTR:
2120 return NS_POINTER_CONVERSION_BADNESS;
2121 default:
2122 return INCOMPATIBLE_TYPE_BADNESS;
2123 }
2124 break;
2125 case TYPE_CODE_ENUM:
2126 switch (TYPE_CODE (arg))
2127 {
2128 case TYPE_CODE_INT:
2129 case TYPE_CODE_CHAR:
2130 case TYPE_CODE_RANGE:
2131 case TYPE_CODE_BOOL:
2132 case TYPE_CODE_ENUM:
1c5cb38e 2133 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2134 case TYPE_CODE_FLT:
2135 return INT_FLOAT_CONVERSION_BADNESS;
2136 default:
2137 return INCOMPATIBLE_TYPE_BADNESS;
2138 }
2139 break;
2140 case TYPE_CODE_CHAR:
2141 switch (TYPE_CODE (arg))
2142 {
2143 case TYPE_CODE_RANGE:
2144 case TYPE_CODE_BOOL:
2145 case TYPE_CODE_ENUM:
1c5cb38e 2146 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2147 case TYPE_CODE_FLT:
2148 return INT_FLOAT_CONVERSION_BADNESS;
2149 case TYPE_CODE_INT:
2150 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2151 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2152 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2153 return INTEGER_PROMOTION_BADNESS;
2154 /* >>> !! else fall through !! <<< */
2155 case TYPE_CODE_CHAR:
7ba81444
MS
2156 /* Deal with signed, unsigned, and plain chars for C++ and
2157 with int cases falling through from previous case. */
c5aa993b
JM
2158 if (TYPE_NOSIGN (parm))
2159 {
2160 if (TYPE_NOSIGN (arg))
2161 return 0;
2162 else
1c5cb38e 2163 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2164 }
2165 else if (TYPE_UNSIGNED (parm))
2166 {
2167 if (TYPE_UNSIGNED (arg))
2168 return 0;
2169 else
2170 return INTEGER_PROMOTION_BADNESS;
2171 }
2172 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2173 return 0;
2174 else
1c5cb38e 2175 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2176 default:
2177 return INCOMPATIBLE_TYPE_BADNESS;
2178 }
2179 break;
2180 case TYPE_CODE_RANGE:
2181 switch (TYPE_CODE (arg))
2182 {
2183 case TYPE_CODE_INT:
2184 case TYPE_CODE_CHAR:
2185 case TYPE_CODE_RANGE:
2186 case TYPE_CODE_BOOL:
2187 case TYPE_CODE_ENUM:
1c5cb38e 2188 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2189 case TYPE_CODE_FLT:
2190 return INT_FLOAT_CONVERSION_BADNESS;
2191 default:
2192 return INCOMPATIBLE_TYPE_BADNESS;
2193 }
2194 break;
2195 case TYPE_CODE_BOOL:
2196 switch (TYPE_CODE (arg))
2197 {
2198 case TYPE_CODE_INT:
2199 case TYPE_CODE_CHAR:
2200 case TYPE_CODE_RANGE:
2201 case TYPE_CODE_ENUM:
2202 case TYPE_CODE_FLT:
2203 case TYPE_CODE_PTR:
2204 return BOOLEAN_CONVERSION_BADNESS;
2205 case TYPE_CODE_BOOL:
2206 return 0;
2207 default:
2208 return INCOMPATIBLE_TYPE_BADNESS;
2209 }
2210 break;
2211 case TYPE_CODE_FLT:
2212 switch (TYPE_CODE (arg))
2213 {
2214 case TYPE_CODE_FLT:
2215 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2216 return FLOAT_PROMOTION_BADNESS;
2217 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2218 return 0;
2219 else
2220 return FLOAT_CONVERSION_BADNESS;
2221 case TYPE_CODE_INT:
2222 case TYPE_CODE_BOOL:
2223 case TYPE_CODE_ENUM:
2224 case TYPE_CODE_RANGE:
2225 case TYPE_CODE_CHAR:
2226 return INT_FLOAT_CONVERSION_BADNESS;
2227 default:
2228 return INCOMPATIBLE_TYPE_BADNESS;
2229 }
2230 break;
2231 case TYPE_CODE_COMPLEX:
2232 switch (TYPE_CODE (arg))
7ba81444 2233 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2234 case TYPE_CODE_FLT:
2235 return FLOAT_PROMOTION_BADNESS;
2236 case TYPE_CODE_COMPLEX:
2237 return 0;
2238 default:
2239 return INCOMPATIBLE_TYPE_BADNESS;
2240 }
2241 break;
2242 case TYPE_CODE_STRUCT:
c906108c 2243 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2244 switch (TYPE_CODE (arg))
2245 {
2246 case TYPE_CODE_STRUCT:
2247 /* Check for derivation */
2248 if (is_ancestor (parm, arg))
2249 return BASE_CONVERSION_BADNESS;
2250 /* else fall through */
2251 default:
2252 return INCOMPATIBLE_TYPE_BADNESS;
2253 }
2254 break;
2255 case TYPE_CODE_UNION:
2256 switch (TYPE_CODE (arg))
2257 {
2258 case TYPE_CODE_UNION:
2259 default:
2260 return INCOMPATIBLE_TYPE_BADNESS;
2261 }
2262 break;
0d5de010 2263 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2264 switch (TYPE_CODE (arg))
2265 {
2266 default:
2267 return INCOMPATIBLE_TYPE_BADNESS;
2268 }
2269 break;
2270 case TYPE_CODE_METHOD:
2271 switch (TYPE_CODE (arg))
2272 {
2273
2274 default:
2275 return INCOMPATIBLE_TYPE_BADNESS;
2276 }
2277 break;
2278 case TYPE_CODE_REF:
2279 switch (TYPE_CODE (arg))
2280 {
2281
2282 default:
2283 return INCOMPATIBLE_TYPE_BADNESS;
2284 }
2285
2286 break;
2287 case TYPE_CODE_SET:
2288 switch (TYPE_CODE (arg))
2289 {
2290 /* Not in C++ */
2291 case TYPE_CODE_SET:
7ba81444
MS
2292 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2293 TYPE_FIELD_TYPE (arg, 0));
c5aa993b
JM
2294 default:
2295 return INCOMPATIBLE_TYPE_BADNESS;
2296 }
2297 break;
2298 case TYPE_CODE_VOID:
2299 default:
2300 return INCOMPATIBLE_TYPE_BADNESS;
2301 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2302}
2303
c5aa993b
JM
2304
2305/* End of functions for overload resolution */
c906108c 2306
c906108c 2307static void
fba45db2 2308print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2309{
2310 int bitno;
2311
2312 for (bitno = 0; bitno < nbits; bitno++)
2313 {
2314 if ((bitno % 8) == 0)
2315 {
2316 puts_filtered (" ");
2317 }
2318 if (B_TST (bits, bitno))
a3f17187 2319 printf_filtered (("1"));
c906108c 2320 else
a3f17187 2321 printf_filtered (("0"));
c906108c
SS
2322 }
2323}
2324
ad2f7632 2325/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2326 include it since we may get into a infinitely recursive
2327 situation. */
c906108c
SS
2328
2329static void
ad2f7632 2330print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2331{
2332 if (args != NULL)
2333 {
ad2f7632
DJ
2334 int i;
2335
2336 for (i = 0; i < nargs; i++)
2337 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2338 }
2339}
2340
d6a843b5
JK
2341int
2342field_is_static (struct field *f)
2343{
2344 /* "static" fields are the fields whose location is not relative
2345 to the address of the enclosing struct. It would be nice to
2346 have a dedicated flag that would be set for static fields when
2347 the type is being created. But in practice, checking the field
2348 loc_kind should give us an accurate answer (at least as long as
2349 we assume that DWARF block locations are not going to be used
2350 for static fields). FIXME? */
2351 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2352 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2353}
2354
c906108c 2355static void
fba45db2 2356dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2357{
2358 int method_idx;
2359 int overload_idx;
2360 struct fn_field *f;
2361
2362 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2363 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2364 printf_filtered ("\n");
2365 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2366 {
2367 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2368 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2369 method_idx,
2370 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2371 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2372 gdb_stdout);
a3f17187 2373 printf_filtered (_(") length %d\n"),
c906108c
SS
2374 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2375 for (overload_idx = 0;
2376 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2377 overload_idx++)
2378 {
2379 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2380 overload_idx,
2381 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2382 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2383 gdb_stdout);
c906108c
SS
2384 printf_filtered (")\n");
2385 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2386 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2387 gdb_stdout);
c906108c
SS
2388 printf_filtered ("\n");
2389
2390 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2391 spaces + 8 + 2);
2392
2393 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2394 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2395 gdb_stdout);
c906108c
SS
2396 printf_filtered ("\n");
2397
ad2f7632 2398 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2399 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2400 overload_idx)),
ad2f7632 2401 spaces);
c906108c 2402 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2403 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2404 gdb_stdout);
c906108c
SS
2405 printf_filtered ("\n");
2406
2407 printfi_filtered (spaces + 8, "is_const %d\n",
2408 TYPE_FN_FIELD_CONST (f, overload_idx));
2409 printfi_filtered (spaces + 8, "is_volatile %d\n",
2410 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2411 printfi_filtered (spaces + 8, "is_private %d\n",
2412 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2413 printfi_filtered (spaces + 8, "is_protected %d\n",
2414 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2415 printfi_filtered (spaces + 8, "is_stub %d\n",
2416 TYPE_FN_FIELD_STUB (f, overload_idx));
2417 printfi_filtered (spaces + 8, "voffset %u\n",
2418 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2419 }
2420 }
2421}
2422
2423static void
fba45db2 2424print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2425{
2426 printfi_filtered (spaces, "n_baseclasses %d\n",
2427 TYPE_N_BASECLASSES (type));
2428 printfi_filtered (spaces, "nfn_fields %d\n",
2429 TYPE_NFN_FIELDS (type));
2430 printfi_filtered (spaces, "nfn_fields_total %d\n",
2431 TYPE_NFN_FIELDS_TOTAL (type));
2432 if (TYPE_N_BASECLASSES (type) > 0)
2433 {
2434 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2435 TYPE_N_BASECLASSES (type));
7ba81444
MS
2436 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2437 gdb_stdout);
c906108c
SS
2438 printf_filtered (")");
2439
2440 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2441 TYPE_N_BASECLASSES (type));
2442 puts_filtered ("\n");
2443 }
2444 if (TYPE_NFIELDS (type) > 0)
2445 {
2446 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2447 {
7ba81444
MS
2448 printfi_filtered (spaces,
2449 "private_field_bits (%d bits at *",
c906108c 2450 TYPE_NFIELDS (type));
7ba81444
MS
2451 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2452 gdb_stdout);
c906108c
SS
2453 printf_filtered (")");
2454 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2455 TYPE_NFIELDS (type));
2456 puts_filtered ("\n");
2457 }
2458 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2459 {
7ba81444
MS
2460 printfi_filtered (spaces,
2461 "protected_field_bits (%d bits at *",
c906108c 2462 TYPE_NFIELDS (type));
7ba81444
MS
2463 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2464 gdb_stdout);
c906108c
SS
2465 printf_filtered (")");
2466 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2467 TYPE_NFIELDS (type));
2468 puts_filtered ("\n");
2469 }
2470 }
2471 if (TYPE_NFN_FIELDS (type) > 0)
2472 {
2473 dump_fn_fieldlists (type, spaces);
2474 }
2475}
2476
2477static struct obstack dont_print_type_obstack;
2478
2479void
fba45db2 2480recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2481{
2482 int idx;
2483
2484 if (spaces == 0)
2485 obstack_begin (&dont_print_type_obstack, 0);
2486
2487 if (TYPE_NFIELDS (type) > 0
2488 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2489 {
2490 struct type **first_dont_print
7ba81444 2491 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2492
7ba81444
MS
2493 int i = (struct type **)
2494 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2495
2496 while (--i >= 0)
2497 {
2498 if (type == first_dont_print[i])
2499 {
2500 printfi_filtered (spaces, "type node ");
d4f3574e 2501 gdb_print_host_address (type, gdb_stdout);
a3f17187 2502 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2503 return;
2504 }
2505 }
2506
2507 obstack_ptr_grow (&dont_print_type_obstack, type);
2508 }
2509
2510 printfi_filtered (spaces, "type node ");
d4f3574e 2511 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2512 printf_filtered ("\n");
2513 printfi_filtered (spaces, "name '%s' (",
2514 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2515 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2516 printf_filtered (")\n");
e9e79dd9
FF
2517 printfi_filtered (spaces, "tagname '%s' (",
2518 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2519 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2520 printf_filtered (")\n");
c906108c
SS
2521 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2522 switch (TYPE_CODE (type))
2523 {
c5aa993b
JM
2524 case TYPE_CODE_UNDEF:
2525 printf_filtered ("(TYPE_CODE_UNDEF)");
2526 break;
2527 case TYPE_CODE_PTR:
2528 printf_filtered ("(TYPE_CODE_PTR)");
2529 break;
2530 case TYPE_CODE_ARRAY:
2531 printf_filtered ("(TYPE_CODE_ARRAY)");
2532 break;
2533 case TYPE_CODE_STRUCT:
2534 printf_filtered ("(TYPE_CODE_STRUCT)");
2535 break;
2536 case TYPE_CODE_UNION:
2537 printf_filtered ("(TYPE_CODE_UNION)");
2538 break;
2539 case TYPE_CODE_ENUM:
2540 printf_filtered ("(TYPE_CODE_ENUM)");
2541 break;
4f2aea11
MK
2542 case TYPE_CODE_FLAGS:
2543 printf_filtered ("(TYPE_CODE_FLAGS)");
2544 break;
c5aa993b
JM
2545 case TYPE_CODE_FUNC:
2546 printf_filtered ("(TYPE_CODE_FUNC)");
2547 break;
2548 case TYPE_CODE_INT:
2549 printf_filtered ("(TYPE_CODE_INT)");
2550 break;
2551 case TYPE_CODE_FLT:
2552 printf_filtered ("(TYPE_CODE_FLT)");
2553 break;
2554 case TYPE_CODE_VOID:
2555 printf_filtered ("(TYPE_CODE_VOID)");
2556 break;
2557 case TYPE_CODE_SET:
2558 printf_filtered ("(TYPE_CODE_SET)");
2559 break;
2560 case TYPE_CODE_RANGE:
2561 printf_filtered ("(TYPE_CODE_RANGE)");
2562 break;
2563 case TYPE_CODE_STRING:
2564 printf_filtered ("(TYPE_CODE_STRING)");
2565 break;
e9e79dd9
FF
2566 case TYPE_CODE_BITSTRING:
2567 printf_filtered ("(TYPE_CODE_BITSTRING)");
2568 break;
c5aa993b
JM
2569 case TYPE_CODE_ERROR:
2570 printf_filtered ("(TYPE_CODE_ERROR)");
2571 break;
0d5de010
DJ
2572 case TYPE_CODE_MEMBERPTR:
2573 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2574 break;
2575 case TYPE_CODE_METHODPTR:
2576 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
2577 break;
2578 case TYPE_CODE_METHOD:
2579 printf_filtered ("(TYPE_CODE_METHOD)");
2580 break;
2581 case TYPE_CODE_REF:
2582 printf_filtered ("(TYPE_CODE_REF)");
2583 break;
2584 case TYPE_CODE_CHAR:
2585 printf_filtered ("(TYPE_CODE_CHAR)");
2586 break;
2587 case TYPE_CODE_BOOL:
2588 printf_filtered ("(TYPE_CODE_BOOL)");
2589 break;
e9e79dd9
FF
2590 case TYPE_CODE_COMPLEX:
2591 printf_filtered ("(TYPE_CODE_COMPLEX)");
2592 break;
c5aa993b
JM
2593 case TYPE_CODE_TYPEDEF:
2594 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2595 break;
e9e79dd9
FF
2596 case TYPE_CODE_TEMPLATE:
2597 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2598 break;
2599 case TYPE_CODE_TEMPLATE_ARG:
2600 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2601 break;
5c4e30ca
DC
2602 case TYPE_CODE_NAMESPACE:
2603 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2604 break;
c5aa993b
JM
2605 default:
2606 printf_filtered ("(UNKNOWN TYPE CODE)");
2607 break;
c906108c
SS
2608 }
2609 puts_filtered ("\n");
2610 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
2611 if (TYPE_OBJFILE_OWNED (type))
2612 {
2613 printfi_filtered (spaces, "objfile ");
2614 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2615 }
2616 else
2617 {
2618 printfi_filtered (spaces, "gdbarch ");
2619 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2620 }
c906108c
SS
2621 printf_filtered ("\n");
2622 printfi_filtered (spaces, "target_type ");
d4f3574e 2623 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
2624 printf_filtered ("\n");
2625 if (TYPE_TARGET_TYPE (type) != NULL)
2626 {
2627 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2628 }
2629 printfi_filtered (spaces, "pointer_type ");
d4f3574e 2630 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
2631 printf_filtered ("\n");
2632 printfi_filtered (spaces, "reference_type ");
d4f3574e 2633 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 2634 printf_filtered ("\n");
2fdde8f8
DJ
2635 printfi_filtered (spaces, "type_chain ");
2636 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 2637 printf_filtered ("\n");
7ba81444
MS
2638 printfi_filtered (spaces, "instance_flags 0x%x",
2639 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
2640 if (TYPE_CONST (type))
2641 {
2642 puts_filtered (" TYPE_FLAG_CONST");
2643 }
2644 if (TYPE_VOLATILE (type))
2645 {
2646 puts_filtered (" TYPE_FLAG_VOLATILE");
2647 }
2648 if (TYPE_CODE_SPACE (type))
2649 {
2650 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2651 }
2652 if (TYPE_DATA_SPACE (type))
2653 {
2654 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2655 }
8b2dbe47
KB
2656 if (TYPE_ADDRESS_CLASS_1 (type))
2657 {
2658 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2659 }
2660 if (TYPE_ADDRESS_CLASS_2 (type))
2661 {
2662 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2663 }
2fdde8f8 2664 puts_filtered ("\n");
876cecd0
TT
2665
2666 printfi_filtered (spaces, "flags");
762a036f 2667 if (TYPE_UNSIGNED (type))
c906108c
SS
2668 {
2669 puts_filtered (" TYPE_FLAG_UNSIGNED");
2670 }
762a036f
FF
2671 if (TYPE_NOSIGN (type))
2672 {
2673 puts_filtered (" TYPE_FLAG_NOSIGN");
2674 }
2675 if (TYPE_STUB (type))
c906108c
SS
2676 {
2677 puts_filtered (" TYPE_FLAG_STUB");
2678 }
762a036f
FF
2679 if (TYPE_TARGET_STUB (type))
2680 {
2681 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2682 }
2683 if (TYPE_STATIC (type))
2684 {
2685 puts_filtered (" TYPE_FLAG_STATIC");
2686 }
762a036f
FF
2687 if (TYPE_PROTOTYPED (type))
2688 {
2689 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2690 }
2691 if (TYPE_INCOMPLETE (type))
2692 {
2693 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2694 }
762a036f
FF
2695 if (TYPE_VARARGS (type))
2696 {
2697 puts_filtered (" TYPE_FLAG_VARARGS");
2698 }
f5f8a009
EZ
2699 /* This is used for things like AltiVec registers on ppc. Gcc emits
2700 an attribute for the array type, which tells whether or not we
2701 have a vector, instead of a regular array. */
2702 if (TYPE_VECTOR (type))
2703 {
2704 puts_filtered (" TYPE_FLAG_VECTOR");
2705 }
876cecd0
TT
2706 if (TYPE_FIXED_INSTANCE (type))
2707 {
2708 puts_filtered (" TYPE_FIXED_INSTANCE");
2709 }
2710 if (TYPE_STUB_SUPPORTED (type))
2711 {
2712 puts_filtered (" TYPE_STUB_SUPPORTED");
2713 }
2714 if (TYPE_NOTTEXT (type))
2715 {
2716 puts_filtered (" TYPE_NOTTEXT");
2717 }
c906108c
SS
2718 puts_filtered ("\n");
2719 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 2720 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
2721 puts_filtered ("\n");
2722 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2723 {
2724 printfi_filtered (spaces + 2,
2725 "[%d] bitpos %d bitsize %d type ",
2726 idx, TYPE_FIELD_BITPOS (type, idx),
2727 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 2728 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
2729 printf_filtered (" name '%s' (",
2730 TYPE_FIELD_NAME (type, idx) != NULL
2731 ? TYPE_FIELD_NAME (type, idx)
2732 : "<NULL>");
d4f3574e 2733 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
2734 printf_filtered (")\n");
2735 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2736 {
2737 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2738 }
2739 }
2740 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 2741 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
2742 puts_filtered ("\n");
2743 if (TYPE_VPTR_BASETYPE (type) != NULL)
2744 {
2745 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2746 }
7ba81444
MS
2747 printfi_filtered (spaces, "vptr_fieldno %d\n",
2748 TYPE_VPTR_FIELDNO (type));
c906108c
SS
2749 switch (TYPE_CODE (type))
2750 {
c5aa993b
JM
2751 case TYPE_CODE_STRUCT:
2752 printfi_filtered (spaces, "cplus_stuff ");
7ba81444
MS
2753 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2754 gdb_stdout);
c5aa993b
JM
2755 puts_filtered ("\n");
2756 print_cplus_stuff (type, spaces);
2757 break;
c906108c 2758
701c159d
AC
2759 case TYPE_CODE_FLT:
2760 printfi_filtered (spaces, "floatformat ");
8da61cc4 2761 if (TYPE_FLOATFORMAT (type) == NULL)
701c159d
AC
2762 puts_filtered ("(null)");
2763 else
8da61cc4
DJ
2764 {
2765 puts_filtered ("{ ");
2766 if (TYPE_FLOATFORMAT (type)[0] == NULL
2767 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2768 puts_filtered ("(null)");
2769 else
2770 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2771
2772 puts_filtered (", ");
2773 if (TYPE_FLOATFORMAT (type)[1] == NULL
2774 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2775 puts_filtered ("(null)");
2776 else
2777 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2778
2779 puts_filtered (" }");
2780 }
701c159d
AC
2781 puts_filtered ("\n");
2782 break;
2783
c5aa993b 2784 default:
7ba81444
MS
2785 /* We have to pick one of the union types to be able print and
2786 test the value. Pick cplus_struct_type, even though we know
2787 it isn't any particular one. */
c5aa993b 2788 printfi_filtered (spaces, "type_specific ");
d4f3574e 2789 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
2790 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2791 {
a3f17187 2792 printf_filtered (_(" (unknown data form)"));
c5aa993b
JM
2793 }
2794 printf_filtered ("\n");
2795 break;
c906108c
SS
2796
2797 }
2798 if (spaces == 0)
2799 obstack_free (&dont_print_type_obstack, NULL);
2800}
2801
ae5a43e0
DJ
2802/* Trivial helpers for the libiberty hash table, for mapping one
2803 type to another. */
2804
2805struct type_pair
2806{
2807 struct type *old, *new;
2808};
2809
2810static hashval_t
2811type_pair_hash (const void *item)
2812{
2813 const struct type_pair *pair = item;
2814 return htab_hash_pointer (pair->old);
2815}
2816
2817static int
2818type_pair_eq (const void *item_lhs, const void *item_rhs)
2819{
2820 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2821 return lhs->old == rhs->old;
2822}
2823
2824/* Allocate the hash table used by copy_type_recursive to walk
2825 types without duplicates. We use OBJFILE's obstack, because
2826 OBJFILE is about to be deleted. */
2827
2828htab_t
2829create_copied_types_hash (struct objfile *objfile)
2830{
2831 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2832 NULL, &objfile->objfile_obstack,
2833 hashtab_obstack_allocate,
2834 dummy_obstack_deallocate);
2835}
2836
7ba81444
MS
2837/* Recursively copy (deep copy) TYPE, if it is associated with
2838 OBJFILE. Return a new type allocated using malloc, a saved type if
2839 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2840 not associated with OBJFILE. */
ae5a43e0
DJ
2841
2842struct type *
7ba81444
MS
2843copy_type_recursive (struct objfile *objfile,
2844 struct type *type,
ae5a43e0
DJ
2845 htab_t copied_types)
2846{
2847 struct type_pair *stored, pair;
2848 void **slot;
2849 struct type *new_type;
2850
e9bb382b 2851 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
2852 return type;
2853
7ba81444
MS
2854 /* This type shouldn't be pointing to any types in other objfiles;
2855 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
2856 gdb_assert (TYPE_OBJFILE (type) == objfile);
2857
2858 pair.old = type;
2859 slot = htab_find_slot (copied_types, &pair, INSERT);
2860 if (*slot != NULL)
2861 return ((struct type_pair *) *slot)->new;
2862
e9bb382b 2863 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
2864
2865 /* We must add the new type to the hash table immediately, in case
2866 we encounter this type again during a recursive call below. */
d87ecdfb 2867 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
2868 stored->old = type;
2869 stored->new = new_type;
2870 *slot = stored;
2871
876cecd0
TT
2872 /* Copy the common fields of types. For the main type, we simply
2873 copy the entire thing and then update specific fields as needed. */
2874 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
2875 TYPE_OBJFILE_OWNED (new_type) = 0;
2876 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 2877
ae5a43e0
DJ
2878 if (TYPE_NAME (type))
2879 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2880 if (TYPE_TAG_NAME (type))
2881 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
2882
2883 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2884 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2885
2886 /* Copy the fields. */
ae5a43e0
DJ
2887 if (TYPE_NFIELDS (type))
2888 {
2889 int i, nfields;
2890
2891 nfields = TYPE_NFIELDS (type);
1deafd4e 2892 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
2893 for (i = 0; i < nfields; i++)
2894 {
7ba81444
MS
2895 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2896 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
2897 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2898 if (TYPE_FIELD_TYPE (type, i))
2899 TYPE_FIELD_TYPE (new_type, i)
2900 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2901 copied_types);
2902 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
2903 TYPE_FIELD_NAME (new_type, i) =
2904 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 2905 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 2906 {
d6a843b5
JK
2907 case FIELD_LOC_KIND_BITPOS:
2908 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2909 TYPE_FIELD_BITPOS (type, i));
2910 break;
2911 case FIELD_LOC_KIND_PHYSADDR:
2912 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2913 TYPE_FIELD_STATIC_PHYSADDR (type, i));
2914 break;
2915 case FIELD_LOC_KIND_PHYSNAME:
2916 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2917 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2918 i)));
2919 break;
2920 default:
2921 internal_error (__FILE__, __LINE__,
2922 _("Unexpected type field location kind: %d"),
2923 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
2924 }
2925 }
2926 }
2927
2928 /* Copy pointers to other types. */
2929 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
2930 TYPE_TARGET_TYPE (new_type) =
2931 copy_type_recursive (objfile,
2932 TYPE_TARGET_TYPE (type),
2933 copied_types);
ae5a43e0 2934 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
2935 TYPE_VPTR_BASETYPE (new_type) =
2936 copy_type_recursive (objfile,
2937 TYPE_VPTR_BASETYPE (type),
2938 copied_types);
ae5a43e0
DJ
2939 /* Maybe copy the type_specific bits.
2940
2941 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
2942 base classes and methods. There's no fundamental reason why we
2943 can't, but at the moment it is not needed. */
2944
2945 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 2946 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
2947 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2948 || TYPE_CODE (type) == TYPE_CODE_UNION
2949 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
2950 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
2951 INIT_CPLUS_SPECIFIC (new_type);
2952
2953 return new_type;
2954}
2955
4af88198
JB
2956/* Make a copy of the given TYPE, except that the pointer & reference
2957 types are not preserved.
2958
2959 This function assumes that the given type has an associated objfile.
2960 This objfile is used to allocate the new type. */
2961
2962struct type *
2963copy_type (const struct type *type)
2964{
2965 struct type *new_type;
2966
e9bb382b 2967 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 2968
e9bb382b 2969 new_type = alloc_type_copy (type);
4af88198
JB
2970 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2971 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2972 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
2973 sizeof (struct main_type));
2974
2975 return new_type;
2976}
2977
e9bb382b
UW
2978
2979/* Helper functions to initialize architecture-specific types. */
2980
2981/* Allocate a type structure associated with GDBARCH and set its
2982 CODE, LENGTH, and NAME fields. */
2983struct type *
2984arch_type (struct gdbarch *gdbarch,
2985 enum type_code code, int length, char *name)
2986{
2987 struct type *type;
2988
2989 type = alloc_type_arch (gdbarch);
2990 TYPE_CODE (type) = code;
2991 TYPE_LENGTH (type) = length;
2992
2993 if (name)
2994 TYPE_NAME (type) = xstrdup (name);
2995
2996 return type;
2997}
2998
2999/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3000 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3001 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3002struct type *
3003arch_integer_type (struct gdbarch *gdbarch,
3004 int bit, int unsigned_p, char *name)
3005{
3006 struct type *t;
3007
3008 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3009 if (unsigned_p)
3010 TYPE_UNSIGNED (t) = 1;
3011 if (name && strcmp (name, "char") == 0)
3012 TYPE_NOSIGN (t) = 1;
3013
3014 return t;
3015}
3016
3017/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3018 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3019 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3020struct type *
3021arch_character_type (struct gdbarch *gdbarch,
3022 int bit, int unsigned_p, char *name)
3023{
3024 struct type *t;
3025
3026 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3027 if (unsigned_p)
3028 TYPE_UNSIGNED (t) = 1;
3029
3030 return t;
3031}
3032
3033/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3034 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3035 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3036struct type *
3037arch_boolean_type (struct gdbarch *gdbarch,
3038 int bit, int unsigned_p, char *name)
3039{
3040 struct type *t;
3041
3042 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3043 if (unsigned_p)
3044 TYPE_UNSIGNED (t) = 1;
3045
3046 return t;
3047}
3048
3049/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3050 BIT is the type size in bits; if BIT equals -1, the size is
3051 determined by the floatformat. NAME is the type name. Set the
3052 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3053struct type *
e9bb382b
UW
3054arch_float_type (struct gdbarch *gdbarch,
3055 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3056{
3057 struct type *t;
3058
3059 if (bit == -1)
3060 {
3061 gdb_assert (floatformats != NULL);
3062 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3063 bit = floatformats[0]->totalsize;
3064 }
3065 gdb_assert (bit >= 0);
3066
e9bb382b 3067 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3068 TYPE_FLOATFORMAT (t) = floatformats;
3069 return t;
3070}
3071
e9bb382b
UW
3072/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3073 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3074struct type *
e9bb382b
UW
3075arch_complex_type (struct gdbarch *gdbarch,
3076 char *name, struct type *target_type)
27067745
UW
3077{
3078 struct type *t;
e9bb382b
UW
3079 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3080 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3081 TYPE_TARGET_TYPE (t) = target_type;
3082 return t;
3083}
3084
e9bb382b
UW
3085/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3086 NAME is the type name. LENGTH is the number of flag bits. */
3087struct type *
3088arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3089{
3090 int nfields = length * TARGET_CHAR_BIT;
3091 struct type *type;
3092
3093 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3094 TYPE_UNSIGNED (type) = 1;
3095 TYPE_NFIELDS (type) = nfields;
3096 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3097
3098 return type;
3099}
3100
3101/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3102 position BITPOS is called NAME. */
3103void
3104append_flags_type_flag (struct type *type, int bitpos, char *name)
3105{
3106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3107 gdb_assert (bitpos < TYPE_NFIELDS (type));
3108 gdb_assert (bitpos >= 0);
3109
3110 if (name)
3111 {
3112 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3113 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3114 }
3115 else
3116 {
3117 /* Don't show this field to the user. */
3118 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3119 }
3120}
3121
3122/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3123 specified by CODE) associated with GDBARCH. NAME is the type name. */
3124struct type *
3125arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3126{
3127 struct type *t;
3128 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3129 t = arch_type (gdbarch, code, 0, NULL);
3130 TYPE_TAG_NAME (t) = name;
3131 INIT_CPLUS_SPECIFIC (t);
3132 return t;
3133}
3134
3135/* Add new field with name NAME and type FIELD to composite type T.
3136 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3137void
3138append_composite_type_field_aligned (struct type *t, char *name,
3139 struct type *field, int alignment)
3140{
3141 struct field *f;
3142 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3143 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3144 sizeof (struct field) * TYPE_NFIELDS (t));
3145 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3146 memset (f, 0, sizeof f[0]);
3147 FIELD_TYPE (f[0]) = field;
3148 FIELD_NAME (f[0]) = name;
3149 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3150 {
3151 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3152 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3153 }
3154 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3155 {
3156 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3157 if (TYPE_NFIELDS (t) > 1)
3158 {
3159 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3160 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3161 * TARGET_CHAR_BIT));
3162
3163 if (alignment)
3164 {
3165 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3166 if (left)
3167 {
3168 FIELD_BITPOS (f[0]) += left;
3169 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3170 }
3171 }
3172 }
3173 }
3174}
3175
3176/* Add new field with name NAME and type FIELD to composite type T. */
3177void
3178append_composite_type_field (struct type *t, char *name,
3179 struct type *field)
3180{
3181 append_composite_type_field_aligned (t, name, field, 0);
3182}
3183
3184
000177f0
AC
3185static struct gdbarch_data *gdbtypes_data;
3186
3187const struct builtin_type *
3188builtin_type (struct gdbarch *gdbarch)
3189{
3190 return gdbarch_data (gdbarch, gdbtypes_data);
3191}
3192
3193static void *
3194gdbtypes_post_init (struct gdbarch *gdbarch)
3195{
3196 struct builtin_type *builtin_type
3197 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3198
46bf5051 3199 /* Basic types. */
e9bb382b
UW
3200 builtin_type->builtin_void
3201 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3202 builtin_type->builtin_char
3203 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3204 !gdbarch_char_signed (gdbarch), "char");
3205 builtin_type->builtin_signed_char
3206 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3207 0, "signed char");
3208 builtin_type->builtin_unsigned_char
3209 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3210 1, "unsigned char");
3211 builtin_type->builtin_short
3212 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3213 0, "short");
3214 builtin_type->builtin_unsigned_short
3215 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3216 1, "unsigned short");
3217 builtin_type->builtin_int
3218 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3219 0, "int");
3220 builtin_type->builtin_unsigned_int
3221 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3222 1, "unsigned int");
3223 builtin_type->builtin_long
3224 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3225 0, "long");
3226 builtin_type->builtin_unsigned_long
3227 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3228 1, "unsigned long");
3229 builtin_type->builtin_long_long
3230 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3231 0, "long long");
3232 builtin_type->builtin_unsigned_long_long
3233 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3234 1, "unsigned long long");
70bd8e24 3235 builtin_type->builtin_float
e9bb382b 3236 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3237 "float", gdbarch_float_format (gdbarch));
70bd8e24 3238 builtin_type->builtin_double
e9bb382b 3239 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3240 "double", gdbarch_double_format (gdbarch));
70bd8e24 3241 builtin_type->builtin_long_double
e9bb382b 3242 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3243 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3244 builtin_type->builtin_complex
e9bb382b
UW
3245 = arch_complex_type (gdbarch, "complex",
3246 builtin_type->builtin_float);
70bd8e24 3247 builtin_type->builtin_double_complex
e9bb382b
UW
3248 = arch_complex_type (gdbarch, "double complex",
3249 builtin_type->builtin_double);
3250 builtin_type->builtin_string
3251 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3252 builtin_type->builtin_bool
3253 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3254
7678ef8f
TJB
3255 /* The following three are about decimal floating point types, which
3256 are 32-bits, 64-bits and 128-bits respectively. */
3257 builtin_type->builtin_decfloat
e9bb382b 3258 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3259 builtin_type->builtin_decdouble
e9bb382b 3260 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3261 builtin_type->builtin_declong
e9bb382b 3262 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3263
69feb676 3264 /* "True" character types. */
e9bb382b
UW
3265 builtin_type->builtin_true_char
3266 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3267 builtin_type->builtin_true_unsigned_char
3268 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3269
df4df182 3270 /* Fixed-size integer types. */
e9bb382b
UW
3271 builtin_type->builtin_int0
3272 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3273 builtin_type->builtin_int8
3274 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3275 builtin_type->builtin_uint8
3276 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3277 builtin_type->builtin_int16
3278 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3279 builtin_type->builtin_uint16
3280 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3281 builtin_type->builtin_int32
3282 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3283 builtin_type->builtin_uint32
3284 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3285 builtin_type->builtin_int64
3286 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3287 builtin_type->builtin_uint64
3288 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3289 builtin_type->builtin_int128
3290 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3291 builtin_type->builtin_uint128
3292 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3293 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3294 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
df4df182 3295
46bf5051 3296 /* Default data/code pointer types. */
e9bb382b
UW
3297 builtin_type->builtin_data_ptr
3298 = lookup_pointer_type (builtin_type->builtin_void);
3299 builtin_type->builtin_func_ptr
3300 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
46bf5051 3301
78267919 3302 /* This type represents a GDB internal function. */
e9bb382b
UW
3303 builtin_type->internal_fn
3304 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3305 "<internal function>");
78267919 3306
46bf5051
UW
3307 return builtin_type;
3308}
3309
3310
3311/* This set of objfile-based types is intended to be used by symbol
3312 readers as basic types. */
3313
3314static const struct objfile_data *objfile_type_data;
3315
3316const struct objfile_type *
3317objfile_type (struct objfile *objfile)
3318{
3319 struct gdbarch *gdbarch;
3320 struct objfile_type *objfile_type
3321 = objfile_data (objfile, objfile_type_data);
3322
3323 if (objfile_type)
3324 return objfile_type;
3325
3326 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3327 1, struct objfile_type);
3328
3329 /* Use the objfile architecture to determine basic type properties. */
3330 gdbarch = get_objfile_arch (objfile);
3331
3332 /* Basic types. */
3333 objfile_type->builtin_void
3334 = init_type (TYPE_CODE_VOID, 1,
3335 0,
3336 "void", objfile);
3337
3338 objfile_type->builtin_char
3339 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3340 (TYPE_FLAG_NOSIGN
3341 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3342 "char", objfile);
3343 objfile_type->builtin_signed_char
3344 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3345 0,
3346 "signed char", objfile);
3347 objfile_type->builtin_unsigned_char
3348 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3349 TYPE_FLAG_UNSIGNED,
3350 "unsigned char", objfile);
3351 objfile_type->builtin_short
3352 = init_type (TYPE_CODE_INT,
3353 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3354 0, "short", objfile);
3355 objfile_type->builtin_unsigned_short
3356 = init_type (TYPE_CODE_INT,
3357 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3358 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3359 objfile_type->builtin_int
3360 = init_type (TYPE_CODE_INT,
3361 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3362 0, "int", objfile);
3363 objfile_type->builtin_unsigned_int
3364 = init_type (TYPE_CODE_INT,
3365 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3366 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3367 objfile_type->builtin_long
3368 = init_type (TYPE_CODE_INT,
3369 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3370 0, "long", objfile);
3371 objfile_type->builtin_unsigned_long
3372 = init_type (TYPE_CODE_INT,
3373 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3374 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3375 objfile_type->builtin_long_long
3376 = init_type (TYPE_CODE_INT,
3377 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3378 0, "long long", objfile);
3379 objfile_type->builtin_unsigned_long_long
3380 = init_type (TYPE_CODE_INT,
3381 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3382 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3383
3384 objfile_type->builtin_float
3385 = init_type (TYPE_CODE_FLT,
3386 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3387 0, "float", objfile);
3388 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3389 = gdbarch_float_format (gdbarch);
3390 objfile_type->builtin_double
3391 = init_type (TYPE_CODE_FLT,
3392 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3393 0, "double", objfile);
3394 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3395 = gdbarch_double_format (gdbarch);
3396 objfile_type->builtin_long_double
3397 = init_type (TYPE_CODE_FLT,
3398 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3399 0, "long double", objfile);
3400 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3401 = gdbarch_long_double_format (gdbarch);
3402
3403 /* This type represents a type that was unrecognized in symbol read-in. */
3404 objfile_type->builtin_error
3405 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3406
3407 /* The following set of types is used for symbols with no
3408 debug information. */
3409 objfile_type->nodebug_text_symbol
3410 = init_type (TYPE_CODE_FUNC, 1, 0,
3411 "<text variable, no debug info>", objfile);
3412 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3413 = objfile_type->builtin_int;
3414 objfile_type->nodebug_data_symbol
3415 = init_type (TYPE_CODE_INT,
3416 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3417 "<data variable, no debug info>", objfile);
3418 objfile_type->nodebug_unknown_symbol
3419 = init_type (TYPE_CODE_INT, 1, 0,
3420 "<variable (not text or data), no debug info>", objfile);
3421 objfile_type->nodebug_tls_symbol
3422 = init_type (TYPE_CODE_INT,
3423 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3424 "<thread local variable, no debug info>", objfile);
000177f0
AC
3425
3426 /* NOTE: on some targets, addresses and pointers are not necessarily
3427 the same --- for example, on the D10V, pointers are 16 bits long,
3428 but addresses are 32 bits long. See doc/gdbint.texinfo,
3429 ``Pointers Are Not Always Addresses''.
3430
3431 The upshot is:
3432 - gdb's `struct type' always describes the target's
3433 representation.
3434 - gdb's `struct value' objects should always hold values in
3435 target form.
3436 - gdb's CORE_ADDR values are addresses in the unified virtual
3437 address space that the assembler and linker work with. Thus,
3438 since target_read_memory takes a CORE_ADDR as an argument, it
3439 can access any memory on the target, even if the processor has
3440 separate code and data address spaces.
3441
3442 So, for example:
3443 - If v is a value holding a D10V code pointer, its contents are
3444 in target form: a big-endian address left-shifted two bits.
3445 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3446 sizeof (void *) == 2 on the target.
3447
46bf5051
UW
3448 In this context, objfile_type->builtin_core_addr is a bit odd:
3449 it's a target type for a value the target will never see. It's
3450 only used to hold the values of (typeless) linker symbols, which
3451 are indeed in the unified virtual address space. */
000177f0 3452
46bf5051
UW
3453 objfile_type->builtin_core_addr
3454 = init_type (TYPE_CODE_INT,
3455 gdbarch_addr_bit (gdbarch) / 8,
3456 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3457
46bf5051
UW
3458 set_objfile_data (objfile, objfile_type_data, objfile_type);
3459 return objfile_type;
000177f0
AC
3460}
3461
46bf5051 3462
a14ed312 3463extern void _initialize_gdbtypes (void);
c906108c 3464void
fba45db2 3465_initialize_gdbtypes (void)
c906108c 3466{
5674de60 3467 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 3468 objfile_type_data = register_objfile_data ();
5674de60 3469
85c07804
AC
3470 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3471Set debugging of C++ overloading."), _("\
3472Show debugging of C++ overloading."), _("\
3473When enabled, ranking of the functions is displayed."),
3474 NULL,
920d2a44 3475 show_overload_debug,
85c07804 3476 &setdebuglist, &showdebuglist);
5674de60 3477
7ba81444 3478 /* Add user knob for controlling resolution of opaque types. */
5674de60
UW
3479 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3480 &opaque_type_resolution, _("\
3481Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3482Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3483 NULL,
3484 show_opaque_type_resolution,
3485 &setlist, &showlist);
c906108c 3486}