]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
PR25675: SIGSEGV in bfd_octets_per_byte
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 63const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 64const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 65const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 66const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 67
8da61cc4 68/* Floatformat pairs. */
f9e9243a
UW
69const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72};
8da61cc4
DJ
73const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76};
77const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80};
81const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84};
85const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88};
89const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92};
93const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96};
97const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100};
101const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104};
105const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108};
109const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112};
b14d30e1 113const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
b14d30e1 116};
8da61cc4 117
2873700e
KS
118/* Should opaque types be resolved? */
119
491144b5 120static bool opaque_type_resolution = true;
2873700e 121
79bb1944 122/* See gdbtypes.h. */
2873700e
KS
123
124unsigned int overload_debug = 0;
125
a451cb65
KS
126/* A flag to enable strict type checking. */
127
491144b5 128static bool strict_type_checking = true;
a451cb65 129
2873700e 130/* A function to show whether opaque types are resolved. */
5212577a 131
920d2a44
AC
132static void
133show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
134 struct cmd_list_element *c,
135 const char *value)
920d2a44 136{
3e43a32a
MS
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
139 value);
140}
141
2873700e 142/* A function to show whether C++ overload debugging is enabled. */
5212577a 143
920d2a44
AC
144static void
145show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
7ba81444
MS
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
920d2a44 150}
c906108c 151
a451cb65
KS
152/* A function to show the status of strict type checking. */
153
154static void
155show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159}
160
5212577a 161\f
e9bb382b
UW
162/* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
c906108c
SS
165
166struct type *
fba45db2 167alloc_type (struct objfile *objfile)
c906108c 168{
52f0bd74 169 struct type *type;
c906108c 170
e9bb382b
UW
171 gdb_assert (objfile != NULL);
172
7ba81444 173 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
c906108c 178
e9bb382b
UW
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
c906108c 181
7ba81444 182 /* Initialize the fields that might not be zero. */
c906108c
SS
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 186
c16abbde 187 return type;
c906108c
SS
188}
189
e9bb382b
UW
190/* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
8f57eec2 192 on the obstack associated with GDBARCH. */
e9bb382b
UW
193
194struct type *
195alloc_type_arch (struct gdbarch *gdbarch)
196{
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
8f57eec2
PP
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
2fabdf33
AB
236 struct gdbarch *arch;
237
e9bb382b 238 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 240 else
2fabdf33
AB
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
e9bb382b
UW
249}
250
99ad9427
YQ
251/* See gdbtypes.h. */
252
253struct type *
254get_target_type (struct type *type)
255{
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264}
265
2e056931
SM
266/* See gdbtypes.h. */
267
268unsigned int
269type_length_units (struct type *type)
270{
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275}
276
2fdde8f8
DJ
277/* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281static struct type *
282alloc_type_instance (struct type *oldtype)
283{
284 struct type *type;
285
286 /* Allocate the structure. */
287
e9bb382b 288 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 290 else
1deafd4e
PA
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
2fdde8f8
DJ
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
c16abbde 298 return type;
2fdde8f8
DJ
299}
300
301/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 302 replacing it with something else. Preserve owner information. */
5212577a 303
2fdde8f8
DJ
304static void
305smash_type (struct type *type)
306{
e9bb382b
UW
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
2fdde8f8
DJ
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
e9bb382b
UW
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
2fdde8f8
DJ
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320}
321
c906108c
SS
322/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327struct type *
fba45db2 328make_pointer_type (struct type *type, struct type **typeptr)
c906108c 329{
52f0bd74 330 struct type *ntype; /* New type */
053cb41b 331 struct type *chain;
c906108c
SS
332
333 ntype = TYPE_POINTER_TYPE (type);
334
c5aa993b 335 if (ntype)
c906108c 336 {
c5aa993b 337 if (typeptr == 0)
7ba81444
MS
338 return ntype; /* Don't care about alloc,
339 and have new type. */
c906108c 340 else if (*typeptr == 0)
c5aa993b 341 {
7ba81444 342 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 343 return ntype;
c5aa993b 344 }
c906108c
SS
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
e9bb382b 349 ntype = alloc_type_copy (type);
c906108c
SS
350 if (typeptr)
351 *typeptr = ntype;
352 }
7ba81444 353 else /* We have storage, but need to reset it. */
c906108c
SS
354 {
355 ntype = *typeptr;
053cb41b 356 chain = TYPE_CHAIN (ntype);
2fdde8f8 357 smash_type (ntype);
053cb41b 358 TYPE_CHAIN (ntype) = chain;
c906108c
SS
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
5212577a 364 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 365
50810684
UW
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
67b2adb2 370 /* Mark pointers as unsigned. The target converts between pointers
76e71323 371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 372 gdbarch_address_to_pointer. */
876cecd0 373 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 374
053cb41b
JB
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
c906108c
SS
383 return ntype;
384}
385
386/* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_pointer_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
393}
394
7ba81444
MS
395/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
400
401struct type *
3b224330
AV
402make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
c906108c 404{
52f0bd74 405 struct type *ntype; /* New type */
3b224330 406 struct type **reftype;
1e98b326 407 struct type *chain;
c906108c 408
3b224330
AV
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 413
c5aa993b 414 if (ntype)
c906108c 415 {
c5aa993b 416 if (typeptr == 0)
7ba81444
MS
417 return ntype; /* Don't care about alloc,
418 and have new type. */
c906108c 419 else if (*typeptr == 0)
c5aa993b 420 {
7ba81444 421 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 422 return ntype;
c5aa993b 423 }
c906108c
SS
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
e9bb382b 428 ntype = alloc_type_copy (type);
c906108c
SS
429 if (typeptr)
430 *typeptr = ntype;
431 }
7ba81444 432 else /* We have storage, but need to reset it. */
c906108c
SS
433 {
434 ntype = *typeptr;
1e98b326 435 chain = TYPE_CHAIN (ntype);
2fdde8f8 436 smash_type (ntype);
1e98b326 437 TYPE_CHAIN (ntype) = chain;
c906108c
SS
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
c906108c 445
7ba81444
MS
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
c906108c 449
50810684
UW
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 452 TYPE_CODE (ntype) = refcode;
c5aa993b 453
3b224330 454 *reftype = ntype;
c906108c 455
1e98b326
JB
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
c906108c
SS
464 return ntype;
465}
466
7ba81444
MS
467/* Same as above, but caller doesn't care about memory allocation
468 details. */
c906108c
SS
469
470struct type *
3b224330
AV
471lookup_reference_type (struct type *type, enum type_code refcode)
472{
473 return make_reference_type (type, (struct type **) 0, refcode);
474}
475
476/* Lookup the lvalue reference type for the type TYPE. */
477
478struct type *
479lookup_lvalue_reference_type (struct type *type)
480{
481 return lookup_reference_type (type, TYPE_CODE_REF);
482}
483
484/* Lookup the rvalue reference type for the type TYPE. */
485
486struct type *
487lookup_rvalue_reference_type (struct type *type)
c906108c 488{
3b224330 489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
490}
491
7ba81444
MS
492/* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 495 function type we return. We allocate new memory if needed. */
c906108c
SS
496
497struct type *
0c8b41f1 498make_function_type (struct type *type, struct type **typeptr)
c906108c 499{
52f0bd74 500 struct type *ntype; /* New type */
c906108c
SS
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
e9bb382b 504 ntype = alloc_type_copy (type);
c906108c
SS
505 if (typeptr)
506 *typeptr = ntype;
507 }
7ba81444 508 else /* We have storage, but need to reset it. */
c906108c
SS
509 {
510 ntype = *typeptr;
2fdde8f8 511 smash_type (ntype);
c906108c
SS
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 518
b6cdc2c1
JK
519 INIT_FUNC_SPECIFIC (ntype);
520
c906108c
SS
521 return ntype;
522}
523
c906108c
SS
524/* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527struct type *
fba45db2 528lookup_function_type (struct type *type)
c906108c 529{
0c8b41f1 530 return make_function_type (type, (struct type **) 0);
c906108c
SS
531}
532
71918a86 533/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
71918a86
TT
536
537struct type *
538lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541{
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
e314d629 545 if (nparams > 0)
a6fb9c08 546 {
e314d629
TT
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
54990598
PA
560 else
561 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
562 }
563
71918a86 564 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571}
572
47663de5
MS
573/* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
5212577a
DE
575
576int
61f4b350
TT
577address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
47663de5 579{
8b2dbe47 580 int type_flags;
d8734c88 581
7ba81444 582 /* Check for known address space delimiters. */
47663de5 583 if (!strcmp (space_identifier, "code"))
876cecd0 584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 585 else if (!strcmp (space_identifier, "data"))
876cecd0 586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
8b2dbe47 591 return type_flags;
47663de5 592 else
8a3fe4f8 593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
594}
595
596/* Identify address space identifier by integer flag as defined in
7ba81444 597 gdbtypes.h -- return the string version of the adress space name. */
47663de5 598
321432c0 599const char *
50810684 600address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 601{
876cecd0 602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 603 return "code";
876cecd0 604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 605 return "data";
876cecd0 606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
609 else
610 return NULL;
611}
612
2fdde8f8 613/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
47663de5 617
b9362cc7 618static struct type *
2fdde8f8
DJ
619make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
47663de5
MS
621{
622 struct type *ntype;
623
624 ntype = type;
5f61c20e
JK
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
47663de5 632
2fdde8f8
DJ
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
7ba81444
MS
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
ad766c0a
JB
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
2fdde8f8
DJ
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
47663de5
MS
648
649 /* Pointers or references to the original type are not relevant to
2fdde8f8 650 the new type. */
47663de5
MS
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 653
2fdde8f8
DJ
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 660
ab5d3da6
KB
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
47663de5
MS
664 return ntype;
665}
666
2fdde8f8
DJ
667/* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
7ba81444
MS
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
2fdde8f8
DJ
675
676struct type *
677make_type_with_address_space (struct type *type, int space_flag)
678{
2fdde8f8 679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686}
c906108c
SS
687
688/* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
c906108c 693
ad766c0a
JB
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
5212577a 699
c906108c 700struct type *
7ba81444
MS
701make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
c906108c 704{
52f0bd74 705 struct type *ntype; /* New type */
c906108c 706
2fdde8f8 707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 710
c906108c 711 if (cnst)
876cecd0 712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
713
714 if (voltl)
876cecd0 715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 716
2fdde8f8 717 if (typeptr && *typeptr != NULL)
a02fd225 718 {
ad766c0a
JB
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
732 }
733
7ba81444
MS
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
c906108c 736
2fdde8f8
DJ
737 if (typeptr != NULL)
738 *typeptr = ntype;
a02fd225 739
2fdde8f8 740 return ntype;
a02fd225 741}
c906108c 742
06d66ee9
TT
743/* Make a 'restrict'-qualified version of TYPE. */
744
745struct type *
746make_restrict_type (struct type *type)
747{
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752}
753
f1660027
TT
754/* Make a type without const, volatile, or restrict. */
755
756struct type *
757make_unqualified_type (struct type *type)
758{
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765}
766
a2c2acaf
MW
767/* Make a '_Atomic'-qualified version of TYPE. */
768
769struct type *
770make_atomic_type (struct type *type)
771{
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776}
777
2fdde8f8
DJ
778/* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 781
cda6c68a
JB
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
5212577a 787
dd6bda65
DJ
788void
789replace_type (struct type *ntype, struct type *type)
790{
ab5d3da6 791 struct type *chain;
dd6bda65 792
ad766c0a
JB
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 798
2fdde8f8 799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 800
7ba81444
MS
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
ab5d3da6 803 chain = ntype;
5f61c20e
JK
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
ab5d3da6 818
2fdde8f8
DJ
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
822}
823
c906108c
SS
824/* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829struct type *
0d5de010 830lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 831{
52f0bd74 832 struct type *mtype;
c906108c 833
e9bb382b 834 mtype = alloc_type_copy (type);
0d5de010 835 smash_to_memberptr_type (mtype, domain, type);
c16abbde 836 return mtype;
c906108c
SS
837}
838
0d5de010
DJ
839/* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841struct type *
842lookup_methodptr_type (struct type *to_type)
843{
844 struct type *mtype;
845
e9bb382b 846 mtype = alloc_type_copy (to_type);
0b92b5bb 847 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
848 return mtype;
849}
850
7ba81444
MS
851/* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
c906108c
SS
856
857struct type *
fba45db2 858allocate_stub_method (struct type *type)
c906108c
SS
859{
860 struct type *mtype;
861
e9bb382b
UW
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
c906108c 866 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 868 return mtype;
c906108c
SS
869}
870
0f59d5fc
PA
871/* See gdbtypes.h. */
872
873bool
874operator== (const dynamic_prop &l, const dynamic_prop &r)
875{
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892}
893
894/* See gdbtypes.h. */
895
896bool
897operator== (const range_bounds &l, const range_bounds &r)
898{
899#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
0f59d5fc
PA
906
907#undef FIELD_EQ
908}
909
729efb13
SA
910/* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
912
913struct type *
729efb13
SA
914create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
4e962e74
TT
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
c906108c 918{
b86352cf
AB
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
c906108c 924 if (result_type == NULL)
e9bb382b 925 result_type = alloc_type_copy (index_type);
c906108c
SS
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 928 if (TYPE_STUB (index_type))
876cecd0 929 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 932
43bbcdc2
PH
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 937 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 938
5bbd8269
AB
939 /* Initialize the stride to be a constant, the value will already be zero
940 thanks to the use of TYPE_ZALLOC above. */
941 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
942
729efb13 943 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 944 TYPE_UNSIGNED (result_type) = 1;
c906108c 945
45e44d27
JB
946 /* Ada allows the declaration of range types whose upper bound is
947 less than the lower bound, so checking the lower bound is not
948 enough. Make sure we do not mark a range type whose upper bound
949 is negative as unsigned. */
950 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
951 TYPE_UNSIGNED (result_type) = 0;
952
a05cf17a
TT
953 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
954 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
955
262452ec 956 return result_type;
c906108c
SS
957}
958
5bbd8269
AB
959/* See gdbtypes.h. */
960
961struct type *
962create_range_type_with_stride (struct type *result_type,
963 struct type *index_type,
964 const struct dynamic_prop *low_bound,
965 const struct dynamic_prop *high_bound,
966 LONGEST bias,
967 const struct dynamic_prop *stride,
968 bool byte_stride_p)
969{
970 result_type = create_range_type (result_type, index_type, low_bound,
971 high_bound, bias);
972
973 gdb_assert (stride != nullptr);
974 TYPE_RANGE_DATA (result_type)->stride = *stride;
975 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
976
977 return result_type;
978}
979
980
981
729efb13
SA
982/* Create a range type using either a blank type supplied in
983 RESULT_TYPE, or creating a new type, inheriting the objfile from
984 INDEX_TYPE.
985
986 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
987 to HIGH_BOUND, inclusive.
988
989 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
990 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
991
992struct type *
993create_static_range_type (struct type *result_type, struct type *index_type,
994 LONGEST low_bound, LONGEST high_bound)
995{
996 struct dynamic_prop low, high;
997
998 low.kind = PROP_CONST;
999 low.data.const_val = low_bound;
1000
1001 high.kind = PROP_CONST;
1002 high.data.const_val = high_bound;
1003
4e962e74 1004 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1005
1006 return result_type;
1007}
1008
80180f79
SA
1009/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1010 are static, otherwise returns 0. */
1011
5bbd8269 1012static bool
80180f79
SA
1013has_static_range (const struct range_bounds *bounds)
1014{
5bbd8269
AB
1015 /* If the range doesn't have a defined stride then its stride field will
1016 be initialized to the constant 0. */
80180f79 1017 return (bounds->low.kind == PROP_CONST
5bbd8269
AB
1018 && bounds->high.kind == PROP_CONST
1019 && bounds->stride.kind == PROP_CONST);
80180f79
SA
1020}
1021
1022
7ba81444
MS
1023/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1024 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1025 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
1026
1027int
fba45db2 1028get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1029{
f168693b 1030 type = check_typedef (type);
c906108c
SS
1031 switch (TYPE_CODE (type))
1032 {
1033 case TYPE_CODE_RANGE:
1034 *lowp = TYPE_LOW_BOUND (type);
1035 *highp = TYPE_HIGH_BOUND (type);
1036 return 1;
1037 case TYPE_CODE_ENUM:
1038 if (TYPE_NFIELDS (type) > 0)
1039 {
1040 /* The enums may not be sorted by value, so search all
0963b4bd 1041 entries. */
c906108c
SS
1042 int i;
1043
14e75d8e 1044 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1045 for (i = 0; i < TYPE_NFIELDS (type); i++)
1046 {
14e75d8e
JK
1047 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1048 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1049 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1050 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1051 }
1052
7ba81444 1053 /* Set unsigned indicator if warranted. */
c5aa993b 1054 if (*lowp >= 0)
c906108c 1055 {
876cecd0 1056 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1057 }
1058 }
1059 else
1060 {
1061 *lowp = 0;
1062 *highp = -1;
1063 }
1064 return 0;
1065 case TYPE_CODE_BOOL:
1066 *lowp = 0;
1067 *highp = 1;
1068 return 0;
1069 case TYPE_CODE_INT:
c5aa993b 1070 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1071 return -1;
1072 if (!TYPE_UNSIGNED (type))
1073 {
c5aa993b 1074 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1075 *highp = -*lowp - 1;
1076 return 0;
1077 }
86a73007 1078 /* fall through */
c906108c
SS
1079 case TYPE_CODE_CHAR:
1080 *lowp = 0;
1081 /* This round-about calculation is to avoid shifting by
7b83ea04 1082 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1083 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1084 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1085 *highp = (*highp - 1) | *highp;
1086 return 0;
1087 default:
1088 return -1;
1089 }
1090}
1091
dbc98a8b
KW
1092/* Assuming TYPE is a simple, non-empty array type, compute its upper
1093 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1094 Save the high bound into HIGH_BOUND if not NULL.
1095
0963b4bd 1096 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1097 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1098
1099 We now simply use get_discrete_bounds call to get the values
1100 of the low and high bounds.
1101 get_discrete_bounds can return three values:
1102 1, meaning that index is a range,
1103 0, meaning that index is a discrete type,
1104 or -1 for failure. */
1105
1106int
1107get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1108{
1109 struct type *index = TYPE_INDEX_TYPE (type);
1110 LONGEST low = 0;
1111 LONGEST high = 0;
1112 int res;
1113
1114 if (index == NULL)
1115 return 0;
1116
1117 res = get_discrete_bounds (index, &low, &high);
1118 if (res == -1)
1119 return 0;
1120
1121 /* Check if the array bounds are undefined. */
1122 if (res == 1
1123 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1124 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1125 return 0;
1126
1127 if (low_bound)
1128 *low_bound = low;
1129
1130 if (high_bound)
1131 *high_bound = high;
1132
1133 return 1;
1134}
1135
aa715135
JG
1136/* Assuming that TYPE is a discrete type and VAL is a valid integer
1137 representation of a value of this type, save the corresponding
1138 position number in POS.
1139
1140 Its differs from VAL only in the case of enumeration types. In
1141 this case, the position number of the value of the first listed
1142 enumeration literal is zero; the position number of the value of
1143 each subsequent enumeration literal is one more than that of its
1144 predecessor in the list.
1145
1146 Return 1 if the operation was successful. Return zero otherwise,
1147 in which case the value of POS is unmodified.
1148*/
1149
1150int
1151discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1152{
1153 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1154 {
1155 int i;
1156
1157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1158 {
1159 if (val == TYPE_FIELD_ENUMVAL (type, i))
1160 {
1161 *pos = i;
1162 return 1;
1163 }
1164 }
1165 /* Invalid enumeration value. */
1166 return 0;
1167 }
1168 else
1169 {
1170 *pos = val;
1171 return 1;
1172 }
1173}
1174
7ba81444
MS
1175/* Create an array type using either a blank type supplied in
1176 RESULT_TYPE, or creating a new type, inheriting the objfile from
1177 RANGE_TYPE.
c906108c
SS
1178
1179 Elements will be of type ELEMENT_TYPE, the indices will be of type
1180 RANGE_TYPE.
1181
a405673c
JB
1182 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1183 This byte stride property is added to the resulting array type
1184 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1185 argument can only be used to create types that are objfile-owned
1186 (see add_dyn_prop), meaning that either this function must be called
1187 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1188
1189 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1190 If BIT_STRIDE is not zero, build a packed array type whose element
1191 size is BIT_STRIDE. Otherwise, ignore this parameter.
1192
7ba81444
MS
1193 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1194 sure it is TYPE_CODE_UNDEF before we bash it into an array
1195 type? */
c906108c
SS
1196
1197struct type *
dc53a7ad
JB
1198create_array_type_with_stride (struct type *result_type,
1199 struct type *element_type,
1200 struct type *range_type,
a405673c 1201 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1202 unsigned int bit_stride)
c906108c 1203{
a405673c
JB
1204 if (byte_stride_prop != NULL
1205 && byte_stride_prop->kind == PROP_CONST)
1206 {
1207 /* The byte stride is actually not dynamic. Pretend we were
1208 called with bit_stride set instead of byte_stride_prop.
1209 This will give us the same result type, while avoiding
1210 the need to handle this as a special case. */
1211 bit_stride = byte_stride_prop->data.const_val * 8;
1212 byte_stride_prop = NULL;
1213 }
1214
c906108c 1215 if (result_type == NULL)
e9bb382b
UW
1216 result_type = alloc_type_copy (range_type);
1217
c906108c
SS
1218 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1219 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1220 if (byte_stride_prop == NULL
1221 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1222 && (!type_not_associated (result_type)
1223 && !type_not_allocated (result_type)))
80180f79
SA
1224 {
1225 LONGEST low_bound, high_bound;
9e80cfa1 1226 int stride;
5bbd8269
AB
1227
1228 /* If the array itself doesn't provide a stride value then take
1229 whatever stride the range provides. Don't update BIT_STRIDE as
1230 we don't want to place the stride value from the range into this
1231 arrays bit size field. */
1232 stride = bit_stride;
1233 if (stride == 0)
1234 stride = TYPE_BIT_STRIDE (range_type);
80180f79
SA
1235
1236 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1237 low_bound = high_bound = 0;
f168693b 1238 element_type = check_typedef (element_type);
80180f79
SA
1239 /* Be careful when setting the array length. Ada arrays can be
1240 empty arrays with the high_bound being smaller than the low_bound.
1241 In such cases, the array length should be zero. */
1242 if (high_bound < low_bound)
1243 TYPE_LENGTH (result_type) = 0;
9e80cfa1
AB
1244 else if (stride != 0)
1245 {
1246 /* Ensure that the type length is always positive, even in the
1247 case where (for example in Fortran) we have a negative
1248 stride. It is possible to have a single element array with a
1249 negative stride in Fortran (this doesn't mean anything
1250 special, it's still just a single element array) so do
1251 consider that case when touching this code. */
3104d9ee 1252 LONGEST element_count = std::abs (high_bound - low_bound + 1);
9e80cfa1 1253 TYPE_LENGTH (result_type)
3104d9ee 1254 = ((std::abs (stride) * element_count) + 7) / 8;
9e80cfa1 1255 }
80180f79
SA
1256 else
1257 TYPE_LENGTH (result_type) =
1258 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1259 }
ab0d6e0d 1260 else
80180f79
SA
1261 {
1262 /* This type is dynamic and its length needs to be computed
1263 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1264 undefined by setting it to zero. Although we are not expected
1265 to trust TYPE_LENGTH in this case, setting the size to zero
1266 allows us to avoid allocating objects of random sizes in case
1267 we accidently do. */
1268 TYPE_LENGTH (result_type) = 0;
1269 }
1270
c906108c
SS
1271 TYPE_NFIELDS (result_type) = 1;
1272 TYPE_FIELDS (result_type) =
1deafd4e 1273 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1274 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1275 if (byte_stride_prop != NULL)
50a82047 1276 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1277 else if (bit_stride > 0)
dc53a7ad 1278 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1279
a9ff5f12 1280 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1281 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1282 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1283
c16abbde 1284 return result_type;
c906108c
SS
1285}
1286
dc53a7ad
JB
1287/* Same as create_array_type_with_stride but with no bit_stride
1288 (BIT_STRIDE = 0), thus building an unpacked array. */
1289
1290struct type *
1291create_array_type (struct type *result_type,
1292 struct type *element_type,
1293 struct type *range_type)
1294{
1295 return create_array_type_with_stride (result_type, element_type,
a405673c 1296 range_type, NULL, 0);
dc53a7ad
JB
1297}
1298
e3506a9f
UW
1299struct type *
1300lookup_array_range_type (struct type *element_type,
63375b74 1301 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1302{
929b5ad4
JB
1303 struct type *index_type;
1304 struct type *range_type;
1305
1306 if (TYPE_OBJFILE_OWNED (element_type))
1307 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1308 else
1309 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1310 range_type = create_static_range_type (NULL, index_type,
1311 low_bound, high_bound);
d8734c88 1312
e3506a9f
UW
1313 return create_array_type (NULL, element_type, range_type);
1314}
1315
7ba81444
MS
1316/* Create a string type using either a blank type supplied in
1317 RESULT_TYPE, or creating a new type. String types are similar
1318 enough to array of char types that we can use create_array_type to
1319 build the basic type and then bash it into a string type.
c906108c
SS
1320
1321 For fixed length strings, the range type contains 0 as the lower
1322 bound and the length of the string minus one as the upper bound.
1323
7ba81444
MS
1324 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1325 sure it is TYPE_CODE_UNDEF before we bash it into a string
1326 type? */
c906108c
SS
1327
1328struct type *
3b7538c0
UW
1329create_string_type (struct type *result_type,
1330 struct type *string_char_type,
7ba81444 1331 struct type *range_type)
c906108c
SS
1332{
1333 result_type = create_array_type (result_type,
f290d38e 1334 string_char_type,
c906108c
SS
1335 range_type);
1336 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1337 return result_type;
c906108c
SS
1338}
1339
e3506a9f
UW
1340struct type *
1341lookup_string_range_type (struct type *string_char_type,
63375b74 1342 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1343{
1344 struct type *result_type;
d8734c88 1345
e3506a9f
UW
1346 result_type = lookup_array_range_type (string_char_type,
1347 low_bound, high_bound);
1348 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1349 return result_type;
1350}
1351
c906108c 1352struct type *
fba45db2 1353create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1354{
c906108c 1355 if (result_type == NULL)
e9bb382b
UW
1356 result_type = alloc_type_copy (domain_type);
1357
c906108c
SS
1358 TYPE_CODE (result_type) = TYPE_CODE_SET;
1359 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1360 TYPE_FIELDS (result_type)
1361 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1362
74a9bb82 1363 if (!TYPE_STUB (domain_type))
c906108c 1364 {
f9780d5b 1365 LONGEST low_bound, high_bound, bit_length;
d8734c88 1366
c906108c
SS
1367 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1368 low_bound = high_bound = 0;
1369 bit_length = high_bound - low_bound + 1;
1370 TYPE_LENGTH (result_type)
1371 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1372 if (low_bound >= 0)
876cecd0 1373 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1374 }
1375 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1376
c16abbde 1377 return result_type;
c906108c
SS
1378}
1379
ea37ba09
DJ
1380/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1381 and any array types nested inside it. */
1382
1383void
1384make_vector_type (struct type *array_type)
1385{
1386 struct type *inner_array, *elt_type;
1387 int flags;
1388
1389 /* Find the innermost array type, in case the array is
1390 multi-dimensional. */
1391 inner_array = array_type;
1392 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1393 inner_array = TYPE_TARGET_TYPE (inner_array);
1394
1395 elt_type = TYPE_TARGET_TYPE (inner_array);
1396 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1397 {
2844d6b5 1398 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1399 elt_type = make_qualified_type (elt_type, flags, NULL);
1400 TYPE_TARGET_TYPE (inner_array) = elt_type;
1401 }
1402
876cecd0 1403 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1404}
1405
794ac428 1406struct type *
ac3aafc7
EZ
1407init_vector_type (struct type *elt_type, int n)
1408{
1409 struct type *array_type;
d8734c88 1410
e3506a9f 1411 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1412 make_vector_type (array_type);
ac3aafc7
EZ
1413 return array_type;
1414}
1415
09e2d7c7
DE
1416/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1417 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1418 confusing. "self" is a common enough replacement for "this".
1419 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1420 TYPE_CODE_METHOD. */
1421
1422struct type *
1423internal_type_self_type (struct type *type)
1424{
1425 switch (TYPE_CODE (type))
1426 {
1427 case TYPE_CODE_METHODPTR:
1428 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1429 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1430 return NULL;
09e2d7c7
DE
1431 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1432 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1433 case TYPE_CODE_METHOD:
eaaf76ab
DE
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
09e2d7c7
DE
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1437 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1438 default:
1439 gdb_assert_not_reached ("bad type");
1440 }
1441}
1442
1443/* Set the type of the class that TYPE belongs to.
1444 In c++ this is the class of "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448void
1449set_type_self_type (struct type *type, struct type *self_type)
1450{
1451 switch (TYPE_CODE (type))
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1459 break;
1460 case TYPE_CODE_METHOD:
1461 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1462 INIT_FUNC_SPECIFIC (type);
1463 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1464 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1465 break;
1466 default:
1467 gdb_assert_not_reached ("bad type");
1468 }
1469}
1470
1471/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1472 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1473 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1474 TYPE doesn't include the offset (that's the value of the MEMBER
1475 itself), but does include the structure type into which it points
1476 (for some reason).
c906108c 1477
7ba81444
MS
1478 When "smashing" the type, we preserve the objfile that the old type
1479 pointed to, since we aren't changing where the type is actually
c906108c
SS
1480 allocated. */
1481
1482void
09e2d7c7 1483smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1484 struct type *to_type)
c906108c 1485{
2fdde8f8 1486 smash_type (type);
09e2d7c7 1487 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1488 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1489 set_type_self_type (type, self_type);
0d5de010
DJ
1490 /* Assume that a data member pointer is the same size as a normal
1491 pointer. */
50810684
UW
1492 TYPE_LENGTH (type)
1493 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1494}
1495
0b92b5bb
TT
1496/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1497
1498 When "smashing" the type, we preserve the objfile that the old type
1499 pointed to, since we aren't changing where the type is actually
1500 allocated. */
1501
1502void
1503smash_to_methodptr_type (struct type *type, struct type *to_type)
1504{
1505 smash_type (type);
09e2d7c7 1506 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1507 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1508 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1509 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1510}
1511
09e2d7c7 1512/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1513 METHOD just means `function that gets an extra "this" argument'.
1514
7ba81444
MS
1515 When "smashing" the type, we preserve the objfile that the old type
1516 pointed to, since we aren't changing where the type is actually
c906108c
SS
1517 allocated. */
1518
1519void
09e2d7c7 1520smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1521 struct type *to_type, struct field *args,
1522 int nargs, int varargs)
c906108c 1523{
2fdde8f8 1524 smash_type (type);
09e2d7c7 1525 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1526 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1527 set_type_self_type (type, self_type);
ad2f7632
DJ
1528 TYPE_FIELDS (type) = args;
1529 TYPE_NFIELDS (type) = nargs;
1530 if (varargs)
876cecd0 1531 TYPE_VARARGS (type) = 1;
c906108c 1532 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1533}
1534
a737d952 1535/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1536 Since GCC PR debug/47510 DWARF provides associated information to detect the
1537 anonymous class linkage name from its typedef.
1538
1539 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1540 apply it itself. */
1541
1542const char *
a737d952 1543type_name_or_error (struct type *type)
d8228535
JK
1544{
1545 struct type *saved_type = type;
1546 const char *name;
1547 struct objfile *objfile;
1548
f168693b 1549 type = check_typedef (type);
d8228535 1550
a737d952 1551 name = TYPE_NAME (type);
d8228535
JK
1552 if (name != NULL)
1553 return name;
1554
a737d952 1555 name = TYPE_NAME (saved_type);
d8228535
JK
1556 objfile = TYPE_OBJFILE (saved_type);
1557 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1558 name ? name : "<anonymous>",
1559 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1560}
1561
7ba81444
MS
1562/* Lookup a typedef or primitive type named NAME, visible in lexical
1563 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1564 suitably defined. */
c906108c
SS
1565
1566struct type *
e6c014f2 1567lookup_typename (const struct language_defn *language,
b858499d 1568 const char *name,
34eaf542 1569 const struct block *block, int noerr)
c906108c 1570{
52f0bd74 1571 struct symbol *sym;
c906108c 1572
1994afbf 1573 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1574 language->la_language, NULL).symbol;
c51fe631
DE
1575 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1576 return SYMBOL_TYPE (sym);
1577
c51fe631
DE
1578 if (noerr)
1579 return NULL;
1580 error (_("No type named %s."), name);
c906108c
SS
1581}
1582
1583struct type *
e6c014f2 1584lookup_unsigned_typename (const struct language_defn *language,
b858499d 1585 const char *name)
c906108c 1586{
224c3ddb 1587 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1588
1589 strcpy (uns, "unsigned ");
1590 strcpy (uns + 9, name);
b858499d 1591 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1592}
1593
1594struct type *
b858499d 1595lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1596{
1597 struct type *t;
224c3ddb 1598 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1599
1600 strcpy (uns, "signed ");
1601 strcpy (uns + 7, name);
b858499d 1602 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1603 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1604 if (t != NULL)
1605 return t;
b858499d 1606 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1607}
1608
1609/* Lookup a structure type named "struct NAME",
1610 visible in lexical block BLOCK. */
1611
1612struct type *
270140bd 1613lookup_struct (const char *name, const struct block *block)
c906108c 1614{
52f0bd74 1615 struct symbol *sym;
c906108c 1616
d12307c1 1617 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1618
1619 if (sym == NULL)
1620 {
8a3fe4f8 1621 error (_("No struct type named %s."), name);
c906108c
SS
1622 }
1623 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1624 {
7ba81444
MS
1625 error (_("This context has class, union or enum %s, not a struct."),
1626 name);
c906108c
SS
1627 }
1628 return (SYMBOL_TYPE (sym));
1629}
1630
1631/* Lookup a union type named "union NAME",
1632 visible in lexical block BLOCK. */
1633
1634struct type *
270140bd 1635lookup_union (const char *name, const struct block *block)
c906108c 1636{
52f0bd74 1637 struct symbol *sym;
c5aa993b 1638 struct type *t;
c906108c 1639
d12307c1 1640 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1641
1642 if (sym == NULL)
8a3fe4f8 1643 error (_("No union type named %s."), name);
c906108c 1644
c5aa993b 1645 t = SYMBOL_TYPE (sym);
c906108c
SS
1646
1647 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1648 return t;
c906108c 1649
7ba81444
MS
1650 /* If we get here, it's not a union. */
1651 error (_("This context has class, struct or enum %s, not a union."),
1652 name);
c906108c
SS
1653}
1654
c906108c
SS
1655/* Lookup an enum type named "enum NAME",
1656 visible in lexical block BLOCK. */
1657
1658struct type *
270140bd 1659lookup_enum (const char *name, const struct block *block)
c906108c 1660{
52f0bd74 1661 struct symbol *sym;
c906108c 1662
d12307c1 1663 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1664 if (sym == NULL)
1665 {
8a3fe4f8 1666 error (_("No enum type named %s."), name);
c906108c
SS
1667 }
1668 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1669 {
7ba81444
MS
1670 error (_("This context has class, struct or union %s, not an enum."),
1671 name);
c906108c
SS
1672 }
1673 return (SYMBOL_TYPE (sym));
1674}
1675
1676/* Lookup a template type named "template NAME<TYPE>",
1677 visible in lexical block BLOCK. */
1678
1679struct type *
61f4b350 1680lookup_template_type (const char *name, struct type *type,
270140bd 1681 const struct block *block)
c906108c
SS
1682{
1683 struct symbol *sym;
7ba81444
MS
1684 char *nam = (char *)
1685 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1686
c906108c
SS
1687 strcpy (nam, name);
1688 strcat (nam, "<");
0004e5a2 1689 strcat (nam, TYPE_NAME (type));
0963b4bd 1690 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1691
d12307c1 1692 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1693
1694 if (sym == NULL)
1695 {
8a3fe4f8 1696 error (_("No template type named %s."), name);
c906108c
SS
1697 }
1698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1699 {
7ba81444
MS
1700 error (_("This context has class, union or enum %s, not a struct."),
1701 name);
c906108c
SS
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
ef0bd204 1706/* See gdbtypes.h. */
c906108c 1707
ef0bd204
JB
1708struct_elt
1709lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1710{
1711 int i;
1712
1713 for (;;)
1714 {
f168693b 1715 type = check_typedef (type);
c906108c
SS
1716 if (TYPE_CODE (type) != TYPE_CODE_PTR
1717 && TYPE_CODE (type) != TYPE_CODE_REF)
1718 break;
1719 type = TYPE_TARGET_TYPE (type);
1720 }
1721
687d6395
MS
1722 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1723 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1724 {
2f408ecb
PA
1725 std::string type_name = type_to_string (type);
1726 error (_("Type %s is not a structure or union type."),
1727 type_name.c_str ());
c906108c
SS
1728 }
1729
c906108c
SS
1730 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1731 {
0d5cff50 1732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1733
db577aea 1734 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1735 {
ef0bd204 1736 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1737 }
f5a010c0
PM
1738 else if (!t_field_name || *t_field_name == '\0')
1739 {
ef0bd204
JB
1740 struct_elt elt
1741 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1742 if (elt.field != NULL)
1743 {
1744 elt.offset += TYPE_FIELD_BITPOS (type, i);
1745 return elt;
1746 }
f5a010c0 1747 }
c906108c
SS
1748 }
1749
1750 /* OK, it's not in this class. Recursively check the baseclasses. */
1751 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1752 {
ef0bd204
JB
1753 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1754 if (elt.field != NULL)
1755 return elt;
c906108c
SS
1756 }
1757
1758 if (noerr)
ef0bd204 1759 return {nullptr, 0};
c5aa993b 1760
2f408ecb
PA
1761 std::string type_name = type_to_string (type);
1762 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1763}
1764
ef0bd204
JB
1765/* See gdbtypes.h. */
1766
1767struct type *
1768lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1769{
1770 struct_elt elt = lookup_struct_elt (type, name, noerr);
1771 if (elt.field != NULL)
1772 return FIELD_TYPE (*elt.field);
1773 else
1774 return NULL;
1775}
1776
ed3ef339
DE
1777/* Store in *MAX the largest number representable by unsigned integer type
1778 TYPE. */
1779
1780void
1781get_unsigned_type_max (struct type *type, ULONGEST *max)
1782{
1783 unsigned int n;
1784
f168693b 1785 type = check_typedef (type);
ed3ef339
DE
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1787 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1788
1789 /* Written this way to avoid overflow. */
1790 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1791 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1792}
1793
1794/* Store in *MIN, *MAX the smallest and largest numbers representable by
1795 signed integer type TYPE. */
1796
1797void
1798get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1799{
1800 unsigned int n;
1801
f168693b 1802 type = check_typedef (type);
ed3ef339
DE
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1804 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1805
1806 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1807 *min = -((ULONGEST) 1 << (n - 1));
1808 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1809}
1810
ae6ae975
DE
1811/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1812 cplus_stuff.vptr_fieldno.
1813
1814 cplus_stuff is initialized to cplus_struct_default which does not
1815 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1816 designated initializers). We cope with that here. */
1817
1818int
1819internal_type_vptr_fieldno (struct type *type)
1820{
f168693b 1821 type = check_typedef (type);
ae6ae975
DE
1822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 || TYPE_CODE (type) == TYPE_CODE_UNION);
1824 if (!HAVE_CPLUS_STRUCT (type))
1825 return -1;
1826 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1827}
1828
1829/* Set the value of cplus_stuff.vptr_fieldno. */
1830
1831void
1832set_type_vptr_fieldno (struct type *type, int fieldno)
1833{
f168693b 1834 type = check_typedef (type);
ae6ae975
DE
1835 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1836 || TYPE_CODE (type) == TYPE_CODE_UNION);
1837 if (!HAVE_CPLUS_STRUCT (type))
1838 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1839 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1840}
1841
1842/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1843 cplus_stuff.vptr_basetype. */
1844
1845struct type *
1846internal_type_vptr_basetype (struct type *type)
1847{
f168693b 1848 type = check_typedef (type);
ae6ae975
DE
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1853}
1854
1855/* Set the value of cplus_stuff.vptr_basetype. */
1856
1857void
1858set_type_vptr_basetype (struct type *type, struct type *basetype)
1859{
f168693b 1860 type = check_typedef (type);
ae6ae975
DE
1861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1862 || TYPE_CODE (type) == TYPE_CODE_UNION);
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1866}
1867
81fe8080
DE
1868/* Lookup the vptr basetype/fieldno values for TYPE.
1869 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1870 vptr_fieldno. Also, if found and basetype is from the same objfile,
1871 cache the results.
1872 If not found, return -1 and ignore BASETYPEP.
1873 Callers should be aware that in some cases (for example,
c906108c 1874 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1875 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1876 this function will not be able to find the
7ba81444 1877 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1878 vptr_basetype will remain NULL or incomplete. */
c906108c 1879
81fe8080
DE
1880int
1881get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1882{
f168693b 1883 type = check_typedef (type);
c906108c
SS
1884
1885 if (TYPE_VPTR_FIELDNO (type) < 0)
1886 {
1887 int i;
1888
7ba81444
MS
1889 /* We must start at zero in case the first (and only) baseclass
1890 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1891 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1892 {
81fe8080
DE
1893 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1894 int fieldno;
1895 struct type *basetype;
1896
1897 fieldno = get_vptr_fieldno (baseclass, &basetype);
1898 if (fieldno >= 0)
c906108c 1899 {
81fe8080 1900 /* If the type comes from a different objfile we can't cache
0963b4bd 1901 it, it may have a different lifetime. PR 2384 */
5ef73790 1902 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1903 {
ae6ae975
DE
1904 set_type_vptr_fieldno (type, fieldno);
1905 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1906 }
1907 if (basetypep)
1908 *basetypep = basetype;
1909 return fieldno;
c906108c
SS
1910 }
1911 }
81fe8080
DE
1912
1913 /* Not found. */
1914 return -1;
1915 }
1916 else
1917 {
1918 if (basetypep)
1919 *basetypep = TYPE_VPTR_BASETYPE (type);
1920 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1921 }
1922}
1923
44e1a9eb
DJ
1924static void
1925stub_noname_complaint (void)
1926{
b98664d3 1927 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1928}
1929
a405673c
JB
1930/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1931 attached to it, and that property has a non-constant value. */
1932
1933static int
1934array_type_has_dynamic_stride (struct type *type)
1935{
1936 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1937
1938 return (prop != NULL && prop->kind != PROP_CONST);
1939}
1940
d98b7a16 1941/* Worker for is_dynamic_type. */
80180f79 1942
d98b7a16 1943static int
ee715b5a 1944is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1945{
1946 type = check_typedef (type);
1947
e771e4be
PMR
1948 /* We only want to recognize references at the outermost level. */
1949 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1950 type = check_typedef (TYPE_TARGET_TYPE (type));
1951
3cdcd0ce
JB
1952 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1953 dynamic, even if the type itself is statically defined.
1954 From a user's point of view, this may appear counter-intuitive;
1955 but it makes sense in this context, because the point is to determine
1956 whether any part of the type needs to be resolved before it can
1957 be exploited. */
1958 if (TYPE_DATA_LOCATION (type) != NULL
1959 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1960 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1961 return 1;
1962
3f2f83dd
KB
1963 if (TYPE_ASSOCIATED_PROP (type))
1964 return 1;
1965
1966 if (TYPE_ALLOCATED_PROP (type))
1967 return 1;
1968
80180f79
SA
1969 switch (TYPE_CODE (type))
1970 {
6f8a3220 1971 case TYPE_CODE_RANGE:
ddb87a81
JB
1972 {
1973 /* A range type is obviously dynamic if it has at least one
1974 dynamic bound. But also consider the range type to be
1975 dynamic when its subtype is dynamic, even if the bounds
1976 of the range type are static. It allows us to assume that
1977 the subtype of a static range type is also static. */
1978 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1979 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1980 }
6f8a3220 1981
216a7e6b
AB
1982 case TYPE_CODE_STRING:
1983 /* Strings are very much like an array of characters, and can be
1984 treated as one here. */
80180f79
SA
1985 case TYPE_CODE_ARRAY:
1986 {
80180f79 1987 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1988
a405673c 1989 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1990 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1991 return 1;
a405673c
JB
1992 /* ... or the elements it contains have a dynamic contents... */
1993 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1994 return 1;
1995 /* ... or if it has a dynamic stride... */
1996 if (array_type_has_dynamic_stride (type))
1997 return 1;
1998 return 0;
80180f79 1999 }
012370f6
TT
2000
2001 case TYPE_CODE_STRUCT:
2002 case TYPE_CODE_UNION:
2003 {
2004 int i;
2005
2006 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2007 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 2008 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
2009 return 1;
2010 }
2011 break;
80180f79 2012 }
92e2a17f
TT
2013
2014 return 0;
80180f79
SA
2015}
2016
d98b7a16
TT
2017/* See gdbtypes.h. */
2018
2019int
2020is_dynamic_type (struct type *type)
2021{
ee715b5a 2022 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2023}
2024
df25ebbd 2025static struct type *resolve_dynamic_type_internal
ee715b5a 2026 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2027
df25ebbd
JB
2028/* Given a dynamic range type (dyn_range_type) and a stack of
2029 struct property_addr_info elements, return a static version
2030 of that type. */
d190df30 2031
80180f79 2032static struct type *
df25ebbd
JB
2033resolve_dynamic_range (struct type *dyn_range_type,
2034 struct property_addr_info *addr_stack)
80180f79
SA
2035{
2036 CORE_ADDR value;
ddb87a81 2037 struct type *static_range_type, *static_target_type;
80180f79 2038 const struct dynamic_prop *prop;
5bbd8269 2039 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2040
6f8a3220 2041 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 2042
6f8a3220 2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2045 {
2046 low_bound.kind = PROP_CONST;
2047 low_bound.data.const_val = value;
2048 }
2049 else
2050 {
2051 low_bound.kind = PROP_UNDEFINED;
2052 low_bound.data.const_val = 0;
2053 }
2054
6f8a3220 2055 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2056 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2057 {
2058 high_bound.kind = PROP_CONST;
2059 high_bound.data.const_val = value;
c451ebe5 2060
6f8a3220 2061 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2062 high_bound.data.const_val
2063 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2064 }
2065 else
2066 {
2067 high_bound.kind = PROP_UNDEFINED;
2068 high_bound.data.const_val = 0;
2069 }
2070
5bbd8269
AB
2071 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 stride.kind = PROP_CONST;
2076 stride.data.const_val = value;
2077
2078 /* If we have a bit stride that is not an exact number of bytes then
2079 I really don't think this is going to work with current GDB, the
2080 array indexing code in GDB seems to be pretty heavily tied to byte
2081 offsets right now. Assuming 8 bits in a byte. */
2082 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2083 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2084 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2085 error (_("bit strides that are not a multiple of the byte size "
2086 "are currently not supported"));
2087 }
2088 else
2089 {
2090 stride.kind = PROP_UNDEFINED;
2091 stride.data.const_val = 0;
2092 byte_stride_p = true;
2093 }
2094
ddb87a81
JB
2095 static_target_type
2096 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2097 addr_stack, 0);
4e962e74 2098 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
5bbd8269
AB
2099 static_range_type = create_range_type_with_stride
2100 (copy_type (dyn_range_type), static_target_type,
2101 &low_bound, &high_bound, bias, &stride, byte_stride_p);
6f8a3220
JB
2102 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2103 return static_range_type;
2104}
2105
216a7e6b
AB
2106/* Resolves dynamic bound values of an array or string type TYPE to static
2107 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2108 needed during the dynamic resolution. */
6f8a3220
JB
2109
2110static struct type *
216a7e6b
AB
2111resolve_dynamic_array_or_string (struct type *type,
2112 struct property_addr_info *addr_stack)
6f8a3220
JB
2113{
2114 CORE_ADDR value;
2115 struct type *elt_type;
2116 struct type *range_type;
2117 struct type *ary_dim;
3f2f83dd 2118 struct dynamic_prop *prop;
a405673c 2119 unsigned int bit_stride = 0;
6f8a3220 2120
216a7e6b
AB
2121 /* For dynamic type resolution strings can be treated like arrays of
2122 characters. */
2123 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2124 || TYPE_CODE (type) == TYPE_CODE_STRING);
6f8a3220 2125
3f2f83dd
KB
2126 type = copy_type (type);
2127
6f8a3220
JB
2128 elt_type = type;
2129 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2130 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2131
3f2f83dd
KB
2132 /* Resolve allocated/associated here before creating a new array type, which
2133 will update the length of the array accordingly. */
2134 prop = TYPE_ALLOCATED_PROP (type);
2135 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2136 {
2137 TYPE_DYN_PROP_ADDR (prop) = value;
2138 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2139 }
2140 prop = TYPE_ASSOCIATED_PROP (type);
2141 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2142 {
2143 TYPE_DYN_PROP_ADDR (prop) = value;
2144 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2145 }
2146
80180f79
SA
2147 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2148
2149 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
216a7e6b 2150 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2151 else
2152 elt_type = TYPE_TARGET_TYPE (type);
2153
a405673c
JB
2154 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2155 if (prop != NULL)
2156 {
603490bf 2157 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2158 {
2159 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2160 bit_stride = (unsigned int) (value * 8);
2161 }
2162 else
2163 {
2164 /* Could be a bug in our code, but it could also happen
2165 if the DWARF info is not correct. Issue a warning,
2166 and assume no byte/bit stride (leave bit_stride = 0). */
2167 warning (_("cannot determine array stride for type %s"),
2168 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2169 }
2170 }
2171 else
2172 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2173
2174 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2175 bit_stride);
80180f79
SA
2176}
2177
012370f6 2178/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2179 bounds. ADDR_STACK is a stack of struct property_addr_info
2180 to be used if needed during the dynamic resolution. */
012370f6
TT
2181
2182static struct type *
df25ebbd
JB
2183resolve_dynamic_union (struct type *type,
2184 struct property_addr_info *addr_stack)
012370f6
TT
2185{
2186 struct type *resolved_type;
2187 int i;
2188 unsigned int max_len = 0;
2189
2190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2191
2192 resolved_type = copy_type (type);
2193 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2194 = (struct field *) TYPE_ALLOC (resolved_type,
2195 TYPE_NFIELDS (resolved_type)
2196 * sizeof (struct field));
012370f6
TT
2197 memcpy (TYPE_FIELDS (resolved_type),
2198 TYPE_FIELDS (type),
2199 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2200 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2201 {
2202 struct type *t;
2203
2204 if (field_is_static (&TYPE_FIELD (type, i)))
2205 continue;
2206
d98b7a16 2207 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2208 addr_stack, 0);
012370f6
TT
2209 TYPE_FIELD_TYPE (resolved_type, i) = t;
2210 if (TYPE_LENGTH (t) > max_len)
2211 max_len = TYPE_LENGTH (t);
2212 }
2213
2214 TYPE_LENGTH (resolved_type) = max_len;
2215 return resolved_type;
2216}
2217
2218/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2219 bounds. ADDR_STACK is a stack of struct property_addr_info to
2220 be used if needed during the dynamic resolution. */
012370f6
TT
2221
2222static struct type *
df25ebbd
JB
2223resolve_dynamic_struct (struct type *type,
2224 struct property_addr_info *addr_stack)
012370f6
TT
2225{
2226 struct type *resolved_type;
2227 int i;
6908c509 2228 unsigned resolved_type_bit_length = 0;
012370f6
TT
2229
2230 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2231 gdb_assert (TYPE_NFIELDS (type) > 0);
2232
2233 resolved_type = copy_type (type);
2234 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2235 = (struct field *) TYPE_ALLOC (resolved_type,
2236 TYPE_NFIELDS (resolved_type)
2237 * sizeof (struct field));
012370f6
TT
2238 memcpy (TYPE_FIELDS (resolved_type),
2239 TYPE_FIELDS (type),
2240 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2241 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2242 {
6908c509 2243 unsigned new_bit_length;
df25ebbd 2244 struct property_addr_info pinfo;
012370f6
TT
2245
2246 if (field_is_static (&TYPE_FIELD (type, i)))
2247 continue;
2248
6908c509
JB
2249 /* As we know this field is not a static field, the field's
2250 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2251 this is the case, but only trigger a simple error rather
2252 than an internal error if that fails. While failing
2253 that verification indicates a bug in our code, the error
2254 is not severe enough to suggest to the user he stops
2255 his debugging session because of it. */
df25ebbd 2256 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2257 error (_("Cannot determine struct field location"
2258 " (invalid location kind)"));
df25ebbd
JB
2259
2260 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2261 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2262 pinfo.addr
2263 = (addr_stack->addr
2264 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2265 pinfo.next = addr_stack;
2266
2267 TYPE_FIELD_TYPE (resolved_type, i)
2268 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2269 &pinfo, 0);
df25ebbd
JB
2270 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2271 == FIELD_LOC_KIND_BITPOS);
2272
6908c509
JB
2273 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2274 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2275 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2276 else
2277 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2278 * TARGET_CHAR_BIT);
2279
2280 /* Normally, we would use the position and size of the last field
2281 to determine the size of the enclosing structure. But GCC seems
2282 to be encoding the position of some fields incorrectly when
2283 the struct contains a dynamic field that is not placed last.
2284 So we compute the struct size based on the field that has
2285 the highest position + size - probably the best we can do. */
2286 if (new_bit_length > resolved_type_bit_length)
2287 resolved_type_bit_length = new_bit_length;
012370f6
TT
2288 }
2289
9920b434
BH
2290 /* The length of a type won't change for fortran, but it does for C and Ada.
2291 For fortran the size of dynamic fields might change over time but not the
2292 type length of the structure. If we adapt it, we run into problems
2293 when calculating the element offset for arrays of structs. */
2294 if (current_language->la_language != language_fortran)
2295 TYPE_LENGTH (resolved_type)
2296 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2297
9e195661
PMR
2298 /* The Ada language uses this field as a cache for static fixed types: reset
2299 it as RESOLVED_TYPE must have its own static fixed type. */
2300 TYPE_TARGET_TYPE (resolved_type) = NULL;
2301
012370f6
TT
2302 return resolved_type;
2303}
2304
d98b7a16 2305/* Worker for resolved_dynamic_type. */
80180f79 2306
d98b7a16 2307static struct type *
df25ebbd 2308resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2309 struct property_addr_info *addr_stack,
2310 int top_level)
80180f79
SA
2311{
2312 struct type *real_type = check_typedef (type);
6f8a3220 2313 struct type *resolved_type = type;
d9823cbb 2314 struct dynamic_prop *prop;
3cdcd0ce 2315 CORE_ADDR value;
80180f79 2316
ee715b5a 2317 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2318 return type;
2319
5537b577 2320 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2321 {
cac9b138
JK
2322 resolved_type = copy_type (type);
2323 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2324 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2325 top_level);
5537b577
JK
2326 }
2327 else
2328 {
2329 /* Before trying to resolve TYPE, make sure it is not a stub. */
2330 type = real_type;
012370f6 2331
5537b577
JK
2332 switch (TYPE_CODE (type))
2333 {
e771e4be
PMR
2334 case TYPE_CODE_REF:
2335 {
2336 struct property_addr_info pinfo;
2337
2338 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2339 pinfo.valaddr = NULL;
2340 if (addr_stack->valaddr != NULL)
2341 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2342 else
2343 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2344 pinfo.next = addr_stack;
2345
2346 resolved_type = copy_type (type);
2347 TYPE_TARGET_TYPE (resolved_type)
2348 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2349 &pinfo, top_level);
2350 break;
2351 }
2352
216a7e6b
AB
2353 case TYPE_CODE_STRING:
2354 /* Strings are very much like an array of characters, and can be
2355 treated as one here. */
5537b577 2356 case TYPE_CODE_ARRAY:
216a7e6b 2357 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2358 break;
2359
2360 case TYPE_CODE_RANGE:
df25ebbd 2361 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2362 break;
2363
2364 case TYPE_CODE_UNION:
df25ebbd 2365 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2366 break;
2367
2368 case TYPE_CODE_STRUCT:
df25ebbd 2369 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2370 break;
2371 }
6f8a3220 2372 }
80180f79 2373
3cdcd0ce
JB
2374 /* Resolve data_location attribute. */
2375 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2376 if (prop != NULL
2377 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2378 {
d9823cbb
KB
2379 TYPE_DYN_PROP_ADDR (prop) = value;
2380 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2381 }
3cdcd0ce 2382
80180f79
SA
2383 return resolved_type;
2384}
2385
d98b7a16
TT
2386/* See gdbtypes.h */
2387
2388struct type *
c3345124
JB
2389resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2390 CORE_ADDR addr)
d98b7a16 2391{
c3345124
JB
2392 struct property_addr_info pinfo
2393 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2394
ee715b5a 2395 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2396}
2397
d9823cbb
KB
2398/* See gdbtypes.h */
2399
2400struct dynamic_prop *
2401get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2402{
2403 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2404
2405 while (node != NULL)
2406 {
2407 if (node->prop_kind == prop_kind)
283a9958 2408 return &node->prop;
d9823cbb
KB
2409 node = node->next;
2410 }
2411 return NULL;
2412}
2413
2414/* See gdbtypes.h */
2415
2416void
2417add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2418 struct type *type)
d9823cbb
KB
2419{
2420 struct dynamic_prop_list *temp;
2421
2422 gdb_assert (TYPE_OBJFILE_OWNED (type));
2423
50a82047
TT
2424 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2425 struct dynamic_prop_list);
d9823cbb 2426 temp->prop_kind = prop_kind;
283a9958 2427 temp->prop = prop;
d9823cbb
KB
2428 temp->next = TYPE_DYN_PROP_LIST (type);
2429
2430 TYPE_DYN_PROP_LIST (type) = temp;
2431}
2432
9920b434
BH
2433/* Remove dynamic property from TYPE in case it exists. */
2434
2435void
2436remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2437 struct type *type)
2438{
2439 struct dynamic_prop_list *prev_node, *curr_node;
2440
2441 curr_node = TYPE_DYN_PROP_LIST (type);
2442 prev_node = NULL;
2443
2444 while (NULL != curr_node)
2445 {
2446 if (curr_node->prop_kind == prop_kind)
2447 {
2448 /* Update the linked list but don't free anything.
2449 The property was allocated on objstack and it is not known
2450 if we are on top of it. Nevertheless, everything is released
2451 when the complete objstack is freed. */
2452 if (NULL == prev_node)
2453 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2454 else
2455 prev_node->next = curr_node->next;
2456
2457 return;
2458 }
2459
2460 prev_node = curr_node;
2461 curr_node = curr_node->next;
2462 }
2463}
d9823cbb 2464
92163a10
JK
2465/* Find the real type of TYPE. This function returns the real type,
2466 after removing all layers of typedefs, and completing opaque or stub
2467 types. Completion changes the TYPE argument, but stripping of
2468 typedefs does not.
2469
2470 Instance flags (e.g. const/volatile) are preserved as typedefs are
2471 stripped. If necessary a new qualified form of the underlying type
2472 is created.
2473
2474 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2475 not been computed and we're either in the middle of reading symbols, or
2476 there was no name for the typedef in the debug info.
2477
9bc118a5
DE
2478 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2479 QUITs in the symbol reading code can also throw.
2480 Thus this function can throw an exception.
2481
92163a10
JK
2482 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2483 the target type.
c906108c
SS
2484
2485 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2486 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2487 definition, so we can use it in future. There used to be a comment
2488 (but not any code) that if we don't find a full definition, we'd
2489 set a flag so we don't spend time in the future checking the same
2490 type. That would be a mistake, though--we might load in more
92163a10 2491 symbols which contain a full definition for the type. */
c906108c
SS
2492
2493struct type *
a02fd225 2494check_typedef (struct type *type)
c906108c
SS
2495{
2496 struct type *orig_type = type;
92163a10
JK
2497 /* While we're removing typedefs, we don't want to lose qualifiers.
2498 E.g., const/volatile. */
2499 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2500
423c0af8
MS
2501 gdb_assert (type);
2502
c906108c
SS
2503 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2504 {
2505 if (!TYPE_TARGET_TYPE (type))
2506 {
0d5cff50 2507 const char *name;
c906108c
SS
2508 struct symbol *sym;
2509
2510 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2511 reading a symtab. Infinite recursion is one danger. */
c906108c 2512 if (currently_reading_symtab)
92163a10 2513 return make_qualified_type (type, instance_flags, NULL);
c906108c 2514
a737d952 2515 name = TYPE_NAME (type);
e86ca25f
TT
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2517 VAR_DOMAIN as appropriate? */
c906108c
SS
2518 if (name == NULL)
2519 {
23136709 2520 stub_noname_complaint ();
92163a10 2521 return make_qualified_type (type, instance_flags, NULL);
c906108c 2522 }
d12307c1 2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2524 if (sym)
2525 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2526 else /* TYPE_CODE_UNDEF */
e9bb382b 2527 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2528 }
2529 type = TYPE_TARGET_TYPE (type);
c906108c 2530
92163a10
JK
2531 /* Preserve the instance flags as we traverse down the typedef chain.
2532
2533 Handling address spaces/classes is nasty, what do we do if there's a
2534 conflict?
2535 E.g., what if an outer typedef marks the type as class_1 and an inner
2536 typedef marks the type as class_2?
2537 This is the wrong place to do such error checking. We leave it to
2538 the code that created the typedef in the first place to flag the
2539 error. We just pick the outer address space (akin to letting the
2540 outer cast in a chain of casting win), instead of assuming
2541 "it can't happen". */
2542 {
2543 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2544 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2545 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2546 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2547
2548 /* Treat code vs data spaces and address classes separately. */
2549 if ((instance_flags & ALL_SPACES) != 0)
2550 new_instance_flags &= ~ALL_SPACES;
2551 if ((instance_flags & ALL_CLASSES) != 0)
2552 new_instance_flags &= ~ALL_CLASSES;
2553
2554 instance_flags |= new_instance_flags;
2555 }
2556 }
a02fd225 2557
7ba81444
MS
2558 /* If this is a struct/class/union with no fields, then check
2559 whether a full definition exists somewhere else. This is for
2560 systems where a type definition with no fields is issued for such
2561 types, instead of identifying them as stub types in the first
2562 place. */
c5aa993b 2563
7ba81444
MS
2564 if (TYPE_IS_OPAQUE (type)
2565 && opaque_type_resolution
2566 && !currently_reading_symtab)
c906108c 2567 {
a737d952 2568 const char *name = TYPE_NAME (type);
c5aa993b 2569 struct type *newtype;
d8734c88 2570
c906108c
SS
2571 if (name == NULL)
2572 {
23136709 2573 stub_noname_complaint ();
92163a10 2574 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2575 }
2576 newtype = lookup_transparent_type (name);
ad766c0a 2577
c906108c 2578 if (newtype)
ad766c0a 2579 {
7ba81444
MS
2580 /* If the resolved type and the stub are in the same
2581 objfile, then replace the stub type with the real deal.
2582 But if they're in separate objfiles, leave the stub
2583 alone; we'll just look up the transparent type every time
2584 we call check_typedef. We can't create pointers between
2585 types allocated to different objfiles, since they may
2586 have different lifetimes. Trying to copy NEWTYPE over to
2587 TYPE's objfile is pointless, too, since you'll have to
2588 move over any other types NEWTYPE refers to, which could
2589 be an unbounded amount of stuff. */
ad766c0a 2590 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2591 type = make_qualified_type (newtype,
2592 TYPE_INSTANCE_FLAGS (type),
2593 type);
ad766c0a
JB
2594 else
2595 type = newtype;
2596 }
c906108c 2597 }
7ba81444
MS
2598 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2599 types. */
74a9bb82 2600 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2601 {
a737d952 2602 const char *name = TYPE_NAME (type);
e86ca25f
TT
2603 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2604 as appropriate? */
c906108c 2605 struct symbol *sym;
d8734c88 2606
c906108c
SS
2607 if (name == NULL)
2608 {
23136709 2609 stub_noname_complaint ();
92163a10 2610 return make_qualified_type (type, instance_flags, NULL);
c906108c 2611 }
d12307c1 2612 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2613 if (sym)
c26f2453
JB
2614 {
2615 /* Same as above for opaque types, we can replace the stub
92163a10 2616 with the complete type only if they are in the same
c26f2453
JB
2617 objfile. */
2618 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2619 type = make_qualified_type (SYMBOL_TYPE (sym),
2620 TYPE_INSTANCE_FLAGS (type),
2621 type);
c26f2453
JB
2622 else
2623 type = SYMBOL_TYPE (sym);
2624 }
c906108c
SS
2625 }
2626
74a9bb82 2627 if (TYPE_TARGET_STUB (type))
c906108c 2628 {
c906108c
SS
2629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2630
74a9bb82 2631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2632 {
73e2eb35 2633 /* Nothing we can do. */
c5aa993b 2634 }
c906108c
SS
2635 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2636 {
2637 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2638 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2639 }
2640 }
92163a10
JK
2641
2642 type = make_qualified_type (type, instance_flags, NULL);
2643
7ba81444 2644 /* Cache TYPE_LENGTH for future use. */
c906108c 2645 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2646
c906108c
SS
2647 return type;
2648}
2649
7ba81444 2650/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2651 occurs, silently return a void type. */
c91ecb25 2652
b9362cc7 2653static struct type *
48319d1f 2654safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2655{
2656 struct ui_file *saved_gdb_stderr;
34365054 2657 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2658
7ba81444 2659 /* Suppress error messages. */
c91ecb25 2660 saved_gdb_stderr = gdb_stderr;
d7e74731 2661 gdb_stderr = &null_stream;
c91ecb25 2662
7ba81444 2663 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2664 try
8e7b59a5
KS
2665 {
2666 type = parse_and_eval_type (p, length);
2667 }
230d2906 2668 catch (const gdb_exception_error &except)
492d29ea
PA
2669 {
2670 type = builtin_type (gdbarch)->builtin_void;
2671 }
c91ecb25 2672
7ba81444 2673 /* Stop suppressing error messages. */
c91ecb25
ND
2674 gdb_stderr = saved_gdb_stderr;
2675
2676 return type;
2677}
2678
c906108c
SS
2679/* Ugly hack to convert method stubs into method types.
2680
7ba81444
MS
2681 He ain't kiddin'. This demangles the name of the method into a
2682 string including argument types, parses out each argument type,
2683 generates a string casting a zero to that type, evaluates the
2684 string, and stuffs the resulting type into an argtype vector!!!
2685 Then it knows the type of the whole function (including argument
2686 types for overloading), which info used to be in the stab's but was
2687 removed to hack back the space required for them. */
c906108c 2688
de17c821 2689static void
fba45db2 2690check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2691{
50810684 2692 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2693 struct fn_field *f;
2694 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2695 char *demangled_name = gdb_demangle (mangled_name,
2696 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2697 char *argtypetext, *p;
2698 int depth = 0, argcount = 1;
ad2f7632 2699 struct field *argtypes;
c906108c
SS
2700 struct type *mtype;
2701
2702 /* Make sure we got back a function string that we can use. */
2703 if (demangled_name)
2704 p = strchr (demangled_name, '(');
502dcf4e
AC
2705 else
2706 p = NULL;
c906108c
SS
2707
2708 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2709 error (_("Internal: Cannot demangle mangled name `%s'."),
2710 mangled_name);
c906108c
SS
2711
2712 /* Now, read in the parameters that define this type. */
2713 p += 1;
2714 argtypetext = p;
2715 while (*p)
2716 {
070ad9f0 2717 if (*p == '(' || *p == '<')
c906108c
SS
2718 {
2719 depth += 1;
2720 }
070ad9f0 2721 else if (*p == ')' || *p == '>')
c906108c
SS
2722 {
2723 depth -= 1;
2724 }
2725 else if (*p == ',' && depth == 0)
2726 {
2727 argcount += 1;
2728 }
2729
2730 p += 1;
2731 }
2732
ad2f7632 2733 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2734 if (startswith (argtypetext, "(void)"))
ad2f7632 2735 argcount -= 1;
c906108c 2736
ad2f7632
DJ
2737 /* We need one extra slot, for the THIS pointer. */
2738
2739 argtypes = (struct field *)
2740 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2741 p = argtypetext;
4a1970e4
DJ
2742
2743 /* Add THIS pointer for non-static methods. */
2744 f = TYPE_FN_FIELDLIST1 (type, method_id);
2745 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2746 argcount = 0;
2747 else
2748 {
ad2f7632 2749 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2750 argcount = 1;
2751 }
c906108c 2752
0963b4bd 2753 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2754 {
2755 depth = 0;
2756 while (*p)
2757 {
2758 if (depth <= 0 && (*p == ',' || *p == ')'))
2759 {
ad2f7632
DJ
2760 /* Avoid parsing of ellipsis, they will be handled below.
2761 Also avoid ``void'' as above. */
2762 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2763 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2764 {
ad2f7632 2765 argtypes[argcount].type =
48319d1f 2766 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2767 argcount += 1;
2768 }
2769 argtypetext = p + 1;
2770 }
2771
070ad9f0 2772 if (*p == '(' || *p == '<')
c906108c
SS
2773 {
2774 depth += 1;
2775 }
070ad9f0 2776 else if (*p == ')' || *p == '>')
c906108c
SS
2777 {
2778 depth -= 1;
2779 }
2780
2781 p += 1;
2782 }
2783 }
2784
c906108c
SS
2785 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2786
2787 /* Now update the old "stub" type into a real type. */
2788 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2789 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2790 We want a method (TYPE_CODE_METHOD). */
2791 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2792 argtypes, argcount, p[-2] == '.');
876cecd0 2793 TYPE_STUB (mtype) = 0;
c906108c 2794 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2795
2796 xfree (demangled_name);
c906108c
SS
2797}
2798
7ba81444
MS
2799/* This is the external interface to check_stub_method, above. This
2800 function unstubs all of the signatures for TYPE's METHOD_ID method
2801 name. After calling this function TYPE_FN_FIELD_STUB will be
2802 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2803 correct.
de17c821
DJ
2804
2805 This function unfortunately can not die until stabs do. */
2806
2807void
2808check_stub_method_group (struct type *type, int method_id)
2809{
2810 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2811 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2812
041be526
SM
2813 for (int j = 0; j < len; j++)
2814 {
2815 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2816 check_stub_method (type, method_id, j);
de17c821
DJ
2817 }
2818}
2819
405feb71 2820/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 2821const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2822
2823void
fba45db2 2824allocate_cplus_struct_type (struct type *type)
c906108c 2825{
b4ba55a1
JB
2826 if (HAVE_CPLUS_STRUCT (type))
2827 /* Structure was already allocated. Nothing more to do. */
2828 return;
2829
2830 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2831 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2832 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2833 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2834 set_type_vptr_fieldno (type, -1);
c906108c
SS
2835}
2836
b4ba55a1
JB
2837const struct gnat_aux_type gnat_aux_default =
2838 { NULL };
2839
2840/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2841 and allocate the associated gnat-specific data. The gnat-specific
2842 data is also initialized to gnat_aux_default. */
5212577a 2843
b4ba55a1
JB
2844void
2845allocate_gnat_aux_type (struct type *type)
2846{
2847 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2848 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2849 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2850 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2851}
2852
ae438bc5
UW
2853/* Helper function to initialize a newly allocated type. Set type code
2854 to CODE and initialize the type-specific fields accordingly. */
2855
2856static void
2857set_type_code (struct type *type, enum type_code code)
2858{
2859 TYPE_CODE (type) = code;
2860
2861 switch (code)
2862 {
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 case TYPE_CODE_NAMESPACE:
2866 INIT_CPLUS_SPECIFIC (type);
2867 break;
2868 case TYPE_CODE_FLT:
2869 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2870 break;
2871 case TYPE_CODE_FUNC:
2872 INIT_FUNC_SPECIFIC (type);
2873 break;
2874 }
2875}
2876
19f392bc
UW
2877/* Helper function to verify floating-point format and size.
2878 BIT is the type size in bits; if BIT equals -1, the size is
2879 determined by the floatformat. Returns size to be used. */
2880
2881static int
0db7851f 2882verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2883{
0db7851f 2884 gdb_assert (floatformat != NULL);
9b790ce7 2885
19f392bc 2886 if (bit == -1)
0db7851f 2887 bit = floatformat->totalsize;
19f392bc 2888
0db7851f
UW
2889 gdb_assert (bit >= 0);
2890 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2891
2892 return bit;
2893}
2894
0db7851f
UW
2895/* Return the floating-point format for a floating-point variable of
2896 type TYPE. */
2897
2898const struct floatformat *
2899floatformat_from_type (const struct type *type)
2900{
2901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2902 gdb_assert (TYPE_FLOATFORMAT (type));
2903 return TYPE_FLOATFORMAT (type);
2904}
2905
c906108c
SS
2906/* Helper function to initialize the standard scalar types.
2907
86f62fd7
TT
2908 If NAME is non-NULL, then it is used to initialize the type name.
2909 Note that NAME is not copied; it is required to have a lifetime at
2910 least as long as OBJFILE. */
c906108c
SS
2911
2912struct type *
77b7c781 2913init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2914 const char *name)
c906108c 2915{
52f0bd74 2916 struct type *type;
c906108c
SS
2917
2918 type = alloc_type (objfile);
ae438bc5 2919 set_type_code (type, code);
77b7c781
UW
2920 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2921 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2922 TYPE_NAME (type) = name;
c906108c 2923
c16abbde 2924 return type;
c906108c 2925}
19f392bc 2926
46a4882b
PA
2927/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2928 to use with variables that have no debug info. NAME is the type
2929 name. */
2930
2931static struct type *
2932init_nodebug_var_type (struct objfile *objfile, const char *name)
2933{
2934 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2935}
2936
19f392bc
UW
2937/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2938 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2939 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2940
2941struct type *
2942init_integer_type (struct objfile *objfile,
2943 int bit, int unsigned_p, const char *name)
2944{
2945 struct type *t;
2946
77b7c781 2947 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2948 if (unsigned_p)
2949 TYPE_UNSIGNED (t) = 1;
2950
2951 return t;
2952}
2953
2954/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2955 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2956 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2957
2958struct type *
2959init_character_type (struct objfile *objfile,
2960 int bit, int unsigned_p, const char *name)
2961{
2962 struct type *t;
2963
77b7c781 2964 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2965 if (unsigned_p)
2966 TYPE_UNSIGNED (t) = 1;
2967
2968 return t;
2969}
2970
2971/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2972 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2973 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2974
2975struct type *
2976init_boolean_type (struct objfile *objfile,
2977 int bit, int unsigned_p, const char *name)
2978{
2979 struct type *t;
2980
77b7c781 2981 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2982 if (unsigned_p)
2983 TYPE_UNSIGNED (t) = 1;
2984
2985 return t;
2986}
2987
2988/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2989 BIT is the type size in bits; if BIT equals -1, the size is
2990 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
2991 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2992 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2993 order of the objfile's architecture is used. */
19f392bc
UW
2994
2995struct type *
2996init_float_type (struct objfile *objfile,
2997 int bit, const char *name,
103a685e
TT
2998 const struct floatformat **floatformats,
2999 enum bfd_endian byte_order)
19f392bc 3000{
103a685e
TT
3001 if (byte_order == BFD_ENDIAN_UNKNOWN)
3002 {
3003 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3004 byte_order = gdbarch_byte_order (gdbarch);
3005 }
3006 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3007 struct type *t;
3008
0db7851f 3009 bit = verify_floatformat (bit, fmt);
77b7c781 3010 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3011 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3012
3013 return t;
3014}
3015
3016/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3017 BIT is the type size in bits. NAME is the type name. */
3018
3019struct type *
3020init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3021{
3022 struct type *t;
3023
77b7c781 3024 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3025 return t;
3026}
3027
3028/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3029 NAME is the type name. TARGET_TYPE is the component float type. */
3030
3031struct type *
3032init_complex_type (struct objfile *objfile,
3033 const char *name, struct type *target_type)
3034{
3035 struct type *t;
3036
3037 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 3038 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
3039 TYPE_TARGET_TYPE (t) = target_type;
3040 return t;
3041}
3042
3043/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3044 BIT is the pointer type size in bits. NAME is the type name.
3045 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3046 TYPE_UNSIGNED flag. */
3047
3048struct type *
3049init_pointer_type (struct objfile *objfile,
3050 int bit, const char *name, struct type *target_type)
3051{
3052 struct type *t;
3053
77b7c781 3054 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3055 TYPE_TARGET_TYPE (t) = target_type;
3056 TYPE_UNSIGNED (t) = 1;
3057 return t;
3058}
3059
2b4424c3
TT
3060/* See gdbtypes.h. */
3061
3062unsigned
3063type_raw_align (struct type *type)
3064{
3065 if (type->align_log2 != 0)
3066 return 1 << (type->align_log2 - 1);
3067 return 0;
3068}
3069
3070/* See gdbtypes.h. */
3071
3072unsigned
3073type_align (struct type *type)
3074{
5561fc30 3075 /* Check alignment provided in the debug information. */
2b4424c3
TT
3076 unsigned raw_align = type_raw_align (type);
3077 if (raw_align != 0)
3078 return raw_align;
3079
5561fc30
AB
3080 /* Allow the architecture to provide an alignment. */
3081 struct gdbarch *arch = get_type_arch (type);
3082 ULONGEST align = gdbarch_type_align (arch, type);
3083 if (align != 0)
3084 return align;
3085
2b4424c3
TT
3086 switch (TYPE_CODE (type))
3087 {
3088 case TYPE_CODE_PTR:
3089 case TYPE_CODE_FUNC:
3090 case TYPE_CODE_FLAGS:
3091 case TYPE_CODE_INT:
75ba10dc 3092 case TYPE_CODE_RANGE:
2b4424c3
TT
3093 case TYPE_CODE_FLT:
3094 case TYPE_CODE_ENUM:
3095 case TYPE_CODE_REF:
3096 case TYPE_CODE_RVALUE_REF:
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_BOOL:
3099 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3100 case TYPE_CODE_METHODPTR:
3101 case TYPE_CODE_MEMBERPTR:
5561fc30 3102 align = type_length_units (check_typedef (type));
2b4424c3
TT
3103 break;
3104
3105 case TYPE_CODE_ARRAY:
3106 case TYPE_CODE_COMPLEX:
3107 case TYPE_CODE_TYPEDEF:
3108 align = type_align (TYPE_TARGET_TYPE (type));
3109 break;
3110
3111 case TYPE_CODE_STRUCT:
3112 case TYPE_CODE_UNION:
3113 {
41077b66 3114 int number_of_non_static_fields = 0;
2b4424c3
TT
3115 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3116 {
bf9a735e 3117 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3118 {
41077b66 3119 number_of_non_static_fields++;
bf9a735e
AB
3120 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3121 if (f_align == 0)
3122 {
3123 /* Don't pretend we know something we don't. */
3124 align = 0;
3125 break;
3126 }
3127 if (f_align > align)
3128 align = f_align;
2b4424c3 3129 }
2b4424c3 3130 }
41077b66
AB
3131 /* A struct with no fields, or with only static fields has an
3132 alignment of 1. */
3133 if (number_of_non_static_fields == 0)
3134 align = 1;
2b4424c3
TT
3135 }
3136 break;
3137
3138 case TYPE_CODE_SET:
2b4424c3
TT
3139 case TYPE_CODE_STRING:
3140 /* Not sure what to do here, and these can't appear in C or C++
3141 anyway. */
3142 break;
3143
2b4424c3
TT
3144 case TYPE_CODE_VOID:
3145 align = 1;
3146 break;
3147
3148 case TYPE_CODE_ERROR:
3149 case TYPE_CODE_METHOD:
3150 default:
3151 break;
3152 }
3153
3154 if ((align & (align - 1)) != 0)
3155 {
3156 /* Not a power of 2, so pass. */
3157 align = 0;
3158 }
3159
3160 return align;
3161}
3162
3163/* See gdbtypes.h. */
3164
3165bool
3166set_type_align (struct type *type, ULONGEST align)
3167{
3168 /* Must be a power of 2. Zero is ok. */
3169 gdb_assert ((align & (align - 1)) == 0);
3170
3171 unsigned result = 0;
3172 while (align != 0)
3173 {
3174 ++result;
3175 align >>= 1;
3176 }
3177
3178 if (result >= (1 << TYPE_ALIGN_BITS))
3179 return false;
3180
3181 type->align_log2 = result;
3182 return true;
3183}
3184
5212577a
DE
3185\f
3186/* Queries on types. */
c906108c 3187
c906108c 3188int
fba45db2 3189can_dereference (struct type *t)
c906108c 3190{
7ba81444
MS
3191 /* FIXME: Should we return true for references as well as
3192 pointers? */
f168693b 3193 t = check_typedef (t);
c906108c
SS
3194 return
3195 (t != NULL
3196 && TYPE_CODE (t) == TYPE_CODE_PTR
3197 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3198}
3199
adf40b2e 3200int
fba45db2 3201is_integral_type (struct type *t)
adf40b2e 3202{
f168693b 3203 t = check_typedef (t);
adf40b2e
JM
3204 return
3205 ((t != NULL)
d4f3574e
SS
3206 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3207 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3208 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3209 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3210 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3211 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3212}
3213
70100014
UW
3214int
3215is_floating_type (struct type *t)
3216{
3217 t = check_typedef (t);
3218 return
3219 ((t != NULL)
3220 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3221 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3222}
3223
e09342b5
TJB
3224/* Return true if TYPE is scalar. */
3225
220475ed 3226int
e09342b5
TJB
3227is_scalar_type (struct type *type)
3228{
f168693b 3229 type = check_typedef (type);
e09342b5
TJB
3230
3231 switch (TYPE_CODE (type))
3232 {
3233 case TYPE_CODE_ARRAY:
3234 case TYPE_CODE_STRUCT:
3235 case TYPE_CODE_UNION:
3236 case TYPE_CODE_SET:
3237 case TYPE_CODE_STRING:
e09342b5
TJB
3238 return 0;
3239 default:
3240 return 1;
3241 }
3242}
3243
3244/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3245 the memory layout of a scalar type. E.g., an array or struct with only
3246 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3247
3248int
3249is_scalar_type_recursive (struct type *t)
3250{
f168693b 3251 t = check_typedef (t);
e09342b5
TJB
3252
3253 if (is_scalar_type (t))
3254 return 1;
3255 /* Are we dealing with an array or string of known dimensions? */
3256 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3257 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3258 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3259 {
3260 LONGEST low_bound, high_bound;
3261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3262
3263 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3264
3265 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3266 }
3267 /* Are we dealing with a struct with one element? */
3268 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3269 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3270 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3271 {
3272 int i, n = TYPE_NFIELDS (t);
3273
3274 /* If all elements of the union are scalar, then the union is scalar. */
3275 for (i = 0; i < n; i++)
3276 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3277 return 0;
3278
3279 return 1;
3280 }
3281
3282 return 0;
3283}
3284
6c659fc2
SC
3285/* Return true is T is a class or a union. False otherwise. */
3286
3287int
3288class_or_union_p (const struct type *t)
3289{
3290 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3291 || TYPE_CODE (t) == TYPE_CODE_UNION);
3292}
3293
4e8f195d
TT
3294/* A helper function which returns true if types A and B represent the
3295 "same" class type. This is true if the types have the same main
3296 type, or the same name. */
3297
3298int
3299class_types_same_p (const struct type *a, const struct type *b)
3300{
3301 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3302 || (TYPE_NAME (a) && TYPE_NAME (b)
3303 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3304}
3305
a9d5ef47
SW
3306/* If BASE is an ancestor of DCLASS return the distance between them.
3307 otherwise return -1;
3308 eg:
3309
3310 class A {};
3311 class B: public A {};
3312 class C: public B {};
3313 class D: C {};
3314
3315 distance_to_ancestor (A, A, 0) = 0
3316 distance_to_ancestor (A, B, 0) = 1
3317 distance_to_ancestor (A, C, 0) = 2
3318 distance_to_ancestor (A, D, 0) = 3
3319
3320 If PUBLIC is 1 then only public ancestors are considered,
3321 and the function returns the distance only if BASE is a public ancestor
3322 of DCLASS.
3323 Eg:
3324
0963b4bd 3325 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3326
0526b37a 3327static int
fe978cb0 3328distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3329{
3330 int i;
a9d5ef47 3331 int d;
c5aa993b 3332
f168693b
SM
3333 base = check_typedef (base);
3334 dclass = check_typedef (dclass);
c906108c 3335
4e8f195d 3336 if (class_types_same_p (base, dclass))
a9d5ef47 3337 return 0;
c906108c
SS
3338
3339 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3340 {
fe978cb0 3341 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3342 continue;
3343
fe978cb0 3344 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3345 if (d >= 0)
3346 return 1 + d;
4e8f195d 3347 }
c906108c 3348
a9d5ef47 3349 return -1;
c906108c 3350}
4e8f195d 3351
0526b37a
SW
3352/* Check whether BASE is an ancestor or base class or DCLASS
3353 Return 1 if so, and 0 if not.
3354 Note: If BASE and DCLASS are of the same type, this function
3355 will return 1. So for some class A, is_ancestor (A, A) will
3356 return 1. */
3357
3358int
3359is_ancestor (struct type *base, struct type *dclass)
3360{
a9d5ef47 3361 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3362}
3363
4e8f195d
TT
3364/* Like is_ancestor, but only returns true when BASE is a public
3365 ancestor of DCLASS. */
3366
3367int
3368is_public_ancestor (struct type *base, struct type *dclass)
3369{
a9d5ef47 3370 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3371}
3372
3373/* A helper function for is_unique_ancestor. */
3374
3375static int
3376is_unique_ancestor_worker (struct type *base, struct type *dclass,
3377 int *offset,
8af8e3bc
PA
3378 const gdb_byte *valaddr, int embedded_offset,
3379 CORE_ADDR address, struct value *val)
4e8f195d
TT
3380{
3381 int i, count = 0;
3382
f168693b
SM
3383 base = check_typedef (base);
3384 dclass = check_typedef (dclass);
4e8f195d
TT
3385
3386 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3387 {
8af8e3bc
PA
3388 struct type *iter;
3389 int this_offset;
4e8f195d 3390
8af8e3bc
PA
3391 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3392
3393 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3394 address, val);
4e8f195d
TT
3395
3396 if (class_types_same_p (base, iter))
3397 {
3398 /* If this is the first subclass, set *OFFSET and set count
3399 to 1. Otherwise, if this is at the same offset as
3400 previous instances, do nothing. Otherwise, increment
3401 count. */
3402 if (*offset == -1)
3403 {
3404 *offset = this_offset;
3405 count = 1;
3406 }
3407 else if (this_offset == *offset)
3408 {
3409 /* Nothing. */
3410 }
3411 else
3412 ++count;
3413 }
3414 else
3415 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3416 valaddr,
3417 embedded_offset + this_offset,
3418 address, val);
4e8f195d
TT
3419 }
3420
3421 return count;
3422}
3423
3424/* Like is_ancestor, but only returns true if BASE is a unique base
3425 class of the type of VAL. */
3426
3427int
3428is_unique_ancestor (struct type *base, struct value *val)
3429{
3430 int offset = -1;
3431
3432 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3433 value_contents_for_printing (val),
3434 value_embedded_offset (val),
3435 value_address (val), val) == 1;
4e8f195d
TT
3436}
3437
7ab4a236
TT
3438/* See gdbtypes.h. */
3439
3440enum bfd_endian
3441type_byte_order (const struct type *type)
3442{
3443 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3444 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3445 {
3446 if (byteorder == BFD_ENDIAN_BIG)
3447 return BFD_ENDIAN_LITTLE;
3448 else
3449 {
3450 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3451 return BFD_ENDIAN_BIG;
3452 }
3453 }
3454
3455 return byteorder;
3456}
3457
c906108c 3458\f
5212577a 3459/* Overload resolution. */
c906108c 3460
6403aeea
SW
3461/* Return the sum of the rank of A with the rank of B. */
3462
3463struct rank
3464sum_ranks (struct rank a, struct rank b)
3465{
3466 struct rank c;
3467 c.rank = a.rank + b.rank;
a9d5ef47 3468 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3469 return c;
3470}
3471
3472/* Compare rank A and B and return:
3473 0 if a = b
3474 1 if a is better than b
3475 -1 if b is better than a. */
3476
3477int
3478compare_ranks (struct rank a, struct rank b)
3479{
3480 if (a.rank == b.rank)
a9d5ef47
SW
3481 {
3482 if (a.subrank == b.subrank)
3483 return 0;
3484 if (a.subrank < b.subrank)
3485 return 1;
3486 if (a.subrank > b.subrank)
3487 return -1;
3488 }
6403aeea
SW
3489
3490 if (a.rank < b.rank)
3491 return 1;
3492
0963b4bd 3493 /* a.rank > b.rank */
6403aeea
SW
3494 return -1;
3495}
c5aa993b 3496
0963b4bd 3497/* Functions for overload resolution begin here. */
c906108c
SS
3498
3499/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3500 0 => A and B are identical
3501 1 => A and B are incomparable
3502 2 => A is better than B
3503 3 => A is worse than B */
c906108c
SS
3504
3505int
82ceee50 3506compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3507{
3508 int i;
3509 int tmp;
c5aa993b
JM
3510 short found_pos = 0; /* any positives in c? */
3511 short found_neg = 0; /* any negatives in c? */
3512
82ceee50
PA
3513 /* differing sizes => incomparable */
3514 if (a.size () != b.size ())
c906108c
SS
3515 return 1;
3516
c5aa993b 3517 /* Subtract b from a */
82ceee50 3518 for (i = 0; i < a.size (); i++)
c906108c 3519 {
82ceee50 3520 tmp = compare_ranks (b[i], a[i]);
c906108c 3521 if (tmp > 0)
c5aa993b 3522 found_pos = 1;
c906108c 3523 else if (tmp < 0)
c5aa993b 3524 found_neg = 1;
c906108c
SS
3525 }
3526
3527 if (found_pos)
3528 {
3529 if (found_neg)
c5aa993b 3530 return 1; /* incomparable */
c906108c 3531 else
c5aa993b 3532 return 3; /* A > B */
c906108c 3533 }
c5aa993b
JM
3534 else
3535 /* no positives */
c906108c
SS
3536 {
3537 if (found_neg)
c5aa993b 3538 return 2; /* A < B */
c906108c 3539 else
c5aa993b 3540 return 0; /* A == B */
c906108c
SS
3541 }
3542}
3543
6b1747cd 3544/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3545 types of an argument list (ARGS). Return the badness vector. This
3546 has ARGS.size() + 1 entries. */
c906108c 3547
82ceee50 3548badness_vector
6b1747cd
PA
3549rank_function (gdb::array_view<type *> parms,
3550 gdb::array_view<value *> args)
c906108c 3551{
82ceee50
PA
3552 /* add 1 for the length-match rank. */
3553 badness_vector bv;
3554 bv.reserve (1 + args.size ());
c906108c
SS
3555
3556 /* First compare the lengths of the supplied lists.
7ba81444 3557 If there is a mismatch, set it to a high value. */
c5aa993b 3558
c906108c 3559 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3560 arguments and ellipsis parameter lists, we should consider those
3561 and rank the length-match more finely. */
c906108c 3562
82ceee50
PA
3563 bv.push_back ((args.size () != parms.size ())
3564 ? LENGTH_MISMATCH_BADNESS
3565 : EXACT_MATCH_BADNESS);
c906108c 3566
0963b4bd 3567 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3568 size_t min_len = std::min (parms.size (), args.size ());
3569
3570 for (size_t i = 0; i < min_len; i++)
3571 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3572 args[i]));
c906108c 3573
0963b4bd 3574 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3575 for (size_t i = min_len; i < args.size (); i++)
3576 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3577
3578 return bv;
3579}
3580
973ccf8b
DJ
3581/* Compare the names of two integer types, assuming that any sign
3582 qualifiers have been checked already. We do it this way because
3583 there may be an "int" in the name of one of the types. */
3584
3585static int
3586integer_types_same_name_p (const char *first, const char *second)
3587{
3588 int first_p, second_p;
3589
7ba81444
MS
3590 /* If both are shorts, return 1; if neither is a short, keep
3591 checking. */
973ccf8b
DJ
3592 first_p = (strstr (first, "short") != NULL);
3593 second_p = (strstr (second, "short") != NULL);
3594 if (first_p && second_p)
3595 return 1;
3596 if (first_p || second_p)
3597 return 0;
3598
3599 /* Likewise for long. */
3600 first_p = (strstr (first, "long") != NULL);
3601 second_p = (strstr (second, "long") != NULL);
3602 if (first_p && second_p)
3603 return 1;
3604 if (first_p || second_p)
3605 return 0;
3606
3607 /* Likewise for char. */
3608 first_p = (strstr (first, "char") != NULL);
3609 second_p = (strstr (second, "char") != NULL);
3610 if (first_p && second_p)
3611 return 1;
3612 if (first_p || second_p)
3613 return 0;
3614
3615 /* They must both be ints. */
3616 return 1;
3617}
3618
894882e3
TT
3619/* Compares type A to type B. Returns true if they represent the same
3620 type, false otherwise. */
7062b0a0 3621
894882e3 3622bool
7062b0a0
SW
3623types_equal (struct type *a, struct type *b)
3624{
3625 /* Identical type pointers. */
3626 /* However, this still doesn't catch all cases of same type for b
3627 and a. The reason is that builtin types are different from
3628 the same ones constructed from the object. */
3629 if (a == b)
894882e3 3630 return true;
7062b0a0
SW
3631
3632 /* Resolve typedefs */
3633 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3634 a = check_typedef (a);
3635 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3636 b = check_typedef (b);
3637
3638 /* If after resolving typedefs a and b are not of the same type
3639 code then they are not equal. */
3640 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3641 return false;
7062b0a0
SW
3642
3643 /* If a and b are both pointers types or both reference types then
3644 they are equal of the same type iff the objects they refer to are
3645 of the same type. */
3646 if (TYPE_CODE (a) == TYPE_CODE_PTR
3647 || TYPE_CODE (a) == TYPE_CODE_REF)
3648 return types_equal (TYPE_TARGET_TYPE (a),
3649 TYPE_TARGET_TYPE (b));
3650
0963b4bd 3651 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3652 are exactly the same. This happens when we generate method
3653 stubs. The types won't point to the same address, but they
0963b4bd 3654 really are the same. */
7062b0a0
SW
3655
3656 if (TYPE_NAME (a) && TYPE_NAME (b)
3657 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3658 return true;
7062b0a0
SW
3659
3660 /* Check if identical after resolving typedefs. */
3661 if (a == b)
894882e3 3662 return true;
7062b0a0 3663
9ce98649
TT
3664 /* Two function types are equal if their argument and return types
3665 are equal. */
3666 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3667 {
3668 int i;
3669
3670 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3671 return false;
9ce98649
TT
3672
3673 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3674 return false;
9ce98649
TT
3675
3676 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3677 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3678 return false;
9ce98649 3679
894882e3 3680 return true;
9ce98649
TT
3681 }
3682
894882e3 3683 return false;
7062b0a0 3684}
ca092b61
DE
3685\f
3686/* Deep comparison of types. */
3687
3688/* An entry in the type-equality bcache. */
3689
894882e3 3690struct type_equality_entry
ca092b61 3691{
894882e3
TT
3692 type_equality_entry (struct type *t1, struct type *t2)
3693 : type1 (t1),
3694 type2 (t2)
3695 {
3696 }
ca092b61 3697
894882e3
TT
3698 struct type *type1, *type2;
3699};
ca092b61 3700
894882e3
TT
3701/* A helper function to compare two strings. Returns true if they are
3702 the same, false otherwise. Handles NULLs properly. */
ca092b61 3703
894882e3 3704static bool
ca092b61
DE
3705compare_maybe_null_strings (const char *s, const char *t)
3706{
894882e3
TT
3707 if (s == NULL || t == NULL)
3708 return s == t;
ca092b61
DE
3709 return strcmp (s, t) == 0;
3710}
3711
3712/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3713 "deep" equality. Returns true if the types are considered the
3714 same, false otherwise. */
ca092b61 3715
894882e3 3716static bool
ca092b61 3717check_types_equal (struct type *type1, struct type *type2,
894882e3 3718 std::vector<type_equality_entry> *worklist)
ca092b61 3719{
f168693b
SM
3720 type1 = check_typedef (type1);
3721 type2 = check_typedef (type2);
ca092b61
DE
3722
3723 if (type1 == type2)
894882e3 3724 return true;
ca092b61
DE
3725
3726 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3727 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3728 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3729 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 3730 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
3731 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3732 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3733 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3734 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3735 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3736 return false;
ca092b61 3737
e86ca25f 3738 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3739 return false;
ca092b61 3740 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3741 return false;
ca092b61
DE
3742
3743 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3744 {
0f59d5fc 3745 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3746 return false;
ca092b61
DE
3747 }
3748 else
3749 {
3750 int i;
3751
3752 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3753 {
3754 const struct field *field1 = &TYPE_FIELD (type1, i);
3755 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3756
3757 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3758 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3759 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3760 return false;
ca092b61
DE
3761 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3762 FIELD_NAME (*field2)))
894882e3 3763 return false;
ca092b61
DE
3764 switch (FIELD_LOC_KIND (*field1))
3765 {
3766 case FIELD_LOC_KIND_BITPOS:
3767 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3768 return false;
ca092b61
DE
3769 break;
3770 case FIELD_LOC_KIND_ENUMVAL:
3771 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3772 return false;
ca092b61
DE
3773 break;
3774 case FIELD_LOC_KIND_PHYSADDR:
3775 if (FIELD_STATIC_PHYSADDR (*field1)
3776 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3777 return false;
ca092b61
DE
3778 break;
3779 case FIELD_LOC_KIND_PHYSNAME:
3780 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3781 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3782 return false;
ca092b61
DE
3783 break;
3784 case FIELD_LOC_KIND_DWARF_BLOCK:
3785 {
3786 struct dwarf2_locexpr_baton *block1, *block2;
3787
3788 block1 = FIELD_DWARF_BLOCK (*field1);
3789 block2 = FIELD_DWARF_BLOCK (*field2);
3790 if (block1->per_cu != block2->per_cu
3791 || block1->size != block2->size
3792 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3793 return false;
ca092b61
DE
3794 }
3795 break;
3796 default:
3797 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3798 "%d by check_types_equal"),
3799 FIELD_LOC_KIND (*field1));
3800 }
3801
894882e3 3802 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3803 }
3804 }
3805
3806 if (TYPE_TARGET_TYPE (type1) != NULL)
3807 {
ca092b61 3808 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3809 return false;
ca092b61 3810
894882e3
TT
3811 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3812 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3813 }
3814 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3815 return false;
ca092b61 3816
894882e3 3817 return true;
ca092b61
DE
3818}
3819
894882e3
TT
3820/* Check types on a worklist for equality. Returns false if any pair
3821 is not equal, true if they are all considered equal. */
ca092b61 3822
894882e3
TT
3823static bool
3824check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 3825 gdb::bcache *cache)
ca092b61 3826{
894882e3 3827 while (!worklist->empty ())
ca092b61 3828 {
ca092b61
DE
3829 int added;
3830
894882e3
TT
3831 struct type_equality_entry entry = std::move (worklist->back ());
3832 worklist->pop_back ();
ca092b61
DE
3833
3834 /* If the type pair has already been visited, we know it is
3835 ok. */
25629dfd 3836 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3837 if (!added)
3838 continue;
3839
894882e3
TT
3840 if (!check_types_equal (entry.type1, entry.type2, worklist))
3841 return false;
ca092b61 3842 }
7062b0a0 3843
894882e3 3844 return true;
ca092b61
DE
3845}
3846
894882e3
TT
3847/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3848 "deep comparison". Otherwise return false. */
ca092b61 3849
894882e3 3850bool
ca092b61
DE
3851types_deeply_equal (struct type *type1, struct type *type2)
3852{
894882e3 3853 std::vector<type_equality_entry> worklist;
ca092b61
DE
3854
3855 gdb_assert (type1 != NULL && type2 != NULL);
3856
3857 /* Early exit for the simple case. */
3858 if (type1 == type2)
894882e3 3859 return true;
ca092b61 3860
dfb65191 3861 gdb::bcache cache (nullptr, nullptr);
894882e3 3862 worklist.emplace_back (type1, type2);
25629dfd 3863 return check_types_worklist (&worklist, &cache);
ca092b61 3864}
3f2f83dd
KB
3865
3866/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3867 Otherwise return one. */
3868
3869int
3870type_not_allocated (const struct type *type)
3871{
3872 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3873
3874 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3875 && !TYPE_DYN_PROP_ADDR (prop));
3876}
3877
3878/* Associated status of type TYPE. Return zero if type TYPE is associated.
3879 Otherwise return one. */
3880
3881int
3882type_not_associated (const struct type *type)
3883{
3884 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3885
3886 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3887 && !TYPE_DYN_PROP_ADDR (prop));
3888}
9293fc63
SM
3889
3890/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3891
3892static struct rank
3893rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3894{
3895 struct rank rank = {0,0};
3896
3897 switch (TYPE_CODE (arg))
3898 {
3899 case TYPE_CODE_PTR:
3900
3901 /* Allowed pointer conversions are:
3902 (a) pointer to void-pointer conversion. */
3903 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3904 return VOID_PTR_CONVERSION_BADNESS;
3905
3906 /* (b) pointer to ancestor-pointer conversion. */
3907 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3908 TYPE_TARGET_TYPE (arg),
3909 0);
3910 if (rank.subrank >= 0)
3911 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3912
3913 return INCOMPATIBLE_TYPE_BADNESS;
3914 case TYPE_CODE_ARRAY:
3915 {
3916 struct type *t1 = TYPE_TARGET_TYPE (parm);
3917 struct type *t2 = TYPE_TARGET_TYPE (arg);
3918
3919 if (types_equal (t1, t2))
3920 {
3921 /* Make sure they are CV equal. */
3922 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3923 rank.subrank |= CV_CONVERSION_CONST;
3924 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3925 rank.subrank |= CV_CONVERSION_VOLATILE;
3926 if (rank.subrank != 0)
3927 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3928 return EXACT_MATCH_BADNESS;
3929 }
3930 return INCOMPATIBLE_TYPE_BADNESS;
3931 }
3932 case TYPE_CODE_FUNC:
3933 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3934 case TYPE_CODE_INT:
3935 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3936 {
3937 if (value_as_long (value) == 0)
3938 {
3939 /* Null pointer conversion: allow it to be cast to a pointer.
3940 [4.10.1 of C++ standard draft n3290] */
3941 return NULL_POINTER_CONVERSION_BADNESS;
3942 }
3943 else
3944 {
3945 /* If type checking is disabled, allow the conversion. */
3946 if (!strict_type_checking)
3947 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3948 }
3949 }
3950 /* fall through */
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_FLAGS:
3953 case TYPE_CODE_CHAR:
3954 case TYPE_CODE_RANGE:
3955 case TYPE_CODE_BOOL:
3956 default:
3957 return INCOMPATIBLE_TYPE_BADNESS;
3958 }
3959}
3960
b9f4512f
SM
3961/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3962
3963static struct rank
3964rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3965{
3966 switch (TYPE_CODE (arg))
3967 {
3968 case TYPE_CODE_PTR:
3969 case TYPE_CODE_ARRAY:
3970 return rank_one_type (TYPE_TARGET_TYPE (parm),
3971 TYPE_TARGET_TYPE (arg), NULL);
3972 default:
3973 return INCOMPATIBLE_TYPE_BADNESS;
3974 }
3975}
3976
f1f832d6
SM
3977/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3978
3979static struct rank
3980rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3981{
3982 switch (TYPE_CODE (arg))
3983 {
3984 case TYPE_CODE_PTR: /* funcptr -> func */
3985 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3986 default:
3987 return INCOMPATIBLE_TYPE_BADNESS;
3988 }
3989}
3990
34910087
SM
3991/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3992
3993static struct rank
3994rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3995{
3996 switch (TYPE_CODE (arg))
3997 {
3998 case TYPE_CODE_INT:
3999 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4000 {
4001 /* Deal with signed, unsigned, and plain chars and
4002 signed and unsigned ints. */
4003 if (TYPE_NOSIGN (parm))
4004 {
4005 /* This case only for character types. */
4006 if (TYPE_NOSIGN (arg))
4007 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4008 else /* signed/unsigned char -> plain char */
4009 return INTEGER_CONVERSION_BADNESS;
4010 }
4011 else if (TYPE_UNSIGNED (parm))
4012 {
4013 if (TYPE_UNSIGNED (arg))
4014 {
4015 /* unsigned int -> unsigned int, or
4016 unsigned long -> unsigned long */
4017 if (integer_types_same_name_p (TYPE_NAME (parm),
4018 TYPE_NAME (arg)))
4019 return EXACT_MATCH_BADNESS;
4020 else if (integer_types_same_name_p (TYPE_NAME (arg),
4021 "int")
4022 && integer_types_same_name_p (TYPE_NAME (parm),
4023 "long"))
4024 /* unsigned int -> unsigned long */
4025 return INTEGER_PROMOTION_BADNESS;
4026 else
4027 /* unsigned long -> unsigned int */
4028 return INTEGER_CONVERSION_BADNESS;
4029 }
4030 else
4031 {
4032 if (integer_types_same_name_p (TYPE_NAME (arg),
4033 "long")
4034 && integer_types_same_name_p (TYPE_NAME (parm),
4035 "int"))
4036 /* signed long -> unsigned int */
4037 return INTEGER_CONVERSION_BADNESS;
4038 else
4039 /* signed int/long -> unsigned int/long */
4040 return INTEGER_CONVERSION_BADNESS;
4041 }
4042 }
4043 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4044 {
4045 if (integer_types_same_name_p (TYPE_NAME (parm),
4046 TYPE_NAME (arg)))
4047 return EXACT_MATCH_BADNESS;
4048 else if (integer_types_same_name_p (TYPE_NAME (arg),
4049 "int")
4050 && integer_types_same_name_p (TYPE_NAME (parm),
4051 "long"))
4052 return INTEGER_PROMOTION_BADNESS;
4053 else
4054 return INTEGER_CONVERSION_BADNESS;
4055 }
4056 else
4057 return INTEGER_CONVERSION_BADNESS;
4058 }
4059 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4060 return INTEGER_PROMOTION_BADNESS;
4061 else
4062 return INTEGER_CONVERSION_BADNESS;
4063 case TYPE_CODE_ENUM:
4064 case TYPE_CODE_FLAGS:
4065 case TYPE_CODE_CHAR:
4066 case TYPE_CODE_RANGE:
4067 case TYPE_CODE_BOOL:
4068 if (TYPE_DECLARED_CLASS (arg))
4069 return INCOMPATIBLE_TYPE_BADNESS;
4070 return INTEGER_PROMOTION_BADNESS;
4071 case TYPE_CODE_FLT:
4072 return INT_FLOAT_CONVERSION_BADNESS;
4073 case TYPE_CODE_PTR:
4074 return NS_POINTER_CONVERSION_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078}
4079
793cd1d2
SM
4080/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4081
4082static struct rank
4083rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4084{
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_INT:
4088 case TYPE_CODE_CHAR:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_BOOL:
4091 case TYPE_CODE_ENUM:
4092 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4093 return INCOMPATIBLE_TYPE_BADNESS;
4094 return INTEGER_CONVERSION_BADNESS;
4095 case TYPE_CODE_FLT:
4096 return INT_FLOAT_CONVERSION_BADNESS;
4097 default:
4098 return INCOMPATIBLE_TYPE_BADNESS;
4099 }
4100}
4101
41ea4728
SM
4102/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4103
4104static struct rank
4105rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4106{
4107 switch (TYPE_CODE (arg))
4108 {
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_BOOL:
4111 case TYPE_CODE_ENUM:
4112 if (TYPE_DECLARED_CLASS (arg))
4113 return INCOMPATIBLE_TYPE_BADNESS;
4114 return INTEGER_CONVERSION_BADNESS;
4115 case TYPE_CODE_FLT:
4116 return INT_FLOAT_CONVERSION_BADNESS;
4117 case TYPE_CODE_INT:
4118 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4119 return INTEGER_CONVERSION_BADNESS;
4120 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4121 return INTEGER_PROMOTION_BADNESS;
4122 /* fall through */
4123 case TYPE_CODE_CHAR:
4124 /* Deal with signed, unsigned, and plain chars for C++ and
4125 with int cases falling through from previous case. */
4126 if (TYPE_NOSIGN (parm))
4127 {
4128 if (TYPE_NOSIGN (arg))
4129 return EXACT_MATCH_BADNESS;
4130 else
4131 return INTEGER_CONVERSION_BADNESS;
4132 }
4133 else if (TYPE_UNSIGNED (parm))
4134 {
4135 if (TYPE_UNSIGNED (arg))
4136 return EXACT_MATCH_BADNESS;
4137 else
4138 return INTEGER_PROMOTION_BADNESS;
4139 }
4140 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4141 return EXACT_MATCH_BADNESS;
4142 else
4143 return INTEGER_CONVERSION_BADNESS;
4144 default:
4145 return INCOMPATIBLE_TYPE_BADNESS;
4146 }
4147}
4148
0dd322dc
SM
4149/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4150
4151static struct rank
4152rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4153{
4154 switch (TYPE_CODE (arg))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_CHAR:
4158 case TYPE_CODE_RANGE:
4159 case TYPE_CODE_BOOL:
4160 case TYPE_CODE_ENUM:
4161 return INTEGER_CONVERSION_BADNESS;
4162 case TYPE_CODE_FLT:
4163 return INT_FLOAT_CONVERSION_BADNESS;
4164 default:
4165 return INCOMPATIBLE_TYPE_BADNESS;
4166 }
4167}
4168
2c509035
SM
4169/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4170
4171static struct rank
4172rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4173{
4174 switch (TYPE_CODE (arg))
4175 {
4176 /* n3290 draft, section 4.12.1 (conv.bool):
4177
4178 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4179 pointer to member type can be converted to a prvalue of type
4180 bool. A zero value, null pointer value, or null member pointer
4181 value is converted to false; any other value is converted to
4182 true. A prvalue of type std::nullptr_t can be converted to a
4183 prvalue of type bool; the resulting value is false." */
4184 case TYPE_CODE_INT:
4185 case TYPE_CODE_CHAR:
4186 case TYPE_CODE_ENUM:
4187 case TYPE_CODE_FLT:
4188 case TYPE_CODE_MEMBERPTR:
4189 case TYPE_CODE_PTR:
4190 return BOOL_CONVERSION_BADNESS;
4191 case TYPE_CODE_RANGE:
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 case TYPE_CODE_BOOL:
4194 return EXACT_MATCH_BADNESS;
4195 default:
4196 return INCOMPATIBLE_TYPE_BADNESS;
4197 }
4198}
4199
7f17b20d
SM
4200/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4201
4202static struct rank
4203rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4204{
4205 switch (TYPE_CODE (arg))
4206 {
4207 case TYPE_CODE_FLT:
4208 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4209 return FLOAT_PROMOTION_BADNESS;
4210 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4211 return EXACT_MATCH_BADNESS;
4212 else
4213 return FLOAT_CONVERSION_BADNESS;
4214 case TYPE_CODE_INT:
4215 case TYPE_CODE_BOOL:
4216 case TYPE_CODE_ENUM:
4217 case TYPE_CODE_RANGE:
4218 case TYPE_CODE_CHAR:
4219 return INT_FLOAT_CONVERSION_BADNESS;
4220 default:
4221 return INCOMPATIBLE_TYPE_BADNESS;
4222 }
4223}
4224
2598a94b
SM
4225/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4226
4227static struct rank
4228rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4229{
4230 switch (TYPE_CODE (arg))
4231 { /* Strictly not needed for C++, but... */
4232 case TYPE_CODE_FLT:
4233 return FLOAT_PROMOTION_BADNESS;
4234 case TYPE_CODE_COMPLEX:
4235 return EXACT_MATCH_BADNESS;
4236 default:
4237 return INCOMPATIBLE_TYPE_BADNESS;
4238 }
4239}
4240
595f96a9
SM
4241/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4242
4243static struct rank
4244rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4245{
4246 struct rank rank = {0, 0};
4247
4248 switch (TYPE_CODE (arg))
4249 {
4250 case TYPE_CODE_STRUCT:
4251 /* Check for derivation */
4252 rank.subrank = distance_to_ancestor (parm, arg, 0);
4253 if (rank.subrank >= 0)
4254 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4255 /* fall through */
4256 default:
4257 return INCOMPATIBLE_TYPE_BADNESS;
4258 }
4259}
4260
f09ce22d
SM
4261/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4262
4263static struct rank
4264rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4265{
4266 switch (TYPE_CODE (arg))
4267 {
4268 /* Not in C++ */
4269 case TYPE_CODE_SET:
4270 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4271 TYPE_FIELD_TYPE (arg, 0), NULL);
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 }
4275}
4276
c906108c
SS
4277/* Compare one type (PARM) for compatibility with another (ARG).
4278 * PARM is intended to be the parameter type of a function; and
4279 * ARG is the supplied argument's type. This function tests if
4280 * the latter can be converted to the former.
da096638 4281 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4282 *
4283 * Return 0 if they are identical types;
4284 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4285 * PARM is to ARG. The higher the return value, the worse the match.
4286 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4287
6403aeea 4288struct rank
da096638 4289rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4290{
a9d5ef47 4291 struct rank rank = {0,0};
7062b0a0 4292
c906108c
SS
4293 /* Resolve typedefs */
4294 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4295 parm = check_typedef (parm);
4296 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4297 arg = check_typedef (arg);
4298
e15c3eb4 4299 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4300 {
e15c3eb4
KS
4301 if (VALUE_LVAL (value) == not_lval)
4302 {
4303 /* Rvalues should preferably bind to rvalue references or const
4304 lvalue references. */
4305 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4306 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4307 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4308 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4309 else
4310 return INCOMPATIBLE_TYPE_BADNESS;
4311 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4312 }
4313 else
4314 {
330f1d38 4315 /* It's illegal to pass an lvalue as an rvalue. */
e15c3eb4 4316 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
330f1d38 4317 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4318 }
15c0a2a9
AV
4319 }
4320
4321 if (types_equal (parm, arg))
15c0a2a9 4322 {
e15c3eb4
KS
4323 struct type *t1 = parm;
4324 struct type *t2 = arg;
15c0a2a9 4325
e15c3eb4
KS
4326 /* For pointers and references, compare target type. */
4327 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4328 {
4329 t1 = TYPE_TARGET_TYPE (parm);
4330 t2 = TYPE_TARGET_TYPE (arg);
4331 }
15c0a2a9 4332
e15c3eb4
KS
4333 /* Make sure they are CV equal, too. */
4334 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4335 rank.subrank |= CV_CONVERSION_CONST;
4336 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4337 rank.subrank |= CV_CONVERSION_VOLATILE;
4338 if (rank.subrank != 0)
4339 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4340 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4341 }
4342
db577aea 4343 /* See through references, since we can almost make non-references
7ba81444 4344 references. */
aa006118
AV
4345
4346 if (TYPE_IS_REFERENCE (arg))
da096638 4347 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4348 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4349 if (TYPE_IS_REFERENCE (parm))
da096638 4350 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4351 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4352 if (overload_debug)
7ba81444
MS
4353 /* Debugging only. */
4354 fprintf_filtered (gdb_stderr,
4355 "------ Arg is %s [%d], parm is %s [%d]\n",
4356 TYPE_NAME (arg), TYPE_CODE (arg),
4357 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4358
0963b4bd 4359 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4360
4361 switch (TYPE_CODE (parm))
4362 {
c5aa993b 4363 case TYPE_CODE_PTR:
9293fc63 4364 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4365 case TYPE_CODE_ARRAY:
b9f4512f 4366 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4367 case TYPE_CODE_FUNC:
f1f832d6 4368 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4369 case TYPE_CODE_INT:
34910087 4370 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4371 case TYPE_CODE_ENUM:
793cd1d2 4372 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4373 case TYPE_CODE_CHAR:
41ea4728 4374 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4375 case TYPE_CODE_RANGE:
0dd322dc 4376 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4377 case TYPE_CODE_BOOL:
2c509035 4378 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4379 case TYPE_CODE_FLT:
7f17b20d 4380 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4381 case TYPE_CODE_COMPLEX:
2598a94b 4382 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4383 case TYPE_CODE_STRUCT:
595f96a9 4384 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4385 case TYPE_CODE_SET:
f09ce22d 4386 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4387 default:
4388 return INCOMPATIBLE_TYPE_BADNESS;
4389 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4390}
4391
0963b4bd 4392/* End of functions for overload resolution. */
5212577a
DE
4393\f
4394/* Routines to pretty-print types. */
c906108c 4395
c906108c 4396static void
fba45db2 4397print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4398{
4399 int bitno;
4400
4401 for (bitno = 0; bitno < nbits; bitno++)
4402 {
4403 if ((bitno % 8) == 0)
4404 {
4405 puts_filtered (" ");
4406 }
4407 if (B_TST (bits, bitno))
a3f17187 4408 printf_filtered (("1"));
c906108c 4409 else
a3f17187 4410 printf_filtered (("0"));
c906108c
SS
4411 }
4412}
4413
ad2f7632 4414/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4415 include it since we may get into a infinitely recursive
4416 situation. */
c906108c
SS
4417
4418static void
4c9e8482 4419print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4420{
4421 if (args != NULL)
4422 {
ad2f7632
DJ
4423 int i;
4424
4425 for (i = 0; i < nargs; i++)
4c9e8482
DE
4426 {
4427 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4428 args[i].name != NULL ? args[i].name : "<NULL>");
4429 recursive_dump_type (args[i].type, spaces + 2);
4430 }
c906108c
SS
4431 }
4432}
4433
d6a843b5
JK
4434int
4435field_is_static (struct field *f)
4436{
4437 /* "static" fields are the fields whose location is not relative
4438 to the address of the enclosing struct. It would be nice to
4439 have a dedicated flag that would be set for static fields when
4440 the type is being created. But in practice, checking the field
254e6b9e 4441 loc_kind should give us an accurate answer. */
d6a843b5
JK
4442 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4443 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4444}
4445
c906108c 4446static void
fba45db2 4447dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4448{
4449 int method_idx;
4450 int overload_idx;
4451 struct fn_field *f;
4452
4453 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4454 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4455 printf_filtered ("\n");
4456 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4457 {
4458 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4459 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4460 method_idx,
4461 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4462 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4463 gdb_stdout);
a3f17187 4464 printf_filtered (_(") length %d\n"),
c906108c
SS
4465 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4466 for (overload_idx = 0;
4467 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4468 overload_idx++)
4469 {
4470 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4471 overload_idx,
4472 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4473 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4474 gdb_stdout);
c906108c
SS
4475 printf_filtered (")\n");
4476 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4477 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4478 gdb_stdout);
c906108c
SS
4479 printf_filtered ("\n");
4480
4481 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4482 spaces + 8 + 2);
4483
4484 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4485 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4486 gdb_stdout);
c906108c 4487 printf_filtered ("\n");
4c9e8482
DE
4488 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4489 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4490 spaces + 8 + 2);
c906108c 4491 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4492 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4493 gdb_stdout);
c906108c
SS
4494 printf_filtered ("\n");
4495
4496 printfi_filtered (spaces + 8, "is_const %d\n",
4497 TYPE_FN_FIELD_CONST (f, overload_idx));
4498 printfi_filtered (spaces + 8, "is_volatile %d\n",
4499 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4500 printfi_filtered (spaces + 8, "is_private %d\n",
4501 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4502 printfi_filtered (spaces + 8, "is_protected %d\n",
4503 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4504 printfi_filtered (spaces + 8, "is_stub %d\n",
4505 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4506 printfi_filtered (spaces + 8, "defaulted %d\n",
4507 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4508 printfi_filtered (spaces + 8, "is_deleted %d\n",
4509 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4510 printfi_filtered (spaces + 8, "voffset %u\n",
4511 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4512 }
4513 }
4514}
4515
4516static void
fba45db2 4517print_cplus_stuff (struct type *type, int spaces)
c906108c 4518{
ae6ae975
DE
4519 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4520 printfi_filtered (spaces, "vptr_basetype ");
4521 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4522 puts_filtered ("\n");
4523 if (TYPE_VPTR_BASETYPE (type) != NULL)
4524 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4525
c906108c
SS
4526 printfi_filtered (spaces, "n_baseclasses %d\n",
4527 TYPE_N_BASECLASSES (type));
4528 printfi_filtered (spaces, "nfn_fields %d\n",
4529 TYPE_NFN_FIELDS (type));
c906108c
SS
4530 if (TYPE_N_BASECLASSES (type) > 0)
4531 {
4532 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4533 TYPE_N_BASECLASSES (type));
7ba81444
MS
4534 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4535 gdb_stdout);
c906108c
SS
4536 printf_filtered (")");
4537
4538 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4539 TYPE_N_BASECLASSES (type));
4540 puts_filtered ("\n");
4541 }
4542 if (TYPE_NFIELDS (type) > 0)
4543 {
4544 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4545 {
7ba81444
MS
4546 printfi_filtered (spaces,
4547 "private_field_bits (%d bits at *",
c906108c 4548 TYPE_NFIELDS (type));
7ba81444
MS
4549 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4550 gdb_stdout);
c906108c
SS
4551 printf_filtered (")");
4552 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4553 TYPE_NFIELDS (type));
4554 puts_filtered ("\n");
4555 }
4556 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4557 {
7ba81444
MS
4558 printfi_filtered (spaces,
4559 "protected_field_bits (%d bits at *",
c906108c 4560 TYPE_NFIELDS (type));
7ba81444
MS
4561 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4562 gdb_stdout);
c906108c
SS
4563 printf_filtered (")");
4564 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4565 TYPE_NFIELDS (type));
4566 puts_filtered ("\n");
4567 }
4568 }
4569 if (TYPE_NFN_FIELDS (type) > 0)
4570 {
4571 dump_fn_fieldlists (type, spaces);
4572 }
e35000a7
TBA
4573
4574 printfi_filtered (spaces, "calling_convention %d\n",
4575 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4576}
4577
b4ba55a1
JB
4578/* Print the contents of the TYPE's type_specific union, assuming that
4579 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4580
4581static void
4582print_gnat_stuff (struct type *type, int spaces)
4583{
4584 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4585
8cd00c59
PMR
4586 if (descriptive_type == NULL)
4587 printfi_filtered (spaces + 2, "no descriptive type\n");
4588 else
4589 {
4590 printfi_filtered (spaces + 2, "descriptive type\n");
4591 recursive_dump_type (descriptive_type, spaces + 4);
4592 }
b4ba55a1
JB
4593}
4594
c906108c
SS
4595static struct obstack dont_print_type_obstack;
4596
4597void
fba45db2 4598recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4599{
4600 int idx;
4601
4602 if (spaces == 0)
4603 obstack_begin (&dont_print_type_obstack, 0);
4604
4605 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4606 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4607 {
4608 struct type **first_dont_print
7ba81444 4609 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4610
7ba81444
MS
4611 int i = (struct type **)
4612 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4613
4614 while (--i >= 0)
4615 {
4616 if (type == first_dont_print[i])
4617 {
4618 printfi_filtered (spaces, "type node ");
d4f3574e 4619 gdb_print_host_address (type, gdb_stdout);
a3f17187 4620 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4621 return;
4622 }
4623 }
4624
4625 obstack_ptr_grow (&dont_print_type_obstack, type);
4626 }
4627
4628 printfi_filtered (spaces, "type node ");
d4f3574e 4629 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4630 printf_filtered ("\n");
4631 printfi_filtered (spaces, "name '%s' (",
4632 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4633 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4634 printf_filtered (")\n");
c906108c
SS
4635 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4636 switch (TYPE_CODE (type))
4637 {
c5aa993b
JM
4638 case TYPE_CODE_UNDEF:
4639 printf_filtered ("(TYPE_CODE_UNDEF)");
4640 break;
4641 case TYPE_CODE_PTR:
4642 printf_filtered ("(TYPE_CODE_PTR)");
4643 break;
4644 case TYPE_CODE_ARRAY:
4645 printf_filtered ("(TYPE_CODE_ARRAY)");
4646 break;
4647 case TYPE_CODE_STRUCT:
4648 printf_filtered ("(TYPE_CODE_STRUCT)");
4649 break;
4650 case TYPE_CODE_UNION:
4651 printf_filtered ("(TYPE_CODE_UNION)");
4652 break;
4653 case TYPE_CODE_ENUM:
4654 printf_filtered ("(TYPE_CODE_ENUM)");
4655 break;
4f2aea11
MK
4656 case TYPE_CODE_FLAGS:
4657 printf_filtered ("(TYPE_CODE_FLAGS)");
4658 break;
c5aa993b
JM
4659 case TYPE_CODE_FUNC:
4660 printf_filtered ("(TYPE_CODE_FUNC)");
4661 break;
4662 case TYPE_CODE_INT:
4663 printf_filtered ("(TYPE_CODE_INT)");
4664 break;
4665 case TYPE_CODE_FLT:
4666 printf_filtered ("(TYPE_CODE_FLT)");
4667 break;
4668 case TYPE_CODE_VOID:
4669 printf_filtered ("(TYPE_CODE_VOID)");
4670 break;
4671 case TYPE_CODE_SET:
4672 printf_filtered ("(TYPE_CODE_SET)");
4673 break;
4674 case TYPE_CODE_RANGE:
4675 printf_filtered ("(TYPE_CODE_RANGE)");
4676 break;
4677 case TYPE_CODE_STRING:
4678 printf_filtered ("(TYPE_CODE_STRING)");
4679 break;
4680 case TYPE_CODE_ERROR:
4681 printf_filtered ("(TYPE_CODE_ERROR)");
4682 break;
0d5de010
DJ
4683 case TYPE_CODE_MEMBERPTR:
4684 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4685 break;
4686 case TYPE_CODE_METHODPTR:
4687 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4688 break;
4689 case TYPE_CODE_METHOD:
4690 printf_filtered ("(TYPE_CODE_METHOD)");
4691 break;
4692 case TYPE_CODE_REF:
4693 printf_filtered ("(TYPE_CODE_REF)");
4694 break;
4695 case TYPE_CODE_CHAR:
4696 printf_filtered ("(TYPE_CODE_CHAR)");
4697 break;
4698 case TYPE_CODE_BOOL:
4699 printf_filtered ("(TYPE_CODE_BOOL)");
4700 break;
e9e79dd9
FF
4701 case TYPE_CODE_COMPLEX:
4702 printf_filtered ("(TYPE_CODE_COMPLEX)");
4703 break;
c5aa993b
JM
4704 case TYPE_CODE_TYPEDEF:
4705 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4706 break;
5c4e30ca
DC
4707 case TYPE_CODE_NAMESPACE:
4708 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4709 break;
c5aa993b
JM
4710 default:
4711 printf_filtered ("(UNKNOWN TYPE CODE)");
4712 break;
c906108c
SS
4713 }
4714 puts_filtered ("\n");
cc1defb1 4715 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4716 if (TYPE_OBJFILE_OWNED (type))
4717 {
4718 printfi_filtered (spaces, "objfile ");
4719 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4720 }
4721 else
4722 {
4723 printfi_filtered (spaces, "gdbarch ");
4724 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4725 }
c906108c
SS
4726 printf_filtered ("\n");
4727 printfi_filtered (spaces, "target_type ");
d4f3574e 4728 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4729 printf_filtered ("\n");
4730 if (TYPE_TARGET_TYPE (type) != NULL)
4731 {
4732 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4733 }
4734 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4735 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4736 printf_filtered ("\n");
4737 printfi_filtered (spaces, "reference_type ");
d4f3574e 4738 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4739 printf_filtered ("\n");
2fdde8f8
DJ
4740 printfi_filtered (spaces, "type_chain ");
4741 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4742 printf_filtered ("\n");
7ba81444
MS
4743 printfi_filtered (spaces, "instance_flags 0x%x",
4744 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4745 if (TYPE_CONST (type))
4746 {
a9ff5f12 4747 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4748 }
4749 if (TYPE_VOLATILE (type))
4750 {
a9ff5f12 4751 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4752 }
4753 if (TYPE_CODE_SPACE (type))
4754 {
a9ff5f12 4755 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4756 }
4757 if (TYPE_DATA_SPACE (type))
4758 {
a9ff5f12 4759 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4760 }
8b2dbe47
KB
4761 if (TYPE_ADDRESS_CLASS_1 (type))
4762 {
a9ff5f12 4763 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4764 }
4765 if (TYPE_ADDRESS_CLASS_2 (type))
4766 {
a9ff5f12 4767 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4768 }
06d66ee9
TT
4769 if (TYPE_RESTRICT (type))
4770 {
a9ff5f12 4771 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4772 }
a2c2acaf
MW
4773 if (TYPE_ATOMIC (type))
4774 {
a9ff5f12 4775 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4776 }
2fdde8f8 4777 puts_filtered ("\n");
876cecd0
TT
4778
4779 printfi_filtered (spaces, "flags");
762a036f 4780 if (TYPE_UNSIGNED (type))
c906108c 4781 {
a9ff5f12 4782 puts_filtered (" TYPE_UNSIGNED");
c906108c 4783 }
762a036f
FF
4784 if (TYPE_NOSIGN (type))
4785 {
a9ff5f12 4786 puts_filtered (" TYPE_NOSIGN");
762a036f 4787 }
34877895
PJ
4788 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4789 {
4790 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4791 }
762a036f 4792 if (TYPE_STUB (type))
c906108c 4793 {
a9ff5f12 4794 puts_filtered (" TYPE_STUB");
c906108c 4795 }
762a036f
FF
4796 if (TYPE_TARGET_STUB (type))
4797 {
a9ff5f12 4798 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4799 }
762a036f
FF
4800 if (TYPE_PROTOTYPED (type))
4801 {
a9ff5f12 4802 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4803 }
4804 if (TYPE_INCOMPLETE (type))
4805 {
a9ff5f12 4806 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4807 }
762a036f
FF
4808 if (TYPE_VARARGS (type))
4809 {
a9ff5f12 4810 puts_filtered (" TYPE_VARARGS");
762a036f 4811 }
f5f8a009
EZ
4812 /* This is used for things like AltiVec registers on ppc. Gcc emits
4813 an attribute for the array type, which tells whether or not we
4814 have a vector, instead of a regular array. */
4815 if (TYPE_VECTOR (type))
4816 {
a9ff5f12 4817 puts_filtered (" TYPE_VECTOR");
f5f8a009 4818 }
876cecd0
TT
4819 if (TYPE_FIXED_INSTANCE (type))
4820 {
4821 puts_filtered (" TYPE_FIXED_INSTANCE");
4822 }
4823 if (TYPE_STUB_SUPPORTED (type))
4824 {
4825 puts_filtered (" TYPE_STUB_SUPPORTED");
4826 }
4827 if (TYPE_NOTTEXT (type))
4828 {
4829 puts_filtered (" TYPE_NOTTEXT");
4830 }
c906108c
SS
4831 puts_filtered ("\n");
4832 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4833 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4834 puts_filtered ("\n");
4835 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4836 {
14e75d8e
JK
4837 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4838 printfi_filtered (spaces + 2,
4839 "[%d] enumval %s type ",
4840 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4841 else
4842 printfi_filtered (spaces + 2,
6b850546
DT
4843 "[%d] bitpos %s bitsize %d type ",
4844 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4845 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4846 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4847 printf_filtered (" name '%s' (",
4848 TYPE_FIELD_NAME (type, idx) != NULL
4849 ? TYPE_FIELD_NAME (type, idx)
4850 : "<NULL>");
d4f3574e 4851 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4852 printf_filtered (")\n");
4853 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4854 {
4855 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4856 }
4857 }
43bbcdc2
PH
4858 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4859 {
4860 printfi_filtered (spaces, "low %s%s high %s%s\n",
4861 plongest (TYPE_LOW_BOUND (type)),
4862 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4863 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4864 TYPE_HIGH_BOUND_UNDEFINED (type)
4865 ? " (undefined)" : "");
43bbcdc2 4866 }
c906108c 4867
b4ba55a1
JB
4868 switch (TYPE_SPECIFIC_FIELD (type))
4869 {
4870 case TYPE_SPECIFIC_CPLUS_STUFF:
4871 printfi_filtered (spaces, "cplus_stuff ");
4872 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4873 gdb_stdout);
4874 puts_filtered ("\n");
4875 print_cplus_stuff (type, spaces);
4876 break;
8da61cc4 4877
b4ba55a1
JB
4878 case TYPE_SPECIFIC_GNAT_STUFF:
4879 printfi_filtered (spaces, "gnat_stuff ");
4880 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4881 puts_filtered ("\n");
4882 print_gnat_stuff (type, spaces);
4883 break;
701c159d 4884
b4ba55a1
JB
4885 case TYPE_SPECIFIC_FLOATFORMAT:
4886 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4887 if (TYPE_FLOATFORMAT (type) == NULL
4888 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4889 puts_filtered ("(null)");
4890 else
0db7851f 4891 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4892 puts_filtered ("\n");
4893 break;
c906108c 4894
b6cdc2c1 4895 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4896 printfi_filtered (spaces, "calling_convention %d\n",
4897 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4898 /* tail_call_list is not printed. */
b4ba55a1 4899 break;
09e2d7c7
DE
4900
4901 case TYPE_SPECIFIC_SELF_TYPE:
4902 printfi_filtered (spaces, "self_type ");
4903 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4904 puts_filtered ("\n");
4905 break;
c906108c 4906 }
b4ba55a1 4907
c906108c
SS
4908 if (spaces == 0)
4909 obstack_free (&dont_print_type_obstack, NULL);
4910}
5212577a 4911\f
ae5a43e0
DJ
4912/* Trivial helpers for the libiberty hash table, for mapping one
4913 type to another. */
4914
fd90ace4 4915struct type_pair : public allocate_on_obstack
ae5a43e0 4916{
fd90ace4
YQ
4917 type_pair (struct type *old_, struct type *newobj_)
4918 : old (old_), newobj (newobj_)
4919 {}
4920
4921 struct type * const old, * const newobj;
ae5a43e0
DJ
4922};
4923
4924static hashval_t
4925type_pair_hash (const void *item)
4926{
9a3c8263 4927 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4928
ae5a43e0
DJ
4929 return htab_hash_pointer (pair->old);
4930}
4931
4932static int
4933type_pair_eq (const void *item_lhs, const void *item_rhs)
4934{
9a3c8263
SM
4935 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4936 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4937
ae5a43e0
DJ
4938 return lhs->old == rhs->old;
4939}
4940
4941/* Allocate the hash table used by copy_type_recursive to walk
4942 types without duplicates. We use OBJFILE's obstack, because
4943 OBJFILE is about to be deleted. */
4944
4945htab_t
4946create_copied_types_hash (struct objfile *objfile)
4947{
4948 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4949 NULL, &objfile->objfile_obstack,
4950 hashtab_obstack_allocate,
4951 dummy_obstack_deallocate);
4952}
4953
d9823cbb
KB
4954/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4955
4956static struct dynamic_prop_list *
4957copy_dynamic_prop_list (struct obstack *objfile_obstack,
4958 struct dynamic_prop_list *list)
4959{
4960 struct dynamic_prop_list *copy = list;
4961 struct dynamic_prop_list **node_ptr = &copy;
4962
4963 while (*node_ptr != NULL)
4964 {
4965 struct dynamic_prop_list *node_copy;
4966
224c3ddb
SM
4967 node_copy = ((struct dynamic_prop_list *)
4968 obstack_copy (objfile_obstack, *node_ptr,
4969 sizeof (struct dynamic_prop_list)));
283a9958 4970 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4971 *node_ptr = node_copy;
4972
4973 node_ptr = &node_copy->next;
4974 }
4975
4976 return copy;
4977}
4978
7ba81444 4979/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4980 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4981 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4982 it is not associated with OBJFILE. */
ae5a43e0
DJ
4983
4984struct type *
7ba81444
MS
4985copy_type_recursive (struct objfile *objfile,
4986 struct type *type,
ae5a43e0
DJ
4987 htab_t copied_types)
4988{
ae5a43e0
DJ
4989 void **slot;
4990 struct type *new_type;
4991
e9bb382b 4992 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4993 return type;
4994
7ba81444
MS
4995 /* This type shouldn't be pointing to any types in other objfiles;
4996 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4997 gdb_assert (TYPE_OBJFILE (type) == objfile);
4998
fd90ace4
YQ
4999 struct type_pair pair (type, nullptr);
5000
ae5a43e0
DJ
5001 slot = htab_find_slot (copied_types, &pair, INSERT);
5002 if (*slot != NULL)
fe978cb0 5003 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5004
e9bb382b 5005 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5006
5007 /* We must add the new type to the hash table immediately, in case
5008 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5009 struct type_pair *stored
5010 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5011
ae5a43e0
DJ
5012 *slot = stored;
5013
876cecd0
TT
5014 /* Copy the common fields of types. For the main type, we simply
5015 copy the entire thing and then update specific fields as needed. */
5016 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5017 TYPE_OBJFILE_OWNED (new_type) = 0;
5018 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5019
ae5a43e0
DJ
5020 if (TYPE_NAME (type))
5021 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
5022
5023 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5024 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5025
5026 /* Copy the fields. */
ae5a43e0
DJ
5027 if (TYPE_NFIELDS (type))
5028 {
5029 int i, nfields;
5030
5031 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
5032 TYPE_FIELDS (new_type) = (struct field *)
5033 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
5034 for (i = 0; i < nfields; i++)
5035 {
7ba81444
MS
5036 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5037 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
5038 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5039 if (TYPE_FIELD_TYPE (type, i))
5040 TYPE_FIELD_TYPE (new_type, i)
5041 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5042 copied_types);
5043 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5044 TYPE_FIELD_NAME (new_type, i) =
5045 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5046 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5047 {
d6a843b5
JK
5048 case FIELD_LOC_KIND_BITPOS:
5049 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5050 TYPE_FIELD_BITPOS (type, i));
5051 break;
14e75d8e
JK
5052 case FIELD_LOC_KIND_ENUMVAL:
5053 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5054 TYPE_FIELD_ENUMVAL (type, i));
5055 break;
d6a843b5
JK
5056 case FIELD_LOC_KIND_PHYSADDR:
5057 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5058 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5059 break;
5060 case FIELD_LOC_KIND_PHYSNAME:
5061 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5062 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5063 i)));
5064 break;
5065 default:
5066 internal_error (__FILE__, __LINE__,
5067 _("Unexpected type field location kind: %d"),
5068 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5069 }
5070 }
5071 }
5072
0963b4bd 5073 /* For range types, copy the bounds information. */
43bbcdc2
PH
5074 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5075 {
2fabdf33
AB
5076 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5077 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
5078 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5079 }
5080
d9823cbb
KB
5081 if (TYPE_DYN_PROP_LIST (type) != NULL)
5082 TYPE_DYN_PROP_LIST (new_type)
5083 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5084 TYPE_DYN_PROP_LIST (type));
5085
3cdcd0ce 5086
ae5a43e0
DJ
5087 /* Copy pointers to other types. */
5088 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5089 TYPE_TARGET_TYPE (new_type) =
5090 copy_type_recursive (objfile,
5091 TYPE_TARGET_TYPE (type),
5092 copied_types);
f6b3afbf 5093
ae5a43e0
DJ
5094 /* Maybe copy the type_specific bits.
5095
5096 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5097 base classes and methods. There's no fundamental reason why we
5098 can't, but at the moment it is not needed. */
5099
f6b3afbf
DE
5100 switch (TYPE_SPECIFIC_FIELD (type))
5101 {
5102 case TYPE_SPECIFIC_NONE:
5103 break;
5104 case TYPE_SPECIFIC_FUNC:
5105 INIT_FUNC_SPECIFIC (new_type);
5106 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5107 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5108 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5109 break;
5110 case TYPE_SPECIFIC_FLOATFORMAT:
5111 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5112 break;
5113 case TYPE_SPECIFIC_CPLUS_STUFF:
5114 INIT_CPLUS_SPECIFIC (new_type);
5115 break;
5116 case TYPE_SPECIFIC_GNAT_STUFF:
5117 INIT_GNAT_SPECIFIC (new_type);
5118 break;
09e2d7c7
DE
5119 case TYPE_SPECIFIC_SELF_TYPE:
5120 set_type_self_type (new_type,
5121 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5122 copied_types));
5123 break;
f6b3afbf
DE
5124 default:
5125 gdb_assert_not_reached ("bad type_specific_kind");
5126 }
ae5a43e0
DJ
5127
5128 return new_type;
5129}
5130
4af88198
JB
5131/* Make a copy of the given TYPE, except that the pointer & reference
5132 types are not preserved.
5133
5134 This function assumes that the given type has an associated objfile.
5135 This objfile is used to allocate the new type. */
5136
5137struct type *
5138copy_type (const struct type *type)
5139{
5140 struct type *new_type;
5141
e9bb382b 5142 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5143
e9bb382b 5144 new_type = alloc_type_copy (type);
4af88198
JB
5145 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5146 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5147 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5148 sizeof (struct main_type));
d9823cbb
KB
5149 if (TYPE_DYN_PROP_LIST (type) != NULL)
5150 TYPE_DYN_PROP_LIST (new_type)
5151 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5152 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5153
5154 return new_type;
5155}
5212577a 5156\f
e9bb382b
UW
5157/* Helper functions to initialize architecture-specific types. */
5158
5159/* Allocate a type structure associated with GDBARCH and set its
5160 CODE, LENGTH, and NAME fields. */
5212577a 5161
e9bb382b
UW
5162struct type *
5163arch_type (struct gdbarch *gdbarch,
77b7c781 5164 enum type_code code, int bit, const char *name)
e9bb382b
UW
5165{
5166 struct type *type;
5167
5168 type = alloc_type_arch (gdbarch);
ae438bc5 5169 set_type_code (type, code);
77b7c781
UW
5170 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5171 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5172
5173 if (name)
6c214e7c 5174 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5175
5176 return type;
5177}
5178
5179/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5180 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5181 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5182
e9bb382b
UW
5183struct type *
5184arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5185 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5186{
5187 struct type *t;
5188
77b7c781 5189 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5190 if (unsigned_p)
5191 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5192
5193 return t;
5194}
5195
5196/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5197 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5198 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5199
e9bb382b
UW
5200struct type *
5201arch_character_type (struct gdbarch *gdbarch,
695bfa52 5202 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5203{
5204 struct type *t;
5205
77b7c781 5206 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5207 if (unsigned_p)
5208 TYPE_UNSIGNED (t) = 1;
5209
5210 return t;
5211}
5212
5213/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5214 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5215 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5216
e9bb382b
UW
5217struct type *
5218arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5219 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5220{
5221 struct type *t;
5222
77b7c781 5223 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5224 if (unsigned_p)
5225 TYPE_UNSIGNED (t) = 1;
5226
5227 return t;
5228}
5229
5230/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5231 BIT is the type size in bits; if BIT equals -1, the size is
5232 determined by the floatformat. NAME is the type name. Set the
5233 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5234
27067745 5235struct type *
e9bb382b 5236arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5237 int bit, const char *name,
5238 const struct floatformat **floatformats)
8da61cc4 5239{
0db7851f 5240 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5241 struct type *t;
5242
0db7851f 5243 bit = verify_floatformat (bit, fmt);
77b7c781 5244 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5245 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5246
8da61cc4
DJ
5247 return t;
5248}
5249
88dfca6c
UW
5250/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5251 BIT is the type size in bits. NAME is the type name. */
5252
5253struct type *
5254arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5255{
5256 struct type *t;
5257
77b7c781 5258 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5259 return t;
5260}
5261
e9bb382b
UW
5262/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5263 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5264
27067745 5265struct type *
e9bb382b 5266arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5267 const char *name, struct type *target_type)
27067745
UW
5268{
5269 struct type *t;
d8734c88 5270
e9bb382b 5271 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5272 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5273 TYPE_TARGET_TYPE (t) = target_type;
5274 return t;
5275}
5276
88dfca6c
UW
5277/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5278 BIT is the pointer type size in bits. NAME is the type name.
5279 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5280 TYPE_UNSIGNED flag. */
5281
5282struct type *
5283arch_pointer_type (struct gdbarch *gdbarch,
5284 int bit, const char *name, struct type *target_type)
5285{
5286 struct type *t;
5287
77b7c781 5288 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5289 TYPE_TARGET_TYPE (t) = target_type;
5290 TYPE_UNSIGNED (t) = 1;
5291 return t;
5292}
5293
e9bb382b 5294/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5295 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5296
e9bb382b 5297struct type *
77b7c781 5298arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5299{
e9bb382b
UW
5300 struct type *type;
5301
77b7c781 5302 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5303 TYPE_UNSIGNED (type) = 1;
81516450
DE
5304 TYPE_NFIELDS (type) = 0;
5305 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5306 TYPE_FIELDS (type)
77b7c781 5307 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5308
5309 return type;
5310}
5311
5312/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5313 position BITPOS is called NAME. Pass NAME as "" for fields that
5314 should not be printed. */
5315
5316void
5317append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5318 struct type *field_type, const char *name)
81516450
DE
5319{
5320 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5321 int field_nr = TYPE_NFIELDS (type);
5322
5323 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5324 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5325 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5326 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5327 gdb_assert (name != NULL);
5328
5329 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5330 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5331 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5332 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5333 ++TYPE_NFIELDS (type);
5334}
5335
5336/* Special version of append_flags_type_field to add a flag field.
5337 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5338 position BITPOS is called NAME. */
5212577a 5339
e9bb382b 5340void
695bfa52 5341append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5342{
81516450 5343 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5344
81516450
DE
5345 append_flags_type_field (type, bitpos, 1,
5346 builtin_type (gdbarch)->builtin_bool,
5347 name);
e9bb382b
UW
5348}
5349
5350/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5351 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5352
e9bb382b 5353struct type *
695bfa52
TT
5354arch_composite_type (struct gdbarch *gdbarch, const char *name,
5355 enum type_code code)
e9bb382b
UW
5356{
5357 struct type *t;
d8734c88 5358
e9bb382b
UW
5359 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5360 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5361 TYPE_NAME (t) = name;
e9bb382b
UW
5362 INIT_CPLUS_SPECIFIC (t);
5363 return t;
5364}
5365
5366/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5367 Do not set the field's position or adjust the type's length;
5368 the caller should do so. Return the new field. */
5212577a 5369
f5dff777 5370struct field *
695bfa52 5371append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5372 struct type *field)
e9bb382b
UW
5373{
5374 struct field *f;
d8734c88 5375
e9bb382b 5376 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5377 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5378 TYPE_NFIELDS (t));
e9bb382b
UW
5379 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5380 memset (f, 0, sizeof f[0]);
5381 FIELD_TYPE (f[0]) = field;
5382 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5383 return f;
5384}
5385
5386/* Add new field with name NAME and type FIELD to composite type T.
5387 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5388
f5dff777 5389void
695bfa52 5390append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5391 struct type *field, int alignment)
5392{
5393 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5394
e9bb382b
UW
5395 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5396 {
5397 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5398 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5399 }
5400 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5401 {
5402 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5403 if (TYPE_NFIELDS (t) > 1)
5404 {
f41f5e61
PA
5405 SET_FIELD_BITPOS (f[0],
5406 (FIELD_BITPOS (f[-1])
5407 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5408 * TARGET_CHAR_BIT)));
e9bb382b
UW
5409
5410 if (alignment)
5411 {
86c3c1fc
AB
5412 int left;
5413
5414 alignment *= TARGET_CHAR_BIT;
5415 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5416
e9bb382b
UW
5417 if (left)
5418 {
f41f5e61 5419 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5420 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5421 }
5422 }
5423 }
5424 }
5425}
5426
5427/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5428
e9bb382b 5429void
695bfa52 5430append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5431 struct type *field)
5432{
5433 append_composite_type_field_aligned (t, name, field, 0);
5434}
5435
000177f0
AC
5436static struct gdbarch_data *gdbtypes_data;
5437
5438const struct builtin_type *
5439builtin_type (struct gdbarch *gdbarch)
5440{
9a3c8263 5441 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5442}
5443
5444static void *
5445gdbtypes_post_init (struct gdbarch *gdbarch)
5446{
5447 struct builtin_type *builtin_type
5448 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5449
46bf5051 5450 /* Basic types. */
e9bb382b 5451 builtin_type->builtin_void
77b7c781 5452 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5453 builtin_type->builtin_char
5454 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5455 !gdbarch_char_signed (gdbarch), "char");
c413c448 5456 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5457 builtin_type->builtin_signed_char
5458 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5459 0, "signed char");
5460 builtin_type->builtin_unsigned_char
5461 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5462 1, "unsigned char");
5463 builtin_type->builtin_short
5464 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5465 0, "short");
5466 builtin_type->builtin_unsigned_short
5467 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5468 1, "unsigned short");
5469 builtin_type->builtin_int
5470 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5471 0, "int");
5472 builtin_type->builtin_unsigned_int
5473 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5474 1, "unsigned int");
5475 builtin_type->builtin_long
5476 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5477 0, "long");
5478 builtin_type->builtin_unsigned_long
5479 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5480 1, "unsigned long");
5481 builtin_type->builtin_long_long
5482 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5483 0, "long long");
5484 builtin_type->builtin_unsigned_long_long
5485 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5486 1, "unsigned long long");
a6d0f249
AH
5487 builtin_type->builtin_half
5488 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5489 "half", gdbarch_half_format (gdbarch));
70bd8e24 5490 builtin_type->builtin_float
e9bb382b 5491 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5492 "float", gdbarch_float_format (gdbarch));
70bd8e24 5493 builtin_type->builtin_double
e9bb382b 5494 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5495 "double", gdbarch_double_format (gdbarch));
70bd8e24 5496 builtin_type->builtin_long_double
e9bb382b 5497 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5498 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5499 builtin_type->builtin_complex
e9bb382b
UW
5500 = arch_complex_type (gdbarch, "complex",
5501 builtin_type->builtin_float);
70bd8e24 5502 builtin_type->builtin_double_complex
e9bb382b
UW
5503 = arch_complex_type (gdbarch, "double complex",
5504 builtin_type->builtin_double);
5505 builtin_type->builtin_string
77b7c781 5506 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5507 builtin_type->builtin_bool
77b7c781 5508 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5509
7678ef8f
TJB
5510 /* The following three are about decimal floating point types, which
5511 are 32-bits, 64-bits and 128-bits respectively. */
5512 builtin_type->builtin_decfloat
88dfca6c 5513 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5514 builtin_type->builtin_decdouble
88dfca6c 5515 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5516 builtin_type->builtin_declong
88dfca6c 5517 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5518
69feb676 5519 /* "True" character types. */
e9bb382b
UW
5520 builtin_type->builtin_true_char
5521 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5522 builtin_type->builtin_true_unsigned_char
5523 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5524
df4df182 5525 /* Fixed-size integer types. */
e9bb382b
UW
5526 builtin_type->builtin_int0
5527 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5528 builtin_type->builtin_int8
5529 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5530 builtin_type->builtin_uint8
5531 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5532 builtin_type->builtin_int16
5533 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5534 builtin_type->builtin_uint16
5535 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5536 builtin_type->builtin_int24
5537 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5538 builtin_type->builtin_uint24
5539 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5540 builtin_type->builtin_int32
5541 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5542 builtin_type->builtin_uint32
5543 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5544 builtin_type->builtin_int64
5545 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5546 builtin_type->builtin_uint64
5547 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5548 builtin_type->builtin_int128
5549 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5550 builtin_type->builtin_uint128
5551 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5552 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5553 TYPE_INSTANCE_FLAG_NOTTEXT;
5554 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5555 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5556
9a22f0d0
PM
5557 /* Wide character types. */
5558 builtin_type->builtin_char16
53e710ac 5559 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5560 builtin_type->builtin_char32
53e710ac 5561 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5562 builtin_type->builtin_wchar
5563 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5564 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5565
46bf5051 5566 /* Default data/code pointer types. */
e9bb382b
UW
5567 builtin_type->builtin_data_ptr
5568 = lookup_pointer_type (builtin_type->builtin_void);
5569 builtin_type->builtin_func_ptr
5570 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5571 builtin_type->builtin_func_func
5572 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5573
78267919 5574 /* This type represents a GDB internal function. */
e9bb382b
UW
5575 builtin_type->internal_fn
5576 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5577 "<internal function>");
78267919 5578
e81e7f5e
SC
5579 /* This type represents an xmethod. */
5580 builtin_type->xmethod
5581 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5582
46bf5051
UW
5583 return builtin_type;
5584}
5585
46bf5051
UW
5586/* This set of objfile-based types is intended to be used by symbol
5587 readers as basic types. */
5588
7a102139
TT
5589static const struct objfile_key<struct objfile_type,
5590 gdb::noop_deleter<struct objfile_type>>
5591 objfile_type_data;
46bf5051
UW
5592
5593const struct objfile_type *
5594objfile_type (struct objfile *objfile)
5595{
5596 struct gdbarch *gdbarch;
7a102139 5597 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5598
5599 if (objfile_type)
5600 return objfile_type;
5601
5602 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5603 1, struct objfile_type);
5604
5605 /* Use the objfile architecture to determine basic type properties. */
5606 gdbarch = get_objfile_arch (objfile);
5607
5608 /* Basic types. */
5609 objfile_type->builtin_void
77b7c781 5610 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5611 objfile_type->builtin_char
19f392bc
UW
5612 = init_integer_type (objfile, TARGET_CHAR_BIT,
5613 !gdbarch_char_signed (gdbarch), "char");
c413c448 5614 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5615 objfile_type->builtin_signed_char
19f392bc
UW
5616 = init_integer_type (objfile, TARGET_CHAR_BIT,
5617 0, "signed char");
46bf5051 5618 objfile_type->builtin_unsigned_char
19f392bc
UW
5619 = init_integer_type (objfile, TARGET_CHAR_BIT,
5620 1, "unsigned char");
46bf5051 5621 objfile_type->builtin_short
19f392bc
UW
5622 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5623 0, "short");
46bf5051 5624 objfile_type->builtin_unsigned_short
19f392bc
UW
5625 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5626 1, "unsigned short");
46bf5051 5627 objfile_type->builtin_int
19f392bc
UW
5628 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5629 0, "int");
46bf5051 5630 objfile_type->builtin_unsigned_int
19f392bc
UW
5631 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5632 1, "unsigned int");
46bf5051 5633 objfile_type->builtin_long
19f392bc
UW
5634 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5635 0, "long");
46bf5051 5636 objfile_type->builtin_unsigned_long
19f392bc
UW
5637 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5638 1, "unsigned long");
46bf5051 5639 objfile_type->builtin_long_long
19f392bc
UW
5640 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5641 0, "long long");
46bf5051 5642 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5643 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5644 1, "unsigned long long");
46bf5051 5645 objfile_type->builtin_float
19f392bc
UW
5646 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5647 "float", gdbarch_float_format (gdbarch));
46bf5051 5648 objfile_type->builtin_double
19f392bc
UW
5649 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5650 "double", gdbarch_double_format (gdbarch));
46bf5051 5651 objfile_type->builtin_long_double
19f392bc
UW
5652 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5653 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5654
5655 /* This type represents a type that was unrecognized in symbol read-in. */
5656 objfile_type->builtin_error
19f392bc 5657 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5658
5659 /* The following set of types is used for symbols with no
5660 debug information. */
5661 objfile_type->nodebug_text_symbol
77b7c781 5662 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5663 "<text variable, no debug info>");
0875794a 5664 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5665 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5666 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5667 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5668 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5669 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5670 "<text from jump slot in .got.plt, no debug info>",
5671 objfile_type->nodebug_text_symbol);
46bf5051 5672 objfile_type->nodebug_data_symbol
46a4882b 5673 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5674 objfile_type->nodebug_unknown_symbol
46a4882b 5675 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5676 objfile_type->nodebug_tls_symbol
46a4882b 5677 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5678
5679 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5680 the same.
000177f0
AC
5681
5682 The upshot is:
5683 - gdb's `struct type' always describes the target's
5684 representation.
5685 - gdb's `struct value' objects should always hold values in
5686 target form.
5687 - gdb's CORE_ADDR values are addresses in the unified virtual
5688 address space that the assembler and linker work with. Thus,
5689 since target_read_memory takes a CORE_ADDR as an argument, it
5690 can access any memory on the target, even if the processor has
5691 separate code and data address spaces.
5692
46bf5051
UW
5693 In this context, objfile_type->builtin_core_addr is a bit odd:
5694 it's a target type for a value the target will never see. It's
5695 only used to hold the values of (typeless) linker symbols, which
5696 are indeed in the unified virtual address space. */
000177f0 5697
46bf5051 5698 objfile_type->builtin_core_addr
19f392bc
UW
5699 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5700 "__CORE_ADDR");
64c50499 5701
7a102139 5702 objfile_type_data.set (objfile, objfile_type);
46bf5051 5703 return objfile_type;
000177f0
AC
5704}
5705
6c265988 5706void _initialize_gdbtypes ();
c906108c 5707void
6c265988 5708_initialize_gdbtypes ()
c906108c 5709{
5674de60
UW
5710 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5711
ccce17b0
YQ
5712 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5713 _("Set debugging of C++ overloading."),
5714 _("Show debugging of C++ overloading."),
5715 _("When enabled, ranking of the "
5716 "functions is displayed."),
5717 NULL,
5718 show_overload_debug,
5719 &setdebuglist, &showdebuglist);
5674de60 5720
7ba81444 5721 /* Add user knob for controlling resolution of opaque types. */
5674de60 5722 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5723 &opaque_type_resolution,
5724 _("Set resolution of opaque struct/class/union"
5725 " types (if set before loading symbols)."),
5726 _("Show resolution of opaque struct/class/union"
5727 " types (if set before loading symbols)."),
5728 NULL, NULL,
5674de60
UW
5729 show_opaque_type_resolution,
5730 &setlist, &showlist);
a451cb65
KS
5731
5732 /* Add an option to permit non-strict type checking. */
5733 add_setshow_boolean_cmd ("type", class_support,
5734 &strict_type_checking,
5735 _("Set strict type checking."),
5736 _("Show strict type checking."),
5737 NULL, NULL,
5738 show_strict_type_checking,
5739 &setchecklist, &showchecklist);
c906108c 5740}