]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gdbtypes.c
daily update
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
d7f0b9ce 2 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
b6ba6518 3 Free Software Foundation, Inc.
c906108c
SS
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "bfd.h"
26#include "symtab.h"
27#include "symfile.h"
28#include "objfiles.h"
29#include "gdbtypes.h"
30#include "expression.h"
31#include "language.h"
32#include "target.h"
33#include "value.h"
34#include "demangle.h"
35#include "complaints.h"
36#include "gdbcmd.h"
c91ecb25 37#include "wrapper.h"
015a42b4 38#include "cp-abi.h"
a02fd225 39#include "gdb_assert.h"
c906108c
SS
40
41/* These variables point to the objects
42 representing the predefined C data types. */
43
44struct type *builtin_type_void;
45struct type *builtin_type_char;
9e0b60a8 46struct type *builtin_type_true_char;
c906108c
SS
47struct type *builtin_type_short;
48struct type *builtin_type_int;
49struct type *builtin_type_long;
50struct type *builtin_type_long_long;
51struct type *builtin_type_signed_char;
52struct type *builtin_type_unsigned_char;
53struct type *builtin_type_unsigned_short;
54struct type *builtin_type_unsigned_int;
55struct type *builtin_type_unsigned_long;
56struct type *builtin_type_unsigned_long_long;
57struct type *builtin_type_float;
58struct type *builtin_type_double;
59struct type *builtin_type_long_double;
60struct type *builtin_type_complex;
61struct type *builtin_type_double_complex;
62struct type *builtin_type_string;
63struct type *builtin_type_int8;
64struct type *builtin_type_uint8;
65struct type *builtin_type_int16;
66struct type *builtin_type_uint16;
67struct type *builtin_type_int32;
68struct type *builtin_type_uint32;
69struct type *builtin_type_int64;
70struct type *builtin_type_uint64;
8b982acf
EZ
71struct type *builtin_type_int128;
72struct type *builtin_type_uint128;
c906108c 73struct type *builtin_type_bool;
ac3aafc7
EZ
74
75/* 128 bit long vector types */
3139facc 76struct type *builtin_type_v2_double;
ac3aafc7 77struct type *builtin_type_v4_float;
3139facc 78struct type *builtin_type_v2_int64;
ac3aafc7
EZ
79struct type *builtin_type_v4_int32;
80struct type *builtin_type_v8_int16;
81struct type *builtin_type_v16_int8;
82/* 64 bit long vector types */
6599f021 83struct type *builtin_type_v2_float;
ac3aafc7
EZ
84struct type *builtin_type_v2_int32;
85struct type *builtin_type_v4_int16;
86struct type *builtin_type_v8_int8;
87
917317f4 88struct type *builtin_type_v4sf;
c2d11a7d 89struct type *builtin_type_v4si;
08cf96df 90struct type *builtin_type_v16qi;
c2d11a7d 91struct type *builtin_type_v8qi;
08cf96df 92struct type *builtin_type_v8hi;
c2d11a7d
JM
93struct type *builtin_type_v4hi;
94struct type *builtin_type_v2si;
b063e7a2
AC
95struct type *builtin_type_vec64;
96struct type *builtin_type_vec64i;
08cf96df 97struct type *builtin_type_vec128;
3139facc 98struct type *builtin_type_vec128i;
598f52df
AC
99struct type *builtin_type_ieee_single_big;
100struct type *builtin_type_ieee_single_little;
101struct type *builtin_type_ieee_double_big;
102struct type *builtin_type_ieee_double_little;
103struct type *builtin_type_ieee_double_littlebyte_bigword;
104struct type *builtin_type_i387_ext;
105struct type *builtin_type_m68881_ext;
106struct type *builtin_type_i960_ext;
107struct type *builtin_type_m88110_ext;
108struct type *builtin_type_m88110_harris_ext;
109struct type *builtin_type_arm_ext_big;
110struct type *builtin_type_arm_ext_littlebyte_bigword;
111struct type *builtin_type_ia64_spill_big;
112struct type *builtin_type_ia64_spill_little;
113struct type *builtin_type_ia64_quad_big;
114struct type *builtin_type_ia64_quad_little;
090a2205 115struct type *builtin_type_void_data_ptr;
ee3a7b7f 116struct type *builtin_type_void_func_ptr;
c4093a6a
JM
117struct type *builtin_type_CORE_ADDR;
118struct type *builtin_type_bfd_vma;
c906108c
SS
119
120int opaque_type_resolution = 1;
5d161b24 121int overload_debug = 0;
c906108c 122
c5aa993b
JM
123struct extra
124 {
125 char str[128];
126 int len;
8c990f3c 127 }; /* maximum extension is 128! FIXME */
c906108c 128
a14ed312
KB
129static void add_name (struct extra *, char *);
130static void add_mangled_type (struct extra *, struct type *);
c906108c 131#if 0
a14ed312 132static void cfront_mangle_name (struct type *, int, int);
c906108c 133#endif
a14ed312 134static void print_bit_vector (B_TYPE *, int);
ad2f7632 135static void print_arg_types (struct field *, int, int);
a14ed312
KB
136static void dump_fn_fieldlists (struct type *, int);
137static void print_cplus_stuff (struct type *, int);
138static void virtual_base_list_aux (struct type *dclass);
7a292a7a 139
c906108c
SS
140
141/* Alloc a new type structure and fill it with some defaults. If
142 OBJFILE is non-NULL, then allocate the space for the type structure
2fdde8f8
DJ
143 in that objfile's type_obstack. Otherwise allocate the new type structure
144 by xmalloc () (for permanent types). */
c906108c
SS
145
146struct type *
fba45db2 147alloc_type (struct objfile *objfile)
c906108c
SS
148{
149 register struct type *type;
150
151 /* Alloc the structure and start off with all fields zeroed. */
152
153 if (objfile == NULL)
154 {
2fdde8f8
DJ
155 type = xmalloc (sizeof (struct type));
156 memset (type, 0, sizeof (struct type));
157 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
c906108c
SS
158 }
159 else
160 {
2fdde8f8
DJ
161 type = obstack_alloc (&objfile->type_obstack,
162 sizeof (struct type));
163 memset (type, 0, sizeof (struct type));
164 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->type_obstack,
165 sizeof (struct main_type));
c906108c
SS
166 OBJSTAT (objfile, n_types++);
167 }
2fdde8f8 168 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
c906108c
SS
169
170 /* Initialize the fields that might not be zero. */
171
172 TYPE_CODE (type) = TYPE_CODE_UNDEF;
173 TYPE_OBJFILE (type) = objfile;
174 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 175 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c
SS
176
177 return (type);
178}
179
2fdde8f8
DJ
180/* Alloc a new type instance structure, fill it with some defaults,
181 and point it at OLDTYPE. Allocate the new type instance from the
182 same place as OLDTYPE. */
183
184static struct type *
185alloc_type_instance (struct type *oldtype)
186{
187 struct type *type;
188
189 /* Allocate the structure. */
190
191 if (TYPE_OBJFILE (oldtype) == NULL)
192 {
193 type = xmalloc (sizeof (struct type));
194 memset (type, 0, sizeof (struct type));
195 }
196 else
197 {
198 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->type_obstack,
199 sizeof (struct type));
200 memset (type, 0, sizeof (struct type));
201 }
202 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
203
204 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
205
206 return (type);
207}
208
209/* Clear all remnants of the previous type at TYPE, in preparation for
210 replacing it with something else. */
211static void
212smash_type (struct type *type)
213{
214 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
215
216 /* For now, delete the rings. */
217 TYPE_CHAIN (type) = type;
218
219 /* For now, leave the pointer/reference types alone. */
220}
221
c906108c
SS
222/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
223 to a pointer to memory where the pointer type should be stored.
224 If *TYPEPTR is zero, update it to point to the pointer type we return.
225 We allocate new memory if needed. */
226
227struct type *
fba45db2 228make_pointer_type (struct type *type, struct type **typeptr)
c906108c 229{
c5aa993b 230 register struct type *ntype; /* New type */
c906108c
SS
231 struct objfile *objfile;
232
233 ntype = TYPE_POINTER_TYPE (type);
234
c5aa993b 235 if (ntype)
c906108c 236 {
c5aa993b
JM
237 if (typeptr == 0)
238 return ntype; /* Don't care about alloc, and have new type. */
c906108c 239 else if (*typeptr == 0)
c5aa993b 240 {
c906108c
SS
241 *typeptr = ntype; /* Tracking alloc, and we have new type. */
242 return ntype;
c5aa993b 243 }
c906108c
SS
244 }
245
246 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
247 {
248 ntype = alloc_type (TYPE_OBJFILE (type));
249 if (typeptr)
250 *typeptr = ntype;
251 }
c5aa993b
JM
252 else
253 /* We have storage, but need to reset it. */
c906108c
SS
254 {
255 ntype = *typeptr;
256 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 257 smash_type (ntype);
c906108c
SS
258 TYPE_OBJFILE (ntype) = objfile;
259 }
260
261 TYPE_TARGET_TYPE (ntype) = type;
262 TYPE_POINTER_TYPE (type) = ntype;
263
264 /* FIXME! Assume the machine has only one representation for pointers! */
265
266 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
267 TYPE_CODE (ntype) = TYPE_CODE_PTR;
268
67b2adb2
AC
269 /* Mark pointers as unsigned. The target converts between pointers
270 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
271 ADDRESS_TO_POINTER(). */
c906108c 272 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
c5aa993b 273
c906108c
SS
274 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
275 TYPE_POINTER_TYPE (type) = ntype;
276
277 return ntype;
278}
279
280/* Given a type TYPE, return a type of pointers to that type.
281 May need to construct such a type if this is the first use. */
282
283struct type *
fba45db2 284lookup_pointer_type (struct type *type)
c906108c 285{
c5aa993b 286 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
287}
288
289/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
290 to a pointer to memory where the reference type should be stored.
291 If *TYPEPTR is zero, update it to point to the reference type we return.
292 We allocate new memory if needed. */
293
294struct type *
fba45db2 295make_reference_type (struct type *type, struct type **typeptr)
c906108c 296{
c5aa993b 297 register struct type *ntype; /* New type */
c906108c
SS
298 struct objfile *objfile;
299
300 ntype = TYPE_REFERENCE_TYPE (type);
301
c5aa993b 302 if (ntype)
c906108c 303 {
c5aa993b
JM
304 if (typeptr == 0)
305 return ntype; /* Don't care about alloc, and have new type. */
c906108c 306 else if (*typeptr == 0)
c5aa993b 307 {
c906108c
SS
308 *typeptr = ntype; /* Tracking alloc, and we have new type. */
309 return ntype;
c5aa993b 310 }
c906108c
SS
311 }
312
313 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
314 {
315 ntype = alloc_type (TYPE_OBJFILE (type));
316 if (typeptr)
317 *typeptr = ntype;
318 }
c5aa993b
JM
319 else
320 /* We have storage, but need to reset it. */
c906108c
SS
321 {
322 ntype = *typeptr;
323 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 324 smash_type (ntype);
c906108c
SS
325 TYPE_OBJFILE (ntype) = objfile;
326 }
327
328 TYPE_TARGET_TYPE (ntype) = type;
329 TYPE_REFERENCE_TYPE (type) = ntype;
330
331 /* FIXME! Assume the machine has only one representation for references,
332 and that it matches the (only) representation for pointers! */
333
334 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
335 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 336
c906108c
SS
337 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
338 TYPE_REFERENCE_TYPE (type) = ntype;
339
340 return ntype;
341}
342
343/* Same as above, but caller doesn't care about memory allocation details. */
344
345struct type *
fba45db2 346lookup_reference_type (struct type *type)
c906108c 347{
c5aa993b 348 return make_reference_type (type, (struct type **) 0);
c906108c
SS
349}
350
351/* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
352 to a pointer to memory where the function type should be stored.
353 If *TYPEPTR is zero, update it to point to the function type we return.
354 We allocate new memory if needed. */
355
356struct type *
fba45db2 357make_function_type (struct type *type, struct type **typeptr)
c906108c 358{
c5aa993b 359 register struct type *ntype; /* New type */
c906108c
SS
360 struct objfile *objfile;
361
362 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
363 {
364 ntype = alloc_type (TYPE_OBJFILE (type));
365 if (typeptr)
366 *typeptr = ntype;
367 }
c5aa993b
JM
368 else
369 /* We have storage, but need to reset it. */
c906108c
SS
370 {
371 ntype = *typeptr;
372 objfile = TYPE_OBJFILE (ntype);
2fdde8f8 373 smash_type (ntype);
c906108c
SS
374 TYPE_OBJFILE (ntype) = objfile;
375 }
376
377 TYPE_TARGET_TYPE (ntype) = type;
378
379 TYPE_LENGTH (ntype) = 1;
380 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 381
c906108c
SS
382 return ntype;
383}
384
385
386/* Given a type TYPE, return a type of functions that return that type.
387 May need to construct such a type if this is the first use. */
388
389struct type *
fba45db2 390lookup_function_type (struct type *type)
c906108c 391{
c5aa993b 392 return make_function_type (type, (struct type **) 0);
c906108c
SS
393}
394
47663de5
MS
395/* Identify address space identifier by name --
396 return the integer flag defined in gdbtypes.h. */
397extern int
398address_space_name_to_int (char *space_identifier)
399{
400 /* Check for known address space delimiters. */
401 if (!strcmp (space_identifier, "code"))
402 return TYPE_FLAG_CODE_SPACE;
403 else if (!strcmp (space_identifier, "data"))
404 return TYPE_FLAG_DATA_SPACE;
405 else
406 error ("Unknown address space specifier: \"%s\"", space_identifier);
407}
408
409/* Identify address space identifier by integer flag as defined in
410 gdbtypes.h -- return the string version of the adress space name. */
411
412extern char *
413address_space_int_to_name (int space_flag)
414{
415 if (space_flag & TYPE_FLAG_CODE_SPACE)
416 return "code";
417 else if (space_flag & TYPE_FLAG_DATA_SPACE)
418 return "data";
419 else
420 return NULL;
421}
422
2fdde8f8
DJ
423/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
424 If STORAGE is non-NULL, create the new type instance there. */
47663de5
MS
425
426struct type *
2fdde8f8
DJ
427make_qualified_type (struct type *type, int new_flags,
428 struct type *storage)
47663de5
MS
429{
430 struct type *ntype;
431
432 ntype = type;
433 do {
2fdde8f8 434 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
47663de5 435 return ntype;
2fdde8f8 436 ntype = TYPE_CHAIN (ntype);
47663de5
MS
437 } while (ntype != type);
438
2fdde8f8
DJ
439 /* Create a new type instance. */
440 if (storage == NULL)
441 ntype = alloc_type_instance (type);
442 else
443 {
444 ntype = storage;
445 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
446 TYPE_CHAIN (ntype) = ntype;
447 }
47663de5
MS
448
449 /* Pointers or references to the original type are not relevant to
2fdde8f8 450 the new type. */
47663de5
MS
451 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
452 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 453
2fdde8f8
DJ
454 /* Chain the new qualified type to the old type. */
455 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
456 TYPE_CHAIN (type) = ntype;
457
458 /* Now set the instance flags and return the new type. */
459 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 460
47663de5
MS
461 return ntype;
462}
463
2fdde8f8
DJ
464/* Make an address-space-delimited variant of a type -- a type that
465 is identical to the one supplied except that it has an address
466 space attribute attached to it (such as "code" or "data").
467
468 This is for Harvard architectures. */
469
470struct type *
471make_type_with_address_space (struct type *type, int space_flag)
472{
473 struct type *ntype;
474 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
475 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE))
476 | space_flag);
477
478 return make_qualified_type (type, new_flags, NULL);
479}
c906108c
SS
480
481/* Make a "c-v" variant of a type -- a type that is identical to the
482 one supplied except that it may have const or volatile attributes
483 CNST is a flag for setting the const attribute
484 VOLTL is a flag for setting the volatile attribute
485 TYPE is the base type whose variant we are creating.
486 TYPEPTR, if nonzero, points
487 to a pointer to memory where the reference type should be stored.
488 If *TYPEPTR is zero, update it to point to the reference type we return.
489 We allocate new memory if needed. */
490
491struct type *
fba45db2 492make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
c906108c 493{
c5aa993b
JM
494 register struct type *ntype; /* New type */
495 register struct type *tmp_type = type; /* tmp type */
c906108c
SS
496 struct objfile *objfile;
497
2fdde8f8
DJ
498 int new_flags = (TYPE_INSTANCE_FLAGS (type)
499 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
c906108c 500
c906108c 501 if (cnst)
2fdde8f8 502 new_flags |= TYPE_FLAG_CONST;
c906108c
SS
503
504 if (voltl)
2fdde8f8 505 new_flags |= TYPE_FLAG_VOLATILE;
a02fd225 506
2fdde8f8 507 if (typeptr && *typeptr != NULL)
a02fd225 508 {
2fdde8f8
DJ
509 /* Objfile is per-core-type. This const-qualified type had best
510 belong to the same objfile as the type it is qualifying, unless
511 we are overwriting a stub type, in which case the safest thing
512 to do is to copy the core type into the new objfile. */
a02fd225 513
2fdde8f8
DJ
514 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type)
515 || TYPE_STUB (*typeptr));
516 if (TYPE_OBJFILE (*typeptr) != TYPE_OBJFILE (type))
517 {
518 TYPE_MAIN_TYPE (*typeptr)
519 = TYPE_ALLOC (*typeptr, sizeof (struct main_type));
520 *TYPE_MAIN_TYPE (*typeptr)
521 = *TYPE_MAIN_TYPE (type);
522 }
523 }
524
525 ntype = make_qualified_type (type, new_flags, typeptr ? *typeptr : NULL);
c906108c 526
2fdde8f8
DJ
527 if (typeptr != NULL)
528 *typeptr = ntype;
a02fd225 529
2fdde8f8 530 return ntype;
a02fd225 531}
c906108c 532
2fdde8f8
DJ
533/* Replace the contents of ntype with the type *type. This changes the
534 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
535 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 536
cda6c68a
JB
537 In order to build recursive types, it's inevitable that we'll need
538 to update types in place --- but this sort of indiscriminate
539 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
540 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
541 clear if more steps are needed. */
dd6bda65
DJ
542void
543replace_type (struct type *ntype, struct type *type)
544{
545 struct type *cv_chain, *as_chain, *ptr, *ref;
546
2fdde8f8 547 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 548
2fdde8f8
DJ
549 /* Assert that the two types have equivalent instance qualifiers.
550 This should be true for at least all of our debug readers. */
551 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
552}
553
c906108c
SS
554/* Implement direct support for MEMBER_TYPE in GNU C++.
555 May need to construct such a type if this is the first use.
556 The TYPE is the type of the member. The DOMAIN is the type
557 of the aggregate that the member belongs to. */
558
559struct type *
fba45db2 560lookup_member_type (struct type *type, struct type *domain)
c906108c
SS
561{
562 register struct type *mtype;
563
564 mtype = alloc_type (TYPE_OBJFILE (type));
565 smash_to_member_type (mtype, domain, type);
566 return (mtype);
567}
568
7b83ea04 569/* Allocate a stub method whose return type is TYPE.
c906108c
SS
570 This apparently happens for speed of symbol reading, since parsing
571 out the arguments to the method is cpu-intensive, the way we are doing
572 it. So, we will fill in arguments later.
573 This always returns a fresh type. */
574
575struct type *
fba45db2 576allocate_stub_method (struct type *type)
c906108c
SS
577{
578 struct type *mtype;
579
7e956337
FF
580 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
581 TYPE_OBJFILE (type));
c906108c
SS
582 TYPE_TARGET_TYPE (mtype) = type;
583 /* _DOMAIN_TYPE (mtype) = unknown yet */
c906108c
SS
584 return (mtype);
585}
586
587/* Create a range type using either a blank type supplied in RESULT_TYPE,
588 or creating a new type, inheriting the objfile from INDEX_TYPE.
589
590 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
591 HIGH_BOUND, inclusive.
592
593 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
594 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
595
596struct type *
fba45db2
KB
597create_range_type (struct type *result_type, struct type *index_type,
598 int low_bound, int high_bound)
c906108c
SS
599{
600 if (result_type == NULL)
601 {
602 result_type = alloc_type (TYPE_OBJFILE (index_type));
603 }
604 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
605 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 606 if (TYPE_STUB (index_type))
c906108c
SS
607 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
608 else
609 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
610 TYPE_NFIELDS (result_type) = 2;
611 TYPE_FIELDS (result_type) = (struct field *)
612 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
613 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
614 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
615 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
c5aa993b
JM
616 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
617 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
c906108c 618
c5aa993b 619 if (low_bound >= 0)
c906108c
SS
620 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
621
622 return (result_type);
623}
624
625/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
626 Return 1 of type is a range type, 0 if it is discrete (and bounds
627 will fit in LONGEST), or -1 otherwise. */
628
629int
fba45db2 630get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
631{
632 CHECK_TYPEDEF (type);
633 switch (TYPE_CODE (type))
634 {
635 case TYPE_CODE_RANGE:
636 *lowp = TYPE_LOW_BOUND (type);
637 *highp = TYPE_HIGH_BOUND (type);
638 return 1;
639 case TYPE_CODE_ENUM:
640 if (TYPE_NFIELDS (type) > 0)
641 {
642 /* The enums may not be sorted by value, so search all
643 entries */
644 int i;
645
646 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
647 for (i = 0; i < TYPE_NFIELDS (type); i++)
648 {
649 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
650 *lowp = TYPE_FIELD_BITPOS (type, i);
651 if (TYPE_FIELD_BITPOS (type, i) > *highp)
652 *highp = TYPE_FIELD_BITPOS (type, i);
653 }
654
655 /* Set unsigned indicator if warranted. */
c5aa993b 656 if (*lowp >= 0)
c906108c
SS
657 {
658 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
659 }
660 }
661 else
662 {
663 *lowp = 0;
664 *highp = -1;
665 }
666 return 0;
667 case TYPE_CODE_BOOL:
668 *lowp = 0;
669 *highp = 1;
670 return 0;
671 case TYPE_CODE_INT:
c5aa993b 672 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
673 return -1;
674 if (!TYPE_UNSIGNED (type))
675 {
c5aa993b 676 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
677 *highp = -*lowp - 1;
678 return 0;
679 }
680 /* ... fall through for unsigned ints ... */
681 case TYPE_CODE_CHAR:
682 *lowp = 0;
683 /* This round-about calculation is to avoid shifting by
7b83ea04
AC
684 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
685 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
686 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
687 *highp = (*highp - 1) | *highp;
688 return 0;
689 default:
690 return -1;
691 }
692}
693
694/* Create an array type using either a blank type supplied in RESULT_TYPE,
695 or creating a new type, inheriting the objfile from RANGE_TYPE.
696
697 Elements will be of type ELEMENT_TYPE, the indices will be of type
698 RANGE_TYPE.
699
700 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
701 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
702
703struct type *
fba45db2
KB
704create_array_type (struct type *result_type, struct type *element_type,
705 struct type *range_type)
c906108c
SS
706{
707 LONGEST low_bound, high_bound;
708
709 if (result_type == NULL)
710 {
711 result_type = alloc_type (TYPE_OBJFILE (range_type));
712 }
713 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
714 TYPE_TARGET_TYPE (result_type) = element_type;
715 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
716 low_bound = high_bound = 0;
717 CHECK_TYPEDEF (element_type);
718 TYPE_LENGTH (result_type) =
719 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
720 TYPE_NFIELDS (result_type) = 1;
721 TYPE_FIELDS (result_type) =
722 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
723 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
724 TYPE_FIELD_TYPE (result_type, 0) = range_type;
725 TYPE_VPTR_FIELDNO (result_type) = -1;
726
727 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
728 if (TYPE_LENGTH (result_type) == 0)
729 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
730
731 return (result_type);
732}
733
734/* Create a string type using either a blank type supplied in RESULT_TYPE,
735 or creating a new type. String types are similar enough to array of
736 char types that we can use create_array_type to build the basic type
737 and then bash it into a string type.
738
739 For fixed length strings, the range type contains 0 as the lower
740 bound and the length of the string minus one as the upper bound.
741
742 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
743 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
744
745struct type *
fba45db2 746create_string_type (struct type *result_type, struct type *range_type)
c906108c
SS
747{
748 result_type = create_array_type (result_type,
749 *current_language->string_char_type,
750 range_type);
751 TYPE_CODE (result_type) = TYPE_CODE_STRING;
752 return (result_type);
753}
754
755struct type *
fba45db2 756create_set_type (struct type *result_type, struct type *domain_type)
c906108c
SS
757{
758 LONGEST low_bound, high_bound, bit_length;
759 if (result_type == NULL)
760 {
761 result_type = alloc_type (TYPE_OBJFILE (domain_type));
762 }
763 TYPE_CODE (result_type) = TYPE_CODE_SET;
764 TYPE_NFIELDS (result_type) = 1;
765 TYPE_FIELDS (result_type) = (struct field *)
766 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
767 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
768
74a9bb82 769 if (!TYPE_STUB (domain_type))
c906108c
SS
770 {
771 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
772 low_bound = high_bound = 0;
773 bit_length = high_bound - low_bound + 1;
774 TYPE_LENGTH (result_type)
775 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
776 }
777 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
778
c5aa993b 779 if (low_bound >= 0)
c906108c
SS
780 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
781
782 return (result_type);
783}
784
917317f4
JM
785/* Construct and return a type of the form:
786 struct NAME { ELT_TYPE ELT_NAME[N]; }
787 We use these types for SIMD registers. For example, the type of
788 the SSE registers on the late x86-family processors is:
789 struct __builtin_v4sf { float f[4]; }
790 built by the function call:
791 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
792 The type returned is a permanent type, allocated using malloc; it
793 doesn't live in any objfile's obstack. */
c2d11a7d 794static struct type *
917317f4
JM
795init_simd_type (char *name,
796 struct type *elt_type,
797 char *elt_name,
798 int n)
799{
73d322b1
EZ
800 struct type *simd_type;
801 struct type *array_type;
802
803 simd_type = init_composite_type (name, TYPE_CODE_STRUCT);
804 array_type = create_array_type (0, elt_type,
805 create_range_type (0, builtin_type_int,
806 0, n-1));
807 append_composite_type_field (simd_type, elt_name, array_type);
808 return simd_type;
917317f4
JM
809}
810
ac3aafc7
EZ
811static struct type *
812init_vector_type (struct type *elt_type, int n)
813{
814 struct type *array_type;
815
816 array_type = create_array_type (0, elt_type,
817 create_range_type (0, builtin_type_int,
818 0, n-1));
819 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
820 return array_type;
821}
822
b063e7a2
AC
823static struct type *
824build_builtin_type_vec64 (void)
825{
826 /* Construct a type for the 64 bit registers. The type we're
827 building is this: */
828#if 0
829 union __gdb_builtin_type_vec64
830 {
831 int64_t uint64;
832 float v2_float[2];
833 int32_t v2_int32[2];
834 int16_t v4_int16[4];
835 int8_t v8_int8[8];
836 };
837#endif
838
839 struct type *t;
840
841 t = init_composite_type ("__gdb_builtin_type_vec64", TYPE_CODE_UNION);
842 append_composite_type_field (t, "uint64", builtin_type_int64);
843 append_composite_type_field (t, "v2_float", builtin_type_v2_float);
844 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
845 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
846 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
847
848 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
216b504f 849 TYPE_NAME (t) = "builtin_type_vec64";
b063e7a2
AC
850 return t;
851}
852
853static struct type *
854build_builtin_type_vec64i (void)
855{
856 /* Construct a type for the 64 bit registers. The type we're
857 building is this: */
858#if 0
859 union __gdb_builtin_type_vec64i
860 {
861 int64_t uint64;
862 int32_t v2_int32[2];
863 int16_t v4_int16[4];
864 int8_t v8_int8[8];
865 };
866#endif
867
868 struct type *t;
869
870 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
871 append_composite_type_field (t, "uint64", builtin_type_int64);
872 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
873 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
874 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
875
876 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
216b504f 877 TYPE_NAME (t) = "builtin_type_vec64i";
b063e7a2
AC
878 return t;
879}
880
08cf96df
EZ
881static struct type *
882build_builtin_type_vec128 (void)
883{
884 /* Construct a type for the 128 bit registers. The type we're
885 building is this: */
886#if 0
ac3aafc7 887 union __gdb_builtin_type_vec128
08cf96df 888 {
ac3aafc7
EZ
889 int128_t uint128;
890 float v4_float[4];
891 int32_t v4_int32[4];
892 int16_t v8_int16[8];
893 int8_t v16_int8[16];
08cf96df
EZ
894 };
895#endif
896
897 struct type *t;
08cf96df 898
73d322b1
EZ
899 t = init_composite_type ("__gdb_builtin_type_vec128", TYPE_CODE_UNION);
900 append_composite_type_field (t, "uint128", builtin_type_int128);
ac3aafc7
EZ
901 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
902 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
903 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
904 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
08cf96df 905
b063e7a2 906 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
216b504f 907 TYPE_NAME (t) = "builtin_type_vec128";
08cf96df
EZ
908 return t;
909}
917317f4 910
3139facc
MH
911static struct type *
912build_builtin_type_vec128i (void)
913{
914 /* 128-bit Intel SIMD registers */
915 struct type *t;
916
917 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
918 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
919 append_composite_type_field (t, "v2_double", builtin_type_v2_double);
920 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
921 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
922 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
923 append_composite_type_field (t, "v2_int64", builtin_type_v2_int64);
924 append_composite_type_field (t, "uint128", builtin_type_int128);
925
b063e7a2 926 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
216b504f 927 TYPE_NAME (t) = "builtin_type_vec128i";
3139facc
MH
928 return t;
929}
930
7b83ea04 931/* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
c906108c
SS
932 A MEMBER is a wierd thing -- it amounts to a typed offset into
933 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
934 include the offset (that's the value of the MEMBER itself), but does
935 include the structure type into which it points (for some reason).
936
937 When "smashing" the type, we preserve the objfile that the
938 old type pointed to, since we aren't changing where the type is actually
939 allocated. */
940
941void
fba45db2
KB
942smash_to_member_type (struct type *type, struct type *domain,
943 struct type *to_type)
c906108c
SS
944{
945 struct objfile *objfile;
946
947 objfile = TYPE_OBJFILE (type);
948
2fdde8f8 949 smash_type (type);
c906108c
SS
950 TYPE_OBJFILE (type) = objfile;
951 TYPE_TARGET_TYPE (type) = to_type;
952 TYPE_DOMAIN_TYPE (type) = domain;
953 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
954 TYPE_CODE (type) = TYPE_CODE_MEMBER;
955}
956
957/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
958 METHOD just means `function that gets an extra "this" argument'.
959
960 When "smashing" the type, we preserve the objfile that the
961 old type pointed to, since we aren't changing where the type is actually
962 allocated. */
963
964void
fba45db2 965smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
966 struct type *to_type, struct field *args,
967 int nargs, int varargs)
c906108c
SS
968{
969 struct objfile *objfile;
970
971 objfile = TYPE_OBJFILE (type);
972
2fdde8f8 973 smash_type (type);
c906108c
SS
974 TYPE_OBJFILE (type) = objfile;
975 TYPE_TARGET_TYPE (type) = to_type;
976 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
977 TYPE_FIELDS (type) = args;
978 TYPE_NFIELDS (type) = nargs;
979 if (varargs)
980 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
c906108c
SS
981 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
982 TYPE_CODE (type) = TYPE_CODE_METHOD;
983}
984
985/* Return a typename for a struct/union/enum type without "struct ",
986 "union ", or "enum ". If the type has a NULL name, return NULL. */
987
988char *
fba45db2 989type_name_no_tag (register const struct type *type)
c906108c
SS
990{
991 if (TYPE_TAG_NAME (type) != NULL)
992 return TYPE_TAG_NAME (type);
993
994 /* Is there code which expects this to return the name if there is no
995 tag name? My guess is that this is mainly used for C++ in cases where
996 the two will always be the same. */
997 return TYPE_NAME (type);
998}
999
7b83ea04 1000/* Lookup a primitive type named NAME.
c5aa993b 1001 Return zero if NAME is not a primitive type. */
c906108c
SS
1002
1003struct type *
fba45db2 1004lookup_primitive_typename (char *name)
c906108c 1005{
c5aa993b
JM
1006 struct type **const *p;
1007
1008 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
1009 {
0004e5a2 1010 if (STREQ (TYPE_NAME (**p), name))
c5aa993b
JM
1011 {
1012 return (**p);
1013 }
1014 }
1015 return (NULL);
c906108c
SS
1016}
1017
1018/* Lookup a typedef or primitive type named NAME,
1019 visible in lexical block BLOCK.
1020 If NOERR is nonzero, return zero if NAME is not suitably defined. */
1021
1022struct type *
fba45db2 1023lookup_typename (char *name, struct block *block, int noerr)
c906108c
SS
1024{
1025 register struct symbol *sym;
1026 register struct type *tmp;
1027
1028 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
1029 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1030 {
1031 tmp = lookup_primitive_typename (name);
1032 if (tmp)
1033 {
1034 return (tmp);
1035 }
1036 else if (!tmp && noerr)
1037 {
1038 return (NULL);
1039 }
1040 else
1041 {
1042 error ("No type named %s.", name);
1043 }
1044 }
1045 return (SYMBOL_TYPE (sym));
1046}
1047
1048struct type *
fba45db2 1049lookup_unsigned_typename (char *name)
c906108c
SS
1050{
1051 char *uns = alloca (strlen (name) + 10);
1052
1053 strcpy (uns, "unsigned ");
1054 strcpy (uns + 9, name);
1055 return (lookup_typename (uns, (struct block *) NULL, 0));
1056}
1057
1058struct type *
fba45db2 1059lookup_signed_typename (char *name)
c906108c
SS
1060{
1061 struct type *t;
1062 char *uns = alloca (strlen (name) + 8);
1063
1064 strcpy (uns, "signed ");
1065 strcpy (uns + 7, name);
1066 t = lookup_typename (uns, (struct block *) NULL, 1);
1067 /* If we don't find "signed FOO" just try again with plain "FOO". */
1068 if (t != NULL)
1069 return t;
1070 return lookup_typename (name, (struct block *) NULL, 0);
1071}
1072
1073/* Lookup a structure type named "struct NAME",
1074 visible in lexical block BLOCK. */
1075
1076struct type *
fba45db2 1077lookup_struct (char *name, struct block *block)
c906108c
SS
1078{
1079 register struct symbol *sym;
1080
1081 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1082 (struct symtab **) NULL);
1083
1084 if (sym == NULL)
1085 {
1086 error ("No struct type named %s.", name);
1087 }
1088 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1089 {
1090 error ("This context has class, union or enum %s, not a struct.", name);
1091 }
1092 return (SYMBOL_TYPE (sym));
1093}
1094
1095/* Lookup a union type named "union NAME",
1096 visible in lexical block BLOCK. */
1097
1098struct type *
fba45db2 1099lookup_union (char *name, struct block *block)
c906108c
SS
1100{
1101 register struct symbol *sym;
c5aa993b 1102 struct type *t;
c906108c
SS
1103
1104 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1105 (struct symtab **) NULL);
1106
1107 if (sym == NULL)
1108 error ("No union type named %s.", name);
1109
c5aa993b 1110 t = SYMBOL_TYPE (sym);
c906108c
SS
1111
1112 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1113 return (t);
1114
1115 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1116 * a further "declared_type" field to discover it is really a union.
1117 */
c5aa993b
JM
1118 if (HAVE_CPLUS_STRUCT (t))
1119 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
c906108c
SS
1120 return (t);
1121
1122 /* If we get here, it's not a union */
1123 error ("This context has class, struct or enum %s, not a union.", name);
1124}
1125
1126
1127/* Lookup an enum type named "enum NAME",
1128 visible in lexical block BLOCK. */
1129
1130struct type *
fba45db2 1131lookup_enum (char *name, struct block *block)
c906108c
SS
1132{
1133 register struct symbol *sym;
1134
c5aa993b 1135 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
c906108c
SS
1136 (struct symtab **) NULL);
1137 if (sym == NULL)
1138 {
1139 error ("No enum type named %s.", name);
1140 }
1141 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1142 {
1143 error ("This context has class, struct or union %s, not an enum.", name);
1144 }
1145 return (SYMBOL_TYPE (sym));
1146}
1147
1148/* Lookup a template type named "template NAME<TYPE>",
1149 visible in lexical block BLOCK. */
1150
1151struct type *
fba45db2 1152lookup_template_type (char *name, struct type *type, struct block *block)
c906108c
SS
1153{
1154 struct symbol *sym;
0004e5a2 1155 char *nam = (char *) alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
c906108c
SS
1156 strcpy (nam, name);
1157 strcat (nam, "<");
0004e5a2 1158 strcat (nam, TYPE_NAME (type));
c5aa993b 1159 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1160
c5aa993b 1161 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
c906108c
SS
1162
1163 if (sym == NULL)
1164 {
1165 error ("No template type named %s.", name);
1166 }
1167 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1168 {
1169 error ("This context has class, union or enum %s, not a struct.", name);
1170 }
1171 return (SYMBOL_TYPE (sym));
1172}
1173
7b83ea04 1174/* Given a type TYPE, lookup the type of the component of type named NAME.
c906108c
SS
1175
1176 TYPE can be either a struct or union, or a pointer or reference to a struct or
1177 union. If it is a pointer or reference, its target type is automatically used.
1178 Thus '.' and '->' are interchangable, as specified for the definitions of the
1179 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1180
1181 If NOERR is nonzero, return zero if NAME is not suitably defined.
1182 If NAME is the name of a baseclass type, return that type. */
1183
1184struct type *
fba45db2 1185lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1186{
1187 int i;
1188
1189 for (;;)
1190 {
1191 CHECK_TYPEDEF (type);
1192 if (TYPE_CODE (type) != TYPE_CODE_PTR
1193 && TYPE_CODE (type) != TYPE_CODE_REF)
1194 break;
1195 type = TYPE_TARGET_TYPE (type);
1196 }
1197
1198 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1199 TYPE_CODE (type) != TYPE_CODE_UNION)
1200 {
1201 target_terminal_ours ();
1202 gdb_flush (gdb_stdout);
1203 fprintf_unfiltered (gdb_stderr, "Type ");
1204 type_print (type, "", gdb_stderr, -1);
1205 error (" is not a structure or union type.");
1206 }
1207
1208#if 0
1209 /* FIXME: This change put in by Michael seems incorrect for the case where
1210 the structure tag name is the same as the member name. I.E. when doing
1211 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1212 Disabled by fnf. */
1213 {
1214 char *typename;
1215
1216 typename = type_name_no_tag (type);
1217 if (typename != NULL && STREQ (typename, name))
1218 return type;
1219 }
1220#endif
1221
1222 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1223 {
1224 char *t_field_name = TYPE_FIELD_NAME (type, i);
1225
db577aea 1226 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1227 {
1228 return TYPE_FIELD_TYPE (type, i);
1229 }
1230 }
1231
1232 /* OK, it's not in this class. Recursively check the baseclasses. */
1233 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1234 {
1235 struct type *t;
1236
1237 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1238 if (t != NULL)
1239 {
1240 return t;
1241 }
1242 }
1243
1244 if (noerr)
1245 {
1246 return NULL;
1247 }
c5aa993b 1248
c906108c
SS
1249 target_terminal_ours ();
1250 gdb_flush (gdb_stdout);
1251 fprintf_unfiltered (gdb_stderr, "Type ");
1252 type_print (type, "", gdb_stderr, -1);
1253 fprintf_unfiltered (gdb_stderr, " has no component named ");
1254 fputs_filtered (name, gdb_stderr);
1255 error (".");
c5aa993b 1256 return (struct type *) -1; /* For lint */
c906108c
SS
1257}
1258
1259/* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1260 valid. Callers should be aware that in some cases (for example,
1261 the type or one of its baseclasses is a stub type and we are
1262 debugging a .o file), this function will not be able to find the virtual
1263 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1264 will remain NULL. */
1265
1266void
fba45db2 1267fill_in_vptr_fieldno (struct type *type)
c906108c
SS
1268{
1269 CHECK_TYPEDEF (type);
1270
1271 if (TYPE_VPTR_FIELDNO (type) < 0)
1272 {
1273 int i;
1274
1275 /* We must start at zero in case the first (and only) baseclass is
7b83ea04 1276 virtual (and hence we cannot share the table pointer). */
c906108c
SS
1277 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1278 {
1279 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1280 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1281 {
1282 TYPE_VPTR_FIELDNO (type)
1283 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1284 TYPE_VPTR_BASETYPE (type)
1285 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1286 break;
1287 }
1288 }
1289 }
1290}
1291
1292/* Find the method and field indices for the destructor in class type T.
1293 Return 1 if the destructor was found, otherwise, return 0. */
1294
1295int
fba45db2 1296get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
c906108c
SS
1297{
1298 int i;
1299
1300 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1301 {
1302 int j;
1303 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1304
1305 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1306 {
015a42b4 1307 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
c906108c
SS
1308 {
1309 *method_indexp = i;
1310 *field_indexp = j;
1311 return 1;
1312 }
1313 }
1314 }
1315 return 0;
1316}
1317
1318/* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1319
1320 If this is a stubbed struct (i.e. declared as struct foo *), see if
1321 we can find a full definition in some other file. If so, copy this
1322 definition, so we can use it in future. There used to be a comment (but
1323 not any code) that if we don't find a full definition, we'd set a flag
1324 so we don't spend time in the future checking the same type. That would
1325 be a mistake, though--we might load in more symbols which contain a
1326 full definition for the type.
1327
7b83ea04 1328 This used to be coded as a macro, but I don't think it is called
c906108c
SS
1329 often enough to merit such treatment. */
1330
1331struct complaint stub_noname_complaint =
c5aa993b 1332{"stub type has NULL name", 0, 0};
c906108c
SS
1333
1334struct type *
a02fd225 1335check_typedef (struct type *type)
c906108c
SS
1336{
1337 struct type *orig_type = type;
a02fd225
DJ
1338 int is_const, is_volatile;
1339
c906108c
SS
1340 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1341 {
1342 if (!TYPE_TARGET_TYPE (type))
1343 {
c5aa993b 1344 char *name;
c906108c
SS
1345 struct symbol *sym;
1346
1347 /* It is dangerous to call lookup_symbol if we are currently
1348 reading a symtab. Infinite recursion is one danger. */
1349 if (currently_reading_symtab)
1350 return type;
1351
1352 name = type_name_no_tag (type);
1353 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1354 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1355 as appropriate? (this code was written before TYPE_NAME and
1356 TYPE_TAG_NAME were separate). */
1357 if (name == NULL)
1358 {
1359 complain (&stub_noname_complaint);
1360 return type;
1361 }
c5aa993b 1362 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
c906108c
SS
1363 (struct symtab **) NULL);
1364 if (sym)
1365 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1366 else
c5aa993b 1367 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
c906108c
SS
1368 }
1369 type = TYPE_TARGET_TYPE (type);
1370 }
1371
a02fd225
DJ
1372 is_const = TYPE_CONST (type);
1373 is_volatile = TYPE_VOLATILE (type);
1374
c906108c
SS
1375 /* If this is a struct/class/union with no fields, then check whether a
1376 full definition exists somewhere else. This is for systems where a
1377 type definition with no fields is issued for such types, instead of
c5aa993b
JM
1378 identifying them as stub types in the first place */
1379
c906108c
SS
1380 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1381 {
c5aa993b
JM
1382 char *name = type_name_no_tag (type);
1383 struct type *newtype;
c906108c
SS
1384 if (name == NULL)
1385 {
1386 complain (&stub_noname_complaint);
1387 return type;
1388 }
1389 newtype = lookup_transparent_type (name);
1390 if (newtype)
a02fd225 1391 make_cv_type (is_const, is_volatile, newtype, &type);
c906108c
SS
1392 }
1393 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
74a9bb82 1394 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1395 {
c5aa993b 1396 char *name = type_name_no_tag (type);
c906108c 1397 /* FIXME: shouldn't we separately check the TYPE_NAME and the
7b83ea04
AC
1398 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1399 as appropriate? (this code was written before TYPE_NAME and
1400 TYPE_TAG_NAME were separate). */
c906108c
SS
1401 struct symbol *sym;
1402 if (name == NULL)
1403 {
1404 complain (&stub_noname_complaint);
1405 return type;
1406 }
1407 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1408 if (sym)
a02fd225 1409 make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
c906108c
SS
1410 }
1411
74a9bb82 1412 if (TYPE_TARGET_STUB (type))
c906108c
SS
1413 {
1414 struct type *range_type;
1415 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1416
74a9bb82 1417 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b
JM
1418 {
1419 }
c906108c
SS
1420 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1421 && TYPE_NFIELDS (type) == 1
1422 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1423 == TYPE_CODE_RANGE))
1424 {
1425 /* Now recompute the length of the array type, based on its
1426 number of elements and the target type's length. */
1427 TYPE_LENGTH (type) =
1428 ((TYPE_FIELD_BITPOS (range_type, 1)
1429 - TYPE_FIELD_BITPOS (range_type, 0)
1430 + 1)
1431 * TYPE_LENGTH (target_type));
1432 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1433 }
1434 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1435 {
1436 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1437 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1438 }
1439 }
1440 /* Cache TYPE_LENGTH for future use. */
1441 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1442 return type;
1443}
1444
1445/* New code added to support parsing of Cfront stabs strings */
c906108c
SS
1446#define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1447#define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1448
c5aa993b 1449static void
fba45db2 1450add_name (struct extra *pextras, char *n)
c906108c
SS
1451{
1452 int nlen;
1453
c5aa993b 1454 if ((nlen = (n ? strlen (n) : 0)) == 0)
c906108c 1455 return;
c5aa993b
JM
1456 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1457 pextras->len = strlen (pextras->str);
c906108c
SS
1458}
1459
c5aa993b 1460static void
fba45db2 1461add_mangled_type (struct extra *pextras, struct type *t)
c906108c
SS
1462{
1463 enum type_code tcode;
1464 int tlen, tflags;
c5aa993b 1465 char *tname;
c906108c 1466
c5aa993b
JM
1467 tcode = TYPE_CODE (t);
1468 tlen = TYPE_LENGTH (t);
1469 tflags = TYPE_FLAGS (t);
1470 tname = TYPE_NAME (t);
c906108c
SS
1471 /* args of "..." seem to get mangled as "e" */
1472
c5aa993b
JM
1473 switch (tcode)
1474 {
1475 case TYPE_CODE_INT:
1476 if (tflags == 1)
1477 ADD_EXTRA ('U');
1478 switch (tlen)
1479 {
1480 case 1:
1481 ADD_EXTRA ('c');
1482 break;
1483 case 2:
1484 ADD_EXTRA ('s');
1485 break;
1486 case 4:
1487 {
1488 char *pname;
1489 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
9846de1b
JM
1490 {
1491 ADD_EXTRA ('l');
1492 }
1493 else
1494 {
1495 ADD_EXTRA ('i');
1496 }
c5aa993b
JM
1497 }
1498 break;
1499 default:
1500 {
1501
1502 static struct complaint msg =
1503 {"Bad int type code length x%x\n", 0, 0};
1504
1505 complain (&msg, tlen);
1506
1507 }
1508 }
1509 break;
1510 case TYPE_CODE_FLT:
1511 switch (tlen)
1512 {
1513 case 4:
1514 ADD_EXTRA ('f');
1515 break;
1516 case 8:
1517 ADD_EXTRA ('d');
1518 break;
1519 case 16:
1520 ADD_EXTRA ('r');
1521 break;
1522 default:
1523 {
1524 static struct complaint msg =
1525 {"Bad float type code length x%x\n", 0, 0};
1526 complain (&msg, tlen);
1527 }
1528 }
1529 break;
1530 case TYPE_CODE_REF:
1531 ADD_EXTRA ('R');
1532 /* followed by what it's a ref to */
1533 break;
1534 case TYPE_CODE_PTR:
1535 ADD_EXTRA ('P');
1536 /* followed by what it's a ptr to */
1537 break;
1538 case TYPE_CODE_TYPEDEF:
1539 {
1540 static struct complaint msg =
1541 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1542 complain (&msg);
1543 }
c906108c
SS
1544 /* followed by type bytes & name */
1545 break;
1546 case TYPE_CODE_FUNC:
c5aa993b 1547 ADD_EXTRA ('F');
c906108c
SS
1548 /* followed by func's arg '_' & ret types */
1549 break;
1550 case TYPE_CODE_VOID:
c5aa993b 1551 ADD_EXTRA ('v');
c906108c
SS
1552 break;
1553 case TYPE_CODE_METHOD:
c5aa993b 1554 ADD_EXTRA ('M');
c906108c 1555 /* followed by name of class and func's arg '_' & ret types */
c5aa993b
JM
1556 add_name (pextras, tname);
1557 ADD_EXTRA ('F'); /* then mangle function */
c906108c 1558 break;
c5aa993b
JM
1559 case TYPE_CODE_STRUCT: /* C struct */
1560 case TYPE_CODE_UNION: /* C union */
1561 case TYPE_CODE_ENUM: /* Enumeration type */
c906108c 1562 /* followed by name of type */
c5aa993b 1563 add_name (pextras, tname);
c906108c
SS
1564 break;
1565
c5aa993b
JM
1566 /* errors possible types/not supported */
1567 case TYPE_CODE_CHAR:
1568 case TYPE_CODE_ARRAY: /* Array type */
1569 case TYPE_CODE_MEMBER: /* Member type */
c906108c 1570 case TYPE_CODE_BOOL:
c5aa993b 1571 case TYPE_CODE_COMPLEX: /* Complex float */
c906108c 1572 case TYPE_CODE_UNDEF:
c5aa993b
JM
1573 case TYPE_CODE_SET: /* Pascal sets */
1574 case TYPE_CODE_RANGE:
c906108c
SS
1575 case TYPE_CODE_STRING:
1576 case TYPE_CODE_BITSTRING:
1577 case TYPE_CODE_ERROR:
c5aa993b 1578 default:
c906108c 1579 {
c5aa993b
JM
1580 static struct complaint msg =
1581 {"Unknown type code x%x\n", 0, 0};
1582 complain (&msg, tcode);
c906108c
SS
1583 }
1584 }
0004e5a2
DJ
1585 if (TYPE_TARGET_TYPE (t))
1586 add_mangled_type (pextras, TYPE_TARGET_TYPE (t));
c906108c
SS
1587}
1588
1589#if 0
1590void
fba45db2 1591cfront_mangle_name (struct type *type, int i, int j)
c906108c 1592{
c5aa993b
JM
1593 struct fn_field *f;
1594 char *mangled_name = gdb_mangle_name (type, i, j);
1595
1596 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1597
7b83ea04 1598 /* kludge to support cfront methods - gdb expects to find "F" for
c5aa993b
JM
1599 ARM_mangled names, so when we mangle, we have to add it here */
1600 if (ARM_DEMANGLING)
1601 {
1602 int k;
1603 char *arm_mangled_name;
1604 struct fn_field *method = &f[j];
1605 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1606 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1607 char *newname = type_name_no_tag (type);
1608
1609 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1610 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1611 struct extra extras, *pextras = &extras;
1612 INIT_EXTRA
c906108c
SS
1613
1614 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
c5aa993b
JM
1615 ADD_EXTRA ('S')
1616 ADD_EXTRA ('F')
c906108c 1617 /* add args here! */
c5aa993b
JM
1618 if (nargs <= 1) /* no args besides this */
1619 ADD_EXTRA ('v')
1620 else
1621 {
1622 for (k = 1; k < nargs; k++)
1623 {
1624 struct type *t;
1625 t = TYPE_FIELD_TYPE (ftype, k);
1626 add_mangled_type (pextras, t);
1627 }
1628 }
1629 ADD_EXTRA ('\0')
1630 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
3c37485b 1631 xasprintf (&arm_mangled_name, "%s%s", mangled_name, extras.str);
b8c9b27d 1632 xfree (mangled_name);
c5aa993b
JM
1633 mangled_name = arm_mangled_name;
1634 }
c906108c 1635}
c5aa993b 1636#endif /* 0 */
c906108c
SS
1637
1638#undef ADD_EXTRA
1639/* End of new code added to support parsing of Cfront stabs strings */
1640
c91ecb25
ND
1641/* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1642 silently return builtin_type_void. */
1643
1644struct type *
1645safe_parse_type (char *p, int length)
1646{
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type_void;
1657
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663}
1664
c906108c
SS
1665/* Ugly hack to convert method stubs into method types.
1666
1667 He ain't kiddin'. This demangles the name of the method into a string
1668 including argument types, parses out each argument type, generates
1669 a string casting a zero to that type, evaluates the string, and stuffs
1670 the resulting type into an argtype vector!!! Then it knows the type
1671 of the whole function (including argument types for overloading),
1672 which info used to be in the stab's but was removed to hack back
1673 the space required for them. */
1674
1675void
fba45db2 1676check_stub_method (struct type *type, int method_id, int signature_id)
c906108c
SS
1677{
1678 struct fn_field *f;
1679 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1680 char *demangled_name = cplus_demangle (mangled_name,
1681 DMGL_PARAMS | DMGL_ANSI);
1682 char *argtypetext, *p;
1683 int depth = 0, argcount = 1;
ad2f7632 1684 struct field *argtypes;
c906108c
SS
1685 struct type *mtype;
1686
1687 /* Make sure we got back a function string that we can use. */
1688 if (demangled_name)
1689 p = strchr (demangled_name, '(');
502dcf4e
AC
1690 else
1691 p = NULL;
c906108c
SS
1692
1693 if (demangled_name == NULL || p == NULL)
1694 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1695
1696 /* Now, read in the parameters that define this type. */
1697 p += 1;
1698 argtypetext = p;
1699 while (*p)
1700 {
070ad9f0 1701 if (*p == '(' || *p == '<')
c906108c
SS
1702 {
1703 depth += 1;
1704 }
070ad9f0 1705 else if (*p == ')' || *p == '>')
c906108c
SS
1706 {
1707 depth -= 1;
1708 }
1709 else if (*p == ',' && depth == 0)
1710 {
1711 argcount += 1;
1712 }
1713
1714 p += 1;
1715 }
1716
ad2f7632
DJ
1717 /* If we read one argument and it was ``void'', don't count it. */
1718 if (strncmp (argtypetext, "(void)", 6) == 0)
1719 argcount -= 1;
c906108c 1720
ad2f7632
DJ
1721 /* We need one extra slot, for the THIS pointer. */
1722
1723 argtypes = (struct field *)
1724 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1725 p = argtypetext;
4a1970e4
DJ
1726
1727 /* Add THIS pointer for non-static methods. */
1728 f = TYPE_FN_FIELDLIST1 (type, method_id);
1729 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1730 argcount = 0;
1731 else
1732 {
ad2f7632 1733 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1734 argcount = 1;
1735 }
c906108c 1736
c5aa993b 1737 if (*p != ')') /* () means no args, skip while */
c906108c
SS
1738 {
1739 depth = 0;
1740 while (*p)
1741 {
1742 if (depth <= 0 && (*p == ',' || *p == ')'))
1743 {
ad2f7632
DJ
1744 /* Avoid parsing of ellipsis, they will be handled below.
1745 Also avoid ``void'' as above. */
1746 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1747 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1748 {
ad2f7632 1749 argtypes[argcount].type =
c91ecb25 1750 safe_parse_type (argtypetext, p - argtypetext);
c906108c
SS
1751 argcount += 1;
1752 }
1753 argtypetext = p + 1;
1754 }
1755
070ad9f0 1756 if (*p == '(' || *p == '<')
c906108c
SS
1757 {
1758 depth += 1;
1759 }
070ad9f0 1760 else if (*p == ')' || *p == '>')
c906108c
SS
1761 {
1762 depth -= 1;
1763 }
1764
1765 p += 1;
1766 }
1767 }
1768
c906108c
SS
1769 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1770
1771 /* Now update the old "stub" type into a real type. */
1772 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1773 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1774 TYPE_FIELDS (mtype) = argtypes;
1775 TYPE_NFIELDS (mtype) = argcount;
c906108c
SS
1776 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1777 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
1778 if (p[-2] == '.')
1779 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1780
1781 xfree (demangled_name);
c906108c
SS
1782}
1783
1784const struct cplus_struct_type cplus_struct_default;
1785
1786void
fba45db2 1787allocate_cplus_struct_type (struct type *type)
c906108c
SS
1788{
1789 if (!HAVE_CPLUS_STRUCT (type))
1790 {
1791 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1792 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
c5aa993b 1793 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1794 }
1795}
1796
1797/* Helper function to initialize the standard scalar types.
1798
1799 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1800 of the string pointed to by name in the type_obstack for that objfile,
1801 and initialize the type name to that copy. There are places (mipsread.c
1802 in particular, where init_type is called with a NULL value for NAME). */
1803
1804struct type *
fba45db2
KB
1805init_type (enum type_code code, int length, int flags, char *name,
1806 struct objfile *objfile)
c906108c
SS
1807{
1808 register struct type *type;
1809
1810 type = alloc_type (objfile);
1811 TYPE_CODE (type) = code;
1812 TYPE_LENGTH (type) = length;
1813 TYPE_FLAGS (type) |= flags;
1814 if ((name != NULL) && (objfile != NULL))
1815 {
1816 TYPE_NAME (type) =
c5aa993b 1817 obsavestring (name, strlen (name), &objfile->type_obstack);
c906108c
SS
1818 }
1819 else
1820 {
1821 TYPE_NAME (type) = name;
1822 }
1823
1824 /* C++ fancies. */
1825
1826 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1827 {
1828 INIT_CPLUS_SPECIFIC (type);
1829 }
1830 return (type);
1831}
1832
0e101458
AC
1833/* Helper function. Create an empty composite type. */
1834
1835struct type *
1836init_composite_type (char *name, enum type_code code)
1837{
1838 struct type *t;
1839 gdb_assert (code == TYPE_CODE_STRUCT
1840 || code == TYPE_CODE_UNION);
1841 t = init_type (code, 0, 0, NULL, NULL);
1842 TYPE_TAG_NAME (t) = name;
1843 return t;
1844}
1845
1846/* Helper function. Append a field to a composite type. */
1847
1848void
1849append_composite_type_field (struct type *t, char *name, struct type *field)
1850{
1851 struct field *f;
1852 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1853 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1854 sizeof (struct field) * TYPE_NFIELDS (t));
1855 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1856 memset (f, 0, sizeof f[0]);
1857 FIELD_TYPE (f[0]) = field;
1858 FIELD_NAME (f[0]) = name;
1859 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1860 {
73d322b1 1861 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
0e101458
AC
1862 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1863 }
1864 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1865 {
1866 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1867 if (TYPE_NFIELDS (t) > 1)
1868 {
1869 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1870 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1871 }
1872 }
1873}
1874
c906108c
SS
1875/* Look up a fundamental type for the specified objfile.
1876 May need to construct such a type if this is the first use.
1877
1878 Some object file formats (ELF, COFF, etc) do not define fundamental
1879 types such as "int" or "double". Others (stabs for example), do
1880 define fundamental types.
1881
1882 For the formats which don't provide fundamental types, gdb can create
1883 such types, using defaults reasonable for the current language and
1884 the current target machine.
1885
1886 NOTE: This routine is obsolescent. Each debugging format reader
1887 should manage it's own fundamental types, either creating them from
1888 suitable defaults or reading them from the debugging information,
1889 whichever is appropriate. The DWARF reader has already been
1890 fixed to do this. Once the other readers are fixed, this routine
1891 will go away. Also note that fundamental types should be managed
1892 on a compilation unit basis in a multi-language environment, not
1893 on a linkage unit basis as is done here. */
1894
1895
1896struct type *
fba45db2 1897lookup_fundamental_type (struct objfile *objfile, int typeid)
c906108c
SS
1898{
1899 register struct type **typep;
1900 register int nbytes;
1901
1902 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1903 {
1904 error ("internal error - invalid fundamental type id %d", typeid);
1905 }
1906
1907 /* If this is the first time we need a fundamental type for this objfile
1908 then we need to initialize the vector of type pointers. */
c5aa993b
JM
1909
1910 if (objfile->fundamental_types == NULL)
c906108c
SS
1911 {
1912 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
c5aa993b
JM
1913 objfile->fundamental_types = (struct type **)
1914 obstack_alloc (&objfile->type_obstack, nbytes);
1915 memset ((char *) objfile->fundamental_types, 0, nbytes);
c906108c
SS
1916 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1917 }
1918
1919 /* Look for this particular type in the fundamental type vector. If one is
1920 not found, create and install one appropriate for the current language. */
1921
c5aa993b 1922 typep = objfile->fundamental_types + typeid;
c906108c
SS
1923 if (*typep == NULL)
1924 {
1925 *typep = create_fundamental_type (objfile, typeid);
1926 }
1927
1928 return (*typep);
1929}
1930
1931int
fba45db2 1932can_dereference (struct type *t)
c906108c
SS
1933{
1934 /* FIXME: Should we return true for references as well as pointers? */
1935 CHECK_TYPEDEF (t);
1936 return
1937 (t != NULL
1938 && TYPE_CODE (t) == TYPE_CODE_PTR
1939 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1940}
1941
adf40b2e 1942int
fba45db2 1943is_integral_type (struct type *t)
adf40b2e
JM
1944{
1945 CHECK_TYPEDEF (t);
1946 return
1947 ((t != NULL)
d4f3574e
SS
1948 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1949 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1950 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1951 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1952 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1953}
1954
db034ac5
AC
1955/* (OBSOLETE) Chill (OBSOLETE) varying string and arrays are
1956 represented as follows:
c906108c
SS
1957
1958 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1959
db034ac5
AC
1960 Return true if TYPE is such a (OBSOLETE) Chill (OBSOLETE) varying
1961 type. */
1962
1963/* OBSOLETE int */
1964/* OBSOLETE chill_varying_type (struct type *type) */
1965/* OBSOLETE { */
1966/* OBSOLETE if (TYPE_CODE (type) != TYPE_CODE_STRUCT */
1967/* OBSOLETE || TYPE_NFIELDS (type) != 2 */
1968/* OBSOLETE || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0) */
1969/* OBSOLETE return 0; */
1970/* OBSOLETE return 1; */
1971/* OBSOLETE } */
c906108c 1972
7b83ea04 1973/* Check whether BASE is an ancestor or base class or DCLASS
c906108c
SS
1974 Return 1 if so, and 0 if not.
1975 Note: callers may want to check for identity of the types before
1976 calling this function -- identical types are considered to satisfy
1977 the ancestor relationship even if they're identical */
1978
1979int
fba45db2 1980is_ancestor (struct type *base, struct type *dclass)
c906108c
SS
1981{
1982 int i;
c5aa993b 1983
c906108c
SS
1984 CHECK_TYPEDEF (base);
1985 CHECK_TYPEDEF (dclass);
1986
1987 if (base == dclass)
1988 return 1;
6b1ba9a0
ND
1989 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1990 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1991 return 1;
c906108c
SS
1992
1993 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1994 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1995 return 1;
1996
1997 return 0;
1998}
1999
2000
2001
2002/* See whether DCLASS has a virtual table. This routine is aimed at
2003 the HP/Taligent ANSI C++ runtime model, and may not work with other
2004 runtime models. Return 1 => Yes, 0 => No. */
2005
2006int
fba45db2 2007has_vtable (struct type *dclass)
c906108c
SS
2008{
2009 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
2010 has virtual functions or virtual bases. */
2011
2012 register int i;
2013
c5aa993b 2014 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c 2015 return 0;
c5aa993b 2016
c906108c 2017 /* First check for the presence of virtual bases */
c5aa993b
JM
2018 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
2019 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2020 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
2021 return 1;
2022
c906108c 2023 /* Next check for virtual functions */
c5aa993b
JM
2024 if (TYPE_FN_FIELDLISTS (dclass))
2025 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
2026 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
c906108c 2027 return 1;
c5aa993b
JM
2028
2029 /* Recurse on non-virtual bases to see if any of them needs a vtable */
2030 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
2031 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2032 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
2033 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
2034 return 1;
2035
2036 /* Well, maybe we don't need a virtual table */
c906108c
SS
2037 return 0;
2038}
2039
2040/* Return a pointer to the "primary base class" of DCLASS.
c5aa993b 2041
c906108c
SS
2042 A NULL return indicates that DCLASS has no primary base, or that it
2043 couldn't be found (insufficient information).
c5aa993b 2044
c906108c
SS
2045 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2046 and may not work with other runtime models. */
2047
2048struct type *
fba45db2 2049primary_base_class (struct type *dclass)
c906108c
SS
2050{
2051 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
2052 is the first directly inherited, non-virtual base class that
2053 requires a virtual table */
2054
2055 register int i;
2056
c5aa993b 2057 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
c906108c
SS
2058 return NULL;
2059
c5aa993b
JM
2060 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2061 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
2062 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
2063 return TYPE_FIELD_TYPE (dclass, i);
c906108c
SS
2064
2065 return NULL;
2066}
2067
2068/* Global manipulated by virtual_base_list[_aux]() */
2069
c5aa993b 2070static struct vbase *current_vbase_list = NULL;
c906108c
SS
2071
2072/* Return a pointer to a null-terminated list of struct vbase
2073 items. The vbasetype pointer of each item in the list points to the
2074 type information for a virtual base of the argument DCLASS.
c5aa993b 2075
7b83ea04 2076 Helper function for virtual_base_list().
c906108c
SS
2077 Note: the list goes backward, right-to-left. virtual_base_list()
2078 copies the items out in reverse order. */
2079
7a292a7a 2080static void
fba45db2 2081virtual_base_list_aux (struct type *dclass)
c906108c 2082{
c5aa993b 2083 struct vbase *tmp_vbase;
c906108c
SS
2084 register int i;
2085
c5aa993b 2086 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
7a292a7a 2087 return;
c906108c
SS
2088
2089 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2090 {
2091 /* Recurse on this ancestor, first */
c5aa993b 2092 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
c906108c
SS
2093
2094 /* If this current base is itself virtual, add it to the list */
c5aa993b
JM
2095 if (BASETYPE_VIA_VIRTUAL (dclass, i))
2096 {
2097 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
2098
2099 /* Check if base already recorded */
2100 tmp_vbase = current_vbase_list;
2101 while (tmp_vbase)
2102 {
2103 if (tmp_vbase->vbasetype == basetype)
2104 break; /* found it */
2105 tmp_vbase = tmp_vbase->next;
2106 }
2107
2108 if (!tmp_vbase) /* normal exit from loop */
2109 {
2110 /* Allocate new item for this virtual base */
2111 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
2112
2113 /* Stick it on at the end of the list */
2114 tmp_vbase->vbasetype = basetype;
2115 tmp_vbase->next = current_vbase_list;
2116 current_vbase_list = tmp_vbase;
2117 }
2118 } /* if virtual */
2119 } /* for loop over bases */
c906108c
SS
2120}
2121
2122
2123/* Compute the list of virtual bases in the right order. Virtual
2124 bases are laid out in the object's memory area in order of their
2125 occurrence in a depth-first, left-to-right search through the
2126 ancestors.
c5aa993b 2127
c906108c
SS
2128 Argument DCLASS is the type whose virtual bases are required.
2129 Return value is the address of a null-terminated array of pointers
2130 to struct type items.
c5aa993b 2131
c906108c
SS
2132 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2133 and may not work with other runtime models.
c5aa993b 2134
c906108c
SS
2135 This routine merely hands off the argument to virtual_base_list_aux()
2136 and then copies the result into an array to save space. */
2137
2138struct type **
fba45db2 2139virtual_base_list (struct type *dclass)
c906108c 2140{
c5aa993b
JM
2141 register struct vbase *tmp_vbase;
2142 register struct vbase *tmp_vbase_2;
c906108c
SS
2143 register int i;
2144 int count;
c5aa993b 2145 struct type **vbase_array;
c906108c
SS
2146
2147 current_vbase_list = NULL;
c5aa993b 2148 virtual_base_list_aux (dclass);
c906108c 2149
c5aa993b 2150 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2151 /* no body */ ;
2152
2153 count = i;
2154
c5aa993b 2155 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
c906108c 2156
c5aa993b 2157 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
c906108c
SS
2158 vbase_array[i] = tmp_vbase->vbasetype;
2159
2160 /* Get rid of constructed chain */
2161 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2162 while (tmp_vbase)
2163 {
2164 tmp_vbase = tmp_vbase->next;
b8c9b27d 2165 xfree (tmp_vbase_2);
c906108c
SS
2166 tmp_vbase_2 = tmp_vbase;
2167 }
c5aa993b 2168
c906108c
SS
2169 vbase_array[count] = NULL;
2170 return vbase_array;
2171}
2172
2173/* Return the length of the virtual base list of the type DCLASS. */
2174
2175int
fba45db2 2176virtual_base_list_length (struct type *dclass)
c906108c
SS
2177{
2178 register int i;
c5aa993b
JM
2179 register struct vbase *tmp_vbase;
2180
c906108c 2181 current_vbase_list = NULL;
c5aa993b 2182 virtual_base_list_aux (dclass);
c906108c 2183
c5aa993b 2184 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
c906108c
SS
2185 /* no body */ ;
2186 return i;
2187}
2188
2189/* Return the number of elements of the virtual base list of the type
2190 DCLASS, ignoring those appearing in the primary base (and its
2191 primary base, recursively). */
2192
2193int
fba45db2 2194virtual_base_list_length_skip_primaries (struct type *dclass)
c906108c
SS
2195{
2196 register int i;
c5aa993b
JM
2197 register struct vbase *tmp_vbase;
2198 struct type *primary;
c906108c
SS
2199
2200 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2201
2202 if (!primary)
2203 return virtual_base_list_length (dclass);
2204
2205 current_vbase_list = NULL;
c5aa993b 2206 virtual_base_list_aux (dclass);
c906108c 2207
c5aa993b 2208 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
c906108c
SS
2209 {
2210 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
c5aa993b 2211 continue;
c906108c
SS
2212 i++;
2213 }
2214 return i;
2215}
2216
2217
2218/* Return the index (position) of type BASE, which is a virtual base
2219 class of DCLASS, in the latter's virtual base list. A return of -1
2220 indicates "not found" or a problem. */
2221
2222int
fba45db2 2223virtual_base_index (struct type *base, struct type *dclass)
c906108c 2224{
c5aa993b 2225 register struct type *vbase;
c906108c
SS
2226 register int i;
2227
c5aa993b
JM
2228 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2229 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2230 return -1;
2231
2232 i = 0;
015a42b4 2233 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2234 while (vbase)
2235 {
2236 if (vbase == base)
c5aa993b 2237 break;
015a42b4 2238 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2239 }
2240
2241 return vbase ? i : -1;
2242}
2243
2244
2245
2246/* Return the index (position) of type BASE, which is a virtual base
2247 class of DCLASS, in the latter's virtual base list. Skip over all
2248 bases that may appear in the virtual base list of the primary base
2249 class of DCLASS (recursively). A return of -1 indicates "not
2250 found" or a problem. */
2251
2252int
fba45db2 2253virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
c906108c 2254{
c5aa993b 2255 register struct type *vbase;
c906108c 2256 register int i, j;
c5aa993b 2257 struct type *primary;
c906108c 2258
c5aa993b
JM
2259 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2260 (TYPE_CODE (base) != TYPE_CODE_CLASS))
c906108c
SS
2261 return -1;
2262
c5aa993b 2263 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
c906108c
SS
2264
2265 j = -1;
2266 i = 0;
015a42b4 2267 vbase = virtual_base_list (dclass)[0];
c906108c
SS
2268 while (vbase)
2269 {
c5aa993b
JM
2270 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2271 j++;
c906108c 2272 if (vbase == base)
c5aa993b 2273 break;
015a42b4 2274 vbase = virtual_base_list (dclass)[++i];
c906108c
SS
2275 }
2276
2277 return vbase ? j : -1;
2278}
2279
2280/* Return position of a derived class DCLASS in the list of
2281 * primary bases starting with the remotest ancestor.
2282 * Position returned is 0-based. */
2283
2284int
fba45db2 2285class_index_in_primary_list (struct type *dclass)
c906108c 2286{
c5aa993b 2287 struct type *pbc; /* primary base class */
c906108c 2288
c5aa993b 2289 /* Simply recurse on primary base */
c906108c
SS
2290 pbc = TYPE_PRIMARY_BASE (dclass);
2291 if (pbc)
2292 return 1 + class_index_in_primary_list (pbc);
2293 else
2294 return 0;
2295}
2296
2297/* Return a count of the number of virtual functions a type has.
2298 * This includes all the virtual functions it inherits from its
2299 * base classes too.
2300 */
2301
2302/* pai: FIXME This doesn't do the right thing: count redefined virtual
2303 * functions only once (latest redefinition)
2304 */
2305
2306int
fba45db2 2307count_virtual_fns (struct type *dclass)
c906108c 2308{
c5aa993b 2309 int fn, oi; /* function and overloaded instance indices */
c5aa993b
JM
2310 int vfuncs; /* count to return */
2311
2312 /* recurse on bases that can share virtual table */
2313 struct type *pbc = primary_base_class (dclass);
c906108c
SS
2314 if (pbc)
2315 vfuncs = count_virtual_fns (pbc);
7f7e9482
AC
2316 else
2317 vfuncs = 0;
c5aa993b 2318
c906108c
SS
2319 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2320 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2321 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
c5aa993b 2322 vfuncs++;
c906108c
SS
2323
2324 return vfuncs;
2325}
c906108c
SS
2326\f
2327
c5aa993b 2328
c906108c
SS
2329/* Functions for overload resolution begin here */
2330
2331/* Compare two badness vectors A and B and return the result.
2332 * 0 => A and B are identical
2333 * 1 => A and B are incomparable
2334 * 2 => A is better than B
2335 * 3 => A is worse than B */
2336
2337int
fba45db2 2338compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2339{
2340 int i;
2341 int tmp;
c5aa993b
JM
2342 short found_pos = 0; /* any positives in c? */
2343 short found_neg = 0; /* any negatives in c? */
2344
2345 /* differing lengths => incomparable */
c906108c
SS
2346 if (a->length != b->length)
2347 return 1;
2348
c5aa993b
JM
2349 /* Subtract b from a */
2350 for (i = 0; i < a->length; i++)
c906108c
SS
2351 {
2352 tmp = a->rank[i] - b->rank[i];
2353 if (tmp > 0)
c5aa993b 2354 found_pos = 1;
c906108c 2355 else if (tmp < 0)
c5aa993b 2356 found_neg = 1;
c906108c
SS
2357 }
2358
2359 if (found_pos)
2360 {
2361 if (found_neg)
c5aa993b 2362 return 1; /* incomparable */
c906108c 2363 else
c5aa993b 2364 return 3; /* A > B */
c906108c 2365 }
c5aa993b
JM
2366 else
2367 /* no positives */
c906108c
SS
2368 {
2369 if (found_neg)
c5aa993b 2370 return 2; /* A < B */
c906108c 2371 else
c5aa993b 2372 return 0; /* A == B */
c906108c
SS
2373 }
2374}
2375
2376/* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2377 * to the types of an argument list (ARGS, length NARGS).
2378 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2379
2380struct badness_vector *
fba45db2 2381rank_function (struct type **parms, int nparms, struct type **args, int nargs)
c906108c
SS
2382{
2383 int i;
c5aa993b 2384 struct badness_vector *bv;
c906108c
SS
2385 int min_len = nparms < nargs ? nparms : nargs;
2386
2387 bv = xmalloc (sizeof (struct badness_vector));
c5aa993b 2388 bv->length = nargs + 1; /* add 1 for the length-match rank */
c906108c
SS
2389 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2390
2391 /* First compare the lengths of the supplied lists.
2392 * If there is a mismatch, set it to a high value. */
c5aa993b 2393
c906108c
SS
2394 /* pai/1997-06-03 FIXME: when we have debug info about default
2395 * arguments and ellipsis parameter lists, we should consider those
2396 * and rank the length-match more finely. */
2397
2398 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2399
2400 /* Now rank all the parameters of the candidate function */
74cc24b0
DB
2401 for (i = 1; i <= min_len; i++)
2402 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
c906108c 2403
c5aa993b
JM
2404 /* If more arguments than parameters, add dummy entries */
2405 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2406 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2407
2408 return bv;
2409}
2410
2411/* Compare one type (PARM) for compatibility with another (ARG).
2412 * PARM is intended to be the parameter type of a function; and
2413 * ARG is the supplied argument's type. This function tests if
2414 * the latter can be converted to the former.
2415 *
2416 * Return 0 if they are identical types;
2417 * Otherwise, return an integer which corresponds to how compatible
2418 * PARM is to ARG. The higher the return value, the worse the match.
2419 * Generally the "bad" conversions are all uniformly assigned a 100 */
2420
2421int
fba45db2 2422rank_one_type (struct type *parm, struct type *arg)
c906108c
SS
2423{
2424 /* Identical type pointers */
2425 /* However, this still doesn't catch all cases of same type for arg
2426 * and param. The reason is that builtin types are different from
2427 * the same ones constructed from the object. */
2428 if (parm == arg)
2429 return 0;
2430
2431 /* Resolve typedefs */
2432 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2433 parm = check_typedef (parm);
2434 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2435 arg = check_typedef (arg);
2436
070ad9f0
DB
2437 /*
2438 Well, damnit, if the names are exactly the same,
2439 i'll say they are exactly the same. This happens when we generate
2440 method stubs. The types won't point to the same address, but they
2441 really are the same.
2442 */
2443
6b1ba9a0
ND
2444 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2445 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
070ad9f0
DB
2446 return 0;
2447
c906108c
SS
2448 /* Check if identical after resolving typedefs */
2449 if (parm == arg)
2450 return 0;
2451
db577aea
AC
2452 /* See through references, since we can almost make non-references
2453 references. */
2454 if (TYPE_CODE (arg) == TYPE_CODE_REF)
6b1ba9a0 2455 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
db577aea
AC
2456 + REFERENCE_CONVERSION_BADNESS);
2457 if (TYPE_CODE (parm) == TYPE_CODE_REF)
6b1ba9a0 2458 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
db577aea 2459 + REFERENCE_CONVERSION_BADNESS);
5d161b24 2460 if (overload_debug)
db577aea 2461 /* Debugging only. */
5d161b24
DB
2462 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2463 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
c906108c
SS
2464
2465 /* x -> y means arg of type x being supplied for parameter of type y */
2466
2467 switch (TYPE_CODE (parm))
2468 {
c5aa993b
JM
2469 case TYPE_CODE_PTR:
2470 switch (TYPE_CODE (arg))
2471 {
2472 case TYPE_CODE_PTR:
2473 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2474 return VOID_PTR_CONVERSION_BADNESS;
2475 else
2476 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2477 case TYPE_CODE_ARRAY:
2478 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2479 case TYPE_CODE_FUNC:
2480 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2481 case TYPE_CODE_INT:
2482 case TYPE_CODE_ENUM:
2483 case TYPE_CODE_CHAR:
2484 case TYPE_CODE_RANGE:
2485 case TYPE_CODE_BOOL:
2486 return POINTER_CONVERSION_BADNESS;
2487 default:
2488 return INCOMPATIBLE_TYPE_BADNESS;
2489 }
2490 case TYPE_CODE_ARRAY:
2491 switch (TYPE_CODE (arg))
2492 {
2493 case TYPE_CODE_PTR:
2494 case TYPE_CODE_ARRAY:
2495 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2496 default:
2497 return INCOMPATIBLE_TYPE_BADNESS;
2498 }
2499 case TYPE_CODE_FUNC:
2500 switch (TYPE_CODE (arg))
2501 {
2502 case TYPE_CODE_PTR: /* funcptr -> func */
2503 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2504 default:
2505 return INCOMPATIBLE_TYPE_BADNESS;
2506 }
2507 case TYPE_CODE_INT:
2508 switch (TYPE_CODE (arg))
2509 {
2510 case TYPE_CODE_INT:
2511 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2512 {
2513 /* Deal with signed, unsigned, and plain chars and
7b83ea04 2514 signed and unsigned ints */
c5aa993b
JM
2515 if (TYPE_NOSIGN (parm))
2516 {
2517 /* This case only for character types */
2518 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2519 return 0;
2520 else
2521 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2522 }
2523 else if (TYPE_UNSIGNED (parm))
2524 {
2525 if (TYPE_UNSIGNED (arg))
2526 {
db577aea 2527 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2528 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
db577aea 2529 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2530 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2531 else
2532 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2533 }
2534 else
2535 {
db577aea 2536 if (!strcmp_iw (TYPE_NAME (arg), "long") && !strcmp_iw (TYPE_NAME (parm), "int"))
c5aa993b
JM
2537 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2538 else
2539 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2540 }
2541 }
2542 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2543 {
db577aea 2544 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
c5aa993b 2545 return 0;
db577aea 2546 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
c5aa993b
JM
2547 return INTEGER_PROMOTION_BADNESS;
2548 else
2549 return INTEGER_COERCION_BADNESS;
2550 }
2551 else
2552 return INTEGER_COERCION_BADNESS;
2553 }
2554 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2555 return INTEGER_PROMOTION_BADNESS;
2556 else
2557 return INTEGER_COERCION_BADNESS;
2558 case TYPE_CODE_ENUM:
2559 case TYPE_CODE_CHAR:
2560 case TYPE_CODE_RANGE:
2561 case TYPE_CODE_BOOL:
2562 return INTEGER_PROMOTION_BADNESS;
2563 case TYPE_CODE_FLT:
2564 return INT_FLOAT_CONVERSION_BADNESS;
2565 case TYPE_CODE_PTR:
2566 return NS_POINTER_CONVERSION_BADNESS;
2567 default:
2568 return INCOMPATIBLE_TYPE_BADNESS;
2569 }
2570 break;
2571 case TYPE_CODE_ENUM:
2572 switch (TYPE_CODE (arg))
2573 {
2574 case TYPE_CODE_INT:
2575 case TYPE_CODE_CHAR:
2576 case TYPE_CODE_RANGE:
2577 case TYPE_CODE_BOOL:
2578 case TYPE_CODE_ENUM:
2579 return INTEGER_COERCION_BADNESS;
2580 case TYPE_CODE_FLT:
2581 return INT_FLOAT_CONVERSION_BADNESS;
2582 default:
2583 return INCOMPATIBLE_TYPE_BADNESS;
2584 }
2585 break;
2586 case TYPE_CODE_CHAR:
2587 switch (TYPE_CODE (arg))
2588 {
2589 case TYPE_CODE_RANGE:
2590 case TYPE_CODE_BOOL:
2591 case TYPE_CODE_ENUM:
2592 return INTEGER_COERCION_BADNESS;
2593 case TYPE_CODE_FLT:
2594 return INT_FLOAT_CONVERSION_BADNESS;
2595 case TYPE_CODE_INT:
2596 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2597 return INTEGER_COERCION_BADNESS;
2598 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2599 return INTEGER_PROMOTION_BADNESS;
2600 /* >>> !! else fall through !! <<< */
2601 case TYPE_CODE_CHAR:
2602 /* Deal with signed, unsigned, and plain chars for C++
2603 and with int cases falling through from previous case */
2604 if (TYPE_NOSIGN (parm))
2605 {
2606 if (TYPE_NOSIGN (arg))
2607 return 0;
2608 else
2609 return INTEGER_COERCION_BADNESS;
2610 }
2611 else if (TYPE_UNSIGNED (parm))
2612 {
2613 if (TYPE_UNSIGNED (arg))
2614 return 0;
2615 else
2616 return INTEGER_PROMOTION_BADNESS;
2617 }
2618 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2619 return 0;
2620 else
2621 return INTEGER_COERCION_BADNESS;
2622 default:
2623 return INCOMPATIBLE_TYPE_BADNESS;
2624 }
2625 break;
2626 case TYPE_CODE_RANGE:
2627 switch (TYPE_CODE (arg))
2628 {
2629 case TYPE_CODE_INT:
2630 case TYPE_CODE_CHAR:
2631 case TYPE_CODE_RANGE:
2632 case TYPE_CODE_BOOL:
2633 case TYPE_CODE_ENUM:
2634 return INTEGER_COERCION_BADNESS;
2635 case TYPE_CODE_FLT:
2636 return INT_FLOAT_CONVERSION_BADNESS;
2637 default:
2638 return INCOMPATIBLE_TYPE_BADNESS;
2639 }
2640 break;
2641 case TYPE_CODE_BOOL:
2642 switch (TYPE_CODE (arg))
2643 {
2644 case TYPE_CODE_INT:
2645 case TYPE_CODE_CHAR:
2646 case TYPE_CODE_RANGE:
2647 case TYPE_CODE_ENUM:
2648 case TYPE_CODE_FLT:
2649 case TYPE_CODE_PTR:
2650 return BOOLEAN_CONVERSION_BADNESS;
2651 case TYPE_CODE_BOOL:
2652 return 0;
2653 default:
2654 return INCOMPATIBLE_TYPE_BADNESS;
2655 }
2656 break;
2657 case TYPE_CODE_FLT:
2658 switch (TYPE_CODE (arg))
2659 {
2660 case TYPE_CODE_FLT:
2661 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2662 return FLOAT_PROMOTION_BADNESS;
2663 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2664 return 0;
2665 else
2666 return FLOAT_CONVERSION_BADNESS;
2667 case TYPE_CODE_INT:
2668 case TYPE_CODE_BOOL:
2669 case TYPE_CODE_ENUM:
2670 case TYPE_CODE_RANGE:
2671 case TYPE_CODE_CHAR:
2672 return INT_FLOAT_CONVERSION_BADNESS;
2673 default:
2674 return INCOMPATIBLE_TYPE_BADNESS;
2675 }
2676 break;
2677 case TYPE_CODE_COMPLEX:
2678 switch (TYPE_CODE (arg))
2679 { /* Strictly not needed for C++, but... */
2680 case TYPE_CODE_FLT:
2681 return FLOAT_PROMOTION_BADNESS;
2682 case TYPE_CODE_COMPLEX:
2683 return 0;
2684 default:
2685 return INCOMPATIBLE_TYPE_BADNESS;
2686 }
2687 break;
2688 case TYPE_CODE_STRUCT:
c906108c 2689 /* currently same as TYPE_CODE_CLASS */
c5aa993b
JM
2690 switch (TYPE_CODE (arg))
2691 {
2692 case TYPE_CODE_STRUCT:
2693 /* Check for derivation */
2694 if (is_ancestor (parm, arg))
2695 return BASE_CONVERSION_BADNESS;
2696 /* else fall through */
2697 default:
2698 return INCOMPATIBLE_TYPE_BADNESS;
2699 }
2700 break;
2701 case TYPE_CODE_UNION:
2702 switch (TYPE_CODE (arg))
2703 {
2704 case TYPE_CODE_UNION:
2705 default:
2706 return INCOMPATIBLE_TYPE_BADNESS;
2707 }
2708 break;
2709 case TYPE_CODE_MEMBER:
2710 switch (TYPE_CODE (arg))
2711 {
2712 default:
2713 return INCOMPATIBLE_TYPE_BADNESS;
2714 }
2715 break;
2716 case TYPE_CODE_METHOD:
2717 switch (TYPE_CODE (arg))
2718 {
2719
2720 default:
2721 return INCOMPATIBLE_TYPE_BADNESS;
2722 }
2723 break;
2724 case TYPE_CODE_REF:
2725 switch (TYPE_CODE (arg))
2726 {
2727
2728 default:
2729 return INCOMPATIBLE_TYPE_BADNESS;
2730 }
2731
2732 break;
2733 case TYPE_CODE_SET:
2734 switch (TYPE_CODE (arg))
2735 {
2736 /* Not in C++ */
2737 case TYPE_CODE_SET:
2738 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2739 default:
2740 return INCOMPATIBLE_TYPE_BADNESS;
2741 }
2742 break;
2743 case TYPE_CODE_VOID:
2744 default:
2745 return INCOMPATIBLE_TYPE_BADNESS;
2746 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2747}
2748
c5aa993b
JM
2749
2750/* End of functions for overload resolution */
c906108c 2751
c906108c 2752static void
fba45db2 2753print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2754{
2755 int bitno;
2756
2757 for (bitno = 0; bitno < nbits; bitno++)
2758 {
2759 if ((bitno % 8) == 0)
2760 {
2761 puts_filtered (" ");
2762 }
2763 if (B_TST (bits, bitno))
2764 {
2765 printf_filtered ("1");
2766 }
2767 else
2768 {
2769 printf_filtered ("0");
2770 }
2771 }
2772}
2773
ad2f7632
DJ
2774/* Note the first arg should be the "this" pointer, we may not want to
2775 include it since we may get into a infinitely recursive situation. */
c906108c
SS
2776
2777static void
ad2f7632 2778print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2779{
2780 if (args != NULL)
2781 {
ad2f7632
DJ
2782 int i;
2783
2784 for (i = 0; i < nargs; i++)
2785 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2786 }
2787}
2788
2789static void
fba45db2 2790dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2791{
2792 int method_idx;
2793 int overload_idx;
2794 struct fn_field *f;
2795
2796 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2797 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2798 printf_filtered ("\n");
2799 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2800 {
2801 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2802 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2803 method_idx,
2804 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2805 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2806 gdb_stdout);
c906108c
SS
2807 printf_filtered (") length %d\n",
2808 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2809 for (overload_idx = 0;
2810 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2811 overload_idx++)
2812 {
2813 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2814 overload_idx,
2815 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2816 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2817 gdb_stdout);
c906108c
SS
2818 printf_filtered (")\n");
2819 printfi_filtered (spaces + 8, "type ");
d4f3574e 2820 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
c906108c
SS
2821 printf_filtered ("\n");
2822
2823 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2824 spaces + 8 + 2);
2825
2826 printfi_filtered (spaces + 8, "args ");
d4f3574e 2827 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
c906108c
SS
2828 printf_filtered ("\n");
2829
ad2f7632
DJ
2830 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2831 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
2832 spaces);
c906108c 2833 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2834 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2835 gdb_stdout);
c906108c
SS
2836 printf_filtered ("\n");
2837
2838 printfi_filtered (spaces + 8, "is_const %d\n",
2839 TYPE_FN_FIELD_CONST (f, overload_idx));
2840 printfi_filtered (spaces + 8, "is_volatile %d\n",
2841 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2842 printfi_filtered (spaces + 8, "is_private %d\n",
2843 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2844 printfi_filtered (spaces + 8, "is_protected %d\n",
2845 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2846 printfi_filtered (spaces + 8, "is_stub %d\n",
2847 TYPE_FN_FIELD_STUB (f, overload_idx));
2848 printfi_filtered (spaces + 8, "voffset %u\n",
2849 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2850 }
2851 }
2852}
2853
2854static void
fba45db2 2855print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2856{
2857 printfi_filtered (spaces, "n_baseclasses %d\n",
2858 TYPE_N_BASECLASSES (type));
2859 printfi_filtered (spaces, "nfn_fields %d\n",
2860 TYPE_NFN_FIELDS (type));
2861 printfi_filtered (spaces, "nfn_fields_total %d\n",
2862 TYPE_NFN_FIELDS_TOTAL (type));
2863 if (TYPE_N_BASECLASSES (type) > 0)
2864 {
2865 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2866 TYPE_N_BASECLASSES (type));
d4f3574e 2867 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
c906108c
SS
2868 printf_filtered (")");
2869
2870 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2871 TYPE_N_BASECLASSES (type));
2872 puts_filtered ("\n");
2873 }
2874 if (TYPE_NFIELDS (type) > 0)
2875 {
2876 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2877 {
2878 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2879 TYPE_NFIELDS (type));
d4f3574e 2880 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
c906108c
SS
2881 printf_filtered (")");
2882 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2883 TYPE_NFIELDS (type));
2884 puts_filtered ("\n");
2885 }
2886 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2887 {
2888 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2889 TYPE_NFIELDS (type));
d4f3574e 2890 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
c906108c
SS
2891 printf_filtered (")");
2892 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2893 TYPE_NFIELDS (type));
2894 puts_filtered ("\n");
2895 }
2896 }
2897 if (TYPE_NFN_FIELDS (type) > 0)
2898 {
2899 dump_fn_fieldlists (type, spaces);
2900 }
2901}
2902
e9e79dd9
FF
2903static void
2904print_bound_type (int bt)
2905{
2906 switch (bt)
2907 {
2908 case BOUND_CANNOT_BE_DETERMINED:
2909 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2910 break;
2911 case BOUND_BY_REF_ON_STACK:
2912 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2913 break;
2914 case BOUND_BY_VALUE_ON_STACK:
2915 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2916 break;
2917 case BOUND_BY_REF_IN_REG:
2918 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2919 break;
2920 case BOUND_BY_VALUE_IN_REG:
2921 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2922 break;
2923 case BOUND_SIMPLE:
2924 printf_filtered ("(BOUND_SIMPLE)");
2925 break;
2926 default:
2927 printf_filtered ("(unknown bound type)");
2928 break;
2929 }
2930}
2931
c906108c
SS
2932static struct obstack dont_print_type_obstack;
2933
2934void
fba45db2 2935recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2936{
2937 int idx;
2938
2939 if (spaces == 0)
2940 obstack_begin (&dont_print_type_obstack, 0);
2941
2942 if (TYPE_NFIELDS (type) > 0
2943 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2944 {
2945 struct type **first_dont_print
c5aa993b 2946 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2947
c5aa993b
JM
2948 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2949 - first_dont_print;
c906108c
SS
2950
2951 while (--i >= 0)
2952 {
2953 if (type == first_dont_print[i])
2954 {
2955 printfi_filtered (spaces, "type node ");
d4f3574e 2956 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2957 printf_filtered (" <same as already seen type>\n");
2958 return;
2959 }
2960 }
2961
2962 obstack_ptr_grow (&dont_print_type_obstack, type);
2963 }
2964
2965 printfi_filtered (spaces, "type node ");
d4f3574e 2966 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2967 printf_filtered ("\n");
2968 printfi_filtered (spaces, "name '%s' (",
2969 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2970 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2971 printf_filtered (")\n");
e9e79dd9
FF
2972 printfi_filtered (spaces, "tagname '%s' (",
2973 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2974 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2975 printf_filtered (")\n");
c906108c
SS
2976 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2977 switch (TYPE_CODE (type))
2978 {
c5aa993b
JM
2979 case TYPE_CODE_UNDEF:
2980 printf_filtered ("(TYPE_CODE_UNDEF)");
2981 break;
2982 case TYPE_CODE_PTR:
2983 printf_filtered ("(TYPE_CODE_PTR)");
2984 break;
2985 case TYPE_CODE_ARRAY:
2986 printf_filtered ("(TYPE_CODE_ARRAY)");
2987 break;
2988 case TYPE_CODE_STRUCT:
2989 printf_filtered ("(TYPE_CODE_STRUCT)");
2990 break;
2991 case TYPE_CODE_UNION:
2992 printf_filtered ("(TYPE_CODE_UNION)");
2993 break;
2994 case TYPE_CODE_ENUM:
2995 printf_filtered ("(TYPE_CODE_ENUM)");
2996 break;
2997 case TYPE_CODE_FUNC:
2998 printf_filtered ("(TYPE_CODE_FUNC)");
2999 break;
3000 case TYPE_CODE_INT:
3001 printf_filtered ("(TYPE_CODE_INT)");
3002 break;
3003 case TYPE_CODE_FLT:
3004 printf_filtered ("(TYPE_CODE_FLT)");
3005 break;
3006 case TYPE_CODE_VOID:
3007 printf_filtered ("(TYPE_CODE_VOID)");
3008 break;
3009 case TYPE_CODE_SET:
3010 printf_filtered ("(TYPE_CODE_SET)");
3011 break;
3012 case TYPE_CODE_RANGE:
3013 printf_filtered ("(TYPE_CODE_RANGE)");
3014 break;
3015 case TYPE_CODE_STRING:
3016 printf_filtered ("(TYPE_CODE_STRING)");
3017 break;
e9e79dd9
FF
3018 case TYPE_CODE_BITSTRING:
3019 printf_filtered ("(TYPE_CODE_BITSTRING)");
3020 break;
c5aa993b
JM
3021 case TYPE_CODE_ERROR:
3022 printf_filtered ("(TYPE_CODE_ERROR)");
3023 break;
3024 case TYPE_CODE_MEMBER:
3025 printf_filtered ("(TYPE_CODE_MEMBER)");
3026 break;
3027 case TYPE_CODE_METHOD:
3028 printf_filtered ("(TYPE_CODE_METHOD)");
3029 break;
3030 case TYPE_CODE_REF:
3031 printf_filtered ("(TYPE_CODE_REF)");
3032 break;
3033 case TYPE_CODE_CHAR:
3034 printf_filtered ("(TYPE_CODE_CHAR)");
3035 break;
3036 case TYPE_CODE_BOOL:
3037 printf_filtered ("(TYPE_CODE_BOOL)");
3038 break;
e9e79dd9
FF
3039 case TYPE_CODE_COMPLEX:
3040 printf_filtered ("(TYPE_CODE_COMPLEX)");
3041 break;
c5aa993b
JM
3042 case TYPE_CODE_TYPEDEF:
3043 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3044 break;
e9e79dd9
FF
3045 case TYPE_CODE_TEMPLATE:
3046 printf_filtered ("(TYPE_CODE_TEMPLATE)");
3047 break;
3048 case TYPE_CODE_TEMPLATE_ARG:
3049 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
3050 break;
c5aa993b
JM
3051 default:
3052 printf_filtered ("(UNKNOWN TYPE CODE)");
3053 break;
c906108c
SS
3054 }
3055 puts_filtered ("\n");
3056 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9e79dd9
FF
3057 printfi_filtered (spaces, "upper_bound_type 0x%x ",
3058 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
3059 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
3060 puts_filtered ("\n");
3061 printfi_filtered (spaces, "lower_bound_type 0x%x ",
3062 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3063 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3064 puts_filtered ("\n");
c906108c 3065 printfi_filtered (spaces, "objfile ");
d4f3574e 3066 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
c906108c
SS
3067 printf_filtered ("\n");
3068 printfi_filtered (spaces, "target_type ");
d4f3574e 3069 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3070 printf_filtered ("\n");
3071 if (TYPE_TARGET_TYPE (type) != NULL)
3072 {
3073 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3074 }
3075 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3076 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3077 printf_filtered ("\n");
3078 printfi_filtered (spaces, "reference_type ");
d4f3574e 3079 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3080 printf_filtered ("\n");
2fdde8f8
DJ
3081 printfi_filtered (spaces, "type_chain ");
3082 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3083 printf_filtered ("\n");
2fdde8f8
DJ
3084 printfi_filtered (spaces, "instance_flags 0x%x", TYPE_INSTANCE_FLAGS (type));
3085 if (TYPE_CONST (type))
3086 {
3087 puts_filtered (" TYPE_FLAG_CONST");
3088 }
3089 if (TYPE_VOLATILE (type))
3090 {
3091 puts_filtered (" TYPE_FLAG_VOLATILE");
3092 }
3093 if (TYPE_CODE_SPACE (type))
3094 {
3095 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3096 }
3097 if (TYPE_DATA_SPACE (type))
3098 {
3099 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3100 }
3101 puts_filtered ("\n");
c906108c 3102 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
762a036f 3103 if (TYPE_UNSIGNED (type))
c906108c
SS
3104 {
3105 puts_filtered (" TYPE_FLAG_UNSIGNED");
3106 }
762a036f
FF
3107 if (TYPE_NOSIGN (type))
3108 {
3109 puts_filtered (" TYPE_FLAG_NOSIGN");
3110 }
3111 if (TYPE_STUB (type))
c906108c
SS
3112 {
3113 puts_filtered (" TYPE_FLAG_STUB");
3114 }
762a036f
FF
3115 if (TYPE_TARGET_STUB (type))
3116 {
3117 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3118 }
3119 if (TYPE_STATIC (type))
3120 {
3121 puts_filtered (" TYPE_FLAG_STATIC");
3122 }
762a036f
FF
3123 if (TYPE_PROTOTYPED (type))
3124 {
3125 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3126 }
3127 if (TYPE_INCOMPLETE (type))
3128 {
3129 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3130 }
762a036f
FF
3131 if (TYPE_VARARGS (type))
3132 {
3133 puts_filtered (" TYPE_FLAG_VARARGS");
3134 }
f5f8a009
EZ
3135 /* This is used for things like AltiVec registers on ppc. Gcc emits
3136 an attribute for the array type, which tells whether or not we
3137 have a vector, instead of a regular array. */
3138 if (TYPE_VECTOR (type))
3139 {
3140 puts_filtered (" TYPE_FLAG_VECTOR");
3141 }
c906108c
SS
3142 puts_filtered ("\n");
3143 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3144 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3145 puts_filtered ("\n");
3146 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3147 {
3148 printfi_filtered (spaces + 2,
3149 "[%d] bitpos %d bitsize %d type ",
3150 idx, TYPE_FIELD_BITPOS (type, idx),
3151 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3152 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3153 printf_filtered (" name '%s' (",
3154 TYPE_FIELD_NAME (type, idx) != NULL
3155 ? TYPE_FIELD_NAME (type, idx)
3156 : "<NULL>");
d4f3574e 3157 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3158 printf_filtered (")\n");
3159 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3160 {
3161 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3162 }
3163 }
3164 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3165 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3166 puts_filtered ("\n");
3167 if (TYPE_VPTR_BASETYPE (type) != NULL)
3168 {
3169 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3170 }
3171 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3172 switch (TYPE_CODE (type))
3173 {
c5aa993b
JM
3174 case TYPE_CODE_STRUCT:
3175 printfi_filtered (spaces, "cplus_stuff ");
d4f3574e 3176 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3177 puts_filtered ("\n");
3178 print_cplus_stuff (type, spaces);
3179 break;
c906108c 3180
701c159d
AC
3181 case TYPE_CODE_FLT:
3182 printfi_filtered (spaces, "floatformat ");
3183 if (TYPE_FLOATFORMAT (type) == NULL
3184 || TYPE_FLOATFORMAT (type)->name == NULL)
3185 puts_filtered ("(null)");
3186 else
3187 puts_filtered (TYPE_FLOATFORMAT (type)->name);
3188 puts_filtered ("\n");
3189 break;
3190
c5aa993b
JM
3191 default:
3192 /* We have to pick one of the union types to be able print and test
7b83ea04
AC
3193 the value. Pick cplus_struct_type, even though we know it isn't
3194 any particular one. */
c5aa993b 3195 printfi_filtered (spaces, "type_specific ");
d4f3574e 3196 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
c5aa993b
JM
3197 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3198 {
3199 printf_filtered (" (unknown data form)");
3200 }
3201 printf_filtered ("\n");
3202 break;
c906108c
SS
3203
3204 }
3205 if (spaces == 0)
3206 obstack_free (&dont_print_type_obstack, NULL);
3207}
3208
a14ed312 3209static void build_gdbtypes (void);
c906108c 3210static void
fba45db2 3211build_gdbtypes (void)
c906108c
SS
3212{
3213 builtin_type_void =
3214 init_type (TYPE_CODE_VOID, 1,
3215 0,
3216 "void", (struct objfile *) NULL);
3217 builtin_type_char =
3218 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4e409299
JB
3219 (TYPE_FLAG_NOSIGN
3220 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
c906108c 3221 "char", (struct objfile *) NULL);
c5aa993b 3222 builtin_type_true_char =
9e0b60a8
JM
3223 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3224 0,
3225 "true character", (struct objfile *) NULL);
c906108c
SS
3226 builtin_type_signed_char =
3227 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3228 0,
3229 "signed char", (struct objfile *) NULL);
3230 builtin_type_unsigned_char =
3231 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3232 TYPE_FLAG_UNSIGNED,
3233 "unsigned char", (struct objfile *) NULL);
3234 builtin_type_short =
3235 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3236 0,
3237 "short", (struct objfile *) NULL);
3238 builtin_type_unsigned_short =
3239 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3240 TYPE_FLAG_UNSIGNED,
3241 "unsigned short", (struct objfile *) NULL);
3242 builtin_type_int =
3243 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3244 0,
3245 "int", (struct objfile *) NULL);
3246 builtin_type_unsigned_int =
3247 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3248 TYPE_FLAG_UNSIGNED,
3249 "unsigned int", (struct objfile *) NULL);
3250 builtin_type_long =
3251 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3252 0,
3253 "long", (struct objfile *) NULL);
3254 builtin_type_unsigned_long =
3255 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3256 TYPE_FLAG_UNSIGNED,
3257 "unsigned long", (struct objfile *) NULL);
3258 builtin_type_long_long =
3259 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3260 0,
3261 "long long", (struct objfile *) NULL);
c5aa993b 3262 builtin_type_unsigned_long_long =
c906108c
SS
3263 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3264 TYPE_FLAG_UNSIGNED,
3265 "unsigned long long", (struct objfile *) NULL);
3266 builtin_type_float =
3267 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3268 0,
3269 "float", (struct objfile *) NULL);
9c9532c9
CV
3270/* vinschen@redhat.com 2002-02-08:
3271 The below lines are disabled since they are doing the wrong
3272 thing for non-multiarch targets. They are setting the correct
3273 type of floats for the target but while on multiarch targets
3274 this is done everytime the architecture changes, it's done on
3275 non-multiarch targets only on startup, leaving the wrong values
3276 in even if the architecture changes (eg. from big-endian to
3277 little-endian). */
3278#if 0
701c159d 3279 TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
9c9532c9 3280#endif
c906108c
SS
3281 builtin_type_double =
3282 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3283 0,
3284 "double", (struct objfile *) NULL);
9c9532c9 3285#if 0
701c159d 3286 TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
9c9532c9 3287#endif
c906108c
SS
3288 builtin_type_long_double =
3289 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3290 0,
3291 "long double", (struct objfile *) NULL);
9c9532c9 3292#if 0
701c159d 3293 TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
9c9532c9 3294#endif
c906108c
SS
3295 builtin_type_complex =
3296 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3297 0,
3298 "complex", (struct objfile *) NULL);
3299 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3300 builtin_type_double_complex =
3301 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3302 0,
3303 "double complex", (struct objfile *) NULL);
3304 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3305 builtin_type_string =
3306 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3307 0,
3308 "string", (struct objfile *) NULL);
3309 builtin_type_int8 =
3310 init_type (TYPE_CODE_INT, 8 / 8,
3311 0,
3312 "int8_t", (struct objfile *) NULL);
3313 builtin_type_uint8 =
3314 init_type (TYPE_CODE_INT, 8 / 8,
3315 TYPE_FLAG_UNSIGNED,
3316 "uint8_t", (struct objfile *) NULL);
3317 builtin_type_int16 =
3318 init_type (TYPE_CODE_INT, 16 / 8,
3319 0,
3320 "int16_t", (struct objfile *) NULL);
3321 builtin_type_uint16 =
3322 init_type (TYPE_CODE_INT, 16 / 8,
3323 TYPE_FLAG_UNSIGNED,
3324 "uint16_t", (struct objfile *) NULL);
3325 builtin_type_int32 =
3326 init_type (TYPE_CODE_INT, 32 / 8,
3327 0,
3328 "int32_t", (struct objfile *) NULL);
3329 builtin_type_uint32 =
3330 init_type (TYPE_CODE_INT, 32 / 8,
3331 TYPE_FLAG_UNSIGNED,
3332 "uint32_t", (struct objfile *) NULL);
3333 builtin_type_int64 =
3334 init_type (TYPE_CODE_INT, 64 / 8,
3335 0,
3336 "int64_t", (struct objfile *) NULL);
3337 builtin_type_uint64 =
3338 init_type (TYPE_CODE_INT, 64 / 8,
3339 TYPE_FLAG_UNSIGNED,
3340 "uint64_t", (struct objfile *) NULL);
8b982acf
EZ
3341 builtin_type_int128 =
3342 init_type (TYPE_CODE_INT, 128 / 8,
3343 0,
3344 "int128_t", (struct objfile *) NULL);
3345 builtin_type_uint128 =
3346 init_type (TYPE_CODE_INT, 128 / 8,
3347 TYPE_FLAG_UNSIGNED,
3348 "uint128_t", (struct objfile *) NULL);
c906108c
SS
3349 builtin_type_bool =
3350 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3351 0,
3352 "bool", (struct objfile *) NULL);
3353
c5aa993b 3354 /* Add user knob for controlling resolution of opaque types */
c906108c 3355 add_show_from_set
c5aa993b 3356 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
c906108c
SS
3357 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
3358 &setlist),
3359 &showlist);
3360 opaque_type_resolution = 1;
3361
917317f4
JM
3362 /* Build SIMD types. */
3363 builtin_type_v4sf
3364 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
c2d11a7d
JM
3365 builtin_type_v4si
3366 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
08cf96df
EZ
3367 builtin_type_v16qi
3368 = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
c2d11a7d
JM
3369 builtin_type_v8qi
3370 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
08cf96df
EZ
3371 builtin_type_v8hi
3372 = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
c2d11a7d
JM
3373 builtin_type_v4hi
3374 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3375 builtin_type_v2si
3376 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
c4093a6a 3377
ac3aafc7 3378 /* 128 bit vectors. */
3139facc 3379 builtin_type_v2_double = init_vector_type (builtin_type_double, 2);
ac3aafc7 3380 builtin_type_v4_float = init_vector_type (builtin_type_float, 4);
3139facc 3381 builtin_type_v2_int64 = init_vector_type (builtin_type_int64, 2);
ac3aafc7
EZ
3382 builtin_type_v4_int32 = init_vector_type (builtin_type_int32, 4);
3383 builtin_type_v8_int16 = init_vector_type (builtin_type_int16, 8);
3384 builtin_type_v16_int8 = init_vector_type (builtin_type_int8, 16);
3385 /* 64 bit vectors. */
6599f021 3386 builtin_type_v2_float = init_vector_type (builtin_type_float, 2);
ac3aafc7
EZ
3387 builtin_type_v2_int32 = init_vector_type (builtin_type_int32, 2);
3388 builtin_type_v4_int16 = init_vector_type (builtin_type_int16, 4);
3389 builtin_type_v8_int8 = init_vector_type (builtin_type_int8, 8);
3390
b063e7a2
AC
3391 /* Vector types. */
3392 builtin_type_vec64 = build_builtin_type_vec64 ();
3393 builtin_type_vec64i = build_builtin_type_vec64i ();
ac3aafc7 3394 builtin_type_vec128 = build_builtin_type_vec128 ();
3139facc 3395 builtin_type_vec128i = build_builtin_type_vec128i ();
08cf96df 3396
c4093a6a 3397 /* Pointer/Address types. */
ee3a7b7f
JB
3398
3399 /* NOTE: on some targets, addresses and pointers are not necessarily
3400 the same --- for example, on the D10V, pointers are 16 bits long,
3401 but addresses are 32 bits long. See doc/gdbint.texinfo,
3402 ``Pointers Are Not Always Addresses''.
3403
3404 The upshot is:
3405 - gdb's `struct type' always describes the target's
3406 representation.
3407 - gdb's `struct value' objects should always hold values in
3408 target form.
3409 - gdb's CORE_ADDR values are addresses in the unified virtual
3410 address space that the assembler and linker work with. Thus,
3411 since target_read_memory takes a CORE_ADDR as an argument, it
3412 can access any memory on the target, even if the processor has
3413 separate code and data address spaces.
3414
3415 So, for example:
3416 - If v is a value holding a D10V code pointer, its contents are
3417 in target form: a big-endian address left-shifted two bits.
3418 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3419 sizeof (void *) == 2 on the target.
3420
3421 In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3422 target type for a value the target will never see. It's only
3423 used to hold the values of (typeless) linker symbols, which are
3424 indeed in the unified virtual address space. */
090a2205 3425 builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
ee3a7b7f
JB
3426 builtin_type_void_func_ptr
3427 = lookup_pointer_type (lookup_function_type (builtin_type_void));
c4093a6a 3428 builtin_type_CORE_ADDR =
52204a0b 3429 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
c4093a6a
JM
3430 TYPE_FLAG_UNSIGNED,
3431 "__CORE_ADDR", (struct objfile *) NULL);
3432 builtin_type_bfd_vma =
3433 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3434 TYPE_FLAG_UNSIGNED,
3435 "__bfd_vma", (struct objfile *) NULL);
c906108c
SS
3436}
3437
3438
a14ed312 3439extern void _initialize_gdbtypes (void);
c906108c 3440void
fba45db2 3441_initialize_gdbtypes (void)
c906108c 3442{
5d161b24 3443 struct cmd_list_element *c;
c906108c 3444 build_gdbtypes ();
0f71a2f6
JM
3445
3446 /* FIXME - For the moment, handle types by swapping them in and out.
3447 Should be using the per-architecture data-pointer and a large
3448 struct. */
c5aa993b
JM
3449 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
3450 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
3451 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
3452 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
3453 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
3454 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
3455 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
3456 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
3457 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
3458 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
3459 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
3460 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
3461 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
3462 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
3463 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
3464 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
3465 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
3466 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
3467 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
3468 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
3469 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
3470 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
3471 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
3472 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
3473 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
3474 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
8b982acf
EZ
3475 register_gdbarch_swap (&builtin_type_int128, sizeof (struct type *), NULL);
3476 register_gdbarch_swap (&builtin_type_uint128, sizeof (struct type *), NULL);
917317f4 3477 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
c2d11a7d 3478 register_gdbarch_swap (&builtin_type_v4si, sizeof (struct type *), NULL);
08cf96df 3479 register_gdbarch_swap (&builtin_type_v16qi, sizeof (struct type *), NULL);
c2d11a7d 3480 register_gdbarch_swap (&builtin_type_v8qi, sizeof (struct type *), NULL);
08cf96df 3481 register_gdbarch_swap (&builtin_type_v8hi, sizeof (struct type *), NULL);
c2d11a7d
JM
3482 register_gdbarch_swap (&builtin_type_v4hi, sizeof (struct type *), NULL);
3483 register_gdbarch_swap (&builtin_type_v2si, sizeof (struct type *), NULL);
3139facc 3484 register_gdbarch_swap (&builtin_type_v2_double, sizeof (struct type *), NULL);
ac3aafc7 3485 register_gdbarch_swap (&builtin_type_v4_float, sizeof (struct type *), NULL);
3139facc 3486 register_gdbarch_swap (&builtin_type_v2_int64, sizeof (struct type *), NULL);
ac3aafc7
EZ
3487 register_gdbarch_swap (&builtin_type_v4_int32, sizeof (struct type *), NULL);
3488 register_gdbarch_swap (&builtin_type_v8_int16, sizeof (struct type *), NULL);
3489 register_gdbarch_swap (&builtin_type_v16_int8, sizeof (struct type *), NULL);
6599f021 3490 register_gdbarch_swap (&builtin_type_v2_float, sizeof (struct type *), NULL);
ac3aafc7
EZ
3491 register_gdbarch_swap (&builtin_type_v2_int32, sizeof (struct type *), NULL);
3492 register_gdbarch_swap (&builtin_type_v8_int8, sizeof (struct type *), NULL);
3493 register_gdbarch_swap (&builtin_type_v4_int16, sizeof (struct type *), NULL);
08cf96df 3494 register_gdbarch_swap (&builtin_type_vec128, sizeof (struct type *), NULL);
3139facc 3495 register_gdbarch_swap (&builtin_type_vec128i, sizeof (struct type *), NULL);
090a2205 3496 REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
ee3a7b7f 3497 REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
c4093a6a
JM
3498 REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3499 REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
0f71a2f6 3500 register_gdbarch_swap (NULL, 0, build_gdbtypes);
5d161b24 3501
598f52df
AC
3502 /* Note: These types do not need to be swapped - they are target
3503 neutral. */
3504 builtin_type_ieee_single_big =
3505 init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3506 0, "builtin_type_ieee_single_big", NULL);
3507 TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3508 builtin_type_ieee_single_little =
3509 init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3510 0, "builtin_type_ieee_single_little", NULL);
069e84fd 3511 TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
598f52df
AC
3512 builtin_type_ieee_double_big =
3513 init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3514 0, "builtin_type_ieee_double_big", NULL);
069e84fd 3515 TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
598f52df
AC
3516 builtin_type_ieee_double_little =
3517 init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3518 0, "builtin_type_ieee_double_little", NULL);
069e84fd 3519 TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
598f52df
AC
3520 builtin_type_ieee_double_littlebyte_bigword =
3521 init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3522 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
069e84fd 3523 TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
598f52df
AC
3524 builtin_type_i387_ext =
3525 init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3526 0, "builtin_type_i387_ext", NULL);
e371b258 3527 TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
598f52df
AC
3528 builtin_type_m68881_ext =
3529 init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3530 0, "builtin_type_m68881_ext", NULL);
069e84fd 3531 TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
598f52df
AC
3532 builtin_type_i960_ext =
3533 init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3534 0, "builtin_type_i960_ext", NULL);
069e84fd 3535 TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
598f52df
AC
3536 builtin_type_m88110_ext =
3537 init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3538 0, "builtin_type_m88110_ext", NULL);
069e84fd 3539 TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
598f52df
AC
3540 builtin_type_m88110_harris_ext =
3541 init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3542 0, "builtin_type_m88110_harris_ext", NULL);
069e84fd 3543 TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
598f52df
AC
3544 builtin_type_arm_ext_big =
3545 init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3546 0, "builtin_type_arm_ext_big", NULL);
069e84fd 3547 TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
598f52df
AC
3548 builtin_type_arm_ext_littlebyte_bigword =
3549 init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3550 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
069e84fd 3551 TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
598f52df
AC
3552 builtin_type_ia64_spill_big =
3553 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3554 0, "builtin_type_ia64_spill_big", NULL);
069e84fd 3555 TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
598f52df
AC
3556 builtin_type_ia64_spill_little =
3557 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3558 0, "builtin_type_ia64_spill_little", NULL);
069e84fd 3559 TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
598f52df
AC
3560 builtin_type_ia64_quad_big =
3561 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3562 0, "builtin_type_ia64_quad_big", NULL);
069e84fd 3563 TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
598f52df
AC
3564 builtin_type_ia64_quad_little =
3565 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3566 0, "builtin_type_ia64_quad_little", NULL);
069e84fd 3567 TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
598f52df 3568
5d161b24
DB
3569 add_show_from_set (
3570 add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
3571 "Set debugging of C++ overloading.\n\
3572 When enabled, ranking of the functions\n\
3573 is displayed.", &setdebuglist),
3574 &showdebuglist);
c906108c 3575}