]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Support routines for manipulating internal types for GDB. |
4f2aea11 | 2 | |
d01e8234 | 3 | Copyright (C) 1992-2025 Free Software Foundation, Inc. |
4f2aea11 | 4 | |
c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 21 | |
c906108c SS |
22 | #include "bfd.h" |
23 | #include "symtab.h" | |
24 | #include "symfile.h" | |
25 | #include "objfiles.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "expression.h" | |
28 | #include "language.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "demangle.h" | |
32 | #include "complaints.h" | |
5b9707eb | 33 | #include "cli/cli-cmds.h" |
015a42b4 | 34 | #include "cp-abi.h" |
ae5a43e0 | 35 | #include "hashtab.h" |
8de20a37 | 36 | #include "cp-support.h" |
ca092b61 | 37 | #include "bcache.h" |
82ca8957 | 38 | #include "dwarf2/loc.h" |
b84aaada | 39 | #include "dwarf2/read.h" |
80180f79 | 40 | #include "gdbcore.h" |
1841ee5d | 41 | #include "floatformat.h" |
a5c641b5 | 42 | #include "f-lang.h" |
ef83a141 | 43 | #include <algorithm> |
09584414 | 44 | #include "gmp-utils.h" |
84914f59 TT |
45 | #include "rust-lang.h" |
46 | #include "ada-lang.h" | |
8d6a3c8e | 47 | #include "extract-store-integer.h" |
ac3aafc7 | 48 | |
ac03c8d8 TT |
49 | /* The value of an invalid conversion badness. */ |
50 | #define INVALID_CONVERSION 100 | |
51 | ||
5f59e7e0 | 52 | static struct dynamic_prop_list * |
53 | copy_dynamic_prop_list (struct obstack *, struct dynamic_prop_list *); | |
54 | ||
6403aeea SW |
55 | /* Initialize BADNESS constants. */ |
56 | ||
ac03c8d8 | 57 | const struct rank LENGTH_MISMATCH_BADNESS = {INVALID_CONVERSION,0}; |
6403aeea | 58 | |
ac03c8d8 TT |
59 | const struct rank TOO_FEW_PARAMS_BADNESS = {INVALID_CONVERSION,0}; |
60 | const struct rank INCOMPATIBLE_TYPE_BADNESS = {INVALID_CONVERSION,0}; | |
6403aeea | 61 | |
a9d5ef47 | 62 | const struct rank EXACT_MATCH_BADNESS = {0,0}; |
6403aeea | 63 | |
a9d5ef47 SW |
64 | const struct rank INTEGER_PROMOTION_BADNESS = {1,0}; |
65 | const struct rank FLOAT_PROMOTION_BADNESS = {1,0}; | |
66 | const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0}; | |
e15c3eb4 | 67 | const struct rank CV_CONVERSION_BADNESS = {1, 0}; |
a9d5ef47 SW |
68 | const struct rank INTEGER_CONVERSION_BADNESS = {2,0}; |
69 | const struct rank FLOAT_CONVERSION_BADNESS = {2,0}; | |
70 | const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0}; | |
71 | const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0}; | |
5b4f6e25 | 72 | const struct rank BOOL_CONVERSION_BADNESS = {3,0}; |
a9d5ef47 SW |
73 | const struct rank BASE_CONVERSION_BADNESS = {2,0}; |
74 | const struct rank REFERENCE_CONVERSION_BADNESS = {2,0}; | |
06acc08f | 75 | const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1}; |
da096638 | 76 | const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0}; |
a9d5ef47 | 77 | const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0}; |
a451cb65 | 78 | const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0}; |
1d2f86b6 | 79 | const struct rank VARARG_BADNESS = {4, 0}; |
6403aeea | 80 | |
8da61cc4 | 81 | /* Floatformat pairs. */ |
f9e9243a UW |
82 | const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { |
83 | &floatformat_ieee_half_big, | |
84 | &floatformat_ieee_half_little | |
85 | }; | |
8da61cc4 DJ |
86 | const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { |
87 | &floatformat_ieee_single_big, | |
88 | &floatformat_ieee_single_little | |
89 | }; | |
90 | const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { | |
91 | &floatformat_ieee_double_big, | |
92 | &floatformat_ieee_double_little | |
93 | }; | |
552f1157 TY |
94 | const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN] = { |
95 | &floatformat_ieee_quad_big, | |
96 | &floatformat_ieee_quad_little | |
97 | }; | |
8da61cc4 DJ |
98 | const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { |
99 | &floatformat_ieee_double_big, | |
100 | &floatformat_ieee_double_littlebyte_bigword | |
101 | }; | |
102 | const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { | |
103 | &floatformat_i387_ext, | |
104 | &floatformat_i387_ext | |
105 | }; | |
106 | const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { | |
107 | &floatformat_m68881_ext, | |
108 | &floatformat_m68881_ext | |
109 | }; | |
110 | const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { | |
111 | &floatformat_arm_ext_big, | |
112 | &floatformat_arm_ext_littlebyte_bigword | |
113 | }; | |
114 | const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { | |
115 | &floatformat_ia64_spill_big, | |
116 | &floatformat_ia64_spill_little | |
117 | }; | |
8da61cc4 DJ |
118 | const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { |
119 | &floatformat_vax_f, | |
120 | &floatformat_vax_f | |
121 | }; | |
122 | const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { | |
123 | &floatformat_vax_d, | |
124 | &floatformat_vax_d | |
125 | }; | |
b14d30e1 | 126 | const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { |
f5aee5ee AM |
127 | &floatformat_ibm_long_double_big, |
128 | &floatformat_ibm_long_double_little | |
b14d30e1 | 129 | }; |
2a67f09d FW |
130 | const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = { |
131 | &floatformat_bfloat16_big, | |
132 | &floatformat_bfloat16_little | |
133 | }; | |
8da61cc4 | 134 | |
2873700e KS |
135 | /* Should opaque types be resolved? */ |
136 | ||
491144b5 | 137 | static bool opaque_type_resolution = true; |
2873700e | 138 | |
79bb1944 | 139 | /* See gdbtypes.h. */ |
2873700e KS |
140 | |
141 | unsigned int overload_debug = 0; | |
142 | ||
a451cb65 KS |
143 | /* A flag to enable strict type checking. */ |
144 | ||
491144b5 | 145 | static bool strict_type_checking = true; |
a451cb65 | 146 | |
2873700e | 147 | /* A function to show whether opaque types are resolved. */ |
5212577a | 148 | |
920d2a44 AC |
149 | static void |
150 | show_opaque_type_resolution (struct ui_file *file, int from_tty, | |
7ba81444 MS |
151 | struct cmd_list_element *c, |
152 | const char *value) | |
920d2a44 | 153 | { |
6cb06a8c TT |
154 | gdb_printf (file, _("Resolution of opaque struct/class/union types " |
155 | "(if set before loading symbols) is %s.\n"), | |
156 | value); | |
920d2a44 AC |
157 | } |
158 | ||
2873700e | 159 | /* A function to show whether C++ overload debugging is enabled. */ |
5212577a | 160 | |
920d2a44 AC |
161 | static void |
162 | show_overload_debug (struct ui_file *file, int from_tty, | |
163 | struct cmd_list_element *c, const char *value) | |
164 | { | |
6cb06a8c TT |
165 | gdb_printf (file, _("Debugging of C++ overloading is %s.\n"), |
166 | value); | |
920d2a44 | 167 | } |
c906108c | 168 | |
a451cb65 KS |
169 | /* A function to show the status of strict type checking. */ |
170 | ||
171 | static void | |
172 | show_strict_type_checking (struct ui_file *file, int from_tty, | |
173 | struct cmd_list_element *c, const char *value) | |
174 | { | |
6cb06a8c | 175 | gdb_printf (file, _("Strict type checking is %s.\n"), value); |
a451cb65 KS |
176 | } |
177 | ||
5212577a | 178 | \f |
6a4d297c TT |
179 | /* Helper function to initialize a newly allocated type. Set type code |
180 | to CODE and initialize the type-specific fields accordingly. */ | |
181 | ||
182 | static void | |
183 | set_type_code (struct type *type, enum type_code code) | |
184 | { | |
185 | type->set_code (code); | |
186 | ||
187 | switch (code) | |
188 | { | |
189 | case TYPE_CODE_STRUCT: | |
190 | case TYPE_CODE_UNION: | |
191 | case TYPE_CODE_NAMESPACE: | |
192 | INIT_CPLUS_SPECIFIC (type); | |
193 | break; | |
194 | case TYPE_CODE_FLT: | |
195 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; | |
196 | break; | |
197 | case TYPE_CODE_FUNC: | |
198 | INIT_FUNC_SPECIFIC (type); | |
199 | break; | |
200 | case TYPE_CODE_FIXED_POINT: | |
201 | INIT_FIXED_POINT_SPECIFIC (type); | |
202 | break; | |
203 | } | |
204 | } | |
205 | ||
206 | /* See gdbtypes.h. */ | |
207 | ||
208 | type * | |
209 | type_allocator::new_type () | |
210 | { | |
211 | if (m_smash) | |
212 | return m_data.type; | |
213 | ||
214 | obstack *obstack = (m_is_objfile | |
215 | ? &m_data.objfile->objfile_obstack | |
216 | : gdbarch_obstack (m_data.gdbarch)); | |
217 | ||
218 | /* Alloc the structure and start off with all fields zeroed. */ | |
219 | struct type *type = OBSTACK_ZALLOC (obstack, struct type); | |
220 | TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (obstack, struct main_type); | |
76fc0f62 | 221 | TYPE_MAIN_TYPE (type)->m_lang = m_lang; |
6a4d297c TT |
222 | |
223 | if (m_is_objfile) | |
224 | { | |
225 | OBJSTAT (m_data.objfile, n_types++); | |
226 | type->set_owner (m_data.objfile); | |
227 | } | |
228 | else | |
229 | type->set_owner (m_data.gdbarch); | |
230 | ||
231 | /* Initialize the fields that might not be zero. */ | |
232 | type->set_code (TYPE_CODE_UNDEF); | |
233 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ | |
234 | ||
235 | return type; | |
236 | } | |
237 | ||
8ee511af | 238 | /* See gdbtypes.h. */ |
e9bb382b | 239 | |
6a4d297c TT |
240 | type * |
241 | type_allocator::new_type (enum type_code code, int bit, const char *name) | |
242 | { | |
243 | struct type *type = new_type (); | |
244 | set_type_code (type, code); | |
245 | gdb_assert ((bit % TARGET_CHAR_BIT) == 0); | |
246 | type->set_length (bit / TARGET_CHAR_BIT); | |
247 | ||
248 | if (name != nullptr) | |
249 | { | |
250 | obstack *obstack = (m_is_objfile | |
251 | ? &m_data.objfile->objfile_obstack | |
252 | : gdbarch_obstack (m_data.gdbarch)); | |
253 | type->set_name (obstack_strdup (obstack, name)); | |
254 | } | |
255 | ||
256 | return type; | |
257 | } | |
258 | ||
259 | /* See gdbtypes.h. */ | |
260 | ||
261 | gdbarch * | |
262 | type_allocator::arch () | |
263 | { | |
264 | if (m_smash) | |
265 | return m_data.type->arch (); | |
266 | if (m_is_objfile) | |
267 | return m_data.objfile->arch (); | |
268 | return m_data.gdbarch; | |
269 | } | |
270 | ||
271 | /* See gdbtypes.h. */ | |
272 | ||
8ee511af SM |
273 | gdbarch * |
274 | type::arch () const | |
e9bb382b | 275 | { |
2fabdf33 AB |
276 | struct gdbarch *arch; |
277 | ||
8ee511af SM |
278 | if (this->is_objfile_owned ()) |
279 | arch = this->objfile_owner ()->arch (); | |
e9bb382b | 280 | else |
8ee511af | 281 | arch = this->arch_owner (); |
2fabdf33 AB |
282 | |
283 | /* The ARCH can be NULL if TYPE is associated with neither an objfile nor | |
284 | a gdbarch, however, this is very rare, and even then, in most cases | |
8ee511af | 285 | that type::arch is called, we assume that a non-NULL value is |
2fabdf33 | 286 | returned. */ |
8ee511af | 287 | gdb_assert (arch != nullptr); |
2fabdf33 | 288 | return arch; |
e9bb382b UW |
289 | } |
290 | ||
99ad9427 YQ |
291 | /* See gdbtypes.h. */ |
292 | ||
293 | struct type * | |
294 | get_target_type (struct type *type) | |
295 | { | |
296 | if (type != NULL) | |
297 | { | |
27710edb | 298 | type = type->target_type (); |
99ad9427 YQ |
299 | if (type != NULL) |
300 | type = check_typedef (type); | |
301 | } | |
302 | ||
303 | return type; | |
304 | } | |
305 | ||
2e056931 SM |
306 | /* See gdbtypes.h. */ |
307 | ||
308 | unsigned int | |
309 | type_length_units (struct type *type) | |
310 | { | |
8ee511af | 311 | int unit_size = gdbarch_addressable_memory_unit_size (type->arch ()); |
2e056931 | 312 | |
df86565b | 313 | return type->length () / unit_size; |
2e056931 SM |
314 | } |
315 | ||
2fdde8f8 DJ |
316 | /* Alloc a new type instance structure, fill it with some defaults, |
317 | and point it at OLDTYPE. Allocate the new type instance from the | |
318 | same place as OLDTYPE. */ | |
319 | ||
320 | static struct type * | |
321 | alloc_type_instance (struct type *oldtype) | |
322 | { | |
323 | struct type *type; | |
324 | ||
325 | /* Allocate the structure. */ | |
326 | ||
30625020 | 327 | if (!oldtype->is_objfile_owned ()) |
8ee511af | 328 | type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type); |
2fdde8f8 | 329 | else |
6ac37371 | 330 | type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack, |
1deafd4e PA |
331 | struct type); |
332 | ||
2fdde8f8 DJ |
333 | TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); |
334 | ||
335 | TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ | |
336 | ||
c16abbde | 337 | return type; |
2fdde8f8 DJ |
338 | } |
339 | ||
340 | /* Clear all remnants of the previous type at TYPE, in preparation for | |
e9bb382b | 341 | replacing it with something else. Preserve owner information. */ |
5212577a | 342 | |
2fdde8f8 DJ |
343 | static void |
344 | smash_type (struct type *type) | |
345 | { | |
5b7d941b | 346 | bool objfile_owned = type->is_objfile_owned (); |
6ac37371 SM |
347 | objfile *objfile = type->objfile_owner (); |
348 | gdbarch *arch = type->arch_owner (); | |
e9bb382b | 349 | |
2fdde8f8 DJ |
350 | memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); |
351 | ||
e9bb382b | 352 | /* Restore owner information. */ |
5b7d941b SM |
353 | if (objfile_owned) |
354 | type->set_owner (objfile); | |
355 | else | |
356 | type->set_owner (arch); | |
e9bb382b | 357 | |
2fdde8f8 DJ |
358 | /* For now, delete the rings. */ |
359 | TYPE_CHAIN (type) = type; | |
360 | ||
361 | /* For now, leave the pointer/reference types alone. */ | |
362 | } | |
363 | ||
c906108c SS |
364 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points |
365 | to a pointer to memory where the pointer type should be stored. | |
366 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
367 | We allocate new memory if needed. */ | |
368 | ||
369 | struct type * | |
fba45db2 | 370 | make_pointer_type (struct type *type, struct type **typeptr) |
c906108c | 371 | { |
52f0bd74 | 372 | struct type *ntype; /* New type */ |
053cb41b | 373 | struct type *chain; |
c906108c SS |
374 | |
375 | ntype = TYPE_POINTER_TYPE (type); | |
376 | ||
c5aa993b | 377 | if (ntype) |
c906108c | 378 | { |
c5aa993b | 379 | if (typeptr == 0) |
7ba81444 MS |
380 | return ntype; /* Don't care about alloc, |
381 | and have new type. */ | |
c906108c | 382 | else if (*typeptr == 0) |
c5aa993b | 383 | { |
7ba81444 | 384 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 385 | return ntype; |
c5aa993b | 386 | } |
c906108c SS |
387 | } |
388 | ||
389 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
390 | { | |
9fa83a7a | 391 | ntype = type_allocator (type).new_type (); |
c906108c SS |
392 | if (typeptr) |
393 | *typeptr = ntype; | |
394 | } | |
7ba81444 | 395 | else /* We have storage, but need to reset it. */ |
c906108c SS |
396 | { |
397 | ntype = *typeptr; | |
053cb41b | 398 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 399 | smash_type (ntype); |
053cb41b | 400 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
401 | } |
402 | ||
8a50fdce | 403 | ntype->set_target_type (type); |
c906108c SS |
404 | TYPE_POINTER_TYPE (type) = ntype; |
405 | ||
5212577a | 406 | /* FIXME! Assumes the machine has only one representation for pointers! */ |
c906108c | 407 | |
b6cdbc9a | 408 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
67607e24 | 409 | ntype->set_code (TYPE_CODE_PTR); |
c906108c | 410 | |
67b2adb2 | 411 | /* Mark pointers as unsigned. The target converts between pointers |
76e71323 | 412 | and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and |
7ba81444 | 413 | gdbarch_address_to_pointer. */ |
653223d3 | 414 | ntype->set_is_unsigned (true); |
c5aa993b | 415 | |
053cb41b JB |
416 | /* Update the length of all the other variants of this type. */ |
417 | chain = TYPE_CHAIN (ntype); | |
418 | while (chain != ntype) | |
419 | { | |
df86565b | 420 | chain->set_length (ntype->length ()); |
053cb41b JB |
421 | chain = TYPE_CHAIN (chain); |
422 | } | |
423 | ||
c906108c SS |
424 | return ntype; |
425 | } | |
426 | ||
427 | /* Given a type TYPE, return a type of pointers to that type. | |
428 | May need to construct such a type if this is the first use. */ | |
429 | ||
430 | struct type * | |
fba45db2 | 431 | lookup_pointer_type (struct type *type) |
c906108c | 432 | { |
c5aa993b | 433 | return make_pointer_type (type, (struct type **) 0); |
c906108c SS |
434 | } |
435 | ||
7ba81444 MS |
436 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, |
437 | points to a pointer to memory where the reference type should be | |
438 | stored. If *TYPEPTR is zero, update it to point to the reference | |
3b224330 AV |
439 | type we return. We allocate new memory if needed. REFCODE denotes |
440 | the kind of reference type to lookup (lvalue or rvalue reference). */ | |
c906108c SS |
441 | |
442 | struct type * | |
3b224330 | 443 | make_reference_type (struct type *type, struct type **typeptr, |
dda83cd7 | 444 | enum type_code refcode) |
c906108c | 445 | { |
52f0bd74 | 446 | struct type *ntype; /* New type */ |
3b224330 | 447 | struct type **reftype; |
1e98b326 | 448 | struct type *chain; |
c906108c | 449 | |
3b224330 AV |
450 | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
451 | ||
452 | ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type) | |
dda83cd7 | 453 | : TYPE_RVALUE_REFERENCE_TYPE (type)); |
c906108c | 454 | |
c5aa993b | 455 | if (ntype) |
c906108c | 456 | { |
c5aa993b | 457 | if (typeptr == 0) |
7ba81444 MS |
458 | return ntype; /* Don't care about alloc, |
459 | and have new type. */ | |
c906108c | 460 | else if (*typeptr == 0) |
c5aa993b | 461 | { |
7ba81444 | 462 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 463 | return ntype; |
c5aa993b | 464 | } |
c906108c SS |
465 | } |
466 | ||
467 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
468 | { | |
9fa83a7a | 469 | ntype = type_allocator (type).new_type (); |
c906108c SS |
470 | if (typeptr) |
471 | *typeptr = ntype; | |
472 | } | |
7ba81444 | 473 | else /* We have storage, but need to reset it. */ |
c906108c SS |
474 | { |
475 | ntype = *typeptr; | |
1e98b326 | 476 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 477 | smash_type (ntype); |
1e98b326 | 478 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
479 | } |
480 | ||
8a50fdce | 481 | ntype->set_target_type (type); |
3b224330 | 482 | reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type) |
dda83cd7 | 483 | : &TYPE_RVALUE_REFERENCE_TYPE (type)); |
3b224330 AV |
484 | |
485 | *reftype = ntype; | |
c906108c | 486 | |
7ba81444 MS |
487 | /* FIXME! Assume the machine has only one representation for |
488 | references, and that it matches the (only) representation for | |
489 | pointers! */ | |
c906108c | 490 | |
b6cdbc9a | 491 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
67607e24 | 492 | ntype->set_code (refcode); |
c5aa993b | 493 | |
3b224330 | 494 | *reftype = ntype; |
c906108c | 495 | |
1e98b326 JB |
496 | /* Update the length of all the other variants of this type. */ |
497 | chain = TYPE_CHAIN (ntype); | |
498 | while (chain != ntype) | |
499 | { | |
df86565b | 500 | chain->set_length (ntype->length ()); |
1e98b326 JB |
501 | chain = TYPE_CHAIN (chain); |
502 | } | |
503 | ||
c906108c SS |
504 | return ntype; |
505 | } | |
506 | ||
7ba81444 MS |
507 | /* Same as above, but caller doesn't care about memory allocation |
508 | details. */ | |
c906108c SS |
509 | |
510 | struct type * | |
3b224330 AV |
511 | lookup_reference_type (struct type *type, enum type_code refcode) |
512 | { | |
513 | return make_reference_type (type, (struct type **) 0, refcode); | |
514 | } | |
515 | ||
516 | /* Lookup the lvalue reference type for the type TYPE. */ | |
517 | ||
518 | struct type * | |
519 | lookup_lvalue_reference_type (struct type *type) | |
520 | { | |
521 | return lookup_reference_type (type, TYPE_CODE_REF); | |
522 | } | |
523 | ||
524 | /* Lookup the rvalue reference type for the type TYPE. */ | |
525 | ||
526 | struct type * | |
527 | lookup_rvalue_reference_type (struct type *type) | |
c906108c | 528 | { |
3b224330 | 529 | return lookup_reference_type (type, TYPE_CODE_RVALUE_REF); |
c906108c SS |
530 | } |
531 | ||
7ba81444 MS |
532 | /* Lookup a function type that returns type TYPE. TYPEPTR, if |
533 | nonzero, points to a pointer to memory where the function type | |
534 | should be stored. If *TYPEPTR is zero, update it to point to the | |
0c8b41f1 | 535 | function type we return. We allocate new memory if needed. */ |
c906108c SS |
536 | |
537 | struct type * | |
0c8b41f1 | 538 | make_function_type (struct type *type, struct type **typeptr) |
c906108c | 539 | { |
52f0bd74 | 540 | struct type *ntype; /* New type */ |
c906108c SS |
541 | |
542 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
543 | { | |
9fa83a7a | 544 | ntype = type_allocator (type).new_type (); |
c906108c SS |
545 | if (typeptr) |
546 | *typeptr = ntype; | |
547 | } | |
7ba81444 | 548 | else /* We have storage, but need to reset it. */ |
c906108c SS |
549 | { |
550 | ntype = *typeptr; | |
2fdde8f8 | 551 | smash_type (ntype); |
c906108c SS |
552 | } |
553 | ||
8a50fdce | 554 | ntype->set_target_type (type); |
c906108c | 555 | |
b6cdbc9a | 556 | ntype->set_length (1); |
67607e24 | 557 | ntype->set_code (TYPE_CODE_FUNC); |
c5aa993b | 558 | |
b6cdc2c1 JK |
559 | INIT_FUNC_SPECIFIC (ntype); |
560 | ||
c906108c SS |
561 | return ntype; |
562 | } | |
563 | ||
c906108c SS |
564 | /* Given a type TYPE, return a type of functions that return that type. |
565 | May need to construct such a type if this is the first use. */ | |
566 | ||
567 | struct type * | |
fba45db2 | 568 | lookup_function_type (struct type *type) |
c906108c | 569 | { |
0c8b41f1 | 570 | return make_function_type (type, (struct type **) 0); |
c906108c SS |
571 | } |
572 | ||
71918a86 | 573 | /* Given a type TYPE and argument types, return the appropriate |
a6fb9c08 TT |
574 | function type. If the final type in PARAM_TYPES is NULL, make a |
575 | varargs function. */ | |
71918a86 TT |
576 | |
577 | struct type * | |
578 | lookup_function_type_with_arguments (struct type *type, | |
579 | int nparams, | |
580 | struct type **param_types) | |
581 | { | |
582 | struct type *fn = make_function_type (type, (struct type **) 0); | |
583 | int i; | |
584 | ||
e314d629 | 585 | if (nparams > 0) |
a6fb9c08 | 586 | { |
e314d629 TT |
587 | if (param_types[nparams - 1] == NULL) |
588 | { | |
589 | --nparams; | |
1d6286ed | 590 | fn->set_has_varargs (true); |
e314d629 | 591 | } |
78134374 | 592 | else if (check_typedef (param_types[nparams - 1])->code () |
e314d629 TT |
593 | == TYPE_CODE_VOID) |
594 | { | |
595 | --nparams; | |
596 | /* Caller should have ensured this. */ | |
597 | gdb_assert (nparams == 0); | |
27e69b7a | 598 | fn->set_is_prototyped (true); |
e314d629 | 599 | } |
54990598 | 600 | else |
27e69b7a | 601 | fn->set_is_prototyped (true); |
a6fb9c08 TT |
602 | } |
603 | ||
2774f2da | 604 | fn->alloc_fields (nparams); |
71918a86 | 605 | for (i = 0; i < nparams; ++i) |
5d14b6e5 | 606 | fn->field (i).set_type (param_types[i]); |
71918a86 TT |
607 | |
608 | return fn; | |
609 | } | |
610 | ||
69896a2c PA |
611 | /* Identify address space identifier by name -- return a |
612 | type_instance_flags. */ | |
5212577a | 613 | |
314ad88d | 614 | type_instance_flags |
69896a2c PA |
615 | address_space_name_to_type_instance_flags (struct gdbarch *gdbarch, |
616 | const char *space_identifier) | |
47663de5 | 617 | { |
314ad88d | 618 | type_instance_flags type_flags; |
d8734c88 | 619 | |
7ba81444 | 620 | /* Check for known address space delimiters. */ |
47663de5 | 621 | if (!strcmp (space_identifier, "code")) |
876cecd0 | 622 | return TYPE_INSTANCE_FLAG_CODE_SPACE; |
47663de5 | 623 | else if (!strcmp (space_identifier, "data")) |
876cecd0 | 624 | return TYPE_INSTANCE_FLAG_DATA_SPACE; |
5f11f355 | 625 | else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) |
dda83cd7 | 626 | && gdbarch_address_class_name_to_type_flags (gdbarch, |
5f11f355 AC |
627 | space_identifier, |
628 | &type_flags)) | |
8b2dbe47 | 629 | return type_flags; |
47663de5 | 630 | else |
8a3fe4f8 | 631 | error (_("Unknown address space specifier: \"%s\""), space_identifier); |
47663de5 MS |
632 | } |
633 | ||
69896a2c | 634 | /* Identify address space identifier by type_instance_flags and return |
8f6606b6 | 635 | the string version of the address space name. */ |
47663de5 | 636 | |
321432c0 | 637 | const char * |
69896a2c PA |
638 | address_space_type_instance_flags_to_name (struct gdbarch *gdbarch, |
639 | type_instance_flags space_flag) | |
47663de5 | 640 | { |
876cecd0 | 641 | if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) |
47663de5 | 642 | return "code"; |
876cecd0 | 643 | else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) |
47663de5 | 644 | return "data"; |
876cecd0 | 645 | else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
dda83cd7 | 646 | && gdbarch_address_class_type_flags_to_name_p (gdbarch)) |
5f11f355 | 647 | return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); |
47663de5 MS |
648 | else |
649 | return NULL; | |
650 | } | |
651 | ||
2fdde8f8 | 652 | /* Create a new type with instance flags NEW_FLAGS, based on TYPE. |
ad766c0a JB |
653 | |
654 | If STORAGE is non-NULL, create the new type instance there. | |
655 | STORAGE must be in the same obstack as TYPE. */ | |
47663de5 | 656 | |
b9362cc7 | 657 | static struct type * |
314ad88d | 658 | make_qualified_type (struct type *type, type_instance_flags new_flags, |
2fdde8f8 | 659 | struct type *storage) |
47663de5 MS |
660 | { |
661 | struct type *ntype; | |
662 | ||
663 | ntype = type; | |
5f61c20e JK |
664 | do |
665 | { | |
10242f36 | 666 | if (ntype->instance_flags () == new_flags) |
5f61c20e JK |
667 | return ntype; |
668 | ntype = TYPE_CHAIN (ntype); | |
669 | } | |
670 | while (ntype != type); | |
47663de5 | 671 | |
2fdde8f8 DJ |
672 | /* Create a new type instance. */ |
673 | if (storage == NULL) | |
674 | ntype = alloc_type_instance (type); | |
675 | else | |
676 | { | |
7ba81444 MS |
677 | /* If STORAGE was provided, it had better be in the same objfile |
678 | as TYPE. Otherwise, we can't link it into TYPE's cv chain: | |
679 | if one objfile is freed and the other kept, we'd have | |
680 | dangling pointers. */ | |
6ac37371 | 681 | gdb_assert (type->objfile_owner () == storage->objfile_owner ()); |
ad766c0a | 682 | |
2fdde8f8 DJ |
683 | ntype = storage; |
684 | TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); | |
685 | TYPE_CHAIN (ntype) = ntype; | |
686 | } | |
47663de5 MS |
687 | |
688 | /* Pointers or references to the original type are not relevant to | |
2fdde8f8 | 689 | the new type. */ |
47663de5 MS |
690 | TYPE_POINTER_TYPE (ntype) = (struct type *) 0; |
691 | TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; | |
47663de5 | 692 | |
2fdde8f8 DJ |
693 | /* Chain the new qualified type to the old type. */ |
694 | TYPE_CHAIN (ntype) = TYPE_CHAIN (type); | |
695 | TYPE_CHAIN (type) = ntype; | |
696 | ||
697 | /* Now set the instance flags and return the new type. */ | |
314ad88d | 698 | ntype->set_instance_flags (new_flags); |
47663de5 | 699 | |
ab5d3da6 | 700 | /* Set length of new type to that of the original type. */ |
df86565b | 701 | ntype->set_length (type->length ()); |
ab5d3da6 | 702 | |
47663de5 MS |
703 | return ntype; |
704 | } | |
705 | ||
2fdde8f8 DJ |
706 | /* Make an address-space-delimited variant of a type -- a type that |
707 | is identical to the one supplied except that it has an address | |
708 | space attribute attached to it (such as "code" or "data"). | |
709 | ||
7ba81444 MS |
710 | The space attributes "code" and "data" are for Harvard |
711 | architectures. The address space attributes are for architectures | |
712 | which have alternately sized pointers or pointers with alternate | |
713 | representations. */ | |
2fdde8f8 DJ |
714 | |
715 | struct type * | |
314ad88d PA |
716 | make_type_with_address_space (struct type *type, |
717 | type_instance_flags space_flag) | |
2fdde8f8 | 718 | { |
314ad88d PA |
719 | type_instance_flags new_flags = ((type->instance_flags () |
720 | & ~(TYPE_INSTANCE_FLAG_CODE_SPACE | |
721 | | TYPE_INSTANCE_FLAG_DATA_SPACE | |
722 | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) | |
723 | | space_flag); | |
2fdde8f8 DJ |
724 | |
725 | return make_qualified_type (type, new_flags, NULL); | |
726 | } | |
c906108c SS |
727 | |
728 | /* Make a "c-v" variant of a type -- a type that is identical to the | |
729 | one supplied except that it may have const or volatile attributes | |
730 | CNST is a flag for setting the const attribute | |
731 | VOLTL is a flag for setting the volatile attribute | |
732 | TYPE is the base type whose variant we are creating. | |
c906108c | 733 | |
ad766c0a JB |
734 | If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to |
735 | storage to hold the new qualified type; *TYPEPTR and TYPE must be | |
736 | in the same objfile. Otherwise, allocate fresh memory for the new | |
8f6606b6 | 737 | type wherever TYPE lives. If TYPEPTR is non-zero, set it to the |
ad766c0a | 738 | new type we construct. */ |
5212577a | 739 | |
c906108c | 740 | struct type * |
7ba81444 MS |
741 | make_cv_type (int cnst, int voltl, |
742 | struct type *type, | |
743 | struct type **typeptr) | |
c906108c | 744 | { |
52f0bd74 | 745 | struct type *ntype; /* New type */ |
c906108c | 746 | |
314ad88d PA |
747 | type_instance_flags new_flags = (type->instance_flags () |
748 | & ~(TYPE_INSTANCE_FLAG_CONST | |
749 | | TYPE_INSTANCE_FLAG_VOLATILE)); | |
c906108c | 750 | |
c906108c | 751 | if (cnst) |
876cecd0 | 752 | new_flags |= TYPE_INSTANCE_FLAG_CONST; |
c906108c SS |
753 | |
754 | if (voltl) | |
876cecd0 | 755 | new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; |
a02fd225 | 756 | |
2fdde8f8 | 757 | if (typeptr && *typeptr != NULL) |
a02fd225 | 758 | { |
ad766c0a JB |
759 | /* TYPE and *TYPEPTR must be in the same objfile. We can't have |
760 | a C-V variant chain that threads across objfiles: if one | |
761 | objfile gets freed, then the other has a broken C-V chain. | |
762 | ||
763 | This code used to try to copy over the main type from TYPE to | |
764 | *TYPEPTR if they were in different objfiles, but that's | |
765 | wrong, too: TYPE may have a field list or member function | |
766 | lists, which refer to types of their own, etc. etc. The | |
767 | whole shebang would need to be copied over recursively; you | |
768 | can't have inter-objfile pointers. The only thing to do is | |
769 | to leave stub types as stub types, and look them up afresh by | |
770 | name each time you encounter them. */ | |
6ac37371 | 771 | gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ()); |
2fdde8f8 DJ |
772 | } |
773 | ||
7ba81444 MS |
774 | ntype = make_qualified_type (type, new_flags, |
775 | typeptr ? *typeptr : NULL); | |
c906108c | 776 | |
2fdde8f8 DJ |
777 | if (typeptr != NULL) |
778 | *typeptr = ntype; | |
a02fd225 | 779 | |
2fdde8f8 | 780 | return ntype; |
a02fd225 | 781 | } |
c906108c | 782 | |
06d66ee9 TT |
783 | /* Make a 'restrict'-qualified version of TYPE. */ |
784 | ||
785 | struct type * | |
786 | make_restrict_type (struct type *type) | |
787 | { | |
788 | return make_qualified_type (type, | |
10242f36 | 789 | (type->instance_flags () |
06d66ee9 TT |
790 | | TYPE_INSTANCE_FLAG_RESTRICT), |
791 | NULL); | |
792 | } | |
793 | ||
f1660027 TT |
794 | /* Make a type without const, volatile, or restrict. */ |
795 | ||
796 | struct type * | |
797 | make_unqualified_type (struct type *type) | |
798 | { | |
799 | return make_qualified_type (type, | |
10242f36 | 800 | (type->instance_flags () |
f1660027 TT |
801 | & ~(TYPE_INSTANCE_FLAG_CONST |
802 | | TYPE_INSTANCE_FLAG_VOLATILE | |
803 | | TYPE_INSTANCE_FLAG_RESTRICT)), | |
804 | NULL); | |
805 | } | |
806 | ||
a2c2acaf MW |
807 | /* Make a '_Atomic'-qualified version of TYPE. */ |
808 | ||
809 | struct type * | |
810 | make_atomic_type (struct type *type) | |
811 | { | |
812 | return make_qualified_type (type, | |
10242f36 | 813 | (type->instance_flags () |
a2c2acaf MW |
814 | | TYPE_INSTANCE_FLAG_ATOMIC), |
815 | NULL); | |
816 | } | |
817 | ||
2fdde8f8 DJ |
818 | /* Replace the contents of ntype with the type *type. This changes the |
819 | contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus | |
bbc8c5a1 | 820 | the changes are propagated to all types in the TYPE_CHAIN. |
dd6bda65 | 821 | |
cda6c68a JB |
822 | In order to build recursive types, it's inevitable that we'll need |
823 | to update types in place --- but this sort of indiscriminate | |
824 | smashing is ugly, and needs to be replaced with something more | |
2fdde8f8 DJ |
825 | controlled. TYPE_MAIN_TYPE is a step in this direction; it's not |
826 | clear if more steps are needed. */ | |
5212577a | 827 | |
dd6bda65 DJ |
828 | void |
829 | replace_type (struct type *ntype, struct type *type) | |
830 | { | |
ab5d3da6 | 831 | struct type *chain; |
dd6bda65 | 832 | |
ad766c0a JB |
833 | /* These two types had better be in the same objfile. Otherwise, |
834 | the assignment of one type's main type structure to the other | |
835 | will produce a type with references to objects (names; field | |
836 | lists; etc.) allocated on an objfile other than its own. */ | |
6ac37371 | 837 | gdb_assert (ntype->objfile_owner () == type->objfile_owner ()); |
ad766c0a | 838 | |
2fdde8f8 | 839 | *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); |
dd6bda65 | 840 | |
7ba81444 MS |
841 | /* The type length is not a part of the main type. Update it for |
842 | each type on the variant chain. */ | |
ab5d3da6 | 843 | chain = ntype; |
5f61c20e JK |
844 | do |
845 | { | |
846 | /* Assert that this element of the chain has no address-class bits | |
847 | set in its flags. Such type variants might have type lengths | |
848 | which are supposed to be different from the non-address-class | |
849 | variants. This assertion shouldn't ever be triggered because | |
850 | symbol readers which do construct address-class variants don't | |
851 | call replace_type(). */ | |
852 | gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); | |
853 | ||
df86565b | 854 | chain->set_length (type->length ()); |
5f61c20e JK |
855 | chain = TYPE_CHAIN (chain); |
856 | } | |
857 | while (ntype != chain); | |
ab5d3da6 | 858 | |
2fdde8f8 DJ |
859 | /* Assert that the two types have equivalent instance qualifiers. |
860 | This should be true for at least all of our debug readers. */ | |
10242f36 | 861 | gdb_assert (ntype->instance_flags () == type->instance_flags ()); |
dd6bda65 DJ |
862 | } |
863 | ||
c906108c SS |
864 | /* Implement direct support for MEMBER_TYPE in GNU C++. |
865 | May need to construct such a type if this is the first use. | |
866 | The TYPE is the type of the member. The DOMAIN is the type | |
867 | of the aggregate that the member belongs to. */ | |
868 | ||
869 | struct type * | |
0d5de010 | 870 | lookup_memberptr_type (struct type *type, struct type *domain) |
c906108c | 871 | { |
52f0bd74 | 872 | struct type *mtype; |
c906108c | 873 | |
9fa83a7a | 874 | mtype = type_allocator (type).new_type (); |
0d5de010 | 875 | smash_to_memberptr_type (mtype, domain, type); |
c16abbde | 876 | return mtype; |
c906108c SS |
877 | } |
878 | ||
0d5de010 DJ |
879 | /* Return a pointer-to-method type, for a method of type TO_TYPE. */ |
880 | ||
881 | struct type * | |
882 | lookup_methodptr_type (struct type *to_type) | |
883 | { | |
884 | struct type *mtype; | |
885 | ||
9fa83a7a | 886 | mtype = type_allocator (to_type).new_type (); |
0b92b5bb | 887 | smash_to_methodptr_type (mtype, to_type); |
0d5de010 DJ |
888 | return mtype; |
889 | } | |
890 | ||
0f59d5fc PA |
891 | /* See gdbtypes.h. */ |
892 | ||
893 | bool | |
894 | operator== (const dynamic_prop &l, const dynamic_prop &r) | |
895 | { | |
8c2e4e06 | 896 | if (l.kind () != r.kind ()) |
0f59d5fc PA |
897 | return false; |
898 | ||
8c2e4e06 | 899 | switch (l.kind ()) |
0f59d5fc PA |
900 | { |
901 | case PROP_UNDEFINED: | |
902 | return true; | |
903 | case PROP_CONST: | |
8c2e4e06 | 904 | return l.const_val () == r.const_val (); |
ba005d32 | 905 | case PROP_FIELD: |
0f59d5fc PA |
906 | case PROP_LOCEXPR: |
907 | case PROP_LOCLIST: | |
8c2e4e06 | 908 | return l.baton () == r.baton (); |
ef83a141 | 909 | case PROP_VARIANT_PARTS: |
8c2e4e06 | 910 | return l.variant_parts () == r.variant_parts (); |
ef83a141 | 911 | case PROP_TYPE: |
8c2e4e06 | 912 | return l.original_type () == r.original_type (); |
0f59d5fc PA |
913 | } |
914 | ||
915 | gdb_assert_not_reached ("unhandled dynamic_prop kind"); | |
916 | } | |
917 | ||
918 | /* See gdbtypes.h. */ | |
919 | ||
920 | bool | |
921 | operator== (const range_bounds &l, const range_bounds &r) | |
922 | { | |
923 | #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD) | |
924 | ||
925 | return (FIELD_EQ (low) | |
926 | && FIELD_EQ (high) | |
927 | && FIELD_EQ (flag_upper_bound_is_count) | |
4e962e74 TT |
928 | && FIELD_EQ (flag_bound_evaluated) |
929 | && FIELD_EQ (bias)); | |
0f59d5fc PA |
930 | |
931 | #undef FIELD_EQ | |
932 | } | |
933 | ||
e727c536 | 934 | /* See gdbtypes.h. */ |
c906108c SS |
935 | |
936 | struct type * | |
e727c536 | 937 | create_range_type (type_allocator &alloc, struct type *index_type, |
729efb13 | 938 | const struct dynamic_prop *low_bound, |
4e962e74 TT |
939 | const struct dynamic_prop *high_bound, |
940 | LONGEST bias) | |
c906108c | 941 | { |
b86352cf AB |
942 | /* The INDEX_TYPE should be a type capable of holding the upper and lower |
943 | bounds, as such a zero sized, or void type makes no sense. */ | |
78134374 | 944 | gdb_assert (index_type->code () != TYPE_CODE_VOID); |
df86565b | 945 | gdb_assert (index_type->length () > 0); |
b86352cf | 946 | |
e727c536 | 947 | struct type *result_type = alloc.new_type (); |
67607e24 | 948 | result_type->set_code (TYPE_CODE_RANGE); |
8a50fdce | 949 | result_type->set_target_type (index_type); |
e46d3488 | 950 | if (index_type->is_stub ()) |
8f53807e | 951 | result_type->set_target_is_stub (true); |
c906108c | 952 | else |
df86565b | 953 | result_type->set_length (check_typedef (index_type)->length ()); |
729efb13 | 954 | |
c4dfcb36 SM |
955 | range_bounds *bounds |
956 | = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds)); | |
957 | bounds->low = *low_bound; | |
958 | bounds->high = *high_bound; | |
959 | bounds->bias = bias; | |
8c2e4e06 | 960 | bounds->stride.set_const_val (0); |
c4dfcb36 SM |
961 | |
962 | result_type->set_bounds (bounds); | |
5bbd8269 | 963 | |
09584414 JB |
964 | if (index_type->code () == TYPE_CODE_FIXED_POINT) |
965 | result_type->set_is_unsigned (index_type->is_unsigned ()); | |
912b12ad TT |
966 | else if (index_type->is_unsigned ()) |
967 | { | |
968 | /* If the underlying type is unsigned, then the range | |
969 | necessarily is. */ | |
970 | result_type->set_is_unsigned (true); | |
971 | } | |
972 | /* Otherwise, the signed-ness of a range type can't simply be copied | |
6390859c TT |
973 | from the underlying type. Consider a case where the underlying |
974 | type is 'int', but the range type can hold 0..65535, and where | |
975 | the range is further specified to fit into 16 bits. In this | |
976 | case, if we copy the underlying type's sign, then reading some | |
977 | range values will cause an unwanted sign extension. So, we have | |
978 | some heuristics here instead. */ | |
9c0fb734 | 979 | else if (low_bound->is_constant () && low_bound->const_val () >= 0) |
912b12ad TT |
980 | { |
981 | result_type->set_is_unsigned (true); | |
982 | /* Ada allows the declaration of range types whose upper bound is | |
983 | less than the lower bound, so checking the lower bound is not | |
984 | enough. Make sure we do not mark a range type whose upper bound | |
985 | is negative as unsigned. */ | |
9c0fb734 | 986 | if (high_bound->is_constant () && high_bound->const_val () < 0) |
912b12ad TT |
987 | result_type->set_is_unsigned (false); |
988 | } | |
6390859c | 989 | |
db558e34 SM |
990 | result_type->set_endianity_is_not_default |
991 | (index_type->endianity_is_not_default ()); | |
a05cf17a | 992 | |
262452ec | 993 | return result_type; |
c906108c SS |
994 | } |
995 | ||
5bbd8269 AB |
996 | /* See gdbtypes.h. */ |
997 | ||
998 | struct type * | |
e727c536 | 999 | create_range_type_with_stride (type_allocator &alloc, |
5bbd8269 AB |
1000 | struct type *index_type, |
1001 | const struct dynamic_prop *low_bound, | |
1002 | const struct dynamic_prop *high_bound, | |
1003 | LONGEST bias, | |
1004 | const struct dynamic_prop *stride, | |
1005 | bool byte_stride_p) | |
1006 | { | |
e727c536 TT |
1007 | struct type *result_type = create_range_type (alloc, index_type, low_bound, |
1008 | high_bound, bias); | |
5bbd8269 AB |
1009 | |
1010 | gdb_assert (stride != nullptr); | |
599088e3 SM |
1011 | result_type->bounds ()->stride = *stride; |
1012 | result_type->bounds ()->flag_is_byte_stride = byte_stride_p; | |
5bbd8269 AB |
1013 | |
1014 | return result_type; | |
1015 | } | |
1016 | ||
e727c536 | 1017 | /* See gdbtypes.h. */ |
729efb13 SA |
1018 | |
1019 | struct type * | |
e727c536 | 1020 | create_static_range_type (type_allocator &alloc, struct type *index_type, |
729efb13 SA |
1021 | LONGEST low_bound, LONGEST high_bound) |
1022 | { | |
1023 | struct dynamic_prop low, high; | |
1024 | ||
8c2e4e06 SM |
1025 | low.set_const_val (low_bound); |
1026 | high.set_const_val (high_bound); | |
729efb13 | 1027 | |
e727c536 TT |
1028 | struct type *result_type = create_range_type (alloc, index_type, |
1029 | &low, &high, 0); | |
729efb13 SA |
1030 | |
1031 | return result_type; | |
1032 | } | |
1033 | ||
80180f79 SA |
1034 | /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values |
1035 | are static, otherwise returns 0. */ | |
1036 | ||
5bbd8269 | 1037 | static bool |
80180f79 SA |
1038 | has_static_range (const struct range_bounds *bounds) |
1039 | { | |
5bbd8269 AB |
1040 | /* If the range doesn't have a defined stride then its stride field will |
1041 | be initialized to the constant 0. */ | |
9c0fb734 TT |
1042 | return (bounds->low.is_constant () |
1043 | && bounds->high.is_constant () | |
1044 | && bounds->stride.is_constant ()); | |
80180f79 SA |
1045 | } |
1046 | ||
5b56203a | 1047 | /* See gdbtypes.h. */ |
80180f79 | 1048 | |
6b09f134 | 1049 | std::optional<LONGEST> |
14c09924 | 1050 | get_discrete_low_bound (struct type *type) |
c906108c | 1051 | { |
f168693b | 1052 | type = check_typedef (type); |
78134374 | 1053 | switch (type->code ()) |
c906108c SS |
1054 | { |
1055 | case TYPE_CODE_RANGE: | |
14c09924 SM |
1056 | { |
1057 | /* This function only works for ranges with a constant low bound. */ | |
9c0fb734 | 1058 | if (!type->bounds ()->low.is_constant ()) |
14c09924 SM |
1059 | return {}; |
1060 | ||
1061 | LONGEST low = type->bounds ()->low.const_val (); | |
1062 | ||
27710edb | 1063 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
14c09924 | 1064 | { |
6b09f134 | 1065 | std::optional<LONGEST> low_pos |
27710edb | 1066 | = discrete_position (type->target_type (), low); |
14c09924 SM |
1067 | |
1068 | if (low_pos.has_value ()) | |
1069 | low = *low_pos; | |
1070 | } | |
1071 | ||
1072 | return low; | |
1073 | } | |
1074 | ||
1075 | case TYPE_CODE_ENUM: | |
1076 | { | |
1077 | if (type->num_fields () > 0) | |
1078 | { | |
1079 | /* The enums may not be sorted by value, so search all | |
1080 | entries. */ | |
970db518 | 1081 | LONGEST low = type->field (0).loc_enumval (); |
14c09924 SM |
1082 | |
1083 | for (int i = 0; i < type->num_fields (); i++) | |
1084 | { | |
970db518 SM |
1085 | if (type->field (i).loc_enumval () < low) |
1086 | low = type->field (i).loc_enumval (); | |
14c09924 SM |
1087 | } |
1088 | ||
14c09924 SM |
1089 | return low; |
1090 | } | |
1091 | else | |
1092 | return 0; | |
1093 | } | |
1094 | ||
1095 | case TYPE_CODE_BOOL: | |
1096 | return 0; | |
1097 | ||
1098 | case TYPE_CODE_INT: | |
df86565b | 1099 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
6ad368b8 | 1100 | return {}; |
7c6f2712 | 1101 | |
14c09924 | 1102 | if (!type->is_unsigned ()) |
df86565b | 1103 | return -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
7c6f2712 | 1104 | |
d182e398 | 1105 | [[fallthrough]]; |
14c09924 SM |
1106 | case TYPE_CODE_CHAR: |
1107 | return 0; | |
6244c119 | 1108 | |
14c09924 | 1109 | default: |
6ad368b8 | 1110 | return {}; |
14c09924 SM |
1111 | } |
1112 | } | |
6244c119 | 1113 | |
5b56203a | 1114 | /* See gdbtypes.h. */ |
6244c119 | 1115 | |
6b09f134 | 1116 | std::optional<LONGEST> |
14c09924 SM |
1117 | get_discrete_high_bound (struct type *type) |
1118 | { | |
1119 | type = check_typedef (type); | |
1120 | switch (type->code ()) | |
1121 | { | |
1122 | case TYPE_CODE_RANGE: | |
1123 | { | |
1124 | /* This function only works for ranges with a constant high bound. */ | |
9c0fb734 | 1125 | if (!type->bounds ()->high.is_constant ()) |
14c09924 SM |
1126 | return {}; |
1127 | ||
1128 | LONGEST high = type->bounds ()->high.const_val (); | |
1129 | ||
27710edb | 1130 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
14c09924 | 1131 | { |
6b09f134 | 1132 | std::optional<LONGEST> high_pos |
27710edb | 1133 | = discrete_position (type->target_type (), high); |
14c09924 SM |
1134 | |
1135 | if (high_pos.has_value ()) | |
1136 | high = *high_pos; | |
1137 | } | |
1138 | ||
1139 | return high; | |
1140 | } | |
1f8d2881 | 1141 | |
c906108c | 1142 | case TYPE_CODE_ENUM: |
14c09924 SM |
1143 | { |
1144 | if (type->num_fields () > 0) | |
1145 | { | |
1146 | /* The enums may not be sorted by value, so search all | |
1147 | entries. */ | |
970db518 | 1148 | LONGEST high = type->field (0).loc_enumval (); |
14c09924 SM |
1149 | |
1150 | for (int i = 0; i < type->num_fields (); i++) | |
1151 | { | |
970db518 SM |
1152 | if (type->field (i).loc_enumval () > high) |
1153 | high = type->field (i).loc_enumval (); | |
14c09924 SM |
1154 | } |
1155 | ||
1156 | return high; | |
1157 | } | |
1158 | else | |
1159 | return -1; | |
1160 | } | |
1f8d2881 | 1161 | |
c906108c | 1162 | case TYPE_CODE_BOOL: |
14c09924 | 1163 | return 1; |
1f8d2881 | 1164 | |
c906108c | 1165 | case TYPE_CODE_INT: |
df86565b | 1166 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
6ad368b8 | 1167 | return {}; |
1f8d2881 | 1168 | |
c6d940a9 | 1169 | if (!type->is_unsigned ()) |
c906108c | 1170 | { |
df86565b | 1171 | LONGEST low = -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
14c09924 | 1172 | return -low - 1; |
c906108c | 1173 | } |
14c09924 | 1174 | |
d182e398 | 1175 | [[fallthrough]]; |
c906108c | 1176 | case TYPE_CODE_CHAR: |
14c09924 SM |
1177 | { |
1178 | /* This round-about calculation is to avoid shifting by | |
df86565b SM |
1179 | type->length () * TARGET_CHAR_BIT, which will not work |
1180 | if type->length () == sizeof (LONGEST). */ | |
1181 | LONGEST high = 1 << (type->length () * TARGET_CHAR_BIT - 1); | |
14c09924 SM |
1182 | return (high - 1) | high; |
1183 | } | |
1f8d2881 | 1184 | |
c906108c | 1185 | default: |
6ad368b8 | 1186 | return {}; |
c906108c SS |
1187 | } |
1188 | } | |
1189 | ||
14c09924 SM |
1190 | /* See gdbtypes.h. */ |
1191 | ||
1192 | bool | |
1193 | get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) | |
1194 | { | |
6b09f134 | 1195 | std::optional<LONGEST> low = get_discrete_low_bound (type); |
6ad368b8 SM |
1196 | if (!low.has_value ()) |
1197 | return false; | |
14c09924 | 1198 | |
6b09f134 | 1199 | std::optional<LONGEST> high = get_discrete_high_bound (type); |
6ad368b8 | 1200 | if (!high.has_value ()) |
14c09924 SM |
1201 | return false; |
1202 | ||
1203 | *lowp = *low; | |
1204 | *highp = *high; | |
1205 | ||
1206 | return true; | |
1207 | } | |
1208 | ||
584903d3 | 1209 | /* See gdbtypes.h */ |
dbc98a8b | 1210 | |
584903d3 | 1211 | bool |
dbc98a8b KW |
1212 | get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) |
1213 | { | |
3d967001 | 1214 | struct type *index = type->index_type (); |
dbc98a8b KW |
1215 | LONGEST low = 0; |
1216 | LONGEST high = 0; | |
dbc98a8b KW |
1217 | |
1218 | if (index == NULL) | |
584903d3 | 1219 | return false; |
dbc98a8b | 1220 | |
1f8d2881 | 1221 | if (!get_discrete_bounds (index, &low, &high)) |
584903d3 | 1222 | return false; |
dbc98a8b | 1223 | |
dbc98a8b KW |
1224 | if (low_bound) |
1225 | *low_bound = low; | |
1226 | ||
1227 | if (high_bound) | |
1228 | *high_bound = high; | |
1229 | ||
584903d3 | 1230 | return true; |
dbc98a8b KW |
1231 | } |
1232 | ||
aa715135 JG |
1233 | /* Assuming that TYPE is a discrete type and VAL is a valid integer |
1234 | representation of a value of this type, save the corresponding | |
1235 | position number in POS. | |
1236 | ||
1237 | Its differs from VAL only in the case of enumeration types. In | |
1238 | this case, the position number of the value of the first listed | |
1239 | enumeration literal is zero; the position number of the value of | |
1240 | each subsequent enumeration literal is one more than that of its | |
1241 | predecessor in the list. | |
1242 | ||
1243 | Return 1 if the operation was successful. Return zero otherwise, | |
1244 | in which case the value of POS is unmodified. | |
1245 | */ | |
1246 | ||
6b09f134 | 1247 | std::optional<LONGEST> |
6244c119 | 1248 | discrete_position (struct type *type, LONGEST val) |
aa715135 | 1249 | { |
0bc2354b | 1250 | if (type->code () == TYPE_CODE_RANGE) |
27710edb | 1251 | type = type->target_type (); |
0bc2354b | 1252 | |
78134374 | 1253 | if (type->code () == TYPE_CODE_ENUM) |
aa715135 JG |
1254 | { |
1255 | int i; | |
1256 | ||
1f704f76 | 1257 | for (i = 0; i < type->num_fields (); i += 1) |
dda83cd7 | 1258 | { |
970db518 | 1259 | if (val == type->field (i).loc_enumval ()) |
6244c119 | 1260 | return i; |
dda83cd7 | 1261 | } |
6244c119 | 1262 | |
aa715135 | 1263 | /* Invalid enumeration value. */ |
6244c119 | 1264 | return {}; |
aa715135 JG |
1265 | } |
1266 | else | |
6244c119 | 1267 | return val; |
aa715135 JG |
1268 | } |
1269 | ||
8dbb1375 HD |
1270 | /* If the array TYPE has static bounds calculate and update its |
1271 | size, then return true. Otherwise return false and leave TYPE | |
1272 | unchanged. */ | |
1273 | ||
1274 | static bool | |
1275 | update_static_array_size (struct type *type) | |
1276 | { | |
78134374 | 1277 | gdb_assert (type->code () == TYPE_CODE_ARRAY); |
8dbb1375 | 1278 | |
3d967001 | 1279 | struct type *range_type = type->index_type (); |
8dbb1375 | 1280 | |
24e99c6c | 1281 | if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr |
599088e3 | 1282 | && has_static_range (range_type->bounds ()) |
8dbb1375 HD |
1283 | && (!type_not_associated (type) |
1284 | && !type_not_allocated (type))) | |
1285 | { | |
1286 | LONGEST low_bound, high_bound; | |
1287 | int stride; | |
1288 | struct type *element_type; | |
1289 | ||
cc9d6997 | 1290 | stride = type->bit_stride (); |
8dbb1375 | 1291 | |
1f8d2881 | 1292 | if (!get_discrete_bounds (range_type, &low_bound, &high_bound)) |
8dbb1375 | 1293 | low_bound = high_bound = 0; |
1f8d2881 | 1294 | |
27710edb | 1295 | element_type = check_typedef (type->target_type ()); |
8dbb1375 HD |
1296 | /* Be careful when setting the array length. Ada arrays can be |
1297 | empty arrays with the high_bound being smaller than the low_bound. | |
1298 | In such cases, the array length should be zero. */ | |
1299 | if (high_bound < low_bound) | |
b6cdbc9a | 1300 | type->set_length (0); |
8dbb1375 HD |
1301 | else if (stride != 0) |
1302 | { | |
1303 | /* Ensure that the type length is always positive, even in the | |
1304 | case where (for example in Fortran) we have a negative | |
1305 | stride. It is possible to have a single element array with a | |
1306 | negative stride in Fortran (this doesn't mean anything | |
1307 | special, it's still just a single element array) so do | |
1308 | consider that case when touching this code. */ | |
1309 | LONGEST element_count = std::abs (high_bound - low_bound + 1); | |
b6cdbc9a | 1310 | type->set_length (((std::abs (stride) * element_count) + 7) / 8); |
8dbb1375 HD |
1311 | } |
1312 | else | |
df86565b | 1313 | type->set_length (element_type->length () |
b6cdbc9a | 1314 | * (high_bound - low_bound + 1)); |
8dbb1375 | 1315 | |
b72795a8 TT |
1316 | /* If this array's element is itself an array with a bit stride, |
1317 | then we want to update this array's bit stride to reflect the | |
1318 | size of the sub-array. Otherwise, we'll end up using the | |
1319 | wrong size when trying to find elements of the outer | |
1320 | array. */ | |
1321 | if (element_type->code () == TYPE_CODE_ARRAY | |
6c849804 | 1322 | && (stride != 0 || element_type->is_multi_dimensional ()) |
df86565b | 1323 | && element_type->length () != 0 |
3757d2d4 | 1324 | && element_type->field (0).bitsize () != 0 |
5d8254e1 | 1325 | && get_array_bounds (element_type, &low_bound, &high_bound) |
b72795a8 | 1326 | && high_bound >= low_bound) |
886176b8 SM |
1327 | type->field (0).set_bitsize |
1328 | ((high_bound - low_bound + 1) | |
3757d2d4 | 1329 | * element_type->field (0).bitsize ()); |
b72795a8 | 1330 | |
8dbb1375 HD |
1331 | return true; |
1332 | } | |
1333 | ||
1334 | return false; | |
1335 | } | |
1336 | ||
9e76b17a | 1337 | /* See gdbtypes.h. */ |
c906108c SS |
1338 | |
1339 | struct type * | |
9e76b17a | 1340 | create_array_type_with_stride (type_allocator &alloc, |
dc53a7ad JB |
1341 | struct type *element_type, |
1342 | struct type *range_type, | |
a405673c | 1343 | struct dynamic_prop *byte_stride_prop, |
dc53a7ad | 1344 | unsigned int bit_stride) |
c906108c | 1345 | { |
9c0fb734 | 1346 | if (byte_stride_prop != nullptr && byte_stride_prop->is_constant ()) |
a405673c JB |
1347 | { |
1348 | /* The byte stride is actually not dynamic. Pretend we were | |
1349 | called with bit_stride set instead of byte_stride_prop. | |
1350 | This will give us the same result type, while avoiding | |
1351 | the need to handle this as a special case. */ | |
8c2e4e06 | 1352 | bit_stride = byte_stride_prop->const_val () * 8; |
a405673c JB |
1353 | byte_stride_prop = NULL; |
1354 | } | |
1355 | ||
9e76b17a | 1356 | struct type *result_type = alloc.new_type (); |
e9bb382b | 1357 | |
67607e24 | 1358 | result_type->set_code (TYPE_CODE_ARRAY); |
8a50fdce | 1359 | result_type->set_target_type (element_type); |
5bbd8269 | 1360 | |
2774f2da | 1361 | result_type->alloc_fields (1); |
262abc0d | 1362 | result_type->set_index_type (range_type); |
8dbb1375 | 1363 | if (byte_stride_prop != NULL) |
5c54719c | 1364 | result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop); |
8dbb1375 | 1365 | else if (bit_stride > 0) |
886176b8 | 1366 | result_type->field (0).set_bitsize (bit_stride); |
80180f79 | 1367 | |
8dbb1375 | 1368 | if (!update_static_array_size (result_type)) |
80180f79 SA |
1369 | { |
1370 | /* This type is dynamic and its length needs to be computed | |
dda83cd7 SM |
1371 | on demand. In the meantime, avoid leaving the TYPE_LENGTH |
1372 | undefined by setting it to zero. Although we are not expected | |
1373 | to trust TYPE_LENGTH in this case, setting the size to zero | |
1374 | allows us to avoid allocating objects of random sizes in case | |
8f6606b6 | 1375 | we accidentally do. */ |
b6cdbc9a | 1376 | result_type->set_length (0); |
80180f79 SA |
1377 | } |
1378 | ||
a9ff5f12 | 1379 | /* TYPE_TARGET_STUB will take care of zero length arrays. */ |
df86565b | 1380 | if (result_type->length () == 0) |
8f53807e | 1381 | result_type->set_target_is_stub (true); |
c906108c | 1382 | |
c16abbde | 1383 | return result_type; |
c906108c SS |
1384 | } |
1385 | ||
9e76b17a | 1386 | /* See gdbtypes.h. */ |
dc53a7ad JB |
1387 | |
1388 | struct type * | |
9e76b17a | 1389 | create_array_type (type_allocator &alloc, |
dc53a7ad JB |
1390 | struct type *element_type, |
1391 | struct type *range_type) | |
1392 | { | |
9e76b17a | 1393 | return create_array_type_with_stride (alloc, element_type, |
a405673c | 1394 | range_type, NULL, 0); |
dc53a7ad JB |
1395 | } |
1396 | ||
e3506a9f UW |
1397 | struct type * |
1398 | lookup_array_range_type (struct type *element_type, | |
63375b74 | 1399 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f | 1400 | { |
929b5ad4 JB |
1401 | struct type *index_type; |
1402 | struct type *range_type; | |
1403 | ||
e727c536 | 1404 | type_allocator alloc (element_type); |
426e5b66 | 1405 | index_type = builtin_type (element_type->arch ())->builtin_int; |
5b7d941b | 1406 | |
e727c536 | 1407 | range_type = create_static_range_type (alloc, index_type, |
929b5ad4 | 1408 | low_bound, high_bound); |
d8734c88 | 1409 | |
9e76b17a | 1410 | return create_array_type (alloc, element_type, range_type); |
e3506a9f UW |
1411 | } |
1412 | ||
9e76b17a | 1413 | /* See gdbtypes.h. */ |
c906108c SS |
1414 | |
1415 | struct type * | |
9e76b17a | 1416 | create_string_type (type_allocator &alloc, |
3b7538c0 | 1417 | struct type *string_char_type, |
7ba81444 | 1418 | struct type *range_type) |
c906108c | 1419 | { |
9e76b17a TT |
1420 | struct type *result_type = create_array_type (alloc, |
1421 | string_char_type, | |
1422 | range_type); | |
67607e24 | 1423 | result_type->set_code (TYPE_CODE_STRING); |
c16abbde | 1424 | return result_type; |
c906108c SS |
1425 | } |
1426 | ||
e3506a9f UW |
1427 | struct type * |
1428 | lookup_string_range_type (struct type *string_char_type, | |
63375b74 | 1429 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f UW |
1430 | { |
1431 | struct type *result_type; | |
d8734c88 | 1432 | |
e3506a9f UW |
1433 | result_type = lookup_array_range_type (string_char_type, |
1434 | low_bound, high_bound); | |
67607e24 | 1435 | result_type->set_code (TYPE_CODE_STRING); |
e3506a9f UW |
1436 | return result_type; |
1437 | } | |
1438 | ||
c906108c | 1439 | struct type * |
52664858 | 1440 | create_set_type (type_allocator &alloc, struct type *domain_type) |
c906108c | 1441 | { |
52664858 | 1442 | struct type *result_type = alloc.new_type (); |
e9bb382b | 1443 | |
67607e24 | 1444 | result_type->set_code (TYPE_CODE_SET); |
2774f2da | 1445 | result_type->alloc_fields (1); |
c906108c | 1446 | |
e46d3488 | 1447 | if (!domain_type->is_stub ()) |
c906108c | 1448 | { |
f9780d5b | 1449 | LONGEST low_bound, high_bound, bit_length; |
d8734c88 | 1450 | |
1f8d2881 | 1451 | if (!get_discrete_bounds (domain_type, &low_bound, &high_bound)) |
c906108c | 1452 | low_bound = high_bound = 0; |
1f8d2881 | 1453 | |
c906108c | 1454 | bit_length = high_bound - low_bound + 1; |
b6cdbc9a SM |
1455 | result_type->set_length ((bit_length + TARGET_CHAR_BIT - 1) |
1456 | / TARGET_CHAR_BIT); | |
f9780d5b | 1457 | if (low_bound >= 0) |
653223d3 | 1458 | result_type->set_is_unsigned (true); |
c906108c | 1459 | } |
5d14b6e5 | 1460 | result_type->field (0).set_type (domain_type); |
c906108c | 1461 | |
c16abbde | 1462 | return result_type; |
c906108c SS |
1463 | } |
1464 | ||
ea37ba09 DJ |
1465 | /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE |
1466 | and any array types nested inside it. */ | |
1467 | ||
1468 | void | |
1469 | make_vector_type (struct type *array_type) | |
1470 | { | |
1471 | struct type *inner_array, *elt_type; | |
ea37ba09 DJ |
1472 | |
1473 | /* Find the innermost array type, in case the array is | |
1474 | multi-dimensional. */ | |
1475 | inner_array = array_type; | |
27710edb SM |
1476 | while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY) |
1477 | inner_array = inner_array->target_type (); | |
ea37ba09 | 1478 | |
27710edb | 1479 | elt_type = inner_array->target_type (); |
78134374 | 1480 | if (elt_type->code () == TYPE_CODE_INT) |
ea37ba09 | 1481 | { |
314ad88d PA |
1482 | type_instance_flags flags |
1483 | = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT; | |
ea37ba09 | 1484 | elt_type = make_qualified_type (elt_type, flags, NULL); |
8a50fdce | 1485 | inner_array->set_target_type (elt_type); |
ea37ba09 DJ |
1486 | } |
1487 | ||
2062087b | 1488 | array_type->set_is_vector (true); |
ea37ba09 DJ |
1489 | } |
1490 | ||
794ac428 | 1491 | struct type * |
ac3aafc7 EZ |
1492 | init_vector_type (struct type *elt_type, int n) |
1493 | { | |
1494 | struct type *array_type; | |
d8734c88 | 1495 | |
e3506a9f | 1496 | array_type = lookup_array_range_type (elt_type, 0, n - 1); |
ea37ba09 | 1497 | make_vector_type (array_type); |
ac3aafc7 EZ |
1498 | return array_type; |
1499 | } | |
1500 | ||
09e2d7c7 DE |
1501 | /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE |
1502 | belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too | |
1503 | confusing. "self" is a common enough replacement for "this". | |
1504 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1505 | TYPE_CODE_METHOD. */ | |
1506 | ||
1507 | struct type * | |
1508 | internal_type_self_type (struct type *type) | |
1509 | { | |
78134374 | 1510 | switch (type->code ()) |
09e2d7c7 DE |
1511 | { |
1512 | case TYPE_CODE_METHODPTR: | |
1513 | case TYPE_CODE_MEMBERPTR: | |
eaaf76ab DE |
1514 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1515 | return NULL; | |
09e2d7c7 DE |
1516 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); |
1517 | return TYPE_MAIN_TYPE (type)->type_specific.self_type; | |
1518 | case TYPE_CODE_METHOD: | |
eaaf76ab DE |
1519 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1520 | return NULL; | |
09e2d7c7 DE |
1521 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); |
1522 | return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type; | |
1523 | default: | |
1524 | gdb_assert_not_reached ("bad type"); | |
1525 | } | |
1526 | } | |
1527 | ||
1528 | /* Set the type of the class that TYPE belongs to. | |
1529 | In c++ this is the class of "this". | |
1530 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1531 | TYPE_CODE_METHOD. */ | |
1532 | ||
1533 | void | |
1534 | set_type_self_type (struct type *type, struct type *self_type) | |
1535 | { | |
78134374 | 1536 | switch (type->code ()) |
09e2d7c7 DE |
1537 | { |
1538 | case TYPE_CODE_METHODPTR: | |
1539 | case TYPE_CODE_MEMBERPTR: | |
1540 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1541 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE; | |
1542 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); | |
1543 | TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type; | |
1544 | break; | |
1545 | case TYPE_CODE_METHOD: | |
1546 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1547 | INIT_FUNC_SPECIFIC (type); | |
1548 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); | |
1549 | TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type; | |
1550 | break; | |
1551 | default: | |
1552 | gdb_assert_not_reached ("bad type"); | |
1553 | } | |
1554 | } | |
1555 | ||
1556 | /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type | |
8f6606b6 | 1557 | TO_TYPE. A member pointer is a weird thing -- it amounts to a |
0d5de010 DJ |
1558 | typed offset into a struct, e.g. "an int at offset 8". A MEMBER |
1559 | TYPE doesn't include the offset (that's the value of the MEMBER | |
1560 | itself), but does include the structure type into which it points | |
1561 | (for some reason). | |
c906108c | 1562 | |
7ba81444 MS |
1563 | When "smashing" the type, we preserve the objfile that the old type |
1564 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1565 | allocated. */ |
1566 | ||
1567 | void | |
09e2d7c7 | 1568 | smash_to_memberptr_type (struct type *type, struct type *self_type, |
0d5de010 | 1569 | struct type *to_type) |
c906108c | 1570 | { |
2fdde8f8 | 1571 | smash_type (type); |
67607e24 | 1572 | type->set_code (TYPE_CODE_MEMBERPTR); |
8a50fdce | 1573 | type->set_target_type (to_type); |
09e2d7c7 | 1574 | set_type_self_type (type, self_type); |
0d5de010 DJ |
1575 | /* Assume that a data member pointer is the same size as a normal |
1576 | pointer. */ | |
b6cdbc9a | 1577 | type->set_length (gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT); |
c906108c SS |
1578 | } |
1579 | ||
0b92b5bb TT |
1580 | /* Smash TYPE to be a type of pointer to methods type TO_TYPE. |
1581 | ||
1582 | When "smashing" the type, we preserve the objfile that the old type | |
1583 | pointed to, since we aren't changing where the type is actually | |
1584 | allocated. */ | |
1585 | ||
1586 | void | |
1587 | smash_to_methodptr_type (struct type *type, struct type *to_type) | |
1588 | { | |
1589 | smash_type (type); | |
67607e24 | 1590 | type->set_code (TYPE_CODE_METHODPTR); |
8a50fdce | 1591 | type->set_target_type (to_type); |
09e2d7c7 | 1592 | set_type_self_type (type, TYPE_SELF_TYPE (to_type)); |
b6cdbc9a | 1593 | type->set_length (cplus_method_ptr_size (to_type)); |
0b92b5bb TT |
1594 | } |
1595 | ||
09e2d7c7 | 1596 | /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE. |
c906108c SS |
1597 | METHOD just means `function that gets an extra "this" argument'. |
1598 | ||
7ba81444 MS |
1599 | When "smashing" the type, we preserve the objfile that the old type |
1600 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1601 | allocated. */ |
1602 | ||
1603 | void | |
09e2d7c7 | 1604 | smash_to_method_type (struct type *type, struct type *self_type, |
ad2f7632 DJ |
1605 | struct type *to_type, struct field *args, |
1606 | int nargs, int varargs) | |
c906108c | 1607 | { |
2fdde8f8 | 1608 | smash_type (type); |
67607e24 | 1609 | type->set_code (TYPE_CODE_METHOD); |
8a50fdce | 1610 | type->set_target_type (to_type); |
09e2d7c7 | 1611 | set_type_self_type (type, self_type); |
3cabb6b0 | 1612 | type->set_fields (args); |
5e33d5f4 | 1613 | type->set_num_fields (nargs); |
b6cdbc9a | 1614 | |
ad2f7632 | 1615 | if (varargs) |
1d6286ed | 1616 | type->set_has_varargs (true); |
b6cdbc9a SM |
1617 | |
1618 | /* In practice, this is never needed. */ | |
1619 | type->set_length (1); | |
c906108c SS |
1620 | } |
1621 | ||
a737d952 | 1622 | /* A wrapper of TYPE_NAME which calls error if the type is anonymous. |
d8228535 JK |
1623 | Since GCC PR debug/47510 DWARF provides associated information to detect the |
1624 | anonymous class linkage name from its typedef. | |
1625 | ||
1626 | Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will | |
1627 | apply it itself. */ | |
1628 | ||
1629 | const char * | |
a737d952 | 1630 | type_name_or_error (struct type *type) |
d8228535 JK |
1631 | { |
1632 | struct type *saved_type = type; | |
1633 | const char *name; | |
1634 | struct objfile *objfile; | |
1635 | ||
f168693b | 1636 | type = check_typedef (type); |
d8228535 | 1637 | |
7d93a1e0 | 1638 | name = type->name (); |
d8228535 JK |
1639 | if (name != NULL) |
1640 | return name; | |
1641 | ||
7d93a1e0 | 1642 | name = saved_type->name (); |
6ac37371 | 1643 | objfile = saved_type->objfile_owner (); |
d8228535 | 1644 | error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"), |
4262abfb JK |
1645 | name ? name : "<anonymous>", |
1646 | objfile ? objfile_name (objfile) : "<arch>"); | |
d8228535 JK |
1647 | } |
1648 | ||
bde240e7 | 1649 | /* See gdbtypes.h. */ |
c906108c SS |
1650 | |
1651 | struct type * | |
e6c014f2 | 1652 | lookup_typename (const struct language_defn *language, |
b858499d | 1653 | const char *name, |
34eaf542 | 1654 | const struct block *block, int noerr) |
c906108c | 1655 | { |
52f0bd74 | 1656 | struct symbol *sym; |
c906108c | 1657 | |
9edce54e | 1658 | sym = lookup_symbol_in_language (name, block, SEARCH_TYPE_DOMAIN, |
d12307c1 | 1659 | language->la_language, NULL).symbol; |
9edce54e | 1660 | if (sym != nullptr) |
bde240e7 AB |
1661 | { |
1662 | struct type *type = sym->type (); | |
1663 | /* Ensure the length of TYPE is valid. */ | |
1664 | check_typedef (type); | |
1665 | return type; | |
1666 | } | |
c51fe631 | 1667 | |
c51fe631 DE |
1668 | if (noerr) |
1669 | return NULL; | |
1670 | error (_("No type named %s."), name); | |
c906108c SS |
1671 | } |
1672 | ||
1673 | struct type * | |
e6c014f2 | 1674 | lookup_unsigned_typename (const struct language_defn *language, |
b858499d | 1675 | const char *name) |
c906108c | 1676 | { |
8ba212f8 SM |
1677 | std::string uns; |
1678 | uns.reserve (strlen (name) + strlen ("unsigned ")); | |
1679 | uns = "unsigned "; | |
1680 | uns += name; | |
c906108c | 1681 | |
8ba212f8 | 1682 | return lookup_typename (language, uns.c_str (), NULL, 0); |
c906108c SS |
1683 | } |
1684 | ||
1685 | struct type * | |
b858499d | 1686 | lookup_signed_typename (const struct language_defn *language, const char *name) |
c906108c | 1687 | { |
55fc1623 TT |
1688 | /* In C and C++, "char" and "signed char" are distinct types. */ |
1689 | if (streq (name, "char")) | |
1690 | name = "signed char"; | |
b858499d | 1691 | return lookup_typename (language, name, NULL, 0); |
c906108c SS |
1692 | } |
1693 | ||
1694 | /* Lookup a structure type named "struct NAME", | |
1695 | visible in lexical block BLOCK. */ | |
1696 | ||
1697 | struct type * | |
270140bd | 1698 | lookup_struct (const char *name, const struct block *block) |
c906108c | 1699 | { |
52f0bd74 | 1700 | struct symbol *sym; |
c906108c | 1701 | |
ccf41c24 | 1702 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1703 | |
1704 | if (sym == NULL) | |
1705 | { | |
8a3fe4f8 | 1706 | error (_("No struct type named %s."), name); |
c906108c | 1707 | } |
5f9c5a63 | 1708 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
c906108c | 1709 | { |
7ba81444 MS |
1710 | error (_("This context has class, union or enum %s, not a struct."), |
1711 | name); | |
c906108c | 1712 | } |
5f9c5a63 | 1713 | return (sym->type ()); |
c906108c SS |
1714 | } |
1715 | ||
1716 | /* Lookup a union type named "union NAME", | |
1717 | visible in lexical block BLOCK. */ | |
1718 | ||
1719 | struct type * | |
270140bd | 1720 | lookup_union (const char *name, const struct block *block) |
c906108c | 1721 | { |
52f0bd74 | 1722 | struct symbol *sym; |
c5aa993b | 1723 | struct type *t; |
c906108c | 1724 | |
ccf41c24 | 1725 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1726 | |
1727 | if (sym == NULL) | |
8a3fe4f8 | 1728 | error (_("No union type named %s."), name); |
c906108c | 1729 | |
5f9c5a63 | 1730 | t = sym->type (); |
c906108c | 1731 | |
78134374 | 1732 | if (t->code () == TYPE_CODE_UNION) |
c16abbde | 1733 | return t; |
c906108c | 1734 | |
7ba81444 MS |
1735 | /* If we get here, it's not a union. */ |
1736 | error (_("This context has class, struct or enum %s, not a union."), | |
1737 | name); | |
c906108c SS |
1738 | } |
1739 | ||
c906108c SS |
1740 | /* Lookup an enum type named "enum NAME", |
1741 | visible in lexical block BLOCK. */ | |
1742 | ||
1743 | struct type * | |
270140bd | 1744 | lookup_enum (const char *name, const struct block *block) |
c906108c | 1745 | { |
52f0bd74 | 1746 | struct symbol *sym; |
c906108c | 1747 | |
ccf41c24 | 1748 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1749 | if (sym == NULL) |
1750 | { | |
8a3fe4f8 | 1751 | error (_("No enum type named %s."), name); |
c906108c | 1752 | } |
5f9c5a63 | 1753 | if (sym->type ()->code () != TYPE_CODE_ENUM) |
c906108c | 1754 | { |
7ba81444 MS |
1755 | error (_("This context has class, struct or union %s, not an enum."), |
1756 | name); | |
c906108c | 1757 | } |
5f9c5a63 | 1758 | return (sym->type ()); |
c906108c SS |
1759 | } |
1760 | ||
1761 | /* Lookup a template type named "template NAME<TYPE>", | |
1762 | visible in lexical block BLOCK. */ | |
1763 | ||
1764 | struct type * | |
61f4b350 | 1765 | lookup_template_type (const char *name, struct type *type, |
270140bd | 1766 | const struct block *block) |
c906108c | 1767 | { |
8ba212f8 SM |
1768 | std::string nam; |
1769 | nam.reserve (strlen (name) + strlen (type->name ()) + strlen ("< >")); | |
1770 | nam = name; | |
1771 | nam += "<"; | |
1772 | nam += type->name (); | |
1773 | nam += " >"; /* FIXME, extra space still introduced in gcc? */ | |
c906108c | 1774 | |
ccf41c24 TT |
1775 | symbol *sym = lookup_symbol (nam.c_str (), block, |
1776 | SEARCH_STRUCT_DOMAIN, 0).symbol; | |
c906108c SS |
1777 | |
1778 | if (sym == NULL) | |
1779 | { | |
8a3fe4f8 | 1780 | error (_("No template type named %s."), name); |
c906108c | 1781 | } |
5f9c5a63 | 1782 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
c906108c | 1783 | { |
7ba81444 MS |
1784 | error (_("This context has class, union or enum %s, not a struct."), |
1785 | name); | |
c906108c | 1786 | } |
5f9c5a63 | 1787 | return (sym->type ()); |
c906108c SS |
1788 | } |
1789 | ||
ef0bd204 | 1790 | /* See gdbtypes.h. */ |
c906108c | 1791 | |
ef0bd204 JB |
1792 | struct_elt |
1793 | lookup_struct_elt (struct type *type, const char *name, int noerr) | |
c906108c SS |
1794 | { |
1795 | int i; | |
1796 | ||
1797 | for (;;) | |
1798 | { | |
f168693b | 1799 | type = check_typedef (type); |
78134374 SM |
1800 | if (type->code () != TYPE_CODE_PTR |
1801 | && type->code () != TYPE_CODE_REF) | |
c906108c | 1802 | break; |
27710edb | 1803 | type = type->target_type (); |
c906108c SS |
1804 | } |
1805 | ||
78134374 SM |
1806 | if (type->code () != TYPE_CODE_STRUCT |
1807 | && type->code () != TYPE_CODE_UNION) | |
c906108c | 1808 | { |
2f408ecb PA |
1809 | std::string type_name = type_to_string (type); |
1810 | error (_("Type %s is not a structure or union type."), | |
1811 | type_name.c_str ()); | |
c906108c SS |
1812 | } |
1813 | ||
1f704f76 | 1814 | for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) |
c906108c | 1815 | { |
33d16dd9 | 1816 | const char *t_field_name = type->field (i).name (); |
c906108c | 1817 | |
db577aea | 1818 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1819 | { |
b610c045 | 1820 | return {&type->field (i), type->field (i).loc_bitpos ()}; |
c906108c | 1821 | } |
c11f01db | 1822 | else if (!t_field_name || *t_field_name == '\0') |
f5a010c0 | 1823 | { |
ef0bd204 | 1824 | struct_elt elt |
940da03e | 1825 | = lookup_struct_elt (type->field (i).type (), name, 1); |
ef0bd204 JB |
1826 | if (elt.field != NULL) |
1827 | { | |
b610c045 | 1828 | elt.offset += type->field (i).loc_bitpos (); |
ef0bd204 JB |
1829 | return elt; |
1830 | } | |
f5a010c0 | 1831 | } |
c906108c SS |
1832 | } |
1833 | ||
1834 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
1835 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1836 | { | |
ef0bd204 JB |
1837 | struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1); |
1838 | if (elt.field != NULL) | |
1839 | return elt; | |
c906108c SS |
1840 | } |
1841 | ||
1842 | if (noerr) | |
ef0bd204 | 1843 | return {nullptr, 0}; |
c5aa993b | 1844 | |
2f408ecb PA |
1845 | std::string type_name = type_to_string (type); |
1846 | error (_("Type %s has no component named %s."), type_name.c_str (), name); | |
c906108c SS |
1847 | } |
1848 | ||
ef0bd204 JB |
1849 | /* See gdbtypes.h. */ |
1850 | ||
1851 | struct type * | |
1852 | lookup_struct_elt_type (struct type *type, const char *name, int noerr) | |
1853 | { | |
1854 | struct_elt elt = lookup_struct_elt (type, name, noerr); | |
1855 | if (elt.field != NULL) | |
b6cdac4b | 1856 | return elt.field->type (); |
ef0bd204 JB |
1857 | else |
1858 | return NULL; | |
1859 | } | |
1860 | ||
c3c1e645 | 1861 | /* Return the largest number representable by unsigned integer type TYPE. */ |
ed3ef339 | 1862 | |
c3c1e645 GB |
1863 | ULONGEST |
1864 | get_unsigned_type_max (struct type *type) | |
ed3ef339 DE |
1865 | { |
1866 | unsigned int n; | |
1867 | ||
f168693b | 1868 | type = check_typedef (type); |
c6d940a9 | 1869 | gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ()); |
df86565b | 1870 | gdb_assert (type->length () <= sizeof (ULONGEST)); |
ed3ef339 DE |
1871 | |
1872 | /* Written this way to avoid overflow. */ | |
df86565b | 1873 | n = type->length () * TARGET_CHAR_BIT; |
c3c1e645 | 1874 | return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1; |
ed3ef339 DE |
1875 | } |
1876 | ||
1877 | /* Store in *MIN, *MAX the smallest and largest numbers representable by | |
1878 | signed integer type TYPE. */ | |
1879 | ||
1880 | void | |
1881 | get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max) | |
1882 | { | |
1883 | unsigned int n; | |
1884 | ||
f168693b | 1885 | type = check_typedef (type); |
c6d940a9 | 1886 | gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ()); |
df86565b | 1887 | gdb_assert (type->length () <= sizeof (LONGEST)); |
ed3ef339 | 1888 | |
df86565b | 1889 | n = type->length () * TARGET_CHAR_BIT; |
ed3ef339 DE |
1890 | *min = -((ULONGEST) 1 << (n - 1)); |
1891 | *max = ((ULONGEST) 1 << (n - 1)) - 1; | |
1892 | } | |
1893 | ||
b5b591a8 GB |
1894 | /* Return the largest value representable by pointer type TYPE. */ |
1895 | ||
1896 | CORE_ADDR | |
1897 | get_pointer_type_max (struct type *type) | |
1898 | { | |
1899 | unsigned int n; | |
1900 | ||
1901 | type = check_typedef (type); | |
1902 | gdb_assert (type->code () == TYPE_CODE_PTR); | |
df86565b | 1903 | gdb_assert (type->length () <= sizeof (CORE_ADDR)); |
b5b591a8 | 1904 | |
df86565b | 1905 | n = type->length () * TARGET_CHAR_BIT; |
b5b591a8 GB |
1906 | return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1; |
1907 | } | |
1908 | ||
ae6ae975 DE |
1909 | /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of |
1910 | cplus_stuff.vptr_fieldno. | |
1911 | ||
1912 | cplus_stuff is initialized to cplus_struct_default which does not | |
1913 | set vptr_fieldno to -1 for portability reasons (IWBN to use C99 | |
1914 | designated initializers). We cope with that here. */ | |
1915 | ||
1916 | int | |
1917 | internal_type_vptr_fieldno (struct type *type) | |
1918 | { | |
f168693b | 1919 | type = check_typedef (type); |
78134374 SM |
1920 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1921 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1922 | if (!HAVE_CPLUS_STRUCT (type)) |
1923 | return -1; | |
1924 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno; | |
1925 | } | |
1926 | ||
1927 | /* Set the value of cplus_stuff.vptr_fieldno. */ | |
1928 | ||
1929 | void | |
1930 | set_type_vptr_fieldno (struct type *type, int fieldno) | |
1931 | { | |
f168693b | 1932 | type = check_typedef (type); |
78134374 SM |
1933 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1934 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1935 | if (!HAVE_CPLUS_STRUCT (type)) |
1936 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1937 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno; | |
1938 | } | |
1939 | ||
1940 | /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of | |
1941 | cplus_stuff.vptr_basetype. */ | |
1942 | ||
1943 | struct type * | |
1944 | internal_type_vptr_basetype (struct type *type) | |
1945 | { | |
f168693b | 1946 | type = check_typedef (type); |
78134374 SM |
1947 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1948 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1949 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF); |
1950 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype; | |
1951 | } | |
1952 | ||
1953 | /* Set the value of cplus_stuff.vptr_basetype. */ | |
1954 | ||
1955 | void | |
1956 | set_type_vptr_basetype (struct type *type, struct type *basetype) | |
1957 | { | |
f168693b | 1958 | type = check_typedef (type); |
78134374 SM |
1959 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1960 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1961 | if (!HAVE_CPLUS_STRUCT (type)) |
1962 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1963 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype; | |
1964 | } | |
1965 | ||
81fe8080 DE |
1966 | /* Lookup the vptr basetype/fieldno values for TYPE. |
1967 | If found store vptr_basetype in *BASETYPEP if non-NULL, and return | |
1968 | vptr_fieldno. Also, if found and basetype is from the same objfile, | |
1969 | cache the results. | |
1970 | If not found, return -1 and ignore BASETYPEP. | |
1971 | Callers should be aware that in some cases (for example, | |
c906108c | 1972 | the type or one of its baseclasses is a stub type and we are |
d48cc9dd DJ |
1973 | debugging a .o file, or the compiler uses DWARF-2 and is not GCC), |
1974 | this function will not be able to find the | |
7ba81444 | 1975 | virtual function table pointer, and vptr_fieldno will remain -1 and |
81fe8080 | 1976 | vptr_basetype will remain NULL or incomplete. */ |
c906108c | 1977 | |
81fe8080 DE |
1978 | int |
1979 | get_vptr_fieldno (struct type *type, struct type **basetypep) | |
c906108c | 1980 | { |
f168693b | 1981 | type = check_typedef (type); |
c906108c SS |
1982 | |
1983 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
1984 | { | |
1985 | int i; | |
1986 | ||
7ba81444 | 1987 | /* We must start at zero in case the first (and only) baseclass |
dda83cd7 | 1988 | is virtual (and hence we cannot share the table pointer). */ |
c906108c SS |
1989 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) |
1990 | { | |
81fe8080 DE |
1991 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
1992 | int fieldno; | |
1993 | struct type *basetype; | |
1994 | ||
1995 | fieldno = get_vptr_fieldno (baseclass, &basetype); | |
1996 | if (fieldno >= 0) | |
c906108c | 1997 | { |
81fe8080 | 1998 | /* If the type comes from a different objfile we can't cache |
0963b4bd | 1999 | it, it may have a different lifetime. PR 2384 */ |
6ac37371 | 2000 | if (type->objfile_owner () == basetype->objfile_owner ()) |
81fe8080 | 2001 | { |
ae6ae975 DE |
2002 | set_type_vptr_fieldno (type, fieldno); |
2003 | set_type_vptr_basetype (type, basetype); | |
81fe8080 DE |
2004 | } |
2005 | if (basetypep) | |
2006 | *basetypep = basetype; | |
2007 | return fieldno; | |
c906108c SS |
2008 | } |
2009 | } | |
81fe8080 DE |
2010 | |
2011 | /* Not found. */ | |
2012 | return -1; | |
2013 | } | |
2014 | else | |
2015 | { | |
2016 | if (basetypep) | |
2017 | *basetypep = TYPE_VPTR_BASETYPE (type); | |
2018 | return TYPE_VPTR_FIELDNO (type); | |
c906108c SS |
2019 | } |
2020 | } | |
2021 | ||
44e1a9eb DJ |
2022 | static void |
2023 | stub_noname_complaint (void) | |
2024 | { | |
b98664d3 | 2025 | complaint (_("stub type has NULL name")); |
44e1a9eb DJ |
2026 | } |
2027 | ||
a405673c JB |
2028 | /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property |
2029 | attached to it, and that property has a non-constant value. */ | |
2030 | ||
2031 | static int | |
2032 | array_type_has_dynamic_stride (struct type *type) | |
2033 | { | |
24e99c6c | 2034 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c | 2035 | |
9c0fb734 | 2036 | return prop != nullptr && prop->is_constant (); |
a405673c JB |
2037 | } |
2038 | ||
d98b7a16 | 2039 | /* Worker for is_dynamic_type. */ |
80180f79 | 2040 | |
86542ab5 TT |
2041 | static bool |
2042 | is_dynamic_type_internal (struct type *type, bool top_level) | |
80180f79 SA |
2043 | { |
2044 | type = check_typedef (type); | |
2045 | ||
f18fc7e5 BH |
2046 | /* We only want to recognize references and pointers at the outermost |
2047 | level. */ | |
2048 | if (top_level && type->is_pointer_or_reference ()) | |
27710edb | 2049 | type = check_typedef (type->target_type ()); |
e771e4be | 2050 | |
3cdcd0ce JB |
2051 | /* Types that have a dynamic TYPE_DATA_LOCATION are considered |
2052 | dynamic, even if the type itself is statically defined. | |
2053 | From a user's point of view, this may appear counter-intuitive; | |
2054 | but it makes sense in this context, because the point is to determine | |
2055 | whether any part of the type needs to be resolved before it can | |
2056 | be exploited. */ | |
2057 | if (TYPE_DATA_LOCATION (type) != NULL | |
2058 | && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR | |
2059 | || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST)) | |
86542ab5 | 2060 | return true; |
3cdcd0ce | 2061 | |
3f2f83dd | 2062 | if (TYPE_ASSOCIATED_PROP (type)) |
86542ab5 | 2063 | return true; |
3f2f83dd KB |
2064 | |
2065 | if (TYPE_ALLOCATED_PROP (type)) | |
86542ab5 | 2066 | return true; |
3f2f83dd | 2067 | |
24e99c6c | 2068 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2069 | if (prop != nullptr && prop->kind () != PROP_TYPE) |
86542ab5 | 2070 | return true; |
ef83a141 | 2071 | |
f8e89861 | 2072 | if (TYPE_HAS_DYNAMIC_LENGTH (type)) |
86542ab5 | 2073 | return true; |
f8e89861 | 2074 | |
78134374 | 2075 | switch (type->code ()) |
80180f79 | 2076 | { |
6f8a3220 | 2077 | case TYPE_CODE_RANGE: |
ddb87a81 JB |
2078 | { |
2079 | /* A range type is obviously dynamic if it has at least one | |
2080 | dynamic bound. But also consider the range type to be | |
2081 | dynamic when its subtype is dynamic, even if the bounds | |
2082 | of the range type are static. It allows us to assume that | |
2083 | the subtype of a static range type is also static. */ | |
599088e3 | 2084 | return (!has_static_range (type->bounds ()) |
86542ab5 | 2085 | || is_dynamic_type_internal (type->target_type (), false)); |
ddb87a81 | 2086 | } |
6f8a3220 | 2087 | |
216a7e6b AB |
2088 | case TYPE_CODE_STRING: |
2089 | /* Strings are very much like an array of characters, and can be | |
2090 | treated as one here. */ | |
80180f79 SA |
2091 | case TYPE_CODE_ARRAY: |
2092 | { | |
1f704f76 | 2093 | gdb_assert (type->num_fields () == 1); |
6f8a3220 | 2094 | |
a405673c | 2095 | /* The array is dynamic if either the bounds are dynamic... */ |
86542ab5 TT |
2096 | if (is_dynamic_type_internal (type->index_type (), false)) |
2097 | return true; | |
a405673c | 2098 | /* ... or the elements it contains have a dynamic contents... */ |
86542ab5 TT |
2099 | if (is_dynamic_type_internal (type->target_type (), false)) |
2100 | return true; | |
a405673c JB |
2101 | /* ... or if it has a dynamic stride... */ |
2102 | if (array_type_has_dynamic_stride (type)) | |
86542ab5 TT |
2103 | return true; |
2104 | return false; | |
80180f79 | 2105 | } |
012370f6 TT |
2106 | |
2107 | case TYPE_CODE_STRUCT: | |
2108 | case TYPE_CODE_UNION: | |
2109 | { | |
2110 | int i; | |
2111 | ||
7d79de9a TT |
2112 | bool is_cplus = HAVE_CPLUS_STRUCT (type); |
2113 | ||
1f704f76 | 2114 | for (i = 0; i < type->num_fields (); ++i) |
7d79de9a TT |
2115 | { |
2116 | /* Static fields can be ignored here. */ | |
c819a338 | 2117 | if (type->field (i).is_static ()) |
7d79de9a TT |
2118 | continue; |
2119 | /* If the field has dynamic type, then so does TYPE. */ | |
86542ab5 TT |
2120 | if (is_dynamic_type_internal (type->field (i).type (), false)) |
2121 | return true; | |
7d79de9a TT |
2122 | /* If the field is at a fixed offset, then it is not |
2123 | dynamic. */ | |
692252c4 | 2124 | if (!type->field (i).loc_is_dwarf_block ()) |
7d79de9a TT |
2125 | continue; |
2126 | /* Do not consider C++ virtual base types to be dynamic | |
2127 | due to the field's offset being dynamic; these are | |
2128 | handled via other means. */ | |
2129 | if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i)) | |
2130 | continue; | |
86542ab5 | 2131 | return true; |
7d79de9a | 2132 | } |
012370f6 TT |
2133 | } |
2134 | break; | |
80180f79 | 2135 | } |
92e2a17f | 2136 | |
86542ab5 | 2137 | return false; |
80180f79 SA |
2138 | } |
2139 | ||
d98b7a16 TT |
2140 | /* See gdbtypes.h. */ |
2141 | ||
86542ab5 | 2142 | bool |
d98b7a16 TT |
2143 | is_dynamic_type (struct type *type) |
2144 | { | |
86542ab5 | 2145 | return is_dynamic_type_internal (type, true); |
d98b7a16 TT |
2146 | } |
2147 | ||
df25ebbd | 2148 | static struct type *resolve_dynamic_type_internal |
b4b312d1 | 2149 | (struct type *type, const property_addr_info *addr_stack, |
86542ab5 | 2150 | const frame_info_ptr &frame, bool top_level); |
d98b7a16 | 2151 | |
df25ebbd JB |
2152 | /* Given a dynamic range type (dyn_range_type) and a stack of |
2153 | struct property_addr_info elements, return a static version | |
b7874836 AB |
2154 | of that type. |
2155 | ||
2156 | When RESOLVE_P is true then the returned static range is created by | |
2157 | actually evaluating any dynamic properties within the range type, while | |
2158 | when RESOLVE_P is false the returned static range has all of the bounds | |
2159 | and stride information set to undefined. The RESOLVE_P set to false | |
2160 | case will be used when evaluating a dynamic array that is not | |
2161 | allocated, or not associated, i.e. the bounds information might not be | |
3fb842ce AB |
2162 | initialized yet. |
2163 | ||
2164 | RANK is the array rank for which we are resolving this range, and is a | |
2165 | zero based count. The rank should never be negative. | |
2166 | */ | |
d190df30 | 2167 | |
80180f79 | 2168 | static struct type * |
df25ebbd | 2169 | resolve_dynamic_range (struct type *dyn_range_type, |
b4b312d1 | 2170 | const property_addr_info *addr_stack, |
aeabe83d | 2171 | const frame_info_ptr &frame, |
df7a7bdd | 2172 | int rank, bool resolve_p = true) |
80180f79 SA |
2173 | { |
2174 | CORE_ADDR value; | |
ddb87a81 | 2175 | struct type *static_range_type, *static_target_type; |
5bbd8269 | 2176 | struct dynamic_prop low_bound, high_bound, stride; |
80180f79 | 2177 | |
78134374 | 2178 | gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE); |
3fb842ce | 2179 | gdb_assert (rank >= 0); |
80180f79 | 2180 | |
599088e3 | 2181 | const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low; |
a8b16509 TT |
2182 | if (resolve_p) |
2183 | { | |
2184 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, | |
2185 | { (CORE_ADDR) rank })) | |
2186 | low_bound.set_const_val (value); | |
2187 | else if (prop->kind () == PROP_UNDEFINED) | |
2188 | low_bound.set_undefined (); | |
2189 | else | |
2190 | low_bound.set_optimized_out (); | |
2191 | } | |
80180f79 | 2192 | else |
8c2e4e06 | 2193 | low_bound.set_undefined (); |
80180f79 | 2194 | |
599088e3 | 2195 | prop = &dyn_range_type->bounds ()->high; |
a8b16509 | 2196 | if (resolve_p) |
80180f79 | 2197 | { |
a8b16509 TT |
2198 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
2199 | { (CORE_ADDR) rank })) | |
2200 | { | |
2201 | high_bound.set_const_val (value); | |
c451ebe5 | 2202 | |
a8b16509 TT |
2203 | if (dyn_range_type->bounds ()->flag_upper_bound_is_count) |
2204 | high_bound.set_const_val | |
2205 | (low_bound.const_val () + high_bound.const_val () - 1); | |
2206 | } | |
2207 | else if (prop->kind () == PROP_UNDEFINED) | |
2208 | high_bound.set_undefined (); | |
2209 | else | |
2210 | high_bound.set_optimized_out (); | |
80180f79 SA |
2211 | } |
2212 | else | |
8c2e4e06 | 2213 | high_bound.set_undefined (); |
80180f79 | 2214 | |
599088e3 SM |
2215 | bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride; |
2216 | prop = &dyn_range_type->bounds ()->stride; | |
aeabe83d | 2217 | if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
df7a7bdd | 2218 | { (CORE_ADDR) rank })) |
5bbd8269 | 2219 | { |
8c2e4e06 | 2220 | stride.set_const_val (value); |
5bbd8269 AB |
2221 | |
2222 | /* If we have a bit stride that is not an exact number of bytes then | |
2223 | I really don't think this is going to work with current GDB, the | |
2224 | array indexing code in GDB seems to be pretty heavily tied to byte | |
2225 | offsets right now. Assuming 8 bits in a byte. */ | |
8ee511af | 2226 | struct gdbarch *gdbarch = dyn_range_type->arch (); |
5bbd8269 AB |
2227 | int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); |
2228 | if (!byte_stride_p && (value % (unit_size * 8)) != 0) | |
2229 | error (_("bit strides that are not a multiple of the byte size " | |
2230 | "are currently not supported")); | |
2231 | } | |
2232 | else | |
2233 | { | |
8c2e4e06 | 2234 | stride.set_undefined (); |
5bbd8269 AB |
2235 | byte_stride_p = true; |
2236 | } | |
2237 | ||
ddb87a81 | 2238 | static_target_type |
27710edb | 2239 | = resolve_dynamic_type_internal (dyn_range_type->target_type (), |
86542ab5 | 2240 | addr_stack, frame, false); |
599088e3 | 2241 | LONGEST bias = dyn_range_type->bounds ()->bias; |
e727c536 | 2242 | type_allocator alloc (dyn_range_type); |
5bbd8269 | 2243 | static_range_type = create_range_type_with_stride |
e727c536 | 2244 | (alloc, static_target_type, |
5bbd8269 | 2245 | &low_bound, &high_bound, bias, &stride, byte_stride_p); |
4bfcb286 | 2246 | static_range_type->set_name (dyn_range_type->name ()); |
599088e3 | 2247 | static_range_type->bounds ()->flag_bound_evaluated = 1; |
6f8a3220 JB |
2248 | return static_range_type; |
2249 | } | |
2250 | ||
df7a7bdd | 2251 | /* Helper function for resolve_dynamic_array_or_string. This function |
2252 | resolves the properties for a single array at RANK within a nested array | |
3fb842ce | 2253 | of arrays structure. The RANK value is greater than or equal to 0, and |
df7a7bdd | 2254 | starts at it's maximum value and goes down by 1 for each recursive call |
2255 | to this function. So, for a 3-dimensional array, the first call to this | |
3fb842ce AB |
2256 | function has RANK == 2, then we call ourselves recursively with RANK == |
2257 | 1, than again with RANK == 0, and at that point we should return. | |
df7a7bdd | 2258 | |
2259 | TYPE is updated as the dynamic properties are resolved, and so, should | |
2260 | be a copy of the dynamic type, rather than the original dynamic type | |
2261 | itself. | |
2262 | ||
2263 | ADDR_STACK is a stack of struct property_addr_info to be used if needed | |
2264 | during the dynamic resolution. | |
b7874836 AB |
2265 | |
2266 | When RESOLVE_P is true then the dynamic properties of TYPE are | |
2267 | evaluated, otherwise the dynamic properties of TYPE are not evaluated, | |
2268 | instead we assume the array is not allocated/associated yet. */ | |
6f8a3220 JB |
2269 | |
2270 | static struct type * | |
df7a7bdd | 2271 | resolve_dynamic_array_or_string_1 (struct type *type, |
b4b312d1 | 2272 | const property_addr_info *addr_stack, |
aeabe83d | 2273 | const frame_info_ptr &frame, |
df7a7bdd | 2274 | int rank, bool resolve_p) |
6f8a3220 JB |
2275 | { |
2276 | CORE_ADDR value; | |
2277 | struct type *elt_type; | |
2278 | struct type *range_type; | |
2279 | struct type *ary_dim; | |
3f2f83dd | 2280 | struct dynamic_prop *prop; |
a405673c | 2281 | unsigned int bit_stride = 0; |
6f8a3220 | 2282 | |
216a7e6b AB |
2283 | /* For dynamic type resolution strings can be treated like arrays of |
2284 | characters. */ | |
78134374 SM |
2285 | gdb_assert (type->code () == TYPE_CODE_ARRAY |
2286 | || type->code () == TYPE_CODE_STRING); | |
6f8a3220 | 2287 | |
3fb842ce AB |
2288 | /* As the rank is a zero based count we expect this to never be |
2289 | negative. */ | |
2290 | gdb_assert (rank >= 0); | |
3f2f83dd | 2291 | |
b7874836 AB |
2292 | /* Resolve the allocated and associated properties before doing anything |
2293 | else. If an array is not allocated or not associated then (at least | |
2294 | for Fortran) there is no guarantee that the data to define the upper | |
2295 | bound, lower bound, or stride will be correct. If RESOLVE_P is | |
2296 | already false at this point then this is not the first dimension of | |
2297 | the array and a more outer dimension has already marked this array as | |
2298 | not allocated/associated, as such we just ignore this property. This | |
2299 | is fine as GDB only checks the allocated/associated on the outer most | |
2300 | dimension of the array. */ | |
3f2f83dd | 2301 | prop = TYPE_ALLOCATED_PROP (type); |
b7874836 | 2302 | if (prop != NULL && resolve_p |
aeabe83d | 2303 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
b7874836 AB |
2304 | { |
2305 | prop->set_const_val (value); | |
2306 | if (value == 0) | |
2307 | resolve_p = false; | |
2308 | } | |
8c2e4e06 | 2309 | |
3f2f83dd | 2310 | prop = TYPE_ASSOCIATED_PROP (type); |
b7874836 | 2311 | if (prop != NULL && resolve_p |
aeabe83d | 2312 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
b7874836 AB |
2313 | { |
2314 | prop->set_const_val (value); | |
2315 | if (value == 0) | |
2316 | resolve_p = false; | |
2317 | } | |
3f2f83dd | 2318 | |
b7874836 | 2319 | range_type = check_typedef (type->index_type ()); |
df7a7bdd | 2320 | range_type |
aeabe83d | 2321 | = resolve_dynamic_range (range_type, addr_stack, frame, rank, resolve_p); |
80180f79 | 2322 | |
27710edb | 2323 | ary_dim = check_typedef (type->target_type ()); |
78134374 | 2324 | if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY) |
df7a7bdd | 2325 | { |
2326 | ary_dim = copy_type (ary_dim); | |
2327 | elt_type = resolve_dynamic_array_or_string_1 (ary_dim, addr_stack, | |
aeabe83d TT |
2328 | frame, rank - 1, |
2329 | resolve_p); | |
df7a7bdd | 2330 | } |
b0fdcd47 IA |
2331 | else if (ary_dim != nullptr && ary_dim->code () == TYPE_CODE_STRING) |
2332 | { | |
2333 | /* The following special case for TYPE_CODE_STRING should not be | |
2334 | needed, ideally we would defer resolving the dynamic type of the | |
2335 | array elements until needed later, and indeed, the resolved type | |
2336 | of each array element might be different, so attempting to resolve | |
2337 | the type here makes no sense. | |
2338 | ||
2339 | However, in Fortran, for arrays of strings, each element must be | |
2340 | the same type, as such, the DWARF for the string length relies on | |
2341 | the object address of the array itself. | |
2342 | ||
2343 | The problem here is that, when we create values from the dynamic | |
2344 | array type, we resolve the data location, and use that as the | |
2345 | value address, this completely discards the original value | |
2346 | address, and it is this original value address that is the | |
2347 | descriptor for the dynamic array, the very address that the DWARF | |
2348 | needs us to push in order to resolve the dynamic string length. | |
2349 | ||
2350 | What this means then, is that, given the current state of GDB, if | |
2351 | we don't resolve the string length now, then we will have lost | |
2352 | access to the address of the dynamic object descriptor, and so we | |
2353 | will not be able to resolve the dynamic string later. | |
2354 | ||
2355 | For now then, we handle special case TYPE_CODE_STRING on behalf of | |
2356 | Fortran, and hope that this doesn't cause problems for anyone | |
2357 | else. */ | |
2358 | elt_type = resolve_dynamic_type_internal (type->target_type (), | |
2359 | addr_stack, frame, 0); | |
2360 | } | |
80180f79 | 2361 | else |
27710edb | 2362 | elt_type = type->target_type (); |
80180f79 | 2363 | |
24e99c6c | 2364 | prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
b0fdcd47 IA |
2365 | if (prop != nullptr && type->code () == TYPE_CODE_STRING) |
2366 | prop = nullptr; | |
b7874836 | 2367 | if (prop != NULL && resolve_p) |
a405673c | 2368 | { |
aeabe83d | 2369 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
a405673c | 2370 | { |
7aa91313 | 2371 | type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c JB |
2372 | bit_stride = (unsigned int) (value * 8); |
2373 | } | |
2374 | else | |
2375 | { | |
2376 | /* Could be a bug in our code, but it could also happen | |
2377 | if the DWARF info is not correct. Issue a warning, | |
2378 | and assume no byte/bit stride (leave bit_stride = 0). */ | |
2379 | warning (_("cannot determine array stride for type %s"), | |
7d93a1e0 | 2380 | type->name () ? type->name () : "<no name>"); |
a405673c JB |
2381 | } |
2382 | } | |
2383 | else | |
3757d2d4 | 2384 | bit_stride = type->field (0).bitsize (); |
a405673c | 2385 | |
9e76b17a | 2386 | type_allocator alloc (type, type_allocator::SMASH); |
b0fdcd47 IA |
2387 | if (type->code () == TYPE_CODE_STRING) |
2388 | return create_string_type (alloc, elt_type, range_type); | |
2389 | else | |
2390 | return create_array_type_with_stride (alloc, elt_type, range_type, NULL, | |
2391 | bit_stride); | |
80180f79 SA |
2392 | } |
2393 | ||
df7a7bdd | 2394 | /* Resolve an array or string type with dynamic properties, return a new |
2395 | type with the dynamic properties resolved to actual values. The | |
2396 | ADDR_STACK represents the location of the object being resolved. */ | |
2397 | ||
2398 | static struct type * | |
2399 | resolve_dynamic_array_or_string (struct type *type, | |
b4b312d1 | 2400 | const property_addr_info *addr_stack, |
aeabe83d | 2401 | const frame_info_ptr &frame) |
df7a7bdd | 2402 | { |
2403 | CORE_ADDR value; | |
2404 | int rank = 0; | |
2405 | ||
2406 | /* For dynamic type resolution strings can be treated like arrays of | |
2407 | characters. */ | |
2408 | gdb_assert (type->code () == TYPE_CODE_ARRAY | |
2409 | || type->code () == TYPE_CODE_STRING); | |
2410 | ||
2411 | type = copy_type (type); | |
2412 | ||
2413 | /* Resolve the rank property to get rank value. */ | |
2414 | struct dynamic_prop *prop = TYPE_RANK_PROP (type); | |
aeabe83d | 2415 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
df7a7bdd | 2416 | { |
2417 | prop->set_const_val (value); | |
2418 | rank = value; | |
2419 | ||
2420 | if (rank == 0) | |
2421 | { | |
5f59e7e0 | 2422 | /* Rank is zero, if a variable is passed as an argument to a |
2423 | function. In this case the resolved type should not be an | |
2424 | array, but should instead be that of an array element. */ | |
2425 | struct type *dynamic_array_type = type; | |
27710edb | 2426 | type = copy_type (dynamic_array_type->target_type ()); |
5f59e7e0 | 2427 | struct dynamic_prop_list *prop_list |
2428 | = TYPE_MAIN_TYPE (dynamic_array_type)->dyn_prop_list; | |
2429 | if (prop_list != nullptr) | |
2430 | { | |
2431 | struct obstack *obstack | |
2432 | = &type->objfile_owner ()->objfile_obstack; | |
2433 | TYPE_MAIN_TYPE (type)->dyn_prop_list | |
2434 | = copy_dynamic_prop_list (obstack, prop_list); | |
2435 | } | |
2436 | return type; | |
df7a7bdd | 2437 | } |
2438 | else if (type->code () == TYPE_CODE_STRING && rank != 1) | |
2439 | { | |
2440 | /* What would this even mean? A string with a dynamic rank | |
2441 | greater than 1. */ | |
2442 | error (_("unable to handle string with dynamic rank greater than 1")); | |
2443 | } | |
2444 | else if (rank > 1) | |
2445 | { | |
2446 | /* Arrays with dynamic rank are initially just an array type | |
2447 | with a target type that is the array element. | |
2448 | ||
2449 | However, now we know the rank of the array we need to build | |
2450 | the array of arrays structure that GDB expects, that is we | |
2451 | need an array type that has a target which is an array type, | |
2452 | and so on, until eventually, we have the element type at the | |
2453 | end of the chain. Create all the additional array types here | |
2454 | by copying the top level array type. */ | |
27710edb | 2455 | struct type *element_type = type->target_type (); |
df7a7bdd | 2456 | struct type *rank_type = type; |
2457 | for (int i = 1; i < rank; i++) | |
2458 | { | |
8a50fdce | 2459 | rank_type->set_target_type (copy_type (rank_type)); |
27710edb | 2460 | rank_type = rank_type->target_type (); |
df7a7bdd | 2461 | } |
8a50fdce | 2462 | rank_type->set_target_type (element_type); |
df7a7bdd | 2463 | } |
2464 | } | |
2465 | else | |
2466 | { | |
2467 | rank = 1; | |
2468 | ||
27710edb | 2469 | for (struct type *tmp_type = check_typedef (type->target_type ()); |
df7a7bdd | 2470 | tmp_type->code () == TYPE_CODE_ARRAY; |
27710edb | 2471 | tmp_type = check_typedef (tmp_type->target_type ())) |
df7a7bdd | 2472 | ++rank; |
2473 | } | |
2474 | ||
3fb842ce AB |
2475 | /* The rank that we calculated above is actually a count of the number of |
2476 | ranks. However, when we resolve the type of each individual array | |
2477 | rank we should actually use a rank "offset", e.g. an array with a rank | |
2478 | count of 1 (calculated above) will use the rank offset 0 in order to | |
2479 | resolve the details of the first array dimension. As a result, we | |
2480 | reduce the rank by 1 here. */ | |
2481 | --rank; | |
2482 | ||
aeabe83d TT |
2483 | return resolve_dynamic_array_or_string_1 (type, addr_stack, frame, rank, |
2484 | true); | |
df7a7bdd | 2485 | } |
2486 | ||
012370f6 | 2487 | /* Resolve dynamic bounds of members of the union TYPE to static |
df25ebbd JB |
2488 | bounds. ADDR_STACK is a stack of struct property_addr_info |
2489 | to be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2490 | |
2491 | static struct type * | |
df25ebbd | 2492 | resolve_dynamic_union (struct type *type, |
b4b312d1 | 2493 | const property_addr_info *addr_stack, |
aeabe83d | 2494 | const frame_info_ptr &frame) |
012370f6 TT |
2495 | { |
2496 | struct type *resolved_type; | |
2497 | int i; | |
2498 | unsigned int max_len = 0; | |
2499 | ||
78134374 | 2500 | gdb_assert (type->code () == TYPE_CODE_UNION); |
012370f6 TT |
2501 | |
2502 | resolved_type = copy_type (type); | |
2774f2da | 2503 | resolved_type->copy_fields (type); |
1f704f76 | 2504 | for (i = 0; i < resolved_type->num_fields (); ++i) |
012370f6 TT |
2505 | { |
2506 | struct type *t; | |
2507 | ||
c819a338 | 2508 | if (type->field (i).is_static ()) |
012370f6 TT |
2509 | continue; |
2510 | ||
940da03e | 2511 | t = resolve_dynamic_type_internal (resolved_type->field (i).type (), |
86542ab5 | 2512 | addr_stack, frame, false); |
5d14b6e5 | 2513 | resolved_type->field (i).set_type (t); |
2f33032a KS |
2514 | |
2515 | struct type *real_type = check_typedef (t); | |
df86565b SM |
2516 | if (real_type->length () > max_len) |
2517 | max_len = real_type->length (); | |
012370f6 TT |
2518 | } |
2519 | ||
b6cdbc9a | 2520 | resolved_type->set_length (max_len); |
012370f6 TT |
2521 | return resolved_type; |
2522 | } | |
2523 | ||
ef83a141 TT |
2524 | /* See gdbtypes.h. */ |
2525 | ||
2526 | bool | |
2527 | variant::matches (ULONGEST value, bool is_unsigned) const | |
2528 | { | |
2529 | for (const discriminant_range &range : discriminants) | |
2530 | if (range.contains (value, is_unsigned)) | |
2531 | return true; | |
2532 | return false; | |
2533 | } | |
2534 | ||
2535 | static void | |
2536 | compute_variant_fields_inner (struct type *type, | |
b4b312d1 | 2537 | const property_addr_info *addr_stack, |
ef83a141 TT |
2538 | const variant_part &part, |
2539 | std::vector<bool> &flags); | |
2540 | ||
2541 | /* A helper function to determine which variant fields will be active. | |
2542 | This handles both the variant's direct fields, and any variant | |
2543 | parts embedded in this variant. TYPE is the type we're examining. | |
2544 | ADDR_STACK holds information about the concrete object. VARIANT is | |
2545 | the current variant to be handled. FLAGS is where the results are | |
2546 | stored -- this function sets the Nth element in FLAGS if the | |
2547 | corresponding field is enabled. ENABLED is whether this variant is | |
2548 | enabled or not. */ | |
2549 | ||
2550 | static void | |
2551 | compute_variant_fields_recurse (struct type *type, | |
b4b312d1 | 2552 | const property_addr_info *addr_stack, |
ef83a141 TT |
2553 | const variant &variant, |
2554 | std::vector<bool> &flags, | |
2555 | bool enabled) | |
2556 | { | |
2557 | for (int field = variant.first_field; field < variant.last_field; ++field) | |
2558 | flags[field] = enabled; | |
2559 | ||
2560 | for (const variant_part &new_part : variant.parts) | |
2561 | { | |
2562 | if (enabled) | |
2563 | compute_variant_fields_inner (type, addr_stack, new_part, flags); | |
2564 | else | |
2565 | { | |
2566 | for (const auto &sub_variant : new_part.variants) | |
2567 | compute_variant_fields_recurse (type, addr_stack, sub_variant, | |
2568 | flags, enabled); | |
2569 | } | |
2570 | } | |
2571 | } | |
2572 | ||
2573 | /* A helper function to determine which variant fields will be active. | |
2574 | This evaluates the discriminant, decides which variant (if any) is | |
2575 | active, and then updates FLAGS to reflect which fields should be | |
2576 | available. TYPE is the type we're examining. ADDR_STACK holds | |
2577 | information about the concrete object. VARIANT is the current | |
2578 | variant to be handled. FLAGS is where the results are stored -- | |
2579 | this function sets the Nth element in FLAGS if the corresponding | |
2580 | field is enabled. */ | |
2581 | ||
2582 | static void | |
2583 | compute_variant_fields_inner (struct type *type, | |
b4b312d1 | 2584 | const property_addr_info *addr_stack, |
ef83a141 TT |
2585 | const variant_part &part, |
2586 | std::vector<bool> &flags) | |
2587 | { | |
2588 | /* Evaluate the discriminant. */ | |
6b09f134 | 2589 | std::optional<ULONGEST> discr_value; |
ef83a141 TT |
2590 | if (part.discriminant_index != -1) |
2591 | { | |
2592 | int idx = part.discriminant_index; | |
2593 | ||
2ad53ea1 | 2594 | if (type->field (idx).loc_kind () != FIELD_LOC_KIND_BITPOS) |
ef83a141 TT |
2595 | error (_("Cannot determine struct field location" |
2596 | " (invalid location kind)")); | |
2597 | ||
b249d2c2 TT |
2598 | if (addr_stack->valaddr.data () != NULL) |
2599 | discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (), | |
2600 | idx); | |
ef83a141 TT |
2601 | else |
2602 | { | |
2603 | CORE_ADDR addr = (addr_stack->addr | |
b610c045 | 2604 | + (type->field (idx).loc_bitpos () |
ef83a141 TT |
2605 | / TARGET_CHAR_BIT)); |
2606 | ||
3757d2d4 | 2607 | LONGEST bitsize = type->field (idx).bitsize (); |
ef83a141 TT |
2608 | LONGEST size = bitsize / 8; |
2609 | if (size == 0) | |
df86565b | 2610 | size = type->field (idx).type ()->length (); |
ef83a141 TT |
2611 | |
2612 | gdb_byte bits[sizeof (ULONGEST)]; | |
2613 | read_memory (addr, bits, size); | |
2614 | ||
b610c045 | 2615 | LONGEST bitpos = (type->field (idx).loc_bitpos () |
ef83a141 TT |
2616 | % TARGET_CHAR_BIT); |
2617 | ||
940da03e | 2618 | discr_value = unpack_bits_as_long (type->field (idx).type (), |
ef83a141 TT |
2619 | bits, bitpos, bitsize); |
2620 | } | |
2621 | } | |
2622 | ||
2623 | /* Go through each variant and see which applies. */ | |
2624 | const variant *default_variant = nullptr; | |
2625 | const variant *applied_variant = nullptr; | |
2626 | for (const auto &variant : part.variants) | |
2627 | { | |
2628 | if (variant.is_default ()) | |
2629 | default_variant = &variant; | |
2630 | else if (discr_value.has_value () | |
2631 | && variant.matches (*discr_value, part.is_unsigned)) | |
2632 | { | |
2633 | applied_variant = &variant; | |
2634 | break; | |
2635 | } | |
2636 | } | |
2637 | if (applied_variant == nullptr) | |
2638 | applied_variant = default_variant; | |
2639 | ||
2640 | for (const auto &variant : part.variants) | |
2641 | compute_variant_fields_recurse (type, addr_stack, variant, | |
2642 | flags, applied_variant == &variant); | |
2643 | } | |
2644 | ||
2645 | /* Determine which variant fields are available in TYPE. The enabled | |
2646 | fields are stored in RESOLVED_TYPE. ADDR_STACK holds information | |
2647 | about the concrete object. PARTS describes the top-level variant | |
2648 | parts for this type. */ | |
2649 | ||
2650 | static void | |
2651 | compute_variant_fields (struct type *type, | |
2652 | struct type *resolved_type, | |
b4b312d1 | 2653 | const property_addr_info *addr_stack, |
ef83a141 TT |
2654 | const gdb::array_view<variant_part> &parts) |
2655 | { | |
2656 | /* Assume all fields are included by default. */ | |
1f704f76 | 2657 | std::vector<bool> flags (resolved_type->num_fields (), true); |
ef83a141 TT |
2658 | |
2659 | /* Now disable fields based on the variants that control them. */ | |
2660 | for (const auto &part : parts) | |
2661 | compute_variant_fields_inner (type, addr_stack, part, flags); | |
2662 | ||
2774f2da TV |
2663 | unsigned int nfields = std::count (flags.begin (), flags.end (), true); |
2664 | /* No need to zero-initialize the newly allocated fields, they'll be | |
2665 | initialized by the copy in the loop below. */ | |
2666 | resolved_type->alloc_fields (nfields, false); | |
3cabb6b0 | 2667 | |
ef83a141 | 2668 | int out = 0; |
1f704f76 | 2669 | for (int i = 0; i < type->num_fields (); ++i) |
ef83a141 TT |
2670 | { |
2671 | if (!flags[i]) | |
2672 | continue; | |
2673 | ||
ceacbf6e | 2674 | resolved_type->field (out) = type->field (i); |
ef83a141 TT |
2675 | ++out; |
2676 | } | |
2677 | } | |
2678 | ||
800f6f5f TT |
2679 | /* See gdbtypes.h. */ |
2680 | ||
ee580641 TT |
2681 | void |
2682 | apply_bit_offset_to_field (struct field &field, LONGEST bit_offset, | |
2683 | LONGEST explicit_byte_size) | |
2684 | { | |
2685 | struct type *field_type = field.type (); | |
2686 | struct gdbarch *gdbarch = field_type->arch (); | |
2687 | LONGEST current_bitpos = field.loc_bitpos (); | |
2688 | ||
2689 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2690 | { | |
2691 | /* For big endian bits, the DW_AT_bit_offset gives the | |
2692 | additional bit offset from the MSB of the containing | |
2693 | anonymous object to the MSB of the field. We don't | |
2694 | have to do anything special since we don't need to | |
2695 | know the size of the anonymous object. */ | |
2696 | field.set_loc_bitpos (current_bitpos + bit_offset); | |
2697 | } | |
2698 | else | |
2699 | { | |
2700 | /* For little endian bits, compute the bit offset to the | |
2701 | MSB of the anonymous object, subtract off the number of | |
2702 | bits from the MSB of the field to the MSB of the | |
2703 | object, and then subtract off the number of bits of | |
2704 | the field itself. The result is the bit offset of | |
2705 | the LSB of the field. */ | |
2706 | LONGEST object_size = explicit_byte_size; | |
2707 | if (object_size == 0) | |
2708 | object_size = field_type->length (); | |
2709 | ||
2710 | field.set_loc_bitpos (current_bitpos | |
2711 | + 8 * object_size | |
2712 | - bit_offset | |
2713 | - field.bitsize ()); | |
2714 | } | |
2715 | } | |
2716 | ||
2717 | /* See gdbtypes.h. */ | |
2718 | ||
800f6f5f TT |
2719 | void |
2720 | resolve_dynamic_field (struct field &field, | |
2721 | const property_addr_info *addr_stack, | |
2722 | const frame_info_ptr &frame) | |
2723 | { | |
2724 | gdb_assert (!field.is_static ()); | |
2725 | ||
692252c4 | 2726 | if (field.loc_is_dwarf_block ()) |
800f6f5f | 2727 | { |
420d030e TT |
2728 | dwarf2_locexpr_baton *field_loc |
2729 | = field.loc_dwarf_block (); | |
2730 | ||
800f6f5f TT |
2731 | struct dwarf2_property_baton baton; |
2732 | baton.property_type = lookup_pointer_type (field.type ()); | |
420d030e | 2733 | baton.locexpr = *field_loc; |
800f6f5f TT |
2734 | |
2735 | struct dynamic_prop prop; | |
2736 | prop.set_locexpr (&baton); | |
2737 | ||
2738 | CORE_ADDR vals[1] = {addr_stack->addr}; | |
692252c4 TT |
2739 | CORE_ADDR addr_or_bitpos; |
2740 | if (dwarf2_evaluate_property (&prop, frame, addr_stack, | |
2741 | &addr_or_bitpos, vals)) | |
420d030e | 2742 | { |
692252c4 TT |
2743 | if (field.loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK_ADDR) |
2744 | field.set_loc_bitpos (TARGET_CHAR_BIT | |
2745 | * (addr_or_bitpos - addr_stack->addr)); | |
2746 | else | |
2747 | field.set_loc_bitpos (addr_or_bitpos); | |
420d030e TT |
2748 | |
2749 | if (field_loc->is_field_location) | |
2750 | { | |
2751 | dwarf2_field_location_baton *fl_baton | |
2752 | = static_cast<dwarf2_field_location_baton *> (field_loc); | |
2753 | apply_bit_offset_to_field (field, fl_baton->bit_offset, | |
2754 | fl_baton->explicit_byte_size); | |
2755 | } | |
2756 | } | |
800f6f5f TT |
2757 | } |
2758 | ||
2759 | /* As we know this field is not a static field, the field's | |
2760 | field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify | |
2761 | this is the case, but only trigger a simple error rather | |
2762 | than an internal error if that fails. While failing | |
2763 | that verification indicates a bug in our code, the error | |
2764 | is not severe enough to suggest to the user he stops | |
2765 | his debugging session because of it. */ | |
2766 | if (field.loc_kind () != FIELD_LOC_KIND_BITPOS) | |
2767 | error (_("Cannot determine struct field location" | |
2768 | " (invalid location kind)")); | |
2769 | ||
2770 | struct property_addr_info pinfo; | |
2771 | pinfo.type = check_typedef (field.type ()); | |
2772 | size_t offset = field.loc_bitpos () / TARGET_CHAR_BIT; | |
2773 | pinfo.valaddr = addr_stack->valaddr; | |
2774 | if (!pinfo.valaddr.empty ()) | |
2775 | pinfo.valaddr = pinfo.valaddr.slice (offset); | |
2776 | pinfo.addr = addr_stack->addr + offset; | |
2777 | pinfo.next = addr_stack; | |
2778 | ||
2779 | field.set_type (resolve_dynamic_type_internal (field.type (), | |
2780 | &pinfo, frame, false)); | |
2781 | gdb_assert (field.loc_kind () == FIELD_LOC_KIND_BITPOS); | |
2782 | } | |
2783 | ||
012370f6 | 2784 | /* Resolve dynamic bounds of members of the struct TYPE to static |
df25ebbd JB |
2785 | bounds. ADDR_STACK is a stack of struct property_addr_info to |
2786 | be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2787 | |
2788 | static struct type * | |
df25ebbd | 2789 | resolve_dynamic_struct (struct type *type, |
b4b312d1 | 2790 | const property_addr_info *addr_stack, |
aeabe83d | 2791 | const frame_info_ptr &frame) |
012370f6 TT |
2792 | { |
2793 | struct type *resolved_type; | |
2794 | int i; | |
6908c509 | 2795 | unsigned resolved_type_bit_length = 0; |
012370f6 | 2796 | |
78134374 | 2797 | gdb_assert (type->code () == TYPE_CODE_STRUCT); |
012370f6 TT |
2798 | |
2799 | resolved_type = copy_type (type); | |
ef83a141 | 2800 | |
24e99c6c | 2801 | dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2802 | if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS) |
ef83a141 TT |
2803 | { |
2804 | compute_variant_fields (type, resolved_type, addr_stack, | |
8c2e4e06 | 2805 | *variant_prop->variant_parts ()); |
ef83a141 TT |
2806 | /* We want to leave the property attached, so that the Rust code |
2807 | can tell whether the type was originally an enum. */ | |
8c2e4e06 | 2808 | variant_prop->set_original_type (type); |
ef83a141 TT |
2809 | } |
2810 | else | |
2811 | { | |
2774f2da | 2812 | resolved_type->copy_fields (type); |
ef83a141 TT |
2813 | } |
2814 | ||
1f704f76 | 2815 | for (i = 0; i < resolved_type->num_fields (); ++i) |
012370f6 | 2816 | { |
6908c509 | 2817 | unsigned new_bit_length; |
012370f6 | 2818 | |
c819a338 | 2819 | if (resolved_type->field (i).is_static ()) |
012370f6 TT |
2820 | continue; |
2821 | ||
800f6f5f | 2822 | resolve_dynamic_field (resolved_type->field (i), addr_stack, frame); |
df25ebbd | 2823 | |
b610c045 | 2824 | new_bit_length = resolved_type->field (i).loc_bitpos (); |
3757d2d4 SM |
2825 | if (resolved_type->field (i).bitsize () != 0) |
2826 | new_bit_length += resolved_type->field (i).bitsize (); | |
6908c509 | 2827 | else |
2f33032a KS |
2828 | { |
2829 | struct type *real_type | |
2830 | = check_typedef (resolved_type->field (i).type ()); | |
2831 | ||
df86565b | 2832 | new_bit_length += (real_type->length () * TARGET_CHAR_BIT); |
2f33032a | 2833 | } |
6908c509 JB |
2834 | |
2835 | /* Normally, we would use the position and size of the last field | |
2836 | to determine the size of the enclosing structure. But GCC seems | |
2837 | to be encoding the position of some fields incorrectly when | |
2838 | the struct contains a dynamic field that is not placed last. | |
2839 | So we compute the struct size based on the field that has | |
2840 | the highest position + size - probably the best we can do. */ | |
2841 | if (new_bit_length > resolved_type_bit_length) | |
2842 | resolved_type_bit_length = new_bit_length; | |
012370f6 TT |
2843 | } |
2844 | ||
9920b434 BH |
2845 | /* The length of a type won't change for fortran, but it does for C and Ada. |
2846 | For fortran the size of dynamic fields might change over time but not the | |
2847 | type length of the structure. If we adapt it, we run into problems | |
2848 | when calculating the element offset for arrays of structs. */ | |
2849 | if (current_language->la_language != language_fortran) | |
b6cdbc9a SM |
2850 | resolved_type->set_length ((resolved_type_bit_length + TARGET_CHAR_BIT - 1) |
2851 | / TARGET_CHAR_BIT); | |
6908c509 | 2852 | |
9e195661 PMR |
2853 | /* The Ada language uses this field as a cache for static fixed types: reset |
2854 | it as RESOLVED_TYPE must have its own static fixed type. */ | |
8a50fdce | 2855 | resolved_type->set_target_type (nullptr); |
9e195661 | 2856 | |
012370f6 TT |
2857 | return resolved_type; |
2858 | } | |
2859 | ||
d98b7a16 | 2860 | /* Worker for resolved_dynamic_type. */ |
80180f79 | 2861 | |
d98b7a16 | 2862 | static struct type * |
df25ebbd | 2863 | resolve_dynamic_type_internal (struct type *type, |
b4b312d1 | 2864 | const property_addr_info *addr_stack, |
aeabe83d | 2865 | const frame_info_ptr &frame, |
86542ab5 | 2866 | bool top_level) |
80180f79 SA |
2867 | { |
2868 | struct type *real_type = check_typedef (type); | |
f8e89861 | 2869 | struct type *resolved_type = nullptr; |
d9823cbb | 2870 | struct dynamic_prop *prop; |
3cdcd0ce | 2871 | CORE_ADDR value; |
80180f79 | 2872 | |
ee715b5a | 2873 | if (!is_dynamic_type_internal (real_type, top_level)) |
80180f79 SA |
2874 | return type; |
2875 | ||
6b09f134 | 2876 | std::optional<CORE_ADDR> type_length; |
f8e89861 TT |
2877 | prop = TYPE_DYNAMIC_LENGTH (type); |
2878 | if (prop != NULL | |
aeabe83d | 2879 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
f8e89861 TT |
2880 | type_length = value; |
2881 | ||
78134374 | 2882 | if (type->code () == TYPE_CODE_TYPEDEF) |
6f8a3220 | 2883 | { |
cac9b138 | 2884 | resolved_type = copy_type (type); |
8a50fdce | 2885 | resolved_type->set_target_type |
27710edb | 2886 | (resolve_dynamic_type_internal (type->target_type (), addr_stack, |
aeabe83d | 2887 | frame, top_level)); |
5537b577 | 2888 | } |
8a50fdce | 2889 | else |
5537b577 JK |
2890 | { |
2891 | /* Before trying to resolve TYPE, make sure it is not a stub. */ | |
2892 | type = real_type; | |
012370f6 | 2893 | |
78134374 | 2894 | switch (type->code ()) |
5537b577 | 2895 | { |
e771e4be | 2896 | case TYPE_CODE_REF: |
f18fc7e5 BH |
2897 | case TYPE_CODE_PTR: |
2898 | case TYPE_CODE_RVALUE_REF: | |
e771e4be PMR |
2899 | { |
2900 | struct property_addr_info pinfo; | |
2901 | ||
27710edb | 2902 | pinfo.type = check_typedef (type->target_type ()); |
b249d2c2 TT |
2903 | pinfo.valaddr = {}; |
2904 | if (addr_stack->valaddr.data () != NULL) | |
2905 | pinfo.addr = extract_typed_address (addr_stack->valaddr.data (), | |
2906 | type); | |
c3345124 JB |
2907 | else |
2908 | pinfo.addr = read_memory_typed_address (addr_stack->addr, type); | |
e771e4be PMR |
2909 | pinfo.next = addr_stack; |
2910 | ||
3a3f1548 TT |
2911 | /* Special case a NULL pointer here -- we don't want to |
2912 | dereference it. */ | |
2913 | if (pinfo.addr != 0) | |
2914 | { | |
2915 | resolved_type = copy_type (type); | |
2916 | resolved_type->set_target_type | |
2917 | (resolve_dynamic_type_internal (type->target_type (), | |
2918 | &pinfo, frame, true)); | |
2919 | } | |
e771e4be PMR |
2920 | break; |
2921 | } | |
2922 | ||
216a7e6b AB |
2923 | case TYPE_CODE_STRING: |
2924 | /* Strings are very much like an array of characters, and can be | |
2925 | treated as one here. */ | |
5537b577 | 2926 | case TYPE_CODE_ARRAY: |
aeabe83d TT |
2927 | resolved_type = resolve_dynamic_array_or_string (type, addr_stack, |
2928 | frame); | |
5537b577 JK |
2929 | break; |
2930 | ||
2931 | case TYPE_CODE_RANGE: | |
3fb842ce AB |
2932 | /* Pass 0 for the rank value here, which indicates this is a |
2933 | range for the first rank of an array. The assumption is that | |
2934 | this rank value is not actually required for the resolution of | |
2935 | the dynamic range, otherwise, we'd be resolving this range | |
2936 | within the context of a dynamic array. */ | |
aeabe83d | 2937 | resolved_type = resolve_dynamic_range (type, addr_stack, frame, 0); |
5537b577 JK |
2938 | break; |
2939 | ||
2940 | case TYPE_CODE_UNION: | |
aeabe83d | 2941 | resolved_type = resolve_dynamic_union (type, addr_stack, frame); |
5537b577 JK |
2942 | break; |
2943 | ||
2944 | case TYPE_CODE_STRUCT: | |
aeabe83d | 2945 | resolved_type = resolve_dynamic_struct (type, addr_stack, frame); |
5537b577 JK |
2946 | break; |
2947 | } | |
6f8a3220 | 2948 | } |
80180f79 | 2949 | |
f8e89861 TT |
2950 | if (resolved_type == nullptr) |
2951 | return type; | |
2952 | ||
2953 | if (type_length.has_value ()) | |
2954 | { | |
b6cdbc9a | 2955 | resolved_type->set_length (*type_length); |
7aa91313 | 2956 | resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE); |
f8e89861 TT |
2957 | } |
2958 | ||
3cdcd0ce JB |
2959 | /* Resolve data_location attribute. */ |
2960 | prop = TYPE_DATA_LOCATION (resolved_type); | |
63e43d3a | 2961 | if (prop != NULL |
aeabe83d | 2962 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
a5c641b5 AB |
2963 | { |
2964 | /* Start of Fortran hack. See comment in f-lang.h for what is going | |
2965 | on here.*/ | |
2966 | if (current_language->la_language == language_fortran | |
2967 | && resolved_type->code () == TYPE_CODE_ARRAY) | |
2968 | value = fortran_adjust_dynamic_array_base_address_hack (resolved_type, | |
2969 | value); | |
2970 | /* End of Fortran hack. */ | |
2971 | prop->set_const_val (value); | |
2972 | } | |
3cdcd0ce | 2973 | |
80180f79 SA |
2974 | return resolved_type; |
2975 | } | |
2976 | ||
d98b7a16 TT |
2977 | /* See gdbtypes.h */ |
2978 | ||
2979 | struct type * | |
b249d2c2 TT |
2980 | resolve_dynamic_type (struct type *type, |
2981 | gdb::array_view<const gdb_byte> valaddr, | |
aeabe83d TT |
2982 | CORE_ADDR addr, |
2983 | const frame_info_ptr *in_frame) | |
d98b7a16 | 2984 | { |
c3345124 JB |
2985 | struct property_addr_info pinfo |
2986 | = {check_typedef (type), valaddr, addr, NULL}; | |
df25ebbd | 2987 | |
aeabe83d TT |
2988 | frame_info_ptr frame; |
2989 | if (in_frame != nullptr) | |
2990 | frame = *in_frame; | |
2991 | ||
86542ab5 | 2992 | return resolve_dynamic_type_internal (type, &pinfo, frame, true); |
d98b7a16 TT |
2993 | } |
2994 | ||
d9823cbb KB |
2995 | /* See gdbtypes.h */ |
2996 | ||
24e99c6c SM |
2997 | dynamic_prop * |
2998 | type::dyn_prop (dynamic_prop_node_kind prop_kind) const | |
d9823cbb | 2999 | { |
98d48915 | 3000 | dynamic_prop_list *node = this->main_type->dyn_prop_list; |
d9823cbb KB |
3001 | |
3002 | while (node != NULL) | |
3003 | { | |
3004 | if (node->prop_kind == prop_kind) | |
dda83cd7 | 3005 | return &node->prop; |
d9823cbb KB |
3006 | node = node->next; |
3007 | } | |
3008 | return NULL; | |
3009 | } | |
3010 | ||
3011 | /* See gdbtypes.h */ | |
3012 | ||
3013 | void | |
5c54719c | 3014 | type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop) |
d9823cbb KB |
3015 | { |
3016 | struct dynamic_prop_list *temp; | |
3017 | ||
30625020 | 3018 | gdb_assert (this->is_objfile_owned ()); |
d9823cbb | 3019 | |
6ac37371 | 3020 | temp = XOBNEW (&this->objfile_owner ()->objfile_obstack, |
50a82047 | 3021 | struct dynamic_prop_list); |
d9823cbb | 3022 | temp->prop_kind = prop_kind; |
283a9958 | 3023 | temp->prop = prop; |
98d48915 | 3024 | temp->next = this->main_type->dyn_prop_list; |
d9823cbb | 3025 | |
98d48915 | 3026 | this->main_type->dyn_prop_list = temp; |
d9823cbb KB |
3027 | } |
3028 | ||
7aa91313 | 3029 | /* See gdbtypes.h. */ |
9920b434 BH |
3030 | |
3031 | void | |
7aa91313 | 3032 | type::remove_dyn_prop (dynamic_prop_node_kind kind) |
9920b434 BH |
3033 | { |
3034 | struct dynamic_prop_list *prev_node, *curr_node; | |
3035 | ||
98d48915 | 3036 | curr_node = this->main_type->dyn_prop_list; |
9920b434 BH |
3037 | prev_node = NULL; |
3038 | ||
3039 | while (NULL != curr_node) | |
3040 | { | |
7aa91313 | 3041 | if (curr_node->prop_kind == kind) |
9920b434 BH |
3042 | { |
3043 | /* Update the linked list but don't free anything. | |
49ba125f | 3044 | The property was allocated on obstack and it is not known |
9920b434 | 3045 | if we are on top of it. Nevertheless, everything is released |
49ba125f | 3046 | when the complete obstack is freed. */ |
9920b434 | 3047 | if (NULL == prev_node) |
98d48915 | 3048 | this->main_type->dyn_prop_list = curr_node->next; |
9920b434 BH |
3049 | else |
3050 | prev_node->next = curr_node->next; | |
3051 | ||
3052 | return; | |
3053 | } | |
3054 | ||
3055 | prev_node = curr_node; | |
3056 | curr_node = curr_node->next; | |
3057 | } | |
3058 | } | |
d9823cbb | 3059 | |
92163a10 JK |
3060 | /* Find the real type of TYPE. This function returns the real type, |
3061 | after removing all layers of typedefs, and completing opaque or stub | |
3062 | types. Completion changes the TYPE argument, but stripping of | |
3063 | typedefs does not. | |
3064 | ||
3065 | Instance flags (e.g. const/volatile) are preserved as typedefs are | |
3066 | stripped. If necessary a new qualified form of the underlying type | |
3067 | is created. | |
3068 | ||
27710edb | 3069 | NOTE: This will return a typedef if type::target_type for the typedef has |
92163a10 JK |
3070 | not been computed and we're either in the middle of reading symbols, or |
3071 | there was no name for the typedef in the debug info. | |
3072 | ||
9bc118a5 DE |
3073 | NOTE: Lookup of opaque types can throw errors for invalid symbol files. |
3074 | QUITs in the symbol reading code can also throw. | |
3075 | Thus this function can throw an exception. | |
3076 | ||
92163a10 JK |
3077 | If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of |
3078 | the target type. | |
c906108c SS |
3079 | |
3080 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
0963b4bd | 3081 | we can find a full definition in some other file. If so, copy this |
7ba81444 MS |
3082 | definition, so we can use it in future. There used to be a comment |
3083 | (but not any code) that if we don't find a full definition, we'd | |
3084 | set a flag so we don't spend time in the future checking the same | |
3085 | type. That would be a mistake, though--we might load in more | |
92163a10 | 3086 | symbols which contain a full definition for the type. */ |
c906108c SS |
3087 | |
3088 | struct type * | |
a02fd225 | 3089 | check_typedef (struct type *type) |
c906108c SS |
3090 | { |
3091 | struct type *orig_type = type; | |
a02fd225 | 3092 | |
423c0af8 MS |
3093 | gdb_assert (type); |
3094 | ||
314ad88d PA |
3095 | /* While we're removing typedefs, we don't want to lose qualifiers. |
3096 | E.g., const/volatile. */ | |
3097 | type_instance_flags instance_flags = type->instance_flags (); | |
3098 | ||
78134374 | 3099 | while (type->code () == TYPE_CODE_TYPEDEF) |
c906108c | 3100 | { |
27710edb | 3101 | if (!type->target_type ()) |
c906108c | 3102 | { |
0d5cff50 | 3103 | const char *name; |
c906108c SS |
3104 | struct symbol *sym; |
3105 | ||
3106 | /* It is dangerous to call lookup_symbol if we are currently | |
7ba81444 | 3107 | reading a symtab. Infinite recursion is one danger. */ |
c906108c | 3108 | if (currently_reading_symtab) |
92163a10 | 3109 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3110 | |
7d93a1e0 | 3111 | name = type->name (); |
c906108c SS |
3112 | if (name == NULL) |
3113 | { | |
23136709 | 3114 | stub_noname_complaint (); |
92163a10 | 3115 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3116 | } |
974b36c2 TT |
3117 | domain_search_flag flag |
3118 | = ((type->language () == language_c | |
3119 | || type->language () == language_objc | |
3120 | || type->language () == language_opencl | |
3121 | || type->language () == language_minimal) | |
3122 | ? SEARCH_STRUCT_DOMAIN | |
3123 | : SEARCH_TYPE_DOMAIN); | |
3124 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
c906108c | 3125 | if (sym) |
8a50fdce | 3126 | type->set_target_type (sym->type ()); |
7ba81444 | 3127 | else /* TYPE_CODE_UNDEF */ |
c9eb9f18 | 3128 | type->set_target_type (type_allocator (type->arch ()).new_type ()); |
c906108c | 3129 | } |
27710edb | 3130 | type = type->target_type (); |
c906108c | 3131 | |
92163a10 JK |
3132 | /* Preserve the instance flags as we traverse down the typedef chain. |
3133 | ||
3134 | Handling address spaces/classes is nasty, what do we do if there's a | |
3135 | conflict? | |
3136 | E.g., what if an outer typedef marks the type as class_1 and an inner | |
3137 | typedef marks the type as class_2? | |
3138 | This is the wrong place to do such error checking. We leave it to | |
3139 | the code that created the typedef in the first place to flag the | |
3140 | error. We just pick the outer address space (akin to letting the | |
3141 | outer cast in a chain of casting win), instead of assuming | |
3142 | "it can't happen". */ | |
3143 | { | |
314ad88d PA |
3144 | const type_instance_flags ALL_SPACES |
3145 | = (TYPE_INSTANCE_FLAG_CODE_SPACE | |
3146 | | TYPE_INSTANCE_FLAG_DATA_SPACE); | |
3147 | const type_instance_flags ALL_CLASSES | |
3148 | = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL; | |
3149 | ||
3150 | type_instance_flags new_instance_flags = type->instance_flags (); | |
92163a10 JK |
3151 | |
3152 | /* Treat code vs data spaces and address classes separately. */ | |
3153 | if ((instance_flags & ALL_SPACES) != 0) | |
3154 | new_instance_flags &= ~ALL_SPACES; | |
3155 | if ((instance_flags & ALL_CLASSES) != 0) | |
3156 | new_instance_flags &= ~ALL_CLASSES; | |
3157 | ||
3158 | instance_flags |= new_instance_flags; | |
3159 | } | |
3160 | } | |
a02fd225 | 3161 | |
7ba81444 MS |
3162 | /* If this is a struct/class/union with no fields, then check |
3163 | whether a full definition exists somewhere else. This is for | |
3164 | systems where a type definition with no fields is issued for such | |
3165 | types, instead of identifying them as stub types in the first | |
3166 | place. */ | |
c5aa993b | 3167 | |
7ba81444 MS |
3168 | if (TYPE_IS_OPAQUE (type) |
3169 | && opaque_type_resolution | |
3170 | && !currently_reading_symtab) | |
c906108c | 3171 | { |
7d93a1e0 | 3172 | const char *name = type->name (); |
c5aa993b | 3173 | struct type *newtype; |
d8734c88 | 3174 | |
c906108c SS |
3175 | if (name == NULL) |
3176 | { | |
23136709 | 3177 | stub_noname_complaint (); |
92163a10 | 3178 | return make_qualified_type (type, instance_flags, NULL); |
c906108c SS |
3179 | } |
3180 | newtype = lookup_transparent_type (name); | |
ad766c0a | 3181 | |
c906108c | 3182 | if (newtype) |
ad766c0a | 3183 | { |
7ba81444 MS |
3184 | /* If the resolved type and the stub are in the same |
3185 | objfile, then replace the stub type with the real deal. | |
3186 | But if they're in separate objfiles, leave the stub | |
3187 | alone; we'll just look up the transparent type every time | |
3188 | we call check_typedef. We can't create pointers between | |
3189 | types allocated to different objfiles, since they may | |
3190 | have different lifetimes. Trying to copy NEWTYPE over to | |
3191 | TYPE's objfile is pointless, too, since you'll have to | |
3192 | move over any other types NEWTYPE refers to, which could | |
3193 | be an unbounded amount of stuff. */ | |
6ac37371 | 3194 | if (newtype->objfile_owner () == type->objfile_owner ()) |
10242f36 | 3195 | type = make_qualified_type (newtype, type->instance_flags (), type); |
ad766c0a JB |
3196 | else |
3197 | type = newtype; | |
3198 | } | |
c906108c | 3199 | } |
7ba81444 MS |
3200 | /* Otherwise, rely on the stub flag being set for opaque/stubbed |
3201 | types. */ | |
e46d3488 | 3202 | else if (type->is_stub () && !currently_reading_symtab) |
c906108c | 3203 | { |
7d93a1e0 | 3204 | const char *name = type->name (); |
c906108c | 3205 | struct symbol *sym; |
d8734c88 | 3206 | |
c906108c SS |
3207 | if (name == NULL) |
3208 | { | |
23136709 | 3209 | stub_noname_complaint (); |
92163a10 | 3210 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3211 | } |
974b36c2 TT |
3212 | domain_search_flag flag |
3213 | = ((type->language () == language_c | |
3214 | || type->language () == language_objc | |
3215 | || type->language () == language_opencl | |
3216 | || type->language () == language_minimal) | |
3217 | ? SEARCH_STRUCT_DOMAIN | |
3218 | : SEARCH_TYPE_DOMAIN); | |
3219 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
c906108c | 3220 | if (sym) |
dda83cd7 SM |
3221 | { |
3222 | /* Same as above for opaque types, we can replace the stub | |
3223 | with the complete type only if they are in the same | |
3224 | objfile. */ | |
5f9c5a63 SM |
3225 | if (sym->type ()->objfile_owner () == type->objfile_owner ()) |
3226 | type = make_qualified_type (sym->type (), | |
10242f36 | 3227 | type->instance_flags (), type); |
c26f2453 | 3228 | else |
5f9c5a63 | 3229 | type = sym->type (); |
dda83cd7 | 3230 | } |
c906108c SS |
3231 | } |
3232 | ||
d2183968 | 3233 | if (type->target_is_stub ()) |
c906108c | 3234 | { |
27710edb | 3235 | struct type *target_type = check_typedef (type->target_type ()); |
c906108c | 3236 | |
d2183968 | 3237 | if (target_type->is_stub () || target_type->target_is_stub ()) |
c5aa993b | 3238 | { |
73e2eb35 | 3239 | /* Nothing we can do. */ |
c5aa993b | 3240 | } |
78134374 | 3241 | else if (type->code () == TYPE_CODE_RANGE) |
c906108c | 3242 | { |
df86565b | 3243 | type->set_length (target_type->length ()); |
8f53807e | 3244 | type->set_target_is_stub (false); |
c906108c | 3245 | } |
78134374 | 3246 | else if (type->code () == TYPE_CODE_ARRAY |
8dbb1375 | 3247 | && update_static_array_size (type)) |
8f53807e | 3248 | type->set_target_is_stub (false); |
c906108c | 3249 | } |
92163a10 JK |
3250 | |
3251 | type = make_qualified_type (type, instance_flags, NULL); | |
3252 | ||
7ba81444 | 3253 | /* Cache TYPE_LENGTH for future use. */ |
df86565b | 3254 | orig_type->set_length (type->length ()); |
92163a10 | 3255 | |
c906108c SS |
3256 | return type; |
3257 | } | |
3258 | ||
7ba81444 | 3259 | /* Parse a type expression in the string [P..P+LENGTH). If an error |
48319d1f | 3260 | occurs, silently return a void type. */ |
c91ecb25 | 3261 | |
b9362cc7 | 3262 | static struct type * |
f5756acc | 3263 | safe_parse_type (struct gdbarch *gdbarch, const char *p, int length) |
c91ecb25 | 3264 | { |
34365054 | 3265 | struct type *type = NULL; /* Initialize to keep gcc happy. */ |
c91ecb25 | 3266 | |
7ba81444 | 3267 | /* Suppress error messages. */ |
c3d4b6a6 TT |
3268 | scoped_restore saved_gdb_stderr = make_scoped_restore (&gdb_stderr, |
3269 | &null_stream); | |
c91ecb25 | 3270 | |
7ba81444 | 3271 | /* Call parse_and_eval_type() without fear of longjmp()s. */ |
a70b8144 | 3272 | try |
8e7b59a5 KS |
3273 | { |
3274 | type = parse_and_eval_type (p, length); | |
3275 | } | |
230d2906 | 3276 | catch (const gdb_exception_error &except) |
492d29ea PA |
3277 | { |
3278 | type = builtin_type (gdbarch)->builtin_void; | |
3279 | } | |
c91ecb25 | 3280 | |
c91ecb25 ND |
3281 | return type; |
3282 | } | |
3283 | ||
c906108c SS |
3284 | /* Ugly hack to convert method stubs into method types. |
3285 | ||
7ba81444 MS |
3286 | He ain't kiddin'. This demangles the name of the method into a |
3287 | string including argument types, parses out each argument type, | |
3288 | generates a string casting a zero to that type, evaluates the | |
3289 | string, and stuffs the resulting type into an argtype vector!!! | |
3290 | Then it knows the type of the whole function (including argument | |
3291 | types for overloading), which info used to be in the stab's but was | |
3292 | removed to hack back the space required for them. */ | |
c906108c | 3293 | |
de17c821 | 3294 | static void |
fba45db2 | 3295 | check_stub_method (struct type *type, int method_id, int signature_id) |
c906108c | 3296 | { |
8ee511af | 3297 | struct gdbarch *gdbarch = type->arch (); |
c906108c SS |
3298 | struct fn_field *f; |
3299 | char *mangled_name = gdb_mangle_name (type, method_id, signature_id); | |
3456e70c TT |
3300 | gdb::unique_xmalloc_ptr<char> demangled_name |
3301 | = gdb_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI); | |
c906108c SS |
3302 | char *argtypetext, *p; |
3303 | int depth = 0, argcount = 1; | |
ad2f7632 | 3304 | struct field *argtypes; |
c906108c SS |
3305 | struct type *mtype; |
3306 | ||
3307 | /* Make sure we got back a function string that we can use. */ | |
3308 | if (demangled_name) | |
3456e70c | 3309 | p = strchr (demangled_name.get (), '('); |
502dcf4e AC |
3310 | else |
3311 | p = NULL; | |
c906108c SS |
3312 | |
3313 | if (demangled_name == NULL || p == NULL) | |
7ba81444 MS |
3314 | error (_("Internal: Cannot demangle mangled name `%s'."), |
3315 | mangled_name); | |
c906108c SS |
3316 | |
3317 | /* Now, read in the parameters that define this type. */ | |
3318 | p += 1; | |
3319 | argtypetext = p; | |
3320 | while (*p) | |
3321 | { | |
070ad9f0 | 3322 | if (*p == '(' || *p == '<') |
c906108c SS |
3323 | { |
3324 | depth += 1; | |
3325 | } | |
070ad9f0 | 3326 | else if (*p == ')' || *p == '>') |
c906108c SS |
3327 | { |
3328 | depth -= 1; | |
3329 | } | |
3330 | else if (*p == ',' && depth == 0) | |
3331 | { | |
3332 | argcount += 1; | |
3333 | } | |
3334 | ||
3335 | p += 1; | |
3336 | } | |
3337 | ||
ad2f7632 | 3338 | /* If we read one argument and it was ``void'', don't count it. */ |
61012eef | 3339 | if (startswith (argtypetext, "(void)")) |
ad2f7632 | 3340 | argcount -= 1; |
c906108c | 3341 | |
ad2f7632 DJ |
3342 | /* We need one extra slot, for the THIS pointer. */ |
3343 | ||
3344 | argtypes = (struct field *) | |
959db212 | 3345 | TYPE_ZALLOC (type, (argcount + 1) * sizeof (struct field)); |
c906108c | 3346 | p = argtypetext; |
4a1970e4 DJ |
3347 | |
3348 | /* Add THIS pointer for non-static methods. */ | |
3349 | f = TYPE_FN_FIELDLIST1 (type, method_id); | |
3350 | if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) | |
3351 | argcount = 0; | |
3352 | else | |
3353 | { | |
5d14b6e5 | 3354 | argtypes[0].set_type (lookup_pointer_type (type)); |
4a1970e4 DJ |
3355 | argcount = 1; |
3356 | } | |
c906108c | 3357 | |
0963b4bd | 3358 | if (*p != ')') /* () means no args, skip while. */ |
c906108c SS |
3359 | { |
3360 | depth = 0; | |
3361 | while (*p) | |
3362 | { | |
3363 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
3364 | { | |
ad2f7632 | 3365 | /* Avoid parsing of ellipsis, they will be handled below. |
dda83cd7 | 3366 | Also avoid ``void'' as above. */ |
ad2f7632 DJ |
3367 | if (strncmp (argtypetext, "...", p - argtypetext) != 0 |
3368 | && strncmp (argtypetext, "void", p - argtypetext) != 0) | |
c906108c | 3369 | { |
5d14b6e5 SM |
3370 | argtypes[argcount].set_type |
3371 | (safe_parse_type (gdbarch, argtypetext, p - argtypetext)); | |
c906108c SS |
3372 | argcount += 1; |
3373 | } | |
3374 | argtypetext = p + 1; | |
3375 | } | |
3376 | ||
070ad9f0 | 3377 | if (*p == '(' || *p == '<') |
c906108c SS |
3378 | { |
3379 | depth += 1; | |
3380 | } | |
070ad9f0 | 3381 | else if (*p == ')' || *p == '>') |
c906108c SS |
3382 | { |
3383 | depth -= 1; | |
3384 | } | |
3385 | ||
3386 | p += 1; | |
3387 | } | |
3388 | } | |
3389 | ||
c906108c SS |
3390 | TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; |
3391 | ||
3392 | /* Now update the old "stub" type into a real type. */ | |
3393 | mtype = TYPE_FN_FIELD_TYPE (f, signature_id); | |
09e2d7c7 DE |
3394 | /* MTYPE may currently be a function (TYPE_CODE_FUNC). |
3395 | We want a method (TYPE_CODE_METHOD). */ | |
27710edb | 3396 | smash_to_method_type (mtype, type, mtype->target_type (), |
09e2d7c7 | 3397 | argtypes, argcount, p[-2] == '.'); |
b4b73759 | 3398 | mtype->set_is_stub (false); |
c906108c SS |
3399 | TYPE_FN_FIELD_STUB (f, signature_id) = 0; |
3400 | } | |
3401 | ||
7ba81444 MS |
3402 | /* This is the external interface to check_stub_method, above. This |
3403 | function unstubs all of the signatures for TYPE's METHOD_ID method | |
3404 | name. After calling this function TYPE_FN_FIELD_STUB will be | |
3405 | cleared for each signature and TYPE_FN_FIELDLIST_NAME will be | |
3406 | correct. | |
de17c821 DJ |
3407 | |
3408 | This function unfortunately can not die until stabs do. */ | |
3409 | ||
3410 | void | |
3411 | check_stub_method_group (struct type *type, int method_id) | |
3412 | { | |
3413 | int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); | |
3414 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
de17c821 | 3415 | |
041be526 SM |
3416 | for (int j = 0; j < len; j++) |
3417 | { | |
3418 | if (TYPE_FN_FIELD_STUB (f, j)) | |
de17c821 | 3419 | check_stub_method (type, method_id, j); |
de17c821 DJ |
3420 | } |
3421 | } | |
3422 | ||
405feb71 | 3423 | /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */ |
9655fd1a | 3424 | const struct cplus_struct_type cplus_struct_default = { }; |
c906108c SS |
3425 | |
3426 | void | |
fba45db2 | 3427 | allocate_cplus_struct_type (struct type *type) |
c906108c | 3428 | { |
b4ba55a1 JB |
3429 | if (HAVE_CPLUS_STRUCT (type)) |
3430 | /* Structure was already allocated. Nothing more to do. */ | |
3431 | return; | |
3432 | ||
3433 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; | |
3434 | TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
959db212 | 3435 | TYPE_ZALLOC (type, sizeof (struct cplus_struct_type)); |
b4ba55a1 | 3436 | *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; |
ae6ae975 | 3437 | set_type_vptr_fieldno (type, -1); |
c906108c SS |
3438 | } |
3439 | ||
b4ba55a1 JB |
3440 | const struct gnat_aux_type gnat_aux_default = |
3441 | { NULL }; | |
3442 | ||
3443 | /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, | |
3444 | and allocate the associated gnat-specific data. The gnat-specific | |
3445 | data is also initialized to gnat_aux_default. */ | |
5212577a | 3446 | |
b4ba55a1 JB |
3447 | void |
3448 | allocate_gnat_aux_type (struct type *type) | |
3449 | { | |
3450 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; | |
3451 | TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) | |
959db212 | 3452 | TYPE_ZALLOC (type, sizeof (struct gnat_aux_type)); |
b4ba55a1 JB |
3453 | *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; |
3454 | } | |
3455 | ||
19f392bc UW |
3456 | /* Helper function to verify floating-point format and size. |
3457 | BIT is the type size in bits; if BIT equals -1, the size is | |
3458 | determined by the floatformat. Returns size to be used. */ | |
3459 | ||
3460 | static int | |
0db7851f | 3461 | verify_floatformat (int bit, const struct floatformat *floatformat) |
19f392bc | 3462 | { |
0db7851f | 3463 | gdb_assert (floatformat != NULL); |
9b790ce7 | 3464 | |
19f392bc | 3465 | if (bit == -1) |
0db7851f | 3466 | bit = floatformat->totalsize; |
19f392bc | 3467 | |
0db7851f UW |
3468 | gdb_assert (bit >= 0); |
3469 | gdb_assert (bit >= floatformat->totalsize); | |
19f392bc UW |
3470 | |
3471 | return bit; | |
3472 | } | |
3473 | ||
0db7851f UW |
3474 | /* Return the floating-point format for a floating-point variable of |
3475 | type TYPE. */ | |
3476 | ||
3477 | const struct floatformat * | |
3478 | floatformat_from_type (const struct type *type) | |
3479 | { | |
78134374 | 3480 | gdb_assert (type->code () == TYPE_CODE_FLT); |
0db7851f UW |
3481 | gdb_assert (TYPE_FLOATFORMAT (type)); |
3482 | return TYPE_FLOATFORMAT (type); | |
3483 | } | |
3484 | ||
2d39ccd3 | 3485 | /* See gdbtypes.h. */ |
19f392bc UW |
3486 | |
3487 | struct type * | |
2d39ccd3 | 3488 | init_integer_type (type_allocator &alloc, |
19f392bc UW |
3489 | int bit, int unsigned_p, const char *name) |
3490 | { | |
3491 | struct type *t; | |
3492 | ||
2d39ccd3 | 3493 | t = alloc.new_type (TYPE_CODE_INT, bit, name); |
19f392bc | 3494 | if (unsigned_p) |
653223d3 | 3495 | t->set_is_unsigned (true); |
19f392bc | 3496 | |
20a5fcbd TT |
3497 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3498 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3499 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3500 | ||
19f392bc UW |
3501 | return t; |
3502 | } | |
3503 | ||
f50b437c | 3504 | /* See gdbtypes.h. */ |
19f392bc UW |
3505 | |
3506 | struct type * | |
f50b437c | 3507 | init_character_type (type_allocator &alloc, |
19f392bc UW |
3508 | int bit, int unsigned_p, const char *name) |
3509 | { | |
3510 | struct type *t; | |
3511 | ||
f50b437c | 3512 | t = alloc.new_type (TYPE_CODE_CHAR, bit, name); |
19f392bc | 3513 | if (unsigned_p) |
653223d3 | 3514 | t->set_is_unsigned (true); |
19f392bc UW |
3515 | |
3516 | return t; | |
3517 | } | |
3518 | ||
46c04ea3 | 3519 | /* See gdbtypes.h. */ |
19f392bc UW |
3520 | |
3521 | struct type * | |
46c04ea3 | 3522 | init_boolean_type (type_allocator &alloc, |
19f392bc UW |
3523 | int bit, int unsigned_p, const char *name) |
3524 | { | |
3525 | struct type *t; | |
3526 | ||
46c04ea3 | 3527 | t = alloc.new_type (TYPE_CODE_BOOL, bit, name); |
19f392bc | 3528 | if (unsigned_p) |
653223d3 | 3529 | t->set_is_unsigned (true); |
19f392bc | 3530 | |
20a5fcbd TT |
3531 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3532 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3533 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3534 | ||
19f392bc UW |
3535 | return t; |
3536 | } | |
3537 | ||
77c5f496 | 3538 | /* See gdbtypes.h. */ |
19f392bc UW |
3539 | |
3540 | struct type * | |
77c5f496 | 3541 | init_float_type (type_allocator &alloc, |
19f392bc | 3542 | int bit, const char *name, |
103a685e TT |
3543 | const struct floatformat **floatformats, |
3544 | enum bfd_endian byte_order) | |
19f392bc | 3545 | { |
103a685e TT |
3546 | if (byte_order == BFD_ENDIAN_UNKNOWN) |
3547 | { | |
77c5f496 | 3548 | struct gdbarch *gdbarch = alloc.arch (); |
103a685e TT |
3549 | byte_order = gdbarch_byte_order (gdbarch); |
3550 | } | |
3551 | const struct floatformat *fmt = floatformats[byte_order]; | |
19f392bc UW |
3552 | struct type *t; |
3553 | ||
0db7851f | 3554 | bit = verify_floatformat (bit, fmt); |
77c5f496 | 3555 | t = alloc.new_type (TYPE_CODE_FLT, bit, name); |
0db7851f | 3556 | TYPE_FLOATFORMAT (t) = fmt; |
19f392bc UW |
3557 | |
3558 | return t; | |
3559 | } | |
3560 | ||
0776344a | 3561 | /* See gdbtypes.h. */ |
19f392bc UW |
3562 | |
3563 | struct type * | |
0776344a | 3564 | init_decfloat_type (type_allocator &alloc, int bit, const char *name) |
19f392bc | 3565 | { |
0776344a | 3566 | return alloc.new_type (TYPE_CODE_DECFLOAT, bit, name); |
19f392bc UW |
3567 | } |
3568 | ||
ae710496 TV |
3569 | /* Return true if init_complex_type can be called with TARGET_TYPE. */ |
3570 | ||
3571 | bool | |
3572 | can_create_complex_type (struct type *target_type) | |
3573 | { | |
3574 | return (target_type->code () == TYPE_CODE_INT | |
3575 | || target_type->code () == TYPE_CODE_FLT); | |
3576 | } | |
3577 | ||
5b930b45 TT |
3578 | /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type |
3579 | name. TARGET_TYPE is the component type. */ | |
19f392bc UW |
3580 | |
3581 | struct type * | |
5b930b45 | 3582 | init_complex_type (const char *name, struct type *target_type) |
19f392bc UW |
3583 | { |
3584 | struct type *t; | |
3585 | ||
ae710496 | 3586 | gdb_assert (can_create_complex_type (target_type)); |
5b930b45 TT |
3587 | |
3588 | if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr) | |
3589 | { | |
6b9d0dfd | 3590 | if (name == nullptr && target_type->name () != nullptr) |
5b930b45 | 3591 | { |
959db212 TV |
3592 | /* No zero-initialization required, initialized by strcpy/strcat |
3593 | below. */ | |
5b930b45 TT |
3594 | char *new_name |
3595 | = (char *) TYPE_ALLOC (target_type, | |
7d93a1e0 | 3596 | strlen (target_type->name ()) |
5b930b45 TT |
3597 | + strlen ("_Complex ") + 1); |
3598 | strcpy (new_name, "_Complex "); | |
7d93a1e0 | 3599 | strcat (new_name, target_type->name ()); |
5b930b45 TT |
3600 | name = new_name; |
3601 | } | |
3602 | ||
9fa83a7a | 3603 | t = type_allocator (target_type).new_type (); |
5b930b45 | 3604 | set_type_code (t, TYPE_CODE_COMPLEX); |
df86565b | 3605 | t->set_length (2 * target_type->length ()); |
d0e39ea2 | 3606 | t->set_name (name); |
5b930b45 | 3607 | |
8a50fdce | 3608 | t->set_target_type (target_type); |
5b930b45 TT |
3609 | TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t; |
3610 | } | |
3611 | ||
3612 | return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type; | |
19f392bc UW |
3613 | } |
3614 | ||
9c794d2d | 3615 | /* See gdbtypes.h. */ |
19f392bc UW |
3616 | |
3617 | struct type * | |
9c794d2d | 3618 | init_pointer_type (type_allocator &alloc, |
19f392bc UW |
3619 | int bit, const char *name, struct type *target_type) |
3620 | { | |
3621 | struct type *t; | |
3622 | ||
9c794d2d | 3623 | t = alloc.new_type (TYPE_CODE_PTR, bit, name); |
8a50fdce | 3624 | t->set_target_type (target_type); |
653223d3 | 3625 | t->set_is_unsigned (true); |
19f392bc UW |
3626 | return t; |
3627 | } | |
3628 | ||
09584414 JB |
3629 | /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE. |
3630 | BIT is the pointer type size in bits. | |
3631 | UNSIGNED_P should be nonzero if the type is unsigned. | |
3632 | NAME is the type name. */ | |
3633 | ||
3634 | struct type * | |
d5592272 | 3635 | init_fixed_point_type (type_allocator &alloc, |
09584414 JB |
3636 | int bit, int unsigned_p, const char *name) |
3637 | { | |
3638 | struct type *t; | |
3639 | ||
d5592272 | 3640 | t = alloc.new_type (TYPE_CODE_FIXED_POINT, bit, name); |
09584414 JB |
3641 | if (unsigned_p) |
3642 | t->set_is_unsigned (true); | |
3643 | ||
3644 | return t; | |
3645 | } | |
3646 | ||
2b4424c3 TT |
3647 | /* See gdbtypes.h. */ |
3648 | ||
3649 | unsigned | |
3650 | type_raw_align (struct type *type) | |
3651 | { | |
3652 | if (type->align_log2 != 0) | |
3653 | return 1 << (type->align_log2 - 1); | |
3654 | return 0; | |
3655 | } | |
3656 | ||
3657 | /* See gdbtypes.h. */ | |
3658 | ||
3659 | unsigned | |
3660 | type_align (struct type *type) | |
3661 | { | |
5561fc30 | 3662 | /* Check alignment provided in the debug information. */ |
2b4424c3 TT |
3663 | unsigned raw_align = type_raw_align (type); |
3664 | if (raw_align != 0) | |
3665 | return raw_align; | |
3666 | ||
5561fc30 | 3667 | /* Allow the architecture to provide an alignment. */ |
8ee511af | 3668 | ULONGEST align = gdbarch_type_align (type->arch (), type); |
5561fc30 AB |
3669 | if (align != 0) |
3670 | return align; | |
3671 | ||
78134374 | 3672 | switch (type->code ()) |
2b4424c3 TT |
3673 | { |
3674 | case TYPE_CODE_PTR: | |
3675 | case TYPE_CODE_FUNC: | |
3676 | case TYPE_CODE_FLAGS: | |
3677 | case TYPE_CODE_INT: | |
75ba10dc | 3678 | case TYPE_CODE_RANGE: |
2b4424c3 TT |
3679 | case TYPE_CODE_FLT: |
3680 | case TYPE_CODE_ENUM: | |
3681 | case TYPE_CODE_REF: | |
3682 | case TYPE_CODE_RVALUE_REF: | |
3683 | case TYPE_CODE_CHAR: | |
3684 | case TYPE_CODE_BOOL: | |
3685 | case TYPE_CODE_DECFLOAT: | |
70cd633e AB |
3686 | case TYPE_CODE_METHODPTR: |
3687 | case TYPE_CODE_MEMBERPTR: | |
5561fc30 | 3688 | align = type_length_units (check_typedef (type)); |
2b4424c3 TT |
3689 | break; |
3690 | ||
3691 | case TYPE_CODE_ARRAY: | |
3692 | case TYPE_CODE_COMPLEX: | |
3693 | case TYPE_CODE_TYPEDEF: | |
27710edb | 3694 | align = type_align (type->target_type ()); |
2b4424c3 TT |
3695 | break; |
3696 | ||
3697 | case TYPE_CODE_STRUCT: | |
3698 | case TYPE_CODE_UNION: | |
3699 | { | |
41077b66 | 3700 | int number_of_non_static_fields = 0; |
1f704f76 | 3701 | for (unsigned i = 0; i < type->num_fields (); ++i) |
2b4424c3 | 3702 | { |
c819a338 | 3703 | if (!type->field (i).is_static ()) |
2b4424c3 | 3704 | { |
41077b66 | 3705 | number_of_non_static_fields++; |
940da03e | 3706 | ULONGEST f_align = type_align (type->field (i).type ()); |
bf9a735e AB |
3707 | if (f_align == 0) |
3708 | { | |
3709 | /* Don't pretend we know something we don't. */ | |
3710 | align = 0; | |
3711 | break; | |
3712 | } | |
3713 | if (f_align > align) | |
3714 | align = f_align; | |
2b4424c3 | 3715 | } |
2b4424c3 | 3716 | } |
41077b66 AB |
3717 | /* A struct with no fields, or with only static fields has an |
3718 | alignment of 1. */ | |
3719 | if (number_of_non_static_fields == 0) | |
3720 | align = 1; | |
2b4424c3 TT |
3721 | } |
3722 | break; | |
3723 | ||
3724 | case TYPE_CODE_SET: | |
2b4424c3 TT |
3725 | case TYPE_CODE_STRING: |
3726 | /* Not sure what to do here, and these can't appear in C or C++ | |
3727 | anyway. */ | |
3728 | break; | |
3729 | ||
2b4424c3 TT |
3730 | case TYPE_CODE_VOID: |
3731 | align = 1; | |
3732 | break; | |
3733 | ||
3734 | case TYPE_CODE_ERROR: | |
3735 | case TYPE_CODE_METHOD: | |
3736 | default: | |
3737 | break; | |
3738 | } | |
3739 | ||
3740 | if ((align & (align - 1)) != 0) | |
3741 | { | |
3742 | /* Not a power of 2, so pass. */ | |
3743 | align = 0; | |
3744 | } | |
3745 | ||
3746 | return align; | |
3747 | } | |
3748 | ||
3749 | /* See gdbtypes.h. */ | |
3750 | ||
3751 | bool | |
3752 | set_type_align (struct type *type, ULONGEST align) | |
3753 | { | |
3754 | /* Must be a power of 2. Zero is ok. */ | |
3755 | gdb_assert ((align & (align - 1)) == 0); | |
3756 | ||
3757 | unsigned result = 0; | |
3758 | while (align != 0) | |
3759 | { | |
3760 | ++result; | |
3761 | align >>= 1; | |
3762 | } | |
3763 | ||
3764 | if (result >= (1 << TYPE_ALIGN_BITS)) | |
3765 | return false; | |
3766 | ||
3767 | type->align_log2 = result; | |
3768 | return true; | |
3769 | } | |
3770 | ||
5212577a DE |
3771 | \f |
3772 | /* Queries on types. */ | |
c906108c | 3773 | |
c906108c | 3774 | int |
fba45db2 | 3775 | can_dereference (struct type *t) |
c906108c | 3776 | { |
7ba81444 MS |
3777 | /* FIXME: Should we return true for references as well as |
3778 | pointers? */ | |
f168693b | 3779 | t = check_typedef (t); |
c906108c SS |
3780 | return |
3781 | (t != NULL | |
78134374 | 3782 | && t->code () == TYPE_CODE_PTR |
27710edb | 3783 | && t->target_type ()->code () != TYPE_CODE_VOID); |
c906108c SS |
3784 | } |
3785 | ||
adf40b2e | 3786 | int |
fba45db2 | 3787 | is_integral_type (struct type *t) |
adf40b2e | 3788 | { |
f168693b | 3789 | t = check_typedef (t); |
adf40b2e JM |
3790 | return |
3791 | ((t != NULL) | |
09584414 | 3792 | && !is_fixed_point_type (t) |
78134374 SM |
3793 | && ((t->code () == TYPE_CODE_INT) |
3794 | || (t->code () == TYPE_CODE_ENUM) | |
3795 | || (t->code () == TYPE_CODE_FLAGS) | |
3796 | || (t->code () == TYPE_CODE_CHAR) | |
3797 | || (t->code () == TYPE_CODE_RANGE) | |
3798 | || (t->code () == TYPE_CODE_BOOL))); | |
adf40b2e JM |
3799 | } |
3800 | ||
70100014 UW |
3801 | int |
3802 | is_floating_type (struct type *t) | |
3803 | { | |
3804 | t = check_typedef (t); | |
3805 | return | |
3806 | ((t != NULL) | |
78134374 SM |
3807 | && ((t->code () == TYPE_CODE_FLT) |
3808 | || (t->code () == TYPE_CODE_DECFLOAT))); | |
70100014 UW |
3809 | } |
3810 | ||
e09342b5 TJB |
3811 | /* Return true if TYPE is scalar. */ |
3812 | ||
220475ed | 3813 | int |
e09342b5 TJB |
3814 | is_scalar_type (struct type *type) |
3815 | { | |
f168693b | 3816 | type = check_typedef (type); |
e09342b5 | 3817 | |
09584414 JB |
3818 | if (is_fixed_point_type (type)) |
3819 | return 0; /* Implemented as a scalar, but more like a floating point. */ | |
3820 | ||
78134374 | 3821 | switch (type->code ()) |
e09342b5 TJB |
3822 | { |
3823 | case TYPE_CODE_ARRAY: | |
3824 | case TYPE_CODE_STRUCT: | |
3825 | case TYPE_CODE_UNION: | |
3826 | case TYPE_CODE_SET: | |
3827 | case TYPE_CODE_STRING: | |
e09342b5 TJB |
3828 | return 0; |
3829 | default: | |
3830 | return 1; | |
3831 | } | |
3832 | } | |
3833 | ||
3834 | /* Return true if T is scalar, or a composite type which in practice has | |
90e4670f TJB |
3835 | the memory layout of a scalar type. E.g., an array or struct with only |
3836 | one scalar element inside it, or a union with only scalar elements. */ | |
e09342b5 TJB |
3837 | |
3838 | int | |
3839 | is_scalar_type_recursive (struct type *t) | |
3840 | { | |
f168693b | 3841 | t = check_typedef (t); |
e09342b5 TJB |
3842 | |
3843 | if (is_scalar_type (t)) | |
3844 | return 1; | |
3845 | /* Are we dealing with an array or string of known dimensions? */ | |
78134374 | 3846 | else if ((t->code () == TYPE_CODE_ARRAY |
1f704f76 | 3847 | || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1 |
3d967001 | 3848 | && t->index_type ()->code () == TYPE_CODE_RANGE) |
e09342b5 TJB |
3849 | { |
3850 | LONGEST low_bound, high_bound; | |
27710edb | 3851 | struct type *elt_type = check_typedef (t->target_type ()); |
e09342b5 | 3852 | |
f8676776 LS |
3853 | if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound)) |
3854 | return (high_bound == low_bound | |
3855 | && is_scalar_type_recursive (elt_type)); | |
3856 | else | |
3857 | return 0; | |
e09342b5 TJB |
3858 | } |
3859 | /* Are we dealing with a struct with one element? */ | |
1f704f76 | 3860 | else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1) |
940da03e | 3861 | return is_scalar_type_recursive (t->field (0).type ()); |
78134374 | 3862 | else if (t->code () == TYPE_CODE_UNION) |
e09342b5 | 3863 | { |
1f704f76 | 3864 | int i, n = t->num_fields (); |
e09342b5 TJB |
3865 | |
3866 | /* If all elements of the union are scalar, then the union is scalar. */ | |
3867 | for (i = 0; i < n; i++) | |
940da03e | 3868 | if (!is_scalar_type_recursive (t->field (i).type ())) |
e09342b5 TJB |
3869 | return 0; |
3870 | ||
3871 | return 1; | |
3872 | } | |
3873 | ||
3874 | return 0; | |
3875 | } | |
3876 | ||
6c659fc2 SC |
3877 | /* Return true is T is a class or a union. False otherwise. */ |
3878 | ||
3879 | int | |
3880 | class_or_union_p (const struct type *t) | |
3881 | { | |
78134374 | 3882 | return (t->code () == TYPE_CODE_STRUCT |
dda83cd7 | 3883 | || t->code () == TYPE_CODE_UNION); |
6c659fc2 SC |
3884 | } |
3885 | ||
4e8f195d TT |
3886 | /* A helper function which returns true if types A and B represent the |
3887 | "same" class type. This is true if the types have the same main | |
3888 | type, or the same name. */ | |
3889 | ||
3890 | int | |
3891 | class_types_same_p (const struct type *a, const struct type *b) | |
3892 | { | |
3893 | return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) | |
7d93a1e0 SM |
3894 | || (a->name () && b->name () |
3895 | && !strcmp (a->name (), b->name ()))); | |
4e8f195d TT |
3896 | } |
3897 | ||
a9d5ef47 SW |
3898 | /* If BASE is an ancestor of DCLASS return the distance between them. |
3899 | otherwise return -1; | |
3900 | eg: | |
3901 | ||
3902 | class A {}; | |
3903 | class B: public A {}; | |
3904 | class C: public B {}; | |
3905 | class D: C {}; | |
3906 | ||
3907 | distance_to_ancestor (A, A, 0) = 0 | |
3908 | distance_to_ancestor (A, B, 0) = 1 | |
3909 | distance_to_ancestor (A, C, 0) = 2 | |
3910 | distance_to_ancestor (A, D, 0) = 3 | |
3911 | ||
3912 | If PUBLIC is 1 then only public ancestors are considered, | |
3913 | and the function returns the distance only if BASE is a public ancestor | |
3914 | of DCLASS. | |
3915 | Eg: | |
3916 | ||
0963b4bd | 3917 | distance_to_ancestor (A, D, 1) = -1. */ |
c906108c | 3918 | |
0526b37a | 3919 | static int |
fe978cb0 | 3920 | distance_to_ancestor (struct type *base, struct type *dclass, int is_public) |
c906108c SS |
3921 | { |
3922 | int i; | |
a9d5ef47 | 3923 | int d; |
c5aa993b | 3924 | |
f168693b SM |
3925 | base = check_typedef (base); |
3926 | dclass = check_typedef (dclass); | |
c906108c | 3927 | |
4e8f195d | 3928 | if (class_types_same_p (base, dclass)) |
a9d5ef47 | 3929 | return 0; |
c906108c SS |
3930 | |
3931 | for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) | |
4e8f195d | 3932 | { |
fe978cb0 | 3933 | if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i)) |
0526b37a SW |
3934 | continue; |
3935 | ||
fe978cb0 | 3936 | d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public); |
a9d5ef47 SW |
3937 | if (d >= 0) |
3938 | return 1 + d; | |
4e8f195d | 3939 | } |
c906108c | 3940 | |
a9d5ef47 | 3941 | return -1; |
c906108c | 3942 | } |
4e8f195d | 3943 | |
0526b37a SW |
3944 | /* Check whether BASE is an ancestor or base class or DCLASS |
3945 | Return 1 if so, and 0 if not. | |
3946 | Note: If BASE and DCLASS are of the same type, this function | |
3947 | will return 1. So for some class A, is_ancestor (A, A) will | |
3948 | return 1. */ | |
3949 | ||
3950 | int | |
3951 | is_ancestor (struct type *base, struct type *dclass) | |
3952 | { | |
a9d5ef47 | 3953 | return distance_to_ancestor (base, dclass, 0) >= 0; |
0526b37a SW |
3954 | } |
3955 | ||
4e8f195d TT |
3956 | /* Like is_ancestor, but only returns true when BASE is a public |
3957 | ancestor of DCLASS. */ | |
3958 | ||
3959 | int | |
3960 | is_public_ancestor (struct type *base, struct type *dclass) | |
3961 | { | |
a9d5ef47 | 3962 | return distance_to_ancestor (base, dclass, 1) >= 0; |
4e8f195d TT |
3963 | } |
3964 | ||
3965 | /* A helper function for is_unique_ancestor. */ | |
3966 | ||
3967 | static int | |
3968 | is_unique_ancestor_worker (struct type *base, struct type *dclass, | |
3969 | int *offset, | |
8af8e3bc PA |
3970 | const gdb_byte *valaddr, int embedded_offset, |
3971 | CORE_ADDR address, struct value *val) | |
4e8f195d TT |
3972 | { |
3973 | int i, count = 0; | |
3974 | ||
f168693b SM |
3975 | base = check_typedef (base); |
3976 | dclass = check_typedef (dclass); | |
4e8f195d TT |
3977 | |
3978 | for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) | |
3979 | { | |
8af8e3bc PA |
3980 | struct type *iter; |
3981 | int this_offset; | |
4e8f195d | 3982 | |
8af8e3bc PA |
3983 | iter = check_typedef (TYPE_BASECLASS (dclass, i)); |
3984 | ||
3985 | this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset, | |
3986 | address, val); | |
4e8f195d TT |
3987 | |
3988 | if (class_types_same_p (base, iter)) | |
3989 | { | |
3990 | /* If this is the first subclass, set *OFFSET and set count | |
3991 | to 1. Otherwise, if this is at the same offset as | |
3992 | previous instances, do nothing. Otherwise, increment | |
3993 | count. */ | |
3994 | if (*offset == -1) | |
3995 | { | |
3996 | *offset = this_offset; | |
3997 | count = 1; | |
3998 | } | |
3999 | else if (this_offset == *offset) | |
4000 | { | |
4001 | /* Nothing. */ | |
4002 | } | |
4003 | else | |
4004 | ++count; | |
4005 | } | |
4006 | else | |
4007 | count += is_unique_ancestor_worker (base, iter, offset, | |
8af8e3bc PA |
4008 | valaddr, |
4009 | embedded_offset + this_offset, | |
4010 | address, val); | |
4e8f195d TT |
4011 | } |
4012 | ||
4013 | return count; | |
4014 | } | |
4015 | ||
4016 | /* Like is_ancestor, but only returns true if BASE is a unique base | |
4017 | class of the type of VAL. */ | |
4018 | ||
4019 | int | |
4020 | is_unique_ancestor (struct type *base, struct value *val) | |
4021 | { | |
4022 | int offset = -1; | |
4023 | ||
d0c97917 | 4024 | return is_unique_ancestor_worker (base, val->type (), &offset, |
efaf1ae0 | 4025 | val->contents_for_printing ().data (), |
391f8628 | 4026 | val->embedded_offset (), |
9feb2d07 | 4027 | val->address (), val) == 1; |
4e8f195d TT |
4028 | } |
4029 | ||
7ab4a236 TT |
4030 | /* See gdbtypes.h. */ |
4031 | ||
4032 | enum bfd_endian | |
4033 | type_byte_order (const struct type *type) | |
4034 | { | |
8ee511af | 4035 | bfd_endian byteorder = gdbarch_byte_order (type->arch ()); |
04f5bab2 | 4036 | if (type->endianity_is_not_default ()) |
7ab4a236 TT |
4037 | { |
4038 | if (byteorder == BFD_ENDIAN_BIG) | |
dda83cd7 | 4039 | return BFD_ENDIAN_LITTLE; |
7ab4a236 TT |
4040 | else |
4041 | { | |
4042 | gdb_assert (byteorder == BFD_ENDIAN_LITTLE); | |
4043 | return BFD_ENDIAN_BIG; | |
4044 | } | |
4045 | } | |
4046 | ||
4047 | return byteorder; | |
4048 | } | |
4049 | ||
0b35f123 LS |
4050 | /* See gdbtypes.h. */ |
4051 | ||
4052 | bool | |
4053 | is_nocall_function (const struct type *type) | |
4054 | { | |
78554598 TT |
4055 | if (type->code () != TYPE_CODE_FUNC && type->code () != TYPE_CODE_METHOD) |
4056 | return false; | |
0b35f123 LS |
4057 | |
4058 | return TYPE_CALLING_CONVENTION (type) == DW_CC_nocall; | |
4059 | } | |
4060 | ||
c906108c | 4061 | \f |
5212577a | 4062 | /* Overload resolution. */ |
c906108c | 4063 | |
6403aeea SW |
4064 | /* Return the sum of the rank of A with the rank of B. */ |
4065 | ||
4066 | struct rank | |
4067 | sum_ranks (struct rank a, struct rank b) | |
4068 | { | |
4069 | struct rank c; | |
4070 | c.rank = a.rank + b.rank; | |
a9d5ef47 | 4071 | c.subrank = a.subrank + b.subrank; |
6403aeea SW |
4072 | return c; |
4073 | } | |
4074 | ||
4075 | /* Compare rank A and B and return: | |
4076 | 0 if a = b | |
4077 | 1 if a is better than b | |
4078 | -1 if b is better than a. */ | |
4079 | ||
4080 | int | |
4081 | compare_ranks (struct rank a, struct rank b) | |
4082 | { | |
4083 | if (a.rank == b.rank) | |
a9d5ef47 SW |
4084 | { |
4085 | if (a.subrank == b.subrank) | |
4086 | return 0; | |
4087 | if (a.subrank < b.subrank) | |
4088 | return 1; | |
4089 | if (a.subrank > b.subrank) | |
4090 | return -1; | |
4091 | } | |
6403aeea SW |
4092 | |
4093 | if (a.rank < b.rank) | |
4094 | return 1; | |
4095 | ||
0963b4bd | 4096 | /* a.rank > b.rank */ |
6403aeea SW |
4097 | return -1; |
4098 | } | |
c5aa993b | 4099 | |
0963b4bd | 4100 | /* Functions for overload resolution begin here. */ |
c906108c SS |
4101 | |
4102 | /* Compare two badness vectors A and B and return the result. | |
7ba81444 MS |
4103 | 0 => A and B are identical |
4104 | 1 => A and B are incomparable | |
4105 | 2 => A is better than B | |
4106 | 3 => A is worse than B */ | |
c906108c SS |
4107 | |
4108 | int | |
82ceee50 | 4109 | compare_badness (const badness_vector &a, const badness_vector &b) |
c906108c SS |
4110 | { |
4111 | int i; | |
4112 | int tmp; | |
ac03c8d8 TT |
4113 | /* Any positives in comparison? */ |
4114 | bool found_pos = false; | |
4115 | /* Any negatives in comparison? */ | |
4116 | bool found_neg = false; | |
4117 | /* Did A have any INVALID_CONVERSION entries. */ | |
4118 | bool a_invalid = false; | |
4119 | /* Did B have any INVALID_CONVERSION entries. */ | |
4120 | bool b_invalid = false; | |
c5aa993b | 4121 | |
82ceee50 PA |
4122 | /* differing sizes => incomparable */ |
4123 | if (a.size () != b.size ()) | |
c906108c SS |
4124 | return 1; |
4125 | ||
c5aa993b | 4126 | /* Subtract b from a */ |
82ceee50 | 4127 | for (i = 0; i < a.size (); i++) |
c906108c | 4128 | { |
82ceee50 | 4129 | tmp = compare_ranks (b[i], a[i]); |
c906108c | 4130 | if (tmp > 0) |
ac03c8d8 | 4131 | found_pos = true; |
c906108c | 4132 | else if (tmp < 0) |
ac03c8d8 TT |
4133 | found_neg = true; |
4134 | if (a[i].rank >= INVALID_CONVERSION) | |
4135 | a_invalid = true; | |
4136 | if (b[i].rank >= INVALID_CONVERSION) | |
4137 | b_invalid = true; | |
c906108c SS |
4138 | } |
4139 | ||
ac03c8d8 TT |
4140 | /* B will only be considered better than or incomparable to A if |
4141 | they both have invalid entries, or if neither does. That is, if | |
4142 | A has only valid entries, and B has an invalid entry, then A will | |
4143 | be considered better than B, even if B happens to be better for | |
4144 | some parameter. */ | |
4145 | if (a_invalid != b_invalid) | |
4146 | { | |
4147 | if (a_invalid) | |
4148 | return 3; /* A > B */ | |
4149 | return 2; /* A < B */ | |
4150 | } | |
4151 | else if (found_pos) | |
c906108c SS |
4152 | { |
4153 | if (found_neg) | |
c5aa993b | 4154 | return 1; /* incomparable */ |
c906108c | 4155 | else |
c5aa993b | 4156 | return 3; /* A > B */ |
c906108c | 4157 | } |
c5aa993b JM |
4158 | else |
4159 | /* no positives */ | |
c906108c SS |
4160 | { |
4161 | if (found_neg) | |
c5aa993b | 4162 | return 2; /* A < B */ |
c906108c | 4163 | else |
c5aa993b | 4164 | return 0; /* A == B */ |
c906108c SS |
4165 | } |
4166 | } | |
4167 | ||
6b1747cd | 4168 | /* Rank a function by comparing its parameter types (PARMS), to the |
82ceee50 PA |
4169 | types of an argument list (ARGS). Return the badness vector. This |
4170 | has ARGS.size() + 1 entries. */ | |
c906108c | 4171 | |
82ceee50 | 4172 | badness_vector |
6b1747cd | 4173 | rank_function (gdb::array_view<type *> parms, |
1d2f86b6 HD |
4174 | gdb::array_view<value *> args, |
4175 | bool varargs) | |
c906108c | 4176 | { |
82ceee50 PA |
4177 | /* add 1 for the length-match rank. */ |
4178 | badness_vector bv; | |
4179 | bv.reserve (1 + args.size ()); | |
c906108c SS |
4180 | |
4181 | /* First compare the lengths of the supplied lists. | |
7ba81444 | 4182 | If there is a mismatch, set it to a high value. */ |
c5aa993b | 4183 | |
c906108c | 4184 | /* pai/1997-06-03 FIXME: when we have debug info about default |
7ba81444 MS |
4185 | arguments and ellipsis parameter lists, we should consider those |
4186 | and rank the length-match more finely. */ | |
c906108c | 4187 | |
1d2f86b6 HD |
4188 | bv.push_back ((args.size () != parms.size () |
4189 | && (! varargs || args.size () < parms.size ())) | |
82ceee50 PA |
4190 | ? LENGTH_MISMATCH_BADNESS |
4191 | : EXACT_MATCH_BADNESS); | |
c906108c | 4192 | |
0963b4bd | 4193 | /* Now rank all the parameters of the candidate function. */ |
82ceee50 PA |
4194 | size_t min_len = std::min (parms.size (), args.size ()); |
4195 | ||
4196 | for (size_t i = 0; i < min_len; i++) | |
d0c97917 | 4197 | bv.push_back (rank_one_type (parms[i], args[i]->type (), |
82ceee50 | 4198 | args[i])); |
c906108c | 4199 | |
0963b4bd | 4200 | /* If more arguments than parameters, add dummy entries. */ |
82ceee50 | 4201 | for (size_t i = min_len; i < args.size (); i++) |
1d2f86b6 | 4202 | bv.push_back (varargs ? VARARG_BADNESS : TOO_FEW_PARAMS_BADNESS); |
c906108c SS |
4203 | |
4204 | return bv; | |
4205 | } | |
4206 | ||
973ccf8b DJ |
4207 | /* Compare the names of two integer types, assuming that any sign |
4208 | qualifiers have been checked already. We do it this way because | |
4209 | there may be an "int" in the name of one of the types. */ | |
4210 | ||
4211 | static int | |
4212 | integer_types_same_name_p (const char *first, const char *second) | |
4213 | { | |
4214 | int first_p, second_p; | |
4215 | ||
7ba81444 MS |
4216 | /* If both are shorts, return 1; if neither is a short, keep |
4217 | checking. */ | |
973ccf8b DJ |
4218 | first_p = (strstr (first, "short") != NULL); |
4219 | second_p = (strstr (second, "short") != NULL); | |
4220 | if (first_p && second_p) | |
4221 | return 1; | |
4222 | if (first_p || second_p) | |
4223 | return 0; | |
4224 | ||
4225 | /* Likewise for long. */ | |
4226 | first_p = (strstr (first, "long") != NULL); | |
4227 | second_p = (strstr (second, "long") != NULL); | |
4228 | if (first_p && second_p) | |
4229 | return 1; | |
4230 | if (first_p || second_p) | |
4231 | return 0; | |
4232 | ||
4233 | /* Likewise for char. */ | |
4234 | first_p = (strstr (first, "char") != NULL); | |
4235 | second_p = (strstr (second, "char") != NULL); | |
4236 | if (first_p && second_p) | |
4237 | return 1; | |
4238 | if (first_p || second_p) | |
4239 | return 0; | |
4240 | ||
4241 | /* They must both be ints. */ | |
4242 | return 1; | |
4243 | } | |
4244 | ||
894882e3 TT |
4245 | /* Compares type A to type B. Returns true if they represent the same |
4246 | type, false otherwise. */ | |
7062b0a0 | 4247 | |
894882e3 | 4248 | bool |
7062b0a0 SW |
4249 | types_equal (struct type *a, struct type *b) |
4250 | { | |
4251 | /* Identical type pointers. */ | |
4252 | /* However, this still doesn't catch all cases of same type for b | |
4253 | and a. The reason is that builtin types are different from | |
4254 | the same ones constructed from the object. */ | |
4255 | if (a == b) | |
894882e3 | 4256 | return true; |
7062b0a0 SW |
4257 | |
4258 | /* Resolve typedefs */ | |
78134374 | 4259 | if (a->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 | 4260 | a = check_typedef (a); |
78134374 | 4261 | if (b->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 SW |
4262 | b = check_typedef (b); |
4263 | ||
5e18990f AB |
4264 | /* Check if identical after resolving typedefs. */ |
4265 | if (a == b) | |
4266 | return true; | |
4267 | ||
7062b0a0 SW |
4268 | /* If after resolving typedefs a and b are not of the same type |
4269 | code then they are not equal. */ | |
78134374 | 4270 | if (a->code () != b->code ()) |
894882e3 | 4271 | return false; |
7062b0a0 SW |
4272 | |
4273 | /* If a and b are both pointers types or both reference types then | |
4274 | they are equal of the same type iff the objects they refer to are | |
4275 | of the same type. */ | |
78134374 SM |
4276 | if (a->code () == TYPE_CODE_PTR |
4277 | || a->code () == TYPE_CODE_REF) | |
27710edb SM |
4278 | return types_equal (a->target_type (), |
4279 | b->target_type ()); | |
7062b0a0 | 4280 | |
0963b4bd | 4281 | /* Well, damnit, if the names are exactly the same, I'll say they |
7062b0a0 SW |
4282 | are exactly the same. This happens when we generate method |
4283 | stubs. The types won't point to the same address, but they | |
0963b4bd | 4284 | really are the same. */ |
7062b0a0 | 4285 | |
7d93a1e0 SM |
4286 | if (a->name () && b->name () |
4287 | && strcmp (a->name (), b->name ()) == 0) | |
894882e3 | 4288 | return true; |
7062b0a0 | 4289 | |
9ce98649 TT |
4290 | /* Two function types are equal if their argument and return types |
4291 | are equal. */ | |
78134374 | 4292 | if (a->code () == TYPE_CODE_FUNC) |
9ce98649 TT |
4293 | { |
4294 | int i; | |
4295 | ||
1f704f76 | 4296 | if (a->num_fields () != b->num_fields ()) |
894882e3 | 4297 | return false; |
9ce98649 | 4298 | |
27710edb | 4299 | if (!types_equal (a->target_type (), b->target_type ())) |
894882e3 | 4300 | return false; |
9ce98649 | 4301 | |
1f704f76 | 4302 | for (i = 0; i < a->num_fields (); ++i) |
940da03e | 4303 | if (!types_equal (a->field (i).type (), b->field (i).type ())) |
894882e3 | 4304 | return false; |
9ce98649 | 4305 | |
894882e3 | 4306 | return true; |
9ce98649 TT |
4307 | } |
4308 | ||
105470cd HD |
4309 | /* Two array types are the same if they have the same element types |
4310 | and array bounds. */ | |
4311 | if (a->code () == TYPE_CODE_ARRAY) | |
4312 | { | |
4313 | if (!types_equal (a->target_type (), b->target_type ())) | |
4314 | return false; | |
4315 | ||
4316 | if (*a->bounds () != *b->bounds ()) | |
4317 | return false; | |
4318 | ||
4319 | return true; | |
4320 | } | |
4321 | ||
894882e3 | 4322 | return false; |
7062b0a0 | 4323 | } |
ca092b61 DE |
4324 | \f |
4325 | /* Deep comparison of types. */ | |
4326 | ||
4327 | /* An entry in the type-equality bcache. */ | |
4328 | ||
894882e3 | 4329 | struct type_equality_entry |
ca092b61 | 4330 | { |
894882e3 TT |
4331 | type_equality_entry (struct type *t1, struct type *t2) |
4332 | : type1 (t1), | |
4333 | type2 (t2) | |
4334 | { | |
4335 | } | |
ca092b61 | 4336 | |
894882e3 TT |
4337 | struct type *type1, *type2; |
4338 | }; | |
ca092b61 | 4339 | |
894882e3 TT |
4340 | /* A helper function to compare two strings. Returns true if they are |
4341 | the same, false otherwise. Handles NULLs properly. */ | |
ca092b61 | 4342 | |
894882e3 | 4343 | static bool |
ca092b61 DE |
4344 | compare_maybe_null_strings (const char *s, const char *t) |
4345 | { | |
894882e3 TT |
4346 | if (s == NULL || t == NULL) |
4347 | return s == t; | |
ca092b61 DE |
4348 | return strcmp (s, t) == 0; |
4349 | } | |
4350 | ||
4351 | /* A helper function for check_types_worklist that checks two types for | |
894882e3 TT |
4352 | "deep" equality. Returns true if the types are considered the |
4353 | same, false otherwise. */ | |
ca092b61 | 4354 | |
894882e3 | 4355 | static bool |
ca092b61 | 4356 | check_types_equal (struct type *type1, struct type *type2, |
894882e3 | 4357 | std::vector<type_equality_entry> *worklist) |
ca092b61 | 4358 | { |
f168693b SM |
4359 | type1 = check_typedef (type1); |
4360 | type2 = check_typedef (type2); | |
ca092b61 DE |
4361 | |
4362 | if (type1 == type2) | |
894882e3 | 4363 | return true; |
ca092b61 | 4364 | |
78134374 | 4365 | if (type1->code () != type2->code () |
df86565b | 4366 | || type1->length () != type2->length () |
c6d940a9 | 4367 | || type1->is_unsigned () != type2->is_unsigned () |
20ce4123 | 4368 | || type1->has_no_signedness () != type2->has_no_signedness () |
04f5bab2 | 4369 | || type1->endianity_is_not_default () != type2->endianity_is_not_default () |
a409645d | 4370 | || type1->has_varargs () != type2->has_varargs () |
bd63c870 | 4371 | || type1->is_vector () != type2->is_vector () |
ca092b61 | 4372 | || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2) |
10242f36 | 4373 | || type1->instance_flags () != type2->instance_flags () |
1f704f76 | 4374 | || type1->num_fields () != type2->num_fields ()) |
894882e3 | 4375 | return false; |
ca092b61 | 4376 | |
7d93a1e0 | 4377 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4378 | return false; |
7d93a1e0 | 4379 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4380 | return false; |
ca092b61 | 4381 | |
78134374 | 4382 | if (type1->code () == TYPE_CODE_RANGE) |
ca092b61 | 4383 | { |
599088e3 | 4384 | if (*type1->bounds () != *type2->bounds ()) |
894882e3 | 4385 | return false; |
ca092b61 DE |
4386 | } |
4387 | else | |
4388 | { | |
4389 | int i; | |
4390 | ||
1f704f76 | 4391 | for (i = 0; i < type1->num_fields (); ++i) |
ca092b61 | 4392 | { |
ceacbf6e SM |
4393 | const struct field *field1 = &type1->field (i); |
4394 | const struct field *field2 = &type2->field (i); | |
ca092b61 | 4395 | |
6c0f7493 | 4396 | if (field1->is_artificial () != field2->is_artificial () |
3be8c919 | 4397 | || field1->bitsize () != field2->bitsize () |
8d939e8e | 4398 | || field1->loc_kind () != field2->loc_kind ()) |
894882e3 | 4399 | return false; |
33d16dd9 | 4400 | if (!compare_maybe_null_strings (field1->name (), field2->name ())) |
894882e3 | 4401 | return false; |
8d939e8e | 4402 | switch (field1->loc_kind ()) |
ca092b61 DE |
4403 | { |
4404 | case FIELD_LOC_KIND_BITPOS: | |
3a543e21 | 4405 | if (field1->loc_bitpos () != field2->loc_bitpos ()) |
894882e3 | 4406 | return false; |
ca092b61 DE |
4407 | break; |
4408 | case FIELD_LOC_KIND_ENUMVAL: | |
5d2038e3 | 4409 | if (field1->loc_enumval () != field2->loc_enumval ()) |
894882e3 | 4410 | return false; |
fa639f55 HD |
4411 | /* Don't compare types of enum fields, because they don't |
4412 | have a type. */ | |
4413 | continue; | |
ca092b61 | 4414 | case FIELD_LOC_KIND_PHYSADDR: |
31a1516a | 4415 | if (field1->loc_physaddr () != field2->loc_physaddr ()) |
894882e3 | 4416 | return false; |
ca092b61 DE |
4417 | break; |
4418 | case FIELD_LOC_KIND_PHYSNAME: | |
16654a59 SM |
4419 | if (!compare_maybe_null_strings (field1->loc_physname (), |
4420 | field2->loc_physname ())) | |
894882e3 | 4421 | return false; |
ca092b61 | 4422 | break; |
692252c4 TT |
4423 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
4424 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
ca092b61 DE |
4425 | { |
4426 | struct dwarf2_locexpr_baton *block1, *block2; | |
4427 | ||
d8557c3d SM |
4428 | block1 = field1->loc_dwarf_block (); |
4429 | block2 = field2->loc_dwarf_block (); | |
ca092b61 DE |
4430 | if (block1->per_cu != block2->per_cu |
4431 | || block1->size != block2->size | |
4432 | || memcmp (block1->data, block2->data, block1->size) != 0) | |
894882e3 | 4433 | return false; |
ca092b61 DE |
4434 | } |
4435 | break; | |
4436 | default: | |
f34652de | 4437 | internal_error (_("Unsupported field kind " |
ca092b61 | 4438 | "%d by check_types_equal"), |
8d939e8e | 4439 | field1->loc_kind ()); |
ca092b61 DE |
4440 | } |
4441 | ||
b6cdac4b | 4442 | worklist->emplace_back (field1->type (), field2->type ()); |
ca092b61 DE |
4443 | } |
4444 | } | |
4445 | ||
27710edb | 4446 | if (type1->target_type () != NULL) |
ca092b61 | 4447 | { |
27710edb | 4448 | if (type2->target_type () == NULL) |
894882e3 | 4449 | return false; |
ca092b61 | 4450 | |
27710edb SM |
4451 | worklist->emplace_back (type1->target_type (), |
4452 | type2->target_type ()); | |
ca092b61 | 4453 | } |
27710edb | 4454 | else if (type2->target_type () != NULL) |
894882e3 | 4455 | return false; |
ca092b61 | 4456 | |
894882e3 | 4457 | return true; |
ca092b61 DE |
4458 | } |
4459 | ||
894882e3 TT |
4460 | /* Check types on a worklist for equality. Returns false if any pair |
4461 | is not equal, true if they are all considered equal. */ | |
ca092b61 | 4462 | |
894882e3 TT |
4463 | static bool |
4464 | check_types_worklist (std::vector<type_equality_entry> *worklist, | |
dfb65191 | 4465 | gdb::bcache *cache) |
ca092b61 | 4466 | { |
894882e3 | 4467 | while (!worklist->empty ()) |
ca092b61 | 4468 | { |
ef5e5b0b | 4469 | bool added; |
ca092b61 | 4470 | |
894882e3 TT |
4471 | struct type_equality_entry entry = std::move (worklist->back ()); |
4472 | worklist->pop_back (); | |
ca092b61 DE |
4473 | |
4474 | /* If the type pair has already been visited, we know it is | |
4475 | ok. */ | |
7149dfe8 | 4476 | cache->insert (entry, &added); |
ca092b61 DE |
4477 | if (!added) |
4478 | continue; | |
4479 | ||
894882e3 TT |
4480 | if (!check_types_equal (entry.type1, entry.type2, worklist)) |
4481 | return false; | |
ca092b61 | 4482 | } |
7062b0a0 | 4483 | |
894882e3 | 4484 | return true; |
ca092b61 DE |
4485 | } |
4486 | ||
894882e3 TT |
4487 | /* Return true if types TYPE1 and TYPE2 are equal, as determined by a |
4488 | "deep comparison". Otherwise return false. */ | |
ca092b61 | 4489 | |
894882e3 | 4490 | bool |
ca092b61 DE |
4491 | types_deeply_equal (struct type *type1, struct type *type2) |
4492 | { | |
894882e3 | 4493 | std::vector<type_equality_entry> worklist; |
ca092b61 DE |
4494 | |
4495 | gdb_assert (type1 != NULL && type2 != NULL); | |
4496 | ||
4497 | /* Early exit for the simple case. */ | |
4498 | if (type1 == type2) | |
894882e3 | 4499 | return true; |
ca092b61 | 4500 | |
89806626 | 4501 | gdb::bcache cache; |
894882e3 | 4502 | worklist.emplace_back (type1, type2); |
25629dfd | 4503 | return check_types_worklist (&worklist, &cache); |
ca092b61 | 4504 | } |
3f2f83dd KB |
4505 | |
4506 | /* Allocated status of type TYPE. Return zero if type TYPE is allocated. | |
4507 | Otherwise return one. */ | |
4508 | ||
4509 | int | |
4510 | type_not_allocated (const struct type *type) | |
4511 | { | |
4512 | struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type); | |
4513 | ||
9c0fb734 | 4514 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
3f2f83dd KB |
4515 | } |
4516 | ||
4517 | /* Associated status of type TYPE. Return zero if type TYPE is associated. | |
4518 | Otherwise return one. */ | |
4519 | ||
4520 | int | |
4521 | type_not_associated (const struct type *type) | |
4522 | { | |
4523 | struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type); | |
4524 | ||
9c0fb734 | 4525 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
3f2f83dd | 4526 | } |
9293fc63 SM |
4527 | |
4528 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */ | |
4529 | ||
4530 | static struct rank | |
4531 | rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value) | |
4532 | { | |
4533 | struct rank rank = {0,0}; | |
4534 | ||
78134374 | 4535 | switch (arg->code ()) |
9293fc63 SM |
4536 | { |
4537 | case TYPE_CODE_PTR: | |
4538 | ||
4539 | /* Allowed pointer conversions are: | |
4540 | (a) pointer to void-pointer conversion. */ | |
27710edb | 4541 | if (parm->target_type ()->code () == TYPE_CODE_VOID) |
9293fc63 SM |
4542 | return VOID_PTR_CONVERSION_BADNESS; |
4543 | ||
4544 | /* (b) pointer to ancestor-pointer conversion. */ | |
27710edb SM |
4545 | rank.subrank = distance_to_ancestor (parm->target_type (), |
4546 | arg->target_type (), | |
9293fc63 SM |
4547 | 0); |
4548 | if (rank.subrank >= 0) | |
4549 | return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank); | |
4550 | ||
4551 | return INCOMPATIBLE_TYPE_BADNESS; | |
4552 | case TYPE_CODE_ARRAY: | |
4553 | { | |
27710edb SM |
4554 | struct type *t1 = parm->target_type (); |
4555 | struct type *t2 = arg->target_type (); | |
9293fc63 SM |
4556 | |
4557 | if (types_equal (t1, t2)) | |
4558 | { | |
4559 | /* Make sure they are CV equal. */ | |
4560 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4561 | rank.subrank |= CV_CONVERSION_CONST; | |
4562 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4563 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4564 | if (rank.subrank != 0) | |
4565 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4566 | return EXACT_MATCH_BADNESS; | |
4567 | } | |
4568 | return INCOMPATIBLE_TYPE_BADNESS; | |
4569 | } | |
4570 | case TYPE_CODE_FUNC: | |
27710edb | 4571 | return rank_one_type (parm->target_type (), arg, NULL); |
9293fc63 | 4572 | case TYPE_CODE_INT: |
d0c97917 | 4573 | if (value != NULL && value->type ()->code () == TYPE_CODE_INT) |
9293fc63 SM |
4574 | { |
4575 | if (value_as_long (value) == 0) | |
4576 | { | |
4577 | /* Null pointer conversion: allow it to be cast to a pointer. | |
4578 | [4.10.1 of C++ standard draft n3290] */ | |
4579 | return NULL_POINTER_CONVERSION_BADNESS; | |
4580 | } | |
4581 | else | |
4582 | { | |
4583 | /* If type checking is disabled, allow the conversion. */ | |
4584 | if (!strict_type_checking) | |
4585 | return NS_INTEGER_POINTER_CONVERSION_BADNESS; | |
4586 | } | |
4587 | } | |
d182e398 | 4588 | [[fallthrough]]; |
9293fc63 SM |
4589 | case TYPE_CODE_ENUM: |
4590 | case TYPE_CODE_FLAGS: | |
4591 | case TYPE_CODE_CHAR: | |
4592 | case TYPE_CODE_RANGE: | |
4593 | case TYPE_CODE_BOOL: | |
4594 | default: | |
4595 | return INCOMPATIBLE_TYPE_BADNESS; | |
4596 | } | |
4597 | } | |
4598 | ||
b9f4512f SM |
4599 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */ |
4600 | ||
4601 | static struct rank | |
4602 | rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value) | |
4603 | { | |
78134374 | 4604 | switch (arg->code ()) |
b9f4512f SM |
4605 | { |
4606 | case TYPE_CODE_PTR: | |
4607 | case TYPE_CODE_ARRAY: | |
27710edb SM |
4608 | return rank_one_type (parm->target_type (), |
4609 | arg->target_type (), NULL); | |
b9f4512f SM |
4610 | default: |
4611 | return INCOMPATIBLE_TYPE_BADNESS; | |
4612 | } | |
4613 | } | |
4614 | ||
f1f832d6 SM |
4615 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */ |
4616 | ||
4617 | static struct rank | |
4618 | rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value) | |
4619 | { | |
78134374 | 4620 | switch (arg->code ()) |
f1f832d6 SM |
4621 | { |
4622 | case TYPE_CODE_PTR: /* funcptr -> func */ | |
27710edb | 4623 | return rank_one_type (parm, arg->target_type (), NULL); |
f1f832d6 SM |
4624 | default: |
4625 | return INCOMPATIBLE_TYPE_BADNESS; | |
4626 | } | |
4627 | } | |
4628 | ||
34910087 SM |
4629 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */ |
4630 | ||
4631 | static struct rank | |
4632 | rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value) | |
4633 | { | |
78134374 | 4634 | switch (arg->code ()) |
34910087 SM |
4635 | { |
4636 | case TYPE_CODE_INT: | |
df86565b | 4637 | if (arg->length () == parm->length ()) |
34910087 SM |
4638 | { |
4639 | /* Deal with signed, unsigned, and plain chars and | |
4640 | signed and unsigned ints. */ | |
20ce4123 | 4641 | if (parm->has_no_signedness ()) |
34910087 SM |
4642 | { |
4643 | /* This case only for character types. */ | |
20ce4123 | 4644 | if (arg->has_no_signedness ()) |
34910087 SM |
4645 | return EXACT_MATCH_BADNESS; /* plain char -> plain char */ |
4646 | else /* signed/unsigned char -> plain char */ | |
4647 | return INTEGER_CONVERSION_BADNESS; | |
4648 | } | |
c6d940a9 | 4649 | else if (parm->is_unsigned ()) |
34910087 | 4650 | { |
c6d940a9 | 4651 | if (arg->is_unsigned ()) |
34910087 SM |
4652 | { |
4653 | /* unsigned int -> unsigned int, or | |
4654 | unsigned long -> unsigned long */ | |
7d93a1e0 SM |
4655 | if (integer_types_same_name_p (parm->name (), |
4656 | arg->name ())) | |
34910087 | 4657 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4658 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4659 | "int") |
7d93a1e0 | 4660 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4661 | "long")) |
4662 | /* unsigned int -> unsigned long */ | |
4663 | return INTEGER_PROMOTION_BADNESS; | |
4664 | else | |
4665 | /* unsigned long -> unsigned int */ | |
4666 | return INTEGER_CONVERSION_BADNESS; | |
4667 | } | |
4668 | else | |
4669 | { | |
7d93a1e0 | 4670 | if (integer_types_same_name_p (arg->name (), |
34910087 | 4671 | "long") |
7d93a1e0 | 4672 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4673 | "int")) |
4674 | /* signed long -> unsigned int */ | |
4675 | return INTEGER_CONVERSION_BADNESS; | |
4676 | else | |
4677 | /* signed int/long -> unsigned int/long */ | |
4678 | return INTEGER_CONVERSION_BADNESS; | |
4679 | } | |
4680 | } | |
20ce4123 | 4681 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
34910087 | 4682 | { |
7d93a1e0 SM |
4683 | if (integer_types_same_name_p (parm->name (), |
4684 | arg->name ())) | |
34910087 | 4685 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4686 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4687 | "int") |
7d93a1e0 | 4688 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4689 | "long")) |
4690 | return INTEGER_PROMOTION_BADNESS; | |
4691 | else | |
4692 | return INTEGER_CONVERSION_BADNESS; | |
4693 | } | |
4694 | else | |
4695 | return INTEGER_CONVERSION_BADNESS; | |
4696 | } | |
df86565b | 4697 | else if (arg->length () < parm->length ()) |
34910087 SM |
4698 | return INTEGER_PROMOTION_BADNESS; |
4699 | else | |
4700 | return INTEGER_CONVERSION_BADNESS; | |
4701 | case TYPE_CODE_ENUM: | |
4702 | case TYPE_CODE_FLAGS: | |
4703 | case TYPE_CODE_CHAR: | |
4704 | case TYPE_CODE_RANGE: | |
4705 | case TYPE_CODE_BOOL: | |
3bc440a2 | 4706 | if (arg->is_declared_class ()) |
34910087 SM |
4707 | return INCOMPATIBLE_TYPE_BADNESS; |
4708 | return INTEGER_PROMOTION_BADNESS; | |
4709 | case TYPE_CODE_FLT: | |
4710 | return INT_FLOAT_CONVERSION_BADNESS; | |
4711 | case TYPE_CODE_PTR: | |
4712 | return NS_POINTER_CONVERSION_BADNESS; | |
4713 | default: | |
4714 | return INCOMPATIBLE_TYPE_BADNESS; | |
4715 | } | |
4716 | } | |
4717 | ||
793cd1d2 SM |
4718 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */ |
4719 | ||
4720 | static struct rank | |
4721 | rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value) | |
4722 | { | |
78134374 | 4723 | switch (arg->code ()) |
793cd1d2 SM |
4724 | { |
4725 | case TYPE_CODE_INT: | |
4726 | case TYPE_CODE_CHAR: | |
4727 | case TYPE_CODE_RANGE: | |
4728 | case TYPE_CODE_BOOL: | |
4729 | case TYPE_CODE_ENUM: | |
3bc440a2 | 4730 | if (parm->is_declared_class () || arg->is_declared_class ()) |
793cd1d2 SM |
4731 | return INCOMPATIBLE_TYPE_BADNESS; |
4732 | return INTEGER_CONVERSION_BADNESS; | |
4733 | case TYPE_CODE_FLT: | |
4734 | return INT_FLOAT_CONVERSION_BADNESS; | |
4735 | default: | |
4736 | return INCOMPATIBLE_TYPE_BADNESS; | |
4737 | } | |
4738 | } | |
4739 | ||
41ea4728 SM |
4740 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */ |
4741 | ||
4742 | static struct rank | |
4743 | rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value) | |
4744 | { | |
78134374 | 4745 | switch (arg->code ()) |
41ea4728 SM |
4746 | { |
4747 | case TYPE_CODE_RANGE: | |
4748 | case TYPE_CODE_BOOL: | |
4749 | case TYPE_CODE_ENUM: | |
3bc440a2 | 4750 | if (arg->is_declared_class ()) |
41ea4728 SM |
4751 | return INCOMPATIBLE_TYPE_BADNESS; |
4752 | return INTEGER_CONVERSION_BADNESS; | |
4753 | case TYPE_CODE_FLT: | |
4754 | return INT_FLOAT_CONVERSION_BADNESS; | |
4755 | case TYPE_CODE_INT: | |
df86565b | 4756 | if (arg->length () > parm->length ()) |
41ea4728 | 4757 | return INTEGER_CONVERSION_BADNESS; |
df86565b | 4758 | else if (arg->length () < parm->length ()) |
41ea4728 | 4759 | return INTEGER_PROMOTION_BADNESS; |
d182e398 | 4760 | [[fallthrough]]; |
41ea4728 SM |
4761 | case TYPE_CODE_CHAR: |
4762 | /* Deal with signed, unsigned, and plain chars for C++ and | |
4763 | with int cases falling through from previous case. */ | |
20ce4123 | 4764 | if (parm->has_no_signedness ()) |
41ea4728 | 4765 | { |
20ce4123 | 4766 | if (arg->has_no_signedness ()) |
41ea4728 SM |
4767 | return EXACT_MATCH_BADNESS; |
4768 | else | |
4769 | return INTEGER_CONVERSION_BADNESS; | |
4770 | } | |
c6d940a9 | 4771 | else if (parm->is_unsigned ()) |
41ea4728 | 4772 | { |
c6d940a9 | 4773 | if (arg->is_unsigned ()) |
41ea4728 SM |
4774 | return EXACT_MATCH_BADNESS; |
4775 | else | |
4776 | return INTEGER_PROMOTION_BADNESS; | |
4777 | } | |
20ce4123 | 4778 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
41ea4728 SM |
4779 | return EXACT_MATCH_BADNESS; |
4780 | else | |
4781 | return INTEGER_CONVERSION_BADNESS; | |
4782 | default: | |
4783 | return INCOMPATIBLE_TYPE_BADNESS; | |
4784 | } | |
4785 | } | |
4786 | ||
0dd322dc SM |
4787 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */ |
4788 | ||
4789 | static struct rank | |
4790 | rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value) | |
4791 | { | |
78134374 | 4792 | switch (arg->code ()) |
0dd322dc SM |
4793 | { |
4794 | case TYPE_CODE_INT: | |
4795 | case TYPE_CODE_CHAR: | |
4796 | case TYPE_CODE_RANGE: | |
4797 | case TYPE_CODE_BOOL: | |
4798 | case TYPE_CODE_ENUM: | |
4799 | return INTEGER_CONVERSION_BADNESS; | |
4800 | case TYPE_CODE_FLT: | |
4801 | return INT_FLOAT_CONVERSION_BADNESS; | |
4802 | default: | |
4803 | return INCOMPATIBLE_TYPE_BADNESS; | |
4804 | } | |
4805 | } | |
4806 | ||
2c509035 SM |
4807 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */ |
4808 | ||
4809 | static struct rank | |
4810 | rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value) | |
4811 | { | |
78134374 | 4812 | switch (arg->code ()) |
2c509035 SM |
4813 | { |
4814 | /* n3290 draft, section 4.12.1 (conv.bool): | |
4815 | ||
4816 | "A prvalue of arithmetic, unscoped enumeration, pointer, or | |
4817 | pointer to member type can be converted to a prvalue of type | |
4818 | bool. A zero value, null pointer value, or null member pointer | |
4819 | value is converted to false; any other value is converted to | |
4820 | true. A prvalue of type std::nullptr_t can be converted to a | |
4821 | prvalue of type bool; the resulting value is false." */ | |
4822 | case TYPE_CODE_INT: | |
4823 | case TYPE_CODE_CHAR: | |
4824 | case TYPE_CODE_ENUM: | |
4825 | case TYPE_CODE_FLT: | |
4826 | case TYPE_CODE_MEMBERPTR: | |
4827 | case TYPE_CODE_PTR: | |
4828 | return BOOL_CONVERSION_BADNESS; | |
4829 | case TYPE_CODE_RANGE: | |
4830 | return INCOMPATIBLE_TYPE_BADNESS; | |
4831 | case TYPE_CODE_BOOL: | |
4832 | return EXACT_MATCH_BADNESS; | |
4833 | default: | |
4834 | return INCOMPATIBLE_TYPE_BADNESS; | |
4835 | } | |
4836 | } | |
4837 | ||
7f17b20d SM |
4838 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */ |
4839 | ||
4840 | static struct rank | |
4841 | rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value) | |
4842 | { | |
78134374 | 4843 | switch (arg->code ()) |
7f17b20d SM |
4844 | { |
4845 | case TYPE_CODE_FLT: | |
df86565b | 4846 | if (arg->length () < parm->length ()) |
7f17b20d | 4847 | return FLOAT_PROMOTION_BADNESS; |
df86565b | 4848 | else if (arg->length () == parm->length ()) |
7f17b20d SM |
4849 | return EXACT_MATCH_BADNESS; |
4850 | else | |
4851 | return FLOAT_CONVERSION_BADNESS; | |
4852 | case TYPE_CODE_INT: | |
4853 | case TYPE_CODE_BOOL: | |
4854 | case TYPE_CODE_ENUM: | |
4855 | case TYPE_CODE_RANGE: | |
4856 | case TYPE_CODE_CHAR: | |
4857 | return INT_FLOAT_CONVERSION_BADNESS; | |
4858 | default: | |
4859 | return INCOMPATIBLE_TYPE_BADNESS; | |
4860 | } | |
4861 | } | |
4862 | ||
2598a94b SM |
4863 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */ |
4864 | ||
4865 | static struct rank | |
4866 | rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value) | |
4867 | { | |
78134374 | 4868 | switch (arg->code ()) |
2598a94b SM |
4869 | { /* Strictly not needed for C++, but... */ |
4870 | case TYPE_CODE_FLT: | |
4871 | return FLOAT_PROMOTION_BADNESS; | |
4872 | case TYPE_CODE_COMPLEX: | |
4873 | return EXACT_MATCH_BADNESS; | |
4874 | default: | |
4875 | return INCOMPATIBLE_TYPE_BADNESS; | |
4876 | } | |
4877 | } | |
4878 | ||
595f96a9 SM |
4879 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */ |
4880 | ||
4881 | static struct rank | |
4882 | rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value) | |
4883 | { | |
4884 | struct rank rank = {0, 0}; | |
4885 | ||
78134374 | 4886 | switch (arg->code ()) |
595f96a9 SM |
4887 | { |
4888 | case TYPE_CODE_STRUCT: | |
4889 | /* Check for derivation */ | |
4890 | rank.subrank = distance_to_ancestor (parm, arg, 0); | |
4891 | if (rank.subrank >= 0) | |
4892 | return sum_ranks (BASE_CONVERSION_BADNESS, rank); | |
d182e398 | 4893 | [[fallthrough]]; |
595f96a9 SM |
4894 | default: |
4895 | return INCOMPATIBLE_TYPE_BADNESS; | |
4896 | } | |
4897 | } | |
4898 | ||
f09ce22d SM |
4899 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */ |
4900 | ||
4901 | static struct rank | |
4902 | rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value) | |
4903 | { | |
78134374 | 4904 | switch (arg->code ()) |
f09ce22d SM |
4905 | { |
4906 | /* Not in C++ */ | |
4907 | case TYPE_CODE_SET: | |
940da03e SM |
4908 | return rank_one_type (parm->field (0).type (), |
4909 | arg->field (0).type (), NULL); | |
f09ce22d SM |
4910 | default: |
4911 | return INCOMPATIBLE_TYPE_BADNESS; | |
4912 | } | |
4913 | } | |
4914 | ||
c906108c SS |
4915 | /* Compare one type (PARM) for compatibility with another (ARG). |
4916 | * PARM is intended to be the parameter type of a function; and | |
4917 | * ARG is the supplied argument's type. This function tests if | |
4918 | * the latter can be converted to the former. | |
da096638 | 4919 | * VALUE is the argument's value or NULL if none (or called recursively) |
c906108c SS |
4920 | * |
4921 | * Return 0 if they are identical types; | |
4922 | * Otherwise, return an integer which corresponds to how compatible | |
7ba81444 | 4923 | * PARM is to ARG. The higher the return value, the worse the match. |
ac03c8d8 TT |
4924 | * Generally the "bad" conversions are all uniformly assigned |
4925 | * INVALID_CONVERSION. */ | |
c906108c | 4926 | |
6403aeea | 4927 | struct rank |
da096638 | 4928 | rank_one_type (struct type *parm, struct type *arg, struct value *value) |
c906108c | 4929 | { |
a9d5ef47 | 4930 | struct rank rank = {0,0}; |
7062b0a0 | 4931 | |
c906108c | 4932 | /* Resolve typedefs */ |
78134374 | 4933 | if (parm->code () == TYPE_CODE_TYPEDEF) |
c906108c | 4934 | parm = check_typedef (parm); |
78134374 | 4935 | if (arg->code () == TYPE_CODE_TYPEDEF) |
c906108c SS |
4936 | arg = check_typedef (arg); |
4937 | ||
e15c3eb4 | 4938 | if (TYPE_IS_REFERENCE (parm) && value != NULL) |
15c0a2a9 | 4939 | { |
736355f2 | 4940 | if (value->lval () == not_lval) |
e15c3eb4 KS |
4941 | { |
4942 | /* Rvalues should preferably bind to rvalue references or const | |
4943 | lvalue references. */ | |
78134374 | 4944 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
e15c3eb4 | 4945 | rank.subrank = REFERENCE_CONVERSION_RVALUE; |
27710edb | 4946 | else if (TYPE_CONST (parm->target_type ())) |
e15c3eb4 KS |
4947 | rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE; |
4948 | else | |
4949 | return INCOMPATIBLE_TYPE_BADNESS; | |
4950 | return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS); | |
4951 | } | |
4952 | else | |
4953 | { | |
330f1d38 | 4954 | /* It's illegal to pass an lvalue as an rvalue. */ |
78134374 | 4955 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
330f1d38 | 4956 | return INCOMPATIBLE_TYPE_BADNESS; |
e15c3eb4 | 4957 | } |
15c0a2a9 AV |
4958 | } |
4959 | ||
4960 | if (types_equal (parm, arg)) | |
15c0a2a9 | 4961 | { |
e15c3eb4 KS |
4962 | struct type *t1 = parm; |
4963 | struct type *t2 = arg; | |
15c0a2a9 | 4964 | |
e15c3eb4 | 4965 | /* For pointers and references, compare target type. */ |
809f3be1 | 4966 | if (parm->is_pointer_or_reference ()) |
e15c3eb4 | 4967 | { |
27710edb SM |
4968 | t1 = parm->target_type (); |
4969 | t2 = arg->target_type (); | |
e15c3eb4 | 4970 | } |
15c0a2a9 | 4971 | |
e15c3eb4 KS |
4972 | /* Make sure they are CV equal, too. */ |
4973 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4974 | rank.subrank |= CV_CONVERSION_CONST; | |
4975 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4976 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4977 | if (rank.subrank != 0) | |
4978 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4979 | return EXACT_MATCH_BADNESS; | |
15c0a2a9 AV |
4980 | } |
4981 | ||
db577aea | 4982 | /* See through references, since we can almost make non-references |
7ba81444 | 4983 | references. */ |
aa006118 AV |
4984 | |
4985 | if (TYPE_IS_REFERENCE (arg)) | |
27710edb | 4986 | return (sum_ranks (rank_one_type (parm, arg->target_type (), NULL), |
dda83cd7 | 4987 | REFERENCE_SEE_THROUGH_BADNESS)); |
aa006118 | 4988 | if (TYPE_IS_REFERENCE (parm)) |
27710edb | 4989 | return (sum_ranks (rank_one_type (parm->target_type (), arg, NULL), |
dda83cd7 | 4990 | REFERENCE_SEE_THROUGH_BADNESS)); |
5d161b24 | 4991 | if (overload_debug) |
01add95b SM |
4992 | { |
4993 | /* Debugging only. */ | |
6cb06a8c TT |
4994 | gdb_printf (gdb_stderr, |
4995 | "------ Arg is %s [%d], parm is %s [%d]\n", | |
4996 | arg->name (), arg->code (), | |
4997 | parm->name (), parm->code ()); | |
01add95b | 4998 | } |
c906108c | 4999 | |
0963b4bd | 5000 | /* x -> y means arg of type x being supplied for parameter of type y. */ |
c906108c | 5001 | |
78134374 | 5002 | switch (parm->code ()) |
c906108c | 5003 | { |
c5aa993b | 5004 | case TYPE_CODE_PTR: |
9293fc63 | 5005 | return rank_one_type_parm_ptr (parm, arg, value); |
c5aa993b | 5006 | case TYPE_CODE_ARRAY: |
b9f4512f | 5007 | return rank_one_type_parm_array (parm, arg, value); |
c5aa993b | 5008 | case TYPE_CODE_FUNC: |
f1f832d6 | 5009 | return rank_one_type_parm_func (parm, arg, value); |
c5aa993b | 5010 | case TYPE_CODE_INT: |
34910087 | 5011 | return rank_one_type_parm_int (parm, arg, value); |
c5aa993b | 5012 | case TYPE_CODE_ENUM: |
793cd1d2 | 5013 | return rank_one_type_parm_enum (parm, arg, value); |
c5aa993b | 5014 | case TYPE_CODE_CHAR: |
41ea4728 | 5015 | return rank_one_type_parm_char (parm, arg, value); |
c5aa993b | 5016 | case TYPE_CODE_RANGE: |
0dd322dc | 5017 | return rank_one_type_parm_range (parm, arg, value); |
c5aa993b | 5018 | case TYPE_CODE_BOOL: |
2c509035 | 5019 | return rank_one_type_parm_bool (parm, arg, value); |
c5aa993b | 5020 | case TYPE_CODE_FLT: |
7f17b20d | 5021 | return rank_one_type_parm_float (parm, arg, value); |
c5aa993b | 5022 | case TYPE_CODE_COMPLEX: |
2598a94b | 5023 | return rank_one_type_parm_complex (parm, arg, value); |
c5aa993b | 5024 | case TYPE_CODE_STRUCT: |
595f96a9 | 5025 | return rank_one_type_parm_struct (parm, arg, value); |
c5aa993b | 5026 | case TYPE_CODE_SET: |
f09ce22d | 5027 | return rank_one_type_parm_set (parm, arg, value); |
c5aa993b JM |
5028 | default: |
5029 | return INCOMPATIBLE_TYPE_BADNESS; | |
78134374 | 5030 | } /* switch (arg->code ()) */ |
c906108c SS |
5031 | } |
5032 | ||
0963b4bd | 5033 | /* End of functions for overload resolution. */ |
5212577a | 5034 | \f |
c906108c | 5035 | |
ad2f7632 | 5036 | /* Note the first arg should be the "this" pointer, we may not want to |
7ba81444 MS |
5037 | include it since we may get into a infinitely recursive |
5038 | situation. */ | |
c906108c SS |
5039 | |
5040 | static void | |
4c9e8482 | 5041 | print_args (struct field *args, int nargs, int spaces) |
c906108c SS |
5042 | { |
5043 | if (args != NULL) | |
5044 | { | |
ad2f7632 DJ |
5045 | int i; |
5046 | ||
5047 | for (i = 0; i < nargs; i++) | |
4c9e8482 | 5048 | { |
6cb06a8c | 5049 | gdb_printf |
d3fd12df SM |
5050 | ("%*s[%d] name '%s'\n", spaces, "", i, |
5051 | args[i].name () != NULL ? args[i].name () : "<NULL>"); | |
5d14b6e5 | 5052 | recursive_dump_type (args[i].type (), spaces + 2); |
4c9e8482 | 5053 | } |
c906108c SS |
5054 | } |
5055 | } | |
5056 | ||
5057 | static void | |
fba45db2 | 5058 | dump_fn_fieldlists (struct type *type, int spaces) |
c906108c SS |
5059 | { |
5060 | int method_idx; | |
5061 | int overload_idx; | |
5062 | struct fn_field *f; | |
5063 | ||
6cb06a8c TT |
5064 | gdb_printf ("%*sfn_fieldlists %s\n", spaces, "", |
5065 | host_address_to_string (TYPE_FN_FIELDLISTS (type))); | |
c906108c SS |
5066 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) |
5067 | { | |
5068 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
6cb06a8c | 5069 | gdb_printf |
64b7cc50 TT |
5070 | ("%*s[%d] name '%s' (%s) length %d\n", spaces + 2, "", |
5071 | method_idx, | |
5072 | TYPE_FN_FIELDLIST_NAME (type, method_idx), | |
5073 | host_address_to_string (TYPE_FN_FIELDLIST_NAME (type, method_idx)), | |
5074 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); | |
c906108c SS |
5075 | for (overload_idx = 0; |
5076 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
5077 | overload_idx++) | |
5078 | { | |
6cb06a8c | 5079 | gdb_printf |
64b7cc50 TT |
5080 | ("%*s[%d] physname '%s' (%s)\n", |
5081 | spaces + 4, "", overload_idx, | |
5082 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx), | |
5083 | host_address_to_string (TYPE_FN_FIELD_PHYSNAME (f, | |
5084 | overload_idx))); | |
6cb06a8c | 5085 | gdb_printf |
64b7cc50 TT |
5086 | ("%*stype %s\n", spaces + 8, "", |
5087 | host_address_to_string (TYPE_FN_FIELD_TYPE (f, overload_idx))); | |
c906108c SS |
5088 | |
5089 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
5090 | spaces + 8 + 2); | |
5091 | ||
6cb06a8c | 5092 | gdb_printf |
64b7cc50 TT |
5093 | ("%*sargs %s\n", spaces + 8, "", |
5094 | host_address_to_string (TYPE_FN_FIELD_ARGS (f, overload_idx))); | |
4c9e8482 | 5095 | print_args (TYPE_FN_FIELD_ARGS (f, overload_idx), |
1f704f76 | 5096 | TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (), |
4c9e8482 | 5097 | spaces + 8 + 2); |
6cb06a8c | 5098 | gdb_printf |
64b7cc50 TT |
5099 | ("%*sfcontext %s\n", spaces + 8, "", |
5100 | host_address_to_string (TYPE_FN_FIELD_FCONTEXT (f, | |
5101 | overload_idx))); | |
c906108c | 5102 | |
6cb06a8c TT |
5103 | gdb_printf ("%*sis_const %d\n", spaces + 8, "", |
5104 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
5105 | gdb_printf ("%*sis_volatile %d\n", spaces + 8, "", | |
5106 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
5107 | gdb_printf ("%*sis_private %d\n", spaces + 8, "", | |
5108 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
5109 | gdb_printf ("%*sis_protected %d\n", spaces + 8, "", | |
5110 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
5111 | gdb_printf ("%*sis_stub %d\n", spaces + 8, "", | |
5112 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
5113 | gdb_printf ("%*sdefaulted %d\n", spaces + 8, "", | |
5114 | TYPE_FN_FIELD_DEFAULTED (f, overload_idx)); | |
5115 | gdb_printf ("%*sis_deleted %d\n", spaces + 8, "", | |
5116 | TYPE_FN_FIELD_DELETED (f, overload_idx)); | |
5117 | gdb_printf ("%*svoffset %u\n", spaces + 8, "", | |
5118 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
c906108c SS |
5119 | } |
5120 | } | |
5121 | } | |
5122 | ||
5123 | static void | |
fba45db2 | 5124 | print_cplus_stuff (struct type *type, int spaces) |
c906108c | 5125 | { |
6cb06a8c TT |
5126 | gdb_printf ("%*svptr_fieldno %d\n", spaces, "", |
5127 | TYPE_VPTR_FIELDNO (type)); | |
5128 | gdb_printf ("%*svptr_basetype %s\n", spaces, "", | |
5129 | host_address_to_string (TYPE_VPTR_BASETYPE (type))); | |
ae6ae975 DE |
5130 | if (TYPE_VPTR_BASETYPE (type) != NULL) |
5131 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
5132 | ||
6cb06a8c TT |
5133 | gdb_printf ("%*sn_baseclasses %d\n", spaces, "", |
5134 | TYPE_N_BASECLASSES (type)); | |
5135 | gdb_printf ("%*snfn_fields %d\n", spaces, "", | |
5136 | TYPE_NFN_FIELDS (type)); | |
c906108c SS |
5137 | if (TYPE_NFN_FIELDS (type) > 0) |
5138 | { | |
5139 | dump_fn_fieldlists (type, spaces); | |
5140 | } | |
e35000a7 | 5141 | |
6cb06a8c TT |
5142 | gdb_printf ("%*scalling_convention %d\n", spaces, "", |
5143 | TYPE_CPLUS_CALLING_CONVENTION (type)); | |
c906108c SS |
5144 | } |
5145 | ||
b4ba55a1 JB |
5146 | /* Print the contents of the TYPE's type_specific union, assuming that |
5147 | its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ | |
5148 | ||
5149 | static void | |
5150 | print_gnat_stuff (struct type *type, int spaces) | |
5151 | { | |
5152 | struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); | |
5153 | ||
8cd00c59 | 5154 | if (descriptive_type == NULL) |
6cb06a8c | 5155 | gdb_printf ("%*sno descriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
5156 | else |
5157 | { | |
6cb06a8c | 5158 | gdb_printf ("%*sdescriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
5159 | recursive_dump_type (descriptive_type, spaces + 4); |
5160 | } | |
b4ba55a1 JB |
5161 | } |
5162 | ||
09584414 JB |
5163 | /* Print the contents of the TYPE's type_specific union, assuming that |
5164 | its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */ | |
5165 | ||
5166 | static void | |
5167 | print_fixed_point_type_info (struct type *type, int spaces) | |
5168 | { | |
6cb06a8c TT |
5169 | gdb_printf ("%*sscaling factor: %s\n", spaces + 2, "", |
5170 | type->fixed_point_scaling_factor ().str ().c_str ()); | |
09584414 JB |
5171 | } |
5172 | ||
c906108c SS |
5173 | static struct obstack dont_print_type_obstack; |
5174 | ||
53d5a2a5 TV |
5175 | /* Print the dynamic_prop PROP. */ |
5176 | ||
5177 | static void | |
5178 | dump_dynamic_prop (dynamic_prop const& prop) | |
5179 | { | |
5180 | switch (prop.kind ()) | |
5181 | { | |
5182 | case PROP_CONST: | |
6cb06a8c | 5183 | gdb_printf ("%s", plongest (prop.const_val ())); |
53d5a2a5 TV |
5184 | break; |
5185 | case PROP_UNDEFINED: | |
6cb06a8c | 5186 | gdb_printf ("(undefined)"); |
53d5a2a5 TV |
5187 | break; |
5188 | case PROP_LOCEXPR: | |
5189 | case PROP_LOCLIST: | |
6cb06a8c | 5190 | gdb_printf ("(dynamic)"); |
53d5a2a5 TV |
5191 | break; |
5192 | default: | |
5193 | gdb_assert_not_reached ("unhandled prop kind"); | |
5194 | break; | |
5195 | } | |
5196 | } | |
5197 | ||
e626733c TT |
5198 | /* Return a string that represents a type code. */ |
5199 | static const char * | |
5200 | type_code_name (type_code code) | |
5201 | { | |
5202 | switch (code) | |
5203 | { | |
5204 | #define OP(X) case X: return # X; | |
5205 | #include "type-codes.def" | |
5206 | #undef OP | |
5207 | ||
5208 | case TYPE_CODE_UNDEF: | |
5209 | return "TYPE_CODE_UNDEF"; | |
5210 | } | |
5211 | ||
5212 | gdb_assert_not_reached ("unhandled type_code"); | |
5213 | } | |
5214 | ||
c906108c | 5215 | void |
fba45db2 | 5216 | recursive_dump_type (struct type *type, int spaces) |
c906108c SS |
5217 | { |
5218 | int idx; | |
5219 | ||
5220 | if (spaces == 0) | |
5221 | obstack_begin (&dont_print_type_obstack, 0); | |
5222 | ||
1f704f76 | 5223 | if (type->num_fields () > 0 |
b4ba55a1 | 5224 | || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) |
c906108c SS |
5225 | { |
5226 | struct type **first_dont_print | |
7ba81444 | 5227 | = (struct type **) obstack_base (&dont_print_type_obstack); |
c906108c | 5228 | |
7ba81444 MS |
5229 | int i = (struct type **) |
5230 | obstack_next_free (&dont_print_type_obstack) - first_dont_print; | |
c906108c SS |
5231 | |
5232 | while (--i >= 0) | |
5233 | { | |
5234 | if (type == first_dont_print[i]) | |
5235 | { | |
6cb06a8c TT |
5236 | gdb_printf ("%*stype node %s", spaces, "", |
5237 | host_address_to_string (type)); | |
5238 | gdb_printf (_(" <same as already seen type>\n")); | |
c906108c SS |
5239 | return; |
5240 | } | |
5241 | } | |
5242 | ||
5243 | obstack_ptr_grow (&dont_print_type_obstack, type); | |
5244 | } | |
5245 | ||
6cb06a8c TT |
5246 | gdb_printf ("%*stype node %s\n", spaces, "", |
5247 | host_address_to_string (type)); | |
5248 | gdb_printf ("%*sname '%s' (%s)\n", spaces, "", | |
5249 | type->name () ? type->name () : "<NULL>", | |
5250 | host_address_to_string (type->name ())); | |
5251 | gdb_printf ("%*scode 0x%x ", spaces, "", type->code ()); | |
e626733c | 5252 | gdb_printf ("(%s)", type_code_name (type->code ())); |
0426ad51 | 5253 | gdb_puts ("\n"); |
6cb06a8c | 5254 | gdb_printf ("%*slength %s\n", spaces, "", |
df86565b | 5255 | pulongest (type->length ())); |
30625020 | 5256 | if (type->is_objfile_owned ()) |
6cb06a8c TT |
5257 | gdb_printf ("%*sobjfile %s\n", spaces, "", |
5258 | host_address_to_string (type->objfile_owner ())); | |
e9bb382b | 5259 | else |
6cb06a8c TT |
5260 | gdb_printf ("%*sgdbarch %s\n", spaces, "", |
5261 | host_address_to_string (type->arch_owner ())); | |
5262 | gdb_printf ("%*starget_type %s\n", spaces, "", | |
27710edb SM |
5263 | host_address_to_string (type->target_type ())); |
5264 | if (type->target_type () != NULL) | |
c906108c | 5265 | { |
27710edb | 5266 | recursive_dump_type (type->target_type (), spaces + 2); |
c906108c | 5267 | } |
6cb06a8c TT |
5268 | gdb_printf ("%*spointer_type %s\n", spaces, "", |
5269 | host_address_to_string (TYPE_POINTER_TYPE (type))); | |
5270 | gdb_printf ("%*sreference_type %s\n", spaces, "", | |
5271 | host_address_to_string (TYPE_REFERENCE_TYPE (type))); | |
5272 | gdb_printf ("%*stype_chain %s\n", spaces, "", | |
5273 | host_address_to_string (TYPE_CHAIN (type))); | |
5274 | gdb_printf ("%*sinstance_flags 0x%x", spaces, "", | |
5275 | (unsigned) type->instance_flags ()); | |
2fdde8f8 DJ |
5276 | if (TYPE_CONST (type)) |
5277 | { | |
0426ad51 | 5278 | gdb_puts (" TYPE_CONST"); |
2fdde8f8 DJ |
5279 | } |
5280 | if (TYPE_VOLATILE (type)) | |
5281 | { | |
0426ad51 | 5282 | gdb_puts (" TYPE_VOLATILE"); |
2fdde8f8 DJ |
5283 | } |
5284 | if (TYPE_CODE_SPACE (type)) | |
5285 | { | |
0426ad51 | 5286 | gdb_puts (" TYPE_CODE_SPACE"); |
2fdde8f8 DJ |
5287 | } |
5288 | if (TYPE_DATA_SPACE (type)) | |
5289 | { | |
0426ad51 | 5290 | gdb_puts (" TYPE_DATA_SPACE"); |
2fdde8f8 | 5291 | } |
8b2dbe47 KB |
5292 | if (TYPE_ADDRESS_CLASS_1 (type)) |
5293 | { | |
0426ad51 | 5294 | gdb_puts (" TYPE_ADDRESS_CLASS_1"); |
8b2dbe47 KB |
5295 | } |
5296 | if (TYPE_ADDRESS_CLASS_2 (type)) | |
5297 | { | |
0426ad51 | 5298 | gdb_puts (" TYPE_ADDRESS_CLASS_2"); |
8b2dbe47 | 5299 | } |
06d66ee9 TT |
5300 | if (TYPE_RESTRICT (type)) |
5301 | { | |
0426ad51 | 5302 | gdb_puts (" TYPE_RESTRICT"); |
06d66ee9 | 5303 | } |
a2c2acaf MW |
5304 | if (TYPE_ATOMIC (type)) |
5305 | { | |
0426ad51 | 5306 | gdb_puts (" TYPE_ATOMIC"); |
a2c2acaf | 5307 | } |
0426ad51 | 5308 | gdb_puts ("\n"); |
876cecd0 | 5309 | |
6cb06a8c | 5310 | gdb_printf ("%*sflags", spaces, ""); |
c6d940a9 | 5311 | if (type->is_unsigned ()) |
c906108c | 5312 | { |
0426ad51 | 5313 | gdb_puts (" TYPE_UNSIGNED"); |
c906108c | 5314 | } |
20ce4123 | 5315 | if (type->has_no_signedness ()) |
762a036f | 5316 | { |
0426ad51 | 5317 | gdb_puts (" TYPE_NOSIGN"); |
762a036f | 5318 | } |
04f5bab2 | 5319 | if (type->endianity_is_not_default ()) |
34877895 | 5320 | { |
0426ad51 | 5321 | gdb_puts (" TYPE_ENDIANITY_NOT_DEFAULT"); |
34877895 | 5322 | } |
e46d3488 | 5323 | if (type->is_stub ()) |
c906108c | 5324 | { |
0426ad51 | 5325 | gdb_puts (" TYPE_STUB"); |
c906108c | 5326 | } |
d2183968 | 5327 | if (type->target_is_stub ()) |
762a036f | 5328 | { |
0426ad51 | 5329 | gdb_puts (" TYPE_TARGET_STUB"); |
762a036f | 5330 | } |
7f9f399b | 5331 | if (type->is_prototyped ()) |
762a036f | 5332 | { |
0426ad51 | 5333 | gdb_puts (" TYPE_PROTOTYPED"); |
762a036f | 5334 | } |
a409645d | 5335 | if (type->has_varargs ()) |
762a036f | 5336 | { |
0426ad51 | 5337 | gdb_puts (" TYPE_VARARGS"); |
762a036f | 5338 | } |
f5f8a009 EZ |
5339 | /* This is used for things like AltiVec registers on ppc. Gcc emits |
5340 | an attribute for the array type, which tells whether or not we | |
5341 | have a vector, instead of a regular array. */ | |
bd63c870 | 5342 | if (type->is_vector ()) |
f5f8a009 | 5343 | { |
0426ad51 | 5344 | gdb_puts (" TYPE_VECTOR"); |
f5f8a009 | 5345 | } |
22c4c60c | 5346 | if (type->is_fixed_instance ()) |
876cecd0 | 5347 | { |
0426ad51 | 5348 | gdb_puts (" TYPE_FIXED_INSTANCE"); |
876cecd0 | 5349 | } |
3f46044c | 5350 | if (type->stub_is_supported ()) |
876cecd0 | 5351 | { |
0426ad51 | 5352 | gdb_puts (" TYPE_STUB_SUPPORTED"); |
876cecd0 TT |
5353 | } |
5354 | if (TYPE_NOTTEXT (type)) | |
5355 | { | |
0426ad51 | 5356 | gdb_puts (" TYPE_NOTTEXT"); |
876cecd0 | 5357 | } |
0426ad51 | 5358 | gdb_puts ("\n"); |
6cb06a8c | 5359 | gdb_printf ("%*snfields %d ", spaces, "", type->num_fields ()); |
5ba3b20e AB |
5360 | if (TYPE_ASSOCIATED_PROP (type) != nullptr |
5361 | || TYPE_ALLOCATED_PROP (type) != nullptr) | |
5362 | { | |
6cb06a8c | 5363 | gdb_printf ("%*s", spaces, ""); |
5ba3b20e AB |
5364 | if (TYPE_ASSOCIATED_PROP (type) != nullptr) |
5365 | { | |
6cb06a8c | 5366 | gdb_printf ("associated "); |
5ba3b20e AB |
5367 | dump_dynamic_prop (*TYPE_ASSOCIATED_PROP (type)); |
5368 | } | |
5369 | if (TYPE_ALLOCATED_PROP (type) != nullptr) | |
5370 | { | |
5371 | if (TYPE_ASSOCIATED_PROP (type) != nullptr) | |
6cb06a8c TT |
5372 | gdb_printf (" "); |
5373 | gdb_printf ("allocated "); | |
5ba3b20e AB |
5374 | dump_dynamic_prop (*TYPE_ALLOCATED_PROP (type)); |
5375 | } | |
6cb06a8c | 5376 | gdb_printf ("\n"); |
5ba3b20e | 5377 | } |
6cb06a8c | 5378 | gdb_printf ("%s\n", host_address_to_string (type->fields ())); |
1f704f76 | 5379 | for (idx = 0; idx < type->num_fields (); idx++) |
c906108c | 5380 | { |
20aadb93 | 5381 | field &fld = type->field (idx); |
78134374 | 5382 | if (type->code () == TYPE_CODE_ENUM) |
6cb06a8c | 5383 | gdb_printf ("%*s[%d] enumval %s type ", spaces + 2, "", |
20aadb93 | 5384 | idx, plongest (fld.loc_enumval ())); |
14e75d8e | 5385 | else |
6cb06a8c | 5386 | gdb_printf ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "", |
20aadb93 TT |
5387 | idx, plongest (fld.loc_bitpos ()), |
5388 | fld.bitsize ()); | |
5ffb4736 | 5389 | gdb_printf ("%s name '%s' (%s)", |
20aadb93 TT |
5390 | host_address_to_string (fld.type ()), |
5391 | fld.name () != NULL | |
5392 | ? fld.name () | |
6cb06a8c | 5393 | : "<NULL>", |
20aadb93 TT |
5394 | host_address_to_string (fld.name ())); |
5395 | if (fld.is_virtual ()) | |
5ffb4736 TT |
5396 | gdb_printf (" virtual"); |
5397 | ||
20aadb93 | 5398 | if (fld.is_private ()) |
5ffb4736 | 5399 | gdb_printf (" private"); |
20aadb93 | 5400 | else if (fld.is_protected ()) |
5ffb4736 | 5401 | gdb_printf (" protected"); |
20aadb93 | 5402 | else if (fld.is_ignored ()) |
5ffb4736 TT |
5403 | gdb_printf (" ignored"); |
5404 | ||
5405 | gdb_printf ("\n"); | |
20aadb93 | 5406 | if (fld.type () != NULL) |
c906108c | 5407 | { |
20aadb93 | 5408 | recursive_dump_type (fld.type (), spaces + 4); |
c906108c SS |
5409 | } |
5410 | } | |
78134374 | 5411 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5412 | { |
6cb06a8c | 5413 | gdb_printf ("%*slow ", spaces, ""); |
53d5a2a5 | 5414 | dump_dynamic_prop (type->bounds ()->low); |
6cb06a8c | 5415 | gdb_printf (" high "); |
53d5a2a5 | 5416 | dump_dynamic_prop (type->bounds ()->high); |
6cb06a8c | 5417 | gdb_printf ("\n"); |
43bbcdc2 | 5418 | } |
c906108c | 5419 | |
b4ba55a1 JB |
5420 | switch (TYPE_SPECIFIC_FIELD (type)) |
5421 | { | |
9c808ba1 TT |
5422 | case TYPE_SPECIFIC_CPLUS_STUFF: |
5423 | gdb_printf ("%*scplus_stuff %s\n", spaces, "", | |
5424 | host_address_to_string (TYPE_CPLUS_SPECIFIC (type))); | |
5425 | print_cplus_stuff (type, spaces); | |
5426 | break; | |
8da61cc4 | 5427 | |
9c808ba1 TT |
5428 | case TYPE_SPECIFIC_GNAT_STUFF: |
5429 | gdb_printf ("%*sgnat_stuff %s\n", spaces, "", | |
5430 | host_address_to_string (TYPE_GNAT_SPECIFIC (type))); | |
5431 | print_gnat_stuff (type, spaces); | |
5432 | break; | |
701c159d | 5433 | |
9c808ba1 TT |
5434 | case TYPE_SPECIFIC_FLOATFORMAT: |
5435 | gdb_printf ("%*sfloatformat ", spaces, ""); | |
5436 | if (TYPE_FLOATFORMAT (type) == NULL | |
5437 | || TYPE_FLOATFORMAT (type)->name == NULL) | |
5438 | gdb_puts ("(null)"); | |
5439 | else | |
5440 | gdb_puts (TYPE_FLOATFORMAT (type)->name); | |
5441 | gdb_puts ("\n"); | |
5442 | break; | |
c906108c | 5443 | |
9c808ba1 TT |
5444 | case TYPE_SPECIFIC_FUNC: |
5445 | gdb_printf ("%*scalling_convention %d\n", spaces, "", | |
5446 | TYPE_CALLING_CONVENTION (type)); | |
5447 | /* tail_call_list is not printed. */ | |
5448 | break; | |
09e2d7c7 | 5449 | |
9c808ba1 TT |
5450 | case TYPE_SPECIFIC_SELF_TYPE: |
5451 | gdb_printf ("%*sself_type %s\n", spaces, "", | |
5452 | host_address_to_string (TYPE_SELF_TYPE (type))); | |
5453 | break; | |
20a5fcbd | 5454 | |
9c808ba1 TT |
5455 | case TYPE_SPECIFIC_FIXED_POINT: |
5456 | gdb_printf ("%*sfixed_point_info ", spaces, ""); | |
5457 | print_fixed_point_type_info (type, spaces); | |
5458 | gdb_puts ("\n"); | |
5459 | break; | |
09584414 | 5460 | |
20a5fcbd TT |
5461 | case TYPE_SPECIFIC_INT: |
5462 | if (type->bit_size_differs_p ()) | |
5463 | { | |
5464 | unsigned bit_size = type->bit_size (); | |
5465 | unsigned bit_off = type->bit_offset (); | |
6cb06a8c TT |
5466 | gdb_printf ("%*s bit size = %u, bit offset = %u\n", spaces, "", |
5467 | bit_size, bit_off); | |
20a5fcbd TT |
5468 | } |
5469 | break; | |
c906108c | 5470 | } |
b4ba55a1 | 5471 | |
c906108c SS |
5472 | if (spaces == 0) |
5473 | obstack_free (&dont_print_type_obstack, NULL); | |
5474 | } | |
5212577a | 5475 | \f |
d9823cbb KB |
5476 | /* Recursively copy (deep copy) a dynamic attribute list of a type. */ |
5477 | ||
5478 | static struct dynamic_prop_list * | |
bde539c2 | 5479 | copy_dynamic_prop_list (struct obstack *storage, |
d9823cbb KB |
5480 | struct dynamic_prop_list *list) |
5481 | { | |
5482 | struct dynamic_prop_list *copy = list; | |
5483 | struct dynamic_prop_list **node_ptr = © | |
5484 | ||
5485 | while (*node_ptr != NULL) | |
5486 | { | |
5487 | struct dynamic_prop_list *node_copy; | |
5488 | ||
224c3ddb | 5489 | node_copy = ((struct dynamic_prop_list *) |
bde539c2 | 5490 | obstack_copy (storage, *node_ptr, |
224c3ddb | 5491 | sizeof (struct dynamic_prop_list))); |
283a9958 | 5492 | node_copy->prop = (*node_ptr)->prop; |
d9823cbb KB |
5493 | *node_ptr = node_copy; |
5494 | ||
5495 | node_ptr = &node_copy->next; | |
5496 | } | |
5497 | ||
5498 | return copy; | |
5499 | } | |
5500 | ||
7ba81444 | 5501 | /* Recursively copy (deep copy) TYPE, if it is associated with |
eed8b28a PP |
5502 | OBJFILE. Return a new type owned by the gdbarch associated with the type, a |
5503 | saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if | |
5504 | it is not associated with OBJFILE. */ | |
ae5a43e0 DJ |
5505 | |
5506 | struct type * | |
112f6d85 | 5507 | copy_type_recursive (struct type *type, copied_types_hash_t &copied_types) |
ae5a43e0 | 5508 | { |
30625020 | 5509 | if (!type->is_objfile_owned ()) |
ae5a43e0 DJ |
5510 | return type; |
5511 | ||
112f6d85 SM |
5512 | if (auto iter = copied_types.find (type); |
5513 | iter != copied_types.end ()) | |
5514 | return iter->second; | |
fd90ace4 | 5515 | |
112f6d85 | 5516 | struct type *new_type = type_allocator (type->arch ()).new_type (); |
ae5a43e0 DJ |
5517 | |
5518 | /* We must add the new type to the hash table immediately, in case | |
5519 | we encounter this type again during a recursive call below. */ | |
112f6d85 | 5520 | copied_types.emplace (type, new_type); |
ae5a43e0 | 5521 | |
876cecd0 TT |
5522 | /* Copy the common fields of types. For the main type, we simply |
5523 | copy the entire thing and then update specific fields as needed. */ | |
5524 | *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); | |
5b7d941b | 5525 | |
8ee511af | 5526 | new_type->set_owner (type->arch ()); |
876cecd0 | 5527 | |
7d93a1e0 SM |
5528 | if (type->name ()) |
5529 | new_type->set_name (xstrdup (type->name ())); | |
ae5a43e0 | 5530 | |
314ad88d | 5531 | new_type->set_instance_flags (type->instance_flags ()); |
df86565b | 5532 | new_type->set_length (type->length ()); |
ae5a43e0 DJ |
5533 | |
5534 | /* Copy the fields. */ | |
1f704f76 | 5535 | if (type->num_fields ()) |
ae5a43e0 DJ |
5536 | { |
5537 | int i, nfields; | |
5538 | ||
1f704f76 | 5539 | nfields = type->num_fields (); |
2774f2da | 5540 | new_type->alloc_fields (type->num_fields ()); |
3cabb6b0 | 5541 | |
ae5a43e0 DJ |
5542 | for (i = 0; i < nfields; i++) |
5543 | { | |
321d8b3f | 5544 | new_type->field (i).set_is_artificial |
454977cd | 5545 | (type->field (i).is_artificial ()); |
3757d2d4 | 5546 | new_type->field (i).set_bitsize (type->field (i).bitsize ()); |
940da03e | 5547 | if (type->field (i).type ()) |
5d14b6e5 | 5548 | new_type->field (i).set_type |
bde539c2 | 5549 | (copy_type_recursive (type->field (i).type (), copied_types)); |
33d16dd9 SM |
5550 | if (type->field (i).name ()) |
5551 | new_type->field (i).set_name (xstrdup (type->field (i).name ())); | |
2ad53ea1 SM |
5552 | |
5553 | switch (type->field (i).loc_kind ()) | |
ae5a43e0 | 5554 | { |
d6a843b5 | 5555 | case FIELD_LOC_KIND_BITPOS: |
b610c045 | 5556 | new_type->field (i).set_loc_bitpos (type->field (i).loc_bitpos ()); |
d6a843b5 | 5557 | break; |
14e75d8e | 5558 | case FIELD_LOC_KIND_ENUMVAL: |
970db518 | 5559 | new_type->field (i).set_loc_enumval (type->field (i).loc_enumval ()); |
14e75d8e | 5560 | break; |
d6a843b5 | 5561 | case FIELD_LOC_KIND_PHYSADDR: |
cd3f655c | 5562 | new_type->field (i).set_loc_physaddr |
e06c3e11 | 5563 | (type->field (i).loc_physaddr ()); |
d6a843b5 JK |
5564 | break; |
5565 | case FIELD_LOC_KIND_PHYSNAME: | |
cd3f655c | 5566 | new_type->field (i).set_loc_physname |
fcbbbd90 | 5567 | (xstrdup (type->field (i).loc_physname ())); |
d6a843b5 | 5568 | break; |
692252c4 TT |
5569 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
5570 | new_type->field (i).set_loc_dwarf_block_addr | |
5571 | (type->field (i).loc_dwarf_block ()); | |
5572 | break; | |
5573 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
5574 | new_type->field (i).set_loc_dwarf_block_bitpos | |
51e36a3a | 5575 | (type->field (i).loc_dwarf_block ()); |
287de656 | 5576 | break; |
d6a843b5 | 5577 | default: |
f34652de | 5578 | internal_error (_("Unexpected type field location kind: %d"), |
2ad53ea1 | 5579 | type->field (i).loc_kind ()); |
ae5a43e0 DJ |
5580 | } |
5581 | } | |
5582 | } | |
5583 | ||
0963b4bd | 5584 | /* For range types, copy the bounds information. */ |
78134374 | 5585 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5586 | { |
c4dfcb36 | 5587 | range_bounds *bounds |
dda83cd7 | 5588 | = ((struct range_bounds *) TYPE_ALLOC |
c4dfcb36 SM |
5589 | (new_type, sizeof (struct range_bounds))); |
5590 | ||
5591 | *bounds = *type->bounds (); | |
5592 | new_type->set_bounds (bounds); | |
43bbcdc2 PH |
5593 | } |
5594 | ||
98d48915 SM |
5595 | if (type->main_type->dyn_prop_list != NULL) |
5596 | new_type->main_type->dyn_prop_list | |
bde539c2 | 5597 | = copy_dynamic_prop_list (gdbarch_obstack (new_type->arch_owner ()), |
98d48915 | 5598 | type->main_type->dyn_prop_list); |
d9823cbb | 5599 | |
3cdcd0ce | 5600 | |
ae5a43e0 | 5601 | /* Copy pointers to other types. */ |
27710edb | 5602 | if (type->target_type ()) |
8a50fdce | 5603 | new_type->set_target_type |
27710edb | 5604 | (copy_type_recursive (type->target_type (), copied_types)); |
f6b3afbf | 5605 | |
ae5a43e0 DJ |
5606 | /* Maybe copy the type_specific bits. |
5607 | ||
5608 | NOTE drow/2005-12-09: We do not copy the C++-specific bits like | |
5609 | base classes and methods. There's no fundamental reason why we | |
5610 | can't, but at the moment it is not needed. */ | |
5611 | ||
f6b3afbf DE |
5612 | switch (TYPE_SPECIFIC_FIELD (type)) |
5613 | { | |
5614 | case TYPE_SPECIFIC_NONE: | |
5615 | break; | |
5616 | case TYPE_SPECIFIC_FUNC: | |
5617 | INIT_FUNC_SPECIFIC (new_type); | |
5618 | TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type); | |
5619 | TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type); | |
5620 | TYPE_TAIL_CALL_LIST (new_type) = NULL; | |
5621 | break; | |
5622 | case TYPE_SPECIFIC_FLOATFORMAT: | |
5623 | TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); | |
5624 | break; | |
5625 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
5626 | INIT_CPLUS_SPECIFIC (new_type); | |
5627 | break; | |
5628 | case TYPE_SPECIFIC_GNAT_STUFF: | |
5629 | INIT_GNAT_SPECIFIC (new_type); | |
5630 | break; | |
09e2d7c7 DE |
5631 | case TYPE_SPECIFIC_SELF_TYPE: |
5632 | set_type_self_type (new_type, | |
bde539c2 | 5633 | copy_type_recursive (TYPE_SELF_TYPE (type), |
09e2d7c7 DE |
5634 | copied_types)); |
5635 | break; | |
09584414 JB |
5636 | case TYPE_SPECIFIC_FIXED_POINT: |
5637 | INIT_FIXED_POINT_SPECIFIC (new_type); | |
2a12c336 JB |
5638 | new_type->fixed_point_info ().scaling_factor |
5639 | = type->fixed_point_info ().scaling_factor; | |
09584414 | 5640 | break; |
20a5fcbd TT |
5641 | case TYPE_SPECIFIC_INT: |
5642 | TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT; | |
5643 | TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff | |
5644 | = TYPE_MAIN_TYPE (type)->type_specific.int_stuff; | |
5645 | break; | |
5646 | ||
f6b3afbf DE |
5647 | default: |
5648 | gdb_assert_not_reached ("bad type_specific_kind"); | |
5649 | } | |
ae5a43e0 DJ |
5650 | |
5651 | return new_type; | |
5652 | } | |
5653 | ||
4af88198 | 5654 | /* Make a copy of the given TYPE, except that the pointer & reference |
8e2da165 | 5655 | types are not preserved. */ |
4af88198 JB |
5656 | |
5657 | struct type * | |
5658 | copy_type (const struct type *type) | |
5659 | { | |
9fa83a7a | 5660 | struct type *new_type = type_allocator (type).new_type (); |
314ad88d | 5661 | new_type->set_instance_flags (type->instance_flags ()); |
df86565b | 5662 | new_type->set_length (type->length ()); |
4af88198 JB |
5663 | memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), |
5664 | sizeof (struct main_type)); | |
98d48915 | 5665 | if (type->main_type->dyn_prop_list != NULL) |
8e2da165 TT |
5666 | { |
5667 | struct obstack *storage = (type->is_objfile_owned () | |
5668 | ? &type->objfile_owner ()->objfile_obstack | |
5669 | : gdbarch_obstack (type->arch_owner ())); | |
5670 | new_type->main_type->dyn_prop_list | |
5671 | = copy_dynamic_prop_list (storage, type->main_type->dyn_prop_list); | |
5672 | } | |
4af88198 JB |
5673 | |
5674 | return new_type; | |
5675 | } | |
5212577a | 5676 | \f |
e9bb382b UW |
5677 | /* Helper functions to initialize architecture-specific types. */ |
5678 | ||
e9bb382b | 5679 | /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. |
77b7c781 | 5680 | NAME is the type name. BIT is the size of the flag word in bits. */ |
5212577a | 5681 | |
e9bb382b | 5682 | struct type * |
77b7c781 | 5683 | arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit) |
e9bb382b | 5684 | { |
e9bb382b UW |
5685 | struct type *type; |
5686 | ||
cc495054 | 5687 | type = type_allocator (gdbarch).new_type (TYPE_CODE_FLAGS, bit, name); |
653223d3 | 5688 | type->set_is_unsigned (true); |
81516450 | 5689 | /* Pre-allocate enough space assuming every field is one bit. */ |
2774f2da TV |
5690 | type->alloc_fields (bit); |
5691 | type->set_num_fields (0); | |
e9bb382b UW |
5692 | |
5693 | return type; | |
5694 | } | |
5695 | ||
5696 | /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
81516450 DE |
5697 | position BITPOS is called NAME. Pass NAME as "" for fields that |
5698 | should not be printed. */ | |
5699 | ||
5700 | void | |
5701 | append_flags_type_field (struct type *type, int start_bitpos, int nr_bits, | |
695bfa52 | 5702 | struct type *field_type, const char *name) |
81516450 | 5703 | { |
df86565b | 5704 | int type_bitsize = type->length () * TARGET_CHAR_BIT; |
1f704f76 | 5705 | int field_nr = type->num_fields (); |
81516450 | 5706 | |
78134374 | 5707 | gdb_assert (type->code () == TYPE_CODE_FLAGS); |
1f704f76 | 5708 | gdb_assert (type->num_fields () + 1 <= type_bitsize); |
81516450 | 5709 | gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize); |
602885d8 | 5710 | gdb_assert (nr_bits >= 1 && (start_bitpos + nr_bits) <= type_bitsize); |
81516450 DE |
5711 | gdb_assert (name != NULL); |
5712 | ||
5a8edb75 | 5713 | type->set_num_fields (type->num_fields () + 1); |
d3fd12df | 5714 | type->field (field_nr).set_name (xstrdup (name)); |
5d14b6e5 | 5715 | type->field (field_nr).set_type (field_type); |
cd3f655c | 5716 | type->field (field_nr).set_loc_bitpos (start_bitpos); |
886176b8 | 5717 | type->field (field_nr).set_bitsize (nr_bits); |
81516450 DE |
5718 | } |
5719 | ||
5720 | /* Special version of append_flags_type_field to add a flag field. | |
5721 | Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
e9bb382b | 5722 | position BITPOS is called NAME. */ |
5212577a | 5723 | |
e9bb382b | 5724 | void |
695bfa52 | 5725 | append_flags_type_flag (struct type *type, int bitpos, const char *name) |
e9bb382b | 5726 | { |
81516450 | 5727 | append_flags_type_field (type, bitpos, 1, |
8ee511af | 5728 | builtin_type (type->arch ())->builtin_bool, |
81516450 | 5729 | name); |
e9bb382b UW |
5730 | } |
5731 | ||
5732 | /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as | |
5733 | specified by CODE) associated with GDBARCH. NAME is the type name. */ | |
5212577a | 5734 | |
e9bb382b | 5735 | struct type * |
695bfa52 TT |
5736 | arch_composite_type (struct gdbarch *gdbarch, const char *name, |
5737 | enum type_code code) | |
e9bb382b UW |
5738 | { |
5739 | struct type *t; | |
d8734c88 | 5740 | |
e9bb382b | 5741 | gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); |
cc495054 | 5742 | t = type_allocator (gdbarch).new_type (code, 0, NULL); |
d0e39ea2 | 5743 | t->set_name (name); |
e9bb382b UW |
5744 | INIT_CPLUS_SPECIFIC (t); |
5745 | return t; | |
5746 | } | |
5747 | ||
5748 | /* Add new field with name NAME and type FIELD to composite type T. | |
f5dff777 DJ |
5749 | Do not set the field's position or adjust the type's length; |
5750 | the caller should do so. Return the new field. */ | |
5212577a | 5751 | |
f5dff777 | 5752 | struct field * |
695bfa52 | 5753 | append_composite_type_field_raw (struct type *t, const char *name, |
f5dff777 | 5754 | struct type *field) |
e9bb382b UW |
5755 | { |
5756 | struct field *f; | |
d8734c88 | 5757 | |
1f704f76 | 5758 | t->set_num_fields (t->num_fields () + 1); |
80fc5e77 | 5759 | t->set_fields (XRESIZEVEC (struct field, t->fields (), |
3cabb6b0 | 5760 | t->num_fields ())); |
80fc5e77 | 5761 | f = &t->field (t->num_fields () - 1); |
e9bb382b | 5762 | memset (f, 0, sizeof f[0]); |
5d14b6e5 | 5763 | f[0].set_type (field); |
d3fd12df | 5764 | f[0].set_name (name); |
f5dff777 DJ |
5765 | return f; |
5766 | } | |
5767 | ||
5768 | /* Add new field with name NAME and type FIELD to composite type T. | |
5769 | ALIGNMENT (if non-zero) specifies the minimum field alignment. */ | |
5212577a | 5770 | |
f5dff777 | 5771 | void |
695bfa52 | 5772 | append_composite_type_field_aligned (struct type *t, const char *name, |
f5dff777 DJ |
5773 | struct type *field, int alignment) |
5774 | { | |
5775 | struct field *f = append_composite_type_field_raw (t, name, field); | |
d8734c88 | 5776 | |
78134374 | 5777 | if (t->code () == TYPE_CODE_UNION) |
e9bb382b | 5778 | { |
df86565b SM |
5779 | if (t->length () < field->length ()) |
5780 | t->set_length (field->length ()); | |
e9bb382b | 5781 | } |
78134374 | 5782 | else if (t->code () == TYPE_CODE_STRUCT) |
e9bb382b | 5783 | { |
df86565b | 5784 | t->set_length (t->length () + field->length ()); |
1f704f76 | 5785 | if (t->num_fields () > 1) |
e9bb382b | 5786 | { |
cd3f655c | 5787 | f->set_loc_bitpos |
df86565b SM |
5788 | (f[-1].loc_bitpos () |
5789 | + (f[-1].type ()->length () * TARGET_CHAR_BIT)); | |
e9bb382b UW |
5790 | |
5791 | if (alignment) | |
5792 | { | |
86c3c1fc AB |
5793 | int left; |
5794 | ||
5795 | alignment *= TARGET_CHAR_BIT; | |
3a543e21 | 5796 | left = f[0].loc_bitpos () % alignment; |
d8734c88 | 5797 | |
e9bb382b UW |
5798 | if (left) |
5799 | { | |
3a543e21 | 5800 | f->set_loc_bitpos (f[0].loc_bitpos () + (alignment - left)); |
b6cdbc9a SM |
5801 | t->set_length |
5802 | (t->length () + (alignment - left) / TARGET_CHAR_BIT); | |
e9bb382b UW |
5803 | } |
5804 | } | |
5805 | } | |
5806 | } | |
5807 | } | |
5808 | ||
5809 | /* Add new field with name NAME and type FIELD to composite type T. */ | |
5212577a | 5810 | |
e9bb382b | 5811 | void |
695bfa52 | 5812 | append_composite_type_field (struct type *t, const char *name, |
e9bb382b UW |
5813 | struct type *field) |
5814 | { | |
5815 | append_composite_type_field_aligned (t, name, field, 0); | |
5816 | } | |
5817 | ||
09584414 JB |
5818 | \f |
5819 | ||
5820 | /* We manage the lifetimes of fixed_point_type_info objects by | |
5821 | attaching them to the objfile. Currently, these objects are | |
5822 | modified during construction, and GMP does not provide a way to | |
5823 | hash the contents of an mpq_t; so it's a bit of a pain to hash-cons | |
5824 | them. If we did do this, they could be moved to the per-BFD and | |
5825 | shared across objfiles. */ | |
5826 | typedef std::vector<std::unique_ptr<fixed_point_type_info>> | |
5827 | fixed_point_type_storage; | |
5828 | ||
5829 | /* Key used for managing the storage of fixed-point type info. */ | |
08b8a139 | 5830 | static const struct registry<objfile>::key<fixed_point_type_storage> |
09584414 JB |
5831 | fixed_point_objfile_key; |
5832 | ||
5833 | /* See gdbtypes.h. */ | |
5834 | ||
2a12c336 | 5835 | void |
09584414 JB |
5836 | allocate_fixed_point_type_info (struct type *type) |
5837 | { | |
6b62451a | 5838 | auto up = std::make_unique<fixed_point_type_info> (); |
2a12c336 | 5839 | fixed_point_type_info *info; |
09584414 | 5840 | |
30625020 | 5841 | if (type->is_objfile_owned ()) |
09584414 JB |
5842 | { |
5843 | fixed_point_type_storage *storage | |
6ac37371 | 5844 | = fixed_point_objfile_key.get (type->objfile_owner ()); |
09584414 | 5845 | if (storage == nullptr) |
6ac37371 | 5846 | storage = fixed_point_objfile_key.emplace (type->objfile_owner ()); |
2a12c336 | 5847 | info = up.get (); |
09584414 JB |
5848 | storage->push_back (std::move (up)); |
5849 | } | |
5850 | else | |
5851 | { | |
5852 | /* We just leak the memory, because that's what we do generally | |
5853 | for non-objfile-attached types. */ | |
2a12c336 | 5854 | info = up.release (); |
09584414 JB |
5855 | } |
5856 | ||
2a12c336 | 5857 | type->set_fixed_point_info (info); |
09584414 JB |
5858 | } |
5859 | ||
5860 | /* See gdbtypes.h. */ | |
5861 | ||
5862 | bool | |
5863 | is_fixed_point_type (struct type *type) | |
5864 | { | |
5865 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) | |
27710edb | 5866 | type = check_typedef (type)->target_type (); |
09584414 JB |
5867 | type = check_typedef (type); |
5868 | ||
5869 | return type->code () == TYPE_CODE_FIXED_POINT; | |
5870 | } | |
5871 | ||
5872 | /* See gdbtypes.h. */ | |
5873 | ||
5874 | struct type * | |
d19937a7 | 5875 | type::fixed_point_type_base_type () |
09584414 | 5876 | { |
d19937a7 JB |
5877 | struct type *type = this; |
5878 | ||
09584414 | 5879 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) |
27710edb | 5880 | type = check_typedef (type)->target_type (); |
09584414 JB |
5881 | type = check_typedef (type); |
5882 | ||
5883 | gdb_assert (type->code () == TYPE_CODE_FIXED_POINT); | |
5884 | return type; | |
5885 | } | |
5886 | ||
5887 | /* See gdbtypes.h. */ | |
5888 | ||
5889 | const gdb_mpq & | |
e6fcee3a | 5890 | type::fixed_point_scaling_factor () |
09584414 | 5891 | { |
e6fcee3a | 5892 | struct type *type = this->fixed_point_type_base_type (); |
09584414 | 5893 | |
2a12c336 | 5894 | return type->fixed_point_info ().scaling_factor; |
09584414 JB |
5895 | } |
5896 | ||
2774f2da TV |
5897 | /* See gdbtypes.h. */ |
5898 | ||
5899 | void | |
5900 | type::alloc_fields (unsigned int nfields, bool init) | |
5901 | { | |
5902 | this->set_num_fields (nfields); | |
5903 | ||
5904 | if (nfields == 0) | |
5905 | { | |
5906 | this->main_type->flds_bnds.fields = nullptr; | |
5907 | return; | |
5908 | } | |
5909 | ||
5910 | size_t size = nfields * sizeof (*this->fields ()); | |
5911 | struct field *fields | |
5912 | = (struct field *) (init | |
5913 | ? TYPE_ZALLOC (this, size) | |
5914 | : TYPE_ALLOC (this, size)); | |
5915 | ||
5916 | this->main_type->flds_bnds.fields = fields; | |
5917 | } | |
5918 | ||
5919 | /* See gdbtypes.h. */ | |
5920 | ||
5921 | void | |
5922 | type::copy_fields (struct type *src) | |
5923 | { | |
5924 | unsigned int nfields = src->num_fields (); | |
5925 | alloc_fields (nfields, false); | |
5926 | if (nfields == 0) | |
5927 | return; | |
5928 | ||
5929 | size_t size = nfields * sizeof (*this->fields ()); | |
5930 | memcpy (this->fields (), src->fields (), size); | |
5931 | } | |
5932 | ||
5933 | /* See gdbtypes.h. */ | |
5934 | ||
5935 | void | |
5936 | type::copy_fields (std::vector<struct field> &src) | |
5937 | { | |
5938 | unsigned int nfields = src.size (); | |
5939 | alloc_fields (nfields, false); | |
5940 | if (nfields == 0) | |
5941 | return; | |
5942 | ||
5943 | size_t size = nfields * sizeof (*this->fields ()); | |
5944 | memcpy (this->fields (), src.data (), size); | |
5945 | } | |
84914f59 | 5946 | |
76fc0f62 TT |
5947 | /* See gdbtypes.h. */ |
5948 | ||
5949 | bool | |
5950 | type::is_string_like () | |
5951 | { | |
5952 | const language_defn *defn = language_def (this->language ()); | |
5953 | return defn->is_string_type_p (this); | |
5954 | } | |
5955 | ||
5956 | /* See gdbtypes.h. */ | |
5957 | ||
84914f59 TT |
5958 | bool |
5959 | type::is_array_like () | |
5960 | { | |
5961 | if (code () == TYPE_CODE_ARRAY) | |
5962 | return true; | |
76fc0f62 TT |
5963 | const language_defn *defn = language_def (this->language ()); |
5964 | return defn->is_array_like (this); | |
84914f59 TT |
5965 | } |
5966 | ||
09584414 JB |
5967 | \f |
5968 | ||
cb275538 | 5969 | static const registry<gdbarch>::key<struct builtin_type> gdbtypes_data; |
000177f0 | 5970 | |
cb275538 TT |
5971 | static struct builtin_type * |
5972 | create_gdbtypes_data (struct gdbarch *gdbarch) | |
000177f0 | 5973 | { |
cb275538 | 5974 | struct builtin_type *builtin_type = new struct builtin_type; |
000177f0 | 5975 | |
cc495054 TT |
5976 | type_allocator alloc (gdbarch); |
5977 | ||
46bf5051 | 5978 | /* Basic types. */ |
e9bb382b | 5979 | builtin_type->builtin_void |
cc495054 | 5980 | = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
e9bb382b | 5981 | builtin_type->builtin_char |
2d39ccd3 | 5982 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b | 5983 | !gdbarch_char_signed (gdbarch), "char"); |
15152a54 | 5984 | builtin_type->builtin_char->set_has_no_signedness (true); |
e9bb382b | 5985 | builtin_type->builtin_signed_char |
2d39ccd3 | 5986 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b UW |
5987 | 0, "signed char"); |
5988 | builtin_type->builtin_unsigned_char | |
2d39ccd3 | 5989 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b UW |
5990 | 1, "unsigned char"); |
5991 | builtin_type->builtin_short | |
2d39ccd3 | 5992 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
e9bb382b UW |
5993 | 0, "short"); |
5994 | builtin_type->builtin_unsigned_short | |
2d39ccd3 | 5995 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
e9bb382b UW |
5996 | 1, "unsigned short"); |
5997 | builtin_type->builtin_int | |
2d39ccd3 | 5998 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
e9bb382b UW |
5999 | 0, "int"); |
6000 | builtin_type->builtin_unsigned_int | |
2d39ccd3 | 6001 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
e9bb382b UW |
6002 | 1, "unsigned int"); |
6003 | builtin_type->builtin_long | |
2d39ccd3 | 6004 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
e9bb382b UW |
6005 | 0, "long"); |
6006 | builtin_type->builtin_unsigned_long | |
2d39ccd3 | 6007 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
e9bb382b UW |
6008 | 1, "unsigned long"); |
6009 | builtin_type->builtin_long_long | |
2d39ccd3 | 6010 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
e9bb382b UW |
6011 | 0, "long long"); |
6012 | builtin_type->builtin_unsigned_long_long | |
2d39ccd3 | 6013 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
e9bb382b | 6014 | 1, "unsigned long long"); |
a6d0f249 | 6015 | builtin_type->builtin_half |
77c5f496 | 6016 | = init_float_type (alloc, gdbarch_half_bit (gdbarch), |
a6d0f249 | 6017 | "half", gdbarch_half_format (gdbarch)); |
70bd8e24 | 6018 | builtin_type->builtin_float |
77c5f496 | 6019 | = init_float_type (alloc, gdbarch_float_bit (gdbarch), |
27067745 | 6020 | "float", gdbarch_float_format (gdbarch)); |
2a67f09d | 6021 | builtin_type->builtin_bfloat16 |
77c5f496 | 6022 | = init_float_type (alloc, gdbarch_bfloat16_bit (gdbarch), |
2a67f09d | 6023 | "bfloat16", gdbarch_bfloat16_format (gdbarch)); |
70bd8e24 | 6024 | builtin_type->builtin_double |
77c5f496 | 6025 | = init_float_type (alloc, gdbarch_double_bit (gdbarch), |
27067745 | 6026 | "double", gdbarch_double_format (gdbarch)); |
70bd8e24 | 6027 | builtin_type->builtin_long_double |
77c5f496 | 6028 | = init_float_type (alloc, gdbarch_long_double_bit (gdbarch), |
27067745 | 6029 | "long double", gdbarch_long_double_format (gdbarch)); |
70bd8e24 | 6030 | builtin_type->builtin_complex |
5b930b45 | 6031 | = init_complex_type ("complex", builtin_type->builtin_float); |
70bd8e24 | 6032 | builtin_type->builtin_double_complex |
5b930b45 | 6033 | = init_complex_type ("double complex", builtin_type->builtin_double); |
e9bb382b | 6034 | builtin_type->builtin_string |
cc495054 | 6035 | = alloc.new_type (TYPE_CODE_STRING, TARGET_CHAR_BIT, "string"); |
e9bb382b | 6036 | builtin_type->builtin_bool |
46c04ea3 | 6037 | = init_boolean_type (alloc, TARGET_CHAR_BIT, 1, "bool"); |
000177f0 | 6038 | |
7678ef8f TJB |
6039 | /* The following three are about decimal floating point types, which |
6040 | are 32-bits, 64-bits and 128-bits respectively. */ | |
6041 | builtin_type->builtin_decfloat | |
0776344a | 6042 | = init_decfloat_type (alloc, 32, "_Decimal32"); |
7678ef8f | 6043 | builtin_type->builtin_decdouble |
0776344a | 6044 | = init_decfloat_type (alloc, 64, "_Decimal64"); |
7678ef8f | 6045 | builtin_type->builtin_declong |
0776344a | 6046 | = init_decfloat_type (alloc, 128, "_Decimal128"); |
7678ef8f | 6047 | |
69feb676 | 6048 | /* "True" character types. */ |
e9bb382b | 6049 | builtin_type->builtin_true_char |
f50b437c | 6050 | = init_character_type (alloc, TARGET_CHAR_BIT, 0, "true character"); |
e9bb382b | 6051 | builtin_type->builtin_true_unsigned_char |
f50b437c | 6052 | = init_character_type (alloc, TARGET_CHAR_BIT, 1, "true character"); |
69feb676 | 6053 | |
df4df182 | 6054 | /* Fixed-size integer types. */ |
e9bb382b | 6055 | builtin_type->builtin_int0 |
2d39ccd3 | 6056 | = init_integer_type (alloc, 0, 0, "int0_t"); |
e9bb382b | 6057 | builtin_type->builtin_int8 |
2d39ccd3 | 6058 | = init_integer_type (alloc, 8, 0, "int8_t"); |
e9bb382b | 6059 | builtin_type->builtin_uint8 |
2d39ccd3 | 6060 | = init_integer_type (alloc, 8, 1, "uint8_t"); |
e9bb382b | 6061 | builtin_type->builtin_int16 |
2d39ccd3 | 6062 | = init_integer_type (alloc, 16, 0, "int16_t"); |
e9bb382b | 6063 | builtin_type->builtin_uint16 |
2d39ccd3 | 6064 | = init_integer_type (alloc, 16, 1, "uint16_t"); |
d1908f2d | 6065 | builtin_type->builtin_int24 |
2d39ccd3 | 6066 | = init_integer_type (alloc, 24, 0, "int24_t"); |
d1908f2d | 6067 | builtin_type->builtin_uint24 |
2d39ccd3 | 6068 | = init_integer_type (alloc, 24, 1, "uint24_t"); |
e9bb382b | 6069 | builtin_type->builtin_int32 |
2d39ccd3 | 6070 | = init_integer_type (alloc, 32, 0, "int32_t"); |
e9bb382b | 6071 | builtin_type->builtin_uint32 |
2d39ccd3 | 6072 | = init_integer_type (alloc, 32, 1, "uint32_t"); |
e9bb382b | 6073 | builtin_type->builtin_int64 |
2d39ccd3 | 6074 | = init_integer_type (alloc, 64, 0, "int64_t"); |
e9bb382b | 6075 | builtin_type->builtin_uint64 |
2d39ccd3 | 6076 | = init_integer_type (alloc, 64, 1, "uint64_t"); |
e9bb382b | 6077 | builtin_type->builtin_int128 |
2d39ccd3 | 6078 | = init_integer_type (alloc, 128, 0, "int128_t"); |
e9bb382b | 6079 | builtin_type->builtin_uint128 |
2d39ccd3 | 6080 | = init_integer_type (alloc, 128, 1, "uint128_t"); |
314ad88d PA |
6081 | |
6082 | builtin_type->builtin_int8->set_instance_flags | |
6083 | (builtin_type->builtin_int8->instance_flags () | |
6084 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
6085 | ||
6086 | builtin_type->builtin_uint8->set_instance_flags | |
6087 | (builtin_type->builtin_uint8->instance_flags () | |
6088 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
df4df182 | 6089 | |
9a22f0d0 PM |
6090 | /* Wide character types. */ |
6091 | builtin_type->builtin_char16 | |
2d39ccd3 | 6092 | = init_integer_type (alloc, 16, 1, "char16_t"); |
9a22f0d0 | 6093 | builtin_type->builtin_char32 |
2d39ccd3 | 6094 | = init_integer_type (alloc, 32, 1, "char32_t"); |
53375380 | 6095 | builtin_type->builtin_wchar |
2d39ccd3 | 6096 | = init_integer_type (alloc, gdbarch_wchar_bit (gdbarch), |
53375380 | 6097 | !gdbarch_wchar_signed (gdbarch), "wchar_t"); |
9a22f0d0 | 6098 | |
46bf5051 | 6099 | /* Default data/code pointer types. */ |
e9bb382b UW |
6100 | builtin_type->builtin_data_ptr |
6101 | = lookup_pointer_type (builtin_type->builtin_void); | |
6102 | builtin_type->builtin_func_ptr | |
6103 | = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); | |
0875794a JK |
6104 | builtin_type->builtin_func_func |
6105 | = lookup_function_type (builtin_type->builtin_func_ptr); | |
46bf5051 | 6106 | |
78267919 | 6107 | /* This type represents a GDB internal function. */ |
e9bb382b | 6108 | builtin_type->internal_fn |
cc495054 TT |
6109 | = alloc.new_type (TYPE_CODE_INTERNAL_FUNCTION, 0, |
6110 | "<internal function>"); | |
78267919 | 6111 | |
e81e7f5e SC |
6112 | /* This type represents an xmethod. */ |
6113 | builtin_type->xmethod | |
cc495054 | 6114 | = alloc.new_type (TYPE_CODE_XMETHOD, 0, "<xmethod>"); |
e81e7f5e | 6115 | |
a9a775da TT |
6116 | /* This type represents a type that was unrecognized in symbol read-in. */ |
6117 | builtin_type->builtin_error | |
6118 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<unknown type>"); | |
6119 | ||
6120 | /* The following set of types is used for symbols with no | |
6121 | debug information. */ | |
6122 | builtin_type->nodebug_text_symbol | |
6123 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
6124 | "<text variable, no debug info>"); | |
6125 | ||
6126 | builtin_type->nodebug_text_gnu_ifunc_symbol | |
6127 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
6128 | "<text gnu-indirect-function variable, no debug info>"); | |
6129 | builtin_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true); | |
6130 | ||
6131 | builtin_type->nodebug_got_plt_symbol | |
6132 | = init_pointer_type (alloc, gdbarch_addr_bit (gdbarch), | |
6133 | "<text from jump slot in .got.plt, no debug info>", | |
6134 | builtin_type->nodebug_text_symbol); | |
6135 | builtin_type->nodebug_data_symbol | |
6136 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<data variable, no debug info>"); | |
6137 | builtin_type->nodebug_unknown_symbol | |
6138 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
6139 | "<variable (not text or data), no debug info>"); | |
6140 | builtin_type->nodebug_tls_symbol | |
6141 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
6142 | "<thread local variable, no debug info>"); | |
6143 | ||
6144 | /* NOTE: on some targets, addresses and pointers are not necessarily | |
6145 | the same. | |
6146 | ||
6147 | The upshot is: | |
6148 | - gdb's `struct type' always describes the target's | |
6149 | representation. | |
6150 | - gdb's `struct value' objects should always hold values in | |
6151 | target form. | |
6152 | - gdb's CORE_ADDR values are addresses in the unified virtual | |
6153 | address space that the assembler and linker work with. Thus, | |
6154 | since target_read_memory takes a CORE_ADDR as an argument, it | |
6155 | can access any memory on the target, even if the processor has | |
6156 | separate code and data address spaces. | |
6157 | ||
6158 | In this context, builtin_type->builtin_core_addr is a bit odd: | |
6159 | it's a target type for a value the target will never see. It's | |
6160 | only used to hold the values of (typeless) linker symbols, which | |
6161 | are indeed in the unified virtual address space. */ | |
6162 | ||
6163 | builtin_type->builtin_core_addr | |
6164 | = init_integer_type (alloc, gdbarch_addr_bit (gdbarch), 1, | |
6165 | "__CORE_ADDR"); | |
46bf5051 UW |
6166 | return builtin_type; |
6167 | } | |
6168 | ||
cb275538 TT |
6169 | const struct builtin_type * |
6170 | builtin_type (struct gdbarch *gdbarch) | |
6171 | { | |
6172 | struct builtin_type *result = gdbtypes_data.get (gdbarch); | |
6173 | if (result == nullptr) | |
6174 | { | |
6175 | result = create_gdbtypes_data (gdbarch); | |
6176 | gdbtypes_data.set (gdbarch, result); | |
6177 | } | |
6178 | return result; | |
6179 | } | |
6180 | ||
2d1bc552 | 6181 | const struct builtin_type * |
a8ed3dde | 6182 | builtin_type (struct objfile *objfile) |
46bf5051 | 6183 | { |
2d1bc552 | 6184 | return builtin_type (objfile->arch ()); |
000177f0 AC |
6185 | } |
6186 | ||
4b42385c | 6187 | /* See dwarf2/call-site.h. */ |
b84aaada SM |
6188 | |
6189 | CORE_ADDR | |
6190 | call_site::pc () const | |
6191 | { | |
4b42385c GL |
6192 | /* dwarf2_per_objfile is defined in dwarf/read.c, so if that is disabled |
6193 | at configure time, we won't be able to use this relocate function. | |
6194 | This is dwarf-specific, and would ideally be in call-site.h, but | |
6195 | including dwarf2/read.h in dwarf2/call-site.h will lead to things being | |
6196 | included in the wrong order and many compilation errors will happen. | |
6197 | This is the next best thing. */ | |
6198 | #if defined(DWARF_FORMAT_AVAILABLE) | |
1e73d09f | 6199 | return per_objfile->relocate (m_unrelocated_pc); |
4b42385c GL |
6200 | #else |
6201 | gdb_assert_not_reached ("unexpected call_site object found"); | |
6202 | #endif | |
b84aaada SM |
6203 | } |
6204 | ||
5fe70629 | 6205 | INIT_GDB_FILE (gdbtypes) |
c906108c | 6206 | { |
ccce17b0 YQ |
6207 | add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug, |
6208 | _("Set debugging of C++ overloading."), | |
6209 | _("Show debugging of C++ overloading."), | |
6210 | _("When enabled, ranking of the " | |
6211 | "functions is displayed."), | |
6212 | NULL, | |
6213 | show_overload_debug, | |
6214 | &setdebuglist, &showdebuglist); | |
5674de60 | 6215 | |
7ba81444 | 6216 | /* Add user knob for controlling resolution of opaque types. */ |
5674de60 | 6217 | add_setshow_boolean_cmd ("opaque-type-resolution", class_support, |
3e43a32a | 6218 | &opaque_type_resolution, |
0fd0f223 TT |
6219 | _("\ |
6220 | Set resolution of opaque struct/class/union types."), | |
6221 | _("\ | |
6222 | Show resolution of opaque struct/class/union types."), | |
3e43a32a | 6223 | NULL, NULL, |
5674de60 UW |
6224 | show_opaque_type_resolution, |
6225 | &setlist, &showlist); | |
a451cb65 KS |
6226 | |
6227 | /* Add an option to permit non-strict type checking. */ | |
6228 | add_setshow_boolean_cmd ("type", class_support, | |
6229 | &strict_type_checking, | |
6230 | _("Set strict type checking."), | |
6231 | _("Show strict type checking."), | |
6232 | NULL, NULL, | |
6233 | show_strict_type_checking, | |
6234 | &setchecklist, &showchecklist); | |
c906108c | 6235 | } |