]>
| Commit | Line | Data |
|---|---|---|
| c906108c | 1 | /* Support routines for manipulating internal types for GDB. |
| 4f2aea11 | 2 | |
| d01e8234 | 3 | Copyright (C) 1992-2025 Free Software Foundation, Inc. |
| 4f2aea11 | 4 | |
| c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
| 6 | ||
| c5aa993b | 7 | This file is part of GDB. |
| c906108c | 8 | |
| c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License as published by | |
| a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
| c5aa993b | 12 | (at your option) any later version. |
| c906108c | 13 | |
| c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 17 | GNU General Public License for more details. | |
| c906108c | 18 | |
| c5aa993b | 19 | You should have received a copy of the GNU General Public License |
| a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| c906108c | 21 | |
| c906108c SS |
22 | #include "bfd.h" |
| 23 | #include "symtab.h" | |
| 24 | #include "symfile.h" | |
| 25 | #include "objfiles.h" | |
| 26 | #include "gdbtypes.h" | |
| 27 | #include "expression.h" | |
| 28 | #include "language.h" | |
| 29 | #include "target.h" | |
| 30 | #include "value.h" | |
| 31 | #include "demangle.h" | |
| 32 | #include "complaints.h" | |
| 5b9707eb | 33 | #include "cli/cli-cmds.h" |
| 015a42b4 | 34 | #include "cp-abi.h" |
| ae5a43e0 | 35 | #include "hashtab.h" |
| 8de20a37 | 36 | #include "cp-support.h" |
| ca092b61 | 37 | #include "bcache.h" |
| 82ca8957 | 38 | #include "dwarf2/loc.h" |
| b84aaada | 39 | #include "dwarf2/read.h" |
| 80180f79 | 40 | #include "gdbcore.h" |
| 1841ee5d | 41 | #include "floatformat.h" |
| a5c641b5 | 42 | #include "f-lang.h" |
| ef83a141 | 43 | #include <algorithm> |
| 09584414 | 44 | #include "gmp-utils.h" |
| 84914f59 TT |
45 | #include "rust-lang.h" |
| 46 | #include "ada-lang.h" | |
| 8d6a3c8e | 47 | #include "extract-store-integer.h" |
| ac3aafc7 | 48 | |
| ac03c8d8 TT |
49 | /* The value of an invalid conversion badness. */ |
| 50 | #define INVALID_CONVERSION 100 | |
| 51 | ||
| 5f59e7e0 | 52 | static struct dynamic_prop_list * |
| 53 | copy_dynamic_prop_list (struct obstack *, struct dynamic_prop_list *); | |
| 54 | ||
| 6403aeea SW |
55 | /* Initialize BADNESS constants. */ |
| 56 | ||
| ac03c8d8 | 57 | const struct rank LENGTH_MISMATCH_BADNESS = {INVALID_CONVERSION,0}; |
| 6403aeea | 58 | |
| ac03c8d8 TT |
59 | const struct rank TOO_FEW_PARAMS_BADNESS = {INVALID_CONVERSION,0}; |
| 60 | const struct rank INCOMPATIBLE_TYPE_BADNESS = {INVALID_CONVERSION,0}; | |
| 6403aeea | 61 | |
| a9d5ef47 | 62 | const struct rank EXACT_MATCH_BADNESS = {0,0}; |
| 6403aeea | 63 | |
| a9d5ef47 SW |
64 | const struct rank INTEGER_PROMOTION_BADNESS = {1,0}; |
| 65 | const struct rank FLOAT_PROMOTION_BADNESS = {1,0}; | |
| 66 | const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0}; | |
| e15c3eb4 | 67 | const struct rank CV_CONVERSION_BADNESS = {1, 0}; |
| a9d5ef47 SW |
68 | const struct rank INTEGER_CONVERSION_BADNESS = {2,0}; |
| 69 | const struct rank FLOAT_CONVERSION_BADNESS = {2,0}; | |
| 70 | const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0}; | |
| 71 | const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0}; | |
| 5b4f6e25 | 72 | const struct rank BOOL_CONVERSION_BADNESS = {3,0}; |
| a9d5ef47 SW |
73 | const struct rank BASE_CONVERSION_BADNESS = {2,0}; |
| 74 | const struct rank REFERENCE_CONVERSION_BADNESS = {2,0}; | |
| 06acc08f | 75 | const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1}; |
| da096638 | 76 | const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0}; |
| a9d5ef47 | 77 | const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0}; |
| a451cb65 | 78 | const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0}; |
| 1d2f86b6 | 79 | const struct rank VARARG_BADNESS = {4, 0}; |
| 6403aeea | 80 | |
| 8da61cc4 | 81 | /* Floatformat pairs. */ |
| f9e9243a UW |
82 | const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { |
| 83 | &floatformat_ieee_half_big, | |
| 84 | &floatformat_ieee_half_little | |
| 85 | }; | |
| 8da61cc4 DJ |
86 | const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { |
| 87 | &floatformat_ieee_single_big, | |
| 88 | &floatformat_ieee_single_little | |
| 89 | }; | |
| 90 | const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { | |
| 91 | &floatformat_ieee_double_big, | |
| 92 | &floatformat_ieee_double_little | |
| 93 | }; | |
| 552f1157 TY |
94 | const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN] = { |
| 95 | &floatformat_ieee_quad_big, | |
| 96 | &floatformat_ieee_quad_little | |
| 97 | }; | |
| 8da61cc4 DJ |
98 | const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { |
| 99 | &floatformat_ieee_double_big, | |
| 100 | &floatformat_ieee_double_littlebyte_bigword | |
| 101 | }; | |
| 102 | const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { | |
| 103 | &floatformat_i387_ext, | |
| 104 | &floatformat_i387_ext | |
| 105 | }; | |
| 106 | const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { | |
| 107 | &floatformat_m68881_ext, | |
| 108 | &floatformat_m68881_ext | |
| 109 | }; | |
| 110 | const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { | |
| 111 | &floatformat_arm_ext_big, | |
| 112 | &floatformat_arm_ext_littlebyte_bigword | |
| 113 | }; | |
| 114 | const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { | |
| 115 | &floatformat_ia64_spill_big, | |
| 116 | &floatformat_ia64_spill_little | |
| 117 | }; | |
| 8da61cc4 DJ |
118 | const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { |
| 119 | &floatformat_vax_f, | |
| 120 | &floatformat_vax_f | |
| 121 | }; | |
| 122 | const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { | |
| 123 | &floatformat_vax_d, | |
| 124 | &floatformat_vax_d | |
| 125 | }; | |
| b14d30e1 | 126 | const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { |
| f5aee5ee AM |
127 | &floatformat_ibm_long_double_big, |
| 128 | &floatformat_ibm_long_double_little | |
| b14d30e1 | 129 | }; |
| 2a67f09d FW |
130 | const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = { |
| 131 | &floatformat_bfloat16_big, | |
| 132 | &floatformat_bfloat16_little | |
| 133 | }; | |
| 8da61cc4 | 134 | |
| 2873700e KS |
135 | /* Should opaque types be resolved? */ |
| 136 | ||
| 491144b5 | 137 | static bool opaque_type_resolution = true; |
| 2873700e | 138 | |
| 79bb1944 | 139 | /* See gdbtypes.h. */ |
| 2873700e KS |
140 | |
| 141 | unsigned int overload_debug = 0; | |
| 142 | ||
| a451cb65 KS |
143 | /* A flag to enable strict type checking. */ |
| 144 | ||
| 491144b5 | 145 | static bool strict_type_checking = true; |
| a451cb65 | 146 | |
| 2873700e | 147 | /* A function to show whether opaque types are resolved. */ |
| 5212577a | 148 | |
| 920d2a44 AC |
149 | static void |
| 150 | show_opaque_type_resolution (struct ui_file *file, int from_tty, | |
| a5cbe675 | 151 | struct cmd_list_element *c, |
| 7ba81444 | 152 | const char *value) |
| 920d2a44 | 153 | { |
| 6cb06a8c TT |
154 | gdb_printf (file, _("Resolution of opaque struct/class/union types " |
| 155 | "(if set before loading symbols) is %s.\n"), | |
| 156 | value); | |
| 920d2a44 AC |
157 | } |
| 158 | ||
| 2873700e | 159 | /* A function to show whether C++ overload debugging is enabled. */ |
| 5212577a | 160 | |
| 920d2a44 AC |
161 | static void |
| 162 | show_overload_debug (struct ui_file *file, int from_tty, | |
| 163 | struct cmd_list_element *c, const char *value) | |
| 164 | { | |
| a5cbe675 | 165 | gdb_printf (file, _("Debugging of C++ overloading is %s.\n"), |
| 6cb06a8c | 166 | value); |
| 920d2a44 | 167 | } |
| c906108c | 168 | |
| a451cb65 KS |
169 | /* A function to show the status of strict type checking. */ |
| 170 | ||
| 171 | static void | |
| 172 | show_strict_type_checking (struct ui_file *file, int from_tty, | |
| 173 | struct cmd_list_element *c, const char *value) | |
| 174 | { | |
| 6cb06a8c | 175 | gdb_printf (file, _("Strict type checking is %s.\n"), value); |
| a451cb65 KS |
176 | } |
| 177 | ||
| 5212577a | 178 | \f |
| 6a4d297c TT |
179 | /* Helper function to initialize a newly allocated type. Set type code |
| 180 | to CODE and initialize the type-specific fields accordingly. */ | |
| 181 | ||
| 182 | static void | |
| 183 | set_type_code (struct type *type, enum type_code code) | |
| 184 | { | |
| 185 | type->set_code (code); | |
| 186 | ||
| 187 | switch (code) | |
| 188 | { | |
| 189 | case TYPE_CODE_STRUCT: | |
| 190 | case TYPE_CODE_UNION: | |
| 191 | case TYPE_CODE_NAMESPACE: | |
| 192 | INIT_CPLUS_SPECIFIC (type); | |
| 193 | break; | |
| 194 | case TYPE_CODE_FLT: | |
| 195 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; | |
| 196 | break; | |
| 197 | case TYPE_CODE_FUNC: | |
| 198 | INIT_FUNC_SPECIFIC (type); | |
| 199 | break; | |
| 200 | case TYPE_CODE_FIXED_POINT: | |
| 201 | INIT_FIXED_POINT_SPECIFIC (type); | |
| 202 | break; | |
| 203 | } | |
| 204 | } | |
| 205 | ||
| 206 | /* See gdbtypes.h. */ | |
| 207 | ||
| 208 | type * | |
| 209 | type_allocator::new_type () | |
| 210 | { | |
| 211 | if (m_smash) | |
| 212 | return m_data.type; | |
| 213 | ||
| 214 | obstack *obstack = (m_is_objfile | |
| 215 | ? &m_data.objfile->objfile_obstack | |
| 216 | : gdbarch_obstack (m_data.gdbarch)); | |
| 217 | ||
| 218 | /* Alloc the structure and start off with all fields zeroed. */ | |
| 219 | struct type *type = OBSTACK_ZALLOC (obstack, struct type); | |
| 220 | TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (obstack, struct main_type); | |
| 76fc0f62 | 221 | TYPE_MAIN_TYPE (type)->m_lang = m_lang; |
| 6a4d297c TT |
222 | |
| 223 | if (m_is_objfile) | |
| 224 | { | |
| 225 | OBJSTAT (m_data.objfile, n_types++); | |
| 226 | type->set_owner (m_data.objfile); | |
| 227 | } | |
| 228 | else | |
| 229 | type->set_owner (m_data.gdbarch); | |
| 230 | ||
| 231 | /* Initialize the fields that might not be zero. */ | |
| 232 | type->set_code (TYPE_CODE_UNDEF); | |
| 233 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ | |
| 234 | ||
| 235 | return type; | |
| 236 | } | |
| 237 | ||
| 8ee511af | 238 | /* See gdbtypes.h. */ |
| e9bb382b | 239 | |
| 6a4d297c TT |
240 | type * |
| 241 | type_allocator::new_type (enum type_code code, int bit, const char *name) | |
| 242 | { | |
| 243 | struct type *type = new_type (); | |
| 244 | set_type_code (type, code); | |
| 245 | gdb_assert ((bit % TARGET_CHAR_BIT) == 0); | |
| 246 | type->set_length (bit / TARGET_CHAR_BIT); | |
| 247 | ||
| 248 | if (name != nullptr) | |
| 249 | { | |
| 250 | obstack *obstack = (m_is_objfile | |
| 251 | ? &m_data.objfile->objfile_obstack | |
| 252 | : gdbarch_obstack (m_data.gdbarch)); | |
| 253 | type->set_name (obstack_strdup (obstack, name)); | |
| 254 | } | |
| 255 | ||
| 256 | return type; | |
| 257 | } | |
| 258 | ||
| 259 | /* See gdbtypes.h. */ | |
| 260 | ||
| 261 | gdbarch * | |
| 262 | type_allocator::arch () | |
| 263 | { | |
| 264 | if (m_smash) | |
| 265 | return m_data.type->arch (); | |
| 266 | if (m_is_objfile) | |
| 267 | return m_data.objfile->arch (); | |
| 268 | return m_data.gdbarch; | |
| 269 | } | |
| 270 | ||
| 271 | /* See gdbtypes.h. */ | |
| 272 | ||
| 8ee511af SM |
273 | gdbarch * |
| 274 | type::arch () const | |
| e9bb382b | 275 | { |
| 2fabdf33 AB |
276 | struct gdbarch *arch; |
| 277 | ||
| 8ee511af SM |
278 | if (this->is_objfile_owned ()) |
| 279 | arch = this->objfile_owner ()->arch (); | |
| e9bb382b | 280 | else |
| 8ee511af | 281 | arch = this->arch_owner (); |
| 2fabdf33 AB |
282 | |
| 283 | /* The ARCH can be NULL if TYPE is associated with neither an objfile nor | |
| 284 | a gdbarch, however, this is very rare, and even then, in most cases | |
| 8ee511af | 285 | that type::arch is called, we assume that a non-NULL value is |
| 2fabdf33 | 286 | returned. */ |
| 8ee511af | 287 | gdb_assert (arch != nullptr); |
| 2fabdf33 | 288 | return arch; |
| e9bb382b UW |
289 | } |
| 290 | ||
| 99ad9427 YQ |
291 | /* See gdbtypes.h. */ |
| 292 | ||
| 293 | struct type * | |
| 294 | get_target_type (struct type *type) | |
| 295 | { | |
| 296 | if (type != NULL) | |
| 297 | { | |
| 27710edb | 298 | type = type->target_type (); |
| 99ad9427 YQ |
299 | if (type != NULL) |
| 300 | type = check_typedef (type); | |
| 301 | } | |
| 302 | ||
| 303 | return type; | |
| 304 | } | |
| 305 | ||
| 2e056931 SM |
306 | /* See gdbtypes.h. */ |
| 307 | ||
| 308 | unsigned int | |
| 309 | type_length_units (struct type *type) | |
| 310 | { | |
| 8ee511af | 311 | int unit_size = gdbarch_addressable_memory_unit_size (type->arch ()); |
| 2e056931 | 312 | |
| df86565b | 313 | return type->length () / unit_size; |
| 2e056931 SM |
314 | } |
| 315 | ||
| 2fdde8f8 DJ |
316 | /* Alloc a new type instance structure, fill it with some defaults, |
| 317 | and point it at OLDTYPE. Allocate the new type instance from the | |
| 318 | same place as OLDTYPE. */ | |
| 319 | ||
| 320 | static struct type * | |
| 321 | alloc_type_instance (struct type *oldtype) | |
| 322 | { | |
| 323 | struct type *type; | |
| 324 | ||
| 325 | /* Allocate the structure. */ | |
| 326 | ||
| 30625020 | 327 | if (!oldtype->is_objfile_owned ()) |
| 8ee511af | 328 | type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type); |
| 2fdde8f8 | 329 | else |
| 6ac37371 | 330 | type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack, |
| 1deafd4e PA |
331 | struct type); |
| 332 | ||
| 2fdde8f8 DJ |
333 | TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); |
| 334 | ||
| 335 | TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ | |
| 336 | ||
| c16abbde | 337 | return type; |
| 2fdde8f8 DJ |
338 | } |
| 339 | ||
| 340 | /* Clear all remnants of the previous type at TYPE, in preparation for | |
| e9bb382b | 341 | replacing it with something else. Preserve owner information. */ |
| 5212577a | 342 | |
| 2fdde8f8 DJ |
343 | static void |
| 344 | smash_type (struct type *type) | |
| 345 | { | |
| 5b7d941b | 346 | bool objfile_owned = type->is_objfile_owned (); |
| 6ac37371 SM |
347 | objfile *objfile = type->objfile_owner (); |
| 348 | gdbarch *arch = type->arch_owner (); | |
| e9bb382b | 349 | |
| 2fdde8f8 DJ |
350 | memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); |
| 351 | ||
| e9bb382b | 352 | /* Restore owner information. */ |
| 5b7d941b SM |
353 | if (objfile_owned) |
| 354 | type->set_owner (objfile); | |
| 355 | else | |
| 356 | type->set_owner (arch); | |
| e9bb382b | 357 | |
| 2fdde8f8 DJ |
358 | /* For now, delete the rings. */ |
| 359 | TYPE_CHAIN (type) = type; | |
| 360 | ||
| 361 | /* For now, leave the pointer/reference types alone. */ | |
| 362 | } | |
| 363 | ||
| c906108c SS |
364 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points |
| 365 | to a pointer to memory where the pointer type should be stored. | |
| 366 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
| 367 | We allocate new memory if needed. */ | |
| 368 | ||
| 369 | struct type * | |
| fba45db2 | 370 | make_pointer_type (struct type *type, struct type **typeptr) |
| c906108c | 371 | { |
| 52f0bd74 | 372 | struct type *ntype; /* New type */ |
| 053cb41b | 373 | struct type *chain; |
| c906108c SS |
374 | |
| 375 | ntype = TYPE_POINTER_TYPE (type); | |
| 376 | ||
| c5aa993b | 377 | if (ntype) |
| c906108c | 378 | { |
| c5aa993b | 379 | if (typeptr == 0) |
| a5cbe675 | 380 | return ntype; /* Don't care about alloc, |
| 7ba81444 | 381 | and have new type. */ |
| c906108c | 382 | else if (*typeptr == 0) |
| c5aa993b | 383 | { |
| 7ba81444 | 384 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
| c906108c | 385 | return ntype; |
| c5aa993b | 386 | } |
| c906108c SS |
387 | } |
| 388 | ||
| 389 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
| 390 | { | |
| 9fa83a7a | 391 | ntype = type_allocator (type).new_type (); |
| c906108c SS |
392 | if (typeptr) |
| 393 | *typeptr = ntype; | |
| 394 | } | |
| 7ba81444 | 395 | else /* We have storage, but need to reset it. */ |
| c906108c SS |
396 | { |
| 397 | ntype = *typeptr; | |
| 053cb41b | 398 | chain = TYPE_CHAIN (ntype); |
| 2fdde8f8 | 399 | smash_type (ntype); |
| 053cb41b | 400 | TYPE_CHAIN (ntype) = chain; |
| c906108c SS |
401 | } |
| 402 | ||
| 8a50fdce | 403 | ntype->set_target_type (type); |
| c906108c SS |
404 | TYPE_POINTER_TYPE (type) = ntype; |
| 405 | ||
| 5212577a | 406 | /* FIXME! Assumes the machine has only one representation for pointers! */ |
| c906108c | 407 | |
| b6cdbc9a | 408 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
| 67607e24 | 409 | ntype->set_code (TYPE_CODE_PTR); |
| c906108c | 410 | |
| 67b2adb2 | 411 | /* Mark pointers as unsigned. The target converts between pointers |
| 76e71323 | 412 | and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and |
| 7ba81444 | 413 | gdbarch_address_to_pointer. */ |
| 653223d3 | 414 | ntype->set_is_unsigned (true); |
| c5aa993b | 415 | |
| 053cb41b JB |
416 | /* Update the length of all the other variants of this type. */ |
| 417 | chain = TYPE_CHAIN (ntype); | |
| 418 | while (chain != ntype) | |
| 419 | { | |
| df86565b | 420 | chain->set_length (ntype->length ()); |
| 053cb41b JB |
421 | chain = TYPE_CHAIN (chain); |
| 422 | } | |
| 423 | ||
| c906108c SS |
424 | return ntype; |
| 425 | } | |
| 426 | ||
| 427 | /* Given a type TYPE, return a type of pointers to that type. | |
| 428 | May need to construct such a type if this is the first use. */ | |
| 429 | ||
| 430 | struct type * | |
| fba45db2 | 431 | lookup_pointer_type (struct type *type) |
| c906108c | 432 | { |
| c5aa993b | 433 | return make_pointer_type (type, (struct type **) 0); |
| c906108c SS |
434 | } |
| 435 | ||
| 7ba81444 MS |
436 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, |
| 437 | points to a pointer to memory where the reference type should be | |
| 438 | stored. If *TYPEPTR is zero, update it to point to the reference | |
| 3b224330 AV |
439 | type we return. We allocate new memory if needed. REFCODE denotes |
| 440 | the kind of reference type to lookup (lvalue or rvalue reference). */ | |
| c906108c SS |
441 | |
| 442 | struct type * | |
| 3b224330 | 443 | make_reference_type (struct type *type, struct type **typeptr, |
| dda83cd7 | 444 | enum type_code refcode) |
| c906108c | 445 | { |
| 52f0bd74 | 446 | struct type *ntype; /* New type */ |
| 3b224330 | 447 | struct type **reftype; |
| 1e98b326 | 448 | struct type *chain; |
| c906108c | 449 | |
| 3b224330 AV |
450 | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
| 451 | ||
| 452 | ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type) | |
| dda83cd7 | 453 | : TYPE_RVALUE_REFERENCE_TYPE (type)); |
| c906108c | 454 | |
| c5aa993b | 455 | if (ntype) |
| c906108c | 456 | { |
| c5aa993b | 457 | if (typeptr == 0) |
| a5cbe675 | 458 | return ntype; /* Don't care about alloc, |
| 7ba81444 | 459 | and have new type. */ |
| c906108c | 460 | else if (*typeptr == 0) |
| c5aa993b | 461 | { |
| 7ba81444 | 462 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
| c906108c | 463 | return ntype; |
| c5aa993b | 464 | } |
| c906108c SS |
465 | } |
| 466 | ||
| 467 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
| 468 | { | |
| 9fa83a7a | 469 | ntype = type_allocator (type).new_type (); |
| c906108c SS |
470 | if (typeptr) |
| 471 | *typeptr = ntype; | |
| 472 | } | |
| 7ba81444 | 473 | else /* We have storage, but need to reset it. */ |
| c906108c SS |
474 | { |
| 475 | ntype = *typeptr; | |
| 1e98b326 | 476 | chain = TYPE_CHAIN (ntype); |
| 2fdde8f8 | 477 | smash_type (ntype); |
| 1e98b326 | 478 | TYPE_CHAIN (ntype) = chain; |
| c906108c SS |
479 | } |
| 480 | ||
| 8a50fdce | 481 | ntype->set_target_type (type); |
| 3b224330 | 482 | reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type) |
| dda83cd7 | 483 | : &TYPE_RVALUE_REFERENCE_TYPE (type)); |
| 3b224330 AV |
484 | |
| 485 | *reftype = ntype; | |
| c906108c | 486 | |
| 7ba81444 MS |
487 | /* FIXME! Assume the machine has only one representation for |
| 488 | references, and that it matches the (only) representation for | |
| 489 | pointers! */ | |
| c906108c | 490 | |
| b6cdbc9a | 491 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
| 67607e24 | 492 | ntype->set_code (refcode); |
| c5aa993b | 493 | |
| 3b224330 | 494 | *reftype = ntype; |
| c906108c | 495 | |
| 1e98b326 JB |
496 | /* Update the length of all the other variants of this type. */ |
| 497 | chain = TYPE_CHAIN (ntype); | |
| 498 | while (chain != ntype) | |
| 499 | { | |
| df86565b | 500 | chain->set_length (ntype->length ()); |
| 1e98b326 JB |
501 | chain = TYPE_CHAIN (chain); |
| 502 | } | |
| 503 | ||
| c906108c SS |
504 | return ntype; |
| 505 | } | |
| 506 | ||
| 7ba81444 MS |
507 | /* Same as above, but caller doesn't care about memory allocation |
| 508 | details. */ | |
| c906108c SS |
509 | |
| 510 | struct type * | |
| 3b224330 AV |
511 | lookup_reference_type (struct type *type, enum type_code refcode) |
| 512 | { | |
| 513 | return make_reference_type (type, (struct type **) 0, refcode); | |
| 514 | } | |
| 515 | ||
| 516 | /* Lookup the lvalue reference type for the type TYPE. */ | |
| 517 | ||
| 518 | struct type * | |
| 519 | lookup_lvalue_reference_type (struct type *type) | |
| 520 | { | |
| 521 | return lookup_reference_type (type, TYPE_CODE_REF); | |
| 522 | } | |
| 523 | ||
| 524 | /* Lookup the rvalue reference type for the type TYPE. */ | |
| 525 | ||
| 526 | struct type * | |
| 527 | lookup_rvalue_reference_type (struct type *type) | |
| c906108c | 528 | { |
| 3b224330 | 529 | return lookup_reference_type (type, TYPE_CODE_RVALUE_REF); |
| c906108c SS |
530 | } |
| 531 | ||
| 7ba81444 MS |
532 | /* Lookup a function type that returns type TYPE. TYPEPTR, if |
| 533 | nonzero, points to a pointer to memory where the function type | |
| 534 | should be stored. If *TYPEPTR is zero, update it to point to the | |
| 0c8b41f1 | 535 | function type we return. We allocate new memory if needed. */ |
| c906108c SS |
536 | |
| 537 | struct type * | |
| 0c8b41f1 | 538 | make_function_type (struct type *type, struct type **typeptr) |
| c906108c | 539 | { |
| 52f0bd74 | 540 | struct type *ntype; /* New type */ |
| c906108c SS |
541 | |
| 542 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
| 543 | { | |
| 9fa83a7a | 544 | ntype = type_allocator (type).new_type (); |
| c906108c SS |
545 | if (typeptr) |
| 546 | *typeptr = ntype; | |
| 547 | } | |
| 7ba81444 | 548 | else /* We have storage, but need to reset it. */ |
| c906108c SS |
549 | { |
| 550 | ntype = *typeptr; | |
| 2fdde8f8 | 551 | smash_type (ntype); |
| c906108c SS |
552 | } |
| 553 | ||
| 8a50fdce | 554 | ntype->set_target_type (type); |
| c906108c | 555 | |
| b6cdbc9a | 556 | ntype->set_length (1); |
| 67607e24 | 557 | ntype->set_code (TYPE_CODE_FUNC); |
| c5aa993b | 558 | |
| b6cdc2c1 JK |
559 | INIT_FUNC_SPECIFIC (ntype); |
| 560 | ||
| c906108c SS |
561 | return ntype; |
| 562 | } | |
| 563 | ||
| 5aff8911 | 564 | /* See gdbtypes.h. */ |
| 71918a86 TT |
565 | |
| 566 | struct type * | |
| 5aff8911 JV |
567 | create_function_type (type_allocator &alloc, |
| 568 | struct type *return_type, | |
| 569 | int nparams, | |
| 570 | struct type **param_types) | |
| 71918a86 | 571 | { |
| 5aff8911 | 572 | struct type *fn = alloc.new_type (); |
| 71918a86 TT |
573 | int i; |
| 574 | ||
| 5aff8911 JV |
575 | make_function_type (return_type, &fn); |
| 576 | ||
| e314d629 | 577 | if (nparams > 0) |
| a6fb9c08 | 578 | { |
| e314d629 TT |
579 | if (param_types[nparams - 1] == NULL) |
| 580 | { | |
| 581 | --nparams; | |
| 1d6286ed | 582 | fn->set_has_varargs (true); |
| e314d629 | 583 | } |
| 78134374 | 584 | else if (check_typedef (param_types[nparams - 1])->code () |
| e314d629 TT |
585 | == TYPE_CODE_VOID) |
| 586 | { | |
| 587 | --nparams; | |
| 588 | /* Caller should have ensured this. */ | |
| 589 | gdb_assert (nparams == 0); | |
| 27e69b7a | 590 | fn->set_is_prototyped (true); |
| e314d629 | 591 | } |
| 54990598 | 592 | else |
| 27e69b7a | 593 | fn->set_is_prototyped (true); |
| a6fb9c08 TT |
594 | } |
| 595 | ||
| 2774f2da | 596 | fn->alloc_fields (nparams); |
| 71918a86 | 597 | for (i = 0; i < nparams; ++i) |
| 5d14b6e5 | 598 | fn->field (i).set_type (param_types[i]); |
| 71918a86 TT |
599 | |
| 600 | return fn; | |
| 601 | } | |
| 602 | ||
| 5aff8911 JV |
603 | /* See gdbtypes.h. */ |
| 604 | ||
| 605 | struct type * | |
| 606 | lookup_function_type (struct type *return_type) | |
| 607 | { | |
| 608 | type_allocator alloc (return_type); | |
| 609 | return create_function_type (alloc, return_type, 0, nullptr); | |
| 610 | } | |
| 611 | ||
| 612 | /* See gdbtypes.h. */ | |
| 613 | ||
| 614 | struct type * | |
| 615 | lookup_function_type_with_arguments (struct type *return_type, | |
| 616 | int nparams, | |
| 617 | struct type **param_types) | |
| 618 | { | |
| 619 | type_allocator alloc (return_type); | |
| 620 | return create_function_type (alloc, return_type, nparams, param_types); | |
| 621 | } | |
| 622 | ||
| 69896a2c PA |
623 | /* Identify address space identifier by name -- return a |
| 624 | type_instance_flags. */ | |
| 5212577a | 625 | |
| 314ad88d | 626 | type_instance_flags |
| 69896a2c PA |
627 | address_space_name_to_type_instance_flags (struct gdbarch *gdbarch, |
| 628 | const char *space_identifier) | |
| 47663de5 | 629 | { |
| 314ad88d | 630 | type_instance_flags type_flags; |
| d8734c88 | 631 | |
| 7ba81444 | 632 | /* Check for known address space delimiters. */ |
| 47663de5 | 633 | if (!strcmp (space_identifier, "code")) |
| 876cecd0 | 634 | return TYPE_INSTANCE_FLAG_CODE_SPACE; |
| 47663de5 | 635 | else if (!strcmp (space_identifier, "data")) |
| 876cecd0 | 636 | return TYPE_INSTANCE_FLAG_DATA_SPACE; |
| 5f11f355 | 637 | else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) |
| dda83cd7 | 638 | && gdbarch_address_class_name_to_type_flags (gdbarch, |
| 5f11f355 AC |
639 | space_identifier, |
| 640 | &type_flags)) | |
| 8b2dbe47 | 641 | return type_flags; |
| 47663de5 | 642 | else |
| 8a3fe4f8 | 643 | error (_("Unknown address space specifier: \"%s\""), space_identifier); |
| 47663de5 MS |
644 | } |
| 645 | ||
| 69896a2c | 646 | /* Identify address space identifier by type_instance_flags and return |
| 8f6606b6 | 647 | the string version of the address space name. */ |
| 47663de5 | 648 | |
| 321432c0 | 649 | const char * |
| 69896a2c PA |
650 | address_space_type_instance_flags_to_name (struct gdbarch *gdbarch, |
| 651 | type_instance_flags space_flag) | |
| 47663de5 | 652 | { |
| 876cecd0 | 653 | if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) |
| 47663de5 | 654 | return "code"; |
| 876cecd0 | 655 | else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) |
| 47663de5 | 656 | return "data"; |
| 876cecd0 | 657 | else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
| dda83cd7 | 658 | && gdbarch_address_class_type_flags_to_name_p (gdbarch)) |
| 5f11f355 | 659 | return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); |
| 47663de5 MS |
660 | else |
| 661 | return NULL; | |
| 662 | } | |
| 663 | ||
| 2fdde8f8 | 664 | /* Create a new type with instance flags NEW_FLAGS, based on TYPE. |
| ad766c0a JB |
665 | |
| 666 | If STORAGE is non-NULL, create the new type instance there. | |
| 667 | STORAGE must be in the same obstack as TYPE. */ | |
| 47663de5 | 668 | |
| b9362cc7 | 669 | static struct type * |
| 314ad88d | 670 | make_qualified_type (struct type *type, type_instance_flags new_flags, |
| 2fdde8f8 | 671 | struct type *storage) |
| 47663de5 MS |
672 | { |
| 673 | struct type *ntype; | |
| 674 | ||
| 675 | ntype = type; | |
| 5f61c20e JK |
676 | do |
| 677 | { | |
| 10242f36 | 678 | if (ntype->instance_flags () == new_flags) |
| 5f61c20e JK |
679 | return ntype; |
| 680 | ntype = TYPE_CHAIN (ntype); | |
| 681 | } | |
| 682 | while (ntype != type); | |
| 47663de5 | 683 | |
| 2fdde8f8 DJ |
684 | /* Create a new type instance. */ |
| 685 | if (storage == NULL) | |
| 686 | ntype = alloc_type_instance (type); | |
| 687 | else | |
| 688 | { | |
| 7ba81444 MS |
689 | /* If STORAGE was provided, it had better be in the same objfile |
| 690 | as TYPE. Otherwise, we can't link it into TYPE's cv chain: | |
| 691 | if one objfile is freed and the other kept, we'd have | |
| 692 | dangling pointers. */ | |
| 6ac37371 | 693 | gdb_assert (type->objfile_owner () == storage->objfile_owner ()); |
| ad766c0a | 694 | |
| 2fdde8f8 DJ |
695 | ntype = storage; |
| 696 | TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); | |
| 697 | TYPE_CHAIN (ntype) = ntype; | |
| 698 | } | |
| 47663de5 MS |
699 | |
| 700 | /* Pointers or references to the original type are not relevant to | |
| 2fdde8f8 | 701 | the new type. */ |
| 47663de5 MS |
702 | TYPE_POINTER_TYPE (ntype) = (struct type *) 0; |
| 703 | TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; | |
| 47663de5 | 704 | |
| 2fdde8f8 DJ |
705 | /* Chain the new qualified type to the old type. */ |
| 706 | TYPE_CHAIN (ntype) = TYPE_CHAIN (type); | |
| 707 | TYPE_CHAIN (type) = ntype; | |
| 708 | ||
| 709 | /* Now set the instance flags and return the new type. */ | |
| 314ad88d | 710 | ntype->set_instance_flags (new_flags); |
| 47663de5 | 711 | |
| ab5d3da6 | 712 | /* Set length of new type to that of the original type. */ |
| df86565b | 713 | ntype->set_length (type->length ()); |
| ab5d3da6 | 714 | |
| 47663de5 MS |
715 | return ntype; |
| 716 | } | |
| 717 | ||
| 2fdde8f8 DJ |
718 | /* Make an address-space-delimited variant of a type -- a type that |
| 719 | is identical to the one supplied except that it has an address | |
| 720 | space attribute attached to it (such as "code" or "data"). | |
| 721 | ||
| 7ba81444 MS |
722 | The space attributes "code" and "data" are for Harvard |
| 723 | architectures. The address space attributes are for architectures | |
| 724 | which have alternately sized pointers or pointers with alternate | |
| 725 | representations. */ | |
| 2fdde8f8 DJ |
726 | |
| 727 | struct type * | |
| 314ad88d PA |
728 | make_type_with_address_space (struct type *type, |
| 729 | type_instance_flags space_flag) | |
| 2fdde8f8 | 730 | { |
| 314ad88d PA |
731 | type_instance_flags new_flags = ((type->instance_flags () |
| 732 | & ~(TYPE_INSTANCE_FLAG_CODE_SPACE | |
| 733 | | TYPE_INSTANCE_FLAG_DATA_SPACE | |
| 734 | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) | |
| 735 | | space_flag); | |
| 2fdde8f8 DJ |
736 | |
| 737 | return make_qualified_type (type, new_flags, NULL); | |
| 738 | } | |
| c906108c SS |
739 | |
| 740 | /* Make a "c-v" variant of a type -- a type that is identical to the | |
| 741 | one supplied except that it may have const or volatile attributes | |
| 742 | CNST is a flag for setting the const attribute | |
| 743 | VOLTL is a flag for setting the volatile attribute | |
| 744 | TYPE is the base type whose variant we are creating. | |
| c906108c | 745 | |
| ad766c0a JB |
746 | If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to |
| 747 | storage to hold the new qualified type; *TYPEPTR and TYPE must be | |
| 748 | in the same objfile. Otherwise, allocate fresh memory for the new | |
| 8f6606b6 | 749 | type wherever TYPE lives. If TYPEPTR is non-zero, set it to the |
| ad766c0a | 750 | new type we construct. */ |
| 5212577a | 751 | |
| c906108c | 752 | struct type * |
| a5cbe675 SM |
753 | make_cv_type (int cnst, int voltl, |
| 754 | struct type *type, | |
| 7ba81444 | 755 | struct type **typeptr) |
| c906108c | 756 | { |
| 52f0bd74 | 757 | struct type *ntype; /* New type */ |
| c906108c | 758 | |
| 314ad88d PA |
759 | type_instance_flags new_flags = (type->instance_flags () |
| 760 | & ~(TYPE_INSTANCE_FLAG_CONST | |
| 761 | | TYPE_INSTANCE_FLAG_VOLATILE)); | |
| c906108c | 762 | |
| c906108c | 763 | if (cnst) |
| 876cecd0 | 764 | new_flags |= TYPE_INSTANCE_FLAG_CONST; |
| c906108c SS |
765 | |
| 766 | if (voltl) | |
| 876cecd0 | 767 | new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; |
| a02fd225 | 768 | |
| 2fdde8f8 | 769 | if (typeptr && *typeptr != NULL) |
| a02fd225 | 770 | { |
| ad766c0a JB |
771 | /* TYPE and *TYPEPTR must be in the same objfile. We can't have |
| 772 | a C-V variant chain that threads across objfiles: if one | |
| 773 | objfile gets freed, then the other has a broken C-V chain. | |
| 774 | ||
| 775 | This code used to try to copy over the main type from TYPE to | |
| 776 | *TYPEPTR if they were in different objfiles, but that's | |
| 777 | wrong, too: TYPE may have a field list or member function | |
| 778 | lists, which refer to types of their own, etc. etc. The | |
| 779 | whole shebang would need to be copied over recursively; you | |
| 780 | can't have inter-objfile pointers. The only thing to do is | |
| 781 | to leave stub types as stub types, and look them up afresh by | |
| 782 | name each time you encounter them. */ | |
| 6ac37371 | 783 | gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ()); |
| 2fdde8f8 | 784 | } |
| a5cbe675 SM |
785 | |
| 786 | ntype = make_qualified_type (type, new_flags, | |
| 7ba81444 | 787 | typeptr ? *typeptr : NULL); |
| c906108c | 788 | |
| 2fdde8f8 DJ |
789 | if (typeptr != NULL) |
| 790 | *typeptr = ntype; | |
| a02fd225 | 791 | |
| 2fdde8f8 | 792 | return ntype; |
| a02fd225 | 793 | } |
| c906108c | 794 | |
| 06d66ee9 TT |
795 | /* Make a 'restrict'-qualified version of TYPE. */ |
| 796 | ||
| 797 | struct type * | |
| 798 | make_restrict_type (struct type *type) | |
| 799 | { | |
| 800 | return make_qualified_type (type, | |
| 10242f36 | 801 | (type->instance_flags () |
| 06d66ee9 TT |
802 | | TYPE_INSTANCE_FLAG_RESTRICT), |
| 803 | NULL); | |
| 804 | } | |
| 805 | ||
| f1660027 TT |
806 | /* Make a type without const, volatile, or restrict. */ |
| 807 | ||
| 808 | struct type * | |
| 809 | make_unqualified_type (struct type *type) | |
| 810 | { | |
| 811 | return make_qualified_type (type, | |
| 10242f36 | 812 | (type->instance_flags () |
| f1660027 TT |
813 | & ~(TYPE_INSTANCE_FLAG_CONST |
| 814 | | TYPE_INSTANCE_FLAG_VOLATILE | |
| 815 | | TYPE_INSTANCE_FLAG_RESTRICT)), | |
| 816 | NULL); | |
| 817 | } | |
| 818 | ||
| a2c2acaf MW |
819 | /* Make a '_Atomic'-qualified version of TYPE. */ |
| 820 | ||
| 821 | struct type * | |
| 822 | make_atomic_type (struct type *type) | |
| 823 | { | |
| 824 | return make_qualified_type (type, | |
| 10242f36 | 825 | (type->instance_flags () |
| a2c2acaf MW |
826 | | TYPE_INSTANCE_FLAG_ATOMIC), |
| 827 | NULL); | |
| 828 | } | |
| 829 | ||
| 2fdde8f8 DJ |
830 | /* Replace the contents of ntype with the type *type. This changes the |
| 831 | contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus | |
| bbc8c5a1 | 832 | the changes are propagated to all types in the TYPE_CHAIN. |
| dd6bda65 | 833 | |
| cda6c68a JB |
834 | In order to build recursive types, it's inevitable that we'll need |
| 835 | to update types in place --- but this sort of indiscriminate | |
| 836 | smashing is ugly, and needs to be replaced with something more | |
| 2fdde8f8 DJ |
837 | controlled. TYPE_MAIN_TYPE is a step in this direction; it's not |
| 838 | clear if more steps are needed. */ | |
| 5212577a | 839 | |
| dd6bda65 DJ |
840 | void |
| 841 | replace_type (struct type *ntype, struct type *type) | |
| 842 | { | |
| ab5d3da6 | 843 | struct type *chain; |
| dd6bda65 | 844 | |
| ad766c0a JB |
845 | /* These two types had better be in the same objfile. Otherwise, |
| 846 | the assignment of one type's main type structure to the other | |
| 847 | will produce a type with references to objects (names; field | |
| 848 | lists; etc.) allocated on an objfile other than its own. */ | |
| 6ac37371 | 849 | gdb_assert (ntype->objfile_owner () == type->objfile_owner ()); |
| ad766c0a | 850 | |
| 2fdde8f8 | 851 | *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); |
| dd6bda65 | 852 | |
| 7ba81444 MS |
853 | /* The type length is not a part of the main type. Update it for |
| 854 | each type on the variant chain. */ | |
| ab5d3da6 | 855 | chain = ntype; |
| 5f61c20e JK |
856 | do |
| 857 | { | |
| 858 | /* Assert that this element of the chain has no address-class bits | |
| 859 | set in its flags. Such type variants might have type lengths | |
| 860 | which are supposed to be different from the non-address-class | |
| 861 | variants. This assertion shouldn't ever be triggered because | |
| 862 | symbol readers which do construct address-class variants don't | |
| 863 | call replace_type(). */ | |
| 864 | gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); | |
| 865 | ||
| df86565b | 866 | chain->set_length (type->length ()); |
| 5f61c20e JK |
867 | chain = TYPE_CHAIN (chain); |
| 868 | } | |
| 869 | while (ntype != chain); | |
| ab5d3da6 | 870 | |
| 2fdde8f8 DJ |
871 | /* Assert that the two types have equivalent instance qualifiers. |
| 872 | This should be true for at least all of our debug readers. */ | |
| 10242f36 | 873 | gdb_assert (ntype->instance_flags () == type->instance_flags ()); |
| dd6bda65 DJ |
874 | } |
| 875 | ||
| c906108c SS |
876 | /* Implement direct support for MEMBER_TYPE in GNU C++. |
| 877 | May need to construct such a type if this is the first use. | |
| 878 | The TYPE is the type of the member. The DOMAIN is the type | |
| 879 | of the aggregate that the member belongs to. */ | |
| 880 | ||
| 881 | struct type * | |
| 0d5de010 | 882 | lookup_memberptr_type (struct type *type, struct type *domain) |
| c906108c | 883 | { |
| 52f0bd74 | 884 | struct type *mtype; |
| c906108c | 885 | |
| 9fa83a7a | 886 | mtype = type_allocator (type).new_type (); |
| 0d5de010 | 887 | smash_to_memberptr_type (mtype, domain, type); |
| c16abbde | 888 | return mtype; |
| c906108c SS |
889 | } |
| 890 | ||
| 0d5de010 DJ |
891 | /* Return a pointer-to-method type, for a method of type TO_TYPE. */ |
| 892 | ||
| 893 | struct type * | |
| 894 | lookup_methodptr_type (struct type *to_type) | |
| 895 | { | |
| 896 | struct type *mtype; | |
| 897 | ||
| 9fa83a7a | 898 | mtype = type_allocator (to_type).new_type (); |
| 0b92b5bb | 899 | smash_to_methodptr_type (mtype, to_type); |
| 0d5de010 DJ |
900 | return mtype; |
| 901 | } | |
| 902 | ||
| 0f59d5fc PA |
903 | /* See gdbtypes.h. */ |
| 904 | ||
| 905 | bool | |
| 906 | operator== (const dynamic_prop &l, const dynamic_prop &r) | |
| 907 | { | |
| 8c2e4e06 | 908 | if (l.kind () != r.kind ()) |
| 0f59d5fc PA |
909 | return false; |
| 910 | ||
| 8c2e4e06 | 911 | switch (l.kind ()) |
| 0f59d5fc PA |
912 | { |
| 913 | case PROP_UNDEFINED: | |
| 914 | return true; | |
| 915 | case PROP_CONST: | |
| 8c2e4e06 | 916 | return l.const_val () == r.const_val (); |
| ba005d32 | 917 | case PROP_FIELD: |
| 0f59d5fc PA |
918 | case PROP_LOCEXPR: |
| 919 | case PROP_LOCLIST: | |
| 8c2e4e06 | 920 | return l.baton () == r.baton (); |
| ef83a141 | 921 | case PROP_VARIANT_PARTS: |
| 8c2e4e06 | 922 | return l.variant_parts () == r.variant_parts (); |
| ef83a141 | 923 | case PROP_TYPE: |
| 8c2e4e06 | 924 | return l.original_type () == r.original_type (); |
| 0f59d5fc PA |
925 | } |
| 926 | ||
| 927 | gdb_assert_not_reached ("unhandled dynamic_prop kind"); | |
| 928 | } | |
| 929 | ||
| 930 | /* See gdbtypes.h. */ | |
| 931 | ||
| 932 | bool | |
| 933 | operator== (const range_bounds &l, const range_bounds &r) | |
| 934 | { | |
| 935 | #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD) | |
| 936 | ||
| 937 | return (FIELD_EQ (low) | |
| 938 | && FIELD_EQ (high) | |
| 939 | && FIELD_EQ (flag_upper_bound_is_count) | |
| 4e962e74 TT |
940 | && FIELD_EQ (flag_bound_evaluated) |
| 941 | && FIELD_EQ (bias)); | |
| 0f59d5fc PA |
942 | |
| 943 | #undef FIELD_EQ | |
| 944 | } | |
| 945 | ||
| e727c536 | 946 | /* See gdbtypes.h. */ |
| c906108c SS |
947 | |
| 948 | struct type * | |
| e727c536 | 949 | create_range_type (type_allocator &alloc, struct type *index_type, |
| 729efb13 | 950 | const struct dynamic_prop *low_bound, |
| 4e962e74 TT |
951 | const struct dynamic_prop *high_bound, |
| 952 | LONGEST bias) | |
| c906108c | 953 | { |
| b86352cf AB |
954 | /* The INDEX_TYPE should be a type capable of holding the upper and lower |
| 955 | bounds, as such a zero sized, or void type makes no sense. */ | |
| 78134374 | 956 | gdb_assert (index_type->code () != TYPE_CODE_VOID); |
| df86565b | 957 | gdb_assert (index_type->length () > 0); |
| b86352cf | 958 | |
| e727c536 | 959 | struct type *result_type = alloc.new_type (); |
| 67607e24 | 960 | result_type->set_code (TYPE_CODE_RANGE); |
| 8a50fdce | 961 | result_type->set_target_type (index_type); |
| e46d3488 | 962 | if (index_type->is_stub ()) |
| 8f53807e | 963 | result_type->set_target_is_stub (true); |
| c906108c | 964 | else |
| df86565b | 965 | result_type->set_length (check_typedef (index_type)->length ()); |
| 729efb13 | 966 | |
| c4dfcb36 SM |
967 | range_bounds *bounds |
| 968 | = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds)); | |
| 969 | bounds->low = *low_bound; | |
| 970 | bounds->high = *high_bound; | |
| 971 | bounds->bias = bias; | |
| 8c2e4e06 | 972 | bounds->stride.set_const_val (0); |
| c4dfcb36 SM |
973 | |
| 974 | result_type->set_bounds (bounds); | |
| 5bbd8269 | 975 | |
| 09584414 JB |
976 | if (index_type->code () == TYPE_CODE_FIXED_POINT) |
| 977 | result_type->set_is_unsigned (index_type->is_unsigned ()); | |
| 912b12ad TT |
978 | else if (index_type->is_unsigned ()) |
| 979 | { | |
| 980 | /* If the underlying type is unsigned, then the range | |
| 981 | necessarily is. */ | |
| 982 | result_type->set_is_unsigned (true); | |
| 983 | } | |
| 984 | /* Otherwise, the signed-ness of a range type can't simply be copied | |
| 6390859c TT |
985 | from the underlying type. Consider a case where the underlying |
| 986 | type is 'int', but the range type can hold 0..65535, and where | |
| 987 | the range is further specified to fit into 16 bits. In this | |
| 988 | case, if we copy the underlying type's sign, then reading some | |
| 989 | range values will cause an unwanted sign extension. So, we have | |
| 990 | some heuristics here instead. */ | |
| 9c0fb734 | 991 | else if (low_bound->is_constant () && low_bound->const_val () >= 0) |
| 912b12ad TT |
992 | { |
| 993 | result_type->set_is_unsigned (true); | |
| 994 | /* Ada allows the declaration of range types whose upper bound is | |
| 995 | less than the lower bound, so checking the lower bound is not | |
| 996 | enough. Make sure we do not mark a range type whose upper bound | |
| 997 | is negative as unsigned. */ | |
| 9c0fb734 | 998 | if (high_bound->is_constant () && high_bound->const_val () < 0) |
| 912b12ad TT |
999 | result_type->set_is_unsigned (false); |
| 1000 | } | |
| 6390859c | 1001 | |
| db558e34 SM |
1002 | result_type->set_endianity_is_not_default |
| 1003 | (index_type->endianity_is_not_default ()); | |
| a05cf17a | 1004 | |
| 262452ec | 1005 | return result_type; |
| c906108c SS |
1006 | } |
| 1007 | ||
| 5bbd8269 AB |
1008 | /* See gdbtypes.h. */ |
| 1009 | ||
| 1010 | struct type * | |
| e727c536 | 1011 | create_range_type_with_stride (type_allocator &alloc, |
| 5bbd8269 AB |
1012 | struct type *index_type, |
| 1013 | const struct dynamic_prop *low_bound, | |
| 1014 | const struct dynamic_prop *high_bound, | |
| 1015 | LONGEST bias, | |
| 1016 | const struct dynamic_prop *stride, | |
| 1017 | bool byte_stride_p) | |
| 1018 | { | |
| e727c536 TT |
1019 | struct type *result_type = create_range_type (alloc, index_type, low_bound, |
| 1020 | high_bound, bias); | |
| 5bbd8269 AB |
1021 | |
| 1022 | gdb_assert (stride != nullptr); | |
| 599088e3 SM |
1023 | result_type->bounds ()->stride = *stride; |
| 1024 | result_type->bounds ()->flag_is_byte_stride = byte_stride_p; | |
| 5bbd8269 AB |
1025 | |
| 1026 | return result_type; | |
| 1027 | } | |
| 1028 | ||
| e727c536 | 1029 | /* See gdbtypes.h. */ |
| 729efb13 SA |
1030 | |
| 1031 | struct type * | |
| e727c536 | 1032 | create_static_range_type (type_allocator &alloc, struct type *index_type, |
| 729efb13 SA |
1033 | LONGEST low_bound, LONGEST high_bound) |
| 1034 | { | |
| 1035 | struct dynamic_prop low, high; | |
| 1036 | ||
| 8c2e4e06 SM |
1037 | low.set_const_val (low_bound); |
| 1038 | high.set_const_val (high_bound); | |
| 729efb13 | 1039 | |
| e727c536 TT |
1040 | struct type *result_type = create_range_type (alloc, index_type, |
| 1041 | &low, &high, 0); | |
| 729efb13 SA |
1042 | |
| 1043 | return result_type; | |
| 1044 | } | |
| 1045 | ||
| 80180f79 SA |
1046 | /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values |
| 1047 | are static, otherwise returns 0. */ | |
| 1048 | ||
| 5bbd8269 | 1049 | static bool |
| 80180f79 SA |
1050 | has_static_range (const struct range_bounds *bounds) |
| 1051 | { | |
| 5bbd8269 AB |
1052 | /* If the range doesn't have a defined stride then its stride field will |
| 1053 | be initialized to the constant 0. */ | |
| 9c0fb734 TT |
1054 | return (bounds->low.is_constant () |
| 1055 | && bounds->high.is_constant () | |
| 1056 | && bounds->stride.is_constant ()); | |
| 80180f79 SA |
1057 | } |
| 1058 | ||
| 5b56203a | 1059 | /* See gdbtypes.h. */ |
| 80180f79 | 1060 | |
| 6b09f134 | 1061 | std::optional<LONGEST> |
| 14c09924 | 1062 | get_discrete_low_bound (struct type *type) |
| c906108c | 1063 | { |
| f168693b | 1064 | type = check_typedef (type); |
| 78134374 | 1065 | switch (type->code ()) |
| c906108c SS |
1066 | { |
| 1067 | case TYPE_CODE_RANGE: | |
| 14c09924 SM |
1068 | { |
| 1069 | /* This function only works for ranges with a constant low bound. */ | |
| 9c0fb734 | 1070 | if (!type->bounds ()->low.is_constant ()) |
| 14c09924 SM |
1071 | return {}; |
| 1072 | ||
| 1073 | LONGEST low = type->bounds ()->low.const_val (); | |
| 1074 | ||
| 27710edb | 1075 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
| 14c09924 | 1076 | { |
| 6b09f134 | 1077 | std::optional<LONGEST> low_pos |
| 27710edb | 1078 | = discrete_position (type->target_type (), low); |
| 14c09924 SM |
1079 | |
| 1080 | if (low_pos.has_value ()) | |
| 1081 | low = *low_pos; | |
| 1082 | } | |
| 1083 | ||
| 1084 | return low; | |
| 1085 | } | |
| 1086 | ||
| 1087 | case TYPE_CODE_ENUM: | |
| 1088 | { | |
| 1089 | if (type->num_fields () > 0) | |
| 1090 | { | |
| 1091 | /* The enums may not be sorted by value, so search all | |
| 1092 | entries. */ | |
| 970db518 | 1093 | LONGEST low = type->field (0).loc_enumval (); |
| 14c09924 | 1094 | |
| 89495c33 | 1095 | for (const auto &field : type->fields ()) |
| 14c09924 | 1096 | { |
| 89495c33 TT |
1097 | if (field.loc_enumval () < low) |
| 1098 | low = field.loc_enumval (); | |
| 14c09924 SM |
1099 | } |
| 1100 | ||
| 14c09924 SM |
1101 | return low; |
| 1102 | } | |
| 1103 | else | |
| 1104 | return 0; | |
| 1105 | } | |
| 1106 | ||
| 1107 | case TYPE_CODE_BOOL: | |
| 1108 | return 0; | |
| 1109 | ||
| 1110 | case TYPE_CODE_INT: | |
| df86565b | 1111 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
| 6ad368b8 | 1112 | return {}; |
| 7c6f2712 | 1113 | |
| 14c09924 | 1114 | if (!type->is_unsigned ()) |
| df86565b | 1115 | return -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
| 7c6f2712 | 1116 | |
| d182e398 | 1117 | [[fallthrough]]; |
| 14c09924 SM |
1118 | case TYPE_CODE_CHAR: |
| 1119 | return 0; | |
| 6244c119 | 1120 | |
| 14c09924 | 1121 | default: |
| 6ad368b8 | 1122 | return {}; |
| 14c09924 SM |
1123 | } |
| 1124 | } | |
| 6244c119 | 1125 | |
| 5b56203a | 1126 | /* See gdbtypes.h. */ |
| 6244c119 | 1127 | |
| 6b09f134 | 1128 | std::optional<LONGEST> |
| 14c09924 SM |
1129 | get_discrete_high_bound (struct type *type) |
| 1130 | { | |
| 1131 | type = check_typedef (type); | |
| 1132 | switch (type->code ()) | |
| 1133 | { | |
| 1134 | case TYPE_CODE_RANGE: | |
| 1135 | { | |
| 1136 | /* This function only works for ranges with a constant high bound. */ | |
| 9c0fb734 | 1137 | if (!type->bounds ()->high.is_constant ()) |
| 14c09924 SM |
1138 | return {}; |
| 1139 | ||
| 1140 | LONGEST high = type->bounds ()->high.const_val (); | |
| 1141 | ||
| 27710edb | 1142 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
| 14c09924 | 1143 | { |
| 6b09f134 | 1144 | std::optional<LONGEST> high_pos |
| 27710edb | 1145 | = discrete_position (type->target_type (), high); |
| 14c09924 SM |
1146 | |
| 1147 | if (high_pos.has_value ()) | |
| 1148 | high = *high_pos; | |
| 1149 | } | |
| 1150 | ||
| 1151 | return high; | |
| 1152 | } | |
| 1f8d2881 | 1153 | |
| c906108c | 1154 | case TYPE_CODE_ENUM: |
| 14c09924 SM |
1155 | { |
| 1156 | if (type->num_fields () > 0) | |
| 1157 | { | |
| 1158 | /* The enums may not be sorted by value, so search all | |
| 1159 | entries. */ | |
| 970db518 | 1160 | LONGEST high = type->field (0).loc_enumval (); |
| 14c09924 | 1161 | |
| 89495c33 | 1162 | for (const auto &field : type->fields ()) |
| 14c09924 | 1163 | { |
| 89495c33 TT |
1164 | if (field.loc_enumval () > high) |
| 1165 | high = field.loc_enumval (); | |
| 14c09924 SM |
1166 | } |
| 1167 | ||
| 1168 | return high; | |
| 1169 | } | |
| 1170 | else | |
| 1171 | return -1; | |
| 1172 | } | |
| 1f8d2881 | 1173 | |
| c906108c | 1174 | case TYPE_CODE_BOOL: |
| 14c09924 | 1175 | return 1; |
| 1f8d2881 | 1176 | |
| c906108c | 1177 | case TYPE_CODE_INT: |
| df86565b | 1178 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
| 6ad368b8 | 1179 | return {}; |
| 1f8d2881 | 1180 | |
| c6d940a9 | 1181 | if (!type->is_unsigned ()) |
| c906108c | 1182 | { |
| df86565b | 1183 | LONGEST low = -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
| 14c09924 | 1184 | return -low - 1; |
| c906108c | 1185 | } |
| 14c09924 | 1186 | |
| d182e398 | 1187 | [[fallthrough]]; |
| c906108c | 1188 | case TYPE_CODE_CHAR: |
| 14c09924 SM |
1189 | { |
| 1190 | /* This round-about calculation is to avoid shifting by | |
| df86565b SM |
1191 | type->length () * TARGET_CHAR_BIT, which will not work |
| 1192 | if type->length () == sizeof (LONGEST). */ | |
| 1193 | LONGEST high = 1 << (type->length () * TARGET_CHAR_BIT - 1); | |
| 14c09924 SM |
1194 | return (high - 1) | high; |
| 1195 | } | |
| 1f8d2881 | 1196 | |
| c906108c | 1197 | default: |
| 6ad368b8 | 1198 | return {}; |
| c906108c SS |
1199 | } |
| 1200 | } | |
| 1201 | ||
| 14c09924 SM |
1202 | /* See gdbtypes.h. */ |
| 1203 | ||
| 1204 | bool | |
| 1205 | get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) | |
| 1206 | { | |
| 6b09f134 | 1207 | std::optional<LONGEST> low = get_discrete_low_bound (type); |
| 6ad368b8 SM |
1208 | if (!low.has_value ()) |
| 1209 | return false; | |
| 14c09924 | 1210 | |
| 6b09f134 | 1211 | std::optional<LONGEST> high = get_discrete_high_bound (type); |
| 6ad368b8 | 1212 | if (!high.has_value ()) |
| 14c09924 SM |
1213 | return false; |
| 1214 | ||
| 1215 | *lowp = *low; | |
| 1216 | *highp = *high; | |
| 1217 | ||
| 1218 | return true; | |
| 1219 | } | |
| 1220 | ||
| 584903d3 | 1221 | /* See gdbtypes.h */ |
| dbc98a8b | 1222 | |
| 584903d3 | 1223 | bool |
| dbc98a8b KW |
1224 | get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) |
| 1225 | { | |
| 3d967001 | 1226 | struct type *index = type->index_type (); |
| dbc98a8b KW |
1227 | LONGEST low = 0; |
| 1228 | LONGEST high = 0; | |
| dbc98a8b KW |
1229 | |
| 1230 | if (index == NULL) | |
| 584903d3 | 1231 | return false; |
| dbc98a8b | 1232 | |
| 1f8d2881 | 1233 | if (!get_discrete_bounds (index, &low, &high)) |
| 584903d3 | 1234 | return false; |
| dbc98a8b | 1235 | |
| dbc98a8b KW |
1236 | if (low_bound) |
| 1237 | *low_bound = low; | |
| 1238 | ||
| 1239 | if (high_bound) | |
| 1240 | *high_bound = high; | |
| 1241 | ||
| 584903d3 | 1242 | return true; |
| dbc98a8b KW |
1243 | } |
| 1244 | ||
| aa715135 JG |
1245 | /* Assuming that TYPE is a discrete type and VAL is a valid integer |
| 1246 | representation of a value of this type, save the corresponding | |
| 1247 | position number in POS. | |
| 1248 | ||
| 1249 | Its differs from VAL only in the case of enumeration types. In | |
| 1250 | this case, the position number of the value of the first listed | |
| 1251 | enumeration literal is zero; the position number of the value of | |
| 1252 | each subsequent enumeration literal is one more than that of its | |
| 1253 | predecessor in the list. | |
| 1254 | ||
| 1255 | Return 1 if the operation was successful. Return zero otherwise, | |
| 1256 | in which case the value of POS is unmodified. | |
| 1257 | */ | |
| 1258 | ||
| 6b09f134 | 1259 | std::optional<LONGEST> |
| 6244c119 | 1260 | discrete_position (struct type *type, LONGEST val) |
| aa715135 | 1261 | { |
| 0bc2354b | 1262 | if (type->code () == TYPE_CODE_RANGE) |
| 27710edb | 1263 | type = type->target_type (); |
| 0bc2354b | 1264 | |
| 78134374 | 1265 | if (type->code () == TYPE_CODE_ENUM) |
| aa715135 JG |
1266 | { |
| 1267 | int i; | |
| 1268 | ||
| 1f704f76 | 1269 | for (i = 0; i < type->num_fields (); i += 1) |
| dda83cd7 | 1270 | { |
| 970db518 | 1271 | if (val == type->field (i).loc_enumval ()) |
| 6244c119 | 1272 | return i; |
| dda83cd7 | 1273 | } |
| 6244c119 | 1274 | |
| aa715135 | 1275 | /* Invalid enumeration value. */ |
| 6244c119 | 1276 | return {}; |
| aa715135 JG |
1277 | } |
| 1278 | else | |
| 6244c119 | 1279 | return val; |
| aa715135 JG |
1280 | } |
| 1281 | ||
| 8dbb1375 HD |
1282 | /* If the array TYPE has static bounds calculate and update its |
| 1283 | size, then return true. Otherwise return false and leave TYPE | |
| 1284 | unchanged. */ | |
| 1285 | ||
| 1286 | static bool | |
| 1287 | update_static_array_size (struct type *type) | |
| 1288 | { | |
| 78134374 | 1289 | gdb_assert (type->code () == TYPE_CODE_ARRAY); |
| 8dbb1375 | 1290 | |
| 3d967001 | 1291 | struct type *range_type = type->index_type (); |
| 8dbb1375 | 1292 | |
| 24e99c6c | 1293 | if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr |
| 599088e3 | 1294 | && has_static_range (range_type->bounds ()) |
| 8dbb1375 HD |
1295 | && (!type_not_associated (type) |
| 1296 | && !type_not_allocated (type))) | |
| 1297 | { | |
| 1298 | LONGEST low_bound, high_bound; | |
| 1299 | int stride; | |
| 1300 | struct type *element_type; | |
| 1301 | ||
| cc9d6997 | 1302 | stride = type->bit_stride (); |
| 8dbb1375 | 1303 | |
| 1f8d2881 | 1304 | if (!get_discrete_bounds (range_type, &low_bound, &high_bound)) |
| 8dbb1375 | 1305 | low_bound = high_bound = 0; |
| 1f8d2881 | 1306 | |
| 27710edb | 1307 | element_type = check_typedef (type->target_type ()); |
| 8dbb1375 HD |
1308 | /* Be careful when setting the array length. Ada arrays can be |
| 1309 | empty arrays with the high_bound being smaller than the low_bound. | |
| 1310 | In such cases, the array length should be zero. */ | |
| 1311 | if (high_bound < low_bound) | |
| b6cdbc9a | 1312 | type->set_length (0); |
| 8dbb1375 HD |
1313 | else if (stride != 0) |
| 1314 | { | |
| 1315 | /* Ensure that the type length is always positive, even in the | |
| 1316 | case where (for example in Fortran) we have a negative | |
| 1317 | stride. It is possible to have a single element array with a | |
| 1318 | negative stride in Fortran (this doesn't mean anything | |
| 1319 | special, it's still just a single element array) so do | |
| 1320 | consider that case when touching this code. */ | |
| 1321 | LONGEST element_count = std::abs (high_bound - low_bound + 1); | |
| b6cdbc9a | 1322 | type->set_length (((std::abs (stride) * element_count) + 7) / 8); |
| 8dbb1375 HD |
1323 | } |
| 1324 | else | |
| df86565b | 1325 | type->set_length (element_type->length () |
| b6cdbc9a | 1326 | * (high_bound - low_bound + 1)); |
| 8dbb1375 | 1327 | |
| b72795a8 TT |
1328 | /* If this array's element is itself an array with a bit stride, |
| 1329 | then we want to update this array's bit stride to reflect the | |
| 1330 | size of the sub-array. Otherwise, we'll end up using the | |
| 1331 | wrong size when trying to find elements of the outer | |
| 1332 | array. */ | |
| 1333 | if (element_type->code () == TYPE_CODE_ARRAY | |
| 6c849804 | 1334 | && (stride != 0 || element_type->is_multi_dimensional ()) |
| df86565b | 1335 | && element_type->length () != 0 |
| 3757d2d4 | 1336 | && element_type->field (0).bitsize () != 0 |
| 5d8254e1 | 1337 | && get_array_bounds (element_type, &low_bound, &high_bound) |
| b72795a8 | 1338 | && high_bound >= low_bound) |
| 886176b8 SM |
1339 | type->field (0).set_bitsize |
| 1340 | ((high_bound - low_bound + 1) | |
| 3757d2d4 | 1341 | * element_type->field (0).bitsize ()); |
| b72795a8 | 1342 | |
| 8dbb1375 HD |
1343 | return true; |
| 1344 | } | |
| 1345 | ||
| 1346 | return false; | |
| 1347 | } | |
| 1348 | ||
| 9e76b17a | 1349 | /* See gdbtypes.h. */ |
| c906108c SS |
1350 | |
| 1351 | struct type * | |
| 9e76b17a | 1352 | create_array_type_with_stride (type_allocator &alloc, |
| dc53a7ad JB |
1353 | struct type *element_type, |
| 1354 | struct type *range_type, | |
| a405673c | 1355 | struct dynamic_prop *byte_stride_prop, |
| dc53a7ad | 1356 | unsigned int bit_stride) |
| c906108c | 1357 | { |
| 9c0fb734 | 1358 | if (byte_stride_prop != nullptr && byte_stride_prop->is_constant ()) |
| a405673c JB |
1359 | { |
| 1360 | /* The byte stride is actually not dynamic. Pretend we were | |
| 1361 | called with bit_stride set instead of byte_stride_prop. | |
| 1362 | This will give us the same result type, while avoiding | |
| 1363 | the need to handle this as a special case. */ | |
| 8c2e4e06 | 1364 | bit_stride = byte_stride_prop->const_val () * 8; |
| a405673c JB |
1365 | byte_stride_prop = NULL; |
| 1366 | } | |
| 1367 | ||
| 9e76b17a | 1368 | struct type *result_type = alloc.new_type (); |
| e9bb382b | 1369 | |
| 67607e24 | 1370 | result_type->set_code (TYPE_CODE_ARRAY); |
| 8a50fdce | 1371 | result_type->set_target_type (element_type); |
| 5bbd8269 | 1372 | |
| 2774f2da | 1373 | result_type->alloc_fields (1); |
| 262abc0d | 1374 | result_type->set_index_type (range_type); |
| 8dbb1375 | 1375 | if (byte_stride_prop != NULL) |
| 5c54719c | 1376 | result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop); |
| 8dbb1375 | 1377 | else if (bit_stride > 0) |
| 886176b8 | 1378 | result_type->field (0).set_bitsize (bit_stride); |
| 80180f79 | 1379 | |
| 8dbb1375 | 1380 | if (!update_static_array_size (result_type)) |
| 80180f79 SA |
1381 | { |
| 1382 | /* This type is dynamic and its length needs to be computed | |
| dda83cd7 SM |
1383 | on demand. In the meantime, avoid leaving the TYPE_LENGTH |
| 1384 | undefined by setting it to zero. Although we are not expected | |
| 1385 | to trust TYPE_LENGTH in this case, setting the size to zero | |
| 1386 | allows us to avoid allocating objects of random sizes in case | |
| 8f6606b6 | 1387 | we accidentally do. */ |
| b6cdbc9a | 1388 | result_type->set_length (0); |
| 80180f79 SA |
1389 | } |
| 1390 | ||
| a9ff5f12 | 1391 | /* TYPE_TARGET_STUB will take care of zero length arrays. */ |
| df86565b | 1392 | if (result_type->length () == 0) |
| 8f53807e | 1393 | result_type->set_target_is_stub (true); |
| c906108c | 1394 | |
| c16abbde | 1395 | return result_type; |
| c906108c SS |
1396 | } |
| 1397 | ||
| 9e76b17a | 1398 | /* See gdbtypes.h. */ |
| dc53a7ad JB |
1399 | |
| 1400 | struct type * | |
| 9e76b17a | 1401 | create_array_type (type_allocator &alloc, |
| dc53a7ad JB |
1402 | struct type *element_type, |
| 1403 | struct type *range_type) | |
| 1404 | { | |
| 9e76b17a | 1405 | return create_array_type_with_stride (alloc, element_type, |
| a405673c | 1406 | range_type, NULL, 0); |
| dc53a7ad JB |
1407 | } |
| 1408 | ||
| e3506a9f UW |
1409 | struct type * |
| 1410 | lookup_array_range_type (struct type *element_type, | |
| 63375b74 | 1411 | LONGEST low_bound, LONGEST high_bound) |
| e3506a9f | 1412 | { |
| 929b5ad4 JB |
1413 | struct type *index_type; |
| 1414 | struct type *range_type; | |
| 1415 | ||
| e727c536 | 1416 | type_allocator alloc (element_type); |
| 426e5b66 | 1417 | index_type = builtin_type (element_type->arch ())->builtin_int; |
| 5b7d941b | 1418 | |
| e727c536 | 1419 | range_type = create_static_range_type (alloc, index_type, |
| 929b5ad4 | 1420 | low_bound, high_bound); |
| d8734c88 | 1421 | |
| 9e76b17a | 1422 | return create_array_type (alloc, element_type, range_type); |
| e3506a9f UW |
1423 | } |
| 1424 | ||
| 9e76b17a | 1425 | /* See gdbtypes.h. */ |
| c906108c SS |
1426 | |
| 1427 | struct type * | |
| 9e76b17a | 1428 | create_string_type (type_allocator &alloc, |
| 3b7538c0 | 1429 | struct type *string_char_type, |
| 7ba81444 | 1430 | struct type *range_type) |
| c906108c | 1431 | { |
| 9e76b17a TT |
1432 | struct type *result_type = create_array_type (alloc, |
| 1433 | string_char_type, | |
| 1434 | range_type); | |
| 67607e24 | 1435 | result_type->set_code (TYPE_CODE_STRING); |
| c16abbde | 1436 | return result_type; |
| c906108c SS |
1437 | } |
| 1438 | ||
| e3506a9f UW |
1439 | struct type * |
| 1440 | lookup_string_range_type (struct type *string_char_type, | |
| 63375b74 | 1441 | LONGEST low_bound, LONGEST high_bound) |
| e3506a9f UW |
1442 | { |
| 1443 | struct type *result_type; | |
| d8734c88 | 1444 | |
| e3506a9f UW |
1445 | result_type = lookup_array_range_type (string_char_type, |
| 1446 | low_bound, high_bound); | |
| 67607e24 | 1447 | result_type->set_code (TYPE_CODE_STRING); |
| e3506a9f UW |
1448 | return result_type; |
| 1449 | } | |
| 1450 | ||
| c906108c | 1451 | struct type * |
| 52664858 | 1452 | create_set_type (type_allocator &alloc, struct type *domain_type) |
| c906108c | 1453 | { |
| 52664858 | 1454 | struct type *result_type = alloc.new_type (); |
| e9bb382b | 1455 | |
| 67607e24 | 1456 | result_type->set_code (TYPE_CODE_SET); |
| 2774f2da | 1457 | result_type->alloc_fields (1); |
| c906108c | 1458 | |
| e46d3488 | 1459 | if (!domain_type->is_stub ()) |
| c906108c | 1460 | { |
| f9780d5b | 1461 | LONGEST low_bound, high_bound, bit_length; |
| d8734c88 | 1462 | |
| 1f8d2881 | 1463 | if (!get_discrete_bounds (domain_type, &low_bound, &high_bound)) |
| c906108c | 1464 | low_bound = high_bound = 0; |
| 1f8d2881 | 1465 | |
| c906108c | 1466 | bit_length = high_bound - low_bound + 1; |
| b6cdbc9a SM |
1467 | result_type->set_length ((bit_length + TARGET_CHAR_BIT - 1) |
| 1468 | / TARGET_CHAR_BIT); | |
| f9780d5b | 1469 | if (low_bound >= 0) |
| 653223d3 | 1470 | result_type->set_is_unsigned (true); |
| c906108c | 1471 | } |
| 5d14b6e5 | 1472 | result_type->field (0).set_type (domain_type); |
| c906108c | 1473 | |
| c16abbde | 1474 | return result_type; |
| c906108c SS |
1475 | } |
| 1476 | ||
| ea37ba09 DJ |
1477 | /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE |
| 1478 | and any array types nested inside it. */ | |
| 1479 | ||
| 1480 | void | |
| 1481 | make_vector_type (struct type *array_type) | |
| 1482 | { | |
| 1483 | struct type *inner_array, *elt_type; | |
| ea37ba09 DJ |
1484 | |
| 1485 | /* Find the innermost array type, in case the array is | |
| 1486 | multi-dimensional. */ | |
| 1487 | inner_array = array_type; | |
| 27710edb SM |
1488 | while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY) |
| 1489 | inner_array = inner_array->target_type (); | |
| ea37ba09 | 1490 | |
| 27710edb | 1491 | elt_type = inner_array->target_type (); |
| 78134374 | 1492 | if (elt_type->code () == TYPE_CODE_INT) |
| ea37ba09 | 1493 | { |
| 314ad88d PA |
1494 | type_instance_flags flags |
| 1495 | = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT; | |
| ea37ba09 | 1496 | elt_type = make_qualified_type (elt_type, flags, NULL); |
| 8a50fdce | 1497 | inner_array->set_target_type (elt_type); |
| ea37ba09 DJ |
1498 | } |
| 1499 | ||
| 2062087b | 1500 | array_type->set_is_vector (true); |
| ea37ba09 DJ |
1501 | } |
| 1502 | ||
| 794ac428 | 1503 | struct type * |
| ac3aafc7 EZ |
1504 | init_vector_type (struct type *elt_type, int n) |
| 1505 | { | |
| 1506 | struct type *array_type; | |
| d8734c88 | 1507 | |
| e3506a9f | 1508 | array_type = lookup_array_range_type (elt_type, 0, n - 1); |
| ea37ba09 | 1509 | make_vector_type (array_type); |
| ac3aafc7 EZ |
1510 | return array_type; |
| 1511 | } | |
| 1512 | ||
| 09e2d7c7 DE |
1513 | /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE |
| 1514 | belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too | |
| 1515 | confusing. "self" is a common enough replacement for "this". | |
| 1516 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
| 1517 | TYPE_CODE_METHOD. */ | |
| 1518 | ||
| 1519 | struct type * | |
| 1520 | internal_type_self_type (struct type *type) | |
| 1521 | { | |
| 78134374 | 1522 | switch (type->code ()) |
| 09e2d7c7 DE |
1523 | { |
| 1524 | case TYPE_CODE_METHODPTR: | |
| 1525 | case TYPE_CODE_MEMBERPTR: | |
| eaaf76ab DE |
1526 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
| 1527 | return NULL; | |
| 09e2d7c7 DE |
1528 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); |
| 1529 | return TYPE_MAIN_TYPE (type)->type_specific.self_type; | |
| 1530 | case TYPE_CODE_METHOD: | |
| eaaf76ab DE |
1531 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
| 1532 | return NULL; | |
| 09e2d7c7 DE |
1533 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); |
| 1534 | return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type; | |
| 1535 | default: | |
| 1536 | gdb_assert_not_reached ("bad type"); | |
| 1537 | } | |
| 1538 | } | |
| 1539 | ||
| 1540 | /* Set the type of the class that TYPE belongs to. | |
| 1541 | In c++ this is the class of "this". | |
| 1542 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
| 1543 | TYPE_CODE_METHOD. */ | |
| 1544 | ||
| 1545 | void | |
| 1546 | set_type_self_type (struct type *type, struct type *self_type) | |
| 1547 | { | |
| 78134374 | 1548 | switch (type->code ()) |
| 09e2d7c7 DE |
1549 | { |
| 1550 | case TYPE_CODE_METHODPTR: | |
| 1551 | case TYPE_CODE_MEMBERPTR: | |
| 1552 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
| 1553 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE; | |
| 1554 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); | |
| 1555 | TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type; | |
| 1556 | break; | |
| 1557 | case TYPE_CODE_METHOD: | |
| 1558 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
| 1559 | INIT_FUNC_SPECIFIC (type); | |
| 1560 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); | |
| 1561 | TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type; | |
| 1562 | break; | |
| 1563 | default: | |
| 1564 | gdb_assert_not_reached ("bad type"); | |
| 1565 | } | |
| 1566 | } | |
| 1567 | ||
| 1568 | /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type | |
| 8f6606b6 | 1569 | TO_TYPE. A member pointer is a weird thing -- it amounts to a |
| 0d5de010 DJ |
1570 | typed offset into a struct, e.g. "an int at offset 8". A MEMBER |
| 1571 | TYPE doesn't include the offset (that's the value of the MEMBER | |
| 1572 | itself), but does include the structure type into which it points | |
| 1573 | (for some reason). | |
| c906108c | 1574 | |
| 7ba81444 MS |
1575 | When "smashing" the type, we preserve the objfile that the old type |
| 1576 | pointed to, since we aren't changing where the type is actually | |
| c906108c SS |
1577 | allocated. */ |
| 1578 | ||
| 1579 | void | |
| 09e2d7c7 | 1580 | smash_to_memberptr_type (struct type *type, struct type *self_type, |
| 0d5de010 | 1581 | struct type *to_type) |
| c906108c | 1582 | { |
| 2fdde8f8 | 1583 | smash_type (type); |
| 67607e24 | 1584 | type->set_code (TYPE_CODE_MEMBERPTR); |
| 8a50fdce | 1585 | type->set_target_type (to_type); |
| 09e2d7c7 | 1586 | set_type_self_type (type, self_type); |
| 0d5de010 DJ |
1587 | /* Assume that a data member pointer is the same size as a normal |
| 1588 | pointer. */ | |
| b6cdbc9a | 1589 | type->set_length (gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT); |
| c906108c SS |
1590 | } |
| 1591 | ||
| 0b92b5bb TT |
1592 | /* Smash TYPE to be a type of pointer to methods type TO_TYPE. |
| 1593 | ||
| 1594 | When "smashing" the type, we preserve the objfile that the old type | |
| 1595 | pointed to, since we aren't changing where the type is actually | |
| 1596 | allocated. */ | |
| 1597 | ||
| 1598 | void | |
| 1599 | smash_to_methodptr_type (struct type *type, struct type *to_type) | |
| 1600 | { | |
| 1601 | smash_type (type); | |
| 67607e24 | 1602 | type->set_code (TYPE_CODE_METHODPTR); |
| 8a50fdce | 1603 | type->set_target_type (to_type); |
| 09e2d7c7 | 1604 | set_type_self_type (type, TYPE_SELF_TYPE (to_type)); |
| b6cdbc9a | 1605 | type->set_length (cplus_method_ptr_size (to_type)); |
| 0b92b5bb TT |
1606 | } |
| 1607 | ||
| 09e2d7c7 | 1608 | /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE. |
| c906108c SS |
1609 | METHOD just means `function that gets an extra "this" argument'. |
| 1610 | ||
| 7ba81444 MS |
1611 | When "smashing" the type, we preserve the objfile that the old type |
| 1612 | pointed to, since we aren't changing where the type is actually | |
| c906108c SS |
1613 | allocated. */ |
| 1614 | ||
| 1615 | void | |
| 09e2d7c7 | 1616 | smash_to_method_type (struct type *type, struct type *self_type, |
| 89495c33 TT |
1617 | struct type *to_type, gdb::array_view<struct field> args, |
| 1618 | int varargs) | |
| c906108c | 1619 | { |
| 2fdde8f8 | 1620 | smash_type (type); |
| 67607e24 | 1621 | type->set_code (TYPE_CODE_METHOD); |
| 8a50fdce | 1622 | type->set_target_type (to_type); |
| 09e2d7c7 | 1623 | set_type_self_type (type, self_type); |
| 89495c33 TT |
1624 | type->set_fields (args.data ()); |
| 1625 | type->set_num_fields (args.size ()); | |
| b6cdbc9a | 1626 | |
| ad2f7632 | 1627 | if (varargs) |
| 1d6286ed | 1628 | type->set_has_varargs (true); |
| b6cdbc9a SM |
1629 | |
| 1630 | /* In practice, this is never needed. */ | |
| 1631 | type->set_length (1); | |
| c906108c SS |
1632 | } |
| 1633 | ||
| a737d952 | 1634 | /* A wrapper of TYPE_NAME which calls error if the type is anonymous. |
| d8228535 JK |
1635 | Since GCC PR debug/47510 DWARF provides associated information to detect the |
| 1636 | anonymous class linkage name from its typedef. | |
| 1637 | ||
| 1638 | Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will | |
| 1639 | apply it itself. */ | |
| 1640 | ||
| 1641 | const char * | |
| a737d952 | 1642 | type_name_or_error (struct type *type) |
| d8228535 JK |
1643 | { |
| 1644 | struct type *saved_type = type; | |
| 1645 | const char *name; | |
| 1646 | struct objfile *objfile; | |
| 1647 | ||
| f168693b | 1648 | type = check_typedef (type); |
| d8228535 | 1649 | |
| 7d93a1e0 | 1650 | name = type->name (); |
| d8228535 JK |
1651 | if (name != NULL) |
| 1652 | return name; | |
| 1653 | ||
| 7d93a1e0 | 1654 | name = saved_type->name (); |
| 6ac37371 | 1655 | objfile = saved_type->objfile_owner (); |
| d8228535 | 1656 | error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"), |
| 4262abfb JK |
1657 | name ? name : "<anonymous>", |
| 1658 | objfile ? objfile_name (objfile) : "<arch>"); | |
| d8228535 JK |
1659 | } |
| 1660 | ||
| bde240e7 | 1661 | /* See gdbtypes.h. */ |
| c906108c SS |
1662 | |
| 1663 | struct type * | |
| e6c014f2 | 1664 | lookup_typename (const struct language_defn *language, |
| b858499d | 1665 | const char *name, |
| 34eaf542 | 1666 | const struct block *block, int noerr) |
| c906108c | 1667 | { |
| 52f0bd74 | 1668 | struct symbol *sym; |
| c906108c | 1669 | |
| 9edce54e | 1670 | sym = lookup_symbol_in_language (name, block, SEARCH_TYPE_DOMAIN, |
| d12307c1 | 1671 | language->la_language, NULL).symbol; |
| 9edce54e | 1672 | if (sym != nullptr) |
| bde240e7 AB |
1673 | { |
| 1674 | struct type *type = sym->type (); | |
| 1675 | /* Ensure the length of TYPE is valid. */ | |
| 1676 | check_typedef (type); | |
| 1677 | return type; | |
| 1678 | } | |
| c51fe631 | 1679 | |
| c51fe631 DE |
1680 | if (noerr) |
| 1681 | return NULL; | |
| 1682 | error (_("No type named %s."), name); | |
| c906108c SS |
1683 | } |
| 1684 | ||
| 1685 | struct type * | |
| e6c014f2 | 1686 | lookup_unsigned_typename (const struct language_defn *language, |
| b858499d | 1687 | const char *name) |
| c906108c | 1688 | { |
| 8ba212f8 SM |
1689 | std::string uns; |
| 1690 | uns.reserve (strlen (name) + strlen ("unsigned ")); | |
| 1691 | uns = "unsigned "; | |
| 1692 | uns += name; | |
| c906108c | 1693 | |
| 8ba212f8 | 1694 | return lookup_typename (language, uns.c_str (), NULL, 0); |
| c906108c SS |
1695 | } |
| 1696 | ||
| 1697 | struct type * | |
| b858499d | 1698 | lookup_signed_typename (const struct language_defn *language, const char *name) |
| c906108c | 1699 | { |
| 55fc1623 TT |
1700 | /* In C and C++, "char" and "signed char" are distinct types. */ |
| 1701 | if (streq (name, "char")) | |
| 1702 | name = "signed char"; | |
| b858499d | 1703 | return lookup_typename (language, name, NULL, 0); |
| c906108c SS |
1704 | } |
| 1705 | ||
| 1706 | /* Lookup a structure type named "struct NAME", | |
| 1707 | visible in lexical block BLOCK. */ | |
| 1708 | ||
| 1709 | struct type * | |
| 270140bd | 1710 | lookup_struct (const char *name, const struct block *block) |
| c906108c | 1711 | { |
| 52f0bd74 | 1712 | struct symbol *sym; |
| c906108c | 1713 | |
| ccf41c24 | 1714 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
| c906108c SS |
1715 | |
| 1716 | if (sym == NULL) | |
| 1717 | { | |
| 8a3fe4f8 | 1718 | error (_("No struct type named %s."), name); |
| c906108c | 1719 | } |
| 5f9c5a63 | 1720 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
| c906108c | 1721 | { |
| 7ba81444 MS |
1722 | error (_("This context has class, union or enum %s, not a struct."), |
| 1723 | name); | |
| c906108c | 1724 | } |
| 5f9c5a63 | 1725 | return (sym->type ()); |
| c906108c SS |
1726 | } |
| 1727 | ||
| 1728 | /* Lookup a union type named "union NAME", | |
| 1729 | visible in lexical block BLOCK. */ | |
| 1730 | ||
| 1731 | struct type * | |
| 270140bd | 1732 | lookup_union (const char *name, const struct block *block) |
| c906108c | 1733 | { |
| 52f0bd74 | 1734 | struct symbol *sym; |
| c5aa993b | 1735 | struct type *t; |
| c906108c | 1736 | |
| ccf41c24 | 1737 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
| c906108c SS |
1738 | |
| 1739 | if (sym == NULL) | |
| 8a3fe4f8 | 1740 | error (_("No union type named %s."), name); |
| c906108c | 1741 | |
| 5f9c5a63 | 1742 | t = sym->type (); |
| c906108c | 1743 | |
| 78134374 | 1744 | if (t->code () == TYPE_CODE_UNION) |
| c16abbde | 1745 | return t; |
| c906108c | 1746 | |
| 7ba81444 | 1747 | /* If we get here, it's not a union. */ |
| a5cbe675 | 1748 | error (_("This context has class, struct or enum %s, not a union."), |
| 7ba81444 | 1749 | name); |
| c906108c SS |
1750 | } |
| 1751 | ||
| c906108c SS |
1752 | /* Lookup an enum type named "enum NAME", |
| 1753 | visible in lexical block BLOCK. */ | |
| 1754 | ||
| 1755 | struct type * | |
| 270140bd | 1756 | lookup_enum (const char *name, const struct block *block) |
| c906108c | 1757 | { |
| 52f0bd74 | 1758 | struct symbol *sym; |
| c906108c | 1759 | |
| ccf41c24 | 1760 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
| c906108c SS |
1761 | if (sym == NULL) |
| 1762 | { | |
| 8a3fe4f8 | 1763 | error (_("No enum type named %s."), name); |
| c906108c | 1764 | } |
| 5f9c5a63 | 1765 | if (sym->type ()->code () != TYPE_CODE_ENUM) |
| c906108c | 1766 | { |
| a5cbe675 | 1767 | error (_("This context has class, struct or union %s, not an enum."), |
| 7ba81444 | 1768 | name); |
| c906108c | 1769 | } |
| 5f9c5a63 | 1770 | return (sym->type ()); |
| c906108c SS |
1771 | } |
| 1772 | ||
| 1773 | /* Lookup a template type named "template NAME<TYPE>", | |
| 1774 | visible in lexical block BLOCK. */ | |
| 1775 | ||
| 1776 | struct type * | |
| a5cbe675 | 1777 | lookup_template_type (const char *name, struct type *type, |
| 270140bd | 1778 | const struct block *block) |
| c906108c | 1779 | { |
| 8ba212f8 SM |
1780 | std::string nam; |
| 1781 | nam.reserve (strlen (name) + strlen (type->name ()) + strlen ("< >")); | |
| 1782 | nam = name; | |
| 1783 | nam += "<"; | |
| 1784 | nam += type->name (); | |
| 1785 | nam += " >"; /* FIXME, extra space still introduced in gcc? */ | |
| c906108c | 1786 | |
| ccf41c24 TT |
1787 | symbol *sym = lookup_symbol (nam.c_str (), block, |
| 1788 | SEARCH_STRUCT_DOMAIN, 0).symbol; | |
| c906108c SS |
1789 | |
| 1790 | if (sym == NULL) | |
| 1791 | { | |
| 8a3fe4f8 | 1792 | error (_("No template type named %s."), name); |
| c906108c | 1793 | } |
| 5f9c5a63 | 1794 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
| c906108c | 1795 | { |
| 7ba81444 MS |
1796 | error (_("This context has class, union or enum %s, not a struct."), |
| 1797 | name); | |
| c906108c | 1798 | } |
| 5f9c5a63 | 1799 | return (sym->type ()); |
| c906108c SS |
1800 | } |
| 1801 | ||
| ef0bd204 | 1802 | /* See gdbtypes.h. */ |
| c906108c | 1803 | |
| ef0bd204 JB |
1804 | struct_elt |
| 1805 | lookup_struct_elt (struct type *type, const char *name, int noerr) | |
| c906108c SS |
1806 | { |
| 1807 | int i; | |
| 1808 | ||
| 1809 | for (;;) | |
| 1810 | { | |
| f168693b | 1811 | type = check_typedef (type); |
| 78134374 SM |
1812 | if (type->code () != TYPE_CODE_PTR |
| 1813 | && type->code () != TYPE_CODE_REF) | |
| c906108c | 1814 | break; |
| 27710edb | 1815 | type = type->target_type (); |
| c906108c SS |
1816 | } |
| 1817 | ||
| 78134374 SM |
1818 | if (type->code () != TYPE_CODE_STRUCT |
| 1819 | && type->code () != TYPE_CODE_UNION) | |
| c906108c | 1820 | { |
| 2f408ecb PA |
1821 | std::string type_name = type_to_string (type); |
| 1822 | error (_("Type %s is not a structure or union type."), | |
| 1823 | type_name.c_str ()); | |
| c906108c SS |
1824 | } |
| 1825 | ||
| 1f704f76 | 1826 | for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) |
| c906108c | 1827 | { |
| 33d16dd9 | 1828 | const char *t_field_name = type->field (i).name (); |
| c906108c | 1829 | |
| db577aea | 1830 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
| c906108c | 1831 | { |
| b610c045 | 1832 | return {&type->field (i), type->field (i).loc_bitpos ()}; |
| c906108c | 1833 | } |
| c11f01db | 1834 | else if (!t_field_name || *t_field_name == '\0') |
| f5a010c0 | 1835 | { |
| 48b5669c TT |
1836 | struct type *field_type = type->field (i).type (); |
| 1837 | enum type_code field_code = check_typedef (field_type)->code (); | |
| 1838 | ||
| 1839 | if (field_code == TYPE_CODE_STRUCT || field_code == TYPE_CODE_UNION) | |
| ef0bd204 | 1840 | { |
| 48b5669c TT |
1841 | struct_elt elt |
| 1842 | = lookup_struct_elt (type->field (i).type (), name, 1); | |
| 1843 | if (elt.field != NULL) | |
| 1844 | { | |
| 1845 | elt.offset += type->field (i).loc_bitpos (); | |
| 1846 | return elt; | |
| 1847 | } | |
| ef0bd204 | 1848 | } |
| f5a010c0 | 1849 | } |
| c906108c SS |
1850 | } |
| 1851 | ||
| 1852 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
| 1853 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
| 1854 | { | |
| ef0bd204 JB |
1855 | struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1); |
| 1856 | if (elt.field != NULL) | |
| 1857 | return elt; | |
| c906108c SS |
1858 | } |
| 1859 | ||
| 1860 | if (noerr) | |
| ef0bd204 | 1861 | return {nullptr, 0}; |
| c5aa993b | 1862 | |
| 2f408ecb PA |
1863 | std::string type_name = type_to_string (type); |
| 1864 | error (_("Type %s has no component named %s."), type_name.c_str (), name); | |
| c906108c SS |
1865 | } |
| 1866 | ||
| ef0bd204 JB |
1867 | /* See gdbtypes.h. */ |
| 1868 | ||
| 1869 | struct type * | |
| 1870 | lookup_struct_elt_type (struct type *type, const char *name, int noerr) | |
| 1871 | { | |
| 1872 | struct_elt elt = lookup_struct_elt (type, name, noerr); | |
| 1873 | if (elt.field != NULL) | |
| b6cdac4b | 1874 | return elt.field->type (); |
| ef0bd204 JB |
1875 | else |
| 1876 | return NULL; | |
| 1877 | } | |
| 1878 | ||
| c3c1e645 | 1879 | /* Return the largest number representable by unsigned integer type TYPE. */ |
| ed3ef339 | 1880 | |
| c3c1e645 GB |
1881 | ULONGEST |
| 1882 | get_unsigned_type_max (struct type *type) | |
| ed3ef339 DE |
1883 | { |
| 1884 | unsigned int n; | |
| 1885 | ||
| f168693b | 1886 | type = check_typedef (type); |
| c6d940a9 | 1887 | gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ()); |
| df86565b | 1888 | gdb_assert (type->length () <= sizeof (ULONGEST)); |
| ed3ef339 DE |
1889 | |
| 1890 | /* Written this way to avoid overflow. */ | |
| df86565b | 1891 | n = type->length () * TARGET_CHAR_BIT; |
| c3c1e645 | 1892 | return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1; |
| ed3ef339 DE |
1893 | } |
| 1894 | ||
| 1895 | /* Store in *MIN, *MAX the smallest and largest numbers representable by | |
| 1896 | signed integer type TYPE. */ | |
| 1897 | ||
| 1898 | void | |
| 1899 | get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max) | |
| 1900 | { | |
| 1901 | unsigned int n; | |
| 1902 | ||
| f168693b | 1903 | type = check_typedef (type); |
| c6d940a9 | 1904 | gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ()); |
| df86565b | 1905 | gdb_assert (type->length () <= sizeof (LONGEST)); |
| ed3ef339 | 1906 | |
| df86565b | 1907 | n = type->length () * TARGET_CHAR_BIT; |
| ed3ef339 DE |
1908 | *min = -((ULONGEST) 1 << (n - 1)); |
| 1909 | *max = ((ULONGEST) 1 << (n - 1)) - 1; | |
| 1910 | } | |
| 1911 | ||
| b5b591a8 GB |
1912 | /* Return the largest value representable by pointer type TYPE. */ |
| 1913 | ||
| 1914 | CORE_ADDR | |
| 1915 | get_pointer_type_max (struct type *type) | |
| 1916 | { | |
| 1917 | unsigned int n; | |
| 1918 | ||
| 1919 | type = check_typedef (type); | |
| 1920 | gdb_assert (type->code () == TYPE_CODE_PTR); | |
| df86565b | 1921 | gdb_assert (type->length () <= sizeof (CORE_ADDR)); |
| b5b591a8 | 1922 | |
| df86565b | 1923 | n = type->length () * TARGET_CHAR_BIT; |
| b5b591a8 GB |
1924 | return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1; |
| 1925 | } | |
| 1926 | ||
| ae6ae975 DE |
1927 | /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of |
| 1928 | cplus_stuff.vptr_fieldno. | |
| 1929 | ||
| 1930 | cplus_stuff is initialized to cplus_struct_default which does not | |
| 1931 | set vptr_fieldno to -1 for portability reasons (IWBN to use C99 | |
| 1932 | designated initializers). We cope with that here. */ | |
| 1933 | ||
| 1934 | int | |
| 1935 | internal_type_vptr_fieldno (struct type *type) | |
| 1936 | { | |
| f168693b | 1937 | type = check_typedef (type); |
| 78134374 SM |
1938 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
| 1939 | || type->code () == TYPE_CODE_UNION); | |
| ae6ae975 DE |
1940 | if (!HAVE_CPLUS_STRUCT (type)) |
| 1941 | return -1; | |
| 1942 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno; | |
| 1943 | } | |
| 1944 | ||
| 1945 | /* Set the value of cplus_stuff.vptr_fieldno. */ | |
| 1946 | ||
| 1947 | void | |
| 1948 | set_type_vptr_fieldno (struct type *type, int fieldno) | |
| 1949 | { | |
| f168693b | 1950 | type = check_typedef (type); |
| 78134374 SM |
1951 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
| 1952 | || type->code () == TYPE_CODE_UNION); | |
| ae6ae975 DE |
1953 | if (!HAVE_CPLUS_STRUCT (type)) |
| 1954 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
| 1955 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno; | |
| 1956 | } | |
| 1957 | ||
| 1958 | /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of | |
| 1959 | cplus_stuff.vptr_basetype. */ | |
| 1960 | ||
| 1961 | struct type * | |
| 1962 | internal_type_vptr_basetype (struct type *type) | |
| 1963 | { | |
| f168693b | 1964 | type = check_typedef (type); |
| 78134374 SM |
1965 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
| 1966 | || type->code () == TYPE_CODE_UNION); | |
| ae6ae975 DE |
1967 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF); |
| 1968 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype; | |
| 1969 | } | |
| 1970 | ||
| 1971 | /* Set the value of cplus_stuff.vptr_basetype. */ | |
| 1972 | ||
| 1973 | void | |
| 1974 | set_type_vptr_basetype (struct type *type, struct type *basetype) | |
| 1975 | { | |
| f168693b | 1976 | type = check_typedef (type); |
| 78134374 SM |
1977 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
| 1978 | || type->code () == TYPE_CODE_UNION); | |
| ae6ae975 DE |
1979 | if (!HAVE_CPLUS_STRUCT (type)) |
| 1980 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
| 1981 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype; | |
| 1982 | } | |
| 1983 | ||
| 81fe8080 DE |
1984 | /* Lookup the vptr basetype/fieldno values for TYPE. |
| 1985 | If found store vptr_basetype in *BASETYPEP if non-NULL, and return | |
| 1986 | vptr_fieldno. Also, if found and basetype is from the same objfile, | |
| 1987 | cache the results. | |
| 1988 | If not found, return -1 and ignore BASETYPEP. | |
| 1989 | Callers should be aware that in some cases (for example, | |
| c906108c | 1990 | the type or one of its baseclasses is a stub type and we are |
| d48cc9dd DJ |
1991 | debugging a .o file, or the compiler uses DWARF-2 and is not GCC), |
| 1992 | this function will not be able to find the | |
| 7ba81444 | 1993 | virtual function table pointer, and vptr_fieldno will remain -1 and |
| 81fe8080 | 1994 | vptr_basetype will remain NULL or incomplete. */ |
| c906108c | 1995 | |
| 81fe8080 DE |
1996 | int |
| 1997 | get_vptr_fieldno (struct type *type, struct type **basetypep) | |
| c906108c | 1998 | { |
| f168693b | 1999 | type = check_typedef (type); |
| c906108c SS |
2000 | |
| 2001 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
| 2002 | { | |
| 2003 | int i; | |
| 2004 | ||
| 7ba81444 | 2005 | /* We must start at zero in case the first (and only) baseclass |
| dda83cd7 | 2006 | is virtual (and hence we cannot share the table pointer). */ |
| c906108c SS |
2007 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) |
| 2008 | { | |
| 81fe8080 DE |
2009 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
| 2010 | int fieldno; | |
| 2011 | struct type *basetype; | |
| 2012 | ||
| 2013 | fieldno = get_vptr_fieldno (baseclass, &basetype); | |
| 2014 | if (fieldno >= 0) | |
| c906108c | 2015 | { |
| 81fe8080 | 2016 | /* If the type comes from a different objfile we can't cache |
| 0963b4bd | 2017 | it, it may have a different lifetime. PR 2384 */ |
| 6ac37371 | 2018 | if (type->objfile_owner () == basetype->objfile_owner ()) |
| 81fe8080 | 2019 | { |
| ae6ae975 DE |
2020 | set_type_vptr_fieldno (type, fieldno); |
| 2021 | set_type_vptr_basetype (type, basetype); | |
| 81fe8080 DE |
2022 | } |
| 2023 | if (basetypep) | |
| 2024 | *basetypep = basetype; | |
| 2025 | return fieldno; | |
| c906108c SS |
2026 | } |
| 2027 | } | |
| 81fe8080 DE |
2028 | |
| 2029 | /* Not found. */ | |
| 2030 | return -1; | |
| 2031 | } | |
| 2032 | else | |
| 2033 | { | |
| 2034 | if (basetypep) | |
| 2035 | *basetypep = TYPE_VPTR_BASETYPE (type); | |
| 2036 | return TYPE_VPTR_FIELDNO (type); | |
| c906108c SS |
2037 | } |
| 2038 | } | |
| 2039 | ||
| 44e1a9eb DJ |
2040 | static void |
| 2041 | stub_noname_complaint (void) | |
| 2042 | { | |
| b98664d3 | 2043 | complaint (_("stub type has NULL name")); |
| 44e1a9eb DJ |
2044 | } |
| 2045 | ||
| a405673c JB |
2046 | /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property |
| 2047 | attached to it, and that property has a non-constant value. */ | |
| 2048 | ||
| 2049 | static int | |
| 2050 | array_type_has_dynamic_stride (struct type *type) | |
| 2051 | { | |
| 24e99c6c | 2052 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
| a405673c | 2053 | |
| 9c0fb734 | 2054 | return prop != nullptr && prop->is_constant (); |
| a405673c JB |
2055 | } |
| 2056 | ||
| d98b7a16 | 2057 | /* Worker for is_dynamic_type. */ |
| 80180f79 | 2058 | |
| 86542ab5 TT |
2059 | static bool |
| 2060 | is_dynamic_type_internal (struct type *type, bool top_level) | |
| 80180f79 SA |
2061 | { |
| 2062 | type = check_typedef (type); | |
| 2063 | ||
| f18fc7e5 BH |
2064 | /* We only want to recognize references and pointers at the outermost |
| 2065 | level. */ | |
| 2066 | if (top_level && type->is_pointer_or_reference ()) | |
| 27710edb | 2067 | type = check_typedef (type->target_type ()); |
| e771e4be | 2068 | |
| 3cdcd0ce JB |
2069 | /* Types that have a dynamic TYPE_DATA_LOCATION are considered |
| 2070 | dynamic, even if the type itself is statically defined. | |
| 2071 | From a user's point of view, this may appear counter-intuitive; | |
| 2072 | but it makes sense in this context, because the point is to determine | |
| 2073 | whether any part of the type needs to be resolved before it can | |
| 2074 | be exploited. */ | |
| 939fc54b SM |
2075 | if (dynamic_prop *dyn_prop = type->dyn_prop (DYN_PROP_DATA_LOCATION); |
| 2076 | (dyn_prop != nullptr | |
| 2077 | && (dyn_prop->kind () == PROP_LOCEXPR | |
| 2078 | || dyn_prop->kind () == PROP_LOCLIST))) | |
| 86542ab5 | 2079 | return true; |
| 3cdcd0ce | 2080 | |
| caba95fa | 2081 | if (type->dyn_prop (DYN_PROP_ASSOCIATED)) |
| 86542ab5 | 2082 | return true; |
| 3f2f83dd | 2083 | |
| caba95fa | 2084 | if (type->dyn_prop (DYN_PROP_ALLOCATED)) |
| 86542ab5 | 2085 | return true; |
| 3f2f83dd | 2086 | |
| 24e99c6c | 2087 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
| 8c2e4e06 | 2088 | if (prop != nullptr && prop->kind () != PROP_TYPE) |
| 86542ab5 | 2089 | return true; |
| ef83a141 | 2090 | |
| f8e89861 | 2091 | if (TYPE_HAS_DYNAMIC_LENGTH (type)) |
| 86542ab5 | 2092 | return true; |
| f8e89861 | 2093 | |
| 78134374 | 2094 | switch (type->code ()) |
| 80180f79 | 2095 | { |
| 6f8a3220 | 2096 | case TYPE_CODE_RANGE: |
| ddb87a81 JB |
2097 | { |
| 2098 | /* A range type is obviously dynamic if it has at least one | |
| 2099 | dynamic bound. But also consider the range type to be | |
| 2100 | dynamic when its subtype is dynamic, even if the bounds | |
| 2101 | of the range type are static. It allows us to assume that | |
| 2102 | the subtype of a static range type is also static. */ | |
| 599088e3 | 2103 | return (!has_static_range (type->bounds ()) |
| 86542ab5 | 2104 | || is_dynamic_type_internal (type->target_type (), false)); |
| ddb87a81 | 2105 | } |
| 6f8a3220 | 2106 | |
| 216a7e6b AB |
2107 | case TYPE_CODE_STRING: |
| 2108 | /* Strings are very much like an array of characters, and can be | |
| 2109 | treated as one here. */ | |
| 80180f79 SA |
2110 | case TYPE_CODE_ARRAY: |
| 2111 | { | |
| 1f704f76 | 2112 | gdb_assert (type->num_fields () == 1); |
| 6f8a3220 | 2113 | |
| a405673c | 2114 | /* The array is dynamic if either the bounds are dynamic... */ |
| 86542ab5 TT |
2115 | if (is_dynamic_type_internal (type->index_type (), false)) |
| 2116 | return true; | |
| a405673c | 2117 | /* ... or the elements it contains have a dynamic contents... */ |
| 86542ab5 TT |
2118 | if (is_dynamic_type_internal (type->target_type (), false)) |
| 2119 | return true; | |
| a405673c JB |
2120 | /* ... or if it has a dynamic stride... */ |
| 2121 | if (array_type_has_dynamic_stride (type)) | |
| 86542ab5 TT |
2122 | return true; |
| 2123 | return false; | |
| 80180f79 | 2124 | } |
| 012370f6 TT |
2125 | |
| 2126 | case TYPE_CODE_STRUCT: | |
| 2127 | case TYPE_CODE_UNION: | |
| 2128 | { | |
| 2129 | int i; | |
| 2130 | ||
| 7d79de9a TT |
2131 | bool is_cplus = HAVE_CPLUS_STRUCT (type); |
| 2132 | ||
| 1f704f76 | 2133 | for (i = 0; i < type->num_fields (); ++i) |
| 7d79de9a TT |
2134 | { |
| 2135 | /* Static fields can be ignored here. */ | |
| c819a338 | 2136 | if (type->field (i).is_static ()) |
| 7d79de9a TT |
2137 | continue; |
| 2138 | /* If the field has dynamic type, then so does TYPE. */ | |
| 86542ab5 TT |
2139 | if (is_dynamic_type_internal (type->field (i).type (), false)) |
| 2140 | return true; | |
| 7d79de9a TT |
2141 | /* If the field is at a fixed offset, then it is not |
| 2142 | dynamic. */ | |
| 692252c4 | 2143 | if (!type->field (i).loc_is_dwarf_block ()) |
| 7d79de9a TT |
2144 | continue; |
| 2145 | /* Do not consider C++ virtual base types to be dynamic | |
| 2146 | due to the field's offset being dynamic; these are | |
| 2147 | handled via other means. */ | |
| 2148 | if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i)) | |
| 2149 | continue; | |
| 86542ab5 | 2150 | return true; |
| 7d79de9a | 2151 | } |
| 012370f6 TT |
2152 | } |
| 2153 | break; | |
| 80180f79 | 2154 | } |
| 92e2a17f | 2155 | |
| 86542ab5 | 2156 | return false; |
| 80180f79 SA |
2157 | } |
| 2158 | ||
| d98b7a16 TT |
2159 | /* See gdbtypes.h. */ |
| 2160 | ||
| 86542ab5 | 2161 | bool |
| d98b7a16 TT |
2162 | is_dynamic_type (struct type *type) |
| 2163 | { | |
| 86542ab5 | 2164 | return is_dynamic_type_internal (type, true); |
| d98b7a16 TT |
2165 | } |
| 2166 | ||
| df25ebbd | 2167 | static struct type *resolve_dynamic_type_internal |
| b4b312d1 | 2168 | (struct type *type, const property_addr_info *addr_stack, |
| 86542ab5 | 2169 | const frame_info_ptr &frame, bool top_level); |
| d98b7a16 | 2170 | |
| df25ebbd JB |
2171 | /* Given a dynamic range type (dyn_range_type) and a stack of |
| 2172 | struct property_addr_info elements, return a static version | |
| b7874836 AB |
2173 | of that type. |
| 2174 | ||
| 2175 | When RESOLVE_P is true then the returned static range is created by | |
| 2176 | actually evaluating any dynamic properties within the range type, while | |
| 2177 | when RESOLVE_P is false the returned static range has all of the bounds | |
| 2178 | and stride information set to undefined. The RESOLVE_P set to false | |
| 2179 | case will be used when evaluating a dynamic array that is not | |
| 2180 | allocated, or not associated, i.e. the bounds information might not be | |
| 3fb842ce AB |
2181 | initialized yet. |
| 2182 | ||
| 2183 | RANK is the array rank for which we are resolving this range, and is a | |
| 2184 | zero based count. The rank should never be negative. | |
| 2185 | */ | |
| d190df30 | 2186 | |
| 80180f79 | 2187 | static struct type * |
| df25ebbd | 2188 | resolve_dynamic_range (struct type *dyn_range_type, |
| b4b312d1 | 2189 | const property_addr_info *addr_stack, |
| aeabe83d | 2190 | const frame_info_ptr &frame, |
| df7a7bdd | 2191 | int rank, bool resolve_p = true) |
| 80180f79 SA |
2192 | { |
| 2193 | CORE_ADDR value; | |
| ddb87a81 | 2194 | struct type *static_range_type, *static_target_type; |
| 5bbd8269 | 2195 | struct dynamic_prop low_bound, high_bound, stride; |
| 80180f79 | 2196 | |
| 78134374 | 2197 | gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE); |
| 3fb842ce | 2198 | gdb_assert (rank >= 0); |
| 80180f79 | 2199 | |
| 599088e3 | 2200 | const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low; |
| a8b16509 TT |
2201 | if (resolve_p) |
| 2202 | { | |
| 2203 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, | |
| 2204 | { (CORE_ADDR) rank })) | |
| 2205 | low_bound.set_const_val (value); | |
| 2206 | else if (prop->kind () == PROP_UNDEFINED) | |
| 2207 | low_bound.set_undefined (); | |
| 2208 | else | |
| 2209 | low_bound.set_optimized_out (); | |
| 2210 | } | |
| 80180f79 | 2211 | else |
| 8c2e4e06 | 2212 | low_bound.set_undefined (); |
| 80180f79 | 2213 | |
| 599088e3 | 2214 | prop = &dyn_range_type->bounds ()->high; |
| a8b16509 | 2215 | if (resolve_p) |
| 80180f79 | 2216 | { |
| a8b16509 TT |
2217 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
| 2218 | { (CORE_ADDR) rank })) | |
| 2219 | { | |
| 2220 | high_bound.set_const_val (value); | |
| c451ebe5 | 2221 | |
| a8b16509 TT |
2222 | if (dyn_range_type->bounds ()->flag_upper_bound_is_count) |
| 2223 | high_bound.set_const_val | |
| 2224 | (low_bound.const_val () + high_bound.const_val () - 1); | |
| 2225 | } | |
| 2226 | else if (prop->kind () == PROP_UNDEFINED) | |
| 2227 | high_bound.set_undefined (); | |
| 2228 | else | |
| 2229 | high_bound.set_optimized_out (); | |
| 80180f79 SA |
2230 | } |
| 2231 | else | |
| 8c2e4e06 | 2232 | high_bound.set_undefined (); |
| 80180f79 | 2233 | |
| 599088e3 SM |
2234 | bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride; |
| 2235 | prop = &dyn_range_type->bounds ()->stride; | |
| aeabe83d | 2236 | if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
| df7a7bdd | 2237 | { (CORE_ADDR) rank })) |
| 5bbd8269 | 2238 | { |
| 8c2e4e06 | 2239 | stride.set_const_val (value); |
| 5bbd8269 AB |
2240 | |
| 2241 | /* If we have a bit stride that is not an exact number of bytes then | |
| 2242 | I really don't think this is going to work with current GDB, the | |
| 2243 | array indexing code in GDB seems to be pretty heavily tied to byte | |
| 2244 | offsets right now. Assuming 8 bits in a byte. */ | |
| 8ee511af | 2245 | struct gdbarch *gdbarch = dyn_range_type->arch (); |
| 5bbd8269 AB |
2246 | int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); |
| 2247 | if (!byte_stride_p && (value % (unit_size * 8)) != 0) | |
| 2248 | error (_("bit strides that are not a multiple of the byte size " | |
| 2249 | "are currently not supported")); | |
| 2250 | } | |
| 2251 | else | |
| 2252 | { | |
| 8c2e4e06 | 2253 | stride.set_undefined (); |
| 5bbd8269 AB |
2254 | byte_stride_p = true; |
| 2255 | } | |
| 2256 | ||
| ddb87a81 | 2257 | static_target_type |
| 27710edb | 2258 | = resolve_dynamic_type_internal (dyn_range_type->target_type (), |
| 86542ab5 | 2259 | addr_stack, frame, false); |
| 599088e3 | 2260 | LONGEST bias = dyn_range_type->bounds ()->bias; |
| e727c536 | 2261 | type_allocator alloc (dyn_range_type); |
| 5bbd8269 | 2262 | static_range_type = create_range_type_with_stride |
| e727c536 | 2263 | (alloc, static_target_type, |
| 5bbd8269 | 2264 | &low_bound, &high_bound, bias, &stride, byte_stride_p); |
| 4bfcb286 | 2265 | static_range_type->set_name (dyn_range_type->name ()); |
| 599088e3 | 2266 | static_range_type->bounds ()->flag_bound_evaluated = 1; |
| 6f8a3220 JB |
2267 | return static_range_type; |
| 2268 | } | |
| 2269 | ||
| df7a7bdd | 2270 | /* Helper function for resolve_dynamic_array_or_string. This function |
| 2271 | resolves the properties for a single array at RANK within a nested array | |
| 3fb842ce | 2272 | of arrays structure. The RANK value is greater than or equal to 0, and |
| df7a7bdd | 2273 | starts at it's maximum value and goes down by 1 for each recursive call |
| 2274 | to this function. So, for a 3-dimensional array, the first call to this | |
| 3fb842ce AB |
2275 | function has RANK == 2, then we call ourselves recursively with RANK == |
| 2276 | 1, than again with RANK == 0, and at that point we should return. | |
| df7a7bdd | 2277 | |
| 2278 | TYPE is updated as the dynamic properties are resolved, and so, should | |
| 2279 | be a copy of the dynamic type, rather than the original dynamic type | |
| 2280 | itself. | |
| 2281 | ||
| 2282 | ADDR_STACK is a stack of struct property_addr_info to be used if needed | |
| 2283 | during the dynamic resolution. | |
| b7874836 AB |
2284 | |
| 2285 | When RESOLVE_P is true then the dynamic properties of TYPE are | |
| 2286 | evaluated, otherwise the dynamic properties of TYPE are not evaluated, | |
| 2287 | instead we assume the array is not allocated/associated yet. */ | |
| 6f8a3220 JB |
2288 | |
| 2289 | static struct type * | |
| df7a7bdd | 2290 | resolve_dynamic_array_or_string_1 (struct type *type, |
| b4b312d1 | 2291 | const property_addr_info *addr_stack, |
| aeabe83d | 2292 | const frame_info_ptr &frame, |
| df7a7bdd | 2293 | int rank, bool resolve_p) |
| 6f8a3220 JB |
2294 | { |
| 2295 | CORE_ADDR value; | |
| 2296 | struct type *elt_type; | |
| 2297 | struct type *range_type; | |
| 2298 | struct type *ary_dim; | |
| 3f2f83dd | 2299 | struct dynamic_prop *prop; |
| a405673c | 2300 | unsigned int bit_stride = 0; |
| 6f8a3220 | 2301 | |
| 216a7e6b AB |
2302 | /* For dynamic type resolution strings can be treated like arrays of |
| 2303 | characters. */ | |
| 78134374 SM |
2304 | gdb_assert (type->code () == TYPE_CODE_ARRAY |
| 2305 | || type->code () == TYPE_CODE_STRING); | |
| 6f8a3220 | 2306 | |
| 3fb842ce AB |
2307 | /* As the rank is a zero based count we expect this to never be |
| 2308 | negative. */ | |
| 2309 | gdb_assert (rank >= 0); | |
| 3f2f83dd | 2310 | |
| b7874836 AB |
2311 | /* Resolve the allocated and associated properties before doing anything |
| 2312 | else. If an array is not allocated or not associated then (at least | |
| 2313 | for Fortran) there is no guarantee that the data to define the upper | |
| 2314 | bound, lower bound, or stride will be correct. If RESOLVE_P is | |
| 2315 | already false at this point then this is not the first dimension of | |
| 2316 | the array and a more outer dimension has already marked this array as | |
| 2317 | not allocated/associated, as such we just ignore this property. This | |
| 2318 | is fine as GDB only checks the allocated/associated on the outer most | |
| 2319 | dimension of the array. */ | |
| caba95fa | 2320 | prop = type->dyn_prop (DYN_PROP_ALLOCATED); |
| b7874836 | 2321 | if (prop != NULL && resolve_p |
| aeabe83d | 2322 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| b7874836 AB |
2323 | { |
| 2324 | prop->set_const_val (value); | |
| 2325 | if (value == 0) | |
| 2326 | resolve_p = false; | |
| 2327 | } | |
| 8c2e4e06 | 2328 | |
| caba95fa | 2329 | prop = type->dyn_prop (DYN_PROP_ASSOCIATED); |
| b7874836 | 2330 | if (prop != NULL && resolve_p |
| aeabe83d | 2331 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| b7874836 AB |
2332 | { |
| 2333 | prop->set_const_val (value); | |
| 2334 | if (value == 0) | |
| 2335 | resolve_p = false; | |
| 2336 | } | |
| 3f2f83dd | 2337 | |
| b7874836 | 2338 | range_type = check_typedef (type->index_type ()); |
| df7a7bdd | 2339 | range_type |
| aeabe83d | 2340 | = resolve_dynamic_range (range_type, addr_stack, frame, rank, resolve_p); |
| 80180f79 | 2341 | |
| 27710edb | 2342 | ary_dim = check_typedef (type->target_type ()); |
| 78134374 | 2343 | if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY) |
| df7a7bdd | 2344 | { |
| 2345 | ary_dim = copy_type (ary_dim); | |
| 2346 | elt_type = resolve_dynamic_array_or_string_1 (ary_dim, addr_stack, | |
| aeabe83d TT |
2347 | frame, rank - 1, |
| 2348 | resolve_p); | |
| df7a7bdd | 2349 | } |
| b0fdcd47 IA |
2350 | else if (ary_dim != nullptr && ary_dim->code () == TYPE_CODE_STRING) |
| 2351 | { | |
| 2352 | /* The following special case for TYPE_CODE_STRING should not be | |
| 2353 | needed, ideally we would defer resolving the dynamic type of the | |
| 2354 | array elements until needed later, and indeed, the resolved type | |
| 2355 | of each array element might be different, so attempting to resolve | |
| 2356 | the type here makes no sense. | |
| 2357 | ||
| 2358 | However, in Fortran, for arrays of strings, each element must be | |
| 2359 | the same type, as such, the DWARF for the string length relies on | |
| 2360 | the object address of the array itself. | |
| 2361 | ||
| 2362 | The problem here is that, when we create values from the dynamic | |
| 2363 | array type, we resolve the data location, and use that as the | |
| 2364 | value address, this completely discards the original value | |
| 2365 | address, and it is this original value address that is the | |
| 2366 | descriptor for the dynamic array, the very address that the DWARF | |
| 2367 | needs us to push in order to resolve the dynamic string length. | |
| 2368 | ||
| 2369 | What this means then, is that, given the current state of GDB, if | |
| 2370 | we don't resolve the string length now, then we will have lost | |
| 2371 | access to the address of the dynamic object descriptor, and so we | |
| 2372 | will not be able to resolve the dynamic string later. | |
| 2373 | ||
| 2374 | For now then, we handle special case TYPE_CODE_STRING on behalf of | |
| 2375 | Fortran, and hope that this doesn't cause problems for anyone | |
| 2376 | else. */ | |
| 2377 | elt_type = resolve_dynamic_type_internal (type->target_type (), | |
| 2378 | addr_stack, frame, 0); | |
| 2379 | } | |
| 80180f79 | 2380 | else |
| 27710edb | 2381 | elt_type = type->target_type (); |
| 80180f79 | 2382 | |
| 24e99c6c | 2383 | prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
| b0fdcd47 IA |
2384 | if (prop != nullptr && type->code () == TYPE_CODE_STRING) |
| 2385 | prop = nullptr; | |
| b7874836 | 2386 | if (prop != NULL && resolve_p) |
| a405673c | 2387 | { |
| aeabe83d | 2388 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| a405673c | 2389 | { |
| 7aa91313 | 2390 | type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE); |
| a405673c JB |
2391 | bit_stride = (unsigned int) (value * 8); |
| 2392 | } | |
| 2393 | else | |
| 2394 | { | |
| 2395 | /* Could be a bug in our code, but it could also happen | |
| 2396 | if the DWARF info is not correct. Issue a warning, | |
| 2397 | and assume no byte/bit stride (leave bit_stride = 0). */ | |
| 2398 | warning (_("cannot determine array stride for type %s"), | |
| 7d93a1e0 | 2399 | type->name () ? type->name () : "<no name>"); |
| a405673c JB |
2400 | } |
| 2401 | } | |
| 2402 | else | |
| 3757d2d4 | 2403 | bit_stride = type->field (0).bitsize (); |
| a405673c | 2404 | |
| 9e76b17a | 2405 | type_allocator alloc (type, type_allocator::SMASH); |
| b0fdcd47 IA |
2406 | if (type->code () == TYPE_CODE_STRING) |
| 2407 | return create_string_type (alloc, elt_type, range_type); | |
| 2408 | else | |
| 2409 | return create_array_type_with_stride (alloc, elt_type, range_type, NULL, | |
| 2410 | bit_stride); | |
| 80180f79 SA |
2411 | } |
| 2412 | ||
| df7a7bdd | 2413 | /* Resolve an array or string type with dynamic properties, return a new |
| 2414 | type with the dynamic properties resolved to actual values. The | |
| 2415 | ADDR_STACK represents the location of the object being resolved. */ | |
| 2416 | ||
| 2417 | static struct type * | |
| 2418 | resolve_dynamic_array_or_string (struct type *type, | |
| b4b312d1 | 2419 | const property_addr_info *addr_stack, |
| aeabe83d | 2420 | const frame_info_ptr &frame) |
| df7a7bdd | 2421 | { |
| 2422 | CORE_ADDR value; | |
| 2423 | int rank = 0; | |
| 2424 | ||
| 2425 | /* For dynamic type resolution strings can be treated like arrays of | |
| 2426 | characters. */ | |
| 2427 | gdb_assert (type->code () == TYPE_CODE_ARRAY | |
| 2428 | || type->code () == TYPE_CODE_STRING); | |
| 2429 | ||
| 2430 | type = copy_type (type); | |
| 2431 | ||
| 2432 | /* Resolve the rank property to get rank value. */ | |
| caba95fa | 2433 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_RANK); |
| aeabe83d | 2434 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| df7a7bdd | 2435 | { |
| 2436 | prop->set_const_val (value); | |
| 2437 | rank = value; | |
| 2438 | ||
| 2439 | if (rank == 0) | |
| 2440 | { | |
| 5f59e7e0 | 2441 | /* Rank is zero, if a variable is passed as an argument to a |
| 2442 | function. In this case the resolved type should not be an | |
| 2443 | array, but should instead be that of an array element. */ | |
| 2444 | struct type *dynamic_array_type = type; | |
| 27710edb | 2445 | type = copy_type (dynamic_array_type->target_type ()); |
| 5f59e7e0 | 2446 | struct dynamic_prop_list *prop_list |
| 2447 | = TYPE_MAIN_TYPE (dynamic_array_type)->dyn_prop_list; | |
| 2448 | if (prop_list != nullptr) | |
| 2449 | { | |
| 2450 | struct obstack *obstack | |
| 2451 | = &type->objfile_owner ()->objfile_obstack; | |
| 2452 | TYPE_MAIN_TYPE (type)->dyn_prop_list | |
| 2453 | = copy_dynamic_prop_list (obstack, prop_list); | |
| 2454 | } | |
| 2455 | return type; | |
| df7a7bdd | 2456 | } |
| 2457 | else if (type->code () == TYPE_CODE_STRING && rank != 1) | |
| 2458 | { | |
| 2459 | /* What would this even mean? A string with a dynamic rank | |
| 2460 | greater than 1. */ | |
| 2461 | error (_("unable to handle string with dynamic rank greater than 1")); | |
| 2462 | } | |
| 2463 | else if (rank > 1) | |
| 2464 | { | |
| 2465 | /* Arrays with dynamic rank are initially just an array type | |
| 2466 | with a target type that is the array element. | |
| 2467 | ||
| 2468 | However, now we know the rank of the array we need to build | |
| 2469 | the array of arrays structure that GDB expects, that is we | |
| 2470 | need an array type that has a target which is an array type, | |
| 2471 | and so on, until eventually, we have the element type at the | |
| 2472 | end of the chain. Create all the additional array types here | |
| 2473 | by copying the top level array type. */ | |
| 27710edb | 2474 | struct type *element_type = type->target_type (); |
| df7a7bdd | 2475 | struct type *rank_type = type; |
| 2476 | for (int i = 1; i < rank; i++) | |
| 2477 | { | |
| 8a50fdce | 2478 | rank_type->set_target_type (copy_type (rank_type)); |
| 27710edb | 2479 | rank_type = rank_type->target_type (); |
| df7a7bdd | 2480 | } |
| 8a50fdce | 2481 | rank_type->set_target_type (element_type); |
| df7a7bdd | 2482 | } |
| 2483 | } | |
| 2484 | else | |
| 2485 | { | |
| 2486 | rank = 1; | |
| 2487 | ||
| 27710edb | 2488 | for (struct type *tmp_type = check_typedef (type->target_type ()); |
| df7a7bdd | 2489 | tmp_type->code () == TYPE_CODE_ARRAY; |
| 27710edb | 2490 | tmp_type = check_typedef (tmp_type->target_type ())) |
| df7a7bdd | 2491 | ++rank; |
| 2492 | } | |
| 2493 | ||
| 3fb842ce AB |
2494 | /* The rank that we calculated above is actually a count of the number of |
| 2495 | ranks. However, when we resolve the type of each individual array | |
| 2496 | rank we should actually use a rank "offset", e.g. an array with a rank | |
| 2497 | count of 1 (calculated above) will use the rank offset 0 in order to | |
| 2498 | resolve the details of the first array dimension. As a result, we | |
| 2499 | reduce the rank by 1 here. */ | |
| 2500 | --rank; | |
| 2501 | ||
| aeabe83d TT |
2502 | return resolve_dynamic_array_or_string_1 (type, addr_stack, frame, rank, |
| 2503 | true); | |
| df7a7bdd | 2504 | } |
| 2505 | ||
| 012370f6 | 2506 | /* Resolve dynamic bounds of members of the union TYPE to static |
| df25ebbd JB |
2507 | bounds. ADDR_STACK is a stack of struct property_addr_info |
| 2508 | to be used if needed during the dynamic resolution. */ | |
| 012370f6 TT |
2509 | |
| 2510 | static struct type * | |
| df25ebbd | 2511 | resolve_dynamic_union (struct type *type, |
| b4b312d1 | 2512 | const property_addr_info *addr_stack, |
| aeabe83d | 2513 | const frame_info_ptr &frame) |
| 012370f6 TT |
2514 | { |
| 2515 | struct type *resolved_type; | |
| 012370f6 TT |
2516 | unsigned int max_len = 0; |
| 2517 | ||
| 78134374 | 2518 | gdb_assert (type->code () == TYPE_CODE_UNION); |
| 012370f6 TT |
2519 | |
| 2520 | resolved_type = copy_type (type); | |
| 2774f2da | 2521 | resolved_type->copy_fields (type); |
| 89495c33 | 2522 | for (auto &field : resolved_type->fields ()) |
| 012370f6 TT |
2523 | { |
| 2524 | struct type *t; | |
| 2525 | ||
| 89495c33 | 2526 | if (field.is_static ()) |
| 012370f6 TT |
2527 | continue; |
| 2528 | ||
| 89495c33 TT |
2529 | t = resolve_dynamic_type_internal (field.type (), addr_stack, |
| 2530 | frame, false); | |
| 2531 | field.set_type (t); | |
| 2f33032a KS |
2532 | |
| 2533 | struct type *real_type = check_typedef (t); | |
| df86565b SM |
2534 | if (real_type->length () > max_len) |
| 2535 | max_len = real_type->length (); | |
| 012370f6 TT |
2536 | } |
| 2537 | ||
| b6cdbc9a | 2538 | resolved_type->set_length (max_len); |
| 012370f6 TT |
2539 | return resolved_type; |
| 2540 | } | |
| 2541 | ||
| ef83a141 TT |
2542 | /* See gdbtypes.h. */ |
| 2543 | ||
| 2544 | bool | |
| 2545 | variant::matches (ULONGEST value, bool is_unsigned) const | |
| 2546 | { | |
| 2547 | for (const discriminant_range &range : discriminants) | |
| 2548 | if (range.contains (value, is_unsigned)) | |
| 2549 | return true; | |
| 2550 | return false; | |
| 2551 | } | |
| 2552 | ||
| 2553 | static void | |
| 2554 | compute_variant_fields_inner (struct type *type, | |
| b4b312d1 | 2555 | const property_addr_info *addr_stack, |
| ef83a141 TT |
2556 | const variant_part &part, |
| 2557 | std::vector<bool> &flags); | |
| 2558 | ||
| 2559 | /* A helper function to determine which variant fields will be active. | |
| 2560 | This handles both the variant's direct fields, and any variant | |
| 2561 | parts embedded in this variant. TYPE is the type we're examining. | |
| 2562 | ADDR_STACK holds information about the concrete object. VARIANT is | |
| 2563 | the current variant to be handled. FLAGS is where the results are | |
| 2564 | stored -- this function sets the Nth element in FLAGS if the | |
| 2565 | corresponding field is enabled. ENABLED is whether this variant is | |
| 2566 | enabled or not. */ | |
| 2567 | ||
| 2568 | static void | |
| 2569 | compute_variant_fields_recurse (struct type *type, | |
| b4b312d1 | 2570 | const property_addr_info *addr_stack, |
| ef83a141 TT |
2571 | const variant &variant, |
| 2572 | std::vector<bool> &flags, | |
| 2573 | bool enabled) | |
| 2574 | { | |
| 2575 | for (int field = variant.first_field; field < variant.last_field; ++field) | |
| 2576 | flags[field] = enabled; | |
| 2577 | ||
| 2578 | for (const variant_part &new_part : variant.parts) | |
| 2579 | { | |
| 2580 | if (enabled) | |
| 2581 | compute_variant_fields_inner (type, addr_stack, new_part, flags); | |
| 2582 | else | |
| 2583 | { | |
| 2584 | for (const auto &sub_variant : new_part.variants) | |
| 2585 | compute_variant_fields_recurse (type, addr_stack, sub_variant, | |
| 2586 | flags, enabled); | |
| 2587 | } | |
| 2588 | } | |
| 2589 | } | |
| 2590 | ||
| 2591 | /* A helper function to determine which variant fields will be active. | |
| 2592 | This evaluates the discriminant, decides which variant (if any) is | |
| 2593 | active, and then updates FLAGS to reflect which fields should be | |
| 2594 | available. TYPE is the type we're examining. ADDR_STACK holds | |
| 2595 | information about the concrete object. VARIANT is the current | |
| 2596 | variant to be handled. FLAGS is where the results are stored -- | |
| 2597 | this function sets the Nth element in FLAGS if the corresponding | |
| 2598 | field is enabled. */ | |
| 2599 | ||
| 2600 | static void | |
| 2601 | compute_variant_fields_inner (struct type *type, | |
| b4b312d1 | 2602 | const property_addr_info *addr_stack, |
| ef83a141 TT |
2603 | const variant_part &part, |
| 2604 | std::vector<bool> &flags) | |
| 2605 | { | |
| 2606 | /* Evaluate the discriminant. */ | |
| 6b09f134 | 2607 | std::optional<ULONGEST> discr_value; |
| ef83a141 TT |
2608 | if (part.discriminant_index != -1) |
| 2609 | { | |
| 2610 | int idx = part.discriminant_index; | |
| 2611 | ||
| 2ad53ea1 | 2612 | if (type->field (idx).loc_kind () != FIELD_LOC_KIND_BITPOS) |
| ef83a141 TT |
2613 | error (_("Cannot determine struct field location" |
| 2614 | " (invalid location kind)")); | |
| 2615 | ||
| b249d2c2 TT |
2616 | if (addr_stack->valaddr.data () != NULL) |
| 2617 | discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (), | |
| 2618 | idx); | |
| ef83a141 TT |
2619 | else |
| 2620 | { | |
| 2621 | CORE_ADDR addr = (addr_stack->addr | |
| b610c045 | 2622 | + (type->field (idx).loc_bitpos () |
| ef83a141 TT |
2623 | / TARGET_CHAR_BIT)); |
| 2624 | ||
| 3757d2d4 | 2625 | LONGEST bitsize = type->field (idx).bitsize (); |
| ef83a141 TT |
2626 | LONGEST size = bitsize / 8; |
| 2627 | if (size == 0) | |
| df86565b | 2628 | size = type->field (idx).type ()->length (); |
| ef83a141 TT |
2629 | |
| 2630 | gdb_byte bits[sizeof (ULONGEST)]; | |
| 2631 | read_memory (addr, bits, size); | |
| 2632 | ||
| b610c045 | 2633 | LONGEST bitpos = (type->field (idx).loc_bitpos () |
| ef83a141 TT |
2634 | % TARGET_CHAR_BIT); |
| 2635 | ||
| 940da03e | 2636 | discr_value = unpack_bits_as_long (type->field (idx).type (), |
| ef83a141 TT |
2637 | bits, bitpos, bitsize); |
| 2638 | } | |
| 2639 | } | |
| 2640 | ||
| 2641 | /* Go through each variant and see which applies. */ | |
| 2642 | const variant *default_variant = nullptr; | |
| 2643 | const variant *applied_variant = nullptr; | |
| 2644 | for (const auto &variant : part.variants) | |
| 2645 | { | |
| 2646 | if (variant.is_default ()) | |
| 2647 | default_variant = &variant; | |
| 2648 | else if (discr_value.has_value () | |
| 2649 | && variant.matches (*discr_value, part.is_unsigned)) | |
| 2650 | { | |
| 2651 | applied_variant = &variant; | |
| 2652 | break; | |
| 2653 | } | |
| 2654 | } | |
| 2655 | if (applied_variant == nullptr) | |
| 2656 | applied_variant = default_variant; | |
| 2657 | ||
| 2658 | for (const auto &variant : part.variants) | |
| 2659 | compute_variant_fields_recurse (type, addr_stack, variant, | |
| 2660 | flags, applied_variant == &variant); | |
| a5cbe675 | 2661 | } |
| ef83a141 TT |
2662 | |
| 2663 | /* Determine which variant fields are available in TYPE. The enabled | |
| 2664 | fields are stored in RESOLVED_TYPE. ADDR_STACK holds information | |
| 2665 | about the concrete object. PARTS describes the top-level variant | |
| 2666 | parts for this type. */ | |
| 2667 | ||
| 2668 | static void | |
| 2669 | compute_variant_fields (struct type *type, | |
| 2670 | struct type *resolved_type, | |
| b4b312d1 | 2671 | const property_addr_info *addr_stack, |
| ef83a141 TT |
2672 | const gdb::array_view<variant_part> &parts) |
| 2673 | { | |
| 2674 | /* Assume all fields are included by default. */ | |
| 1f704f76 | 2675 | std::vector<bool> flags (resolved_type->num_fields (), true); |
| ef83a141 TT |
2676 | |
| 2677 | /* Now disable fields based on the variants that control them. */ | |
| 2678 | for (const auto &part : parts) | |
| 2679 | compute_variant_fields_inner (type, addr_stack, part, flags); | |
| 2680 | ||
| 2774f2da TV |
2681 | unsigned int nfields = std::count (flags.begin (), flags.end (), true); |
| 2682 | /* No need to zero-initialize the newly allocated fields, they'll be | |
| 2683 | initialized by the copy in the loop below. */ | |
| 2684 | resolved_type->alloc_fields (nfields, false); | |
| 3cabb6b0 | 2685 | |
| ef83a141 | 2686 | int out = 0; |
| 1f704f76 | 2687 | for (int i = 0; i < type->num_fields (); ++i) |
| ef83a141 TT |
2688 | { |
| 2689 | if (!flags[i]) | |
| 2690 | continue; | |
| 2691 | ||
| ceacbf6e | 2692 | resolved_type->field (out) = type->field (i); |
| ef83a141 TT |
2693 | ++out; |
| 2694 | } | |
| 2695 | } | |
| 2696 | ||
| 800f6f5f TT |
2697 | /* See gdbtypes.h. */ |
| 2698 | ||
| ee580641 TT |
2699 | void |
| 2700 | apply_bit_offset_to_field (struct field &field, LONGEST bit_offset, | |
| 2701 | LONGEST explicit_byte_size) | |
| 2702 | { | |
| 2703 | struct type *field_type = field.type (); | |
| 2704 | struct gdbarch *gdbarch = field_type->arch (); | |
| 2705 | LONGEST current_bitpos = field.loc_bitpos (); | |
| 2706 | ||
| 2707 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
| 2708 | { | |
| 2709 | /* For big endian bits, the DW_AT_bit_offset gives the | |
| 2710 | additional bit offset from the MSB of the containing | |
| 2711 | anonymous object to the MSB of the field. We don't | |
| 2712 | have to do anything special since we don't need to | |
| 2713 | know the size of the anonymous object. */ | |
| 2714 | field.set_loc_bitpos (current_bitpos + bit_offset); | |
| 2715 | } | |
| 2716 | else | |
| 2717 | { | |
| 2718 | /* For little endian bits, compute the bit offset to the | |
| 2719 | MSB of the anonymous object, subtract off the number of | |
| 2720 | bits from the MSB of the field to the MSB of the | |
| 2721 | object, and then subtract off the number of bits of | |
| 2722 | the field itself. The result is the bit offset of | |
| 2723 | the LSB of the field. */ | |
| 2724 | LONGEST object_size = explicit_byte_size; | |
| 2725 | if (object_size == 0) | |
| 2726 | object_size = field_type->length (); | |
| 2727 | ||
| 2728 | field.set_loc_bitpos (current_bitpos | |
| 2729 | + 8 * object_size | |
| 2730 | - bit_offset | |
| 2731 | - field.bitsize ()); | |
| 2732 | } | |
| 2733 | } | |
| 2734 | ||
| 2735 | /* See gdbtypes.h. */ | |
| 2736 | ||
| 800f6f5f TT |
2737 | void |
| 2738 | resolve_dynamic_field (struct field &field, | |
| 2739 | const property_addr_info *addr_stack, | |
| 2740 | const frame_info_ptr &frame) | |
| 2741 | { | |
| 2742 | gdb_assert (!field.is_static ()); | |
| 2743 | ||
| 692252c4 | 2744 | if (field.loc_is_dwarf_block ()) |
| 800f6f5f | 2745 | { |
| 420d030e TT |
2746 | dwarf2_locexpr_baton *field_loc |
| 2747 | = field.loc_dwarf_block (); | |
| 2748 | ||
| 800f6f5f TT |
2749 | struct dwarf2_property_baton baton; |
| 2750 | baton.property_type = lookup_pointer_type (field.type ()); | |
| 420d030e | 2751 | baton.locexpr = *field_loc; |
| 800f6f5f TT |
2752 | |
| 2753 | struct dynamic_prop prop; | |
| 2754 | prop.set_locexpr (&baton); | |
| 2755 | ||
| 2756 | CORE_ADDR vals[1] = {addr_stack->addr}; | |
| 692252c4 TT |
2757 | CORE_ADDR addr_or_bitpos; |
| 2758 | if (dwarf2_evaluate_property (&prop, frame, addr_stack, | |
| 2759 | &addr_or_bitpos, vals)) | |
| 420d030e | 2760 | { |
| 692252c4 TT |
2761 | if (field.loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK_ADDR) |
| 2762 | field.set_loc_bitpos (TARGET_CHAR_BIT | |
| 2763 | * (addr_or_bitpos - addr_stack->addr)); | |
| 2764 | else | |
| 2765 | field.set_loc_bitpos (addr_or_bitpos); | |
| 420d030e TT |
2766 | |
| 2767 | if (field_loc->is_field_location) | |
| 2768 | { | |
| 2769 | dwarf2_field_location_baton *fl_baton | |
| 2770 | = static_cast<dwarf2_field_location_baton *> (field_loc); | |
| 2771 | apply_bit_offset_to_field (field, fl_baton->bit_offset, | |
| 2772 | fl_baton->explicit_byte_size); | |
| 2773 | } | |
| 2774 | } | |
| 800f6f5f TT |
2775 | } |
| 2776 | ||
| 2777 | /* As we know this field is not a static field, the field's | |
| 2778 | field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify | |
| 2779 | this is the case, but only trigger a simple error rather | |
| 2780 | than an internal error if that fails. While failing | |
| 2781 | that verification indicates a bug in our code, the error | |
| 2782 | is not severe enough to suggest to the user he stops | |
| 2783 | his debugging session because of it. */ | |
| 2784 | if (field.loc_kind () != FIELD_LOC_KIND_BITPOS) | |
| 2785 | error (_("Cannot determine struct field location" | |
| 2786 | " (invalid location kind)")); | |
| 2787 | ||
| 2788 | struct property_addr_info pinfo; | |
| 2789 | pinfo.type = check_typedef (field.type ()); | |
| 2790 | size_t offset = field.loc_bitpos () / TARGET_CHAR_BIT; | |
| 2791 | pinfo.valaddr = addr_stack->valaddr; | |
| 2792 | if (!pinfo.valaddr.empty ()) | |
| 2793 | pinfo.valaddr = pinfo.valaddr.slice (offset); | |
| 2794 | pinfo.addr = addr_stack->addr + offset; | |
| 2795 | pinfo.next = addr_stack; | |
| 2796 | ||
| 2797 | field.set_type (resolve_dynamic_type_internal (field.type (), | |
| 2798 | &pinfo, frame, false)); | |
| 2799 | gdb_assert (field.loc_kind () == FIELD_LOC_KIND_BITPOS); | |
| 2800 | } | |
| 2801 | ||
| 012370f6 | 2802 | /* Resolve dynamic bounds of members of the struct TYPE to static |
| df25ebbd JB |
2803 | bounds. ADDR_STACK is a stack of struct property_addr_info to |
| 2804 | be used if needed during the dynamic resolution. */ | |
| 012370f6 TT |
2805 | |
| 2806 | static struct type * | |
| df25ebbd | 2807 | resolve_dynamic_struct (struct type *type, |
| b4b312d1 | 2808 | const property_addr_info *addr_stack, |
| aeabe83d | 2809 | const frame_info_ptr &frame) |
| 012370f6 TT |
2810 | { |
| 2811 | struct type *resolved_type; | |
| 6908c509 | 2812 | unsigned resolved_type_bit_length = 0; |
| 012370f6 | 2813 | |
| 78134374 | 2814 | gdb_assert (type->code () == TYPE_CODE_STRUCT); |
| 012370f6 TT |
2815 | |
| 2816 | resolved_type = copy_type (type); | |
| ef83a141 | 2817 | |
| 24e99c6c | 2818 | dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
| 8c2e4e06 | 2819 | if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS) |
| ef83a141 TT |
2820 | { |
| 2821 | compute_variant_fields (type, resolved_type, addr_stack, | |
| 8c2e4e06 | 2822 | *variant_prop->variant_parts ()); |
| ef83a141 TT |
2823 | /* We want to leave the property attached, so that the Rust code |
| 2824 | can tell whether the type was originally an enum. */ | |
| 8c2e4e06 | 2825 | variant_prop->set_original_type (type); |
| ef83a141 TT |
2826 | } |
| 2827 | else | |
| 2828 | { | |
| 2774f2da | 2829 | resolved_type->copy_fields (type); |
| ef83a141 TT |
2830 | } |
| 2831 | ||
| 89495c33 | 2832 | for (auto &field : resolved_type->fields ()) |
| 012370f6 | 2833 | { |
| 6908c509 | 2834 | unsigned new_bit_length; |
| 012370f6 | 2835 | |
| 89495c33 | 2836 | if (field.is_static ()) |
| 012370f6 TT |
2837 | continue; |
| 2838 | ||
| 89495c33 | 2839 | resolve_dynamic_field (field, addr_stack, frame); |
| df25ebbd | 2840 | |
| 89495c33 TT |
2841 | new_bit_length = field.loc_bitpos (); |
| 2842 | if (field.bitsize () != 0) | |
| 2843 | new_bit_length += field.bitsize (); | |
| 6908c509 | 2844 | else |
| 2f33032a | 2845 | { |
| 89495c33 | 2846 | struct type *real_type = check_typedef (field.type ()); |
| 2f33032a | 2847 | |
| df86565b | 2848 | new_bit_length += (real_type->length () * TARGET_CHAR_BIT); |
| 2f33032a | 2849 | } |
| 6908c509 JB |
2850 | |
| 2851 | /* Normally, we would use the position and size of the last field | |
| 2852 | to determine the size of the enclosing structure. But GCC seems | |
| 2853 | to be encoding the position of some fields incorrectly when | |
| 2854 | the struct contains a dynamic field that is not placed last. | |
| 2855 | So we compute the struct size based on the field that has | |
| 2856 | the highest position + size - probably the best we can do. */ | |
| 2857 | if (new_bit_length > resolved_type_bit_length) | |
| 2858 | resolved_type_bit_length = new_bit_length; | |
| 012370f6 TT |
2859 | } |
| 2860 | ||
| 9920b434 BH |
2861 | /* The length of a type won't change for fortran, but it does for C and Ada. |
| 2862 | For fortran the size of dynamic fields might change over time but not the | |
| 2863 | type length of the structure. If we adapt it, we run into problems | |
| 2864 | when calculating the element offset for arrays of structs. */ | |
| 2865 | if (current_language->la_language != language_fortran) | |
| b6cdbc9a SM |
2866 | resolved_type->set_length ((resolved_type_bit_length + TARGET_CHAR_BIT - 1) |
| 2867 | / TARGET_CHAR_BIT); | |
| 6908c509 | 2868 | |
| 9e195661 PMR |
2869 | /* The Ada language uses this field as a cache for static fixed types: reset |
| 2870 | it as RESOLVED_TYPE must have its own static fixed type. */ | |
| 8a50fdce | 2871 | resolved_type->set_target_type (nullptr); |
| 9e195661 | 2872 | |
| 012370f6 TT |
2873 | return resolved_type; |
| 2874 | } | |
| 2875 | ||
| d98b7a16 | 2876 | /* Worker for resolved_dynamic_type. */ |
| 80180f79 | 2877 | |
| d98b7a16 | 2878 | static struct type * |
| df25ebbd | 2879 | resolve_dynamic_type_internal (struct type *type, |
| b4b312d1 | 2880 | const property_addr_info *addr_stack, |
| aeabe83d | 2881 | const frame_info_ptr &frame, |
| 86542ab5 | 2882 | bool top_level) |
| 80180f79 SA |
2883 | { |
| 2884 | struct type *real_type = check_typedef (type); | |
| f8e89861 | 2885 | struct type *resolved_type = nullptr; |
| d9823cbb | 2886 | struct dynamic_prop *prop; |
| 3cdcd0ce | 2887 | CORE_ADDR value; |
| 80180f79 | 2888 | |
| ee715b5a | 2889 | if (!is_dynamic_type_internal (real_type, top_level)) |
| 80180f79 SA |
2890 | return type; |
| 2891 | ||
| 6b09f134 | 2892 | std::optional<CORE_ADDR> type_length; |
| 157da753 | 2893 | dynamic_prop_node_kind type_kind = DYN_PROP_BYTE_SIZE; |
| caba95fa | 2894 | prop = type->dyn_prop (DYN_PROP_BYTE_SIZE); |
| 157da753 | 2895 | if (prop != nullptr |
| aeabe83d | 2896 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| f8e89861 | 2897 | type_length = value; |
| 157da753 TT |
2898 | else |
| 2899 | { | |
| 2900 | prop = type->dyn_prop (DYN_PROP_BIT_SIZE); | |
| 2901 | if (prop != nullptr | |
| 2902 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) | |
| 2903 | { | |
| 2904 | type_kind = DYN_PROP_BIT_SIZE; | |
| 2905 | type_length = align_up (value, 8) / 8; | |
| 2906 | } | |
| 2907 | } | |
| f8e89861 | 2908 | |
| 78134374 | 2909 | if (type->code () == TYPE_CODE_TYPEDEF) |
| 6f8a3220 | 2910 | { |
| cac9b138 | 2911 | resolved_type = copy_type (type); |
| 8a50fdce | 2912 | resolved_type->set_target_type |
| 27710edb | 2913 | (resolve_dynamic_type_internal (type->target_type (), addr_stack, |
| aeabe83d | 2914 | frame, top_level)); |
| 5537b577 | 2915 | } |
| 8a50fdce | 2916 | else |
| 5537b577 JK |
2917 | { |
| 2918 | /* Before trying to resolve TYPE, make sure it is not a stub. */ | |
| 2919 | type = real_type; | |
| 012370f6 | 2920 | |
| 78134374 | 2921 | switch (type->code ()) |
| 5537b577 | 2922 | { |
| e771e4be | 2923 | case TYPE_CODE_REF: |
| f18fc7e5 BH |
2924 | case TYPE_CODE_PTR: |
| 2925 | case TYPE_CODE_RVALUE_REF: | |
| e771e4be PMR |
2926 | { |
| 2927 | struct property_addr_info pinfo; | |
| 2928 | ||
| 27710edb | 2929 | pinfo.type = check_typedef (type->target_type ()); |
| b249d2c2 TT |
2930 | pinfo.valaddr = {}; |
| 2931 | if (addr_stack->valaddr.data () != NULL) | |
| 2932 | pinfo.addr = extract_typed_address (addr_stack->valaddr.data (), | |
| 2933 | type); | |
| c3345124 JB |
2934 | else |
| 2935 | pinfo.addr = read_memory_typed_address (addr_stack->addr, type); | |
| e771e4be PMR |
2936 | pinfo.next = addr_stack; |
| 2937 | ||
| 3a3f1548 TT |
2938 | /* Special case a NULL pointer here -- we don't want to |
| 2939 | dereference it. */ | |
| 2940 | if (pinfo.addr != 0) | |
| 2941 | { | |
| 2942 | resolved_type = copy_type (type); | |
| 2943 | resolved_type->set_target_type | |
| 2944 | (resolve_dynamic_type_internal (type->target_type (), | |
| 2945 | &pinfo, frame, true)); | |
| 2946 | } | |
| e771e4be PMR |
2947 | break; |
| 2948 | } | |
| 2949 | ||
| 216a7e6b AB |
2950 | case TYPE_CODE_STRING: |
| 2951 | /* Strings are very much like an array of characters, and can be | |
| 2952 | treated as one here. */ | |
| 5537b577 | 2953 | case TYPE_CODE_ARRAY: |
| aeabe83d TT |
2954 | resolved_type = resolve_dynamic_array_or_string (type, addr_stack, |
| 2955 | frame); | |
| 5537b577 JK |
2956 | break; |
| 2957 | ||
| 2958 | case TYPE_CODE_RANGE: | |
| 3fb842ce AB |
2959 | /* Pass 0 for the rank value here, which indicates this is a |
| 2960 | range for the first rank of an array. The assumption is that | |
| 2961 | this rank value is not actually required for the resolution of | |
| 2962 | the dynamic range, otherwise, we'd be resolving this range | |
| 2963 | within the context of a dynamic array. */ | |
| aeabe83d | 2964 | resolved_type = resolve_dynamic_range (type, addr_stack, frame, 0); |
| 5537b577 JK |
2965 | break; |
| 2966 | ||
| 2967 | case TYPE_CODE_UNION: | |
| aeabe83d | 2968 | resolved_type = resolve_dynamic_union (type, addr_stack, frame); |
| 5537b577 JK |
2969 | break; |
| 2970 | ||
| 2971 | case TYPE_CODE_STRUCT: | |
| aeabe83d | 2972 | resolved_type = resolve_dynamic_struct (type, addr_stack, frame); |
| 5537b577 JK |
2973 | break; |
| 2974 | } | |
| 6f8a3220 | 2975 | } |
| 80180f79 | 2976 | |
| f8e89861 TT |
2977 | if (resolved_type == nullptr) |
| 2978 | return type; | |
| 2979 | ||
| 2980 | if (type_length.has_value ()) | |
| 2981 | { | |
| b6cdbc9a | 2982 | resolved_type->set_length (*type_length); |
| 157da753 | 2983 | resolved_type->remove_dyn_prop (type_kind); |
| f8e89861 TT |
2984 | } |
| 2985 | ||
| 3cdcd0ce | 2986 | /* Resolve data_location attribute. */ |
| caba95fa | 2987 | prop = resolved_type->dyn_prop (DYN_PROP_DATA_LOCATION); |
| 63e43d3a | 2988 | if (prop != NULL |
| aeabe83d | 2989 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
| a5c641b5 AB |
2990 | { |
| 2991 | /* Start of Fortran hack. See comment in f-lang.h for what is going | |
| 2992 | on here.*/ | |
| 2993 | if (current_language->la_language == language_fortran | |
| 2994 | && resolved_type->code () == TYPE_CODE_ARRAY) | |
| 2995 | value = fortran_adjust_dynamic_array_base_address_hack (resolved_type, | |
| 2996 | value); | |
| 2997 | /* End of Fortran hack. */ | |
| 2998 | prop->set_const_val (value); | |
| 2999 | } | |
| 3cdcd0ce | 3000 | |
| 80180f79 SA |
3001 | return resolved_type; |
| 3002 | } | |
| 3003 | ||
| d98b7a16 TT |
3004 | /* See gdbtypes.h */ |
| 3005 | ||
| 3006 | struct type * | |
| b249d2c2 TT |
3007 | resolve_dynamic_type (struct type *type, |
| 3008 | gdb::array_view<const gdb_byte> valaddr, | |
| aeabe83d TT |
3009 | CORE_ADDR addr, |
| 3010 | const frame_info_ptr *in_frame) | |
| d98b7a16 | 3011 | { |
| c3345124 JB |
3012 | struct property_addr_info pinfo |
| 3013 | = {check_typedef (type), valaddr, addr, NULL}; | |
| df25ebbd | 3014 | |
| aeabe83d TT |
3015 | frame_info_ptr frame; |
| 3016 | if (in_frame != nullptr) | |
| 3017 | frame = *in_frame; | |
| 3018 | ||
| 86542ab5 | 3019 | return resolve_dynamic_type_internal (type, &pinfo, frame, true); |
| d98b7a16 TT |
3020 | } |
| 3021 | ||
| d9823cbb KB |
3022 | /* See gdbtypes.h */ |
| 3023 | ||
| 24e99c6c SM |
3024 | dynamic_prop * |
| 3025 | type::dyn_prop (dynamic_prop_node_kind prop_kind) const | |
| d9823cbb | 3026 | { |
| 98d48915 | 3027 | dynamic_prop_list *node = this->main_type->dyn_prop_list; |
| d9823cbb KB |
3028 | |
| 3029 | while (node != NULL) | |
| 3030 | { | |
| 3031 | if (node->prop_kind == prop_kind) | |
| dda83cd7 | 3032 | return &node->prop; |
| d9823cbb KB |
3033 | node = node->next; |
| 3034 | } | |
| 3035 | return NULL; | |
| 3036 | } | |
| 3037 | ||
| 3038 | /* See gdbtypes.h */ | |
| 3039 | ||
| 3040 | void | |
| 5c54719c | 3041 | type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop) |
| d9823cbb KB |
3042 | { |
| 3043 | struct dynamic_prop_list *temp; | |
| 3044 | ||
| 30625020 | 3045 | gdb_assert (this->is_objfile_owned ()); |
| d9823cbb | 3046 | |
| 6ac37371 | 3047 | temp = XOBNEW (&this->objfile_owner ()->objfile_obstack, |
| 50a82047 | 3048 | struct dynamic_prop_list); |
| d9823cbb | 3049 | temp->prop_kind = prop_kind; |
| 283a9958 | 3050 | temp->prop = prop; |
| 98d48915 | 3051 | temp->next = this->main_type->dyn_prop_list; |
| d9823cbb | 3052 | |
| 98d48915 | 3053 | this->main_type->dyn_prop_list = temp; |
| d9823cbb KB |
3054 | } |
| 3055 | ||
| 7aa91313 | 3056 | /* See gdbtypes.h. */ |
| 9920b434 BH |
3057 | |
| 3058 | void | |
| 7aa91313 | 3059 | type::remove_dyn_prop (dynamic_prop_node_kind kind) |
| 9920b434 BH |
3060 | { |
| 3061 | struct dynamic_prop_list *prev_node, *curr_node; | |
| 3062 | ||
| 98d48915 | 3063 | curr_node = this->main_type->dyn_prop_list; |
| 9920b434 BH |
3064 | prev_node = NULL; |
| 3065 | ||
| 3066 | while (NULL != curr_node) | |
| 3067 | { | |
| 7aa91313 | 3068 | if (curr_node->prop_kind == kind) |
| 9920b434 BH |
3069 | { |
| 3070 | /* Update the linked list but don't free anything. | |
| 49ba125f | 3071 | The property was allocated on obstack and it is not known |
| 9920b434 | 3072 | if we are on top of it. Nevertheless, everything is released |
| 49ba125f | 3073 | when the complete obstack is freed. */ |
| 9920b434 | 3074 | if (NULL == prev_node) |
| 98d48915 | 3075 | this->main_type->dyn_prop_list = curr_node->next; |
| 9920b434 BH |
3076 | else |
| 3077 | prev_node->next = curr_node->next; | |
| 3078 | ||
| 3079 | return; | |
| 3080 | } | |
| 3081 | ||
| 3082 | prev_node = curr_node; | |
| 3083 | curr_node = curr_node->next; | |
| 3084 | } | |
| 3085 | } | |
| d9823cbb | 3086 | |
| 92163a10 JK |
3087 | /* Find the real type of TYPE. This function returns the real type, |
| 3088 | after removing all layers of typedefs, and completing opaque or stub | |
| 3089 | types. Completion changes the TYPE argument, but stripping of | |
| 3090 | typedefs does not. | |
| 3091 | ||
| 3092 | Instance flags (e.g. const/volatile) are preserved as typedefs are | |
| 3093 | stripped. If necessary a new qualified form of the underlying type | |
| 3094 | is created. | |
| 3095 | ||
| 27710edb | 3096 | NOTE: This will return a typedef if type::target_type for the typedef has |
| 92163a10 JK |
3097 | not been computed and we're either in the middle of reading symbols, or |
| 3098 | there was no name for the typedef in the debug info. | |
| 3099 | ||
| 9bc118a5 DE |
3100 | NOTE: Lookup of opaque types can throw errors for invalid symbol files. |
| 3101 | QUITs in the symbol reading code can also throw. | |
| 3102 | Thus this function can throw an exception. | |
| 3103 | ||
| 92163a10 JK |
3104 | If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of |
| 3105 | the target type. | |
| c906108c SS |
3106 | |
| 3107 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
| 0963b4bd | 3108 | we can find a full definition in some other file. If so, copy this |
| 7ba81444 MS |
3109 | definition, so we can use it in future. There used to be a comment |
| 3110 | (but not any code) that if we don't find a full definition, we'd | |
| 3111 | set a flag so we don't spend time in the future checking the same | |
| 3112 | type. That would be a mistake, though--we might load in more | |
| 92163a10 | 3113 | symbols which contain a full definition for the type. */ |
| c906108c SS |
3114 | |
| 3115 | struct type * | |
| a02fd225 | 3116 | check_typedef (struct type *type) |
| c906108c SS |
3117 | { |
| 3118 | struct type *orig_type = type; | |
| a02fd225 | 3119 | |
| 423c0af8 MS |
3120 | gdb_assert (type); |
| 3121 | ||
| 314ad88d PA |
3122 | /* While we're removing typedefs, we don't want to lose qualifiers. |
| 3123 | E.g., const/volatile. */ | |
| 3124 | type_instance_flags instance_flags = type->instance_flags (); | |
| 3125 | ||
| 78134374 | 3126 | while (type->code () == TYPE_CODE_TYPEDEF) |
| c906108c | 3127 | { |
| 27710edb | 3128 | if (!type->target_type ()) |
| c906108c | 3129 | { |
| 0d5cff50 | 3130 | const char *name; |
| c906108c SS |
3131 | struct symbol *sym; |
| 3132 | ||
| 3133 | /* It is dangerous to call lookup_symbol if we are currently | |
| 7ba81444 | 3134 | reading a symtab. Infinite recursion is one danger. */ |
| c906108c | 3135 | if (currently_reading_symtab) |
| 92163a10 | 3136 | return make_qualified_type (type, instance_flags, NULL); |
| c906108c | 3137 | |
| 7d93a1e0 | 3138 | name = type->name (); |
| c906108c SS |
3139 | if (name == NULL) |
| 3140 | { | |
| 23136709 | 3141 | stub_noname_complaint (); |
| 92163a10 | 3142 | return make_qualified_type (type, instance_flags, NULL); |
| c906108c | 3143 | } |
| 974b36c2 TT |
3144 | domain_search_flag flag |
| 3145 | = ((type->language () == language_c | |
| 3146 | || type->language () == language_objc | |
| 3147 | || type->language () == language_opencl | |
| 3148 | || type->language () == language_minimal) | |
| 3149 | ? SEARCH_STRUCT_DOMAIN | |
| 3150 | : SEARCH_TYPE_DOMAIN); | |
| 3151 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
| c906108c | 3152 | if (sym) |
| 8a50fdce | 3153 | type->set_target_type (sym->type ()); |
| 7ba81444 | 3154 | else /* TYPE_CODE_UNDEF */ |
| c9eb9f18 | 3155 | type->set_target_type (type_allocator (type->arch ()).new_type ()); |
| c906108c | 3156 | } |
| 27710edb | 3157 | type = type->target_type (); |
| c906108c | 3158 | |
| 92163a10 JK |
3159 | /* Preserve the instance flags as we traverse down the typedef chain. |
| 3160 | ||
| 3161 | Handling address spaces/classes is nasty, what do we do if there's a | |
| 3162 | conflict? | |
| 3163 | E.g., what if an outer typedef marks the type as class_1 and an inner | |
| 3164 | typedef marks the type as class_2? | |
| 3165 | This is the wrong place to do such error checking. We leave it to | |
| 3166 | the code that created the typedef in the first place to flag the | |
| 3167 | error. We just pick the outer address space (akin to letting the | |
| 3168 | outer cast in a chain of casting win), instead of assuming | |
| 3169 | "it can't happen". */ | |
| 3170 | { | |
| 314ad88d PA |
3171 | const type_instance_flags ALL_SPACES |
| 3172 | = (TYPE_INSTANCE_FLAG_CODE_SPACE | |
| 3173 | | TYPE_INSTANCE_FLAG_DATA_SPACE); | |
| 3174 | const type_instance_flags ALL_CLASSES | |
| 3175 | = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL; | |
| 3176 | ||
| 3177 | type_instance_flags new_instance_flags = type->instance_flags (); | |
| 92163a10 JK |
3178 | |
| 3179 | /* Treat code vs data spaces and address classes separately. */ | |
| 3180 | if ((instance_flags & ALL_SPACES) != 0) | |
| 3181 | new_instance_flags &= ~ALL_SPACES; | |
| 3182 | if ((instance_flags & ALL_CLASSES) != 0) | |
| 3183 | new_instance_flags &= ~ALL_CLASSES; | |
| 3184 | ||
| 3185 | instance_flags |= new_instance_flags; | |
| 3186 | } | |
| 3187 | } | |
| a02fd225 | 3188 | |
| 7ba81444 MS |
3189 | /* If this is a struct/class/union with no fields, then check |
| 3190 | whether a full definition exists somewhere else. This is for | |
| 3191 | systems where a type definition with no fields is issued for such | |
| 3192 | types, instead of identifying them as stub types in the first | |
| 3193 | place. */ | |
| c5aa993b | 3194 | |
| a5cbe675 SM |
3195 | if (TYPE_IS_OPAQUE (type) |
| 3196 | && opaque_type_resolution | |
| 7ba81444 | 3197 | && !currently_reading_symtab) |
| c906108c | 3198 | { |
| 7d93a1e0 | 3199 | const char *name = type->name (); |
| c5aa993b | 3200 | struct type *newtype; |
| d8734c88 | 3201 | |
| c906108c SS |
3202 | if (name == NULL) |
| 3203 | { | |
| 23136709 | 3204 | stub_noname_complaint (); |
| 92163a10 | 3205 | return make_qualified_type (type, instance_flags, NULL); |
| c906108c SS |
3206 | } |
| 3207 | newtype = lookup_transparent_type (name); | |
| ad766c0a | 3208 | |
| c906108c | 3209 | if (newtype) |
| ad766c0a | 3210 | { |
| 7ba81444 MS |
3211 | /* If the resolved type and the stub are in the same |
| 3212 | objfile, then replace the stub type with the real deal. | |
| 3213 | But if they're in separate objfiles, leave the stub | |
| 3214 | alone; we'll just look up the transparent type every time | |
| 3215 | we call check_typedef. We can't create pointers between | |
| 3216 | types allocated to different objfiles, since they may | |
| 3217 | have different lifetimes. Trying to copy NEWTYPE over to | |
| 3218 | TYPE's objfile is pointless, too, since you'll have to | |
| 3219 | move over any other types NEWTYPE refers to, which could | |
| 3220 | be an unbounded amount of stuff. */ | |
| 6ac37371 | 3221 | if (newtype->objfile_owner () == type->objfile_owner ()) |
| 10242f36 | 3222 | type = make_qualified_type (newtype, type->instance_flags (), type); |
| ad766c0a JB |
3223 | else |
| 3224 | type = newtype; | |
| 3225 | } | |
| c906108c | 3226 | } |
| 7ba81444 MS |
3227 | /* Otherwise, rely on the stub flag being set for opaque/stubbed |
| 3228 | types. */ | |
| e46d3488 | 3229 | else if (type->is_stub () && !currently_reading_symtab) |
| c906108c | 3230 | { |
| 7d93a1e0 | 3231 | const char *name = type->name (); |
| c906108c | 3232 | struct symbol *sym; |
| d8734c88 | 3233 | |
| c906108c SS |
3234 | if (name == NULL) |
| 3235 | { | |
| 23136709 | 3236 | stub_noname_complaint (); |
| 92163a10 | 3237 | return make_qualified_type (type, instance_flags, NULL); |
| c906108c | 3238 | } |
| 974b36c2 TT |
3239 | domain_search_flag flag |
| 3240 | = ((type->language () == language_c | |
| 3241 | || type->language () == language_objc | |
| 3242 | || type->language () == language_opencl | |
| 3243 | || type->language () == language_minimal) | |
| 3244 | ? SEARCH_STRUCT_DOMAIN | |
| 3245 | : SEARCH_TYPE_DOMAIN); | |
| 3246 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
| c906108c | 3247 | if (sym) |
| dda83cd7 SM |
3248 | { |
| 3249 | /* Same as above for opaque types, we can replace the stub | |
| 3250 | with the complete type only if they are in the same | |
| 3251 | objfile. */ | |
| 5f9c5a63 SM |
3252 | if (sym->type ()->objfile_owner () == type->objfile_owner ()) |
| 3253 | type = make_qualified_type (sym->type (), | |
| 10242f36 | 3254 | type->instance_flags (), type); |
| c26f2453 | 3255 | else |
| 5f9c5a63 | 3256 | type = sym->type (); |
| dda83cd7 | 3257 | } |
| c906108c SS |
3258 | } |
| 3259 | ||
| d2183968 | 3260 | if (type->target_is_stub ()) |
| c906108c | 3261 | { |
| 27710edb | 3262 | struct type *target_type = check_typedef (type->target_type ()); |
| c906108c | 3263 | |
| d2183968 | 3264 | if (target_type->is_stub () || target_type->target_is_stub ()) |
| c5aa993b | 3265 | { |
| 73e2eb35 | 3266 | /* Nothing we can do. */ |
| c5aa993b | 3267 | } |
| 78134374 | 3268 | else if (type->code () == TYPE_CODE_RANGE) |
| c906108c | 3269 | { |
| df86565b | 3270 | type->set_length (target_type->length ()); |
| 8f53807e | 3271 | type->set_target_is_stub (false); |
| c906108c | 3272 | } |
| 78134374 | 3273 | else if (type->code () == TYPE_CODE_ARRAY |
| 8dbb1375 | 3274 | && update_static_array_size (type)) |
| 8f53807e | 3275 | type->set_target_is_stub (false); |
| c906108c | 3276 | } |
| 92163a10 JK |
3277 | |
| 3278 | type = make_qualified_type (type, instance_flags, NULL); | |
| 3279 | ||
| 7ba81444 | 3280 | /* Cache TYPE_LENGTH for future use. */ |
| df86565b | 3281 | orig_type->set_length (type->length ()); |
| 92163a10 | 3282 | |
| c906108c SS |
3283 | return type; |
| 3284 | } | |
| 3285 | ||
| 7ba81444 | 3286 | /* Parse a type expression in the string [P..P+LENGTH). If an error |
| 48319d1f | 3287 | occurs, silently return a void type. */ |
| c91ecb25 | 3288 | |
| b9362cc7 | 3289 | static struct type * |
| f5756acc | 3290 | safe_parse_type (struct gdbarch *gdbarch, const char *p, int length) |
| c91ecb25 | 3291 | { |
| 34365054 | 3292 | struct type *type = NULL; /* Initialize to keep gcc happy. */ |
| c91ecb25 | 3293 | |
| 7ba81444 | 3294 | /* Suppress error messages. */ |
| c3d4b6a6 TT |
3295 | scoped_restore saved_gdb_stderr = make_scoped_restore (&gdb_stderr, |
| 3296 | &null_stream); | |
| c91ecb25 | 3297 | |
| 7ba81444 | 3298 | /* Call parse_and_eval_type() without fear of longjmp()s. */ |
| a70b8144 | 3299 | try |
| 8e7b59a5 KS |
3300 | { |
| 3301 | type = parse_and_eval_type (p, length); | |
| 3302 | } | |
| 230d2906 | 3303 | catch (const gdb_exception_error &except) |
| 492d29ea PA |
3304 | { |
| 3305 | type = builtin_type (gdbarch)->builtin_void; | |
| 3306 | } | |
| c91ecb25 | 3307 | |
| c91ecb25 ND |
3308 | return type; |
| 3309 | } | |
| 3310 | ||
| c906108c SS |
3311 | /* Ugly hack to convert method stubs into method types. |
| 3312 | ||
| 7ba81444 MS |
3313 | He ain't kiddin'. This demangles the name of the method into a |
| 3314 | string including argument types, parses out each argument type, | |
| 3315 | generates a string casting a zero to that type, evaluates the | |
| 3316 | string, and stuffs the resulting type into an argtype vector!!! | |
| 3317 | Then it knows the type of the whole function (including argument | |
| 3318 | types for overloading), which info used to be in the stab's but was | |
| 3319 | removed to hack back the space required for them. */ | |
| c906108c | 3320 | |
| de17c821 | 3321 | static void |
| fba45db2 | 3322 | check_stub_method (struct type *type, int method_id, int signature_id) |
| c906108c | 3323 | { |
| 8ee511af | 3324 | struct gdbarch *gdbarch = type->arch (); |
| c906108c SS |
3325 | struct fn_field *f; |
| 3326 | char *mangled_name = gdb_mangle_name (type, method_id, signature_id); | |
| 3456e70c TT |
3327 | gdb::unique_xmalloc_ptr<char> demangled_name |
| 3328 | = gdb_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI); | |
| c906108c SS |
3329 | char *argtypetext, *p; |
| 3330 | int depth = 0, argcount = 1; | |
| ad2f7632 | 3331 | struct field *argtypes; |
| c906108c SS |
3332 | struct type *mtype; |
| 3333 | ||
| 3334 | /* Make sure we got back a function string that we can use. */ | |
| 3335 | if (demangled_name) | |
| 3456e70c | 3336 | p = strchr (demangled_name.get (), '('); |
| 502dcf4e AC |
3337 | else |
| 3338 | p = NULL; | |
| c906108c SS |
3339 | |
| 3340 | if (demangled_name == NULL || p == NULL) | |
| a5cbe675 | 3341 | error (_("Internal: Cannot demangle mangled name `%s'."), |
| 7ba81444 | 3342 | mangled_name); |
| c906108c SS |
3343 | |
| 3344 | /* Now, read in the parameters that define this type. */ | |
| 3345 | p += 1; | |
| 3346 | argtypetext = p; | |
| 3347 | while (*p) | |
| 3348 | { | |
| 070ad9f0 | 3349 | if (*p == '(' || *p == '<') |
| c906108c SS |
3350 | { |
| 3351 | depth += 1; | |
| 3352 | } | |
| 070ad9f0 | 3353 | else if (*p == ')' || *p == '>') |
| c906108c SS |
3354 | { |
| 3355 | depth -= 1; | |
| 3356 | } | |
| 3357 | else if (*p == ',' && depth == 0) | |
| 3358 | { | |
| 3359 | argcount += 1; | |
| 3360 | } | |
| 3361 | ||
| 3362 | p += 1; | |
| 3363 | } | |
| 3364 | ||
| ad2f7632 | 3365 | /* If we read one argument and it was ``void'', don't count it. */ |
| 61012eef | 3366 | if (startswith (argtypetext, "(void)")) |
| ad2f7632 | 3367 | argcount -= 1; |
| c906108c | 3368 | |
| ad2f7632 DJ |
3369 | /* We need one extra slot, for the THIS pointer. */ |
| 3370 | ||
| 3371 | argtypes = (struct field *) | |
| 959db212 | 3372 | TYPE_ZALLOC (type, (argcount + 1) * sizeof (struct field)); |
| c906108c | 3373 | p = argtypetext; |
| 4a1970e4 DJ |
3374 | |
| 3375 | /* Add THIS pointer for non-static methods. */ | |
| 3376 | f = TYPE_FN_FIELDLIST1 (type, method_id); | |
| 3377 | if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) | |
| 3378 | argcount = 0; | |
| 3379 | else | |
| 3380 | { | |
| 5d14b6e5 | 3381 | argtypes[0].set_type (lookup_pointer_type (type)); |
| 4a1970e4 DJ |
3382 | argcount = 1; |
| 3383 | } | |
| c906108c | 3384 | |
| 0963b4bd | 3385 | if (*p != ')') /* () means no args, skip while. */ |
| c906108c SS |
3386 | { |
| 3387 | depth = 0; | |
| 3388 | while (*p) | |
| 3389 | { | |
| 3390 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
| 3391 | { | |
| ad2f7632 | 3392 | /* Avoid parsing of ellipsis, they will be handled below. |
| dda83cd7 | 3393 | Also avoid ``void'' as above. */ |
| ad2f7632 DJ |
3394 | if (strncmp (argtypetext, "...", p - argtypetext) != 0 |
| 3395 | && strncmp (argtypetext, "void", p - argtypetext) != 0) | |
| c906108c | 3396 | { |
| 5d14b6e5 SM |
3397 | argtypes[argcount].set_type |
| 3398 | (safe_parse_type (gdbarch, argtypetext, p - argtypetext)); | |
| c906108c SS |
3399 | argcount += 1; |
| 3400 | } | |
| 3401 | argtypetext = p + 1; | |
| 3402 | } | |
| 3403 | ||
| 070ad9f0 | 3404 | if (*p == '(' || *p == '<') |
| c906108c SS |
3405 | { |
| 3406 | depth += 1; | |
| 3407 | } | |
| 070ad9f0 | 3408 | else if (*p == ')' || *p == '>') |
| c906108c SS |
3409 | { |
| 3410 | depth -= 1; | |
| 3411 | } | |
| 3412 | ||
| 3413 | p += 1; | |
| 3414 | } | |
| 3415 | } | |
| 3416 | ||
| c906108c SS |
3417 | TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; |
| 3418 | ||
| 3419 | /* Now update the old "stub" type into a real type. */ | |
| 3420 | mtype = TYPE_FN_FIELD_TYPE (f, signature_id); | |
| 09e2d7c7 DE |
3421 | /* MTYPE may currently be a function (TYPE_CODE_FUNC). |
| 3422 | We want a method (TYPE_CODE_METHOD). */ | |
| 27710edb | 3423 | smash_to_method_type (mtype, type, mtype->target_type (), |
| 89495c33 TT |
3424 | gdb::make_array_view (argtypes, argcount), |
| 3425 | p[-2] == '.'); | |
| b4b73759 | 3426 | mtype->set_is_stub (false); |
| c906108c SS |
3427 | TYPE_FN_FIELD_STUB (f, signature_id) = 0; |
| 3428 | } | |
| 3429 | ||
| 7ba81444 MS |
3430 | /* This is the external interface to check_stub_method, above. This |
| 3431 | function unstubs all of the signatures for TYPE's METHOD_ID method | |
| 3432 | name. After calling this function TYPE_FN_FIELD_STUB will be | |
| 3433 | cleared for each signature and TYPE_FN_FIELDLIST_NAME will be | |
| 3434 | correct. | |
| de17c821 DJ |
3435 | |
| 3436 | This function unfortunately can not die until stabs do. */ | |
| 3437 | ||
| 3438 | void | |
| 3439 | check_stub_method_group (struct type *type, int method_id) | |
| 3440 | { | |
| 3441 | int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); | |
| 3442 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
| de17c821 | 3443 | |
| 041be526 SM |
3444 | for (int j = 0; j < len; j++) |
| 3445 | { | |
| 3446 | if (TYPE_FN_FIELD_STUB (f, j)) | |
| de17c821 | 3447 | check_stub_method (type, method_id, j); |
| de17c821 DJ |
3448 | } |
| 3449 | } | |
| 3450 | ||
| 405feb71 | 3451 | /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */ |
| 9655fd1a | 3452 | const struct cplus_struct_type cplus_struct_default = { }; |
| c906108c SS |
3453 | |
| 3454 | void | |
| fba45db2 | 3455 | allocate_cplus_struct_type (struct type *type) |
| c906108c | 3456 | { |
| b4ba55a1 JB |
3457 | if (HAVE_CPLUS_STRUCT (type)) |
| 3458 | /* Structure was already allocated. Nothing more to do. */ | |
| 3459 | return; | |
| 3460 | ||
| 3461 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; | |
| 3462 | TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
| 959db212 | 3463 | TYPE_ZALLOC (type, sizeof (struct cplus_struct_type)); |
| b4ba55a1 | 3464 | *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; |
| ae6ae975 | 3465 | set_type_vptr_fieldno (type, -1); |
| c906108c SS |
3466 | } |
| 3467 | ||
| b4ba55a1 JB |
3468 | const struct gnat_aux_type gnat_aux_default = |
| 3469 | { NULL }; | |
| 3470 | ||
| 3471 | /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, | |
| 3472 | and allocate the associated gnat-specific data. The gnat-specific | |
| 3473 | data is also initialized to gnat_aux_default. */ | |
| 5212577a | 3474 | |
| b4ba55a1 JB |
3475 | void |
| 3476 | allocate_gnat_aux_type (struct type *type) | |
| 3477 | { | |
| 3478 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; | |
| 3479 | TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) | |
| 959db212 | 3480 | TYPE_ZALLOC (type, sizeof (struct gnat_aux_type)); |
| b4ba55a1 JB |
3481 | *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; |
| 3482 | } | |
| 3483 | ||
| 19f392bc UW |
3484 | /* Helper function to verify floating-point format and size. |
| 3485 | BIT is the type size in bits; if BIT equals -1, the size is | |
| 3486 | determined by the floatformat. Returns size to be used. */ | |
| 3487 | ||
| 3488 | static int | |
| 0db7851f | 3489 | verify_floatformat (int bit, const struct floatformat *floatformat) |
| 19f392bc | 3490 | { |
| 0db7851f | 3491 | gdb_assert (floatformat != NULL); |
| 9b790ce7 | 3492 | |
| 19f392bc | 3493 | if (bit == -1) |
| 0db7851f | 3494 | bit = floatformat->totalsize; |
| 19f392bc | 3495 | |
| 0db7851f UW |
3496 | gdb_assert (bit >= 0); |
| 3497 | gdb_assert (bit >= floatformat->totalsize); | |
| 19f392bc UW |
3498 | |
| 3499 | return bit; | |
| 3500 | } | |
| 3501 | ||
| 0db7851f UW |
3502 | /* Return the floating-point format for a floating-point variable of |
| 3503 | type TYPE. */ | |
| 3504 | ||
| 3505 | const struct floatformat * | |
| 3506 | floatformat_from_type (const struct type *type) | |
| 3507 | { | |
| 78134374 | 3508 | gdb_assert (type->code () == TYPE_CODE_FLT); |
| 0db7851f UW |
3509 | gdb_assert (TYPE_FLOATFORMAT (type)); |
| 3510 | return TYPE_FLOATFORMAT (type); | |
| 3511 | } | |
| 3512 | ||
| 2d39ccd3 | 3513 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3514 | |
| 3515 | struct type * | |
| 2d39ccd3 | 3516 | init_integer_type (type_allocator &alloc, |
| 19f392bc UW |
3517 | int bit, int unsigned_p, const char *name) |
| 3518 | { | |
| 3519 | struct type *t; | |
| 3520 | ||
| 2d39ccd3 | 3521 | t = alloc.new_type (TYPE_CODE_INT, bit, name); |
| 19f392bc | 3522 | if (unsigned_p) |
| 653223d3 | 3523 | t->set_is_unsigned (true); |
| 19f392bc | 3524 | |
| 20a5fcbd TT |
3525 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
| 3526 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
| 3527 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
| 3528 | ||
| 19f392bc UW |
3529 | return t; |
| 3530 | } | |
| 3531 | ||
| f50b437c | 3532 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3533 | |
| 3534 | struct type * | |
| f50b437c | 3535 | init_character_type (type_allocator &alloc, |
| 19f392bc UW |
3536 | int bit, int unsigned_p, const char *name) |
| 3537 | { | |
| 3538 | struct type *t; | |
| 3539 | ||
| f50b437c | 3540 | t = alloc.new_type (TYPE_CODE_CHAR, bit, name); |
| 19f392bc | 3541 | if (unsigned_p) |
| 653223d3 | 3542 | t->set_is_unsigned (true); |
| 19f392bc UW |
3543 | |
| 3544 | return t; | |
| 3545 | } | |
| 3546 | ||
| 46c04ea3 | 3547 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3548 | |
| 3549 | struct type * | |
| 46c04ea3 | 3550 | init_boolean_type (type_allocator &alloc, |
| 19f392bc UW |
3551 | int bit, int unsigned_p, const char *name) |
| 3552 | { | |
| 3553 | struct type *t; | |
| 3554 | ||
| 46c04ea3 | 3555 | t = alloc.new_type (TYPE_CODE_BOOL, bit, name); |
| 19f392bc | 3556 | if (unsigned_p) |
| 653223d3 | 3557 | t->set_is_unsigned (true); |
| 19f392bc | 3558 | |
| 20a5fcbd TT |
3559 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
| 3560 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
| 3561 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
| 3562 | ||
| 19f392bc UW |
3563 | return t; |
| 3564 | } | |
| 3565 | ||
| 77c5f496 | 3566 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3567 | |
| 3568 | struct type * | |
| 77c5f496 | 3569 | init_float_type (type_allocator &alloc, |
| 19f392bc | 3570 | int bit, const char *name, |
| 103a685e TT |
3571 | const struct floatformat **floatformats, |
| 3572 | enum bfd_endian byte_order) | |
| 19f392bc | 3573 | { |
| 103a685e TT |
3574 | if (byte_order == BFD_ENDIAN_UNKNOWN) |
| 3575 | { | |
| 77c5f496 | 3576 | struct gdbarch *gdbarch = alloc.arch (); |
| 103a685e TT |
3577 | byte_order = gdbarch_byte_order (gdbarch); |
| 3578 | } | |
| 3579 | const struct floatformat *fmt = floatformats[byte_order]; | |
| 19f392bc UW |
3580 | struct type *t; |
| 3581 | ||
| 0db7851f | 3582 | bit = verify_floatformat (bit, fmt); |
| 77c5f496 | 3583 | t = alloc.new_type (TYPE_CODE_FLT, bit, name); |
| 0db7851f | 3584 | TYPE_FLOATFORMAT (t) = fmt; |
| 19f392bc UW |
3585 | |
| 3586 | return t; | |
| 3587 | } | |
| 3588 | ||
| 0776344a | 3589 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3590 | |
| 3591 | struct type * | |
| 0776344a | 3592 | init_decfloat_type (type_allocator &alloc, int bit, const char *name) |
| 19f392bc | 3593 | { |
| 0776344a | 3594 | return alloc.new_type (TYPE_CODE_DECFLOAT, bit, name); |
| 19f392bc UW |
3595 | } |
| 3596 | ||
| ae710496 TV |
3597 | /* Return true if init_complex_type can be called with TARGET_TYPE. */ |
| 3598 | ||
| 3599 | bool | |
| 3600 | can_create_complex_type (struct type *target_type) | |
| 3601 | { | |
| 3602 | return (target_type->code () == TYPE_CODE_INT | |
| 3603 | || target_type->code () == TYPE_CODE_FLT); | |
| 3604 | } | |
| 3605 | ||
| 5b930b45 TT |
3606 | /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type |
| 3607 | name. TARGET_TYPE is the component type. */ | |
| 19f392bc UW |
3608 | |
| 3609 | struct type * | |
| 5b930b45 | 3610 | init_complex_type (const char *name, struct type *target_type) |
| 19f392bc UW |
3611 | { |
| 3612 | struct type *t; | |
| 3613 | ||
| ae710496 | 3614 | gdb_assert (can_create_complex_type (target_type)); |
| 5b930b45 TT |
3615 | |
| 3616 | if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr) | |
| 3617 | { | |
| 6b9d0dfd | 3618 | if (name == nullptr && target_type->name () != nullptr) |
| 5b930b45 | 3619 | { |
| 959db212 TV |
3620 | /* No zero-initialization required, initialized by strcpy/strcat |
| 3621 | below. */ | |
| 5b930b45 TT |
3622 | char *new_name |
| 3623 | = (char *) TYPE_ALLOC (target_type, | |
| 7d93a1e0 | 3624 | strlen (target_type->name ()) |
| 5b930b45 TT |
3625 | + strlen ("_Complex ") + 1); |
| 3626 | strcpy (new_name, "_Complex "); | |
| 7d93a1e0 | 3627 | strcat (new_name, target_type->name ()); |
| 5b930b45 TT |
3628 | name = new_name; |
| 3629 | } | |
| 3630 | ||
| 9fa83a7a | 3631 | t = type_allocator (target_type).new_type (); |
| 5b930b45 | 3632 | set_type_code (t, TYPE_CODE_COMPLEX); |
| df86565b | 3633 | t->set_length (2 * target_type->length ()); |
| d0e39ea2 | 3634 | t->set_name (name); |
| 5b930b45 | 3635 | |
| 8a50fdce | 3636 | t->set_target_type (target_type); |
| 5b930b45 TT |
3637 | TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t; |
| 3638 | } | |
| 3639 | ||
| 3640 | return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type; | |
| 19f392bc UW |
3641 | } |
| 3642 | ||
| 9c794d2d | 3643 | /* See gdbtypes.h. */ |
| 19f392bc UW |
3644 | |
| 3645 | struct type * | |
| 9c794d2d | 3646 | init_pointer_type (type_allocator &alloc, |
| 19f392bc UW |
3647 | int bit, const char *name, struct type *target_type) |
| 3648 | { | |
| 3649 | struct type *t; | |
| 3650 | ||
| 9c794d2d | 3651 | t = alloc.new_type (TYPE_CODE_PTR, bit, name); |
| 8a50fdce | 3652 | t->set_target_type (target_type); |
| 653223d3 | 3653 | t->set_is_unsigned (true); |
| 19f392bc UW |
3654 | return t; |
| 3655 | } | |
| 3656 | ||
| 09584414 JB |
3657 | /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE. |
| 3658 | BIT is the pointer type size in bits. | |
| 3659 | UNSIGNED_P should be nonzero if the type is unsigned. | |
| 3660 | NAME is the type name. */ | |
| 3661 | ||
| 3662 | struct type * | |
| d5592272 | 3663 | init_fixed_point_type (type_allocator &alloc, |
| 09584414 JB |
3664 | int bit, int unsigned_p, const char *name) |
| 3665 | { | |
| 3666 | struct type *t; | |
| 3667 | ||
| d5592272 | 3668 | t = alloc.new_type (TYPE_CODE_FIXED_POINT, bit, name); |
| 09584414 JB |
3669 | if (unsigned_p) |
| 3670 | t->set_is_unsigned (true); | |
| 3671 | ||
| 3672 | return t; | |
| 3673 | } | |
| 3674 | ||
| 2b4424c3 TT |
3675 | /* See gdbtypes.h. */ |
| 3676 | ||
| 3677 | unsigned | |
| 3678 | type_raw_align (struct type *type) | |
| 3679 | { | |
| 3680 | if (type->align_log2 != 0) | |
| 3681 | return 1 << (type->align_log2 - 1); | |
| 3682 | return 0; | |
| 3683 | } | |
| 3684 | ||
| 3685 | /* See gdbtypes.h. */ | |
| 3686 | ||
| 3687 | unsigned | |
| 3688 | type_align (struct type *type) | |
| 3689 | { | |
| 5561fc30 | 3690 | /* Check alignment provided in the debug information. */ |
| 2b4424c3 TT |
3691 | unsigned raw_align = type_raw_align (type); |
| 3692 | if (raw_align != 0) | |
| 3693 | return raw_align; | |
| 3694 | ||
| 5561fc30 | 3695 | /* Allow the architecture to provide an alignment. */ |
| 8ee511af | 3696 | ULONGEST align = gdbarch_type_align (type->arch (), type); |
| 5561fc30 AB |
3697 | if (align != 0) |
| 3698 | return align; | |
| 3699 | ||
| 78134374 | 3700 | switch (type->code ()) |
| 2b4424c3 TT |
3701 | { |
| 3702 | case TYPE_CODE_PTR: | |
| 3703 | case TYPE_CODE_FUNC: | |
| 3704 | case TYPE_CODE_FLAGS: | |
| 3705 | case TYPE_CODE_INT: | |
| 75ba10dc | 3706 | case TYPE_CODE_RANGE: |
| 2b4424c3 TT |
3707 | case TYPE_CODE_FLT: |
| 3708 | case TYPE_CODE_ENUM: | |
| 3709 | case TYPE_CODE_REF: | |
| 3710 | case TYPE_CODE_RVALUE_REF: | |
| 3711 | case TYPE_CODE_CHAR: | |
| 3712 | case TYPE_CODE_BOOL: | |
| 3713 | case TYPE_CODE_DECFLOAT: | |
| 70cd633e AB |
3714 | case TYPE_CODE_METHODPTR: |
| 3715 | case TYPE_CODE_MEMBERPTR: | |
| 5561fc30 | 3716 | align = type_length_units (check_typedef (type)); |
| 2b4424c3 TT |
3717 | break; |
| 3718 | ||
| 3719 | case TYPE_CODE_ARRAY: | |
| 3720 | case TYPE_CODE_COMPLEX: | |
| 3721 | case TYPE_CODE_TYPEDEF: | |
| 27710edb | 3722 | align = type_align (type->target_type ()); |
| 2b4424c3 TT |
3723 | break; |
| 3724 | ||
| 3725 | case TYPE_CODE_STRUCT: | |
| 3726 | case TYPE_CODE_UNION: | |
| 3727 | { | |
| 41077b66 | 3728 | int number_of_non_static_fields = 0; |
| 89495c33 | 3729 | for (const auto &field : type->fields ()) |
| 2b4424c3 | 3730 | { |
| 89495c33 | 3731 | if (!field.is_static ()) |
| 2b4424c3 | 3732 | { |
| 41077b66 | 3733 | number_of_non_static_fields++; |
| 89495c33 | 3734 | ULONGEST f_align = type_align (field.type ()); |
| bf9a735e AB |
3735 | if (f_align == 0) |
| 3736 | { | |
| 3737 | /* Don't pretend we know something we don't. */ | |
| 3738 | align = 0; | |
| 3739 | break; | |
| 3740 | } | |
| 3741 | if (f_align > align) | |
| 3742 | align = f_align; | |
| 2b4424c3 | 3743 | } |
| 2b4424c3 | 3744 | } |
| 41077b66 AB |
3745 | /* A struct with no fields, or with only static fields has an |
| 3746 | alignment of 1. */ | |
| 3747 | if (number_of_non_static_fields == 0) | |
| 3748 | align = 1; | |
| 2b4424c3 TT |
3749 | } |
| 3750 | break; | |
| 3751 | ||
| 3752 | case TYPE_CODE_SET: | |
| 2b4424c3 TT |
3753 | case TYPE_CODE_STRING: |
| 3754 | /* Not sure what to do here, and these can't appear in C or C++ | |
| 3755 | anyway. */ | |
| 3756 | break; | |
| 3757 | ||
| 2b4424c3 TT |
3758 | case TYPE_CODE_VOID: |
| 3759 | align = 1; | |
| 3760 | break; | |
| 3761 | ||
| 3762 | case TYPE_CODE_ERROR: | |
| 3763 | case TYPE_CODE_METHOD: | |
| 3764 | default: | |
| 3765 | break; | |
| 3766 | } | |
| 3767 | ||
| 3768 | if ((align & (align - 1)) != 0) | |
| 3769 | { | |
| 3770 | /* Not a power of 2, so pass. */ | |
| 3771 | align = 0; | |
| 3772 | } | |
| 3773 | ||
| 3774 | return align; | |
| 3775 | } | |
| 3776 | ||
| 3777 | /* See gdbtypes.h. */ | |
| 3778 | ||
| 3779 | bool | |
| 3780 | set_type_align (struct type *type, ULONGEST align) | |
| 3781 | { | |
| 3782 | /* Must be a power of 2. Zero is ok. */ | |
| 3783 | gdb_assert ((align & (align - 1)) == 0); | |
| 3784 | ||
| 3785 | unsigned result = 0; | |
| 3786 | while (align != 0) | |
| 3787 | { | |
| 3788 | ++result; | |
| 3789 | align >>= 1; | |
| 3790 | } | |
| 3791 | ||
| 3792 | if (result >= (1 << TYPE_ALIGN_BITS)) | |
| 3793 | return false; | |
| 3794 | ||
| 3795 | type->align_log2 = result; | |
| 3796 | return true; | |
| 3797 | } | |
| 3798 | ||
| 5212577a DE |
3799 | \f |
| 3800 | /* Queries on types. */ | |
| c906108c | 3801 | |
| c906108c | 3802 | int |
| fba45db2 | 3803 | can_dereference (struct type *t) |
| c906108c | 3804 | { |
| 7ba81444 MS |
3805 | /* FIXME: Should we return true for references as well as |
| 3806 | pointers? */ | |
| f168693b | 3807 | t = check_typedef (t); |
| c906108c SS |
3808 | return |
| 3809 | (t != NULL | |
| 78134374 | 3810 | && t->code () == TYPE_CODE_PTR |
| 27710edb | 3811 | && t->target_type ()->code () != TYPE_CODE_VOID); |
| c906108c SS |
3812 | } |
| 3813 | ||
| adf40b2e | 3814 | int |
| fba45db2 | 3815 | is_integral_type (struct type *t) |
| adf40b2e | 3816 | { |
| f168693b | 3817 | t = check_typedef (t); |
| adf40b2e JM |
3818 | return |
| 3819 | ((t != NULL) | |
| 09584414 | 3820 | && !is_fixed_point_type (t) |
| 78134374 SM |
3821 | && ((t->code () == TYPE_CODE_INT) |
| 3822 | || (t->code () == TYPE_CODE_ENUM) | |
| 3823 | || (t->code () == TYPE_CODE_FLAGS) | |
| 3824 | || (t->code () == TYPE_CODE_CHAR) | |
| 3825 | || (t->code () == TYPE_CODE_RANGE) | |
| 3826 | || (t->code () == TYPE_CODE_BOOL))); | |
| adf40b2e JM |
3827 | } |
| 3828 | ||
| 70100014 UW |
3829 | int |
| 3830 | is_floating_type (struct type *t) | |
| 3831 | { | |
| 3832 | t = check_typedef (t); | |
| 3833 | return | |
| 3834 | ((t != NULL) | |
| 78134374 SM |
3835 | && ((t->code () == TYPE_CODE_FLT) |
| 3836 | || (t->code () == TYPE_CODE_DECFLOAT))); | |
| 70100014 UW |
3837 | } |
| 3838 | ||
| e09342b5 TJB |
3839 | /* Return true if TYPE is scalar. */ |
| 3840 | ||
| 220475ed | 3841 | int |
| e09342b5 TJB |
3842 | is_scalar_type (struct type *type) |
| 3843 | { | |
| f168693b | 3844 | type = check_typedef (type); |
| e09342b5 | 3845 | |
| 09584414 JB |
3846 | if (is_fixed_point_type (type)) |
| 3847 | return 0; /* Implemented as a scalar, but more like a floating point. */ | |
| 3848 | ||
| 78134374 | 3849 | switch (type->code ()) |
| e09342b5 TJB |
3850 | { |
| 3851 | case TYPE_CODE_ARRAY: | |
| 3852 | case TYPE_CODE_STRUCT: | |
| 3853 | case TYPE_CODE_UNION: | |
| 3854 | case TYPE_CODE_SET: | |
| 3855 | case TYPE_CODE_STRING: | |
| e09342b5 TJB |
3856 | return 0; |
| 3857 | default: | |
| 3858 | return 1; | |
| 3859 | } | |
| 3860 | } | |
| 3861 | ||
| 3862 | /* Return true if T is scalar, or a composite type which in practice has | |
| 90e4670f TJB |
3863 | the memory layout of a scalar type. E.g., an array or struct with only |
| 3864 | one scalar element inside it, or a union with only scalar elements. */ | |
| e09342b5 TJB |
3865 | |
| 3866 | int | |
| 3867 | is_scalar_type_recursive (struct type *t) | |
| 3868 | { | |
| f168693b | 3869 | t = check_typedef (t); |
| e09342b5 TJB |
3870 | |
| 3871 | if (is_scalar_type (t)) | |
| 3872 | return 1; | |
| 3873 | /* Are we dealing with an array or string of known dimensions? */ | |
| 78134374 | 3874 | else if ((t->code () == TYPE_CODE_ARRAY |
| 1f704f76 | 3875 | || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1 |
| 3d967001 | 3876 | && t->index_type ()->code () == TYPE_CODE_RANGE) |
| e09342b5 TJB |
3877 | { |
| 3878 | LONGEST low_bound, high_bound; | |
| 27710edb | 3879 | struct type *elt_type = check_typedef (t->target_type ()); |
| e09342b5 | 3880 | |
| f8676776 LS |
3881 | if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound)) |
| 3882 | return (high_bound == low_bound | |
| 3883 | && is_scalar_type_recursive (elt_type)); | |
| 3884 | else | |
| 3885 | return 0; | |
| e09342b5 TJB |
3886 | } |
| 3887 | /* Are we dealing with a struct with one element? */ | |
| 1f704f76 | 3888 | else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1) |
| 940da03e | 3889 | return is_scalar_type_recursive (t->field (0).type ()); |
| 78134374 | 3890 | else if (t->code () == TYPE_CODE_UNION) |
| e09342b5 | 3891 | { |
| 1f704f76 | 3892 | int i, n = t->num_fields (); |
| e09342b5 TJB |
3893 | |
| 3894 | /* If all elements of the union are scalar, then the union is scalar. */ | |
| 3895 | for (i = 0; i < n; i++) | |
| 940da03e | 3896 | if (!is_scalar_type_recursive (t->field (i).type ())) |
| e09342b5 TJB |
3897 | return 0; |
| 3898 | ||
| 3899 | return 1; | |
| 3900 | } | |
| 3901 | ||
| 3902 | return 0; | |
| 3903 | } | |
| 3904 | ||
| 6c659fc2 SC |
3905 | /* Return true is T is a class or a union. False otherwise. */ |
| 3906 | ||
| 3907 | int | |
| 3908 | class_or_union_p (const struct type *t) | |
| 3909 | { | |
| 78134374 | 3910 | return (t->code () == TYPE_CODE_STRUCT |
| dda83cd7 | 3911 | || t->code () == TYPE_CODE_UNION); |
| 6c659fc2 SC |
3912 | } |
| 3913 | ||
| 4e8f195d TT |
3914 | /* A helper function which returns true if types A and B represent the |
| 3915 | "same" class type. This is true if the types have the same main | |
| 3916 | type, or the same name. */ | |
| 3917 | ||
| 3918 | int | |
| 3919 | class_types_same_p (const struct type *a, const struct type *b) | |
| 3920 | { | |
| 3921 | return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) | |
| 7d93a1e0 SM |
3922 | || (a->name () && b->name () |
| 3923 | && !strcmp (a->name (), b->name ()))); | |
| 4e8f195d TT |
3924 | } |
| 3925 | ||
| a9d5ef47 SW |
3926 | /* If BASE is an ancestor of DCLASS return the distance between them. |
| 3927 | otherwise return -1; | |
| 3928 | eg: | |
| 3929 | ||
| 3930 | class A {}; | |
| 3931 | class B: public A {}; | |
| 3932 | class C: public B {}; | |
| 3933 | class D: C {}; | |
| 3934 | ||
| 3935 | distance_to_ancestor (A, A, 0) = 0 | |
| 3936 | distance_to_ancestor (A, B, 0) = 1 | |
| 3937 | distance_to_ancestor (A, C, 0) = 2 | |
| 3938 | distance_to_ancestor (A, D, 0) = 3 | |
| 3939 | ||
| 3940 | If PUBLIC is 1 then only public ancestors are considered, | |
| 3941 | and the function returns the distance only if BASE is a public ancestor | |
| 3942 | of DCLASS. | |
| 3943 | Eg: | |
| 3944 | ||
| 0963b4bd | 3945 | distance_to_ancestor (A, D, 1) = -1. */ |
| c906108c | 3946 | |
| 0526b37a | 3947 | static int |
| fe978cb0 | 3948 | distance_to_ancestor (struct type *base, struct type *dclass, int is_public) |
| c906108c SS |
3949 | { |
| 3950 | int i; | |
| a9d5ef47 | 3951 | int d; |
| c5aa993b | 3952 | |
| f168693b SM |
3953 | base = check_typedef (base); |
| 3954 | dclass = check_typedef (dclass); | |
| c906108c | 3955 | |
| 4e8f195d | 3956 | if (class_types_same_p (base, dclass)) |
| a9d5ef47 | 3957 | return 0; |
| c906108c SS |
3958 | |
| 3959 | for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) | |
| 4e8f195d | 3960 | { |
| fe978cb0 | 3961 | if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i)) |
| 0526b37a SW |
3962 | continue; |
| 3963 | ||
| fe978cb0 | 3964 | d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public); |
| a9d5ef47 SW |
3965 | if (d >= 0) |
| 3966 | return 1 + d; | |
| 4e8f195d | 3967 | } |
| c906108c | 3968 | |
| a9d5ef47 | 3969 | return -1; |
| c906108c | 3970 | } |
| 4e8f195d | 3971 | |
| 0526b37a SW |
3972 | /* Check whether BASE is an ancestor or base class or DCLASS |
| 3973 | Return 1 if so, and 0 if not. | |
| 3974 | Note: If BASE and DCLASS are of the same type, this function | |
| 3975 | will return 1. So for some class A, is_ancestor (A, A) will | |
| 3976 | return 1. */ | |
| 3977 | ||
| 3978 | int | |
| 3979 | is_ancestor (struct type *base, struct type *dclass) | |
| 3980 | { | |
| a9d5ef47 | 3981 | return distance_to_ancestor (base, dclass, 0) >= 0; |
| 0526b37a SW |
3982 | } |
| 3983 | ||
| 4e8f195d TT |
3984 | /* Like is_ancestor, but only returns true when BASE is a public |
| 3985 | ancestor of DCLASS. */ | |
| 3986 | ||
| 3987 | int | |
| 3988 | is_public_ancestor (struct type *base, struct type *dclass) | |
| 3989 | { | |
| a9d5ef47 | 3990 | return distance_to_ancestor (base, dclass, 1) >= 0; |
| 4e8f195d TT |
3991 | } |
| 3992 | ||
| 3993 | /* A helper function for is_unique_ancestor. */ | |
| 3994 | ||
| 3995 | static int | |
| 3996 | is_unique_ancestor_worker (struct type *base, struct type *dclass, | |
| 3997 | int *offset, | |
| 8af8e3bc PA |
3998 | const gdb_byte *valaddr, int embedded_offset, |
| 3999 | CORE_ADDR address, struct value *val) | |
| 4e8f195d TT |
4000 | { |
| 4001 | int i, count = 0; | |
| 4002 | ||
| f168693b SM |
4003 | base = check_typedef (base); |
| 4004 | dclass = check_typedef (dclass); | |
| 4e8f195d TT |
4005 | |
| 4006 | for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) | |
| 4007 | { | |
| 8af8e3bc PA |
4008 | struct type *iter; |
| 4009 | int this_offset; | |
| 4e8f195d | 4010 | |
| 8af8e3bc PA |
4011 | iter = check_typedef (TYPE_BASECLASS (dclass, i)); |
| 4012 | ||
| 4013 | this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset, | |
| 4014 | address, val); | |
| 4e8f195d TT |
4015 | |
| 4016 | if (class_types_same_p (base, iter)) | |
| 4017 | { | |
| 4018 | /* If this is the first subclass, set *OFFSET and set count | |
| 4019 | to 1. Otherwise, if this is at the same offset as | |
| 4020 | previous instances, do nothing. Otherwise, increment | |
| 4021 | count. */ | |
| 4022 | if (*offset == -1) | |
| 4023 | { | |
| 4024 | *offset = this_offset; | |
| 4025 | count = 1; | |
| 4026 | } | |
| 4027 | else if (this_offset == *offset) | |
| 4028 | { | |
| 4029 | /* Nothing. */ | |
| 4030 | } | |
| 4031 | else | |
| 4032 | ++count; | |
| 4033 | } | |
| 4034 | else | |
| 4035 | count += is_unique_ancestor_worker (base, iter, offset, | |
| 8af8e3bc PA |
4036 | valaddr, |
| 4037 | embedded_offset + this_offset, | |
| 4038 | address, val); | |
| 4e8f195d TT |
4039 | } |
| 4040 | ||
| 4041 | return count; | |
| 4042 | } | |
| 4043 | ||
| 4044 | /* Like is_ancestor, but only returns true if BASE is a unique base | |
| 4045 | class of the type of VAL. */ | |
| 4046 | ||
| 4047 | int | |
| 4048 | is_unique_ancestor (struct type *base, struct value *val) | |
| 4049 | { | |
| 4050 | int offset = -1; | |
| 4051 | ||
| d0c97917 | 4052 | return is_unique_ancestor_worker (base, val->type (), &offset, |
| efaf1ae0 | 4053 | val->contents_for_printing ().data (), |
| 391f8628 | 4054 | val->embedded_offset (), |
| 9feb2d07 | 4055 | val->address (), val) == 1; |
| 4e8f195d TT |
4056 | } |
| 4057 | ||
| 7ab4a236 TT |
4058 | /* See gdbtypes.h. */ |
| 4059 | ||
| 4060 | enum bfd_endian | |
| 4061 | type_byte_order (const struct type *type) | |
| 4062 | { | |
| 8ee511af | 4063 | bfd_endian byteorder = gdbarch_byte_order (type->arch ()); |
| 04f5bab2 | 4064 | if (type->endianity_is_not_default ()) |
| 7ab4a236 TT |
4065 | { |
| 4066 | if (byteorder == BFD_ENDIAN_BIG) | |
| dda83cd7 | 4067 | return BFD_ENDIAN_LITTLE; |
| 7ab4a236 TT |
4068 | else |
| 4069 | { | |
| 4070 | gdb_assert (byteorder == BFD_ENDIAN_LITTLE); | |
| 4071 | return BFD_ENDIAN_BIG; | |
| 4072 | } | |
| 4073 | } | |
| 4074 | ||
| 4075 | return byteorder; | |
| 4076 | } | |
| 4077 | ||
| 0b35f123 LS |
4078 | /* See gdbtypes.h. */ |
| 4079 | ||
| 4080 | bool | |
| 4081 | is_nocall_function (const struct type *type) | |
| 4082 | { | |
| 78554598 TT |
4083 | if (type->code () != TYPE_CODE_FUNC && type->code () != TYPE_CODE_METHOD) |
| 4084 | return false; | |
| 0b35f123 LS |
4085 | |
| 4086 | return TYPE_CALLING_CONVENTION (type) == DW_CC_nocall; | |
| 4087 | } | |
| 4088 | ||
| c906108c | 4089 | \f |
| 5212577a | 4090 | /* Overload resolution. */ |
| c906108c | 4091 | |
| 6403aeea SW |
4092 | /* Return the sum of the rank of A with the rank of B. */ |
| 4093 | ||
| 4094 | struct rank | |
| 4095 | sum_ranks (struct rank a, struct rank b) | |
| 4096 | { | |
| 4097 | struct rank c; | |
| 4098 | c.rank = a.rank + b.rank; | |
| a9d5ef47 | 4099 | c.subrank = a.subrank + b.subrank; |
| 6403aeea SW |
4100 | return c; |
| 4101 | } | |
| 4102 | ||
| 4103 | /* Compare rank A and B and return: | |
| 4104 | 0 if a = b | |
| 4105 | 1 if a is better than b | |
| 4106 | -1 if b is better than a. */ | |
| 4107 | ||
| 4108 | int | |
| 4109 | compare_ranks (struct rank a, struct rank b) | |
| 4110 | { | |
| 4111 | if (a.rank == b.rank) | |
| a9d5ef47 SW |
4112 | { |
| 4113 | if (a.subrank == b.subrank) | |
| 4114 | return 0; | |
| 4115 | if (a.subrank < b.subrank) | |
| 4116 | return 1; | |
| 4117 | if (a.subrank > b.subrank) | |
| 4118 | return -1; | |
| 4119 | } | |
| 6403aeea SW |
4120 | |
| 4121 | if (a.rank < b.rank) | |
| 4122 | return 1; | |
| 4123 | ||
| 0963b4bd | 4124 | /* a.rank > b.rank */ |
| 6403aeea SW |
4125 | return -1; |
| 4126 | } | |
| c5aa993b | 4127 | |
| 0963b4bd | 4128 | /* Functions for overload resolution begin here. */ |
| c906108c SS |
4129 | |
| 4130 | /* Compare two badness vectors A and B and return the result. | |
| 7ba81444 MS |
4131 | 0 => A and B are identical |
| 4132 | 1 => A and B are incomparable | |
| 4133 | 2 => A is better than B | |
| 4134 | 3 => A is worse than B */ | |
| c906108c SS |
4135 | |
| 4136 | int | |
| 82ceee50 | 4137 | compare_badness (const badness_vector &a, const badness_vector &b) |
| c906108c SS |
4138 | { |
| 4139 | int i; | |
| 4140 | int tmp; | |
| ac03c8d8 TT |
4141 | /* Any positives in comparison? */ |
| 4142 | bool found_pos = false; | |
| 4143 | /* Any negatives in comparison? */ | |
| 4144 | bool found_neg = false; | |
| 4145 | /* Did A have any INVALID_CONVERSION entries. */ | |
| 4146 | bool a_invalid = false; | |
| 4147 | /* Did B have any INVALID_CONVERSION entries. */ | |
| 4148 | bool b_invalid = false; | |
| c5aa993b | 4149 | |
| 82ceee50 PA |
4150 | /* differing sizes => incomparable */ |
| 4151 | if (a.size () != b.size ()) | |
| c906108c SS |
4152 | return 1; |
| 4153 | ||
| c5aa993b | 4154 | /* Subtract b from a */ |
| 82ceee50 | 4155 | for (i = 0; i < a.size (); i++) |
| c906108c | 4156 | { |
| 82ceee50 | 4157 | tmp = compare_ranks (b[i], a[i]); |
| c906108c | 4158 | if (tmp > 0) |
| ac03c8d8 | 4159 | found_pos = true; |
| c906108c | 4160 | else if (tmp < 0) |
| ac03c8d8 TT |
4161 | found_neg = true; |
| 4162 | if (a[i].rank >= INVALID_CONVERSION) | |
| 4163 | a_invalid = true; | |
| 4164 | if (b[i].rank >= INVALID_CONVERSION) | |
| 4165 | b_invalid = true; | |
| c906108c SS |
4166 | } |
| 4167 | ||
| ac03c8d8 TT |
4168 | /* B will only be considered better than or incomparable to A if |
| 4169 | they both have invalid entries, or if neither does. That is, if | |
| 4170 | A has only valid entries, and B has an invalid entry, then A will | |
| 4171 | be considered better than B, even if B happens to be better for | |
| 4172 | some parameter. */ | |
| 4173 | if (a_invalid != b_invalid) | |
| 4174 | { | |
| 4175 | if (a_invalid) | |
| 4176 | return 3; /* A > B */ | |
| 4177 | return 2; /* A < B */ | |
| 4178 | } | |
| 4179 | else if (found_pos) | |
| c906108c SS |
4180 | { |
| 4181 | if (found_neg) | |
| c5aa993b | 4182 | return 1; /* incomparable */ |
| c906108c | 4183 | else |
| c5aa993b | 4184 | return 3; /* A > B */ |
| c906108c | 4185 | } |
| c5aa993b JM |
4186 | else |
| 4187 | /* no positives */ | |
| c906108c SS |
4188 | { |
| 4189 | if (found_neg) | |
| c5aa993b | 4190 | return 2; /* A < B */ |
| c906108c | 4191 | else |
| c5aa993b | 4192 | return 0; /* A == B */ |
| c906108c SS |
4193 | } |
| 4194 | } | |
| 4195 | ||
| 6b1747cd | 4196 | /* Rank a function by comparing its parameter types (PARMS), to the |
| 82ceee50 PA |
4197 | types of an argument list (ARGS). Return the badness vector. This |
| 4198 | has ARGS.size() + 1 entries. */ | |
| c906108c | 4199 | |
| 82ceee50 | 4200 | badness_vector |
| 6b1747cd | 4201 | rank_function (gdb::array_view<type *> parms, |
| 1d2f86b6 HD |
4202 | gdb::array_view<value *> args, |
| 4203 | bool varargs) | |
| c906108c | 4204 | { |
| 82ceee50 PA |
4205 | /* add 1 for the length-match rank. */ |
| 4206 | badness_vector bv; | |
| 4207 | bv.reserve (1 + args.size ()); | |
| c906108c SS |
4208 | |
| 4209 | /* First compare the lengths of the supplied lists. | |
| 7ba81444 | 4210 | If there is a mismatch, set it to a high value. */ |
| c5aa993b | 4211 | |
| c906108c | 4212 | /* pai/1997-06-03 FIXME: when we have debug info about default |
| 7ba81444 MS |
4213 | arguments and ellipsis parameter lists, we should consider those |
| 4214 | and rank the length-match more finely. */ | |
| c906108c | 4215 | |
| 1d2f86b6 HD |
4216 | bv.push_back ((args.size () != parms.size () |
| 4217 | && (! varargs || args.size () < parms.size ())) | |
| 82ceee50 PA |
4218 | ? LENGTH_MISMATCH_BADNESS |
| 4219 | : EXACT_MATCH_BADNESS); | |
| c906108c | 4220 | |
| 0963b4bd | 4221 | /* Now rank all the parameters of the candidate function. */ |
| 82ceee50 PA |
4222 | size_t min_len = std::min (parms.size (), args.size ()); |
| 4223 | ||
| 4224 | for (size_t i = 0; i < min_len; i++) | |
| d0c97917 | 4225 | bv.push_back (rank_one_type (parms[i], args[i]->type (), |
| 82ceee50 | 4226 | args[i])); |
| c906108c | 4227 | |
| 0963b4bd | 4228 | /* If more arguments than parameters, add dummy entries. */ |
| 82ceee50 | 4229 | for (size_t i = min_len; i < args.size (); i++) |
| 1d2f86b6 | 4230 | bv.push_back (varargs ? VARARG_BADNESS : TOO_FEW_PARAMS_BADNESS); |
| c906108c SS |
4231 | |
| 4232 | return bv; | |
| 4233 | } | |
| 4234 | ||
| 973ccf8b DJ |
4235 | /* Compare the names of two integer types, assuming that any sign |
| 4236 | qualifiers have been checked already. We do it this way because | |
| 4237 | there may be an "int" in the name of one of the types. */ | |
| 4238 | ||
| 4239 | static int | |
| 4240 | integer_types_same_name_p (const char *first, const char *second) | |
| 4241 | { | |
| 4242 | int first_p, second_p; | |
| 4243 | ||
| 7ba81444 MS |
4244 | /* If both are shorts, return 1; if neither is a short, keep |
| 4245 | checking. */ | |
| 973ccf8b DJ |
4246 | first_p = (strstr (first, "short") != NULL); |
| 4247 | second_p = (strstr (second, "short") != NULL); | |
| 4248 | if (first_p && second_p) | |
| 4249 | return 1; | |
| 4250 | if (first_p || second_p) | |
| 4251 | return 0; | |
| 4252 | ||
| 4253 | /* Likewise for long. */ | |
| 4254 | first_p = (strstr (first, "long") != NULL); | |
| 4255 | second_p = (strstr (second, "long") != NULL); | |
| 4256 | if (first_p && second_p) | |
| 4257 | return 1; | |
| 4258 | if (first_p || second_p) | |
| 4259 | return 0; | |
| 4260 | ||
| 4261 | /* Likewise for char. */ | |
| 4262 | first_p = (strstr (first, "char") != NULL); | |
| 4263 | second_p = (strstr (second, "char") != NULL); | |
| 4264 | if (first_p && second_p) | |
| 4265 | return 1; | |
| 4266 | if (first_p || second_p) | |
| 4267 | return 0; | |
| 4268 | ||
| 4269 | /* They must both be ints. */ | |
| 4270 | return 1; | |
| 4271 | } | |
| 4272 | ||
| 894882e3 TT |
4273 | /* Compares type A to type B. Returns true if they represent the same |
| 4274 | type, false otherwise. */ | |
| 7062b0a0 | 4275 | |
| 894882e3 | 4276 | bool |
| 7062b0a0 SW |
4277 | types_equal (struct type *a, struct type *b) |
| 4278 | { | |
| 4279 | /* Identical type pointers. */ | |
| 4280 | /* However, this still doesn't catch all cases of same type for b | |
| 4281 | and a. The reason is that builtin types are different from | |
| 4282 | the same ones constructed from the object. */ | |
| 4283 | if (a == b) | |
| 894882e3 | 4284 | return true; |
| 7062b0a0 SW |
4285 | |
| 4286 | /* Resolve typedefs */ | |
| 78134374 | 4287 | if (a->code () == TYPE_CODE_TYPEDEF) |
| 7062b0a0 | 4288 | a = check_typedef (a); |
| 78134374 | 4289 | if (b->code () == TYPE_CODE_TYPEDEF) |
| 7062b0a0 SW |
4290 | b = check_typedef (b); |
| 4291 | ||
| 5e18990f AB |
4292 | /* Check if identical after resolving typedefs. */ |
| 4293 | if (a == b) | |
| 4294 | return true; | |
| 4295 | ||
| 7062b0a0 SW |
4296 | /* If after resolving typedefs a and b are not of the same type |
| 4297 | code then they are not equal. */ | |
| 78134374 | 4298 | if (a->code () != b->code ()) |
| 894882e3 | 4299 | return false; |
| 7062b0a0 SW |
4300 | |
| 4301 | /* If a and b are both pointers types or both reference types then | |
| 4302 | they are equal of the same type iff the objects they refer to are | |
| 4303 | of the same type. */ | |
| 78134374 SM |
4304 | if (a->code () == TYPE_CODE_PTR |
| 4305 | || a->code () == TYPE_CODE_REF) | |
| 27710edb SM |
4306 | return types_equal (a->target_type (), |
| 4307 | b->target_type ()); | |
| 7062b0a0 | 4308 | |
| 0963b4bd | 4309 | /* Well, damnit, if the names are exactly the same, I'll say they |
| 7062b0a0 SW |
4310 | are exactly the same. This happens when we generate method |
| 4311 | stubs. The types won't point to the same address, but they | |
| 0963b4bd | 4312 | really are the same. */ |
| 7062b0a0 | 4313 | |
| 7d93a1e0 SM |
4314 | if (a->name () && b->name () |
| 4315 | && strcmp (a->name (), b->name ()) == 0) | |
| 894882e3 | 4316 | return true; |
| 7062b0a0 | 4317 | |
| 9ce98649 TT |
4318 | /* Two function types are equal if their argument and return types |
| 4319 | are equal. */ | |
| 78134374 | 4320 | if (a->code () == TYPE_CODE_FUNC) |
| 9ce98649 TT |
4321 | { |
| 4322 | int i; | |
| 4323 | ||
| 1f704f76 | 4324 | if (a->num_fields () != b->num_fields ()) |
| 894882e3 | 4325 | return false; |
| a5cbe675 | 4326 | |
| 27710edb | 4327 | if (!types_equal (a->target_type (), b->target_type ())) |
| 894882e3 | 4328 | return false; |
| 9ce98649 | 4329 | |
| 1f704f76 | 4330 | for (i = 0; i < a->num_fields (); ++i) |
| 940da03e | 4331 | if (!types_equal (a->field (i).type (), b->field (i).type ())) |
| 894882e3 | 4332 | return false; |
| 9ce98649 | 4333 | |
| 894882e3 | 4334 | return true; |
| 9ce98649 TT |
4335 | } |
| 4336 | ||
| 105470cd HD |
4337 | /* Two array types are the same if they have the same element types |
| 4338 | and array bounds. */ | |
| 4339 | if (a->code () == TYPE_CODE_ARRAY) | |
| 4340 | { | |
| 4341 | if (!types_equal (a->target_type (), b->target_type ())) | |
| 4342 | return false; | |
| 4343 | ||
| 4344 | if (*a->bounds () != *b->bounds ()) | |
| 4345 | return false; | |
| 4346 | ||
| 4347 | return true; | |
| 4348 | } | |
| 4349 | ||
| 894882e3 | 4350 | return false; |
| 7062b0a0 | 4351 | } |
| ca092b61 DE |
4352 | \f |
| 4353 | /* Deep comparison of types. */ | |
| 4354 | ||
| 4355 | /* An entry in the type-equality bcache. */ | |
| 4356 | ||
| 894882e3 | 4357 | struct type_equality_entry |
| ca092b61 | 4358 | { |
| 894882e3 TT |
4359 | type_equality_entry (struct type *t1, struct type *t2) |
| 4360 | : type1 (t1), | |
| 4361 | type2 (t2) | |
| 4362 | { | |
| 4363 | } | |
| ca092b61 | 4364 | |
| 894882e3 TT |
4365 | struct type *type1, *type2; |
| 4366 | }; | |
| ca092b61 | 4367 | |
| 894882e3 TT |
4368 | /* A helper function to compare two strings. Returns true if they are |
| 4369 | the same, false otherwise. Handles NULLs properly. */ | |
| ca092b61 | 4370 | |
| 894882e3 | 4371 | static bool |
| ca092b61 DE |
4372 | compare_maybe_null_strings (const char *s, const char *t) |
| 4373 | { | |
| 894882e3 TT |
4374 | if (s == NULL || t == NULL) |
| 4375 | return s == t; | |
| ca092b61 DE |
4376 | return strcmp (s, t) == 0; |
| 4377 | } | |
| 4378 | ||
| 4379 | /* A helper function for check_types_worklist that checks two types for | |
| 894882e3 TT |
4380 | "deep" equality. Returns true if the types are considered the |
| 4381 | same, false otherwise. */ | |
| ca092b61 | 4382 | |
| 894882e3 | 4383 | static bool |
| ca092b61 | 4384 | check_types_equal (struct type *type1, struct type *type2, |
| 894882e3 | 4385 | std::vector<type_equality_entry> *worklist) |
| ca092b61 | 4386 | { |
| f168693b SM |
4387 | type1 = check_typedef (type1); |
| 4388 | type2 = check_typedef (type2); | |
| ca092b61 DE |
4389 | |
| 4390 | if (type1 == type2) | |
| 894882e3 | 4391 | return true; |
| ca092b61 | 4392 | |
| 78134374 | 4393 | if (type1->code () != type2->code () |
| df86565b | 4394 | || type1->length () != type2->length () |
| c6d940a9 | 4395 | || type1->is_unsigned () != type2->is_unsigned () |
| 20ce4123 | 4396 | || type1->has_no_signedness () != type2->has_no_signedness () |
| 04f5bab2 | 4397 | || type1->endianity_is_not_default () != type2->endianity_is_not_default () |
| a409645d | 4398 | || type1->has_varargs () != type2->has_varargs () |
| bd63c870 | 4399 | || type1->is_vector () != type2->is_vector () |
| ca092b61 | 4400 | || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2) |
| 10242f36 | 4401 | || type1->instance_flags () != type2->instance_flags () |
| 1f704f76 | 4402 | || type1->num_fields () != type2->num_fields ()) |
| 894882e3 | 4403 | return false; |
| ca092b61 | 4404 | |
| 7d93a1e0 | 4405 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
| 894882e3 | 4406 | return false; |
| 7d93a1e0 | 4407 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
| 894882e3 | 4408 | return false; |
| ca092b61 | 4409 | |
| 78134374 | 4410 | if (type1->code () == TYPE_CODE_RANGE) |
| ca092b61 | 4411 | { |
| 599088e3 | 4412 | if (*type1->bounds () != *type2->bounds ()) |
| 894882e3 | 4413 | return false; |
| ca092b61 DE |
4414 | } |
| 4415 | else | |
| 4416 | { | |
| 4417 | int i; | |
| 4418 | ||
| 1f704f76 | 4419 | for (i = 0; i < type1->num_fields (); ++i) |
| ca092b61 | 4420 | { |
| ceacbf6e SM |
4421 | const struct field *field1 = &type1->field (i); |
| 4422 | const struct field *field2 = &type2->field (i); | |
| ca092b61 | 4423 | |
| 6c0f7493 | 4424 | if (field1->is_artificial () != field2->is_artificial () |
| 3be8c919 | 4425 | || field1->bitsize () != field2->bitsize () |
| 8d939e8e | 4426 | || field1->loc_kind () != field2->loc_kind ()) |
| 894882e3 | 4427 | return false; |
| 33d16dd9 | 4428 | if (!compare_maybe_null_strings (field1->name (), field2->name ())) |
| 894882e3 | 4429 | return false; |
| 8d939e8e | 4430 | switch (field1->loc_kind ()) |
| ca092b61 DE |
4431 | { |
| 4432 | case FIELD_LOC_KIND_BITPOS: | |
| 3a543e21 | 4433 | if (field1->loc_bitpos () != field2->loc_bitpos ()) |
| 894882e3 | 4434 | return false; |
| ca092b61 DE |
4435 | break; |
| 4436 | case FIELD_LOC_KIND_ENUMVAL: | |
| 5d2038e3 | 4437 | if (field1->loc_enumval () != field2->loc_enumval ()) |
| 894882e3 | 4438 | return false; |
| fa639f55 HD |
4439 | /* Don't compare types of enum fields, because they don't |
| 4440 | have a type. */ | |
| 4441 | continue; | |
| ca092b61 | 4442 | case FIELD_LOC_KIND_PHYSADDR: |
| 31a1516a | 4443 | if (field1->loc_physaddr () != field2->loc_physaddr ()) |
| 894882e3 | 4444 | return false; |
| ca092b61 DE |
4445 | break; |
| 4446 | case FIELD_LOC_KIND_PHYSNAME: | |
| 16654a59 SM |
4447 | if (!compare_maybe_null_strings (field1->loc_physname (), |
| 4448 | field2->loc_physname ())) | |
| 894882e3 | 4449 | return false; |
| ca092b61 | 4450 | break; |
| 692252c4 TT |
4451 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
| 4452 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
| ca092b61 DE |
4453 | { |
| 4454 | struct dwarf2_locexpr_baton *block1, *block2; | |
| 4455 | ||
| d8557c3d SM |
4456 | block1 = field1->loc_dwarf_block (); |
| 4457 | block2 = field2->loc_dwarf_block (); | |
| ca092b61 DE |
4458 | if (block1->per_cu != block2->per_cu |
| 4459 | || block1->size != block2->size | |
| 4460 | || memcmp (block1->data, block2->data, block1->size) != 0) | |
| 894882e3 | 4461 | return false; |
| ca092b61 DE |
4462 | } |
| 4463 | break; | |
| 4464 | default: | |
| f34652de | 4465 | internal_error (_("Unsupported field kind " |
| ca092b61 | 4466 | "%d by check_types_equal"), |
| 8d939e8e | 4467 | field1->loc_kind ()); |
| ca092b61 DE |
4468 | } |
| 4469 | ||
| b6cdac4b | 4470 | worklist->emplace_back (field1->type (), field2->type ()); |
| ca092b61 DE |
4471 | } |
| 4472 | } | |
| 4473 | ||
| 27710edb | 4474 | if (type1->target_type () != NULL) |
| ca092b61 | 4475 | { |
| 27710edb | 4476 | if (type2->target_type () == NULL) |
| 894882e3 | 4477 | return false; |
| ca092b61 | 4478 | |
| 27710edb SM |
4479 | worklist->emplace_back (type1->target_type (), |
| 4480 | type2->target_type ()); | |
| ca092b61 | 4481 | } |
| 27710edb | 4482 | else if (type2->target_type () != NULL) |
| 894882e3 | 4483 | return false; |
| ca092b61 | 4484 | |
| 894882e3 | 4485 | return true; |
| ca092b61 DE |
4486 | } |
| 4487 | ||
| 894882e3 TT |
4488 | /* Check types on a worklist for equality. Returns false if any pair |
| 4489 | is not equal, true if they are all considered equal. */ | |
| ca092b61 | 4490 | |
| 894882e3 TT |
4491 | static bool |
| 4492 | check_types_worklist (std::vector<type_equality_entry> *worklist, | |
| dfb65191 | 4493 | gdb::bcache *cache) |
| ca092b61 | 4494 | { |
| 894882e3 | 4495 | while (!worklist->empty ()) |
| ca092b61 | 4496 | { |
| ef5e5b0b | 4497 | bool added; |
| ca092b61 | 4498 | |
| 894882e3 TT |
4499 | struct type_equality_entry entry = std::move (worklist->back ()); |
| 4500 | worklist->pop_back (); | |
| ca092b61 DE |
4501 | |
| 4502 | /* If the type pair has already been visited, we know it is | |
| 4503 | ok. */ | |
| 7149dfe8 | 4504 | cache->insert (entry, &added); |
| ca092b61 DE |
4505 | if (!added) |
| 4506 | continue; | |
| 4507 | ||
| 894882e3 TT |
4508 | if (!check_types_equal (entry.type1, entry.type2, worklist)) |
| 4509 | return false; | |
| ca092b61 | 4510 | } |
| 7062b0a0 | 4511 | |
| 894882e3 | 4512 | return true; |
| ca092b61 DE |
4513 | } |
| 4514 | ||
| 894882e3 TT |
4515 | /* Return true if types TYPE1 and TYPE2 are equal, as determined by a |
| 4516 | "deep comparison". Otherwise return false. */ | |
| ca092b61 | 4517 | |
| 894882e3 | 4518 | bool |
| ca092b61 DE |
4519 | types_deeply_equal (struct type *type1, struct type *type2) |
| 4520 | { | |
| 894882e3 | 4521 | std::vector<type_equality_entry> worklist; |
| ca092b61 DE |
4522 | |
| 4523 | gdb_assert (type1 != NULL && type2 != NULL); | |
| 4524 | ||
| 4525 | /* Early exit for the simple case. */ | |
| 4526 | if (type1 == type2) | |
| 894882e3 | 4527 | return true; |
| ca092b61 | 4528 | |
| 89806626 | 4529 | gdb::bcache cache; |
| 894882e3 | 4530 | worklist.emplace_back (type1, type2); |
| 25629dfd | 4531 | return check_types_worklist (&worklist, &cache); |
| ca092b61 | 4532 | } |
| 3f2f83dd KB |
4533 | |
| 4534 | /* Allocated status of type TYPE. Return zero if type TYPE is allocated. | |
| 4535 | Otherwise return one. */ | |
| 4536 | ||
| 4537 | int | |
| 4538 | type_not_allocated (const struct type *type) | |
| 4539 | { | |
| caba95fa | 4540 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_ALLOCATED); |
| 3f2f83dd | 4541 | |
| 9c0fb734 | 4542 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
| 3f2f83dd KB |
4543 | } |
| 4544 | ||
| 4545 | /* Associated status of type TYPE. Return zero if type TYPE is associated. | |
| 4546 | Otherwise return one. */ | |
| 4547 | ||
| 4548 | int | |
| 4549 | type_not_associated (const struct type *type) | |
| 4550 | { | |
| caba95fa | 4551 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_ASSOCIATED); |
| 3f2f83dd | 4552 | |
| 9c0fb734 | 4553 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
| 3f2f83dd | 4554 | } |
| 9293fc63 SM |
4555 | |
| 4556 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */ | |
| 4557 | ||
| 4558 | static struct rank | |
| 4559 | rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value) | |
| 4560 | { | |
| 4561 | struct rank rank = {0,0}; | |
| 4562 | ||
| 78134374 | 4563 | switch (arg->code ()) |
| 9293fc63 SM |
4564 | { |
| 4565 | case TYPE_CODE_PTR: | |
| 4566 | ||
| 4567 | /* Allowed pointer conversions are: | |
| 4568 | (a) pointer to void-pointer conversion. */ | |
| 27710edb | 4569 | if (parm->target_type ()->code () == TYPE_CODE_VOID) |
| 9293fc63 SM |
4570 | return VOID_PTR_CONVERSION_BADNESS; |
| 4571 | ||
| 4572 | /* (b) pointer to ancestor-pointer conversion. */ | |
| 27710edb SM |
4573 | rank.subrank = distance_to_ancestor (parm->target_type (), |
| 4574 | arg->target_type (), | |
| 9293fc63 SM |
4575 | 0); |
| 4576 | if (rank.subrank >= 0) | |
| 4577 | return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank); | |
| 4578 | ||
| 4579 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4580 | case TYPE_CODE_ARRAY: | |
| 4581 | { | |
| 27710edb SM |
4582 | struct type *t1 = parm->target_type (); |
| 4583 | struct type *t2 = arg->target_type (); | |
| 9293fc63 SM |
4584 | |
| 4585 | if (types_equal (t1, t2)) | |
| 4586 | { | |
| 4587 | /* Make sure they are CV equal. */ | |
| 4588 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
| 4589 | rank.subrank |= CV_CONVERSION_CONST; | |
| 4590 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
| 4591 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
| 4592 | if (rank.subrank != 0) | |
| 4593 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
| 4594 | return EXACT_MATCH_BADNESS; | |
| 4595 | } | |
| 4596 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4597 | } | |
| 4598 | case TYPE_CODE_FUNC: | |
| 27710edb | 4599 | return rank_one_type (parm->target_type (), arg, NULL); |
| 9293fc63 | 4600 | case TYPE_CODE_INT: |
| d0c97917 | 4601 | if (value != NULL && value->type ()->code () == TYPE_CODE_INT) |
| 9293fc63 SM |
4602 | { |
| 4603 | if (value_as_long (value) == 0) | |
| 4604 | { | |
| 4605 | /* Null pointer conversion: allow it to be cast to a pointer. | |
| 4606 | [4.10.1 of C++ standard draft n3290] */ | |
| 4607 | return NULL_POINTER_CONVERSION_BADNESS; | |
| 4608 | } | |
| 4609 | else | |
| 4610 | { | |
| 4611 | /* If type checking is disabled, allow the conversion. */ | |
| 4612 | if (!strict_type_checking) | |
| 4613 | return NS_INTEGER_POINTER_CONVERSION_BADNESS; | |
| 4614 | } | |
| 4615 | } | |
| d182e398 | 4616 | [[fallthrough]]; |
| 9293fc63 SM |
4617 | case TYPE_CODE_ENUM: |
| 4618 | case TYPE_CODE_FLAGS: | |
| 4619 | case TYPE_CODE_CHAR: | |
| 4620 | case TYPE_CODE_RANGE: | |
| 4621 | case TYPE_CODE_BOOL: | |
| 4622 | default: | |
| 4623 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4624 | } | |
| 4625 | } | |
| 4626 | ||
| b9f4512f SM |
4627 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */ |
| 4628 | ||
| 4629 | static struct rank | |
| 4630 | rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value) | |
| 4631 | { | |
| 78134374 | 4632 | switch (arg->code ()) |
| b9f4512f SM |
4633 | { |
| 4634 | case TYPE_CODE_PTR: | |
| 4635 | case TYPE_CODE_ARRAY: | |
| 27710edb SM |
4636 | return rank_one_type (parm->target_type (), |
| 4637 | arg->target_type (), NULL); | |
| b9f4512f SM |
4638 | default: |
| 4639 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4640 | } | |
| 4641 | } | |
| 4642 | ||
| f1f832d6 SM |
4643 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */ |
| 4644 | ||
| 4645 | static struct rank | |
| 4646 | rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value) | |
| 4647 | { | |
| 78134374 | 4648 | switch (arg->code ()) |
| f1f832d6 SM |
4649 | { |
| 4650 | case TYPE_CODE_PTR: /* funcptr -> func */ | |
| 27710edb | 4651 | return rank_one_type (parm, arg->target_type (), NULL); |
| f1f832d6 SM |
4652 | default: |
| 4653 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4654 | } | |
| 4655 | } | |
| 4656 | ||
| 34910087 SM |
4657 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */ |
| 4658 | ||
| 4659 | static struct rank | |
| 4660 | rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value) | |
| 4661 | { | |
| 78134374 | 4662 | switch (arg->code ()) |
| 34910087 SM |
4663 | { |
| 4664 | case TYPE_CODE_INT: | |
| df86565b | 4665 | if (arg->length () == parm->length ()) |
| 34910087 SM |
4666 | { |
| 4667 | /* Deal with signed, unsigned, and plain chars and | |
| 4668 | signed and unsigned ints. */ | |
| 20ce4123 | 4669 | if (parm->has_no_signedness ()) |
| 34910087 SM |
4670 | { |
| 4671 | /* This case only for character types. */ | |
| 20ce4123 | 4672 | if (arg->has_no_signedness ()) |
| 34910087 SM |
4673 | return EXACT_MATCH_BADNESS; /* plain char -> plain char */ |
| 4674 | else /* signed/unsigned char -> plain char */ | |
| 4675 | return INTEGER_CONVERSION_BADNESS; | |
| 4676 | } | |
| c6d940a9 | 4677 | else if (parm->is_unsigned ()) |
| 34910087 | 4678 | { |
| c6d940a9 | 4679 | if (arg->is_unsigned ()) |
| 34910087 SM |
4680 | { |
| 4681 | /* unsigned int -> unsigned int, or | |
| 4682 | unsigned long -> unsigned long */ | |
| 7d93a1e0 SM |
4683 | if (integer_types_same_name_p (parm->name (), |
| 4684 | arg->name ())) | |
| 34910087 | 4685 | return EXACT_MATCH_BADNESS; |
| 7d93a1e0 | 4686 | else if (integer_types_same_name_p (arg->name (), |
| 34910087 | 4687 | "int") |
| 7d93a1e0 | 4688 | && integer_types_same_name_p (parm->name (), |
| 34910087 SM |
4689 | "long")) |
| 4690 | /* unsigned int -> unsigned long */ | |
| 4691 | return INTEGER_PROMOTION_BADNESS; | |
| 4692 | else | |
| 4693 | /* unsigned long -> unsigned int */ | |
| 4694 | return INTEGER_CONVERSION_BADNESS; | |
| 4695 | } | |
| 4696 | else | |
| 4697 | { | |
| 7d93a1e0 | 4698 | if (integer_types_same_name_p (arg->name (), |
| 34910087 | 4699 | "long") |
| 7d93a1e0 | 4700 | && integer_types_same_name_p (parm->name (), |
| 34910087 SM |
4701 | "int")) |
| 4702 | /* signed long -> unsigned int */ | |
| 4703 | return INTEGER_CONVERSION_BADNESS; | |
| 4704 | else | |
| 4705 | /* signed int/long -> unsigned int/long */ | |
| 4706 | return INTEGER_CONVERSION_BADNESS; | |
| 4707 | } | |
| 4708 | } | |
| 20ce4123 | 4709 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
| 34910087 | 4710 | { |
| 7d93a1e0 SM |
4711 | if (integer_types_same_name_p (parm->name (), |
| 4712 | arg->name ())) | |
| 34910087 | 4713 | return EXACT_MATCH_BADNESS; |
| 7d93a1e0 | 4714 | else if (integer_types_same_name_p (arg->name (), |
| 34910087 | 4715 | "int") |
| 7d93a1e0 | 4716 | && integer_types_same_name_p (parm->name (), |
| 34910087 SM |
4717 | "long")) |
| 4718 | return INTEGER_PROMOTION_BADNESS; | |
| 4719 | else | |
| 4720 | return INTEGER_CONVERSION_BADNESS; | |
| 4721 | } | |
| 4722 | else | |
| 4723 | return INTEGER_CONVERSION_BADNESS; | |
| 4724 | } | |
| df86565b | 4725 | else if (arg->length () < parm->length ()) |
| 34910087 SM |
4726 | return INTEGER_PROMOTION_BADNESS; |
| 4727 | else | |
| 4728 | return INTEGER_CONVERSION_BADNESS; | |
| 4729 | case TYPE_CODE_ENUM: | |
| 4730 | case TYPE_CODE_FLAGS: | |
| 4731 | case TYPE_CODE_CHAR: | |
| 4732 | case TYPE_CODE_RANGE: | |
| 4733 | case TYPE_CODE_BOOL: | |
| 3bc440a2 | 4734 | if (arg->is_declared_class ()) |
| 34910087 SM |
4735 | return INCOMPATIBLE_TYPE_BADNESS; |
| 4736 | return INTEGER_PROMOTION_BADNESS; | |
| 4737 | case TYPE_CODE_FLT: | |
| 4738 | return INT_FLOAT_CONVERSION_BADNESS; | |
| 4739 | case TYPE_CODE_PTR: | |
| 4740 | return NS_POINTER_CONVERSION_BADNESS; | |
| 4741 | default: | |
| 4742 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4743 | } | |
| 4744 | } | |
| 4745 | ||
| 793cd1d2 SM |
4746 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */ |
| 4747 | ||
| 4748 | static struct rank | |
| 4749 | rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value) | |
| 4750 | { | |
| 78134374 | 4751 | switch (arg->code ()) |
| 793cd1d2 SM |
4752 | { |
| 4753 | case TYPE_CODE_INT: | |
| 4754 | case TYPE_CODE_CHAR: | |
| 4755 | case TYPE_CODE_RANGE: | |
| 4756 | case TYPE_CODE_BOOL: | |
| 4757 | case TYPE_CODE_ENUM: | |
| 3bc440a2 | 4758 | if (parm->is_declared_class () || arg->is_declared_class ()) |
| 793cd1d2 SM |
4759 | return INCOMPATIBLE_TYPE_BADNESS; |
| 4760 | return INTEGER_CONVERSION_BADNESS; | |
| 4761 | case TYPE_CODE_FLT: | |
| 4762 | return INT_FLOAT_CONVERSION_BADNESS; | |
| 4763 | default: | |
| 4764 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4765 | } | |
| 4766 | } | |
| 4767 | ||
| 41ea4728 SM |
4768 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */ |
| 4769 | ||
| 4770 | static struct rank | |
| 4771 | rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value) | |
| 4772 | { | |
| 78134374 | 4773 | switch (arg->code ()) |
| 41ea4728 SM |
4774 | { |
| 4775 | case TYPE_CODE_RANGE: | |
| 4776 | case TYPE_CODE_BOOL: | |
| 4777 | case TYPE_CODE_ENUM: | |
| 3bc440a2 | 4778 | if (arg->is_declared_class ()) |
| 41ea4728 SM |
4779 | return INCOMPATIBLE_TYPE_BADNESS; |
| 4780 | return INTEGER_CONVERSION_BADNESS; | |
| 4781 | case TYPE_CODE_FLT: | |
| 4782 | return INT_FLOAT_CONVERSION_BADNESS; | |
| 4783 | case TYPE_CODE_INT: | |
| df86565b | 4784 | if (arg->length () > parm->length ()) |
| 41ea4728 | 4785 | return INTEGER_CONVERSION_BADNESS; |
| df86565b | 4786 | else if (arg->length () < parm->length ()) |
| 41ea4728 | 4787 | return INTEGER_PROMOTION_BADNESS; |
| d182e398 | 4788 | [[fallthrough]]; |
| 41ea4728 SM |
4789 | case TYPE_CODE_CHAR: |
| 4790 | /* Deal with signed, unsigned, and plain chars for C++ and | |
| 4791 | with int cases falling through from previous case. */ | |
| 20ce4123 | 4792 | if (parm->has_no_signedness ()) |
| 41ea4728 | 4793 | { |
| 20ce4123 | 4794 | if (arg->has_no_signedness ()) |
| 41ea4728 SM |
4795 | return EXACT_MATCH_BADNESS; |
| 4796 | else | |
| 4797 | return INTEGER_CONVERSION_BADNESS; | |
| 4798 | } | |
| c6d940a9 | 4799 | else if (parm->is_unsigned ()) |
| 41ea4728 | 4800 | { |
| c6d940a9 | 4801 | if (arg->is_unsigned ()) |
| 41ea4728 SM |
4802 | return EXACT_MATCH_BADNESS; |
| 4803 | else | |
| 4804 | return INTEGER_PROMOTION_BADNESS; | |
| 4805 | } | |
| 20ce4123 | 4806 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
| 41ea4728 SM |
4807 | return EXACT_MATCH_BADNESS; |
| 4808 | else | |
| 4809 | return INTEGER_CONVERSION_BADNESS; | |
| 4810 | default: | |
| 4811 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4812 | } | |
| 4813 | } | |
| 4814 | ||
| 0dd322dc SM |
4815 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */ |
| 4816 | ||
| 4817 | static struct rank | |
| 4818 | rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value) | |
| 4819 | { | |
| 78134374 | 4820 | switch (arg->code ()) |
| 0dd322dc SM |
4821 | { |
| 4822 | case TYPE_CODE_INT: | |
| 4823 | case TYPE_CODE_CHAR: | |
| 4824 | case TYPE_CODE_RANGE: | |
| 4825 | case TYPE_CODE_BOOL: | |
| 4826 | case TYPE_CODE_ENUM: | |
| 4827 | return INTEGER_CONVERSION_BADNESS; | |
| 4828 | case TYPE_CODE_FLT: | |
| 4829 | return INT_FLOAT_CONVERSION_BADNESS; | |
| 4830 | default: | |
| 4831 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4832 | } | |
| 4833 | } | |
| 4834 | ||
| 2c509035 SM |
4835 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */ |
| 4836 | ||
| 4837 | static struct rank | |
| 4838 | rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value) | |
| 4839 | { | |
| 78134374 | 4840 | switch (arg->code ()) |
| 2c509035 SM |
4841 | { |
| 4842 | /* n3290 draft, section 4.12.1 (conv.bool): | |
| 4843 | ||
| 4844 | "A prvalue of arithmetic, unscoped enumeration, pointer, or | |
| 4845 | pointer to member type can be converted to a prvalue of type | |
| 4846 | bool. A zero value, null pointer value, or null member pointer | |
| 4847 | value is converted to false; any other value is converted to | |
| 4848 | true. A prvalue of type std::nullptr_t can be converted to a | |
| 4849 | prvalue of type bool; the resulting value is false." */ | |
| 4850 | case TYPE_CODE_INT: | |
| 4851 | case TYPE_CODE_CHAR: | |
| 4852 | case TYPE_CODE_ENUM: | |
| 4853 | case TYPE_CODE_FLT: | |
| 4854 | case TYPE_CODE_MEMBERPTR: | |
| 4855 | case TYPE_CODE_PTR: | |
| 4856 | return BOOL_CONVERSION_BADNESS; | |
| 4857 | case TYPE_CODE_RANGE: | |
| 4858 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4859 | case TYPE_CODE_BOOL: | |
| 4860 | return EXACT_MATCH_BADNESS; | |
| 4861 | default: | |
| 4862 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4863 | } | |
| 4864 | } | |
| 4865 | ||
| 7f17b20d SM |
4866 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */ |
| 4867 | ||
| 4868 | static struct rank | |
| 4869 | rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value) | |
| 4870 | { | |
| 78134374 | 4871 | switch (arg->code ()) |
| 7f17b20d SM |
4872 | { |
| 4873 | case TYPE_CODE_FLT: | |
| df86565b | 4874 | if (arg->length () < parm->length ()) |
| 7f17b20d | 4875 | return FLOAT_PROMOTION_BADNESS; |
| df86565b | 4876 | else if (arg->length () == parm->length ()) |
| 7f17b20d SM |
4877 | return EXACT_MATCH_BADNESS; |
| 4878 | else | |
| 4879 | return FLOAT_CONVERSION_BADNESS; | |
| 4880 | case TYPE_CODE_INT: | |
| 4881 | case TYPE_CODE_BOOL: | |
| 4882 | case TYPE_CODE_ENUM: | |
| 4883 | case TYPE_CODE_RANGE: | |
| 4884 | case TYPE_CODE_CHAR: | |
| 4885 | return INT_FLOAT_CONVERSION_BADNESS; | |
| 4886 | default: | |
| 4887 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4888 | } | |
| 4889 | } | |
| 4890 | ||
| 2598a94b SM |
4891 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */ |
| 4892 | ||
| 4893 | static struct rank | |
| 4894 | rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value) | |
| 4895 | { | |
| 78134374 | 4896 | switch (arg->code ()) |
| 2598a94b SM |
4897 | { /* Strictly not needed for C++, but... */ |
| 4898 | case TYPE_CODE_FLT: | |
| 4899 | return FLOAT_PROMOTION_BADNESS; | |
| 4900 | case TYPE_CODE_COMPLEX: | |
| 4901 | return EXACT_MATCH_BADNESS; | |
| 4902 | default: | |
| 4903 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4904 | } | |
| 4905 | } | |
| 4906 | ||
| 595f96a9 SM |
4907 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */ |
| 4908 | ||
| 4909 | static struct rank | |
| 4910 | rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value) | |
| 4911 | { | |
| 4912 | struct rank rank = {0, 0}; | |
| 4913 | ||
| 78134374 | 4914 | switch (arg->code ()) |
| 595f96a9 SM |
4915 | { |
| 4916 | case TYPE_CODE_STRUCT: | |
| 4917 | /* Check for derivation */ | |
| 4918 | rank.subrank = distance_to_ancestor (parm, arg, 0); | |
| 4919 | if (rank.subrank >= 0) | |
| 4920 | return sum_ranks (BASE_CONVERSION_BADNESS, rank); | |
| d182e398 | 4921 | [[fallthrough]]; |
| 595f96a9 SM |
4922 | default: |
| 4923 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4924 | } | |
| 4925 | } | |
| 4926 | ||
| f09ce22d SM |
4927 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */ |
| 4928 | ||
| 4929 | static struct rank | |
| 4930 | rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value) | |
| 4931 | { | |
| 78134374 | 4932 | switch (arg->code ()) |
| f09ce22d SM |
4933 | { |
| 4934 | /* Not in C++ */ | |
| 4935 | case TYPE_CODE_SET: | |
| 940da03e SM |
4936 | return rank_one_type (parm->field (0).type (), |
| 4937 | arg->field (0).type (), NULL); | |
| f09ce22d SM |
4938 | default: |
| 4939 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4940 | } | |
| 4941 | } | |
| 4942 | ||
| c906108c SS |
4943 | /* Compare one type (PARM) for compatibility with another (ARG). |
| 4944 | * PARM is intended to be the parameter type of a function; and | |
| 4945 | * ARG is the supplied argument's type. This function tests if | |
| 4946 | * the latter can be converted to the former. | |
| da096638 | 4947 | * VALUE is the argument's value or NULL if none (or called recursively) |
| c906108c SS |
4948 | * |
| 4949 | * Return 0 if they are identical types; | |
| 4950 | * Otherwise, return an integer which corresponds to how compatible | |
| 7ba81444 | 4951 | * PARM is to ARG. The higher the return value, the worse the match. |
| ac03c8d8 TT |
4952 | * Generally the "bad" conversions are all uniformly assigned |
| 4953 | * INVALID_CONVERSION. */ | |
| c906108c | 4954 | |
| 6403aeea | 4955 | struct rank |
| da096638 | 4956 | rank_one_type (struct type *parm, struct type *arg, struct value *value) |
| c906108c | 4957 | { |
| a9d5ef47 | 4958 | struct rank rank = {0,0}; |
| 7062b0a0 | 4959 | |
| c906108c | 4960 | /* Resolve typedefs */ |
| 78134374 | 4961 | if (parm->code () == TYPE_CODE_TYPEDEF) |
| c906108c | 4962 | parm = check_typedef (parm); |
| 78134374 | 4963 | if (arg->code () == TYPE_CODE_TYPEDEF) |
| c906108c SS |
4964 | arg = check_typedef (arg); |
| 4965 | ||
| e15c3eb4 | 4966 | if (TYPE_IS_REFERENCE (parm) && value != NULL) |
| 15c0a2a9 | 4967 | { |
| 736355f2 | 4968 | if (value->lval () == not_lval) |
| e15c3eb4 KS |
4969 | { |
| 4970 | /* Rvalues should preferably bind to rvalue references or const | |
| 4971 | lvalue references. */ | |
| 78134374 | 4972 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
| e15c3eb4 | 4973 | rank.subrank = REFERENCE_CONVERSION_RVALUE; |
| 27710edb | 4974 | else if (TYPE_CONST (parm->target_type ())) |
| e15c3eb4 KS |
4975 | rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE; |
| 4976 | else | |
| 4977 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 4978 | return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS); | |
| 4979 | } | |
| 4980 | else | |
| 4981 | { | |
| 330f1d38 | 4982 | /* It's illegal to pass an lvalue as an rvalue. */ |
| 78134374 | 4983 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
| 330f1d38 | 4984 | return INCOMPATIBLE_TYPE_BADNESS; |
| e15c3eb4 | 4985 | } |
| 15c0a2a9 AV |
4986 | } |
| 4987 | ||
| 4988 | if (types_equal (parm, arg)) | |
| 15c0a2a9 | 4989 | { |
| e15c3eb4 KS |
4990 | struct type *t1 = parm; |
| 4991 | struct type *t2 = arg; | |
| 15c0a2a9 | 4992 | |
| e15c3eb4 | 4993 | /* For pointers and references, compare target type. */ |
| 809f3be1 | 4994 | if (parm->is_pointer_or_reference ()) |
| e15c3eb4 | 4995 | { |
| 27710edb SM |
4996 | t1 = parm->target_type (); |
| 4997 | t2 = arg->target_type (); | |
| e15c3eb4 | 4998 | } |
| 15c0a2a9 | 4999 | |
| e15c3eb4 KS |
5000 | /* Make sure they are CV equal, too. */ |
| 5001 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
| 5002 | rank.subrank |= CV_CONVERSION_CONST; | |
| 5003 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
| 5004 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
| 5005 | if (rank.subrank != 0) | |
| 5006 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
| 5007 | return EXACT_MATCH_BADNESS; | |
| 15c0a2a9 AV |
5008 | } |
| 5009 | ||
| db577aea | 5010 | /* See through references, since we can almost make non-references |
| 7ba81444 | 5011 | references. */ |
| aa006118 AV |
5012 | |
| 5013 | if (TYPE_IS_REFERENCE (arg)) | |
| 27710edb | 5014 | return (sum_ranks (rank_one_type (parm, arg->target_type (), NULL), |
| dda83cd7 | 5015 | REFERENCE_SEE_THROUGH_BADNESS)); |
| aa006118 | 5016 | if (TYPE_IS_REFERENCE (parm)) |
| 27710edb | 5017 | return (sum_ranks (rank_one_type (parm->target_type (), arg, NULL), |
| dda83cd7 | 5018 | REFERENCE_SEE_THROUGH_BADNESS)); |
| 5d161b24 | 5019 | if (overload_debug) |
| 01add95b SM |
5020 | { |
| 5021 | /* Debugging only. */ | |
| 6cb06a8c TT |
5022 | gdb_printf (gdb_stderr, |
| 5023 | "------ Arg is %s [%d], parm is %s [%d]\n", | |
| 5024 | arg->name (), arg->code (), | |
| 5025 | parm->name (), parm->code ()); | |
| 01add95b | 5026 | } |
| c906108c | 5027 | |
| 0963b4bd | 5028 | /* x -> y means arg of type x being supplied for parameter of type y. */ |
| c906108c | 5029 | |
| 78134374 | 5030 | switch (parm->code ()) |
| c906108c | 5031 | { |
| c5aa993b | 5032 | case TYPE_CODE_PTR: |
| 9293fc63 | 5033 | return rank_one_type_parm_ptr (parm, arg, value); |
| c5aa993b | 5034 | case TYPE_CODE_ARRAY: |
| b9f4512f | 5035 | return rank_one_type_parm_array (parm, arg, value); |
| c5aa993b | 5036 | case TYPE_CODE_FUNC: |
| f1f832d6 | 5037 | return rank_one_type_parm_func (parm, arg, value); |
| c5aa993b | 5038 | case TYPE_CODE_INT: |
| 34910087 | 5039 | return rank_one_type_parm_int (parm, arg, value); |
| c5aa993b | 5040 | case TYPE_CODE_ENUM: |
| 793cd1d2 | 5041 | return rank_one_type_parm_enum (parm, arg, value); |
| c5aa993b | 5042 | case TYPE_CODE_CHAR: |
| 41ea4728 | 5043 | return rank_one_type_parm_char (parm, arg, value); |
| c5aa993b | 5044 | case TYPE_CODE_RANGE: |
| 0dd322dc | 5045 | return rank_one_type_parm_range (parm, arg, value); |
| c5aa993b | 5046 | case TYPE_CODE_BOOL: |
| 2c509035 | 5047 | return rank_one_type_parm_bool (parm, arg, value); |
| c5aa993b | 5048 | case TYPE_CODE_FLT: |
| 7f17b20d | 5049 | return rank_one_type_parm_float (parm, arg, value); |
| c5aa993b | 5050 | case TYPE_CODE_COMPLEX: |
| 2598a94b | 5051 | return rank_one_type_parm_complex (parm, arg, value); |
| c5aa993b | 5052 | case TYPE_CODE_STRUCT: |
| 595f96a9 | 5053 | return rank_one_type_parm_struct (parm, arg, value); |
| c5aa993b | 5054 | case TYPE_CODE_SET: |
| f09ce22d | 5055 | return rank_one_type_parm_set (parm, arg, value); |
| c5aa993b JM |
5056 | default: |
| 5057 | return INCOMPATIBLE_TYPE_BADNESS; | |
| 78134374 | 5058 | } /* switch (arg->code ()) */ |
| c906108c SS |
5059 | } |
| 5060 | ||
| 0963b4bd | 5061 | /* End of functions for overload resolution. */ |
| 5212577a | 5062 | \f |
| c906108c | 5063 | |
| ad2f7632 | 5064 | /* Note the first arg should be the "this" pointer, we may not want to |
| 7ba81444 MS |
5065 | include it since we may get into a infinitely recursive |
| 5066 | situation. */ | |
| c906108c SS |
5067 | |
| 5068 | static void | |
| 89495c33 | 5069 | print_args (gdb::array_view<struct field> args, int spaces) |
| c906108c | 5070 | { |
| 89495c33 | 5071 | for (int i = 0; i < args.size (); i++) |
| c906108c | 5072 | { |
| 89495c33 TT |
5073 | gdb_printf |
| 5074 | ("%*s[%d] name '%s'\n", spaces, "", i, | |
| 5075 | args[i].name () != NULL ? args[i].name () : "<NULL>"); | |
| 5076 | recursive_dump_type (args[i].type (), spaces + 2); | |
| c906108c SS |
5077 | } |
| 5078 | } | |
| 5079 | ||
| 5080 | static void | |
| fba45db2 | 5081 | dump_fn_fieldlists (struct type *type, int spaces) |
| c906108c SS |
5082 | { |
| 5083 | int method_idx; | |
| 5084 | int overload_idx; | |
| 5085 | struct fn_field *f; | |
| 5086 | ||
| 6cb06a8c TT |
5087 | gdb_printf ("%*sfn_fieldlists %s\n", spaces, "", |
| 5088 | host_address_to_string (TYPE_FN_FIELDLISTS (type))); | |
| c906108c SS |
5089 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) |
| 5090 | { | |
| 5091 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
| 6cb06a8c | 5092 | gdb_printf |
| 64b7cc50 TT |
5093 | ("%*s[%d] name '%s' (%s) length %d\n", spaces + 2, "", |
| 5094 | method_idx, | |
| 5095 | TYPE_FN_FIELDLIST_NAME (type, method_idx), | |
| 5096 | host_address_to_string (TYPE_FN_FIELDLIST_NAME (type, method_idx)), | |
| 5097 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); | |
| c906108c SS |
5098 | for (overload_idx = 0; |
| 5099 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
| 5100 | overload_idx++) | |
| 5101 | { | |
| 6cb06a8c | 5102 | gdb_printf |
| 64b7cc50 TT |
5103 | ("%*s[%d] physname '%s' (%s)\n", |
| 5104 | spaces + 4, "", overload_idx, | |
| 5105 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx), | |
| 5106 | host_address_to_string (TYPE_FN_FIELD_PHYSNAME (f, | |
| 5107 | overload_idx))); | |
| 6cb06a8c | 5108 | gdb_printf |
| 64b7cc50 TT |
5109 | ("%*stype %s\n", spaces + 8, "", |
| 5110 | host_address_to_string (TYPE_FN_FIELD_TYPE (f, overload_idx))); | |
| c906108c SS |
5111 | |
| 5112 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
| 5113 | spaces + 8 + 2); | |
| 5114 | ||
| 6cb06a8c | 5115 | gdb_printf |
| 64b7cc50 | 5116 | ("%*sargs %s\n", spaces + 8, "", |
| 89495c33 | 5117 | host_address_to_string (TYPE_FN_FIELD_ARGS (f, overload_idx).data ())); |
| 4c9e8482 | 5118 | print_args (TYPE_FN_FIELD_ARGS (f, overload_idx), |
| 4c9e8482 | 5119 | spaces + 8 + 2); |
| 6cb06a8c | 5120 | gdb_printf |
| 64b7cc50 TT |
5121 | ("%*sfcontext %s\n", spaces + 8, "", |
| 5122 | host_address_to_string (TYPE_FN_FIELD_FCONTEXT (f, | |
| 5123 | overload_idx))); | |
| c906108c | 5124 | |
| 6cb06a8c TT |
5125 | gdb_printf ("%*sis_const %d\n", spaces + 8, "", |
| 5126 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
| 5127 | gdb_printf ("%*sis_volatile %d\n", spaces + 8, "", | |
| 5128 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
| 5129 | gdb_printf ("%*sis_private %d\n", spaces + 8, "", | |
| 5130 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
| 5131 | gdb_printf ("%*sis_protected %d\n", spaces + 8, "", | |
| 5132 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
| 5133 | gdb_printf ("%*sis_stub %d\n", spaces + 8, "", | |
| 5134 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
| 5135 | gdb_printf ("%*sdefaulted %d\n", spaces + 8, "", | |
| 5136 | TYPE_FN_FIELD_DEFAULTED (f, overload_idx)); | |
| 5137 | gdb_printf ("%*sis_deleted %d\n", spaces + 8, "", | |
| 5138 | TYPE_FN_FIELD_DELETED (f, overload_idx)); | |
| 5139 | gdb_printf ("%*svoffset %u\n", spaces + 8, "", | |
| 5140 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
| c906108c SS |
5141 | } |
| 5142 | } | |
| 5143 | } | |
| 5144 | ||
| 5145 | static void | |
| fba45db2 | 5146 | print_cplus_stuff (struct type *type, int spaces) |
| c906108c | 5147 | { |
| 6cb06a8c TT |
5148 | gdb_printf ("%*svptr_fieldno %d\n", spaces, "", |
| 5149 | TYPE_VPTR_FIELDNO (type)); | |
| 5150 | gdb_printf ("%*svptr_basetype %s\n", spaces, "", | |
| 5151 | host_address_to_string (TYPE_VPTR_BASETYPE (type))); | |
| ae6ae975 DE |
5152 | if (TYPE_VPTR_BASETYPE (type) != NULL) |
| 5153 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
| 5154 | ||
| 6cb06a8c TT |
5155 | gdb_printf ("%*sn_baseclasses %d\n", spaces, "", |
| 5156 | TYPE_N_BASECLASSES (type)); | |
| 5157 | gdb_printf ("%*snfn_fields %d\n", spaces, "", | |
| 5158 | TYPE_NFN_FIELDS (type)); | |
| c906108c SS |
5159 | if (TYPE_NFN_FIELDS (type) > 0) |
| 5160 | { | |
| 5161 | dump_fn_fieldlists (type, spaces); | |
| 5162 | } | |
| e35000a7 | 5163 | |
| 6cb06a8c TT |
5164 | gdb_printf ("%*scalling_convention %d\n", spaces, "", |
| 5165 | TYPE_CPLUS_CALLING_CONVENTION (type)); | |
| c906108c SS |
5166 | } |
| 5167 | ||
| b4ba55a1 JB |
5168 | /* Print the contents of the TYPE's type_specific union, assuming that |
| 5169 | its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ | |
| 5170 | ||
| 5171 | static void | |
| 5172 | print_gnat_stuff (struct type *type, int spaces) | |
| 5173 | { | |
| 5174 | struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); | |
| 5175 | ||
| 8cd00c59 | 5176 | if (descriptive_type == NULL) |
| 6cb06a8c | 5177 | gdb_printf ("%*sno descriptive type\n", spaces + 2, ""); |
| 8cd00c59 PMR |
5178 | else |
| 5179 | { | |
| 6cb06a8c | 5180 | gdb_printf ("%*sdescriptive type\n", spaces + 2, ""); |
| 8cd00c59 PMR |
5181 | recursive_dump_type (descriptive_type, spaces + 4); |
| 5182 | } | |
| b4ba55a1 JB |
5183 | } |
| 5184 | ||
| 09584414 JB |
5185 | /* Print the contents of the TYPE's type_specific union, assuming that |
| 5186 | its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */ | |
| 5187 | ||
| 5188 | static void | |
| 5189 | print_fixed_point_type_info (struct type *type, int spaces) | |
| 5190 | { | |
| 6cb06a8c TT |
5191 | gdb_printf ("%*sscaling factor: %s\n", spaces + 2, "", |
| 5192 | type->fixed_point_scaling_factor ().str ().c_str ()); | |
| 09584414 JB |
5193 | } |
| 5194 | ||
| c906108c SS |
5195 | static struct obstack dont_print_type_obstack; |
| 5196 | ||
| 53d5a2a5 TV |
5197 | /* Print the dynamic_prop PROP. */ |
| 5198 | ||
| 5199 | static void | |
| 5200 | dump_dynamic_prop (dynamic_prop const& prop) | |
| 5201 | { | |
| 5202 | switch (prop.kind ()) | |
| 5203 | { | |
| 5204 | case PROP_CONST: | |
| 6cb06a8c | 5205 | gdb_printf ("%s", plongest (prop.const_val ())); |
| 53d5a2a5 TV |
5206 | break; |
| 5207 | case PROP_UNDEFINED: | |
| 6cb06a8c | 5208 | gdb_printf ("(undefined)"); |
| 53d5a2a5 TV |
5209 | break; |
| 5210 | case PROP_LOCEXPR: | |
| 5211 | case PROP_LOCLIST: | |
| 6cb06a8c | 5212 | gdb_printf ("(dynamic)"); |
| 53d5a2a5 TV |
5213 | break; |
| 5214 | default: | |
| 5215 | gdb_assert_not_reached ("unhandled prop kind"); | |
| 5216 | break; | |
| 5217 | } | |
| 5218 | } | |
| 5219 | ||
| e626733c TT |
5220 | /* Return a string that represents a type code. */ |
| 5221 | static const char * | |
| 5222 | type_code_name (type_code code) | |
| 5223 | { | |
| 5224 | switch (code) | |
| 5225 | { | |
| 5226 | #define OP(X) case X: return # X; | |
| 5227 | #include "type-codes.def" | |
| 5228 | #undef OP | |
| 5229 | ||
| 5230 | case TYPE_CODE_UNDEF: | |
| 5231 | return "TYPE_CODE_UNDEF"; | |
| 5232 | } | |
| 5233 | ||
| 5234 | gdb_assert_not_reached ("unhandled type_code"); | |
| 5235 | } | |
| 5236 | ||
| c906108c | 5237 | void |
| fba45db2 | 5238 | recursive_dump_type (struct type *type, int spaces) |
| c906108c SS |
5239 | { |
| 5240 | int idx; | |
| 5241 | ||
| 5242 | if (spaces == 0) | |
| 5243 | obstack_begin (&dont_print_type_obstack, 0); | |
| 5244 | ||
| 1f704f76 | 5245 | if (type->num_fields () > 0 |
| b4ba55a1 | 5246 | || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) |
| c906108c SS |
5247 | { |
| 5248 | struct type **first_dont_print | |
| 7ba81444 | 5249 | = (struct type **) obstack_base (&dont_print_type_obstack); |
| c906108c | 5250 | |
| a5cbe675 | 5251 | int i = (struct type **) |
| 7ba81444 | 5252 | obstack_next_free (&dont_print_type_obstack) - first_dont_print; |
| c906108c SS |
5253 | |
| 5254 | while (--i >= 0) | |
| 5255 | { | |
| 5256 | if (type == first_dont_print[i]) | |
| 5257 | { | |
| 6cb06a8c TT |
5258 | gdb_printf ("%*stype node %s", spaces, "", |
| 5259 | host_address_to_string (type)); | |
| 5260 | gdb_printf (_(" <same as already seen type>\n")); | |
| c906108c SS |
5261 | return; |
| 5262 | } | |
| 5263 | } | |
| 5264 | ||
| 5265 | obstack_ptr_grow (&dont_print_type_obstack, type); | |
| 5266 | } | |
| 5267 | ||
| 6cb06a8c TT |
5268 | gdb_printf ("%*stype node %s\n", spaces, "", |
| 5269 | host_address_to_string (type)); | |
| 5270 | gdb_printf ("%*sname '%s' (%s)\n", spaces, "", | |
| 5271 | type->name () ? type->name () : "<NULL>", | |
| 5272 | host_address_to_string (type->name ())); | |
| 5273 | gdb_printf ("%*scode 0x%x ", spaces, "", type->code ()); | |
| e626733c | 5274 | gdb_printf ("(%s)", type_code_name (type->code ())); |
| 0426ad51 | 5275 | gdb_puts ("\n"); |
| 6cb06a8c | 5276 | gdb_printf ("%*slength %s\n", spaces, "", |
| df86565b | 5277 | pulongest (type->length ())); |
| 30625020 | 5278 | if (type->is_objfile_owned ()) |
| 6cb06a8c TT |
5279 | gdb_printf ("%*sobjfile %s\n", spaces, "", |
| 5280 | host_address_to_string (type->objfile_owner ())); | |
| e9bb382b | 5281 | else |
| 6cb06a8c TT |
5282 | gdb_printf ("%*sgdbarch %s\n", spaces, "", |
| 5283 | host_address_to_string (type->arch_owner ())); | |
| 5284 | gdb_printf ("%*starget_type %s\n", spaces, "", | |
| 27710edb SM |
5285 | host_address_to_string (type->target_type ())); |
| 5286 | if (type->target_type () != NULL) | |
| c906108c | 5287 | { |
| 27710edb | 5288 | recursive_dump_type (type->target_type (), spaces + 2); |
| c906108c | 5289 | } |
| 6cb06a8c TT |
5290 | gdb_printf ("%*spointer_type %s\n", spaces, "", |
| 5291 | host_address_to_string (TYPE_POINTER_TYPE (type))); | |
| 5292 | gdb_printf ("%*sreference_type %s\n", spaces, "", | |
| 5293 | host_address_to_string (TYPE_REFERENCE_TYPE (type))); | |
| 5294 | gdb_printf ("%*stype_chain %s\n", spaces, "", | |
| 5295 | host_address_to_string (TYPE_CHAIN (type))); | |
| a5cbe675 | 5296 | gdb_printf ("%*sinstance_flags 0x%x", spaces, "", |
| 6cb06a8c | 5297 | (unsigned) type->instance_flags ()); |
| 2fdde8f8 DJ |
5298 | if (TYPE_CONST (type)) |
| 5299 | { | |
| 0426ad51 | 5300 | gdb_puts (" TYPE_CONST"); |
| 2fdde8f8 DJ |
5301 | } |
| 5302 | if (TYPE_VOLATILE (type)) | |
| 5303 | { | |
| 0426ad51 | 5304 | gdb_puts (" TYPE_VOLATILE"); |
| 2fdde8f8 DJ |
5305 | } |
| 5306 | if (TYPE_CODE_SPACE (type)) | |
| 5307 | { | |
| 0426ad51 | 5308 | gdb_puts (" TYPE_CODE_SPACE"); |
| 2fdde8f8 DJ |
5309 | } |
| 5310 | if (TYPE_DATA_SPACE (type)) | |
| 5311 | { | |
| 0426ad51 | 5312 | gdb_puts (" TYPE_DATA_SPACE"); |
| 2fdde8f8 | 5313 | } |
| 8b2dbe47 KB |
5314 | if (TYPE_ADDRESS_CLASS_1 (type)) |
| 5315 | { | |
| 0426ad51 | 5316 | gdb_puts (" TYPE_ADDRESS_CLASS_1"); |
| 8b2dbe47 KB |
5317 | } |
| 5318 | if (TYPE_ADDRESS_CLASS_2 (type)) | |
| 5319 | { | |
| 0426ad51 | 5320 | gdb_puts (" TYPE_ADDRESS_CLASS_2"); |
| 8b2dbe47 | 5321 | } |
| 06d66ee9 TT |
5322 | if (TYPE_RESTRICT (type)) |
| 5323 | { | |
| 0426ad51 | 5324 | gdb_puts (" TYPE_RESTRICT"); |
| 06d66ee9 | 5325 | } |
| a2c2acaf MW |
5326 | if (TYPE_ATOMIC (type)) |
| 5327 | { | |
| 0426ad51 | 5328 | gdb_puts (" TYPE_ATOMIC"); |
| a2c2acaf | 5329 | } |
| 0426ad51 | 5330 | gdb_puts ("\n"); |
| 876cecd0 | 5331 | |
| 6cb06a8c | 5332 | gdb_printf ("%*sflags", spaces, ""); |
| c6d940a9 | 5333 | if (type->is_unsigned ()) |
| c906108c | 5334 | { |
| 0426ad51 | 5335 | gdb_puts (" TYPE_UNSIGNED"); |
| c906108c | 5336 | } |
| 20ce4123 | 5337 | if (type->has_no_signedness ()) |
| 762a036f | 5338 | { |
| 0426ad51 | 5339 | gdb_puts (" TYPE_NOSIGN"); |
| 762a036f | 5340 | } |
| 04f5bab2 | 5341 | if (type->endianity_is_not_default ()) |
| 34877895 | 5342 | { |
| 0426ad51 | 5343 | gdb_puts (" TYPE_ENDIANITY_NOT_DEFAULT"); |
| 34877895 | 5344 | } |
| e46d3488 | 5345 | if (type->is_stub ()) |
| c906108c | 5346 | { |
| 0426ad51 | 5347 | gdb_puts (" TYPE_STUB"); |
| c906108c | 5348 | } |
| d2183968 | 5349 | if (type->target_is_stub ()) |
| 762a036f | 5350 | { |
| 0426ad51 | 5351 | gdb_puts (" TYPE_TARGET_STUB"); |
| 762a036f | 5352 | } |
| 7f9f399b | 5353 | if (type->is_prototyped ()) |
| 762a036f | 5354 | { |
| 0426ad51 | 5355 | gdb_puts (" TYPE_PROTOTYPED"); |
| 762a036f | 5356 | } |
| a409645d | 5357 | if (type->has_varargs ()) |
| 762a036f | 5358 | { |
| 0426ad51 | 5359 | gdb_puts (" TYPE_VARARGS"); |
| 762a036f | 5360 | } |
| f5f8a009 EZ |
5361 | /* This is used for things like AltiVec registers on ppc. Gcc emits |
| 5362 | an attribute for the array type, which tells whether or not we | |
| 5363 | have a vector, instead of a regular array. */ | |
| bd63c870 | 5364 | if (type->is_vector ()) |
| f5f8a009 | 5365 | { |
| 0426ad51 | 5366 | gdb_puts (" TYPE_VECTOR"); |
| f5f8a009 | 5367 | } |
| 22c4c60c | 5368 | if (type->is_fixed_instance ()) |
| 876cecd0 | 5369 | { |
| 0426ad51 | 5370 | gdb_puts (" TYPE_FIXED_INSTANCE"); |
| 876cecd0 | 5371 | } |
| 3f46044c | 5372 | if (type->stub_is_supported ()) |
| 876cecd0 | 5373 | { |
| 0426ad51 | 5374 | gdb_puts (" TYPE_STUB_SUPPORTED"); |
| 876cecd0 TT |
5375 | } |
| 5376 | if (TYPE_NOTTEXT (type)) | |
| 5377 | { | |
| 0426ad51 | 5378 | gdb_puts (" TYPE_NOTTEXT"); |
| 876cecd0 | 5379 | } |
| 0426ad51 | 5380 | gdb_puts ("\n"); |
| 6cb06a8c | 5381 | gdb_printf ("%*snfields %d ", spaces, "", type->num_fields ()); |
| caba95fa SM |
5382 | if (type->dyn_prop (DYN_PROP_ASSOCIATED) != nullptr |
| 5383 | || type->dyn_prop (DYN_PROP_ALLOCATED) != nullptr) | |
| 5ba3b20e | 5384 | { |
| 6cb06a8c | 5385 | gdb_printf ("%*s", spaces, ""); |
| caba95fa | 5386 | if (type->dyn_prop (DYN_PROP_ASSOCIATED) != nullptr) |
| 5ba3b20e | 5387 | { |
| 6cb06a8c | 5388 | gdb_printf ("associated "); |
| caba95fa | 5389 | dump_dynamic_prop (*type->dyn_prop (DYN_PROP_ASSOCIATED)); |
| 5ba3b20e | 5390 | } |
| caba95fa | 5391 | if (type->dyn_prop (DYN_PROP_ALLOCATED) != nullptr) |
| 5ba3b20e | 5392 | { |
| caba95fa | 5393 | if (type->dyn_prop (DYN_PROP_ASSOCIATED) != nullptr) |
| 6cb06a8c TT |
5394 | gdb_printf (" "); |
| 5395 | gdb_printf ("allocated "); | |
| caba95fa | 5396 | dump_dynamic_prop (*type->dyn_prop (DYN_PROP_ALLOCATED)); |
| 5ba3b20e | 5397 | } |
| 6cb06a8c | 5398 | gdb_printf ("\n"); |
| 5ba3b20e | 5399 | } |
| 89495c33 | 5400 | gdb_printf ("%s\n", host_address_to_string (type->fields ().data ())); |
| 1f704f76 | 5401 | for (idx = 0; idx < type->num_fields (); idx++) |
| c906108c | 5402 | { |
| 20aadb93 | 5403 | field &fld = type->field (idx); |
| 78134374 | 5404 | if (type->code () == TYPE_CODE_ENUM) |
| 6cb06a8c | 5405 | gdb_printf ("%*s[%d] enumval %s type ", spaces + 2, "", |
| 20aadb93 | 5406 | idx, plongest (fld.loc_enumval ())); |
| 14e75d8e | 5407 | else |
| 6cb06a8c | 5408 | gdb_printf ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "", |
| 20aadb93 TT |
5409 | idx, plongest (fld.loc_bitpos ()), |
| 5410 | fld.bitsize ()); | |
| 5ffb4736 | 5411 | gdb_printf ("%s name '%s' (%s)", |
| 20aadb93 TT |
5412 | host_address_to_string (fld.type ()), |
| 5413 | fld.name () != NULL | |
| 5414 | ? fld.name () | |
| 6cb06a8c | 5415 | : "<NULL>", |
| 20aadb93 TT |
5416 | host_address_to_string (fld.name ())); |
| 5417 | if (fld.is_virtual ()) | |
| 5ffb4736 TT |
5418 | gdb_printf (" virtual"); |
| 5419 | ||
| 20aadb93 | 5420 | if (fld.is_private ()) |
| 5ffb4736 | 5421 | gdb_printf (" private"); |
| 20aadb93 | 5422 | else if (fld.is_protected ()) |
| 5ffb4736 | 5423 | gdb_printf (" protected"); |
| 20aadb93 | 5424 | else if (fld.is_ignored ()) |
| 5ffb4736 TT |
5425 | gdb_printf (" ignored"); |
| 5426 | ||
| 5427 | gdb_printf ("\n"); | |
| 20aadb93 | 5428 | if (fld.type () != NULL) |
| c906108c | 5429 | { |
| 20aadb93 | 5430 | recursive_dump_type (fld.type (), spaces + 4); |
| c906108c SS |
5431 | } |
| 5432 | } | |
| 78134374 | 5433 | if (type->code () == TYPE_CODE_RANGE) |
| 43bbcdc2 | 5434 | { |
| 6cb06a8c | 5435 | gdb_printf ("%*slow ", spaces, ""); |
| 53d5a2a5 | 5436 | dump_dynamic_prop (type->bounds ()->low); |
| 6cb06a8c | 5437 | gdb_printf (" high "); |
| 53d5a2a5 | 5438 | dump_dynamic_prop (type->bounds ()->high); |
| 6cb06a8c | 5439 | gdb_printf ("\n"); |
| 43bbcdc2 | 5440 | } |
| c906108c | 5441 | |
| b4ba55a1 JB |
5442 | switch (TYPE_SPECIFIC_FIELD (type)) |
| 5443 | { | |
| 9c808ba1 TT |
5444 | case TYPE_SPECIFIC_CPLUS_STUFF: |
| 5445 | gdb_printf ("%*scplus_stuff %s\n", spaces, "", | |
| 5446 | host_address_to_string (TYPE_CPLUS_SPECIFIC (type))); | |
| 5447 | print_cplus_stuff (type, spaces); | |
| 5448 | break; | |
| 8da61cc4 | 5449 | |
| 9c808ba1 TT |
5450 | case TYPE_SPECIFIC_GNAT_STUFF: |
| 5451 | gdb_printf ("%*sgnat_stuff %s\n", spaces, "", | |
| 5452 | host_address_to_string (TYPE_GNAT_SPECIFIC (type))); | |
| 5453 | print_gnat_stuff (type, spaces); | |
| 5454 | break; | |
| 701c159d | 5455 | |
| 9c808ba1 TT |
5456 | case TYPE_SPECIFIC_FLOATFORMAT: |
| 5457 | gdb_printf ("%*sfloatformat ", spaces, ""); | |
| 5458 | if (TYPE_FLOATFORMAT (type) == NULL | |
| 5459 | || TYPE_FLOATFORMAT (type)->name == NULL) | |
| 5460 | gdb_puts ("(null)"); | |
| 5461 | else | |
| 5462 | gdb_puts (TYPE_FLOATFORMAT (type)->name); | |
| 5463 | gdb_puts ("\n"); | |
| 5464 | break; | |
| c906108c | 5465 | |
| 9c808ba1 TT |
5466 | case TYPE_SPECIFIC_FUNC: |
| 5467 | gdb_printf ("%*scalling_convention %d\n", spaces, "", | |
| 5468 | TYPE_CALLING_CONVENTION (type)); | |
| 5469 | /* tail_call_list is not printed. */ | |
| 5470 | break; | |
| 09e2d7c7 | 5471 | |
| 9c808ba1 TT |
5472 | case TYPE_SPECIFIC_SELF_TYPE: |
| 5473 | gdb_printf ("%*sself_type %s\n", spaces, "", | |
| 5474 | host_address_to_string (TYPE_SELF_TYPE (type))); | |
| 5475 | break; | |
| 20a5fcbd | 5476 | |
| 9c808ba1 TT |
5477 | case TYPE_SPECIFIC_FIXED_POINT: |
| 5478 | gdb_printf ("%*sfixed_point_info ", spaces, ""); | |
| 5479 | print_fixed_point_type_info (type, spaces); | |
| 5480 | gdb_puts ("\n"); | |
| 5481 | break; | |
| 09584414 | 5482 | |
| 20a5fcbd TT |
5483 | case TYPE_SPECIFIC_INT: |
| 5484 | if (type->bit_size_differs_p ()) | |
| 5485 | { | |
| 5486 | unsigned bit_size = type->bit_size (); | |
| 5487 | unsigned bit_off = type->bit_offset (); | |
| 6cb06a8c TT |
5488 | gdb_printf ("%*s bit size = %u, bit offset = %u\n", spaces, "", |
| 5489 | bit_size, bit_off); | |
| 20a5fcbd TT |
5490 | } |
| 5491 | break; | |
| c906108c | 5492 | } |
| b4ba55a1 | 5493 | |
| c906108c SS |
5494 | if (spaces == 0) |
| 5495 | obstack_free (&dont_print_type_obstack, NULL); | |
| 5496 | } | |
| 5212577a | 5497 | \f |
| d9823cbb KB |
5498 | /* Recursively copy (deep copy) a dynamic attribute list of a type. */ |
| 5499 | ||
| 5500 | static struct dynamic_prop_list * | |
| bde539c2 | 5501 | copy_dynamic_prop_list (struct obstack *storage, |
| d9823cbb KB |
5502 | struct dynamic_prop_list *list) |
| 5503 | { | |
| 5504 | struct dynamic_prop_list *copy = list; | |
| 5505 | struct dynamic_prop_list **node_ptr = © | |
| 5506 | ||
| 5507 | while (*node_ptr != NULL) | |
| 5508 | { | |
| 5509 | struct dynamic_prop_list *node_copy; | |
| 5510 | ||
| 224c3ddb | 5511 | node_copy = ((struct dynamic_prop_list *) |
| bde539c2 | 5512 | obstack_copy (storage, *node_ptr, |
| 224c3ddb | 5513 | sizeof (struct dynamic_prop_list))); |
| 283a9958 | 5514 | node_copy->prop = (*node_ptr)->prop; |
| d9823cbb KB |
5515 | *node_ptr = node_copy; |
| 5516 | ||
| 5517 | node_ptr = &node_copy->next; | |
| 5518 | } | |
| 5519 | ||
| 5520 | return copy; | |
| 5521 | } | |
| 5522 | ||
| 7ba81444 | 5523 | /* Recursively copy (deep copy) TYPE, if it is associated with |
| eed8b28a PP |
5524 | OBJFILE. Return a new type owned by the gdbarch associated with the type, a |
| 5525 | saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if | |
| 5526 | it is not associated with OBJFILE. */ | |
| ae5a43e0 DJ |
5527 | |
| 5528 | struct type * | |
| 112f6d85 | 5529 | copy_type_recursive (struct type *type, copied_types_hash_t &copied_types) |
| ae5a43e0 | 5530 | { |
| 30625020 | 5531 | if (!type->is_objfile_owned ()) |
| ae5a43e0 DJ |
5532 | return type; |
| 5533 | ||
| 112f6d85 SM |
5534 | if (auto iter = copied_types.find (type); |
| 5535 | iter != copied_types.end ()) | |
| 5536 | return iter->second; | |
| fd90ace4 | 5537 | |
| 112f6d85 | 5538 | struct type *new_type = type_allocator (type->arch ()).new_type (); |
| ae5a43e0 DJ |
5539 | |
| 5540 | /* We must add the new type to the hash table immediately, in case | |
| 5541 | we encounter this type again during a recursive call below. */ | |
| 112f6d85 | 5542 | copied_types.emplace (type, new_type); |
| ae5a43e0 | 5543 | |
| 876cecd0 TT |
5544 | /* Copy the common fields of types. For the main type, we simply |
| 5545 | copy the entire thing and then update specific fields as needed. */ | |
| 5546 | *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); | |
| 5b7d941b | 5547 | |
| 8ee511af | 5548 | new_type->set_owner (type->arch ()); |
| 876cecd0 | 5549 | |
| 7d93a1e0 SM |
5550 | if (type->name ()) |
| 5551 | new_type->set_name (xstrdup (type->name ())); | |
| ae5a43e0 | 5552 | |
| 314ad88d | 5553 | new_type->set_instance_flags (type->instance_flags ()); |
| df86565b | 5554 | new_type->set_length (type->length ()); |
| ae5a43e0 DJ |
5555 | |
| 5556 | /* Copy the fields. */ | |
| 1f704f76 | 5557 | if (type->num_fields ()) |
| ae5a43e0 DJ |
5558 | { |
| 5559 | int i, nfields; | |
| 5560 | ||
| 1f704f76 | 5561 | nfields = type->num_fields (); |
| 2774f2da | 5562 | new_type->alloc_fields (type->num_fields ()); |
| 3cabb6b0 | 5563 | |
| ae5a43e0 DJ |
5564 | for (i = 0; i < nfields; i++) |
| 5565 | { | |
| 321d8b3f | 5566 | new_type->field (i).set_is_artificial |
| 454977cd | 5567 | (type->field (i).is_artificial ()); |
| 3757d2d4 | 5568 | new_type->field (i).set_bitsize (type->field (i).bitsize ()); |
| 940da03e | 5569 | if (type->field (i).type ()) |
| 5d14b6e5 | 5570 | new_type->field (i).set_type |
| bde539c2 | 5571 | (copy_type_recursive (type->field (i).type (), copied_types)); |
| 33d16dd9 SM |
5572 | if (type->field (i).name ()) |
| 5573 | new_type->field (i).set_name (xstrdup (type->field (i).name ())); | |
| 2ad53ea1 SM |
5574 | |
| 5575 | switch (type->field (i).loc_kind ()) | |
| ae5a43e0 | 5576 | { |
| d6a843b5 | 5577 | case FIELD_LOC_KIND_BITPOS: |
| b610c045 | 5578 | new_type->field (i).set_loc_bitpos (type->field (i).loc_bitpos ()); |
| d6a843b5 | 5579 | break; |
| 14e75d8e | 5580 | case FIELD_LOC_KIND_ENUMVAL: |
| 970db518 | 5581 | new_type->field (i).set_loc_enumval (type->field (i).loc_enumval ()); |
| 14e75d8e | 5582 | break; |
| d6a843b5 | 5583 | case FIELD_LOC_KIND_PHYSADDR: |
| cd3f655c | 5584 | new_type->field (i).set_loc_physaddr |
| e06c3e11 | 5585 | (type->field (i).loc_physaddr ()); |
| d6a843b5 JK |
5586 | break; |
| 5587 | case FIELD_LOC_KIND_PHYSNAME: | |
| cd3f655c | 5588 | new_type->field (i).set_loc_physname |
| fcbbbd90 | 5589 | (xstrdup (type->field (i).loc_physname ())); |
| d6a843b5 | 5590 | break; |
| 692252c4 TT |
5591 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
| 5592 | new_type->field (i).set_loc_dwarf_block_addr | |
| 5593 | (type->field (i).loc_dwarf_block ()); | |
| 5594 | break; | |
| 5595 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
| 5596 | new_type->field (i).set_loc_dwarf_block_bitpos | |
| 51e36a3a | 5597 | (type->field (i).loc_dwarf_block ()); |
| 287de656 | 5598 | break; |
| d6a843b5 | 5599 | default: |
| f34652de | 5600 | internal_error (_("Unexpected type field location kind: %d"), |
| 2ad53ea1 | 5601 | type->field (i).loc_kind ()); |
| ae5a43e0 DJ |
5602 | } |
| 5603 | } | |
| 5604 | } | |
| 5605 | ||
| 0963b4bd | 5606 | /* For range types, copy the bounds information. */ |
| 78134374 | 5607 | if (type->code () == TYPE_CODE_RANGE) |
| 43bbcdc2 | 5608 | { |
| c4dfcb36 | 5609 | range_bounds *bounds |
| dda83cd7 | 5610 | = ((struct range_bounds *) TYPE_ALLOC |
| c4dfcb36 SM |
5611 | (new_type, sizeof (struct range_bounds))); |
| 5612 | ||
| 5613 | *bounds = *type->bounds (); | |
| 5614 | new_type->set_bounds (bounds); | |
| 43bbcdc2 PH |
5615 | } |
| 5616 | ||
| 98d48915 SM |
5617 | if (type->main_type->dyn_prop_list != NULL) |
| 5618 | new_type->main_type->dyn_prop_list | |
| bde539c2 | 5619 | = copy_dynamic_prop_list (gdbarch_obstack (new_type->arch_owner ()), |
| 98d48915 | 5620 | type->main_type->dyn_prop_list); |
| d9823cbb | 5621 | |
| 3cdcd0ce | 5622 | |
| ae5a43e0 | 5623 | /* Copy pointers to other types. */ |
| 27710edb | 5624 | if (type->target_type ()) |
| 8a50fdce | 5625 | new_type->set_target_type |
| 27710edb | 5626 | (copy_type_recursive (type->target_type (), copied_types)); |
| f6b3afbf | 5627 | |
| ae5a43e0 DJ |
5628 | /* Maybe copy the type_specific bits. |
| 5629 | ||
| 5630 | NOTE drow/2005-12-09: We do not copy the C++-specific bits like | |
| 5631 | base classes and methods. There's no fundamental reason why we | |
| 5632 | can't, but at the moment it is not needed. */ | |
| 5633 | ||
| f6b3afbf DE |
5634 | switch (TYPE_SPECIFIC_FIELD (type)) |
| 5635 | { | |
| 5636 | case TYPE_SPECIFIC_NONE: | |
| 5637 | break; | |
| 5638 | case TYPE_SPECIFIC_FUNC: | |
| 5639 | INIT_FUNC_SPECIFIC (new_type); | |
| 5640 | TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type); | |
| 5641 | TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type); | |
| 5642 | TYPE_TAIL_CALL_LIST (new_type) = NULL; | |
| 5643 | break; | |
| 5644 | case TYPE_SPECIFIC_FLOATFORMAT: | |
| 5645 | TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); | |
| 5646 | break; | |
| 5647 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
| 5648 | INIT_CPLUS_SPECIFIC (new_type); | |
| 5649 | break; | |
| 5650 | case TYPE_SPECIFIC_GNAT_STUFF: | |
| 5651 | INIT_GNAT_SPECIFIC (new_type); | |
| 5652 | break; | |
| 09e2d7c7 DE |
5653 | case TYPE_SPECIFIC_SELF_TYPE: |
| 5654 | set_type_self_type (new_type, | |
| bde539c2 | 5655 | copy_type_recursive (TYPE_SELF_TYPE (type), |
| 09e2d7c7 DE |
5656 | copied_types)); |
| 5657 | break; | |
| 09584414 JB |
5658 | case TYPE_SPECIFIC_FIXED_POINT: |
| 5659 | INIT_FIXED_POINT_SPECIFIC (new_type); | |
| 2a12c336 JB |
5660 | new_type->fixed_point_info ().scaling_factor |
| 5661 | = type->fixed_point_info ().scaling_factor; | |
| 09584414 | 5662 | break; |
| 20a5fcbd TT |
5663 | case TYPE_SPECIFIC_INT: |
| 5664 | TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT; | |
| 5665 | TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff | |
| 5666 | = TYPE_MAIN_TYPE (type)->type_specific.int_stuff; | |
| 5667 | break; | |
| 5668 | ||
| f6b3afbf DE |
5669 | default: |
| 5670 | gdb_assert_not_reached ("bad type_specific_kind"); | |
| 5671 | } | |
| ae5a43e0 DJ |
5672 | |
| 5673 | return new_type; | |
| 5674 | } | |
| 5675 | ||
| 315ac993 | 5676 | /* See gdbtypes.h. */ |
| 4af88198 JB |
5677 | |
| 5678 | struct type * | |
| 315ac993 | 5679 | type_allocator::copy_type (const struct type *type) |
| 4af88198 | 5680 | { |
| 315ac993 | 5681 | struct type *new_type = this->new_type (); |
| 314ad88d | 5682 | new_type->set_instance_flags (type->instance_flags ()); |
| df86565b | 5683 | new_type->set_length (type->length ()); |
| 4af88198 JB |
5684 | memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), |
| 5685 | sizeof (struct main_type)); | |
| 315ac993 TT |
5686 | |
| 5687 | /* This might have been overwritten by the memcpy. */ | |
| 5688 | if (m_is_objfile) | |
| 5689 | new_type->set_owner (m_data.objfile); | |
| 5690 | else | |
| 5691 | new_type->set_owner (m_data.gdbarch); | |
| 5692 | ||
| 98d48915 | 5693 | if (type->main_type->dyn_prop_list != NULL) |
| 8e2da165 | 5694 | { |
| 315ac993 TT |
5695 | struct obstack *storage = (new_type->is_objfile_owned () |
| 5696 | ? &new_type->objfile_owner ()->objfile_obstack | |
| 5697 | : gdbarch_obstack (new_type->arch_owner ())); | |
| 8e2da165 TT |
5698 | new_type->main_type->dyn_prop_list |
| 5699 | = copy_dynamic_prop_list (storage, type->main_type->dyn_prop_list); | |
| 5700 | } | |
| 4af88198 JB |
5701 | |
| 5702 | return new_type; | |
| 5703 | } | |
| 315ac993 TT |
5704 | |
| 5705 | /* See gdbtypes.h. */ | |
| 5706 | ||
| 5707 | struct type * | |
| 5708 | copy_type (const struct type *type) | |
| 5709 | { | |
| 5710 | return type_allocator (type).copy_type (type); | |
| 5711 | } | |
| 5212577a | 5712 | \f |
| e9bb382b UW |
5713 | /* Helper functions to initialize architecture-specific types. */ |
| 5714 | ||
| e9bb382b | 5715 | /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. |
| 77b7c781 | 5716 | NAME is the type name. BIT is the size of the flag word in bits. */ |
| 5212577a | 5717 | |
| e9bb382b | 5718 | struct type * |
| 77b7c781 | 5719 | arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit) |
| e9bb382b | 5720 | { |
| e9bb382b UW |
5721 | struct type *type; |
| 5722 | ||
| cc495054 | 5723 | type = type_allocator (gdbarch).new_type (TYPE_CODE_FLAGS, bit, name); |
| 653223d3 | 5724 | type->set_is_unsigned (true); |
| 81516450 | 5725 | /* Pre-allocate enough space assuming every field is one bit. */ |
| 2774f2da TV |
5726 | type->alloc_fields (bit); |
| 5727 | type->set_num_fields (0); | |
| e9bb382b UW |
5728 | |
| 5729 | return type; | |
| 5730 | } | |
| 5731 | ||
| 5732 | /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
| 81516450 DE |
5733 | position BITPOS is called NAME. Pass NAME as "" for fields that |
| 5734 | should not be printed. */ | |
| 5735 | ||
| 5736 | void | |
| 5737 | append_flags_type_field (struct type *type, int start_bitpos, int nr_bits, | |
| 695bfa52 | 5738 | struct type *field_type, const char *name) |
| 81516450 | 5739 | { |
| df86565b | 5740 | int type_bitsize = type->length () * TARGET_CHAR_BIT; |
| 1f704f76 | 5741 | int field_nr = type->num_fields (); |
| 81516450 | 5742 | |
| 78134374 | 5743 | gdb_assert (type->code () == TYPE_CODE_FLAGS); |
| 1f704f76 | 5744 | gdb_assert (type->num_fields () + 1 <= type_bitsize); |
| 81516450 | 5745 | gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize); |
| 602885d8 | 5746 | gdb_assert (nr_bits >= 1 && (start_bitpos + nr_bits) <= type_bitsize); |
| 81516450 DE |
5747 | gdb_assert (name != NULL); |
| 5748 | ||
| 5a8edb75 | 5749 | type->set_num_fields (type->num_fields () + 1); |
| d3fd12df | 5750 | type->field (field_nr).set_name (xstrdup (name)); |
| 5d14b6e5 | 5751 | type->field (field_nr).set_type (field_type); |
| cd3f655c | 5752 | type->field (field_nr).set_loc_bitpos (start_bitpos); |
| 886176b8 | 5753 | type->field (field_nr).set_bitsize (nr_bits); |
| 81516450 DE |
5754 | } |
| 5755 | ||
| 5756 | /* Special version of append_flags_type_field to add a flag field. | |
| 5757 | Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
| e9bb382b | 5758 | position BITPOS is called NAME. */ |
| 5212577a | 5759 | |
| e9bb382b | 5760 | void |
| 695bfa52 | 5761 | append_flags_type_flag (struct type *type, int bitpos, const char *name) |
| e9bb382b | 5762 | { |
| 81516450 | 5763 | append_flags_type_field (type, bitpos, 1, |
| 8ee511af | 5764 | builtin_type (type->arch ())->builtin_bool, |
| 81516450 | 5765 | name); |
| e9bb382b UW |
5766 | } |
| 5767 | ||
| 5768 | /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as | |
| 5769 | specified by CODE) associated with GDBARCH. NAME is the type name. */ | |
| 5212577a | 5770 | |
| e9bb382b | 5771 | struct type * |
| 695bfa52 TT |
5772 | arch_composite_type (struct gdbarch *gdbarch, const char *name, |
| 5773 | enum type_code code) | |
| e9bb382b UW |
5774 | { |
| 5775 | struct type *t; | |
| d8734c88 | 5776 | |
| e9bb382b | 5777 | gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); |
| cc495054 | 5778 | t = type_allocator (gdbarch).new_type (code, 0, NULL); |
| d0e39ea2 | 5779 | t->set_name (name); |
| e9bb382b UW |
5780 | INIT_CPLUS_SPECIFIC (t); |
| 5781 | return t; | |
| 5782 | } | |
| 5783 | ||
| 5784 | /* Add new field with name NAME and type FIELD to composite type T. | |
| f5dff777 DJ |
5785 | Do not set the field's position or adjust the type's length; |
| 5786 | the caller should do so. Return the new field. */ | |
| 5212577a | 5787 | |
| f5dff777 | 5788 | struct field * |
| 695bfa52 | 5789 | append_composite_type_field_raw (struct type *t, const char *name, |
| f5dff777 | 5790 | struct type *field) |
| e9bb382b UW |
5791 | { |
| 5792 | struct field *f; | |
| d8734c88 | 5793 | |
| 1f704f76 | 5794 | t->set_num_fields (t->num_fields () + 1); |
| 89495c33 | 5795 | t->set_fields (XRESIZEVEC (struct field, t->fields ().data (), |
| 3cabb6b0 | 5796 | t->num_fields ())); |
| 80fc5e77 | 5797 | f = &t->field (t->num_fields () - 1); |
| e9bb382b | 5798 | memset (f, 0, sizeof f[0]); |
| 5d14b6e5 | 5799 | f[0].set_type (field); |
| d3fd12df | 5800 | f[0].set_name (name); |
| f5dff777 DJ |
5801 | return f; |
| 5802 | } | |
| 5803 | ||
| 5804 | /* Add new field with name NAME and type FIELD to composite type T. | |
| 5805 | ALIGNMENT (if non-zero) specifies the minimum field alignment. */ | |
| 5212577a | 5806 | |
| f5dff777 | 5807 | void |
| 695bfa52 | 5808 | append_composite_type_field_aligned (struct type *t, const char *name, |
| f5dff777 DJ |
5809 | struct type *field, int alignment) |
| 5810 | { | |
| 5811 | struct field *f = append_composite_type_field_raw (t, name, field); | |
| d8734c88 | 5812 | |
| 78134374 | 5813 | if (t->code () == TYPE_CODE_UNION) |
| e9bb382b | 5814 | { |
| df86565b SM |
5815 | if (t->length () < field->length ()) |
| 5816 | t->set_length (field->length ()); | |
| e9bb382b | 5817 | } |
| 78134374 | 5818 | else if (t->code () == TYPE_CODE_STRUCT) |
| e9bb382b | 5819 | { |
| df86565b | 5820 | t->set_length (t->length () + field->length ()); |
| 1f704f76 | 5821 | if (t->num_fields () > 1) |
| e9bb382b | 5822 | { |
| cd3f655c | 5823 | f->set_loc_bitpos |
| df86565b SM |
5824 | (f[-1].loc_bitpos () |
| 5825 | + (f[-1].type ()->length () * TARGET_CHAR_BIT)); | |
| e9bb382b UW |
5826 | |
| 5827 | if (alignment) | |
| 5828 | { | |
| 86c3c1fc AB |
5829 | int left; |
| 5830 | ||
| 5831 | alignment *= TARGET_CHAR_BIT; | |
| 3a543e21 | 5832 | left = f[0].loc_bitpos () % alignment; |
| d8734c88 | 5833 | |
| e9bb382b UW |
5834 | if (left) |
| 5835 | { | |
| 3a543e21 | 5836 | f->set_loc_bitpos (f[0].loc_bitpos () + (alignment - left)); |
| b6cdbc9a SM |
5837 | t->set_length |
| 5838 | (t->length () + (alignment - left) / TARGET_CHAR_BIT); | |
| e9bb382b UW |
5839 | } |
| 5840 | } | |
| 5841 | } | |
| 5842 | } | |
| 5843 | } | |
| 5844 | ||
| 5845 | /* Add new field with name NAME and type FIELD to composite type T. */ | |
| 5212577a | 5846 | |
| e9bb382b | 5847 | void |
| 695bfa52 | 5848 | append_composite_type_field (struct type *t, const char *name, |
| e9bb382b UW |
5849 | struct type *field) |
| 5850 | { | |
| 5851 | append_composite_type_field_aligned (t, name, field, 0); | |
| 5852 | } | |
| 5853 | ||
| 09584414 JB |
5854 | \f |
| 5855 | ||
| 5856 | /* We manage the lifetimes of fixed_point_type_info objects by | |
| 5857 | attaching them to the objfile. Currently, these objects are | |
| 5858 | modified during construction, and GMP does not provide a way to | |
| 5859 | hash the contents of an mpq_t; so it's a bit of a pain to hash-cons | |
| 5860 | them. If we did do this, they could be moved to the per-BFD and | |
| 5861 | shared across objfiles. */ | |
| 5862 | typedef std::vector<std::unique_ptr<fixed_point_type_info>> | |
| 5863 | fixed_point_type_storage; | |
| 5864 | ||
| 5865 | /* Key used for managing the storage of fixed-point type info. */ | |
| 08b8a139 | 5866 | static const struct registry<objfile>::key<fixed_point_type_storage> |
| 09584414 JB |
5867 | fixed_point_objfile_key; |
| 5868 | ||
| 5869 | /* See gdbtypes.h. */ | |
| 5870 | ||
| 2a12c336 | 5871 | void |
| 09584414 JB |
5872 | allocate_fixed_point_type_info (struct type *type) |
| 5873 | { | |
| 6b62451a | 5874 | auto up = std::make_unique<fixed_point_type_info> (); |
| 2a12c336 | 5875 | fixed_point_type_info *info; |
| 09584414 | 5876 | |
| 30625020 | 5877 | if (type->is_objfile_owned ()) |
| 09584414 JB |
5878 | { |
| 5879 | fixed_point_type_storage *storage | |
| 6ac37371 | 5880 | = fixed_point_objfile_key.get (type->objfile_owner ()); |
| 09584414 | 5881 | if (storage == nullptr) |
| 6ac37371 | 5882 | storage = fixed_point_objfile_key.emplace (type->objfile_owner ()); |
| 2a12c336 | 5883 | info = up.get (); |
| 09584414 JB |
5884 | storage->push_back (std::move (up)); |
| 5885 | } | |
| 5886 | else | |
| 5887 | { | |
| 5888 | /* We just leak the memory, because that's what we do generally | |
| 5889 | for non-objfile-attached types. */ | |
| 2a12c336 | 5890 | info = up.release (); |
| 09584414 JB |
5891 | } |
| 5892 | ||
| 2a12c336 | 5893 | type->set_fixed_point_info (info); |
| 09584414 JB |
5894 | } |
| 5895 | ||
| 5896 | /* See gdbtypes.h. */ | |
| 5897 | ||
| 5898 | bool | |
| 5899 | is_fixed_point_type (struct type *type) | |
| 5900 | { | |
| 5901 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) | |
| 27710edb | 5902 | type = check_typedef (type)->target_type (); |
| 09584414 JB |
5903 | type = check_typedef (type); |
| 5904 | ||
| 5905 | return type->code () == TYPE_CODE_FIXED_POINT; | |
| 5906 | } | |
| 5907 | ||
| 5908 | /* See gdbtypes.h. */ | |
| 5909 | ||
| 5910 | struct type * | |
| d19937a7 | 5911 | type::fixed_point_type_base_type () |
| 09584414 | 5912 | { |
| d19937a7 JB |
5913 | struct type *type = this; |
| 5914 | ||
| 09584414 | 5915 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) |
| 27710edb | 5916 | type = check_typedef (type)->target_type (); |
| 09584414 JB |
5917 | type = check_typedef (type); |
| 5918 | ||
| 5919 | gdb_assert (type->code () == TYPE_CODE_FIXED_POINT); | |
| 5920 | return type; | |
| 5921 | } | |
| 5922 | ||
| 5923 | /* See gdbtypes.h. */ | |
| 5924 | ||
| 5925 | const gdb_mpq & | |
| e6fcee3a | 5926 | type::fixed_point_scaling_factor () |
| 09584414 | 5927 | { |
| e6fcee3a | 5928 | struct type *type = this->fixed_point_type_base_type (); |
| 09584414 | 5929 | |
| 2a12c336 | 5930 | return type->fixed_point_info ().scaling_factor; |
| 09584414 JB |
5931 | } |
| 5932 | ||
| 2774f2da TV |
5933 | /* See gdbtypes.h. */ |
| 5934 | ||
| 5935 | void | |
| 5936 | type::alloc_fields (unsigned int nfields, bool init) | |
| 5937 | { | |
| 5938 | this->set_num_fields (nfields); | |
| 5939 | ||
| 5940 | if (nfields == 0) | |
| 5941 | { | |
| 5942 | this->main_type->flds_bnds.fields = nullptr; | |
| 5943 | return; | |
| 5944 | } | |
| 5945 | ||
| 89495c33 | 5946 | size_t size = nfields * sizeof (struct field); |
| 2774f2da TV |
5947 | struct field *fields |
| 5948 | = (struct field *) (init | |
| 5949 | ? TYPE_ZALLOC (this, size) | |
| 5950 | : TYPE_ALLOC (this, size)); | |
| 5951 | ||
| 5952 | this->main_type->flds_bnds.fields = fields; | |
| 5953 | } | |
| 5954 | ||
| 5955 | /* See gdbtypes.h. */ | |
| 5956 | ||
| 5957 | void | |
| 5958 | type::copy_fields (struct type *src) | |
| 5959 | { | |
| 5960 | unsigned int nfields = src->num_fields (); | |
| 5961 | alloc_fields (nfields, false); | |
| 5962 | if (nfields == 0) | |
| 5963 | return; | |
| 5964 | ||
| 89495c33 TT |
5965 | size_t size = nfields * sizeof (struct field); |
| 5966 | memcpy (this->fields ().data (), src->fields ().data (), size); | |
| 2774f2da TV |
5967 | } |
| 5968 | ||
| 5969 | /* See gdbtypes.h. */ | |
| 5970 | ||
| 5971 | void | |
| 5972 | type::copy_fields (std::vector<struct field> &src) | |
| 5973 | { | |
| 5974 | unsigned int nfields = src.size (); | |
| 5975 | alloc_fields (nfields, false); | |
| 5976 | if (nfields == 0) | |
| 5977 | return; | |
| 5978 | ||
| 89495c33 TT |
5979 | size_t size = nfields * sizeof (struct field); |
| 5980 | memcpy (this->fields ().data (), src.data (), size); | |
| 2774f2da | 5981 | } |
| 84914f59 | 5982 | |
| 76fc0f62 TT |
5983 | /* See gdbtypes.h. */ |
| 5984 | ||
| 5985 | bool | |
| 5986 | type::is_string_like () | |
| 5987 | { | |
| 5988 | const language_defn *defn = language_def (this->language ()); | |
| 5989 | return defn->is_string_type_p (this); | |
| 5990 | } | |
| 5991 | ||
| 5992 | /* See gdbtypes.h. */ | |
| 5993 | ||
| 84914f59 TT |
5994 | bool |
| 5995 | type::is_array_like () | |
| 5996 | { | |
| 5997 | if (code () == TYPE_CODE_ARRAY) | |
| 5998 | return true; | |
| 76fc0f62 TT |
5999 | const language_defn *defn = language_def (this->language ()); |
| 6000 | return defn->is_array_like (this); | |
| 84914f59 TT |
6001 | } |
| 6002 | ||
| 09584414 JB |
6003 | \f |
| 6004 | ||
| cb275538 | 6005 | static const registry<gdbarch>::key<struct builtin_type> gdbtypes_data; |
| 000177f0 | 6006 | |
| cb275538 TT |
6007 | static struct builtin_type * |
| 6008 | create_gdbtypes_data (struct gdbarch *gdbarch) | |
| 000177f0 | 6009 | { |
| cb275538 | 6010 | struct builtin_type *builtin_type = new struct builtin_type; |
| 000177f0 | 6011 | |
| cc495054 TT |
6012 | type_allocator alloc (gdbarch); |
| 6013 | ||
| 46bf5051 | 6014 | /* Basic types. */ |
| e9bb382b | 6015 | builtin_type->builtin_void |
| cc495054 | 6016 | = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
| e9bb382b | 6017 | builtin_type->builtin_char |
| 2d39ccd3 | 6018 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
| e9bb382b | 6019 | !gdbarch_char_signed (gdbarch), "char"); |
| 15152a54 | 6020 | builtin_type->builtin_char->set_has_no_signedness (true); |
| e9bb382b | 6021 | builtin_type->builtin_signed_char |
| 2d39ccd3 | 6022 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
| e9bb382b UW |
6023 | 0, "signed char"); |
| 6024 | builtin_type->builtin_unsigned_char | |
| 2d39ccd3 | 6025 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
| e9bb382b UW |
6026 | 1, "unsigned char"); |
| 6027 | builtin_type->builtin_short | |
| 2d39ccd3 | 6028 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
| e9bb382b UW |
6029 | 0, "short"); |
| 6030 | builtin_type->builtin_unsigned_short | |
| 2d39ccd3 | 6031 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
| e9bb382b UW |
6032 | 1, "unsigned short"); |
| 6033 | builtin_type->builtin_int | |
| 2d39ccd3 | 6034 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
| e9bb382b UW |
6035 | 0, "int"); |
| 6036 | builtin_type->builtin_unsigned_int | |
| 2d39ccd3 | 6037 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
| e9bb382b UW |
6038 | 1, "unsigned int"); |
| 6039 | builtin_type->builtin_long | |
| 2d39ccd3 | 6040 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
| e9bb382b UW |
6041 | 0, "long"); |
| 6042 | builtin_type->builtin_unsigned_long | |
| 2d39ccd3 | 6043 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
| e9bb382b UW |
6044 | 1, "unsigned long"); |
| 6045 | builtin_type->builtin_long_long | |
| 2d39ccd3 | 6046 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
| e9bb382b UW |
6047 | 0, "long long"); |
| 6048 | builtin_type->builtin_unsigned_long_long | |
| 2d39ccd3 | 6049 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
| e9bb382b | 6050 | 1, "unsigned long long"); |
| a6d0f249 | 6051 | builtin_type->builtin_half |
| 77c5f496 | 6052 | = init_float_type (alloc, gdbarch_half_bit (gdbarch), |
| a6d0f249 | 6053 | "half", gdbarch_half_format (gdbarch)); |
| 70bd8e24 | 6054 | builtin_type->builtin_float |
| 77c5f496 | 6055 | = init_float_type (alloc, gdbarch_float_bit (gdbarch), |
| 27067745 | 6056 | "float", gdbarch_float_format (gdbarch)); |
| 2a67f09d | 6057 | builtin_type->builtin_bfloat16 |
| 77c5f496 | 6058 | = init_float_type (alloc, gdbarch_bfloat16_bit (gdbarch), |
| 2a67f09d | 6059 | "bfloat16", gdbarch_bfloat16_format (gdbarch)); |
| 70bd8e24 | 6060 | builtin_type->builtin_double |
| 77c5f496 | 6061 | = init_float_type (alloc, gdbarch_double_bit (gdbarch), |
| 27067745 | 6062 | "double", gdbarch_double_format (gdbarch)); |
| 70bd8e24 | 6063 | builtin_type->builtin_long_double |
| 77c5f496 | 6064 | = init_float_type (alloc, gdbarch_long_double_bit (gdbarch), |
| 27067745 | 6065 | "long double", gdbarch_long_double_format (gdbarch)); |
| 70bd8e24 | 6066 | builtin_type->builtin_complex |
| 5b930b45 | 6067 | = init_complex_type ("complex", builtin_type->builtin_float); |
| 70bd8e24 | 6068 | builtin_type->builtin_double_complex |
| 5b930b45 | 6069 | = init_complex_type ("double complex", builtin_type->builtin_double); |
| e9bb382b | 6070 | builtin_type->builtin_string |
| cc495054 | 6071 | = alloc.new_type (TYPE_CODE_STRING, TARGET_CHAR_BIT, "string"); |
| e9bb382b | 6072 | builtin_type->builtin_bool |
| 46c04ea3 | 6073 | = init_boolean_type (alloc, TARGET_CHAR_BIT, 1, "bool"); |
| 000177f0 | 6074 | |
| 7678ef8f TJB |
6075 | /* The following three are about decimal floating point types, which |
| 6076 | are 32-bits, 64-bits and 128-bits respectively. */ | |
| 6077 | builtin_type->builtin_decfloat | |
| 0776344a | 6078 | = init_decfloat_type (alloc, 32, "_Decimal32"); |
| 7678ef8f | 6079 | builtin_type->builtin_decdouble |
| 0776344a | 6080 | = init_decfloat_type (alloc, 64, "_Decimal64"); |
| 7678ef8f | 6081 | builtin_type->builtin_declong |
| 0776344a | 6082 | = init_decfloat_type (alloc, 128, "_Decimal128"); |
| 7678ef8f | 6083 | |
| 69feb676 | 6084 | /* "True" character types. */ |
| e9bb382b | 6085 | builtin_type->builtin_true_char |
| f50b437c | 6086 | = init_character_type (alloc, TARGET_CHAR_BIT, 0, "true character"); |
| e9bb382b | 6087 | builtin_type->builtin_true_unsigned_char |
| f50b437c | 6088 | = init_character_type (alloc, TARGET_CHAR_BIT, 1, "true character"); |
| 69feb676 | 6089 | |
| df4df182 | 6090 | /* Fixed-size integer types. */ |
| e9bb382b | 6091 | builtin_type->builtin_int0 |
| 2d39ccd3 | 6092 | = init_integer_type (alloc, 0, 0, "int0_t"); |
| e9bb382b | 6093 | builtin_type->builtin_int8 |
| 2d39ccd3 | 6094 | = init_integer_type (alloc, 8, 0, "int8_t"); |
| e9bb382b | 6095 | builtin_type->builtin_uint8 |
| 2d39ccd3 | 6096 | = init_integer_type (alloc, 8, 1, "uint8_t"); |
| e9bb382b | 6097 | builtin_type->builtin_int16 |
| 2d39ccd3 | 6098 | = init_integer_type (alloc, 16, 0, "int16_t"); |
| e9bb382b | 6099 | builtin_type->builtin_uint16 |
| 2d39ccd3 | 6100 | = init_integer_type (alloc, 16, 1, "uint16_t"); |
| d1908f2d | 6101 | builtin_type->builtin_int24 |
| 2d39ccd3 | 6102 | = init_integer_type (alloc, 24, 0, "int24_t"); |
| d1908f2d | 6103 | builtin_type->builtin_uint24 |
| 2d39ccd3 | 6104 | = init_integer_type (alloc, 24, 1, "uint24_t"); |
| e9bb382b | 6105 | builtin_type->builtin_int32 |
| 2d39ccd3 | 6106 | = init_integer_type (alloc, 32, 0, "int32_t"); |
| e9bb382b | 6107 | builtin_type->builtin_uint32 |
| 2d39ccd3 | 6108 | = init_integer_type (alloc, 32, 1, "uint32_t"); |
| e9bb382b | 6109 | builtin_type->builtin_int64 |
| 2d39ccd3 | 6110 | = init_integer_type (alloc, 64, 0, "int64_t"); |
| e9bb382b | 6111 | builtin_type->builtin_uint64 |
| 2d39ccd3 | 6112 | = init_integer_type (alloc, 64, 1, "uint64_t"); |
| e9bb382b | 6113 | builtin_type->builtin_int128 |
| 2d39ccd3 | 6114 | = init_integer_type (alloc, 128, 0, "int128_t"); |
| e9bb382b | 6115 | builtin_type->builtin_uint128 |
| 2d39ccd3 | 6116 | = init_integer_type (alloc, 128, 1, "uint128_t"); |
| 314ad88d PA |
6117 | |
| 6118 | builtin_type->builtin_int8->set_instance_flags | |
| 6119 | (builtin_type->builtin_int8->instance_flags () | |
| 6120 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
| 6121 | ||
| 6122 | builtin_type->builtin_uint8->set_instance_flags | |
| 6123 | (builtin_type->builtin_uint8->instance_flags () | |
| 6124 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
| df4df182 | 6125 | |
| 9a22f0d0 PM |
6126 | /* Wide character types. */ |
| 6127 | builtin_type->builtin_char16 | |
| 2d39ccd3 | 6128 | = init_integer_type (alloc, 16, 1, "char16_t"); |
| 9a22f0d0 | 6129 | builtin_type->builtin_char32 |
| 2d39ccd3 | 6130 | = init_integer_type (alloc, 32, 1, "char32_t"); |
| 53375380 | 6131 | builtin_type->builtin_wchar |
| 2d39ccd3 | 6132 | = init_integer_type (alloc, gdbarch_wchar_bit (gdbarch), |
| 53375380 | 6133 | !gdbarch_wchar_signed (gdbarch), "wchar_t"); |
| 9a22f0d0 | 6134 | |
| 46bf5051 | 6135 | /* Default data/code pointer types. */ |
| e9bb382b UW |
6136 | builtin_type->builtin_data_ptr |
| 6137 | = lookup_pointer_type (builtin_type->builtin_void); | |
| 6138 | builtin_type->builtin_func_ptr | |
| 6139 | = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); | |
| 0875794a JK |
6140 | builtin_type->builtin_func_func |
| 6141 | = lookup_function_type (builtin_type->builtin_func_ptr); | |
| 46bf5051 | 6142 | |
| 78267919 | 6143 | /* This type represents a GDB internal function. */ |
| e9bb382b | 6144 | builtin_type->internal_fn |
| cc495054 TT |
6145 | = alloc.new_type (TYPE_CODE_INTERNAL_FUNCTION, 0, |
| 6146 | "<internal function>"); | |
| 78267919 | 6147 | |
| e81e7f5e SC |
6148 | /* This type represents an xmethod. */ |
| 6149 | builtin_type->xmethod | |
| cc495054 | 6150 | = alloc.new_type (TYPE_CODE_XMETHOD, 0, "<xmethod>"); |
| e81e7f5e | 6151 | |
| a9a775da TT |
6152 | /* This type represents a type that was unrecognized in symbol read-in. */ |
| 6153 | builtin_type->builtin_error | |
| 6154 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<unknown type>"); | |
| 6155 | ||
| 6156 | /* The following set of types is used for symbols with no | |
| 6157 | debug information. */ | |
| 6158 | builtin_type->nodebug_text_symbol | |
| 6159 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
| 6160 | "<text variable, no debug info>"); | |
| 6161 | ||
| 6162 | builtin_type->nodebug_text_gnu_ifunc_symbol | |
| 6163 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
| 6164 | "<text gnu-indirect-function variable, no debug info>"); | |
| 6165 | builtin_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true); | |
| 6166 | ||
| 6167 | builtin_type->nodebug_got_plt_symbol | |
| 6168 | = init_pointer_type (alloc, gdbarch_addr_bit (gdbarch), | |
| 6169 | "<text from jump slot in .got.plt, no debug info>", | |
| 6170 | builtin_type->nodebug_text_symbol); | |
| 6171 | builtin_type->nodebug_data_symbol | |
| 6172 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<data variable, no debug info>"); | |
| 6173 | builtin_type->nodebug_unknown_symbol | |
| 6174 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
| 6175 | "<variable (not text or data), no debug info>"); | |
| 6176 | builtin_type->nodebug_tls_symbol | |
| 6177 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
| 6178 | "<thread local variable, no debug info>"); | |
| 6179 | ||
| 6180 | /* NOTE: on some targets, addresses and pointers are not necessarily | |
| 6181 | the same. | |
| 6182 | ||
| 6183 | The upshot is: | |
| 6184 | - gdb's `struct type' always describes the target's | |
| 6185 | representation. | |
| 6186 | - gdb's `struct value' objects should always hold values in | |
| 6187 | target form. | |
| 6188 | - gdb's CORE_ADDR values are addresses in the unified virtual | |
| 6189 | address space that the assembler and linker work with. Thus, | |
| 6190 | since target_read_memory takes a CORE_ADDR as an argument, it | |
| 6191 | can access any memory on the target, even if the processor has | |
| 6192 | separate code and data address spaces. | |
| 6193 | ||
| 6194 | In this context, builtin_type->builtin_core_addr is a bit odd: | |
| 6195 | it's a target type for a value the target will never see. It's | |
| 6196 | only used to hold the values of (typeless) linker symbols, which | |
| 6197 | are indeed in the unified virtual address space. */ | |
| 6198 | ||
| 6199 | builtin_type->builtin_core_addr | |
| 6200 | = init_integer_type (alloc, gdbarch_addr_bit (gdbarch), 1, | |
| 6201 | "__CORE_ADDR"); | |
| 46bf5051 UW |
6202 | return builtin_type; |
| 6203 | } | |
| 6204 | ||
| cb275538 TT |
6205 | const struct builtin_type * |
| 6206 | builtin_type (struct gdbarch *gdbarch) | |
| 6207 | { | |
| 6208 | struct builtin_type *result = gdbtypes_data.get (gdbarch); | |
| 6209 | if (result == nullptr) | |
| 6210 | { | |
| 6211 | result = create_gdbtypes_data (gdbarch); | |
| 6212 | gdbtypes_data.set (gdbarch, result); | |
| 6213 | } | |
| 6214 | return result; | |
| 6215 | } | |
| 6216 | ||
| 2d1bc552 | 6217 | const struct builtin_type * |
| a8ed3dde | 6218 | builtin_type (struct objfile *objfile) |
| 46bf5051 | 6219 | { |
| 2d1bc552 | 6220 | return builtin_type (objfile->arch ()); |
| 000177f0 AC |
6221 | } |
| 6222 | ||
| 4b42385c | 6223 | /* See dwarf2/call-site.h. */ |
| b84aaada SM |
6224 | |
| 6225 | CORE_ADDR | |
| 6226 | call_site::pc () const | |
| 6227 | { | |
| 4b42385c GL |
6228 | /* dwarf2_per_objfile is defined in dwarf/read.c, so if that is disabled |
| 6229 | at configure time, we won't be able to use this relocate function. | |
| 6230 | This is dwarf-specific, and would ideally be in call-site.h, but | |
| 6231 | including dwarf2/read.h in dwarf2/call-site.h will lead to things being | |
| 6232 | included in the wrong order and many compilation errors will happen. | |
| 6233 | This is the next best thing. */ | |
| 6234 | #if defined(DWARF_FORMAT_AVAILABLE) | |
| 1e73d09f | 6235 | return per_objfile->relocate (m_unrelocated_pc); |
| 4b42385c GL |
6236 | #else |
| 6237 | gdb_assert_not_reached ("unexpected call_site object found"); | |
| 6238 | #endif | |
| b84aaada SM |
6239 | } |
| 6240 | ||
| 5fe70629 | 6241 | INIT_GDB_FILE (gdbtypes) |
| c906108c | 6242 | { |
| ccce17b0 YQ |
6243 | add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug, |
| 6244 | _("Set debugging of C++ overloading."), | |
| 6245 | _("Show debugging of C++ overloading."), | |
| 6246 | _("When enabled, ranking of the " | |
| 6247 | "functions is displayed."), | |
| 6248 | NULL, | |
| 6249 | show_overload_debug, | |
| 6250 | &setdebuglist, &showdebuglist); | |
| 5674de60 | 6251 | |
| 7ba81444 | 6252 | /* Add user knob for controlling resolution of opaque types. */ |
| 5674de60 | 6253 | add_setshow_boolean_cmd ("opaque-type-resolution", class_support, |
| 3e43a32a | 6254 | &opaque_type_resolution, |
| 0fd0f223 TT |
6255 | _("\ |
| 6256 | Set resolution of opaque struct/class/union types."), | |
| 6257 | _("\ | |
| 6258 | Show resolution of opaque struct/class/union types."), | |
| 3e43a32a | 6259 | NULL, NULL, |
| 5674de60 UW |
6260 | show_opaque_type_resolution, |
| 6261 | &setlist, &showlist); | |
| a451cb65 KS |
6262 | |
| 6263 | /* Add an option to permit non-strict type checking. */ | |
| 6264 | add_setshow_boolean_cmd ("type", class_support, | |
| 6265 | &strict_type_checking, | |
| 6266 | _("Set strict type checking."), | |
| 6267 | _("Show strict type checking."), | |
| 6268 | NULL, NULL, | |
| 6269 | show_strict_type_checking, | |
| 6270 | &setchecklist, &showchecklist); | |
| c906108c | 6271 | } |