]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Support routines for manipulating internal types for GDB. |
4f2aea11 | 2 | |
d01e8234 | 3 | Copyright (C) 1992-2025 Free Software Foundation, Inc. |
4f2aea11 | 4 | |
c906108c SS |
5 | Contributed by Cygnus Support, using pieces from other GDB modules. |
6 | ||
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 21 | |
c906108c SS |
22 | #include "bfd.h" |
23 | #include "symtab.h" | |
24 | #include "symfile.h" | |
25 | #include "objfiles.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "expression.h" | |
28 | #include "language.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "demangle.h" | |
32 | #include "complaints.h" | |
5b9707eb | 33 | #include "cli/cli-cmds.h" |
015a42b4 | 34 | #include "cp-abi.h" |
ae5a43e0 | 35 | #include "hashtab.h" |
8de20a37 | 36 | #include "cp-support.h" |
ca092b61 | 37 | #include "bcache.h" |
82ca8957 | 38 | #include "dwarf2/loc.h" |
b84aaada | 39 | #include "dwarf2/read.h" |
80180f79 | 40 | #include "gdbcore.h" |
1841ee5d | 41 | #include "floatformat.h" |
a5c641b5 | 42 | #include "f-lang.h" |
ef83a141 | 43 | #include <algorithm> |
09584414 | 44 | #include "gmp-utils.h" |
84914f59 TT |
45 | #include "rust-lang.h" |
46 | #include "ada-lang.h" | |
8d6a3c8e | 47 | #include "extract-store-integer.h" |
ac3aafc7 | 48 | |
ac03c8d8 TT |
49 | /* The value of an invalid conversion badness. */ |
50 | #define INVALID_CONVERSION 100 | |
51 | ||
5f59e7e0 | 52 | static struct dynamic_prop_list * |
53 | copy_dynamic_prop_list (struct obstack *, struct dynamic_prop_list *); | |
54 | ||
6403aeea SW |
55 | /* Initialize BADNESS constants. */ |
56 | ||
ac03c8d8 | 57 | const struct rank LENGTH_MISMATCH_BADNESS = {INVALID_CONVERSION,0}; |
6403aeea | 58 | |
ac03c8d8 TT |
59 | const struct rank TOO_FEW_PARAMS_BADNESS = {INVALID_CONVERSION,0}; |
60 | const struct rank INCOMPATIBLE_TYPE_BADNESS = {INVALID_CONVERSION,0}; | |
6403aeea | 61 | |
a9d5ef47 | 62 | const struct rank EXACT_MATCH_BADNESS = {0,0}; |
6403aeea | 63 | |
a9d5ef47 SW |
64 | const struct rank INTEGER_PROMOTION_BADNESS = {1,0}; |
65 | const struct rank FLOAT_PROMOTION_BADNESS = {1,0}; | |
66 | const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0}; | |
e15c3eb4 | 67 | const struct rank CV_CONVERSION_BADNESS = {1, 0}; |
a9d5ef47 SW |
68 | const struct rank INTEGER_CONVERSION_BADNESS = {2,0}; |
69 | const struct rank FLOAT_CONVERSION_BADNESS = {2,0}; | |
70 | const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0}; | |
71 | const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0}; | |
5b4f6e25 | 72 | const struct rank BOOL_CONVERSION_BADNESS = {3,0}; |
a9d5ef47 SW |
73 | const struct rank BASE_CONVERSION_BADNESS = {2,0}; |
74 | const struct rank REFERENCE_CONVERSION_BADNESS = {2,0}; | |
06acc08f | 75 | const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1}; |
da096638 | 76 | const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0}; |
a9d5ef47 | 77 | const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0}; |
a451cb65 | 78 | const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0}; |
1d2f86b6 | 79 | const struct rank VARARG_BADNESS = {4, 0}; |
6403aeea | 80 | |
8da61cc4 | 81 | /* Floatformat pairs. */ |
f9e9243a UW |
82 | const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = { |
83 | &floatformat_ieee_half_big, | |
84 | &floatformat_ieee_half_little | |
85 | }; | |
8da61cc4 DJ |
86 | const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = { |
87 | &floatformat_ieee_single_big, | |
88 | &floatformat_ieee_single_little | |
89 | }; | |
90 | const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = { | |
91 | &floatformat_ieee_double_big, | |
92 | &floatformat_ieee_double_little | |
93 | }; | |
552f1157 TY |
94 | const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN] = { |
95 | &floatformat_ieee_quad_big, | |
96 | &floatformat_ieee_quad_little | |
97 | }; | |
8da61cc4 DJ |
98 | const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = { |
99 | &floatformat_ieee_double_big, | |
100 | &floatformat_ieee_double_littlebyte_bigword | |
101 | }; | |
102 | const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = { | |
103 | &floatformat_i387_ext, | |
104 | &floatformat_i387_ext | |
105 | }; | |
106 | const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = { | |
107 | &floatformat_m68881_ext, | |
108 | &floatformat_m68881_ext | |
109 | }; | |
110 | const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = { | |
111 | &floatformat_arm_ext_big, | |
112 | &floatformat_arm_ext_littlebyte_bigword | |
113 | }; | |
114 | const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = { | |
115 | &floatformat_ia64_spill_big, | |
116 | &floatformat_ia64_spill_little | |
117 | }; | |
8da61cc4 DJ |
118 | const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = { |
119 | &floatformat_vax_f, | |
120 | &floatformat_vax_f | |
121 | }; | |
122 | const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = { | |
123 | &floatformat_vax_d, | |
124 | &floatformat_vax_d | |
125 | }; | |
b14d30e1 | 126 | const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = { |
f5aee5ee AM |
127 | &floatformat_ibm_long_double_big, |
128 | &floatformat_ibm_long_double_little | |
b14d30e1 | 129 | }; |
2a67f09d FW |
130 | const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = { |
131 | &floatformat_bfloat16_big, | |
132 | &floatformat_bfloat16_little | |
133 | }; | |
8da61cc4 | 134 | |
2873700e KS |
135 | /* Should opaque types be resolved? */ |
136 | ||
491144b5 | 137 | static bool opaque_type_resolution = true; |
2873700e | 138 | |
79bb1944 | 139 | /* See gdbtypes.h. */ |
2873700e KS |
140 | |
141 | unsigned int overload_debug = 0; | |
142 | ||
a451cb65 KS |
143 | /* A flag to enable strict type checking. */ |
144 | ||
491144b5 | 145 | static bool strict_type_checking = true; |
a451cb65 | 146 | |
2873700e | 147 | /* A function to show whether opaque types are resolved. */ |
5212577a | 148 | |
920d2a44 AC |
149 | static void |
150 | show_opaque_type_resolution (struct ui_file *file, int from_tty, | |
7ba81444 MS |
151 | struct cmd_list_element *c, |
152 | const char *value) | |
920d2a44 | 153 | { |
6cb06a8c TT |
154 | gdb_printf (file, _("Resolution of opaque struct/class/union types " |
155 | "(if set before loading symbols) is %s.\n"), | |
156 | value); | |
920d2a44 AC |
157 | } |
158 | ||
2873700e | 159 | /* A function to show whether C++ overload debugging is enabled. */ |
5212577a | 160 | |
920d2a44 AC |
161 | static void |
162 | show_overload_debug (struct ui_file *file, int from_tty, | |
163 | struct cmd_list_element *c, const char *value) | |
164 | { | |
6cb06a8c TT |
165 | gdb_printf (file, _("Debugging of C++ overloading is %s.\n"), |
166 | value); | |
920d2a44 | 167 | } |
c906108c | 168 | |
a451cb65 KS |
169 | /* A function to show the status of strict type checking. */ |
170 | ||
171 | static void | |
172 | show_strict_type_checking (struct ui_file *file, int from_tty, | |
173 | struct cmd_list_element *c, const char *value) | |
174 | { | |
6cb06a8c | 175 | gdb_printf (file, _("Strict type checking is %s.\n"), value); |
a451cb65 KS |
176 | } |
177 | ||
5212577a | 178 | \f |
6a4d297c TT |
179 | /* Helper function to initialize a newly allocated type. Set type code |
180 | to CODE and initialize the type-specific fields accordingly. */ | |
181 | ||
182 | static void | |
183 | set_type_code (struct type *type, enum type_code code) | |
184 | { | |
185 | type->set_code (code); | |
186 | ||
187 | switch (code) | |
188 | { | |
189 | case TYPE_CODE_STRUCT: | |
190 | case TYPE_CODE_UNION: | |
191 | case TYPE_CODE_NAMESPACE: | |
192 | INIT_CPLUS_SPECIFIC (type); | |
193 | break; | |
194 | case TYPE_CODE_FLT: | |
195 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT; | |
196 | break; | |
197 | case TYPE_CODE_FUNC: | |
198 | INIT_FUNC_SPECIFIC (type); | |
199 | break; | |
200 | case TYPE_CODE_FIXED_POINT: | |
201 | INIT_FIXED_POINT_SPECIFIC (type); | |
202 | break; | |
203 | } | |
204 | } | |
205 | ||
206 | /* See gdbtypes.h. */ | |
207 | ||
208 | type * | |
209 | type_allocator::new_type () | |
210 | { | |
211 | if (m_smash) | |
212 | return m_data.type; | |
213 | ||
214 | obstack *obstack = (m_is_objfile | |
215 | ? &m_data.objfile->objfile_obstack | |
216 | : gdbarch_obstack (m_data.gdbarch)); | |
217 | ||
218 | /* Alloc the structure and start off with all fields zeroed. */ | |
219 | struct type *type = OBSTACK_ZALLOC (obstack, struct type); | |
220 | TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (obstack, struct main_type); | |
76fc0f62 | 221 | TYPE_MAIN_TYPE (type)->m_lang = m_lang; |
6a4d297c TT |
222 | |
223 | if (m_is_objfile) | |
224 | { | |
225 | OBJSTAT (m_data.objfile, n_types++); | |
226 | type->set_owner (m_data.objfile); | |
227 | } | |
228 | else | |
229 | type->set_owner (m_data.gdbarch); | |
230 | ||
231 | /* Initialize the fields that might not be zero. */ | |
232 | type->set_code (TYPE_CODE_UNDEF); | |
233 | TYPE_CHAIN (type) = type; /* Chain back to itself. */ | |
234 | ||
235 | return type; | |
236 | } | |
237 | ||
8ee511af | 238 | /* See gdbtypes.h. */ |
e9bb382b | 239 | |
6a4d297c TT |
240 | type * |
241 | type_allocator::new_type (enum type_code code, int bit, const char *name) | |
242 | { | |
243 | struct type *type = new_type (); | |
244 | set_type_code (type, code); | |
245 | gdb_assert ((bit % TARGET_CHAR_BIT) == 0); | |
246 | type->set_length (bit / TARGET_CHAR_BIT); | |
247 | ||
248 | if (name != nullptr) | |
249 | { | |
250 | obstack *obstack = (m_is_objfile | |
251 | ? &m_data.objfile->objfile_obstack | |
252 | : gdbarch_obstack (m_data.gdbarch)); | |
253 | type->set_name (obstack_strdup (obstack, name)); | |
254 | } | |
255 | ||
256 | return type; | |
257 | } | |
258 | ||
259 | /* See gdbtypes.h. */ | |
260 | ||
261 | gdbarch * | |
262 | type_allocator::arch () | |
263 | { | |
264 | if (m_smash) | |
265 | return m_data.type->arch (); | |
266 | if (m_is_objfile) | |
267 | return m_data.objfile->arch (); | |
268 | return m_data.gdbarch; | |
269 | } | |
270 | ||
271 | /* See gdbtypes.h. */ | |
272 | ||
8ee511af SM |
273 | gdbarch * |
274 | type::arch () const | |
e9bb382b | 275 | { |
2fabdf33 AB |
276 | struct gdbarch *arch; |
277 | ||
8ee511af SM |
278 | if (this->is_objfile_owned ()) |
279 | arch = this->objfile_owner ()->arch (); | |
e9bb382b | 280 | else |
8ee511af | 281 | arch = this->arch_owner (); |
2fabdf33 AB |
282 | |
283 | /* The ARCH can be NULL if TYPE is associated with neither an objfile nor | |
284 | a gdbarch, however, this is very rare, and even then, in most cases | |
8ee511af | 285 | that type::arch is called, we assume that a non-NULL value is |
2fabdf33 | 286 | returned. */ |
8ee511af | 287 | gdb_assert (arch != nullptr); |
2fabdf33 | 288 | return arch; |
e9bb382b UW |
289 | } |
290 | ||
99ad9427 YQ |
291 | /* See gdbtypes.h. */ |
292 | ||
293 | struct type * | |
294 | get_target_type (struct type *type) | |
295 | { | |
296 | if (type != NULL) | |
297 | { | |
27710edb | 298 | type = type->target_type (); |
99ad9427 YQ |
299 | if (type != NULL) |
300 | type = check_typedef (type); | |
301 | } | |
302 | ||
303 | return type; | |
304 | } | |
305 | ||
2e056931 SM |
306 | /* See gdbtypes.h. */ |
307 | ||
308 | unsigned int | |
309 | type_length_units (struct type *type) | |
310 | { | |
8ee511af | 311 | int unit_size = gdbarch_addressable_memory_unit_size (type->arch ()); |
2e056931 | 312 | |
df86565b | 313 | return type->length () / unit_size; |
2e056931 SM |
314 | } |
315 | ||
2fdde8f8 DJ |
316 | /* Alloc a new type instance structure, fill it with some defaults, |
317 | and point it at OLDTYPE. Allocate the new type instance from the | |
318 | same place as OLDTYPE. */ | |
319 | ||
320 | static struct type * | |
321 | alloc_type_instance (struct type *oldtype) | |
322 | { | |
323 | struct type *type; | |
324 | ||
325 | /* Allocate the structure. */ | |
326 | ||
30625020 | 327 | if (!oldtype->is_objfile_owned ()) |
8ee511af | 328 | type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type); |
2fdde8f8 | 329 | else |
6ac37371 | 330 | type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack, |
1deafd4e PA |
331 | struct type); |
332 | ||
2fdde8f8 DJ |
333 | TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype); |
334 | ||
335 | TYPE_CHAIN (type) = type; /* Chain back to itself for now. */ | |
336 | ||
c16abbde | 337 | return type; |
2fdde8f8 DJ |
338 | } |
339 | ||
340 | /* Clear all remnants of the previous type at TYPE, in preparation for | |
e9bb382b | 341 | replacing it with something else. Preserve owner information. */ |
5212577a | 342 | |
2fdde8f8 DJ |
343 | static void |
344 | smash_type (struct type *type) | |
345 | { | |
5b7d941b | 346 | bool objfile_owned = type->is_objfile_owned (); |
6ac37371 SM |
347 | objfile *objfile = type->objfile_owner (); |
348 | gdbarch *arch = type->arch_owner (); | |
e9bb382b | 349 | |
2fdde8f8 DJ |
350 | memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type)); |
351 | ||
e9bb382b | 352 | /* Restore owner information. */ |
5b7d941b SM |
353 | if (objfile_owned) |
354 | type->set_owner (objfile); | |
355 | else | |
356 | type->set_owner (arch); | |
e9bb382b | 357 | |
2fdde8f8 DJ |
358 | /* For now, delete the rings. */ |
359 | TYPE_CHAIN (type) = type; | |
360 | ||
361 | /* For now, leave the pointer/reference types alone. */ | |
362 | } | |
363 | ||
c906108c SS |
364 | /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points |
365 | to a pointer to memory where the pointer type should be stored. | |
366 | If *TYPEPTR is zero, update it to point to the pointer type we return. | |
367 | We allocate new memory if needed. */ | |
368 | ||
369 | struct type * | |
fba45db2 | 370 | make_pointer_type (struct type *type, struct type **typeptr) |
c906108c | 371 | { |
52f0bd74 | 372 | struct type *ntype; /* New type */ |
053cb41b | 373 | struct type *chain; |
c906108c SS |
374 | |
375 | ntype = TYPE_POINTER_TYPE (type); | |
376 | ||
c5aa993b | 377 | if (ntype) |
c906108c | 378 | { |
c5aa993b | 379 | if (typeptr == 0) |
7ba81444 MS |
380 | return ntype; /* Don't care about alloc, |
381 | and have new type. */ | |
c906108c | 382 | else if (*typeptr == 0) |
c5aa993b | 383 | { |
7ba81444 | 384 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 385 | return ntype; |
c5aa993b | 386 | } |
c906108c SS |
387 | } |
388 | ||
389 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
390 | { | |
9fa83a7a | 391 | ntype = type_allocator (type).new_type (); |
c906108c SS |
392 | if (typeptr) |
393 | *typeptr = ntype; | |
394 | } | |
7ba81444 | 395 | else /* We have storage, but need to reset it. */ |
c906108c SS |
396 | { |
397 | ntype = *typeptr; | |
053cb41b | 398 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 399 | smash_type (ntype); |
053cb41b | 400 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
401 | } |
402 | ||
8a50fdce | 403 | ntype->set_target_type (type); |
c906108c SS |
404 | TYPE_POINTER_TYPE (type) = ntype; |
405 | ||
5212577a | 406 | /* FIXME! Assumes the machine has only one representation for pointers! */ |
c906108c | 407 | |
b6cdbc9a | 408 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
67607e24 | 409 | ntype->set_code (TYPE_CODE_PTR); |
c906108c | 410 | |
67b2adb2 | 411 | /* Mark pointers as unsigned. The target converts between pointers |
76e71323 | 412 | and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and |
7ba81444 | 413 | gdbarch_address_to_pointer. */ |
653223d3 | 414 | ntype->set_is_unsigned (true); |
c5aa993b | 415 | |
053cb41b JB |
416 | /* Update the length of all the other variants of this type. */ |
417 | chain = TYPE_CHAIN (ntype); | |
418 | while (chain != ntype) | |
419 | { | |
df86565b | 420 | chain->set_length (ntype->length ()); |
053cb41b JB |
421 | chain = TYPE_CHAIN (chain); |
422 | } | |
423 | ||
c906108c SS |
424 | return ntype; |
425 | } | |
426 | ||
427 | /* Given a type TYPE, return a type of pointers to that type. | |
428 | May need to construct such a type if this is the first use. */ | |
429 | ||
430 | struct type * | |
fba45db2 | 431 | lookup_pointer_type (struct type *type) |
c906108c | 432 | { |
c5aa993b | 433 | return make_pointer_type (type, (struct type **) 0); |
c906108c SS |
434 | } |
435 | ||
7ba81444 MS |
436 | /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, |
437 | points to a pointer to memory where the reference type should be | |
438 | stored. If *TYPEPTR is zero, update it to point to the reference | |
3b224330 AV |
439 | type we return. We allocate new memory if needed. REFCODE denotes |
440 | the kind of reference type to lookup (lvalue or rvalue reference). */ | |
c906108c SS |
441 | |
442 | struct type * | |
3b224330 | 443 | make_reference_type (struct type *type, struct type **typeptr, |
dda83cd7 | 444 | enum type_code refcode) |
c906108c | 445 | { |
52f0bd74 | 446 | struct type *ntype; /* New type */ |
3b224330 | 447 | struct type **reftype; |
1e98b326 | 448 | struct type *chain; |
c906108c | 449 | |
3b224330 AV |
450 | gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
451 | ||
452 | ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type) | |
dda83cd7 | 453 | : TYPE_RVALUE_REFERENCE_TYPE (type)); |
c906108c | 454 | |
c5aa993b | 455 | if (ntype) |
c906108c | 456 | { |
c5aa993b | 457 | if (typeptr == 0) |
7ba81444 MS |
458 | return ntype; /* Don't care about alloc, |
459 | and have new type. */ | |
c906108c | 460 | else if (*typeptr == 0) |
c5aa993b | 461 | { |
7ba81444 | 462 | *typeptr = ntype; /* Tracking alloc, and have new type. */ |
c906108c | 463 | return ntype; |
c5aa993b | 464 | } |
c906108c SS |
465 | } |
466 | ||
467 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
468 | { | |
9fa83a7a | 469 | ntype = type_allocator (type).new_type (); |
c906108c SS |
470 | if (typeptr) |
471 | *typeptr = ntype; | |
472 | } | |
7ba81444 | 473 | else /* We have storage, but need to reset it. */ |
c906108c SS |
474 | { |
475 | ntype = *typeptr; | |
1e98b326 | 476 | chain = TYPE_CHAIN (ntype); |
2fdde8f8 | 477 | smash_type (ntype); |
1e98b326 | 478 | TYPE_CHAIN (ntype) = chain; |
c906108c SS |
479 | } |
480 | ||
8a50fdce | 481 | ntype->set_target_type (type); |
3b224330 | 482 | reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type) |
dda83cd7 | 483 | : &TYPE_RVALUE_REFERENCE_TYPE (type)); |
3b224330 AV |
484 | |
485 | *reftype = ntype; | |
c906108c | 486 | |
7ba81444 MS |
487 | /* FIXME! Assume the machine has only one representation for |
488 | references, and that it matches the (only) representation for | |
489 | pointers! */ | |
c906108c | 490 | |
b6cdbc9a | 491 | ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT); |
67607e24 | 492 | ntype->set_code (refcode); |
c5aa993b | 493 | |
3b224330 | 494 | *reftype = ntype; |
c906108c | 495 | |
1e98b326 JB |
496 | /* Update the length of all the other variants of this type. */ |
497 | chain = TYPE_CHAIN (ntype); | |
498 | while (chain != ntype) | |
499 | { | |
df86565b | 500 | chain->set_length (ntype->length ()); |
1e98b326 JB |
501 | chain = TYPE_CHAIN (chain); |
502 | } | |
503 | ||
c906108c SS |
504 | return ntype; |
505 | } | |
506 | ||
7ba81444 MS |
507 | /* Same as above, but caller doesn't care about memory allocation |
508 | details. */ | |
c906108c SS |
509 | |
510 | struct type * | |
3b224330 AV |
511 | lookup_reference_type (struct type *type, enum type_code refcode) |
512 | { | |
513 | return make_reference_type (type, (struct type **) 0, refcode); | |
514 | } | |
515 | ||
516 | /* Lookup the lvalue reference type for the type TYPE. */ | |
517 | ||
518 | struct type * | |
519 | lookup_lvalue_reference_type (struct type *type) | |
520 | { | |
521 | return lookup_reference_type (type, TYPE_CODE_REF); | |
522 | } | |
523 | ||
524 | /* Lookup the rvalue reference type for the type TYPE. */ | |
525 | ||
526 | struct type * | |
527 | lookup_rvalue_reference_type (struct type *type) | |
c906108c | 528 | { |
3b224330 | 529 | return lookup_reference_type (type, TYPE_CODE_RVALUE_REF); |
c906108c SS |
530 | } |
531 | ||
7ba81444 MS |
532 | /* Lookup a function type that returns type TYPE. TYPEPTR, if |
533 | nonzero, points to a pointer to memory where the function type | |
534 | should be stored. If *TYPEPTR is zero, update it to point to the | |
0c8b41f1 | 535 | function type we return. We allocate new memory if needed. */ |
c906108c SS |
536 | |
537 | struct type * | |
0c8b41f1 | 538 | make_function_type (struct type *type, struct type **typeptr) |
c906108c | 539 | { |
52f0bd74 | 540 | struct type *ntype; /* New type */ |
c906108c SS |
541 | |
542 | if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */ | |
543 | { | |
9fa83a7a | 544 | ntype = type_allocator (type).new_type (); |
c906108c SS |
545 | if (typeptr) |
546 | *typeptr = ntype; | |
547 | } | |
7ba81444 | 548 | else /* We have storage, but need to reset it. */ |
c906108c SS |
549 | { |
550 | ntype = *typeptr; | |
2fdde8f8 | 551 | smash_type (ntype); |
c906108c SS |
552 | } |
553 | ||
8a50fdce | 554 | ntype->set_target_type (type); |
c906108c | 555 | |
b6cdbc9a | 556 | ntype->set_length (1); |
67607e24 | 557 | ntype->set_code (TYPE_CODE_FUNC); |
c5aa993b | 558 | |
b6cdc2c1 JK |
559 | INIT_FUNC_SPECIFIC (ntype); |
560 | ||
c906108c SS |
561 | return ntype; |
562 | } | |
563 | ||
5aff8911 | 564 | /* See gdbtypes.h. */ |
71918a86 TT |
565 | |
566 | struct type * | |
5aff8911 JV |
567 | create_function_type (type_allocator &alloc, |
568 | struct type *return_type, | |
569 | int nparams, | |
570 | struct type **param_types) | |
71918a86 | 571 | { |
5aff8911 | 572 | struct type *fn = alloc.new_type (); |
71918a86 TT |
573 | int i; |
574 | ||
5aff8911 JV |
575 | make_function_type (return_type, &fn); |
576 | ||
e314d629 | 577 | if (nparams > 0) |
a6fb9c08 | 578 | { |
e314d629 TT |
579 | if (param_types[nparams - 1] == NULL) |
580 | { | |
581 | --nparams; | |
1d6286ed | 582 | fn->set_has_varargs (true); |
e314d629 | 583 | } |
78134374 | 584 | else if (check_typedef (param_types[nparams - 1])->code () |
e314d629 TT |
585 | == TYPE_CODE_VOID) |
586 | { | |
587 | --nparams; | |
588 | /* Caller should have ensured this. */ | |
589 | gdb_assert (nparams == 0); | |
27e69b7a | 590 | fn->set_is_prototyped (true); |
e314d629 | 591 | } |
54990598 | 592 | else |
27e69b7a | 593 | fn->set_is_prototyped (true); |
a6fb9c08 TT |
594 | } |
595 | ||
2774f2da | 596 | fn->alloc_fields (nparams); |
71918a86 | 597 | for (i = 0; i < nparams; ++i) |
5d14b6e5 | 598 | fn->field (i).set_type (param_types[i]); |
71918a86 TT |
599 | |
600 | return fn; | |
601 | } | |
602 | ||
5aff8911 JV |
603 | /* See gdbtypes.h. */ |
604 | ||
605 | struct type * | |
606 | lookup_function_type (struct type *return_type) | |
607 | { | |
608 | type_allocator alloc (return_type); | |
609 | return create_function_type (alloc, return_type, 0, nullptr); | |
610 | } | |
611 | ||
612 | /* See gdbtypes.h. */ | |
613 | ||
614 | struct type * | |
615 | lookup_function_type_with_arguments (struct type *return_type, | |
616 | int nparams, | |
617 | struct type **param_types) | |
618 | { | |
619 | type_allocator alloc (return_type); | |
620 | return create_function_type (alloc, return_type, nparams, param_types); | |
621 | } | |
622 | ||
69896a2c PA |
623 | /* Identify address space identifier by name -- return a |
624 | type_instance_flags. */ | |
5212577a | 625 | |
314ad88d | 626 | type_instance_flags |
69896a2c PA |
627 | address_space_name_to_type_instance_flags (struct gdbarch *gdbarch, |
628 | const char *space_identifier) | |
47663de5 | 629 | { |
314ad88d | 630 | type_instance_flags type_flags; |
d8734c88 | 631 | |
7ba81444 | 632 | /* Check for known address space delimiters. */ |
47663de5 | 633 | if (!strcmp (space_identifier, "code")) |
876cecd0 | 634 | return TYPE_INSTANCE_FLAG_CODE_SPACE; |
47663de5 | 635 | else if (!strcmp (space_identifier, "data")) |
876cecd0 | 636 | return TYPE_INSTANCE_FLAG_DATA_SPACE; |
5f11f355 | 637 | else if (gdbarch_address_class_name_to_type_flags_p (gdbarch) |
dda83cd7 | 638 | && gdbarch_address_class_name_to_type_flags (gdbarch, |
5f11f355 AC |
639 | space_identifier, |
640 | &type_flags)) | |
8b2dbe47 | 641 | return type_flags; |
47663de5 | 642 | else |
8a3fe4f8 | 643 | error (_("Unknown address space specifier: \"%s\""), space_identifier); |
47663de5 MS |
644 | } |
645 | ||
69896a2c | 646 | /* Identify address space identifier by type_instance_flags and return |
8f6606b6 | 647 | the string version of the address space name. */ |
47663de5 | 648 | |
321432c0 | 649 | const char * |
69896a2c PA |
650 | address_space_type_instance_flags_to_name (struct gdbarch *gdbarch, |
651 | type_instance_flags space_flag) | |
47663de5 | 652 | { |
876cecd0 | 653 | if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE) |
47663de5 | 654 | return "code"; |
876cecd0 | 655 | else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE) |
47663de5 | 656 | return "data"; |
876cecd0 | 657 | else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
dda83cd7 | 658 | && gdbarch_address_class_type_flags_to_name_p (gdbarch)) |
5f11f355 | 659 | return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag); |
47663de5 MS |
660 | else |
661 | return NULL; | |
662 | } | |
663 | ||
2fdde8f8 | 664 | /* Create a new type with instance flags NEW_FLAGS, based on TYPE. |
ad766c0a JB |
665 | |
666 | If STORAGE is non-NULL, create the new type instance there. | |
667 | STORAGE must be in the same obstack as TYPE. */ | |
47663de5 | 668 | |
b9362cc7 | 669 | static struct type * |
314ad88d | 670 | make_qualified_type (struct type *type, type_instance_flags new_flags, |
2fdde8f8 | 671 | struct type *storage) |
47663de5 MS |
672 | { |
673 | struct type *ntype; | |
674 | ||
675 | ntype = type; | |
5f61c20e JK |
676 | do |
677 | { | |
10242f36 | 678 | if (ntype->instance_flags () == new_flags) |
5f61c20e JK |
679 | return ntype; |
680 | ntype = TYPE_CHAIN (ntype); | |
681 | } | |
682 | while (ntype != type); | |
47663de5 | 683 | |
2fdde8f8 DJ |
684 | /* Create a new type instance. */ |
685 | if (storage == NULL) | |
686 | ntype = alloc_type_instance (type); | |
687 | else | |
688 | { | |
7ba81444 MS |
689 | /* If STORAGE was provided, it had better be in the same objfile |
690 | as TYPE. Otherwise, we can't link it into TYPE's cv chain: | |
691 | if one objfile is freed and the other kept, we'd have | |
692 | dangling pointers. */ | |
6ac37371 | 693 | gdb_assert (type->objfile_owner () == storage->objfile_owner ()); |
ad766c0a | 694 | |
2fdde8f8 DJ |
695 | ntype = storage; |
696 | TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type); | |
697 | TYPE_CHAIN (ntype) = ntype; | |
698 | } | |
47663de5 MS |
699 | |
700 | /* Pointers or references to the original type are not relevant to | |
2fdde8f8 | 701 | the new type. */ |
47663de5 MS |
702 | TYPE_POINTER_TYPE (ntype) = (struct type *) 0; |
703 | TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; | |
47663de5 | 704 | |
2fdde8f8 DJ |
705 | /* Chain the new qualified type to the old type. */ |
706 | TYPE_CHAIN (ntype) = TYPE_CHAIN (type); | |
707 | TYPE_CHAIN (type) = ntype; | |
708 | ||
709 | /* Now set the instance flags and return the new type. */ | |
314ad88d | 710 | ntype->set_instance_flags (new_flags); |
47663de5 | 711 | |
ab5d3da6 | 712 | /* Set length of new type to that of the original type. */ |
df86565b | 713 | ntype->set_length (type->length ()); |
ab5d3da6 | 714 | |
47663de5 MS |
715 | return ntype; |
716 | } | |
717 | ||
2fdde8f8 DJ |
718 | /* Make an address-space-delimited variant of a type -- a type that |
719 | is identical to the one supplied except that it has an address | |
720 | space attribute attached to it (such as "code" or "data"). | |
721 | ||
7ba81444 MS |
722 | The space attributes "code" and "data" are for Harvard |
723 | architectures. The address space attributes are for architectures | |
724 | which have alternately sized pointers or pointers with alternate | |
725 | representations. */ | |
2fdde8f8 DJ |
726 | |
727 | struct type * | |
314ad88d PA |
728 | make_type_with_address_space (struct type *type, |
729 | type_instance_flags space_flag) | |
2fdde8f8 | 730 | { |
314ad88d PA |
731 | type_instance_flags new_flags = ((type->instance_flags () |
732 | & ~(TYPE_INSTANCE_FLAG_CODE_SPACE | |
733 | | TYPE_INSTANCE_FLAG_DATA_SPACE | |
734 | | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)) | |
735 | | space_flag); | |
2fdde8f8 DJ |
736 | |
737 | return make_qualified_type (type, new_flags, NULL); | |
738 | } | |
c906108c SS |
739 | |
740 | /* Make a "c-v" variant of a type -- a type that is identical to the | |
741 | one supplied except that it may have const or volatile attributes | |
742 | CNST is a flag for setting the const attribute | |
743 | VOLTL is a flag for setting the volatile attribute | |
744 | TYPE is the base type whose variant we are creating. | |
c906108c | 745 | |
ad766c0a JB |
746 | If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to |
747 | storage to hold the new qualified type; *TYPEPTR and TYPE must be | |
748 | in the same objfile. Otherwise, allocate fresh memory for the new | |
8f6606b6 | 749 | type wherever TYPE lives. If TYPEPTR is non-zero, set it to the |
ad766c0a | 750 | new type we construct. */ |
5212577a | 751 | |
c906108c | 752 | struct type * |
7ba81444 MS |
753 | make_cv_type (int cnst, int voltl, |
754 | struct type *type, | |
755 | struct type **typeptr) | |
c906108c | 756 | { |
52f0bd74 | 757 | struct type *ntype; /* New type */ |
c906108c | 758 | |
314ad88d PA |
759 | type_instance_flags new_flags = (type->instance_flags () |
760 | & ~(TYPE_INSTANCE_FLAG_CONST | |
761 | | TYPE_INSTANCE_FLAG_VOLATILE)); | |
c906108c | 762 | |
c906108c | 763 | if (cnst) |
876cecd0 | 764 | new_flags |= TYPE_INSTANCE_FLAG_CONST; |
c906108c SS |
765 | |
766 | if (voltl) | |
876cecd0 | 767 | new_flags |= TYPE_INSTANCE_FLAG_VOLATILE; |
a02fd225 | 768 | |
2fdde8f8 | 769 | if (typeptr && *typeptr != NULL) |
a02fd225 | 770 | { |
ad766c0a JB |
771 | /* TYPE and *TYPEPTR must be in the same objfile. We can't have |
772 | a C-V variant chain that threads across objfiles: if one | |
773 | objfile gets freed, then the other has a broken C-V chain. | |
774 | ||
775 | This code used to try to copy over the main type from TYPE to | |
776 | *TYPEPTR if they were in different objfiles, but that's | |
777 | wrong, too: TYPE may have a field list or member function | |
778 | lists, which refer to types of their own, etc. etc. The | |
779 | whole shebang would need to be copied over recursively; you | |
780 | can't have inter-objfile pointers. The only thing to do is | |
781 | to leave stub types as stub types, and look them up afresh by | |
782 | name each time you encounter them. */ | |
6ac37371 | 783 | gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ()); |
2fdde8f8 DJ |
784 | } |
785 | ||
7ba81444 MS |
786 | ntype = make_qualified_type (type, new_flags, |
787 | typeptr ? *typeptr : NULL); | |
c906108c | 788 | |
2fdde8f8 DJ |
789 | if (typeptr != NULL) |
790 | *typeptr = ntype; | |
a02fd225 | 791 | |
2fdde8f8 | 792 | return ntype; |
a02fd225 | 793 | } |
c906108c | 794 | |
06d66ee9 TT |
795 | /* Make a 'restrict'-qualified version of TYPE. */ |
796 | ||
797 | struct type * | |
798 | make_restrict_type (struct type *type) | |
799 | { | |
800 | return make_qualified_type (type, | |
10242f36 | 801 | (type->instance_flags () |
06d66ee9 TT |
802 | | TYPE_INSTANCE_FLAG_RESTRICT), |
803 | NULL); | |
804 | } | |
805 | ||
f1660027 TT |
806 | /* Make a type without const, volatile, or restrict. */ |
807 | ||
808 | struct type * | |
809 | make_unqualified_type (struct type *type) | |
810 | { | |
811 | return make_qualified_type (type, | |
10242f36 | 812 | (type->instance_flags () |
f1660027 TT |
813 | & ~(TYPE_INSTANCE_FLAG_CONST |
814 | | TYPE_INSTANCE_FLAG_VOLATILE | |
815 | | TYPE_INSTANCE_FLAG_RESTRICT)), | |
816 | NULL); | |
817 | } | |
818 | ||
a2c2acaf MW |
819 | /* Make a '_Atomic'-qualified version of TYPE. */ |
820 | ||
821 | struct type * | |
822 | make_atomic_type (struct type *type) | |
823 | { | |
824 | return make_qualified_type (type, | |
10242f36 | 825 | (type->instance_flags () |
a2c2acaf MW |
826 | | TYPE_INSTANCE_FLAG_ATOMIC), |
827 | NULL); | |
828 | } | |
829 | ||
2fdde8f8 DJ |
830 | /* Replace the contents of ntype with the type *type. This changes the |
831 | contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus | |
bbc8c5a1 | 832 | the changes are propagated to all types in the TYPE_CHAIN. |
dd6bda65 | 833 | |
cda6c68a JB |
834 | In order to build recursive types, it's inevitable that we'll need |
835 | to update types in place --- but this sort of indiscriminate | |
836 | smashing is ugly, and needs to be replaced with something more | |
2fdde8f8 DJ |
837 | controlled. TYPE_MAIN_TYPE is a step in this direction; it's not |
838 | clear if more steps are needed. */ | |
5212577a | 839 | |
dd6bda65 DJ |
840 | void |
841 | replace_type (struct type *ntype, struct type *type) | |
842 | { | |
ab5d3da6 | 843 | struct type *chain; |
dd6bda65 | 844 | |
ad766c0a JB |
845 | /* These two types had better be in the same objfile. Otherwise, |
846 | the assignment of one type's main type structure to the other | |
847 | will produce a type with references to objects (names; field | |
848 | lists; etc.) allocated on an objfile other than its own. */ | |
6ac37371 | 849 | gdb_assert (ntype->objfile_owner () == type->objfile_owner ()); |
ad766c0a | 850 | |
2fdde8f8 | 851 | *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type); |
dd6bda65 | 852 | |
7ba81444 MS |
853 | /* The type length is not a part of the main type. Update it for |
854 | each type on the variant chain. */ | |
ab5d3da6 | 855 | chain = ntype; |
5f61c20e JK |
856 | do |
857 | { | |
858 | /* Assert that this element of the chain has no address-class bits | |
859 | set in its flags. Such type variants might have type lengths | |
860 | which are supposed to be different from the non-address-class | |
861 | variants. This assertion shouldn't ever be triggered because | |
862 | symbol readers which do construct address-class variants don't | |
863 | call replace_type(). */ | |
864 | gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0); | |
865 | ||
df86565b | 866 | chain->set_length (type->length ()); |
5f61c20e JK |
867 | chain = TYPE_CHAIN (chain); |
868 | } | |
869 | while (ntype != chain); | |
ab5d3da6 | 870 | |
2fdde8f8 DJ |
871 | /* Assert that the two types have equivalent instance qualifiers. |
872 | This should be true for at least all of our debug readers. */ | |
10242f36 | 873 | gdb_assert (ntype->instance_flags () == type->instance_flags ()); |
dd6bda65 DJ |
874 | } |
875 | ||
c906108c SS |
876 | /* Implement direct support for MEMBER_TYPE in GNU C++. |
877 | May need to construct such a type if this is the first use. | |
878 | The TYPE is the type of the member. The DOMAIN is the type | |
879 | of the aggregate that the member belongs to. */ | |
880 | ||
881 | struct type * | |
0d5de010 | 882 | lookup_memberptr_type (struct type *type, struct type *domain) |
c906108c | 883 | { |
52f0bd74 | 884 | struct type *mtype; |
c906108c | 885 | |
9fa83a7a | 886 | mtype = type_allocator (type).new_type (); |
0d5de010 | 887 | smash_to_memberptr_type (mtype, domain, type); |
c16abbde | 888 | return mtype; |
c906108c SS |
889 | } |
890 | ||
0d5de010 DJ |
891 | /* Return a pointer-to-method type, for a method of type TO_TYPE. */ |
892 | ||
893 | struct type * | |
894 | lookup_methodptr_type (struct type *to_type) | |
895 | { | |
896 | struct type *mtype; | |
897 | ||
9fa83a7a | 898 | mtype = type_allocator (to_type).new_type (); |
0b92b5bb | 899 | smash_to_methodptr_type (mtype, to_type); |
0d5de010 DJ |
900 | return mtype; |
901 | } | |
902 | ||
0f59d5fc PA |
903 | /* See gdbtypes.h. */ |
904 | ||
905 | bool | |
906 | operator== (const dynamic_prop &l, const dynamic_prop &r) | |
907 | { | |
8c2e4e06 | 908 | if (l.kind () != r.kind ()) |
0f59d5fc PA |
909 | return false; |
910 | ||
8c2e4e06 | 911 | switch (l.kind ()) |
0f59d5fc PA |
912 | { |
913 | case PROP_UNDEFINED: | |
914 | return true; | |
915 | case PROP_CONST: | |
8c2e4e06 | 916 | return l.const_val () == r.const_val (); |
ba005d32 | 917 | case PROP_FIELD: |
0f59d5fc PA |
918 | case PROP_LOCEXPR: |
919 | case PROP_LOCLIST: | |
8c2e4e06 | 920 | return l.baton () == r.baton (); |
ef83a141 | 921 | case PROP_VARIANT_PARTS: |
8c2e4e06 | 922 | return l.variant_parts () == r.variant_parts (); |
ef83a141 | 923 | case PROP_TYPE: |
8c2e4e06 | 924 | return l.original_type () == r.original_type (); |
0f59d5fc PA |
925 | } |
926 | ||
927 | gdb_assert_not_reached ("unhandled dynamic_prop kind"); | |
928 | } | |
929 | ||
930 | /* See gdbtypes.h. */ | |
931 | ||
932 | bool | |
933 | operator== (const range_bounds &l, const range_bounds &r) | |
934 | { | |
935 | #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD) | |
936 | ||
937 | return (FIELD_EQ (low) | |
938 | && FIELD_EQ (high) | |
939 | && FIELD_EQ (flag_upper_bound_is_count) | |
4e962e74 TT |
940 | && FIELD_EQ (flag_bound_evaluated) |
941 | && FIELD_EQ (bias)); | |
0f59d5fc PA |
942 | |
943 | #undef FIELD_EQ | |
944 | } | |
945 | ||
e727c536 | 946 | /* See gdbtypes.h. */ |
c906108c SS |
947 | |
948 | struct type * | |
e727c536 | 949 | create_range_type (type_allocator &alloc, struct type *index_type, |
729efb13 | 950 | const struct dynamic_prop *low_bound, |
4e962e74 TT |
951 | const struct dynamic_prop *high_bound, |
952 | LONGEST bias) | |
c906108c | 953 | { |
b86352cf AB |
954 | /* The INDEX_TYPE should be a type capable of holding the upper and lower |
955 | bounds, as such a zero sized, or void type makes no sense. */ | |
78134374 | 956 | gdb_assert (index_type->code () != TYPE_CODE_VOID); |
df86565b | 957 | gdb_assert (index_type->length () > 0); |
b86352cf | 958 | |
e727c536 | 959 | struct type *result_type = alloc.new_type (); |
67607e24 | 960 | result_type->set_code (TYPE_CODE_RANGE); |
8a50fdce | 961 | result_type->set_target_type (index_type); |
e46d3488 | 962 | if (index_type->is_stub ()) |
8f53807e | 963 | result_type->set_target_is_stub (true); |
c906108c | 964 | else |
df86565b | 965 | result_type->set_length (check_typedef (index_type)->length ()); |
729efb13 | 966 | |
c4dfcb36 SM |
967 | range_bounds *bounds |
968 | = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds)); | |
969 | bounds->low = *low_bound; | |
970 | bounds->high = *high_bound; | |
971 | bounds->bias = bias; | |
8c2e4e06 | 972 | bounds->stride.set_const_val (0); |
c4dfcb36 SM |
973 | |
974 | result_type->set_bounds (bounds); | |
5bbd8269 | 975 | |
09584414 JB |
976 | if (index_type->code () == TYPE_CODE_FIXED_POINT) |
977 | result_type->set_is_unsigned (index_type->is_unsigned ()); | |
912b12ad TT |
978 | else if (index_type->is_unsigned ()) |
979 | { | |
980 | /* If the underlying type is unsigned, then the range | |
981 | necessarily is. */ | |
982 | result_type->set_is_unsigned (true); | |
983 | } | |
984 | /* Otherwise, the signed-ness of a range type can't simply be copied | |
6390859c TT |
985 | from the underlying type. Consider a case where the underlying |
986 | type is 'int', but the range type can hold 0..65535, and where | |
987 | the range is further specified to fit into 16 bits. In this | |
988 | case, if we copy the underlying type's sign, then reading some | |
989 | range values will cause an unwanted sign extension. So, we have | |
990 | some heuristics here instead. */ | |
9c0fb734 | 991 | else if (low_bound->is_constant () && low_bound->const_val () >= 0) |
912b12ad TT |
992 | { |
993 | result_type->set_is_unsigned (true); | |
994 | /* Ada allows the declaration of range types whose upper bound is | |
995 | less than the lower bound, so checking the lower bound is not | |
996 | enough. Make sure we do not mark a range type whose upper bound | |
997 | is negative as unsigned. */ | |
9c0fb734 | 998 | if (high_bound->is_constant () && high_bound->const_val () < 0) |
912b12ad TT |
999 | result_type->set_is_unsigned (false); |
1000 | } | |
6390859c | 1001 | |
db558e34 SM |
1002 | result_type->set_endianity_is_not_default |
1003 | (index_type->endianity_is_not_default ()); | |
a05cf17a | 1004 | |
262452ec | 1005 | return result_type; |
c906108c SS |
1006 | } |
1007 | ||
5bbd8269 AB |
1008 | /* See gdbtypes.h. */ |
1009 | ||
1010 | struct type * | |
e727c536 | 1011 | create_range_type_with_stride (type_allocator &alloc, |
5bbd8269 AB |
1012 | struct type *index_type, |
1013 | const struct dynamic_prop *low_bound, | |
1014 | const struct dynamic_prop *high_bound, | |
1015 | LONGEST bias, | |
1016 | const struct dynamic_prop *stride, | |
1017 | bool byte_stride_p) | |
1018 | { | |
e727c536 TT |
1019 | struct type *result_type = create_range_type (alloc, index_type, low_bound, |
1020 | high_bound, bias); | |
5bbd8269 AB |
1021 | |
1022 | gdb_assert (stride != nullptr); | |
599088e3 SM |
1023 | result_type->bounds ()->stride = *stride; |
1024 | result_type->bounds ()->flag_is_byte_stride = byte_stride_p; | |
5bbd8269 AB |
1025 | |
1026 | return result_type; | |
1027 | } | |
1028 | ||
e727c536 | 1029 | /* See gdbtypes.h. */ |
729efb13 SA |
1030 | |
1031 | struct type * | |
e727c536 | 1032 | create_static_range_type (type_allocator &alloc, struct type *index_type, |
729efb13 SA |
1033 | LONGEST low_bound, LONGEST high_bound) |
1034 | { | |
1035 | struct dynamic_prop low, high; | |
1036 | ||
8c2e4e06 SM |
1037 | low.set_const_val (low_bound); |
1038 | high.set_const_val (high_bound); | |
729efb13 | 1039 | |
e727c536 TT |
1040 | struct type *result_type = create_range_type (alloc, index_type, |
1041 | &low, &high, 0); | |
729efb13 SA |
1042 | |
1043 | return result_type; | |
1044 | } | |
1045 | ||
80180f79 SA |
1046 | /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values |
1047 | are static, otherwise returns 0. */ | |
1048 | ||
5bbd8269 | 1049 | static bool |
80180f79 SA |
1050 | has_static_range (const struct range_bounds *bounds) |
1051 | { | |
5bbd8269 AB |
1052 | /* If the range doesn't have a defined stride then its stride field will |
1053 | be initialized to the constant 0. */ | |
9c0fb734 TT |
1054 | return (bounds->low.is_constant () |
1055 | && bounds->high.is_constant () | |
1056 | && bounds->stride.is_constant ()); | |
80180f79 SA |
1057 | } |
1058 | ||
5b56203a | 1059 | /* See gdbtypes.h. */ |
80180f79 | 1060 | |
6b09f134 | 1061 | std::optional<LONGEST> |
14c09924 | 1062 | get_discrete_low_bound (struct type *type) |
c906108c | 1063 | { |
f168693b | 1064 | type = check_typedef (type); |
78134374 | 1065 | switch (type->code ()) |
c906108c SS |
1066 | { |
1067 | case TYPE_CODE_RANGE: | |
14c09924 SM |
1068 | { |
1069 | /* This function only works for ranges with a constant low bound. */ | |
9c0fb734 | 1070 | if (!type->bounds ()->low.is_constant ()) |
14c09924 SM |
1071 | return {}; |
1072 | ||
1073 | LONGEST low = type->bounds ()->low.const_val (); | |
1074 | ||
27710edb | 1075 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
14c09924 | 1076 | { |
6b09f134 | 1077 | std::optional<LONGEST> low_pos |
27710edb | 1078 | = discrete_position (type->target_type (), low); |
14c09924 SM |
1079 | |
1080 | if (low_pos.has_value ()) | |
1081 | low = *low_pos; | |
1082 | } | |
1083 | ||
1084 | return low; | |
1085 | } | |
1086 | ||
1087 | case TYPE_CODE_ENUM: | |
1088 | { | |
1089 | if (type->num_fields () > 0) | |
1090 | { | |
1091 | /* The enums may not be sorted by value, so search all | |
1092 | entries. */ | |
970db518 | 1093 | LONGEST low = type->field (0).loc_enumval (); |
14c09924 | 1094 | |
89495c33 | 1095 | for (const auto &field : type->fields ()) |
14c09924 | 1096 | { |
89495c33 TT |
1097 | if (field.loc_enumval () < low) |
1098 | low = field.loc_enumval (); | |
14c09924 SM |
1099 | } |
1100 | ||
14c09924 SM |
1101 | return low; |
1102 | } | |
1103 | else | |
1104 | return 0; | |
1105 | } | |
1106 | ||
1107 | case TYPE_CODE_BOOL: | |
1108 | return 0; | |
1109 | ||
1110 | case TYPE_CODE_INT: | |
df86565b | 1111 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
6ad368b8 | 1112 | return {}; |
7c6f2712 | 1113 | |
14c09924 | 1114 | if (!type->is_unsigned ()) |
df86565b | 1115 | return -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
7c6f2712 | 1116 | |
d182e398 | 1117 | [[fallthrough]]; |
14c09924 SM |
1118 | case TYPE_CODE_CHAR: |
1119 | return 0; | |
6244c119 | 1120 | |
14c09924 | 1121 | default: |
6ad368b8 | 1122 | return {}; |
14c09924 SM |
1123 | } |
1124 | } | |
6244c119 | 1125 | |
5b56203a | 1126 | /* See gdbtypes.h. */ |
6244c119 | 1127 | |
6b09f134 | 1128 | std::optional<LONGEST> |
14c09924 SM |
1129 | get_discrete_high_bound (struct type *type) |
1130 | { | |
1131 | type = check_typedef (type); | |
1132 | switch (type->code ()) | |
1133 | { | |
1134 | case TYPE_CODE_RANGE: | |
1135 | { | |
1136 | /* This function only works for ranges with a constant high bound. */ | |
9c0fb734 | 1137 | if (!type->bounds ()->high.is_constant ()) |
14c09924 SM |
1138 | return {}; |
1139 | ||
1140 | LONGEST high = type->bounds ()->high.const_val (); | |
1141 | ||
27710edb | 1142 | if (type->target_type ()->code () == TYPE_CODE_ENUM) |
14c09924 | 1143 | { |
6b09f134 | 1144 | std::optional<LONGEST> high_pos |
27710edb | 1145 | = discrete_position (type->target_type (), high); |
14c09924 SM |
1146 | |
1147 | if (high_pos.has_value ()) | |
1148 | high = *high_pos; | |
1149 | } | |
1150 | ||
1151 | return high; | |
1152 | } | |
1f8d2881 | 1153 | |
c906108c | 1154 | case TYPE_CODE_ENUM: |
14c09924 SM |
1155 | { |
1156 | if (type->num_fields () > 0) | |
1157 | { | |
1158 | /* The enums may not be sorted by value, so search all | |
1159 | entries. */ | |
970db518 | 1160 | LONGEST high = type->field (0).loc_enumval (); |
14c09924 | 1161 | |
89495c33 | 1162 | for (const auto &field : type->fields ()) |
14c09924 | 1163 | { |
89495c33 TT |
1164 | if (field.loc_enumval () > high) |
1165 | high = field.loc_enumval (); | |
14c09924 SM |
1166 | } |
1167 | ||
1168 | return high; | |
1169 | } | |
1170 | else | |
1171 | return -1; | |
1172 | } | |
1f8d2881 | 1173 | |
c906108c | 1174 | case TYPE_CODE_BOOL: |
14c09924 | 1175 | return 1; |
1f8d2881 | 1176 | |
c906108c | 1177 | case TYPE_CODE_INT: |
df86565b | 1178 | if (type->length () > sizeof (LONGEST)) /* Too big */ |
6ad368b8 | 1179 | return {}; |
1f8d2881 | 1180 | |
c6d940a9 | 1181 | if (!type->is_unsigned ()) |
c906108c | 1182 | { |
df86565b | 1183 | LONGEST low = -(1 << (type->length () * TARGET_CHAR_BIT - 1)); |
14c09924 | 1184 | return -low - 1; |
c906108c | 1185 | } |
14c09924 | 1186 | |
d182e398 | 1187 | [[fallthrough]]; |
c906108c | 1188 | case TYPE_CODE_CHAR: |
14c09924 SM |
1189 | { |
1190 | /* This round-about calculation is to avoid shifting by | |
df86565b SM |
1191 | type->length () * TARGET_CHAR_BIT, which will not work |
1192 | if type->length () == sizeof (LONGEST). */ | |
1193 | LONGEST high = 1 << (type->length () * TARGET_CHAR_BIT - 1); | |
14c09924 SM |
1194 | return (high - 1) | high; |
1195 | } | |
1f8d2881 | 1196 | |
c906108c | 1197 | default: |
6ad368b8 | 1198 | return {}; |
c906108c SS |
1199 | } |
1200 | } | |
1201 | ||
14c09924 SM |
1202 | /* See gdbtypes.h. */ |
1203 | ||
1204 | bool | |
1205 | get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp) | |
1206 | { | |
6b09f134 | 1207 | std::optional<LONGEST> low = get_discrete_low_bound (type); |
6ad368b8 SM |
1208 | if (!low.has_value ()) |
1209 | return false; | |
14c09924 | 1210 | |
6b09f134 | 1211 | std::optional<LONGEST> high = get_discrete_high_bound (type); |
6ad368b8 | 1212 | if (!high.has_value ()) |
14c09924 SM |
1213 | return false; |
1214 | ||
1215 | *lowp = *low; | |
1216 | *highp = *high; | |
1217 | ||
1218 | return true; | |
1219 | } | |
1220 | ||
584903d3 | 1221 | /* See gdbtypes.h */ |
dbc98a8b | 1222 | |
584903d3 | 1223 | bool |
dbc98a8b KW |
1224 | get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound) |
1225 | { | |
3d967001 | 1226 | struct type *index = type->index_type (); |
dbc98a8b KW |
1227 | LONGEST low = 0; |
1228 | LONGEST high = 0; | |
dbc98a8b KW |
1229 | |
1230 | if (index == NULL) | |
584903d3 | 1231 | return false; |
dbc98a8b | 1232 | |
1f8d2881 | 1233 | if (!get_discrete_bounds (index, &low, &high)) |
584903d3 | 1234 | return false; |
dbc98a8b | 1235 | |
dbc98a8b KW |
1236 | if (low_bound) |
1237 | *low_bound = low; | |
1238 | ||
1239 | if (high_bound) | |
1240 | *high_bound = high; | |
1241 | ||
584903d3 | 1242 | return true; |
dbc98a8b KW |
1243 | } |
1244 | ||
aa715135 JG |
1245 | /* Assuming that TYPE is a discrete type and VAL is a valid integer |
1246 | representation of a value of this type, save the corresponding | |
1247 | position number in POS. | |
1248 | ||
1249 | Its differs from VAL only in the case of enumeration types. In | |
1250 | this case, the position number of the value of the first listed | |
1251 | enumeration literal is zero; the position number of the value of | |
1252 | each subsequent enumeration literal is one more than that of its | |
1253 | predecessor in the list. | |
1254 | ||
1255 | Return 1 if the operation was successful. Return zero otherwise, | |
1256 | in which case the value of POS is unmodified. | |
1257 | */ | |
1258 | ||
6b09f134 | 1259 | std::optional<LONGEST> |
6244c119 | 1260 | discrete_position (struct type *type, LONGEST val) |
aa715135 | 1261 | { |
0bc2354b | 1262 | if (type->code () == TYPE_CODE_RANGE) |
27710edb | 1263 | type = type->target_type (); |
0bc2354b | 1264 | |
78134374 | 1265 | if (type->code () == TYPE_CODE_ENUM) |
aa715135 JG |
1266 | { |
1267 | int i; | |
1268 | ||
1f704f76 | 1269 | for (i = 0; i < type->num_fields (); i += 1) |
dda83cd7 | 1270 | { |
970db518 | 1271 | if (val == type->field (i).loc_enumval ()) |
6244c119 | 1272 | return i; |
dda83cd7 | 1273 | } |
6244c119 | 1274 | |
aa715135 | 1275 | /* Invalid enumeration value. */ |
6244c119 | 1276 | return {}; |
aa715135 JG |
1277 | } |
1278 | else | |
6244c119 | 1279 | return val; |
aa715135 JG |
1280 | } |
1281 | ||
8dbb1375 HD |
1282 | /* If the array TYPE has static bounds calculate and update its |
1283 | size, then return true. Otherwise return false and leave TYPE | |
1284 | unchanged. */ | |
1285 | ||
1286 | static bool | |
1287 | update_static_array_size (struct type *type) | |
1288 | { | |
78134374 | 1289 | gdb_assert (type->code () == TYPE_CODE_ARRAY); |
8dbb1375 | 1290 | |
3d967001 | 1291 | struct type *range_type = type->index_type (); |
8dbb1375 | 1292 | |
24e99c6c | 1293 | if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr |
599088e3 | 1294 | && has_static_range (range_type->bounds ()) |
8dbb1375 HD |
1295 | && (!type_not_associated (type) |
1296 | && !type_not_allocated (type))) | |
1297 | { | |
1298 | LONGEST low_bound, high_bound; | |
1299 | int stride; | |
1300 | struct type *element_type; | |
1301 | ||
cc9d6997 | 1302 | stride = type->bit_stride (); |
8dbb1375 | 1303 | |
1f8d2881 | 1304 | if (!get_discrete_bounds (range_type, &low_bound, &high_bound)) |
8dbb1375 | 1305 | low_bound = high_bound = 0; |
1f8d2881 | 1306 | |
27710edb | 1307 | element_type = check_typedef (type->target_type ()); |
8dbb1375 HD |
1308 | /* Be careful when setting the array length. Ada arrays can be |
1309 | empty arrays with the high_bound being smaller than the low_bound. | |
1310 | In such cases, the array length should be zero. */ | |
1311 | if (high_bound < low_bound) | |
b6cdbc9a | 1312 | type->set_length (0); |
8dbb1375 HD |
1313 | else if (stride != 0) |
1314 | { | |
1315 | /* Ensure that the type length is always positive, even in the | |
1316 | case where (for example in Fortran) we have a negative | |
1317 | stride. It is possible to have a single element array with a | |
1318 | negative stride in Fortran (this doesn't mean anything | |
1319 | special, it's still just a single element array) so do | |
1320 | consider that case when touching this code. */ | |
1321 | LONGEST element_count = std::abs (high_bound - low_bound + 1); | |
b6cdbc9a | 1322 | type->set_length (((std::abs (stride) * element_count) + 7) / 8); |
8dbb1375 HD |
1323 | } |
1324 | else | |
df86565b | 1325 | type->set_length (element_type->length () |
b6cdbc9a | 1326 | * (high_bound - low_bound + 1)); |
8dbb1375 | 1327 | |
b72795a8 TT |
1328 | /* If this array's element is itself an array with a bit stride, |
1329 | then we want to update this array's bit stride to reflect the | |
1330 | size of the sub-array. Otherwise, we'll end up using the | |
1331 | wrong size when trying to find elements of the outer | |
1332 | array. */ | |
1333 | if (element_type->code () == TYPE_CODE_ARRAY | |
6c849804 | 1334 | && (stride != 0 || element_type->is_multi_dimensional ()) |
df86565b | 1335 | && element_type->length () != 0 |
3757d2d4 | 1336 | && element_type->field (0).bitsize () != 0 |
5d8254e1 | 1337 | && get_array_bounds (element_type, &low_bound, &high_bound) |
b72795a8 | 1338 | && high_bound >= low_bound) |
886176b8 SM |
1339 | type->field (0).set_bitsize |
1340 | ((high_bound - low_bound + 1) | |
3757d2d4 | 1341 | * element_type->field (0).bitsize ()); |
b72795a8 | 1342 | |
8dbb1375 HD |
1343 | return true; |
1344 | } | |
1345 | ||
1346 | return false; | |
1347 | } | |
1348 | ||
9e76b17a | 1349 | /* See gdbtypes.h. */ |
c906108c SS |
1350 | |
1351 | struct type * | |
9e76b17a | 1352 | create_array_type_with_stride (type_allocator &alloc, |
dc53a7ad JB |
1353 | struct type *element_type, |
1354 | struct type *range_type, | |
a405673c | 1355 | struct dynamic_prop *byte_stride_prop, |
dc53a7ad | 1356 | unsigned int bit_stride) |
c906108c | 1357 | { |
9c0fb734 | 1358 | if (byte_stride_prop != nullptr && byte_stride_prop->is_constant ()) |
a405673c JB |
1359 | { |
1360 | /* The byte stride is actually not dynamic. Pretend we were | |
1361 | called with bit_stride set instead of byte_stride_prop. | |
1362 | This will give us the same result type, while avoiding | |
1363 | the need to handle this as a special case. */ | |
8c2e4e06 | 1364 | bit_stride = byte_stride_prop->const_val () * 8; |
a405673c JB |
1365 | byte_stride_prop = NULL; |
1366 | } | |
1367 | ||
9e76b17a | 1368 | struct type *result_type = alloc.new_type (); |
e9bb382b | 1369 | |
67607e24 | 1370 | result_type->set_code (TYPE_CODE_ARRAY); |
8a50fdce | 1371 | result_type->set_target_type (element_type); |
5bbd8269 | 1372 | |
2774f2da | 1373 | result_type->alloc_fields (1); |
262abc0d | 1374 | result_type->set_index_type (range_type); |
8dbb1375 | 1375 | if (byte_stride_prop != NULL) |
5c54719c | 1376 | result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop); |
8dbb1375 | 1377 | else if (bit_stride > 0) |
886176b8 | 1378 | result_type->field (0).set_bitsize (bit_stride); |
80180f79 | 1379 | |
8dbb1375 | 1380 | if (!update_static_array_size (result_type)) |
80180f79 SA |
1381 | { |
1382 | /* This type is dynamic and its length needs to be computed | |
dda83cd7 SM |
1383 | on demand. In the meantime, avoid leaving the TYPE_LENGTH |
1384 | undefined by setting it to zero. Although we are not expected | |
1385 | to trust TYPE_LENGTH in this case, setting the size to zero | |
1386 | allows us to avoid allocating objects of random sizes in case | |
8f6606b6 | 1387 | we accidentally do. */ |
b6cdbc9a | 1388 | result_type->set_length (0); |
80180f79 SA |
1389 | } |
1390 | ||
a9ff5f12 | 1391 | /* TYPE_TARGET_STUB will take care of zero length arrays. */ |
df86565b | 1392 | if (result_type->length () == 0) |
8f53807e | 1393 | result_type->set_target_is_stub (true); |
c906108c | 1394 | |
c16abbde | 1395 | return result_type; |
c906108c SS |
1396 | } |
1397 | ||
9e76b17a | 1398 | /* See gdbtypes.h. */ |
dc53a7ad JB |
1399 | |
1400 | struct type * | |
9e76b17a | 1401 | create_array_type (type_allocator &alloc, |
dc53a7ad JB |
1402 | struct type *element_type, |
1403 | struct type *range_type) | |
1404 | { | |
9e76b17a | 1405 | return create_array_type_with_stride (alloc, element_type, |
a405673c | 1406 | range_type, NULL, 0); |
dc53a7ad JB |
1407 | } |
1408 | ||
e3506a9f UW |
1409 | struct type * |
1410 | lookup_array_range_type (struct type *element_type, | |
63375b74 | 1411 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f | 1412 | { |
929b5ad4 JB |
1413 | struct type *index_type; |
1414 | struct type *range_type; | |
1415 | ||
e727c536 | 1416 | type_allocator alloc (element_type); |
426e5b66 | 1417 | index_type = builtin_type (element_type->arch ())->builtin_int; |
5b7d941b | 1418 | |
e727c536 | 1419 | range_type = create_static_range_type (alloc, index_type, |
929b5ad4 | 1420 | low_bound, high_bound); |
d8734c88 | 1421 | |
9e76b17a | 1422 | return create_array_type (alloc, element_type, range_type); |
e3506a9f UW |
1423 | } |
1424 | ||
9e76b17a | 1425 | /* See gdbtypes.h. */ |
c906108c SS |
1426 | |
1427 | struct type * | |
9e76b17a | 1428 | create_string_type (type_allocator &alloc, |
3b7538c0 | 1429 | struct type *string_char_type, |
7ba81444 | 1430 | struct type *range_type) |
c906108c | 1431 | { |
9e76b17a TT |
1432 | struct type *result_type = create_array_type (alloc, |
1433 | string_char_type, | |
1434 | range_type); | |
67607e24 | 1435 | result_type->set_code (TYPE_CODE_STRING); |
c16abbde | 1436 | return result_type; |
c906108c SS |
1437 | } |
1438 | ||
e3506a9f UW |
1439 | struct type * |
1440 | lookup_string_range_type (struct type *string_char_type, | |
63375b74 | 1441 | LONGEST low_bound, LONGEST high_bound) |
e3506a9f UW |
1442 | { |
1443 | struct type *result_type; | |
d8734c88 | 1444 | |
e3506a9f UW |
1445 | result_type = lookup_array_range_type (string_char_type, |
1446 | low_bound, high_bound); | |
67607e24 | 1447 | result_type->set_code (TYPE_CODE_STRING); |
e3506a9f UW |
1448 | return result_type; |
1449 | } | |
1450 | ||
c906108c | 1451 | struct type * |
52664858 | 1452 | create_set_type (type_allocator &alloc, struct type *domain_type) |
c906108c | 1453 | { |
52664858 | 1454 | struct type *result_type = alloc.new_type (); |
e9bb382b | 1455 | |
67607e24 | 1456 | result_type->set_code (TYPE_CODE_SET); |
2774f2da | 1457 | result_type->alloc_fields (1); |
c906108c | 1458 | |
e46d3488 | 1459 | if (!domain_type->is_stub ()) |
c906108c | 1460 | { |
f9780d5b | 1461 | LONGEST low_bound, high_bound, bit_length; |
d8734c88 | 1462 | |
1f8d2881 | 1463 | if (!get_discrete_bounds (domain_type, &low_bound, &high_bound)) |
c906108c | 1464 | low_bound = high_bound = 0; |
1f8d2881 | 1465 | |
c906108c | 1466 | bit_length = high_bound - low_bound + 1; |
b6cdbc9a SM |
1467 | result_type->set_length ((bit_length + TARGET_CHAR_BIT - 1) |
1468 | / TARGET_CHAR_BIT); | |
f9780d5b | 1469 | if (low_bound >= 0) |
653223d3 | 1470 | result_type->set_is_unsigned (true); |
c906108c | 1471 | } |
5d14b6e5 | 1472 | result_type->field (0).set_type (domain_type); |
c906108c | 1473 | |
c16abbde | 1474 | return result_type; |
c906108c SS |
1475 | } |
1476 | ||
ea37ba09 DJ |
1477 | /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE |
1478 | and any array types nested inside it. */ | |
1479 | ||
1480 | void | |
1481 | make_vector_type (struct type *array_type) | |
1482 | { | |
1483 | struct type *inner_array, *elt_type; | |
ea37ba09 DJ |
1484 | |
1485 | /* Find the innermost array type, in case the array is | |
1486 | multi-dimensional. */ | |
1487 | inner_array = array_type; | |
27710edb SM |
1488 | while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY) |
1489 | inner_array = inner_array->target_type (); | |
ea37ba09 | 1490 | |
27710edb | 1491 | elt_type = inner_array->target_type (); |
78134374 | 1492 | if (elt_type->code () == TYPE_CODE_INT) |
ea37ba09 | 1493 | { |
314ad88d PA |
1494 | type_instance_flags flags |
1495 | = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT; | |
ea37ba09 | 1496 | elt_type = make_qualified_type (elt_type, flags, NULL); |
8a50fdce | 1497 | inner_array->set_target_type (elt_type); |
ea37ba09 DJ |
1498 | } |
1499 | ||
2062087b | 1500 | array_type->set_is_vector (true); |
ea37ba09 DJ |
1501 | } |
1502 | ||
794ac428 | 1503 | struct type * |
ac3aafc7 EZ |
1504 | init_vector_type (struct type *elt_type, int n) |
1505 | { | |
1506 | struct type *array_type; | |
d8734c88 | 1507 | |
e3506a9f | 1508 | array_type = lookup_array_range_type (elt_type, 0, n - 1); |
ea37ba09 | 1509 | make_vector_type (array_type); |
ac3aafc7 EZ |
1510 | return array_type; |
1511 | } | |
1512 | ||
09e2d7c7 DE |
1513 | /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE |
1514 | belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too | |
1515 | confusing. "self" is a common enough replacement for "this". | |
1516 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1517 | TYPE_CODE_METHOD. */ | |
1518 | ||
1519 | struct type * | |
1520 | internal_type_self_type (struct type *type) | |
1521 | { | |
78134374 | 1522 | switch (type->code ()) |
09e2d7c7 DE |
1523 | { |
1524 | case TYPE_CODE_METHODPTR: | |
1525 | case TYPE_CODE_MEMBERPTR: | |
eaaf76ab DE |
1526 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1527 | return NULL; | |
09e2d7c7 DE |
1528 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); |
1529 | return TYPE_MAIN_TYPE (type)->type_specific.self_type; | |
1530 | case TYPE_CODE_METHOD: | |
eaaf76ab DE |
1531 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) |
1532 | return NULL; | |
09e2d7c7 DE |
1533 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); |
1534 | return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type; | |
1535 | default: | |
1536 | gdb_assert_not_reached ("bad type"); | |
1537 | } | |
1538 | } | |
1539 | ||
1540 | /* Set the type of the class that TYPE belongs to. | |
1541 | In c++ this is the class of "this". | |
1542 | TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or | |
1543 | TYPE_CODE_METHOD. */ | |
1544 | ||
1545 | void | |
1546 | set_type_self_type (struct type *type, struct type *self_type) | |
1547 | { | |
78134374 | 1548 | switch (type->code ()) |
09e2d7c7 DE |
1549 | { |
1550 | case TYPE_CODE_METHODPTR: | |
1551 | case TYPE_CODE_MEMBERPTR: | |
1552 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1553 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE; | |
1554 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE); | |
1555 | TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type; | |
1556 | break; | |
1557 | case TYPE_CODE_METHOD: | |
1558 | if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE) | |
1559 | INIT_FUNC_SPECIFIC (type); | |
1560 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC); | |
1561 | TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type; | |
1562 | break; | |
1563 | default: | |
1564 | gdb_assert_not_reached ("bad type"); | |
1565 | } | |
1566 | } | |
1567 | ||
1568 | /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type | |
8f6606b6 | 1569 | TO_TYPE. A member pointer is a weird thing -- it amounts to a |
0d5de010 DJ |
1570 | typed offset into a struct, e.g. "an int at offset 8". A MEMBER |
1571 | TYPE doesn't include the offset (that's the value of the MEMBER | |
1572 | itself), but does include the structure type into which it points | |
1573 | (for some reason). | |
c906108c | 1574 | |
7ba81444 MS |
1575 | When "smashing" the type, we preserve the objfile that the old type |
1576 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1577 | allocated. */ |
1578 | ||
1579 | void | |
09e2d7c7 | 1580 | smash_to_memberptr_type (struct type *type, struct type *self_type, |
0d5de010 | 1581 | struct type *to_type) |
c906108c | 1582 | { |
2fdde8f8 | 1583 | smash_type (type); |
67607e24 | 1584 | type->set_code (TYPE_CODE_MEMBERPTR); |
8a50fdce | 1585 | type->set_target_type (to_type); |
09e2d7c7 | 1586 | set_type_self_type (type, self_type); |
0d5de010 DJ |
1587 | /* Assume that a data member pointer is the same size as a normal |
1588 | pointer. */ | |
b6cdbc9a | 1589 | type->set_length (gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT); |
c906108c SS |
1590 | } |
1591 | ||
0b92b5bb TT |
1592 | /* Smash TYPE to be a type of pointer to methods type TO_TYPE. |
1593 | ||
1594 | When "smashing" the type, we preserve the objfile that the old type | |
1595 | pointed to, since we aren't changing where the type is actually | |
1596 | allocated. */ | |
1597 | ||
1598 | void | |
1599 | smash_to_methodptr_type (struct type *type, struct type *to_type) | |
1600 | { | |
1601 | smash_type (type); | |
67607e24 | 1602 | type->set_code (TYPE_CODE_METHODPTR); |
8a50fdce | 1603 | type->set_target_type (to_type); |
09e2d7c7 | 1604 | set_type_self_type (type, TYPE_SELF_TYPE (to_type)); |
b6cdbc9a | 1605 | type->set_length (cplus_method_ptr_size (to_type)); |
0b92b5bb TT |
1606 | } |
1607 | ||
09e2d7c7 | 1608 | /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE. |
c906108c SS |
1609 | METHOD just means `function that gets an extra "this" argument'. |
1610 | ||
7ba81444 MS |
1611 | When "smashing" the type, we preserve the objfile that the old type |
1612 | pointed to, since we aren't changing where the type is actually | |
c906108c SS |
1613 | allocated. */ |
1614 | ||
1615 | void | |
09e2d7c7 | 1616 | smash_to_method_type (struct type *type, struct type *self_type, |
89495c33 TT |
1617 | struct type *to_type, gdb::array_view<struct field> args, |
1618 | int varargs) | |
c906108c | 1619 | { |
2fdde8f8 | 1620 | smash_type (type); |
67607e24 | 1621 | type->set_code (TYPE_CODE_METHOD); |
8a50fdce | 1622 | type->set_target_type (to_type); |
09e2d7c7 | 1623 | set_type_self_type (type, self_type); |
89495c33 TT |
1624 | type->set_fields (args.data ()); |
1625 | type->set_num_fields (args.size ()); | |
b6cdbc9a | 1626 | |
ad2f7632 | 1627 | if (varargs) |
1d6286ed | 1628 | type->set_has_varargs (true); |
b6cdbc9a SM |
1629 | |
1630 | /* In practice, this is never needed. */ | |
1631 | type->set_length (1); | |
c906108c SS |
1632 | } |
1633 | ||
a737d952 | 1634 | /* A wrapper of TYPE_NAME which calls error if the type is anonymous. |
d8228535 JK |
1635 | Since GCC PR debug/47510 DWARF provides associated information to detect the |
1636 | anonymous class linkage name from its typedef. | |
1637 | ||
1638 | Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will | |
1639 | apply it itself. */ | |
1640 | ||
1641 | const char * | |
a737d952 | 1642 | type_name_or_error (struct type *type) |
d8228535 JK |
1643 | { |
1644 | struct type *saved_type = type; | |
1645 | const char *name; | |
1646 | struct objfile *objfile; | |
1647 | ||
f168693b | 1648 | type = check_typedef (type); |
d8228535 | 1649 | |
7d93a1e0 | 1650 | name = type->name (); |
d8228535 JK |
1651 | if (name != NULL) |
1652 | return name; | |
1653 | ||
7d93a1e0 | 1654 | name = saved_type->name (); |
6ac37371 | 1655 | objfile = saved_type->objfile_owner (); |
d8228535 | 1656 | error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"), |
4262abfb JK |
1657 | name ? name : "<anonymous>", |
1658 | objfile ? objfile_name (objfile) : "<arch>"); | |
d8228535 JK |
1659 | } |
1660 | ||
bde240e7 | 1661 | /* See gdbtypes.h. */ |
c906108c SS |
1662 | |
1663 | struct type * | |
e6c014f2 | 1664 | lookup_typename (const struct language_defn *language, |
b858499d | 1665 | const char *name, |
34eaf542 | 1666 | const struct block *block, int noerr) |
c906108c | 1667 | { |
52f0bd74 | 1668 | struct symbol *sym; |
c906108c | 1669 | |
9edce54e | 1670 | sym = lookup_symbol_in_language (name, block, SEARCH_TYPE_DOMAIN, |
d12307c1 | 1671 | language->la_language, NULL).symbol; |
9edce54e | 1672 | if (sym != nullptr) |
bde240e7 AB |
1673 | { |
1674 | struct type *type = sym->type (); | |
1675 | /* Ensure the length of TYPE is valid. */ | |
1676 | check_typedef (type); | |
1677 | return type; | |
1678 | } | |
c51fe631 | 1679 | |
c51fe631 DE |
1680 | if (noerr) |
1681 | return NULL; | |
1682 | error (_("No type named %s."), name); | |
c906108c SS |
1683 | } |
1684 | ||
1685 | struct type * | |
e6c014f2 | 1686 | lookup_unsigned_typename (const struct language_defn *language, |
b858499d | 1687 | const char *name) |
c906108c | 1688 | { |
8ba212f8 SM |
1689 | std::string uns; |
1690 | uns.reserve (strlen (name) + strlen ("unsigned ")); | |
1691 | uns = "unsigned "; | |
1692 | uns += name; | |
c906108c | 1693 | |
8ba212f8 | 1694 | return lookup_typename (language, uns.c_str (), NULL, 0); |
c906108c SS |
1695 | } |
1696 | ||
1697 | struct type * | |
b858499d | 1698 | lookup_signed_typename (const struct language_defn *language, const char *name) |
c906108c | 1699 | { |
55fc1623 TT |
1700 | /* In C and C++, "char" and "signed char" are distinct types. */ |
1701 | if (streq (name, "char")) | |
1702 | name = "signed char"; | |
b858499d | 1703 | return lookup_typename (language, name, NULL, 0); |
c906108c SS |
1704 | } |
1705 | ||
1706 | /* Lookup a structure type named "struct NAME", | |
1707 | visible in lexical block BLOCK. */ | |
1708 | ||
1709 | struct type * | |
270140bd | 1710 | lookup_struct (const char *name, const struct block *block) |
c906108c | 1711 | { |
52f0bd74 | 1712 | struct symbol *sym; |
c906108c | 1713 | |
ccf41c24 | 1714 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1715 | |
1716 | if (sym == NULL) | |
1717 | { | |
8a3fe4f8 | 1718 | error (_("No struct type named %s."), name); |
c906108c | 1719 | } |
5f9c5a63 | 1720 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
c906108c | 1721 | { |
7ba81444 MS |
1722 | error (_("This context has class, union or enum %s, not a struct."), |
1723 | name); | |
c906108c | 1724 | } |
5f9c5a63 | 1725 | return (sym->type ()); |
c906108c SS |
1726 | } |
1727 | ||
1728 | /* Lookup a union type named "union NAME", | |
1729 | visible in lexical block BLOCK. */ | |
1730 | ||
1731 | struct type * | |
270140bd | 1732 | lookup_union (const char *name, const struct block *block) |
c906108c | 1733 | { |
52f0bd74 | 1734 | struct symbol *sym; |
c5aa993b | 1735 | struct type *t; |
c906108c | 1736 | |
ccf41c24 | 1737 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1738 | |
1739 | if (sym == NULL) | |
8a3fe4f8 | 1740 | error (_("No union type named %s."), name); |
c906108c | 1741 | |
5f9c5a63 | 1742 | t = sym->type (); |
c906108c | 1743 | |
78134374 | 1744 | if (t->code () == TYPE_CODE_UNION) |
c16abbde | 1745 | return t; |
c906108c | 1746 | |
7ba81444 MS |
1747 | /* If we get here, it's not a union. */ |
1748 | error (_("This context has class, struct or enum %s, not a union."), | |
1749 | name); | |
c906108c SS |
1750 | } |
1751 | ||
c906108c SS |
1752 | /* Lookup an enum type named "enum NAME", |
1753 | visible in lexical block BLOCK. */ | |
1754 | ||
1755 | struct type * | |
270140bd | 1756 | lookup_enum (const char *name, const struct block *block) |
c906108c | 1757 | { |
52f0bd74 | 1758 | struct symbol *sym; |
c906108c | 1759 | |
ccf41c24 | 1760 | sym = lookup_symbol (name, block, SEARCH_STRUCT_DOMAIN, 0).symbol; |
c906108c SS |
1761 | if (sym == NULL) |
1762 | { | |
8a3fe4f8 | 1763 | error (_("No enum type named %s."), name); |
c906108c | 1764 | } |
5f9c5a63 | 1765 | if (sym->type ()->code () != TYPE_CODE_ENUM) |
c906108c | 1766 | { |
7ba81444 MS |
1767 | error (_("This context has class, struct or union %s, not an enum."), |
1768 | name); | |
c906108c | 1769 | } |
5f9c5a63 | 1770 | return (sym->type ()); |
c906108c SS |
1771 | } |
1772 | ||
1773 | /* Lookup a template type named "template NAME<TYPE>", | |
1774 | visible in lexical block BLOCK. */ | |
1775 | ||
1776 | struct type * | |
61f4b350 | 1777 | lookup_template_type (const char *name, struct type *type, |
270140bd | 1778 | const struct block *block) |
c906108c | 1779 | { |
8ba212f8 SM |
1780 | std::string nam; |
1781 | nam.reserve (strlen (name) + strlen (type->name ()) + strlen ("< >")); | |
1782 | nam = name; | |
1783 | nam += "<"; | |
1784 | nam += type->name (); | |
1785 | nam += " >"; /* FIXME, extra space still introduced in gcc? */ | |
c906108c | 1786 | |
ccf41c24 TT |
1787 | symbol *sym = lookup_symbol (nam.c_str (), block, |
1788 | SEARCH_STRUCT_DOMAIN, 0).symbol; | |
c906108c SS |
1789 | |
1790 | if (sym == NULL) | |
1791 | { | |
8a3fe4f8 | 1792 | error (_("No template type named %s."), name); |
c906108c | 1793 | } |
5f9c5a63 | 1794 | if (sym->type ()->code () != TYPE_CODE_STRUCT) |
c906108c | 1795 | { |
7ba81444 MS |
1796 | error (_("This context has class, union or enum %s, not a struct."), |
1797 | name); | |
c906108c | 1798 | } |
5f9c5a63 | 1799 | return (sym->type ()); |
c906108c SS |
1800 | } |
1801 | ||
ef0bd204 | 1802 | /* See gdbtypes.h. */ |
c906108c | 1803 | |
ef0bd204 JB |
1804 | struct_elt |
1805 | lookup_struct_elt (struct type *type, const char *name, int noerr) | |
c906108c SS |
1806 | { |
1807 | int i; | |
1808 | ||
1809 | for (;;) | |
1810 | { | |
f168693b | 1811 | type = check_typedef (type); |
78134374 SM |
1812 | if (type->code () != TYPE_CODE_PTR |
1813 | && type->code () != TYPE_CODE_REF) | |
c906108c | 1814 | break; |
27710edb | 1815 | type = type->target_type (); |
c906108c SS |
1816 | } |
1817 | ||
78134374 SM |
1818 | if (type->code () != TYPE_CODE_STRUCT |
1819 | && type->code () != TYPE_CODE_UNION) | |
c906108c | 1820 | { |
2f408ecb PA |
1821 | std::string type_name = type_to_string (type); |
1822 | error (_("Type %s is not a structure or union type."), | |
1823 | type_name.c_str ()); | |
c906108c SS |
1824 | } |
1825 | ||
1f704f76 | 1826 | for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) |
c906108c | 1827 | { |
33d16dd9 | 1828 | const char *t_field_name = type->field (i).name (); |
c906108c | 1829 | |
db577aea | 1830 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) |
c906108c | 1831 | { |
b610c045 | 1832 | return {&type->field (i), type->field (i).loc_bitpos ()}; |
c906108c | 1833 | } |
c11f01db | 1834 | else if (!t_field_name || *t_field_name == '\0') |
f5a010c0 | 1835 | { |
48b5669c TT |
1836 | struct type *field_type = type->field (i).type (); |
1837 | enum type_code field_code = check_typedef (field_type)->code (); | |
1838 | ||
1839 | if (field_code == TYPE_CODE_STRUCT || field_code == TYPE_CODE_UNION) | |
ef0bd204 | 1840 | { |
48b5669c TT |
1841 | struct_elt elt |
1842 | = lookup_struct_elt (type->field (i).type (), name, 1); | |
1843 | if (elt.field != NULL) | |
1844 | { | |
1845 | elt.offset += type->field (i).loc_bitpos (); | |
1846 | return elt; | |
1847 | } | |
ef0bd204 | 1848 | } |
f5a010c0 | 1849 | } |
c906108c SS |
1850 | } |
1851 | ||
1852 | /* OK, it's not in this class. Recursively check the baseclasses. */ | |
1853 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1854 | { | |
ef0bd204 JB |
1855 | struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1); |
1856 | if (elt.field != NULL) | |
1857 | return elt; | |
c906108c SS |
1858 | } |
1859 | ||
1860 | if (noerr) | |
ef0bd204 | 1861 | return {nullptr, 0}; |
c5aa993b | 1862 | |
2f408ecb PA |
1863 | std::string type_name = type_to_string (type); |
1864 | error (_("Type %s has no component named %s."), type_name.c_str (), name); | |
c906108c SS |
1865 | } |
1866 | ||
ef0bd204 JB |
1867 | /* See gdbtypes.h. */ |
1868 | ||
1869 | struct type * | |
1870 | lookup_struct_elt_type (struct type *type, const char *name, int noerr) | |
1871 | { | |
1872 | struct_elt elt = lookup_struct_elt (type, name, noerr); | |
1873 | if (elt.field != NULL) | |
b6cdac4b | 1874 | return elt.field->type (); |
ef0bd204 JB |
1875 | else |
1876 | return NULL; | |
1877 | } | |
1878 | ||
c3c1e645 | 1879 | /* Return the largest number representable by unsigned integer type TYPE. */ |
ed3ef339 | 1880 | |
c3c1e645 GB |
1881 | ULONGEST |
1882 | get_unsigned_type_max (struct type *type) | |
ed3ef339 DE |
1883 | { |
1884 | unsigned int n; | |
1885 | ||
f168693b | 1886 | type = check_typedef (type); |
c6d940a9 | 1887 | gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ()); |
df86565b | 1888 | gdb_assert (type->length () <= sizeof (ULONGEST)); |
ed3ef339 DE |
1889 | |
1890 | /* Written this way to avoid overflow. */ | |
df86565b | 1891 | n = type->length () * TARGET_CHAR_BIT; |
c3c1e645 | 1892 | return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1; |
ed3ef339 DE |
1893 | } |
1894 | ||
1895 | /* Store in *MIN, *MAX the smallest and largest numbers representable by | |
1896 | signed integer type TYPE. */ | |
1897 | ||
1898 | void | |
1899 | get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max) | |
1900 | { | |
1901 | unsigned int n; | |
1902 | ||
f168693b | 1903 | type = check_typedef (type); |
c6d940a9 | 1904 | gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ()); |
df86565b | 1905 | gdb_assert (type->length () <= sizeof (LONGEST)); |
ed3ef339 | 1906 | |
df86565b | 1907 | n = type->length () * TARGET_CHAR_BIT; |
ed3ef339 DE |
1908 | *min = -((ULONGEST) 1 << (n - 1)); |
1909 | *max = ((ULONGEST) 1 << (n - 1)) - 1; | |
1910 | } | |
1911 | ||
b5b591a8 GB |
1912 | /* Return the largest value representable by pointer type TYPE. */ |
1913 | ||
1914 | CORE_ADDR | |
1915 | get_pointer_type_max (struct type *type) | |
1916 | { | |
1917 | unsigned int n; | |
1918 | ||
1919 | type = check_typedef (type); | |
1920 | gdb_assert (type->code () == TYPE_CODE_PTR); | |
df86565b | 1921 | gdb_assert (type->length () <= sizeof (CORE_ADDR)); |
b5b591a8 | 1922 | |
df86565b | 1923 | n = type->length () * TARGET_CHAR_BIT; |
b5b591a8 GB |
1924 | return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1; |
1925 | } | |
1926 | ||
ae6ae975 DE |
1927 | /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of |
1928 | cplus_stuff.vptr_fieldno. | |
1929 | ||
1930 | cplus_stuff is initialized to cplus_struct_default which does not | |
1931 | set vptr_fieldno to -1 for portability reasons (IWBN to use C99 | |
1932 | designated initializers). We cope with that here. */ | |
1933 | ||
1934 | int | |
1935 | internal_type_vptr_fieldno (struct type *type) | |
1936 | { | |
f168693b | 1937 | type = check_typedef (type); |
78134374 SM |
1938 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1939 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1940 | if (!HAVE_CPLUS_STRUCT (type)) |
1941 | return -1; | |
1942 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno; | |
1943 | } | |
1944 | ||
1945 | /* Set the value of cplus_stuff.vptr_fieldno. */ | |
1946 | ||
1947 | void | |
1948 | set_type_vptr_fieldno (struct type *type, int fieldno) | |
1949 | { | |
f168693b | 1950 | type = check_typedef (type); |
78134374 SM |
1951 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1952 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1953 | if (!HAVE_CPLUS_STRUCT (type)) |
1954 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1955 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno; | |
1956 | } | |
1957 | ||
1958 | /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of | |
1959 | cplus_stuff.vptr_basetype. */ | |
1960 | ||
1961 | struct type * | |
1962 | internal_type_vptr_basetype (struct type *type) | |
1963 | { | |
f168693b | 1964 | type = check_typedef (type); |
78134374 SM |
1965 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1966 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1967 | gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF); |
1968 | return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype; | |
1969 | } | |
1970 | ||
1971 | /* Set the value of cplus_stuff.vptr_basetype. */ | |
1972 | ||
1973 | void | |
1974 | set_type_vptr_basetype (struct type *type, struct type *basetype) | |
1975 | { | |
f168693b | 1976 | type = check_typedef (type); |
78134374 SM |
1977 | gdb_assert (type->code () == TYPE_CODE_STRUCT |
1978 | || type->code () == TYPE_CODE_UNION); | |
ae6ae975 DE |
1979 | if (!HAVE_CPLUS_STRUCT (type)) |
1980 | ALLOCATE_CPLUS_STRUCT_TYPE (type); | |
1981 | TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype; | |
1982 | } | |
1983 | ||
81fe8080 DE |
1984 | /* Lookup the vptr basetype/fieldno values for TYPE. |
1985 | If found store vptr_basetype in *BASETYPEP if non-NULL, and return | |
1986 | vptr_fieldno. Also, if found and basetype is from the same objfile, | |
1987 | cache the results. | |
1988 | If not found, return -1 and ignore BASETYPEP. | |
1989 | Callers should be aware that in some cases (for example, | |
c906108c | 1990 | the type or one of its baseclasses is a stub type and we are |
d48cc9dd DJ |
1991 | debugging a .o file, or the compiler uses DWARF-2 and is not GCC), |
1992 | this function will not be able to find the | |
7ba81444 | 1993 | virtual function table pointer, and vptr_fieldno will remain -1 and |
81fe8080 | 1994 | vptr_basetype will remain NULL or incomplete. */ |
c906108c | 1995 | |
81fe8080 DE |
1996 | int |
1997 | get_vptr_fieldno (struct type *type, struct type **basetypep) | |
c906108c | 1998 | { |
f168693b | 1999 | type = check_typedef (type); |
c906108c SS |
2000 | |
2001 | if (TYPE_VPTR_FIELDNO (type) < 0) | |
2002 | { | |
2003 | int i; | |
2004 | ||
7ba81444 | 2005 | /* We must start at zero in case the first (and only) baseclass |
dda83cd7 | 2006 | is virtual (and hence we cannot share the table pointer). */ |
c906108c SS |
2007 | for (i = 0; i < TYPE_N_BASECLASSES (type); i++) |
2008 | { | |
81fe8080 DE |
2009 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); |
2010 | int fieldno; | |
2011 | struct type *basetype; | |
2012 | ||
2013 | fieldno = get_vptr_fieldno (baseclass, &basetype); | |
2014 | if (fieldno >= 0) | |
c906108c | 2015 | { |
81fe8080 | 2016 | /* If the type comes from a different objfile we can't cache |
0963b4bd | 2017 | it, it may have a different lifetime. PR 2384 */ |
6ac37371 | 2018 | if (type->objfile_owner () == basetype->objfile_owner ()) |
81fe8080 | 2019 | { |
ae6ae975 DE |
2020 | set_type_vptr_fieldno (type, fieldno); |
2021 | set_type_vptr_basetype (type, basetype); | |
81fe8080 DE |
2022 | } |
2023 | if (basetypep) | |
2024 | *basetypep = basetype; | |
2025 | return fieldno; | |
c906108c SS |
2026 | } |
2027 | } | |
81fe8080 DE |
2028 | |
2029 | /* Not found. */ | |
2030 | return -1; | |
2031 | } | |
2032 | else | |
2033 | { | |
2034 | if (basetypep) | |
2035 | *basetypep = TYPE_VPTR_BASETYPE (type); | |
2036 | return TYPE_VPTR_FIELDNO (type); | |
c906108c SS |
2037 | } |
2038 | } | |
2039 | ||
44e1a9eb DJ |
2040 | static void |
2041 | stub_noname_complaint (void) | |
2042 | { | |
b98664d3 | 2043 | complaint (_("stub type has NULL name")); |
44e1a9eb DJ |
2044 | } |
2045 | ||
a405673c JB |
2046 | /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property |
2047 | attached to it, and that property has a non-constant value. */ | |
2048 | ||
2049 | static int | |
2050 | array_type_has_dynamic_stride (struct type *type) | |
2051 | { | |
24e99c6c | 2052 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c | 2053 | |
9c0fb734 | 2054 | return prop != nullptr && prop->is_constant (); |
a405673c JB |
2055 | } |
2056 | ||
d98b7a16 | 2057 | /* Worker for is_dynamic_type. */ |
80180f79 | 2058 | |
86542ab5 TT |
2059 | static bool |
2060 | is_dynamic_type_internal (struct type *type, bool top_level) | |
80180f79 SA |
2061 | { |
2062 | type = check_typedef (type); | |
2063 | ||
f18fc7e5 BH |
2064 | /* We only want to recognize references and pointers at the outermost |
2065 | level. */ | |
2066 | if (top_level && type->is_pointer_or_reference ()) | |
27710edb | 2067 | type = check_typedef (type->target_type ()); |
e771e4be | 2068 | |
3cdcd0ce JB |
2069 | /* Types that have a dynamic TYPE_DATA_LOCATION are considered |
2070 | dynamic, even if the type itself is statically defined. | |
2071 | From a user's point of view, this may appear counter-intuitive; | |
2072 | but it makes sense in this context, because the point is to determine | |
2073 | whether any part of the type needs to be resolved before it can | |
2074 | be exploited. */ | |
2075 | if (TYPE_DATA_LOCATION (type) != NULL | |
2076 | && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR | |
2077 | || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST)) | |
86542ab5 | 2078 | return true; |
3cdcd0ce | 2079 | |
3f2f83dd | 2080 | if (TYPE_ASSOCIATED_PROP (type)) |
86542ab5 | 2081 | return true; |
3f2f83dd KB |
2082 | |
2083 | if (TYPE_ALLOCATED_PROP (type)) | |
86542ab5 | 2084 | return true; |
3f2f83dd | 2085 | |
24e99c6c | 2086 | struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2087 | if (prop != nullptr && prop->kind () != PROP_TYPE) |
86542ab5 | 2088 | return true; |
ef83a141 | 2089 | |
f8e89861 | 2090 | if (TYPE_HAS_DYNAMIC_LENGTH (type)) |
86542ab5 | 2091 | return true; |
f8e89861 | 2092 | |
78134374 | 2093 | switch (type->code ()) |
80180f79 | 2094 | { |
6f8a3220 | 2095 | case TYPE_CODE_RANGE: |
ddb87a81 JB |
2096 | { |
2097 | /* A range type is obviously dynamic if it has at least one | |
2098 | dynamic bound. But also consider the range type to be | |
2099 | dynamic when its subtype is dynamic, even if the bounds | |
2100 | of the range type are static. It allows us to assume that | |
2101 | the subtype of a static range type is also static. */ | |
599088e3 | 2102 | return (!has_static_range (type->bounds ()) |
86542ab5 | 2103 | || is_dynamic_type_internal (type->target_type (), false)); |
ddb87a81 | 2104 | } |
6f8a3220 | 2105 | |
216a7e6b AB |
2106 | case TYPE_CODE_STRING: |
2107 | /* Strings are very much like an array of characters, and can be | |
2108 | treated as one here. */ | |
80180f79 SA |
2109 | case TYPE_CODE_ARRAY: |
2110 | { | |
1f704f76 | 2111 | gdb_assert (type->num_fields () == 1); |
6f8a3220 | 2112 | |
a405673c | 2113 | /* The array is dynamic if either the bounds are dynamic... */ |
86542ab5 TT |
2114 | if (is_dynamic_type_internal (type->index_type (), false)) |
2115 | return true; | |
a405673c | 2116 | /* ... or the elements it contains have a dynamic contents... */ |
86542ab5 TT |
2117 | if (is_dynamic_type_internal (type->target_type (), false)) |
2118 | return true; | |
a405673c JB |
2119 | /* ... or if it has a dynamic stride... */ |
2120 | if (array_type_has_dynamic_stride (type)) | |
86542ab5 TT |
2121 | return true; |
2122 | return false; | |
80180f79 | 2123 | } |
012370f6 TT |
2124 | |
2125 | case TYPE_CODE_STRUCT: | |
2126 | case TYPE_CODE_UNION: | |
2127 | { | |
2128 | int i; | |
2129 | ||
7d79de9a TT |
2130 | bool is_cplus = HAVE_CPLUS_STRUCT (type); |
2131 | ||
1f704f76 | 2132 | for (i = 0; i < type->num_fields (); ++i) |
7d79de9a TT |
2133 | { |
2134 | /* Static fields can be ignored here. */ | |
c819a338 | 2135 | if (type->field (i).is_static ()) |
7d79de9a TT |
2136 | continue; |
2137 | /* If the field has dynamic type, then so does TYPE. */ | |
86542ab5 TT |
2138 | if (is_dynamic_type_internal (type->field (i).type (), false)) |
2139 | return true; | |
7d79de9a TT |
2140 | /* If the field is at a fixed offset, then it is not |
2141 | dynamic. */ | |
692252c4 | 2142 | if (!type->field (i).loc_is_dwarf_block ()) |
7d79de9a TT |
2143 | continue; |
2144 | /* Do not consider C++ virtual base types to be dynamic | |
2145 | due to the field's offset being dynamic; these are | |
2146 | handled via other means. */ | |
2147 | if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i)) | |
2148 | continue; | |
86542ab5 | 2149 | return true; |
7d79de9a | 2150 | } |
012370f6 TT |
2151 | } |
2152 | break; | |
80180f79 | 2153 | } |
92e2a17f | 2154 | |
86542ab5 | 2155 | return false; |
80180f79 SA |
2156 | } |
2157 | ||
d98b7a16 TT |
2158 | /* See gdbtypes.h. */ |
2159 | ||
86542ab5 | 2160 | bool |
d98b7a16 TT |
2161 | is_dynamic_type (struct type *type) |
2162 | { | |
86542ab5 | 2163 | return is_dynamic_type_internal (type, true); |
d98b7a16 TT |
2164 | } |
2165 | ||
df25ebbd | 2166 | static struct type *resolve_dynamic_type_internal |
b4b312d1 | 2167 | (struct type *type, const property_addr_info *addr_stack, |
86542ab5 | 2168 | const frame_info_ptr &frame, bool top_level); |
d98b7a16 | 2169 | |
df25ebbd JB |
2170 | /* Given a dynamic range type (dyn_range_type) and a stack of |
2171 | struct property_addr_info elements, return a static version | |
b7874836 AB |
2172 | of that type. |
2173 | ||
2174 | When RESOLVE_P is true then the returned static range is created by | |
2175 | actually evaluating any dynamic properties within the range type, while | |
2176 | when RESOLVE_P is false the returned static range has all of the bounds | |
2177 | and stride information set to undefined. The RESOLVE_P set to false | |
2178 | case will be used when evaluating a dynamic array that is not | |
2179 | allocated, or not associated, i.e. the bounds information might not be | |
3fb842ce AB |
2180 | initialized yet. |
2181 | ||
2182 | RANK is the array rank for which we are resolving this range, and is a | |
2183 | zero based count. The rank should never be negative. | |
2184 | */ | |
d190df30 | 2185 | |
80180f79 | 2186 | static struct type * |
df25ebbd | 2187 | resolve_dynamic_range (struct type *dyn_range_type, |
b4b312d1 | 2188 | const property_addr_info *addr_stack, |
aeabe83d | 2189 | const frame_info_ptr &frame, |
df7a7bdd | 2190 | int rank, bool resolve_p = true) |
80180f79 SA |
2191 | { |
2192 | CORE_ADDR value; | |
ddb87a81 | 2193 | struct type *static_range_type, *static_target_type; |
5bbd8269 | 2194 | struct dynamic_prop low_bound, high_bound, stride; |
80180f79 | 2195 | |
78134374 | 2196 | gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE); |
3fb842ce | 2197 | gdb_assert (rank >= 0); |
80180f79 | 2198 | |
599088e3 | 2199 | const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low; |
a8b16509 TT |
2200 | if (resolve_p) |
2201 | { | |
2202 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, | |
2203 | { (CORE_ADDR) rank })) | |
2204 | low_bound.set_const_val (value); | |
2205 | else if (prop->kind () == PROP_UNDEFINED) | |
2206 | low_bound.set_undefined (); | |
2207 | else | |
2208 | low_bound.set_optimized_out (); | |
2209 | } | |
80180f79 | 2210 | else |
8c2e4e06 | 2211 | low_bound.set_undefined (); |
80180f79 | 2212 | |
599088e3 | 2213 | prop = &dyn_range_type->bounds ()->high; |
a8b16509 | 2214 | if (resolve_p) |
80180f79 | 2215 | { |
a8b16509 TT |
2216 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
2217 | { (CORE_ADDR) rank })) | |
2218 | { | |
2219 | high_bound.set_const_val (value); | |
c451ebe5 | 2220 | |
a8b16509 TT |
2221 | if (dyn_range_type->bounds ()->flag_upper_bound_is_count) |
2222 | high_bound.set_const_val | |
2223 | (low_bound.const_val () + high_bound.const_val () - 1); | |
2224 | } | |
2225 | else if (prop->kind () == PROP_UNDEFINED) | |
2226 | high_bound.set_undefined (); | |
2227 | else | |
2228 | high_bound.set_optimized_out (); | |
80180f79 SA |
2229 | } |
2230 | else | |
8c2e4e06 | 2231 | high_bound.set_undefined (); |
80180f79 | 2232 | |
599088e3 SM |
2233 | bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride; |
2234 | prop = &dyn_range_type->bounds ()->stride; | |
aeabe83d | 2235 | if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value, |
df7a7bdd | 2236 | { (CORE_ADDR) rank })) |
5bbd8269 | 2237 | { |
8c2e4e06 | 2238 | stride.set_const_val (value); |
5bbd8269 AB |
2239 | |
2240 | /* If we have a bit stride that is not an exact number of bytes then | |
2241 | I really don't think this is going to work with current GDB, the | |
2242 | array indexing code in GDB seems to be pretty heavily tied to byte | |
2243 | offsets right now. Assuming 8 bits in a byte. */ | |
8ee511af | 2244 | struct gdbarch *gdbarch = dyn_range_type->arch (); |
5bbd8269 AB |
2245 | int unit_size = gdbarch_addressable_memory_unit_size (gdbarch); |
2246 | if (!byte_stride_p && (value % (unit_size * 8)) != 0) | |
2247 | error (_("bit strides that are not a multiple of the byte size " | |
2248 | "are currently not supported")); | |
2249 | } | |
2250 | else | |
2251 | { | |
8c2e4e06 | 2252 | stride.set_undefined (); |
5bbd8269 AB |
2253 | byte_stride_p = true; |
2254 | } | |
2255 | ||
ddb87a81 | 2256 | static_target_type |
27710edb | 2257 | = resolve_dynamic_type_internal (dyn_range_type->target_type (), |
86542ab5 | 2258 | addr_stack, frame, false); |
599088e3 | 2259 | LONGEST bias = dyn_range_type->bounds ()->bias; |
e727c536 | 2260 | type_allocator alloc (dyn_range_type); |
5bbd8269 | 2261 | static_range_type = create_range_type_with_stride |
e727c536 | 2262 | (alloc, static_target_type, |
5bbd8269 | 2263 | &low_bound, &high_bound, bias, &stride, byte_stride_p); |
4bfcb286 | 2264 | static_range_type->set_name (dyn_range_type->name ()); |
599088e3 | 2265 | static_range_type->bounds ()->flag_bound_evaluated = 1; |
6f8a3220 JB |
2266 | return static_range_type; |
2267 | } | |
2268 | ||
df7a7bdd | 2269 | /* Helper function for resolve_dynamic_array_or_string. This function |
2270 | resolves the properties for a single array at RANK within a nested array | |
3fb842ce | 2271 | of arrays structure. The RANK value is greater than or equal to 0, and |
df7a7bdd | 2272 | starts at it's maximum value and goes down by 1 for each recursive call |
2273 | to this function. So, for a 3-dimensional array, the first call to this | |
3fb842ce AB |
2274 | function has RANK == 2, then we call ourselves recursively with RANK == |
2275 | 1, than again with RANK == 0, and at that point we should return. | |
df7a7bdd | 2276 | |
2277 | TYPE is updated as the dynamic properties are resolved, and so, should | |
2278 | be a copy of the dynamic type, rather than the original dynamic type | |
2279 | itself. | |
2280 | ||
2281 | ADDR_STACK is a stack of struct property_addr_info to be used if needed | |
2282 | during the dynamic resolution. | |
b7874836 AB |
2283 | |
2284 | When RESOLVE_P is true then the dynamic properties of TYPE are | |
2285 | evaluated, otherwise the dynamic properties of TYPE are not evaluated, | |
2286 | instead we assume the array is not allocated/associated yet. */ | |
6f8a3220 JB |
2287 | |
2288 | static struct type * | |
df7a7bdd | 2289 | resolve_dynamic_array_or_string_1 (struct type *type, |
b4b312d1 | 2290 | const property_addr_info *addr_stack, |
aeabe83d | 2291 | const frame_info_ptr &frame, |
df7a7bdd | 2292 | int rank, bool resolve_p) |
6f8a3220 JB |
2293 | { |
2294 | CORE_ADDR value; | |
2295 | struct type *elt_type; | |
2296 | struct type *range_type; | |
2297 | struct type *ary_dim; | |
3f2f83dd | 2298 | struct dynamic_prop *prop; |
a405673c | 2299 | unsigned int bit_stride = 0; |
6f8a3220 | 2300 | |
216a7e6b AB |
2301 | /* For dynamic type resolution strings can be treated like arrays of |
2302 | characters. */ | |
78134374 SM |
2303 | gdb_assert (type->code () == TYPE_CODE_ARRAY |
2304 | || type->code () == TYPE_CODE_STRING); | |
6f8a3220 | 2305 | |
3fb842ce AB |
2306 | /* As the rank is a zero based count we expect this to never be |
2307 | negative. */ | |
2308 | gdb_assert (rank >= 0); | |
3f2f83dd | 2309 | |
b7874836 AB |
2310 | /* Resolve the allocated and associated properties before doing anything |
2311 | else. If an array is not allocated or not associated then (at least | |
2312 | for Fortran) there is no guarantee that the data to define the upper | |
2313 | bound, lower bound, or stride will be correct. If RESOLVE_P is | |
2314 | already false at this point then this is not the first dimension of | |
2315 | the array and a more outer dimension has already marked this array as | |
2316 | not allocated/associated, as such we just ignore this property. This | |
2317 | is fine as GDB only checks the allocated/associated on the outer most | |
2318 | dimension of the array. */ | |
3f2f83dd | 2319 | prop = TYPE_ALLOCATED_PROP (type); |
b7874836 | 2320 | if (prop != NULL && resolve_p |
aeabe83d | 2321 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
b7874836 AB |
2322 | { |
2323 | prop->set_const_val (value); | |
2324 | if (value == 0) | |
2325 | resolve_p = false; | |
2326 | } | |
8c2e4e06 | 2327 | |
3f2f83dd | 2328 | prop = TYPE_ASSOCIATED_PROP (type); |
b7874836 | 2329 | if (prop != NULL && resolve_p |
aeabe83d | 2330 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
b7874836 AB |
2331 | { |
2332 | prop->set_const_val (value); | |
2333 | if (value == 0) | |
2334 | resolve_p = false; | |
2335 | } | |
3f2f83dd | 2336 | |
b7874836 | 2337 | range_type = check_typedef (type->index_type ()); |
df7a7bdd | 2338 | range_type |
aeabe83d | 2339 | = resolve_dynamic_range (range_type, addr_stack, frame, rank, resolve_p); |
80180f79 | 2340 | |
27710edb | 2341 | ary_dim = check_typedef (type->target_type ()); |
78134374 | 2342 | if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY) |
df7a7bdd | 2343 | { |
2344 | ary_dim = copy_type (ary_dim); | |
2345 | elt_type = resolve_dynamic_array_or_string_1 (ary_dim, addr_stack, | |
aeabe83d TT |
2346 | frame, rank - 1, |
2347 | resolve_p); | |
df7a7bdd | 2348 | } |
b0fdcd47 IA |
2349 | else if (ary_dim != nullptr && ary_dim->code () == TYPE_CODE_STRING) |
2350 | { | |
2351 | /* The following special case for TYPE_CODE_STRING should not be | |
2352 | needed, ideally we would defer resolving the dynamic type of the | |
2353 | array elements until needed later, and indeed, the resolved type | |
2354 | of each array element might be different, so attempting to resolve | |
2355 | the type here makes no sense. | |
2356 | ||
2357 | However, in Fortran, for arrays of strings, each element must be | |
2358 | the same type, as such, the DWARF for the string length relies on | |
2359 | the object address of the array itself. | |
2360 | ||
2361 | The problem here is that, when we create values from the dynamic | |
2362 | array type, we resolve the data location, and use that as the | |
2363 | value address, this completely discards the original value | |
2364 | address, and it is this original value address that is the | |
2365 | descriptor for the dynamic array, the very address that the DWARF | |
2366 | needs us to push in order to resolve the dynamic string length. | |
2367 | ||
2368 | What this means then, is that, given the current state of GDB, if | |
2369 | we don't resolve the string length now, then we will have lost | |
2370 | access to the address of the dynamic object descriptor, and so we | |
2371 | will not be able to resolve the dynamic string later. | |
2372 | ||
2373 | For now then, we handle special case TYPE_CODE_STRING on behalf of | |
2374 | Fortran, and hope that this doesn't cause problems for anyone | |
2375 | else. */ | |
2376 | elt_type = resolve_dynamic_type_internal (type->target_type (), | |
2377 | addr_stack, frame, 0); | |
2378 | } | |
80180f79 | 2379 | else |
27710edb | 2380 | elt_type = type->target_type (); |
80180f79 | 2381 | |
24e99c6c | 2382 | prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE); |
b0fdcd47 IA |
2383 | if (prop != nullptr && type->code () == TYPE_CODE_STRING) |
2384 | prop = nullptr; | |
b7874836 | 2385 | if (prop != NULL && resolve_p) |
a405673c | 2386 | { |
aeabe83d | 2387 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
a405673c | 2388 | { |
7aa91313 | 2389 | type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE); |
a405673c JB |
2390 | bit_stride = (unsigned int) (value * 8); |
2391 | } | |
2392 | else | |
2393 | { | |
2394 | /* Could be a bug in our code, but it could also happen | |
2395 | if the DWARF info is not correct. Issue a warning, | |
2396 | and assume no byte/bit stride (leave bit_stride = 0). */ | |
2397 | warning (_("cannot determine array stride for type %s"), | |
7d93a1e0 | 2398 | type->name () ? type->name () : "<no name>"); |
a405673c JB |
2399 | } |
2400 | } | |
2401 | else | |
3757d2d4 | 2402 | bit_stride = type->field (0).bitsize (); |
a405673c | 2403 | |
9e76b17a | 2404 | type_allocator alloc (type, type_allocator::SMASH); |
b0fdcd47 IA |
2405 | if (type->code () == TYPE_CODE_STRING) |
2406 | return create_string_type (alloc, elt_type, range_type); | |
2407 | else | |
2408 | return create_array_type_with_stride (alloc, elt_type, range_type, NULL, | |
2409 | bit_stride); | |
80180f79 SA |
2410 | } |
2411 | ||
df7a7bdd | 2412 | /* Resolve an array or string type with dynamic properties, return a new |
2413 | type with the dynamic properties resolved to actual values. The | |
2414 | ADDR_STACK represents the location of the object being resolved. */ | |
2415 | ||
2416 | static struct type * | |
2417 | resolve_dynamic_array_or_string (struct type *type, | |
b4b312d1 | 2418 | const property_addr_info *addr_stack, |
aeabe83d | 2419 | const frame_info_ptr &frame) |
df7a7bdd | 2420 | { |
2421 | CORE_ADDR value; | |
2422 | int rank = 0; | |
2423 | ||
2424 | /* For dynamic type resolution strings can be treated like arrays of | |
2425 | characters. */ | |
2426 | gdb_assert (type->code () == TYPE_CODE_ARRAY | |
2427 | || type->code () == TYPE_CODE_STRING); | |
2428 | ||
2429 | type = copy_type (type); | |
2430 | ||
2431 | /* Resolve the rank property to get rank value. */ | |
2432 | struct dynamic_prop *prop = TYPE_RANK_PROP (type); | |
aeabe83d | 2433 | if (dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
df7a7bdd | 2434 | { |
2435 | prop->set_const_val (value); | |
2436 | rank = value; | |
2437 | ||
2438 | if (rank == 0) | |
2439 | { | |
5f59e7e0 | 2440 | /* Rank is zero, if a variable is passed as an argument to a |
2441 | function. In this case the resolved type should not be an | |
2442 | array, but should instead be that of an array element. */ | |
2443 | struct type *dynamic_array_type = type; | |
27710edb | 2444 | type = copy_type (dynamic_array_type->target_type ()); |
5f59e7e0 | 2445 | struct dynamic_prop_list *prop_list |
2446 | = TYPE_MAIN_TYPE (dynamic_array_type)->dyn_prop_list; | |
2447 | if (prop_list != nullptr) | |
2448 | { | |
2449 | struct obstack *obstack | |
2450 | = &type->objfile_owner ()->objfile_obstack; | |
2451 | TYPE_MAIN_TYPE (type)->dyn_prop_list | |
2452 | = copy_dynamic_prop_list (obstack, prop_list); | |
2453 | } | |
2454 | return type; | |
df7a7bdd | 2455 | } |
2456 | else if (type->code () == TYPE_CODE_STRING && rank != 1) | |
2457 | { | |
2458 | /* What would this even mean? A string with a dynamic rank | |
2459 | greater than 1. */ | |
2460 | error (_("unable to handle string with dynamic rank greater than 1")); | |
2461 | } | |
2462 | else if (rank > 1) | |
2463 | { | |
2464 | /* Arrays with dynamic rank are initially just an array type | |
2465 | with a target type that is the array element. | |
2466 | ||
2467 | However, now we know the rank of the array we need to build | |
2468 | the array of arrays structure that GDB expects, that is we | |
2469 | need an array type that has a target which is an array type, | |
2470 | and so on, until eventually, we have the element type at the | |
2471 | end of the chain. Create all the additional array types here | |
2472 | by copying the top level array type. */ | |
27710edb | 2473 | struct type *element_type = type->target_type (); |
df7a7bdd | 2474 | struct type *rank_type = type; |
2475 | for (int i = 1; i < rank; i++) | |
2476 | { | |
8a50fdce | 2477 | rank_type->set_target_type (copy_type (rank_type)); |
27710edb | 2478 | rank_type = rank_type->target_type (); |
df7a7bdd | 2479 | } |
8a50fdce | 2480 | rank_type->set_target_type (element_type); |
df7a7bdd | 2481 | } |
2482 | } | |
2483 | else | |
2484 | { | |
2485 | rank = 1; | |
2486 | ||
27710edb | 2487 | for (struct type *tmp_type = check_typedef (type->target_type ()); |
df7a7bdd | 2488 | tmp_type->code () == TYPE_CODE_ARRAY; |
27710edb | 2489 | tmp_type = check_typedef (tmp_type->target_type ())) |
df7a7bdd | 2490 | ++rank; |
2491 | } | |
2492 | ||
3fb842ce AB |
2493 | /* The rank that we calculated above is actually a count of the number of |
2494 | ranks. However, when we resolve the type of each individual array | |
2495 | rank we should actually use a rank "offset", e.g. an array with a rank | |
2496 | count of 1 (calculated above) will use the rank offset 0 in order to | |
2497 | resolve the details of the first array dimension. As a result, we | |
2498 | reduce the rank by 1 here. */ | |
2499 | --rank; | |
2500 | ||
aeabe83d TT |
2501 | return resolve_dynamic_array_or_string_1 (type, addr_stack, frame, rank, |
2502 | true); | |
df7a7bdd | 2503 | } |
2504 | ||
012370f6 | 2505 | /* Resolve dynamic bounds of members of the union TYPE to static |
df25ebbd JB |
2506 | bounds. ADDR_STACK is a stack of struct property_addr_info |
2507 | to be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2508 | |
2509 | static struct type * | |
df25ebbd | 2510 | resolve_dynamic_union (struct type *type, |
b4b312d1 | 2511 | const property_addr_info *addr_stack, |
aeabe83d | 2512 | const frame_info_ptr &frame) |
012370f6 TT |
2513 | { |
2514 | struct type *resolved_type; | |
012370f6 TT |
2515 | unsigned int max_len = 0; |
2516 | ||
78134374 | 2517 | gdb_assert (type->code () == TYPE_CODE_UNION); |
012370f6 TT |
2518 | |
2519 | resolved_type = copy_type (type); | |
2774f2da | 2520 | resolved_type->copy_fields (type); |
89495c33 | 2521 | for (auto &field : resolved_type->fields ()) |
012370f6 TT |
2522 | { |
2523 | struct type *t; | |
2524 | ||
89495c33 | 2525 | if (field.is_static ()) |
012370f6 TT |
2526 | continue; |
2527 | ||
89495c33 TT |
2528 | t = resolve_dynamic_type_internal (field.type (), addr_stack, |
2529 | frame, false); | |
2530 | field.set_type (t); | |
2f33032a KS |
2531 | |
2532 | struct type *real_type = check_typedef (t); | |
df86565b SM |
2533 | if (real_type->length () > max_len) |
2534 | max_len = real_type->length (); | |
012370f6 TT |
2535 | } |
2536 | ||
b6cdbc9a | 2537 | resolved_type->set_length (max_len); |
012370f6 TT |
2538 | return resolved_type; |
2539 | } | |
2540 | ||
ef83a141 TT |
2541 | /* See gdbtypes.h. */ |
2542 | ||
2543 | bool | |
2544 | variant::matches (ULONGEST value, bool is_unsigned) const | |
2545 | { | |
2546 | for (const discriminant_range &range : discriminants) | |
2547 | if (range.contains (value, is_unsigned)) | |
2548 | return true; | |
2549 | return false; | |
2550 | } | |
2551 | ||
2552 | static void | |
2553 | compute_variant_fields_inner (struct type *type, | |
b4b312d1 | 2554 | const property_addr_info *addr_stack, |
ef83a141 TT |
2555 | const variant_part &part, |
2556 | std::vector<bool> &flags); | |
2557 | ||
2558 | /* A helper function to determine which variant fields will be active. | |
2559 | This handles both the variant's direct fields, and any variant | |
2560 | parts embedded in this variant. TYPE is the type we're examining. | |
2561 | ADDR_STACK holds information about the concrete object. VARIANT is | |
2562 | the current variant to be handled. FLAGS is where the results are | |
2563 | stored -- this function sets the Nth element in FLAGS if the | |
2564 | corresponding field is enabled. ENABLED is whether this variant is | |
2565 | enabled or not. */ | |
2566 | ||
2567 | static void | |
2568 | compute_variant_fields_recurse (struct type *type, | |
b4b312d1 | 2569 | const property_addr_info *addr_stack, |
ef83a141 TT |
2570 | const variant &variant, |
2571 | std::vector<bool> &flags, | |
2572 | bool enabled) | |
2573 | { | |
2574 | for (int field = variant.first_field; field < variant.last_field; ++field) | |
2575 | flags[field] = enabled; | |
2576 | ||
2577 | for (const variant_part &new_part : variant.parts) | |
2578 | { | |
2579 | if (enabled) | |
2580 | compute_variant_fields_inner (type, addr_stack, new_part, flags); | |
2581 | else | |
2582 | { | |
2583 | for (const auto &sub_variant : new_part.variants) | |
2584 | compute_variant_fields_recurse (type, addr_stack, sub_variant, | |
2585 | flags, enabled); | |
2586 | } | |
2587 | } | |
2588 | } | |
2589 | ||
2590 | /* A helper function to determine which variant fields will be active. | |
2591 | This evaluates the discriminant, decides which variant (if any) is | |
2592 | active, and then updates FLAGS to reflect which fields should be | |
2593 | available. TYPE is the type we're examining. ADDR_STACK holds | |
2594 | information about the concrete object. VARIANT is the current | |
2595 | variant to be handled. FLAGS is where the results are stored -- | |
2596 | this function sets the Nth element in FLAGS if the corresponding | |
2597 | field is enabled. */ | |
2598 | ||
2599 | static void | |
2600 | compute_variant_fields_inner (struct type *type, | |
b4b312d1 | 2601 | const property_addr_info *addr_stack, |
ef83a141 TT |
2602 | const variant_part &part, |
2603 | std::vector<bool> &flags) | |
2604 | { | |
2605 | /* Evaluate the discriminant. */ | |
6b09f134 | 2606 | std::optional<ULONGEST> discr_value; |
ef83a141 TT |
2607 | if (part.discriminant_index != -1) |
2608 | { | |
2609 | int idx = part.discriminant_index; | |
2610 | ||
2ad53ea1 | 2611 | if (type->field (idx).loc_kind () != FIELD_LOC_KIND_BITPOS) |
ef83a141 TT |
2612 | error (_("Cannot determine struct field location" |
2613 | " (invalid location kind)")); | |
2614 | ||
b249d2c2 TT |
2615 | if (addr_stack->valaddr.data () != NULL) |
2616 | discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (), | |
2617 | idx); | |
ef83a141 TT |
2618 | else |
2619 | { | |
2620 | CORE_ADDR addr = (addr_stack->addr | |
b610c045 | 2621 | + (type->field (idx).loc_bitpos () |
ef83a141 TT |
2622 | / TARGET_CHAR_BIT)); |
2623 | ||
3757d2d4 | 2624 | LONGEST bitsize = type->field (idx).bitsize (); |
ef83a141 TT |
2625 | LONGEST size = bitsize / 8; |
2626 | if (size == 0) | |
df86565b | 2627 | size = type->field (idx).type ()->length (); |
ef83a141 TT |
2628 | |
2629 | gdb_byte bits[sizeof (ULONGEST)]; | |
2630 | read_memory (addr, bits, size); | |
2631 | ||
b610c045 | 2632 | LONGEST bitpos = (type->field (idx).loc_bitpos () |
ef83a141 TT |
2633 | % TARGET_CHAR_BIT); |
2634 | ||
940da03e | 2635 | discr_value = unpack_bits_as_long (type->field (idx).type (), |
ef83a141 TT |
2636 | bits, bitpos, bitsize); |
2637 | } | |
2638 | } | |
2639 | ||
2640 | /* Go through each variant and see which applies. */ | |
2641 | const variant *default_variant = nullptr; | |
2642 | const variant *applied_variant = nullptr; | |
2643 | for (const auto &variant : part.variants) | |
2644 | { | |
2645 | if (variant.is_default ()) | |
2646 | default_variant = &variant; | |
2647 | else if (discr_value.has_value () | |
2648 | && variant.matches (*discr_value, part.is_unsigned)) | |
2649 | { | |
2650 | applied_variant = &variant; | |
2651 | break; | |
2652 | } | |
2653 | } | |
2654 | if (applied_variant == nullptr) | |
2655 | applied_variant = default_variant; | |
2656 | ||
2657 | for (const auto &variant : part.variants) | |
2658 | compute_variant_fields_recurse (type, addr_stack, variant, | |
2659 | flags, applied_variant == &variant); | |
2660 | } | |
2661 | ||
2662 | /* Determine which variant fields are available in TYPE. The enabled | |
2663 | fields are stored in RESOLVED_TYPE. ADDR_STACK holds information | |
2664 | about the concrete object. PARTS describes the top-level variant | |
2665 | parts for this type. */ | |
2666 | ||
2667 | static void | |
2668 | compute_variant_fields (struct type *type, | |
2669 | struct type *resolved_type, | |
b4b312d1 | 2670 | const property_addr_info *addr_stack, |
ef83a141 TT |
2671 | const gdb::array_view<variant_part> &parts) |
2672 | { | |
2673 | /* Assume all fields are included by default. */ | |
1f704f76 | 2674 | std::vector<bool> flags (resolved_type->num_fields (), true); |
ef83a141 TT |
2675 | |
2676 | /* Now disable fields based on the variants that control them. */ | |
2677 | for (const auto &part : parts) | |
2678 | compute_variant_fields_inner (type, addr_stack, part, flags); | |
2679 | ||
2774f2da TV |
2680 | unsigned int nfields = std::count (flags.begin (), flags.end (), true); |
2681 | /* No need to zero-initialize the newly allocated fields, they'll be | |
2682 | initialized by the copy in the loop below. */ | |
2683 | resolved_type->alloc_fields (nfields, false); | |
3cabb6b0 | 2684 | |
ef83a141 | 2685 | int out = 0; |
1f704f76 | 2686 | for (int i = 0; i < type->num_fields (); ++i) |
ef83a141 TT |
2687 | { |
2688 | if (!flags[i]) | |
2689 | continue; | |
2690 | ||
ceacbf6e | 2691 | resolved_type->field (out) = type->field (i); |
ef83a141 TT |
2692 | ++out; |
2693 | } | |
2694 | } | |
2695 | ||
800f6f5f TT |
2696 | /* See gdbtypes.h. */ |
2697 | ||
ee580641 TT |
2698 | void |
2699 | apply_bit_offset_to_field (struct field &field, LONGEST bit_offset, | |
2700 | LONGEST explicit_byte_size) | |
2701 | { | |
2702 | struct type *field_type = field.type (); | |
2703 | struct gdbarch *gdbarch = field_type->arch (); | |
2704 | LONGEST current_bitpos = field.loc_bitpos (); | |
2705 | ||
2706 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2707 | { | |
2708 | /* For big endian bits, the DW_AT_bit_offset gives the | |
2709 | additional bit offset from the MSB of the containing | |
2710 | anonymous object to the MSB of the field. We don't | |
2711 | have to do anything special since we don't need to | |
2712 | know the size of the anonymous object. */ | |
2713 | field.set_loc_bitpos (current_bitpos + bit_offset); | |
2714 | } | |
2715 | else | |
2716 | { | |
2717 | /* For little endian bits, compute the bit offset to the | |
2718 | MSB of the anonymous object, subtract off the number of | |
2719 | bits from the MSB of the field to the MSB of the | |
2720 | object, and then subtract off the number of bits of | |
2721 | the field itself. The result is the bit offset of | |
2722 | the LSB of the field. */ | |
2723 | LONGEST object_size = explicit_byte_size; | |
2724 | if (object_size == 0) | |
2725 | object_size = field_type->length (); | |
2726 | ||
2727 | field.set_loc_bitpos (current_bitpos | |
2728 | + 8 * object_size | |
2729 | - bit_offset | |
2730 | - field.bitsize ()); | |
2731 | } | |
2732 | } | |
2733 | ||
2734 | /* See gdbtypes.h. */ | |
2735 | ||
800f6f5f TT |
2736 | void |
2737 | resolve_dynamic_field (struct field &field, | |
2738 | const property_addr_info *addr_stack, | |
2739 | const frame_info_ptr &frame) | |
2740 | { | |
2741 | gdb_assert (!field.is_static ()); | |
2742 | ||
692252c4 | 2743 | if (field.loc_is_dwarf_block ()) |
800f6f5f | 2744 | { |
420d030e TT |
2745 | dwarf2_locexpr_baton *field_loc |
2746 | = field.loc_dwarf_block (); | |
2747 | ||
800f6f5f TT |
2748 | struct dwarf2_property_baton baton; |
2749 | baton.property_type = lookup_pointer_type (field.type ()); | |
420d030e | 2750 | baton.locexpr = *field_loc; |
800f6f5f TT |
2751 | |
2752 | struct dynamic_prop prop; | |
2753 | prop.set_locexpr (&baton); | |
2754 | ||
2755 | CORE_ADDR vals[1] = {addr_stack->addr}; | |
692252c4 TT |
2756 | CORE_ADDR addr_or_bitpos; |
2757 | if (dwarf2_evaluate_property (&prop, frame, addr_stack, | |
2758 | &addr_or_bitpos, vals)) | |
420d030e | 2759 | { |
692252c4 TT |
2760 | if (field.loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK_ADDR) |
2761 | field.set_loc_bitpos (TARGET_CHAR_BIT | |
2762 | * (addr_or_bitpos - addr_stack->addr)); | |
2763 | else | |
2764 | field.set_loc_bitpos (addr_or_bitpos); | |
420d030e TT |
2765 | |
2766 | if (field_loc->is_field_location) | |
2767 | { | |
2768 | dwarf2_field_location_baton *fl_baton | |
2769 | = static_cast<dwarf2_field_location_baton *> (field_loc); | |
2770 | apply_bit_offset_to_field (field, fl_baton->bit_offset, | |
2771 | fl_baton->explicit_byte_size); | |
2772 | } | |
2773 | } | |
800f6f5f TT |
2774 | } |
2775 | ||
2776 | /* As we know this field is not a static field, the field's | |
2777 | field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify | |
2778 | this is the case, but only trigger a simple error rather | |
2779 | than an internal error if that fails. While failing | |
2780 | that verification indicates a bug in our code, the error | |
2781 | is not severe enough to suggest to the user he stops | |
2782 | his debugging session because of it. */ | |
2783 | if (field.loc_kind () != FIELD_LOC_KIND_BITPOS) | |
2784 | error (_("Cannot determine struct field location" | |
2785 | " (invalid location kind)")); | |
2786 | ||
2787 | struct property_addr_info pinfo; | |
2788 | pinfo.type = check_typedef (field.type ()); | |
2789 | size_t offset = field.loc_bitpos () / TARGET_CHAR_BIT; | |
2790 | pinfo.valaddr = addr_stack->valaddr; | |
2791 | if (!pinfo.valaddr.empty ()) | |
2792 | pinfo.valaddr = pinfo.valaddr.slice (offset); | |
2793 | pinfo.addr = addr_stack->addr + offset; | |
2794 | pinfo.next = addr_stack; | |
2795 | ||
2796 | field.set_type (resolve_dynamic_type_internal (field.type (), | |
2797 | &pinfo, frame, false)); | |
2798 | gdb_assert (field.loc_kind () == FIELD_LOC_KIND_BITPOS); | |
2799 | } | |
2800 | ||
012370f6 | 2801 | /* Resolve dynamic bounds of members of the struct TYPE to static |
df25ebbd JB |
2802 | bounds. ADDR_STACK is a stack of struct property_addr_info to |
2803 | be used if needed during the dynamic resolution. */ | |
012370f6 TT |
2804 | |
2805 | static struct type * | |
df25ebbd | 2806 | resolve_dynamic_struct (struct type *type, |
b4b312d1 | 2807 | const property_addr_info *addr_stack, |
aeabe83d | 2808 | const frame_info_ptr &frame) |
012370f6 TT |
2809 | { |
2810 | struct type *resolved_type; | |
6908c509 | 2811 | unsigned resolved_type_bit_length = 0; |
012370f6 | 2812 | |
78134374 | 2813 | gdb_assert (type->code () == TYPE_CODE_STRUCT); |
012370f6 TT |
2814 | |
2815 | resolved_type = copy_type (type); | |
ef83a141 | 2816 | |
24e99c6c | 2817 | dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS); |
8c2e4e06 | 2818 | if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS) |
ef83a141 TT |
2819 | { |
2820 | compute_variant_fields (type, resolved_type, addr_stack, | |
8c2e4e06 | 2821 | *variant_prop->variant_parts ()); |
ef83a141 TT |
2822 | /* We want to leave the property attached, so that the Rust code |
2823 | can tell whether the type was originally an enum. */ | |
8c2e4e06 | 2824 | variant_prop->set_original_type (type); |
ef83a141 TT |
2825 | } |
2826 | else | |
2827 | { | |
2774f2da | 2828 | resolved_type->copy_fields (type); |
ef83a141 TT |
2829 | } |
2830 | ||
89495c33 | 2831 | for (auto &field : resolved_type->fields ()) |
012370f6 | 2832 | { |
6908c509 | 2833 | unsigned new_bit_length; |
012370f6 | 2834 | |
89495c33 | 2835 | if (field.is_static ()) |
012370f6 TT |
2836 | continue; |
2837 | ||
89495c33 | 2838 | resolve_dynamic_field (field, addr_stack, frame); |
df25ebbd | 2839 | |
89495c33 TT |
2840 | new_bit_length = field.loc_bitpos (); |
2841 | if (field.bitsize () != 0) | |
2842 | new_bit_length += field.bitsize (); | |
6908c509 | 2843 | else |
2f33032a | 2844 | { |
89495c33 | 2845 | struct type *real_type = check_typedef (field.type ()); |
2f33032a | 2846 | |
df86565b | 2847 | new_bit_length += (real_type->length () * TARGET_CHAR_BIT); |
2f33032a | 2848 | } |
6908c509 JB |
2849 | |
2850 | /* Normally, we would use the position and size of the last field | |
2851 | to determine the size of the enclosing structure. But GCC seems | |
2852 | to be encoding the position of some fields incorrectly when | |
2853 | the struct contains a dynamic field that is not placed last. | |
2854 | So we compute the struct size based on the field that has | |
2855 | the highest position + size - probably the best we can do. */ | |
2856 | if (new_bit_length > resolved_type_bit_length) | |
2857 | resolved_type_bit_length = new_bit_length; | |
012370f6 TT |
2858 | } |
2859 | ||
9920b434 BH |
2860 | /* The length of a type won't change for fortran, but it does for C and Ada. |
2861 | For fortran the size of dynamic fields might change over time but not the | |
2862 | type length of the structure. If we adapt it, we run into problems | |
2863 | when calculating the element offset for arrays of structs. */ | |
2864 | if (current_language->la_language != language_fortran) | |
b6cdbc9a SM |
2865 | resolved_type->set_length ((resolved_type_bit_length + TARGET_CHAR_BIT - 1) |
2866 | / TARGET_CHAR_BIT); | |
6908c509 | 2867 | |
9e195661 PMR |
2868 | /* The Ada language uses this field as a cache for static fixed types: reset |
2869 | it as RESOLVED_TYPE must have its own static fixed type. */ | |
8a50fdce | 2870 | resolved_type->set_target_type (nullptr); |
9e195661 | 2871 | |
012370f6 TT |
2872 | return resolved_type; |
2873 | } | |
2874 | ||
d98b7a16 | 2875 | /* Worker for resolved_dynamic_type. */ |
80180f79 | 2876 | |
d98b7a16 | 2877 | static struct type * |
df25ebbd | 2878 | resolve_dynamic_type_internal (struct type *type, |
b4b312d1 | 2879 | const property_addr_info *addr_stack, |
aeabe83d | 2880 | const frame_info_ptr &frame, |
86542ab5 | 2881 | bool top_level) |
80180f79 SA |
2882 | { |
2883 | struct type *real_type = check_typedef (type); | |
f8e89861 | 2884 | struct type *resolved_type = nullptr; |
d9823cbb | 2885 | struct dynamic_prop *prop; |
3cdcd0ce | 2886 | CORE_ADDR value; |
80180f79 | 2887 | |
ee715b5a | 2888 | if (!is_dynamic_type_internal (real_type, top_level)) |
80180f79 SA |
2889 | return type; |
2890 | ||
6b09f134 | 2891 | std::optional<CORE_ADDR> type_length; |
f8e89861 TT |
2892 | prop = TYPE_DYNAMIC_LENGTH (type); |
2893 | if (prop != NULL | |
aeabe83d | 2894 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
f8e89861 TT |
2895 | type_length = value; |
2896 | ||
78134374 | 2897 | if (type->code () == TYPE_CODE_TYPEDEF) |
6f8a3220 | 2898 | { |
cac9b138 | 2899 | resolved_type = copy_type (type); |
8a50fdce | 2900 | resolved_type->set_target_type |
27710edb | 2901 | (resolve_dynamic_type_internal (type->target_type (), addr_stack, |
aeabe83d | 2902 | frame, top_level)); |
5537b577 | 2903 | } |
8a50fdce | 2904 | else |
5537b577 JK |
2905 | { |
2906 | /* Before trying to resolve TYPE, make sure it is not a stub. */ | |
2907 | type = real_type; | |
012370f6 | 2908 | |
78134374 | 2909 | switch (type->code ()) |
5537b577 | 2910 | { |
e771e4be | 2911 | case TYPE_CODE_REF: |
f18fc7e5 BH |
2912 | case TYPE_CODE_PTR: |
2913 | case TYPE_CODE_RVALUE_REF: | |
e771e4be PMR |
2914 | { |
2915 | struct property_addr_info pinfo; | |
2916 | ||
27710edb | 2917 | pinfo.type = check_typedef (type->target_type ()); |
b249d2c2 TT |
2918 | pinfo.valaddr = {}; |
2919 | if (addr_stack->valaddr.data () != NULL) | |
2920 | pinfo.addr = extract_typed_address (addr_stack->valaddr.data (), | |
2921 | type); | |
c3345124 JB |
2922 | else |
2923 | pinfo.addr = read_memory_typed_address (addr_stack->addr, type); | |
e771e4be PMR |
2924 | pinfo.next = addr_stack; |
2925 | ||
3a3f1548 TT |
2926 | /* Special case a NULL pointer here -- we don't want to |
2927 | dereference it. */ | |
2928 | if (pinfo.addr != 0) | |
2929 | { | |
2930 | resolved_type = copy_type (type); | |
2931 | resolved_type->set_target_type | |
2932 | (resolve_dynamic_type_internal (type->target_type (), | |
2933 | &pinfo, frame, true)); | |
2934 | } | |
e771e4be PMR |
2935 | break; |
2936 | } | |
2937 | ||
216a7e6b AB |
2938 | case TYPE_CODE_STRING: |
2939 | /* Strings are very much like an array of characters, and can be | |
2940 | treated as one here. */ | |
5537b577 | 2941 | case TYPE_CODE_ARRAY: |
aeabe83d TT |
2942 | resolved_type = resolve_dynamic_array_or_string (type, addr_stack, |
2943 | frame); | |
5537b577 JK |
2944 | break; |
2945 | ||
2946 | case TYPE_CODE_RANGE: | |
3fb842ce AB |
2947 | /* Pass 0 for the rank value here, which indicates this is a |
2948 | range for the first rank of an array. The assumption is that | |
2949 | this rank value is not actually required for the resolution of | |
2950 | the dynamic range, otherwise, we'd be resolving this range | |
2951 | within the context of a dynamic array. */ | |
aeabe83d | 2952 | resolved_type = resolve_dynamic_range (type, addr_stack, frame, 0); |
5537b577 JK |
2953 | break; |
2954 | ||
2955 | case TYPE_CODE_UNION: | |
aeabe83d | 2956 | resolved_type = resolve_dynamic_union (type, addr_stack, frame); |
5537b577 JK |
2957 | break; |
2958 | ||
2959 | case TYPE_CODE_STRUCT: | |
aeabe83d | 2960 | resolved_type = resolve_dynamic_struct (type, addr_stack, frame); |
5537b577 JK |
2961 | break; |
2962 | } | |
6f8a3220 | 2963 | } |
80180f79 | 2964 | |
f8e89861 TT |
2965 | if (resolved_type == nullptr) |
2966 | return type; | |
2967 | ||
2968 | if (type_length.has_value ()) | |
2969 | { | |
b6cdbc9a | 2970 | resolved_type->set_length (*type_length); |
7aa91313 | 2971 | resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE); |
f8e89861 TT |
2972 | } |
2973 | ||
3cdcd0ce JB |
2974 | /* Resolve data_location attribute. */ |
2975 | prop = TYPE_DATA_LOCATION (resolved_type); | |
63e43d3a | 2976 | if (prop != NULL |
aeabe83d | 2977 | && dwarf2_evaluate_property (prop, frame, addr_stack, &value)) |
a5c641b5 AB |
2978 | { |
2979 | /* Start of Fortran hack. See comment in f-lang.h for what is going | |
2980 | on here.*/ | |
2981 | if (current_language->la_language == language_fortran | |
2982 | && resolved_type->code () == TYPE_CODE_ARRAY) | |
2983 | value = fortran_adjust_dynamic_array_base_address_hack (resolved_type, | |
2984 | value); | |
2985 | /* End of Fortran hack. */ | |
2986 | prop->set_const_val (value); | |
2987 | } | |
3cdcd0ce | 2988 | |
80180f79 SA |
2989 | return resolved_type; |
2990 | } | |
2991 | ||
d98b7a16 TT |
2992 | /* See gdbtypes.h */ |
2993 | ||
2994 | struct type * | |
b249d2c2 TT |
2995 | resolve_dynamic_type (struct type *type, |
2996 | gdb::array_view<const gdb_byte> valaddr, | |
aeabe83d TT |
2997 | CORE_ADDR addr, |
2998 | const frame_info_ptr *in_frame) | |
d98b7a16 | 2999 | { |
c3345124 JB |
3000 | struct property_addr_info pinfo |
3001 | = {check_typedef (type), valaddr, addr, NULL}; | |
df25ebbd | 3002 | |
aeabe83d TT |
3003 | frame_info_ptr frame; |
3004 | if (in_frame != nullptr) | |
3005 | frame = *in_frame; | |
3006 | ||
86542ab5 | 3007 | return resolve_dynamic_type_internal (type, &pinfo, frame, true); |
d98b7a16 TT |
3008 | } |
3009 | ||
d9823cbb KB |
3010 | /* See gdbtypes.h */ |
3011 | ||
24e99c6c SM |
3012 | dynamic_prop * |
3013 | type::dyn_prop (dynamic_prop_node_kind prop_kind) const | |
d9823cbb | 3014 | { |
98d48915 | 3015 | dynamic_prop_list *node = this->main_type->dyn_prop_list; |
d9823cbb KB |
3016 | |
3017 | while (node != NULL) | |
3018 | { | |
3019 | if (node->prop_kind == prop_kind) | |
dda83cd7 | 3020 | return &node->prop; |
d9823cbb KB |
3021 | node = node->next; |
3022 | } | |
3023 | return NULL; | |
3024 | } | |
3025 | ||
3026 | /* See gdbtypes.h */ | |
3027 | ||
3028 | void | |
5c54719c | 3029 | type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop) |
d9823cbb KB |
3030 | { |
3031 | struct dynamic_prop_list *temp; | |
3032 | ||
30625020 | 3033 | gdb_assert (this->is_objfile_owned ()); |
d9823cbb | 3034 | |
6ac37371 | 3035 | temp = XOBNEW (&this->objfile_owner ()->objfile_obstack, |
50a82047 | 3036 | struct dynamic_prop_list); |
d9823cbb | 3037 | temp->prop_kind = prop_kind; |
283a9958 | 3038 | temp->prop = prop; |
98d48915 | 3039 | temp->next = this->main_type->dyn_prop_list; |
d9823cbb | 3040 | |
98d48915 | 3041 | this->main_type->dyn_prop_list = temp; |
d9823cbb KB |
3042 | } |
3043 | ||
7aa91313 | 3044 | /* See gdbtypes.h. */ |
9920b434 BH |
3045 | |
3046 | void | |
7aa91313 | 3047 | type::remove_dyn_prop (dynamic_prop_node_kind kind) |
9920b434 BH |
3048 | { |
3049 | struct dynamic_prop_list *prev_node, *curr_node; | |
3050 | ||
98d48915 | 3051 | curr_node = this->main_type->dyn_prop_list; |
9920b434 BH |
3052 | prev_node = NULL; |
3053 | ||
3054 | while (NULL != curr_node) | |
3055 | { | |
7aa91313 | 3056 | if (curr_node->prop_kind == kind) |
9920b434 BH |
3057 | { |
3058 | /* Update the linked list but don't free anything. | |
49ba125f | 3059 | The property was allocated on obstack and it is not known |
9920b434 | 3060 | if we are on top of it. Nevertheless, everything is released |
49ba125f | 3061 | when the complete obstack is freed. */ |
9920b434 | 3062 | if (NULL == prev_node) |
98d48915 | 3063 | this->main_type->dyn_prop_list = curr_node->next; |
9920b434 BH |
3064 | else |
3065 | prev_node->next = curr_node->next; | |
3066 | ||
3067 | return; | |
3068 | } | |
3069 | ||
3070 | prev_node = curr_node; | |
3071 | curr_node = curr_node->next; | |
3072 | } | |
3073 | } | |
d9823cbb | 3074 | |
92163a10 JK |
3075 | /* Find the real type of TYPE. This function returns the real type, |
3076 | after removing all layers of typedefs, and completing opaque or stub | |
3077 | types. Completion changes the TYPE argument, but stripping of | |
3078 | typedefs does not. | |
3079 | ||
3080 | Instance flags (e.g. const/volatile) are preserved as typedefs are | |
3081 | stripped. If necessary a new qualified form of the underlying type | |
3082 | is created. | |
3083 | ||
27710edb | 3084 | NOTE: This will return a typedef if type::target_type for the typedef has |
92163a10 JK |
3085 | not been computed and we're either in the middle of reading symbols, or |
3086 | there was no name for the typedef in the debug info. | |
3087 | ||
9bc118a5 DE |
3088 | NOTE: Lookup of opaque types can throw errors for invalid symbol files. |
3089 | QUITs in the symbol reading code can also throw. | |
3090 | Thus this function can throw an exception. | |
3091 | ||
92163a10 JK |
3092 | If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of |
3093 | the target type. | |
c906108c SS |
3094 | |
3095 | If this is a stubbed struct (i.e. declared as struct foo *), see if | |
0963b4bd | 3096 | we can find a full definition in some other file. If so, copy this |
7ba81444 MS |
3097 | definition, so we can use it in future. There used to be a comment |
3098 | (but not any code) that if we don't find a full definition, we'd | |
3099 | set a flag so we don't spend time in the future checking the same | |
3100 | type. That would be a mistake, though--we might load in more | |
92163a10 | 3101 | symbols which contain a full definition for the type. */ |
c906108c SS |
3102 | |
3103 | struct type * | |
a02fd225 | 3104 | check_typedef (struct type *type) |
c906108c SS |
3105 | { |
3106 | struct type *orig_type = type; | |
a02fd225 | 3107 | |
423c0af8 MS |
3108 | gdb_assert (type); |
3109 | ||
314ad88d PA |
3110 | /* While we're removing typedefs, we don't want to lose qualifiers. |
3111 | E.g., const/volatile. */ | |
3112 | type_instance_flags instance_flags = type->instance_flags (); | |
3113 | ||
78134374 | 3114 | while (type->code () == TYPE_CODE_TYPEDEF) |
c906108c | 3115 | { |
27710edb | 3116 | if (!type->target_type ()) |
c906108c | 3117 | { |
0d5cff50 | 3118 | const char *name; |
c906108c SS |
3119 | struct symbol *sym; |
3120 | ||
3121 | /* It is dangerous to call lookup_symbol if we are currently | |
7ba81444 | 3122 | reading a symtab. Infinite recursion is one danger. */ |
c906108c | 3123 | if (currently_reading_symtab) |
92163a10 | 3124 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3125 | |
7d93a1e0 | 3126 | name = type->name (); |
c906108c SS |
3127 | if (name == NULL) |
3128 | { | |
23136709 | 3129 | stub_noname_complaint (); |
92163a10 | 3130 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3131 | } |
974b36c2 TT |
3132 | domain_search_flag flag |
3133 | = ((type->language () == language_c | |
3134 | || type->language () == language_objc | |
3135 | || type->language () == language_opencl | |
3136 | || type->language () == language_minimal) | |
3137 | ? SEARCH_STRUCT_DOMAIN | |
3138 | : SEARCH_TYPE_DOMAIN); | |
3139 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
c906108c | 3140 | if (sym) |
8a50fdce | 3141 | type->set_target_type (sym->type ()); |
7ba81444 | 3142 | else /* TYPE_CODE_UNDEF */ |
c9eb9f18 | 3143 | type->set_target_type (type_allocator (type->arch ()).new_type ()); |
c906108c | 3144 | } |
27710edb | 3145 | type = type->target_type (); |
c906108c | 3146 | |
92163a10 JK |
3147 | /* Preserve the instance flags as we traverse down the typedef chain. |
3148 | ||
3149 | Handling address spaces/classes is nasty, what do we do if there's a | |
3150 | conflict? | |
3151 | E.g., what if an outer typedef marks the type as class_1 and an inner | |
3152 | typedef marks the type as class_2? | |
3153 | This is the wrong place to do such error checking. We leave it to | |
3154 | the code that created the typedef in the first place to flag the | |
3155 | error. We just pick the outer address space (akin to letting the | |
3156 | outer cast in a chain of casting win), instead of assuming | |
3157 | "it can't happen". */ | |
3158 | { | |
314ad88d PA |
3159 | const type_instance_flags ALL_SPACES |
3160 | = (TYPE_INSTANCE_FLAG_CODE_SPACE | |
3161 | | TYPE_INSTANCE_FLAG_DATA_SPACE); | |
3162 | const type_instance_flags ALL_CLASSES | |
3163 | = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL; | |
3164 | ||
3165 | type_instance_flags new_instance_flags = type->instance_flags (); | |
92163a10 JK |
3166 | |
3167 | /* Treat code vs data spaces and address classes separately. */ | |
3168 | if ((instance_flags & ALL_SPACES) != 0) | |
3169 | new_instance_flags &= ~ALL_SPACES; | |
3170 | if ((instance_flags & ALL_CLASSES) != 0) | |
3171 | new_instance_flags &= ~ALL_CLASSES; | |
3172 | ||
3173 | instance_flags |= new_instance_flags; | |
3174 | } | |
3175 | } | |
a02fd225 | 3176 | |
7ba81444 MS |
3177 | /* If this is a struct/class/union with no fields, then check |
3178 | whether a full definition exists somewhere else. This is for | |
3179 | systems where a type definition with no fields is issued for such | |
3180 | types, instead of identifying them as stub types in the first | |
3181 | place. */ | |
c5aa993b | 3182 | |
7ba81444 MS |
3183 | if (TYPE_IS_OPAQUE (type) |
3184 | && opaque_type_resolution | |
3185 | && !currently_reading_symtab) | |
c906108c | 3186 | { |
7d93a1e0 | 3187 | const char *name = type->name (); |
c5aa993b | 3188 | struct type *newtype; |
d8734c88 | 3189 | |
c906108c SS |
3190 | if (name == NULL) |
3191 | { | |
23136709 | 3192 | stub_noname_complaint (); |
92163a10 | 3193 | return make_qualified_type (type, instance_flags, NULL); |
c906108c SS |
3194 | } |
3195 | newtype = lookup_transparent_type (name); | |
ad766c0a | 3196 | |
c906108c | 3197 | if (newtype) |
ad766c0a | 3198 | { |
7ba81444 MS |
3199 | /* If the resolved type and the stub are in the same |
3200 | objfile, then replace the stub type with the real deal. | |
3201 | But if they're in separate objfiles, leave the stub | |
3202 | alone; we'll just look up the transparent type every time | |
3203 | we call check_typedef. We can't create pointers between | |
3204 | types allocated to different objfiles, since they may | |
3205 | have different lifetimes. Trying to copy NEWTYPE over to | |
3206 | TYPE's objfile is pointless, too, since you'll have to | |
3207 | move over any other types NEWTYPE refers to, which could | |
3208 | be an unbounded amount of stuff. */ | |
6ac37371 | 3209 | if (newtype->objfile_owner () == type->objfile_owner ()) |
10242f36 | 3210 | type = make_qualified_type (newtype, type->instance_flags (), type); |
ad766c0a JB |
3211 | else |
3212 | type = newtype; | |
3213 | } | |
c906108c | 3214 | } |
7ba81444 MS |
3215 | /* Otherwise, rely on the stub flag being set for opaque/stubbed |
3216 | types. */ | |
e46d3488 | 3217 | else if (type->is_stub () && !currently_reading_symtab) |
c906108c | 3218 | { |
7d93a1e0 | 3219 | const char *name = type->name (); |
c906108c | 3220 | struct symbol *sym; |
d8734c88 | 3221 | |
c906108c SS |
3222 | if (name == NULL) |
3223 | { | |
23136709 | 3224 | stub_noname_complaint (); |
92163a10 | 3225 | return make_qualified_type (type, instance_flags, NULL); |
c906108c | 3226 | } |
974b36c2 TT |
3227 | domain_search_flag flag |
3228 | = ((type->language () == language_c | |
3229 | || type->language () == language_objc | |
3230 | || type->language () == language_opencl | |
3231 | || type->language () == language_minimal) | |
3232 | ? SEARCH_STRUCT_DOMAIN | |
3233 | : SEARCH_TYPE_DOMAIN); | |
3234 | sym = lookup_symbol (name, nullptr, flag, nullptr).symbol; | |
c906108c | 3235 | if (sym) |
dda83cd7 SM |
3236 | { |
3237 | /* Same as above for opaque types, we can replace the stub | |
3238 | with the complete type only if they are in the same | |
3239 | objfile. */ | |
5f9c5a63 SM |
3240 | if (sym->type ()->objfile_owner () == type->objfile_owner ()) |
3241 | type = make_qualified_type (sym->type (), | |
10242f36 | 3242 | type->instance_flags (), type); |
c26f2453 | 3243 | else |
5f9c5a63 | 3244 | type = sym->type (); |
dda83cd7 | 3245 | } |
c906108c SS |
3246 | } |
3247 | ||
d2183968 | 3248 | if (type->target_is_stub ()) |
c906108c | 3249 | { |
27710edb | 3250 | struct type *target_type = check_typedef (type->target_type ()); |
c906108c | 3251 | |
d2183968 | 3252 | if (target_type->is_stub () || target_type->target_is_stub ()) |
c5aa993b | 3253 | { |
73e2eb35 | 3254 | /* Nothing we can do. */ |
c5aa993b | 3255 | } |
78134374 | 3256 | else if (type->code () == TYPE_CODE_RANGE) |
c906108c | 3257 | { |
df86565b | 3258 | type->set_length (target_type->length ()); |
8f53807e | 3259 | type->set_target_is_stub (false); |
c906108c | 3260 | } |
78134374 | 3261 | else if (type->code () == TYPE_CODE_ARRAY |
8dbb1375 | 3262 | && update_static_array_size (type)) |
8f53807e | 3263 | type->set_target_is_stub (false); |
c906108c | 3264 | } |
92163a10 JK |
3265 | |
3266 | type = make_qualified_type (type, instance_flags, NULL); | |
3267 | ||
7ba81444 | 3268 | /* Cache TYPE_LENGTH for future use. */ |
df86565b | 3269 | orig_type->set_length (type->length ()); |
92163a10 | 3270 | |
c906108c SS |
3271 | return type; |
3272 | } | |
3273 | ||
7ba81444 | 3274 | /* Parse a type expression in the string [P..P+LENGTH). If an error |
48319d1f | 3275 | occurs, silently return a void type. */ |
c91ecb25 | 3276 | |
b9362cc7 | 3277 | static struct type * |
f5756acc | 3278 | safe_parse_type (struct gdbarch *gdbarch, const char *p, int length) |
c91ecb25 | 3279 | { |
34365054 | 3280 | struct type *type = NULL; /* Initialize to keep gcc happy. */ |
c91ecb25 | 3281 | |
7ba81444 | 3282 | /* Suppress error messages. */ |
c3d4b6a6 TT |
3283 | scoped_restore saved_gdb_stderr = make_scoped_restore (&gdb_stderr, |
3284 | &null_stream); | |
c91ecb25 | 3285 | |
7ba81444 | 3286 | /* Call parse_and_eval_type() without fear of longjmp()s. */ |
a70b8144 | 3287 | try |
8e7b59a5 KS |
3288 | { |
3289 | type = parse_and_eval_type (p, length); | |
3290 | } | |
230d2906 | 3291 | catch (const gdb_exception_error &except) |
492d29ea PA |
3292 | { |
3293 | type = builtin_type (gdbarch)->builtin_void; | |
3294 | } | |
c91ecb25 | 3295 | |
c91ecb25 ND |
3296 | return type; |
3297 | } | |
3298 | ||
c906108c SS |
3299 | /* Ugly hack to convert method stubs into method types. |
3300 | ||
7ba81444 MS |
3301 | He ain't kiddin'. This demangles the name of the method into a |
3302 | string including argument types, parses out each argument type, | |
3303 | generates a string casting a zero to that type, evaluates the | |
3304 | string, and stuffs the resulting type into an argtype vector!!! | |
3305 | Then it knows the type of the whole function (including argument | |
3306 | types for overloading), which info used to be in the stab's but was | |
3307 | removed to hack back the space required for them. */ | |
c906108c | 3308 | |
de17c821 | 3309 | static void |
fba45db2 | 3310 | check_stub_method (struct type *type, int method_id, int signature_id) |
c906108c | 3311 | { |
8ee511af | 3312 | struct gdbarch *gdbarch = type->arch (); |
c906108c SS |
3313 | struct fn_field *f; |
3314 | char *mangled_name = gdb_mangle_name (type, method_id, signature_id); | |
3456e70c TT |
3315 | gdb::unique_xmalloc_ptr<char> demangled_name |
3316 | = gdb_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI); | |
c906108c SS |
3317 | char *argtypetext, *p; |
3318 | int depth = 0, argcount = 1; | |
ad2f7632 | 3319 | struct field *argtypes; |
c906108c SS |
3320 | struct type *mtype; |
3321 | ||
3322 | /* Make sure we got back a function string that we can use. */ | |
3323 | if (demangled_name) | |
3456e70c | 3324 | p = strchr (demangled_name.get (), '('); |
502dcf4e AC |
3325 | else |
3326 | p = NULL; | |
c906108c SS |
3327 | |
3328 | if (demangled_name == NULL || p == NULL) | |
7ba81444 MS |
3329 | error (_("Internal: Cannot demangle mangled name `%s'."), |
3330 | mangled_name); | |
c906108c SS |
3331 | |
3332 | /* Now, read in the parameters that define this type. */ | |
3333 | p += 1; | |
3334 | argtypetext = p; | |
3335 | while (*p) | |
3336 | { | |
070ad9f0 | 3337 | if (*p == '(' || *p == '<') |
c906108c SS |
3338 | { |
3339 | depth += 1; | |
3340 | } | |
070ad9f0 | 3341 | else if (*p == ')' || *p == '>') |
c906108c SS |
3342 | { |
3343 | depth -= 1; | |
3344 | } | |
3345 | else if (*p == ',' && depth == 0) | |
3346 | { | |
3347 | argcount += 1; | |
3348 | } | |
3349 | ||
3350 | p += 1; | |
3351 | } | |
3352 | ||
ad2f7632 | 3353 | /* If we read one argument and it was ``void'', don't count it. */ |
61012eef | 3354 | if (startswith (argtypetext, "(void)")) |
ad2f7632 | 3355 | argcount -= 1; |
c906108c | 3356 | |
ad2f7632 DJ |
3357 | /* We need one extra slot, for the THIS pointer. */ |
3358 | ||
3359 | argtypes = (struct field *) | |
959db212 | 3360 | TYPE_ZALLOC (type, (argcount + 1) * sizeof (struct field)); |
c906108c | 3361 | p = argtypetext; |
4a1970e4 DJ |
3362 | |
3363 | /* Add THIS pointer for non-static methods. */ | |
3364 | f = TYPE_FN_FIELDLIST1 (type, method_id); | |
3365 | if (TYPE_FN_FIELD_STATIC_P (f, signature_id)) | |
3366 | argcount = 0; | |
3367 | else | |
3368 | { | |
5d14b6e5 | 3369 | argtypes[0].set_type (lookup_pointer_type (type)); |
4a1970e4 DJ |
3370 | argcount = 1; |
3371 | } | |
c906108c | 3372 | |
0963b4bd | 3373 | if (*p != ')') /* () means no args, skip while. */ |
c906108c SS |
3374 | { |
3375 | depth = 0; | |
3376 | while (*p) | |
3377 | { | |
3378 | if (depth <= 0 && (*p == ',' || *p == ')')) | |
3379 | { | |
ad2f7632 | 3380 | /* Avoid parsing of ellipsis, they will be handled below. |
dda83cd7 | 3381 | Also avoid ``void'' as above. */ |
ad2f7632 DJ |
3382 | if (strncmp (argtypetext, "...", p - argtypetext) != 0 |
3383 | && strncmp (argtypetext, "void", p - argtypetext) != 0) | |
c906108c | 3384 | { |
5d14b6e5 SM |
3385 | argtypes[argcount].set_type |
3386 | (safe_parse_type (gdbarch, argtypetext, p - argtypetext)); | |
c906108c SS |
3387 | argcount += 1; |
3388 | } | |
3389 | argtypetext = p + 1; | |
3390 | } | |
3391 | ||
070ad9f0 | 3392 | if (*p == '(' || *p == '<') |
c906108c SS |
3393 | { |
3394 | depth += 1; | |
3395 | } | |
070ad9f0 | 3396 | else if (*p == ')' || *p == '>') |
c906108c SS |
3397 | { |
3398 | depth -= 1; | |
3399 | } | |
3400 | ||
3401 | p += 1; | |
3402 | } | |
3403 | } | |
3404 | ||
c906108c SS |
3405 | TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name; |
3406 | ||
3407 | /* Now update the old "stub" type into a real type. */ | |
3408 | mtype = TYPE_FN_FIELD_TYPE (f, signature_id); | |
09e2d7c7 DE |
3409 | /* MTYPE may currently be a function (TYPE_CODE_FUNC). |
3410 | We want a method (TYPE_CODE_METHOD). */ | |
27710edb | 3411 | smash_to_method_type (mtype, type, mtype->target_type (), |
89495c33 TT |
3412 | gdb::make_array_view (argtypes, argcount), |
3413 | p[-2] == '.'); | |
b4b73759 | 3414 | mtype->set_is_stub (false); |
c906108c SS |
3415 | TYPE_FN_FIELD_STUB (f, signature_id) = 0; |
3416 | } | |
3417 | ||
7ba81444 MS |
3418 | /* This is the external interface to check_stub_method, above. This |
3419 | function unstubs all of the signatures for TYPE's METHOD_ID method | |
3420 | name. After calling this function TYPE_FN_FIELD_STUB will be | |
3421 | cleared for each signature and TYPE_FN_FIELDLIST_NAME will be | |
3422 | correct. | |
de17c821 DJ |
3423 | |
3424 | This function unfortunately can not die until stabs do. */ | |
3425 | ||
3426 | void | |
3427 | check_stub_method_group (struct type *type, int method_id) | |
3428 | { | |
3429 | int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id); | |
3430 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
de17c821 | 3431 | |
041be526 SM |
3432 | for (int j = 0; j < len; j++) |
3433 | { | |
3434 | if (TYPE_FN_FIELD_STUB (f, j)) | |
de17c821 | 3435 | check_stub_method (type, method_id, j); |
de17c821 DJ |
3436 | } |
3437 | } | |
3438 | ||
405feb71 | 3439 | /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */ |
9655fd1a | 3440 | const struct cplus_struct_type cplus_struct_default = { }; |
c906108c SS |
3441 | |
3442 | void | |
fba45db2 | 3443 | allocate_cplus_struct_type (struct type *type) |
c906108c | 3444 | { |
b4ba55a1 JB |
3445 | if (HAVE_CPLUS_STRUCT (type)) |
3446 | /* Structure was already allocated. Nothing more to do. */ | |
3447 | return; | |
3448 | ||
3449 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF; | |
3450 | TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *) | |
959db212 | 3451 | TYPE_ZALLOC (type, sizeof (struct cplus_struct_type)); |
b4ba55a1 | 3452 | *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default; |
ae6ae975 | 3453 | set_type_vptr_fieldno (type, -1); |
c906108c SS |
3454 | } |
3455 | ||
b4ba55a1 JB |
3456 | const struct gnat_aux_type gnat_aux_default = |
3457 | { NULL }; | |
3458 | ||
3459 | /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF, | |
3460 | and allocate the associated gnat-specific data. The gnat-specific | |
3461 | data is also initialized to gnat_aux_default. */ | |
5212577a | 3462 | |
b4ba55a1 JB |
3463 | void |
3464 | allocate_gnat_aux_type (struct type *type) | |
3465 | { | |
3466 | TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF; | |
3467 | TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) | |
959db212 | 3468 | TYPE_ZALLOC (type, sizeof (struct gnat_aux_type)); |
b4ba55a1 JB |
3469 | *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default; |
3470 | } | |
3471 | ||
19f392bc UW |
3472 | /* Helper function to verify floating-point format and size. |
3473 | BIT is the type size in bits; if BIT equals -1, the size is | |
3474 | determined by the floatformat. Returns size to be used. */ | |
3475 | ||
3476 | static int | |
0db7851f | 3477 | verify_floatformat (int bit, const struct floatformat *floatformat) |
19f392bc | 3478 | { |
0db7851f | 3479 | gdb_assert (floatformat != NULL); |
9b790ce7 | 3480 | |
19f392bc | 3481 | if (bit == -1) |
0db7851f | 3482 | bit = floatformat->totalsize; |
19f392bc | 3483 | |
0db7851f UW |
3484 | gdb_assert (bit >= 0); |
3485 | gdb_assert (bit >= floatformat->totalsize); | |
19f392bc UW |
3486 | |
3487 | return bit; | |
3488 | } | |
3489 | ||
0db7851f UW |
3490 | /* Return the floating-point format for a floating-point variable of |
3491 | type TYPE. */ | |
3492 | ||
3493 | const struct floatformat * | |
3494 | floatformat_from_type (const struct type *type) | |
3495 | { | |
78134374 | 3496 | gdb_assert (type->code () == TYPE_CODE_FLT); |
0db7851f UW |
3497 | gdb_assert (TYPE_FLOATFORMAT (type)); |
3498 | return TYPE_FLOATFORMAT (type); | |
3499 | } | |
3500 | ||
2d39ccd3 | 3501 | /* See gdbtypes.h. */ |
19f392bc UW |
3502 | |
3503 | struct type * | |
2d39ccd3 | 3504 | init_integer_type (type_allocator &alloc, |
19f392bc UW |
3505 | int bit, int unsigned_p, const char *name) |
3506 | { | |
3507 | struct type *t; | |
3508 | ||
2d39ccd3 | 3509 | t = alloc.new_type (TYPE_CODE_INT, bit, name); |
19f392bc | 3510 | if (unsigned_p) |
653223d3 | 3511 | t->set_is_unsigned (true); |
19f392bc | 3512 | |
20a5fcbd TT |
3513 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3514 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3515 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3516 | ||
19f392bc UW |
3517 | return t; |
3518 | } | |
3519 | ||
f50b437c | 3520 | /* See gdbtypes.h. */ |
19f392bc UW |
3521 | |
3522 | struct type * | |
f50b437c | 3523 | init_character_type (type_allocator &alloc, |
19f392bc UW |
3524 | int bit, int unsigned_p, const char *name) |
3525 | { | |
3526 | struct type *t; | |
3527 | ||
f50b437c | 3528 | t = alloc.new_type (TYPE_CODE_CHAR, bit, name); |
19f392bc | 3529 | if (unsigned_p) |
653223d3 | 3530 | t->set_is_unsigned (true); |
19f392bc UW |
3531 | |
3532 | return t; | |
3533 | } | |
3534 | ||
46c04ea3 | 3535 | /* See gdbtypes.h. */ |
19f392bc UW |
3536 | |
3537 | struct type * | |
46c04ea3 | 3538 | init_boolean_type (type_allocator &alloc, |
19f392bc UW |
3539 | int bit, int unsigned_p, const char *name) |
3540 | { | |
3541 | struct type *t; | |
3542 | ||
46c04ea3 | 3543 | t = alloc.new_type (TYPE_CODE_BOOL, bit, name); |
19f392bc | 3544 | if (unsigned_p) |
653223d3 | 3545 | t->set_is_unsigned (true); |
19f392bc | 3546 | |
20a5fcbd TT |
3547 | TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT; |
3548 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit; | |
3549 | TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0; | |
3550 | ||
19f392bc UW |
3551 | return t; |
3552 | } | |
3553 | ||
77c5f496 | 3554 | /* See gdbtypes.h. */ |
19f392bc UW |
3555 | |
3556 | struct type * | |
77c5f496 | 3557 | init_float_type (type_allocator &alloc, |
19f392bc | 3558 | int bit, const char *name, |
103a685e TT |
3559 | const struct floatformat **floatformats, |
3560 | enum bfd_endian byte_order) | |
19f392bc | 3561 | { |
103a685e TT |
3562 | if (byte_order == BFD_ENDIAN_UNKNOWN) |
3563 | { | |
77c5f496 | 3564 | struct gdbarch *gdbarch = alloc.arch (); |
103a685e TT |
3565 | byte_order = gdbarch_byte_order (gdbarch); |
3566 | } | |
3567 | const struct floatformat *fmt = floatformats[byte_order]; | |
19f392bc UW |
3568 | struct type *t; |
3569 | ||
0db7851f | 3570 | bit = verify_floatformat (bit, fmt); |
77c5f496 | 3571 | t = alloc.new_type (TYPE_CODE_FLT, bit, name); |
0db7851f | 3572 | TYPE_FLOATFORMAT (t) = fmt; |
19f392bc UW |
3573 | |
3574 | return t; | |
3575 | } | |
3576 | ||
0776344a | 3577 | /* See gdbtypes.h. */ |
19f392bc UW |
3578 | |
3579 | struct type * | |
0776344a | 3580 | init_decfloat_type (type_allocator &alloc, int bit, const char *name) |
19f392bc | 3581 | { |
0776344a | 3582 | return alloc.new_type (TYPE_CODE_DECFLOAT, bit, name); |
19f392bc UW |
3583 | } |
3584 | ||
ae710496 TV |
3585 | /* Return true if init_complex_type can be called with TARGET_TYPE. */ |
3586 | ||
3587 | bool | |
3588 | can_create_complex_type (struct type *target_type) | |
3589 | { | |
3590 | return (target_type->code () == TYPE_CODE_INT | |
3591 | || target_type->code () == TYPE_CODE_FLT); | |
3592 | } | |
3593 | ||
5b930b45 TT |
3594 | /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type |
3595 | name. TARGET_TYPE is the component type. */ | |
19f392bc UW |
3596 | |
3597 | struct type * | |
5b930b45 | 3598 | init_complex_type (const char *name, struct type *target_type) |
19f392bc UW |
3599 | { |
3600 | struct type *t; | |
3601 | ||
ae710496 | 3602 | gdb_assert (can_create_complex_type (target_type)); |
5b930b45 TT |
3603 | |
3604 | if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr) | |
3605 | { | |
6b9d0dfd | 3606 | if (name == nullptr && target_type->name () != nullptr) |
5b930b45 | 3607 | { |
959db212 TV |
3608 | /* No zero-initialization required, initialized by strcpy/strcat |
3609 | below. */ | |
5b930b45 TT |
3610 | char *new_name |
3611 | = (char *) TYPE_ALLOC (target_type, | |
7d93a1e0 | 3612 | strlen (target_type->name ()) |
5b930b45 TT |
3613 | + strlen ("_Complex ") + 1); |
3614 | strcpy (new_name, "_Complex "); | |
7d93a1e0 | 3615 | strcat (new_name, target_type->name ()); |
5b930b45 TT |
3616 | name = new_name; |
3617 | } | |
3618 | ||
9fa83a7a | 3619 | t = type_allocator (target_type).new_type (); |
5b930b45 | 3620 | set_type_code (t, TYPE_CODE_COMPLEX); |
df86565b | 3621 | t->set_length (2 * target_type->length ()); |
d0e39ea2 | 3622 | t->set_name (name); |
5b930b45 | 3623 | |
8a50fdce | 3624 | t->set_target_type (target_type); |
5b930b45 TT |
3625 | TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t; |
3626 | } | |
3627 | ||
3628 | return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type; | |
19f392bc UW |
3629 | } |
3630 | ||
9c794d2d | 3631 | /* See gdbtypes.h. */ |
19f392bc UW |
3632 | |
3633 | struct type * | |
9c794d2d | 3634 | init_pointer_type (type_allocator &alloc, |
19f392bc UW |
3635 | int bit, const char *name, struct type *target_type) |
3636 | { | |
3637 | struct type *t; | |
3638 | ||
9c794d2d | 3639 | t = alloc.new_type (TYPE_CODE_PTR, bit, name); |
8a50fdce | 3640 | t->set_target_type (target_type); |
653223d3 | 3641 | t->set_is_unsigned (true); |
19f392bc UW |
3642 | return t; |
3643 | } | |
3644 | ||
09584414 JB |
3645 | /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE. |
3646 | BIT is the pointer type size in bits. | |
3647 | UNSIGNED_P should be nonzero if the type is unsigned. | |
3648 | NAME is the type name. */ | |
3649 | ||
3650 | struct type * | |
d5592272 | 3651 | init_fixed_point_type (type_allocator &alloc, |
09584414 JB |
3652 | int bit, int unsigned_p, const char *name) |
3653 | { | |
3654 | struct type *t; | |
3655 | ||
d5592272 | 3656 | t = alloc.new_type (TYPE_CODE_FIXED_POINT, bit, name); |
09584414 JB |
3657 | if (unsigned_p) |
3658 | t->set_is_unsigned (true); | |
3659 | ||
3660 | return t; | |
3661 | } | |
3662 | ||
2b4424c3 TT |
3663 | /* See gdbtypes.h. */ |
3664 | ||
3665 | unsigned | |
3666 | type_raw_align (struct type *type) | |
3667 | { | |
3668 | if (type->align_log2 != 0) | |
3669 | return 1 << (type->align_log2 - 1); | |
3670 | return 0; | |
3671 | } | |
3672 | ||
3673 | /* See gdbtypes.h. */ | |
3674 | ||
3675 | unsigned | |
3676 | type_align (struct type *type) | |
3677 | { | |
5561fc30 | 3678 | /* Check alignment provided in the debug information. */ |
2b4424c3 TT |
3679 | unsigned raw_align = type_raw_align (type); |
3680 | if (raw_align != 0) | |
3681 | return raw_align; | |
3682 | ||
5561fc30 | 3683 | /* Allow the architecture to provide an alignment. */ |
8ee511af | 3684 | ULONGEST align = gdbarch_type_align (type->arch (), type); |
5561fc30 AB |
3685 | if (align != 0) |
3686 | return align; | |
3687 | ||
78134374 | 3688 | switch (type->code ()) |
2b4424c3 TT |
3689 | { |
3690 | case TYPE_CODE_PTR: | |
3691 | case TYPE_CODE_FUNC: | |
3692 | case TYPE_CODE_FLAGS: | |
3693 | case TYPE_CODE_INT: | |
75ba10dc | 3694 | case TYPE_CODE_RANGE: |
2b4424c3 TT |
3695 | case TYPE_CODE_FLT: |
3696 | case TYPE_CODE_ENUM: | |
3697 | case TYPE_CODE_REF: | |
3698 | case TYPE_CODE_RVALUE_REF: | |
3699 | case TYPE_CODE_CHAR: | |
3700 | case TYPE_CODE_BOOL: | |
3701 | case TYPE_CODE_DECFLOAT: | |
70cd633e AB |
3702 | case TYPE_CODE_METHODPTR: |
3703 | case TYPE_CODE_MEMBERPTR: | |
5561fc30 | 3704 | align = type_length_units (check_typedef (type)); |
2b4424c3 TT |
3705 | break; |
3706 | ||
3707 | case TYPE_CODE_ARRAY: | |
3708 | case TYPE_CODE_COMPLEX: | |
3709 | case TYPE_CODE_TYPEDEF: | |
27710edb | 3710 | align = type_align (type->target_type ()); |
2b4424c3 TT |
3711 | break; |
3712 | ||
3713 | case TYPE_CODE_STRUCT: | |
3714 | case TYPE_CODE_UNION: | |
3715 | { | |
41077b66 | 3716 | int number_of_non_static_fields = 0; |
89495c33 | 3717 | for (const auto &field : type->fields ()) |
2b4424c3 | 3718 | { |
89495c33 | 3719 | if (!field.is_static ()) |
2b4424c3 | 3720 | { |
41077b66 | 3721 | number_of_non_static_fields++; |
89495c33 | 3722 | ULONGEST f_align = type_align (field.type ()); |
bf9a735e AB |
3723 | if (f_align == 0) |
3724 | { | |
3725 | /* Don't pretend we know something we don't. */ | |
3726 | align = 0; | |
3727 | break; | |
3728 | } | |
3729 | if (f_align > align) | |
3730 | align = f_align; | |
2b4424c3 | 3731 | } |
2b4424c3 | 3732 | } |
41077b66 AB |
3733 | /* A struct with no fields, or with only static fields has an |
3734 | alignment of 1. */ | |
3735 | if (number_of_non_static_fields == 0) | |
3736 | align = 1; | |
2b4424c3 TT |
3737 | } |
3738 | break; | |
3739 | ||
3740 | case TYPE_CODE_SET: | |
2b4424c3 TT |
3741 | case TYPE_CODE_STRING: |
3742 | /* Not sure what to do here, and these can't appear in C or C++ | |
3743 | anyway. */ | |
3744 | break; | |
3745 | ||
2b4424c3 TT |
3746 | case TYPE_CODE_VOID: |
3747 | align = 1; | |
3748 | break; | |
3749 | ||
3750 | case TYPE_CODE_ERROR: | |
3751 | case TYPE_CODE_METHOD: | |
3752 | default: | |
3753 | break; | |
3754 | } | |
3755 | ||
3756 | if ((align & (align - 1)) != 0) | |
3757 | { | |
3758 | /* Not a power of 2, so pass. */ | |
3759 | align = 0; | |
3760 | } | |
3761 | ||
3762 | return align; | |
3763 | } | |
3764 | ||
3765 | /* See gdbtypes.h. */ | |
3766 | ||
3767 | bool | |
3768 | set_type_align (struct type *type, ULONGEST align) | |
3769 | { | |
3770 | /* Must be a power of 2. Zero is ok. */ | |
3771 | gdb_assert ((align & (align - 1)) == 0); | |
3772 | ||
3773 | unsigned result = 0; | |
3774 | while (align != 0) | |
3775 | { | |
3776 | ++result; | |
3777 | align >>= 1; | |
3778 | } | |
3779 | ||
3780 | if (result >= (1 << TYPE_ALIGN_BITS)) | |
3781 | return false; | |
3782 | ||
3783 | type->align_log2 = result; | |
3784 | return true; | |
3785 | } | |
3786 | ||
5212577a DE |
3787 | \f |
3788 | /* Queries on types. */ | |
c906108c | 3789 | |
c906108c | 3790 | int |
fba45db2 | 3791 | can_dereference (struct type *t) |
c906108c | 3792 | { |
7ba81444 MS |
3793 | /* FIXME: Should we return true for references as well as |
3794 | pointers? */ | |
f168693b | 3795 | t = check_typedef (t); |
c906108c SS |
3796 | return |
3797 | (t != NULL | |
78134374 | 3798 | && t->code () == TYPE_CODE_PTR |
27710edb | 3799 | && t->target_type ()->code () != TYPE_CODE_VOID); |
c906108c SS |
3800 | } |
3801 | ||
adf40b2e | 3802 | int |
fba45db2 | 3803 | is_integral_type (struct type *t) |
adf40b2e | 3804 | { |
f168693b | 3805 | t = check_typedef (t); |
adf40b2e JM |
3806 | return |
3807 | ((t != NULL) | |
09584414 | 3808 | && !is_fixed_point_type (t) |
78134374 SM |
3809 | && ((t->code () == TYPE_CODE_INT) |
3810 | || (t->code () == TYPE_CODE_ENUM) | |
3811 | || (t->code () == TYPE_CODE_FLAGS) | |
3812 | || (t->code () == TYPE_CODE_CHAR) | |
3813 | || (t->code () == TYPE_CODE_RANGE) | |
3814 | || (t->code () == TYPE_CODE_BOOL))); | |
adf40b2e JM |
3815 | } |
3816 | ||
70100014 UW |
3817 | int |
3818 | is_floating_type (struct type *t) | |
3819 | { | |
3820 | t = check_typedef (t); | |
3821 | return | |
3822 | ((t != NULL) | |
78134374 SM |
3823 | && ((t->code () == TYPE_CODE_FLT) |
3824 | || (t->code () == TYPE_CODE_DECFLOAT))); | |
70100014 UW |
3825 | } |
3826 | ||
e09342b5 TJB |
3827 | /* Return true if TYPE is scalar. */ |
3828 | ||
220475ed | 3829 | int |
e09342b5 TJB |
3830 | is_scalar_type (struct type *type) |
3831 | { | |
f168693b | 3832 | type = check_typedef (type); |
e09342b5 | 3833 | |
09584414 JB |
3834 | if (is_fixed_point_type (type)) |
3835 | return 0; /* Implemented as a scalar, but more like a floating point. */ | |
3836 | ||
78134374 | 3837 | switch (type->code ()) |
e09342b5 TJB |
3838 | { |
3839 | case TYPE_CODE_ARRAY: | |
3840 | case TYPE_CODE_STRUCT: | |
3841 | case TYPE_CODE_UNION: | |
3842 | case TYPE_CODE_SET: | |
3843 | case TYPE_CODE_STRING: | |
e09342b5 TJB |
3844 | return 0; |
3845 | default: | |
3846 | return 1; | |
3847 | } | |
3848 | } | |
3849 | ||
3850 | /* Return true if T is scalar, or a composite type which in practice has | |
90e4670f TJB |
3851 | the memory layout of a scalar type. E.g., an array or struct with only |
3852 | one scalar element inside it, or a union with only scalar elements. */ | |
e09342b5 TJB |
3853 | |
3854 | int | |
3855 | is_scalar_type_recursive (struct type *t) | |
3856 | { | |
f168693b | 3857 | t = check_typedef (t); |
e09342b5 TJB |
3858 | |
3859 | if (is_scalar_type (t)) | |
3860 | return 1; | |
3861 | /* Are we dealing with an array or string of known dimensions? */ | |
78134374 | 3862 | else if ((t->code () == TYPE_CODE_ARRAY |
1f704f76 | 3863 | || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1 |
3d967001 | 3864 | && t->index_type ()->code () == TYPE_CODE_RANGE) |
e09342b5 TJB |
3865 | { |
3866 | LONGEST low_bound, high_bound; | |
27710edb | 3867 | struct type *elt_type = check_typedef (t->target_type ()); |
e09342b5 | 3868 | |
f8676776 LS |
3869 | if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound)) |
3870 | return (high_bound == low_bound | |
3871 | && is_scalar_type_recursive (elt_type)); | |
3872 | else | |
3873 | return 0; | |
e09342b5 TJB |
3874 | } |
3875 | /* Are we dealing with a struct with one element? */ | |
1f704f76 | 3876 | else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1) |
940da03e | 3877 | return is_scalar_type_recursive (t->field (0).type ()); |
78134374 | 3878 | else if (t->code () == TYPE_CODE_UNION) |
e09342b5 | 3879 | { |
1f704f76 | 3880 | int i, n = t->num_fields (); |
e09342b5 TJB |
3881 | |
3882 | /* If all elements of the union are scalar, then the union is scalar. */ | |
3883 | for (i = 0; i < n; i++) | |
940da03e | 3884 | if (!is_scalar_type_recursive (t->field (i).type ())) |
e09342b5 TJB |
3885 | return 0; |
3886 | ||
3887 | return 1; | |
3888 | } | |
3889 | ||
3890 | return 0; | |
3891 | } | |
3892 | ||
6c659fc2 SC |
3893 | /* Return true is T is a class or a union. False otherwise. */ |
3894 | ||
3895 | int | |
3896 | class_or_union_p (const struct type *t) | |
3897 | { | |
78134374 | 3898 | return (t->code () == TYPE_CODE_STRUCT |
dda83cd7 | 3899 | || t->code () == TYPE_CODE_UNION); |
6c659fc2 SC |
3900 | } |
3901 | ||
4e8f195d TT |
3902 | /* A helper function which returns true if types A and B represent the |
3903 | "same" class type. This is true if the types have the same main | |
3904 | type, or the same name. */ | |
3905 | ||
3906 | int | |
3907 | class_types_same_p (const struct type *a, const struct type *b) | |
3908 | { | |
3909 | return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b) | |
7d93a1e0 SM |
3910 | || (a->name () && b->name () |
3911 | && !strcmp (a->name (), b->name ()))); | |
4e8f195d TT |
3912 | } |
3913 | ||
a9d5ef47 SW |
3914 | /* If BASE is an ancestor of DCLASS return the distance between them. |
3915 | otherwise return -1; | |
3916 | eg: | |
3917 | ||
3918 | class A {}; | |
3919 | class B: public A {}; | |
3920 | class C: public B {}; | |
3921 | class D: C {}; | |
3922 | ||
3923 | distance_to_ancestor (A, A, 0) = 0 | |
3924 | distance_to_ancestor (A, B, 0) = 1 | |
3925 | distance_to_ancestor (A, C, 0) = 2 | |
3926 | distance_to_ancestor (A, D, 0) = 3 | |
3927 | ||
3928 | If PUBLIC is 1 then only public ancestors are considered, | |
3929 | and the function returns the distance only if BASE is a public ancestor | |
3930 | of DCLASS. | |
3931 | Eg: | |
3932 | ||
0963b4bd | 3933 | distance_to_ancestor (A, D, 1) = -1. */ |
c906108c | 3934 | |
0526b37a | 3935 | static int |
fe978cb0 | 3936 | distance_to_ancestor (struct type *base, struct type *dclass, int is_public) |
c906108c SS |
3937 | { |
3938 | int i; | |
a9d5ef47 | 3939 | int d; |
c5aa993b | 3940 | |
f168693b SM |
3941 | base = check_typedef (base); |
3942 | dclass = check_typedef (dclass); | |
c906108c | 3943 | |
4e8f195d | 3944 | if (class_types_same_p (base, dclass)) |
a9d5ef47 | 3945 | return 0; |
c906108c SS |
3946 | |
3947 | for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++) | |
4e8f195d | 3948 | { |
fe978cb0 | 3949 | if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i)) |
0526b37a SW |
3950 | continue; |
3951 | ||
fe978cb0 | 3952 | d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public); |
a9d5ef47 SW |
3953 | if (d >= 0) |
3954 | return 1 + d; | |
4e8f195d | 3955 | } |
c906108c | 3956 | |
a9d5ef47 | 3957 | return -1; |
c906108c | 3958 | } |
4e8f195d | 3959 | |
0526b37a SW |
3960 | /* Check whether BASE is an ancestor or base class or DCLASS |
3961 | Return 1 if so, and 0 if not. | |
3962 | Note: If BASE and DCLASS are of the same type, this function | |
3963 | will return 1. So for some class A, is_ancestor (A, A) will | |
3964 | return 1. */ | |
3965 | ||
3966 | int | |
3967 | is_ancestor (struct type *base, struct type *dclass) | |
3968 | { | |
a9d5ef47 | 3969 | return distance_to_ancestor (base, dclass, 0) >= 0; |
0526b37a SW |
3970 | } |
3971 | ||
4e8f195d TT |
3972 | /* Like is_ancestor, but only returns true when BASE is a public |
3973 | ancestor of DCLASS. */ | |
3974 | ||
3975 | int | |
3976 | is_public_ancestor (struct type *base, struct type *dclass) | |
3977 | { | |
a9d5ef47 | 3978 | return distance_to_ancestor (base, dclass, 1) >= 0; |
4e8f195d TT |
3979 | } |
3980 | ||
3981 | /* A helper function for is_unique_ancestor. */ | |
3982 | ||
3983 | static int | |
3984 | is_unique_ancestor_worker (struct type *base, struct type *dclass, | |
3985 | int *offset, | |
8af8e3bc PA |
3986 | const gdb_byte *valaddr, int embedded_offset, |
3987 | CORE_ADDR address, struct value *val) | |
4e8f195d TT |
3988 | { |
3989 | int i, count = 0; | |
3990 | ||
f168693b SM |
3991 | base = check_typedef (base); |
3992 | dclass = check_typedef (dclass); | |
4e8f195d TT |
3993 | |
3994 | for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i) | |
3995 | { | |
8af8e3bc PA |
3996 | struct type *iter; |
3997 | int this_offset; | |
4e8f195d | 3998 | |
8af8e3bc PA |
3999 | iter = check_typedef (TYPE_BASECLASS (dclass, i)); |
4000 | ||
4001 | this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset, | |
4002 | address, val); | |
4e8f195d TT |
4003 | |
4004 | if (class_types_same_p (base, iter)) | |
4005 | { | |
4006 | /* If this is the first subclass, set *OFFSET and set count | |
4007 | to 1. Otherwise, if this is at the same offset as | |
4008 | previous instances, do nothing. Otherwise, increment | |
4009 | count. */ | |
4010 | if (*offset == -1) | |
4011 | { | |
4012 | *offset = this_offset; | |
4013 | count = 1; | |
4014 | } | |
4015 | else if (this_offset == *offset) | |
4016 | { | |
4017 | /* Nothing. */ | |
4018 | } | |
4019 | else | |
4020 | ++count; | |
4021 | } | |
4022 | else | |
4023 | count += is_unique_ancestor_worker (base, iter, offset, | |
8af8e3bc PA |
4024 | valaddr, |
4025 | embedded_offset + this_offset, | |
4026 | address, val); | |
4e8f195d TT |
4027 | } |
4028 | ||
4029 | return count; | |
4030 | } | |
4031 | ||
4032 | /* Like is_ancestor, but only returns true if BASE is a unique base | |
4033 | class of the type of VAL. */ | |
4034 | ||
4035 | int | |
4036 | is_unique_ancestor (struct type *base, struct value *val) | |
4037 | { | |
4038 | int offset = -1; | |
4039 | ||
d0c97917 | 4040 | return is_unique_ancestor_worker (base, val->type (), &offset, |
efaf1ae0 | 4041 | val->contents_for_printing ().data (), |
391f8628 | 4042 | val->embedded_offset (), |
9feb2d07 | 4043 | val->address (), val) == 1; |
4e8f195d TT |
4044 | } |
4045 | ||
7ab4a236 TT |
4046 | /* See gdbtypes.h. */ |
4047 | ||
4048 | enum bfd_endian | |
4049 | type_byte_order (const struct type *type) | |
4050 | { | |
8ee511af | 4051 | bfd_endian byteorder = gdbarch_byte_order (type->arch ()); |
04f5bab2 | 4052 | if (type->endianity_is_not_default ()) |
7ab4a236 TT |
4053 | { |
4054 | if (byteorder == BFD_ENDIAN_BIG) | |
dda83cd7 | 4055 | return BFD_ENDIAN_LITTLE; |
7ab4a236 TT |
4056 | else |
4057 | { | |
4058 | gdb_assert (byteorder == BFD_ENDIAN_LITTLE); | |
4059 | return BFD_ENDIAN_BIG; | |
4060 | } | |
4061 | } | |
4062 | ||
4063 | return byteorder; | |
4064 | } | |
4065 | ||
0b35f123 LS |
4066 | /* See gdbtypes.h. */ |
4067 | ||
4068 | bool | |
4069 | is_nocall_function (const struct type *type) | |
4070 | { | |
78554598 TT |
4071 | if (type->code () != TYPE_CODE_FUNC && type->code () != TYPE_CODE_METHOD) |
4072 | return false; | |
0b35f123 LS |
4073 | |
4074 | return TYPE_CALLING_CONVENTION (type) == DW_CC_nocall; | |
4075 | } | |
4076 | ||
c906108c | 4077 | \f |
5212577a | 4078 | /* Overload resolution. */ |
c906108c | 4079 | |
6403aeea SW |
4080 | /* Return the sum of the rank of A with the rank of B. */ |
4081 | ||
4082 | struct rank | |
4083 | sum_ranks (struct rank a, struct rank b) | |
4084 | { | |
4085 | struct rank c; | |
4086 | c.rank = a.rank + b.rank; | |
a9d5ef47 | 4087 | c.subrank = a.subrank + b.subrank; |
6403aeea SW |
4088 | return c; |
4089 | } | |
4090 | ||
4091 | /* Compare rank A and B and return: | |
4092 | 0 if a = b | |
4093 | 1 if a is better than b | |
4094 | -1 if b is better than a. */ | |
4095 | ||
4096 | int | |
4097 | compare_ranks (struct rank a, struct rank b) | |
4098 | { | |
4099 | if (a.rank == b.rank) | |
a9d5ef47 SW |
4100 | { |
4101 | if (a.subrank == b.subrank) | |
4102 | return 0; | |
4103 | if (a.subrank < b.subrank) | |
4104 | return 1; | |
4105 | if (a.subrank > b.subrank) | |
4106 | return -1; | |
4107 | } | |
6403aeea SW |
4108 | |
4109 | if (a.rank < b.rank) | |
4110 | return 1; | |
4111 | ||
0963b4bd | 4112 | /* a.rank > b.rank */ |
6403aeea SW |
4113 | return -1; |
4114 | } | |
c5aa993b | 4115 | |
0963b4bd | 4116 | /* Functions for overload resolution begin here. */ |
c906108c SS |
4117 | |
4118 | /* Compare two badness vectors A and B and return the result. | |
7ba81444 MS |
4119 | 0 => A and B are identical |
4120 | 1 => A and B are incomparable | |
4121 | 2 => A is better than B | |
4122 | 3 => A is worse than B */ | |
c906108c SS |
4123 | |
4124 | int | |
82ceee50 | 4125 | compare_badness (const badness_vector &a, const badness_vector &b) |
c906108c SS |
4126 | { |
4127 | int i; | |
4128 | int tmp; | |
ac03c8d8 TT |
4129 | /* Any positives in comparison? */ |
4130 | bool found_pos = false; | |
4131 | /* Any negatives in comparison? */ | |
4132 | bool found_neg = false; | |
4133 | /* Did A have any INVALID_CONVERSION entries. */ | |
4134 | bool a_invalid = false; | |
4135 | /* Did B have any INVALID_CONVERSION entries. */ | |
4136 | bool b_invalid = false; | |
c5aa993b | 4137 | |
82ceee50 PA |
4138 | /* differing sizes => incomparable */ |
4139 | if (a.size () != b.size ()) | |
c906108c SS |
4140 | return 1; |
4141 | ||
c5aa993b | 4142 | /* Subtract b from a */ |
82ceee50 | 4143 | for (i = 0; i < a.size (); i++) |
c906108c | 4144 | { |
82ceee50 | 4145 | tmp = compare_ranks (b[i], a[i]); |
c906108c | 4146 | if (tmp > 0) |
ac03c8d8 | 4147 | found_pos = true; |
c906108c | 4148 | else if (tmp < 0) |
ac03c8d8 TT |
4149 | found_neg = true; |
4150 | if (a[i].rank >= INVALID_CONVERSION) | |
4151 | a_invalid = true; | |
4152 | if (b[i].rank >= INVALID_CONVERSION) | |
4153 | b_invalid = true; | |
c906108c SS |
4154 | } |
4155 | ||
ac03c8d8 TT |
4156 | /* B will only be considered better than or incomparable to A if |
4157 | they both have invalid entries, or if neither does. That is, if | |
4158 | A has only valid entries, and B has an invalid entry, then A will | |
4159 | be considered better than B, even if B happens to be better for | |
4160 | some parameter. */ | |
4161 | if (a_invalid != b_invalid) | |
4162 | { | |
4163 | if (a_invalid) | |
4164 | return 3; /* A > B */ | |
4165 | return 2; /* A < B */ | |
4166 | } | |
4167 | else if (found_pos) | |
c906108c SS |
4168 | { |
4169 | if (found_neg) | |
c5aa993b | 4170 | return 1; /* incomparable */ |
c906108c | 4171 | else |
c5aa993b | 4172 | return 3; /* A > B */ |
c906108c | 4173 | } |
c5aa993b JM |
4174 | else |
4175 | /* no positives */ | |
c906108c SS |
4176 | { |
4177 | if (found_neg) | |
c5aa993b | 4178 | return 2; /* A < B */ |
c906108c | 4179 | else |
c5aa993b | 4180 | return 0; /* A == B */ |
c906108c SS |
4181 | } |
4182 | } | |
4183 | ||
6b1747cd | 4184 | /* Rank a function by comparing its parameter types (PARMS), to the |
82ceee50 PA |
4185 | types of an argument list (ARGS). Return the badness vector. This |
4186 | has ARGS.size() + 1 entries. */ | |
c906108c | 4187 | |
82ceee50 | 4188 | badness_vector |
6b1747cd | 4189 | rank_function (gdb::array_view<type *> parms, |
1d2f86b6 HD |
4190 | gdb::array_view<value *> args, |
4191 | bool varargs) | |
c906108c | 4192 | { |
82ceee50 PA |
4193 | /* add 1 for the length-match rank. */ |
4194 | badness_vector bv; | |
4195 | bv.reserve (1 + args.size ()); | |
c906108c SS |
4196 | |
4197 | /* First compare the lengths of the supplied lists. | |
7ba81444 | 4198 | If there is a mismatch, set it to a high value. */ |
c5aa993b | 4199 | |
c906108c | 4200 | /* pai/1997-06-03 FIXME: when we have debug info about default |
7ba81444 MS |
4201 | arguments and ellipsis parameter lists, we should consider those |
4202 | and rank the length-match more finely. */ | |
c906108c | 4203 | |
1d2f86b6 HD |
4204 | bv.push_back ((args.size () != parms.size () |
4205 | && (! varargs || args.size () < parms.size ())) | |
82ceee50 PA |
4206 | ? LENGTH_MISMATCH_BADNESS |
4207 | : EXACT_MATCH_BADNESS); | |
c906108c | 4208 | |
0963b4bd | 4209 | /* Now rank all the parameters of the candidate function. */ |
82ceee50 PA |
4210 | size_t min_len = std::min (parms.size (), args.size ()); |
4211 | ||
4212 | for (size_t i = 0; i < min_len; i++) | |
d0c97917 | 4213 | bv.push_back (rank_one_type (parms[i], args[i]->type (), |
82ceee50 | 4214 | args[i])); |
c906108c | 4215 | |
0963b4bd | 4216 | /* If more arguments than parameters, add dummy entries. */ |
82ceee50 | 4217 | for (size_t i = min_len; i < args.size (); i++) |
1d2f86b6 | 4218 | bv.push_back (varargs ? VARARG_BADNESS : TOO_FEW_PARAMS_BADNESS); |
c906108c SS |
4219 | |
4220 | return bv; | |
4221 | } | |
4222 | ||
973ccf8b DJ |
4223 | /* Compare the names of two integer types, assuming that any sign |
4224 | qualifiers have been checked already. We do it this way because | |
4225 | there may be an "int" in the name of one of the types. */ | |
4226 | ||
4227 | static int | |
4228 | integer_types_same_name_p (const char *first, const char *second) | |
4229 | { | |
4230 | int first_p, second_p; | |
4231 | ||
7ba81444 MS |
4232 | /* If both are shorts, return 1; if neither is a short, keep |
4233 | checking. */ | |
973ccf8b DJ |
4234 | first_p = (strstr (first, "short") != NULL); |
4235 | second_p = (strstr (second, "short") != NULL); | |
4236 | if (first_p && second_p) | |
4237 | return 1; | |
4238 | if (first_p || second_p) | |
4239 | return 0; | |
4240 | ||
4241 | /* Likewise for long. */ | |
4242 | first_p = (strstr (first, "long") != NULL); | |
4243 | second_p = (strstr (second, "long") != NULL); | |
4244 | if (first_p && second_p) | |
4245 | return 1; | |
4246 | if (first_p || second_p) | |
4247 | return 0; | |
4248 | ||
4249 | /* Likewise for char. */ | |
4250 | first_p = (strstr (first, "char") != NULL); | |
4251 | second_p = (strstr (second, "char") != NULL); | |
4252 | if (first_p && second_p) | |
4253 | return 1; | |
4254 | if (first_p || second_p) | |
4255 | return 0; | |
4256 | ||
4257 | /* They must both be ints. */ | |
4258 | return 1; | |
4259 | } | |
4260 | ||
894882e3 TT |
4261 | /* Compares type A to type B. Returns true if they represent the same |
4262 | type, false otherwise. */ | |
7062b0a0 | 4263 | |
894882e3 | 4264 | bool |
7062b0a0 SW |
4265 | types_equal (struct type *a, struct type *b) |
4266 | { | |
4267 | /* Identical type pointers. */ | |
4268 | /* However, this still doesn't catch all cases of same type for b | |
4269 | and a. The reason is that builtin types are different from | |
4270 | the same ones constructed from the object. */ | |
4271 | if (a == b) | |
894882e3 | 4272 | return true; |
7062b0a0 SW |
4273 | |
4274 | /* Resolve typedefs */ | |
78134374 | 4275 | if (a->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 | 4276 | a = check_typedef (a); |
78134374 | 4277 | if (b->code () == TYPE_CODE_TYPEDEF) |
7062b0a0 SW |
4278 | b = check_typedef (b); |
4279 | ||
5e18990f AB |
4280 | /* Check if identical after resolving typedefs. */ |
4281 | if (a == b) | |
4282 | return true; | |
4283 | ||
7062b0a0 SW |
4284 | /* If after resolving typedefs a and b are not of the same type |
4285 | code then they are not equal. */ | |
78134374 | 4286 | if (a->code () != b->code ()) |
894882e3 | 4287 | return false; |
7062b0a0 SW |
4288 | |
4289 | /* If a and b are both pointers types or both reference types then | |
4290 | they are equal of the same type iff the objects they refer to are | |
4291 | of the same type. */ | |
78134374 SM |
4292 | if (a->code () == TYPE_CODE_PTR |
4293 | || a->code () == TYPE_CODE_REF) | |
27710edb SM |
4294 | return types_equal (a->target_type (), |
4295 | b->target_type ()); | |
7062b0a0 | 4296 | |
0963b4bd | 4297 | /* Well, damnit, if the names are exactly the same, I'll say they |
7062b0a0 SW |
4298 | are exactly the same. This happens when we generate method |
4299 | stubs. The types won't point to the same address, but they | |
0963b4bd | 4300 | really are the same. */ |
7062b0a0 | 4301 | |
7d93a1e0 SM |
4302 | if (a->name () && b->name () |
4303 | && strcmp (a->name (), b->name ()) == 0) | |
894882e3 | 4304 | return true; |
7062b0a0 | 4305 | |
9ce98649 TT |
4306 | /* Two function types are equal if their argument and return types |
4307 | are equal. */ | |
78134374 | 4308 | if (a->code () == TYPE_CODE_FUNC) |
9ce98649 TT |
4309 | { |
4310 | int i; | |
4311 | ||
1f704f76 | 4312 | if (a->num_fields () != b->num_fields ()) |
894882e3 | 4313 | return false; |
9ce98649 | 4314 | |
27710edb | 4315 | if (!types_equal (a->target_type (), b->target_type ())) |
894882e3 | 4316 | return false; |
9ce98649 | 4317 | |
1f704f76 | 4318 | for (i = 0; i < a->num_fields (); ++i) |
940da03e | 4319 | if (!types_equal (a->field (i).type (), b->field (i).type ())) |
894882e3 | 4320 | return false; |
9ce98649 | 4321 | |
894882e3 | 4322 | return true; |
9ce98649 TT |
4323 | } |
4324 | ||
105470cd HD |
4325 | /* Two array types are the same if they have the same element types |
4326 | and array bounds. */ | |
4327 | if (a->code () == TYPE_CODE_ARRAY) | |
4328 | { | |
4329 | if (!types_equal (a->target_type (), b->target_type ())) | |
4330 | return false; | |
4331 | ||
4332 | if (*a->bounds () != *b->bounds ()) | |
4333 | return false; | |
4334 | ||
4335 | return true; | |
4336 | } | |
4337 | ||
894882e3 | 4338 | return false; |
7062b0a0 | 4339 | } |
ca092b61 DE |
4340 | \f |
4341 | /* Deep comparison of types. */ | |
4342 | ||
4343 | /* An entry in the type-equality bcache. */ | |
4344 | ||
894882e3 | 4345 | struct type_equality_entry |
ca092b61 | 4346 | { |
894882e3 TT |
4347 | type_equality_entry (struct type *t1, struct type *t2) |
4348 | : type1 (t1), | |
4349 | type2 (t2) | |
4350 | { | |
4351 | } | |
ca092b61 | 4352 | |
894882e3 TT |
4353 | struct type *type1, *type2; |
4354 | }; | |
ca092b61 | 4355 | |
894882e3 TT |
4356 | /* A helper function to compare two strings. Returns true if they are |
4357 | the same, false otherwise. Handles NULLs properly. */ | |
ca092b61 | 4358 | |
894882e3 | 4359 | static bool |
ca092b61 DE |
4360 | compare_maybe_null_strings (const char *s, const char *t) |
4361 | { | |
894882e3 TT |
4362 | if (s == NULL || t == NULL) |
4363 | return s == t; | |
ca092b61 DE |
4364 | return strcmp (s, t) == 0; |
4365 | } | |
4366 | ||
4367 | /* A helper function for check_types_worklist that checks two types for | |
894882e3 TT |
4368 | "deep" equality. Returns true if the types are considered the |
4369 | same, false otherwise. */ | |
ca092b61 | 4370 | |
894882e3 | 4371 | static bool |
ca092b61 | 4372 | check_types_equal (struct type *type1, struct type *type2, |
894882e3 | 4373 | std::vector<type_equality_entry> *worklist) |
ca092b61 | 4374 | { |
f168693b SM |
4375 | type1 = check_typedef (type1); |
4376 | type2 = check_typedef (type2); | |
ca092b61 DE |
4377 | |
4378 | if (type1 == type2) | |
894882e3 | 4379 | return true; |
ca092b61 | 4380 | |
78134374 | 4381 | if (type1->code () != type2->code () |
df86565b | 4382 | || type1->length () != type2->length () |
c6d940a9 | 4383 | || type1->is_unsigned () != type2->is_unsigned () |
20ce4123 | 4384 | || type1->has_no_signedness () != type2->has_no_signedness () |
04f5bab2 | 4385 | || type1->endianity_is_not_default () != type2->endianity_is_not_default () |
a409645d | 4386 | || type1->has_varargs () != type2->has_varargs () |
bd63c870 | 4387 | || type1->is_vector () != type2->is_vector () |
ca092b61 | 4388 | || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2) |
10242f36 | 4389 | || type1->instance_flags () != type2->instance_flags () |
1f704f76 | 4390 | || type1->num_fields () != type2->num_fields ()) |
894882e3 | 4391 | return false; |
ca092b61 | 4392 | |
7d93a1e0 | 4393 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4394 | return false; |
7d93a1e0 | 4395 | if (!compare_maybe_null_strings (type1->name (), type2->name ())) |
894882e3 | 4396 | return false; |
ca092b61 | 4397 | |
78134374 | 4398 | if (type1->code () == TYPE_CODE_RANGE) |
ca092b61 | 4399 | { |
599088e3 | 4400 | if (*type1->bounds () != *type2->bounds ()) |
894882e3 | 4401 | return false; |
ca092b61 DE |
4402 | } |
4403 | else | |
4404 | { | |
4405 | int i; | |
4406 | ||
1f704f76 | 4407 | for (i = 0; i < type1->num_fields (); ++i) |
ca092b61 | 4408 | { |
ceacbf6e SM |
4409 | const struct field *field1 = &type1->field (i); |
4410 | const struct field *field2 = &type2->field (i); | |
ca092b61 | 4411 | |
6c0f7493 | 4412 | if (field1->is_artificial () != field2->is_artificial () |
3be8c919 | 4413 | || field1->bitsize () != field2->bitsize () |
8d939e8e | 4414 | || field1->loc_kind () != field2->loc_kind ()) |
894882e3 | 4415 | return false; |
33d16dd9 | 4416 | if (!compare_maybe_null_strings (field1->name (), field2->name ())) |
894882e3 | 4417 | return false; |
8d939e8e | 4418 | switch (field1->loc_kind ()) |
ca092b61 DE |
4419 | { |
4420 | case FIELD_LOC_KIND_BITPOS: | |
3a543e21 | 4421 | if (field1->loc_bitpos () != field2->loc_bitpos ()) |
894882e3 | 4422 | return false; |
ca092b61 DE |
4423 | break; |
4424 | case FIELD_LOC_KIND_ENUMVAL: | |
5d2038e3 | 4425 | if (field1->loc_enumval () != field2->loc_enumval ()) |
894882e3 | 4426 | return false; |
fa639f55 HD |
4427 | /* Don't compare types of enum fields, because they don't |
4428 | have a type. */ | |
4429 | continue; | |
ca092b61 | 4430 | case FIELD_LOC_KIND_PHYSADDR: |
31a1516a | 4431 | if (field1->loc_physaddr () != field2->loc_physaddr ()) |
894882e3 | 4432 | return false; |
ca092b61 DE |
4433 | break; |
4434 | case FIELD_LOC_KIND_PHYSNAME: | |
16654a59 SM |
4435 | if (!compare_maybe_null_strings (field1->loc_physname (), |
4436 | field2->loc_physname ())) | |
894882e3 | 4437 | return false; |
ca092b61 | 4438 | break; |
692252c4 TT |
4439 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
4440 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
ca092b61 DE |
4441 | { |
4442 | struct dwarf2_locexpr_baton *block1, *block2; | |
4443 | ||
d8557c3d SM |
4444 | block1 = field1->loc_dwarf_block (); |
4445 | block2 = field2->loc_dwarf_block (); | |
ca092b61 DE |
4446 | if (block1->per_cu != block2->per_cu |
4447 | || block1->size != block2->size | |
4448 | || memcmp (block1->data, block2->data, block1->size) != 0) | |
894882e3 | 4449 | return false; |
ca092b61 DE |
4450 | } |
4451 | break; | |
4452 | default: | |
f34652de | 4453 | internal_error (_("Unsupported field kind " |
ca092b61 | 4454 | "%d by check_types_equal"), |
8d939e8e | 4455 | field1->loc_kind ()); |
ca092b61 DE |
4456 | } |
4457 | ||
b6cdac4b | 4458 | worklist->emplace_back (field1->type (), field2->type ()); |
ca092b61 DE |
4459 | } |
4460 | } | |
4461 | ||
27710edb | 4462 | if (type1->target_type () != NULL) |
ca092b61 | 4463 | { |
27710edb | 4464 | if (type2->target_type () == NULL) |
894882e3 | 4465 | return false; |
ca092b61 | 4466 | |
27710edb SM |
4467 | worklist->emplace_back (type1->target_type (), |
4468 | type2->target_type ()); | |
ca092b61 | 4469 | } |
27710edb | 4470 | else if (type2->target_type () != NULL) |
894882e3 | 4471 | return false; |
ca092b61 | 4472 | |
894882e3 | 4473 | return true; |
ca092b61 DE |
4474 | } |
4475 | ||
894882e3 TT |
4476 | /* Check types on a worklist for equality. Returns false if any pair |
4477 | is not equal, true if they are all considered equal. */ | |
ca092b61 | 4478 | |
894882e3 TT |
4479 | static bool |
4480 | check_types_worklist (std::vector<type_equality_entry> *worklist, | |
dfb65191 | 4481 | gdb::bcache *cache) |
ca092b61 | 4482 | { |
894882e3 | 4483 | while (!worklist->empty ()) |
ca092b61 | 4484 | { |
ef5e5b0b | 4485 | bool added; |
ca092b61 | 4486 | |
894882e3 TT |
4487 | struct type_equality_entry entry = std::move (worklist->back ()); |
4488 | worklist->pop_back (); | |
ca092b61 DE |
4489 | |
4490 | /* If the type pair has already been visited, we know it is | |
4491 | ok. */ | |
7149dfe8 | 4492 | cache->insert (entry, &added); |
ca092b61 DE |
4493 | if (!added) |
4494 | continue; | |
4495 | ||
894882e3 TT |
4496 | if (!check_types_equal (entry.type1, entry.type2, worklist)) |
4497 | return false; | |
ca092b61 | 4498 | } |
7062b0a0 | 4499 | |
894882e3 | 4500 | return true; |
ca092b61 DE |
4501 | } |
4502 | ||
894882e3 TT |
4503 | /* Return true if types TYPE1 and TYPE2 are equal, as determined by a |
4504 | "deep comparison". Otherwise return false. */ | |
ca092b61 | 4505 | |
894882e3 | 4506 | bool |
ca092b61 DE |
4507 | types_deeply_equal (struct type *type1, struct type *type2) |
4508 | { | |
894882e3 | 4509 | std::vector<type_equality_entry> worklist; |
ca092b61 DE |
4510 | |
4511 | gdb_assert (type1 != NULL && type2 != NULL); | |
4512 | ||
4513 | /* Early exit for the simple case. */ | |
4514 | if (type1 == type2) | |
894882e3 | 4515 | return true; |
ca092b61 | 4516 | |
89806626 | 4517 | gdb::bcache cache; |
894882e3 | 4518 | worklist.emplace_back (type1, type2); |
25629dfd | 4519 | return check_types_worklist (&worklist, &cache); |
ca092b61 | 4520 | } |
3f2f83dd KB |
4521 | |
4522 | /* Allocated status of type TYPE. Return zero if type TYPE is allocated. | |
4523 | Otherwise return one. */ | |
4524 | ||
4525 | int | |
4526 | type_not_allocated (const struct type *type) | |
4527 | { | |
4528 | struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type); | |
4529 | ||
9c0fb734 | 4530 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
3f2f83dd KB |
4531 | } |
4532 | ||
4533 | /* Associated status of type TYPE. Return zero if type TYPE is associated. | |
4534 | Otherwise return one. */ | |
4535 | ||
4536 | int | |
4537 | type_not_associated (const struct type *type) | |
4538 | { | |
4539 | struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type); | |
4540 | ||
9c0fb734 | 4541 | return prop != nullptr && prop->is_constant () && prop->const_val () == 0; |
3f2f83dd | 4542 | } |
9293fc63 SM |
4543 | |
4544 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */ | |
4545 | ||
4546 | static struct rank | |
4547 | rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value) | |
4548 | { | |
4549 | struct rank rank = {0,0}; | |
4550 | ||
78134374 | 4551 | switch (arg->code ()) |
9293fc63 SM |
4552 | { |
4553 | case TYPE_CODE_PTR: | |
4554 | ||
4555 | /* Allowed pointer conversions are: | |
4556 | (a) pointer to void-pointer conversion. */ | |
27710edb | 4557 | if (parm->target_type ()->code () == TYPE_CODE_VOID) |
9293fc63 SM |
4558 | return VOID_PTR_CONVERSION_BADNESS; |
4559 | ||
4560 | /* (b) pointer to ancestor-pointer conversion. */ | |
27710edb SM |
4561 | rank.subrank = distance_to_ancestor (parm->target_type (), |
4562 | arg->target_type (), | |
9293fc63 SM |
4563 | 0); |
4564 | if (rank.subrank >= 0) | |
4565 | return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank); | |
4566 | ||
4567 | return INCOMPATIBLE_TYPE_BADNESS; | |
4568 | case TYPE_CODE_ARRAY: | |
4569 | { | |
27710edb SM |
4570 | struct type *t1 = parm->target_type (); |
4571 | struct type *t2 = arg->target_type (); | |
9293fc63 SM |
4572 | |
4573 | if (types_equal (t1, t2)) | |
4574 | { | |
4575 | /* Make sure they are CV equal. */ | |
4576 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4577 | rank.subrank |= CV_CONVERSION_CONST; | |
4578 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4579 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4580 | if (rank.subrank != 0) | |
4581 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4582 | return EXACT_MATCH_BADNESS; | |
4583 | } | |
4584 | return INCOMPATIBLE_TYPE_BADNESS; | |
4585 | } | |
4586 | case TYPE_CODE_FUNC: | |
27710edb | 4587 | return rank_one_type (parm->target_type (), arg, NULL); |
9293fc63 | 4588 | case TYPE_CODE_INT: |
d0c97917 | 4589 | if (value != NULL && value->type ()->code () == TYPE_CODE_INT) |
9293fc63 SM |
4590 | { |
4591 | if (value_as_long (value) == 0) | |
4592 | { | |
4593 | /* Null pointer conversion: allow it to be cast to a pointer. | |
4594 | [4.10.1 of C++ standard draft n3290] */ | |
4595 | return NULL_POINTER_CONVERSION_BADNESS; | |
4596 | } | |
4597 | else | |
4598 | { | |
4599 | /* If type checking is disabled, allow the conversion. */ | |
4600 | if (!strict_type_checking) | |
4601 | return NS_INTEGER_POINTER_CONVERSION_BADNESS; | |
4602 | } | |
4603 | } | |
d182e398 | 4604 | [[fallthrough]]; |
9293fc63 SM |
4605 | case TYPE_CODE_ENUM: |
4606 | case TYPE_CODE_FLAGS: | |
4607 | case TYPE_CODE_CHAR: | |
4608 | case TYPE_CODE_RANGE: | |
4609 | case TYPE_CODE_BOOL: | |
4610 | default: | |
4611 | return INCOMPATIBLE_TYPE_BADNESS; | |
4612 | } | |
4613 | } | |
4614 | ||
b9f4512f SM |
4615 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */ |
4616 | ||
4617 | static struct rank | |
4618 | rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value) | |
4619 | { | |
78134374 | 4620 | switch (arg->code ()) |
b9f4512f SM |
4621 | { |
4622 | case TYPE_CODE_PTR: | |
4623 | case TYPE_CODE_ARRAY: | |
27710edb SM |
4624 | return rank_one_type (parm->target_type (), |
4625 | arg->target_type (), NULL); | |
b9f4512f SM |
4626 | default: |
4627 | return INCOMPATIBLE_TYPE_BADNESS; | |
4628 | } | |
4629 | } | |
4630 | ||
f1f832d6 SM |
4631 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */ |
4632 | ||
4633 | static struct rank | |
4634 | rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value) | |
4635 | { | |
78134374 | 4636 | switch (arg->code ()) |
f1f832d6 SM |
4637 | { |
4638 | case TYPE_CODE_PTR: /* funcptr -> func */ | |
27710edb | 4639 | return rank_one_type (parm, arg->target_type (), NULL); |
f1f832d6 SM |
4640 | default: |
4641 | return INCOMPATIBLE_TYPE_BADNESS; | |
4642 | } | |
4643 | } | |
4644 | ||
34910087 SM |
4645 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */ |
4646 | ||
4647 | static struct rank | |
4648 | rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value) | |
4649 | { | |
78134374 | 4650 | switch (arg->code ()) |
34910087 SM |
4651 | { |
4652 | case TYPE_CODE_INT: | |
df86565b | 4653 | if (arg->length () == parm->length ()) |
34910087 SM |
4654 | { |
4655 | /* Deal with signed, unsigned, and plain chars and | |
4656 | signed and unsigned ints. */ | |
20ce4123 | 4657 | if (parm->has_no_signedness ()) |
34910087 SM |
4658 | { |
4659 | /* This case only for character types. */ | |
20ce4123 | 4660 | if (arg->has_no_signedness ()) |
34910087 SM |
4661 | return EXACT_MATCH_BADNESS; /* plain char -> plain char */ |
4662 | else /* signed/unsigned char -> plain char */ | |
4663 | return INTEGER_CONVERSION_BADNESS; | |
4664 | } | |
c6d940a9 | 4665 | else if (parm->is_unsigned ()) |
34910087 | 4666 | { |
c6d940a9 | 4667 | if (arg->is_unsigned ()) |
34910087 SM |
4668 | { |
4669 | /* unsigned int -> unsigned int, or | |
4670 | unsigned long -> unsigned long */ | |
7d93a1e0 SM |
4671 | if (integer_types_same_name_p (parm->name (), |
4672 | arg->name ())) | |
34910087 | 4673 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4674 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4675 | "int") |
7d93a1e0 | 4676 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4677 | "long")) |
4678 | /* unsigned int -> unsigned long */ | |
4679 | return INTEGER_PROMOTION_BADNESS; | |
4680 | else | |
4681 | /* unsigned long -> unsigned int */ | |
4682 | return INTEGER_CONVERSION_BADNESS; | |
4683 | } | |
4684 | else | |
4685 | { | |
7d93a1e0 | 4686 | if (integer_types_same_name_p (arg->name (), |
34910087 | 4687 | "long") |
7d93a1e0 | 4688 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4689 | "int")) |
4690 | /* signed long -> unsigned int */ | |
4691 | return INTEGER_CONVERSION_BADNESS; | |
4692 | else | |
4693 | /* signed int/long -> unsigned int/long */ | |
4694 | return INTEGER_CONVERSION_BADNESS; | |
4695 | } | |
4696 | } | |
20ce4123 | 4697 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
34910087 | 4698 | { |
7d93a1e0 SM |
4699 | if (integer_types_same_name_p (parm->name (), |
4700 | arg->name ())) | |
34910087 | 4701 | return EXACT_MATCH_BADNESS; |
7d93a1e0 | 4702 | else if (integer_types_same_name_p (arg->name (), |
34910087 | 4703 | "int") |
7d93a1e0 | 4704 | && integer_types_same_name_p (parm->name (), |
34910087 SM |
4705 | "long")) |
4706 | return INTEGER_PROMOTION_BADNESS; | |
4707 | else | |
4708 | return INTEGER_CONVERSION_BADNESS; | |
4709 | } | |
4710 | else | |
4711 | return INTEGER_CONVERSION_BADNESS; | |
4712 | } | |
df86565b | 4713 | else if (arg->length () < parm->length ()) |
34910087 SM |
4714 | return INTEGER_PROMOTION_BADNESS; |
4715 | else | |
4716 | return INTEGER_CONVERSION_BADNESS; | |
4717 | case TYPE_CODE_ENUM: | |
4718 | case TYPE_CODE_FLAGS: | |
4719 | case TYPE_CODE_CHAR: | |
4720 | case TYPE_CODE_RANGE: | |
4721 | case TYPE_CODE_BOOL: | |
3bc440a2 | 4722 | if (arg->is_declared_class ()) |
34910087 SM |
4723 | return INCOMPATIBLE_TYPE_BADNESS; |
4724 | return INTEGER_PROMOTION_BADNESS; | |
4725 | case TYPE_CODE_FLT: | |
4726 | return INT_FLOAT_CONVERSION_BADNESS; | |
4727 | case TYPE_CODE_PTR: | |
4728 | return NS_POINTER_CONVERSION_BADNESS; | |
4729 | default: | |
4730 | return INCOMPATIBLE_TYPE_BADNESS; | |
4731 | } | |
4732 | } | |
4733 | ||
793cd1d2 SM |
4734 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */ |
4735 | ||
4736 | static struct rank | |
4737 | rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value) | |
4738 | { | |
78134374 | 4739 | switch (arg->code ()) |
793cd1d2 SM |
4740 | { |
4741 | case TYPE_CODE_INT: | |
4742 | case TYPE_CODE_CHAR: | |
4743 | case TYPE_CODE_RANGE: | |
4744 | case TYPE_CODE_BOOL: | |
4745 | case TYPE_CODE_ENUM: | |
3bc440a2 | 4746 | if (parm->is_declared_class () || arg->is_declared_class ()) |
793cd1d2 SM |
4747 | return INCOMPATIBLE_TYPE_BADNESS; |
4748 | return INTEGER_CONVERSION_BADNESS; | |
4749 | case TYPE_CODE_FLT: | |
4750 | return INT_FLOAT_CONVERSION_BADNESS; | |
4751 | default: | |
4752 | return INCOMPATIBLE_TYPE_BADNESS; | |
4753 | } | |
4754 | } | |
4755 | ||
41ea4728 SM |
4756 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */ |
4757 | ||
4758 | static struct rank | |
4759 | rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value) | |
4760 | { | |
78134374 | 4761 | switch (arg->code ()) |
41ea4728 SM |
4762 | { |
4763 | case TYPE_CODE_RANGE: | |
4764 | case TYPE_CODE_BOOL: | |
4765 | case TYPE_CODE_ENUM: | |
3bc440a2 | 4766 | if (arg->is_declared_class ()) |
41ea4728 SM |
4767 | return INCOMPATIBLE_TYPE_BADNESS; |
4768 | return INTEGER_CONVERSION_BADNESS; | |
4769 | case TYPE_CODE_FLT: | |
4770 | return INT_FLOAT_CONVERSION_BADNESS; | |
4771 | case TYPE_CODE_INT: | |
df86565b | 4772 | if (arg->length () > parm->length ()) |
41ea4728 | 4773 | return INTEGER_CONVERSION_BADNESS; |
df86565b | 4774 | else if (arg->length () < parm->length ()) |
41ea4728 | 4775 | return INTEGER_PROMOTION_BADNESS; |
d182e398 | 4776 | [[fallthrough]]; |
41ea4728 SM |
4777 | case TYPE_CODE_CHAR: |
4778 | /* Deal with signed, unsigned, and plain chars for C++ and | |
4779 | with int cases falling through from previous case. */ | |
20ce4123 | 4780 | if (parm->has_no_signedness ()) |
41ea4728 | 4781 | { |
20ce4123 | 4782 | if (arg->has_no_signedness ()) |
41ea4728 SM |
4783 | return EXACT_MATCH_BADNESS; |
4784 | else | |
4785 | return INTEGER_CONVERSION_BADNESS; | |
4786 | } | |
c6d940a9 | 4787 | else if (parm->is_unsigned ()) |
41ea4728 | 4788 | { |
c6d940a9 | 4789 | if (arg->is_unsigned ()) |
41ea4728 SM |
4790 | return EXACT_MATCH_BADNESS; |
4791 | else | |
4792 | return INTEGER_PROMOTION_BADNESS; | |
4793 | } | |
20ce4123 | 4794 | else if (!arg->has_no_signedness () && !arg->is_unsigned ()) |
41ea4728 SM |
4795 | return EXACT_MATCH_BADNESS; |
4796 | else | |
4797 | return INTEGER_CONVERSION_BADNESS; | |
4798 | default: | |
4799 | return INCOMPATIBLE_TYPE_BADNESS; | |
4800 | } | |
4801 | } | |
4802 | ||
0dd322dc SM |
4803 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */ |
4804 | ||
4805 | static struct rank | |
4806 | rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value) | |
4807 | { | |
78134374 | 4808 | switch (arg->code ()) |
0dd322dc SM |
4809 | { |
4810 | case TYPE_CODE_INT: | |
4811 | case TYPE_CODE_CHAR: | |
4812 | case TYPE_CODE_RANGE: | |
4813 | case TYPE_CODE_BOOL: | |
4814 | case TYPE_CODE_ENUM: | |
4815 | return INTEGER_CONVERSION_BADNESS; | |
4816 | case TYPE_CODE_FLT: | |
4817 | return INT_FLOAT_CONVERSION_BADNESS; | |
4818 | default: | |
4819 | return INCOMPATIBLE_TYPE_BADNESS; | |
4820 | } | |
4821 | } | |
4822 | ||
2c509035 SM |
4823 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */ |
4824 | ||
4825 | static struct rank | |
4826 | rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value) | |
4827 | { | |
78134374 | 4828 | switch (arg->code ()) |
2c509035 SM |
4829 | { |
4830 | /* n3290 draft, section 4.12.1 (conv.bool): | |
4831 | ||
4832 | "A prvalue of arithmetic, unscoped enumeration, pointer, or | |
4833 | pointer to member type can be converted to a prvalue of type | |
4834 | bool. A zero value, null pointer value, or null member pointer | |
4835 | value is converted to false; any other value is converted to | |
4836 | true. A prvalue of type std::nullptr_t can be converted to a | |
4837 | prvalue of type bool; the resulting value is false." */ | |
4838 | case TYPE_CODE_INT: | |
4839 | case TYPE_CODE_CHAR: | |
4840 | case TYPE_CODE_ENUM: | |
4841 | case TYPE_CODE_FLT: | |
4842 | case TYPE_CODE_MEMBERPTR: | |
4843 | case TYPE_CODE_PTR: | |
4844 | return BOOL_CONVERSION_BADNESS; | |
4845 | case TYPE_CODE_RANGE: | |
4846 | return INCOMPATIBLE_TYPE_BADNESS; | |
4847 | case TYPE_CODE_BOOL: | |
4848 | return EXACT_MATCH_BADNESS; | |
4849 | default: | |
4850 | return INCOMPATIBLE_TYPE_BADNESS; | |
4851 | } | |
4852 | } | |
4853 | ||
7f17b20d SM |
4854 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */ |
4855 | ||
4856 | static struct rank | |
4857 | rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value) | |
4858 | { | |
78134374 | 4859 | switch (arg->code ()) |
7f17b20d SM |
4860 | { |
4861 | case TYPE_CODE_FLT: | |
df86565b | 4862 | if (arg->length () < parm->length ()) |
7f17b20d | 4863 | return FLOAT_PROMOTION_BADNESS; |
df86565b | 4864 | else if (arg->length () == parm->length ()) |
7f17b20d SM |
4865 | return EXACT_MATCH_BADNESS; |
4866 | else | |
4867 | return FLOAT_CONVERSION_BADNESS; | |
4868 | case TYPE_CODE_INT: | |
4869 | case TYPE_CODE_BOOL: | |
4870 | case TYPE_CODE_ENUM: | |
4871 | case TYPE_CODE_RANGE: | |
4872 | case TYPE_CODE_CHAR: | |
4873 | return INT_FLOAT_CONVERSION_BADNESS; | |
4874 | default: | |
4875 | return INCOMPATIBLE_TYPE_BADNESS; | |
4876 | } | |
4877 | } | |
4878 | ||
2598a94b SM |
4879 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */ |
4880 | ||
4881 | static struct rank | |
4882 | rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value) | |
4883 | { | |
78134374 | 4884 | switch (arg->code ()) |
2598a94b SM |
4885 | { /* Strictly not needed for C++, but... */ |
4886 | case TYPE_CODE_FLT: | |
4887 | return FLOAT_PROMOTION_BADNESS; | |
4888 | case TYPE_CODE_COMPLEX: | |
4889 | return EXACT_MATCH_BADNESS; | |
4890 | default: | |
4891 | return INCOMPATIBLE_TYPE_BADNESS; | |
4892 | } | |
4893 | } | |
4894 | ||
595f96a9 SM |
4895 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */ |
4896 | ||
4897 | static struct rank | |
4898 | rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value) | |
4899 | { | |
4900 | struct rank rank = {0, 0}; | |
4901 | ||
78134374 | 4902 | switch (arg->code ()) |
595f96a9 SM |
4903 | { |
4904 | case TYPE_CODE_STRUCT: | |
4905 | /* Check for derivation */ | |
4906 | rank.subrank = distance_to_ancestor (parm, arg, 0); | |
4907 | if (rank.subrank >= 0) | |
4908 | return sum_ranks (BASE_CONVERSION_BADNESS, rank); | |
d182e398 | 4909 | [[fallthrough]]; |
595f96a9 SM |
4910 | default: |
4911 | return INCOMPATIBLE_TYPE_BADNESS; | |
4912 | } | |
4913 | } | |
4914 | ||
f09ce22d SM |
4915 | /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */ |
4916 | ||
4917 | static struct rank | |
4918 | rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value) | |
4919 | { | |
78134374 | 4920 | switch (arg->code ()) |
f09ce22d SM |
4921 | { |
4922 | /* Not in C++ */ | |
4923 | case TYPE_CODE_SET: | |
940da03e SM |
4924 | return rank_one_type (parm->field (0).type (), |
4925 | arg->field (0).type (), NULL); | |
f09ce22d SM |
4926 | default: |
4927 | return INCOMPATIBLE_TYPE_BADNESS; | |
4928 | } | |
4929 | } | |
4930 | ||
c906108c SS |
4931 | /* Compare one type (PARM) for compatibility with another (ARG). |
4932 | * PARM is intended to be the parameter type of a function; and | |
4933 | * ARG is the supplied argument's type. This function tests if | |
4934 | * the latter can be converted to the former. | |
da096638 | 4935 | * VALUE is the argument's value or NULL if none (or called recursively) |
c906108c SS |
4936 | * |
4937 | * Return 0 if they are identical types; | |
4938 | * Otherwise, return an integer which corresponds to how compatible | |
7ba81444 | 4939 | * PARM is to ARG. The higher the return value, the worse the match. |
ac03c8d8 TT |
4940 | * Generally the "bad" conversions are all uniformly assigned |
4941 | * INVALID_CONVERSION. */ | |
c906108c | 4942 | |
6403aeea | 4943 | struct rank |
da096638 | 4944 | rank_one_type (struct type *parm, struct type *arg, struct value *value) |
c906108c | 4945 | { |
a9d5ef47 | 4946 | struct rank rank = {0,0}; |
7062b0a0 | 4947 | |
c906108c | 4948 | /* Resolve typedefs */ |
78134374 | 4949 | if (parm->code () == TYPE_CODE_TYPEDEF) |
c906108c | 4950 | parm = check_typedef (parm); |
78134374 | 4951 | if (arg->code () == TYPE_CODE_TYPEDEF) |
c906108c SS |
4952 | arg = check_typedef (arg); |
4953 | ||
e15c3eb4 | 4954 | if (TYPE_IS_REFERENCE (parm) && value != NULL) |
15c0a2a9 | 4955 | { |
736355f2 | 4956 | if (value->lval () == not_lval) |
e15c3eb4 KS |
4957 | { |
4958 | /* Rvalues should preferably bind to rvalue references or const | |
4959 | lvalue references. */ | |
78134374 | 4960 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
e15c3eb4 | 4961 | rank.subrank = REFERENCE_CONVERSION_RVALUE; |
27710edb | 4962 | else if (TYPE_CONST (parm->target_type ())) |
e15c3eb4 KS |
4963 | rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE; |
4964 | else | |
4965 | return INCOMPATIBLE_TYPE_BADNESS; | |
4966 | return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS); | |
4967 | } | |
4968 | else | |
4969 | { | |
330f1d38 | 4970 | /* It's illegal to pass an lvalue as an rvalue. */ |
78134374 | 4971 | if (parm->code () == TYPE_CODE_RVALUE_REF) |
330f1d38 | 4972 | return INCOMPATIBLE_TYPE_BADNESS; |
e15c3eb4 | 4973 | } |
15c0a2a9 AV |
4974 | } |
4975 | ||
4976 | if (types_equal (parm, arg)) | |
15c0a2a9 | 4977 | { |
e15c3eb4 KS |
4978 | struct type *t1 = parm; |
4979 | struct type *t2 = arg; | |
15c0a2a9 | 4980 | |
e15c3eb4 | 4981 | /* For pointers and references, compare target type. */ |
809f3be1 | 4982 | if (parm->is_pointer_or_reference ()) |
e15c3eb4 | 4983 | { |
27710edb SM |
4984 | t1 = parm->target_type (); |
4985 | t2 = arg->target_type (); | |
e15c3eb4 | 4986 | } |
15c0a2a9 | 4987 | |
e15c3eb4 KS |
4988 | /* Make sure they are CV equal, too. */ |
4989 | if (TYPE_CONST (t1) != TYPE_CONST (t2)) | |
4990 | rank.subrank |= CV_CONVERSION_CONST; | |
4991 | if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2)) | |
4992 | rank.subrank |= CV_CONVERSION_VOLATILE; | |
4993 | if (rank.subrank != 0) | |
4994 | return sum_ranks (CV_CONVERSION_BADNESS, rank); | |
4995 | return EXACT_MATCH_BADNESS; | |
15c0a2a9 AV |
4996 | } |
4997 | ||
db577aea | 4998 | /* See through references, since we can almost make non-references |
7ba81444 | 4999 | references. */ |
aa006118 AV |
5000 | |
5001 | if (TYPE_IS_REFERENCE (arg)) | |
27710edb | 5002 | return (sum_ranks (rank_one_type (parm, arg->target_type (), NULL), |
dda83cd7 | 5003 | REFERENCE_SEE_THROUGH_BADNESS)); |
aa006118 | 5004 | if (TYPE_IS_REFERENCE (parm)) |
27710edb | 5005 | return (sum_ranks (rank_one_type (parm->target_type (), arg, NULL), |
dda83cd7 | 5006 | REFERENCE_SEE_THROUGH_BADNESS)); |
5d161b24 | 5007 | if (overload_debug) |
01add95b SM |
5008 | { |
5009 | /* Debugging only. */ | |
6cb06a8c TT |
5010 | gdb_printf (gdb_stderr, |
5011 | "------ Arg is %s [%d], parm is %s [%d]\n", | |
5012 | arg->name (), arg->code (), | |
5013 | parm->name (), parm->code ()); | |
01add95b | 5014 | } |
c906108c | 5015 | |
0963b4bd | 5016 | /* x -> y means arg of type x being supplied for parameter of type y. */ |
c906108c | 5017 | |
78134374 | 5018 | switch (parm->code ()) |
c906108c | 5019 | { |
c5aa993b | 5020 | case TYPE_CODE_PTR: |
9293fc63 | 5021 | return rank_one_type_parm_ptr (parm, arg, value); |
c5aa993b | 5022 | case TYPE_CODE_ARRAY: |
b9f4512f | 5023 | return rank_one_type_parm_array (parm, arg, value); |
c5aa993b | 5024 | case TYPE_CODE_FUNC: |
f1f832d6 | 5025 | return rank_one_type_parm_func (parm, arg, value); |
c5aa993b | 5026 | case TYPE_CODE_INT: |
34910087 | 5027 | return rank_one_type_parm_int (parm, arg, value); |
c5aa993b | 5028 | case TYPE_CODE_ENUM: |
793cd1d2 | 5029 | return rank_one_type_parm_enum (parm, arg, value); |
c5aa993b | 5030 | case TYPE_CODE_CHAR: |
41ea4728 | 5031 | return rank_one_type_parm_char (parm, arg, value); |
c5aa993b | 5032 | case TYPE_CODE_RANGE: |
0dd322dc | 5033 | return rank_one_type_parm_range (parm, arg, value); |
c5aa993b | 5034 | case TYPE_CODE_BOOL: |
2c509035 | 5035 | return rank_one_type_parm_bool (parm, arg, value); |
c5aa993b | 5036 | case TYPE_CODE_FLT: |
7f17b20d | 5037 | return rank_one_type_parm_float (parm, arg, value); |
c5aa993b | 5038 | case TYPE_CODE_COMPLEX: |
2598a94b | 5039 | return rank_one_type_parm_complex (parm, arg, value); |
c5aa993b | 5040 | case TYPE_CODE_STRUCT: |
595f96a9 | 5041 | return rank_one_type_parm_struct (parm, arg, value); |
c5aa993b | 5042 | case TYPE_CODE_SET: |
f09ce22d | 5043 | return rank_one_type_parm_set (parm, arg, value); |
c5aa993b JM |
5044 | default: |
5045 | return INCOMPATIBLE_TYPE_BADNESS; | |
78134374 | 5046 | } /* switch (arg->code ()) */ |
c906108c SS |
5047 | } |
5048 | ||
0963b4bd | 5049 | /* End of functions for overload resolution. */ |
5212577a | 5050 | \f |
c906108c | 5051 | |
ad2f7632 | 5052 | /* Note the first arg should be the "this" pointer, we may not want to |
7ba81444 MS |
5053 | include it since we may get into a infinitely recursive |
5054 | situation. */ | |
c906108c SS |
5055 | |
5056 | static void | |
89495c33 | 5057 | print_args (gdb::array_view<struct field> args, int spaces) |
c906108c | 5058 | { |
89495c33 | 5059 | for (int i = 0; i < args.size (); i++) |
c906108c | 5060 | { |
89495c33 TT |
5061 | gdb_printf |
5062 | ("%*s[%d] name '%s'\n", spaces, "", i, | |
5063 | args[i].name () != NULL ? args[i].name () : "<NULL>"); | |
5064 | recursive_dump_type (args[i].type (), spaces + 2); | |
c906108c SS |
5065 | } |
5066 | } | |
5067 | ||
5068 | static void | |
fba45db2 | 5069 | dump_fn_fieldlists (struct type *type, int spaces) |
c906108c SS |
5070 | { |
5071 | int method_idx; | |
5072 | int overload_idx; | |
5073 | struct fn_field *f; | |
5074 | ||
6cb06a8c TT |
5075 | gdb_printf ("%*sfn_fieldlists %s\n", spaces, "", |
5076 | host_address_to_string (TYPE_FN_FIELDLISTS (type))); | |
c906108c SS |
5077 | for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++) |
5078 | { | |
5079 | f = TYPE_FN_FIELDLIST1 (type, method_idx); | |
6cb06a8c | 5080 | gdb_printf |
64b7cc50 TT |
5081 | ("%*s[%d] name '%s' (%s) length %d\n", spaces + 2, "", |
5082 | method_idx, | |
5083 | TYPE_FN_FIELDLIST_NAME (type, method_idx), | |
5084 | host_address_to_string (TYPE_FN_FIELDLIST_NAME (type, method_idx)), | |
5085 | TYPE_FN_FIELDLIST_LENGTH (type, method_idx)); | |
c906108c SS |
5086 | for (overload_idx = 0; |
5087 | overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx); | |
5088 | overload_idx++) | |
5089 | { | |
6cb06a8c | 5090 | gdb_printf |
64b7cc50 TT |
5091 | ("%*s[%d] physname '%s' (%s)\n", |
5092 | spaces + 4, "", overload_idx, | |
5093 | TYPE_FN_FIELD_PHYSNAME (f, overload_idx), | |
5094 | host_address_to_string (TYPE_FN_FIELD_PHYSNAME (f, | |
5095 | overload_idx))); | |
6cb06a8c | 5096 | gdb_printf |
64b7cc50 TT |
5097 | ("%*stype %s\n", spaces + 8, "", |
5098 | host_address_to_string (TYPE_FN_FIELD_TYPE (f, overload_idx))); | |
c906108c SS |
5099 | |
5100 | recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx), | |
5101 | spaces + 8 + 2); | |
5102 | ||
6cb06a8c | 5103 | gdb_printf |
64b7cc50 | 5104 | ("%*sargs %s\n", spaces + 8, "", |
89495c33 | 5105 | host_address_to_string (TYPE_FN_FIELD_ARGS (f, overload_idx).data ())); |
4c9e8482 | 5106 | print_args (TYPE_FN_FIELD_ARGS (f, overload_idx), |
4c9e8482 | 5107 | spaces + 8 + 2); |
6cb06a8c | 5108 | gdb_printf |
64b7cc50 TT |
5109 | ("%*sfcontext %s\n", spaces + 8, "", |
5110 | host_address_to_string (TYPE_FN_FIELD_FCONTEXT (f, | |
5111 | overload_idx))); | |
c906108c | 5112 | |
6cb06a8c TT |
5113 | gdb_printf ("%*sis_const %d\n", spaces + 8, "", |
5114 | TYPE_FN_FIELD_CONST (f, overload_idx)); | |
5115 | gdb_printf ("%*sis_volatile %d\n", spaces + 8, "", | |
5116 | TYPE_FN_FIELD_VOLATILE (f, overload_idx)); | |
5117 | gdb_printf ("%*sis_private %d\n", spaces + 8, "", | |
5118 | TYPE_FN_FIELD_PRIVATE (f, overload_idx)); | |
5119 | gdb_printf ("%*sis_protected %d\n", spaces + 8, "", | |
5120 | TYPE_FN_FIELD_PROTECTED (f, overload_idx)); | |
5121 | gdb_printf ("%*sis_stub %d\n", spaces + 8, "", | |
5122 | TYPE_FN_FIELD_STUB (f, overload_idx)); | |
5123 | gdb_printf ("%*sdefaulted %d\n", spaces + 8, "", | |
5124 | TYPE_FN_FIELD_DEFAULTED (f, overload_idx)); | |
5125 | gdb_printf ("%*sis_deleted %d\n", spaces + 8, "", | |
5126 | TYPE_FN_FIELD_DELETED (f, overload_idx)); | |
5127 | gdb_printf ("%*svoffset %u\n", spaces + 8, "", | |
5128 | TYPE_FN_FIELD_VOFFSET (f, overload_idx)); | |
c906108c SS |
5129 | } |
5130 | } | |
5131 | } | |
5132 | ||
5133 | static void | |
fba45db2 | 5134 | print_cplus_stuff (struct type *type, int spaces) |
c906108c | 5135 | { |
6cb06a8c TT |
5136 | gdb_printf ("%*svptr_fieldno %d\n", spaces, "", |
5137 | TYPE_VPTR_FIELDNO (type)); | |
5138 | gdb_printf ("%*svptr_basetype %s\n", spaces, "", | |
5139 | host_address_to_string (TYPE_VPTR_BASETYPE (type))); | |
ae6ae975 DE |
5140 | if (TYPE_VPTR_BASETYPE (type) != NULL) |
5141 | recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2); | |
5142 | ||
6cb06a8c TT |
5143 | gdb_printf ("%*sn_baseclasses %d\n", spaces, "", |
5144 | TYPE_N_BASECLASSES (type)); | |
5145 | gdb_printf ("%*snfn_fields %d\n", spaces, "", | |
5146 | TYPE_NFN_FIELDS (type)); | |
c906108c SS |
5147 | if (TYPE_NFN_FIELDS (type) > 0) |
5148 | { | |
5149 | dump_fn_fieldlists (type, spaces); | |
5150 | } | |
e35000a7 | 5151 | |
6cb06a8c TT |
5152 | gdb_printf ("%*scalling_convention %d\n", spaces, "", |
5153 | TYPE_CPLUS_CALLING_CONVENTION (type)); | |
c906108c SS |
5154 | } |
5155 | ||
b4ba55a1 JB |
5156 | /* Print the contents of the TYPE's type_specific union, assuming that |
5157 | its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */ | |
5158 | ||
5159 | static void | |
5160 | print_gnat_stuff (struct type *type, int spaces) | |
5161 | { | |
5162 | struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type); | |
5163 | ||
8cd00c59 | 5164 | if (descriptive_type == NULL) |
6cb06a8c | 5165 | gdb_printf ("%*sno descriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
5166 | else |
5167 | { | |
6cb06a8c | 5168 | gdb_printf ("%*sdescriptive type\n", spaces + 2, ""); |
8cd00c59 PMR |
5169 | recursive_dump_type (descriptive_type, spaces + 4); |
5170 | } | |
b4ba55a1 JB |
5171 | } |
5172 | ||
09584414 JB |
5173 | /* Print the contents of the TYPE's type_specific union, assuming that |
5174 | its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */ | |
5175 | ||
5176 | static void | |
5177 | print_fixed_point_type_info (struct type *type, int spaces) | |
5178 | { | |
6cb06a8c TT |
5179 | gdb_printf ("%*sscaling factor: %s\n", spaces + 2, "", |
5180 | type->fixed_point_scaling_factor ().str ().c_str ()); | |
09584414 JB |
5181 | } |
5182 | ||
c906108c SS |
5183 | static struct obstack dont_print_type_obstack; |
5184 | ||
53d5a2a5 TV |
5185 | /* Print the dynamic_prop PROP. */ |
5186 | ||
5187 | static void | |
5188 | dump_dynamic_prop (dynamic_prop const& prop) | |
5189 | { | |
5190 | switch (prop.kind ()) | |
5191 | { | |
5192 | case PROP_CONST: | |
6cb06a8c | 5193 | gdb_printf ("%s", plongest (prop.const_val ())); |
53d5a2a5 TV |
5194 | break; |
5195 | case PROP_UNDEFINED: | |
6cb06a8c | 5196 | gdb_printf ("(undefined)"); |
53d5a2a5 TV |
5197 | break; |
5198 | case PROP_LOCEXPR: | |
5199 | case PROP_LOCLIST: | |
6cb06a8c | 5200 | gdb_printf ("(dynamic)"); |
53d5a2a5 TV |
5201 | break; |
5202 | default: | |
5203 | gdb_assert_not_reached ("unhandled prop kind"); | |
5204 | break; | |
5205 | } | |
5206 | } | |
5207 | ||
e626733c TT |
5208 | /* Return a string that represents a type code. */ |
5209 | static const char * | |
5210 | type_code_name (type_code code) | |
5211 | { | |
5212 | switch (code) | |
5213 | { | |
5214 | #define OP(X) case X: return # X; | |
5215 | #include "type-codes.def" | |
5216 | #undef OP | |
5217 | ||
5218 | case TYPE_CODE_UNDEF: | |
5219 | return "TYPE_CODE_UNDEF"; | |
5220 | } | |
5221 | ||
5222 | gdb_assert_not_reached ("unhandled type_code"); | |
5223 | } | |
5224 | ||
c906108c | 5225 | void |
fba45db2 | 5226 | recursive_dump_type (struct type *type, int spaces) |
c906108c SS |
5227 | { |
5228 | int idx; | |
5229 | ||
5230 | if (spaces == 0) | |
5231 | obstack_begin (&dont_print_type_obstack, 0); | |
5232 | ||
1f704f76 | 5233 | if (type->num_fields () > 0 |
b4ba55a1 | 5234 | || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0)) |
c906108c SS |
5235 | { |
5236 | struct type **first_dont_print | |
7ba81444 | 5237 | = (struct type **) obstack_base (&dont_print_type_obstack); |
c906108c | 5238 | |
7ba81444 MS |
5239 | int i = (struct type **) |
5240 | obstack_next_free (&dont_print_type_obstack) - first_dont_print; | |
c906108c SS |
5241 | |
5242 | while (--i >= 0) | |
5243 | { | |
5244 | if (type == first_dont_print[i]) | |
5245 | { | |
6cb06a8c TT |
5246 | gdb_printf ("%*stype node %s", spaces, "", |
5247 | host_address_to_string (type)); | |
5248 | gdb_printf (_(" <same as already seen type>\n")); | |
c906108c SS |
5249 | return; |
5250 | } | |
5251 | } | |
5252 | ||
5253 | obstack_ptr_grow (&dont_print_type_obstack, type); | |
5254 | } | |
5255 | ||
6cb06a8c TT |
5256 | gdb_printf ("%*stype node %s\n", spaces, "", |
5257 | host_address_to_string (type)); | |
5258 | gdb_printf ("%*sname '%s' (%s)\n", spaces, "", | |
5259 | type->name () ? type->name () : "<NULL>", | |
5260 | host_address_to_string (type->name ())); | |
5261 | gdb_printf ("%*scode 0x%x ", spaces, "", type->code ()); | |
e626733c | 5262 | gdb_printf ("(%s)", type_code_name (type->code ())); |
0426ad51 | 5263 | gdb_puts ("\n"); |
6cb06a8c | 5264 | gdb_printf ("%*slength %s\n", spaces, "", |
df86565b | 5265 | pulongest (type->length ())); |
30625020 | 5266 | if (type->is_objfile_owned ()) |
6cb06a8c TT |
5267 | gdb_printf ("%*sobjfile %s\n", spaces, "", |
5268 | host_address_to_string (type->objfile_owner ())); | |
e9bb382b | 5269 | else |
6cb06a8c TT |
5270 | gdb_printf ("%*sgdbarch %s\n", spaces, "", |
5271 | host_address_to_string (type->arch_owner ())); | |
5272 | gdb_printf ("%*starget_type %s\n", spaces, "", | |
27710edb SM |
5273 | host_address_to_string (type->target_type ())); |
5274 | if (type->target_type () != NULL) | |
c906108c | 5275 | { |
27710edb | 5276 | recursive_dump_type (type->target_type (), spaces + 2); |
c906108c | 5277 | } |
6cb06a8c TT |
5278 | gdb_printf ("%*spointer_type %s\n", spaces, "", |
5279 | host_address_to_string (TYPE_POINTER_TYPE (type))); | |
5280 | gdb_printf ("%*sreference_type %s\n", spaces, "", | |
5281 | host_address_to_string (TYPE_REFERENCE_TYPE (type))); | |
5282 | gdb_printf ("%*stype_chain %s\n", spaces, "", | |
5283 | host_address_to_string (TYPE_CHAIN (type))); | |
5284 | gdb_printf ("%*sinstance_flags 0x%x", spaces, "", | |
5285 | (unsigned) type->instance_flags ()); | |
2fdde8f8 DJ |
5286 | if (TYPE_CONST (type)) |
5287 | { | |
0426ad51 | 5288 | gdb_puts (" TYPE_CONST"); |
2fdde8f8 DJ |
5289 | } |
5290 | if (TYPE_VOLATILE (type)) | |
5291 | { | |
0426ad51 | 5292 | gdb_puts (" TYPE_VOLATILE"); |
2fdde8f8 DJ |
5293 | } |
5294 | if (TYPE_CODE_SPACE (type)) | |
5295 | { | |
0426ad51 | 5296 | gdb_puts (" TYPE_CODE_SPACE"); |
2fdde8f8 DJ |
5297 | } |
5298 | if (TYPE_DATA_SPACE (type)) | |
5299 | { | |
0426ad51 | 5300 | gdb_puts (" TYPE_DATA_SPACE"); |
2fdde8f8 | 5301 | } |
8b2dbe47 KB |
5302 | if (TYPE_ADDRESS_CLASS_1 (type)) |
5303 | { | |
0426ad51 | 5304 | gdb_puts (" TYPE_ADDRESS_CLASS_1"); |
8b2dbe47 KB |
5305 | } |
5306 | if (TYPE_ADDRESS_CLASS_2 (type)) | |
5307 | { | |
0426ad51 | 5308 | gdb_puts (" TYPE_ADDRESS_CLASS_2"); |
8b2dbe47 | 5309 | } |
06d66ee9 TT |
5310 | if (TYPE_RESTRICT (type)) |
5311 | { | |
0426ad51 | 5312 | gdb_puts (" TYPE_RESTRICT"); |
06d66ee9 | 5313 | } |
a2c2acaf MW |
5314 | if (TYPE_ATOMIC (type)) |
5315 | { | |
0426ad51 | 5316 | gdb_puts (" TYPE_ATOMIC"); |
a2c2acaf | 5317 | } |
0426ad51 | 5318 | gdb_puts ("\n"); |
876cecd0 | 5319 | |
6cb06a8c | 5320 | gdb_printf ("%*sflags", spaces, ""); |
c6d940a9 | 5321 | if (type->is_unsigned ()) |
c906108c | 5322 | { |
0426ad51 | 5323 | gdb_puts (" TYPE_UNSIGNED"); |
c906108c | 5324 | } |
20ce4123 | 5325 | if (type->has_no_signedness ()) |
762a036f | 5326 | { |
0426ad51 | 5327 | gdb_puts (" TYPE_NOSIGN"); |
762a036f | 5328 | } |
04f5bab2 | 5329 | if (type->endianity_is_not_default ()) |
34877895 | 5330 | { |
0426ad51 | 5331 | gdb_puts (" TYPE_ENDIANITY_NOT_DEFAULT"); |
34877895 | 5332 | } |
e46d3488 | 5333 | if (type->is_stub ()) |
c906108c | 5334 | { |
0426ad51 | 5335 | gdb_puts (" TYPE_STUB"); |
c906108c | 5336 | } |
d2183968 | 5337 | if (type->target_is_stub ()) |
762a036f | 5338 | { |
0426ad51 | 5339 | gdb_puts (" TYPE_TARGET_STUB"); |
762a036f | 5340 | } |
7f9f399b | 5341 | if (type->is_prototyped ()) |
762a036f | 5342 | { |
0426ad51 | 5343 | gdb_puts (" TYPE_PROTOTYPED"); |
762a036f | 5344 | } |
a409645d | 5345 | if (type->has_varargs ()) |
762a036f | 5346 | { |
0426ad51 | 5347 | gdb_puts (" TYPE_VARARGS"); |
762a036f | 5348 | } |
f5f8a009 EZ |
5349 | /* This is used for things like AltiVec registers on ppc. Gcc emits |
5350 | an attribute for the array type, which tells whether or not we | |
5351 | have a vector, instead of a regular array. */ | |
bd63c870 | 5352 | if (type->is_vector ()) |
f5f8a009 | 5353 | { |
0426ad51 | 5354 | gdb_puts (" TYPE_VECTOR"); |
f5f8a009 | 5355 | } |
22c4c60c | 5356 | if (type->is_fixed_instance ()) |
876cecd0 | 5357 | { |
0426ad51 | 5358 | gdb_puts (" TYPE_FIXED_INSTANCE"); |
876cecd0 | 5359 | } |
3f46044c | 5360 | if (type->stub_is_supported ()) |
876cecd0 | 5361 | { |
0426ad51 | 5362 | gdb_puts (" TYPE_STUB_SUPPORTED"); |
876cecd0 TT |
5363 | } |
5364 | if (TYPE_NOTTEXT (type)) | |
5365 | { | |
0426ad51 | 5366 | gdb_puts (" TYPE_NOTTEXT"); |
876cecd0 | 5367 | } |
0426ad51 | 5368 | gdb_puts ("\n"); |
6cb06a8c | 5369 | gdb_printf ("%*snfields %d ", spaces, "", type->num_fields ()); |
5ba3b20e AB |
5370 | if (TYPE_ASSOCIATED_PROP (type) != nullptr |
5371 | || TYPE_ALLOCATED_PROP (type) != nullptr) | |
5372 | { | |
6cb06a8c | 5373 | gdb_printf ("%*s", spaces, ""); |
5ba3b20e AB |
5374 | if (TYPE_ASSOCIATED_PROP (type) != nullptr) |
5375 | { | |
6cb06a8c | 5376 | gdb_printf ("associated "); |
5ba3b20e AB |
5377 | dump_dynamic_prop (*TYPE_ASSOCIATED_PROP (type)); |
5378 | } | |
5379 | if (TYPE_ALLOCATED_PROP (type) != nullptr) | |
5380 | { | |
5381 | if (TYPE_ASSOCIATED_PROP (type) != nullptr) | |
6cb06a8c TT |
5382 | gdb_printf (" "); |
5383 | gdb_printf ("allocated "); | |
5ba3b20e AB |
5384 | dump_dynamic_prop (*TYPE_ALLOCATED_PROP (type)); |
5385 | } | |
6cb06a8c | 5386 | gdb_printf ("\n"); |
5ba3b20e | 5387 | } |
89495c33 | 5388 | gdb_printf ("%s\n", host_address_to_string (type->fields ().data ())); |
1f704f76 | 5389 | for (idx = 0; idx < type->num_fields (); idx++) |
c906108c | 5390 | { |
20aadb93 | 5391 | field &fld = type->field (idx); |
78134374 | 5392 | if (type->code () == TYPE_CODE_ENUM) |
6cb06a8c | 5393 | gdb_printf ("%*s[%d] enumval %s type ", spaces + 2, "", |
20aadb93 | 5394 | idx, plongest (fld.loc_enumval ())); |
14e75d8e | 5395 | else |
6cb06a8c | 5396 | gdb_printf ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "", |
20aadb93 TT |
5397 | idx, plongest (fld.loc_bitpos ()), |
5398 | fld.bitsize ()); | |
5ffb4736 | 5399 | gdb_printf ("%s name '%s' (%s)", |
20aadb93 TT |
5400 | host_address_to_string (fld.type ()), |
5401 | fld.name () != NULL | |
5402 | ? fld.name () | |
6cb06a8c | 5403 | : "<NULL>", |
20aadb93 TT |
5404 | host_address_to_string (fld.name ())); |
5405 | if (fld.is_virtual ()) | |
5ffb4736 TT |
5406 | gdb_printf (" virtual"); |
5407 | ||
20aadb93 | 5408 | if (fld.is_private ()) |
5ffb4736 | 5409 | gdb_printf (" private"); |
20aadb93 | 5410 | else if (fld.is_protected ()) |
5ffb4736 | 5411 | gdb_printf (" protected"); |
20aadb93 | 5412 | else if (fld.is_ignored ()) |
5ffb4736 TT |
5413 | gdb_printf (" ignored"); |
5414 | ||
5415 | gdb_printf ("\n"); | |
20aadb93 | 5416 | if (fld.type () != NULL) |
c906108c | 5417 | { |
20aadb93 | 5418 | recursive_dump_type (fld.type (), spaces + 4); |
c906108c SS |
5419 | } |
5420 | } | |
78134374 | 5421 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5422 | { |
6cb06a8c | 5423 | gdb_printf ("%*slow ", spaces, ""); |
53d5a2a5 | 5424 | dump_dynamic_prop (type->bounds ()->low); |
6cb06a8c | 5425 | gdb_printf (" high "); |
53d5a2a5 | 5426 | dump_dynamic_prop (type->bounds ()->high); |
6cb06a8c | 5427 | gdb_printf ("\n"); |
43bbcdc2 | 5428 | } |
c906108c | 5429 | |
b4ba55a1 JB |
5430 | switch (TYPE_SPECIFIC_FIELD (type)) |
5431 | { | |
9c808ba1 TT |
5432 | case TYPE_SPECIFIC_CPLUS_STUFF: |
5433 | gdb_printf ("%*scplus_stuff %s\n", spaces, "", | |
5434 | host_address_to_string (TYPE_CPLUS_SPECIFIC (type))); | |
5435 | print_cplus_stuff (type, spaces); | |
5436 | break; | |
8da61cc4 | 5437 | |
9c808ba1 TT |
5438 | case TYPE_SPECIFIC_GNAT_STUFF: |
5439 | gdb_printf ("%*sgnat_stuff %s\n", spaces, "", | |
5440 | host_address_to_string (TYPE_GNAT_SPECIFIC (type))); | |
5441 | print_gnat_stuff (type, spaces); | |
5442 | break; | |
701c159d | 5443 | |
9c808ba1 TT |
5444 | case TYPE_SPECIFIC_FLOATFORMAT: |
5445 | gdb_printf ("%*sfloatformat ", spaces, ""); | |
5446 | if (TYPE_FLOATFORMAT (type) == NULL | |
5447 | || TYPE_FLOATFORMAT (type)->name == NULL) | |
5448 | gdb_puts ("(null)"); | |
5449 | else | |
5450 | gdb_puts (TYPE_FLOATFORMAT (type)->name); | |
5451 | gdb_puts ("\n"); | |
5452 | break; | |
c906108c | 5453 | |
9c808ba1 TT |
5454 | case TYPE_SPECIFIC_FUNC: |
5455 | gdb_printf ("%*scalling_convention %d\n", spaces, "", | |
5456 | TYPE_CALLING_CONVENTION (type)); | |
5457 | /* tail_call_list is not printed. */ | |
5458 | break; | |
09e2d7c7 | 5459 | |
9c808ba1 TT |
5460 | case TYPE_SPECIFIC_SELF_TYPE: |
5461 | gdb_printf ("%*sself_type %s\n", spaces, "", | |
5462 | host_address_to_string (TYPE_SELF_TYPE (type))); | |
5463 | break; | |
20a5fcbd | 5464 | |
9c808ba1 TT |
5465 | case TYPE_SPECIFIC_FIXED_POINT: |
5466 | gdb_printf ("%*sfixed_point_info ", spaces, ""); | |
5467 | print_fixed_point_type_info (type, spaces); | |
5468 | gdb_puts ("\n"); | |
5469 | break; | |
09584414 | 5470 | |
20a5fcbd TT |
5471 | case TYPE_SPECIFIC_INT: |
5472 | if (type->bit_size_differs_p ()) | |
5473 | { | |
5474 | unsigned bit_size = type->bit_size (); | |
5475 | unsigned bit_off = type->bit_offset (); | |
6cb06a8c TT |
5476 | gdb_printf ("%*s bit size = %u, bit offset = %u\n", spaces, "", |
5477 | bit_size, bit_off); | |
20a5fcbd TT |
5478 | } |
5479 | break; | |
c906108c | 5480 | } |
b4ba55a1 | 5481 | |
c906108c SS |
5482 | if (spaces == 0) |
5483 | obstack_free (&dont_print_type_obstack, NULL); | |
5484 | } | |
5212577a | 5485 | \f |
d9823cbb KB |
5486 | /* Recursively copy (deep copy) a dynamic attribute list of a type. */ |
5487 | ||
5488 | static struct dynamic_prop_list * | |
bde539c2 | 5489 | copy_dynamic_prop_list (struct obstack *storage, |
d9823cbb KB |
5490 | struct dynamic_prop_list *list) |
5491 | { | |
5492 | struct dynamic_prop_list *copy = list; | |
5493 | struct dynamic_prop_list **node_ptr = © | |
5494 | ||
5495 | while (*node_ptr != NULL) | |
5496 | { | |
5497 | struct dynamic_prop_list *node_copy; | |
5498 | ||
224c3ddb | 5499 | node_copy = ((struct dynamic_prop_list *) |
bde539c2 | 5500 | obstack_copy (storage, *node_ptr, |
224c3ddb | 5501 | sizeof (struct dynamic_prop_list))); |
283a9958 | 5502 | node_copy->prop = (*node_ptr)->prop; |
d9823cbb KB |
5503 | *node_ptr = node_copy; |
5504 | ||
5505 | node_ptr = &node_copy->next; | |
5506 | } | |
5507 | ||
5508 | return copy; | |
5509 | } | |
5510 | ||
7ba81444 | 5511 | /* Recursively copy (deep copy) TYPE, if it is associated with |
eed8b28a PP |
5512 | OBJFILE. Return a new type owned by the gdbarch associated with the type, a |
5513 | saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if | |
5514 | it is not associated with OBJFILE. */ | |
ae5a43e0 DJ |
5515 | |
5516 | struct type * | |
112f6d85 | 5517 | copy_type_recursive (struct type *type, copied_types_hash_t &copied_types) |
ae5a43e0 | 5518 | { |
30625020 | 5519 | if (!type->is_objfile_owned ()) |
ae5a43e0 DJ |
5520 | return type; |
5521 | ||
112f6d85 SM |
5522 | if (auto iter = copied_types.find (type); |
5523 | iter != copied_types.end ()) | |
5524 | return iter->second; | |
fd90ace4 | 5525 | |
112f6d85 | 5526 | struct type *new_type = type_allocator (type->arch ()).new_type (); |
ae5a43e0 DJ |
5527 | |
5528 | /* We must add the new type to the hash table immediately, in case | |
5529 | we encounter this type again during a recursive call below. */ | |
112f6d85 | 5530 | copied_types.emplace (type, new_type); |
ae5a43e0 | 5531 | |
876cecd0 TT |
5532 | /* Copy the common fields of types. For the main type, we simply |
5533 | copy the entire thing and then update specific fields as needed. */ | |
5534 | *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type); | |
5b7d941b | 5535 | |
8ee511af | 5536 | new_type->set_owner (type->arch ()); |
876cecd0 | 5537 | |
7d93a1e0 SM |
5538 | if (type->name ()) |
5539 | new_type->set_name (xstrdup (type->name ())); | |
ae5a43e0 | 5540 | |
314ad88d | 5541 | new_type->set_instance_flags (type->instance_flags ()); |
df86565b | 5542 | new_type->set_length (type->length ()); |
ae5a43e0 DJ |
5543 | |
5544 | /* Copy the fields. */ | |
1f704f76 | 5545 | if (type->num_fields ()) |
ae5a43e0 DJ |
5546 | { |
5547 | int i, nfields; | |
5548 | ||
1f704f76 | 5549 | nfields = type->num_fields (); |
2774f2da | 5550 | new_type->alloc_fields (type->num_fields ()); |
3cabb6b0 | 5551 | |
ae5a43e0 DJ |
5552 | for (i = 0; i < nfields; i++) |
5553 | { | |
321d8b3f | 5554 | new_type->field (i).set_is_artificial |
454977cd | 5555 | (type->field (i).is_artificial ()); |
3757d2d4 | 5556 | new_type->field (i).set_bitsize (type->field (i).bitsize ()); |
940da03e | 5557 | if (type->field (i).type ()) |
5d14b6e5 | 5558 | new_type->field (i).set_type |
bde539c2 | 5559 | (copy_type_recursive (type->field (i).type (), copied_types)); |
33d16dd9 SM |
5560 | if (type->field (i).name ()) |
5561 | new_type->field (i).set_name (xstrdup (type->field (i).name ())); | |
2ad53ea1 SM |
5562 | |
5563 | switch (type->field (i).loc_kind ()) | |
ae5a43e0 | 5564 | { |
d6a843b5 | 5565 | case FIELD_LOC_KIND_BITPOS: |
b610c045 | 5566 | new_type->field (i).set_loc_bitpos (type->field (i).loc_bitpos ()); |
d6a843b5 | 5567 | break; |
14e75d8e | 5568 | case FIELD_LOC_KIND_ENUMVAL: |
970db518 | 5569 | new_type->field (i).set_loc_enumval (type->field (i).loc_enumval ()); |
14e75d8e | 5570 | break; |
d6a843b5 | 5571 | case FIELD_LOC_KIND_PHYSADDR: |
cd3f655c | 5572 | new_type->field (i).set_loc_physaddr |
e06c3e11 | 5573 | (type->field (i).loc_physaddr ()); |
d6a843b5 JK |
5574 | break; |
5575 | case FIELD_LOC_KIND_PHYSNAME: | |
cd3f655c | 5576 | new_type->field (i).set_loc_physname |
fcbbbd90 | 5577 | (xstrdup (type->field (i).loc_physname ())); |
d6a843b5 | 5578 | break; |
692252c4 TT |
5579 | case FIELD_LOC_KIND_DWARF_BLOCK_ADDR: |
5580 | new_type->field (i).set_loc_dwarf_block_addr | |
5581 | (type->field (i).loc_dwarf_block ()); | |
5582 | break; | |
5583 | case FIELD_LOC_KIND_DWARF_BLOCK_BITPOS: | |
5584 | new_type->field (i).set_loc_dwarf_block_bitpos | |
51e36a3a | 5585 | (type->field (i).loc_dwarf_block ()); |
287de656 | 5586 | break; |
d6a843b5 | 5587 | default: |
f34652de | 5588 | internal_error (_("Unexpected type field location kind: %d"), |
2ad53ea1 | 5589 | type->field (i).loc_kind ()); |
ae5a43e0 DJ |
5590 | } |
5591 | } | |
5592 | } | |
5593 | ||
0963b4bd | 5594 | /* For range types, copy the bounds information. */ |
78134374 | 5595 | if (type->code () == TYPE_CODE_RANGE) |
43bbcdc2 | 5596 | { |
c4dfcb36 | 5597 | range_bounds *bounds |
dda83cd7 | 5598 | = ((struct range_bounds *) TYPE_ALLOC |
c4dfcb36 SM |
5599 | (new_type, sizeof (struct range_bounds))); |
5600 | ||
5601 | *bounds = *type->bounds (); | |
5602 | new_type->set_bounds (bounds); | |
43bbcdc2 PH |
5603 | } |
5604 | ||
98d48915 SM |
5605 | if (type->main_type->dyn_prop_list != NULL) |
5606 | new_type->main_type->dyn_prop_list | |
bde539c2 | 5607 | = copy_dynamic_prop_list (gdbarch_obstack (new_type->arch_owner ()), |
98d48915 | 5608 | type->main_type->dyn_prop_list); |
d9823cbb | 5609 | |
3cdcd0ce | 5610 | |
ae5a43e0 | 5611 | /* Copy pointers to other types. */ |
27710edb | 5612 | if (type->target_type ()) |
8a50fdce | 5613 | new_type->set_target_type |
27710edb | 5614 | (copy_type_recursive (type->target_type (), copied_types)); |
f6b3afbf | 5615 | |
ae5a43e0 DJ |
5616 | /* Maybe copy the type_specific bits. |
5617 | ||
5618 | NOTE drow/2005-12-09: We do not copy the C++-specific bits like | |
5619 | base classes and methods. There's no fundamental reason why we | |
5620 | can't, but at the moment it is not needed. */ | |
5621 | ||
f6b3afbf DE |
5622 | switch (TYPE_SPECIFIC_FIELD (type)) |
5623 | { | |
5624 | case TYPE_SPECIFIC_NONE: | |
5625 | break; | |
5626 | case TYPE_SPECIFIC_FUNC: | |
5627 | INIT_FUNC_SPECIFIC (new_type); | |
5628 | TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type); | |
5629 | TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type); | |
5630 | TYPE_TAIL_CALL_LIST (new_type) = NULL; | |
5631 | break; | |
5632 | case TYPE_SPECIFIC_FLOATFORMAT: | |
5633 | TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type); | |
5634 | break; | |
5635 | case TYPE_SPECIFIC_CPLUS_STUFF: | |
5636 | INIT_CPLUS_SPECIFIC (new_type); | |
5637 | break; | |
5638 | case TYPE_SPECIFIC_GNAT_STUFF: | |
5639 | INIT_GNAT_SPECIFIC (new_type); | |
5640 | break; | |
09e2d7c7 DE |
5641 | case TYPE_SPECIFIC_SELF_TYPE: |
5642 | set_type_self_type (new_type, | |
bde539c2 | 5643 | copy_type_recursive (TYPE_SELF_TYPE (type), |
09e2d7c7 DE |
5644 | copied_types)); |
5645 | break; | |
09584414 JB |
5646 | case TYPE_SPECIFIC_FIXED_POINT: |
5647 | INIT_FIXED_POINT_SPECIFIC (new_type); | |
2a12c336 JB |
5648 | new_type->fixed_point_info ().scaling_factor |
5649 | = type->fixed_point_info ().scaling_factor; | |
09584414 | 5650 | break; |
20a5fcbd TT |
5651 | case TYPE_SPECIFIC_INT: |
5652 | TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT; | |
5653 | TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff | |
5654 | = TYPE_MAIN_TYPE (type)->type_specific.int_stuff; | |
5655 | break; | |
5656 | ||
f6b3afbf DE |
5657 | default: |
5658 | gdb_assert_not_reached ("bad type_specific_kind"); | |
5659 | } | |
ae5a43e0 DJ |
5660 | |
5661 | return new_type; | |
5662 | } | |
5663 | ||
4af88198 | 5664 | /* Make a copy of the given TYPE, except that the pointer & reference |
8e2da165 | 5665 | types are not preserved. */ |
4af88198 JB |
5666 | |
5667 | struct type * | |
5668 | copy_type (const struct type *type) | |
5669 | { | |
9fa83a7a | 5670 | struct type *new_type = type_allocator (type).new_type (); |
314ad88d | 5671 | new_type->set_instance_flags (type->instance_flags ()); |
df86565b | 5672 | new_type->set_length (type->length ()); |
4af88198 JB |
5673 | memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type), |
5674 | sizeof (struct main_type)); | |
98d48915 | 5675 | if (type->main_type->dyn_prop_list != NULL) |
8e2da165 TT |
5676 | { |
5677 | struct obstack *storage = (type->is_objfile_owned () | |
5678 | ? &type->objfile_owner ()->objfile_obstack | |
5679 | : gdbarch_obstack (type->arch_owner ())); | |
5680 | new_type->main_type->dyn_prop_list | |
5681 | = copy_dynamic_prop_list (storage, type->main_type->dyn_prop_list); | |
5682 | } | |
4af88198 JB |
5683 | |
5684 | return new_type; | |
5685 | } | |
5212577a | 5686 | \f |
e9bb382b UW |
5687 | /* Helper functions to initialize architecture-specific types. */ |
5688 | ||
e9bb382b | 5689 | /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH. |
77b7c781 | 5690 | NAME is the type name. BIT is the size of the flag word in bits. */ |
5212577a | 5691 | |
e9bb382b | 5692 | struct type * |
77b7c781 | 5693 | arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit) |
e9bb382b | 5694 | { |
e9bb382b UW |
5695 | struct type *type; |
5696 | ||
cc495054 | 5697 | type = type_allocator (gdbarch).new_type (TYPE_CODE_FLAGS, bit, name); |
653223d3 | 5698 | type->set_is_unsigned (true); |
81516450 | 5699 | /* Pre-allocate enough space assuming every field is one bit. */ |
2774f2da TV |
5700 | type->alloc_fields (bit); |
5701 | type->set_num_fields (0); | |
e9bb382b UW |
5702 | |
5703 | return type; | |
5704 | } | |
5705 | ||
5706 | /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
81516450 DE |
5707 | position BITPOS is called NAME. Pass NAME as "" for fields that |
5708 | should not be printed. */ | |
5709 | ||
5710 | void | |
5711 | append_flags_type_field (struct type *type, int start_bitpos, int nr_bits, | |
695bfa52 | 5712 | struct type *field_type, const char *name) |
81516450 | 5713 | { |
df86565b | 5714 | int type_bitsize = type->length () * TARGET_CHAR_BIT; |
1f704f76 | 5715 | int field_nr = type->num_fields (); |
81516450 | 5716 | |
78134374 | 5717 | gdb_assert (type->code () == TYPE_CODE_FLAGS); |
1f704f76 | 5718 | gdb_assert (type->num_fields () + 1 <= type_bitsize); |
81516450 | 5719 | gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize); |
602885d8 | 5720 | gdb_assert (nr_bits >= 1 && (start_bitpos + nr_bits) <= type_bitsize); |
81516450 DE |
5721 | gdb_assert (name != NULL); |
5722 | ||
5a8edb75 | 5723 | type->set_num_fields (type->num_fields () + 1); |
d3fd12df | 5724 | type->field (field_nr).set_name (xstrdup (name)); |
5d14b6e5 | 5725 | type->field (field_nr).set_type (field_type); |
cd3f655c | 5726 | type->field (field_nr).set_loc_bitpos (start_bitpos); |
886176b8 | 5727 | type->field (field_nr).set_bitsize (nr_bits); |
81516450 DE |
5728 | } |
5729 | ||
5730 | /* Special version of append_flags_type_field to add a flag field. | |
5731 | Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at | |
e9bb382b | 5732 | position BITPOS is called NAME. */ |
5212577a | 5733 | |
e9bb382b | 5734 | void |
695bfa52 | 5735 | append_flags_type_flag (struct type *type, int bitpos, const char *name) |
e9bb382b | 5736 | { |
81516450 | 5737 | append_flags_type_field (type, bitpos, 1, |
8ee511af | 5738 | builtin_type (type->arch ())->builtin_bool, |
81516450 | 5739 | name); |
e9bb382b UW |
5740 | } |
5741 | ||
5742 | /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as | |
5743 | specified by CODE) associated with GDBARCH. NAME is the type name. */ | |
5212577a | 5744 | |
e9bb382b | 5745 | struct type * |
695bfa52 TT |
5746 | arch_composite_type (struct gdbarch *gdbarch, const char *name, |
5747 | enum type_code code) | |
e9bb382b UW |
5748 | { |
5749 | struct type *t; | |
d8734c88 | 5750 | |
e9bb382b | 5751 | gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION); |
cc495054 | 5752 | t = type_allocator (gdbarch).new_type (code, 0, NULL); |
d0e39ea2 | 5753 | t->set_name (name); |
e9bb382b UW |
5754 | INIT_CPLUS_SPECIFIC (t); |
5755 | return t; | |
5756 | } | |
5757 | ||
5758 | /* Add new field with name NAME and type FIELD to composite type T. | |
f5dff777 DJ |
5759 | Do not set the field's position or adjust the type's length; |
5760 | the caller should do so. Return the new field. */ | |
5212577a | 5761 | |
f5dff777 | 5762 | struct field * |
695bfa52 | 5763 | append_composite_type_field_raw (struct type *t, const char *name, |
f5dff777 | 5764 | struct type *field) |
e9bb382b UW |
5765 | { |
5766 | struct field *f; | |
d8734c88 | 5767 | |
1f704f76 | 5768 | t->set_num_fields (t->num_fields () + 1); |
89495c33 | 5769 | t->set_fields (XRESIZEVEC (struct field, t->fields ().data (), |
3cabb6b0 | 5770 | t->num_fields ())); |
80fc5e77 | 5771 | f = &t->field (t->num_fields () - 1); |
e9bb382b | 5772 | memset (f, 0, sizeof f[0]); |
5d14b6e5 | 5773 | f[0].set_type (field); |
d3fd12df | 5774 | f[0].set_name (name); |
f5dff777 DJ |
5775 | return f; |
5776 | } | |
5777 | ||
5778 | /* Add new field with name NAME and type FIELD to composite type T. | |
5779 | ALIGNMENT (if non-zero) specifies the minimum field alignment. */ | |
5212577a | 5780 | |
f5dff777 | 5781 | void |
695bfa52 | 5782 | append_composite_type_field_aligned (struct type *t, const char *name, |
f5dff777 DJ |
5783 | struct type *field, int alignment) |
5784 | { | |
5785 | struct field *f = append_composite_type_field_raw (t, name, field); | |
d8734c88 | 5786 | |
78134374 | 5787 | if (t->code () == TYPE_CODE_UNION) |
e9bb382b | 5788 | { |
df86565b SM |
5789 | if (t->length () < field->length ()) |
5790 | t->set_length (field->length ()); | |
e9bb382b | 5791 | } |
78134374 | 5792 | else if (t->code () == TYPE_CODE_STRUCT) |
e9bb382b | 5793 | { |
df86565b | 5794 | t->set_length (t->length () + field->length ()); |
1f704f76 | 5795 | if (t->num_fields () > 1) |
e9bb382b | 5796 | { |
cd3f655c | 5797 | f->set_loc_bitpos |
df86565b SM |
5798 | (f[-1].loc_bitpos () |
5799 | + (f[-1].type ()->length () * TARGET_CHAR_BIT)); | |
e9bb382b UW |
5800 | |
5801 | if (alignment) | |
5802 | { | |
86c3c1fc AB |
5803 | int left; |
5804 | ||
5805 | alignment *= TARGET_CHAR_BIT; | |
3a543e21 | 5806 | left = f[0].loc_bitpos () % alignment; |
d8734c88 | 5807 | |
e9bb382b UW |
5808 | if (left) |
5809 | { | |
3a543e21 | 5810 | f->set_loc_bitpos (f[0].loc_bitpos () + (alignment - left)); |
b6cdbc9a SM |
5811 | t->set_length |
5812 | (t->length () + (alignment - left) / TARGET_CHAR_BIT); | |
e9bb382b UW |
5813 | } |
5814 | } | |
5815 | } | |
5816 | } | |
5817 | } | |
5818 | ||
5819 | /* Add new field with name NAME and type FIELD to composite type T. */ | |
5212577a | 5820 | |
e9bb382b | 5821 | void |
695bfa52 | 5822 | append_composite_type_field (struct type *t, const char *name, |
e9bb382b UW |
5823 | struct type *field) |
5824 | { | |
5825 | append_composite_type_field_aligned (t, name, field, 0); | |
5826 | } | |
5827 | ||
09584414 JB |
5828 | \f |
5829 | ||
5830 | /* We manage the lifetimes of fixed_point_type_info objects by | |
5831 | attaching them to the objfile. Currently, these objects are | |
5832 | modified during construction, and GMP does not provide a way to | |
5833 | hash the contents of an mpq_t; so it's a bit of a pain to hash-cons | |
5834 | them. If we did do this, they could be moved to the per-BFD and | |
5835 | shared across objfiles. */ | |
5836 | typedef std::vector<std::unique_ptr<fixed_point_type_info>> | |
5837 | fixed_point_type_storage; | |
5838 | ||
5839 | /* Key used for managing the storage of fixed-point type info. */ | |
08b8a139 | 5840 | static const struct registry<objfile>::key<fixed_point_type_storage> |
09584414 JB |
5841 | fixed_point_objfile_key; |
5842 | ||
5843 | /* See gdbtypes.h. */ | |
5844 | ||
2a12c336 | 5845 | void |
09584414 JB |
5846 | allocate_fixed_point_type_info (struct type *type) |
5847 | { | |
6b62451a | 5848 | auto up = std::make_unique<fixed_point_type_info> (); |
2a12c336 | 5849 | fixed_point_type_info *info; |
09584414 | 5850 | |
30625020 | 5851 | if (type->is_objfile_owned ()) |
09584414 JB |
5852 | { |
5853 | fixed_point_type_storage *storage | |
6ac37371 | 5854 | = fixed_point_objfile_key.get (type->objfile_owner ()); |
09584414 | 5855 | if (storage == nullptr) |
6ac37371 | 5856 | storage = fixed_point_objfile_key.emplace (type->objfile_owner ()); |
2a12c336 | 5857 | info = up.get (); |
09584414 JB |
5858 | storage->push_back (std::move (up)); |
5859 | } | |
5860 | else | |
5861 | { | |
5862 | /* We just leak the memory, because that's what we do generally | |
5863 | for non-objfile-attached types. */ | |
2a12c336 | 5864 | info = up.release (); |
09584414 JB |
5865 | } |
5866 | ||
2a12c336 | 5867 | type->set_fixed_point_info (info); |
09584414 JB |
5868 | } |
5869 | ||
5870 | /* See gdbtypes.h. */ | |
5871 | ||
5872 | bool | |
5873 | is_fixed_point_type (struct type *type) | |
5874 | { | |
5875 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) | |
27710edb | 5876 | type = check_typedef (type)->target_type (); |
09584414 JB |
5877 | type = check_typedef (type); |
5878 | ||
5879 | return type->code () == TYPE_CODE_FIXED_POINT; | |
5880 | } | |
5881 | ||
5882 | /* See gdbtypes.h. */ | |
5883 | ||
5884 | struct type * | |
d19937a7 | 5885 | type::fixed_point_type_base_type () |
09584414 | 5886 | { |
d19937a7 JB |
5887 | struct type *type = this; |
5888 | ||
09584414 | 5889 | while (check_typedef (type)->code () == TYPE_CODE_RANGE) |
27710edb | 5890 | type = check_typedef (type)->target_type (); |
09584414 JB |
5891 | type = check_typedef (type); |
5892 | ||
5893 | gdb_assert (type->code () == TYPE_CODE_FIXED_POINT); | |
5894 | return type; | |
5895 | } | |
5896 | ||
5897 | /* See gdbtypes.h. */ | |
5898 | ||
5899 | const gdb_mpq & | |
e6fcee3a | 5900 | type::fixed_point_scaling_factor () |
09584414 | 5901 | { |
e6fcee3a | 5902 | struct type *type = this->fixed_point_type_base_type (); |
09584414 | 5903 | |
2a12c336 | 5904 | return type->fixed_point_info ().scaling_factor; |
09584414 JB |
5905 | } |
5906 | ||
2774f2da TV |
5907 | /* See gdbtypes.h. */ |
5908 | ||
5909 | void | |
5910 | type::alloc_fields (unsigned int nfields, bool init) | |
5911 | { | |
5912 | this->set_num_fields (nfields); | |
5913 | ||
5914 | if (nfields == 0) | |
5915 | { | |
5916 | this->main_type->flds_bnds.fields = nullptr; | |
5917 | return; | |
5918 | } | |
5919 | ||
89495c33 | 5920 | size_t size = nfields * sizeof (struct field); |
2774f2da TV |
5921 | struct field *fields |
5922 | = (struct field *) (init | |
5923 | ? TYPE_ZALLOC (this, size) | |
5924 | : TYPE_ALLOC (this, size)); | |
5925 | ||
5926 | this->main_type->flds_bnds.fields = fields; | |
5927 | } | |
5928 | ||
5929 | /* See gdbtypes.h. */ | |
5930 | ||
5931 | void | |
5932 | type::copy_fields (struct type *src) | |
5933 | { | |
5934 | unsigned int nfields = src->num_fields (); | |
5935 | alloc_fields (nfields, false); | |
5936 | if (nfields == 0) | |
5937 | return; | |
5938 | ||
89495c33 TT |
5939 | size_t size = nfields * sizeof (struct field); |
5940 | memcpy (this->fields ().data (), src->fields ().data (), size); | |
2774f2da TV |
5941 | } |
5942 | ||
5943 | /* See gdbtypes.h. */ | |
5944 | ||
5945 | void | |
5946 | type::copy_fields (std::vector<struct field> &src) | |
5947 | { | |
5948 | unsigned int nfields = src.size (); | |
5949 | alloc_fields (nfields, false); | |
5950 | if (nfields == 0) | |
5951 | return; | |
5952 | ||
89495c33 TT |
5953 | size_t size = nfields * sizeof (struct field); |
5954 | memcpy (this->fields ().data (), src.data (), size); | |
2774f2da | 5955 | } |
84914f59 | 5956 | |
76fc0f62 TT |
5957 | /* See gdbtypes.h. */ |
5958 | ||
5959 | bool | |
5960 | type::is_string_like () | |
5961 | { | |
5962 | const language_defn *defn = language_def (this->language ()); | |
5963 | return defn->is_string_type_p (this); | |
5964 | } | |
5965 | ||
5966 | /* See gdbtypes.h. */ | |
5967 | ||
84914f59 TT |
5968 | bool |
5969 | type::is_array_like () | |
5970 | { | |
5971 | if (code () == TYPE_CODE_ARRAY) | |
5972 | return true; | |
76fc0f62 TT |
5973 | const language_defn *defn = language_def (this->language ()); |
5974 | return defn->is_array_like (this); | |
84914f59 TT |
5975 | } |
5976 | ||
09584414 JB |
5977 | \f |
5978 | ||
cb275538 | 5979 | static const registry<gdbarch>::key<struct builtin_type> gdbtypes_data; |
000177f0 | 5980 | |
cb275538 TT |
5981 | static struct builtin_type * |
5982 | create_gdbtypes_data (struct gdbarch *gdbarch) | |
000177f0 | 5983 | { |
cb275538 | 5984 | struct builtin_type *builtin_type = new struct builtin_type; |
000177f0 | 5985 | |
cc495054 TT |
5986 | type_allocator alloc (gdbarch); |
5987 | ||
46bf5051 | 5988 | /* Basic types. */ |
e9bb382b | 5989 | builtin_type->builtin_void |
cc495054 | 5990 | = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
e9bb382b | 5991 | builtin_type->builtin_char |
2d39ccd3 | 5992 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b | 5993 | !gdbarch_char_signed (gdbarch), "char"); |
15152a54 | 5994 | builtin_type->builtin_char->set_has_no_signedness (true); |
e9bb382b | 5995 | builtin_type->builtin_signed_char |
2d39ccd3 | 5996 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b UW |
5997 | 0, "signed char"); |
5998 | builtin_type->builtin_unsigned_char | |
2d39ccd3 | 5999 | = init_integer_type (alloc, TARGET_CHAR_BIT, |
e9bb382b UW |
6000 | 1, "unsigned char"); |
6001 | builtin_type->builtin_short | |
2d39ccd3 | 6002 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
e9bb382b UW |
6003 | 0, "short"); |
6004 | builtin_type->builtin_unsigned_short | |
2d39ccd3 | 6005 | = init_integer_type (alloc, gdbarch_short_bit (gdbarch), |
e9bb382b UW |
6006 | 1, "unsigned short"); |
6007 | builtin_type->builtin_int | |
2d39ccd3 | 6008 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
e9bb382b UW |
6009 | 0, "int"); |
6010 | builtin_type->builtin_unsigned_int | |
2d39ccd3 | 6011 | = init_integer_type (alloc, gdbarch_int_bit (gdbarch), |
e9bb382b UW |
6012 | 1, "unsigned int"); |
6013 | builtin_type->builtin_long | |
2d39ccd3 | 6014 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
e9bb382b UW |
6015 | 0, "long"); |
6016 | builtin_type->builtin_unsigned_long | |
2d39ccd3 | 6017 | = init_integer_type (alloc, gdbarch_long_bit (gdbarch), |
e9bb382b UW |
6018 | 1, "unsigned long"); |
6019 | builtin_type->builtin_long_long | |
2d39ccd3 | 6020 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
e9bb382b UW |
6021 | 0, "long long"); |
6022 | builtin_type->builtin_unsigned_long_long | |
2d39ccd3 | 6023 | = init_integer_type (alloc, gdbarch_long_long_bit (gdbarch), |
e9bb382b | 6024 | 1, "unsigned long long"); |
a6d0f249 | 6025 | builtin_type->builtin_half |
77c5f496 | 6026 | = init_float_type (alloc, gdbarch_half_bit (gdbarch), |
a6d0f249 | 6027 | "half", gdbarch_half_format (gdbarch)); |
70bd8e24 | 6028 | builtin_type->builtin_float |
77c5f496 | 6029 | = init_float_type (alloc, gdbarch_float_bit (gdbarch), |
27067745 | 6030 | "float", gdbarch_float_format (gdbarch)); |
2a67f09d | 6031 | builtin_type->builtin_bfloat16 |
77c5f496 | 6032 | = init_float_type (alloc, gdbarch_bfloat16_bit (gdbarch), |
2a67f09d | 6033 | "bfloat16", gdbarch_bfloat16_format (gdbarch)); |
70bd8e24 | 6034 | builtin_type->builtin_double |
77c5f496 | 6035 | = init_float_type (alloc, gdbarch_double_bit (gdbarch), |
27067745 | 6036 | "double", gdbarch_double_format (gdbarch)); |
70bd8e24 | 6037 | builtin_type->builtin_long_double |
77c5f496 | 6038 | = init_float_type (alloc, gdbarch_long_double_bit (gdbarch), |
27067745 | 6039 | "long double", gdbarch_long_double_format (gdbarch)); |
70bd8e24 | 6040 | builtin_type->builtin_complex |
5b930b45 | 6041 | = init_complex_type ("complex", builtin_type->builtin_float); |
70bd8e24 | 6042 | builtin_type->builtin_double_complex |
5b930b45 | 6043 | = init_complex_type ("double complex", builtin_type->builtin_double); |
e9bb382b | 6044 | builtin_type->builtin_string |
cc495054 | 6045 | = alloc.new_type (TYPE_CODE_STRING, TARGET_CHAR_BIT, "string"); |
e9bb382b | 6046 | builtin_type->builtin_bool |
46c04ea3 | 6047 | = init_boolean_type (alloc, TARGET_CHAR_BIT, 1, "bool"); |
000177f0 | 6048 | |
7678ef8f TJB |
6049 | /* The following three are about decimal floating point types, which |
6050 | are 32-bits, 64-bits and 128-bits respectively. */ | |
6051 | builtin_type->builtin_decfloat | |
0776344a | 6052 | = init_decfloat_type (alloc, 32, "_Decimal32"); |
7678ef8f | 6053 | builtin_type->builtin_decdouble |
0776344a | 6054 | = init_decfloat_type (alloc, 64, "_Decimal64"); |
7678ef8f | 6055 | builtin_type->builtin_declong |
0776344a | 6056 | = init_decfloat_type (alloc, 128, "_Decimal128"); |
7678ef8f | 6057 | |
69feb676 | 6058 | /* "True" character types. */ |
e9bb382b | 6059 | builtin_type->builtin_true_char |
f50b437c | 6060 | = init_character_type (alloc, TARGET_CHAR_BIT, 0, "true character"); |
e9bb382b | 6061 | builtin_type->builtin_true_unsigned_char |
f50b437c | 6062 | = init_character_type (alloc, TARGET_CHAR_BIT, 1, "true character"); |
69feb676 | 6063 | |
df4df182 | 6064 | /* Fixed-size integer types. */ |
e9bb382b | 6065 | builtin_type->builtin_int0 |
2d39ccd3 | 6066 | = init_integer_type (alloc, 0, 0, "int0_t"); |
e9bb382b | 6067 | builtin_type->builtin_int8 |
2d39ccd3 | 6068 | = init_integer_type (alloc, 8, 0, "int8_t"); |
e9bb382b | 6069 | builtin_type->builtin_uint8 |
2d39ccd3 | 6070 | = init_integer_type (alloc, 8, 1, "uint8_t"); |
e9bb382b | 6071 | builtin_type->builtin_int16 |
2d39ccd3 | 6072 | = init_integer_type (alloc, 16, 0, "int16_t"); |
e9bb382b | 6073 | builtin_type->builtin_uint16 |
2d39ccd3 | 6074 | = init_integer_type (alloc, 16, 1, "uint16_t"); |
d1908f2d | 6075 | builtin_type->builtin_int24 |
2d39ccd3 | 6076 | = init_integer_type (alloc, 24, 0, "int24_t"); |
d1908f2d | 6077 | builtin_type->builtin_uint24 |
2d39ccd3 | 6078 | = init_integer_type (alloc, 24, 1, "uint24_t"); |
e9bb382b | 6079 | builtin_type->builtin_int32 |
2d39ccd3 | 6080 | = init_integer_type (alloc, 32, 0, "int32_t"); |
e9bb382b | 6081 | builtin_type->builtin_uint32 |
2d39ccd3 | 6082 | = init_integer_type (alloc, 32, 1, "uint32_t"); |
e9bb382b | 6083 | builtin_type->builtin_int64 |
2d39ccd3 | 6084 | = init_integer_type (alloc, 64, 0, "int64_t"); |
e9bb382b | 6085 | builtin_type->builtin_uint64 |
2d39ccd3 | 6086 | = init_integer_type (alloc, 64, 1, "uint64_t"); |
e9bb382b | 6087 | builtin_type->builtin_int128 |
2d39ccd3 | 6088 | = init_integer_type (alloc, 128, 0, "int128_t"); |
e9bb382b | 6089 | builtin_type->builtin_uint128 |
2d39ccd3 | 6090 | = init_integer_type (alloc, 128, 1, "uint128_t"); |
314ad88d PA |
6091 | |
6092 | builtin_type->builtin_int8->set_instance_flags | |
6093 | (builtin_type->builtin_int8->instance_flags () | |
6094 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
6095 | ||
6096 | builtin_type->builtin_uint8->set_instance_flags | |
6097 | (builtin_type->builtin_uint8->instance_flags () | |
6098 | | TYPE_INSTANCE_FLAG_NOTTEXT); | |
df4df182 | 6099 | |
9a22f0d0 PM |
6100 | /* Wide character types. */ |
6101 | builtin_type->builtin_char16 | |
2d39ccd3 | 6102 | = init_integer_type (alloc, 16, 1, "char16_t"); |
9a22f0d0 | 6103 | builtin_type->builtin_char32 |
2d39ccd3 | 6104 | = init_integer_type (alloc, 32, 1, "char32_t"); |
53375380 | 6105 | builtin_type->builtin_wchar |
2d39ccd3 | 6106 | = init_integer_type (alloc, gdbarch_wchar_bit (gdbarch), |
53375380 | 6107 | !gdbarch_wchar_signed (gdbarch), "wchar_t"); |
9a22f0d0 | 6108 | |
46bf5051 | 6109 | /* Default data/code pointer types. */ |
e9bb382b UW |
6110 | builtin_type->builtin_data_ptr |
6111 | = lookup_pointer_type (builtin_type->builtin_void); | |
6112 | builtin_type->builtin_func_ptr | |
6113 | = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void)); | |
0875794a JK |
6114 | builtin_type->builtin_func_func |
6115 | = lookup_function_type (builtin_type->builtin_func_ptr); | |
46bf5051 | 6116 | |
78267919 | 6117 | /* This type represents a GDB internal function. */ |
e9bb382b | 6118 | builtin_type->internal_fn |
cc495054 TT |
6119 | = alloc.new_type (TYPE_CODE_INTERNAL_FUNCTION, 0, |
6120 | "<internal function>"); | |
78267919 | 6121 | |
e81e7f5e SC |
6122 | /* This type represents an xmethod. */ |
6123 | builtin_type->xmethod | |
cc495054 | 6124 | = alloc.new_type (TYPE_CODE_XMETHOD, 0, "<xmethod>"); |
e81e7f5e | 6125 | |
a9a775da TT |
6126 | /* This type represents a type that was unrecognized in symbol read-in. */ |
6127 | builtin_type->builtin_error | |
6128 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<unknown type>"); | |
6129 | ||
6130 | /* The following set of types is used for symbols with no | |
6131 | debug information. */ | |
6132 | builtin_type->nodebug_text_symbol | |
6133 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
6134 | "<text variable, no debug info>"); | |
6135 | ||
6136 | builtin_type->nodebug_text_gnu_ifunc_symbol | |
6137 | = alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT, | |
6138 | "<text gnu-indirect-function variable, no debug info>"); | |
6139 | builtin_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true); | |
6140 | ||
6141 | builtin_type->nodebug_got_plt_symbol | |
6142 | = init_pointer_type (alloc, gdbarch_addr_bit (gdbarch), | |
6143 | "<text from jump slot in .got.plt, no debug info>", | |
6144 | builtin_type->nodebug_text_symbol); | |
6145 | builtin_type->nodebug_data_symbol | |
6146 | = alloc.new_type (TYPE_CODE_ERROR, 0, "<data variable, no debug info>"); | |
6147 | builtin_type->nodebug_unknown_symbol | |
6148 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
6149 | "<variable (not text or data), no debug info>"); | |
6150 | builtin_type->nodebug_tls_symbol | |
6151 | = alloc.new_type (TYPE_CODE_ERROR, 0, | |
6152 | "<thread local variable, no debug info>"); | |
6153 | ||
6154 | /* NOTE: on some targets, addresses and pointers are not necessarily | |
6155 | the same. | |
6156 | ||
6157 | The upshot is: | |
6158 | - gdb's `struct type' always describes the target's | |
6159 | representation. | |
6160 | - gdb's `struct value' objects should always hold values in | |
6161 | target form. | |
6162 | - gdb's CORE_ADDR values are addresses in the unified virtual | |
6163 | address space that the assembler and linker work with. Thus, | |
6164 | since target_read_memory takes a CORE_ADDR as an argument, it | |
6165 | can access any memory on the target, even if the processor has | |
6166 | separate code and data address spaces. | |
6167 | ||
6168 | In this context, builtin_type->builtin_core_addr is a bit odd: | |
6169 | it's a target type for a value the target will never see. It's | |
6170 | only used to hold the values of (typeless) linker symbols, which | |
6171 | are indeed in the unified virtual address space. */ | |
6172 | ||
6173 | builtin_type->builtin_core_addr | |
6174 | = init_integer_type (alloc, gdbarch_addr_bit (gdbarch), 1, | |
6175 | "__CORE_ADDR"); | |
46bf5051 UW |
6176 | return builtin_type; |
6177 | } | |
6178 | ||
cb275538 TT |
6179 | const struct builtin_type * |
6180 | builtin_type (struct gdbarch *gdbarch) | |
6181 | { | |
6182 | struct builtin_type *result = gdbtypes_data.get (gdbarch); | |
6183 | if (result == nullptr) | |
6184 | { | |
6185 | result = create_gdbtypes_data (gdbarch); | |
6186 | gdbtypes_data.set (gdbarch, result); | |
6187 | } | |
6188 | return result; | |
6189 | } | |
6190 | ||
2d1bc552 | 6191 | const struct builtin_type * |
a8ed3dde | 6192 | builtin_type (struct objfile *objfile) |
46bf5051 | 6193 | { |
2d1bc552 | 6194 | return builtin_type (objfile->arch ()); |
000177f0 AC |
6195 | } |
6196 | ||
4b42385c | 6197 | /* See dwarf2/call-site.h. */ |
b84aaada SM |
6198 | |
6199 | CORE_ADDR | |
6200 | call_site::pc () const | |
6201 | { | |
4b42385c GL |
6202 | /* dwarf2_per_objfile is defined in dwarf/read.c, so if that is disabled |
6203 | at configure time, we won't be able to use this relocate function. | |
6204 | This is dwarf-specific, and would ideally be in call-site.h, but | |
6205 | including dwarf2/read.h in dwarf2/call-site.h will lead to things being | |
6206 | included in the wrong order and many compilation errors will happen. | |
6207 | This is the next best thing. */ | |
6208 | #if defined(DWARF_FORMAT_AVAILABLE) | |
1e73d09f | 6209 | return per_objfile->relocate (m_unrelocated_pc); |
4b42385c GL |
6210 | #else |
6211 | gdb_assert_not_reached ("unexpected call_site object found"); | |
6212 | #endif | |
b84aaada SM |
6213 | } |
6214 | ||
5fe70629 | 6215 | INIT_GDB_FILE (gdbtypes) |
c906108c | 6216 | { |
ccce17b0 YQ |
6217 | add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug, |
6218 | _("Set debugging of C++ overloading."), | |
6219 | _("Show debugging of C++ overloading."), | |
6220 | _("When enabled, ranking of the " | |
6221 | "functions is displayed."), | |
6222 | NULL, | |
6223 | show_overload_debug, | |
6224 | &setdebuglist, &showdebuglist); | |
5674de60 | 6225 | |
7ba81444 | 6226 | /* Add user knob for controlling resolution of opaque types. */ |
5674de60 | 6227 | add_setshow_boolean_cmd ("opaque-type-resolution", class_support, |
3e43a32a | 6228 | &opaque_type_resolution, |
0fd0f223 TT |
6229 | _("\ |
6230 | Set resolution of opaque struct/class/union types."), | |
6231 | _("\ | |
6232 | Show resolution of opaque struct/class/union types."), | |
3e43a32a | 6233 | NULL, NULL, |
5674de60 UW |
6234 | show_opaque_type_resolution, |
6235 | &setlist, &showlist); | |
a451cb65 KS |
6236 | |
6237 | /* Add an option to permit non-strict type checking. */ | |
6238 | add_setshow_boolean_cmd ("type", class_support, | |
6239 | &strict_type_checking, | |
6240 | _("Set strict type checking."), | |
6241 | _("Show strict type checking."), | |
6242 | NULL, NULL, | |
6243 | show_strict_type_checking, | |
6244 | &setchecklist, &showchecklist); | |
c906108c | 6245 | } |