]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/gnu-regex.c
2001-01-16 Michael Snyder <msnyder@cleaver.cygnus.com>
[thirdparty/binutils-gdb.git] / gdb / gnu-regex.c
CommitLineData
9846de1b 1/* *INDENT-OFF* */ /* keep in sync with glibc */
c906108c
SS
2/* Extended regular expression matching and search library,
3 version 0.12.
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7
8 NOTE: The canonical source of this file is maintained with the
2df3850c 9 GNU C Library. Bugs can be reported to bug-glibc@gnu.org.
c906108c
SS
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2, or (at your option) any
14 later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software Foundation,
c5aa993b
JM
23 Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26/* AIX requires this to be the first thing in the file. */
27#if defined _AIX && !defined REGEX_MALLOC
28 #pragma alloca
29#endif
30
31#undef _GNU_SOURCE
32#define _GNU_SOURCE
33
34#ifdef HAVE_CONFIG_H
35# include <config.h>
36#endif
37
38#ifndef PARAMS
39# if defined __GNUC__ || (defined __STDC__ && __STDC__)
40# define PARAMS(args) args
41# else
42# define PARAMS(args) ()
43# endif /* GCC. */
44#endif /* Not PARAMS. */
45
46#if defined STDC_HEADERS && !defined emacs
47# include <stddef.h>
48#else
49/* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
50# include <sys/types.h>
51#endif
52
53/* For platform which support the ISO C amendement 1 functionality we
54 support user defined character classes. */
55#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
56 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
57# include <wchar.h>
58# include <wctype.h>
59#endif
60
61/* This is for other GNU distributions with internationalized messages. */
62/* CYGNUS LOCAL: ../intl will handle this for us */
63#ifdef ENABLE_NLS
64# include <libintl.h>
65#else
66# define gettext(msgid) (msgid)
67#endif
68
69#ifndef gettext_noop
70/* This define is so xgettext can find the internationalizable
71 strings. */
72# define gettext_noop(String) String
73#endif
74
75/* The `emacs' switch turns on certain matching commands
76 that make sense only in Emacs. */
77#ifdef emacs
78
79# include "lisp.h"
80# include "buffer.h"
81# include "syntax.h"
82
83#else /* not emacs */
84
85/* If we are not linking with Emacs proper,
86 we can't use the relocating allocator
87 even if config.h says that we can. */
88# undef REL_ALLOC
89
90# if defined STDC_HEADERS || defined _LIBC
91# include <stdlib.h>
92# else
93char *malloc ();
94char *realloc ();
95# endif
96
97/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
98 If nothing else has been done, use the method below. */
99# ifdef INHIBIT_STRING_HEADER
100# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
101# if !defined bzero && !defined bcopy
102# undef INHIBIT_STRING_HEADER
103# endif
104# endif
105# endif
106
107/* This is the normal way of making sure we have a bcopy and a bzero.
108 This is used in most programs--a few other programs avoid this
109 by defining INHIBIT_STRING_HEADER. */
110# ifndef INHIBIT_STRING_HEADER
111# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
112# include <string.h>
113# ifndef bzero
114# ifndef _LIBC
115# define bzero(s, n) (memset (s, '\0', n), (s))
116# else
117# define bzero(s, n) __bzero (s, n)
118# endif
119# endif
120# else
121# include <strings.h>
122# ifndef memcmp
123# define memcmp(s1, s2, n) bcmp (s1, s2, n)
124# endif
125# ifndef memcpy
126# define memcpy(d, s, n) (bcopy (s, d, n), (d))
127# endif
128# endif
129# endif
130
131/* Define the syntax stuff for \<, \>, etc. */
132
133/* This must be nonzero for the wordchar and notwordchar pattern
134 commands in re_match_2. */
135# ifndef Sword
136# define Sword 1
137# endif
138
139# ifdef SWITCH_ENUM_BUG
140# define SWITCH_ENUM_CAST(x) ((int)(x))
141# else
142# define SWITCH_ENUM_CAST(x) (x)
143# endif
144
145/* How many characters in the character set. */
146# define CHAR_SET_SIZE 256
147
148/* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
149#ifndef _REGEX_RE_COMP
150#define _REGEX_RE_COMP
151#endif
152
153# ifdef SYNTAX_TABLE
154
155extern char *re_syntax_table;
156
157# else /* not SYNTAX_TABLE */
158
159static char re_syntax_table[CHAR_SET_SIZE];
160
161static void
162init_syntax_once ()
163{
164 register int c;
165 static int done = 0;
166
167 if (done)
168 return;
169
170 bzero (re_syntax_table, sizeof re_syntax_table);
171
172 for (c = 'a'; c <= 'z'; c++)
173 re_syntax_table[c] = Sword;
174
175 for (c = 'A'; c <= 'Z'; c++)
176 re_syntax_table[c] = Sword;
177
178 for (c = '0'; c <= '9'; c++)
179 re_syntax_table[c] = Sword;
180
181 re_syntax_table['_'] = Sword;
182
183 done = 1;
184}
185
186# endif /* not SYNTAX_TABLE */
187
188# define SYNTAX(c) re_syntax_table[c]
189
190#endif /* not emacs */
191\f
192/* Get the interface, including the syntax bits. */
193/* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
194#include "gnu-regex.h"
195
196/* isalpha etc. are used for the character classes. */
197#include <ctype.h>
198
199/* Jim Meyering writes:
200
201 "... Some ctype macros are valid only for character codes that
202 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203 using /bin/cc or gcc but without giving an ansi option). So, all
204 ctype uses should be through macros like ISPRINT... If
205 STDC_HEADERS is defined, then autoconf has verified that the ctype
206 macros don't need to be guarded with references to isascii. ...
207 Defining isascii to 1 should let any compiler worth its salt
208 eliminate the && through constant folding."
209 Solaris defines some of these symbols so we must undefine them first. */
210
211#undef ISASCII
212#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213# define ISASCII(c) 1
214#else
215# define ISASCII(c) isascii(c)
216#endif
217
218#ifdef isblank
219# define ISBLANK(c) (ISASCII (c) && isblank (c))
220#else
221# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
222#endif
223#ifdef isgraph
224# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
225#else
226# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
227#endif
228
229#undef ISPRINT
230#define ISPRINT(c) (ISASCII (c) && isprint (c))
231#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232#define ISALNUM(c) (ISASCII (c) && isalnum (c))
233#define ISALPHA(c) (ISASCII (c) && isalpha (c))
234#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235#define ISLOWER(c) (ISASCII (c) && islower (c))
236#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237#define ISSPACE(c) (ISASCII (c) && isspace (c))
238#define ISUPPER(c) (ISASCII (c) && isupper (c))
239#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
240
241#ifndef NULL
242# define NULL (void *)0
243#endif
244
245/* We remove any previous definition of `SIGN_EXTEND_CHAR',
246 since ours (we hope) works properly with all combinations of
247 machines, compilers, `char' and `unsigned char' argument types.
248 (Per Bothner suggested the basic approach.) */
249#undef SIGN_EXTEND_CHAR
250#if __STDC__
251# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
252#else /* not __STDC__ */
253/* As in Harbison and Steele. */
254# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
255#endif
256\f
257/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
258 use `alloca' instead of `malloc'. This is because using malloc in
259 re_search* or re_match* could cause memory leaks when C-g is used in
260 Emacs; also, malloc is slower and causes storage fragmentation. On
261 the other hand, malloc is more portable, and easier to debug.
262
263 Because we sometimes use alloca, some routines have to be macros,
264 not functions -- `alloca'-allocated space disappears at the end of the
265 function it is called in. */
266
267#ifdef REGEX_MALLOC
268
269# define REGEX_ALLOCATE malloc
270# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
271# define REGEX_FREE free
272
273#else /* not REGEX_MALLOC */
274
275/* Emacs already defines alloca, sometimes. */
276# ifndef alloca
277
278/* Make alloca work the best possible way. */
279# ifdef __GNUC__
280# define alloca __builtin_alloca
281# else /* not __GNUC__ */
282# if HAVE_ALLOCA_H
283# include <alloca.h>
284# endif /* HAVE_ALLOCA_H */
285# endif /* not __GNUC__ */
286
287# endif /* not alloca */
288
289# define REGEX_ALLOCATE alloca
290
291/* Assumes a `char *destination' variable. */
292# define REGEX_REALLOCATE(source, osize, nsize) \
293 (destination = (char *) alloca (nsize), \
294 memcpy (destination, source, osize))
295
296/* No need to do anything to free, after alloca. */
297# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
298
299#endif /* not REGEX_MALLOC */
300
301/* Define how to allocate the failure stack. */
302
303#if defined REL_ALLOC && defined REGEX_MALLOC
304
305# define REGEX_ALLOCATE_STACK(size) \
306 r_alloc (&failure_stack_ptr, (size))
307# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
308 r_re_alloc (&failure_stack_ptr, (nsize))
309# define REGEX_FREE_STACK(ptr) \
310 r_alloc_free (&failure_stack_ptr)
311
312#else /* not using relocating allocator */
313
314# ifdef REGEX_MALLOC
315
316# define REGEX_ALLOCATE_STACK malloc
317# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
318# define REGEX_FREE_STACK free
319
320# else /* not REGEX_MALLOC */
321
322# define REGEX_ALLOCATE_STACK alloca
323
324# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
325 REGEX_REALLOCATE (source, osize, nsize)
326/* No need to explicitly free anything. */
327# define REGEX_FREE_STACK(arg)
328
329# endif /* not REGEX_MALLOC */
330#endif /* not using relocating allocator */
331
332
333/* True if `size1' is non-NULL and PTR is pointing anywhere inside
334 `string1' or just past its end. This works if PTR is NULL, which is
335 a good thing. */
336#define FIRST_STRING_P(ptr) \
337 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
338
339/* (Re)Allocate N items of type T using malloc, or fail. */
340#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
341#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
342#define RETALLOC_IF(addr, n, t) \
343 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
344#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
345
346#define BYTEWIDTH 8 /* In bits. */
347
348#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
349
350#undef MAX
351#undef MIN
352#define MAX(a, b) ((a) > (b) ? (a) : (b))
353#define MIN(a, b) ((a) < (b) ? (a) : (b))
354
355typedef char boolean;
356#define false 0
357#define true 1
358
6cf01405
KB
359static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
360 const char *string1, int size1,
361 const char *string2, int size2,
362 int pos,
363 struct re_registers *regs,
364 int stop));
c906108c
SS
365\f
366/* These are the command codes that appear in compiled regular
367 expressions. Some opcodes are followed by argument bytes. A
368 command code can specify any interpretation whatsoever for its
369 arguments. Zero bytes may appear in the compiled regular expression. */
370
371typedef enum
372{
373 no_op = 0,
374
375 /* Succeed right away--no more backtracking. */
376 succeed,
377
378 /* Followed by one byte giving n, then by n literal bytes. */
379 exactn,
380
381 /* Matches any (more or less) character. */
382 anychar,
383
384 /* Matches any one char belonging to specified set. First
385 following byte is number of bitmap bytes. Then come bytes
386 for a bitmap saying which chars are in. Bits in each byte
387 are ordered low-bit-first. A character is in the set if its
388 bit is 1. A character too large to have a bit in the map is
389 automatically not in the set. */
390 charset,
391
392 /* Same parameters as charset, but match any character that is
393 not one of those specified. */
394 charset_not,
395
396 /* Start remembering the text that is matched, for storing in a
397 register. Followed by one byte with the register number, in
398 the range 0 to one less than the pattern buffer's re_nsub
399 field. Then followed by one byte with the number of groups
400 inner to this one. (This last has to be part of the
401 start_memory only because we need it in the on_failure_jump
402 of re_match_2.) */
403 start_memory,
404
405 /* Stop remembering the text that is matched and store it in a
406 memory register. Followed by one byte with the register
407 number, in the range 0 to one less than `re_nsub' in the
408 pattern buffer, and one byte with the number of inner groups,
409 just like `start_memory'. (We need the number of inner
410 groups here because we don't have any easy way of finding the
411 corresponding start_memory when we're at a stop_memory.) */
412 stop_memory,
413
414 /* Match a duplicate of something remembered. Followed by one
415 byte containing the register number. */
416 duplicate,
417
418 /* Fail unless at beginning of line. */
419 begline,
420
421 /* Fail unless at end of line. */
422 endline,
423
424 /* Succeeds if at beginning of buffer (if emacs) or at beginning
425 of string to be matched (if not). */
426 begbuf,
427
428 /* Analogously, for end of buffer/string. */
429 endbuf,
430
431 /* Followed by two byte relative address to which to jump. */
432 jump,
433
434 /* Same as jump, but marks the end of an alternative. */
435 jump_past_alt,
436
437 /* Followed by two-byte relative address of place to resume at
438 in case of failure. */
439 on_failure_jump,
440
441 /* Like on_failure_jump, but pushes a placeholder instead of the
442 current string position when executed. */
443 on_failure_keep_string_jump,
444
445 /* Throw away latest failure point and then jump to following
446 two-byte relative address. */
447 pop_failure_jump,
448
449 /* Change to pop_failure_jump if know won't have to backtrack to
450 match; otherwise change to jump. This is used to jump
451 back to the beginning of a repeat. If what follows this jump
452 clearly won't match what the repeat does, such that we can be
453 sure that there is no use backtracking out of repetitions
454 already matched, then we change it to a pop_failure_jump.
455 Followed by two-byte address. */
456 maybe_pop_jump,
457
458 /* Jump to following two-byte address, and push a dummy failure
459 point. This failure point will be thrown away if an attempt
460 is made to use it for a failure. A `+' construct makes this
461 before the first repeat. Also used as an intermediary kind
462 of jump when compiling an alternative. */
463 dummy_failure_jump,
464
465 /* Push a dummy failure point and continue. Used at the end of
466 alternatives. */
467 push_dummy_failure,
468
469 /* Followed by two-byte relative address and two-byte number n.
470 After matching N times, jump to the address upon failure. */
471 succeed_n,
472
473 /* Followed by two-byte relative address, and two-byte number n.
474 Jump to the address N times, then fail. */
475 jump_n,
476
477 /* Set the following two-byte relative address to the
478 subsequent two-byte number. The address *includes* the two
479 bytes of number. */
480 set_number_at,
481
482 wordchar, /* Matches any word-constituent character. */
483 notwordchar, /* Matches any char that is not a word-constituent. */
484
485 wordbeg, /* Succeeds if at word beginning. */
486 wordend, /* Succeeds if at word end. */
487
488 wordbound, /* Succeeds if at a word boundary. */
489 notwordbound /* Succeeds if not at a word boundary. */
490
491#ifdef emacs
492 ,before_dot, /* Succeeds if before point. */
493 at_dot, /* Succeeds if at point. */
494 after_dot, /* Succeeds if after point. */
495
496 /* Matches any character whose syntax is specified. Followed by
497 a byte which contains a syntax code, e.g., Sword. */
498 syntaxspec,
499
500 /* Matches any character whose syntax is not that specified. */
501 notsyntaxspec
502#endif /* emacs */
503} re_opcode_t;
504\f
505/* Common operations on the compiled pattern. */
506
507/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
508
509#define STORE_NUMBER(destination, number) \
510 do { \
511 (destination)[0] = (number) & 0377; \
512 (destination)[1] = (number) >> 8; \
513 } while (0)
514
515/* Same as STORE_NUMBER, except increment DESTINATION to
516 the byte after where the number is stored. Therefore, DESTINATION
517 must be an lvalue. */
518
519#define STORE_NUMBER_AND_INCR(destination, number) \
520 do { \
521 STORE_NUMBER (destination, number); \
522 (destination) += 2; \
523 } while (0)
524
525/* Put into DESTINATION a number stored in two contiguous bytes starting
526 at SOURCE. */
527
528#define EXTRACT_NUMBER(destination, source) \
529 do { \
530 (destination) = *(source) & 0377; \
531 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
532 } while (0)
533
534#ifdef DEBUG
535static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
536static void
537extract_number (dest, source)
538 int *dest;
539 unsigned char *source;
540{
541 int temp = SIGN_EXTEND_CHAR (*(source + 1));
542 *dest = *source & 0377;
543 *dest += temp << 8;
544}
545
546# ifndef EXTRACT_MACROS /* To debug the macros. */
547# undef EXTRACT_NUMBER
548# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
549# endif /* not EXTRACT_MACROS */
550
551#endif /* DEBUG */
552
553/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
554 SOURCE must be an lvalue. */
555
556#define EXTRACT_NUMBER_AND_INCR(destination, source) \
557 do { \
558 EXTRACT_NUMBER (destination, source); \
559 (source) += 2; \
560 } while (0)
561
562#ifdef DEBUG
563static void extract_number_and_incr _RE_ARGS ((int *destination,
564 unsigned char **source));
565static void
566extract_number_and_incr (destination, source)
567 int *destination;
568 unsigned char **source;
569{
570 extract_number (destination, *source);
571 *source += 2;
572}
573
574# ifndef EXTRACT_MACROS
575# undef EXTRACT_NUMBER_AND_INCR
576# define EXTRACT_NUMBER_AND_INCR(dest, src) \
577 extract_number_and_incr (&dest, &src)
578# endif /* not EXTRACT_MACROS */
579
580#endif /* DEBUG */
581\f
582/* If DEBUG is defined, Regex prints many voluminous messages about what
583 it is doing (if the variable `debug' is nonzero). If linked with the
584 main program in `iregex.c', you can enter patterns and strings
585 interactively. And if linked with the main program in `main.c' and
586 the other test files, you can run the already-written tests. */
587
588#ifdef DEBUG
589
590/* We use standard I/O for debugging. */
591# include <stdio.h>
592
593/* It is useful to test things that ``must'' be true when debugging. */
594# include <assert.h>
595
596static int debug = 0;
597
598# define DEBUG_STATEMENT(e) e
599# define DEBUG_PRINT1(x) if (debug) printf (x)
600# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
601# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
602# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
603# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
604 if (debug) print_partial_compiled_pattern (s, e)
605# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
606 if (debug) print_double_string (w, s1, sz1, s2, sz2)
607
608
609/* Print the fastmap in human-readable form. */
610
611void
612print_fastmap (fastmap)
613 char *fastmap;
614{
615 unsigned was_a_range = 0;
616 unsigned i = 0;
617
618 while (i < (1 << BYTEWIDTH))
619 {
620 if (fastmap[i++])
621 {
622 was_a_range = 0;
623 putchar (i - 1);
624 while (i < (1 << BYTEWIDTH) && fastmap[i])
625 {
626 was_a_range = 1;
627 i++;
628 }
629 if (was_a_range)
630 {
631 printf ("-");
632 putchar (i - 1);
633 }
634 }
635 }
636 putchar ('\n');
637}
638
639
640/* Print a compiled pattern string in human-readable form, starting at
641 the START pointer into it and ending just before the pointer END. */
642
643void
644print_partial_compiled_pattern (start, end)
645 unsigned char *start;
646 unsigned char *end;
647{
648 int mcnt, mcnt2;
649 unsigned char *p1;
650 unsigned char *p = start;
651 unsigned char *pend = end;
652
653 if (start == NULL)
654 {
655 printf ("(null)\n");
656 return;
657 }
658
659 /* Loop over pattern commands. */
660 while (p < pend)
661 {
662 printf ("%d:\t", p - start);
663
664 switch ((re_opcode_t) *p++)
665 {
666 case no_op:
667 printf ("/no_op");
668 break;
669
670 case exactn:
671 mcnt = *p++;
672 printf ("/exactn/%d", mcnt);
673 do
674 {
675 putchar ('/');
676 putchar (*p++);
677 }
678 while (--mcnt);
679 break;
680
681 case start_memory:
682 mcnt = *p++;
683 printf ("/start_memory/%d/%d", mcnt, *p++);
684 break;
685
686 case stop_memory:
687 mcnt = *p++;
688 printf ("/stop_memory/%d/%d", mcnt, *p++);
689 break;
690
691 case duplicate:
692 printf ("/duplicate/%d", *p++);
693 break;
694
695 case anychar:
696 printf ("/anychar");
697 break;
698
699 case charset:
700 case charset_not:
701 {
702 register int c, last = -100;
703 register int in_range = 0;
704
705 printf ("/charset [%s",
706 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
707
708 assert (p + *p < pend);
709
710 for (c = 0; c < 256; c++)
711 if (c / 8 < *p
712 && (p[1 + (c/8)] & (1 << (c % 8))))
713 {
714 /* Are we starting a range? */
715 if (last + 1 == c && ! in_range)
716 {
717 putchar ('-');
718 in_range = 1;
719 }
720 /* Have we broken a range? */
721 else if (last + 1 != c && in_range)
722 {
723 putchar (last);
724 in_range = 0;
725 }
726
727 if (! in_range)
728 putchar (c);
729
730 last = c;
731 }
732
733 if (in_range)
734 putchar (last);
735
736 putchar (']');
737
738 p += 1 + *p;
739 }
740 break;
741
742 case begline:
743 printf ("/begline");
744 break;
745
746 case endline:
747 printf ("/endline");
748 break;
749
750 case on_failure_jump:
751 extract_number_and_incr (&mcnt, &p);
752 printf ("/on_failure_jump to %d", p + mcnt - start);
753 break;
754
755 case on_failure_keep_string_jump:
756 extract_number_and_incr (&mcnt, &p);
757 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
758 break;
759
760 case dummy_failure_jump:
761 extract_number_and_incr (&mcnt, &p);
762 printf ("/dummy_failure_jump to %d", p + mcnt - start);
763 break;
764
765 case push_dummy_failure:
766 printf ("/push_dummy_failure");
767 break;
768
769 case maybe_pop_jump:
770 extract_number_and_incr (&mcnt, &p);
771 printf ("/maybe_pop_jump to %d", p + mcnt - start);
772 break;
773
774 case pop_failure_jump:
775 extract_number_and_incr (&mcnt, &p);
776 printf ("/pop_failure_jump to %d", p + mcnt - start);
777 break;
778
779 case jump_past_alt:
780 extract_number_and_incr (&mcnt, &p);
781 printf ("/jump_past_alt to %d", p + mcnt - start);
782 break;
783
784 case jump:
785 extract_number_and_incr (&mcnt, &p);
786 printf ("/jump to %d", p + mcnt - start);
787 break;
788
789 case succeed_n:
790 extract_number_and_incr (&mcnt, &p);
791 p1 = p + mcnt;
792 extract_number_and_incr (&mcnt2, &p);
793 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
794 break;
795
796 case jump_n:
797 extract_number_and_incr (&mcnt, &p);
798 p1 = p + mcnt;
799 extract_number_and_incr (&mcnt2, &p);
800 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
801 break;
802
803 case set_number_at:
804 extract_number_and_incr (&mcnt, &p);
805 p1 = p + mcnt;
806 extract_number_and_incr (&mcnt2, &p);
807 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
808 break;
809
810 case wordbound:
811 printf ("/wordbound");
812 break;
813
814 case notwordbound:
815 printf ("/notwordbound");
816 break;
817
818 case wordbeg:
819 printf ("/wordbeg");
820 break;
821
822 case wordend:
823 printf ("/wordend");
824
825# ifdef emacs
826 case before_dot:
827 printf ("/before_dot");
828 break;
829
830 case at_dot:
831 printf ("/at_dot");
832 break;
833
834 case after_dot:
835 printf ("/after_dot");
836 break;
837
838 case syntaxspec:
839 printf ("/syntaxspec");
840 mcnt = *p++;
841 printf ("/%d", mcnt);
842 break;
843
844 case notsyntaxspec:
845 printf ("/notsyntaxspec");
846 mcnt = *p++;
847 printf ("/%d", mcnt);
848 break;
849# endif /* emacs */
850
851 case wordchar:
852 printf ("/wordchar");
853 break;
854
855 case notwordchar:
856 printf ("/notwordchar");
857 break;
858
859 case begbuf:
860 printf ("/begbuf");
861 break;
862
863 case endbuf:
864 printf ("/endbuf");
865 break;
866
867 default:
868 printf ("?%d", *(p-1));
869 }
870
871 putchar ('\n');
872 }
873
874 printf ("%d:\tend of pattern.\n", p - start);
875}
876
877
878void
879print_compiled_pattern (bufp)
880 struct re_pattern_buffer *bufp;
881{
882 unsigned char *buffer = bufp->buffer;
883
884 print_partial_compiled_pattern (buffer, buffer + bufp->used);
885 printf ("%ld bytes used/%ld bytes allocated.\n",
886 bufp->used, bufp->allocated);
887
888 if (bufp->fastmap_accurate && bufp->fastmap)
889 {
890 printf ("fastmap: ");
891 print_fastmap (bufp->fastmap);
892 }
893
894 printf ("re_nsub: %d\t", bufp->re_nsub);
895 printf ("regs_alloc: %d\t", bufp->regs_allocated);
896 printf ("can_be_null: %d\t", bufp->can_be_null);
897 printf ("newline_anchor: %d\n", bufp->newline_anchor);
898 printf ("no_sub: %d\t", bufp->no_sub);
899 printf ("not_bol: %d\t", bufp->not_bol);
900 printf ("not_eol: %d\t", bufp->not_eol);
901 printf ("syntax: %lx\n", bufp->syntax);
902 /* Perhaps we should print the translate table? */
903}
904
905
906void
907print_double_string (where, string1, size1, string2, size2)
908 const char *where;
909 const char *string1;
910 const char *string2;
911 int size1;
912 int size2;
913{
914 int this_char;
915
916 if (where == NULL)
917 printf ("(null)");
918 else
919 {
920 if (FIRST_STRING_P (where))
921 {
922 for (this_char = where - string1; this_char < size1; this_char++)
923 putchar (string1[this_char]);
924
925 where = string2;
926 }
927
928 for (this_char = where - string2; this_char < size2; this_char++)
929 putchar (string2[this_char]);
930 }
931}
932
933void
934printchar (c)
935 int c;
936{
937 putc (c, stderr);
938}
939
940#else /* not DEBUG */
941
942# undef assert
943# define assert(e)
944
945# define DEBUG_STATEMENT(e)
946# define DEBUG_PRINT1(x)
947# define DEBUG_PRINT2(x1, x2)
948# define DEBUG_PRINT3(x1, x2, x3)
949# define DEBUG_PRINT4(x1, x2, x3, x4)
950# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
951# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
952
953#endif /* not DEBUG */
954\f
955/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
956 also be assigned to arbitrarily: each pattern buffer stores its own
957 syntax, so it can be changed between regex compilations. */
958/* This has no initializer because initialized variables in Emacs
959 become read-only after dumping. */
960reg_syntax_t re_syntax_options;
961
962
963/* Specify the precise syntax of regexps for compilation. This provides
964 for compatibility for various utilities which historically have
965 different, incompatible syntaxes.
966
967 The argument SYNTAX is a bit mask comprised of the various bits
968 defined in gnu-regex.h. We return the old syntax. */
969
970reg_syntax_t
971re_set_syntax (syntax)
972 reg_syntax_t syntax;
973{
974 reg_syntax_t ret = re_syntax_options;
975
976 re_syntax_options = syntax;
977#ifdef DEBUG
978 if (syntax & RE_DEBUG)
979 debug = 1;
980 else if (debug) /* was on but now is not */
981 debug = 0;
982#endif /* DEBUG */
983 return ret;
984}
985#ifdef _LIBC
986weak_alias (__re_set_syntax, re_set_syntax)
987#endif
988\f
989/* This table gives an error message for each of the error codes listed
990 in gnu-regex.h. Obviously the order here has to be same as there.
991 POSIX doesn't require that we do anything for REG_NOERROR,
992 but why not be nice? */
993
994static const char *re_error_msgid[] =
995 {
996 gettext_noop ("Success"), /* REG_NOERROR */
997 gettext_noop ("No match"), /* REG_NOMATCH */
998 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
999 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1004 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1008 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1013 };
1014\f
1015/* Avoiding alloca during matching, to placate r_alloc. */
1016
1017/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018 searching and matching functions should not call alloca. On some
1019 systems, alloca is implemented in terms of malloc, and if we're
1020 using the relocating allocator routines, then malloc could cause a
1021 relocation, which might (if the strings being searched are in the
1022 ralloc heap) shift the data out from underneath the regexp
1023 routines.
1024
1025 Here's another reason to avoid allocation: Emacs
1026 processes input from X in a signal handler; processing X input may
1027 call malloc; if input arrives while a matching routine is calling
1028 malloc, then we're scrod. But Emacs can't just block input while
1029 calling matching routines; then we don't notice interrupts when
1030 they come in. So, Emacs blocks input around all regexp calls
1031 except the matching calls, which it leaves unprotected, in the
1032 faith that they will not malloc. */
1033
1034/* Normally, this is fine. */
1035#define MATCH_MAY_ALLOCATE
1036
1037/* When using GNU C, we are not REALLY using the C alloca, no matter
1038 what config.h may say. So don't take precautions for it. */
1039#ifdef __GNUC__
1040# undef C_ALLOCA
1041#endif
1042
1043/* The match routines may not allocate if (1) they would do it with malloc
1044 and (2) it's not safe for them to use malloc.
1045 Note that if REL_ALLOC is defined, matching would not use malloc for the
1046 failure stack, but we would still use it for the register vectors;
1047 so REL_ALLOC should not affect this. */
1048#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1049# undef MATCH_MAY_ALLOCATE
1050#endif
1051
1052\f
1053/* Failure stack declarations and macros; both re_compile_fastmap and
1054 re_match_2 use a failure stack. These have to be macros because of
1055 REGEX_ALLOCATE_STACK. */
1056
1057
1058/* Number of failure points for which to initially allocate space
1059 when matching. If this number is exceeded, we allocate more
1060 space, so it is not a hard limit. */
1061#ifndef INIT_FAILURE_ALLOC
1062# define INIT_FAILURE_ALLOC 5
1063#endif
1064
1065/* Roughly the maximum number of failure points on the stack. Would be
1066 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067 This is a variable only so users of regex can assign to it; we never
1068 change it ourselves. */
1069
1070#ifdef INT_IS_16BIT
1071
1072# if defined MATCH_MAY_ALLOCATE
1073/* 4400 was enough to cause a crash on Alpha OSF/1,
1074 whose default stack limit is 2mb. */
1075long int re_max_failures = 4000;
1076# else
1077long int re_max_failures = 2000;
1078# endif
1079
1080union fail_stack_elt
1081{
1082 unsigned char *pointer;
1083 long int integer;
1084};
1085
1086typedef union fail_stack_elt fail_stack_elt_t;
1087
1088typedef struct
1089{
1090 fail_stack_elt_t *stack;
1091 unsigned long int size;
1092 unsigned long int avail; /* Offset of next open position. */
1093} fail_stack_type;
1094
1095#else /* not INT_IS_16BIT */
1096
1097# if defined MATCH_MAY_ALLOCATE
1098/* 4400 was enough to cause a crash on Alpha OSF/1,
1099 whose default stack limit is 2mb. */
1100int re_max_failures = 20000;
1101# else
1102int re_max_failures = 2000;
1103# endif
1104
1105union fail_stack_elt
1106{
1107 unsigned char *pointer;
1108 int integer;
1109};
1110
1111typedef union fail_stack_elt fail_stack_elt_t;
1112
1113typedef struct
1114{
1115 fail_stack_elt_t *stack;
1116 unsigned size;
1117 unsigned avail; /* Offset of next open position. */
1118} fail_stack_type;
1119
1120#endif /* INT_IS_16BIT */
1121
1122#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1123#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1125
1126
1127/* Define macros to initialize and free the failure stack.
1128 Do `return -2' if the alloc fails. */
1129
1130#ifdef MATCH_MAY_ALLOCATE
1131# define INIT_FAIL_STACK() \
1132 do { \
1133 fail_stack.stack = (fail_stack_elt_t *) \
1134 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1135 \
1136 if (fail_stack.stack == NULL) \
1137 return -2; \
1138 \
1139 fail_stack.size = INIT_FAILURE_ALLOC; \
1140 fail_stack.avail = 0; \
1141 } while (0)
1142
1143# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1144#else
1145# define INIT_FAIL_STACK() \
1146 do { \
1147 fail_stack.avail = 0; \
1148 } while (0)
1149
1150# define RESET_FAIL_STACK()
1151#endif
1152
1153
1154/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1155
1156 Return 1 if succeeds, and 0 if either ran out of memory
1157 allocating space for it or it was already too large.
1158
1159 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1160
1161#define DOUBLE_FAIL_STACK(fail_stack) \
1162 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1163 ? 0 \
1164 : ((fail_stack).stack = (fail_stack_elt_t *) \
1165 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1166 (fail_stack).size * sizeof (fail_stack_elt_t), \
1167 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1168 \
1169 (fail_stack).stack == NULL \
1170 ? 0 \
1171 : ((fail_stack).size <<= 1, \
1172 1)))
1173
1174
1175/* Push pointer POINTER on FAIL_STACK.
1176 Return 1 if was able to do so and 0 if ran out of memory allocating
1177 space to do so. */
1178#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1179 ((FAIL_STACK_FULL () \
1180 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1181 ? 0 \
1182 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1183 1))
1184
1185/* Push a pointer value onto the failure stack.
1186 Assumes the variable `fail_stack'. Probably should only
1187 be called from within `PUSH_FAILURE_POINT'. */
1188#define PUSH_FAILURE_POINTER(item) \
1189 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1190
1191/* This pushes an integer-valued item onto the failure stack.
1192 Assumes the variable `fail_stack'. Probably should only
1193 be called from within `PUSH_FAILURE_POINT'. */
1194#define PUSH_FAILURE_INT(item) \
1195 fail_stack.stack[fail_stack.avail++].integer = (item)
1196
1197/* Push a fail_stack_elt_t value onto the failure stack.
1198 Assumes the variable `fail_stack'. Probably should only
1199 be called from within `PUSH_FAILURE_POINT'. */
1200#define PUSH_FAILURE_ELT(item) \
1201 fail_stack.stack[fail_stack.avail++] = (item)
1202
1203/* These three POP... operations complement the three PUSH... operations.
1204 All assume that `fail_stack' is nonempty. */
1205#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1208
1209/* Used to omit pushing failure point id's when we're not debugging. */
1210#ifdef DEBUG
1211# define DEBUG_PUSH PUSH_FAILURE_INT
1212# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1213#else
1214# define DEBUG_PUSH(item)
1215# define DEBUG_POP(item_addr)
1216#endif
1217
1218
1219/* Push the information about the state we will need
1220 if we ever fail back to it.
1221
1222 Requires variables fail_stack, regstart, regend, reg_info, and
1223 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1224 be declared.
1225
1226 Does `return FAILURE_CODE' if runs out of memory. */
1227
1228#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1229 do { \
1230 char *destination; \
1231 /* Must be int, so when we don't save any registers, the arithmetic \
1232 of 0 + -1 isn't done as unsigned. */ \
1233 /* Can't be int, since there is not a shred of a guarantee that int \
1234 is wide enough to hold a value of something to which pointer can \
1235 be assigned */ \
1236 active_reg_t this_reg; \
1237 \
1238 DEBUG_STATEMENT (failure_id++); \
1239 DEBUG_STATEMENT (nfailure_points_pushed++); \
1240 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1241 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1242 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1243 \
1244 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1245 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1246 \
1247 /* Ensure we have enough space allocated for what we will push. */ \
1248 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1249 { \
1250 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1251 return failure_code; \
1252 \
1253 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1254 (fail_stack).size); \
1255 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1256 } \
1257 \
1258 /* Push the info, starting with the registers. */ \
1259 DEBUG_PRINT1 ("\n"); \
1260 \
1261 if (1) \
1262 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1263 this_reg++) \
1264 { \
1265 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1266 DEBUG_STATEMENT (num_regs_pushed++); \
1267 \
1268 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1269 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1270 \
1271 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1272 PUSH_FAILURE_POINTER (regend[this_reg]); \
1273 \
1274 DEBUG_PRINT2 (" info: %p\n ", \
1275 reg_info[this_reg].word.pointer); \
1276 DEBUG_PRINT2 (" match_null=%d", \
1277 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" matched_something=%d", \
1280 MATCHED_SOMETHING (reg_info[this_reg])); \
1281 DEBUG_PRINT2 (" ever_matched=%d", \
1282 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1283 DEBUG_PRINT1 ("\n"); \
1284 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1285 } \
1286 \
1287 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1288 PUSH_FAILURE_INT (lowest_active_reg); \
1289 \
1290 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1291 PUSH_FAILURE_INT (highest_active_reg); \
1292 \
1293 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1294 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1295 PUSH_FAILURE_POINTER (pattern_place); \
1296 \
1297 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1298 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1299 size2); \
1300 DEBUG_PRINT1 ("'\n"); \
1301 PUSH_FAILURE_POINTER (string_place); \
1302 \
1303 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1304 DEBUG_PUSH (failure_id); \
1305 } while (0)
1306
1307/* This is the number of items that are pushed and popped on the stack
1308 for each register. */
1309#define NUM_REG_ITEMS 3
1310
1311/* Individual items aside from the registers. */
1312#ifdef DEBUG
1313# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1314#else
1315# define NUM_NONREG_ITEMS 4
1316#endif
1317
1318/* We push at most this many items on the stack. */
1319/* We used to use (num_regs - 1), which is the number of registers
1320 this regexp will save; but that was changed to 5
1321 to avoid stack overflow for a regexp with lots of parens. */
1322#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1323
1324/* We actually push this many items. */
1325#define NUM_FAILURE_ITEMS \
1326 (((0 \
1327 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1328 * NUM_REG_ITEMS) \
1329 + NUM_NONREG_ITEMS)
1330
1331/* How many items can still be added to the stack without overflowing it. */
1332#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1333
1334
1335/* Pops what PUSH_FAIL_STACK pushes.
1336
1337 We restore into the parameters, all of which should be lvalues:
1338 STR -- the saved data position.
1339 PAT -- the saved pattern position.
1340 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1341 REGSTART, REGEND -- arrays of string positions.
1342 REG_INFO -- array of information about each subexpression.
1343
1344 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1345 `pend', `string1', `size1', `string2', and `size2'. */
1346
1347#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1348{ \
1349 DEBUG_STATEMENT (unsigned failure_id;) \
1350 active_reg_t this_reg; \
1351 const unsigned char *string_temp; \
1352 \
1353 assert (!FAIL_STACK_EMPTY ()); \
1354 \
1355 /* Remove failure points and point to how many regs pushed. */ \
1356 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1357 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1358 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1359 \
1360 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1361 \
1362 DEBUG_POP (&failure_id); \
1363 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1364 \
1365 /* If the saved string location is NULL, it came from an \
1366 on_failure_keep_string_jump opcode, and we want to throw away the \
1367 saved NULL, thus retaining our current position in the string. */ \
1368 string_temp = POP_FAILURE_POINTER (); \
1369 if (string_temp != NULL) \
1370 str = (const char *) string_temp; \
1371 \
1372 DEBUG_PRINT2 (" Popping string %p: `", str); \
1373 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1374 DEBUG_PRINT1 ("'\n"); \
1375 \
1376 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1377 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1378 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1379 \
1380 /* Restore register info. */ \
1381 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1382 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1383 \
1384 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1385 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1386 \
1387 if (1) \
1388 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1389 { \
1390 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1391 \
1392 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1393 DEBUG_PRINT2 (" info: %p\n", \
1394 reg_info[this_reg].word.pointer); \
1395 \
1396 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1397 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1398 \
1399 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1400 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1401 } \
1402 else \
1403 { \
1404 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1405 { \
1406 reg_info[this_reg].word.integer = 0; \
1407 regend[this_reg] = 0; \
1408 regstart[this_reg] = 0; \
1409 } \
1410 highest_active_reg = high_reg; \
1411 } \
1412 \
1413 set_regs_matched_done = 0; \
1414 DEBUG_STATEMENT (nfailure_points_popped++); \
1415} /* POP_FAILURE_POINT */
1416
1417
1418\f
1419/* Structure for per-register (a.k.a. per-group) information.
1420 Other register information, such as the
1421 starting and ending positions (which are addresses), and the list of
1422 inner groups (which is a bits list) are maintained in separate
1423 variables.
1424
1425 We are making a (strictly speaking) nonportable assumption here: that
1426 the compiler will pack our bit fields into something that fits into
1427 the type of `word', i.e., is something that fits into one item on the
1428 failure stack. */
1429
1430
1431/* Declarations and macros for re_match_2. */
1432
1433typedef union
1434{
1435 fail_stack_elt_t word;
1436 struct
1437 {
1438 /* This field is one if this group can match the empty string,
1439 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1440#define MATCH_NULL_UNSET_VALUE 3
1441 unsigned match_null_string_p : 2;
1442 unsigned is_active : 1;
1443 unsigned matched_something : 1;
1444 unsigned ever_matched_something : 1;
1445 } bits;
1446} register_info_type;
1447
1448#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1449#define IS_ACTIVE(R) ((R).bits.is_active)
1450#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1451#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1452
1453
1454/* Call this when have matched a real character; it sets `matched' flags
1455 for the subexpressions which we are currently inside. Also records
1456 that those subexprs have matched. */
1457#define SET_REGS_MATCHED() \
1458 do \
1459 { \
1460 if (!set_regs_matched_done) \
1461 { \
1462 active_reg_t r; \
1463 set_regs_matched_done = 1; \
1464 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1465 { \
1466 MATCHED_SOMETHING (reg_info[r]) \
1467 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1468 = 1; \
1469 } \
1470 } \
1471 } \
1472 while (0)
1473
1474/* Registers are set to a sentinel when they haven't yet matched. */
1475static char reg_unset_dummy;
1476#define REG_UNSET_VALUE (&reg_unset_dummy)
1477#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1478\f
1479/* Subroutine declarations and macros for regex_compile. */
1480
1481static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1482 reg_syntax_t syntax,
1483 struct re_pattern_buffer *bufp));
1484static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1485static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486 int arg1, int arg2));
1487static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488 int arg, unsigned char *end));
1489static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1490 int arg1, int arg2, unsigned char *end));
1491static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1492 reg_syntax_t syntax));
1493static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1494 reg_syntax_t syntax));
1495static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1496 const char *pend,
1497 char *translate,
1498 reg_syntax_t syntax,
1499 unsigned char *b));
1500
1501/* Fetch the next character in the uncompiled pattern---translating it
1502 if necessary. Also cast from a signed character in the constant
1503 string passed to us by the user to an unsigned char that we can use
1504 as an array index (in, e.g., `translate'). */
1505#ifndef PATFETCH
1506# define PATFETCH(c) \
1507 do {if (p == pend) return REG_EEND; \
1508 c = (unsigned char) *p++; \
1509 if (translate) c = (unsigned char) translate[c]; \
1510 } while (0)
1511#endif
1512
1513/* Fetch the next character in the uncompiled pattern, with no
1514 translation. */
1515#define PATFETCH_RAW(c) \
1516 do {if (p == pend) return REG_EEND; \
1517 c = (unsigned char) *p++; \
1518 } while (0)
1519
1520/* Go backwards one character in the pattern. */
1521#define PATUNFETCH p--
1522
1523
1524/* If `translate' is non-null, return translate[D], else just D. We
1525 cast the subscript to translate because some data is declared as
1526 `char *', to avoid warnings when a string constant is passed. But
1527 when we use a character as a subscript we must make it unsigned. */
1528#ifndef TRANSLATE
1529# define TRANSLATE(d) \
1530 (translate ? (char) translate[(unsigned char) (d)] : (d))
1531#endif
1532
1533
1534/* Macros for outputting the compiled pattern into `buffer'. */
1535
1536/* If the buffer isn't allocated when it comes in, use this. */
1537#define INIT_BUF_SIZE 32
1538
1539/* Make sure we have at least N more bytes of space in buffer. */
1540#define GET_BUFFER_SPACE(n) \
1541 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1542 EXTEND_BUFFER ()
1543
1544/* Make sure we have one more byte of buffer space and then add C to it. */
1545#define BUF_PUSH(c) \
1546 do { \
1547 GET_BUFFER_SPACE (1); \
1548 *b++ = (unsigned char) (c); \
1549 } while (0)
1550
1551
1552/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1553#define BUF_PUSH_2(c1, c2) \
1554 do { \
1555 GET_BUFFER_SPACE (2); \
1556 *b++ = (unsigned char) (c1); \
1557 *b++ = (unsigned char) (c2); \
1558 } while (0)
1559
1560
1561/* As with BUF_PUSH_2, except for three bytes. */
1562#define BUF_PUSH_3(c1, c2, c3) \
1563 do { \
1564 GET_BUFFER_SPACE (3); \
1565 *b++ = (unsigned char) (c1); \
1566 *b++ = (unsigned char) (c2); \
1567 *b++ = (unsigned char) (c3); \
1568 } while (0)
1569
1570
1571/* Store a jump with opcode OP at LOC to location TO. We store a
1572 relative address offset by the three bytes the jump itself occupies. */
1573#define STORE_JUMP(op, loc, to) \
1574 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1575
1576/* Likewise, for a two-argument jump. */
1577#define STORE_JUMP2(op, loc, to, arg) \
1578 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1579
1580/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1581#define INSERT_JUMP(op, loc, to) \
1582 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1583
1584/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1585#define INSERT_JUMP2(op, loc, to, arg) \
1586 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1587
1588
1589/* This is not an arbitrary limit: the arguments which represent offsets
1590 into the pattern are two bytes long. So if 2^16 bytes turns out to
1591 be too small, many things would have to change. */
1592/* Any other compiler which, like MSC, has allocation limit below 2^16
1593 bytes will have to use approach similar to what was done below for
1594 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1595 reallocating to 0 bytes. Such thing is not going to work too well.
1596 You have been warned!! */
1597#if defined _MSC_VER && !defined WIN32
1598/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1599 The REALLOC define eliminates a flurry of conversion warnings,
1600 but is not required. */
1601# define MAX_BUF_SIZE 65500L
1602# define REALLOC(p,s) realloc ((p), (size_t) (s))
1603#else
1604# define MAX_BUF_SIZE (1L << 16)
1605# define REALLOC(p,s) realloc ((p), (s))
1606#endif
1607
1608/* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1612#define EXTEND_BUFFER() \
1613 do { \
1614 unsigned char *old_buffer = bufp->buffer; \
1615 if (bufp->allocated == MAX_BUF_SIZE) \
1616 return REG_ESIZE; \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
1619 bufp->allocated = MAX_BUF_SIZE; \
1620 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1625 { \
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1630 if (laststart) \
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1634 } \
1635 } while (0)
1636
1637
1638/* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641#define MAX_REGNUM 255
1642
1643/* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645typedef unsigned regnum_t;
1646
1647
1648/* Macros for the compile stack. */
1649
1650/* Since offsets can go either forwards or backwards, this type needs to
1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1652/* int may be not enough when sizeof(int) == 2. */
1653typedef long pattern_offset_t;
1654
1655typedef struct
1656{
1657 pattern_offset_t begalt_offset;
1658 pattern_offset_t fixup_alt_jump;
1659 pattern_offset_t inner_group_offset;
1660 pattern_offset_t laststart_offset;
1661 regnum_t regnum;
1662} compile_stack_elt_t;
1663
1664
1665typedef struct
1666{
1667 compile_stack_elt_t *stack;
1668 unsigned size;
1669 unsigned avail; /* Offset of next open position. */
1670} compile_stack_type;
1671
1672
1673#define INIT_COMPILE_STACK_SIZE 32
1674
1675#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1676#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1677
1678/* The next available element. */
1679#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1680
1681
1682/* Set the bit for character C in a list. */
1683#define SET_LIST_BIT(c) \
1684 (b[((unsigned char) (c)) / BYTEWIDTH] \
1685 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1686
1687
1688/* Get the next unsigned number in the uncompiled pattern. */
1689#define GET_UNSIGNED_NUMBER(num) \
1690 { if (p != pend) \
1691 { \
1692 PATFETCH (c); \
1693 while (ISDIGIT (c)) \
1694 { \
1695 if (num < 0) \
1696 num = 0; \
1697 num = num * 10 + c - '0'; \
1698 if (p == pend) \
1699 break; \
1700 PATFETCH (c); \
1701 } \
1702 } \
1703 }
1704
7be570e7
JM
1705/* Use this only if they have btowc(), since wctype() is used below
1706 together with btowc(). btowc() is defined in the 1994 Amendment 1
1707 to ISO C and may not be present on systems where we have wchar.h
1708 and wctype.h. */
1709#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
c906108c
SS
1710/* The GNU C library provides support for user-defined character classes
1711 and the functions from ISO C amendement 1. */
1712# ifdef CHARCLASS_NAME_MAX
1713# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1714# else
1715/* This shouldn't happen but some implementation might still have this
1716 problem. Use a reasonable default value. */
1717# define CHAR_CLASS_MAX_LENGTH 256
1718# endif
1719
1720# ifdef _LIBC
1721# define IS_CHAR_CLASS(string) __wctype (string)
1722# else
1723# define IS_CHAR_CLASS(string) wctype (string)
1724# endif
1725#else
1726# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1727
1728# define IS_CHAR_CLASS(string) \
1729 (STREQ (string, "alpha") || STREQ (string, "upper") \
1730 || STREQ (string, "lower") || STREQ (string, "digit") \
1731 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1732 || STREQ (string, "space") || STREQ (string, "print") \
1733 || STREQ (string, "punct") || STREQ (string, "graph") \
1734 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1735#endif
1736\f
1737#ifndef MATCH_MAY_ALLOCATE
1738
1739/* If we cannot allocate large objects within re_match_2_internal,
1740 we make the fail stack and register vectors global.
1741 The fail stack, we grow to the maximum size when a regexp
1742 is compiled.
1743 The register vectors, we adjust in size each time we
1744 compile a regexp, according to the number of registers it needs. */
1745
1746static fail_stack_type fail_stack;
1747
1748/* Size with which the following vectors are currently allocated.
1749 That is so we can make them bigger as needed,
1750 but never make them smaller. */
1751static int regs_allocated_size;
1752
1753static const char ** regstart, ** regend;
1754static const char ** old_regstart, ** old_regend;
1755static const char **best_regstart, **best_regend;
1756static register_info_type *reg_info;
1757static const char **reg_dummy;
1758static register_info_type *reg_info_dummy;
1759
1760/* Make the register vectors big enough for NUM_REGS registers,
1761 but don't make them smaller. */
1762
1763static
1764regex_grow_registers (num_regs)
1765 int num_regs;
1766{
1767 if (num_regs > regs_allocated_size)
1768 {
1769 RETALLOC_IF (regstart, num_regs, const char *);
1770 RETALLOC_IF (regend, num_regs, const char *);
1771 RETALLOC_IF (old_regstart, num_regs, const char *);
1772 RETALLOC_IF (old_regend, num_regs, const char *);
1773 RETALLOC_IF (best_regstart, num_regs, const char *);
1774 RETALLOC_IF (best_regend, num_regs, const char *);
1775 RETALLOC_IF (reg_info, num_regs, register_info_type);
1776 RETALLOC_IF (reg_dummy, num_regs, const char *);
1777 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1778
1779 regs_allocated_size = num_regs;
1780 }
1781}
1782
1783#endif /* not MATCH_MAY_ALLOCATE */
1784\f
1785static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1786 compile_stack,
1787 regnum_t regnum));
1788
1789/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1790 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1791
1792 Assumes the `allocated' (and perhaps `buffer') and `translate'
1793 fields are set in BUFP on entry.
1794
1795 If it succeeds, results are put in BUFP (if it returns an error, the
1796 contents of BUFP are undefined):
1797 `buffer' is the compiled pattern;
1798 `syntax' is set to SYNTAX;
1799 `used' is set to the length of the compiled pattern;
1800 `fastmap_accurate' is zero;
1801 `re_nsub' is the number of subexpressions in PATTERN;
1802 `not_bol' and `not_eol' are zero;
1803
1804 The `fastmap' and `newline_anchor' fields are neither
1805 examined nor set. */
1806
1807/* Return, freeing storage we allocated. */
1808#define FREE_STACK_RETURN(value) \
1809 return (free (compile_stack.stack), value)
1810
1811static reg_errcode_t
1812regex_compile (pattern, size, syntax, bufp)
1813 const char *pattern;
1814 size_t size;
1815 reg_syntax_t syntax;
1816 struct re_pattern_buffer *bufp;
1817{
1818 /* We fetch characters from PATTERN here. Even though PATTERN is
1819 `char *' (i.e., signed), we declare these variables as unsigned, so
1820 they can be reliably used as array indices. */
1821 register unsigned char c, c1;
1822
1823 /* A random temporary spot in PATTERN. */
1824 const char *p1;
1825
1826 /* Points to the end of the buffer, where we should append. */
1827 register unsigned char *b;
1828
1829 /* Keeps track of unclosed groups. */
1830 compile_stack_type compile_stack;
1831
1832 /* Points to the current (ending) position in the pattern. */
1833 const char *p = pattern;
1834 const char *pend = pattern + size;
1835
1836 /* How to translate the characters in the pattern. */
1837 RE_TRANSLATE_TYPE translate = bufp->translate;
1838
1839 /* Address of the count-byte of the most recently inserted `exactn'
1840 command. This makes it possible to tell if a new exact-match
1841 character can be added to that command or if the character requires
1842 a new `exactn' command. */
1843 unsigned char *pending_exact = 0;
1844
1845 /* Address of start of the most recently finished expression.
1846 This tells, e.g., postfix * where to find the start of its
1847 operand. Reset at the beginning of groups and alternatives. */
1848 unsigned char *laststart = 0;
1849
1850 /* Address of beginning of regexp, or inside of last group. */
1851 unsigned char *begalt;
1852
1853 /* Place in the uncompiled pattern (i.e., the {) to
1854 which to go back if the interval is invalid. */
1855 const char *beg_interval;
1856
1857 /* Address of the place where a forward jump should go to the end of
1858 the containing expression. Each alternative of an `or' -- except the
1859 last -- ends with a forward jump of this sort. */
1860 unsigned char *fixup_alt_jump = 0;
1861
1862 /* Counts open-groups as they are encountered. Remembered for the
1863 matching close-group on the compile stack, so the same register
1864 number is put in the stop_memory as the start_memory. */
1865 regnum_t regnum = 0;
1866
1867#ifdef DEBUG
1868 DEBUG_PRINT1 ("\nCompiling pattern: ");
1869 if (debug)
1870 {
1871 unsigned debug_count;
1872
1873 for (debug_count = 0; debug_count < size; debug_count++)
1874 putchar (pattern[debug_count]);
1875 putchar ('\n');
1876 }
1877#endif /* DEBUG */
1878
1879 /* Initialize the compile stack. */
1880 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1881 if (compile_stack.stack == NULL)
1882 return REG_ESPACE;
1883
1884 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1885 compile_stack.avail = 0;
1886
1887 /* Initialize the pattern buffer. */
1888 bufp->syntax = syntax;
1889 bufp->fastmap_accurate = 0;
1890 bufp->not_bol = bufp->not_eol = 0;
1891
1892 /* Set `used' to zero, so that if we return an error, the pattern
1893 printer (for debugging) will think there's no pattern. We reset it
1894 at the end. */
1895 bufp->used = 0;
1896
1897 /* Always count groups, whether or not bufp->no_sub is set. */
1898 bufp->re_nsub = 0;
1899
1900#if !defined emacs && !defined SYNTAX_TABLE
1901 /* Initialize the syntax table. */
1902 init_syntax_once ();
1903#endif
1904
1905 if (bufp->allocated == 0)
1906 {
1907 if (bufp->buffer)
1908 { /* If zero allocated, but buffer is non-null, try to realloc
1909 enough space. This loses if buffer's address is bogus, but
1910 that is the user's responsibility. */
1911 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1912 }
1913 else
1914 { /* Caller did not allocate a buffer. Do it for them. */
1915 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1916 }
1917 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1918
1919 bufp->allocated = INIT_BUF_SIZE;
1920 }
1921
1922 begalt = b = bufp->buffer;
1923
1924 /* Loop through the uncompiled pattern until we're at the end. */
1925 while (p != pend)
1926 {
1927 PATFETCH (c);
1928
1929 switch (c)
1930 {
1931 case '^':
1932 {
1933 if ( /* If at start of pattern, it's an operator. */
1934 p == pattern + 1
1935 /* If context independent, it's an operator. */
1936 || syntax & RE_CONTEXT_INDEP_ANCHORS
1937 /* Otherwise, depends on what's come before. */
1938 || at_begline_loc_p (pattern, p, syntax))
1939 BUF_PUSH (begline);
1940 else
1941 goto normal_char;
1942 }
1943 break;
1944
1945
1946 case '$':
1947 {
1948 if ( /* If at end of pattern, it's an operator. */
1949 p == pend
1950 /* If context independent, it's an operator. */
1951 || syntax & RE_CONTEXT_INDEP_ANCHORS
1952 /* Otherwise, depends on what's next. */
1953 || at_endline_loc_p (p, pend, syntax))
1954 BUF_PUSH (endline);
1955 else
1956 goto normal_char;
1957 }
1958 break;
1959
1960
1961 case '+':
1962 case '?':
1963 if ((syntax & RE_BK_PLUS_QM)
1964 || (syntax & RE_LIMITED_OPS))
1965 goto normal_char;
1966 handle_plus:
1967 case '*':
1968 /* If there is no previous pattern... */
1969 if (!laststart)
1970 {
1971 if (syntax & RE_CONTEXT_INVALID_OPS)
1972 FREE_STACK_RETURN (REG_BADRPT);
1973 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1974 goto normal_char;
1975 }
1976
1977 {
1978 /* Are we optimizing this jump? */
1979 boolean keep_string_p = false;
1980
1981 /* 1 means zero (many) matches is allowed. */
1982 char zero_times_ok = 0, many_times_ok = 0;
1983
1984 /* If there is a sequence of repetition chars, collapse it
1985 down to just one (the right one). We can't combine
1986 interval operators with these because of, e.g., `a{2}*',
1987 which should only match an even number of `a's. */
1988
1989 for (;;)
1990 {
1991 zero_times_ok |= c != '+';
1992 many_times_ok |= c != '?';
1993
1994 if (p == pend)
1995 break;
1996
1997 PATFETCH (c);
1998
1999 if (c == '*'
2000 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2001 ;
2002
2003 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2004 {
2005 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2006
2007 PATFETCH (c1);
2008 if (!(c1 == '+' || c1 == '?'))
2009 {
2010 PATUNFETCH;
2011 PATUNFETCH;
2012 break;
2013 }
2014
2015 c = c1;
2016 }
2017 else
2018 {
2019 PATUNFETCH;
2020 break;
2021 }
2022
2023 /* If we get here, we found another repeat character. */
2024 }
2025
2026 /* Star, etc. applied to an empty pattern is equivalent
2027 to an empty pattern. */
2028 if (!laststart)
2029 break;
2030
2031 /* Now we know whether or not zero matches is allowed
2032 and also whether or not two or more matches is allowed. */
2033 if (many_times_ok)
2034 { /* More than one repetition is allowed, so put in at the
2035 end a backward relative jump from `b' to before the next
2036 jump we're going to put in below (which jumps from
2037 laststart to after this jump).
2038
2039 But if we are at the `*' in the exact sequence `.*\n',
2040 insert an unconditional jump backwards to the .,
2041 instead of the beginning of the loop. This way we only
2042 push a failure point once, instead of every time
2043 through the loop. */
2044 assert (p - 1 > pattern);
2045
2046 /* Allocate the space for the jump. */
2047 GET_BUFFER_SPACE (3);
2048
2049 /* We know we are not at the first character of the pattern,
2050 because laststart was nonzero. And we've already
2051 incremented `p', by the way, to be the character after
2052 the `*'. Do we have to do something analogous here
2053 for null bytes, because of RE_DOT_NOT_NULL? */
2054 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2055 && zero_times_ok
2056 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2057 && !(syntax & RE_DOT_NEWLINE))
2058 { /* We have .*\n. */
2059 STORE_JUMP (jump, b, laststart);
2060 keep_string_p = true;
2061 }
2062 else
2063 /* Anything else. */
2064 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2065
2066 /* We've added more stuff to the buffer. */
2067 b += 3;
2068 }
2069
2070 /* On failure, jump from laststart to b + 3, which will be the
2071 end of the buffer after this jump is inserted. */
2072 GET_BUFFER_SPACE (3);
2073 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2074 : on_failure_jump,
2075 laststart, b + 3);
2076 pending_exact = 0;
2077 b += 3;
2078
2079 if (!zero_times_ok)
2080 {
2081 /* At least one repetition is required, so insert a
2082 `dummy_failure_jump' before the initial
2083 `on_failure_jump' instruction of the loop. This
2084 effects a skip over that instruction the first time
2085 we hit that loop. */
2086 GET_BUFFER_SPACE (3);
2087 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2088 b += 3;
2089 }
2090 }
2091 break;
2092
2093
2094 case '.':
2095 laststart = b;
2096 BUF_PUSH (anychar);
2097 break;
2098
2099
2100 case '[':
2101 {
2102 boolean had_char_class = false;
2103
2104 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2105
2106 /* Ensure that we have enough space to push a charset: the
2107 opcode, the length count, and the bitset; 34 bytes in all. */
2108 GET_BUFFER_SPACE (34);
2109
2110 laststart = b;
2111
2112 /* We test `*p == '^' twice, instead of using an if
2113 statement, so we only need one BUF_PUSH. */
2114 BUF_PUSH (*p == '^' ? charset_not : charset);
2115 if (*p == '^')
2116 p++;
2117
2118 /* Remember the first position in the bracket expression. */
2119 p1 = p;
2120
2121 /* Push the number of bytes in the bitmap. */
2122 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2123
2124 /* Clear the whole map. */
2125 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2126
2127 /* charset_not matches newline according to a syntax bit. */
2128 if ((re_opcode_t) b[-2] == charset_not
2129 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2130 SET_LIST_BIT ('\n');
2131
2132 /* Read in characters and ranges, setting map bits. */
2133 for (;;)
2134 {
2135 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2136
2137 PATFETCH (c);
2138
2139 /* \ might escape characters inside [...] and [^...]. */
2140 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2141 {
2142 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2143
2144 PATFETCH (c1);
2145 SET_LIST_BIT (c1);
2146 continue;
2147 }
2148
2149 /* Could be the end of the bracket expression. If it's
2150 not (i.e., when the bracket expression is `[]' so
2151 far), the ']' character bit gets set way below. */
2152 if (c == ']' && p != p1 + 1)
2153 break;
2154
2155 /* Look ahead to see if it's a range when the last thing
2156 was a character class. */
2157 if (had_char_class && c == '-' && *p != ']')
2158 FREE_STACK_RETURN (REG_ERANGE);
2159
2160 /* Look ahead to see if it's a range when the last thing
2161 was a character: if this is a hyphen not at the
2162 beginning or the end of a list, then it's the range
2163 operator. */
2164 if (c == '-'
2165 && !(p - 2 >= pattern && p[-2] == '[')
2166 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2167 && *p != ']')
2168 {
2169 reg_errcode_t ret
2170 = compile_range (&p, pend, translate, syntax, b);
2171 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2172 }
2173
2174 else if (p[0] == '-' && p[1] != ']')
2175 { /* This handles ranges made up of characters only. */
2176 reg_errcode_t ret;
2177
2178 /* Move past the `-'. */
2179 PATFETCH (c1);
2180
2181 ret = compile_range (&p, pend, translate, syntax, b);
2182 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2183 }
2184
2185 /* See if we're at the beginning of a possible character
2186 class. */
2187
2188 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2189 { /* Leave room for the null. */
2190 char str[CHAR_CLASS_MAX_LENGTH + 1];
2191
2192 PATFETCH (c);
2193 c1 = 0;
2194
2195 /* If pattern is `[[:'. */
2196 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2197
2198 for (;;)
2199 {
2200 PATFETCH (c);
2201 if ((c == ':' && *p == ']') || p == pend
2202 || c1 == CHAR_CLASS_MAX_LENGTH)
2203 break;
2204 str[c1++] = c;
2205 }
2206 str[c1] = '\0';
2207
2208 /* If isn't a word bracketed by `[:' and `:]':
2209 undo the ending character, the letters, and leave
2210 the leading `:' and `[' (but set bits for them). */
2211 if (c == ':' && *p == ']')
2212 {
2213/* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2214/* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2215/* systems where we have wchar.h and wctype.h. */
2216#if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2217 boolean is_lower = STREQ (str, "lower");
2218 boolean is_upper = STREQ (str, "upper");
2219 wctype_t wt;
2220 int ch;
2221
2222 wt = IS_CHAR_CLASS (str);
2223 if (wt == 0)
2224 FREE_STACK_RETURN (REG_ECTYPE);
2225
2226 /* Throw away the ] at the end of the character
2227 class. */
2228 PATFETCH (c);
2229
2230 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2231
2232 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2233 {
2234# ifdef _LIBC
2235 if (__iswctype (__btowc (ch), wt))
2236 SET_LIST_BIT (ch);
2237#else
2238 if (iswctype (btowc (ch), wt))
2239 SET_LIST_BIT (ch);
2240#endif
2241
2242 if (translate && (is_upper || is_lower)
2243 && (ISUPPER (ch) || ISLOWER (ch)))
2244 SET_LIST_BIT (ch);
2245 }
2246
2247 had_char_class = true;
2248#else
2249 int ch;
2250 boolean is_alnum = STREQ (str, "alnum");
2251 boolean is_alpha = STREQ (str, "alpha");
2252 boolean is_blank = STREQ (str, "blank");
2253 boolean is_cntrl = STREQ (str, "cntrl");
2254 boolean is_digit = STREQ (str, "digit");
2255 boolean is_graph = STREQ (str, "graph");
2256 boolean is_lower = STREQ (str, "lower");
2257 boolean is_print = STREQ (str, "print");
2258 boolean is_punct = STREQ (str, "punct");
2259 boolean is_space = STREQ (str, "space");
2260 boolean is_upper = STREQ (str, "upper");
2261 boolean is_xdigit = STREQ (str, "xdigit");
2262
2263 if (!IS_CHAR_CLASS (str))
2264 FREE_STACK_RETURN (REG_ECTYPE);
2265
2266 /* Throw away the ] at the end of the character
2267 class. */
2268 PATFETCH (c);
2269
2270 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2271
2272 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2273 {
2274 /* This was split into 3 if's to
2275 avoid an arbitrary limit in some compiler. */
2276 if ( (is_alnum && ISALNUM (ch))
2277 || (is_alpha && ISALPHA (ch))
2278 || (is_blank && ISBLANK (ch))
2279 || (is_cntrl && ISCNTRL (ch)))
2280 SET_LIST_BIT (ch);
2281 if ( (is_digit && ISDIGIT (ch))
2282 || (is_graph && ISGRAPH (ch))
2283 || (is_lower && ISLOWER (ch))
2284 || (is_print && ISPRINT (ch)))
2285 SET_LIST_BIT (ch);
2286 if ( (is_punct && ISPUNCT (ch))
2287 || (is_space && ISSPACE (ch))
2288 || (is_upper && ISUPPER (ch))
2289 || (is_xdigit && ISXDIGIT (ch)))
2290 SET_LIST_BIT (ch);
2291 if ( translate && (is_upper || is_lower)
2292 && (ISUPPER (ch) || ISLOWER (ch)))
2293 SET_LIST_BIT (ch);
2294 }
2295 had_char_class = true;
2296#endif /* libc || wctype.h */
2297 }
2298 else
2299 {
2300 c1++;
2301 while (c1--)
2302 PATUNFETCH;
2303 SET_LIST_BIT ('[');
2304 SET_LIST_BIT (':');
2305 had_char_class = false;
2306 }
2307 }
2308 else
2309 {
2310 had_char_class = false;
2311 SET_LIST_BIT (c);
2312 }
2313 }
2314
2315 /* Discard any (non)matching list bytes that are all 0 at the
2316 end of the map. Decrease the map-length byte too. */
2317 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2318 b[-1]--;
2319 b += b[-1];
2320 }
2321 break;
2322
2323
2324 case '(':
2325 if (syntax & RE_NO_BK_PARENS)
2326 goto handle_open;
2327 else
2328 goto normal_char;
2329
2330
2331 case ')':
2332 if (syntax & RE_NO_BK_PARENS)
2333 goto handle_close;
2334 else
2335 goto normal_char;
2336
2337
2338 case '\n':
2339 if (syntax & RE_NEWLINE_ALT)
2340 goto handle_alt;
2341 else
2342 goto normal_char;
2343
2344
2345 case '|':
2346 if (syntax & RE_NO_BK_VBAR)
2347 goto handle_alt;
2348 else
2349 goto normal_char;
2350
2351
2352 case '{':
2353 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2354 goto handle_interval;
2355 else
2356 goto normal_char;
2357
2358
2359 case '\\':
2360 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2361
2362 /* Do not translate the character after the \, so that we can
2363 distinguish, e.g., \B from \b, even if we normally would
2364 translate, e.g., B to b. */
2365 PATFETCH_RAW (c);
2366
2367 switch (c)
2368 {
2369 case '(':
2370 if (syntax & RE_NO_BK_PARENS)
2371 goto normal_backslash;
2372
2373 handle_open:
2374 bufp->re_nsub++;
2375 regnum++;
2376
2377 if (COMPILE_STACK_FULL)
2378 {
2379 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2380 compile_stack_elt_t);
2381 if (compile_stack.stack == NULL) return REG_ESPACE;
2382
2383 compile_stack.size <<= 1;
2384 }
2385
2386 /* These are the values to restore when we hit end of this
2387 group. They are all relative offsets, so that if the
2388 whole pattern moves because of realloc, they will still
2389 be valid. */
2390 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2391 COMPILE_STACK_TOP.fixup_alt_jump
2392 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2393 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2394 COMPILE_STACK_TOP.regnum = regnum;
2395
2396 /* We will eventually replace the 0 with the number of
2397 groups inner to this one. But do not push a
2398 start_memory for groups beyond the last one we can
2399 represent in the compiled pattern. */
2400 if (regnum <= MAX_REGNUM)
2401 {
2402 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2403 BUF_PUSH_3 (start_memory, regnum, 0);
2404 }
2405
2406 compile_stack.avail++;
2407
2408 fixup_alt_jump = 0;
2409 laststart = 0;
2410 begalt = b;
2411 /* If we've reached MAX_REGNUM groups, then this open
2412 won't actually generate any code, so we'll have to
2413 clear pending_exact explicitly. */
2414 pending_exact = 0;
2415 break;
2416
2417
2418 case ')':
2419 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2420
2421 if (COMPILE_STACK_EMPTY)
2422 {
2423 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2424 goto normal_backslash;
2425 else
2426 FREE_STACK_RETURN (REG_ERPAREN);
2427 }
2428
2429 handle_close:
2430 if (fixup_alt_jump)
2431 { /* Push a dummy failure point at the end of the
2432 alternative for a possible future
2433 `pop_failure_jump' to pop. See comments at
2434 `push_dummy_failure' in `re_match_2'. */
2435 BUF_PUSH (push_dummy_failure);
2436
2437 /* We allocated space for this jump when we assigned
2438 to `fixup_alt_jump', in the `handle_alt' case below. */
2439 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2440 }
2441
2442 /* See similar code for backslashed left paren above. */
2443 if (COMPILE_STACK_EMPTY)
2444 {
2445 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2446 goto normal_char;
2447 else
2448 FREE_STACK_RETURN (REG_ERPAREN);
2449 }
2450
2451 /* Since we just checked for an empty stack above, this
2452 ``can't happen''. */
2453 assert (compile_stack.avail != 0);
2454 {
2455 /* We don't just want to restore into `regnum', because
2456 later groups should continue to be numbered higher,
2457 as in `(ab)c(de)' -- the second group is #2. */
2458 regnum_t this_group_regnum;
2459
2460 compile_stack.avail--;
2461 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2462 fixup_alt_jump
2463 = COMPILE_STACK_TOP.fixup_alt_jump
2464 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2465 : 0;
2466 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2467 this_group_regnum = COMPILE_STACK_TOP.regnum;
2468 /* If we've reached MAX_REGNUM groups, then this open
2469 won't actually generate any code, so we'll have to
2470 clear pending_exact explicitly. */
2471 pending_exact = 0;
2472
2473 /* We're at the end of the group, so now we know how many
2474 groups were inside this one. */
2475 if (this_group_regnum <= MAX_REGNUM)
2476 {
2477 unsigned char *inner_group_loc
2478 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2479
2480 *inner_group_loc = regnum - this_group_regnum;
2481 BUF_PUSH_3 (stop_memory, this_group_regnum,
2482 regnum - this_group_regnum);
2483 }
2484 }
2485 break;
2486
2487
2488 case '|': /* `\|'. */
2489 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2490 goto normal_backslash;
2491 handle_alt:
2492 if (syntax & RE_LIMITED_OPS)
2493 goto normal_char;
2494
2495 /* Insert before the previous alternative a jump which
2496 jumps to this alternative if the former fails. */
2497 GET_BUFFER_SPACE (3);
2498 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2499 pending_exact = 0;
2500 b += 3;
2501
2502 /* The alternative before this one has a jump after it
2503 which gets executed if it gets matched. Adjust that
2504 jump so it will jump to this alternative's analogous
2505 jump (put in below, which in turn will jump to the next
2506 (if any) alternative's such jump, etc.). The last such
2507 jump jumps to the correct final destination. A picture:
2508 _____ _____
2509 | | | |
2510 | v | v
2511 a | b | c
2512
2513 If we are at `b', then fixup_alt_jump right now points to a
2514 three-byte space after `a'. We'll put in the jump, set
2515 fixup_alt_jump to right after `b', and leave behind three
2516 bytes which we'll fill in when we get to after `c'. */
2517
2518 if (fixup_alt_jump)
2519 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2520
2521 /* Mark and leave space for a jump after this alternative,
2522 to be filled in later either by next alternative or
2523 when know we're at the end of a series of alternatives. */
2524 fixup_alt_jump = b;
2525 GET_BUFFER_SPACE (3);
2526 b += 3;
2527
2528 laststart = 0;
2529 begalt = b;
2530 break;
2531
2532
2533 case '{':
2534 /* If \{ is a literal. */
2535 if (!(syntax & RE_INTERVALS)
2536 /* If we're at `\{' and it's not the open-interval
2537 operator. */
2538 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2539 || (p - 2 == pattern && p == pend))
2540 goto normal_backslash;
2541
2542 handle_interval:
2543 {
2544 /* If got here, then the syntax allows intervals. */
2545
2546 /* At least (most) this many matches must be made. */
2547 int lower_bound = -1, upper_bound = -1;
2548
2549 beg_interval = p - 1;
2550
2551 if (p == pend)
2552 {
2553 if (syntax & RE_NO_BK_BRACES)
2554 goto unfetch_interval;
2555 else
2556 FREE_STACK_RETURN (REG_EBRACE);
2557 }
2558
2559 GET_UNSIGNED_NUMBER (lower_bound);
2560
2561 if (c == ',')
2562 {
2563 GET_UNSIGNED_NUMBER (upper_bound);
2564 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2565 }
2566 else
2567 /* Interval such as `{1}' => match exactly once. */
2568 upper_bound = lower_bound;
2569
2570 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2571 || lower_bound > upper_bound)
2572 {
2573 if (syntax & RE_NO_BK_BRACES)
2574 goto unfetch_interval;
2575 else
2576 FREE_STACK_RETURN (REG_BADBR);
2577 }
2578
2579 if (!(syntax & RE_NO_BK_BRACES))
2580 {
2581 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2582
2583 PATFETCH (c);
2584 }
2585
2586 if (c != '}')
2587 {
2588 if (syntax & RE_NO_BK_BRACES)
2589 goto unfetch_interval;
2590 else
2591 FREE_STACK_RETURN (REG_BADBR);
2592 }
2593
2594 /* We just parsed a valid interval. */
2595
2596 /* If it's invalid to have no preceding re. */
2597 if (!laststart)
2598 {
2599 if (syntax & RE_CONTEXT_INVALID_OPS)
2600 FREE_STACK_RETURN (REG_BADRPT);
2601 else if (syntax & RE_CONTEXT_INDEP_OPS)
2602 laststart = b;
2603 else
2604 goto unfetch_interval;
2605 }
2606
2607 /* If the upper bound is zero, don't want to succeed at
2608 all; jump from `laststart' to `b + 3', which will be
2609 the end of the buffer after we insert the jump. */
2610 if (upper_bound == 0)
2611 {
2612 GET_BUFFER_SPACE (3);
2613 INSERT_JUMP (jump, laststart, b + 3);
2614 b += 3;
2615 }
2616
2617 /* Otherwise, we have a nontrivial interval. When
2618 we're all done, the pattern will look like:
2619 set_number_at <jump count> <upper bound>
2620 set_number_at <succeed_n count> <lower bound>
2621 succeed_n <after jump addr> <succeed_n count>
2622 <body of loop>
2623 jump_n <succeed_n addr> <jump count>
2624 (The upper bound and `jump_n' are omitted if
2625 `upper_bound' is 1, though.) */
2626 else
2627 { /* If the upper bound is > 1, we need to insert
2628 more at the end of the loop. */
2629 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2630
2631 GET_BUFFER_SPACE (nbytes);
2632
2633 /* Initialize lower bound of the `succeed_n', even
2634 though it will be set during matching by its
2635 attendant `set_number_at' (inserted next),
2636 because `re_compile_fastmap' needs to know.
2637 Jump to the `jump_n' we might insert below. */
2638 INSERT_JUMP2 (succeed_n, laststart,
2639 b + 5 + (upper_bound > 1) * 5,
2640 lower_bound);
2641 b += 5;
2642
2643 /* Code to initialize the lower bound. Insert
2644 before the `succeed_n'. The `5' is the last two
2645 bytes of this `set_number_at', plus 3 bytes of
2646 the following `succeed_n'. */
2647 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2648 b += 5;
2649
2650 if (upper_bound > 1)
2651 { /* More than one repetition is allowed, so
2652 append a backward jump to the `succeed_n'
2653 that starts this interval.
2654
2655 When we've reached this during matching,
2656 we'll have matched the interval once, so
2657 jump back only `upper_bound - 1' times. */
2658 STORE_JUMP2 (jump_n, b, laststart + 5,
2659 upper_bound - 1);
2660 b += 5;
2661
2662 /* The location we want to set is the second
2663 parameter of the `jump_n'; that is `b-2' as
2664 an absolute address. `laststart' will be
2665 the `set_number_at' we're about to insert;
2666 `laststart+3' the number to set, the source
2667 for the relative address. But we are
2668 inserting into the middle of the pattern --
2669 so everything is getting moved up by 5.
2670 Conclusion: (b - 2) - (laststart + 3) + 5,
2671 i.e., b - laststart.
2672
2673 We insert this at the beginning of the loop
2674 so that if we fail during matching, we'll
2675 reinitialize the bounds. */
2676 insert_op2 (set_number_at, laststart, b - laststart,
2677 upper_bound - 1, b);
2678 b += 5;
2679 }
2680 }
2681 pending_exact = 0;
2682 beg_interval = NULL;
2683 }
2684 break;
2685
2686 unfetch_interval:
2687 /* If an invalid interval, match the characters as literals. */
2688 assert (beg_interval);
2689 p = beg_interval;
2690 beg_interval = NULL;
2691
2692 /* normal_char and normal_backslash need `c'. */
2693 PATFETCH (c);
2694
2695 if (!(syntax & RE_NO_BK_BRACES))
2696 {
2697 if (p > pattern && p[-1] == '\\')
2698 goto normal_backslash;
2699 }
2700 goto normal_char;
2701
2702#ifdef emacs
2703 /* There is no way to specify the before_dot and after_dot
2704 operators. rms says this is ok. --karl */
2705 case '=':
2706 BUF_PUSH (at_dot);
2707 break;
2708
2709 case 's':
2710 laststart = b;
2711 PATFETCH (c);
2712 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2713 break;
2714
2715 case 'S':
2716 laststart = b;
2717 PATFETCH (c);
2718 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2719 break;
2720#endif /* emacs */
2721
2722
2723 case 'w':
2724 if (syntax & RE_NO_GNU_OPS)
2725 goto normal_char;
2726 laststart = b;
2727 BUF_PUSH (wordchar);
2728 break;
2729
2730
2731 case 'W':
2732 if (syntax & RE_NO_GNU_OPS)
2733 goto normal_char;
2734 laststart = b;
2735 BUF_PUSH (notwordchar);
2736 break;
2737
2738
2739 case '<':
2740 if (syntax & RE_NO_GNU_OPS)
2741 goto normal_char;
2742 BUF_PUSH (wordbeg);
2743 break;
2744
2745 case '>':
2746 if (syntax & RE_NO_GNU_OPS)
2747 goto normal_char;
2748 BUF_PUSH (wordend);
2749 break;
2750
2751 case 'b':
2752 if (syntax & RE_NO_GNU_OPS)
2753 goto normal_char;
2754 BUF_PUSH (wordbound);
2755 break;
2756
2757 case 'B':
2758 if (syntax & RE_NO_GNU_OPS)
2759 goto normal_char;
2760 BUF_PUSH (notwordbound);
2761 break;
2762
2763 case '`':
2764 if (syntax & RE_NO_GNU_OPS)
2765 goto normal_char;
2766 BUF_PUSH (begbuf);
2767 break;
2768
2769 case '\'':
2770 if (syntax & RE_NO_GNU_OPS)
2771 goto normal_char;
2772 BUF_PUSH (endbuf);
2773 break;
2774
2775 case '1': case '2': case '3': case '4': case '5':
2776 case '6': case '7': case '8': case '9':
2777 if (syntax & RE_NO_BK_REFS)
2778 goto normal_char;
2779
2780 c1 = c - '0';
2781
2782 if (c1 > regnum)
2783 FREE_STACK_RETURN (REG_ESUBREG);
2784
2785 /* Can't back reference to a subexpression if inside of it. */
2786 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2787 goto normal_char;
2788
2789 laststart = b;
2790 BUF_PUSH_2 (duplicate, c1);
2791 break;
2792
2793
2794 case '+':
2795 case '?':
2796 if (syntax & RE_BK_PLUS_QM)
2797 goto handle_plus;
2798 else
2799 goto normal_backslash;
2800
2801 default:
2802 normal_backslash:
2803 /* You might think it would be useful for \ to mean
2804 not to translate; but if we don't translate it
2805 it will never match anything. */
2806 c = TRANSLATE (c);
2807 goto normal_char;
2808 }
2809 break;
2810
2811
2812 default:
2813 /* Expects the character in `c'. */
2814 normal_char:
2815 /* If no exactn currently being built. */
2816 if (!pending_exact
2817
2818 /* If last exactn not at current position. */
2819 || pending_exact + *pending_exact + 1 != b
2820
2821 /* We have only one byte following the exactn for the count. */
2822 || *pending_exact == (1 << BYTEWIDTH) - 1
2823
2824 /* If followed by a repetition operator. */
2825 || *p == '*' || *p == '^'
2826 || ((syntax & RE_BK_PLUS_QM)
2827 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2828 : (*p == '+' || *p == '?'))
2829 || ((syntax & RE_INTERVALS)
2830 && ((syntax & RE_NO_BK_BRACES)
2831 ? *p == '{'
2832 : (p[0] == '\\' && p[1] == '{'))))
2833 {
2834 /* Start building a new exactn. */
2835
2836 laststart = b;
2837
2838 BUF_PUSH_2 (exactn, 0);
2839 pending_exact = b - 1;
2840 }
2841
2842 BUF_PUSH (c);
2843 (*pending_exact)++;
2844 break;
2845 } /* switch (c) */
2846 } /* while p != pend */
2847
2848
2849 /* Through the pattern now. */
2850
2851 if (fixup_alt_jump)
2852 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2853
2854 if (!COMPILE_STACK_EMPTY)
2855 FREE_STACK_RETURN (REG_EPAREN);
2856
2857 /* If we don't want backtracking, force success
2858 the first time we reach the end of the compiled pattern. */
2859 if (syntax & RE_NO_POSIX_BACKTRACKING)
2860 BUF_PUSH (succeed);
2861
2862 free (compile_stack.stack);
2863
2864 /* We have succeeded; set the length of the buffer. */
2865 bufp->used = b - bufp->buffer;
2866
2867#ifdef DEBUG
2868 if (debug)
2869 {
2870 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2871 print_compiled_pattern (bufp);
2872 }
2873#endif /* DEBUG */
2874
2875#ifndef MATCH_MAY_ALLOCATE
2876 /* Initialize the failure stack to the largest possible stack. This
2877 isn't necessary unless we're trying to avoid calling alloca in
2878 the search and match routines. */
2879 {
2880 int num_regs = bufp->re_nsub + 1;
2881
2882 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2883 is strictly greater than re_max_failures, the largest possible stack
2884 is 2 * re_max_failures failure points. */
2885 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2886 {
2887 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2888
2889# ifdef emacs
2890 if (! fail_stack.stack)
2891 fail_stack.stack
2892 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2893 * sizeof (fail_stack_elt_t));
2894 else
2895 fail_stack.stack
2896 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2897 (fail_stack.size
2898 * sizeof (fail_stack_elt_t)));
2899# else /* not emacs */
2900 if (! fail_stack.stack)
2901 fail_stack.stack
2902 = (fail_stack_elt_t *) malloc (fail_stack.size
2903 * sizeof (fail_stack_elt_t));
2904 else
2905 fail_stack.stack
2906 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2907 (fail_stack.size
2908 * sizeof (fail_stack_elt_t)));
2909# endif /* not emacs */
2910 }
2911
2912 regex_grow_registers (num_regs);
2913 }
2914#endif /* not MATCH_MAY_ALLOCATE */
2915
2916 return REG_NOERROR;
2917} /* regex_compile */
2918\f
2919/* Subroutines for `regex_compile'. */
2920
2921/* Store OP at LOC followed by two-byte integer parameter ARG. */
2922
2923static void
2924store_op1 (op, loc, arg)
2925 re_opcode_t op;
2926 unsigned char *loc;
2927 int arg;
2928{
2929 *loc = (unsigned char) op;
2930 STORE_NUMBER (loc + 1, arg);
2931}
2932
2933
2934/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2935
2936static void
2937store_op2 (op, loc, arg1, arg2)
2938 re_opcode_t op;
2939 unsigned char *loc;
2940 int arg1, arg2;
2941{
2942 *loc = (unsigned char) op;
2943 STORE_NUMBER (loc + 1, arg1);
2944 STORE_NUMBER (loc + 3, arg2);
2945}
2946
2947
2948/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2949 for OP followed by two-byte integer parameter ARG. */
2950
2951static void
2952insert_op1 (op, loc, arg, end)
2953 re_opcode_t op;
2954 unsigned char *loc;
2955 int arg;
2956 unsigned char *end;
2957{
2958 register unsigned char *pfrom = end;
2959 register unsigned char *pto = end + 3;
2960
2961 while (pfrom != loc)
2962 *--pto = *--pfrom;
2963
2964 store_op1 (op, loc, arg);
2965}
2966
2967
2968/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2969
2970static void
2971insert_op2 (op, loc, arg1, arg2, end)
2972 re_opcode_t op;
2973 unsigned char *loc;
2974 int arg1, arg2;
2975 unsigned char *end;
2976{
2977 register unsigned char *pfrom = end;
2978 register unsigned char *pto = end + 5;
2979
2980 while (pfrom != loc)
2981 *--pto = *--pfrom;
2982
2983 store_op2 (op, loc, arg1, arg2);
2984}
2985
2986
2987/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2988 after an alternative or a begin-subexpression. We assume there is at
2989 least one character before the ^. */
2990
2991static boolean
2992at_begline_loc_p (pattern, p, syntax)
2993 const char *pattern, *p;
2994 reg_syntax_t syntax;
2995{
2996 const char *prev = p - 2;
2997 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2998
2999 return
3000 /* After a subexpression? */
3001 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3002 /* After an alternative? */
3003 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3004}
3005
3006
3007/* The dual of at_begline_loc_p. This one is for $. We assume there is
3008 at least one character after the $, i.e., `P < PEND'. */
3009
3010static boolean
3011at_endline_loc_p (p, pend, syntax)
3012 const char *p, *pend;
3013 reg_syntax_t syntax;
3014{
3015 const char *next = p;
3016 boolean next_backslash = *next == '\\';
3017 const char *next_next = p + 1 < pend ? p + 1 : 0;
3018
3019 return
3020 /* Before a subexpression? */
3021 (syntax & RE_NO_BK_PARENS ? *next == ')'
3022 : next_backslash && next_next && *next_next == ')')
3023 /* Before an alternative? */
3024 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3025 : next_backslash && next_next && *next_next == '|');
3026}
3027
3028
3029/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3030 false if it's not. */
3031
3032static boolean
3033group_in_compile_stack (compile_stack, regnum)
3034 compile_stack_type compile_stack;
3035 regnum_t regnum;
3036{
3037 int this_element;
3038
3039 for (this_element = compile_stack.avail - 1;
3040 this_element >= 0;
3041 this_element--)
3042 if (compile_stack.stack[this_element].regnum == regnum)
3043 return true;
3044
3045 return false;
3046}
3047
3048
3049/* Read the ending character of a range (in a bracket expression) from the
3050 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3051 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3052 Then we set the translation of all bits between the starting and
3053 ending characters (inclusive) in the compiled pattern B.
3054
3055 Return an error code.
3056
3057 We use these short variable names so we can use the same macros as
3058 `regex_compile' itself. */
3059
3060static reg_errcode_t
3061compile_range (p_ptr, pend, translate, syntax, b)
3062 const char **p_ptr, *pend;
3063 RE_TRANSLATE_TYPE translate;
3064 reg_syntax_t syntax;
3065 unsigned char *b;
3066{
3067 unsigned this_char;
3068
3069 const char *p = *p_ptr;
3070 unsigned int range_start, range_end;
3071
3072 if (p == pend)
3073 return REG_ERANGE;
3074
3075 /* Even though the pattern is a signed `char *', we need to fetch
3076 with unsigned char *'s; if the high bit of the pattern character
3077 is set, the range endpoints will be negative if we fetch using a
3078 signed char *.
3079
3080 We also want to fetch the endpoints without translating them; the
3081 appropriate translation is done in the bit-setting loop below. */
3082 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3083 range_start = ((const unsigned char *) p)[-2];
3084 range_end = ((const unsigned char *) p)[0];
3085
3086 /* Have to increment the pointer into the pattern string, so the
3087 caller isn't still at the ending character. */
3088 (*p_ptr)++;
3089
3090 /* If the start is after the end, the range is empty. */
3091 if (range_start > range_end)
3092 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3093
3094 /* Here we see why `this_char' has to be larger than an `unsigned
3095 char' -- the range is inclusive, so if `range_end' == 0xff
3096 (assuming 8-bit characters), we would otherwise go into an infinite
3097 loop, since all characters <= 0xff. */
3098 for (this_char = range_start; this_char <= range_end; this_char++)
3099 {
3100 SET_LIST_BIT (TRANSLATE (this_char));
3101 }
3102
3103 return REG_NOERROR;
3104}
3105\f
3106/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3107 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3108 characters can start a string that matches the pattern. This fastmap
3109 is used by re_search to skip quickly over impossible starting points.
3110
3111 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3112 area as BUFP->fastmap.
3113
3114 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3115 the pattern buffer.
3116
3117 Returns 0 if we succeed, -2 if an internal error. */
3118
3119int
3120re_compile_fastmap (bufp)
3121 struct re_pattern_buffer *bufp;
3122{
3123 int j, k;
3124#ifdef MATCH_MAY_ALLOCATE
3125 fail_stack_type fail_stack;
3126#endif
3127#ifndef REGEX_MALLOC
3128 char *destination;
3129#endif
3130
3131 register char *fastmap = bufp->fastmap;
3132 unsigned char *pattern = bufp->buffer;
3133 unsigned char *p = pattern;
3134 register unsigned char *pend = pattern + bufp->used;
3135
3136#ifdef REL_ALLOC
3137 /* This holds the pointer to the failure stack, when
3138 it is allocated relocatably. */
3139 fail_stack_elt_t *failure_stack_ptr;
3140#endif
3141
3142 /* Assume that each path through the pattern can be null until
3143 proven otherwise. We set this false at the bottom of switch
3144 statement, to which we get only if a particular path doesn't
3145 match the empty string. */
3146 boolean path_can_be_null = true;
3147
3148 /* We aren't doing a `succeed_n' to begin with. */
3149 boolean succeed_n_p = false;
3150
3151 assert (fastmap != NULL && p != NULL);
3152
3153 INIT_FAIL_STACK ();
3154 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3155 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3156 bufp->can_be_null = 0;
3157
3158 while (1)
3159 {
3160 if (p == pend || *p == succeed)
3161 {
3162 /* We have reached the (effective) end of pattern. */
3163 if (!FAIL_STACK_EMPTY ())
3164 {
3165 bufp->can_be_null |= path_can_be_null;
3166
3167 /* Reset for next path. */
3168 path_can_be_null = true;
3169
3170 p = fail_stack.stack[--fail_stack.avail].pointer;
3171
3172 continue;
3173 }
3174 else
3175 break;
3176 }
3177
3178 /* We should never be about to go beyond the end of the pattern. */
3179 assert (p < pend);
3180
3181 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3182 {
3183
3184 /* I guess the idea here is to simply not bother with a fastmap
3185 if a backreference is used, since it's too hard to figure out
3186 the fastmap for the corresponding group. Setting
3187 `can_be_null' stops `re_search_2' from using the fastmap, so
3188 that is all we do. */
3189 case duplicate:
3190 bufp->can_be_null = 1;
3191 goto done;
3192
3193
3194 /* Following are the cases which match a character. These end
3195 with `break'. */
3196
3197 case exactn:
3198 fastmap[p[1]] = 1;
3199 break;
3200
3201
3202 case charset:
3203 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3204 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3205 fastmap[j] = 1;
3206 break;
3207
3208
3209 case charset_not:
3210 /* Chars beyond end of map must be allowed. */
3211 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3212 fastmap[j] = 1;
3213
3214 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3215 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3216 fastmap[j] = 1;
3217 break;
3218
3219
3220 case wordchar:
3221 for (j = 0; j < (1 << BYTEWIDTH); j++)
3222 if (SYNTAX (j) == Sword)
3223 fastmap[j] = 1;
3224 break;
3225
3226
3227 case notwordchar:
3228 for (j = 0; j < (1 << BYTEWIDTH); j++)
3229 if (SYNTAX (j) != Sword)
3230 fastmap[j] = 1;
3231 break;
3232
3233
3234 case anychar:
3235 {
3236 int fastmap_newline = fastmap['\n'];
3237
3238 /* `.' matches anything ... */
3239 for (j = 0; j < (1 << BYTEWIDTH); j++)
3240 fastmap[j] = 1;
3241
3242 /* ... except perhaps newline. */
3243 if (!(bufp->syntax & RE_DOT_NEWLINE))
3244 fastmap['\n'] = fastmap_newline;
3245
3246 /* Return if we have already set `can_be_null'; if we have,
3247 then the fastmap is irrelevant. Something's wrong here. */
3248 else if (bufp->can_be_null)
3249 goto done;
3250
3251 /* Otherwise, have to check alternative paths. */
3252 break;
3253 }
3254
3255#ifdef emacs
3256 case syntaxspec:
3257 k = *p++;
3258 for (j = 0; j < (1 << BYTEWIDTH); j++)
3259 if (SYNTAX (j) == (enum syntaxcode) k)
3260 fastmap[j] = 1;
3261 break;
3262
3263
3264 case notsyntaxspec:
3265 k = *p++;
3266 for (j = 0; j < (1 << BYTEWIDTH); j++)
3267 if (SYNTAX (j) != (enum syntaxcode) k)
3268 fastmap[j] = 1;
3269 break;
3270
3271
3272 /* All cases after this match the empty string. These end with
3273 `continue'. */
3274
3275
3276 case before_dot:
3277 case at_dot:
3278 case after_dot:
3279 continue;
3280#endif /* emacs */
3281
3282
3283 case no_op:
3284 case begline:
3285 case endline:
3286 case begbuf:
3287 case endbuf:
3288 case wordbound:
3289 case notwordbound:
3290 case wordbeg:
3291 case wordend:
3292 case push_dummy_failure:
3293 continue;
3294
3295
3296 case jump_n:
3297 case pop_failure_jump:
3298 case maybe_pop_jump:
3299 case jump:
3300 case jump_past_alt:
3301 case dummy_failure_jump:
3302 EXTRACT_NUMBER_AND_INCR (j, p);
3303 p += j;
3304 if (j > 0)
3305 continue;
3306
3307 /* Jump backward implies we just went through the body of a
3308 loop and matched nothing. Opcode jumped to should be
3309 `on_failure_jump' or `succeed_n'. Just treat it like an
3310 ordinary jump. For a * loop, it has pushed its failure
3311 point already; if so, discard that as redundant. */
3312 if ((re_opcode_t) *p != on_failure_jump
3313 && (re_opcode_t) *p != succeed_n)
3314 continue;
3315
3316 p++;
3317 EXTRACT_NUMBER_AND_INCR (j, p);
3318 p += j;
3319
3320 /* If what's on the stack is where we are now, pop it. */
3321 if (!FAIL_STACK_EMPTY ()
3322 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3323 fail_stack.avail--;
3324
3325 continue;
3326
3327
3328 case on_failure_jump:
3329 case on_failure_keep_string_jump:
3330 handle_on_failure_jump:
3331 EXTRACT_NUMBER_AND_INCR (j, p);
3332
3333 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3334 end of the pattern. We don't want to push such a point,
3335 since when we restore it above, entering the switch will
3336 increment `p' past the end of the pattern. We don't need
3337 to push such a point since we obviously won't find any more
3338 fastmap entries beyond `pend'. Such a pattern can match
3339 the null string, though. */
3340 if (p + j < pend)
3341 {
3342 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3343 {
3344 RESET_FAIL_STACK ();
3345 return -2;
3346 }
3347 }
3348 else
3349 bufp->can_be_null = 1;
3350
3351 if (succeed_n_p)
3352 {
3353 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3354 succeed_n_p = false;
3355 }
3356
3357 continue;
3358
3359
3360 case succeed_n:
3361 /* Get to the number of times to succeed. */
3362 p += 2;
3363
3364 /* Increment p past the n for when k != 0. */
3365 EXTRACT_NUMBER_AND_INCR (k, p);
3366 if (k == 0)
3367 {
3368 p -= 4;
3369 succeed_n_p = true; /* Spaghetti code alert. */
3370 goto handle_on_failure_jump;
3371 }
3372 continue;
3373
3374
3375 case set_number_at:
3376 p += 4;
3377 continue;
3378
3379
3380 case start_memory:
3381 case stop_memory:
3382 p += 2;
3383 continue;
3384
3385
3386 default:
3387 abort (); /* We have listed all the cases. */
3388 } /* switch *p++ */
3389
3390 /* Getting here means we have found the possible starting
3391 characters for one path of the pattern -- and that the empty
3392 string does not match. We need not follow this path further.
3393 Instead, look at the next alternative (remembered on the
3394 stack), or quit if no more. The test at the top of the loop
3395 does these things. */
3396 path_can_be_null = false;
3397 p = pend;
3398 } /* while p */
3399
3400 /* Set `can_be_null' for the last path (also the first path, if the
3401 pattern is empty). */
3402 bufp->can_be_null |= path_can_be_null;
3403
3404 done:
3405 RESET_FAIL_STACK ();
3406 return 0;
3407} /* re_compile_fastmap */
3408#ifdef _LIBC
3409weak_alias (__re_compile_fastmap, re_compile_fastmap)
3410#endif
3411\f
3412/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3413 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3414 this memory for recording register information. STARTS and ENDS
3415 must be allocated using the malloc library routine, and must each
3416 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3417
3418 If NUM_REGS == 0, then subsequent matches should allocate their own
3419 register data.
3420
3421 Unless this function is called, the first search or match using
3422 PATTERN_BUFFER will allocate its own register data, without
3423 freeing the old data. */
3424
3425void
3426re_set_registers (bufp, regs, num_regs, starts, ends)
3427 struct re_pattern_buffer *bufp;
3428 struct re_registers *regs;
3429 unsigned num_regs;
3430 regoff_t *starts, *ends;
3431{
3432 if (num_regs)
3433 {
3434 bufp->regs_allocated = REGS_REALLOCATE;
3435 regs->num_regs = num_regs;
3436 regs->start = starts;
3437 regs->end = ends;
3438 }
3439 else
3440 {
3441 bufp->regs_allocated = REGS_UNALLOCATED;
3442 regs->num_regs = 0;
3443 regs->start = regs->end = (regoff_t *) 0;
3444 }
3445}
3446#ifdef _LIBC
3447weak_alias (__re_set_registers, re_set_registers)
3448#endif
3449\f
3450/* Searching routines. */
3451
3452/* Like re_search_2, below, but only one string is specified, and
3453 doesn't let you say where to stop matching. */
3454
3455int
3456re_search (bufp, string, size, startpos, range, regs)
3457 struct re_pattern_buffer *bufp;
3458 const char *string;
3459 int size, startpos, range;
3460 struct re_registers *regs;
3461{
3462 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3463 regs, size);
3464}
3465#ifdef _LIBC
3466weak_alias (__re_search, re_search)
3467#endif
3468
3469
3470/* Using the compiled pattern in BUFP->buffer, first tries to match the
3471 virtual concatenation of STRING1 and STRING2, starting first at index
3472 STARTPOS, then at STARTPOS + 1, and so on.
3473
3474 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3475
3476 RANGE is how far to scan while trying to match. RANGE = 0 means try
3477 only at STARTPOS; in general, the last start tried is STARTPOS +
3478 RANGE.
3479
3480 In REGS, return the indices of the virtual concatenation of STRING1
3481 and STRING2 that matched the entire BUFP->buffer and its contained
3482 subexpressions.
3483
3484 Do not consider matching one past the index STOP in the virtual
3485 concatenation of STRING1 and STRING2.
3486
3487 We return either the position in the strings at which the match was
3488 found, -1 if no match, or -2 if error (such as failure
3489 stack overflow). */
3490
3491int
3492re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3493 struct re_pattern_buffer *bufp;
3494 const char *string1, *string2;
3495 int size1, size2;
3496 int startpos;
3497 int range;
3498 struct re_registers *regs;
3499 int stop;
3500{
3501 int val;
3502 register char *fastmap = bufp->fastmap;
3503 register RE_TRANSLATE_TYPE translate = bufp->translate;
3504 int total_size = size1 + size2;
3505 int endpos = startpos + range;
3506
3507 /* Check for out-of-range STARTPOS. */
3508 if (startpos < 0 || startpos > total_size)
3509 return -1;
3510
3511 /* Fix up RANGE if it might eventually take us outside
3512 the virtual concatenation of STRING1 and STRING2.
3513 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3514 if (endpos < 0)
3515 range = 0 - startpos;
3516 else if (endpos > total_size)
3517 range = total_size - startpos;
3518
3519 /* If the search isn't to be a backwards one, don't waste time in a
3520 search for a pattern that must be anchored. */
3521 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3522 {
3523 if (startpos > 0)
3524 return -1;
3525 else
3526 range = 1;
3527 }
3528
3529#ifdef emacs
3530 /* In a forward search for something that starts with \=.
3531 don't keep searching past point. */
3532 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3533 {
3534 range = PT - startpos;
3535 if (range <= 0)
3536 return -1;
3537 }
3538#endif /* emacs */
3539
3540 /* Update the fastmap now if not correct already. */
3541 if (fastmap && !bufp->fastmap_accurate)
3542 if (re_compile_fastmap (bufp) == -2)
3543 return -2;
3544
3545 /* Loop through the string, looking for a place to start matching. */
3546 for (;;)
3547 {
3548 /* If a fastmap is supplied, skip quickly over characters that
3549 cannot be the start of a match. If the pattern can match the
3550 null string, however, we don't need to skip characters; we want
3551 the first null string. */
3552 if (fastmap && startpos < total_size && !bufp->can_be_null)
3553 {
3554 if (range > 0) /* Searching forwards. */
3555 {
3556 register const char *d;
3557 register int lim = 0;
3558 int irange = range;
3559
3560 if (startpos < size1 && startpos + range >= size1)
3561 lim = range - (size1 - startpos);
3562
3563 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3564
3565 /* Written out as an if-else to avoid testing `translate'
3566 inside the loop. */
3567 if (translate)
3568 while (range > lim
3569 && !fastmap[(unsigned char)
3570 translate[(unsigned char) *d++]])
3571 range--;
3572 else
3573 while (range > lim && !fastmap[(unsigned char) *d++])
3574 range--;
3575
3576 startpos += irange - range;
3577 }
3578 else /* Searching backwards. */
3579 {
3580 register char c = (size1 == 0 || startpos >= size1
3581 ? string2[startpos - size1]
3582 : string1[startpos]);
3583
3584 if (!fastmap[(unsigned char) TRANSLATE (c)])
3585 goto advance;
3586 }
3587 }
3588
3589 /* If can't match the null string, and that's all we have left, fail. */
3590 if (range >= 0 && startpos == total_size && fastmap
3591 && !bufp->can_be_null)
3592 return -1;
3593
3594 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3595 startpos, regs, stop);
3596#ifndef REGEX_MALLOC
3597# ifdef C_ALLOCA
3598 alloca (0);
3599# endif
3600#endif
3601
3602 if (val >= 0)
3603 return startpos;
3604
3605 if (val == -2)
3606 return -2;
3607
3608 advance:
3609 if (!range)
3610 break;
3611 else if (range > 0)
3612 {
3613 range--;
3614 startpos++;
3615 }
3616 else
3617 {
3618 range++;
3619 startpos--;
3620 }
3621 }
3622 return -1;
3623} /* re_search_2 */
3624#ifdef _LIBC
3625weak_alias (__re_search_2, re_search_2)
3626#endif
3627\f
3628/* This converts PTR, a pointer into one of the search strings `string1'
3629 and `string2' into an offset from the beginning of that string. */
3630#define POINTER_TO_OFFSET(ptr) \
3631 (FIRST_STRING_P (ptr) \
3632 ? ((regoff_t) ((ptr) - string1)) \
3633 : ((regoff_t) ((ptr) - string2 + size1)))
3634
3635/* Macros for dealing with the split strings in re_match_2. */
3636
3637#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3638
3639/* Call before fetching a character with *d. This switches over to
3640 string2 if necessary. */
3641#define PREFETCH() \
3642 while (d == dend) \
3643 { \
3644 /* End of string2 => fail. */ \
3645 if (dend == end_match_2) \
3646 goto fail; \
3647 /* End of string1 => advance to string2. */ \
3648 d = string2; \
3649 dend = end_match_2; \
3650 }
3651
3652
3653/* Test if at very beginning or at very end of the virtual concatenation
3654 of `string1' and `string2'. If only one string, it's `string2'. */
3655#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3656#define AT_STRINGS_END(d) ((d) == end2)
3657
3658
3659/* Test if D points to a character which is word-constituent. We have
3660 two special cases to check for: if past the end of string1, look at
3661 the first character in string2; and if before the beginning of
3662 string2, look at the last character in string1. */
3663#define WORDCHAR_P(d) \
3664 (SYNTAX ((d) == end1 ? *string2 \
3665 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3666 == Sword)
3667
3668/* Disabled due to a compiler bug -- see comment at case wordbound */
3669#if 0
3670/* Test if the character before D and the one at D differ with respect
3671 to being word-constituent. */
3672#define AT_WORD_BOUNDARY(d) \
3673 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3674 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3675#endif
3676
3677/* Free everything we malloc. */
3678#ifdef MATCH_MAY_ALLOCATE
3679# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3680# define FREE_VARIABLES() \
3681 do { \
3682 REGEX_FREE_STACK (fail_stack.stack); \
3683 FREE_VAR (regstart); \
3684 FREE_VAR (regend); \
3685 FREE_VAR (old_regstart); \
3686 FREE_VAR (old_regend); \
3687 FREE_VAR (best_regstart); \
3688 FREE_VAR (best_regend); \
3689 FREE_VAR (reg_info); \
3690 FREE_VAR (reg_dummy); \
3691 FREE_VAR (reg_info_dummy); \
3692 } while (0)
3693#else
3694# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3695#endif /* not MATCH_MAY_ALLOCATE */
3696
3697/* These values must meet several constraints. They must not be valid
3698 register values; since we have a limit of 255 registers (because
3699 we use only one byte in the pattern for the register number), we can
3700 use numbers larger than 255. They must differ by 1, because of
3701 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3702 be larger than the value for the highest register, so we do not try
3703 to actually save any registers when none are active. */
3704#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3705#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3706\f
3707/* Matching routines. */
3708
3709#ifndef emacs /* Emacs never uses this. */
3710/* re_match is like re_match_2 except it takes only a single string. */
3711
3712int
3713re_match (bufp, string, size, pos, regs)
3714 struct re_pattern_buffer *bufp;
3715 const char *string;
3716 int size, pos;
3717 struct re_registers *regs;
3718{
3719 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3720 pos, regs, size);
3721# ifndef REGEX_MALLOC
3722# ifdef C_ALLOCA
3723 alloca (0);
3724# endif
3725# endif
3726 return result;
3727}
3728# ifdef _LIBC
3729weak_alias (__re_match, re_match)
3730# endif
3731#endif /* not emacs */
3732
3733static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3734 unsigned char *end,
3735 register_info_type *reg_info));
3736static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3737 unsigned char *end,
3738 register_info_type *reg_info));
3739static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3740 unsigned char *end,
3741 register_info_type *reg_info));
3742static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3743 int len, char *translate));
3744
3745/* re_match_2 matches the compiled pattern in BUFP against the
3746 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3747 and SIZE2, respectively). We start matching at POS, and stop
3748 matching at STOP.
3749
3750 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3751 store offsets for the substring each group matched in REGS. See the
3752 documentation for exactly how many groups we fill.
3753
3754 We return -1 if no match, -2 if an internal error (such as the
3755 failure stack overflowing). Otherwise, we return the length of the
3756 matched substring. */
3757
3758int
3759re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3760 struct re_pattern_buffer *bufp;
3761 const char *string1, *string2;
3762 int size1, size2;
3763 int pos;
3764 struct re_registers *regs;
3765 int stop;
3766{
3767 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3768 pos, regs, stop);
3769#ifndef REGEX_MALLOC
3770# ifdef C_ALLOCA
3771 alloca (0);
3772# endif
3773#endif
3774 return result;
3775}
3776#ifdef _LIBC
3777weak_alias (__re_match_2, re_match_2)
3778#endif
3779
3780/* This is a separate function so that we can force an alloca cleanup
3781 afterwards. */
3782static int
3783re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3784 struct re_pattern_buffer *bufp;
3785 const char *string1, *string2;
3786 int size1, size2;
3787 int pos;
3788 struct re_registers *regs;
3789 int stop;
3790{
3791 /* General temporaries. */
3792 int mcnt;
3793 unsigned char *p1;
3794
3795 /* Just past the end of the corresponding string. */
3796 const char *end1, *end2;
3797
3798 /* Pointers into string1 and string2, just past the last characters in
3799 each to consider matching. */
3800 const char *end_match_1, *end_match_2;
3801
3802 /* Where we are in the data, and the end of the current string. */
3803 const char *d, *dend;
3804
3805 /* Where we are in the pattern, and the end of the pattern. */
3806 unsigned char *p = bufp->buffer;
3807 register unsigned char *pend = p + bufp->used;
3808
3809 /* Mark the opcode just after a start_memory, so we can test for an
3810 empty subpattern when we get to the stop_memory. */
3811 unsigned char *just_past_start_mem = 0;
3812
3813 /* We use this to map every character in the string. */
3814 RE_TRANSLATE_TYPE translate = bufp->translate;
3815
3816 /* Failure point stack. Each place that can handle a failure further
3817 down the line pushes a failure point on this stack. It consists of
3818 restart, regend, and reg_info for all registers corresponding to
3819 the subexpressions we're currently inside, plus the number of such
3820 registers, and, finally, two char *'s. The first char * is where
3821 to resume scanning the pattern; the second one is where to resume
3822 scanning the strings. If the latter is zero, the failure point is
3823 a ``dummy''; if a failure happens and the failure point is a dummy,
3824 it gets discarded and the next next one is tried. */
3825#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3826 fail_stack_type fail_stack;
3827#endif
3828#ifdef DEBUG
3829 static unsigned failure_id = 0;
3830 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3831#endif
3832
3833#ifdef REL_ALLOC
3834 /* This holds the pointer to the failure stack, when
3835 it is allocated relocatably. */
3836 fail_stack_elt_t *failure_stack_ptr;
3837#endif
3838
3839 /* We fill all the registers internally, independent of what we
3840 return, for use in backreferences. The number here includes
3841 an element for register zero. */
3842 size_t num_regs = bufp->re_nsub + 1;
3843
3844 /* The currently active registers. */
3845 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3846 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3847
3848 /* Information on the contents of registers. These are pointers into
3849 the input strings; they record just what was matched (on this
3850 attempt) by a subexpression part of the pattern, that is, the
3851 regnum-th regstart pointer points to where in the pattern we began
3852 matching and the regnum-th regend points to right after where we
3853 stopped matching the regnum-th subexpression. (The zeroth register
3854 keeps track of what the whole pattern matches.) */
3855#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3856 const char **regstart, **regend;
3857#endif
3858
3859 /* If a group that's operated upon by a repetition operator fails to
3860 match anything, then the register for its start will need to be
3861 restored because it will have been set to wherever in the string we
3862 are when we last see its open-group operator. Similarly for a
3863 register's end. */
3864#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3865 const char **old_regstart, **old_regend;
3866#endif
3867
3868 /* The is_active field of reg_info helps us keep track of which (possibly
3869 nested) subexpressions we are currently in. The matched_something
3870 field of reg_info[reg_num] helps us tell whether or not we have
3871 matched any of the pattern so far this time through the reg_num-th
3872 subexpression. These two fields get reset each time through any
3873 loop their register is in. */
3874#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3875 register_info_type *reg_info;
3876#endif
3877
3878 /* The following record the register info as found in the above
3879 variables when we find a match better than any we've seen before.
3880 This happens as we backtrack through the failure points, which in
3881 turn happens only if we have not yet matched the entire string. */
3882 unsigned best_regs_set = false;
3883#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3884 const char **best_regstart, **best_regend;
3885#endif
3886
3887 /* Logically, this is `best_regend[0]'. But we don't want to have to
3888 allocate space for that if we're not allocating space for anything
3889 else (see below). Also, we never need info about register 0 for
3890 any of the other register vectors, and it seems rather a kludge to
3891 treat `best_regend' differently than the rest. So we keep track of
3892 the end of the best match so far in a separate variable. We
3893 initialize this to NULL so that when we backtrack the first time
3894 and need to test it, it's not garbage. */
3895 const char *match_end = NULL;
3896
3897 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3898 int set_regs_matched_done = 0;
3899
3900 /* Used when we pop values we don't care about. */
3901#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3902 const char **reg_dummy;
3903 register_info_type *reg_info_dummy;
3904#endif
3905
3906#ifdef DEBUG
3907 /* Counts the total number of registers pushed. */
3908 unsigned num_regs_pushed = 0;
3909#endif
3910
3911 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3912
3913 INIT_FAIL_STACK ();
3914
3915#ifdef MATCH_MAY_ALLOCATE
3916 /* Do not bother to initialize all the register variables if there are
3917 no groups in the pattern, as it takes a fair amount of time. If
3918 there are groups, we include space for register 0 (the whole
3919 pattern), even though we never use it, since it simplifies the
3920 array indexing. We should fix this. */
3921 if (bufp->re_nsub)
3922 {
3923 regstart = REGEX_TALLOC (num_regs, const char *);
3924 regend = REGEX_TALLOC (num_regs, const char *);
3925 old_regstart = REGEX_TALLOC (num_regs, const char *);
3926 old_regend = REGEX_TALLOC (num_regs, const char *);
3927 best_regstart = REGEX_TALLOC (num_regs, const char *);
3928 best_regend = REGEX_TALLOC (num_regs, const char *);
3929 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3930 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3931 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3932
3933 if (!(regstart && regend && old_regstart && old_regend && reg_info
3934 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3935 {
3936 FREE_VARIABLES ();
3937 return -2;
3938 }
3939 }
3940 else
3941 {
3942 /* We must initialize all our variables to NULL, so that
3943 `FREE_VARIABLES' doesn't try to free them. */
3944 regstart = regend = old_regstart = old_regend = best_regstart
3945 = best_regend = reg_dummy = NULL;
3946 reg_info = reg_info_dummy = (register_info_type *) NULL;
3947 }
3948#endif /* MATCH_MAY_ALLOCATE */
3949
3950 /* The starting position is bogus. */
3951 if (pos < 0 || pos > size1 + size2)
3952 {
3953 FREE_VARIABLES ();
3954 return -1;
3955 }
3956
3957 /* Initialize subexpression text positions to -1 to mark ones that no
3958 start_memory/stop_memory has been seen for. Also initialize the
3959 register information struct. */
3960 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3961 {
3962 regstart[mcnt] = regend[mcnt]
3963 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3964
3965 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3966 IS_ACTIVE (reg_info[mcnt]) = 0;
3967 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3968 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3969 }
3970
3971 /* We move `string1' into `string2' if the latter's empty -- but not if
3972 `string1' is null. */
3973 if (size2 == 0 && string1 != NULL)
3974 {
3975 string2 = string1;
3976 size2 = size1;
3977 string1 = 0;
3978 size1 = 0;
3979 }
3980 end1 = string1 + size1;
3981 end2 = string2 + size2;
3982
3983 /* Compute where to stop matching, within the two strings. */
3984 if (stop <= size1)
3985 {
3986 end_match_1 = string1 + stop;
3987 end_match_2 = string2;
3988 }
3989 else
3990 {
3991 end_match_1 = end1;
3992 end_match_2 = string2 + stop - size1;
3993 }
3994
3995 /* `p' scans through the pattern as `d' scans through the data.
3996 `dend' is the end of the input string that `d' points within. `d'
3997 is advanced into the following input string whenever necessary, but
3998 this happens before fetching; therefore, at the beginning of the
3999 loop, `d' can be pointing at the end of a string, but it cannot
4000 equal `string2'. */
4001 if (size1 > 0 && pos <= size1)
4002 {
4003 d = string1 + pos;
4004 dend = end_match_1;
4005 }
4006 else
4007 {
4008 d = string2 + pos - size1;
4009 dend = end_match_2;
4010 }
4011
4012 DEBUG_PRINT1 ("The compiled pattern is:\n");
4013 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4014 DEBUG_PRINT1 ("The string to match is: `");
4015 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4016 DEBUG_PRINT1 ("'\n");
4017
4018 /* This loops over pattern commands. It exits by returning from the
4019 function if the match is complete, or it drops through if the match
4020 fails at this starting point in the input data. */
4021 for (;;)
4022 {
4023#ifdef _LIBC
4024 DEBUG_PRINT2 ("\n%p: ", p);
4025#else
4026 DEBUG_PRINT2 ("\n0x%x: ", p);
4027#endif
4028
4029 if (p == pend)
4030 { /* End of pattern means we might have succeeded. */
4031 DEBUG_PRINT1 ("end of pattern ... ");
4032
4033 /* If we haven't matched the entire string, and we want the
4034 longest match, try backtracking. */
4035 if (d != end_match_2)
4036 {
4037 /* 1 if this match ends in the same string (string1 or string2)
4038 as the best previous match. */
4039 boolean same_str_p = (FIRST_STRING_P (match_end)
4040 == MATCHING_IN_FIRST_STRING);
4041 /* 1 if this match is the best seen so far. */
4042 boolean best_match_p;
4043
4044 /* AIX compiler got confused when this was combined
4045 with the previous declaration. */
4046 if (same_str_p)
4047 best_match_p = d > match_end;
4048 else
4049 best_match_p = !MATCHING_IN_FIRST_STRING;
4050
4051 DEBUG_PRINT1 ("backtracking.\n");
4052
4053 if (!FAIL_STACK_EMPTY ())
4054 { /* More failure points to try. */
4055
4056 /* If exceeds best match so far, save it. */
4057 if (!best_regs_set || best_match_p)
4058 {
4059 best_regs_set = true;
4060 match_end = d;
4061
4062 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4063
4064 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4065 {
4066 best_regstart[mcnt] = regstart[mcnt];
4067 best_regend[mcnt] = regend[mcnt];
4068 }
4069 }
4070 goto fail;
4071 }
4072
4073 /* If no failure points, don't restore garbage. And if
4074 last match is real best match, don't restore second
4075 best one. */
4076 else if (best_regs_set && !best_match_p)
4077 {
4078 restore_best_regs:
4079 /* Restore best match. It may happen that `dend ==
4080 end_match_1' while the restored d is in string2.
4081 For example, the pattern `x.*y.*z' against the
4082 strings `x-' and `y-z-', if the two strings are
4083 not consecutive in memory. */
4084 DEBUG_PRINT1 ("Restoring best registers.\n");
4085
4086 d = match_end;
4087 dend = ((d >= string1 && d <= end1)
4088 ? end_match_1 : end_match_2);
4089
4090 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4091 {
4092 regstart[mcnt] = best_regstart[mcnt];
4093 regend[mcnt] = best_regend[mcnt];
4094 }
4095 }
4096 } /* d != end_match_2 */
4097
4098 succeed_label:
4099 DEBUG_PRINT1 ("Accepting match.\n");
4100
4101 /* If caller wants register contents data back, do it. */
4102 if (regs && !bufp->no_sub)
4103 {
4104 /* Have the register data arrays been allocated? */
4105 if (bufp->regs_allocated == REGS_UNALLOCATED)
4106 { /* No. So allocate them with malloc. We need one
4107 extra element beyond `num_regs' for the `-1' marker
4108 GNU code uses. */
4109 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4110 regs->start = TALLOC (regs->num_regs, regoff_t);
4111 regs->end = TALLOC (regs->num_regs, regoff_t);
4112 if (regs->start == NULL || regs->end == NULL)
4113 {
4114 FREE_VARIABLES ();
4115 return -2;
4116 }
4117 bufp->regs_allocated = REGS_REALLOCATE;
4118 }
4119 else if (bufp->regs_allocated == REGS_REALLOCATE)
4120 { /* Yes. If we need more elements than were already
4121 allocated, reallocate them. If we need fewer, just
4122 leave it alone. */
4123 if (regs->num_regs < num_regs + 1)
4124 {
4125 regs->num_regs = num_regs + 1;
4126 RETALLOC (regs->start, regs->num_regs, regoff_t);
4127 RETALLOC (regs->end, regs->num_regs, regoff_t);
4128 if (regs->start == NULL || regs->end == NULL)
4129 {
4130 FREE_VARIABLES ();
4131 return -2;
4132 }
4133 }
4134 }
4135 else
4136 {
4137 /* These braces fend off a "empty body in an else-statement"
4138 warning under GCC when assert expands to nothing. */
4139 assert (bufp->regs_allocated == REGS_FIXED);
4140 }
4141
4142 /* Convert the pointer data in `regstart' and `regend' to
4143 indices. Register zero has to be set differently,
4144 since we haven't kept track of any info for it. */
4145 if (regs->num_regs > 0)
4146 {
4147 regs->start[0] = pos;
4148 regs->end[0] = (MATCHING_IN_FIRST_STRING
4149 ? ((regoff_t) (d - string1))
4150 : ((regoff_t) (d - string2 + size1)));
4151 }
4152
4153 /* Go through the first `min (num_regs, regs->num_regs)'
4154 registers, since that is all we initialized. */
4155 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4156 mcnt++)
4157 {
4158 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4159 regs->start[mcnt] = regs->end[mcnt] = -1;
4160 else
4161 {
4162 regs->start[mcnt]
4163 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4164 regs->end[mcnt]
4165 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4166 }
4167 }
4168
4169 /* If the regs structure we return has more elements than
4170 were in the pattern, set the extra elements to -1. If
4171 we (re)allocated the registers, this is the case,
4172 because we always allocate enough to have at least one
4173 -1 at the end. */
4174 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4175 regs->start[mcnt] = regs->end[mcnt] = -1;
4176 } /* regs && !bufp->no_sub */
4177
4178 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4179 nfailure_points_pushed, nfailure_points_popped,
4180 nfailure_points_pushed - nfailure_points_popped);
4181 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4182
4183 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4184 ? string1
4185 : string2 - size1);
4186
4187 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4188
4189 FREE_VARIABLES ();
4190 return mcnt;
4191 }
4192
4193 /* Otherwise match next pattern command. */
4194 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4195 {
4196 /* Ignore these. Used to ignore the n of succeed_n's which
4197 currently have n == 0. */
4198 case no_op:
4199 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4200 break;
4201
4202 case succeed:
4203 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4204 goto succeed_label;
4205
4206 /* Match the next n pattern characters exactly. The following
4207 byte in the pattern defines n, and the n bytes after that
4208 are the characters to match. */
4209 case exactn:
4210 mcnt = *p++;
4211 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4212
4213 /* This is written out as an if-else so we don't waste time
4214 testing `translate' inside the loop. */
4215 if (translate)
4216 {
4217 do
4218 {
4219 PREFETCH ();
4220 if ((unsigned char) translate[(unsigned char) *d++]
4221 != (unsigned char) *p++)
4222 goto fail;
4223 }
4224 while (--mcnt);
4225 }
4226 else
4227 {
4228 do
4229 {
4230 PREFETCH ();
4231 if (*d++ != (char) *p++) goto fail;
4232 }
4233 while (--mcnt);
4234 }
4235 SET_REGS_MATCHED ();
4236 break;
4237
4238
4239 /* Match any character except possibly a newline or a null. */
4240 case anychar:
4241 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4242
4243 PREFETCH ();
4244
4245 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4246 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4247 goto fail;
4248
4249 SET_REGS_MATCHED ();
4250 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4251 d++;
4252 break;
4253
4254
4255 case charset:
4256 case charset_not:
4257 {
4258 register unsigned char c;
4259 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4260
4261 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4262
4263 PREFETCH ();
4264 c = TRANSLATE (*d); /* The character to match. */
4265
4266 /* Cast to `unsigned' instead of `unsigned char' in case the
4267 bit list is a full 32 bytes long. */
4268 if (c < (unsigned) (*p * BYTEWIDTH)
4269 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4270 not = !not;
4271
4272 p += 1 + *p;
4273
4274 if (!not) goto fail;
4275
4276 SET_REGS_MATCHED ();
4277 d++;
4278 break;
4279 }
4280
4281
4282 /* The beginning of a group is represented by start_memory.
4283 The arguments are the register number in the next byte, and the
4284 number of groups inner to this one in the next. The text
4285 matched within the group is recorded (in the internal
4286 registers data structure) under the register number. */
4287 case start_memory:
4288 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4289
4290 /* Find out if this group can match the empty string. */
4291 p1 = p; /* To send to group_match_null_string_p. */
4292
4293 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4294 REG_MATCH_NULL_STRING_P (reg_info[*p])
4295 = group_match_null_string_p (&p1, pend, reg_info);
4296
4297 /* Save the position in the string where we were the last time
4298 we were at this open-group operator in case the group is
4299 operated upon by a repetition operator, e.g., with `(a*)*b'
4300 against `ab'; then we want to ignore where we are now in
4301 the string in case this attempt to match fails. */
4302 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4303 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4304 : regstart[*p];
4305 DEBUG_PRINT2 (" old_regstart: %d\n",
4306 POINTER_TO_OFFSET (old_regstart[*p]));
4307
4308 regstart[*p] = d;
4309 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4310
4311 IS_ACTIVE (reg_info[*p]) = 1;
4312 MATCHED_SOMETHING (reg_info[*p]) = 0;
4313
4314 /* Clear this whenever we change the register activity status. */
4315 set_regs_matched_done = 0;
4316
4317 /* This is the new highest active register. */
4318 highest_active_reg = *p;
4319
4320 /* If nothing was active before, this is the new lowest active
4321 register. */
4322 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4323 lowest_active_reg = *p;
4324
4325 /* Move past the register number and inner group count. */
4326 p += 2;
4327 just_past_start_mem = p;
4328
4329 break;
4330
4331
4332 /* The stop_memory opcode represents the end of a group. Its
4333 arguments are the same as start_memory's: the register
4334 number, and the number of inner groups. */
4335 case stop_memory:
4336 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4337
4338 /* We need to save the string position the last time we were at
4339 this close-group operator in case the group is operated
4340 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4341 against `aba'; then we want to ignore where we are now in
4342 the string in case this attempt to match fails. */
4343 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4344 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4345 : regend[*p];
4346 DEBUG_PRINT2 (" old_regend: %d\n",
4347 POINTER_TO_OFFSET (old_regend[*p]));
4348
4349 regend[*p] = d;
4350 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4351
4352 /* This register isn't active anymore. */
4353 IS_ACTIVE (reg_info[*p]) = 0;
4354
4355 /* Clear this whenever we change the register activity status. */
4356 set_regs_matched_done = 0;
4357
4358 /* If this was the only register active, nothing is active
4359 anymore. */
4360 if (lowest_active_reg == highest_active_reg)
4361 {
4362 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4363 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4364 }
4365 else
4366 { /* We must scan for the new highest active register, since
4367 it isn't necessarily one less than now: consider
4368 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4369 new highest active register is 1. */
4370 unsigned char r = *p - 1;
4371 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4372 r--;
4373
4374 /* If we end up at register zero, that means that we saved
4375 the registers as the result of an `on_failure_jump', not
4376 a `start_memory', and we jumped to past the innermost
4377 `stop_memory'. For example, in ((.)*) we save
4378 registers 1 and 2 as a result of the *, but when we pop
4379 back to the second ), we are at the stop_memory 1.
4380 Thus, nothing is active. */
4381 if (r == 0)
4382 {
4383 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4384 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4385 }
4386 else
4387 highest_active_reg = r;
4388 }
4389
4390 /* If just failed to match something this time around with a
4391 group that's operated on by a repetition operator, try to
4392 force exit from the ``loop'', and restore the register
4393 information for this group that we had before trying this
4394 last match. */
4395 if ((!MATCHED_SOMETHING (reg_info[*p])
4396 || just_past_start_mem == p - 1)
4397 && (p + 2) < pend)
4398 {
4399 boolean is_a_jump_n = false;
4400
4401 p1 = p + 2;
4402 mcnt = 0;
4403 switch ((re_opcode_t) *p1++)
4404 {
4405 case jump_n:
4406 is_a_jump_n = true;
4407 case pop_failure_jump:
4408 case maybe_pop_jump:
4409 case jump:
4410 case dummy_failure_jump:
4411 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4412 if (is_a_jump_n)
4413 p1 += 2;
4414 break;
4415
4416 default:
4417 /* do nothing */ ;
4418 }
4419 p1 += mcnt;
4420
4421 /* If the next operation is a jump backwards in the pattern
4422 to an on_failure_jump right before the start_memory
4423 corresponding to this stop_memory, exit from the loop
4424 by forcing a failure after pushing on the stack the
4425 on_failure_jump's jump in the pattern, and d. */
4426 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4427 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4428 {
4429 /* If this group ever matched anything, then restore
4430 what its registers were before trying this last
4431 failed match, e.g., with `(a*)*b' against `ab' for
4432 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4433 against `aba' for regend[3].
4434
4435 Also restore the registers for inner groups for,
4436 e.g., `((a*)(b*))*' against `aba' (register 3 would
4437 otherwise get trashed). */
4438
4439 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4440 {
4441 unsigned r;
4442
4443 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4444
4445 /* Restore this and inner groups' (if any) registers. */
4446 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4447 r++)
4448 {
4449 regstart[r] = old_regstart[r];
4450
4451 /* xx why this test? */
4452 if (old_regend[r] >= regstart[r])
4453 regend[r] = old_regend[r];
4454 }
4455 }
4456 p1++;
4457 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4458 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4459
4460 goto fail;
4461 }
4462 }
4463
4464 /* Move past the register number and the inner group count. */
4465 p += 2;
4466 break;
4467
4468
4469 /* \<digit> has been turned into a `duplicate' command which is
4470 followed by the numeric value of <digit> as the register number. */
4471 case duplicate:
4472 {
4473 register const char *d2, *dend2;
4474 int regno = *p++; /* Get which register to match against. */
4475 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4476
4477 /* Can't back reference a group which we've never matched. */
4478 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4479 goto fail;
4480
4481 /* Where in input to try to start matching. */
4482 d2 = regstart[regno];
4483
4484 /* Where to stop matching; if both the place to start and
4485 the place to stop matching are in the same string, then
4486 set to the place to stop, otherwise, for now have to use
4487 the end of the first string. */
4488
4489 dend2 = ((FIRST_STRING_P (regstart[regno])
4490 == FIRST_STRING_P (regend[regno]))
4491 ? regend[regno] : end_match_1);
4492 for (;;)
4493 {
4494 /* If necessary, advance to next segment in register
4495 contents. */
4496 while (d2 == dend2)
4497 {
4498 if (dend2 == end_match_2) break;
4499 if (dend2 == regend[regno]) break;
4500
4501 /* End of string1 => advance to string2. */
4502 d2 = string2;
4503 dend2 = regend[regno];
4504 }
4505 /* At end of register contents => success */
4506 if (d2 == dend2) break;
4507
4508 /* If necessary, advance to next segment in data. */
4509 PREFETCH ();
4510
4511 /* How many characters left in this segment to match. */
4512 mcnt = dend - d;
4513
4514 /* Want how many consecutive characters we can match in
4515 one shot, so, if necessary, adjust the count. */
4516 if (mcnt > dend2 - d2)
4517 mcnt = dend2 - d2;
4518
4519 /* Compare that many; failure if mismatch, else move
4520 past them. */
4521 if (translate
4522 ? bcmp_translate (d, d2, mcnt, translate)
4523 : memcmp (d, d2, mcnt))
4524 goto fail;
4525 d += mcnt, d2 += mcnt;
4526
4527 /* Do this because we've match some characters. */
4528 SET_REGS_MATCHED ();
4529 }
4530 }
4531 break;
4532
4533
4534 /* begline matches the empty string at the beginning of the string
4535 (unless `not_bol' is set in `bufp'), and, if
4536 `newline_anchor' is set, after newlines. */
4537 case begline:
4538 DEBUG_PRINT1 ("EXECUTING begline.\n");
4539
4540 if (AT_STRINGS_BEG (d))
4541 {
4542 if (!bufp->not_bol) break;
4543 }
4544 else if (d[-1] == '\n' && bufp->newline_anchor)
4545 {
4546 break;
4547 }
4548 /* In all other cases, we fail. */
4549 goto fail;
4550
4551
4552 /* endline is the dual of begline. */
4553 case endline:
4554 DEBUG_PRINT1 ("EXECUTING endline.\n");
4555
4556 if (AT_STRINGS_END (d))
4557 {
4558 if (!bufp->not_eol) break;
4559 }
4560
4561 /* We have to ``prefetch'' the next character. */
4562 else if ((d == end1 ? *string2 : *d) == '\n'
4563 && bufp->newline_anchor)
4564 {
4565 break;
4566 }
4567 goto fail;
4568
4569
4570 /* Match at the very beginning of the data. */
4571 case begbuf:
4572 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4573 if (AT_STRINGS_BEG (d))
4574 break;
4575 goto fail;
4576
4577
4578 /* Match at the very end of the data. */
4579 case endbuf:
4580 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4581 if (AT_STRINGS_END (d))
4582 break;
4583 goto fail;
4584
4585
4586 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4587 pushes NULL as the value for the string on the stack. Then
4588 `pop_failure_point' will keep the current value for the
4589 string, instead of restoring it. To see why, consider
4590 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4591 then the . fails against the \n. But the next thing we want
4592 to do is match the \n against the \n; if we restored the
4593 string value, we would be back at the foo.
4594
4595 Because this is used only in specific cases, we don't need to
4596 check all the things that `on_failure_jump' does, to make
4597 sure the right things get saved on the stack. Hence we don't
4598 share its code. The only reason to push anything on the
4599 stack at all is that otherwise we would have to change
4600 `anychar's code to do something besides goto fail in this
4601 case; that seems worse than this. */
4602 case on_failure_keep_string_jump:
4603 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4604
4605 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4606#ifdef _LIBC
4607 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4608#else
4609 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4610#endif
4611
4612 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4613 break;
4614
4615
4616 /* Uses of on_failure_jump:
4617
4618 Each alternative starts with an on_failure_jump that points
4619 to the beginning of the next alternative. Each alternative
4620 except the last ends with a jump that in effect jumps past
4621 the rest of the alternatives. (They really jump to the
4622 ending jump of the following alternative, because tensioning
4623 these jumps is a hassle.)
4624
4625 Repeats start with an on_failure_jump that points past both
4626 the repetition text and either the following jump or
4627 pop_failure_jump back to this on_failure_jump. */
4628 case on_failure_jump:
4629 on_failure:
4630 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4631
4632 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4633#ifdef _LIBC
4634 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4635#else
4636 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4637#endif
4638
4639 /* If this on_failure_jump comes right before a group (i.e.,
4640 the original * applied to a group), save the information
4641 for that group and all inner ones, so that if we fail back
4642 to this point, the group's information will be correct.
4643 For example, in \(a*\)*\1, we need the preceding group,
4644 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4645
4646 /* We can't use `p' to check ahead because we push
4647 a failure point to `p + mcnt' after we do this. */
4648 p1 = p;
4649
4650 /* We need to skip no_op's before we look for the
4651 start_memory in case this on_failure_jump is happening as
4652 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4653 against aba. */
4654 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4655 p1++;
4656
4657 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4658 {
4659 /* We have a new highest active register now. This will
4660 get reset at the start_memory we are about to get to,
4661 but we will have saved all the registers relevant to
4662 this repetition op, as described above. */
4663 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4664 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4665 lowest_active_reg = *(p1 + 1);
4666 }
4667
4668 DEBUG_PRINT1 (":\n");
4669 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4670 break;
4671
4672
4673 /* A smart repeat ends with `maybe_pop_jump'.
4674 We change it to either `pop_failure_jump' or `jump'. */
4675 case maybe_pop_jump:
4676 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4677 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4678 {
4679 register unsigned char *p2 = p;
4680
4681 /* Compare the beginning of the repeat with what in the
4682 pattern follows its end. If we can establish that there
4683 is nothing that they would both match, i.e., that we
4684 would have to backtrack because of (as in, e.g., `a*a')
4685 then we can change to pop_failure_jump, because we'll
4686 never have to backtrack.
4687
4688 This is not true in the case of alternatives: in
4689 `(a|ab)*' we do need to backtrack to the `ab' alternative
4690 (e.g., if the string was `ab'). But instead of trying to
4691 detect that here, the alternative has put on a dummy
4692 failure point which is what we will end up popping. */
4693
4694 /* Skip over open/close-group commands.
4695 If what follows this loop is a ...+ construct,
4696 look at what begins its body, since we will have to
4697 match at least one of that. */
4698 while (1)
4699 {
4700 if (p2 + 2 < pend
4701 && ((re_opcode_t) *p2 == stop_memory
4702 || (re_opcode_t) *p2 == start_memory))
4703 p2 += 3;
4704 else if (p2 + 6 < pend
4705 && (re_opcode_t) *p2 == dummy_failure_jump)
4706 p2 += 6;
4707 else
4708 break;
4709 }
4710
4711 p1 = p + mcnt;
4712 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4713 to the `maybe_finalize_jump' of this case. Examine what
4714 follows. */
4715
4716 /* If we're at the end of the pattern, we can change. */
4717 if (p2 == pend)
4718 {
4719 /* Consider what happens when matching ":\(.*\)"
4720 against ":/". I don't really understand this code
4721 yet. */
4722 p[-3] = (unsigned char) pop_failure_jump;
4723 DEBUG_PRINT1
4724 (" End of pattern: change to `pop_failure_jump'.\n");
4725 }
4726
4727 else if ((re_opcode_t) *p2 == exactn
4728 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4729 {
4730 register unsigned char c
4731 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4732
4733 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4734 {
4735 p[-3] = (unsigned char) pop_failure_jump;
4736 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4737 c, p1[5]);
4738 }
4739
4740 else if ((re_opcode_t) p1[3] == charset
4741 || (re_opcode_t) p1[3] == charset_not)
4742 {
4743 int not = (re_opcode_t) p1[3] == charset_not;
4744
4745 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4746 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4747 not = !not;
4748
4749 /* `not' is equal to 1 if c would match, which means
4750 that we can't change to pop_failure_jump. */
4751 if (!not)
4752 {
4753 p[-3] = (unsigned char) pop_failure_jump;
4754 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4755 }
4756 }
4757 }
4758 else if ((re_opcode_t) *p2 == charset)
4759 {
4760#ifdef DEBUG
4761 register unsigned char c
4762 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4763#endif
4764
4765#if 0
4766 if ((re_opcode_t) p1[3] == exactn
4767 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4768 && (p2[2 + p1[5] / BYTEWIDTH]
4769 & (1 << (p1[5] % BYTEWIDTH)))))
4770#else
4771 if ((re_opcode_t) p1[3] == exactn
4772 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4773 && (p2[2 + p1[4] / BYTEWIDTH]
4774 & (1 << (p1[4] % BYTEWIDTH)))))
4775#endif
4776 {
4777 p[-3] = (unsigned char) pop_failure_jump;
4778 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4779 c, p1[5]);
4780 }
4781
4782 else if ((re_opcode_t) p1[3] == charset_not)
4783 {
4784 int idx;
4785 /* We win if the charset_not inside the loop
4786 lists every character listed in the charset after. */
4787 for (idx = 0; idx < (int) p2[1]; idx++)
4788 if (! (p2[2 + idx] == 0
4789 || (idx < (int) p1[4]
4790 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4791 break;
4792
4793 if (idx == p2[1])
4794 {
4795 p[-3] = (unsigned char) pop_failure_jump;
4796 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4797 }
4798 }
4799 else if ((re_opcode_t) p1[3] == charset)
4800 {
4801 int idx;
4802 /* We win if the charset inside the loop
4803 has no overlap with the one after the loop. */
4804 for (idx = 0;
4805 idx < (int) p2[1] && idx < (int) p1[4];
4806 idx++)
4807 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4808 break;
4809
4810 if (idx == p2[1] || idx == p1[4])
4811 {
4812 p[-3] = (unsigned char) pop_failure_jump;
4813 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4814 }
4815 }
4816 }
4817 }
4818 p -= 2; /* Point at relative address again. */
4819 if ((re_opcode_t) p[-1] != pop_failure_jump)
4820 {
4821 p[-1] = (unsigned char) jump;
4822 DEBUG_PRINT1 (" Match => jump.\n");
4823 goto unconditional_jump;
4824 }
4825 /* Note fall through. */
4826
4827
4828 /* The end of a simple repeat has a pop_failure_jump back to
4829 its matching on_failure_jump, where the latter will push a
4830 failure point. The pop_failure_jump takes off failure
4831 points put on by this pop_failure_jump's matching
4832 on_failure_jump; we got through the pattern to here from the
4833 matching on_failure_jump, so didn't fail. */
4834 case pop_failure_jump:
4835 {
4836 /* We need to pass separate storage for the lowest and
4837 highest registers, even though we don't care about the
4838 actual values. Otherwise, we will restore only one
4839 register from the stack, since lowest will == highest in
4840 `pop_failure_point'. */
4841 active_reg_t dummy_low_reg, dummy_high_reg;
4842 unsigned char *pdummy;
4843 const char *sdummy;
4844
4845 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4846 POP_FAILURE_POINT (sdummy, pdummy,
4847 dummy_low_reg, dummy_high_reg,
4848 reg_dummy, reg_dummy, reg_info_dummy);
4849 }
4850 /* Note fall through. */
4851
4852 unconditional_jump:
4853#ifdef _LIBC
4854 DEBUG_PRINT2 ("\n%p: ", p);
4855#else
4856 DEBUG_PRINT2 ("\n0x%x: ", p);
4857#endif
4858 /* Note fall through. */
4859
4860 /* Unconditionally jump (without popping any failure points). */
4861 case jump:
4862 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4863 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4864 p += mcnt; /* Do the jump. */
4865#ifdef _LIBC
4866 DEBUG_PRINT2 ("(to %p).\n", p);
4867#else
4868 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4869#endif
4870 break;
4871
4872
4873 /* We need this opcode so we can detect where alternatives end
4874 in `group_match_null_string_p' et al. */
4875 case jump_past_alt:
4876 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4877 goto unconditional_jump;
4878
4879
4880 /* Normally, the on_failure_jump pushes a failure point, which
4881 then gets popped at pop_failure_jump. We will end up at
4882 pop_failure_jump, also, and with a pattern of, say, `a+', we
4883 are skipping over the on_failure_jump, so we have to push
4884 something meaningless for pop_failure_jump to pop. */
4885 case dummy_failure_jump:
4886 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4887 /* It doesn't matter what we push for the string here. What
4888 the code at `fail' tests is the value for the pattern. */
4889 PUSH_FAILURE_POINT (NULL, NULL, -2);
4890 goto unconditional_jump;
4891
4892
4893 /* At the end of an alternative, we need to push a dummy failure
4894 point in case we are followed by a `pop_failure_jump', because
4895 we don't want the failure point for the alternative to be
4896 popped. For example, matching `(a|ab)*' against `aab'
4897 requires that we match the `ab' alternative. */
4898 case push_dummy_failure:
4899 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4900 /* See comments just above at `dummy_failure_jump' about the
4901 two zeroes. */
4902 PUSH_FAILURE_POINT (NULL, NULL, -2);
4903 break;
4904
4905 /* Have to succeed matching what follows at least n times.
4906 After that, handle like `on_failure_jump'. */
4907 case succeed_n:
4908 EXTRACT_NUMBER (mcnt, p + 2);
4909 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4910
4911 assert (mcnt >= 0);
4912 /* Originally, this is how many times we HAVE to succeed. */
4913 if (mcnt > 0)
4914 {
4915 mcnt--;
4916 p += 2;
4917 STORE_NUMBER_AND_INCR (p, mcnt);
4918#ifdef _LIBC
4919 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4920#else
4921 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4922#endif
4923 }
4924 else if (mcnt == 0)
4925 {
4926#ifdef _LIBC
4927 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4928#else
4929 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4930#endif
4931 p[2] = (unsigned char) no_op;
4932 p[3] = (unsigned char) no_op;
4933 goto on_failure;
4934 }
4935 break;
4936
4937 case jump_n:
4938 EXTRACT_NUMBER (mcnt, p + 2);
4939 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4940
4941 /* Originally, this is how many times we CAN jump. */
4942 if (mcnt)
4943 {
4944 mcnt--;
4945 STORE_NUMBER (p + 2, mcnt);
4946#ifdef _LIBC
4947 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4948#else
4949 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4950#endif
4951 goto unconditional_jump;
4952 }
4953 /* If don't have to jump any more, skip over the rest of command. */
4954 else
4955 p += 4;
4956 break;
4957
4958 case set_number_at:
4959 {
4960 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4961
4962 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4963 p1 = p + mcnt;
4964 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4965#ifdef _LIBC
4966 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4967#else
4968 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4969#endif
4970 STORE_NUMBER (p1, mcnt);
4971 break;
4972 }
4973
4974#if 0
4975 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4976 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4977 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4978 macro and introducing temporary variables works around the bug. */
4979
4980 case wordbound:
4981 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4982 if (AT_WORD_BOUNDARY (d))
4983 break;
4984 goto fail;
4985
4986 case notwordbound:
4987 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4988 if (AT_WORD_BOUNDARY (d))
4989 goto fail;
4990 break;
4991#else
4992 case wordbound:
4993 {
4994 boolean prevchar, thischar;
4995
4996 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4997 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4998 break;
4999
5000 prevchar = WORDCHAR_P (d - 1);
5001 thischar = WORDCHAR_P (d);
5002 if (prevchar != thischar)
5003 break;
5004 goto fail;
5005 }
5006
5007 case notwordbound:
5008 {
5009 boolean prevchar, thischar;
5010
5011 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5012 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5013 goto fail;
5014
5015 prevchar = WORDCHAR_P (d - 1);
5016 thischar = WORDCHAR_P (d);
5017 if (prevchar != thischar)
5018 goto fail;
5019 break;
5020 }
5021#endif
5022
5023 case wordbeg:
5024 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5025 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5026 break;
5027 goto fail;
5028
5029 case wordend:
5030 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5031 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5032 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5033 break;
5034 goto fail;
5035
5036#ifdef emacs
5037 case before_dot:
5038 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5039 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5040 goto fail;
5041 break;
5042
5043 case at_dot:
5044 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5045 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5046 goto fail;
5047 break;
5048
5049 case after_dot:
5050 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5051 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5052 goto fail;
5053 break;
5054
5055 case syntaxspec:
5056 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5057 mcnt = *p++;
5058 goto matchsyntax;
5059
5060 case wordchar:
5061 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5062 mcnt = (int) Sword;
5063 matchsyntax:
5064 PREFETCH ();
5065 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5066 d++;
5067 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5068 goto fail;
5069 SET_REGS_MATCHED ();
5070 break;
5071
5072 case notsyntaxspec:
5073 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5074 mcnt = *p++;
5075 goto matchnotsyntax;
5076
5077 case notwordchar:
5078 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5079 mcnt = (int) Sword;
5080 matchnotsyntax:
5081 PREFETCH ();
5082 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5083 d++;
5084 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5085 goto fail;
5086 SET_REGS_MATCHED ();
5087 break;
5088
5089#else /* not emacs */
5090 case wordchar:
5091 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5092 PREFETCH ();
5093 if (!WORDCHAR_P (d))
5094 goto fail;
5095 SET_REGS_MATCHED ();
5096 d++;
5097 break;
5098
5099 case notwordchar:
5100 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5101 PREFETCH ();
5102 if (WORDCHAR_P (d))
5103 goto fail;
5104 SET_REGS_MATCHED ();
5105 d++;
5106 break;
5107#endif /* not emacs */
5108
5109 default:
5110 abort ();
5111 }
5112 continue; /* Successfully executed one pattern command; keep going. */
5113
5114
5115 /* We goto here if a matching operation fails. */
5116 fail:
5117 if (!FAIL_STACK_EMPTY ())
5118 { /* A restart point is known. Restore to that state. */
5119 DEBUG_PRINT1 ("\nFAIL:\n");
5120 POP_FAILURE_POINT (d, p,
5121 lowest_active_reg, highest_active_reg,
5122 regstart, regend, reg_info);
5123
5124 /* If this failure point is a dummy, try the next one. */
5125 if (!p)
5126 goto fail;
5127
5128 /* If we failed to the end of the pattern, don't examine *p. */
5129 assert (p <= pend);
5130 if (p < pend)
5131 {
5132 boolean is_a_jump_n = false;
5133
5134 /* If failed to a backwards jump that's part of a repetition
5135 loop, need to pop this failure point and use the next one. */
5136 switch ((re_opcode_t) *p)
5137 {
5138 case jump_n:
5139 is_a_jump_n = true;
5140 case maybe_pop_jump:
5141 case pop_failure_jump:
5142 case jump:
5143 p1 = p + 1;
5144 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5145 p1 += mcnt;
5146
5147 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5148 || (!is_a_jump_n
5149 && (re_opcode_t) *p1 == on_failure_jump))
5150 goto fail;
5151 break;
5152 default:
5153 /* do nothing */ ;
5154 }
5155 }
5156
5157 if (d >= string1 && d <= end1)
5158 dend = end_match_1;
5159 }
5160 else
5161 break; /* Matching at this starting point really fails. */
5162 } /* for (;;) */
5163
5164 if (best_regs_set)
5165 goto restore_best_regs;
5166
5167 FREE_VARIABLES ();
5168
5169 return -1; /* Failure to match. */
5170} /* re_match_2 */
5171\f
5172/* Subroutine definitions for re_match_2. */
5173
5174
5175/* We are passed P pointing to a register number after a start_memory.
5176
5177 Return true if the pattern up to the corresponding stop_memory can
5178 match the empty string, and false otherwise.
5179
5180 If we find the matching stop_memory, sets P to point to one past its number.
5181 Otherwise, sets P to an undefined byte less than or equal to END.
5182
5183 We don't handle duplicates properly (yet). */
5184
5185static boolean
5186group_match_null_string_p (p, end, reg_info)
5187 unsigned char **p, *end;
5188 register_info_type *reg_info;
5189{
5190 int mcnt;
5191 /* Point to after the args to the start_memory. */
5192 unsigned char *p1 = *p + 2;
5193
5194 while (p1 < end)
5195 {
5196 /* Skip over opcodes that can match nothing, and return true or
5197 false, as appropriate, when we get to one that can't, or to the
5198 matching stop_memory. */
5199
5200 switch ((re_opcode_t) *p1)
5201 {
5202 /* Could be either a loop or a series of alternatives. */
5203 case on_failure_jump:
5204 p1++;
5205 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5206
5207 /* If the next operation is not a jump backwards in the
5208 pattern. */
5209
5210 if (mcnt >= 0)
5211 {
5212 /* Go through the on_failure_jumps of the alternatives,
5213 seeing if any of the alternatives cannot match nothing.
5214 The last alternative starts with only a jump,
5215 whereas the rest start with on_failure_jump and end
5216 with a jump, e.g., here is the pattern for `a|b|c':
5217
5218 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5219 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5220 /exactn/1/c
5221
5222 So, we have to first go through the first (n-1)
5223 alternatives and then deal with the last one separately. */
5224
5225
5226 /* Deal with the first (n-1) alternatives, which start
5227 with an on_failure_jump (see above) that jumps to right
5228 past a jump_past_alt. */
5229
5230 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5231 {
5232 /* `mcnt' holds how many bytes long the alternative
5233 is, including the ending `jump_past_alt' and
5234 its number. */
5235
5236 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5237 reg_info))
5238 return false;
5239
5240 /* Move to right after this alternative, including the
5241 jump_past_alt. */
5242 p1 += mcnt;
5243
5244 /* Break if it's the beginning of an n-th alternative
5245 that doesn't begin with an on_failure_jump. */
5246 if ((re_opcode_t) *p1 != on_failure_jump)
5247 break;
5248
5249 /* Still have to check that it's not an n-th
5250 alternative that starts with an on_failure_jump. */
5251 p1++;
5252 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5253 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5254 {
5255 /* Get to the beginning of the n-th alternative. */
5256 p1 -= 3;
5257 break;
5258 }
5259 }
5260
5261 /* Deal with the last alternative: go back and get number
5262 of the `jump_past_alt' just before it. `mcnt' contains
5263 the length of the alternative. */
5264 EXTRACT_NUMBER (mcnt, p1 - 2);
5265
5266 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5267 return false;
5268
5269 p1 += mcnt; /* Get past the n-th alternative. */
5270 } /* if mcnt > 0 */
5271 break;
5272
5273
5274 case stop_memory:
5275 assert (p1[1] == **p);
5276 *p = p1 + 2;
5277 return true;
5278
5279
5280 default:
5281 if (!common_op_match_null_string_p (&p1, end, reg_info))
5282 return false;
5283 }
5284 } /* while p1 < end */
5285
5286 return false;
5287} /* group_match_null_string_p */
5288
5289
5290/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5291 It expects P to be the first byte of a single alternative and END one
5292 byte past the last. The alternative can contain groups. */
5293
5294static boolean
5295alt_match_null_string_p (p, end, reg_info)
5296 unsigned char *p, *end;
5297 register_info_type *reg_info;
5298{
5299 int mcnt;
5300 unsigned char *p1 = p;
5301
5302 while (p1 < end)
5303 {
5304 /* Skip over opcodes that can match nothing, and break when we get
5305 to one that can't. */
5306
5307 switch ((re_opcode_t) *p1)
5308 {
5309 /* It's a loop. */
5310 case on_failure_jump:
5311 p1++;
5312 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5313 p1 += mcnt;
5314 break;
5315
5316 default:
5317 if (!common_op_match_null_string_p (&p1, end, reg_info))
5318 return false;
5319 }
5320 } /* while p1 < end */
5321
5322 return true;
5323} /* alt_match_null_string_p */
5324
5325
5326/* Deals with the ops common to group_match_null_string_p and
5327 alt_match_null_string_p.
5328
5329 Sets P to one after the op and its arguments, if any. */
5330
5331static boolean
5332common_op_match_null_string_p (p, end, reg_info)
5333 unsigned char **p, *end;
5334 register_info_type *reg_info;
5335{
5336 int mcnt;
5337 boolean ret;
5338 int reg_no;
5339 unsigned char *p1 = *p;
5340
5341 switch ((re_opcode_t) *p1++)
5342 {
5343 case no_op:
5344 case begline:
5345 case endline:
5346 case begbuf:
5347 case endbuf:
5348 case wordbeg:
5349 case wordend:
5350 case wordbound:
5351 case notwordbound:
5352#ifdef emacs
5353 case before_dot:
5354 case at_dot:
5355 case after_dot:
5356#endif
5357 break;
5358
5359 case start_memory:
5360 reg_no = *p1;
5361 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5362 ret = group_match_null_string_p (&p1, end, reg_info);
5363
5364 /* Have to set this here in case we're checking a group which
5365 contains a group and a back reference to it. */
5366
5367 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5368 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5369
5370 if (!ret)
5371 return false;
5372 break;
5373
5374 /* If this is an optimized succeed_n for zero times, make the jump. */
5375 case jump:
5376 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5377 if (mcnt >= 0)
5378 p1 += mcnt;
5379 else
5380 return false;
5381 break;
5382
5383 case succeed_n:
5384 /* Get to the number of times to succeed. */
5385 p1 += 2;
5386 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5387
5388 if (mcnt == 0)
5389 {
5390 p1 -= 4;
5391 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5392 p1 += mcnt;
5393 }
5394 else
5395 return false;
5396 break;
5397
5398 case duplicate:
5399 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5400 return false;
5401 break;
5402
5403 case set_number_at:
5404 p1 += 4;
5405
5406 default:
5407 /* All other opcodes mean we cannot match the empty string. */
5408 return false;
5409 }
5410
5411 *p = p1;
5412 return true;
5413} /* common_op_match_null_string_p */
5414
5415
5416/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5417 bytes; nonzero otherwise. */
5418
5419static int
5420bcmp_translate (s1, s2, len, translate)
5421 const char *s1, *s2;
5422 register int len;
5423 RE_TRANSLATE_TYPE translate;
5424{
5425 register const unsigned char *p1 = (const unsigned char *) s1;
5426 register const unsigned char *p2 = (const unsigned char *) s2;
5427 while (len)
5428 {
5429 if (translate[*p1++] != translate[*p2++]) return 1;
5430 len--;
5431 }
5432 return 0;
5433}
5434\f
5435/* Entry points for GNU code. */
5436
5437/* re_compile_pattern is the GNU regular expression compiler: it
5438 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5439 Returns 0 if the pattern was valid, otherwise an error string.
5440
5441 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5442 are set in BUFP on entry.
5443
5444 We call regex_compile to do the actual compilation. */
5445
5446const char *
5447re_compile_pattern (pattern, length, bufp)
5448 const char *pattern;
5449 size_t length;
5450 struct re_pattern_buffer *bufp;
5451{
5452 reg_errcode_t ret;
5453
5454 /* GNU code is written to assume at least RE_NREGS registers will be set
5455 (and at least one extra will be -1). */
5456 bufp->regs_allocated = REGS_UNALLOCATED;
5457
5458 /* And GNU code determines whether or not to get register information
5459 by passing null for the REGS argument to re_match, etc., not by
5460 setting no_sub. */
5461 bufp->no_sub = 0;
5462
5463 /* Match anchors at newline. */
5464 bufp->newline_anchor = 1;
5465
5466 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5467
5468 if (!ret)
5469 return NULL;
5470 return gettext (re_error_msgid[(int) ret]);
5471}
5472#ifdef _LIBC
5473weak_alias (__re_compile_pattern, re_compile_pattern)
5474#endif
5475\f
5476/* Entry points compatible with 4.2 BSD regex library. We don't define
5477 them unless specifically requested. */
5478
5479#if defined _REGEX_RE_COMP || defined _LIBC
5480
5481/* BSD has one and only one pattern buffer. */
5482static struct re_pattern_buffer re_comp_buf;
5483
5484char *
5485#ifdef _LIBC
5486/* Make these definitions weak in libc, so POSIX programs can redefine
5487 these names if they don't use our functions, and still use
5488 regcomp/regexec below without link errors. */
5489weak_function
5490#endif
5491re_comp (s)
5492 const char *s;
5493{
5494 reg_errcode_t ret;
5495
5496 if (!s)
5497 {
5498 if (!re_comp_buf.buffer)
5499 return gettext ("No previous regular expression");
5500 return 0;
5501 }
5502
5503 if (!re_comp_buf.buffer)
5504 {
5505 re_comp_buf.buffer = (unsigned char *) malloc (200);
5506 if (re_comp_buf.buffer == NULL)
5507 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5508 re_comp_buf.allocated = 200;
5509
5510 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5511 if (re_comp_buf.fastmap == NULL)
5512 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5513 }
5514
5515 /* Since `re_exec' always passes NULL for the `regs' argument, we
5516 don't need to initialize the pattern buffer fields which affect it. */
5517
5518 /* Match anchors at newlines. */
5519 re_comp_buf.newline_anchor = 1;
5520
5521 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5522
5523 if (!ret)
5524 return NULL;
5525
5526 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5527 return (char *) gettext (re_error_msgid[(int) ret]);
5528}
5529
5530
5531int
5532#ifdef _LIBC
5533weak_function
5534#endif
5535re_exec (s)
5536 const char *s;
5537{
5538 const int len = strlen (s);
5539 return
5540 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5541}
5542
5543#endif /* _REGEX_RE_COMP */
5544\f
5545/* POSIX.2 functions. Don't define these for Emacs. */
5546
5547#ifndef emacs
5548
5549/* regcomp takes a regular expression as a string and compiles it.
5550
5551 PREG is a regex_t *. We do not expect any fields to be initialized,
5552 since POSIX says we shouldn't. Thus, we set
5553
5554 `buffer' to the compiled pattern;
5555 `used' to the length of the compiled pattern;
5556 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5557 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5558 RE_SYNTAX_POSIX_BASIC;
5559 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5560 `fastmap' and `fastmap_accurate' to zero;
5561 `re_nsub' to the number of subexpressions in PATTERN.
5562
5563 PATTERN is the address of the pattern string.
5564
5565 CFLAGS is a series of bits which affect compilation.
5566
5567 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5568 use POSIX basic syntax.
5569
5570 If REG_NEWLINE is set, then . and [^...] don't match newline.
5571 Also, regexec will try a match beginning after every newline.
5572
5573 If REG_ICASE is set, then we considers upper- and lowercase
5574 versions of letters to be equivalent when matching.
5575
5576 If REG_NOSUB is set, then when PREG is passed to regexec, that
5577 routine will report only success or failure, and nothing about the
5578 registers.
5579
5580 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5581 the return codes and their meanings.) */
5582
5583int
5584regcomp (preg, pattern, cflags)
5585 regex_t *preg;
5586 const char *pattern;
5587 int cflags;
5588{
5589 reg_errcode_t ret;
5590 reg_syntax_t syntax
5591 = (cflags & REG_EXTENDED) ?
5592 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5593
5594 /* regex_compile will allocate the space for the compiled pattern. */
5595 preg->buffer = 0;
5596 preg->allocated = 0;
5597 preg->used = 0;
5598
5599 /* Don't bother to use a fastmap when searching. This simplifies the
5600 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5601 characters after newlines into the fastmap. This way, we just try
5602 every character. */
5603 preg->fastmap = 0;
5604
5605 if (cflags & REG_ICASE)
5606 {
5607 unsigned i;
5608
5609 preg->translate
5610 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5611 * sizeof (*(RE_TRANSLATE_TYPE)0));
5612 if (preg->translate == NULL)
5613 return (int) REG_ESPACE;
5614
5615 /* Map uppercase characters to corresponding lowercase ones. */
5616 for (i = 0; i < CHAR_SET_SIZE; i++)
5617 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5618 }
5619 else
5620 preg->translate = NULL;
5621
5622 /* If REG_NEWLINE is set, newlines are treated differently. */
5623 if (cflags & REG_NEWLINE)
5624 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5625 syntax &= ~RE_DOT_NEWLINE;
5626 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5627 /* It also changes the matching behavior. */
5628 preg->newline_anchor = 1;
5629 }
5630 else
5631 preg->newline_anchor = 0;
5632
5633 preg->no_sub = !!(cflags & REG_NOSUB);
5634
5635 /* POSIX says a null character in the pattern terminates it, so we
5636 can use strlen here in compiling the pattern. */
5637 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5638
5639 /* POSIX doesn't distinguish between an unmatched open-group and an
5640 unmatched close-group: both are REG_EPAREN. */
5641 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5642
5643 return (int) ret;
5644}
5645#ifdef _LIBC
5646weak_alias (__regcomp, regcomp)
5647#endif
5648
5649
5650/* regexec searches for a given pattern, specified by PREG, in the
5651 string STRING.
5652
5653 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5654 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5655 least NMATCH elements, and we set them to the offsets of the
5656 corresponding matched substrings.
5657
5658 EFLAGS specifies `execution flags' which affect matching: if
5659 REG_NOTBOL is set, then ^ does not match at the beginning of the
5660 string; if REG_NOTEOL is set, then $ does not match at the end.
5661
5662 We return 0 if we find a match and REG_NOMATCH if not. */
5663
5664int
5665regexec (preg, string, nmatch, pmatch, eflags)
5666 const regex_t *preg;
5667 const char *string;
5668 size_t nmatch;
5669 regmatch_t pmatch[];
5670 int eflags;
5671{
5672 int ret;
5673 struct re_registers regs;
5674 regex_t private_preg;
5675 int len = strlen (string);
5676 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5677
5678 private_preg = *preg;
5679
5680 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5681 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5682
5683 /* The user has told us exactly how many registers to return
5684 information about, via `nmatch'. We have to pass that on to the
5685 matching routines. */
5686 private_preg.regs_allocated = REGS_FIXED;
5687
5688 if (want_reg_info)
5689 {
5690 regs.num_regs = nmatch;
5691 regs.start = TALLOC (nmatch, regoff_t);
5692 regs.end = TALLOC (nmatch, regoff_t);
5693 if (regs.start == NULL || regs.end == NULL)
5694 return (int) REG_NOMATCH;
5695 }
5696
5697 /* Perform the searching operation. */
5698 ret = re_search (&private_preg, string, len,
5699 /* start: */ 0, /* range: */ len,
5700 want_reg_info ? &regs : (struct re_registers *) 0);
5701
5702 /* Copy the register information to the POSIX structure. */
5703 if (want_reg_info)
5704 {
5705 if (ret >= 0)
5706 {
5707 unsigned r;
5708
5709 for (r = 0; r < nmatch; r++)
5710 {
5711 pmatch[r].rm_so = regs.start[r];
5712 pmatch[r].rm_eo = regs.end[r];
5713 }
5714 }
5715
5716 /* If we needed the temporary register info, free the space now. */
5717 free (regs.start);
5718 free (regs.end);
5719 }
5720
5721 /* We want zero return to mean success, unlike `re_search'. */
5722 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5723}
5724#ifdef _LIBC
5725weak_alias (__regexec, regexec)
5726#endif
5727
5728
5729/* Returns a message corresponding to an error code, ERRCODE, returned
5730 from either regcomp or regexec. We don't use PREG here. */
5731
5732size_t
f25d2425 5733regerror (errcode, preg, errbuf, errbuf_size)
c906108c
SS
5734 int errcode;
5735 const regex_t *preg;
5736 char *errbuf;
5737 size_t errbuf_size;
5738{
5739 const char *msg;
5740 size_t msg_size;
5741
5742 if (errcode < 0
5743 || errcode >= (int) (sizeof (re_error_msgid)
5744 / sizeof (re_error_msgid[0])))
5745 /* Only error codes returned by the rest of the code should be passed
5746 to this routine. If we are given anything else, or if other regex
5747 code generates an invalid error code, then the program has a bug.
5748 Dump core so we can fix it. */
5749 abort ();
5750
5751 msg = gettext (re_error_msgid[errcode]);
5752
5753 msg_size = strlen (msg) + 1; /* Includes the null. */
5754
5755 if (errbuf_size != 0)
5756 {
5757 if (msg_size > errbuf_size)
5758 {
5759#if defined HAVE_MEMPCPY || defined _LIBC
5760 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5761#else
5762 memcpy (errbuf, msg, errbuf_size - 1);
5763 errbuf[errbuf_size - 1] = 0;
5764#endif
5765 }
5766 else
5767 memcpy (errbuf, msg, msg_size);
5768 }
5769
5770 return msg_size;
5771}
5772#ifdef _LIBC
5773weak_alias (__regerror, regerror)
5774#endif
5775
5776
5777/* Free dynamically allocated space used by PREG. */
5778
5779void
5780regfree (preg)
5781 regex_t *preg;
5782{
5783 if (preg->buffer != NULL)
5784 free (preg->buffer);
5785 preg->buffer = NULL;
5786
5787 preg->allocated = 0;
5788 preg->used = 0;
5789
5790 if (preg->fastmap != NULL)
5791 free (preg->fastmap);
5792 preg->fastmap = NULL;
5793 preg->fastmap_accurate = 0;
5794
5795 if (preg->translate != NULL)
5796 free (preg->translate);
5797 preg->translate = NULL;
5798}
5799#ifdef _LIBC
5800weak_alias (__regfree, regfree)
5801#endif
5802
5803#endif /* not emacs */