]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
* hppa-tdep.c (init_extra_frame_info): Correctly adjust the base
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
66a1aa07
SG
1/* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
37#include <sys/dir.h>
38#include <signal.h>
39#include <sys/ioctl.h>
40
41#ifdef COFF_ENCAPSULATE
42#include "a.out.encap.h"
43#else
44#include <a.out.h>
45#endif
46#ifndef N_SET_MAGIC
47#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48#endif
49
50/*#include <sys/user.h> After a.out.h */
51#include <sys/file.h>
52#include <sys/stat.h>
53#include <machine/psl.h>
54#include "wait.h"
55
56#include "gdbcore.h"
57#include "gdbcmd.h"
58#include "target.h"
59#include "symfile.h"
60#include "objfiles.h"
61
62static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63static int hppa_alignof PARAMS ((struct type *arg));
8966221d
JK
64static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame,
65 struct unwind_table_entry *u));
8fa74880 66CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
66a1aa07
SG
67
68\f
69/* Routines to extract various sized constants out of hppa
70 instructions. */
71
72/* This assumes that no garbage lies outside of the lower bits of
73 value. */
74
75int
76sign_extend (val, bits)
77 unsigned val, bits;
78{
79 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
80}
81
82/* For many immediate values the sign bit is the low bit! */
83
84int
85low_sign_extend (val, bits)
86 unsigned val, bits;
87{
88 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
89}
90/* extract the immediate field from a ld{bhw}s instruction */
91
92unsigned
93get_field (val, from, to)
94 unsigned val, from, to;
95{
96 val = val >> 31 - to;
97 return val & ((1 << 32 - from) - 1);
98}
99
100unsigned
101set_field (val, from, to, new_val)
102 unsigned *val, from, to;
103{
104 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
105 return *val = *val & mask | (new_val << (31 - from));
106}
107
108/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
109
110extract_3 (word)
111 unsigned word;
112{
113 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
114}
115
116extract_5_load (word)
117 unsigned word;
118{
119 return low_sign_extend (word >> 16 & MASK_5, 5);
120}
121
122/* extract the immediate field from a st{bhw}s instruction */
123
124int
125extract_5_store (word)
126 unsigned word;
127{
128 return low_sign_extend (word & MASK_5, 5);
129}
130
68c8d698
SG
131/* extract the immediate field from a break instruction */
132
133unsigned
134extract_5r_store (word)
135 unsigned word;
136{
137 return (word & MASK_5);
138}
139
140/* extract the immediate field from a {sr}sm instruction */
141
142unsigned
143extract_5R_store (word)
144 unsigned word;
145{
146 return (word >> 16 & MASK_5);
147}
148
66a1aa07
SG
149/* extract an 11 bit immediate field */
150
151int
152extract_11 (word)
153 unsigned word;
154{
155 return low_sign_extend (word & MASK_11, 11);
156}
157
158/* extract a 14 bit immediate field */
159
160int
161extract_14 (word)
162 unsigned word;
163{
164 return low_sign_extend (word & MASK_14, 14);
165}
166
167/* deposit a 14 bit constant in a word */
168
169unsigned
170deposit_14 (opnd, word)
171 int opnd;
172 unsigned word;
173{
174 unsigned sign = (opnd < 0 ? 1 : 0);
175
176 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
177}
178
179/* extract a 21 bit constant */
180
181int
182extract_21 (word)
183 unsigned word;
184{
185 int val;
186
187 word &= MASK_21;
188 word <<= 11;
189 val = GET_FIELD (word, 20, 20);
190 val <<= 11;
191 val |= GET_FIELD (word, 9, 19);
192 val <<= 2;
193 val |= GET_FIELD (word, 5, 6);
194 val <<= 5;
195 val |= GET_FIELD (word, 0, 4);
196 val <<= 2;
197 val |= GET_FIELD (word, 7, 8);
198 return sign_extend (val, 21) << 11;
199}
200
201/* deposit a 21 bit constant in a word. Although 21 bit constants are
202 usually the top 21 bits of a 32 bit constant, we assume that only
203 the low 21 bits of opnd are relevant */
204
205unsigned
206deposit_21 (opnd, word)
207 unsigned opnd, word;
208{
209 unsigned val = 0;
210
211 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
214 val <<= 2;
215 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
216 val <<= 11;
217 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
218 val <<= 1;
219 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
220 return word | val;
221}
222
223/* extract a 12 bit constant from branch instructions */
224
225int
226extract_12 (word)
227 unsigned word;
228{
229 return sign_extend (GET_FIELD (word, 19, 28) |
230 GET_FIELD (word, 29, 29) << 10 |
231 (word & 0x1) << 11, 12) << 2;
232}
233
234/* extract a 17 bit constant from branch instructions, returning the
235 19 bit signed value. */
236
237int
238extract_17 (word)
239 unsigned word;
240{
241 return sign_extend (GET_FIELD (word, 19, 28) |
242 GET_FIELD (word, 29, 29) << 10 |
243 GET_FIELD (word, 11, 15) << 11 |
244 (word & 0x1) << 16, 17) << 2;
245}
246\f
66a1aa07
SG
247/* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
251
252static struct unwind_table_entry *
253find_unwind_entry(pc)
254 CORE_ADDR pc;
255{
256 int first, middle, last;
257 struct objfile *objfile;
258
259 ALL_OBJFILES (objfile)
260 {
261 struct obj_unwind_info *ui;
262
263 ui = OBJ_UNWIND_INFO (objfile);
264
265 if (!ui)
266 continue;
267
268 /* First, check the cache */
269
270 if (ui->cache
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
273 return ui->cache;
274
275 /* Not in the cache, do a binary search */
276
277 first = 0;
278 last = ui->last;
279
280 while (first <= last)
281 {
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
285 {
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
288 }
289
290 if (pc < ui->table[middle].region_start)
291 last = middle - 1;
292 else
293 first = middle + 1;
294 }
295 } /* ALL_OBJFILES() */
296 return NULL;
297}
298
5ac7f56e
JK
299/* Called when no unwind descriptor was found for PC. Returns 1 if it
300 appears that PC is in a linker stub. */
301static int pc_in_linker_stub PARAMS ((CORE_ADDR));
302
303static int
304pc_in_linker_stub (pc)
305 CORE_ADDR pc;
306{
5ac7f56e
JK
307 int found_magic_instruction = 0;
308 int i;
08ecd8f3
JK
309 char buf[4];
310
311 /* If unable to read memory, assume pc is not in a linker stub. */
312 if (target_read_memory (pc, buf, 4) != 0)
313 return 0;
5ac7f56e 314
d08c6f4c
JK
315 /* We are looking for something like
316
317 ; $$dyncall jams RP into this special spot in the frame (RP')
318 ; before calling the "call stub"
319 ldw -18(sp),rp
320
321 ldsid (rp),r1 ; Get space associated with RP into r1
322 mtsp r1,sp ; Move it into space register 0
323 be,n 0(sr0),rp) ; back to your regularly scheduled program
324 */
325
5ac7f56e
JK
326 /* Maximum known linker stub size is 4 instructions. Search forward
327 from the given PC, then backward. */
328 for (i = 0; i < 4; i++)
329 {
6e35b037 330 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
331
332 if (find_unwind_entry (pc + i * 4) != 0)
333 break;
334
335 /* Check for ldsid (rp),r1 which is the magic instruction for a
336 return from a cross-space function call. */
337 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
338 {
339 found_magic_instruction = 1;
340 break;
341 }
342 /* Add code to handle long call/branch and argument relocation stubs
343 here. */
344 }
345
346 if (found_magic_instruction != 0)
347 return 1;
348
349 /* Now look backward. */
350 for (i = 0; i < 4; i++)
351 {
6e35b037 352 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
353
354 if (find_unwind_entry (pc - i * 4) != 0)
355 break;
356
357 /* Check for ldsid (rp),r1 which is the magic instruction for a
358 return from a cross-space function call. */
359 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
360 {
361 found_magic_instruction = 1;
362 break;
363 }
364 /* Add code to handle long call/branch and argument relocation stubs
365 here. */
366 }
367 return found_magic_instruction;
368}
369
66a1aa07
SG
370static int
371find_return_regnum(pc)
372 CORE_ADDR pc;
373{
374 struct unwind_table_entry *u;
375
376 u = find_unwind_entry (pc);
377
378 if (!u)
379 return RP_REGNUM;
380
381 if (u->Millicode)
382 return 31;
383
384 return RP_REGNUM;
385}
386
5ac7f56e 387/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07
SG
388int
389find_proc_framesize(pc)
390 CORE_ADDR pc;
391{
392 struct unwind_table_entry *u;
393
66a1aa07
SG
394 u = find_unwind_entry (pc);
395
396 if (!u)
5ac7f56e
JK
397 {
398 if (pc_in_linker_stub (pc))
399 /* Linker stubs have a zero size frame. */
400 return 0;
401 else
402 return -1;
403 }
66a1aa07 404
eabbe766
JK
405 if (u->Save_SP)
406 /* If this bit is set, it means there is a frame pointer and we should
407 use it. */
408 return -1;
409
66a1aa07
SG
410 return u->Total_frame_size << 3;
411}
412
5ac7f56e
JK
413/* Return offset from sp at which rp is saved, or 0 if not saved. */
414static int rp_saved PARAMS ((CORE_ADDR));
415
416static int
417rp_saved (pc)
418 CORE_ADDR pc;
66a1aa07
SG
419{
420 struct unwind_table_entry *u;
421
422 u = find_unwind_entry (pc);
423
424 if (!u)
5ac7f56e
JK
425 {
426 if (pc_in_linker_stub (pc))
427 /* This is the so-called RP'. */
428 return -24;
429 else
430 return 0;
431 }
66a1aa07
SG
432
433 if (u->Save_RP)
5ac7f56e 434 return -20;
66a1aa07
SG
435 else
436 return 0;
437}
438\f
8fa74880
SG
439int
440frameless_function_invocation (frame)
441 FRAME frame;
442{
b8ec9a79 443 struct unwind_table_entry *u;
8fa74880 444
b8ec9a79 445 u = find_unwind_entry (frame->pc);
8fa74880 446
b8ec9a79 447 if (u == 0)
8fa74880 448 return frameless_look_for_prologue (frame);
b8ec9a79
JK
449
450 return (u->Total_frame_size == 0);
8fa74880
SG
451}
452
66a1aa07
SG
453CORE_ADDR
454saved_pc_after_call (frame)
455 FRAME frame;
456{
457 int ret_regnum;
458
459 ret_regnum = find_return_regnum (get_frame_pc (frame));
460
461 return read_register (ret_regnum) & ~0x3;
462}
463\f
464CORE_ADDR
465frame_saved_pc (frame)
466 FRAME frame;
467{
468 CORE_ADDR pc = get_frame_pc (frame);
469
8fa74880 470 if (frameless_function_invocation (frame))
66a1aa07
SG
471 {
472 int ret_regnum;
473
474 ret_regnum = find_return_regnum (pc);
475
476 return read_register (ret_regnum) & ~0x3;
477 }
66a1aa07 478 else
5ac7f56e
JK
479 {
480 int rp_offset = rp_saved (pc);
481
482 if (rp_offset == 0)
483 return read_register (RP_REGNUM) & ~0x3;
484 else
28403b8e 485 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 486 }
66a1aa07
SG
487}
488\f
489/* We need to correct the PC and the FP for the outermost frame when we are
490 in a system call. */
491
492void
493init_extra_frame_info (fromleaf, frame)
494 int fromleaf;
495 struct frame_info *frame;
496{
497 int flags;
498 int framesize;
499
192c3eeb 500 if (frame->next && !fromleaf)
66a1aa07
SG
501 return;
502
192c3eeb
JL
503 /* If the next frame represents a frameless function invocation
504 then we have to do some adjustments that are normally done by
505 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
506 if (fromleaf)
507 {
508 /* Find the framesize of *this* frame without peeking at the PC
509 in the current frame structure (it isn't set yet). */
510 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
511
512 /* Now adjust our base frame accordingly. If we have a frame pointer
513 use it, else subtract the size of this frame from the current
514 frame. (we always want frame->frame to point at the lowest address
515 in the frame). */
516 if (framesize == -1)
517 frame->frame = read_register (FP_REGNUM);
518 else
519 frame->frame -= framesize;
520 return;
521 }
522
66a1aa07
SG
523 flags = read_register (FLAGS_REGNUM);
524 if (flags & 2) /* In system call? */
525 frame->pc = read_register (31) & ~0x3;
526
192c3eeb
JL
527 /* The outermost frame is always derived from PC-framesize
528
529 One might think frameless innermost frames should have
530 a frame->frame that is the same as the parent's frame->frame.
531 That is wrong; frame->frame in that case should be the *high*
532 address of the parent's frame. It's complicated as hell to
533 explain, but the parent *always* creates some stack space for
534 the child. So the child actually does have a frame of some
535 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
536 framesize = find_proc_framesize(frame->pc);
537 if (framesize == -1)
538 frame->frame = read_register (FP_REGNUM);
539 else
540 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
541}
542\f
8966221d
JK
543/* Given a GDB frame, determine the address of the calling function's frame.
544 This will be used to create a new GDB frame struct, and then
545 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
546
547 This may involve searching through prologues for several functions
548 at boundaries where GCC calls HP C code, or where code which has
549 a frame pointer calls code without a frame pointer. */
550
551
66a1aa07
SG
552FRAME_ADDR
553frame_chain (frame)
554 struct frame_info *frame;
555{
8966221d
JK
556 int my_framesize, caller_framesize;
557 struct unwind_table_entry *u;
66a1aa07 558
8966221d
JK
559 /* Get frame sizes for the current frame and the frame of the
560 caller. */
561 my_framesize = find_proc_framesize (frame->pc);
562 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 563
8966221d
JK
564 /* If caller does not have a frame pointer, then its frame
565 can be found at current_frame - caller_framesize. */
566 if (caller_framesize != -1)
567 return frame->frame - caller_framesize;
568
569 /* Both caller and callee have frame pointers and are GCC compiled
570 (SAVE_SP bit in unwind descriptor is on for both functions.
571 The previous frame pointer is found at the top of the current frame. */
572 if (caller_framesize == -1 && my_framesize == -1)
573 return read_memory_integer (frame->frame, 4);
574
575 /* Caller has a frame pointer, but callee does not. This is a little
576 more difficult as GCC and HP C lay out locals and callee register save
577 areas very differently.
578
579 The previous frame pointer could be in a register, or in one of
580 several areas on the stack.
581
582 Walk from the current frame to the innermost frame examining
583 unwind descriptors to determine if %r4 ever gets saved into the
584 stack. If so return whatever value got saved into the stack.
585 If it was never saved in the stack, then the value in %r4 is still
586 valid, so use it.
587
588 We use information from unwind descriptors to determine if %r4
589 is saved into the stack (Entry_GR field has this information). */
590
591 while (frame)
592 {
593 u = find_unwind_entry (frame->pc);
594
595 if (!u)
596 {
01a03545
JK
597 /* We could find this information by examining prologues. I don't
598 think anyone has actually written any tools (not even "strip")
599 which leave them out of an executable, so maybe this is a moot
600 point. */
8966221d
JK
601 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
602 return 0;
603 }
604
605 /* Entry_GR specifies the number of callee-saved general registers
606 saved in the stack. It starts at %r3, so %r4 would be 2. */
607 if (u->Entry_GR >= 2 || u->Save_SP)
608 break;
609 else
610 frame = frame->next;
611 }
612
613 if (frame)
614 {
615 /* We may have walked down the chain into a function with a frame
616 pointer. */
617 if (u->Save_SP)
618 return read_memory_integer (frame->frame, 4);
619 /* %r4 was saved somewhere in the stack. Dig it out. */
620 else
621 return dig_fp_from_stack (frame, u);
622 }
623 else
624 {
625 /* The value in %r4 was never saved into the stack (thus %r4 still
626 holds the value of the previous frame pointer). */
627 return read_register (4);
628 }
629}
66a1aa07 630
8966221d
JK
631/* Given a frame and an unwind descriptor return the value for %fr (aka fp)
632 which was saved into the stack. FIXME: Why can't we just use the standard
633 saved_regs stuff? */
634
635static FRAME_ADDR
636dig_fp_from_stack (frame, u)
637 FRAME frame;
638 struct unwind_table_entry *u;
639{
640 CORE_ADDR pc = u->region_start;
641
642 /* Search the function for the save of %r4. */
643 while (pc != u->region_end)
644 {
645 char buf[4];
646 unsigned long inst;
647 int status;
648
649 /* We need only look for the standard stw %r4,X(%sp) instruction,
650 the other variants (eg stwm) are only used on the first register
651 save (eg %r3). */
652 status = target_read_memory (pc, buf, 4);
653 inst = extract_unsigned_integer (buf, 4);
654
655 if (status != 0)
656 memory_error (status, pc);
657
658 /* Check for stw %r4,X(%sp). */
659 if ((inst & 0xffffc000) == 0x6bc40000)
660 {
661 /* Found the instruction which saves %r4. The offset (relative
662 to this frame) is framesize + immed14 (derived from the
663 store instruction). */
664 int offset = (u->Total_frame_size << 3) + extract_14 (inst);
665
666 return read_memory_integer (frame->frame + offset, 4);
667 }
668
669 /* Keep looking. */
670 pc += 4;
671 }
672
673 warning ("Unable to find %%r4 in stack.\n");
674 return 0;
66a1aa07 675}
8966221d 676
66a1aa07
SG
677\f
678/* To see if a frame chain is valid, see if the caller looks like it
679 was compiled with gcc. */
680
681int
682frame_chain_valid (chain, thisframe)
683 FRAME_ADDR chain;
684 FRAME thisframe;
685{
247145e6
JK
686 struct minimal_symbol *msym_us;
687 struct minimal_symbol *msym_start;
4432b9f9 688 struct unwind_table_entry *u;
66a1aa07
SG
689
690 if (!chain)
691 return 0;
692
b8ec9a79 693 u = find_unwind_entry (thisframe->pc);
4b01383b 694
247145e6
JK
695 /* We can't just check that the same of msym_us is "_start", because
696 someone idiotically decided that they were going to make a Ltext_end
697 symbol with the same address. This Ltext_end symbol is totally
698 indistinguishable (as nearly as I can tell) from the symbol for a function
699 which is (legitimately, since it is in the user's namespace)
700 named Ltext_end, so we can't just ignore it. */
701 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
702 msym_start = lookup_minimal_symbol ("_start", NULL);
703 if (msym_us
704 && msym_start
705 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 706 return 0;
5ac7f56e 707
b8ec9a79
JK
708 if (u == NULL)
709 return 1;
5ac7f56e 710
b8ec9a79
JK
711 if (u->Save_SP || u->Total_frame_size)
712 return 1;
5ac7f56e 713
b8ec9a79
JK
714 if (pc_in_linker_stub (thisframe->pc))
715 return 1;
4b01383b 716
b8ec9a79 717 return 0;
66a1aa07
SG
718}
719
66a1aa07
SG
720/*
721 * These functions deal with saving and restoring register state
722 * around a function call in the inferior. They keep the stack
723 * double-word aligned; eventually, on an hp700, the stack will have
724 * to be aligned to a 64-byte boundary.
725 */
726
727int
728push_dummy_frame ()
729{
730 register CORE_ADDR sp;
731 register int regnum;
732 int int_buffer;
733 double freg_buffer;
734
735 /* Space for "arguments"; the RP goes in here. */
736 sp = read_register (SP_REGNUM) + 48;
737 int_buffer = read_register (RP_REGNUM) | 0x3;
738 write_memory (sp - 20, (char *)&int_buffer, 4);
739
740 int_buffer = read_register (FP_REGNUM);
741 write_memory (sp, (char *)&int_buffer, 4);
742
743 write_register (FP_REGNUM, sp);
744
745 sp += 8;
746
747 for (regnum = 1; regnum < 32; regnum++)
748 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
749 sp = push_word (sp, read_register (regnum));
750
751 sp += 4;
752
753 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
754 {
755 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
756 sp = push_bytes (sp, (char *)&freg_buffer, 8);
757 }
758 sp = push_word (sp, read_register (IPSW_REGNUM));
759 sp = push_word (sp, read_register (SAR_REGNUM));
760 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
761 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
762 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
763 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
764 write_register (SP_REGNUM, sp);
765}
766
767find_dummy_frame_regs (frame, frame_saved_regs)
768 struct frame_info *frame;
769 struct frame_saved_regs *frame_saved_regs;
770{
771 CORE_ADDR fp = frame->frame;
772 int i;
773
774 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
775 frame_saved_regs->regs[FP_REGNUM] = fp;
776 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 777
b227992a
SG
778 for (fp += 12, i = 3; i < 32; i++)
779 {
780 if (i != FP_REGNUM)
781 {
782 frame_saved_regs->regs[i] = fp;
783 fp += 4;
784 }
785 }
66a1aa07
SG
786
787 fp += 4;
788 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
789 frame_saved_regs->regs[i] = fp;
790
791 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
792 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
793 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
794 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
795 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
796 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
797}
798
799int
800hppa_pop_frame ()
801{
802 register FRAME frame = get_current_frame ();
803 register CORE_ADDR fp;
804 register int regnum;
805 struct frame_saved_regs fsr;
806 struct frame_info *fi;
807 double freg_buffer;
808
809 fi = get_frame_info (frame);
810 fp = fi->frame;
811 get_frame_saved_regs (fi, &fsr);
812
813 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
814 restore_pc_queue (&fsr);
815
816 for (regnum = 31; regnum > 0; regnum--)
817 if (fsr.regs[regnum])
818 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
819
820 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
821 if (fsr.regs[regnum])
822 {
823 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
824 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
825 }
826
827 if (fsr.regs[IPSW_REGNUM])
828 write_register (IPSW_REGNUM,
829 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
830
831 if (fsr.regs[SAR_REGNUM])
832 write_register (SAR_REGNUM,
833 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
834
ed1a07ad 835 /* If the PC was explicitly saved, then just restore it. */
66a1aa07
SG
836 if (fsr.regs[PCOQ_TAIL_REGNUM])
837 write_register (PCOQ_TAIL_REGNUM,
838 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
839
ed1a07ad
JK
840 /* Else use the value in %rp to set the new PC. */
841 else
842 target_write_pc (read_register (RP_REGNUM));
843
66a1aa07
SG
844 write_register (FP_REGNUM, read_memory_integer (fp, 4));
845
846 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
847 write_register (SP_REGNUM, fp - 48);
848 else
849 write_register (SP_REGNUM, fp);
850
851 flush_cached_frames ();
852 set_current_frame (create_new_frame (read_register (FP_REGNUM),
853 read_pc ()));
854}
855
856/*
857 * After returning to a dummy on the stack, restore the instruction
858 * queue space registers. */
859
860static int
861restore_pc_queue (fsr)
862 struct frame_saved_regs *fsr;
863{
864 CORE_ADDR pc = read_pc ();
865 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
866 int pid;
867 WAITTYPE w;
868 int insn_count;
869
870 /* Advance past break instruction in the call dummy. */
871 write_register (PCOQ_HEAD_REGNUM, pc + 4);
872 write_register (PCOQ_TAIL_REGNUM, pc + 8);
873
874 /*
875 * HPUX doesn't let us set the space registers or the space
876 * registers of the PC queue through ptrace. Boo, hiss.
877 * Conveniently, the call dummy has this sequence of instructions
878 * after the break:
879 * mtsp r21, sr0
880 * ble,n 0(sr0, r22)
881 *
882 * So, load up the registers and single step until we are in the
883 * right place.
884 */
885
886 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
887 write_register (22, new_pc);
888
889 for (insn_count = 0; insn_count < 3; insn_count++)
890 {
8c5e0021
JK
891 /* FIXME: What if the inferior gets a signal right now? Want to
892 merge this into wait_for_inferior (as a special kind of
893 watchpoint? By setting a breakpoint at the end? Is there
894 any other choice? Is there *any* way to do this stuff with
895 ptrace() or some equivalent?). */
66a1aa07 896 resume (1, 0);
de43d7d0 897 target_wait(inferior_pid, &w);
66a1aa07
SG
898
899 if (!WIFSTOPPED (w))
900 {
901 stop_signal = WTERMSIG (w);
902 terminal_ours_for_output ();
199b2450 903 printf_unfiltered ("\nProgram terminated with signal %d, %s\n",
66a1aa07 904 stop_signal, safe_strsignal (stop_signal));
199b2450 905 gdb_flush (gdb_stdout);
66a1aa07
SG
906 return 0;
907 }
908 }
8c5e0021 909 target_terminal_ours ();
66a1aa07
SG
910 fetch_inferior_registers (-1);
911 return 1;
912}
913
914CORE_ADDR
915hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
916 int nargs;
917 value *args;
918 CORE_ADDR sp;
919 int struct_return;
920 CORE_ADDR struct_addr;
921{
922 /* array of arguments' offsets */
1edc5cd2 923 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
924 int cum = 0;
925 int i, alignment;
926
927 for (i = 0; i < nargs; i++)
928 {
929 /* Coerce chars to int & float to double if necessary */
930 args[i] = value_arg_coerce (args[i]);
931
932 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
933
934 /* value must go at proper alignment. Assume alignment is a
935 power of two.*/
936 alignment = hppa_alignof (VALUE_TYPE (args[i]));
937 if (cum % alignment)
938 cum = (cum + alignment) & -alignment;
939 offset[i] = -cum;
940 }
558f4183 941 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
942
943 for (i = 0; i < nargs; i++)
944 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
945 TYPE_LENGTH (VALUE_TYPE (args[i])));
946
947 if (struct_return)
948 write_register (28, struct_addr);
949 return sp + 32;
950}
951
952/*
953 * Insert the specified number of args and function address
954 * into a call sequence of the above form stored at DUMMYNAME.
955 *
956 * On the hppa we need to call the stack dummy through $$dyncall.
957 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
958 * real_pc, which is the location where gdb should start up the
959 * inferior to do the function call.
960 */
961
962CORE_ADDR
963hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
964 REGISTER_TYPE *dummy;
965 CORE_ADDR pc;
966 CORE_ADDR fun;
967 int nargs;
968 value *args;
969 struct type *type;
970 int gcc_p;
971{
972 CORE_ADDR dyncall_addr, sr4export_addr;
973 struct minimal_symbol *msymbol;
6cfec929 974 int flags = read_register (FLAGS_REGNUM);
66a1aa07
SG
975
976 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
977 if (msymbol == NULL)
978 error ("Can't find an address for $$dyncall trampoline");
979
980 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
981
982 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
983 if (msymbol == NULL)
984 error ("Can't find an address for _sr4export trampoline");
985
986 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
987
988 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
989 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
990 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
991 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
992
993 write_register (22, pc);
994
6cfec929
JK
995 /* If we are in a syscall, then we should call the stack dummy
996 directly. $$dyncall is not needed as the kernel sets up the
997 space id registers properly based on the value in %r31. In
998 fact calling $$dyncall will not work because the value in %r22
999 will be clobbered on the syscall exit path. */
1000 if (flags & 2)
1001 return pc;
1002 else
1003 return dyncall_addr;
1004
66a1aa07
SG
1005}
1006
d3862cae
JK
1007/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1008 bits. */
1009CORE_ADDR
1010target_read_pc ()
1011{
1012 int flags = read_register (FLAGS_REGNUM);
1013
1014 if (flags & 2)
1015 return read_register (31) & ~0x3;
1016 return read_register (PC_REGNUM) & ~0x3;
1017}
1018
6cfec929
JK
1019/* Write out the PC. If currently in a syscall, then also write the new
1020 PC value into %r31. */
1021void
1022target_write_pc (v)
1023 CORE_ADDR v;
1024{
1025 int flags = read_register (FLAGS_REGNUM);
1026
1027 /* If in a syscall, then set %r31. Also make sure to get the
1028 privilege bits set correctly. */
1029 if (flags & 2)
1030 write_register (31, (long) (v | 0x3));
1031
1032 write_register (PC_REGNUM, (long) v);
1033 write_register (NPC_REGNUM, (long) v + 4);
1034}
1035
66a1aa07
SG
1036/* return the alignment of a type in bytes. Structures have the maximum
1037 alignment required by their fields. */
1038
1039static int
1040hppa_alignof (arg)
1041 struct type *arg;
1042{
1043 int max_align, align, i;
1044 switch (TYPE_CODE (arg))
1045 {
1046 case TYPE_CODE_PTR:
1047 case TYPE_CODE_INT:
1048 case TYPE_CODE_FLT:
1049 return TYPE_LENGTH (arg);
1050 case TYPE_CODE_ARRAY:
1051 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1052 case TYPE_CODE_STRUCT:
1053 case TYPE_CODE_UNION:
1054 max_align = 2;
1055 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1056 {
1057 /* Bit fields have no real alignment. */
1058 if (!TYPE_FIELD_BITPOS (arg, i))
1059 {
1060 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1061 max_align = max (max_align, align);
1062 }
1063 }
1064 return max_align;
1065 default:
1066 return 4;
1067 }
1068}
1069
1070/* Print the register regnum, or all registers if regnum is -1 */
1071
1072pa_do_registers_info (regnum, fpregs)
1073 int regnum;
1074 int fpregs;
1075{
1076 char raw_regs [REGISTER_BYTES];
1077 int i;
1078
1079 for (i = 0; i < NUM_REGS; i++)
1080 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1081 if (regnum == -1)
1082 pa_print_registers (raw_regs, regnum, fpregs);
1083 else if (regnum < FP0_REGNUM)
199b2450 1084 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1085 REGISTER_BYTE (regnum)));
1086 else
1087 pa_print_fp_reg (regnum);
1088}
1089
1090pa_print_registers (raw_regs, regnum, fpregs)
1091 char *raw_regs;
1092 int regnum;
1093 int fpregs;
1094{
1095 int i;
1096
1097 for (i = 0; i < 18; i++)
199b2450 1098 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1099 reg_names[i],
1100 *(int *)(raw_regs + REGISTER_BYTE (i)),
1101 reg_names[i + 18],
1102 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1103 reg_names[i + 36],
1104 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1105 reg_names[i + 54],
1106 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1107
1108 if (fpregs)
1109 for (i = 72; i < NUM_REGS; i++)
1110 pa_print_fp_reg (i);
1111}
1112
1113pa_print_fp_reg (i)
1114 int i;
1115{
1116 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1117 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1118 REGISTER_TYPE val;
1119
ad09cb2b 1120 /* Get the data in raw format. */
66a1aa07 1121 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b
PS
1122
1123 /* Convert raw data to virtual format if necessary. */
1124#ifdef REGISTER_CONVERTIBLE
1125 if (REGISTER_CONVERTIBLE (i))
1126 {
1127 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1128 raw_buffer, virtual_buffer);
1129 }
1130 else
1131#endif
1132 memcpy (virtual_buffer, raw_buffer,
1133 REGISTER_VIRTUAL_SIZE (i));
66a1aa07 1134
199b2450
TL
1135 fputs_filtered (reg_names[i], gdb_stdout);
1136 print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);
66a1aa07 1137
199b2450 1138 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1139 1, 0, Val_pretty_default);
1140 printf_filtered ("\n");
1141}
1142
1143/* Function calls that pass into a new compilation unit must pass through a
1144 small piece of code that does long format (`external' in HPPA parlance)
1145 jumps. We figure out where the trampoline is going to end up, and return
1146 the PC of the final destination. If we aren't in a trampoline, we just
1147 return NULL.
1148
1149 For computed calls, we just extract the new PC from r22. */
1150
1151CORE_ADDR
1152skip_trampoline_code (pc, name)
1153 CORE_ADDR pc;
1154 char *name;
1155{
1156 long inst0, inst1;
1157 static CORE_ADDR dyncall = 0;
1158 struct minimal_symbol *msym;
1159
1160/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
1161
1162 if (!dyncall)
1163 {
1164 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1165 if (msym)
1166 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1167 else
1168 dyncall = -1;
1169 }
1170
1171 if (pc == dyncall)
1172 return (CORE_ADDR)(read_register (22) & ~0x3);
1173
1174 inst0 = read_memory_integer (pc, 4);
1175 inst1 = read_memory_integer (pc+4, 4);
1176
1177 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1178 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1179 pc = extract_21 (inst0) + extract_17 (inst1);
1180 else
1181 pc = (CORE_ADDR)NULL;
1182
1183 return pc;
1184}
1185
1186/* Advance PC across any function entry prologue instructions
1187 to reach some "real" code. */
1188
1189/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
1190 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
1191
1192CORE_ADDR
1193skip_prologue(pc)
1194 CORE_ADDR pc;
1195{
34df79fc
JK
1196 char buf[4];
1197 unsigned long inst;
66a1aa07
SG
1198 int status;
1199
34df79fc
JK
1200 status = target_read_memory (pc, buf, 4);
1201 inst = extract_unsigned_integer (buf, 4);
66a1aa07
SG
1202 if (status != 0)
1203 return pc;
1204
1205 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1206 {
1207 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
1208 pc += 16;
1209 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1210 pc += 8;
1211 }
1212 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1213 pc += 12;
1214 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1215 pc += 4;
1216
1217 return pc;
1218}
1219
63757ecd
JK
1220#ifdef MAINTENANCE_CMDS
1221
66a1aa07
SG
1222static void
1223unwind_command (exp, from_tty)
1224 char *exp;
1225 int from_tty;
1226{
1227 CORE_ADDR address;
1228 union
1229 {
1230 int *foo;
1231 struct unwind_table_entry *u;
1232 } xxx;
1233
1234 /* If we have an expression, evaluate it and use it as the address. */
1235
1236 if (exp != 0 && *exp != 0)
1237 address = parse_and_eval_address (exp);
1238 else
1239 return;
1240
1241 xxx.u = find_unwind_entry (address);
1242
1243 if (!xxx.u)
1244 {
199b2450 1245 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
1246 return;
1247 }
1248
199b2450 1249 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
1250 xxx.foo[3]);
1251}
976bb0be 1252#endif /* MAINTENANCE_CMDS */
63757ecd
JK
1253
1254void
1255_initialize_hppa_tdep ()
1256{
976bb0be 1257#ifdef MAINTENANCE_CMDS
63757ecd
JK
1258 add_cmd ("unwind", class_maintenance, unwind_command,
1259 "Print unwind table entry at given address.",
1260 &maintenanceprintlist);
63757ecd 1261#endif /* MAINTENANCE_CMDS */
976bb0be 1262}