]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
Continuing work to convert the hppa targets to multiarch partial.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
c906108c
SS
35
36/* For argument passing to the inferior */
37#include "symtab.h"
38
39#ifdef USG
40#include <sys/types.h>
41#endif
42
43#include <dl.h>
44#include <sys/param.h>
45#include <signal.h>
46
47#include <sys/ptrace.h>
48#include <machine/save_state.h>
49
50#ifdef COFF_ENCAPSULATE
51#include "a.out.encap.h"
52#else
53#endif
54
c5aa993b 55/*#include <sys/user.h> After a.out.h */
c906108c
SS
56#include <sys/file.h>
57#include "gdb_stat.h"
03f2053f 58#include "gdb_wait.h"
c906108c
SS
59
60#include "gdbcore.h"
61#include "gdbcmd.h"
62#include "target.h"
63#include "symfile.h"
64#include "objfiles.h"
65
c906108c
SS
66/* To support detection of the pseudo-initial frame
67 that threads have. */
68#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
69#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 70
a14ed312 71static int extract_5_load (unsigned int);
c906108c 72
a14ed312 73static unsigned extract_5R_store (unsigned int);
c906108c 74
a14ed312 75static unsigned extract_5r_store (unsigned int);
c906108c 76
a14ed312
KB
77static void find_dummy_frame_regs (struct frame_info *,
78 struct frame_saved_regs *);
c906108c 79
a14ed312 80static int find_proc_framesize (CORE_ADDR);
c906108c 81
a14ed312 82static int find_return_regnum (CORE_ADDR);
c906108c 83
a14ed312 84struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 85
a14ed312 86static int extract_17 (unsigned int);
c906108c 87
a14ed312 88static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 89
a14ed312 90static int extract_21 (unsigned);
c906108c 91
a14ed312 92static unsigned deposit_14 (int, unsigned int);
c906108c 93
a14ed312 94static int extract_14 (unsigned);
c906108c 95
a14ed312 96static void unwind_command (char *, int);
c906108c 97
a14ed312 98static int low_sign_extend (unsigned int, unsigned int);
c906108c 99
a14ed312 100static int sign_extend (unsigned int, unsigned int);
c906108c 101
a14ed312 102static int restore_pc_queue (struct frame_saved_regs *);
c906108c 103
a14ed312 104static int hppa_alignof (struct type *);
c906108c
SS
105
106/* To support multi-threading and stepping. */
a14ed312 107int hppa_prepare_to_proceed ();
c906108c 108
a14ed312 109static int prologue_inst_adjust_sp (unsigned long);
c906108c 110
a14ed312 111static int is_branch (unsigned long);
c906108c 112
a14ed312 113static int inst_saves_gr (unsigned long);
c906108c 114
a14ed312 115static int inst_saves_fr (unsigned long);
c906108c 116
a14ed312 117static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 118
a14ed312 119static int pc_in_linker_stub (CORE_ADDR);
c906108c 120
a14ed312 121static int compare_unwind_entries (const void *, const void *);
c906108c 122
a14ed312 123static void read_unwind_info (struct objfile *);
c906108c 124
a14ed312
KB
125static void internalize_unwinds (struct objfile *,
126 struct unwind_table_entry *,
127 asection *, unsigned int,
128 unsigned int, CORE_ADDR);
129static void pa_print_registers (char *, int, int);
d9fcf2fb 130static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
131static void pa_register_look_aside (char *, int, long *);
132static void pa_print_fp_reg (int);
d9fcf2fb 133static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 134static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
135/* FIXME: brobecker 2002-11-07: We will likely be able to make the
136 following functions static, once we hppa is partially multiarched. */
137int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
138int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
139CORE_ADDR hppa_stack_align (CORE_ADDR sp);
140int hppa_pc_requires_run_before_use (CORE_ADDR pc);
141int hppa_instruction_nullified (void);
60e1ff27 142int hppa_register_raw_size (int reg_nr);
d709c020
JB
143int hppa_register_byte (int reg_nr);
144struct type * hppa_register_virtual_type (int reg_nr);
145void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
146int hppa_cannot_store_register (int regnum);
147CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
148CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
149CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
150int hppa_coerce_float_to_double (struct type *formal, struct type *actual);
c906108c 151
c5aa993b
JM
152typedef struct
153 {
154 struct minimal_symbol *msym;
155 CORE_ADDR solib_handle;
a0b3c4fd 156 CORE_ADDR return_val;
c5aa993b
JM
157 }
158args_for_find_stub;
c906108c 159
a0b3c4fd 160static int cover_find_stub_with_shl_get (PTR);
c906108c 161
c5aa993b 162static int is_pa_2 = 0; /* False */
c906108c 163
c5aa993b 164/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
165extern int hp_som_som_object_present;
166
167/* In breakpoint.c */
168extern int exception_catchpoints_are_fragile;
169
c906108c 170/* Should call_function allocate stack space for a struct return? */
d709c020 171
c906108c 172int
fba45db2 173hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 174{
104c1213 175 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 176}
c906108c 177\f
c5aa993b 178
c906108c
SS
179/* Routines to extract various sized constants out of hppa
180 instructions. */
181
182/* This assumes that no garbage lies outside of the lower bits of
183 value. */
184
185static int
fba45db2 186sign_extend (unsigned val, unsigned bits)
c906108c 187{
c5aa993b 188 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
189}
190
191/* For many immediate values the sign bit is the low bit! */
192
193static int
fba45db2 194low_sign_extend (unsigned val, unsigned bits)
c906108c 195{
c5aa993b 196 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
197}
198
199/* extract the immediate field from a ld{bhw}s instruction */
200
c906108c 201static int
fba45db2 202extract_5_load (unsigned word)
c906108c
SS
203{
204 return low_sign_extend (word >> 16 & MASK_5, 5);
205}
206
c906108c
SS
207/* extract the immediate field from a break instruction */
208
209static unsigned
fba45db2 210extract_5r_store (unsigned word)
c906108c
SS
211{
212 return (word & MASK_5);
213}
214
215/* extract the immediate field from a {sr}sm instruction */
216
217static unsigned
fba45db2 218extract_5R_store (unsigned word)
c906108c
SS
219{
220 return (word >> 16 & MASK_5);
221}
222
c906108c
SS
223/* extract a 14 bit immediate field */
224
225static int
fba45db2 226extract_14 (unsigned word)
c906108c
SS
227{
228 return low_sign_extend (word & MASK_14, 14);
229}
230
231/* deposit a 14 bit constant in a word */
232
233static unsigned
fba45db2 234deposit_14 (int opnd, unsigned word)
c906108c
SS
235{
236 unsigned sign = (opnd < 0 ? 1 : 0);
237
c5aa993b 238 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
239}
240
241/* extract a 21 bit constant */
242
243static int
fba45db2 244extract_21 (unsigned word)
c906108c
SS
245{
246 int val;
247
248 word &= MASK_21;
249 word <<= 11;
250 val = GET_FIELD (word, 20, 20);
251 val <<= 11;
252 val |= GET_FIELD (word, 9, 19);
253 val <<= 2;
254 val |= GET_FIELD (word, 5, 6);
255 val <<= 5;
256 val |= GET_FIELD (word, 0, 4);
257 val <<= 2;
258 val |= GET_FIELD (word, 7, 8);
259 return sign_extend (val, 21) << 11;
260}
261
262/* deposit a 21 bit constant in a word. Although 21 bit constants are
263 usually the top 21 bits of a 32 bit constant, we assume that only
264 the low 21 bits of opnd are relevant */
265
266static unsigned
fba45db2 267deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
268{
269 unsigned val = 0;
270
271 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
272 val <<= 2;
273 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
274 val <<= 2;
275 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
276 val <<= 11;
277 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
278 val <<= 1;
279 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
280 return word | val;
281}
282
c906108c
SS
283/* extract a 17 bit constant from branch instructions, returning the
284 19 bit signed value. */
285
286static int
fba45db2 287extract_17 (unsigned word)
c906108c
SS
288{
289 return sign_extend (GET_FIELD (word, 19, 28) |
290 GET_FIELD (word, 29, 29) << 10 |
291 GET_FIELD (word, 11, 15) << 11 |
292 (word & 0x1) << 16, 17) << 2;
293}
294\f
295
296/* Compare the start address for two unwind entries returning 1 if
297 the first address is larger than the second, -1 if the second is
298 larger than the first, and zero if they are equal. */
299
300static int
fba45db2 301compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
302{
303 const struct unwind_table_entry *a = arg1;
304 const struct unwind_table_entry *b = arg2;
305
306 if (a->region_start > b->region_start)
307 return 1;
308 else if (a->region_start < b->region_start)
309 return -1;
310 else
311 return 0;
312}
313
53a5351d
JM
314static CORE_ADDR low_text_segment_address;
315
316static void
8fef05cc 317record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 318{
bf9c25dc 319 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
320 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
321 && section->vma < low_text_segment_address)
322 low_text_segment_address = section->vma;
323}
324
c906108c 325static void
fba45db2
KB
326internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
327 asection *section, unsigned int entries, unsigned int size,
328 CORE_ADDR text_offset)
c906108c
SS
329{
330 /* We will read the unwind entries into temporary memory, then
331 fill in the actual unwind table. */
332 if (size > 0)
333 {
334 unsigned long tmp;
335 unsigned i;
336 char *buf = alloca (size);
337
53a5351d
JM
338 low_text_segment_address = -1;
339
340 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
341 be segment relative offsets instead of absolute addresses.
342
343 Note that when loading a shared library (text_offset != 0) the
344 unwinds are already relative to the text_offset that will be
345 passed in. */
346 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
347 {
348 bfd_map_over_sections (objfile->obfd,
349 record_text_segment_lowaddr, (PTR) NULL);
350
351 /* ?!? Mask off some low bits. Should this instead subtract
352 out the lowest section's filepos or something like that?
353 This looks very hokey to me. */
354 low_text_segment_address &= ~0xfff;
355 text_offset += low_text_segment_address;
356 }
357
c906108c
SS
358 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
359
360 /* Now internalize the information being careful to handle host/target
c5aa993b 361 endian issues. */
c906108c
SS
362 for (i = 0; i < entries; i++)
363 {
364 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 365 (bfd_byte *) buf);
c906108c
SS
366 table[i].region_start += text_offset;
367 buf += 4;
c5aa993b 368 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
369 table[i].region_end += text_offset;
370 buf += 4;
c5aa993b 371 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
372 buf += 4;
373 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
374 table[i].Millicode = (tmp >> 30) & 0x1;
375 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
376 table[i].Region_description = (tmp >> 27) & 0x3;
377 table[i].reserved1 = (tmp >> 26) & 0x1;
378 table[i].Entry_SR = (tmp >> 25) & 0x1;
379 table[i].Entry_FR = (tmp >> 21) & 0xf;
380 table[i].Entry_GR = (tmp >> 16) & 0x1f;
381 table[i].Args_stored = (tmp >> 15) & 0x1;
382 table[i].Variable_Frame = (tmp >> 14) & 0x1;
383 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
384 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
385 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
386 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
387 table[i].Ada_Region = (tmp >> 9) & 0x1;
388 table[i].cxx_info = (tmp >> 8) & 0x1;
389 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
390 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
391 table[i].reserved2 = (tmp >> 5) & 0x1;
392 table[i].Save_SP = (tmp >> 4) & 0x1;
393 table[i].Save_RP = (tmp >> 3) & 0x1;
394 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
395 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
396 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 397 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
398 buf += 4;
399 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
400 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
401 table[i].Large_frame = (tmp >> 29) & 0x1;
402 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
403 table[i].reserved4 = (tmp >> 27) & 0x1;
404 table[i].Total_frame_size = tmp & 0x7ffffff;
405
c5aa993b 406 /* Stub unwinds are handled elsewhere. */
c906108c
SS
407 table[i].stub_unwind.stub_type = 0;
408 table[i].stub_unwind.padding = 0;
409 }
410 }
411}
412
413/* Read in the backtrace information stored in the `$UNWIND_START$' section of
414 the object file. This info is used mainly by find_unwind_entry() to find
415 out the stack frame size and frame pointer used by procedures. We put
416 everything on the psymbol obstack in the objfile so that it automatically
417 gets freed when the objfile is destroyed. */
418
419static void
fba45db2 420read_unwind_info (struct objfile *objfile)
c906108c 421{
d4f3574e
SS
422 asection *unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries;
c906108c
SS
425 unsigned stub_entries, total_entries;
426 CORE_ADDR text_offset;
427 struct obj_unwind_info *ui;
428 obj_private_data_t *obj_private;
429
430 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
431 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
432 sizeof (struct obj_unwind_info));
c906108c
SS
433
434 ui->table = NULL;
435 ui->cache = NULL;
436 ui->last = -1;
437
d4f3574e
SS
438 /* For reasons unknown the HP PA64 tools generate multiple unwinder
439 sections in a single executable. So we just iterate over every
440 section in the BFD looking for unwinder sections intead of trying
441 to do a lookup with bfd_get_section_by_name.
c906108c 442
d4f3574e
SS
443 First determine the total size of the unwind tables so that we
444 can allocate memory in a nice big hunk. */
445 total_entries = 0;
446 for (unwind_sec = objfile->obfd->sections;
447 unwind_sec;
448 unwind_sec = unwind_sec->next)
c906108c 449 {
d4f3574e
SS
450 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
451 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
452 {
453 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
454 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 455
d4f3574e
SS
456 total_entries += unwind_entries;
457 }
c906108c
SS
458 }
459
d4f3574e
SS
460 /* Now compute the size of the stub unwinds. Note the ELF tools do not
461 use stub unwinds at the curren time. */
462 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
463
c906108c
SS
464 if (stub_unwind_sec)
465 {
466 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
467 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
468 }
469 else
470 {
471 stub_unwind_size = 0;
472 stub_entries = 0;
473 }
474
475 /* Compute total number of unwind entries and their total size. */
d4f3574e 476 total_entries += stub_entries;
c906108c
SS
477 total_size = total_entries * sizeof (struct unwind_table_entry);
478
479 /* Allocate memory for the unwind table. */
480 ui->table = (struct unwind_table_entry *)
481 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 482 ui->last = total_entries - 1;
c906108c 483
d4f3574e
SS
484 /* Now read in each unwind section and internalize the standard unwind
485 entries. */
c906108c 486 index = 0;
d4f3574e
SS
487 for (unwind_sec = objfile->obfd->sections;
488 unwind_sec;
489 unwind_sec = unwind_sec->next)
490 {
491 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
492 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
493 {
494 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
495 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
496
497 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
498 unwind_entries, unwind_size, text_offset);
499 index += unwind_entries;
500 }
501 }
502
503 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
504 if (stub_unwind_size > 0)
505 {
506 unsigned int i;
507 char *buf = alloca (stub_unwind_size);
508
509 /* Read in the stub unwind entries. */
510 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
511 0, stub_unwind_size);
512
513 /* Now convert them into regular unwind entries. */
514 for (i = 0; i < stub_entries; i++, index++)
515 {
516 /* Clear out the next unwind entry. */
517 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
518
519 /* Convert offset & size into region_start and region_end.
520 Stuff away the stub type into "reserved" fields. */
521 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
522 (bfd_byte *) buf);
523 ui->table[index].region_start += text_offset;
524 buf += 4;
525 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 526 (bfd_byte *) buf);
c906108c
SS
527 buf += 2;
528 ui->table[index].region_end
c5aa993b
JM
529 = ui->table[index].region_start + 4 *
530 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
531 buf += 2;
532 }
533
534 }
535
536 /* Unwind table needs to be kept sorted. */
537 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
538 compare_unwind_entries);
539
540 /* Keep a pointer to the unwind information. */
c5aa993b 541 if (objfile->obj_private == NULL)
c906108c
SS
542 {
543 obj_private = (obj_private_data_t *)
c5aa993b
JM
544 obstack_alloc (&objfile->psymbol_obstack,
545 sizeof (obj_private_data_t));
c906108c 546 obj_private->unwind_info = NULL;
c5aa993b 547 obj_private->so_info = NULL;
53a5351d 548 obj_private->dp = 0;
c5aa993b 549
c906108c
SS
550 objfile->obj_private = (PTR) obj_private;
551 }
c5aa993b 552 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
553 obj_private->unwind_info = ui;
554}
555
556/* Lookup the unwind (stack backtrace) info for the given PC. We search all
557 of the objfiles seeking the unwind table entry for this PC. Each objfile
558 contains a sorted list of struct unwind_table_entry. Since we do a binary
559 search of the unwind tables, we depend upon them to be sorted. */
560
561struct unwind_table_entry *
fba45db2 562find_unwind_entry (CORE_ADDR pc)
c906108c
SS
563{
564 int first, middle, last;
565 struct objfile *objfile;
566
567 /* A function at address 0? Not in HP-UX! */
568 if (pc == (CORE_ADDR) 0)
569 return NULL;
570
571 ALL_OBJFILES (objfile)
c5aa993b
JM
572 {
573 struct obj_unwind_info *ui;
574 ui = NULL;
575 if (objfile->obj_private)
576 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 577
c5aa993b
JM
578 if (!ui)
579 {
580 read_unwind_info (objfile);
581 if (objfile->obj_private == NULL)
104c1213 582 error ("Internal error reading unwind information.");
c5aa993b
JM
583 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
584 }
c906108c 585
c5aa993b 586 /* First, check the cache */
c906108c 587
c5aa993b
JM
588 if (ui->cache
589 && pc >= ui->cache->region_start
590 && pc <= ui->cache->region_end)
591 return ui->cache;
c906108c 592
c5aa993b 593 /* Not in the cache, do a binary search */
c906108c 594
c5aa993b
JM
595 first = 0;
596 last = ui->last;
c906108c 597
c5aa993b
JM
598 while (first <= last)
599 {
600 middle = (first + last) / 2;
601 if (pc >= ui->table[middle].region_start
602 && pc <= ui->table[middle].region_end)
603 {
604 ui->cache = &ui->table[middle];
605 return &ui->table[middle];
606 }
c906108c 607
c5aa993b
JM
608 if (pc < ui->table[middle].region_start)
609 last = middle - 1;
610 else
611 first = middle + 1;
612 }
613 } /* ALL_OBJFILES() */
c906108c
SS
614 return NULL;
615}
616
617/* Return the adjustment necessary to make for addresses on the stack
618 as presented by hpread.c.
619
620 This is necessary because of the stack direction on the PA and the
621 bizarre way in which someone (?) decided they wanted to handle
622 frame pointerless code in GDB. */
623int
fba45db2 624hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
625{
626 struct unwind_table_entry *u;
627
628 u = find_unwind_entry (func_addr);
629 if (!u)
630 return 0;
631 else
632 return u->Total_frame_size << 3;
633}
634
635/* Called to determine if PC is in an interrupt handler of some
636 kind. */
637
638static int
fba45db2 639pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
640{
641 struct unwind_table_entry *u;
642 struct minimal_symbol *msym_us;
643
644 u = find_unwind_entry (pc);
645 if (!u)
646 return 0;
647
648 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
649 its frame isn't a pure interrupt frame. Deal with this. */
650 msym_us = lookup_minimal_symbol_by_pc (pc);
651
d7bd68ca
AC
652 return (u->HP_UX_interrupt_marker
653 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)));
c906108c
SS
654}
655
656/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
657 appears that PC is in a linker stub.
658
659 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
660
661static int
fba45db2 662pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
663{
664 int found_magic_instruction = 0;
665 int i;
666 char buf[4];
667
668 /* If unable to read memory, assume pc is not in a linker stub. */
669 if (target_read_memory (pc, buf, 4) != 0)
670 return 0;
671
672 /* We are looking for something like
673
674 ; $$dyncall jams RP into this special spot in the frame (RP')
675 ; before calling the "call stub"
676 ldw -18(sp),rp
677
678 ldsid (rp),r1 ; Get space associated with RP into r1
679 mtsp r1,sp ; Move it into space register 0
680 be,n 0(sr0),rp) ; back to your regularly scheduled program */
681
682 /* Maximum known linker stub size is 4 instructions. Search forward
683 from the given PC, then backward. */
684 for (i = 0; i < 4; i++)
685 {
686 /* If we hit something with an unwind, stop searching this direction. */
687
688 if (find_unwind_entry (pc + i * 4) != 0)
689 break;
690
691 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 692 return from a cross-space function call. */
c906108c
SS
693 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
694 {
695 found_magic_instruction = 1;
696 break;
697 }
698 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 699 here. */
c906108c
SS
700 }
701
702 if (found_magic_instruction != 0)
703 return 1;
704
705 /* Now look backward. */
706 for (i = 0; i < 4; i++)
707 {
708 /* If we hit something with an unwind, stop searching this direction. */
709
710 if (find_unwind_entry (pc - i * 4) != 0)
711 break;
712
713 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 714 return from a cross-space function call. */
c906108c
SS
715 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
716 {
717 found_magic_instruction = 1;
718 break;
719 }
720 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 721 here. */
c906108c
SS
722 }
723 return found_magic_instruction;
724}
725
726static int
fba45db2 727find_return_regnum (CORE_ADDR pc)
c906108c
SS
728{
729 struct unwind_table_entry *u;
730
731 u = find_unwind_entry (pc);
732
733 if (!u)
734 return RP_REGNUM;
735
736 if (u->Millicode)
737 return 31;
738
739 return RP_REGNUM;
740}
741
742/* Return size of frame, or -1 if we should use a frame pointer. */
743static int
fba45db2 744find_proc_framesize (CORE_ADDR pc)
c906108c
SS
745{
746 struct unwind_table_entry *u;
747 struct minimal_symbol *msym_us;
748
749 /* This may indicate a bug in our callers... */
c5aa993b 750 if (pc == (CORE_ADDR) 0)
c906108c 751 return -1;
c5aa993b 752
c906108c
SS
753 u = find_unwind_entry (pc);
754
755 if (!u)
756 {
757 if (pc_in_linker_stub (pc))
758 /* Linker stubs have a zero size frame. */
759 return 0;
760 else
761 return -1;
762 }
763
764 msym_us = lookup_minimal_symbol_by_pc (pc);
765
766 /* If Save_SP is set, and we're not in an interrupt or signal caller,
767 then we have a frame pointer. Use it. */
3fa41cdb
JL
768 if (u->Save_SP
769 && !pc_in_interrupt_handler (pc)
770 && msym_us
d7bd68ca 771 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
c906108c
SS
772 return -1;
773
774 return u->Total_frame_size << 3;
775}
776
777/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 778static int rp_saved (CORE_ADDR);
c906108c
SS
779
780static int
fba45db2 781rp_saved (CORE_ADDR pc)
c906108c
SS
782{
783 struct unwind_table_entry *u;
784
785 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
786 if (pc == (CORE_ADDR) 0)
787 return 0;
788
789 u = find_unwind_entry (pc);
790
791 if (!u)
792 {
793 if (pc_in_linker_stub (pc))
794 /* This is the so-called RP'. */
795 return -24;
796 else
797 return 0;
798 }
799
800 if (u->Save_RP)
53a5351d 801 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
802 else if (u->stub_unwind.stub_type != 0)
803 {
804 switch (u->stub_unwind.stub_type)
805 {
806 case EXPORT:
807 case IMPORT:
808 return -24;
809 case PARAMETER_RELOCATION:
810 return -8;
811 default:
812 return 0;
813 }
814 }
815 else
816 return 0;
817}
818\f
819int
fba45db2 820frameless_function_invocation (struct frame_info *frame)
c906108c
SS
821{
822 struct unwind_table_entry *u;
823
824 u = find_unwind_entry (frame->pc);
825
826 if (u == 0)
827 return 0;
828
829 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
830}
831
d709c020
JB
832/* Immediately after a function call, return the saved pc.
833 Can't go through the frames for this because on some machines
834 the new frame is not set up until the new function executes
835 some instructions. */
836
c906108c 837CORE_ADDR
fba45db2 838saved_pc_after_call (struct frame_info *frame)
c906108c
SS
839{
840 int ret_regnum;
841 CORE_ADDR pc;
842 struct unwind_table_entry *u;
843
844 ret_regnum = find_return_regnum (get_frame_pc (frame));
845 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 846
c906108c
SS
847 /* If PC is in a linker stub, then we need to dig the address
848 the stub will return to out of the stack. */
849 u = find_unwind_entry (pc);
850 if (u && u->stub_unwind.stub_type != 0)
851 return FRAME_SAVED_PC (frame);
852 else
853 return pc;
854}
855\f
856CORE_ADDR
fba45db2 857hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
858{
859 CORE_ADDR pc = get_frame_pc (frame);
860 struct unwind_table_entry *u;
861 CORE_ADDR old_pc;
c5aa993b
JM
862 int spun_around_loop = 0;
863 int rp_offset = 0;
c906108c
SS
864
865 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
866 at the base of the frame in an interrupt handler. Registers within
867 are saved in the exact same order as GDB numbers registers. How
868 convienent. */
869 if (pc_in_interrupt_handler (pc))
53a5351d
JM
870 return read_memory_integer (frame->frame + PC_REGNUM * 4,
871 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 872
104c1213
JM
873 if ((frame->pc >= frame->frame
874 && frame->pc <= (frame->frame
875 /* A call dummy is sized in words, but it is
876 actually a series of instructions. Account
877 for that scaling factor. */
878 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
879 * CALL_DUMMY_LENGTH)
880 /* Similarly we have to account for 64bit
881 wide register saves. */
882 + (32 * REGISTER_SIZE)
883 /* We always consider FP regs 8 bytes long. */
884 + (NUM_REGS - FP0_REGNUM) * 8
885 /* Similarly we have to account for 64bit
886 wide register saves. */
887 + (6 * REGISTER_SIZE))))
888 {
889 return read_memory_integer ((frame->frame
890 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
891 TARGET_PTR_BIT / 8) & ~0x3;
892 }
893
c906108c
SS
894#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
895 /* Deal with signal handler caller frames too. */
5a203e44 896 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
897 {
898 CORE_ADDR rp;
899 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
900 return rp & ~0x3;
901 }
902#endif
903
904 if (frameless_function_invocation (frame))
905 {
906 int ret_regnum;
907
908 ret_regnum = find_return_regnum (pc);
909
910 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
911 handler caller, then we need to look in the saved
912 register area to get the return pointer (the values
913 in the registers may not correspond to anything useful). */
914 if (frame->next
5a203e44 915 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
c906108c
SS
916 || pc_in_interrupt_handler (frame->next->pc)))
917 {
918 struct frame_saved_regs saved_regs;
919
95486978 920 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
921 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
922 TARGET_PTR_BIT / 8) & 0x2)
c906108c 923 {
53a5351d
JM
924 pc = read_memory_integer (saved_regs.regs[31],
925 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
926
927 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
928 with a return pointer in %rp and the kernel call with
929 a return pointer in %r31. We return the %rp variant
930 if %r31 is the same as frame->pc. */
c906108c 931 if (pc == frame->pc)
53a5351d
JM
932 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
933 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
934 }
935 else
53a5351d
JM
936 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
937 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
938 }
939 else
940 pc = read_register (ret_regnum) & ~0x3;
941 }
942 else
943 {
944 spun_around_loop = 0;
c5aa993b 945 old_pc = pc;
c906108c 946
c5aa993b 947 restart:
c906108c
SS
948 rp_offset = rp_saved (pc);
949
950 /* Similar to code in frameless function case. If the next
c5aa993b
JM
951 frame is a signal or interrupt handler, then dig the right
952 information out of the saved register info. */
c906108c
SS
953 if (rp_offset == 0
954 && frame->next
5a203e44 955 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
c906108c
SS
956 || pc_in_interrupt_handler (frame->next->pc)))
957 {
958 struct frame_saved_regs saved_regs;
959
95486978 960 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
961 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
962 TARGET_PTR_BIT / 8) & 0x2)
c906108c 963 {
53a5351d
JM
964 pc = read_memory_integer (saved_regs.regs[31],
965 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
966
967 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
968 with a return pointer in %rp and the kernel call with
969 a return pointer in %r31. We return the %rp variant
970 if %r31 is the same as frame->pc. */
c906108c 971 if (pc == frame->pc)
53a5351d
JM
972 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
973 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
974 }
975 else
53a5351d
JM
976 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
977 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
978 }
979 else if (rp_offset == 0)
c5aa993b
JM
980 {
981 old_pc = pc;
982 pc = read_register (RP_REGNUM) & ~0x3;
983 }
c906108c 984 else
c5aa993b
JM
985 {
986 old_pc = pc;
53a5351d
JM
987 pc = read_memory_integer (frame->frame + rp_offset,
988 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 989 }
c906108c
SS
990 }
991
992 /* If PC is inside a linker stub, then dig out the address the stub
993 will return to.
994
995 Don't do this for long branch stubs. Why? For some unknown reason
996 _start is marked as a long branch stub in hpux10. */
997 u = find_unwind_entry (pc);
998 if (u && u->stub_unwind.stub_type != 0
999 && u->stub_unwind.stub_type != LONG_BRANCH)
1000 {
1001 unsigned int insn;
1002
1003 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1004 then the call chain will eventually point us into the stub for
1005 _sigreturn. Unlike most cases, we'll be pointed to the branch
1006 to the real sigreturn rather than the code after the real branch!.
c906108c 1007
c5aa993b
JM
1008 Else, try to dig the address the stub will return to in the normal
1009 fashion. */
c906108c
SS
1010 insn = read_memory_integer (pc, 4);
1011 if ((insn & 0xfc00e000) == 0xe8000000)
1012 return (pc + extract_17 (insn) + 8) & ~0x3;
1013 else
1014 {
c5aa993b
JM
1015 if (old_pc == pc)
1016 spun_around_loop++;
1017
1018 if (spun_around_loop > 1)
1019 {
1020 /* We're just about to go around the loop again with
1021 no more hope of success. Die. */
1022 error ("Unable to find return pc for this frame");
1023 }
1024 else
1025 goto restart;
c906108c
SS
1026 }
1027 }
1028
1029 return pc;
1030}
1031\f
1032/* We need to correct the PC and the FP for the outermost frame when we are
1033 in a system call. */
1034
1035void
fba45db2 1036init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1037{
1038 int flags;
1039 int framesize;
1040
1041 if (frame->next && !fromleaf)
1042 return;
1043
1044 /* If the next frame represents a frameless function invocation
1045 then we have to do some adjustments that are normally done by
1046 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1047 if (fromleaf)
1048 {
1049 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1050 in the current frame structure (it isn't set yet). */
c906108c
SS
1051 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1052
1053 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1054 use it, else subtract the size of this frame from the current
1055 frame. (we always want frame->frame to point at the lowest address
1056 in the frame). */
c906108c
SS
1057 if (framesize == -1)
1058 frame->frame = TARGET_READ_FP ();
1059 else
1060 frame->frame -= framesize;
1061 return;
1062 }
1063
1064 flags = read_register (FLAGS_REGNUM);
c5aa993b 1065 if (flags & 2) /* In system call? */
c906108c
SS
1066 frame->pc = read_register (31) & ~0x3;
1067
1068 /* The outermost frame is always derived from PC-framesize
1069
1070 One might think frameless innermost frames should have
1071 a frame->frame that is the same as the parent's frame->frame.
1072 That is wrong; frame->frame in that case should be the *high*
1073 address of the parent's frame. It's complicated as hell to
1074 explain, but the parent *always* creates some stack space for
1075 the child. So the child actually does have a frame of some
1076 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1077 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1078 if (framesize == -1)
1079 frame->frame = TARGET_READ_FP ();
1080 else
1081 frame->frame = read_register (SP_REGNUM) - framesize;
1082}
1083\f
a5afb99f
AC
1084/* Given a GDB frame, determine the address of the calling function's
1085 frame. This will be used to create a new GDB frame struct, and
1086 then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
1087 called for the new frame.
c906108c
SS
1088
1089 This may involve searching through prologues for several functions
1090 at boundaries where GCC calls HP C code, or where code which has
1091 a frame pointer calls code without a frame pointer. */
1092
1093CORE_ADDR
fba45db2 1094frame_chain (struct frame_info *frame)
c906108c
SS
1095{
1096 int my_framesize, caller_framesize;
1097 struct unwind_table_entry *u;
1098 CORE_ADDR frame_base;
1099 struct frame_info *tmp_frame;
1100
c2c6d25f
JM
1101 /* A frame in the current frame list, or zero. */
1102 struct frame_info *saved_regs_frame = 0;
1103 /* Where the registers were saved in saved_regs_frame.
1104 If saved_regs_frame is zero, this is garbage. */
1105 struct frame_saved_regs saved_regs;
1106
c5aa993b 1107 CORE_ADDR caller_pc;
c906108c
SS
1108
1109 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1110 struct symbol *frame_symbol;
1111 char *frame_symbol_name;
c906108c
SS
1112
1113 /* If this is a threaded application, and we see the
1114 routine "__pthread_exit", treat it as the stack root
1115 for this thread. */
c5aa993b
JM
1116 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1117 frame_symbol = find_pc_function (frame->pc);
c906108c 1118
c5aa993b 1119 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1120 {
c5aa993b
JM
1121 /* The test above for "no user function name" would defend
1122 against the slim likelihood that a user might define a
1123 routine named "__pthread_exit" and then try to debug it.
1124
1125 If it weren't commented out, and you tried to debug the
1126 pthread library itself, you'd get errors.
1127
1128 So for today, we don't make that check. */
1129 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1130 if (frame_symbol_name != 0)
1131 {
1132 if (0 == strncmp (frame_symbol_name,
1133 THREAD_INITIAL_FRAME_SYMBOL,
1134 THREAD_INITIAL_FRAME_SYM_LEN))
1135 {
1136 /* Pretend we've reached the bottom of the stack. */
1137 return (CORE_ADDR) 0;
1138 }
1139 }
1140 } /* End of hacky code for threads. */
1141
c906108c
SS
1142 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1143 are easy; at *sp we have a full save state strucutre which we can
1144 pull the old stack pointer from. Also see frame_saved_pc for
1145 code to dig a saved PC out of the save state structure. */
1146 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1147 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1148 TARGET_PTR_BIT / 8);
c906108c 1149#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1150 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1151 {
1152 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1153 }
1154#endif
1155 else
1156 frame_base = frame->frame;
1157
1158 /* Get frame sizes for the current frame and the frame of the
1159 caller. */
1160 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1161 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1162
1163 /* If we can't determine the caller's PC, then it's not likely we can
1164 really determine anything meaningful about its frame. We'll consider
1165 this to be stack bottom. */
1166 if (caller_pc == (CORE_ADDR) 0)
1167 return (CORE_ADDR) 0;
1168
c5aa993b 1169 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1170
1171 /* If caller does not have a frame pointer, then its frame
1172 can be found at current_frame - caller_framesize. */
1173 if (caller_framesize != -1)
1174 {
1175 return frame_base - caller_framesize;
1176 }
1177 /* Both caller and callee have frame pointers and are GCC compiled
1178 (SAVE_SP bit in unwind descriptor is on for both functions.
1179 The previous frame pointer is found at the top of the current frame. */
1180 if (caller_framesize == -1 && my_framesize == -1)
1181 {
53a5351d 1182 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1183 }
1184 /* Caller has a frame pointer, but callee does not. This is a little
1185 more difficult as GCC and HP C lay out locals and callee register save
1186 areas very differently.
1187
1188 The previous frame pointer could be in a register, or in one of
1189 several areas on the stack.
1190
1191 Walk from the current frame to the innermost frame examining
1192 unwind descriptors to determine if %r3 ever gets saved into the
1193 stack. If so return whatever value got saved into the stack.
1194 If it was never saved in the stack, then the value in %r3 is still
1195 valid, so use it.
1196
1197 We use information from unwind descriptors to determine if %r3
1198 is saved into the stack (Entry_GR field has this information). */
1199
c2c6d25f 1200 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
c906108c
SS
1201 {
1202 u = find_unwind_entry (tmp_frame->pc);
1203
1204 if (!u)
1205 {
1206 /* We could find this information by examining prologues. I don't
1207 think anyone has actually written any tools (not even "strip")
1208 which leave them out of an executable, so maybe this is a moot
1209 point. */
c5aa993b
JM
1210 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1211 code that doesn't have unwind entries. For example, stepping into
1212 the dynamic linker will give you a PC that has none. Thus, I've
1213 disabled this warning. */
c906108c
SS
1214#if 0
1215 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1216#endif
1217 return (CORE_ADDR) 0;
1218 }
1219
c2c6d25f 1220 if (u->Save_SP
5a203e44 1221 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
c906108c
SS
1222 || pc_in_interrupt_handler (tmp_frame->pc))
1223 break;
c2c6d25f
JM
1224
1225 /* Entry_GR specifies the number of callee-saved general registers
1226 saved in the stack. It starts at %r3, so %r3 would be 1. */
1227 if (u->Entry_GR >= 1)
1228 {
1229 /* The unwind entry claims that r3 is saved here. However,
1230 in optimized code, GCC often doesn't actually save r3.
1231 We'll discover this if we look at the prologue. */
95486978 1232 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c2c6d25f
JM
1233 saved_regs_frame = tmp_frame;
1234
1235 /* If we have an address for r3, that's good. */
1236 if (saved_regs.regs[FP_REGNUM])
1237 break;
1238 }
c906108c
SS
1239 }
1240
1241 if (tmp_frame)
1242 {
1243 /* We may have walked down the chain into a function with a frame
c5aa993b 1244 pointer. */
c906108c 1245 if (u->Save_SP
5a203e44 1246 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
c906108c
SS
1247 && !pc_in_interrupt_handler (tmp_frame->pc))
1248 {
53a5351d 1249 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1250 }
1251 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1252 else
c906108c 1253 {
c906108c
SS
1254 /* Sick.
1255
1256 For optimization purposes many kernels don't have the
1257 callee saved registers into the save_state structure upon
1258 entry into the kernel for a syscall; the optimization
1259 is usually turned off if the process is being traced so
1260 that the debugger can get full register state for the
1261 process.
c5aa993b 1262
c906108c
SS
1263 This scheme works well except for two cases:
1264
c5aa993b
JM
1265 * Attaching to a process when the process is in the
1266 kernel performing a system call (debugger can't get
1267 full register state for the inferior process since
1268 the process wasn't being traced when it entered the
1269 system call).
c906108c 1270
c5aa993b
JM
1271 * Register state is not complete if the system call
1272 causes the process to core dump.
c906108c
SS
1273
1274
1275 The following heinous code is an attempt to deal with
1276 the lack of register state in a core dump. It will
1277 fail miserably if the function which performs the
1278 system call has a variable sized stack frame. */
1279
c2c6d25f 1280 if (tmp_frame != saved_regs_frame)
95486978 1281 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c906108c
SS
1282
1283 /* Abominable hack. */
1284 if (current_target.to_has_execution == 0
1285 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1286 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1287 TARGET_PTR_BIT / 8)
c906108c
SS
1288 & 0x2))
1289 || (saved_regs.regs[FLAGS_REGNUM] == 0
1290 && read_register (FLAGS_REGNUM) & 0x2)))
1291 {
1292 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1293 if (!u)
1294 {
53a5351d
JM
1295 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1296 TARGET_PTR_BIT / 8);
c906108c
SS
1297 }
1298 else
1299 {
1300 return frame_base - (u->Total_frame_size << 3);
1301 }
1302 }
c5aa993b 1303
53a5351d
JM
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1305 TARGET_PTR_BIT / 8);
c906108c
SS
1306 }
1307 }
1308 else
1309 {
c906108c
SS
1310 /* Get the innermost frame. */
1311 tmp_frame = frame;
1312 while (tmp_frame->next != NULL)
1313 tmp_frame = tmp_frame->next;
1314
c2c6d25f 1315 if (tmp_frame != saved_regs_frame)
95486978 1316 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c2c6d25f 1317
c906108c
SS
1318 /* Abominable hack. See above. */
1319 if (current_target.to_has_execution == 0
1320 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1321 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1322 TARGET_PTR_BIT / 8)
c906108c
SS
1323 & 0x2))
1324 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1325 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1326 {
1327 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1328 if (!u)
1329 {
53a5351d
JM
1330 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1331 TARGET_PTR_BIT / 8);
c906108c 1332 }
c5aa993b
JM
1333 else
1334 {
1335 return frame_base - (u->Total_frame_size << 3);
1336 }
c906108c 1337 }
c5aa993b 1338
c906108c 1339 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1340 holds the value of the previous frame pointer). */
c906108c
SS
1341 return TARGET_READ_FP ();
1342 }
1343}
c906108c 1344\f
c5aa993b 1345
c906108c
SS
1346/* To see if a frame chain is valid, see if the caller looks like it
1347 was compiled with gcc. */
1348
1349int
fba45db2 1350hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1351{
1352 struct minimal_symbol *msym_us;
1353 struct minimal_symbol *msym_start;
1354 struct unwind_table_entry *u, *next_u = NULL;
1355 struct frame_info *next;
1356
1357 if (!chain)
1358 return 0;
1359
1360 u = find_unwind_entry (thisframe->pc);
1361
1362 if (u == NULL)
1363 return 1;
1364
1365 /* We can't just check that the same of msym_us is "_start", because
1366 someone idiotically decided that they were going to make a Ltext_end
1367 symbol with the same address. This Ltext_end symbol is totally
1368 indistinguishable (as nearly as I can tell) from the symbol for a function
1369 which is (legitimately, since it is in the user's namespace)
1370 named Ltext_end, so we can't just ignore it. */
1371 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1372 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1373 if (msym_us
1374 && msym_start
1375 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1376 return 0;
1377
1378 /* Grrrr. Some new idiot decided that they don't want _start for the
1379 PRO configurations; $START$ calls main directly.... Deal with it. */
1380 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1381 if (msym_us
1382 && msym_start
1383 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1384 return 0;
1385
1386 next = get_next_frame (thisframe);
1387 if (next)
1388 next_u = find_unwind_entry (next->pc);
1389
1390 /* If this frame does not save SP, has no stack, isn't a stub,
1391 and doesn't "call" an interrupt routine or signal handler caller,
1392 then its not valid. */
1393 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
5a203e44 1394 || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME))
c906108c
SS
1395 || (next_u && next_u->HP_UX_interrupt_marker))
1396 return 1;
1397
1398 if (pc_in_linker_stub (thisframe->pc))
1399 return 1;
1400
1401 return 0;
1402}
1403
1404/*
1405 These functions deal with saving and restoring register state
1406 around a function call in the inferior. They keep the stack
1407 double-word aligned; eventually, on an hp700, the stack will have
1408 to be aligned to a 64-byte boundary. */
1409
1410void
fba45db2 1411push_dummy_frame (struct inferior_status *inf_status)
c906108c
SS
1412{
1413 CORE_ADDR sp, pc, pcspace;
1414 register int regnum;
53a5351d 1415 CORE_ADDR int_buffer;
c906108c
SS
1416 double freg_buffer;
1417
1418 /* Oh, what a hack. If we're trying to perform an inferior call
1419 while the inferior is asleep, we have to make sure to clear
1420 the "in system call" bit in the flag register (the call will
1421 start after the syscall returns, so we're no longer in the system
1422 call!) This state is kept in "inf_status", change it there.
1423
1424 We also need a number of horrid hacks to deal with lossage in the
1425 PC queue registers (apparently they're not valid when the in syscall
1426 bit is set). */
39f77062 1427 pc = target_read_pc (inferior_ptid);
c906108c
SS
1428 int_buffer = read_register (FLAGS_REGNUM);
1429 if (int_buffer & 0x2)
1430 {
1431 unsigned int sid;
1432 int_buffer &= ~0x2;
7a292a7a
SS
1433 write_inferior_status_register (inf_status, 0, int_buffer);
1434 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1435 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1436 sid = (pc >> 30) & 0x3;
1437 if (sid == 0)
1438 pcspace = read_register (SR4_REGNUM);
1439 else
1440 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1441 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1442 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1443 }
1444 else
1445 pcspace = read_register (PCSQ_HEAD_REGNUM);
1446
1447 /* Space for "arguments"; the RP goes in here. */
1448 sp = read_register (SP_REGNUM) + 48;
1449 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1450
1451 /* The 32bit and 64bit ABIs save the return pointer into different
1452 stack slots. */
1453 if (REGISTER_SIZE == 8)
1454 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1455 else
1456 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1457
1458 int_buffer = TARGET_READ_FP ();
53a5351d 1459 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1460
1461 write_register (FP_REGNUM, sp);
1462
53a5351d 1463 sp += 2 * REGISTER_SIZE;
c906108c
SS
1464
1465 for (regnum = 1; regnum < 32; regnum++)
1466 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1467 sp = push_word (sp, read_register (regnum));
1468
53a5351d
JM
1469 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1470 if (REGISTER_SIZE != 8)
1471 sp += 4;
c906108c
SS
1472
1473 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1474 {
73937e03
AC
1475 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1476 (char *) &freg_buffer, 8);
c5aa993b 1477 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1478 }
1479 sp = push_word (sp, read_register (IPSW_REGNUM));
1480 sp = push_word (sp, read_register (SAR_REGNUM));
1481 sp = push_word (sp, pc);
1482 sp = push_word (sp, pcspace);
1483 sp = push_word (sp, pc + 4);
1484 sp = push_word (sp, pcspace);
1485 write_register (SP_REGNUM, sp);
1486}
1487
1488static void
fba45db2
KB
1489find_dummy_frame_regs (struct frame_info *frame,
1490 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
1491{
1492 CORE_ADDR fp = frame->frame;
1493 int i;
1494
53a5351d
JM
1495 /* The 32bit and 64bit ABIs save RP into different locations. */
1496 if (REGISTER_SIZE == 8)
1497 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1498 else
1499 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1500
c906108c 1501 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1502
53a5351d
JM
1503 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1504
1505 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1506 {
1507 if (i != FP_REGNUM)
1508 {
1509 frame_saved_regs->regs[i] = fp;
53a5351d 1510 fp += REGISTER_SIZE;
c906108c
SS
1511 }
1512 }
1513
53a5351d
JM
1514 /* This is not necessary or desirable for the 64bit ABI. */
1515 if (REGISTER_SIZE != 8)
1516 fp += 4;
1517
c906108c
SS
1518 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1519 frame_saved_regs->regs[i] = fp;
1520
1521 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1522 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1523 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1524 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1525 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1526 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1527}
1528
1529void
fba45db2 1530hppa_pop_frame (void)
c906108c
SS
1531{
1532 register struct frame_info *frame = get_current_frame ();
1533 register CORE_ADDR fp, npc, target_pc;
1534 register int regnum;
1535 struct frame_saved_regs fsr;
1536 double freg_buffer;
1537
c193f6ac 1538 fp = get_frame_base (frame);
95486978 1539 deprecated_get_frame_saved_regs (frame, &fsr);
c906108c
SS
1540
1541#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1542 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1543 restore_pc_queue (&fsr);
1544#endif
1545
1546 for (regnum = 31; regnum > 0; regnum--)
1547 if (fsr.regs[regnum])
53a5351d
JM
1548 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1549 REGISTER_SIZE));
c906108c 1550
c5aa993b 1551 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1552 if (fsr.regs[regnum])
1553 {
c5aa993b 1554 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1555 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1556 (char *) &freg_buffer, 8);
c906108c
SS
1557 }
1558
1559 if (fsr.regs[IPSW_REGNUM])
1560 write_register (IPSW_REGNUM,
53a5351d
JM
1561 read_memory_integer (fsr.regs[IPSW_REGNUM],
1562 REGISTER_SIZE));
c906108c
SS
1563
1564 if (fsr.regs[SAR_REGNUM])
1565 write_register (SAR_REGNUM,
53a5351d
JM
1566 read_memory_integer (fsr.regs[SAR_REGNUM],
1567 REGISTER_SIZE));
c906108c
SS
1568
1569 /* If the PC was explicitly saved, then just restore it. */
1570 if (fsr.regs[PCOQ_TAIL_REGNUM])
1571 {
53a5351d
JM
1572 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1573 REGISTER_SIZE);
c906108c
SS
1574 write_register (PCOQ_TAIL_REGNUM, npc);
1575 }
1576 /* Else use the value in %rp to set the new PC. */
c5aa993b 1577 else
c906108c
SS
1578 {
1579 npc = read_register (RP_REGNUM);
1580 write_pc (npc);
1581 }
1582
53a5351d 1583 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1584
c5aa993b 1585 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1586 write_register (SP_REGNUM, fp - 48);
1587 else
1588 write_register (SP_REGNUM, fp);
1589
1590 /* The PC we just restored may be inside a return trampoline. If so
1591 we want to restart the inferior and run it through the trampoline.
1592
1593 Do this by setting a momentary breakpoint at the location the
1594 trampoline returns to.
1595
1596 Don't skip through the trampoline if we're popping a dummy frame. */
1597 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1598 if (target_pc && !fsr.regs[IPSW_REGNUM])
1599 {
1600 struct symtab_and_line sal;
1601 struct breakpoint *breakpoint;
1602 struct cleanup *old_chain;
1603
1604 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1605 for "return_command" will print the frame we returned to. */
c906108c
SS
1606 sal = find_pc_line (target_pc, 0);
1607 sal.pc = target_pc;
516b1f28 1608 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1609 breakpoint->silent = 1;
1610
1611 /* So we can clean things up. */
4d6140d9 1612 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1613
1614 /* Start up the inferior. */
1615 clear_proceed_status ();
1616 proceed_to_finish = 1;
2acceee2 1617 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1618
1619 /* Perform our cleanups. */
1620 do_cleanups (old_chain);
1621 }
1622 flush_cached_frames ();
1623}
1624
1625/* After returning to a dummy on the stack, restore the instruction
1626 queue space registers. */
1627
1628static int
fba45db2 1629restore_pc_queue (struct frame_saved_regs *fsr)
c906108c
SS
1630{
1631 CORE_ADDR pc = read_pc ();
53a5351d
JM
1632 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1633 TARGET_PTR_BIT / 8);
c906108c
SS
1634 struct target_waitstatus w;
1635 int insn_count;
1636
1637 /* Advance past break instruction in the call dummy. */
1638 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1639 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1640
1641 /* HPUX doesn't let us set the space registers or the space
1642 registers of the PC queue through ptrace. Boo, hiss.
1643 Conveniently, the call dummy has this sequence of instructions
1644 after the break:
c5aa993b
JM
1645 mtsp r21, sr0
1646 ble,n 0(sr0, r22)
1647
c906108c
SS
1648 So, load up the registers and single step until we are in the
1649 right place. */
1650
53a5351d
JM
1651 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1652 REGISTER_SIZE));
c906108c
SS
1653 write_register (22, new_pc);
1654
1655 for (insn_count = 0; insn_count < 3; insn_count++)
1656 {
1657 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1658 merge this into wait_for_inferior (as a special kind of
1659 watchpoint? By setting a breakpoint at the end? Is there
1660 any other choice? Is there *any* way to do this stuff with
1661 ptrace() or some equivalent?). */
c906108c 1662 resume (1, 0);
39f77062 1663 target_wait (inferior_ptid, &w);
c906108c
SS
1664
1665 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1666 {
1667 stop_signal = w.value.sig;
1668 terminal_ours_for_output ();
1669 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1670 target_signal_to_name (stop_signal),
1671 target_signal_to_string (stop_signal));
c5aa993b
JM
1672 gdb_flush (gdb_stdout);
1673 return 0;
1674 }
c906108c
SS
1675 }
1676 target_terminal_ours ();
1677 target_fetch_registers (-1);
1678 return 1;
1679}
1680
c2c6d25f
JM
1681
1682#ifdef PA20W_CALLING_CONVENTIONS
1683
53a5351d
JM
1684/* This function pushes a stack frame with arguments as part of the
1685 inferior function calling mechanism.
c906108c 1686
c2c6d25f
JM
1687 This is the version for the PA64, in which later arguments appear
1688 at higher addresses. (The stack always grows towards higher
1689 addresses.)
c906108c 1690
53a5351d
JM
1691 We simply allocate the appropriate amount of stack space and put
1692 arguments into their proper slots. The call dummy code will copy
1693 arguments into registers as needed by the ABI.
c906108c 1694
c2c6d25f
JM
1695 This ABI also requires that the caller provide an argument pointer
1696 to the callee, so we do that too. */
53a5351d 1697
c906108c 1698CORE_ADDR
ea7c478f 1699hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1700 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1701{
1702 /* array of arguments' offsets */
c5aa993b 1703 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1704
1705 /* array of arguments' lengths: real lengths in bytes, not aligned to
1706 word size */
c5aa993b 1707 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1708
53a5351d
JM
1709 /* The value of SP as it was passed into this function after
1710 aligning. */
1711 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1712
53a5351d
JM
1713 /* The number of stack bytes occupied by the current argument. */
1714 int bytes_reserved;
1715
1716 /* The total number of bytes reserved for the arguments. */
1717 int cum_bytes_reserved = 0;
c906108c 1718
53a5351d
JM
1719 /* Similarly, but aligned. */
1720 int cum_bytes_aligned = 0;
1721 int i;
c5aa993b 1722
53a5351d 1723 /* Iterate over each argument provided by the user. */
c906108c
SS
1724 for (i = 0; i < nargs; i++)
1725 {
c2c6d25f
JM
1726 struct type *arg_type = VALUE_TYPE (args[i]);
1727
1728 /* Integral scalar values smaller than a register are padded on
1729 the left. We do this by promoting them to full-width,
1730 although the ABI says to pad them with garbage. */
1731 if (is_integral_type (arg_type)
1732 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1733 {
1734 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1735 ? builtin_type_unsigned_long
1736 : builtin_type_long),
1737 args[i]);
1738 arg_type = VALUE_TYPE (args[i]);
1739 }
1740
1741 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1742
53a5351d
JM
1743 /* Align the size of the argument to the word size for this
1744 target. */
1745 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1746
53a5351d
JM
1747 offset[i] = cum_bytes_reserved;
1748
c2c6d25f
JM
1749 /* Aggregates larger than eight bytes (the only types larger
1750 than eight bytes we have) are aligned on a 16-byte boundary,
1751 possibly padded on the right with garbage. This may leave an
1752 empty word on the stack, and thus an unused register, as per
1753 the ABI. */
1754 if (bytes_reserved > 8)
1755 {
1756 /* Round up the offset to a multiple of two slots. */
1757 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1758 & -(2*REGISTER_SIZE));
c906108c 1759
c2c6d25f
JM
1760 /* Note the space we've wasted, if any. */
1761 bytes_reserved += new_offset - offset[i];
1762 offset[i] = new_offset;
1763 }
53a5351d 1764
c2c6d25f
JM
1765 cum_bytes_reserved += bytes_reserved;
1766 }
1767
1768 /* CUM_BYTES_RESERVED already accounts for all the arguments
1769 passed by the user. However, the ABIs mandate minimum stack space
1770 allocations for outgoing arguments.
1771
1772 The ABIs also mandate minimum stack alignments which we must
1773 preserve. */
1774 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1775 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1776
1777 /* Now write each of the args at the proper offset down the stack. */
1778 for (i = 0; i < nargs; i++)
1779 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1780
1781 /* If a structure has to be returned, set up register 28 to hold its
1782 address */
1783 if (struct_return)
1784 write_register (28, struct_addr);
1785
1786 /* For the PA64 we must pass a pointer to the outgoing argument list.
1787 The ABI mandates that the pointer should point to the first byte of
1788 storage beyond the register flushback area.
1789
1790 However, the call dummy expects the outgoing argument pointer to
1791 be passed in register %r4. */
1792 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1793
1794 /* ?!? This needs further work. We need to set up the global data
1795 pointer for this procedure. This assumes the same global pointer
1796 for every procedure. The call dummy expects the dp value to
1797 be passed in register %r6. */
1798 write_register (6, read_register (27));
1799
1800 /* The stack will have 64 bytes of additional space for a frame marker. */
1801 return sp + 64;
1802}
1803
1804#else
1805
1806/* This function pushes a stack frame with arguments as part of the
1807 inferior function calling mechanism.
1808
1809 This is the version of the function for the 32-bit PA machines, in
1810 which later arguments appear at lower addresses. (The stack always
1811 grows towards higher addresses.)
1812
1813 We simply allocate the appropriate amount of stack space and put
1814 arguments into their proper slots. The call dummy code will copy
1815 arguments into registers as needed by the ABI. */
1816
1817CORE_ADDR
ea7c478f 1818hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1819 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1820{
1821 /* array of arguments' offsets */
1822 int *offset = (int *) alloca (nargs * sizeof (int));
1823
1824 /* array of arguments' lengths: real lengths in bytes, not aligned to
1825 word size */
1826 int *lengths = (int *) alloca (nargs * sizeof (int));
1827
1828 /* The number of stack bytes occupied by the current argument. */
1829 int bytes_reserved;
1830
1831 /* The total number of bytes reserved for the arguments. */
1832 int cum_bytes_reserved = 0;
1833
1834 /* Similarly, but aligned. */
1835 int cum_bytes_aligned = 0;
1836 int i;
1837
1838 /* Iterate over each argument provided by the user. */
1839 for (i = 0; i < nargs; i++)
1840 {
1841 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1842
1843 /* Align the size of the argument to the word size for this
1844 target. */
1845 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1846
b6649e88
AC
1847 offset[i] = (cum_bytes_reserved
1848 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1849
1850 /* If the argument is a double word argument, then it needs to be
1851 double word aligned. */
53a5351d 1852 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1853 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1854 {
1855 int new_offset = 0;
53a5351d
JM
1856 /* BYTES_RESERVED is already aligned to the word, so we put
1857 the argument at one word more down the stack.
1858
1859 This will leave one empty word on the stack, and one unused
1860 register as mandated by the ABI. */
1861 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1862 & -(2 * REGISTER_SIZE));
1863
1864 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1865 {
53a5351d
JM
1866 bytes_reserved += REGISTER_SIZE;
1867 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1868 }
1869 }
c906108c
SS
1870
1871 cum_bytes_reserved += bytes_reserved;
1872
1873 }
1874
c2c6d25f
JM
1875 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1876 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1877 allocations for outgoing arguments.
1878
c2c6d25f 1879 The ABI also mandates minimum stack alignments which we must
53a5351d 1880 preserve. */
c906108c 1881 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1882 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1883
1884 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1885 ?!? We need to promote values to a full register instead of skipping
1886 words in the stack. */
c906108c
SS
1887 for (i = 0; i < nargs; i++)
1888 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1889
53a5351d
JM
1890 /* If a structure has to be returned, set up register 28 to hold its
1891 address */
c906108c
SS
1892 if (struct_return)
1893 write_register (28, struct_addr);
1894
53a5351d 1895 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1896 return sp + 32;
1897}
1898
c2c6d25f 1899#endif
c906108c
SS
1900
1901/* elz: this function returns a value which is built looking at the given address.
1902 It is called from call_function_by_hand, in case we need to return a
1903 value which is larger than 64 bits, and it is stored in the stack rather than
1904 in the registers r28 and r29 or fr4.
1905 This function does the same stuff as value_being_returned in values.c, but
1906 gets the value from the stack rather than from the buffer where all the
1907 registers were saved when the function called completed. */
ea7c478f 1908struct value *
fba45db2 1909hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1910{
ea7c478f 1911 register struct value *val;
c906108c
SS
1912
1913 val = allocate_value (valtype);
1914 CHECK_TYPEDEF (valtype);
c5aa993b 1915 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1916
1917 return val;
1918}
1919
1920
1921
1922/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1923 This function calls shl_findsym, indirectly through a
1924 call to __d_shl_get. __d_shl_get is in end.c, which is always
1925 linked in by the hp compilers/linkers.
1926 The call to shl_findsym cannot be made directly because it needs
1927 to be active in target address space.
1928 inputs: - minimal symbol pointer for the function we want to look up
1929 - address in target space of the descriptor for the library
1930 where we want to look the symbol up.
1931 This address is retrieved using the
1932 som_solib_get_solib_by_pc function (somsolib.c).
1933 output: - real address in the library of the function.
1934 note: the handle can be null, in which case shl_findsym will look for
1935 the symbol in all the loaded shared libraries.
1936 files to look at if you need reference on this stuff:
1937 dld.c, dld_shl_findsym.c
1938 end.c
1939 man entry for shl_findsym */
c906108c
SS
1940
1941CORE_ADDR
fba45db2 1942find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1943{
c5aa993b
JM
1944 struct symbol *get_sym, *symbol2;
1945 struct minimal_symbol *buff_minsym, *msymbol;
1946 struct type *ftype;
ea7c478f
AC
1947 struct value **args;
1948 struct value *funcval;
1949 struct value *val;
c5aa993b
JM
1950
1951 int x, namelen, err_value, tmp = -1;
1952 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1953 CORE_ADDR stub_addr;
1954
1955
ea7c478f 1956 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1957 funcval = find_function_in_inferior ("__d_shl_get");
1958 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1959 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1960 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1961 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1962 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1963 namelen = strlen (SYMBOL_NAME (function));
1964 value_return_addr = endo_buff_addr + namelen;
1965 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1966
1967 /* do alignment */
1968 if ((x = value_return_addr % 64) != 0)
1969 value_return_addr = value_return_addr + 64 - x;
1970
1971 errno_return_addr = value_return_addr + 64;
1972
1973
1974 /* set up stuff needed by __d_shl_get in buffer in end.o */
1975
1976 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1977
1978 target_write_memory (value_return_addr, (char *) &tmp, 4);
1979
1980 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1981
1982 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1983 (char *) &handle, 4);
1984
1985 /* now prepare the arguments for the call */
1986
1987 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
1988 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1989 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 1990 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
1991 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1992 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
1993
1994 /* now call the function */
1995
1996 val = call_function_by_hand (funcval, 6, args);
1997
1998 /* now get the results */
1999
2000 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2001
2002 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2003 if (stub_addr <= 0)
104c1213 2004 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2005
2006 return (stub_addr);
c906108c
SS
2007}
2008
c5aa993b 2009/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd
JM
2010static int
2011cover_find_stub_with_shl_get (PTR args_untyped)
c906108c 2012{
a0b3c4fd
JM
2013 args_for_find_stub *args = args_untyped;
2014 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2015 return 0;
c906108c
SS
2016}
2017
c906108c
SS
2018/* Insert the specified number of args and function address
2019 into a call sequence of the above form stored at DUMMYNAME.
2020
2021 On the hppa we need to call the stack dummy through $$dyncall.
2022 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2023 real_pc, which is the location where gdb should start up the
cce74817
JM
2024 inferior to do the function call.
2025
2026 This has to work across several versions of hpux, bsd, osf1. It has to
2027 work regardless of what compiler was used to build the inferior program.
2028 It should work regardless of whether or not end.o is available. It has
2029 to work even if gdb can not call into the dynamic loader in the inferior
2030 to query it for symbol names and addresses.
2031
2032 Yes, all those cases should work. Luckily code exists to handle most
2033 of them. The complexity is in selecting exactly what scheme should
2034 be used to perform the inferior call.
2035
2036 At the current time this routine is known not to handle cases where
2037 the program was linked with HP's compiler without including end.o.
2038
2039 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2040
2041CORE_ADDR
fba45db2 2042hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2043 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2044{
2045 CORE_ADDR dyncall_addr;
2046 struct minimal_symbol *msymbol;
2047 struct minimal_symbol *trampoline;
2048 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2049 struct unwind_table_entry *u = NULL;
2050 CORE_ADDR new_stub = 0;
2051 CORE_ADDR solib_handle = 0;
2052
2053 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2054 passed an import stub, not a PLABEL. It is also necessary to set %r19
2055 (the PIC register) before performing the call.
c906108c 2056
cce74817
JM
2057 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2058 are calling the target directly. When using __d_plt_call we want to
2059 use a PLABEL instead of an import stub. */
2060 int using_gcc_plt_call = 1;
2061
53a5351d
JM
2062#ifdef GDB_TARGET_IS_HPPA_20W
2063 /* We currently use completely different code for the PA2.0W inferior
2064 function call sequences. This needs to be cleaned up. */
2065 {
2066 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2067 struct target_waitstatus w;
2068 int inst1, inst2;
2069 char buf[4];
2070 int status;
2071 struct objfile *objfile;
2072
2073 /* We can not modify the PC space queues directly, so we start
2074 up the inferior and execute a couple instructions to set the
2075 space queues so that they point to the call dummy in the stack. */
2076 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2077 sr5 = read_register (SR5_REGNUM);
2078 if (1)
2079 {
2080 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2081 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2082 if (target_read_memory (pcoqh, buf, 4) != 0)
2083 error ("Couldn't modify space queue\n");
2084 inst1 = extract_unsigned_integer (buf, 4);
2085
2086 if (target_read_memory (pcoqt, buf, 4) != 0)
2087 error ("Couldn't modify space queue\n");
2088 inst2 = extract_unsigned_integer (buf, 4);
2089
2090 /* BVE (r1) */
2091 *((int *) buf) = 0xe820d000;
2092 if (target_write_memory (pcoqh, buf, 4) != 0)
2093 error ("Couldn't modify space queue\n");
2094
2095 /* NOP */
2096 *((int *) buf) = 0x08000240;
2097 if (target_write_memory (pcoqt, buf, 4) != 0)
2098 {
2099 *((int *) buf) = inst1;
2100 target_write_memory (pcoqh, buf, 4);
2101 error ("Couldn't modify space queue\n");
2102 }
2103
2104 write_register (1, pc);
2105
2106 /* Single step twice, the BVE instruction will set the space queue
2107 such that it points to the PC value written immediately above
2108 (ie the call dummy). */
2109 resume (1, 0);
39f77062 2110 target_wait (inferior_ptid, &w);
53a5351d 2111 resume (1, 0);
39f77062 2112 target_wait (inferior_ptid, &w);
53a5351d
JM
2113
2114 /* Restore the two instructions at the old PC locations. */
2115 *((int *) buf) = inst1;
2116 target_write_memory (pcoqh, buf, 4);
2117 *((int *) buf) = inst2;
2118 target_write_memory (pcoqt, buf, 4);
2119 }
2120
2121 /* The call dummy wants the ultimate destination address initially
2122 in register %r5. */
2123 write_register (5, fun);
2124
2125 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2126 own (it could be a shared library for example). */
53a5351d
JM
2127 ALL_OBJFILES (objfile)
2128 {
2129 struct obj_section *s;
2130 obj_private_data_t *obj_private;
2131
2132 /* See if FUN is in any section within this shared library. */
2133 for (s = objfile->sections; s < objfile->sections_end; s++)
2134 if (s->addr <= fun && fun < s->endaddr)
2135 break;
2136
2137 if (s >= objfile->sections_end)
2138 continue;
2139
2140 obj_private = (obj_private_data_t *) objfile->obj_private;
2141
2142 /* The DP value may be different for each objfile. But within an
2143 objfile each function uses the same dp value. Thus we do not need
2144 to grope around the opd section looking for dp values.
2145
2146 ?!? This is not strictly correct since we may be in a shared library
2147 and want to call back into the main program. To make that case
2148 work correctly we need to set obj_private->dp for the main program's
2149 objfile, then remove this conditional. */
2150 if (obj_private->dp)
2151 write_register (27, obj_private->dp);
2152 break;
2153 }
2154 return pc;
2155 }
2156#endif
2157
2158#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2159 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2160 __gcc_plt_call works for any number of arguments. */
c906108c 2161 trampoline = NULL;
cce74817
JM
2162 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2163 using_gcc_plt_call = 0;
2164
c906108c
SS
2165 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2166 if (msymbol == NULL)
cce74817 2167 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2168
2169 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2170
2171 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2172 its real address and the value of its GOT/DP if we plan to
2173 call the routine via gcc_plt_call. */
2174 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2175 {
2176 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2177 at *(fun+4). Note the call dummy is *NOT* allowed to
2178 trash %r19 before calling the target function. */
53a5351d
JM
2179 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2180 REGISTER_SIZE));
c906108c
SS
2181
2182 /* Now get the real address for the function we are calling, it's
c5aa993b 2183 at *fun. */
53a5351d
JM
2184 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2185 TARGET_PTR_BIT / 8);
c906108c
SS
2186 }
2187 else
2188 {
2189
2190#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2191 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2192 a PLABEL. When using gcc's PLT call routine we must call an import
2193 stub rather than the export stub or real function for lazy binding
2194 to work correctly
cce74817 2195
39f77062 2196 If we are using the gcc PLT call routine, then we need to
c5aa993b 2197 get the import stub for the target function. */
cce74817 2198 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2199 {
2200 struct objfile *objfile;
2201 struct minimal_symbol *funsymbol, *stub_symbol;
2202 CORE_ADDR newfun = 0;
2203
2204 funsymbol = lookup_minimal_symbol_by_pc (fun);
2205 if (!funsymbol)
4ce44c66 2206 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2207
2208 /* Search all the object files for an import symbol with the
2209 right name. */
2210 ALL_OBJFILES (objfile)
c5aa993b
JM
2211 {
2212 stub_symbol
2213 = lookup_minimal_symbol_solib_trampoline
2214 (SYMBOL_NAME (funsymbol), NULL, objfile);
2215
2216 if (!stub_symbol)
2217 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2218 NULL, objfile);
2219
2220 /* Found a symbol with the right name. */
2221 if (stub_symbol)
2222 {
2223 struct unwind_table_entry *u;
2224 /* It must be a shared library trampoline. */
2225 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2226 continue;
2227
2228 /* It must also be an import stub. */
2229 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2230 if (u == NULL
2231 || (u->stub_unwind.stub_type != IMPORT
2232#ifdef GDB_NATIVE_HPUX_11
2233 /* Sigh. The hpux 10.20 dynamic linker will blow
2234 chunks if we perform a call to an unbound function
2235 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2236 linker will blow chunks if we do not call the
2237 unbound function via the IMPORT_SHLIB stub.
2238
2239 We currently have no way to select bevahior on just
2240 the target. However, we only support HPUX/SOM in
2241 native mode. So we conditinalize on a native
2242 #ifdef. Ugly. Ugly. Ugly */
2243 && u->stub_unwind.stub_type != IMPORT_SHLIB
2244#endif
2245 ))
c5aa993b
JM
2246 continue;
2247
2248 /* OK. Looks like the correct import stub. */
2249 newfun = SYMBOL_VALUE (stub_symbol);
2250 fun = newfun;
6426a772
JM
2251
2252 /* If we found an IMPORT stub, then we want to stop
2253 searching now. If we found an IMPORT_SHLIB, we want
2254 to continue the search in the hopes that we will find
2255 an IMPORT stub. */
2256 if (u->stub_unwind.stub_type == IMPORT)
2257 break;
c5aa993b
JM
2258 }
2259 }
cce74817
JM
2260
2261 /* Ouch. We did not find an import stub. Make an attempt to
2262 do the right thing instead of just croaking. Most of the
2263 time this will actually work. */
c906108c
SS
2264 if (newfun == 0)
2265 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2266
2267 u = find_unwind_entry (fun);
c5aa993b 2268 if (u
cce74817
JM
2269 && (u->stub_unwind.stub_type == IMPORT
2270 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2271 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2272
2273 /* If we found the import stub in the shared library, then we have
2274 to set %r19 before we call the stub. */
2275 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2276 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2277 }
c906108c
SS
2278#endif
2279 }
2280
cce74817
JM
2281 /* If we are calling into another load module then have sr4export call the
2282 magic __d_plt_call routine which is linked in from end.o.
c906108c 2283
cce74817
JM
2284 You can't use _sr4export to make the call as the value in sp-24 will get
2285 fried and you end up returning to the wrong location. You can't call the
2286 target as the code to bind the PLT entry to a function can't return to a
2287 stack address.
2288
2289 Also, query the dynamic linker in the inferior to provide a suitable
2290 PLABEL for the target function. */
c5aa993b 2291 if (!using_gcc_plt_call)
c906108c
SS
2292 {
2293 CORE_ADDR new_fun;
2294
cce74817 2295 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2296 handle we can query the shared library for a PLABEL. */
cce74817 2297 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2298
cce74817 2299 if (solib_handle)
c906108c 2300 {
cce74817 2301 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2302
cce74817
JM
2303 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2304
2305 if (trampoline == NULL)
2306 {
2307 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2308 }
2309
2310 /* This is where sr4export will jump to. */
2311 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2312
2313 /* If the function is in a shared library, then call __d_shl_get to
2314 get a PLABEL for the target function. */
2315 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2316
c5aa993b 2317 if (new_stub == 0)
cce74817 2318 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2319
2320 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2321 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2322 (struct objfile *) NULL);
c906108c 2323
cce74817
JM
2324 if (msymbol == NULL)
2325 error ("Can't find an address for __shlib_funcptr");
2326 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2327 (char *) &new_stub, 4);
c906108c
SS
2328
2329 /* We want sr4export to call __d_plt_call, so we claim it is
2330 the final target. Clear trampoline. */
cce74817
JM
2331 fun = new_fun;
2332 trampoline = NULL;
c906108c
SS
2333 }
2334 }
2335
2336 /* Store upper 21 bits of function address into ldil. fun will either be
2337 the final target (most cases) or __d_plt_call when calling into a shared
2338 library and __gcc_plt_call is not available. */
2339 store_unsigned_integer
2340 (&dummy[FUNC_LDIL_OFFSET],
2341 INSTRUCTION_SIZE,
2342 deposit_21 (fun >> 11,
2343 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2344 INSTRUCTION_SIZE)));
2345
2346 /* Store lower 11 bits of function address into ldo */
2347 store_unsigned_integer
2348 (&dummy[FUNC_LDO_OFFSET],
2349 INSTRUCTION_SIZE,
2350 deposit_14 (fun & MASK_11,
2351 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2352 INSTRUCTION_SIZE)));
2353#ifdef SR4EXPORT_LDIL_OFFSET
2354
2355 {
2356 CORE_ADDR trampoline_addr;
2357
2358 /* We may still need sr4export's address too. */
2359
2360 if (trampoline == NULL)
2361 {
2362 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2363 if (msymbol == NULL)
cce74817 2364 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2365
2366 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2367 }
2368 else
2369 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2370
2371
2372 /* Store upper 21 bits of trampoline's address into ldil */
2373 store_unsigned_integer
2374 (&dummy[SR4EXPORT_LDIL_OFFSET],
2375 INSTRUCTION_SIZE,
2376 deposit_21 (trampoline_addr >> 11,
2377 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2378 INSTRUCTION_SIZE)));
2379
2380 /* Store lower 11 bits of trampoline's address into ldo */
2381 store_unsigned_integer
2382 (&dummy[SR4EXPORT_LDO_OFFSET],
2383 INSTRUCTION_SIZE,
2384 deposit_14 (trampoline_addr & MASK_11,
2385 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2386 INSTRUCTION_SIZE)));
2387 }
2388#endif
2389
2390 write_register (22, pc);
2391
2392 /* If we are in a syscall, then we should call the stack dummy
2393 directly. $$dyncall is not needed as the kernel sets up the
2394 space id registers properly based on the value in %r31. In
2395 fact calling $$dyncall will not work because the value in %r22
2396 will be clobbered on the syscall exit path.
2397
2398 Similarly if the current PC is in a shared library. Note however,
2399 this scheme won't work if the shared library isn't mapped into
2400 the same space as the stack. */
2401 if (flags & 2)
2402 return pc;
2403#ifndef GDB_TARGET_IS_PA_ELF
39f77062 2404 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
c906108c
SS
2405 return pc;
2406#endif
2407 else
2408 return dyncall_addr;
53a5351d 2409#endif
c906108c
SS
2410}
2411
2412
2413
2414
2415/* If the pid is in a syscall, then the FP register is not readable.
2416 We'll return zero in that case, rather than attempting to read it
2417 and cause a warning. */
2418CORE_ADDR
fba45db2 2419target_read_fp (int pid)
c906108c
SS
2420{
2421 int flags = read_register (FLAGS_REGNUM);
2422
c5aa993b
JM
2423 if (flags & 2)
2424 {
2425 return (CORE_ADDR) 0;
2426 }
c906108c
SS
2427
2428 /* This is the only site that may directly read_register () the FP
2429 register. All others must use TARGET_READ_FP (). */
2430 return read_register (FP_REGNUM);
2431}
2432
2433
2434/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2435 bits. */
2436
2437CORE_ADDR
39f77062 2438target_read_pc (ptid_t ptid)
c906108c 2439{
39f77062 2440 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2441
2442 /* The following test does not belong here. It is OS-specific, and belongs
2443 in native code. */
2444 /* Test SS_INSYSCALL */
2445 if (flags & 2)
39f77062 2446 return read_register_pid (31, ptid) & ~0x3;
c906108c 2447
39f77062 2448 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2449}
2450
2451/* Write out the PC. If currently in a syscall, then also write the new
2452 PC value into %r31. */
2453
2454void
39f77062 2455target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2456{
39f77062 2457 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2458
2459 /* The following test does not belong here. It is OS-specific, and belongs
2460 in native code. */
2461 /* If in a syscall, then set %r31. Also make sure to get the
2462 privilege bits set correctly. */
2463 /* Test SS_INSYSCALL */
2464 if (flags & 2)
39f77062 2465 write_register_pid (31, v | 0x3, ptid);
c906108c 2466
39f77062
KB
2467 write_register_pid (PC_REGNUM, v, ptid);
2468 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2469}
2470
2471/* return the alignment of a type in bytes. Structures have the maximum
2472 alignment required by their fields. */
2473
2474static int
fba45db2 2475hppa_alignof (struct type *type)
c906108c
SS
2476{
2477 int max_align, align, i;
2478 CHECK_TYPEDEF (type);
2479 switch (TYPE_CODE (type))
2480 {
2481 case TYPE_CODE_PTR:
2482 case TYPE_CODE_INT:
2483 case TYPE_CODE_FLT:
2484 return TYPE_LENGTH (type);
2485 case TYPE_CODE_ARRAY:
2486 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2487 case TYPE_CODE_STRUCT:
2488 case TYPE_CODE_UNION:
2489 max_align = 1;
2490 for (i = 0; i < TYPE_NFIELDS (type); i++)
2491 {
2492 /* Bit fields have no real alignment. */
2493 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2494 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2495 {
2496 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2497 max_align = max (max_align, align);
2498 }
2499 }
2500 return max_align;
2501 default:
2502 return 4;
2503 }
2504}
2505
2506/* Print the register regnum, or all registers if regnum is -1 */
2507
2508void
fba45db2 2509pa_do_registers_info (int regnum, int fpregs)
c906108c 2510{
c5aa993b 2511 char raw_regs[REGISTER_BYTES];
c906108c
SS
2512 int i;
2513
2514 /* Make a copy of gdb's save area (may cause actual
2515 reads from the target). */
2516 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2517 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2518
2519 if (regnum == -1)
2520 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2521 else if (regnum < FP4_REGNUM)
2522 {
2523 long reg_val[2];
2524
2525 /* Why is the value not passed through "extract_signed_integer"
2526 as in "pa_print_registers" below? */
2527 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2528
2529 if (!is_pa_2)
2530 {
ce414844 2531 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2532 }
c906108c 2533 else
c5aa993b
JM
2534 {
2535 /* Fancy % formats to prevent leading zeros. */
2536 if (reg_val[0] == 0)
ce414844 2537 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2538 else
ce414844 2539 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2540 reg_val[0], reg_val[1]);
2541 }
c906108c 2542 }
c906108c 2543 else
c5aa993b
JM
2544 /* Note that real floating point values only start at
2545 FP4_REGNUM. FP0 and up are just status and error
2546 registers, which have integral (bit) values. */
c906108c
SS
2547 pa_print_fp_reg (regnum);
2548}
2549
2550/********** new function ********************/
2551void
fba45db2
KB
2552pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2553 enum precision_type precision)
c906108c 2554{
c5aa993b 2555 char raw_regs[REGISTER_BYTES];
c906108c
SS
2556 int i;
2557
2558 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2559 reads from the target). */
c906108c 2560 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2561 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2562
2563 if (regnum == -1)
2564 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2565
c5aa993b
JM
2566 else if (regnum < FP4_REGNUM)
2567 {
2568 long reg_val[2];
2569
2570 /* Why is the value not passed through "extract_signed_integer"
2571 as in "pa_print_registers" below? */
2572 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2573
c5aa993b
JM
2574 if (!is_pa_2)
2575 {
ce414844 2576 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2577 }
c906108c 2578 else
c5aa993b
JM
2579 {
2580 /* Fancy % formats to prevent leading zeros. */
2581 if (reg_val[0] == 0)
ce414844 2582 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2583 reg_val[1]);
2584 else
ce414844 2585 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2586 reg_val[0], reg_val[1]);
2587 }
c906108c 2588 }
c906108c 2589 else
c5aa993b
JM
2590 /* Note that real floating point values only start at
2591 FP4_REGNUM. FP0 and up are just status and error
2592 registers, which have integral (bit) values. */
c906108c
SS
2593 pa_strcat_fp_reg (regnum, stream, precision);
2594}
2595
2596/* If this is a PA2.0 machine, fetch the real 64-bit register
2597 value. Otherwise use the info from gdb's saved register area.
2598
2599 Note that reg_val is really expected to be an array of longs,
2600 with two elements. */
2601static void
fba45db2 2602pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2603{
c5aa993b 2604 static int know_which = 0; /* False */
c906108c 2605
c5aa993b 2606 int regaddr;
c906108c
SS
2607 unsigned int offset;
2608 register int i;
c5aa993b
JM
2609 int start;
2610
2611
c906108c
SS
2612 char buf[MAX_REGISTER_RAW_SIZE];
2613 long long reg_val;
2614
c5aa993b
JM
2615 if (!know_which)
2616 {
2617 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2618 {
2619 is_pa_2 = (1 == 1);
2620 }
2621
2622 know_which = 1; /* True */
2623 }
c906108c
SS
2624
2625 raw_val[0] = 0;
2626 raw_val[1] = 0;
2627
c5aa993b
JM
2628 if (!is_pa_2)
2629 {
2630 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2631 return;
c5aa993b 2632 }
c906108c
SS
2633
2634 /* Code below copied from hppah-nat.c, with fixes for wide
2635 registers, using different area of save_state, etc. */
2636 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2637 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2638 {
c906108c 2639 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2640 offset = U_REGS_OFFSET;
2641 regaddr = register_addr (regnum, offset);
2642 start = 1;
2643 }
2644 else
2645 {
c906108c
SS
2646 /* Use wide regs area, and calculate registers as 8 bytes wide.
2647
2648 We'd like to do this, but current version of "C" doesn't
2649 permit "offsetof":
2650
c5aa993b 2651 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2652
2653 Note that to avoid "C" doing typed pointer arithmetic, we
2654 have to cast away the type in our offset calculation:
2655 otherwise we get an offset of 1! */
2656
7a292a7a 2657 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2658 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2659 so to avoid compile-time warnings, we only compile this for
2660 PA 2.0 processors. This control path should only be followed
2661 if we're debugging a PA 2.0 processor, so this should not cause
2662 problems. */
2663
c906108c
SS
2664 /* #if the following code out so that this file can still be
2665 compiled on older HPUX boxes (< 10.20) which don't have
2666 this structure/structure member. */
2667#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2668 save_state_t temp;
2669
2670 offset = ((int) &temp.ss_wide) - ((int) &temp);
2671 regaddr = offset + regnum * 8;
c5aa993b 2672 start = 0;
c906108c 2673#endif
c5aa993b
JM
2674 }
2675
2676 for (i = start; i < 2; i++)
c906108c
SS
2677 {
2678 errno = 0;
39f77062 2679 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2680 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2681 if (errno != 0)
2682 {
2683 /* Warning, not error, in case we are attached; sometimes the
2684 kernel doesn't let us at the registers. */
2685 char *err = safe_strerror (errno);
2686 char *msg = alloca (strlen (err) + 128);
2687 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2688 warning (msg);
2689 goto error_exit;
2690 }
2691
2692 regaddr += sizeof (long);
2693 }
c5aa993b 2694
c906108c 2695 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2696 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2697
2698error_exit:
2699 ;
2700}
2701
2702/* "Info all-reg" command */
c5aa993b 2703
c906108c 2704static void
fba45db2 2705pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2706{
c5aa993b 2707 int i, j;
adf40b2e
JM
2708 /* Alas, we are compiled so that "long long" is 32 bits */
2709 long raw_val[2];
c906108c 2710 long long_val;
a0b3c4fd 2711 int rows = 48, columns = 2;
c906108c 2712
adf40b2e 2713 for (i = 0; i < rows; i++)
c906108c 2714 {
adf40b2e 2715 for (j = 0; j < columns; j++)
c906108c 2716 {
adf40b2e
JM
2717 /* We display registers in column-major order. */
2718 int regnum = i + j * rows;
2719
c5aa993b
JM
2720 /* Q: Why is the value passed through "extract_signed_integer",
2721 while above, in "pa_do_registers_info" it isn't?
2722 A: ? */
adf40b2e 2723 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2724
2725 /* Even fancier % formats to prevent leading zeros
2726 and still maintain the output in columns. */
2727 if (!is_pa_2)
2728 {
2729 /* Being big-endian, on this machine the low bits
2730 (the ones we want to look at) are in the second longword. */
2731 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2732 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2733 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2734 }
2735 else
2736 {
2737 /* raw_val = extract_signed_integer(&raw_val, 8); */
2738 if (raw_val[0] == 0)
ce414844 2739 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2740 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2741 else
ce414844 2742 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2743 REGISTER_NAME (regnum),
c5aa993b
JM
2744 raw_val[0], raw_val[1]);
2745 }
c906108c
SS
2746 }
2747 printf_unfiltered ("\n");
2748 }
c5aa993b 2749
c906108c 2750 if (fpregs)
c5aa993b 2751 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2752 pa_print_fp_reg (i);
2753}
2754
c5aa993b 2755/************* new function ******************/
c906108c 2756static void
fba45db2
KB
2757pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2758 struct ui_file *stream)
c906108c 2759{
c5aa993b
JM
2760 int i, j;
2761 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2762 long long_val;
2763 enum precision_type precision;
2764
2765 precision = unspecified_precision;
2766
2767 for (i = 0; i < 18; i++)
2768 {
2769 for (j = 0; j < 4; j++)
2770 {
c5aa993b
JM
2771 /* Q: Why is the value passed through "extract_signed_integer",
2772 while above, in "pa_do_registers_info" it isn't?
2773 A: ? */
2774 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2775
2776 /* Even fancier % formats to prevent leading zeros
2777 and still maintain the output in columns. */
2778 if (!is_pa_2)
2779 {
2780 /* Being big-endian, on this machine the low bits
2781 (the ones we want to look at) are in the second longword. */
2782 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2783 fprintf_filtered (stream, "%8.8s: %8lx ",
2784 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2785 }
2786 else
2787 {
2788 /* raw_val = extract_signed_integer(&raw_val, 8); */
2789 if (raw_val[0] == 0)
ce414844
AC
2790 fprintf_filtered (stream, "%8.8s: %8lx ",
2791 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2792 else
ce414844
AC
2793 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2794 REGISTER_NAME (i + (j * 18)), raw_val[0],
2795 raw_val[1]);
c5aa993b 2796 }
c906108c
SS
2797 }
2798 fprintf_unfiltered (stream, "\n");
2799 }
c5aa993b 2800
c906108c 2801 if (fpregs)
c5aa993b 2802 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2803 pa_strcat_fp_reg (i, stream, precision);
2804}
2805
2806static void
fba45db2 2807pa_print_fp_reg (int i)
c906108c
SS
2808{
2809 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2810 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2811
2812 /* Get 32bits of data. */
6e7f8b9c 2813 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2814
2815 /* Put it in the buffer. No conversions are ever necessary. */
2816 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2817
2818 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2819 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2820 fputs_filtered ("(single precision) ", gdb_stdout);
2821
2822 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2823 1, 0, Val_pretty_default);
2824 printf_filtered ("\n");
2825
2826 /* If "i" is even, then this register can also be a double-precision
2827 FP register. Dump it out as such. */
2828 if ((i % 2) == 0)
2829 {
2830 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2831 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2832
2833 /* Copy it into the appropriate part of the virtual buffer. */
2834 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2835 REGISTER_RAW_SIZE (i));
2836
2837 /* Dump it as a double. */
2838 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2839 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2840 fputs_filtered ("(double precision) ", gdb_stdout);
2841
2842 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2843 1, 0, Val_pretty_default);
2844 printf_filtered ("\n");
2845 }
2846}
2847
2848/*************** new function ***********************/
2849static void
fba45db2 2850pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c
SS
2851{
2852 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2853 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2854
2855 fputs_filtered (REGISTER_NAME (i), stream);
2856 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2857
2858 /* Get 32bits of data. */
6e7f8b9c 2859 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2860
2861 /* Put it in the buffer. No conversions are ever necessary. */
2862 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2863
2864 if (precision == double_precision && (i % 2) == 0)
2865 {
2866
c5aa993b
JM
2867 char raw_buf[MAX_REGISTER_RAW_SIZE];
2868
2869 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2870 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
2871
2872 /* Copy it into the appropriate part of the virtual buffer. */
2873 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2874
c5aa993b
JM
2875 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2876 1, 0, Val_pretty_default);
c906108c
SS
2877
2878 }
c5aa993b
JM
2879 else
2880 {
2881 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2882 1, 0, Val_pretty_default);
2883 }
c906108c
SS
2884
2885}
2886
2887/* Return one if PC is in the call path of a trampoline, else return zero.
2888
2889 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2890 just shared library trampolines (import, export). */
2891
2892int
fba45db2 2893in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2894{
2895 struct minimal_symbol *minsym;
2896 struct unwind_table_entry *u;
2897 static CORE_ADDR dyncall = 0;
2898 static CORE_ADDR sr4export = 0;
2899
c2c6d25f
JM
2900#ifdef GDB_TARGET_IS_HPPA_20W
2901 /* PA64 has a completely different stub/trampoline scheme. Is it
2902 better? Maybe. It's certainly harder to determine with any
2903 certainty that we are in a stub because we can not refer to the
2904 unwinders to help.
2905
2906 The heuristic is simple. Try to lookup the current PC value in th
2907 minimal symbol table. If that fails, then assume we are not in a
2908 stub and return.
2909
2910 Then see if the PC value falls within the section bounds for the
2911 section containing the minimal symbol we found in the first
2912 step. If it does, then assume we are not in a stub and return.
2913
2914 Finally peek at the instructions to see if they look like a stub. */
2915 {
2916 struct minimal_symbol *minsym;
2917 asection *sec;
2918 CORE_ADDR addr;
2919 int insn, i;
2920
2921 minsym = lookup_minimal_symbol_by_pc (pc);
2922 if (! minsym)
2923 return 0;
2924
2925 sec = SYMBOL_BFD_SECTION (minsym);
2926
2927 if (sec->vma <= pc
2928 && sec->vma + sec->_cooked_size < pc)
2929 return 0;
2930
2931 /* We might be in a stub. Peek at the instructions. Stubs are 3
2932 instructions long. */
2933 insn = read_memory_integer (pc, 4);
2934
b84a8afe 2935 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2936 if ((insn & 0xffffc00e) == 0x53610000)
2937 addr = pc;
2938 else if ((insn & 0xffffffff) == 0xe820d000)
2939 addr = pc - 4;
2940 else if ((insn & 0xffffc00e) == 0x537b0000)
2941 addr = pc - 8;
2942 else
2943 return 0;
2944
2945 /* Now verify each insn in the range looks like a stub instruction. */
2946 insn = read_memory_integer (addr, 4);
2947 if ((insn & 0xffffc00e) != 0x53610000)
2948 return 0;
2949
2950 /* Now verify each insn in the range looks like a stub instruction. */
2951 insn = read_memory_integer (addr + 4, 4);
2952 if ((insn & 0xffffffff) != 0xe820d000)
2953 return 0;
2954
2955 /* Now verify each insn in the range looks like a stub instruction. */
2956 insn = read_memory_integer (addr + 8, 4);
2957 if ((insn & 0xffffc00e) != 0x537b0000)
2958 return 0;
2959
2960 /* Looks like a stub. */
2961 return 1;
2962 }
2963#endif
2964
2965 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2966 new exec file */
c906108c
SS
2967
2968 /* First see if PC is in one of the two C-library trampolines. */
2969 if (!dyncall)
2970 {
2971 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2972 if (minsym)
2973 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2974 else
2975 dyncall = -1;
2976 }
2977
2978 if (!sr4export)
2979 {
2980 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2981 if (minsym)
2982 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2983 else
2984 sr4export = -1;
2985 }
2986
2987 if (pc == dyncall || pc == sr4export)
2988 return 1;
2989
104c1213
JM
2990 minsym = lookup_minimal_symbol_by_pc (pc);
2991 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2992 return 1;
2993
c906108c
SS
2994 /* Get the unwind descriptor corresponding to PC, return zero
2995 if no unwind was found. */
2996 u = find_unwind_entry (pc);
2997 if (!u)
2998 return 0;
2999
3000 /* If this isn't a linker stub, then return now. */
3001 if (u->stub_unwind.stub_type == 0)
3002 return 0;
3003
3004 /* By definition a long-branch stub is a call stub. */
3005 if (u->stub_unwind.stub_type == LONG_BRANCH)
3006 return 1;
3007
3008 /* The call and return path execute the same instructions within
3009 an IMPORT stub! So an IMPORT stub is both a call and return
3010 trampoline. */
3011 if (u->stub_unwind.stub_type == IMPORT)
3012 return 1;
3013
3014 /* Parameter relocation stubs always have a call path and may have a
3015 return path. */
3016 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3017 || u->stub_unwind.stub_type == EXPORT)
3018 {
3019 CORE_ADDR addr;
3020
3021 /* Search forward from the current PC until we hit a branch
c5aa993b 3022 or the end of the stub. */
c906108c
SS
3023 for (addr = pc; addr <= u->region_end; addr += 4)
3024 {
3025 unsigned long insn;
3026
3027 insn = read_memory_integer (addr, 4);
3028
3029 /* Does it look like a bl? If so then it's the call path, if
3030 we find a bv or be first, then we're on the return path. */
3031 if ((insn & 0xfc00e000) == 0xe8000000)
3032 return 1;
3033 else if ((insn & 0xfc00e001) == 0xe800c000
3034 || (insn & 0xfc000000) == 0xe0000000)
3035 return 0;
3036 }
3037
3038 /* Should never happen. */
104c1213
JM
3039 warning ("Unable to find branch in parameter relocation stub.\n");
3040 return 0;
c906108c
SS
3041 }
3042
3043 /* Unknown stub type. For now, just return zero. */
104c1213 3044 return 0;
c906108c
SS
3045}
3046
3047/* Return one if PC is in the return path of a trampoline, else return zero.
3048
3049 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3050 just shared library trampolines (import, export). */
3051
3052int
fba45db2 3053in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3054{
3055 struct unwind_table_entry *u;
3056
3057 /* Get the unwind descriptor corresponding to PC, return zero
3058 if no unwind was found. */
3059 u = find_unwind_entry (pc);
3060 if (!u)
3061 return 0;
3062
3063 /* If this isn't a linker stub or it's just a long branch stub, then
3064 return zero. */
3065 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3066 return 0;
3067
3068 /* The call and return path execute the same instructions within
3069 an IMPORT stub! So an IMPORT stub is both a call and return
3070 trampoline. */
3071 if (u->stub_unwind.stub_type == IMPORT)
3072 return 1;
3073
3074 /* Parameter relocation stubs always have a call path and may have a
3075 return path. */
3076 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3077 || u->stub_unwind.stub_type == EXPORT)
3078 {
3079 CORE_ADDR addr;
3080
3081 /* Search forward from the current PC until we hit a branch
c5aa993b 3082 or the end of the stub. */
c906108c
SS
3083 for (addr = pc; addr <= u->region_end; addr += 4)
3084 {
3085 unsigned long insn;
3086
3087 insn = read_memory_integer (addr, 4);
3088
3089 /* Does it look like a bl? If so then it's the call path, if
3090 we find a bv or be first, then we're on the return path. */
3091 if ((insn & 0xfc00e000) == 0xe8000000)
3092 return 0;
3093 else if ((insn & 0xfc00e001) == 0xe800c000
3094 || (insn & 0xfc000000) == 0xe0000000)
3095 return 1;
3096 }
3097
3098 /* Should never happen. */
104c1213
JM
3099 warning ("Unable to find branch in parameter relocation stub.\n");
3100 return 0;
c906108c
SS
3101 }
3102
3103 /* Unknown stub type. For now, just return zero. */
104c1213 3104 return 0;
c906108c
SS
3105
3106}
3107
3108/* Figure out if PC is in a trampoline, and if so find out where
3109 the trampoline will jump to. If not in a trampoline, return zero.
3110
3111 Simple code examination probably is not a good idea since the code
3112 sequences in trampolines can also appear in user code.
3113
3114 We use unwinds and information from the minimal symbol table to
3115 determine when we're in a trampoline. This won't work for ELF
3116 (yet) since it doesn't create stub unwind entries. Whether or
3117 not ELF will create stub unwinds or normal unwinds for linker
3118 stubs is still being debated.
3119
3120 This should handle simple calls through dyncall or sr4export,
3121 long calls, argument relocation stubs, and dyncall/sr4export
3122 calling an argument relocation stub. It even handles some stubs
3123 used in dynamic executables. */
3124
c906108c 3125CORE_ADDR
fba45db2 3126skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c
SS
3127{
3128 long orig_pc = pc;
3129 long prev_inst, curr_inst, loc;
3130 static CORE_ADDR dyncall = 0;
3131 static CORE_ADDR dyncall_external = 0;
3132 static CORE_ADDR sr4export = 0;
3133 struct minimal_symbol *msym;
3134 struct unwind_table_entry *u;
3135
c2c6d25f
JM
3136 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3137 new exec file */
c906108c
SS
3138
3139 if (!dyncall)
3140 {
3141 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3142 if (msym)
3143 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3144 else
3145 dyncall = -1;
3146 }
3147
3148 if (!dyncall_external)
3149 {
3150 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3151 if (msym)
3152 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3153 else
3154 dyncall_external = -1;
3155 }
3156
3157 if (!sr4export)
3158 {
3159 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3160 if (msym)
3161 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3162 else
3163 sr4export = -1;
3164 }
3165
3166 /* Addresses passed to dyncall may *NOT* be the actual address
3167 of the function. So we may have to do something special. */
3168 if (pc == dyncall)
3169 {
3170 pc = (CORE_ADDR) read_register (22);
3171
3172 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3173 the PLT entry for this function, not the address of the function
3174 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3175 if (pc & 0x2)
53a5351d 3176 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3177 }
3178 if (pc == dyncall_external)
3179 {
3180 pc = (CORE_ADDR) read_register (22);
53a5351d 3181 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3182 }
3183 else if (pc == sr4export)
3184 pc = (CORE_ADDR) (read_register (22));
3185
3186 /* Get the unwind descriptor corresponding to PC, return zero
3187 if no unwind was found. */
3188 u = find_unwind_entry (pc);
3189 if (!u)
3190 return 0;
3191
3192 /* If this isn't a linker stub, then return now. */
3193 /* elz: attention here! (FIXME) because of a compiler/linker
3194 error, some stubs which should have a non zero stub_unwind.stub_type
3195 have unfortunately a value of zero. So this function would return here
3196 as if we were not in a trampoline. To fix this, we go look at the partial
3197 symbol information, which reports this guy as a stub.
3198 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3199 partial symbol information is also wrong sometimes. This is because
3200 when it is entered (somread.c::som_symtab_read()) it can happen that
3201 if the type of the symbol (from the som) is Entry, and the symbol is
3202 in a shared library, then it can also be a trampoline. This would
3203 be OK, except that I believe the way they decide if we are ina shared library
3204 does not work. SOOOO..., even if we have a regular function w/o trampolines
3205 its minimal symbol can be assigned type mst_solib_trampoline.
3206 Also, if we find that the symbol is a real stub, then we fix the unwind
3207 descriptor, and define the stub type to be EXPORT.
c5aa993b 3208 Hopefully this is correct most of the times. */
c906108c 3209 if (u->stub_unwind.stub_type == 0)
c5aa993b 3210 {
c906108c
SS
3211
3212/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3213 we can delete all the code which appears between the lines */
3214/*--------------------------------------------------------------------------*/
c5aa993b 3215 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3216
c5aa993b
JM
3217 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3218 return orig_pc == pc ? 0 : pc & ~0x3;
3219
3220 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3221 {
3222 struct objfile *objfile;
3223 struct minimal_symbol *msymbol;
3224 int function_found = 0;
3225
3226 /* go look if there is another minimal symbol with the same name as
3227 this one, but with type mst_text. This would happen if the msym
3228 is an actual trampoline, in which case there would be another
3229 symbol with the same name corresponding to the real function */
3230
3231 ALL_MSYMBOLS (objfile, msymbol)
3232 {
3233 if (MSYMBOL_TYPE (msymbol) == mst_text
3234 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3235 {
3236 function_found = 1;
3237 break;
3238 }
3239 }
3240
3241 if (function_found)
3242 /* the type of msym is correct (mst_solib_trampoline), but
3243 the unwind info is wrong, so set it to the correct value */
3244 u->stub_unwind.stub_type = EXPORT;
3245 else
3246 /* the stub type info in the unwind is correct (this is not a
3247 trampoline), but the msym type information is wrong, it
3248 should be mst_text. So we need to fix the msym, and also
3249 get out of this function */
3250 {
3251 MSYMBOL_TYPE (msym) = mst_text;
3252 return orig_pc == pc ? 0 : pc & ~0x3;
3253 }
3254 }
c906108c 3255
c906108c 3256/*--------------------------------------------------------------------------*/
c5aa993b 3257 }
c906108c
SS
3258
3259 /* It's a stub. Search for a branch and figure out where it goes.
3260 Note we have to handle multi insn branch sequences like ldil;ble.
3261 Most (all?) other branches can be determined by examining the contents
3262 of certain registers and the stack. */
3263
3264 loc = pc;
3265 curr_inst = 0;
3266 prev_inst = 0;
3267 while (1)
3268 {
3269 /* Make sure we haven't walked outside the range of this stub. */
3270 if (u != find_unwind_entry (loc))
3271 {
3272 warning ("Unable to find branch in linker stub");
3273 return orig_pc == pc ? 0 : pc & ~0x3;
3274 }
3275
3276 prev_inst = curr_inst;
3277 curr_inst = read_memory_integer (loc, 4);
3278
3279 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3280 branch from the stub to the actual function. */
c906108c
SS
3281 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3282 {
3283 /* Yup. See if the previous instruction loaded
3284 a value into %r1. If so compute and return the jump address. */
3285 if ((prev_inst & 0xffe00000) == 0x20200000)
3286 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3287 else
3288 {
3289 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3290 return orig_pc == pc ? 0 : pc & ~0x3;
3291 }
3292 }
3293
3294 /* Does it look like a be 0(sr0,%r21)? OR
3295 Does it look like a be, n 0(sr0,%r21)? OR
3296 Does it look like a bve (r21)? (this is on PA2.0)
3297 Does it look like a bve, n(r21)? (this is also on PA2.0)
3298 That's the branch from an
c5aa993b 3299 import stub to an export stub.
c906108c 3300
c5aa993b
JM
3301 It is impossible to determine the target of the branch via
3302 simple examination of instructions and/or data (consider
3303 that the address in the plabel may be the address of the
3304 bind-on-reference routine in the dynamic loader).
c906108c 3305
c5aa993b 3306 So we have try an alternative approach.
c906108c 3307
c5aa993b
JM
3308 Get the name of the symbol at our current location; it should
3309 be a stub symbol with the same name as the symbol in the
3310 shared library.
c906108c 3311
c5aa993b
JM
3312 Then lookup a minimal symbol with the same name; we should
3313 get the minimal symbol for the target routine in the shared
3314 library as those take precedence of import/export stubs. */
c906108c 3315 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3316 (curr_inst == 0xe2a00002) ||
3317 (curr_inst == 0xeaa0d000) ||
3318 (curr_inst == 0xeaa0d002))
c906108c
SS
3319 {
3320 struct minimal_symbol *stubsym, *libsym;
3321
3322 stubsym = lookup_minimal_symbol_by_pc (loc);
3323 if (stubsym == NULL)
3324 {
ce414844 3325 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3326 return orig_pc == pc ? 0 : pc & ~0x3;
3327 }
3328
3329 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3330 if (libsym == NULL)
3331 {
3332 warning ("Unable to find library symbol for %s\n",
3333 SYMBOL_NAME (stubsym));
3334 return orig_pc == pc ? 0 : pc & ~0x3;
3335 }
3336
3337 return SYMBOL_VALUE (libsym);
3338 }
3339
3340 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3341 branch from the stub to the actual function. */
3342 /*elz */
c906108c
SS
3343 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3344 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3345 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3346 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3347
3348 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3349 current stack pointer being the same as the stack
3350 pointer in the stub itself! This is a branch on from the
3351 stub back to the original caller. */
3352 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3353 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3354 {
3355 /* Yup. See if the previous instruction loaded
3356 rp from sp - 8. */
3357 if (prev_inst == 0x4bc23ff1)
3358 return (read_memory_integer
3359 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3360 else
3361 {
3362 warning ("Unable to find restore of %%rp before bv (%%rp).");
3363 return orig_pc == pc ? 0 : pc & ~0x3;
3364 }
3365 }
3366
3367 /* elz: added this case to capture the new instruction
3368 at the end of the return part of an export stub used by
3369 the PA2.0: BVE, n (rp) */
3370 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3371 {
c5aa993b 3372 return (read_memory_integer
53a5351d 3373 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3374 }
3375
3376 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3377 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3378 else if (curr_inst == 0xe0400002)
3379 {
3380 /* The value we jump to is sitting in sp - 24. But that's
3381 loaded several instructions before the be instruction.
3382 I guess we could check for the previous instruction being
3383 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3384 return (read_memory_integer
53a5351d 3385 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3386 }
3387
3388 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3389 Keep looking. */
c906108c
SS
3390 loc += 4;
3391 }
3392}
3393
3394
3395/* For the given instruction (INST), return any adjustment it makes
3396 to the stack pointer or zero for no adjustment.
3397
3398 This only handles instructions commonly found in prologues. */
3399
3400static int
fba45db2 3401prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3402{
3403 /* This must persist across calls. */
3404 static int save_high21;
3405
3406 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3407 if ((inst & 0xffffc000) == 0x37de0000)
3408 return extract_14 (inst);
3409
3410 /* stwm X,D(sp) */
3411 if ((inst & 0xffe00000) == 0x6fc00000)
3412 return extract_14 (inst);
3413
104c1213
JM
3414 /* std,ma X,D(sp) */
3415 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3416 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3417
c906108c
SS
3418 /* addil high21,%r1; ldo low11,(%r1),%r30)
3419 save high bits in save_high21 for later use. */
3420 if ((inst & 0xffe00000) == 0x28200000)
3421 {
3422 save_high21 = extract_21 (inst);
3423 return 0;
3424 }
3425
3426 if ((inst & 0xffff0000) == 0x343e0000)
3427 return save_high21 + extract_14 (inst);
3428
3429 /* fstws as used by the HP compilers. */
3430 if ((inst & 0xffffffe0) == 0x2fd01220)
3431 return extract_5_load (inst);
3432
3433 /* No adjustment. */
3434 return 0;
3435}
3436
3437/* Return nonzero if INST is a branch of some kind, else return zero. */
3438
3439static int
fba45db2 3440is_branch (unsigned long inst)
c906108c
SS
3441{
3442 switch (inst >> 26)
3443 {
3444 case 0x20:
3445 case 0x21:
3446 case 0x22:
3447 case 0x23:
7be570e7 3448 case 0x27:
c906108c
SS
3449 case 0x28:
3450 case 0x29:
3451 case 0x2a:
3452 case 0x2b:
7be570e7 3453 case 0x2f:
c906108c
SS
3454 case 0x30:
3455 case 0x31:
3456 case 0x32:
3457 case 0x33:
3458 case 0x38:
3459 case 0x39:
3460 case 0x3a:
7be570e7 3461 case 0x3b:
c906108c
SS
3462 return 1;
3463
3464 default:
3465 return 0;
3466 }
3467}
3468
3469/* Return the register number for a GR which is saved by INST or
3470 zero it INST does not save a GR. */
3471
3472static int
fba45db2 3473inst_saves_gr (unsigned long inst)
c906108c
SS
3474{
3475 /* Does it look like a stw? */
7be570e7
JM
3476 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3477 || (inst >> 26) == 0x1f
3478 || ((inst >> 26) == 0x1f
3479 && ((inst >> 6) == 0xa)))
3480 return extract_5R_store (inst);
3481
3482 /* Does it look like a std? */
3483 if ((inst >> 26) == 0x1c
3484 || ((inst >> 26) == 0x03
3485 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3486 return extract_5R_store (inst);
3487
3488 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3489 if ((inst >> 26) == 0x1b)
3490 return extract_5R_store (inst);
3491
3492 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3493 too. */
7be570e7
JM
3494 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3495 || ((inst >> 26) == 0x3
3496 && (((inst >> 6) & 0xf) == 0x8
3497 || (inst >> 6) & 0xf) == 0x9))
c906108c 3498 return extract_5R_store (inst);
c5aa993b 3499
c906108c
SS
3500 return 0;
3501}
3502
3503/* Return the register number for a FR which is saved by INST or
3504 zero it INST does not save a FR.
3505
3506 Note we only care about full 64bit register stores (that's the only
3507 kind of stores the prologue will use).
3508
3509 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3510
3511static int
fba45db2 3512inst_saves_fr (unsigned long inst)
c906108c 3513{
7be570e7 3514 /* is this an FSTD ? */
c906108c
SS
3515 if ((inst & 0xfc00dfc0) == 0x2c001200)
3516 return extract_5r_store (inst);
7be570e7
JM
3517 if ((inst & 0xfc000002) == 0x70000002)
3518 return extract_5R_store (inst);
3519 /* is this an FSTW ? */
c906108c
SS
3520 if ((inst & 0xfc00df80) == 0x24001200)
3521 return extract_5r_store (inst);
7be570e7
JM
3522 if ((inst & 0xfc000002) == 0x7c000000)
3523 return extract_5R_store (inst);
c906108c
SS
3524 return 0;
3525}
3526
3527/* Advance PC across any function entry prologue instructions
3528 to reach some "real" code.
3529
3530 Use information in the unwind table to determine what exactly should
3531 be in the prologue. */
3532
3533
3534CORE_ADDR
fba45db2 3535skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3536{
3537 char buf[4];
3538 CORE_ADDR orig_pc = pc;
3539 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3540 unsigned long args_stored, status, i, restart_gr, restart_fr;
3541 struct unwind_table_entry *u;
3542
3543 restart_gr = 0;
3544 restart_fr = 0;
3545
3546restart:
3547 u = find_unwind_entry (pc);
3548 if (!u)
3549 return pc;
3550
c5aa993b 3551 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3552 if ((pc & ~0x3) != u->region_start)
3553 return pc;
3554
3555 /* This is how much of a frame adjustment we need to account for. */
3556 stack_remaining = u->Total_frame_size << 3;
3557
3558 /* Magic register saves we want to know about. */
3559 save_rp = u->Save_RP;
3560 save_sp = u->Save_SP;
3561
3562 /* An indication that args may be stored into the stack. Unfortunately
3563 the HPUX compilers tend to set this in cases where no args were
3564 stored too!. */
3565 args_stored = 1;
3566
3567 /* Turn the Entry_GR field into a bitmask. */
3568 save_gr = 0;
3569 for (i = 3; i < u->Entry_GR + 3; i++)
3570 {
3571 /* Frame pointer gets saved into a special location. */
3572 if (u->Save_SP && i == FP_REGNUM)
3573 continue;
3574
3575 save_gr |= (1 << i);
3576 }
3577 save_gr &= ~restart_gr;
3578
3579 /* Turn the Entry_FR field into a bitmask too. */
3580 save_fr = 0;
3581 for (i = 12; i < u->Entry_FR + 12; i++)
3582 save_fr |= (1 << i);
3583 save_fr &= ~restart_fr;
3584
3585 /* Loop until we find everything of interest or hit a branch.
3586
3587 For unoptimized GCC code and for any HP CC code this will never ever
3588 examine any user instructions.
3589
3590 For optimzied GCC code we're faced with problems. GCC will schedule
3591 its prologue and make prologue instructions available for delay slot
3592 filling. The end result is user code gets mixed in with the prologue
3593 and a prologue instruction may be in the delay slot of the first branch
3594 or call.
3595
3596 Some unexpected things are expected with debugging optimized code, so
3597 we allow this routine to walk past user instructions in optimized
3598 GCC code. */
3599 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3600 || args_stored)
3601 {
3602 unsigned int reg_num;
3603 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3604 unsigned long old_save_rp, old_save_sp, next_inst;
3605
3606 /* Save copies of all the triggers so we can compare them later
c5aa993b 3607 (only for HPC). */
c906108c
SS
3608 old_save_gr = save_gr;
3609 old_save_fr = save_fr;
3610 old_save_rp = save_rp;
3611 old_save_sp = save_sp;
3612 old_stack_remaining = stack_remaining;
3613
3614 status = target_read_memory (pc, buf, 4);
3615 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3616
c906108c
SS
3617 /* Yow! */
3618 if (status != 0)
3619 return pc;
3620
3621 /* Note the interesting effects of this instruction. */
3622 stack_remaining -= prologue_inst_adjust_sp (inst);
3623
7be570e7
JM
3624 /* There are limited ways to store the return pointer into the
3625 stack. */
3626 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3627 save_rp = 0;
3628
104c1213 3629 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3630 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3631 if ((inst & 0xffffc000) == 0x6fc10000
3632 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3633 save_sp = 0;
3634
6426a772
JM
3635 /* Are we loading some register with an offset from the argument
3636 pointer? */
3637 if ((inst & 0xffe00000) == 0x37a00000
3638 || (inst & 0xffffffe0) == 0x081d0240)
3639 {
3640 pc += 4;
3641 continue;
3642 }
3643
c906108c
SS
3644 /* Account for general and floating-point register saves. */
3645 reg_num = inst_saves_gr (inst);
3646 save_gr &= ~(1 << reg_num);
3647
3648 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3649 Unfortunately args_stored only tells us that some arguments
3650 where stored into the stack. Not how many or what kind!
c906108c 3651
c5aa993b
JM
3652 This is a kludge as on the HP compiler sets this bit and it
3653 never does prologue scheduling. So once we see one, skip past
3654 all of them. We have similar code for the fp arg stores below.
c906108c 3655
c5aa993b
JM
3656 FIXME. Can still die if we have a mix of GR and FR argument
3657 stores! */
6426a772 3658 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3659 {
6426a772 3660 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3661 {
3662 pc += 4;
3663 status = target_read_memory (pc, buf, 4);
3664 inst = extract_unsigned_integer (buf, 4);
3665 if (status != 0)
3666 return pc;
3667 reg_num = inst_saves_gr (inst);
3668 }
3669 args_stored = 0;
3670 continue;
3671 }
3672
3673 reg_num = inst_saves_fr (inst);
3674 save_fr &= ~(1 << reg_num);
3675
3676 status = target_read_memory (pc + 4, buf, 4);
3677 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3678
c906108c
SS
3679 /* Yow! */
3680 if (status != 0)
3681 return pc;
3682
3683 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3684 save. */
c906108c
SS
3685 if ((inst & 0xfc000000) == 0x34000000
3686 && inst_saves_fr (next_inst) >= 4
6426a772 3687 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3688 {
3689 /* So we drop into the code below in a reasonable state. */
3690 reg_num = inst_saves_fr (next_inst);
3691 pc -= 4;
3692 }
3693
3694 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3695 This is a kludge as on the HP compiler sets this bit and it
3696 never does prologue scheduling. So once we see one, skip past
3697 all of them. */
6426a772 3698 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3699 {
6426a772 3700 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3701 {
3702 pc += 8;
3703 status = target_read_memory (pc, buf, 4);
3704 inst = extract_unsigned_integer (buf, 4);
3705 if (status != 0)
3706 return pc;
3707 if ((inst & 0xfc000000) != 0x34000000)
3708 break;
3709 status = target_read_memory (pc + 4, buf, 4);
3710 next_inst = extract_unsigned_integer (buf, 4);
3711 if (status != 0)
3712 return pc;
3713 reg_num = inst_saves_fr (next_inst);
3714 }
3715 args_stored = 0;
3716 continue;
3717 }
3718
3719 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3720 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3721 if (is_branch (inst))
3722 break;
3723
3724 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3725 arguments were stored into the stack (boo hiss). This could
3726 cause this code to then skip a bunch of user insns (up to the
3727 first branch).
3728
3729 To combat this we try to identify when args_stored was bogusly
3730 set and clear it. We only do this when args_stored is nonzero,
3731 all other resources are accounted for, and nothing changed on
3732 this pass. */
c906108c 3733 if (args_stored
c5aa993b 3734 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3735 && old_save_gr == save_gr && old_save_fr == save_fr
3736 && old_save_rp == save_rp && old_save_sp == save_sp
3737 && old_stack_remaining == stack_remaining)
3738 break;
c5aa993b 3739
c906108c
SS
3740 /* Bump the PC. */
3741 pc += 4;
3742 }
3743
3744 /* We've got a tenative location for the end of the prologue. However
3745 because of limitations in the unwind descriptor mechanism we may
3746 have went too far into user code looking for the save of a register
3747 that does not exist. So, if there registers we expected to be saved
3748 but never were, mask them out and restart.
3749
3750 This should only happen in optimized code, and should be very rare. */
c5aa993b 3751 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3752 {
3753 pc = orig_pc;
3754 restart_gr = save_gr;
3755 restart_fr = save_fr;
3756 goto restart;
3757 }
3758
3759 return pc;
3760}
3761
3762
7be570e7
JM
3763/* Return the address of the PC after the last prologue instruction if
3764 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3765
3766static CORE_ADDR
fba45db2 3767after_prologue (CORE_ADDR pc)
c906108c
SS
3768{
3769 struct symtab_and_line sal;
3770 CORE_ADDR func_addr, func_end;
3771 struct symbol *f;
3772
7be570e7
JM
3773 /* If we can not find the symbol in the partial symbol table, then
3774 there is no hope we can determine the function's start address
3775 with this code. */
c906108c 3776 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3777 return 0;
c906108c 3778
7be570e7 3779 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3780 sal = find_pc_line (func_addr, 0);
3781
7be570e7
JM
3782 /* There are only two cases to consider. First, the end of the source line
3783 is within the function bounds. In that case we return the end of the
3784 source line. Second is the end of the source line extends beyond the
3785 bounds of the current function. We need to use the slow code to
3786 examine instructions in that case.
c906108c 3787
7be570e7
JM
3788 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3789 the wrong thing to do. In fact, it should be entirely possible for this
3790 function to always return zero since the slow instruction scanning code
3791 is supposed to *always* work. If it does not, then it is a bug. */
3792 if (sal.end < func_end)
3793 return sal.end;
c5aa993b 3794 else
7be570e7 3795 return 0;
c906108c
SS
3796}
3797
3798/* To skip prologues, I use this predicate. Returns either PC itself
3799 if the code at PC does not look like a function prologue; otherwise
3800 returns an address that (if we're lucky) follows the prologue. If
3801 LENIENT, then we must skip everything which is involved in setting
3802 up the frame (it's OK to skip more, just so long as we don't skip
3803 anything which might clobber the registers which are being saved.
3804 Currently we must not skip more on the alpha, but we might the lenient
3805 stuff some day. */
3806
3807CORE_ADDR
fba45db2 3808hppa_skip_prologue (CORE_ADDR pc)
c906108c 3809{
c5aa993b
JM
3810 unsigned long inst;
3811 int offset;
3812 CORE_ADDR post_prologue_pc;
3813 char buf[4];
c906108c 3814
c5aa993b
JM
3815 /* See if we can determine the end of the prologue via the symbol table.
3816 If so, then return either PC, or the PC after the prologue, whichever
3817 is greater. */
c906108c 3818
c5aa993b 3819 post_prologue_pc = after_prologue (pc);
c906108c 3820
7be570e7
JM
3821 /* If after_prologue returned a useful address, then use it. Else
3822 fall back on the instruction skipping code.
3823
3824 Some folks have claimed this causes problems because the breakpoint
3825 may be the first instruction of the prologue. If that happens, then
3826 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3827 if (post_prologue_pc != 0)
3828 return max (pc, post_prologue_pc);
c5aa993b
JM
3829 else
3830 return (skip_prologue_hard_way (pc));
c906108c
SS
3831}
3832
3833/* Put here the code to store, into a struct frame_saved_regs,
3834 the addresses of the saved registers of frame described by FRAME_INFO.
3835 This includes special registers such as pc and fp saved in special
3836 ways in the stack frame. sp is even more special:
3837 the address we return for it IS the sp for the next frame. */
3838
3839void
fba45db2
KB
3840hppa_frame_find_saved_regs (struct frame_info *frame_info,
3841 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
3842{
3843 CORE_ADDR pc;
3844 struct unwind_table_entry *u;
3845 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3846 int status, i, reg;
3847 char buf[4];
3848 int fp_loc = -1;
d4f3574e 3849 int final_iteration;
c906108c
SS
3850
3851 /* Zero out everything. */
3852 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3853
3854 /* Call dummy frames always look the same, so there's no need to
3855 examine the dummy code to determine locations of saved registers;
3856 instead, let find_dummy_frame_regs fill in the correct offsets
3857 for the saved registers. */
3858 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3859 && frame_info->pc <= (frame_info->frame
3860 /* A call dummy is sized in words, but it is
3861 actually a series of instructions. Account
3862 for that scaling factor. */
3863 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3864 * CALL_DUMMY_LENGTH)
3865 /* Similarly we have to account for 64bit
3866 wide register saves. */
3867 + (32 * REGISTER_SIZE)
3868 /* We always consider FP regs 8 bytes long. */
3869 + (NUM_REGS - FP0_REGNUM) * 8
3870 /* Similarly we have to account for 64bit
3871 wide register saves. */
3872 + (6 * REGISTER_SIZE))))
c906108c
SS
3873 find_dummy_frame_regs (frame_info, frame_saved_regs);
3874
3875 /* Interrupt handlers are special too. They lay out the register
3876 state in the exact same order as the register numbers in GDB. */
3877 if (pc_in_interrupt_handler (frame_info->pc))
3878 {
3879 for (i = 0; i < NUM_REGS; i++)
3880 {
3881 /* SP is a little special. */
3882 if (i == SP_REGNUM)
3883 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3884 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3885 TARGET_PTR_BIT / 8);
c906108c
SS
3886 else
3887 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3888 }
3889 return;
3890 }
3891
3892#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3893 /* Handle signal handler callers. */
5a203e44 3894 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
3895 {
3896 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3897 return;
3898 }
3899#endif
3900
3901 /* Get the starting address of the function referred to by the PC
3902 saved in frame. */
3903 pc = get_pc_function_start (frame_info->pc);
3904
3905 /* Yow! */
3906 u = find_unwind_entry (pc);
3907 if (!u)
3908 return;
3909
3910 /* This is how much of a frame adjustment we need to account for. */
3911 stack_remaining = u->Total_frame_size << 3;
3912
3913 /* Magic register saves we want to know about. */
3914 save_rp = u->Save_RP;
3915 save_sp = u->Save_SP;
3916
3917 /* Turn the Entry_GR field into a bitmask. */
3918 save_gr = 0;
3919 for (i = 3; i < u->Entry_GR + 3; i++)
3920 {
3921 /* Frame pointer gets saved into a special location. */
3922 if (u->Save_SP && i == FP_REGNUM)
3923 continue;
3924
3925 save_gr |= (1 << i);
3926 }
3927
3928 /* Turn the Entry_FR field into a bitmask too. */
3929 save_fr = 0;
3930 for (i = 12; i < u->Entry_FR + 12; i++)
3931 save_fr |= (1 << i);
3932
3933 /* The frame always represents the value of %sp at entry to the
3934 current function (and is thus equivalent to the "saved" stack
3935 pointer. */
3936 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3937
3938 /* Loop until we find everything of interest or hit a branch.
3939
3940 For unoptimized GCC code and for any HP CC code this will never ever
3941 examine any user instructions.
3942
7be570e7 3943 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3944 its prologue and make prologue instructions available for delay slot
3945 filling. The end result is user code gets mixed in with the prologue
3946 and a prologue instruction may be in the delay slot of the first branch
3947 or call.
3948
3949 Some unexpected things are expected with debugging optimized code, so
3950 we allow this routine to walk past user instructions in optimized
3951 GCC code. */
d4f3574e
SS
3952 final_iteration = 0;
3953 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3954 && pc <= frame_info->pc)
c906108c
SS
3955 {
3956 status = target_read_memory (pc, buf, 4);
3957 inst = extract_unsigned_integer (buf, 4);
3958
3959 /* Yow! */
3960 if (status != 0)
3961 return;
3962
3963 /* Note the interesting effects of this instruction. */
3964 stack_remaining -= prologue_inst_adjust_sp (inst);
3965
104c1213
JM
3966 /* There are limited ways to store the return pointer into the
3967 stack. */
c2c6d25f 3968 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3969 {
3970 save_rp = 0;
3971 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3972 }
c2c6d25f
JM
3973 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3974 {
3975 save_rp = 0;
3976 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3977 }
c906108c 3978
104c1213
JM
3979 /* Note if we saved SP into the stack. This also happens to indicate
3980 the location of the saved frame pointer. */
c2c6d25f
JM
3981 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3982 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213
JM
3983 {
3984 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3985 save_sp = 0;
3986 }
c906108c
SS
3987
3988 /* Account for general and floating-point register saves. */
3989 reg = inst_saves_gr (inst);
3990 if (reg >= 3 && reg <= 18
3991 && (!u->Save_SP || reg != FP_REGNUM))
3992 {
3993 save_gr &= ~(1 << reg);
3994
3995 /* stwm with a positive displacement is a *post modify*. */
3996 if ((inst >> 26) == 0x1b
3997 && extract_14 (inst) >= 0)
3998 frame_saved_regs->regs[reg] = frame_info->frame;
104c1213
JM
3999 /* A std has explicit post_modify forms. */
4000 else if ((inst & 0xfc00000c0) == 0x70000008)
4001 frame_saved_regs->regs[reg] = frame_info->frame;
c906108c
SS
4002 else
4003 {
104c1213
JM
4004 CORE_ADDR offset;
4005
4006 if ((inst >> 26) == 0x1c)
d4f3574e 4007 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4008 else if ((inst >> 26) == 0x03)
4009 offset = low_sign_extend (inst & 0x1f, 5);
4010 else
4011 offset = extract_14 (inst);
4012
c906108c
SS
4013 /* Handle code with and without frame pointers. */
4014 if (u->Save_SP)
4015 frame_saved_regs->regs[reg]
104c1213 4016 = frame_info->frame + offset;
c906108c
SS
4017 else
4018 frame_saved_regs->regs[reg]
104c1213
JM
4019 = (frame_info->frame + (u->Total_frame_size << 3)
4020 + offset);
c906108c
SS
4021 }
4022 }
4023
4024
4025 /* GCC handles callee saved FP regs a little differently.
4026
c5aa993b
JM
4027 It emits an instruction to put the value of the start of
4028 the FP store area into %r1. It then uses fstds,ma with
4029 a basereg of %r1 for the stores.
c906108c 4030
c5aa993b
JM
4031 HP CC emits them at the current stack pointer modifying
4032 the stack pointer as it stores each register. */
c906108c
SS
4033
4034 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4035 if ((inst & 0xffffc000) == 0x34610000
4036 || (inst & 0xffffc000) == 0x37c10000)
4037 fp_loc = extract_14 (inst);
c5aa993b 4038
c906108c
SS
4039 reg = inst_saves_fr (inst);
4040 if (reg >= 12 && reg <= 21)
4041 {
4042 /* Note +4 braindamage below is necessary because the FP status
4043 registers are internally 8 registers rather than the expected
4044 4 registers. */
4045 save_fr &= ~(1 << reg);
4046 if (fp_loc == -1)
4047 {
4048 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4049 we've set enough state that the GCC and HPCC code are
4050 both handled in the same manner. */
c906108c
SS
4051 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4052 fp_loc = 8;
4053 }
4054 else
4055 {
4056 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4057 = frame_info->frame + fp_loc;
4058 fp_loc += 8;
4059 }
4060 }
4061
39f77062 4062 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4063 if (final_iteration)
c906108c
SS
4064 break;
4065
d4f3574e
SS
4066 /* We want to look precisely one instruction beyond the branch
4067 if we have not found everything yet. */
4068 if (is_branch (inst))
4069 final_iteration = 1;
4070
c906108c
SS
4071 /* Bump the PC. */
4072 pc += 4;
4073 }
4074}
4075
4076
4077/* Exception handling support for the HP-UX ANSI C++ compiler.
4078 The compiler (aCC) provides a callback for exception events;
4079 GDB can set a breakpoint on this callback and find out what
4080 exception event has occurred. */
4081
4082/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4083static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4084/* The name of the function to be used to set the hook value */
4085static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4086/* The name of the callback function in end.o */
c906108c 4087static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4088/* Name of function in end.o on which a break is set (called by above) */
4089static char HP_ACC_EH_break[] = "__d_eh_break";
4090/* Name of flag (in end.o) that enables catching throws */
4091static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4092/* Name of flag (in end.o) that enables catching catching */
4093static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4094/* The enum used by aCC */
4095typedef enum
4096 {
4097 __EH_NOTIFY_THROW,
4098 __EH_NOTIFY_CATCH
4099 }
4100__eh_notification;
c906108c
SS
4101
4102/* Is exception-handling support available with this executable? */
4103static int hp_cxx_exception_support = 0;
4104/* Has the initialize function been run? */
4105int hp_cxx_exception_support_initialized = 0;
4106/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4107extern int exception_support_initialized;
4108/* Address of __eh_notify_hook */
a0b3c4fd 4109static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4110/* Address of __d_eh_notify_callback */
a0b3c4fd 4111static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4112/* Address of __d_eh_break */
a0b3c4fd 4113static CORE_ADDR eh_break_addr = 0;
c906108c 4114/* Address of __d_eh_catch_catch */
a0b3c4fd 4115static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4116/* Address of __d_eh_catch_throw */
a0b3c4fd 4117static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4118/* Sal for __d_eh_break */
a0b3c4fd 4119static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4120
4121/* Code in end.c expects __d_pid to be set in the inferior,
4122 otherwise __d_eh_notify_callback doesn't bother to call
4123 __d_eh_break! So we poke the pid into this symbol
4124 ourselves.
4125 0 => success
c5aa993b 4126 1 => failure */
c906108c 4127int
fba45db2 4128setup_d_pid_in_inferior (void)
c906108c
SS
4129{
4130 CORE_ADDR anaddr;
c5aa993b
JM
4131 struct minimal_symbol *msymbol;
4132 char buf[4]; /* FIXME 32x64? */
4133
c906108c
SS
4134 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4135 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4136 if (msymbol == NULL)
4137 {
4138 warning ("Unable to find __d_pid symbol in object file.");
4139 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4140 return 1;
4141 }
4142
4143 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4144 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4145 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4146 {
4147 warning ("Unable to write __d_pid");
4148 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4149 return 1;
4150 }
4151 return 0;
4152}
4153
4154/* Initialize exception catchpoint support by looking for the
4155 necessary hooks/callbacks in end.o, etc., and set the hook value to
4156 point to the required debug function
4157
4158 Return 0 => failure
c5aa993b 4159 1 => success */
c906108c
SS
4160
4161static int
fba45db2 4162initialize_hp_cxx_exception_support (void)
c906108c
SS
4163{
4164 struct symtabs_and_lines sals;
c5aa993b
JM
4165 struct cleanup *old_chain;
4166 struct cleanup *canonical_strings_chain = NULL;
c906108c 4167 int i;
c5aa993b
JM
4168 char *addr_start;
4169 char *addr_end = NULL;
4170 char **canonical = (char **) NULL;
c906108c 4171 int thread = -1;
c5aa993b
JM
4172 struct symbol *sym = NULL;
4173 struct minimal_symbol *msym = NULL;
4174 struct objfile *objfile;
c906108c
SS
4175 asection *shlib_info;
4176
4177 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4178 recursion is a possibility because finding the hook for exception
4179 callbacks involves making a call in the inferior, which means
4180 re-inserting breakpoints which can re-invoke this code */
4181
c5aa993b
JM
4182 static int recurse = 0;
4183 if (recurse > 0)
c906108c
SS
4184 {
4185 hp_cxx_exception_support_initialized = 0;
4186 exception_support_initialized = 0;
4187 return 0;
4188 }
4189
4190 hp_cxx_exception_support = 0;
4191
4192 /* First check if we have seen any HP compiled objects; if not,
4193 it is very unlikely that HP's idiosyncratic callback mechanism
4194 for exception handling debug support will be available!
4195 This will percolate back up to breakpoint.c, where our callers
4196 will decide to try the g++ exception-handling support instead. */
4197 if (!hp_som_som_object_present)
4198 return 0;
c5aa993b 4199
c906108c
SS
4200 /* We have a SOM executable with SOM debug info; find the hooks */
4201
4202 /* First look for the notify hook provided by aCC runtime libs */
4203 /* If we find this symbol, we conclude that the executable must
4204 have HP aCC exception support built in. If this symbol is not
4205 found, even though we're a HP SOM-SOM file, we may have been
4206 built with some other compiler (not aCC). This results percolates
4207 back up to our callers in breakpoint.c which can decide to
4208 try the g++ style of exception support instead.
4209 If this symbol is found but the other symbols we require are
4210 not found, there is something weird going on, and g++ support
4211 should *not* be tried as an alternative.
c5aa993b 4212
c906108c
SS
4213 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4214 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4215
c906108c
SS
4216 /* libCsup has this hook; it'll usually be non-debuggable */
4217 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4218 if (msym)
4219 {
4220 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4221 hp_cxx_exception_support = 1;
c5aa993b 4222 }
c906108c
SS
4223 else
4224 {
4225 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4226 warning ("Executable may not have been compiled debuggable with HP aCC.");
4227 warning ("GDB will be unable to intercept exception events.");
4228 eh_notify_hook_addr = 0;
4229 hp_cxx_exception_support = 0;
4230 return 0;
4231 }
4232
c906108c 4233 /* Next look for the notify callback routine in end.o */
c5aa993b 4234 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4235 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4236 if (msym)
4237 {
4238 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4239 hp_cxx_exception_support = 1;
c5aa993b
JM
4240 }
4241 else
c906108c
SS
4242 {
4243 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4244 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4245 warning ("GDB will be unable to intercept exception events.");
4246 eh_notify_callback_addr = 0;
4247 return 0;
4248 }
4249
53a5351d 4250#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4251 /* Check whether the executable is dynamically linked or archive bound */
4252 /* With an archive-bound executable we can use the raw addresses we find
4253 for the callback function, etc. without modification. For an executable
4254 with shared libraries, we have to do more work to find the plabel, which
4255 can be the target of a call through $$dyncall from the aCC runtime support
4256 library (libCsup) which is linked shared by default by aCC. */
4257 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4258 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4259 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4260 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4261 {
4262 /* The minsym we have has the local code address, but that's not the
4263 plabel that can be used by an inter-load-module call. */
4264 /* Find solib handle for main image (which has end.o), and use that
4265 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4266 of shl_findsym()) to find the plabel. */
c906108c
SS
4267
4268 args_for_find_stub args;
4269 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4270
c906108c
SS
4271 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4272 args.msym = msym;
a0b3c4fd 4273 args.return_val = 0;
c5aa993b 4274
c906108c 4275 recurse++;
a0b3c4fd
JM
4276 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4277 RETURN_MASK_ALL);
4278 eh_notify_callback_addr = args.return_val;
c906108c 4279 recurse--;
c5aa993b 4280
c906108c 4281 exception_catchpoints_are_fragile = 1;
c5aa993b 4282
c906108c 4283 if (!eh_notify_callback_addr)
c5aa993b
JM
4284 {
4285 /* We can get here either if there is no plabel in the export list
1faa59a8 4286 for the main image, or if something strange happened (?) */
c5aa993b
JM
4287 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4288 warning ("GDB will not be able to intercept exception events.");
4289 return 0;
4290 }
c906108c
SS
4291 }
4292 else
4293 exception_catchpoints_are_fragile = 0;
53a5351d 4294#endif
c906108c 4295
c906108c 4296 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4297 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4298 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4299 if (msym)
4300 {
4301 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4302 hp_cxx_exception_support = 1;
c5aa993b 4303 }
c906108c
SS
4304 else
4305 {
4306 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4307 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4308 warning ("GDB will be unable to intercept exception events.");
4309 eh_break_addr = 0;
4310 return 0;
4311 }
4312
c906108c
SS
4313 /* Next look for the catch enable flag provided in end.o */
4314 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4315 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4316 if (sym) /* sometimes present in debug info */
c906108c
SS
4317 {
4318 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4319 hp_cxx_exception_support = 1;
4320 }
c5aa993b
JM
4321 else
4322 /* otherwise look in SOM symbol dict. */
c906108c
SS
4323 {
4324 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4325 if (msym)
c5aa993b
JM
4326 {
4327 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4328 hp_cxx_exception_support = 1;
4329 }
c906108c 4330 else
c5aa993b
JM
4331 {
4332 warning ("Unable to enable interception of exception catches.");
4333 warning ("Executable may not have been compiled debuggable with HP aCC.");
4334 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4335 return 0;
4336 }
c906108c
SS
4337 }
4338
c906108c
SS
4339 /* Next look for the catch enable flag provided end.o */
4340 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4341 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4342 if (sym) /* sometimes present in debug info */
c906108c
SS
4343 {
4344 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4345 hp_cxx_exception_support = 1;
4346 }
c5aa993b
JM
4347 else
4348 /* otherwise look in SOM symbol dict. */
c906108c
SS
4349 {
4350 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4351 if (msym)
c5aa993b
JM
4352 {
4353 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4354 hp_cxx_exception_support = 1;
4355 }
c906108c 4356 else
c5aa993b
JM
4357 {
4358 warning ("Unable to enable interception of exception throws.");
4359 warning ("Executable may not have been compiled debuggable with HP aCC.");
4360 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4361 return 0;
4362 }
c906108c
SS
4363 }
4364
c5aa993b
JM
4365 /* Set the flags */
4366 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4367 hp_cxx_exception_support_initialized = 1;
4368 exception_support_initialized = 1;
4369
4370 return 1;
4371}
4372
4373/* Target operation for enabling or disabling interception of
4374 exception events.
4375 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4376 ENABLE is either 0 (disable) or 1 (enable).
4377 Return value is NULL if no support found;
4378 -1 if something went wrong,
4379 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4380 address was found. */
c906108c 4381
c5aa993b 4382struct symtab_and_line *
fba45db2 4383child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4384{
4385 char buf[4];
4386
4387 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4388 if (!initialize_hp_cxx_exception_support ())
4389 return NULL;
4390
4391 switch (hp_cxx_exception_support)
4392 {
c5aa993b
JM
4393 case 0:
4394 /* Assuming no HP support at all */
4395 return NULL;
4396 case 1:
4397 /* HP support should be present, but something went wrong */
4398 return (struct symtab_and_line *) -1; /* yuck! */
4399 /* there may be other cases in the future */
c906108c 4400 }
c5aa993b 4401
c906108c 4402 /* Set the EH hook to point to the callback routine */
c5aa993b 4403 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4404 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4405 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4406 {
4407 warning ("Could not write to target memory for exception event callback.");
4408 warning ("Interception of exception events may not work.");
c5aa993b 4409 return (struct symtab_and_line *) -1;
c906108c
SS
4410 }
4411 if (enable)
4412 {
c5aa993b 4413 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4414 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4415 {
4416 if (setup_d_pid_in_inferior ())
4417 return (struct symtab_and_line *) -1;
4418 }
c906108c 4419 else
c5aa993b 4420 {
104c1213
JM
4421 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4422 return (struct symtab_and_line *) -1;
c5aa993b 4423 }
c906108c 4424 }
c5aa993b 4425
c906108c
SS
4426 switch (kind)
4427 {
c5aa993b
JM
4428 case EX_EVENT_THROW:
4429 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4430 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4431 {
4432 warning ("Couldn't enable exception throw interception.");
4433 return (struct symtab_and_line *) -1;
4434 }
4435 break;
4436 case EX_EVENT_CATCH:
4437 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4438 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4439 {
4440 warning ("Couldn't enable exception catch interception.");
4441 return (struct symtab_and_line *) -1;
4442 }
4443 break;
104c1213
JM
4444 default:
4445 error ("Request to enable unknown or unsupported exception event.");
c906108c 4446 }
c5aa993b 4447
c906108c
SS
4448 /* Copy break address into new sal struct, malloc'ing if needed. */
4449 if (!break_callback_sal)
4450 {
4451 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4452 }
fe39c653 4453 init_sal (break_callback_sal);
c906108c
SS
4454 break_callback_sal->symtab = NULL;
4455 break_callback_sal->pc = eh_break_addr;
4456 break_callback_sal->line = 0;
4457 break_callback_sal->end = eh_break_addr;
c5aa993b 4458
c906108c
SS
4459 return break_callback_sal;
4460}
4461
c5aa993b 4462/* Record some information about the current exception event */
c906108c 4463static struct exception_event_record current_ex_event;
c5aa993b
JM
4464/* Convenience struct */
4465static struct symtab_and_line null_symtab_and_line =
4466{NULL, 0, 0, 0};
c906108c
SS
4467
4468/* Report current exception event. Returns a pointer to a record
4469 that describes the kind of the event, where it was thrown from,
4470 and where it will be caught. More information may be reported
c5aa993b 4471 in the future */
c906108c 4472struct exception_event_record *
fba45db2 4473child_get_current_exception_event (void)
c906108c 4474{
c5aa993b
JM
4475 CORE_ADDR event_kind;
4476 CORE_ADDR throw_addr;
4477 CORE_ADDR catch_addr;
c906108c
SS
4478 struct frame_info *fi, *curr_frame;
4479 int level = 1;
4480
c5aa993b 4481 curr_frame = get_current_frame ();
c906108c
SS
4482 if (!curr_frame)
4483 return (struct exception_event_record *) NULL;
4484
4485 /* Go up one frame to __d_eh_notify_callback, because at the
4486 point when this code is executed, there's garbage in the
4487 arguments of __d_eh_break. */
4488 fi = find_relative_frame (curr_frame, &level);
4489 if (level != 0)
4490 return (struct exception_event_record *) NULL;
4491
0f7d239c 4492 select_frame (fi);
c906108c
SS
4493
4494 /* Read in the arguments */
4495 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4496 1. event kind catch or throw
4497 2. the target address if known
4498 3. a flag -- not sure what this is. pai/1997-07-17 */
4499 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4500 catch_addr = read_register (ARG1_REGNUM);
4501
4502 /* Now go down to a user frame */
4503 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4504 __d_eh_notify_callback which is called by
4505 __notify_throw which is called
4506 from user code.
c906108c 4507 For a catch, __d_eh_break is called by
c5aa993b
JM
4508 __d_eh_notify_callback which is called by
4509 <stackwalking stuff> which is called by
4510 __throw__<stuff> or __rethrow_<stuff> which is called
4511 from user code. */
4512 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4513 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4514 fi = find_relative_frame (curr_frame, &level);
4515 if (level != 0)
4516 return (struct exception_event_record *) NULL;
4517
0f7d239c 4518 select_frame (fi);
c906108c
SS
4519 throw_addr = fi->pc;
4520
4521 /* Go back to original (top) frame */
0f7d239c 4522 select_frame (curr_frame);
c906108c
SS
4523
4524 current_ex_event.kind = (enum exception_event_kind) event_kind;
4525 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4526 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4527
4528 return &current_ex_event;
4529}
4530
c906108c 4531static void
fba45db2 4532unwind_command (char *exp, int from_tty)
c906108c
SS
4533{
4534 CORE_ADDR address;
4535 struct unwind_table_entry *u;
4536
4537 /* If we have an expression, evaluate it and use it as the address. */
4538
4539 if (exp != 0 && *exp != 0)
4540 address = parse_and_eval_address (exp);
4541 else
4542 return;
4543
4544 u = find_unwind_entry (address);
4545
4546 if (!u)
4547 {
4548 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4549 return;
4550 }
4551
ce414844
AC
4552 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4553 paddr_nz (host_pointer_to_address (u)));
c906108c
SS
4554
4555 printf_unfiltered ("\tregion_start = ");
4556 print_address (u->region_start, gdb_stdout);
4557
4558 printf_unfiltered ("\n\tregion_end = ");
4559 print_address (u->region_end, gdb_stdout);
4560
c906108c 4561#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4562
4563 printf_unfiltered ("\n\tflags =");
4564 pif (Cannot_unwind);
4565 pif (Millicode);
4566 pif (Millicode_save_sr0);
4567 pif (Entry_SR);
4568 pif (Args_stored);
4569 pif (Variable_Frame);
4570 pif (Separate_Package_Body);
4571 pif (Frame_Extension_Millicode);
4572 pif (Stack_Overflow_Check);
4573 pif (Two_Instruction_SP_Increment);
4574 pif (Ada_Region);
4575 pif (Save_SP);
4576 pif (Save_RP);
4577 pif (Save_MRP_in_frame);
4578 pif (extn_ptr_defined);
4579 pif (Cleanup_defined);
4580 pif (MPE_XL_interrupt_marker);
4581 pif (HP_UX_interrupt_marker);
4582 pif (Large_frame);
4583
4584 putchar_unfiltered ('\n');
4585
c906108c 4586#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4587
4588 pin (Region_description);
4589 pin (Entry_FR);
4590 pin (Entry_GR);
4591 pin (Total_frame_size);
4592}
c906108c
SS
4593
4594#ifdef PREPARE_TO_PROCEED
4595
4596/* If the user has switched threads, and there is a breakpoint
4597 at the old thread's pc location, then switch to that thread
4598 and return TRUE, else return FALSE and don't do a thread
4599 switch (or rather, don't seem to have done a thread switch).
4600
4601 Ptrace-based gdb will always return FALSE to the thread-switch
4602 query, and thus also to PREPARE_TO_PROCEED.
4603
4604 The important thing is whether there is a BPT instruction,
4605 not how many user breakpoints there are. So we have to worry
4606 about things like these:
4607
4608 o Non-bp stop -- NO
4609
4610 o User hits bp, no switch -- NO
4611
4612 o User hits bp, switches threads -- YES
4613
4614 o User hits bp, deletes bp, switches threads -- NO
4615
4616 o User hits bp, deletes one of two or more bps
c5aa993b 4617 at that PC, user switches threads -- YES
c906108c
SS
4618
4619 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4620 breakpoint, deleted the breakpoint and then gotten another
4621 hit on that same breakpoint on another thread which
4622 actually hit before the delete. (FIXME in breakpoint.c
4623 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4624
4625 For these reasons, we have to violate information hiding and
4626 call "breakpoint_here_p". If core gdb thinks there is a bpt
4627 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4628 putting the BPT instruction in and taking it out.
4629
4630 Note that this implementation is potentially redundant now that
8849f47d
JL
4631 default_prepare_to_proceed() has been added.
4632
4633 FIXME This may not support switching threads after Ctrl-C
4634 correctly. The default implementation does support this. */
c906108c 4635int
fba45db2 4636hppa_prepare_to_proceed (void)
c906108c
SS
4637{
4638 pid_t old_thread;
4639 pid_t current_thread;
4640
39f77062 4641 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4642 if (old_thread != 0)
4643 {
4644 /* Switched over from "old_thread". Try to do
4645 as little work as possible, 'cause mostly
4646 we're going to switch back. */
4647 CORE_ADDR new_pc;
c5aa993b 4648 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4649
4650 /* Yuk, shouldn't use global to specify current
4651 thread. But that's how gdb does it. */
39f77062
KB
4652 current_thread = PIDGET (inferior_ptid);
4653 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4654
c5aa993b
JM
4655 new_pc = read_pc ();
4656 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4657 && breakpoint_here_p (new_pc))
c5aa993b 4658 {
c906108c 4659 /* User hasn't deleted the BP.
c5aa993b 4660 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4661 flush_cached_frames ();
4662 registers_changed ();
4663#if 0
c5aa993b 4664 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4665 current_thread, PIDGET (inferior_ptid));
c906108c 4666#endif
c5aa993b 4667
c906108c 4668 return 1;
c5aa993b 4669 }
c906108c
SS
4670
4671 /* Otherwise switch back to the user-chosen thread. */
39f77062 4672 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4673 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4674 }
4675
4676 return 0;
4677}
4678#endif /* PREPARE_TO_PROCEED */
4679
c2c6d25f 4680void
fba45db2 4681hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4682{
4683 /* To step over a breakpoint instruction on the PA takes some
4684 fiddling with the instruction address queue.
4685
4686 When we stop at a breakpoint, the IA queue front (the instruction
4687 we're executing now) points at the breakpoint instruction, and
4688 the IA queue back (the next instruction to execute) points to
4689 whatever instruction we would execute after the breakpoint, if it
4690 were an ordinary instruction. This is the case even if the
4691 breakpoint is in the delay slot of a branch instruction.
4692
4693 Clearly, to step past the breakpoint, we need to set the queue
4694 front to the back. But what do we put in the back? What
4695 instruction comes after that one? Because of the branch delay
4696 slot, the next insn is always at the back + 4. */
4697 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4698 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4699
4700 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4701 /* We can leave the tail's space the same, since there's no jump. */
4702}
4703
1cdb71fe
JL
4704/* Copy the function value from VALBUF into the proper location
4705 for a function return.
4706
4707 Called only in the context of the "return" command. */
4708
4709void
4710hppa_store_return_value (struct type *type, char *valbuf)
4711{
4712 /* For software floating point, the return value goes into the
4713 integer registers. But we do not have any flag to key this on,
4714 so we always store the value into the integer registers.
4715
4716 If its a float value, then we also store it into the floating
4717 point registers. */
73937e03
AC
4718 deprecated_write_register_bytes (REGISTER_BYTE (28)
4719 + (TYPE_LENGTH (type) > 4
4720 ? (8 - TYPE_LENGTH (type))
4721 : (4 - TYPE_LENGTH (type))),
4722 valbuf, TYPE_LENGTH (type));
1cdb71fe 4723 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4724 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4725 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4726}
4727
4728/* Copy the function's return value into VALBUF.
4729
4730 This function is called only in the context of "target function calls",
4731 ie. when the debugger forces a function to be called in the child, and
4732 when the debugger forces a fucntion to return prematurely via the
4733 "return" command. */
4734
4735void
4736hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4737{
4738 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4739 memcpy (valbuf,
4740 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4741 TYPE_LENGTH (type));
4742 else
4743 memcpy (valbuf,
4744 ((char *)regbuf
4745 + REGISTER_BYTE (28)
4746 + (TYPE_LENGTH (type) > 4
4747 ? (8 - TYPE_LENGTH (type))
4748 : (4 - TYPE_LENGTH (type)))),
4749 TYPE_LENGTH (type));
4750}
4facf7e8 4751
d709c020
JB
4752int
4753hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4754{
4755 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4756 via a pointer regardless of its type or the compiler used. */
4757 return (TYPE_LENGTH (type) > 8);
4758}
4759
4760int
4761hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4762{
4763 /* Stack grows upward */
4764 return (lhs > rhs);
4765}
4766
4767CORE_ADDR
4768hppa_stack_align (CORE_ADDR sp)
4769{
4770 /* elz: adjust the quantity to the next highest value which is
4771 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4772 On hppa the sp must always be kept 64-bit aligned */
4773 return ((sp % 8) ? (sp + 7) & -8 : sp);
4774}
4775
4776int
4777hppa_pc_requires_run_before_use (CORE_ADDR pc)
4778{
4779 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4780
4781 An example of this occurs when an a.out is linked against a foo.sl.
4782 The foo.sl defines a global bar(), and the a.out declares a signature
4783 for bar(). However, the a.out doesn't directly call bar(), but passes
4784 its address in another call.
4785
4786 If you have this scenario and attempt to "break bar" before running,
4787 gdb will find a minimal symbol for bar() in the a.out. But that
4788 symbol's address will be negative. What this appears to denote is
4789 an index backwards from the base of the procedure linkage table (PLT)
4790 into the data linkage table (DLT), the end of which is contiguous
4791 with the start of the PLT. This is clearly not a valid address for
4792 us to set a breakpoint on.
4793
4794 Note that one must be careful in how one checks for a negative address.
4795 0xc0000000 is a legitimate address of something in a shared text
4796 segment, for example. Since I don't know what the possible range
4797 is of these "really, truly negative" addresses that come from the
4798 minimal symbols, I'm resorting to the gross hack of checking the
4799 top byte of the address for all 1's. Sigh. */
4800
4801 return (!target_has_stack && (pc & 0xFF000000));
4802}
4803
4804int
4805hppa_instruction_nullified (void)
4806{
4807 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4808 avoid the type cast. I'm leaving it as is for now as I'm doing
4809 semi-mechanical multiarching-related changes. */
4810 const int ipsw = (int) read_register (IPSW_REGNUM);
4811 const int flags = (int) read_register (FLAGS_REGNUM);
4812
4813 return ((ipsw & 0x00200000) && !(flags & 0x2));
4814}
4815
60e1ff27
JB
4816int
4817hppa_register_raw_size (int reg_nr)
4818{
4819 /* All registers have the same size. */
4820 return REGISTER_SIZE;
4821}
4822
d709c020
JB
4823/* Index within the register vector of the first byte of the space i
4824 used for register REG_NR. */
4825
4826int
4827hppa_register_byte (int reg_nr)
4828{
4829 return reg_nr * 4;
4830}
4831
4832/* Return the GDB type object for the "standard" data type of data
4833 in register N. */
4834
4835struct type *
4836hppa_register_virtual_type (int reg_nr)
4837{
4838 if (reg_nr < FP4_REGNUM)
4839 return builtin_type_int;
4840 else
4841 return builtin_type_float;
4842}
4843
4844/* Store the address of the place in which to copy the structure the
4845 subroutine will return. This is called from call_function. */
4846
4847void
4848hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4849{
4850 write_register (28, addr);
4851}
4852
4853/* Return True if REGNUM is not a register available to the user
4854 through ptrace(). */
4855
4856int
4857hppa_cannot_store_register (int regnum)
4858{
4859 return (regnum == 0
4860 || regnum == PCSQ_HEAD_REGNUM
4861 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4862 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4863
4864}
4865
4866CORE_ADDR
4867hppa_frame_args_address (struct frame_info *fi)
4868{
4869 return fi->frame;
4870}
4871
4872CORE_ADDR
4873hppa_frame_locals_address (struct frame_info *fi)
4874{
4875 return fi->frame;
4876}
4877
4878CORE_ADDR
4879hppa_smash_text_address (CORE_ADDR addr)
4880{
4881 /* The low two bits of the PC on the PA contain the privilege level.
4882 Some genius implementing a (non-GCC) compiler apparently decided
4883 this means that "addresses" in a text section therefore include a
4884 privilege level, and thus symbol tables should contain these bits.
4885 This seems like a bonehead thing to do--anyway, it seems to work
4886 for our purposes to just ignore those bits. */
4887
4888 return (addr &= ~0x3);
4889}
4890
4891int
4892hppa_coerce_float_to_double (struct type *formal, struct type *actual)
4893{
4894 /* FIXME: For the pa, it appears that the debug info marks the
4895 parameters as floats regardless of whether the function is
4896 prototyped, but the actual values are passed as doubles for the
4897 non-prototyped case and floats for the prototyped case. Thus we
4898 choose to make the non-prototyped case work for C and break the
4899 prototyped case, since the non-prototyped case is probably much
4900 more common. */
4901 return (current_language -> la_language == language_c);
4902}
4903
e6e68f1f
JB
4904static struct gdbarch *
4905hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4906{
4907 struct gdbarch *gdbarch;
59623e27
JB
4908 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
4909
4910 /* Try to determine the ABI of the object we are loading. */
4911
4912 if (info.abfd != NULL)
4913 {
4914 osabi = gdbarch_lookup_osabi (info.abfd);
4915 if (osabi == GDB_OSABI_UNKNOWN)
4916 {
4917 /* If it's a SOM file, assume it's HP/UX SOM. */
4918 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4919 osabi = GDB_OSABI_HPUX_SOM;
4920 }
4921 }
e6e68f1f
JB
4922
4923 /* find a candidate among the list of pre-declared architectures. */
4924 arches = gdbarch_list_lookup_by_info (arches, &info);
4925 if (arches != NULL)
4926 return (arches->gdbarch);
4927
4928 /* If none found, then allocate and initialize one. */
4929 gdbarch = gdbarch_alloc (&info, NULL);
4930
273f8429
JB
4931 /* Hook in ABI-specific overrides, if they have been registered. */
4932 gdbarch_init_osabi (info, gdbarch, osabi);
4933
e6e68f1f
JB
4934 return gdbarch;
4935}
4936
4937static void
4938hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4939{
4940 /* Nothing to print for the moment. */
4941}
4942
4facf7e8
JB
4943void
4944_initialize_hppa_tdep (void)
4945{
4946 struct cmd_list_element *c;
4947 void break_at_finish_command (char *arg, int from_tty);
4948 void tbreak_at_finish_command (char *arg, int from_tty);
4949 void break_at_finish_at_depth_command (char *arg, int from_tty);
4950
e6e68f1f 4951 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
4952 tm_print_insn = print_insn_hppa;
4953
4954 add_cmd ("unwind", class_maintenance, unwind_command,
4955 "Print unwind table entry at given address.",
4956 &maintenanceprintlist);
4957
4958 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4959 break_at_finish_command,
4960 concat ("Set breakpoint at procedure exit. \n\
4961Argument may be function name, or \"*\" and an address.\n\
4962If function is specified, break at end of code for that function.\n\
4963If an address is specified, break at the end of the function that contains \n\
4964that exact address.\n",
4965 "With no arg, uses current execution address of selected stack frame.\n\
4966This is useful for breaking on return to a stack frame.\n\
4967\n\
4968Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4969\n\
4970Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4971 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4972 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4973 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4974 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4975
4976 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4977 tbreak_at_finish_command,
4978"Set temporary breakpoint at procedure exit. Either there should\n\
4979be no argument or the argument must be a depth.\n"), NULL);
4980 set_cmd_completer (c, location_completer);
4981
4982 if (xdb_commands)
4983 deprecate_cmd (add_com ("bx", class_breakpoint,
4984 break_at_finish_at_depth_command,
4985"Set breakpoint at procedure exit. Either there should\n\
4986be no argument or the argument must be a depth.\n"), NULL);
4987}
4988