]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
2003-02-01 Andrew Cagney <ac131313@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the HP PA architecture, for GDB.
cda5a58a
AC
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
1e698235 4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c
SS
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c
SS
25
26#include "defs.h"
27#include "frame.h"
28#include "bfd.h"
29#include "inferior.h"
30#include "value.h"
4e052eda 31#include "regcache.h"
e5d66720 32#include "completer.h"
d709c020 33#include "language.h"
59623e27 34#include "osabi.h"
c906108c
SS
35
36/* For argument passing to the inferior */
37#include "symtab.h"
38
39#ifdef USG
40#include <sys/types.h>
41#endif
42
43#include <dl.h>
44#include <sys/param.h>
45#include <signal.h>
46
47#include <sys/ptrace.h>
48#include <machine/save_state.h>
49
50#ifdef COFF_ENCAPSULATE
51#include "a.out.encap.h"
52#else
53#endif
54
c5aa993b 55/*#include <sys/user.h> After a.out.h */
c906108c
SS
56#include <sys/file.h>
57#include "gdb_stat.h"
03f2053f 58#include "gdb_wait.h"
c906108c
SS
59
60#include "gdbcore.h"
61#include "gdbcmd.h"
62#include "target.h"
63#include "symfile.h"
64#include "objfiles.h"
65
60383d10
JB
66/* Some local constants. */
67static const int hppa_num_regs = 128;
68
c906108c
SS
69/* To support detection of the pseudo-initial frame
70 that threads have. */
71#define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
72#define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
c5aa993b 73
a14ed312 74static int extract_5_load (unsigned int);
c906108c 75
a14ed312 76static unsigned extract_5R_store (unsigned int);
c906108c 77
a14ed312 78static unsigned extract_5r_store (unsigned int);
c906108c 79
a14ed312
KB
80static void find_dummy_frame_regs (struct frame_info *,
81 struct frame_saved_regs *);
c906108c 82
a14ed312 83static int find_proc_framesize (CORE_ADDR);
c906108c 84
a14ed312 85static int find_return_regnum (CORE_ADDR);
c906108c 86
a14ed312 87struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
c906108c 88
a14ed312 89static int extract_17 (unsigned int);
c906108c 90
a14ed312 91static unsigned deposit_21 (unsigned int, unsigned int);
c906108c 92
a14ed312 93static int extract_21 (unsigned);
c906108c 94
a14ed312 95static unsigned deposit_14 (int, unsigned int);
c906108c 96
a14ed312 97static int extract_14 (unsigned);
c906108c 98
a14ed312 99static void unwind_command (char *, int);
c906108c 100
a14ed312 101static int low_sign_extend (unsigned int, unsigned int);
c906108c 102
a14ed312 103static int sign_extend (unsigned int, unsigned int);
c906108c 104
a14ed312 105static int restore_pc_queue (struct frame_saved_regs *);
c906108c 106
a14ed312 107static int hppa_alignof (struct type *);
c906108c
SS
108
109/* To support multi-threading and stepping. */
a14ed312 110int hppa_prepare_to_proceed ();
c906108c 111
a14ed312 112static int prologue_inst_adjust_sp (unsigned long);
c906108c 113
a14ed312 114static int is_branch (unsigned long);
c906108c 115
a14ed312 116static int inst_saves_gr (unsigned long);
c906108c 117
a14ed312 118static int inst_saves_fr (unsigned long);
c906108c 119
a14ed312 120static int pc_in_interrupt_handler (CORE_ADDR);
c906108c 121
a14ed312 122static int pc_in_linker_stub (CORE_ADDR);
c906108c 123
a14ed312 124static int compare_unwind_entries (const void *, const void *);
c906108c 125
a14ed312 126static void read_unwind_info (struct objfile *);
c906108c 127
a14ed312
KB
128static void internalize_unwinds (struct objfile *,
129 struct unwind_table_entry *,
130 asection *, unsigned int,
131 unsigned int, CORE_ADDR);
132static void pa_print_registers (char *, int, int);
d9fcf2fb 133static void pa_strcat_registers (char *, int, int, struct ui_file *);
a14ed312
KB
134static void pa_register_look_aside (char *, int, long *);
135static void pa_print_fp_reg (int);
d9fcf2fb 136static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
a14ed312 137static void record_text_segment_lowaddr (bfd *, asection *, void *);
d709c020
JB
138/* FIXME: brobecker 2002-11-07: We will likely be able to make the
139 following functions static, once we hppa is partially multiarched. */
140int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
60383d10
JB
141CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
142CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
143int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
144int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
145CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
d709c020
JB
146int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
147CORE_ADDR hppa_stack_align (CORE_ADDR sp);
148int hppa_pc_requires_run_before_use (CORE_ADDR pc);
149int hppa_instruction_nullified (void);
60e1ff27 150int hppa_register_raw_size (int reg_nr);
d709c020
JB
151int hppa_register_byte (int reg_nr);
152struct type * hppa_register_virtual_type (int reg_nr);
153void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
60383d10
JB
154void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
155int hppa_use_struct_convention (int gcc_p, struct type *type);
156void hppa_store_return_value (struct type *type, char *valbuf);
157CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
d709c020 158int hppa_cannot_store_register (int regnum);
60383d10
JB
159void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
160CORE_ADDR hppa_frame_chain (struct frame_info *frame);
161int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
162int hppa_frameless_function_invocation (struct frame_info *frame);
163CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
d709c020
JB
164CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
165CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
60383d10
JB
166int hppa_frame_num_args (struct frame_info *frame);
167void hppa_push_dummy_frame (struct inferior_status *inf_status);
168void hppa_pop_frame (void);
169CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
170 int nargs, struct value **args,
171 struct type *type, int gcc_p);
172CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
173 int struct_return, CORE_ADDR struct_addr);
d709c020 174CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
60383d10
JB
175CORE_ADDR hppa_target_read_pc (ptid_t ptid);
176void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
177CORE_ADDR hppa_target_read_fp (void);
c906108c 178
c5aa993b
JM
179typedef struct
180 {
181 struct minimal_symbol *msym;
182 CORE_ADDR solib_handle;
a0b3c4fd 183 CORE_ADDR return_val;
c5aa993b
JM
184 }
185args_for_find_stub;
c906108c 186
4efb68b1 187static int cover_find_stub_with_shl_get (void *);
c906108c 188
c5aa993b 189static int is_pa_2 = 0; /* False */
c906108c 190
c5aa993b 191/* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
c906108c
SS
192extern int hp_som_som_object_present;
193
194/* In breakpoint.c */
195extern int exception_catchpoints_are_fragile;
196
c906108c 197/* Should call_function allocate stack space for a struct return? */
d709c020 198
c906108c 199int
fba45db2 200hppa_use_struct_convention (int gcc_p, struct type *type)
c906108c 201{
104c1213 202 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
c906108c 203}
c906108c 204\f
c5aa993b 205
c906108c
SS
206/* Routines to extract various sized constants out of hppa
207 instructions. */
208
209/* This assumes that no garbage lies outside of the lower bits of
210 value. */
211
212static int
fba45db2 213sign_extend (unsigned val, unsigned bits)
c906108c 214{
c5aa993b 215 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
c906108c
SS
216}
217
218/* For many immediate values the sign bit is the low bit! */
219
220static int
fba45db2 221low_sign_extend (unsigned val, unsigned bits)
c906108c 222{
c5aa993b 223 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
c906108c
SS
224}
225
226/* extract the immediate field from a ld{bhw}s instruction */
227
c906108c 228static int
fba45db2 229extract_5_load (unsigned word)
c906108c
SS
230{
231 return low_sign_extend (word >> 16 & MASK_5, 5);
232}
233
c906108c
SS
234/* extract the immediate field from a break instruction */
235
236static unsigned
fba45db2 237extract_5r_store (unsigned word)
c906108c
SS
238{
239 return (word & MASK_5);
240}
241
242/* extract the immediate field from a {sr}sm instruction */
243
244static unsigned
fba45db2 245extract_5R_store (unsigned word)
c906108c
SS
246{
247 return (word >> 16 & MASK_5);
248}
249
c906108c
SS
250/* extract a 14 bit immediate field */
251
252static int
fba45db2 253extract_14 (unsigned word)
c906108c
SS
254{
255 return low_sign_extend (word & MASK_14, 14);
256}
257
258/* deposit a 14 bit constant in a word */
259
260static unsigned
fba45db2 261deposit_14 (int opnd, unsigned word)
c906108c
SS
262{
263 unsigned sign = (opnd < 0 ? 1 : 0);
264
c5aa993b 265 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
c906108c
SS
266}
267
268/* extract a 21 bit constant */
269
270static int
fba45db2 271extract_21 (unsigned word)
c906108c
SS
272{
273 int val;
274
275 word &= MASK_21;
276 word <<= 11;
277 val = GET_FIELD (word, 20, 20);
278 val <<= 11;
279 val |= GET_FIELD (word, 9, 19);
280 val <<= 2;
281 val |= GET_FIELD (word, 5, 6);
282 val <<= 5;
283 val |= GET_FIELD (word, 0, 4);
284 val <<= 2;
285 val |= GET_FIELD (word, 7, 8);
286 return sign_extend (val, 21) << 11;
287}
288
289/* deposit a 21 bit constant in a word. Although 21 bit constants are
290 usually the top 21 bits of a 32 bit constant, we assume that only
291 the low 21 bits of opnd are relevant */
292
293static unsigned
fba45db2 294deposit_21 (unsigned opnd, unsigned word)
c906108c
SS
295{
296 unsigned val = 0;
297
298 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
299 val <<= 2;
300 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
301 val <<= 2;
302 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
303 val <<= 11;
304 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
305 val <<= 1;
306 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
307 return word | val;
308}
309
c906108c
SS
310/* extract a 17 bit constant from branch instructions, returning the
311 19 bit signed value. */
312
313static int
fba45db2 314extract_17 (unsigned word)
c906108c
SS
315{
316 return sign_extend (GET_FIELD (word, 19, 28) |
317 GET_FIELD (word, 29, 29) << 10 |
318 GET_FIELD (word, 11, 15) << 11 |
319 (word & 0x1) << 16, 17) << 2;
320}
321\f
322
323/* Compare the start address for two unwind entries returning 1 if
324 the first address is larger than the second, -1 if the second is
325 larger than the first, and zero if they are equal. */
326
327static int
fba45db2 328compare_unwind_entries (const void *arg1, const void *arg2)
c906108c
SS
329{
330 const struct unwind_table_entry *a = arg1;
331 const struct unwind_table_entry *b = arg2;
332
333 if (a->region_start > b->region_start)
334 return 1;
335 else if (a->region_start < b->region_start)
336 return -1;
337 else
338 return 0;
339}
340
53a5351d
JM
341static CORE_ADDR low_text_segment_address;
342
343static void
8fef05cc 344record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
53a5351d 345{
bf9c25dc 346 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
53a5351d
JM
347 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 && section->vma < low_text_segment_address)
349 low_text_segment_address = section->vma;
350}
351
c906108c 352static void
fba45db2
KB
353internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
354 asection *section, unsigned int entries, unsigned int size,
355 CORE_ADDR text_offset)
c906108c
SS
356{
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
53a5351d
JM
365 low_text_segment_address = -1;
366
367 /* If addresses are 64 bits wide, then unwinds are supposed to
c2c6d25f
JM
368 be segment relative offsets instead of absolute addresses.
369
370 Note that when loading a shared library (text_offset != 0) the
371 unwinds are already relative to the text_offset that will be
372 passed in. */
373 if (TARGET_PTR_BIT == 64 && text_offset == 0)
53a5351d
JM
374 {
375 bfd_map_over_sections (objfile->obfd,
4efb68b1 376 record_text_segment_lowaddr, NULL);
53a5351d
JM
377
378 /* ?!? Mask off some low bits. Should this instead subtract
379 out the lowest section's filepos or something like that?
380 This looks very hokey to me. */
381 low_text_segment_address &= ~0xfff;
382 text_offset += low_text_segment_address;
383 }
384
c906108c
SS
385 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
386
387 /* Now internalize the information being careful to handle host/target
c5aa993b 388 endian issues. */
c906108c
SS
389 for (i = 0; i < entries; i++)
390 {
391 table[i].region_start = bfd_get_32 (objfile->obfd,
c5aa993b 392 (bfd_byte *) buf);
c906108c
SS
393 table[i].region_start += text_offset;
394 buf += 4;
c5aa993b 395 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
396 table[i].region_end += text_offset;
397 buf += 4;
c5aa993b 398 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
399 buf += 4;
400 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
401 table[i].Millicode = (tmp >> 30) & 0x1;
402 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
403 table[i].Region_description = (tmp >> 27) & 0x3;
404 table[i].reserved1 = (tmp >> 26) & 0x1;
405 table[i].Entry_SR = (tmp >> 25) & 0x1;
406 table[i].Entry_FR = (tmp >> 21) & 0xf;
407 table[i].Entry_GR = (tmp >> 16) & 0x1f;
408 table[i].Args_stored = (tmp >> 15) & 0x1;
409 table[i].Variable_Frame = (tmp >> 14) & 0x1;
410 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
411 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
412 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
413 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
414 table[i].Ada_Region = (tmp >> 9) & 0x1;
415 table[i].cxx_info = (tmp >> 8) & 0x1;
416 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
417 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
418 table[i].reserved2 = (tmp >> 5) & 0x1;
419 table[i].Save_SP = (tmp >> 4) & 0x1;
420 table[i].Save_RP = (tmp >> 3) & 0x1;
421 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
422 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
423 table[i].Cleanup_defined = tmp & 0x1;
c5aa993b 424 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
c906108c
SS
425 buf += 4;
426 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
427 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
428 table[i].Large_frame = (tmp >> 29) & 0x1;
429 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
430 table[i].reserved4 = (tmp >> 27) & 0x1;
431 table[i].Total_frame_size = tmp & 0x7ffffff;
432
c5aa993b 433 /* Stub unwinds are handled elsewhere. */
c906108c
SS
434 table[i].stub_unwind.stub_type = 0;
435 table[i].stub_unwind.padding = 0;
436 }
437 }
438}
439
440/* Read in the backtrace information stored in the `$UNWIND_START$' section of
441 the object file. This info is used mainly by find_unwind_entry() to find
442 out the stack frame size and frame pointer used by procedures. We put
443 everything on the psymbol obstack in the objfile so that it automatically
444 gets freed when the objfile is destroyed. */
445
446static void
fba45db2 447read_unwind_info (struct objfile *objfile)
c906108c 448{
d4f3574e
SS
449 asection *unwind_sec, *stub_unwind_sec;
450 unsigned unwind_size, stub_unwind_size, total_size;
451 unsigned index, unwind_entries;
c906108c
SS
452 unsigned stub_entries, total_entries;
453 CORE_ADDR text_offset;
454 struct obj_unwind_info *ui;
455 obj_private_data_t *obj_private;
456
457 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5aa993b
JM
458 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
459 sizeof (struct obj_unwind_info));
c906108c
SS
460
461 ui->table = NULL;
462 ui->cache = NULL;
463 ui->last = -1;
464
d4f3574e
SS
465 /* For reasons unknown the HP PA64 tools generate multiple unwinder
466 sections in a single executable. So we just iterate over every
467 section in the BFD looking for unwinder sections intead of trying
468 to do a lookup with bfd_get_section_by_name.
c906108c 469
d4f3574e
SS
470 First determine the total size of the unwind tables so that we
471 can allocate memory in a nice big hunk. */
472 total_entries = 0;
473 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec;
475 unwind_sec = unwind_sec->next)
c906108c 476 {
d4f3574e
SS
477 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
478 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 {
480 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
481 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
c906108c 482
d4f3574e
SS
483 total_entries += unwind_entries;
484 }
c906108c
SS
485 }
486
d4f3574e
SS
487 /* Now compute the size of the stub unwinds. Note the ELF tools do not
488 use stub unwinds at the curren time. */
489 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
490
c906108c
SS
491 if (stub_unwind_sec)
492 {
493 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
494 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
495 }
496 else
497 {
498 stub_unwind_size = 0;
499 stub_entries = 0;
500 }
501
502 /* Compute total number of unwind entries and their total size. */
d4f3574e 503 total_entries += stub_entries;
c906108c
SS
504 total_size = total_entries * sizeof (struct unwind_table_entry);
505
506 /* Allocate memory for the unwind table. */
507 ui->table = (struct unwind_table_entry *)
508 obstack_alloc (&objfile->psymbol_obstack, total_size);
c5aa993b 509 ui->last = total_entries - 1;
c906108c 510
d4f3574e
SS
511 /* Now read in each unwind section and internalize the standard unwind
512 entries. */
c906108c 513 index = 0;
d4f3574e
SS
514 for (unwind_sec = objfile->obfd->sections;
515 unwind_sec;
516 unwind_sec = unwind_sec->next)
517 {
518 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
519 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
520 {
521 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
522 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
523
524 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
525 unwind_entries, unwind_size, text_offset);
526 index += unwind_entries;
527 }
528 }
529
530 /* Now read in and internalize the stub unwind entries. */
c906108c
SS
531 if (stub_unwind_size > 0)
532 {
533 unsigned int i;
534 char *buf = alloca (stub_unwind_size);
535
536 /* Read in the stub unwind entries. */
537 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
538 0, stub_unwind_size);
539
540 /* Now convert them into regular unwind entries. */
541 for (i = 0; i < stub_entries; i++, index++)
542 {
543 /* Clear out the next unwind entry. */
544 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
545
546 /* Convert offset & size into region_start and region_end.
547 Stuff away the stub type into "reserved" fields. */
548 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
549 (bfd_byte *) buf);
550 ui->table[index].region_start += text_offset;
551 buf += 4;
552 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
c5aa993b 553 (bfd_byte *) buf);
c906108c
SS
554 buf += 2;
555 ui->table[index].region_end
c5aa993b
JM
556 = ui->table[index].region_start + 4 *
557 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
c906108c
SS
558 buf += 2;
559 }
560
561 }
562
563 /* Unwind table needs to be kept sorted. */
564 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
565 compare_unwind_entries);
566
567 /* Keep a pointer to the unwind information. */
c5aa993b 568 if (objfile->obj_private == NULL)
c906108c
SS
569 {
570 obj_private = (obj_private_data_t *)
c5aa993b
JM
571 obstack_alloc (&objfile->psymbol_obstack,
572 sizeof (obj_private_data_t));
c906108c 573 obj_private->unwind_info = NULL;
c5aa993b 574 obj_private->so_info = NULL;
53a5351d 575 obj_private->dp = 0;
c5aa993b 576
4efb68b1 577 objfile->obj_private = obj_private;
c906108c 578 }
c5aa993b 579 obj_private = (obj_private_data_t *) objfile->obj_private;
c906108c
SS
580 obj_private->unwind_info = ui;
581}
582
583/* Lookup the unwind (stack backtrace) info for the given PC. We search all
584 of the objfiles seeking the unwind table entry for this PC. Each objfile
585 contains a sorted list of struct unwind_table_entry. Since we do a binary
586 search of the unwind tables, we depend upon them to be sorted. */
587
588struct unwind_table_entry *
fba45db2 589find_unwind_entry (CORE_ADDR pc)
c906108c
SS
590{
591 int first, middle, last;
592 struct objfile *objfile;
593
594 /* A function at address 0? Not in HP-UX! */
595 if (pc == (CORE_ADDR) 0)
596 return NULL;
597
598 ALL_OBJFILES (objfile)
c5aa993b
JM
599 {
600 struct obj_unwind_info *ui;
601 ui = NULL;
602 if (objfile->obj_private)
603 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
c906108c 604
c5aa993b
JM
605 if (!ui)
606 {
607 read_unwind_info (objfile);
608 if (objfile->obj_private == NULL)
104c1213 609 error ("Internal error reading unwind information.");
c5aa993b
JM
610 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
611 }
c906108c 612
c5aa993b 613 /* First, check the cache */
c906108c 614
c5aa993b
JM
615 if (ui->cache
616 && pc >= ui->cache->region_start
617 && pc <= ui->cache->region_end)
618 return ui->cache;
c906108c 619
c5aa993b 620 /* Not in the cache, do a binary search */
c906108c 621
c5aa993b
JM
622 first = 0;
623 last = ui->last;
c906108c 624
c5aa993b
JM
625 while (first <= last)
626 {
627 middle = (first + last) / 2;
628 if (pc >= ui->table[middle].region_start
629 && pc <= ui->table[middle].region_end)
630 {
631 ui->cache = &ui->table[middle];
632 return &ui->table[middle];
633 }
c906108c 634
c5aa993b
JM
635 if (pc < ui->table[middle].region_start)
636 last = middle - 1;
637 else
638 first = middle + 1;
639 }
640 } /* ALL_OBJFILES() */
c906108c
SS
641 return NULL;
642}
643
644/* Return the adjustment necessary to make for addresses on the stack
645 as presented by hpread.c.
646
647 This is necessary because of the stack direction on the PA and the
648 bizarre way in which someone (?) decided they wanted to handle
649 frame pointerless code in GDB. */
650int
fba45db2 651hpread_adjust_stack_address (CORE_ADDR func_addr)
c906108c
SS
652{
653 struct unwind_table_entry *u;
654
655 u = find_unwind_entry (func_addr);
656 if (!u)
657 return 0;
658 else
659 return u->Total_frame_size << 3;
660}
661
662/* Called to determine if PC is in an interrupt handler of some
663 kind. */
664
665static int
fba45db2 666pc_in_interrupt_handler (CORE_ADDR pc)
c906108c
SS
667{
668 struct unwind_table_entry *u;
669 struct minimal_symbol *msym_us;
670
671 u = find_unwind_entry (pc);
672 if (!u)
673 return 0;
674
675 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
676 its frame isn't a pure interrupt frame. Deal with this. */
677 msym_us = lookup_minimal_symbol_by_pc (pc);
678
d7bd68ca
AC
679 return (u->HP_UX_interrupt_marker
680 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)));
c906108c
SS
681}
682
683/* Called when no unwind descriptor was found for PC. Returns 1 if it
104c1213
JM
684 appears that PC is in a linker stub.
685
686 ?!? Need to handle stubs which appear in PA64 code. */
c906108c
SS
687
688static int
fba45db2 689pc_in_linker_stub (CORE_ADDR pc)
c906108c
SS
690{
691 int found_magic_instruction = 0;
692 int i;
693 char buf[4];
694
695 /* If unable to read memory, assume pc is not in a linker stub. */
696 if (target_read_memory (pc, buf, 4) != 0)
697 return 0;
698
699 /* We are looking for something like
700
701 ; $$dyncall jams RP into this special spot in the frame (RP')
702 ; before calling the "call stub"
703 ldw -18(sp),rp
704
705 ldsid (rp),r1 ; Get space associated with RP into r1
706 mtsp r1,sp ; Move it into space register 0
707 be,n 0(sr0),rp) ; back to your regularly scheduled program */
708
709 /* Maximum known linker stub size is 4 instructions. Search forward
710 from the given PC, then backward. */
711 for (i = 0; i < 4; i++)
712 {
713 /* If we hit something with an unwind, stop searching this direction. */
714
715 if (find_unwind_entry (pc + i * 4) != 0)
716 break;
717
718 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 719 return from a cross-space function call. */
c906108c
SS
720 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
721 {
722 found_magic_instruction = 1;
723 break;
724 }
725 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 726 here. */
c906108c
SS
727 }
728
729 if (found_magic_instruction != 0)
730 return 1;
731
732 /* Now look backward. */
733 for (i = 0; i < 4; i++)
734 {
735 /* If we hit something with an unwind, stop searching this direction. */
736
737 if (find_unwind_entry (pc - i * 4) != 0)
738 break;
739
740 /* Check for ldsid (rp),r1 which is the magic instruction for a
c5aa993b 741 return from a cross-space function call. */
c906108c
SS
742 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
743 {
744 found_magic_instruction = 1;
745 break;
746 }
747 /* Add code to handle long call/branch and argument relocation stubs
c5aa993b 748 here. */
c906108c
SS
749 }
750 return found_magic_instruction;
751}
752
753static int
fba45db2 754find_return_regnum (CORE_ADDR pc)
c906108c
SS
755{
756 struct unwind_table_entry *u;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 return RP_REGNUM;
762
763 if (u->Millicode)
764 return 31;
765
766 return RP_REGNUM;
767}
768
769/* Return size of frame, or -1 if we should use a frame pointer. */
770static int
fba45db2 771find_proc_framesize (CORE_ADDR pc)
c906108c
SS
772{
773 struct unwind_table_entry *u;
774 struct minimal_symbol *msym_us;
775
776 /* This may indicate a bug in our callers... */
c5aa993b 777 if (pc == (CORE_ADDR) 0)
c906108c 778 return -1;
c5aa993b 779
c906108c
SS
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 {
784 if (pc_in_linker_stub (pc))
785 /* Linker stubs have a zero size frame. */
786 return 0;
787 else
788 return -1;
789 }
790
791 msym_us = lookup_minimal_symbol_by_pc (pc);
792
793 /* If Save_SP is set, and we're not in an interrupt or signal caller,
794 then we have a frame pointer. Use it. */
3fa41cdb
JL
795 if (u->Save_SP
796 && !pc_in_interrupt_handler (pc)
797 && msym_us
d7bd68ca 798 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
c906108c
SS
799 return -1;
800
801 return u->Total_frame_size << 3;
802}
803
804/* Return offset from sp at which rp is saved, or 0 if not saved. */
a14ed312 805static int rp_saved (CORE_ADDR);
c906108c
SS
806
807static int
fba45db2 808rp_saved (CORE_ADDR pc)
c906108c
SS
809{
810 struct unwind_table_entry *u;
811
812 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
813 if (pc == (CORE_ADDR) 0)
814 return 0;
815
816 u = find_unwind_entry (pc);
817
818 if (!u)
819 {
820 if (pc_in_linker_stub (pc))
821 /* This is the so-called RP'. */
822 return -24;
823 else
824 return 0;
825 }
826
827 if (u->Save_RP)
53a5351d 828 return (TARGET_PTR_BIT == 64 ? -16 : -20);
c906108c
SS
829 else if (u->stub_unwind.stub_type != 0)
830 {
831 switch (u->stub_unwind.stub_type)
832 {
833 case EXPORT:
834 case IMPORT:
835 return -24;
836 case PARAMETER_RELOCATION:
837 return -8;
838 default:
839 return 0;
840 }
841 }
842 else
843 return 0;
844}
845\f
846int
60383d10 847hppa_frameless_function_invocation (struct frame_info *frame)
c906108c
SS
848{
849 struct unwind_table_entry *u;
850
851 u = find_unwind_entry (frame->pc);
852
853 if (u == 0)
854 return 0;
855
856 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
857}
858
d709c020
JB
859/* Immediately after a function call, return the saved pc.
860 Can't go through the frames for this because on some machines
861 the new frame is not set up until the new function executes
862 some instructions. */
863
c906108c 864CORE_ADDR
60383d10 865hppa_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
866{
867 int ret_regnum;
868 CORE_ADDR pc;
869 struct unwind_table_entry *u;
870
871 ret_regnum = find_return_regnum (get_frame_pc (frame));
872 pc = read_register (ret_regnum) & ~0x3;
c5aa993b 873
c906108c
SS
874 /* If PC is in a linker stub, then we need to dig the address
875 the stub will return to out of the stack. */
876 u = find_unwind_entry (pc);
877 if (u && u->stub_unwind.stub_type != 0)
878 return FRAME_SAVED_PC (frame);
879 else
880 return pc;
881}
882\f
883CORE_ADDR
fba45db2 884hppa_frame_saved_pc (struct frame_info *frame)
c906108c
SS
885{
886 CORE_ADDR pc = get_frame_pc (frame);
887 struct unwind_table_entry *u;
888 CORE_ADDR old_pc;
c5aa993b
JM
889 int spun_around_loop = 0;
890 int rp_offset = 0;
c906108c
SS
891
892 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
893 at the base of the frame in an interrupt handler. Registers within
894 are saved in the exact same order as GDB numbers registers. How
895 convienent. */
896 if (pc_in_interrupt_handler (pc))
53a5351d
JM
897 return read_memory_integer (frame->frame + PC_REGNUM * 4,
898 TARGET_PTR_BIT / 8) & ~0x3;
c906108c 899
104c1213
JM
900 if ((frame->pc >= frame->frame
901 && frame->pc <= (frame->frame
902 /* A call dummy is sized in words, but it is
903 actually a series of instructions. Account
904 for that scaling factor. */
905 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
906 * CALL_DUMMY_LENGTH)
907 /* Similarly we have to account for 64bit
908 wide register saves. */
909 + (32 * REGISTER_SIZE)
910 /* We always consider FP regs 8 bytes long. */
911 + (NUM_REGS - FP0_REGNUM) * 8
912 /* Similarly we have to account for 64bit
913 wide register saves. */
914 + (6 * REGISTER_SIZE))))
915 {
916 return read_memory_integer ((frame->frame
917 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
918 TARGET_PTR_BIT / 8) & ~0x3;
919 }
920
c906108c
SS
921#ifdef FRAME_SAVED_PC_IN_SIGTRAMP
922 /* Deal with signal handler caller frames too. */
5a203e44 923 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
924 {
925 CORE_ADDR rp;
926 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
927 return rp & ~0x3;
928 }
929#endif
930
60383d10 931 if (hppa_frameless_function_invocation (frame))
c906108c
SS
932 {
933 int ret_regnum;
934
935 ret_regnum = find_return_regnum (pc);
936
937 /* If the next frame is an interrupt frame or a signal
c5aa993b
JM
938 handler caller, then we need to look in the saved
939 register area to get the return pointer (the values
940 in the registers may not correspond to anything useful). */
941 if (frame->next
5a203e44 942 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
c906108c
SS
943 || pc_in_interrupt_handler (frame->next->pc)))
944 {
945 struct frame_saved_regs saved_regs;
946
95486978 947 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
948 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
949 TARGET_PTR_BIT / 8) & 0x2)
c906108c 950 {
53a5351d
JM
951 pc = read_memory_integer (saved_regs.regs[31],
952 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
953
954 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
955 with a return pointer in %rp and the kernel call with
956 a return pointer in %r31. We return the %rp variant
957 if %r31 is the same as frame->pc. */
c906108c 958 if (pc == frame->pc)
53a5351d
JM
959 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
960 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
961 }
962 else
53a5351d
JM
963 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
964 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
965 }
966 else
967 pc = read_register (ret_regnum) & ~0x3;
968 }
969 else
970 {
971 spun_around_loop = 0;
c5aa993b 972 old_pc = pc;
c906108c 973
c5aa993b 974 restart:
c906108c
SS
975 rp_offset = rp_saved (pc);
976
977 /* Similar to code in frameless function case. If the next
c5aa993b
JM
978 frame is a signal or interrupt handler, then dig the right
979 information out of the saved register info. */
c906108c
SS
980 if (rp_offset == 0
981 && frame->next
5a203e44 982 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
c906108c
SS
983 || pc_in_interrupt_handler (frame->next->pc)))
984 {
985 struct frame_saved_regs saved_regs;
986
95486978 987 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
53a5351d
JM
988 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
989 TARGET_PTR_BIT / 8) & 0x2)
c906108c 990 {
53a5351d
JM
991 pc = read_memory_integer (saved_regs.regs[31],
992 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
993
994 /* Syscalls are really two frames. The syscall stub itself
c5aa993b
JM
995 with a return pointer in %rp and the kernel call with
996 a return pointer in %r31. We return the %rp variant
997 if %r31 is the same as frame->pc. */
c906108c 998 if (pc == frame->pc)
53a5351d
JM
999 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
1000 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1001 }
1002 else
53a5351d
JM
1003 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
1004 TARGET_PTR_BIT / 8) & ~0x3;
c906108c
SS
1005 }
1006 else if (rp_offset == 0)
c5aa993b
JM
1007 {
1008 old_pc = pc;
1009 pc = read_register (RP_REGNUM) & ~0x3;
1010 }
c906108c 1011 else
c5aa993b
JM
1012 {
1013 old_pc = pc;
53a5351d
JM
1014 pc = read_memory_integer (frame->frame + rp_offset,
1015 TARGET_PTR_BIT / 8) & ~0x3;
c5aa993b 1016 }
c906108c
SS
1017 }
1018
1019 /* If PC is inside a linker stub, then dig out the address the stub
1020 will return to.
1021
1022 Don't do this for long branch stubs. Why? For some unknown reason
1023 _start is marked as a long branch stub in hpux10. */
1024 u = find_unwind_entry (pc);
1025 if (u && u->stub_unwind.stub_type != 0
1026 && u->stub_unwind.stub_type != LONG_BRANCH)
1027 {
1028 unsigned int insn;
1029
1030 /* If this is a dynamic executable, and we're in a signal handler,
c5aa993b
JM
1031 then the call chain will eventually point us into the stub for
1032 _sigreturn. Unlike most cases, we'll be pointed to the branch
1033 to the real sigreturn rather than the code after the real branch!.
c906108c 1034
c5aa993b
JM
1035 Else, try to dig the address the stub will return to in the normal
1036 fashion. */
c906108c
SS
1037 insn = read_memory_integer (pc, 4);
1038 if ((insn & 0xfc00e000) == 0xe8000000)
1039 return (pc + extract_17 (insn) + 8) & ~0x3;
1040 else
1041 {
c5aa993b
JM
1042 if (old_pc == pc)
1043 spun_around_loop++;
1044
1045 if (spun_around_loop > 1)
1046 {
1047 /* We're just about to go around the loop again with
1048 no more hope of success. Die. */
1049 error ("Unable to find return pc for this frame");
1050 }
1051 else
1052 goto restart;
c906108c
SS
1053 }
1054 }
1055
1056 return pc;
1057}
1058\f
1059/* We need to correct the PC and the FP for the outermost frame when we are
1060 in a system call. */
1061
1062void
60383d10 1063hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
1064{
1065 int flags;
1066 int framesize;
1067
1068 if (frame->next && !fromleaf)
1069 return;
1070
1071 /* If the next frame represents a frameless function invocation
1072 then we have to do some adjustments that are normally done by
1073 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1074 if (fromleaf)
1075 {
1076 /* Find the framesize of *this* frame without peeking at the PC
c5aa993b 1077 in the current frame structure (it isn't set yet). */
c906108c
SS
1078 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1079
1080 /* Now adjust our base frame accordingly. If we have a frame pointer
c5aa993b
JM
1081 use it, else subtract the size of this frame from the current
1082 frame. (we always want frame->frame to point at the lowest address
1083 in the frame). */
c906108c
SS
1084 if (framesize == -1)
1085 frame->frame = TARGET_READ_FP ();
1086 else
1087 frame->frame -= framesize;
1088 return;
1089 }
1090
1091 flags = read_register (FLAGS_REGNUM);
c5aa993b 1092 if (flags & 2) /* In system call? */
c906108c
SS
1093 frame->pc = read_register (31) & ~0x3;
1094
1095 /* The outermost frame is always derived from PC-framesize
1096
1097 One might think frameless innermost frames should have
1098 a frame->frame that is the same as the parent's frame->frame.
1099 That is wrong; frame->frame in that case should be the *high*
1100 address of the parent's frame. It's complicated as hell to
1101 explain, but the parent *always* creates some stack space for
1102 the child. So the child actually does have a frame of some
1103 sorts, and its base is the high address in its parent's frame. */
c5aa993b 1104 framesize = find_proc_framesize (frame->pc);
c906108c
SS
1105 if (framesize == -1)
1106 frame->frame = TARGET_READ_FP ();
1107 else
1108 frame->frame = read_register (SP_REGNUM) - framesize;
1109}
1110\f
a5afb99f
AC
1111/* Given a GDB frame, determine the address of the calling function's
1112 frame. This will be used to create a new GDB frame struct, and
1113 then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
1114 called for the new frame.
c906108c
SS
1115
1116 This may involve searching through prologues for several functions
1117 at boundaries where GCC calls HP C code, or where code which has
1118 a frame pointer calls code without a frame pointer. */
1119
1120CORE_ADDR
60383d10 1121hppa_frame_chain (struct frame_info *frame)
c906108c
SS
1122{
1123 int my_framesize, caller_framesize;
1124 struct unwind_table_entry *u;
1125 CORE_ADDR frame_base;
1126 struct frame_info *tmp_frame;
1127
c2c6d25f
JM
1128 /* A frame in the current frame list, or zero. */
1129 struct frame_info *saved_regs_frame = 0;
1130 /* Where the registers were saved in saved_regs_frame.
1131 If saved_regs_frame is zero, this is garbage. */
1132 struct frame_saved_regs saved_regs;
1133
c5aa993b 1134 CORE_ADDR caller_pc;
c906108c
SS
1135
1136 struct minimal_symbol *min_frame_symbol;
c5aa993b
JM
1137 struct symbol *frame_symbol;
1138 char *frame_symbol_name;
c906108c
SS
1139
1140 /* If this is a threaded application, and we see the
1141 routine "__pthread_exit", treat it as the stack root
1142 for this thread. */
c5aa993b
JM
1143 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1144 frame_symbol = find_pc_function (frame->pc);
c906108c 1145
c5aa993b 1146 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
c906108c 1147 {
c5aa993b
JM
1148 /* The test above for "no user function name" would defend
1149 against the slim likelihood that a user might define a
1150 routine named "__pthread_exit" and then try to debug it.
1151
1152 If it weren't commented out, and you tried to debug the
1153 pthread library itself, you'd get errors.
1154
1155 So for today, we don't make that check. */
1156 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1157 if (frame_symbol_name != 0)
1158 {
1159 if (0 == strncmp (frame_symbol_name,
1160 THREAD_INITIAL_FRAME_SYMBOL,
1161 THREAD_INITIAL_FRAME_SYM_LEN))
1162 {
1163 /* Pretend we've reached the bottom of the stack. */
1164 return (CORE_ADDR) 0;
1165 }
1166 }
1167 } /* End of hacky code for threads. */
1168
c906108c
SS
1169 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1170 are easy; at *sp we have a full save state strucutre which we can
1171 pull the old stack pointer from. Also see frame_saved_pc for
1172 code to dig a saved PC out of the save state structure. */
1173 if (pc_in_interrupt_handler (frame->pc))
53a5351d
JM
1174 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1175 TARGET_PTR_BIT / 8);
c906108c 1176#ifdef FRAME_BASE_BEFORE_SIGTRAMP
5a203e44 1177 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
c906108c
SS
1178 {
1179 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1180 }
1181#endif
1182 else
1183 frame_base = frame->frame;
1184
1185 /* Get frame sizes for the current frame and the frame of the
1186 caller. */
1187 my_framesize = find_proc_framesize (frame->pc);
c5aa993b 1188 caller_pc = FRAME_SAVED_PC (frame);
c906108c
SS
1189
1190 /* If we can't determine the caller's PC, then it's not likely we can
1191 really determine anything meaningful about its frame. We'll consider
1192 this to be stack bottom. */
1193 if (caller_pc == (CORE_ADDR) 0)
1194 return (CORE_ADDR) 0;
1195
c5aa993b 1196 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
c906108c
SS
1197
1198 /* If caller does not have a frame pointer, then its frame
1199 can be found at current_frame - caller_framesize. */
1200 if (caller_framesize != -1)
1201 {
1202 return frame_base - caller_framesize;
1203 }
1204 /* Both caller and callee have frame pointers and are GCC compiled
1205 (SAVE_SP bit in unwind descriptor is on for both functions.
1206 The previous frame pointer is found at the top of the current frame. */
1207 if (caller_framesize == -1 && my_framesize == -1)
1208 {
53a5351d 1209 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
c906108c
SS
1210 }
1211 /* Caller has a frame pointer, but callee does not. This is a little
1212 more difficult as GCC and HP C lay out locals and callee register save
1213 areas very differently.
1214
1215 The previous frame pointer could be in a register, or in one of
1216 several areas on the stack.
1217
1218 Walk from the current frame to the innermost frame examining
1219 unwind descriptors to determine if %r3 ever gets saved into the
1220 stack. If so return whatever value got saved into the stack.
1221 If it was never saved in the stack, then the value in %r3 is still
1222 valid, so use it.
1223
1224 We use information from unwind descriptors to determine if %r3
1225 is saved into the stack (Entry_GR field has this information). */
1226
c2c6d25f 1227 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
c906108c
SS
1228 {
1229 u = find_unwind_entry (tmp_frame->pc);
1230
1231 if (!u)
1232 {
1233 /* We could find this information by examining prologues. I don't
1234 think anyone has actually written any tools (not even "strip")
1235 which leave them out of an executable, so maybe this is a moot
1236 point. */
c5aa993b
JM
1237 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1238 code that doesn't have unwind entries. For example, stepping into
1239 the dynamic linker will give you a PC that has none. Thus, I've
1240 disabled this warning. */
c906108c
SS
1241#if 0
1242 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1243#endif
1244 return (CORE_ADDR) 0;
1245 }
1246
c2c6d25f 1247 if (u->Save_SP
5a203e44 1248 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
c906108c
SS
1249 || pc_in_interrupt_handler (tmp_frame->pc))
1250 break;
c2c6d25f
JM
1251
1252 /* Entry_GR specifies the number of callee-saved general registers
1253 saved in the stack. It starts at %r3, so %r3 would be 1. */
1254 if (u->Entry_GR >= 1)
1255 {
1256 /* The unwind entry claims that r3 is saved here. However,
1257 in optimized code, GCC often doesn't actually save r3.
1258 We'll discover this if we look at the prologue. */
95486978 1259 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c2c6d25f
JM
1260 saved_regs_frame = tmp_frame;
1261
1262 /* If we have an address for r3, that's good. */
1263 if (saved_regs.regs[FP_REGNUM])
1264 break;
1265 }
c906108c
SS
1266 }
1267
1268 if (tmp_frame)
1269 {
1270 /* We may have walked down the chain into a function with a frame
c5aa993b 1271 pointer. */
c906108c 1272 if (u->Save_SP
5a203e44 1273 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
c906108c
SS
1274 && !pc_in_interrupt_handler (tmp_frame->pc))
1275 {
53a5351d 1276 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
c906108c
SS
1277 }
1278 /* %r3 was saved somewhere in the stack. Dig it out. */
c5aa993b 1279 else
c906108c 1280 {
c906108c
SS
1281 /* Sick.
1282
1283 For optimization purposes many kernels don't have the
1284 callee saved registers into the save_state structure upon
1285 entry into the kernel for a syscall; the optimization
1286 is usually turned off if the process is being traced so
1287 that the debugger can get full register state for the
1288 process.
c5aa993b 1289
c906108c
SS
1290 This scheme works well except for two cases:
1291
c5aa993b
JM
1292 * Attaching to a process when the process is in the
1293 kernel performing a system call (debugger can't get
1294 full register state for the inferior process since
1295 the process wasn't being traced when it entered the
1296 system call).
c906108c 1297
c5aa993b
JM
1298 * Register state is not complete if the system call
1299 causes the process to core dump.
c906108c
SS
1300
1301
1302 The following heinous code is an attempt to deal with
1303 the lack of register state in a core dump. It will
1304 fail miserably if the function which performs the
1305 system call has a variable sized stack frame. */
1306
c2c6d25f 1307 if (tmp_frame != saved_regs_frame)
95486978 1308 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c906108c
SS
1309
1310 /* Abominable hack. */
1311 if (current_target.to_has_execution == 0
1312 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1313 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1314 TARGET_PTR_BIT / 8)
c906108c
SS
1315 & 0x2))
1316 || (saved_regs.regs[FLAGS_REGNUM] == 0
1317 && read_register (FLAGS_REGNUM) & 0x2)))
1318 {
1319 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1320 if (!u)
1321 {
53a5351d
JM
1322 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1323 TARGET_PTR_BIT / 8);
c906108c
SS
1324 }
1325 else
1326 {
1327 return frame_base - (u->Total_frame_size << 3);
1328 }
1329 }
c5aa993b 1330
53a5351d
JM
1331 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1332 TARGET_PTR_BIT / 8);
c906108c
SS
1333 }
1334 }
1335 else
1336 {
c906108c
SS
1337 /* Get the innermost frame. */
1338 tmp_frame = frame;
1339 while (tmp_frame->next != NULL)
1340 tmp_frame = tmp_frame->next;
1341
c2c6d25f 1342 if (tmp_frame != saved_regs_frame)
95486978 1343 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
c2c6d25f 1344
c906108c
SS
1345 /* Abominable hack. See above. */
1346 if (current_target.to_has_execution == 0
1347 && ((saved_regs.regs[FLAGS_REGNUM]
53a5351d
JM
1348 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1349 TARGET_PTR_BIT / 8)
c906108c
SS
1350 & 0x2))
1351 || (saved_regs.regs[FLAGS_REGNUM] == 0
c5aa993b 1352 && read_register (FLAGS_REGNUM) & 0x2)))
c906108c
SS
1353 {
1354 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1355 if (!u)
1356 {
53a5351d
JM
1357 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1358 TARGET_PTR_BIT / 8);
c906108c 1359 }
c5aa993b
JM
1360 else
1361 {
1362 return frame_base - (u->Total_frame_size << 3);
1363 }
c906108c 1364 }
c5aa993b 1365
c906108c 1366 /* The value in %r3 was never saved into the stack (thus %r3 still
c5aa993b 1367 holds the value of the previous frame pointer). */
c906108c
SS
1368 return TARGET_READ_FP ();
1369 }
1370}
c906108c 1371\f
c5aa993b 1372
c906108c
SS
1373/* To see if a frame chain is valid, see if the caller looks like it
1374 was compiled with gcc. */
1375
1376int
fba45db2 1377hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
1378{
1379 struct minimal_symbol *msym_us;
1380 struct minimal_symbol *msym_start;
1381 struct unwind_table_entry *u, *next_u = NULL;
1382 struct frame_info *next;
1383
c906108c
SS
1384 u = find_unwind_entry (thisframe->pc);
1385
1386 if (u == NULL)
1387 return 1;
1388
1389 /* We can't just check that the same of msym_us is "_start", because
1390 someone idiotically decided that they were going to make a Ltext_end
1391 symbol with the same address. This Ltext_end symbol is totally
1392 indistinguishable (as nearly as I can tell) from the symbol for a function
1393 which is (legitimately, since it is in the user's namespace)
1394 named Ltext_end, so we can't just ignore it. */
1395 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1396 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1397 if (msym_us
1398 && msym_start
1399 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1400 return 0;
1401
1402 /* Grrrr. Some new idiot decided that they don't want _start for the
1403 PRO configurations; $START$ calls main directly.... Deal with it. */
1404 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1405 if (msym_us
1406 && msym_start
1407 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1408 return 0;
1409
1410 next = get_next_frame (thisframe);
1411 if (next)
1412 next_u = find_unwind_entry (next->pc);
1413
1414 /* If this frame does not save SP, has no stack, isn't a stub,
1415 and doesn't "call" an interrupt routine or signal handler caller,
1416 then its not valid. */
1417 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
5a203e44 1418 || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME))
c906108c
SS
1419 || (next_u && next_u->HP_UX_interrupt_marker))
1420 return 1;
1421
1422 if (pc_in_linker_stub (thisframe->pc))
1423 return 1;
1424
1425 return 0;
1426}
1427
1428/*
1429 These functions deal with saving and restoring register state
1430 around a function call in the inferior. They keep the stack
1431 double-word aligned; eventually, on an hp700, the stack will have
1432 to be aligned to a 64-byte boundary. */
1433
1434void
60383d10 1435hppa_push_dummy_frame (struct inferior_status *inf_status)
c906108c
SS
1436{
1437 CORE_ADDR sp, pc, pcspace;
1438 register int regnum;
53a5351d 1439 CORE_ADDR int_buffer;
c906108c
SS
1440 double freg_buffer;
1441
1442 /* Oh, what a hack. If we're trying to perform an inferior call
1443 while the inferior is asleep, we have to make sure to clear
1444 the "in system call" bit in the flag register (the call will
1445 start after the syscall returns, so we're no longer in the system
1446 call!) This state is kept in "inf_status", change it there.
1447
1448 We also need a number of horrid hacks to deal with lossage in the
1449 PC queue registers (apparently they're not valid when the in syscall
1450 bit is set). */
60383d10 1451 pc = hppa_target_read_pc (inferior_ptid);
c906108c
SS
1452 int_buffer = read_register (FLAGS_REGNUM);
1453 if (int_buffer & 0x2)
1454 {
1455 unsigned int sid;
1456 int_buffer &= ~0x2;
7a292a7a
SS
1457 write_inferior_status_register (inf_status, 0, int_buffer);
1458 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1459 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
c906108c
SS
1460 sid = (pc >> 30) & 0x3;
1461 if (sid == 0)
1462 pcspace = read_register (SR4_REGNUM);
1463 else
1464 pcspace = read_register (SR4_REGNUM + 4 + sid);
7a292a7a
SS
1465 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1466 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
c906108c
SS
1467 }
1468 else
1469 pcspace = read_register (PCSQ_HEAD_REGNUM);
1470
1471 /* Space for "arguments"; the RP goes in here. */
1472 sp = read_register (SP_REGNUM) + 48;
1473 int_buffer = read_register (RP_REGNUM) | 0x3;
53a5351d
JM
1474
1475 /* The 32bit and 64bit ABIs save the return pointer into different
1476 stack slots. */
1477 if (REGISTER_SIZE == 8)
1478 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1479 else
1480 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1481
1482 int_buffer = TARGET_READ_FP ();
53a5351d 1483 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
c906108c
SS
1484
1485 write_register (FP_REGNUM, sp);
1486
53a5351d 1487 sp += 2 * REGISTER_SIZE;
c906108c
SS
1488
1489 for (regnum = 1; regnum < 32; regnum++)
1490 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1491 sp = push_word (sp, read_register (regnum));
1492
53a5351d
JM
1493 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1494 if (REGISTER_SIZE != 8)
1495 sp += 4;
c906108c
SS
1496
1497 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1498 {
73937e03
AC
1499 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1500 (char *) &freg_buffer, 8);
c5aa993b 1501 sp = push_bytes (sp, (char *) &freg_buffer, 8);
c906108c
SS
1502 }
1503 sp = push_word (sp, read_register (IPSW_REGNUM));
1504 sp = push_word (sp, read_register (SAR_REGNUM));
1505 sp = push_word (sp, pc);
1506 sp = push_word (sp, pcspace);
1507 sp = push_word (sp, pc + 4);
1508 sp = push_word (sp, pcspace);
1509 write_register (SP_REGNUM, sp);
1510}
1511
1512static void
fba45db2
KB
1513find_dummy_frame_regs (struct frame_info *frame,
1514 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
1515{
1516 CORE_ADDR fp = frame->frame;
1517 int i;
1518
53a5351d
JM
1519 /* The 32bit and 64bit ABIs save RP into different locations. */
1520 if (REGISTER_SIZE == 8)
1521 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1522 else
1523 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1524
c906108c 1525 frame_saved_regs->regs[FP_REGNUM] = fp;
c906108c 1526
53a5351d
JM
1527 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1528
1529 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
c906108c
SS
1530 {
1531 if (i != FP_REGNUM)
1532 {
1533 frame_saved_regs->regs[i] = fp;
53a5351d 1534 fp += REGISTER_SIZE;
c906108c
SS
1535 }
1536 }
1537
53a5351d
JM
1538 /* This is not necessary or desirable for the 64bit ABI. */
1539 if (REGISTER_SIZE != 8)
1540 fp += 4;
1541
c906108c
SS
1542 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1543 frame_saved_regs->regs[i] = fp;
1544
1545 frame_saved_regs->regs[IPSW_REGNUM] = fp;
53a5351d
JM
1546 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1547 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1548 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1549 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1550 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
c906108c
SS
1551}
1552
1553void
fba45db2 1554hppa_pop_frame (void)
c906108c
SS
1555{
1556 register struct frame_info *frame = get_current_frame ();
1557 register CORE_ADDR fp, npc, target_pc;
1558 register int regnum;
1559 struct frame_saved_regs fsr;
1560 double freg_buffer;
1561
c193f6ac 1562 fp = get_frame_base (frame);
95486978 1563 deprecated_get_frame_saved_regs (frame, &fsr);
c906108c
SS
1564
1565#ifndef NO_PC_SPACE_QUEUE_RESTORE
c5aa993b 1566 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
c906108c
SS
1567 restore_pc_queue (&fsr);
1568#endif
1569
1570 for (regnum = 31; regnum > 0; regnum--)
1571 if (fsr.regs[regnum])
53a5351d
JM
1572 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1573 REGISTER_SIZE));
c906108c 1574
c5aa993b 1575 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
c906108c
SS
1576 if (fsr.regs[regnum])
1577 {
c5aa993b 1578 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
73937e03
AC
1579 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1580 (char *) &freg_buffer, 8);
c906108c
SS
1581 }
1582
1583 if (fsr.regs[IPSW_REGNUM])
1584 write_register (IPSW_REGNUM,
53a5351d
JM
1585 read_memory_integer (fsr.regs[IPSW_REGNUM],
1586 REGISTER_SIZE));
c906108c
SS
1587
1588 if (fsr.regs[SAR_REGNUM])
1589 write_register (SAR_REGNUM,
53a5351d
JM
1590 read_memory_integer (fsr.regs[SAR_REGNUM],
1591 REGISTER_SIZE));
c906108c
SS
1592
1593 /* If the PC was explicitly saved, then just restore it. */
1594 if (fsr.regs[PCOQ_TAIL_REGNUM])
1595 {
53a5351d
JM
1596 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1597 REGISTER_SIZE);
c906108c
SS
1598 write_register (PCOQ_TAIL_REGNUM, npc);
1599 }
1600 /* Else use the value in %rp to set the new PC. */
c5aa993b 1601 else
c906108c
SS
1602 {
1603 npc = read_register (RP_REGNUM);
1604 write_pc (npc);
1605 }
1606
53a5351d 1607 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
c906108c 1608
c5aa993b 1609 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
c906108c
SS
1610 write_register (SP_REGNUM, fp - 48);
1611 else
1612 write_register (SP_REGNUM, fp);
1613
1614 /* The PC we just restored may be inside a return trampoline. If so
1615 we want to restart the inferior and run it through the trampoline.
1616
1617 Do this by setting a momentary breakpoint at the location the
1618 trampoline returns to.
1619
1620 Don't skip through the trampoline if we're popping a dummy frame. */
1621 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1622 if (target_pc && !fsr.regs[IPSW_REGNUM])
1623 {
1624 struct symtab_and_line sal;
1625 struct breakpoint *breakpoint;
1626 struct cleanup *old_chain;
1627
1628 /* Set up our breakpoint. Set it to be silent as the MI code
c5aa993b 1629 for "return_command" will print the frame we returned to. */
c906108c
SS
1630 sal = find_pc_line (target_pc, 0);
1631 sal.pc = target_pc;
516b1f28 1632 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
c906108c
SS
1633 breakpoint->silent = 1;
1634
1635 /* So we can clean things up. */
4d6140d9 1636 old_chain = make_cleanup_delete_breakpoint (breakpoint);
c906108c
SS
1637
1638 /* Start up the inferior. */
1639 clear_proceed_status ();
1640 proceed_to_finish = 1;
2acceee2 1641 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
c906108c
SS
1642
1643 /* Perform our cleanups. */
1644 do_cleanups (old_chain);
1645 }
1646 flush_cached_frames ();
1647}
1648
1649/* After returning to a dummy on the stack, restore the instruction
1650 queue space registers. */
1651
1652static int
fba45db2 1653restore_pc_queue (struct frame_saved_regs *fsr)
c906108c
SS
1654{
1655 CORE_ADDR pc = read_pc ();
53a5351d
JM
1656 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1657 TARGET_PTR_BIT / 8);
c906108c
SS
1658 struct target_waitstatus w;
1659 int insn_count;
1660
1661 /* Advance past break instruction in the call dummy. */
1662 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1663 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1664
1665 /* HPUX doesn't let us set the space registers or the space
1666 registers of the PC queue through ptrace. Boo, hiss.
1667 Conveniently, the call dummy has this sequence of instructions
1668 after the break:
c5aa993b
JM
1669 mtsp r21, sr0
1670 ble,n 0(sr0, r22)
1671
c906108c
SS
1672 So, load up the registers and single step until we are in the
1673 right place. */
1674
53a5351d
JM
1675 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1676 REGISTER_SIZE));
c906108c
SS
1677 write_register (22, new_pc);
1678
1679 for (insn_count = 0; insn_count < 3; insn_count++)
1680 {
1681 /* FIXME: What if the inferior gets a signal right now? Want to
c5aa993b
JM
1682 merge this into wait_for_inferior (as a special kind of
1683 watchpoint? By setting a breakpoint at the end? Is there
1684 any other choice? Is there *any* way to do this stuff with
1685 ptrace() or some equivalent?). */
c906108c 1686 resume (1, 0);
39f77062 1687 target_wait (inferior_ptid, &w);
c906108c
SS
1688
1689 if (w.kind == TARGET_WAITKIND_SIGNALLED)
c5aa993b
JM
1690 {
1691 stop_signal = w.value.sig;
1692 terminal_ours_for_output ();
1693 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
c906108c
SS
1694 target_signal_to_name (stop_signal),
1695 target_signal_to_string (stop_signal));
c5aa993b
JM
1696 gdb_flush (gdb_stdout);
1697 return 0;
1698 }
c906108c
SS
1699 }
1700 target_terminal_ours ();
1701 target_fetch_registers (-1);
1702 return 1;
1703}
1704
c2c6d25f
JM
1705
1706#ifdef PA20W_CALLING_CONVENTIONS
1707
53a5351d
JM
1708/* This function pushes a stack frame with arguments as part of the
1709 inferior function calling mechanism.
c906108c 1710
c2c6d25f
JM
1711 This is the version for the PA64, in which later arguments appear
1712 at higher addresses. (The stack always grows towards higher
1713 addresses.)
c906108c 1714
53a5351d
JM
1715 We simply allocate the appropriate amount of stack space and put
1716 arguments into their proper slots. The call dummy code will copy
1717 arguments into registers as needed by the ABI.
c906108c 1718
c2c6d25f
JM
1719 This ABI also requires that the caller provide an argument pointer
1720 to the callee, so we do that too. */
53a5351d 1721
c906108c 1722CORE_ADDR
ea7c478f 1723hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1724 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1725{
1726 /* array of arguments' offsets */
c5aa993b 1727 int *offset = (int *) alloca (nargs * sizeof (int));
53a5351d
JM
1728
1729 /* array of arguments' lengths: real lengths in bytes, not aligned to
1730 word size */
c5aa993b 1731 int *lengths = (int *) alloca (nargs * sizeof (int));
c906108c 1732
53a5351d
JM
1733 /* The value of SP as it was passed into this function after
1734 aligning. */
1735 CORE_ADDR orig_sp = STACK_ALIGN (sp);
c906108c 1736
53a5351d
JM
1737 /* The number of stack bytes occupied by the current argument. */
1738 int bytes_reserved;
1739
1740 /* The total number of bytes reserved for the arguments. */
1741 int cum_bytes_reserved = 0;
c906108c 1742
53a5351d
JM
1743 /* Similarly, but aligned. */
1744 int cum_bytes_aligned = 0;
1745 int i;
c5aa993b 1746
53a5351d 1747 /* Iterate over each argument provided by the user. */
c906108c
SS
1748 for (i = 0; i < nargs; i++)
1749 {
c2c6d25f
JM
1750 struct type *arg_type = VALUE_TYPE (args[i]);
1751
1752 /* Integral scalar values smaller than a register are padded on
1753 the left. We do this by promoting them to full-width,
1754 although the ABI says to pad them with garbage. */
1755 if (is_integral_type (arg_type)
1756 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1757 {
1758 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1759 ? builtin_type_unsigned_long
1760 : builtin_type_long),
1761 args[i]);
1762 arg_type = VALUE_TYPE (args[i]);
1763 }
1764
1765 lengths[i] = TYPE_LENGTH (arg_type);
c906108c 1766
53a5351d
JM
1767 /* Align the size of the argument to the word size for this
1768 target. */
1769 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
c906108c 1770
53a5351d
JM
1771 offset[i] = cum_bytes_reserved;
1772
c2c6d25f
JM
1773 /* Aggregates larger than eight bytes (the only types larger
1774 than eight bytes we have) are aligned on a 16-byte boundary,
1775 possibly padded on the right with garbage. This may leave an
1776 empty word on the stack, and thus an unused register, as per
1777 the ABI. */
1778 if (bytes_reserved > 8)
1779 {
1780 /* Round up the offset to a multiple of two slots. */
1781 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1782 & -(2*REGISTER_SIZE));
c906108c 1783
c2c6d25f
JM
1784 /* Note the space we've wasted, if any. */
1785 bytes_reserved += new_offset - offset[i];
1786 offset[i] = new_offset;
1787 }
53a5351d 1788
c2c6d25f
JM
1789 cum_bytes_reserved += bytes_reserved;
1790 }
1791
1792 /* CUM_BYTES_RESERVED already accounts for all the arguments
1793 passed by the user. However, the ABIs mandate minimum stack space
1794 allocations for outgoing arguments.
1795
1796 The ABIs also mandate minimum stack alignments which we must
1797 preserve. */
1798 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1799 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1800
1801 /* Now write each of the args at the proper offset down the stack. */
1802 for (i = 0; i < nargs; i++)
1803 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1804
1805 /* If a structure has to be returned, set up register 28 to hold its
1806 address */
1807 if (struct_return)
1808 write_register (28, struct_addr);
1809
1810 /* For the PA64 we must pass a pointer to the outgoing argument list.
1811 The ABI mandates that the pointer should point to the first byte of
1812 storage beyond the register flushback area.
1813
1814 However, the call dummy expects the outgoing argument pointer to
1815 be passed in register %r4. */
1816 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1817
1818 /* ?!? This needs further work. We need to set up the global data
1819 pointer for this procedure. This assumes the same global pointer
1820 for every procedure. The call dummy expects the dp value to
1821 be passed in register %r6. */
1822 write_register (6, read_register (27));
1823
1824 /* The stack will have 64 bytes of additional space for a frame marker. */
1825 return sp + 64;
1826}
1827
1828#else
1829
1830/* This function pushes a stack frame with arguments as part of the
1831 inferior function calling mechanism.
1832
1833 This is the version of the function for the 32-bit PA machines, in
1834 which later arguments appear at lower addresses. (The stack always
1835 grows towards higher addresses.)
1836
1837 We simply allocate the appropriate amount of stack space and put
1838 arguments into their proper slots. The call dummy code will copy
1839 arguments into registers as needed by the ABI. */
1840
1841CORE_ADDR
ea7c478f 1842hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1843 int struct_return, CORE_ADDR struct_addr)
c2c6d25f
JM
1844{
1845 /* array of arguments' offsets */
1846 int *offset = (int *) alloca (nargs * sizeof (int));
1847
1848 /* array of arguments' lengths: real lengths in bytes, not aligned to
1849 word size */
1850 int *lengths = (int *) alloca (nargs * sizeof (int));
1851
1852 /* The number of stack bytes occupied by the current argument. */
1853 int bytes_reserved;
1854
1855 /* The total number of bytes reserved for the arguments. */
1856 int cum_bytes_reserved = 0;
1857
1858 /* Similarly, but aligned. */
1859 int cum_bytes_aligned = 0;
1860 int i;
1861
1862 /* Iterate over each argument provided by the user. */
1863 for (i = 0; i < nargs; i++)
1864 {
1865 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1866
1867 /* Align the size of the argument to the word size for this
1868 target. */
1869 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1870
b6649e88
AC
1871 offset[i] = (cum_bytes_reserved
1872 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
c2c6d25f
JM
1873
1874 /* If the argument is a double word argument, then it needs to be
1875 double word aligned. */
53a5351d 1876 if ((bytes_reserved == 2 * REGISTER_SIZE)
c2c6d25f 1877 && (offset[i] % 2 * REGISTER_SIZE))
c5aa993b
JM
1878 {
1879 int new_offset = 0;
53a5351d
JM
1880 /* BYTES_RESERVED is already aligned to the word, so we put
1881 the argument at one word more down the stack.
1882
1883 This will leave one empty word on the stack, and one unused
1884 register as mandated by the ABI. */
1885 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1886 & -(2 * REGISTER_SIZE));
1887
1888 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
c5aa993b 1889 {
53a5351d
JM
1890 bytes_reserved += REGISTER_SIZE;
1891 offset[i] += REGISTER_SIZE;
c5aa993b
JM
1892 }
1893 }
c906108c
SS
1894
1895 cum_bytes_reserved += bytes_reserved;
1896
1897 }
1898
c2c6d25f
JM
1899 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1900 by the user. However, the ABI mandates minimum stack space
53a5351d
JM
1901 allocations for outgoing arguments.
1902
c2c6d25f 1903 The ABI also mandates minimum stack alignments which we must
53a5351d 1904 preserve. */
c906108c 1905 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
53a5351d
JM
1906 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1907
1908 /* Now write each of the args at the proper offset down the stack.
53a5351d
JM
1909 ?!? We need to promote values to a full register instead of skipping
1910 words in the stack. */
c906108c
SS
1911 for (i = 0; i < nargs; i++)
1912 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
c906108c 1913
53a5351d
JM
1914 /* If a structure has to be returned, set up register 28 to hold its
1915 address */
c906108c
SS
1916 if (struct_return)
1917 write_register (28, struct_addr);
1918
53a5351d 1919 /* The stack will have 32 bytes of additional space for a frame marker. */
c906108c
SS
1920 return sp + 32;
1921}
1922
c2c6d25f 1923#endif
c906108c
SS
1924
1925/* elz: this function returns a value which is built looking at the given address.
1926 It is called from call_function_by_hand, in case we need to return a
1927 value which is larger than 64 bits, and it is stored in the stack rather than
1928 in the registers r28 and r29 or fr4.
1929 This function does the same stuff as value_being_returned in values.c, but
1930 gets the value from the stack rather than from the buffer where all the
1931 registers were saved when the function called completed. */
ea7c478f 1932struct value *
fba45db2 1933hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
c906108c 1934{
ea7c478f 1935 register struct value *val;
c906108c
SS
1936
1937 val = allocate_value (valtype);
1938 CHECK_TYPEDEF (valtype);
c5aa993b 1939 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
c906108c
SS
1940
1941 return val;
1942}
1943
1944
1945
1946/* elz: Used to lookup a symbol in the shared libraries.
c5aa993b
JM
1947 This function calls shl_findsym, indirectly through a
1948 call to __d_shl_get. __d_shl_get is in end.c, which is always
1949 linked in by the hp compilers/linkers.
1950 The call to shl_findsym cannot be made directly because it needs
1951 to be active in target address space.
1952 inputs: - minimal symbol pointer for the function we want to look up
1953 - address in target space of the descriptor for the library
1954 where we want to look the symbol up.
1955 This address is retrieved using the
1956 som_solib_get_solib_by_pc function (somsolib.c).
1957 output: - real address in the library of the function.
1958 note: the handle can be null, in which case shl_findsym will look for
1959 the symbol in all the loaded shared libraries.
1960 files to look at if you need reference on this stuff:
1961 dld.c, dld_shl_findsym.c
1962 end.c
1963 man entry for shl_findsym */
c906108c
SS
1964
1965CORE_ADDR
fba45db2 1966find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
c906108c 1967{
c5aa993b
JM
1968 struct symbol *get_sym, *symbol2;
1969 struct minimal_symbol *buff_minsym, *msymbol;
1970 struct type *ftype;
ea7c478f
AC
1971 struct value **args;
1972 struct value *funcval;
1973 struct value *val;
c5aa993b
JM
1974
1975 int x, namelen, err_value, tmp = -1;
1976 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1977 CORE_ADDR stub_addr;
1978
1979
ea7c478f 1980 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
c5aa993b
JM
1981 funcval = find_function_in_inferior ("__d_shl_get");
1982 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1983 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1984 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1985 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1986 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1987 namelen = strlen (SYMBOL_NAME (function));
1988 value_return_addr = endo_buff_addr + namelen;
1989 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1990
1991 /* do alignment */
1992 if ((x = value_return_addr % 64) != 0)
1993 value_return_addr = value_return_addr + 64 - x;
1994
1995 errno_return_addr = value_return_addr + 64;
1996
1997
1998 /* set up stuff needed by __d_shl_get in buffer in end.o */
1999
2000 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
2001
2002 target_write_memory (value_return_addr, (char *) &tmp, 4);
2003
2004 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2005
2006 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2007 (char *) &handle, 4);
2008
2009 /* now prepare the arguments for the call */
2010
2011 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
4478b372
JB
2012 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2013 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
c5aa993b 2014 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
4478b372
JB
2015 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2016 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
c5aa993b
JM
2017
2018 /* now call the function */
2019
2020 val = call_function_by_hand (funcval, 6, args);
2021
2022 /* now get the results */
2023
2024 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2025
2026 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2027 if (stub_addr <= 0)
104c1213 2028 error ("call to __d_shl_get failed, error code is %d", err_value);
c5aa993b
JM
2029
2030 return (stub_addr);
c906108c
SS
2031}
2032
c5aa993b 2033/* Cover routine for find_stub_with_shl_get to pass to catch_errors */
a0b3c4fd 2034static int
4efb68b1 2035cover_find_stub_with_shl_get (void *args_untyped)
c906108c 2036{
a0b3c4fd
JM
2037 args_for_find_stub *args = args_untyped;
2038 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2039 return 0;
c906108c
SS
2040}
2041
c906108c
SS
2042/* Insert the specified number of args and function address
2043 into a call sequence of the above form stored at DUMMYNAME.
2044
2045 On the hppa we need to call the stack dummy through $$dyncall.
2046 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2047 real_pc, which is the location where gdb should start up the
cce74817
JM
2048 inferior to do the function call.
2049
2050 This has to work across several versions of hpux, bsd, osf1. It has to
2051 work regardless of what compiler was used to build the inferior program.
2052 It should work regardless of whether or not end.o is available. It has
2053 to work even if gdb can not call into the dynamic loader in the inferior
2054 to query it for symbol names and addresses.
2055
2056 Yes, all those cases should work. Luckily code exists to handle most
2057 of them. The complexity is in selecting exactly what scheme should
2058 be used to perform the inferior call.
2059
2060 At the current time this routine is known not to handle cases where
2061 the program was linked with HP's compiler without including end.o.
2062
2063 Please contact Jeff Law (law@cygnus.com) before changing this code. */
c906108c
SS
2064
2065CORE_ADDR
fba45db2 2066hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 2067 struct value **args, struct type *type, int gcc_p)
c906108c
SS
2068{
2069 CORE_ADDR dyncall_addr;
2070 struct minimal_symbol *msymbol;
2071 struct minimal_symbol *trampoline;
2072 int flags = read_register (FLAGS_REGNUM);
cce74817
JM
2073 struct unwind_table_entry *u = NULL;
2074 CORE_ADDR new_stub = 0;
2075 CORE_ADDR solib_handle = 0;
2076
2077 /* Nonzero if we will use GCC's PLT call routine. This routine must be
c2c6d25f
JM
2078 passed an import stub, not a PLABEL. It is also necessary to set %r19
2079 (the PIC register) before performing the call.
c906108c 2080
cce74817
JM
2081 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2082 are calling the target directly. When using __d_plt_call we want to
2083 use a PLABEL instead of an import stub. */
2084 int using_gcc_plt_call = 1;
2085
53a5351d
JM
2086#ifdef GDB_TARGET_IS_HPPA_20W
2087 /* We currently use completely different code for the PA2.0W inferior
2088 function call sequences. This needs to be cleaned up. */
2089 {
2090 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2091 struct target_waitstatus w;
2092 int inst1, inst2;
2093 char buf[4];
2094 int status;
2095 struct objfile *objfile;
2096
2097 /* We can not modify the PC space queues directly, so we start
2098 up the inferior and execute a couple instructions to set the
2099 space queues so that they point to the call dummy in the stack. */
2100 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2101 sr5 = read_register (SR5_REGNUM);
2102 if (1)
2103 {
2104 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2105 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2106 if (target_read_memory (pcoqh, buf, 4) != 0)
2107 error ("Couldn't modify space queue\n");
2108 inst1 = extract_unsigned_integer (buf, 4);
2109
2110 if (target_read_memory (pcoqt, buf, 4) != 0)
2111 error ("Couldn't modify space queue\n");
2112 inst2 = extract_unsigned_integer (buf, 4);
2113
2114 /* BVE (r1) */
2115 *((int *) buf) = 0xe820d000;
2116 if (target_write_memory (pcoqh, buf, 4) != 0)
2117 error ("Couldn't modify space queue\n");
2118
2119 /* NOP */
2120 *((int *) buf) = 0x08000240;
2121 if (target_write_memory (pcoqt, buf, 4) != 0)
2122 {
2123 *((int *) buf) = inst1;
2124 target_write_memory (pcoqh, buf, 4);
2125 error ("Couldn't modify space queue\n");
2126 }
2127
2128 write_register (1, pc);
2129
2130 /* Single step twice, the BVE instruction will set the space queue
2131 such that it points to the PC value written immediately above
2132 (ie the call dummy). */
2133 resume (1, 0);
39f77062 2134 target_wait (inferior_ptid, &w);
53a5351d 2135 resume (1, 0);
39f77062 2136 target_wait (inferior_ptid, &w);
53a5351d
JM
2137
2138 /* Restore the two instructions at the old PC locations. */
2139 *((int *) buf) = inst1;
2140 target_write_memory (pcoqh, buf, 4);
2141 *((int *) buf) = inst2;
2142 target_write_memory (pcoqt, buf, 4);
2143 }
2144
2145 /* The call dummy wants the ultimate destination address initially
2146 in register %r5. */
2147 write_register (5, fun);
2148
2149 /* We need to see if this objfile has a different DP value than our
c2c6d25f 2150 own (it could be a shared library for example). */
53a5351d
JM
2151 ALL_OBJFILES (objfile)
2152 {
2153 struct obj_section *s;
2154 obj_private_data_t *obj_private;
2155
2156 /* See if FUN is in any section within this shared library. */
2157 for (s = objfile->sections; s < objfile->sections_end; s++)
2158 if (s->addr <= fun && fun < s->endaddr)
2159 break;
2160
2161 if (s >= objfile->sections_end)
2162 continue;
2163
2164 obj_private = (obj_private_data_t *) objfile->obj_private;
2165
2166 /* The DP value may be different for each objfile. But within an
2167 objfile each function uses the same dp value. Thus we do not need
2168 to grope around the opd section looking for dp values.
2169
2170 ?!? This is not strictly correct since we may be in a shared library
2171 and want to call back into the main program. To make that case
2172 work correctly we need to set obj_private->dp for the main program's
2173 objfile, then remove this conditional. */
2174 if (obj_private->dp)
2175 write_register (27, obj_private->dp);
2176 break;
2177 }
2178 return pc;
2179 }
2180#endif
2181
2182#ifndef GDB_TARGET_IS_HPPA_20W
cce74817 2183 /* Prefer __gcc_plt_call over the HP supplied routine because
c5aa993b 2184 __gcc_plt_call works for any number of arguments. */
c906108c 2185 trampoline = NULL;
cce74817
JM
2186 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2187 using_gcc_plt_call = 0;
2188
c906108c
SS
2189 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2190 if (msymbol == NULL)
cce74817 2191 error ("Can't find an address for $$dyncall trampoline");
c906108c
SS
2192
2193 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2194
2195 /* FUN could be a procedure label, in which case we have to get
cce74817
JM
2196 its real address and the value of its GOT/DP if we plan to
2197 call the routine via gcc_plt_call. */
2198 if ((fun & 0x2) && using_gcc_plt_call)
c906108c
SS
2199 {
2200 /* Get the GOT/DP value for the target function. It's
c5aa993b
JM
2201 at *(fun+4). Note the call dummy is *NOT* allowed to
2202 trash %r19 before calling the target function. */
53a5351d
JM
2203 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2204 REGISTER_SIZE));
c906108c
SS
2205
2206 /* Now get the real address for the function we are calling, it's
c5aa993b 2207 at *fun. */
53a5351d
JM
2208 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2209 TARGET_PTR_BIT / 8);
c906108c
SS
2210 }
2211 else
2212 {
2213
2214#ifndef GDB_TARGET_IS_PA_ELF
cce74817 2215 /* FUN could be an export stub, the real address of a function, or
c5aa993b
JM
2216 a PLABEL. When using gcc's PLT call routine we must call an import
2217 stub rather than the export stub or real function for lazy binding
2218 to work correctly
cce74817 2219
39f77062 2220 If we are using the gcc PLT call routine, then we need to
c5aa993b 2221 get the import stub for the target function. */
cce74817 2222 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
c906108c
SS
2223 {
2224 struct objfile *objfile;
2225 struct minimal_symbol *funsymbol, *stub_symbol;
2226 CORE_ADDR newfun = 0;
2227
2228 funsymbol = lookup_minimal_symbol_by_pc (fun);
2229 if (!funsymbol)
4ce44c66 2230 error ("Unable to find minimal symbol for target function.\n");
c906108c
SS
2231
2232 /* Search all the object files for an import symbol with the
2233 right name. */
2234 ALL_OBJFILES (objfile)
c5aa993b
JM
2235 {
2236 stub_symbol
2237 = lookup_minimal_symbol_solib_trampoline
2238 (SYMBOL_NAME (funsymbol), NULL, objfile);
2239
2240 if (!stub_symbol)
2241 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2242 NULL, objfile);
2243
2244 /* Found a symbol with the right name. */
2245 if (stub_symbol)
2246 {
2247 struct unwind_table_entry *u;
2248 /* It must be a shared library trampoline. */
2249 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2250 continue;
2251
2252 /* It must also be an import stub. */
2253 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
6426a772
JM
2254 if (u == NULL
2255 || (u->stub_unwind.stub_type != IMPORT
2256#ifdef GDB_NATIVE_HPUX_11
2257 /* Sigh. The hpux 10.20 dynamic linker will blow
2258 chunks if we perform a call to an unbound function
2259 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2260 linker will blow chunks if we do not call the
2261 unbound function via the IMPORT_SHLIB stub.
2262
2263 We currently have no way to select bevahior on just
2264 the target. However, we only support HPUX/SOM in
2265 native mode. So we conditinalize on a native
2266 #ifdef. Ugly. Ugly. Ugly */
2267 && u->stub_unwind.stub_type != IMPORT_SHLIB
2268#endif
2269 ))
c5aa993b
JM
2270 continue;
2271
2272 /* OK. Looks like the correct import stub. */
2273 newfun = SYMBOL_VALUE (stub_symbol);
2274 fun = newfun;
6426a772
JM
2275
2276 /* If we found an IMPORT stub, then we want to stop
2277 searching now. If we found an IMPORT_SHLIB, we want
2278 to continue the search in the hopes that we will find
2279 an IMPORT stub. */
2280 if (u->stub_unwind.stub_type == IMPORT)
2281 break;
c5aa993b
JM
2282 }
2283 }
cce74817
JM
2284
2285 /* Ouch. We did not find an import stub. Make an attempt to
2286 do the right thing instead of just croaking. Most of the
2287 time this will actually work. */
c906108c
SS
2288 if (newfun == 0)
2289 write_register (19, som_solib_get_got_by_pc (fun));
cce74817
JM
2290
2291 u = find_unwind_entry (fun);
c5aa993b 2292 if (u
cce74817
JM
2293 && (u->stub_unwind.stub_type == IMPORT
2294 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2295 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2296
2297 /* If we found the import stub in the shared library, then we have
2298 to set %r19 before we call the stub. */
2299 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2300 write_register (19, som_solib_get_got_by_pc (fun));
c906108c 2301 }
c906108c
SS
2302#endif
2303 }
2304
cce74817
JM
2305 /* If we are calling into another load module then have sr4export call the
2306 magic __d_plt_call routine which is linked in from end.o.
c906108c 2307
cce74817
JM
2308 You can't use _sr4export to make the call as the value in sp-24 will get
2309 fried and you end up returning to the wrong location. You can't call the
2310 target as the code to bind the PLT entry to a function can't return to a
2311 stack address.
2312
2313 Also, query the dynamic linker in the inferior to provide a suitable
2314 PLABEL for the target function. */
c5aa993b 2315 if (!using_gcc_plt_call)
c906108c
SS
2316 {
2317 CORE_ADDR new_fun;
2318
cce74817 2319 /* Get a handle for the shared library containing FUN. Given the
c5aa993b 2320 handle we can query the shared library for a PLABEL. */
cce74817 2321 solib_handle = som_solib_get_solib_by_pc (fun);
c906108c 2322
cce74817 2323 if (solib_handle)
c906108c 2324 {
cce74817 2325 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
c906108c 2326
cce74817
JM
2327 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2328
2329 if (trampoline == NULL)
2330 {
2331 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2332 }
2333
2334 /* This is where sr4export will jump to. */
2335 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2336
2337 /* If the function is in a shared library, then call __d_shl_get to
2338 get a PLABEL for the target function. */
2339 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2340
c5aa993b 2341 if (new_stub == 0)
cce74817 2342 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
c906108c
SS
2343
2344 /* We have to store the address of the stub in __shlib_funcptr. */
cce74817 2345 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
c5aa993b 2346 (struct objfile *) NULL);
c906108c 2347
cce74817
JM
2348 if (msymbol == NULL)
2349 error ("Can't find an address for __shlib_funcptr");
2350 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
c5aa993b 2351 (char *) &new_stub, 4);
c906108c
SS
2352
2353 /* We want sr4export to call __d_plt_call, so we claim it is
2354 the final target. Clear trampoline. */
cce74817
JM
2355 fun = new_fun;
2356 trampoline = NULL;
c906108c
SS
2357 }
2358 }
2359
2360 /* Store upper 21 bits of function address into ldil. fun will either be
2361 the final target (most cases) or __d_plt_call when calling into a shared
2362 library and __gcc_plt_call is not available. */
2363 store_unsigned_integer
2364 (&dummy[FUNC_LDIL_OFFSET],
2365 INSTRUCTION_SIZE,
2366 deposit_21 (fun >> 11,
2367 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2368 INSTRUCTION_SIZE)));
2369
2370 /* Store lower 11 bits of function address into ldo */
2371 store_unsigned_integer
2372 (&dummy[FUNC_LDO_OFFSET],
2373 INSTRUCTION_SIZE,
2374 deposit_14 (fun & MASK_11,
2375 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2376 INSTRUCTION_SIZE)));
2377#ifdef SR4EXPORT_LDIL_OFFSET
2378
2379 {
2380 CORE_ADDR trampoline_addr;
2381
2382 /* We may still need sr4export's address too. */
2383
2384 if (trampoline == NULL)
2385 {
2386 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2387 if (msymbol == NULL)
cce74817 2388 error ("Can't find an address for _sr4export trampoline");
c906108c
SS
2389
2390 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2391 }
2392 else
2393 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2394
2395
2396 /* Store upper 21 bits of trampoline's address into ldil */
2397 store_unsigned_integer
2398 (&dummy[SR4EXPORT_LDIL_OFFSET],
2399 INSTRUCTION_SIZE,
2400 deposit_21 (trampoline_addr >> 11,
2401 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2402 INSTRUCTION_SIZE)));
2403
2404 /* Store lower 11 bits of trampoline's address into ldo */
2405 store_unsigned_integer
2406 (&dummy[SR4EXPORT_LDO_OFFSET],
2407 INSTRUCTION_SIZE,
2408 deposit_14 (trampoline_addr & MASK_11,
2409 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2410 INSTRUCTION_SIZE)));
2411 }
2412#endif
2413
2414 write_register (22, pc);
2415
2416 /* If we are in a syscall, then we should call the stack dummy
2417 directly. $$dyncall is not needed as the kernel sets up the
2418 space id registers properly based on the value in %r31. In
2419 fact calling $$dyncall will not work because the value in %r22
2420 will be clobbered on the syscall exit path.
2421
2422 Similarly if the current PC is in a shared library. Note however,
2423 this scheme won't work if the shared library isn't mapped into
2424 the same space as the stack. */
2425 if (flags & 2)
2426 return pc;
2427#ifndef GDB_TARGET_IS_PA_ELF
60383d10 2428 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
c906108c
SS
2429 return pc;
2430#endif
2431 else
2432 return dyncall_addr;
53a5351d 2433#endif
c906108c
SS
2434}
2435
c906108c
SS
2436/* If the pid is in a syscall, then the FP register is not readable.
2437 We'll return zero in that case, rather than attempting to read it
2438 and cause a warning. */
60383d10 2439
c906108c 2440CORE_ADDR
60383d10 2441hppa_read_fp (int pid)
c906108c
SS
2442{
2443 int flags = read_register (FLAGS_REGNUM);
2444
c5aa993b
JM
2445 if (flags & 2)
2446 {
2447 return (CORE_ADDR) 0;
2448 }
c906108c
SS
2449
2450 /* This is the only site that may directly read_register () the FP
2451 register. All others must use TARGET_READ_FP (). */
2452 return read_register (FP_REGNUM);
2453}
2454
60383d10
JB
2455CORE_ADDR
2456hppa_target_read_fp (void)
2457{
2458 return hppa_read_fp (PIDGET (inferior_ptid));
2459}
c906108c
SS
2460
2461/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2462 bits. */
2463
2464CORE_ADDR
60383d10 2465hppa_target_read_pc (ptid_t ptid)
c906108c 2466{
39f77062 2467 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2468
2469 /* The following test does not belong here. It is OS-specific, and belongs
2470 in native code. */
2471 /* Test SS_INSYSCALL */
2472 if (flags & 2)
39f77062 2473 return read_register_pid (31, ptid) & ~0x3;
c906108c 2474
39f77062 2475 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
c906108c
SS
2476}
2477
2478/* Write out the PC. If currently in a syscall, then also write the new
2479 PC value into %r31. */
2480
2481void
60383d10 2482hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
c906108c 2483{
39f77062 2484 int flags = read_register_pid (FLAGS_REGNUM, ptid);
c906108c
SS
2485
2486 /* The following test does not belong here. It is OS-specific, and belongs
2487 in native code. */
2488 /* If in a syscall, then set %r31. Also make sure to get the
2489 privilege bits set correctly. */
2490 /* Test SS_INSYSCALL */
2491 if (flags & 2)
39f77062 2492 write_register_pid (31, v | 0x3, ptid);
c906108c 2493
39f77062
KB
2494 write_register_pid (PC_REGNUM, v, ptid);
2495 write_register_pid (NPC_REGNUM, v + 4, ptid);
c906108c
SS
2496}
2497
2498/* return the alignment of a type in bytes. Structures have the maximum
2499 alignment required by their fields. */
2500
2501static int
fba45db2 2502hppa_alignof (struct type *type)
c906108c
SS
2503{
2504 int max_align, align, i;
2505 CHECK_TYPEDEF (type);
2506 switch (TYPE_CODE (type))
2507 {
2508 case TYPE_CODE_PTR:
2509 case TYPE_CODE_INT:
2510 case TYPE_CODE_FLT:
2511 return TYPE_LENGTH (type);
2512 case TYPE_CODE_ARRAY:
2513 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2514 case TYPE_CODE_STRUCT:
2515 case TYPE_CODE_UNION:
2516 max_align = 1;
2517 for (i = 0; i < TYPE_NFIELDS (type); i++)
2518 {
2519 /* Bit fields have no real alignment. */
2520 /* if (!TYPE_FIELD_BITPOS (type, i)) */
c5aa993b 2521 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
c906108c
SS
2522 {
2523 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2524 max_align = max (max_align, align);
2525 }
2526 }
2527 return max_align;
2528 default:
2529 return 4;
2530 }
2531}
2532
2533/* Print the register regnum, or all registers if regnum is -1 */
2534
2535void
fba45db2 2536pa_do_registers_info (int regnum, int fpregs)
c906108c 2537{
c5aa993b 2538 char raw_regs[REGISTER_BYTES];
c906108c
SS
2539 int i;
2540
2541 /* Make a copy of gdb's save area (may cause actual
2542 reads from the target). */
2543 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2544 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2545
2546 if (regnum == -1)
2547 pa_print_registers (raw_regs, regnum, fpregs);
c5aa993b
JM
2548 else if (regnum < FP4_REGNUM)
2549 {
2550 long reg_val[2];
2551
2552 /* Why is the value not passed through "extract_signed_integer"
2553 as in "pa_print_registers" below? */
2554 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2555
2556 if (!is_pa_2)
2557 {
ce414844 2558 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2559 }
c906108c 2560 else
c5aa993b
JM
2561 {
2562 /* Fancy % formats to prevent leading zeros. */
2563 if (reg_val[0] == 0)
ce414844 2564 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2565 else
ce414844 2566 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
c5aa993b
JM
2567 reg_val[0], reg_val[1]);
2568 }
c906108c 2569 }
c906108c 2570 else
c5aa993b
JM
2571 /* Note that real floating point values only start at
2572 FP4_REGNUM. FP0 and up are just status and error
2573 registers, which have integral (bit) values. */
c906108c
SS
2574 pa_print_fp_reg (regnum);
2575}
2576
2577/********** new function ********************/
2578void
fba45db2
KB
2579pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2580 enum precision_type precision)
c906108c 2581{
c5aa993b 2582 char raw_regs[REGISTER_BYTES];
c906108c
SS
2583 int i;
2584
2585 /* Make a copy of gdb's save area (may cause actual
c5aa993b 2586 reads from the target). */
c906108c 2587 for (i = 0; i < NUM_REGS; i++)
6e7f8b9c 2588 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
c906108c
SS
2589
2590 if (regnum == -1)
2591 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2592
c5aa993b
JM
2593 else if (regnum < FP4_REGNUM)
2594 {
2595 long reg_val[2];
2596
2597 /* Why is the value not passed through "extract_signed_integer"
2598 as in "pa_print_registers" below? */
2599 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
c906108c 2600
c5aa993b
JM
2601 if (!is_pa_2)
2602 {
ce414844 2603 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
c5aa993b 2604 }
c906108c 2605 else
c5aa993b
JM
2606 {
2607 /* Fancy % formats to prevent leading zeros. */
2608 if (reg_val[0] == 0)
ce414844 2609 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
c5aa993b
JM
2610 reg_val[1]);
2611 else
ce414844 2612 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
c5aa993b
JM
2613 reg_val[0], reg_val[1]);
2614 }
c906108c 2615 }
c906108c 2616 else
c5aa993b
JM
2617 /* Note that real floating point values only start at
2618 FP4_REGNUM. FP0 and up are just status and error
2619 registers, which have integral (bit) values. */
c906108c
SS
2620 pa_strcat_fp_reg (regnum, stream, precision);
2621}
2622
2623/* If this is a PA2.0 machine, fetch the real 64-bit register
2624 value. Otherwise use the info from gdb's saved register area.
2625
2626 Note that reg_val is really expected to be an array of longs,
2627 with two elements. */
2628static void
fba45db2 2629pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
c906108c 2630{
c5aa993b 2631 static int know_which = 0; /* False */
c906108c 2632
c5aa993b 2633 int regaddr;
c906108c
SS
2634 unsigned int offset;
2635 register int i;
c5aa993b
JM
2636 int start;
2637
2638
c906108c
SS
2639 char buf[MAX_REGISTER_RAW_SIZE];
2640 long long reg_val;
2641
c5aa993b
JM
2642 if (!know_which)
2643 {
2644 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2645 {
2646 is_pa_2 = (1 == 1);
2647 }
2648
2649 know_which = 1; /* True */
2650 }
c906108c
SS
2651
2652 raw_val[0] = 0;
2653 raw_val[1] = 0;
2654
c5aa993b
JM
2655 if (!is_pa_2)
2656 {
2657 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
c906108c 2658 return;
c5aa993b 2659 }
c906108c
SS
2660
2661 /* Code below copied from hppah-nat.c, with fixes for wide
2662 registers, using different area of save_state, etc. */
2663 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
c5aa993b
JM
2664 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2665 {
c906108c 2666 /* Use narrow regs area of save_state and default macro. */
c5aa993b
JM
2667 offset = U_REGS_OFFSET;
2668 regaddr = register_addr (regnum, offset);
2669 start = 1;
2670 }
2671 else
2672 {
c906108c
SS
2673 /* Use wide regs area, and calculate registers as 8 bytes wide.
2674
2675 We'd like to do this, but current version of "C" doesn't
2676 permit "offsetof":
2677
c5aa993b 2678 offset = offsetof(save_state_t, ss_wide);
c906108c
SS
2679
2680 Note that to avoid "C" doing typed pointer arithmetic, we
2681 have to cast away the type in our offset calculation:
2682 otherwise we get an offset of 1! */
2683
7a292a7a 2684 /* NB: save_state_t is not available before HPUX 9.
c5aa993b 2685 The ss_wide field is not available previous to HPUX 10.20,
7a292a7a
SS
2686 so to avoid compile-time warnings, we only compile this for
2687 PA 2.0 processors. This control path should only be followed
2688 if we're debugging a PA 2.0 processor, so this should not cause
2689 problems. */
2690
c906108c
SS
2691 /* #if the following code out so that this file can still be
2692 compiled on older HPUX boxes (< 10.20) which don't have
2693 this structure/structure member. */
2694#if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2695 save_state_t temp;
2696
2697 offset = ((int) &temp.ss_wide) - ((int) &temp);
2698 regaddr = offset + regnum * 8;
c5aa993b 2699 start = 0;
c906108c 2700#endif
c5aa993b
JM
2701 }
2702
2703 for (i = start; i < 2; i++)
c906108c
SS
2704 {
2705 errno = 0;
39f77062 2706 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
c5aa993b 2707 (PTRACE_ARG3_TYPE) regaddr, 0);
c906108c
SS
2708 if (errno != 0)
2709 {
2710 /* Warning, not error, in case we are attached; sometimes the
2711 kernel doesn't let us at the registers. */
2712 char *err = safe_strerror (errno);
2713 char *msg = alloca (strlen (err) + 128);
2714 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2715 warning (msg);
2716 goto error_exit;
2717 }
2718
2719 regaddr += sizeof (long);
2720 }
c5aa993b 2721
c906108c 2722 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
c5aa993b 2723 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
c906108c
SS
2724
2725error_exit:
2726 ;
2727}
2728
2729/* "Info all-reg" command */
c5aa993b 2730
c906108c 2731static void
fba45db2 2732pa_print_registers (char *raw_regs, int regnum, int fpregs)
c906108c 2733{
c5aa993b 2734 int i, j;
adf40b2e
JM
2735 /* Alas, we are compiled so that "long long" is 32 bits */
2736 long raw_val[2];
c906108c 2737 long long_val;
a0b3c4fd 2738 int rows = 48, columns = 2;
c906108c 2739
adf40b2e 2740 for (i = 0; i < rows; i++)
c906108c 2741 {
adf40b2e 2742 for (j = 0; j < columns; j++)
c906108c 2743 {
adf40b2e
JM
2744 /* We display registers in column-major order. */
2745 int regnum = i + j * rows;
2746
c5aa993b
JM
2747 /* Q: Why is the value passed through "extract_signed_integer",
2748 while above, in "pa_do_registers_info" it isn't?
2749 A: ? */
adf40b2e 2750 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
c5aa993b
JM
2751
2752 /* Even fancier % formats to prevent leading zeros
2753 and still maintain the output in columns. */
2754 if (!is_pa_2)
2755 {
2756 /* Being big-endian, on this machine the low bits
2757 (the ones we want to look at) are in the second longword. */
2758 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844 2759 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2760 REGISTER_NAME (regnum), long_val);
c5aa993b
JM
2761 }
2762 else
2763 {
2764 /* raw_val = extract_signed_integer(&raw_val, 8); */
2765 if (raw_val[0] == 0)
ce414844 2766 printf_filtered ("%10.10s: %8lx ",
adf40b2e 2767 REGISTER_NAME (regnum), raw_val[1]);
c5aa993b 2768 else
ce414844 2769 printf_filtered ("%10.10s: %8lx%8.8lx ",
a0b3c4fd 2770 REGISTER_NAME (regnum),
c5aa993b
JM
2771 raw_val[0], raw_val[1]);
2772 }
c906108c
SS
2773 }
2774 printf_unfiltered ("\n");
2775 }
c5aa993b 2776
c906108c 2777 if (fpregs)
c5aa993b 2778 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2779 pa_print_fp_reg (i);
2780}
2781
c5aa993b 2782/************* new function ******************/
c906108c 2783static void
fba45db2
KB
2784pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2785 struct ui_file *stream)
c906108c 2786{
c5aa993b
JM
2787 int i, j;
2788 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
c906108c
SS
2789 long long_val;
2790 enum precision_type precision;
2791
2792 precision = unspecified_precision;
2793
2794 for (i = 0; i < 18; i++)
2795 {
2796 for (j = 0; j < 4; j++)
2797 {
c5aa993b
JM
2798 /* Q: Why is the value passed through "extract_signed_integer",
2799 while above, in "pa_do_registers_info" it isn't?
2800 A: ? */
2801 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2802
2803 /* Even fancier % formats to prevent leading zeros
2804 and still maintain the output in columns. */
2805 if (!is_pa_2)
2806 {
2807 /* Being big-endian, on this machine the low bits
2808 (the ones we want to look at) are in the second longword. */
2809 long_val = extract_signed_integer (&raw_val[1], 4);
ce414844
AC
2810 fprintf_filtered (stream, "%8.8s: %8lx ",
2811 REGISTER_NAME (i + (j * 18)), long_val);
c5aa993b
JM
2812 }
2813 else
2814 {
2815 /* raw_val = extract_signed_integer(&raw_val, 8); */
2816 if (raw_val[0] == 0)
ce414844
AC
2817 fprintf_filtered (stream, "%8.8s: %8lx ",
2818 REGISTER_NAME (i + (j * 18)), raw_val[1]);
c5aa993b 2819 else
ce414844
AC
2820 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2821 REGISTER_NAME (i + (j * 18)), raw_val[0],
2822 raw_val[1]);
c5aa993b 2823 }
c906108c
SS
2824 }
2825 fprintf_unfiltered (stream, "\n");
2826 }
c5aa993b 2827
c906108c 2828 if (fpregs)
c5aa993b 2829 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
c906108c
SS
2830 pa_strcat_fp_reg (i, stream, precision);
2831}
2832
2833static void
fba45db2 2834pa_print_fp_reg (int i)
c906108c
SS
2835{
2836 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2837 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2838
2839 /* Get 32bits of data. */
6e7f8b9c 2840 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2841
2842 /* Put it in the buffer. No conversions are ever necessary. */
2843 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2844
2845 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2846 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2847 fputs_filtered ("(single precision) ", gdb_stdout);
2848
2849 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2850 1, 0, Val_pretty_default);
2851 printf_filtered ("\n");
2852
2853 /* If "i" is even, then this register can also be a double-precision
2854 FP register. Dump it out as such. */
2855 if ((i % 2) == 0)
2856 {
2857 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2858 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
c906108c
SS
2859
2860 /* Copy it into the appropriate part of the virtual buffer. */
2861 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2862 REGISTER_RAW_SIZE (i));
2863
2864 /* Dump it as a double. */
2865 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2866 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2867 fputs_filtered ("(double precision) ", gdb_stdout);
2868
2869 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2870 1, 0, Val_pretty_default);
2871 printf_filtered ("\n");
2872 }
2873}
2874
2875/*************** new function ***********************/
2876static void
fba45db2 2877pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
c906108c
SS
2878{
2879 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2880 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2881
2882 fputs_filtered (REGISTER_NAME (i), stream);
2883 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2884
2885 /* Get 32bits of data. */
6e7f8b9c 2886 frame_register_read (deprecated_selected_frame, i, raw_buffer);
c906108c
SS
2887
2888 /* Put it in the buffer. No conversions are ever necessary. */
2889 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2890
2891 if (precision == double_precision && (i % 2) == 0)
2892 {
2893
c5aa993b
JM
2894 char raw_buf[MAX_REGISTER_RAW_SIZE];
2895
2896 /* Get the data in raw format for the 2nd half. */
6e7f8b9c 2897 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
c5aa993b
JM
2898
2899 /* Copy it into the appropriate part of the virtual buffer. */
2900 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
c906108c 2901
c5aa993b
JM
2902 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2903 1, 0, Val_pretty_default);
c906108c
SS
2904
2905 }
c5aa993b
JM
2906 else
2907 {
2908 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2909 1, 0, Val_pretty_default);
2910 }
c906108c
SS
2911
2912}
2913
2914/* Return one if PC is in the call path of a trampoline, else return zero.
2915
2916 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2917 just shared library trampolines (import, export). */
2918
2919int
60383d10 2920hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
2921{
2922 struct minimal_symbol *minsym;
2923 struct unwind_table_entry *u;
2924 static CORE_ADDR dyncall = 0;
2925 static CORE_ADDR sr4export = 0;
2926
c2c6d25f
JM
2927#ifdef GDB_TARGET_IS_HPPA_20W
2928 /* PA64 has a completely different stub/trampoline scheme. Is it
2929 better? Maybe. It's certainly harder to determine with any
2930 certainty that we are in a stub because we can not refer to the
2931 unwinders to help.
2932
2933 The heuristic is simple. Try to lookup the current PC value in th
2934 minimal symbol table. If that fails, then assume we are not in a
2935 stub and return.
2936
2937 Then see if the PC value falls within the section bounds for the
2938 section containing the minimal symbol we found in the first
2939 step. If it does, then assume we are not in a stub and return.
2940
2941 Finally peek at the instructions to see if they look like a stub. */
2942 {
2943 struct minimal_symbol *minsym;
2944 asection *sec;
2945 CORE_ADDR addr;
2946 int insn, i;
2947
2948 minsym = lookup_minimal_symbol_by_pc (pc);
2949 if (! minsym)
2950 return 0;
2951
2952 sec = SYMBOL_BFD_SECTION (minsym);
2953
2954 if (sec->vma <= pc
2955 && sec->vma + sec->_cooked_size < pc)
2956 return 0;
2957
2958 /* We might be in a stub. Peek at the instructions. Stubs are 3
2959 instructions long. */
2960 insn = read_memory_integer (pc, 4);
2961
b84a8afe 2962 /* Find out where we think we are within the stub. */
c2c6d25f
JM
2963 if ((insn & 0xffffc00e) == 0x53610000)
2964 addr = pc;
2965 else if ((insn & 0xffffffff) == 0xe820d000)
2966 addr = pc - 4;
2967 else if ((insn & 0xffffc00e) == 0x537b0000)
2968 addr = pc - 8;
2969 else
2970 return 0;
2971
2972 /* Now verify each insn in the range looks like a stub instruction. */
2973 insn = read_memory_integer (addr, 4);
2974 if ((insn & 0xffffc00e) != 0x53610000)
2975 return 0;
2976
2977 /* Now verify each insn in the range looks like a stub instruction. */
2978 insn = read_memory_integer (addr + 4, 4);
2979 if ((insn & 0xffffffff) != 0xe820d000)
2980 return 0;
2981
2982 /* Now verify each insn in the range looks like a stub instruction. */
2983 insn = read_memory_integer (addr + 8, 4);
2984 if ((insn & 0xffffc00e) != 0x537b0000)
2985 return 0;
2986
2987 /* Looks like a stub. */
2988 return 1;
2989 }
2990#endif
2991
2992 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2993 new exec file */
c906108c
SS
2994
2995 /* First see if PC is in one of the two C-library trampolines. */
2996 if (!dyncall)
2997 {
2998 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2999 if (minsym)
3000 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3001 else
3002 dyncall = -1;
3003 }
3004
3005 if (!sr4export)
3006 {
3007 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3008 if (minsym)
3009 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3010 else
3011 sr4export = -1;
3012 }
3013
3014 if (pc == dyncall || pc == sr4export)
3015 return 1;
3016
104c1213
JM
3017 minsym = lookup_minimal_symbol_by_pc (pc);
3018 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
3019 return 1;
3020
c906108c
SS
3021 /* Get the unwind descriptor corresponding to PC, return zero
3022 if no unwind was found. */
3023 u = find_unwind_entry (pc);
3024 if (!u)
3025 return 0;
3026
3027 /* If this isn't a linker stub, then return now. */
3028 if (u->stub_unwind.stub_type == 0)
3029 return 0;
3030
3031 /* By definition a long-branch stub is a call stub. */
3032 if (u->stub_unwind.stub_type == LONG_BRANCH)
3033 return 1;
3034
3035 /* The call and return path execute the same instructions within
3036 an IMPORT stub! So an IMPORT stub is both a call and return
3037 trampoline. */
3038 if (u->stub_unwind.stub_type == IMPORT)
3039 return 1;
3040
3041 /* Parameter relocation stubs always have a call path and may have a
3042 return path. */
3043 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3044 || u->stub_unwind.stub_type == EXPORT)
3045 {
3046 CORE_ADDR addr;
3047
3048 /* Search forward from the current PC until we hit a branch
c5aa993b 3049 or the end of the stub. */
c906108c
SS
3050 for (addr = pc; addr <= u->region_end; addr += 4)
3051 {
3052 unsigned long insn;
3053
3054 insn = read_memory_integer (addr, 4);
3055
3056 /* Does it look like a bl? If so then it's the call path, if
3057 we find a bv or be first, then we're on the return path. */
3058 if ((insn & 0xfc00e000) == 0xe8000000)
3059 return 1;
3060 else if ((insn & 0xfc00e001) == 0xe800c000
3061 || (insn & 0xfc000000) == 0xe0000000)
3062 return 0;
3063 }
3064
3065 /* Should never happen. */
104c1213
JM
3066 warning ("Unable to find branch in parameter relocation stub.\n");
3067 return 0;
c906108c
SS
3068 }
3069
3070 /* Unknown stub type. For now, just return zero. */
104c1213 3071 return 0;
c906108c
SS
3072}
3073
3074/* Return one if PC is in the return path of a trampoline, else return zero.
3075
3076 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3077 just shared library trampolines (import, export). */
3078
3079int
60383d10 3080hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
c906108c
SS
3081{
3082 struct unwind_table_entry *u;
3083
3084 /* Get the unwind descriptor corresponding to PC, return zero
3085 if no unwind was found. */
3086 u = find_unwind_entry (pc);
3087 if (!u)
3088 return 0;
3089
3090 /* If this isn't a linker stub or it's just a long branch stub, then
3091 return zero. */
3092 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3093 return 0;
3094
3095 /* The call and return path execute the same instructions within
3096 an IMPORT stub! So an IMPORT stub is both a call and return
3097 trampoline. */
3098 if (u->stub_unwind.stub_type == IMPORT)
3099 return 1;
3100
3101 /* Parameter relocation stubs always have a call path and may have a
3102 return path. */
3103 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3104 || u->stub_unwind.stub_type == EXPORT)
3105 {
3106 CORE_ADDR addr;
3107
3108 /* Search forward from the current PC until we hit a branch
c5aa993b 3109 or the end of the stub. */
c906108c
SS
3110 for (addr = pc; addr <= u->region_end; addr += 4)
3111 {
3112 unsigned long insn;
3113
3114 insn = read_memory_integer (addr, 4);
3115
3116 /* Does it look like a bl? If so then it's the call path, if
3117 we find a bv or be first, then we're on the return path. */
3118 if ((insn & 0xfc00e000) == 0xe8000000)
3119 return 0;
3120 else if ((insn & 0xfc00e001) == 0xe800c000
3121 || (insn & 0xfc000000) == 0xe0000000)
3122 return 1;
3123 }
3124
3125 /* Should never happen. */
104c1213
JM
3126 warning ("Unable to find branch in parameter relocation stub.\n");
3127 return 0;
c906108c
SS
3128 }
3129
3130 /* Unknown stub type. For now, just return zero. */
104c1213 3131 return 0;
c906108c
SS
3132
3133}
3134
3135/* Figure out if PC is in a trampoline, and if so find out where
3136 the trampoline will jump to. If not in a trampoline, return zero.
3137
3138 Simple code examination probably is not a good idea since the code
3139 sequences in trampolines can also appear in user code.
3140
3141 We use unwinds and information from the minimal symbol table to
3142 determine when we're in a trampoline. This won't work for ELF
3143 (yet) since it doesn't create stub unwind entries. Whether or
3144 not ELF will create stub unwinds or normal unwinds for linker
3145 stubs is still being debated.
3146
3147 This should handle simple calls through dyncall or sr4export,
3148 long calls, argument relocation stubs, and dyncall/sr4export
3149 calling an argument relocation stub. It even handles some stubs
3150 used in dynamic executables. */
3151
c906108c 3152CORE_ADDR
60383d10 3153hppa_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
3154{
3155 long orig_pc = pc;
3156 long prev_inst, curr_inst, loc;
3157 static CORE_ADDR dyncall = 0;
3158 static CORE_ADDR dyncall_external = 0;
3159 static CORE_ADDR sr4export = 0;
3160 struct minimal_symbol *msym;
3161 struct unwind_table_entry *u;
3162
c2c6d25f
JM
3163 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3164 new exec file */
c906108c
SS
3165
3166 if (!dyncall)
3167 {
3168 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3169 if (msym)
3170 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3171 else
3172 dyncall = -1;
3173 }
3174
3175 if (!dyncall_external)
3176 {
3177 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3178 if (msym)
3179 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3180 else
3181 dyncall_external = -1;
3182 }
3183
3184 if (!sr4export)
3185 {
3186 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3187 if (msym)
3188 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3189 else
3190 sr4export = -1;
3191 }
3192
3193 /* Addresses passed to dyncall may *NOT* be the actual address
3194 of the function. So we may have to do something special. */
3195 if (pc == dyncall)
3196 {
3197 pc = (CORE_ADDR) read_register (22);
3198
3199 /* If bit 30 (counting from the left) is on, then pc is the address of
c5aa993b
JM
3200 the PLT entry for this function, not the address of the function
3201 itself. Bit 31 has meaning too, but only for MPE. */
c906108c 3202 if (pc & 0x2)
53a5351d 3203 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3204 }
3205 if (pc == dyncall_external)
3206 {
3207 pc = (CORE_ADDR) read_register (22);
53a5351d 3208 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
c906108c
SS
3209 }
3210 else if (pc == sr4export)
3211 pc = (CORE_ADDR) (read_register (22));
3212
3213 /* Get the unwind descriptor corresponding to PC, return zero
3214 if no unwind was found. */
3215 u = find_unwind_entry (pc);
3216 if (!u)
3217 return 0;
3218
3219 /* If this isn't a linker stub, then return now. */
3220 /* elz: attention here! (FIXME) because of a compiler/linker
3221 error, some stubs which should have a non zero stub_unwind.stub_type
3222 have unfortunately a value of zero. So this function would return here
3223 as if we were not in a trampoline. To fix this, we go look at the partial
3224 symbol information, which reports this guy as a stub.
3225 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3226 partial symbol information is also wrong sometimes. This is because
3227 when it is entered (somread.c::som_symtab_read()) it can happen that
3228 if the type of the symbol (from the som) is Entry, and the symbol is
3229 in a shared library, then it can also be a trampoline. This would
3230 be OK, except that I believe the way they decide if we are ina shared library
3231 does not work. SOOOO..., even if we have a regular function w/o trampolines
3232 its minimal symbol can be assigned type mst_solib_trampoline.
3233 Also, if we find that the symbol is a real stub, then we fix the unwind
3234 descriptor, and define the stub type to be EXPORT.
c5aa993b 3235 Hopefully this is correct most of the times. */
c906108c 3236 if (u->stub_unwind.stub_type == 0)
c5aa993b 3237 {
c906108c
SS
3238
3239/* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3240 we can delete all the code which appears between the lines */
3241/*--------------------------------------------------------------------------*/
c5aa993b 3242 msym = lookup_minimal_symbol_by_pc (pc);
c906108c 3243
c5aa993b
JM
3244 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3245 return orig_pc == pc ? 0 : pc & ~0x3;
3246
3247 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3248 {
3249 struct objfile *objfile;
3250 struct minimal_symbol *msymbol;
3251 int function_found = 0;
3252
3253 /* go look if there is another minimal symbol with the same name as
3254 this one, but with type mst_text. This would happen if the msym
3255 is an actual trampoline, in which case there would be another
3256 symbol with the same name corresponding to the real function */
3257
3258 ALL_MSYMBOLS (objfile, msymbol)
3259 {
3260 if (MSYMBOL_TYPE (msymbol) == mst_text
3261 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3262 {
3263 function_found = 1;
3264 break;
3265 }
3266 }
3267
3268 if (function_found)
3269 /* the type of msym is correct (mst_solib_trampoline), but
3270 the unwind info is wrong, so set it to the correct value */
3271 u->stub_unwind.stub_type = EXPORT;
3272 else
3273 /* the stub type info in the unwind is correct (this is not a
3274 trampoline), but the msym type information is wrong, it
3275 should be mst_text. So we need to fix the msym, and also
3276 get out of this function */
3277 {
3278 MSYMBOL_TYPE (msym) = mst_text;
3279 return orig_pc == pc ? 0 : pc & ~0x3;
3280 }
3281 }
c906108c 3282
c906108c 3283/*--------------------------------------------------------------------------*/
c5aa993b 3284 }
c906108c
SS
3285
3286 /* It's a stub. Search for a branch and figure out where it goes.
3287 Note we have to handle multi insn branch sequences like ldil;ble.
3288 Most (all?) other branches can be determined by examining the contents
3289 of certain registers and the stack. */
3290
3291 loc = pc;
3292 curr_inst = 0;
3293 prev_inst = 0;
3294 while (1)
3295 {
3296 /* Make sure we haven't walked outside the range of this stub. */
3297 if (u != find_unwind_entry (loc))
3298 {
3299 warning ("Unable to find branch in linker stub");
3300 return orig_pc == pc ? 0 : pc & ~0x3;
3301 }
3302
3303 prev_inst = curr_inst;
3304 curr_inst = read_memory_integer (loc, 4);
3305
3306 /* Does it look like a branch external using %r1? Then it's the
c5aa993b 3307 branch from the stub to the actual function. */
c906108c
SS
3308 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3309 {
3310 /* Yup. See if the previous instruction loaded
3311 a value into %r1. If so compute and return the jump address. */
3312 if ((prev_inst & 0xffe00000) == 0x20200000)
3313 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3314 else
3315 {
3316 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3317 return orig_pc == pc ? 0 : pc & ~0x3;
3318 }
3319 }
3320
3321 /* Does it look like a be 0(sr0,%r21)? OR
3322 Does it look like a be, n 0(sr0,%r21)? OR
3323 Does it look like a bve (r21)? (this is on PA2.0)
3324 Does it look like a bve, n(r21)? (this is also on PA2.0)
3325 That's the branch from an
c5aa993b 3326 import stub to an export stub.
c906108c 3327
c5aa993b
JM
3328 It is impossible to determine the target of the branch via
3329 simple examination of instructions and/or data (consider
3330 that the address in the plabel may be the address of the
3331 bind-on-reference routine in the dynamic loader).
c906108c 3332
c5aa993b 3333 So we have try an alternative approach.
c906108c 3334
c5aa993b
JM
3335 Get the name of the symbol at our current location; it should
3336 be a stub symbol with the same name as the symbol in the
3337 shared library.
c906108c 3338
c5aa993b
JM
3339 Then lookup a minimal symbol with the same name; we should
3340 get the minimal symbol for the target routine in the shared
3341 library as those take precedence of import/export stubs. */
c906108c 3342 if ((curr_inst == 0xe2a00000) ||
c5aa993b
JM
3343 (curr_inst == 0xe2a00002) ||
3344 (curr_inst == 0xeaa0d000) ||
3345 (curr_inst == 0xeaa0d002))
c906108c
SS
3346 {
3347 struct minimal_symbol *stubsym, *libsym;
3348
3349 stubsym = lookup_minimal_symbol_by_pc (loc);
3350 if (stubsym == NULL)
3351 {
ce414844 3352 warning ("Unable to find symbol for 0x%lx", loc);
c906108c
SS
3353 return orig_pc == pc ? 0 : pc & ~0x3;
3354 }
3355
3356 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3357 if (libsym == NULL)
3358 {
3359 warning ("Unable to find library symbol for %s\n",
3360 SYMBOL_NAME (stubsym));
3361 return orig_pc == pc ? 0 : pc & ~0x3;
3362 }
3363
3364 return SYMBOL_VALUE (libsym);
3365 }
3366
3367 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
c5aa993b
JM
3368 branch from the stub to the actual function. */
3369 /*elz */
c906108c
SS
3370 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3371 || (curr_inst & 0xffe0e000) == 0xe8000000
c5aa993b 3372 || (curr_inst & 0xffe0e000) == 0xe800A000)
c906108c
SS
3373 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3374
3375 /* Does it look like bv (rp)? Note this depends on the
c5aa993b
JM
3376 current stack pointer being the same as the stack
3377 pointer in the stub itself! This is a branch on from the
3378 stub back to the original caller. */
3379 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
c906108c
SS
3380 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3381 {
3382 /* Yup. See if the previous instruction loaded
3383 rp from sp - 8. */
3384 if (prev_inst == 0x4bc23ff1)
3385 return (read_memory_integer
3386 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3387 else
3388 {
3389 warning ("Unable to find restore of %%rp before bv (%%rp).");
3390 return orig_pc == pc ? 0 : pc & ~0x3;
3391 }
3392 }
3393
3394 /* elz: added this case to capture the new instruction
3395 at the end of the return part of an export stub used by
3396 the PA2.0: BVE, n (rp) */
3397 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3398 {
c5aa993b 3399 return (read_memory_integer
53a5351d 3400 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3401 }
3402
3403 /* What about be,n 0(sr0,%rp)? It's just another way we return to
c5aa993b 3404 the original caller from the stub. Used in dynamic executables. */
c906108c
SS
3405 else if (curr_inst == 0xe0400002)
3406 {
3407 /* The value we jump to is sitting in sp - 24. But that's
3408 loaded several instructions before the be instruction.
3409 I guess we could check for the previous instruction being
3410 mtsp %r1,%sr0 if we want to do sanity checking. */
c5aa993b 3411 return (read_memory_integer
53a5351d 3412 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
c906108c
SS
3413 }
3414
3415 /* Haven't found the branch yet, but we're still in the stub.
c5aa993b 3416 Keep looking. */
c906108c
SS
3417 loc += 4;
3418 }
3419}
3420
3421
3422/* For the given instruction (INST), return any adjustment it makes
3423 to the stack pointer or zero for no adjustment.
3424
3425 This only handles instructions commonly found in prologues. */
3426
3427static int
fba45db2 3428prologue_inst_adjust_sp (unsigned long inst)
c906108c
SS
3429{
3430 /* This must persist across calls. */
3431 static int save_high21;
3432
3433 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3434 if ((inst & 0xffffc000) == 0x37de0000)
3435 return extract_14 (inst);
3436
3437 /* stwm X,D(sp) */
3438 if ((inst & 0xffe00000) == 0x6fc00000)
3439 return extract_14 (inst);
3440
104c1213
JM
3441 /* std,ma X,D(sp) */
3442 if ((inst & 0xffe00008) == 0x73c00008)
d4f3574e 3443 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213 3444
c906108c
SS
3445 /* addil high21,%r1; ldo low11,(%r1),%r30)
3446 save high bits in save_high21 for later use. */
3447 if ((inst & 0xffe00000) == 0x28200000)
3448 {
3449 save_high21 = extract_21 (inst);
3450 return 0;
3451 }
3452
3453 if ((inst & 0xffff0000) == 0x343e0000)
3454 return save_high21 + extract_14 (inst);
3455
3456 /* fstws as used by the HP compilers. */
3457 if ((inst & 0xffffffe0) == 0x2fd01220)
3458 return extract_5_load (inst);
3459
3460 /* No adjustment. */
3461 return 0;
3462}
3463
3464/* Return nonzero if INST is a branch of some kind, else return zero. */
3465
3466static int
fba45db2 3467is_branch (unsigned long inst)
c906108c
SS
3468{
3469 switch (inst >> 26)
3470 {
3471 case 0x20:
3472 case 0x21:
3473 case 0x22:
3474 case 0x23:
7be570e7 3475 case 0x27:
c906108c
SS
3476 case 0x28:
3477 case 0x29:
3478 case 0x2a:
3479 case 0x2b:
7be570e7 3480 case 0x2f:
c906108c
SS
3481 case 0x30:
3482 case 0x31:
3483 case 0x32:
3484 case 0x33:
3485 case 0x38:
3486 case 0x39:
3487 case 0x3a:
7be570e7 3488 case 0x3b:
c906108c
SS
3489 return 1;
3490
3491 default:
3492 return 0;
3493 }
3494}
3495
3496/* Return the register number for a GR which is saved by INST or
3497 zero it INST does not save a GR. */
3498
3499static int
fba45db2 3500inst_saves_gr (unsigned long inst)
c906108c
SS
3501{
3502 /* Does it look like a stw? */
7be570e7
JM
3503 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3504 || (inst >> 26) == 0x1f
3505 || ((inst >> 26) == 0x1f
3506 && ((inst >> 6) == 0xa)))
3507 return extract_5R_store (inst);
3508
3509 /* Does it look like a std? */
3510 if ((inst >> 26) == 0x1c
3511 || ((inst >> 26) == 0x03
3512 && ((inst >> 6) & 0xf) == 0xb))
c906108c
SS
3513 return extract_5R_store (inst);
3514
3515 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3516 if ((inst >> 26) == 0x1b)
3517 return extract_5R_store (inst);
3518
3519 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3520 too. */
7be570e7
JM
3521 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3522 || ((inst >> 26) == 0x3
3523 && (((inst >> 6) & 0xf) == 0x8
3524 || (inst >> 6) & 0xf) == 0x9))
c906108c 3525 return extract_5R_store (inst);
c5aa993b 3526
c906108c
SS
3527 return 0;
3528}
3529
3530/* Return the register number for a FR which is saved by INST or
3531 zero it INST does not save a FR.
3532
3533 Note we only care about full 64bit register stores (that's the only
3534 kind of stores the prologue will use).
3535
3536 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3537
3538static int
fba45db2 3539inst_saves_fr (unsigned long inst)
c906108c 3540{
7be570e7 3541 /* is this an FSTD ? */
c906108c
SS
3542 if ((inst & 0xfc00dfc0) == 0x2c001200)
3543 return extract_5r_store (inst);
7be570e7
JM
3544 if ((inst & 0xfc000002) == 0x70000002)
3545 return extract_5R_store (inst);
3546 /* is this an FSTW ? */
c906108c
SS
3547 if ((inst & 0xfc00df80) == 0x24001200)
3548 return extract_5r_store (inst);
7be570e7
JM
3549 if ((inst & 0xfc000002) == 0x7c000000)
3550 return extract_5R_store (inst);
c906108c
SS
3551 return 0;
3552}
3553
3554/* Advance PC across any function entry prologue instructions
3555 to reach some "real" code.
3556
3557 Use information in the unwind table to determine what exactly should
3558 be in the prologue. */
3559
3560
3561CORE_ADDR
fba45db2 3562skip_prologue_hard_way (CORE_ADDR pc)
c906108c
SS
3563{
3564 char buf[4];
3565 CORE_ADDR orig_pc = pc;
3566 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3567 unsigned long args_stored, status, i, restart_gr, restart_fr;
3568 struct unwind_table_entry *u;
3569
3570 restart_gr = 0;
3571 restart_fr = 0;
3572
3573restart:
3574 u = find_unwind_entry (pc);
3575 if (!u)
3576 return pc;
3577
c5aa993b 3578 /* If we are not at the beginning of a function, then return now. */
c906108c
SS
3579 if ((pc & ~0x3) != u->region_start)
3580 return pc;
3581
3582 /* This is how much of a frame adjustment we need to account for. */
3583 stack_remaining = u->Total_frame_size << 3;
3584
3585 /* Magic register saves we want to know about. */
3586 save_rp = u->Save_RP;
3587 save_sp = u->Save_SP;
3588
3589 /* An indication that args may be stored into the stack. Unfortunately
3590 the HPUX compilers tend to set this in cases where no args were
3591 stored too!. */
3592 args_stored = 1;
3593
3594 /* Turn the Entry_GR field into a bitmask. */
3595 save_gr = 0;
3596 for (i = 3; i < u->Entry_GR + 3; i++)
3597 {
3598 /* Frame pointer gets saved into a special location. */
3599 if (u->Save_SP && i == FP_REGNUM)
3600 continue;
3601
3602 save_gr |= (1 << i);
3603 }
3604 save_gr &= ~restart_gr;
3605
3606 /* Turn the Entry_FR field into a bitmask too. */
3607 save_fr = 0;
3608 for (i = 12; i < u->Entry_FR + 12; i++)
3609 save_fr |= (1 << i);
3610 save_fr &= ~restart_fr;
3611
3612 /* Loop until we find everything of interest or hit a branch.
3613
3614 For unoptimized GCC code and for any HP CC code this will never ever
3615 examine any user instructions.
3616
3617 For optimzied GCC code we're faced with problems. GCC will schedule
3618 its prologue and make prologue instructions available for delay slot
3619 filling. The end result is user code gets mixed in with the prologue
3620 and a prologue instruction may be in the delay slot of the first branch
3621 or call.
3622
3623 Some unexpected things are expected with debugging optimized code, so
3624 we allow this routine to walk past user instructions in optimized
3625 GCC code. */
3626 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3627 || args_stored)
3628 {
3629 unsigned int reg_num;
3630 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3631 unsigned long old_save_rp, old_save_sp, next_inst;
3632
3633 /* Save copies of all the triggers so we can compare them later
c5aa993b 3634 (only for HPC). */
c906108c
SS
3635 old_save_gr = save_gr;
3636 old_save_fr = save_fr;
3637 old_save_rp = save_rp;
3638 old_save_sp = save_sp;
3639 old_stack_remaining = stack_remaining;
3640
3641 status = target_read_memory (pc, buf, 4);
3642 inst = extract_unsigned_integer (buf, 4);
c5aa993b 3643
c906108c
SS
3644 /* Yow! */
3645 if (status != 0)
3646 return pc;
3647
3648 /* Note the interesting effects of this instruction. */
3649 stack_remaining -= prologue_inst_adjust_sp (inst);
3650
7be570e7
JM
3651 /* There are limited ways to store the return pointer into the
3652 stack. */
3653 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
c906108c
SS
3654 save_rp = 0;
3655
104c1213 3656 /* These are the only ways we save SP into the stack. At this time
c5aa993b 3657 the HP compilers never bother to save SP into the stack. */
104c1213
JM
3658 if ((inst & 0xffffc000) == 0x6fc10000
3659 || (inst & 0xffffc00c) == 0x73c10008)
c906108c
SS
3660 save_sp = 0;
3661
6426a772
JM
3662 /* Are we loading some register with an offset from the argument
3663 pointer? */
3664 if ((inst & 0xffe00000) == 0x37a00000
3665 || (inst & 0xffffffe0) == 0x081d0240)
3666 {
3667 pc += 4;
3668 continue;
3669 }
3670
c906108c
SS
3671 /* Account for general and floating-point register saves. */
3672 reg_num = inst_saves_gr (inst);
3673 save_gr &= ~(1 << reg_num);
3674
3675 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3676 Unfortunately args_stored only tells us that some arguments
3677 where stored into the stack. Not how many or what kind!
c906108c 3678
c5aa993b
JM
3679 This is a kludge as on the HP compiler sets this bit and it
3680 never does prologue scheduling. So once we see one, skip past
3681 all of them. We have similar code for the fp arg stores below.
c906108c 3682
c5aa993b
JM
3683 FIXME. Can still die if we have a mix of GR and FR argument
3684 stores! */
6426a772 3685 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c 3686 {
6426a772 3687 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
c906108c
SS
3688 {
3689 pc += 4;
3690 status = target_read_memory (pc, buf, 4);
3691 inst = extract_unsigned_integer (buf, 4);
3692 if (status != 0)
3693 return pc;
3694 reg_num = inst_saves_gr (inst);
3695 }
3696 args_stored = 0;
3697 continue;
3698 }
3699
3700 reg_num = inst_saves_fr (inst);
3701 save_fr &= ~(1 << reg_num);
3702
3703 status = target_read_memory (pc + 4, buf, 4);
3704 next_inst = extract_unsigned_integer (buf, 4);
c5aa993b 3705
c906108c
SS
3706 /* Yow! */
3707 if (status != 0)
3708 return pc;
3709
3710 /* We've got to be read to handle the ldo before the fp register
c5aa993b 3711 save. */
c906108c
SS
3712 if ((inst & 0xfc000000) == 0x34000000
3713 && inst_saves_fr (next_inst) >= 4
6426a772 3714 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3715 {
3716 /* So we drop into the code below in a reasonable state. */
3717 reg_num = inst_saves_fr (next_inst);
3718 pc -= 4;
3719 }
3720
3721 /* Ugh. Also account for argument stores into the stack.
c5aa993b
JM
3722 This is a kludge as on the HP compiler sets this bit and it
3723 never does prologue scheduling. So once we see one, skip past
3724 all of them. */
6426a772 3725 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c 3726 {
6426a772 3727 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
c906108c
SS
3728 {
3729 pc += 8;
3730 status = target_read_memory (pc, buf, 4);
3731 inst = extract_unsigned_integer (buf, 4);
3732 if (status != 0)
3733 return pc;
3734 if ((inst & 0xfc000000) != 0x34000000)
3735 break;
3736 status = target_read_memory (pc + 4, buf, 4);
3737 next_inst = extract_unsigned_integer (buf, 4);
3738 if (status != 0)
3739 return pc;
3740 reg_num = inst_saves_fr (next_inst);
3741 }
3742 args_stored = 0;
3743 continue;
3744 }
3745
3746 /* Quit if we hit any kind of branch. This can happen if a prologue
c5aa993b 3747 instruction is in the delay slot of the first call/branch. */
c906108c
SS
3748 if (is_branch (inst))
3749 break;
3750
3751 /* What a crock. The HP compilers set args_stored even if no
c5aa993b
JM
3752 arguments were stored into the stack (boo hiss). This could
3753 cause this code to then skip a bunch of user insns (up to the
3754 first branch).
3755
3756 To combat this we try to identify when args_stored was bogusly
3757 set and clear it. We only do this when args_stored is nonzero,
3758 all other resources are accounted for, and nothing changed on
3759 this pass. */
c906108c 3760 if (args_stored
c5aa993b 3761 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
c906108c
SS
3762 && old_save_gr == save_gr && old_save_fr == save_fr
3763 && old_save_rp == save_rp && old_save_sp == save_sp
3764 && old_stack_remaining == stack_remaining)
3765 break;
c5aa993b 3766
c906108c
SS
3767 /* Bump the PC. */
3768 pc += 4;
3769 }
3770
3771 /* We've got a tenative location for the end of the prologue. However
3772 because of limitations in the unwind descriptor mechanism we may
3773 have went too far into user code looking for the save of a register
3774 that does not exist. So, if there registers we expected to be saved
3775 but never were, mask them out and restart.
3776
3777 This should only happen in optimized code, and should be very rare. */
c5aa993b 3778 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
c906108c
SS
3779 {
3780 pc = orig_pc;
3781 restart_gr = save_gr;
3782 restart_fr = save_fr;
3783 goto restart;
3784 }
3785
3786 return pc;
3787}
3788
3789
7be570e7
JM
3790/* Return the address of the PC after the last prologue instruction if
3791 we can determine it from the debug symbols. Else return zero. */
c906108c
SS
3792
3793static CORE_ADDR
fba45db2 3794after_prologue (CORE_ADDR pc)
c906108c
SS
3795{
3796 struct symtab_and_line sal;
3797 CORE_ADDR func_addr, func_end;
3798 struct symbol *f;
3799
7be570e7
JM
3800 /* If we can not find the symbol in the partial symbol table, then
3801 there is no hope we can determine the function's start address
3802 with this code. */
c906108c 3803 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
7be570e7 3804 return 0;
c906108c 3805
7be570e7 3806 /* Get the line associated with FUNC_ADDR. */
c906108c
SS
3807 sal = find_pc_line (func_addr, 0);
3808
7be570e7
JM
3809 /* There are only two cases to consider. First, the end of the source line
3810 is within the function bounds. In that case we return the end of the
3811 source line. Second is the end of the source line extends beyond the
3812 bounds of the current function. We need to use the slow code to
3813 examine instructions in that case.
c906108c 3814
7be570e7
JM
3815 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3816 the wrong thing to do. In fact, it should be entirely possible for this
3817 function to always return zero since the slow instruction scanning code
3818 is supposed to *always* work. If it does not, then it is a bug. */
3819 if (sal.end < func_end)
3820 return sal.end;
c5aa993b 3821 else
7be570e7 3822 return 0;
c906108c
SS
3823}
3824
3825/* To skip prologues, I use this predicate. Returns either PC itself
3826 if the code at PC does not look like a function prologue; otherwise
3827 returns an address that (if we're lucky) follows the prologue. If
3828 LENIENT, then we must skip everything which is involved in setting
3829 up the frame (it's OK to skip more, just so long as we don't skip
3830 anything which might clobber the registers which are being saved.
3831 Currently we must not skip more on the alpha, but we might the lenient
3832 stuff some day. */
3833
3834CORE_ADDR
fba45db2 3835hppa_skip_prologue (CORE_ADDR pc)
c906108c 3836{
c5aa993b
JM
3837 unsigned long inst;
3838 int offset;
3839 CORE_ADDR post_prologue_pc;
3840 char buf[4];
c906108c 3841
c5aa993b
JM
3842 /* See if we can determine the end of the prologue via the symbol table.
3843 If so, then return either PC, or the PC after the prologue, whichever
3844 is greater. */
c906108c 3845
c5aa993b 3846 post_prologue_pc = after_prologue (pc);
c906108c 3847
7be570e7
JM
3848 /* If after_prologue returned a useful address, then use it. Else
3849 fall back on the instruction skipping code.
3850
3851 Some folks have claimed this causes problems because the breakpoint
3852 may be the first instruction of the prologue. If that happens, then
3853 the instruction skipping code has a bug that needs to be fixed. */
c5aa993b
JM
3854 if (post_prologue_pc != 0)
3855 return max (pc, post_prologue_pc);
c5aa993b
JM
3856 else
3857 return (skip_prologue_hard_way (pc));
c906108c
SS
3858}
3859
3860/* Put here the code to store, into a struct frame_saved_regs,
3861 the addresses of the saved registers of frame described by FRAME_INFO.
3862 This includes special registers such as pc and fp saved in special
3863 ways in the stack frame. sp is even more special:
3864 the address we return for it IS the sp for the next frame. */
3865
3866void
fba45db2
KB
3867hppa_frame_find_saved_regs (struct frame_info *frame_info,
3868 struct frame_saved_regs *frame_saved_regs)
c906108c
SS
3869{
3870 CORE_ADDR pc;
3871 struct unwind_table_entry *u;
3872 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3873 int status, i, reg;
3874 char buf[4];
3875 int fp_loc = -1;
d4f3574e 3876 int final_iteration;
c906108c
SS
3877
3878 /* Zero out everything. */
3879 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3880
3881 /* Call dummy frames always look the same, so there's no need to
3882 examine the dummy code to determine locations of saved registers;
3883 instead, let find_dummy_frame_regs fill in the correct offsets
3884 for the saved registers. */
3885 if ((frame_info->pc >= frame_info->frame
53a5351d
JM
3886 && frame_info->pc <= (frame_info->frame
3887 /* A call dummy is sized in words, but it is
3888 actually a series of instructions. Account
3889 for that scaling factor. */
3890 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3891 * CALL_DUMMY_LENGTH)
3892 /* Similarly we have to account for 64bit
3893 wide register saves. */
3894 + (32 * REGISTER_SIZE)
3895 /* We always consider FP regs 8 bytes long. */
3896 + (NUM_REGS - FP0_REGNUM) * 8
3897 /* Similarly we have to account for 64bit
3898 wide register saves. */
3899 + (6 * REGISTER_SIZE))))
c906108c
SS
3900 find_dummy_frame_regs (frame_info, frame_saved_regs);
3901
3902 /* Interrupt handlers are special too. They lay out the register
3903 state in the exact same order as the register numbers in GDB. */
3904 if (pc_in_interrupt_handler (frame_info->pc))
3905 {
3906 for (i = 0; i < NUM_REGS; i++)
3907 {
3908 /* SP is a little special. */
3909 if (i == SP_REGNUM)
3910 frame_saved_regs->regs[SP_REGNUM]
53a5351d
JM
3911 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3912 TARGET_PTR_BIT / 8);
c906108c
SS
3913 else
3914 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3915 }
3916 return;
3917 }
3918
3919#ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3920 /* Handle signal handler callers. */
5a203e44 3921 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
c906108c
SS
3922 {
3923 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3924 return;
3925 }
3926#endif
3927
3928 /* Get the starting address of the function referred to by the PC
3929 saved in frame. */
3930 pc = get_pc_function_start (frame_info->pc);
3931
3932 /* Yow! */
3933 u = find_unwind_entry (pc);
3934 if (!u)
3935 return;
3936
3937 /* This is how much of a frame adjustment we need to account for. */
3938 stack_remaining = u->Total_frame_size << 3;
3939
3940 /* Magic register saves we want to know about. */
3941 save_rp = u->Save_RP;
3942 save_sp = u->Save_SP;
3943
3944 /* Turn the Entry_GR field into a bitmask. */
3945 save_gr = 0;
3946 for (i = 3; i < u->Entry_GR + 3; i++)
3947 {
3948 /* Frame pointer gets saved into a special location. */
3949 if (u->Save_SP && i == FP_REGNUM)
3950 continue;
3951
3952 save_gr |= (1 << i);
3953 }
3954
3955 /* Turn the Entry_FR field into a bitmask too. */
3956 save_fr = 0;
3957 for (i = 12; i < u->Entry_FR + 12; i++)
3958 save_fr |= (1 << i);
3959
3960 /* The frame always represents the value of %sp at entry to the
3961 current function (and is thus equivalent to the "saved" stack
3962 pointer. */
3963 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3964
3965 /* Loop until we find everything of interest or hit a branch.
3966
3967 For unoptimized GCC code and for any HP CC code this will never ever
3968 examine any user instructions.
3969
7be570e7 3970 For optimized GCC code we're faced with problems. GCC will schedule
c906108c
SS
3971 its prologue and make prologue instructions available for delay slot
3972 filling. The end result is user code gets mixed in with the prologue
3973 and a prologue instruction may be in the delay slot of the first branch
3974 or call.
3975
3976 Some unexpected things are expected with debugging optimized code, so
3977 we allow this routine to walk past user instructions in optimized
3978 GCC code. */
d4f3574e
SS
3979 final_iteration = 0;
3980 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3981 && pc <= frame_info->pc)
c906108c
SS
3982 {
3983 status = target_read_memory (pc, buf, 4);
3984 inst = extract_unsigned_integer (buf, 4);
3985
3986 /* Yow! */
3987 if (status != 0)
3988 return;
3989
3990 /* Note the interesting effects of this instruction. */
3991 stack_remaining -= prologue_inst_adjust_sp (inst);
3992
104c1213
JM
3993 /* There are limited ways to store the return pointer into the
3994 stack. */
c2c6d25f 3995 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
c906108c
SS
3996 {
3997 save_rp = 0;
3998 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3999 }
c2c6d25f
JM
4000 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4001 {
4002 save_rp = 0;
4003 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
4004 }
c906108c 4005
104c1213
JM
4006 /* Note if we saved SP into the stack. This also happens to indicate
4007 the location of the saved frame pointer. */
c2c6d25f
JM
4008 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4009 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
104c1213
JM
4010 {
4011 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
4012 save_sp = 0;
4013 }
c906108c
SS
4014
4015 /* Account for general and floating-point register saves. */
4016 reg = inst_saves_gr (inst);
4017 if (reg >= 3 && reg <= 18
4018 && (!u->Save_SP || reg != FP_REGNUM))
4019 {
4020 save_gr &= ~(1 << reg);
4021
4022 /* stwm with a positive displacement is a *post modify*. */
4023 if ((inst >> 26) == 0x1b
4024 && extract_14 (inst) >= 0)
4025 frame_saved_regs->regs[reg] = frame_info->frame;
104c1213
JM
4026 /* A std has explicit post_modify forms. */
4027 else if ((inst & 0xfc00000c0) == 0x70000008)
4028 frame_saved_regs->regs[reg] = frame_info->frame;
c906108c
SS
4029 else
4030 {
104c1213
JM
4031 CORE_ADDR offset;
4032
4033 if ((inst >> 26) == 0x1c)
d4f3574e 4034 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
104c1213
JM
4035 else if ((inst >> 26) == 0x03)
4036 offset = low_sign_extend (inst & 0x1f, 5);
4037 else
4038 offset = extract_14 (inst);
4039
c906108c
SS
4040 /* Handle code with and without frame pointers. */
4041 if (u->Save_SP)
4042 frame_saved_regs->regs[reg]
104c1213 4043 = frame_info->frame + offset;
c906108c
SS
4044 else
4045 frame_saved_regs->regs[reg]
104c1213
JM
4046 = (frame_info->frame + (u->Total_frame_size << 3)
4047 + offset);
c906108c
SS
4048 }
4049 }
4050
4051
4052 /* GCC handles callee saved FP regs a little differently.
4053
c5aa993b
JM
4054 It emits an instruction to put the value of the start of
4055 the FP store area into %r1. It then uses fstds,ma with
4056 a basereg of %r1 for the stores.
c906108c 4057
c5aa993b
JM
4058 HP CC emits them at the current stack pointer modifying
4059 the stack pointer as it stores each register. */
c906108c
SS
4060
4061 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4062 if ((inst & 0xffffc000) == 0x34610000
4063 || (inst & 0xffffc000) == 0x37c10000)
4064 fp_loc = extract_14 (inst);
c5aa993b 4065
c906108c
SS
4066 reg = inst_saves_fr (inst);
4067 if (reg >= 12 && reg <= 21)
4068 {
4069 /* Note +4 braindamage below is necessary because the FP status
4070 registers are internally 8 registers rather than the expected
4071 4 registers. */
4072 save_fr &= ~(1 << reg);
4073 if (fp_loc == -1)
4074 {
4075 /* 1st HP CC FP register store. After this instruction
c5aa993b
JM
4076 we've set enough state that the GCC and HPCC code are
4077 both handled in the same manner. */
c906108c
SS
4078 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4079 fp_loc = 8;
4080 }
4081 else
4082 {
4083 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4084 = frame_info->frame + fp_loc;
4085 fp_loc += 8;
4086 }
4087 }
4088
39f77062 4089 /* Quit if we hit any kind of branch the previous iteration. */
d4f3574e 4090 if (final_iteration)
c906108c
SS
4091 break;
4092
d4f3574e
SS
4093 /* We want to look precisely one instruction beyond the branch
4094 if we have not found everything yet. */
4095 if (is_branch (inst))
4096 final_iteration = 1;
4097
c906108c
SS
4098 /* Bump the PC. */
4099 pc += 4;
4100 }
4101}
4102
4103
4104/* Exception handling support for the HP-UX ANSI C++ compiler.
4105 The compiler (aCC) provides a callback for exception events;
4106 GDB can set a breakpoint on this callback and find out what
4107 exception event has occurred. */
4108
4109/* The name of the hook to be set to point to the callback function */
c5aa993b
JM
4110static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4111/* The name of the function to be used to set the hook value */
4112static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4113/* The name of the callback function in end.o */
c906108c 4114static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
c5aa993b
JM
4115/* Name of function in end.o on which a break is set (called by above) */
4116static char HP_ACC_EH_break[] = "__d_eh_break";
4117/* Name of flag (in end.o) that enables catching throws */
4118static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4119/* Name of flag (in end.o) that enables catching catching */
4120static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4121/* The enum used by aCC */
4122typedef enum
4123 {
4124 __EH_NOTIFY_THROW,
4125 __EH_NOTIFY_CATCH
4126 }
4127__eh_notification;
c906108c
SS
4128
4129/* Is exception-handling support available with this executable? */
4130static int hp_cxx_exception_support = 0;
4131/* Has the initialize function been run? */
4132int hp_cxx_exception_support_initialized = 0;
4133/* Similar to above, but imported from breakpoint.c -- non-target-specific */
4134extern int exception_support_initialized;
4135/* Address of __eh_notify_hook */
a0b3c4fd 4136static CORE_ADDR eh_notify_hook_addr = 0;
c906108c 4137/* Address of __d_eh_notify_callback */
a0b3c4fd 4138static CORE_ADDR eh_notify_callback_addr = 0;
c906108c 4139/* Address of __d_eh_break */
a0b3c4fd 4140static CORE_ADDR eh_break_addr = 0;
c906108c 4141/* Address of __d_eh_catch_catch */
a0b3c4fd 4142static CORE_ADDR eh_catch_catch_addr = 0;
c906108c 4143/* Address of __d_eh_catch_throw */
a0b3c4fd 4144static CORE_ADDR eh_catch_throw_addr = 0;
c906108c 4145/* Sal for __d_eh_break */
a0b3c4fd 4146static struct symtab_and_line *break_callback_sal = 0;
c906108c
SS
4147
4148/* Code in end.c expects __d_pid to be set in the inferior,
4149 otherwise __d_eh_notify_callback doesn't bother to call
4150 __d_eh_break! So we poke the pid into this symbol
4151 ourselves.
4152 0 => success
c5aa993b 4153 1 => failure */
c906108c 4154int
fba45db2 4155setup_d_pid_in_inferior (void)
c906108c
SS
4156{
4157 CORE_ADDR anaddr;
c5aa993b
JM
4158 struct minimal_symbol *msymbol;
4159 char buf[4]; /* FIXME 32x64? */
4160
c906108c
SS
4161 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4162 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4163 if (msymbol == NULL)
4164 {
4165 warning ("Unable to find __d_pid symbol in object file.");
4166 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4167 return 1;
4168 }
4169
4170 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
39f77062 4171 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
c5aa993b 4172 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
c906108c
SS
4173 {
4174 warning ("Unable to write __d_pid");
4175 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4176 return 1;
4177 }
4178 return 0;
4179}
4180
4181/* Initialize exception catchpoint support by looking for the
4182 necessary hooks/callbacks in end.o, etc., and set the hook value to
4183 point to the required debug function
4184
4185 Return 0 => failure
c5aa993b 4186 1 => success */
c906108c
SS
4187
4188static int
fba45db2 4189initialize_hp_cxx_exception_support (void)
c906108c
SS
4190{
4191 struct symtabs_and_lines sals;
c5aa993b
JM
4192 struct cleanup *old_chain;
4193 struct cleanup *canonical_strings_chain = NULL;
c906108c 4194 int i;
c5aa993b
JM
4195 char *addr_start;
4196 char *addr_end = NULL;
4197 char **canonical = (char **) NULL;
c906108c 4198 int thread = -1;
c5aa993b
JM
4199 struct symbol *sym = NULL;
4200 struct minimal_symbol *msym = NULL;
4201 struct objfile *objfile;
c906108c
SS
4202 asection *shlib_info;
4203
4204 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4205 recursion is a possibility because finding the hook for exception
4206 callbacks involves making a call in the inferior, which means
4207 re-inserting breakpoints which can re-invoke this code */
4208
c5aa993b
JM
4209 static int recurse = 0;
4210 if (recurse > 0)
c906108c
SS
4211 {
4212 hp_cxx_exception_support_initialized = 0;
4213 exception_support_initialized = 0;
4214 return 0;
4215 }
4216
4217 hp_cxx_exception_support = 0;
4218
4219 /* First check if we have seen any HP compiled objects; if not,
4220 it is very unlikely that HP's idiosyncratic callback mechanism
4221 for exception handling debug support will be available!
4222 This will percolate back up to breakpoint.c, where our callers
4223 will decide to try the g++ exception-handling support instead. */
4224 if (!hp_som_som_object_present)
4225 return 0;
c5aa993b 4226
c906108c
SS
4227 /* We have a SOM executable with SOM debug info; find the hooks */
4228
4229 /* First look for the notify hook provided by aCC runtime libs */
4230 /* If we find this symbol, we conclude that the executable must
4231 have HP aCC exception support built in. If this symbol is not
4232 found, even though we're a HP SOM-SOM file, we may have been
4233 built with some other compiler (not aCC). This results percolates
4234 back up to our callers in breakpoint.c which can decide to
4235 try the g++ style of exception support instead.
4236 If this symbol is found but the other symbols we require are
4237 not found, there is something weird going on, and g++ support
4238 should *not* be tried as an alternative.
c5aa993b 4239
c906108c
SS
4240 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4241 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
c5aa993b 4242
c906108c
SS
4243 /* libCsup has this hook; it'll usually be non-debuggable */
4244 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4245 if (msym)
4246 {
4247 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4248 hp_cxx_exception_support = 1;
c5aa993b 4249 }
c906108c
SS
4250 else
4251 {
4252 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4253 warning ("Executable may not have been compiled debuggable with HP aCC.");
4254 warning ("GDB will be unable to intercept exception events.");
4255 eh_notify_hook_addr = 0;
4256 hp_cxx_exception_support = 0;
4257 return 0;
4258 }
4259
c906108c 4260 /* Next look for the notify callback routine in end.o */
c5aa993b 4261 /* This is always available in the SOM symbol dictionary if end.o is linked in */
c906108c
SS
4262 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4263 if (msym)
4264 {
4265 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4266 hp_cxx_exception_support = 1;
c5aa993b
JM
4267 }
4268 else
c906108c
SS
4269 {
4270 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4271 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4272 warning ("GDB will be unable to intercept exception events.");
4273 eh_notify_callback_addr = 0;
4274 return 0;
4275 }
4276
53a5351d 4277#ifndef GDB_TARGET_IS_HPPA_20W
c906108c
SS
4278 /* Check whether the executable is dynamically linked or archive bound */
4279 /* With an archive-bound executable we can use the raw addresses we find
4280 for the callback function, etc. without modification. For an executable
4281 with shared libraries, we have to do more work to find the plabel, which
4282 can be the target of a call through $$dyncall from the aCC runtime support
4283 library (libCsup) which is linked shared by default by aCC. */
4284 /* This test below was copied from somsolib.c/somread.c. It may not be a very
c5aa993b 4285 reliable one to test that an executable is linked shared. pai/1997-07-18 */
c906108c
SS
4286 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4287 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4288 {
4289 /* The minsym we have has the local code address, but that's not the
4290 plabel that can be used by an inter-load-module call. */
4291 /* Find solib handle for main image (which has end.o), and use that
4292 and the min sym as arguments to __d_shl_get() (which does the equivalent
c5aa993b 4293 of shl_findsym()) to find the plabel. */
c906108c
SS
4294
4295 args_for_find_stub args;
4296 static char message[] = "Error while finding exception callback hook:\n";
c5aa993b 4297
c906108c
SS
4298 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4299 args.msym = msym;
a0b3c4fd 4300 args.return_val = 0;
c5aa993b 4301
c906108c 4302 recurse++;
4efb68b1 4303 catch_errors (cover_find_stub_with_shl_get, &args, message,
a0b3c4fd
JM
4304 RETURN_MASK_ALL);
4305 eh_notify_callback_addr = args.return_val;
c906108c 4306 recurse--;
c5aa993b 4307
c906108c 4308 exception_catchpoints_are_fragile = 1;
c5aa993b 4309
c906108c 4310 if (!eh_notify_callback_addr)
c5aa993b
JM
4311 {
4312 /* We can get here either if there is no plabel in the export list
1faa59a8 4313 for the main image, or if something strange happened (?) */
c5aa993b
JM
4314 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4315 warning ("GDB will not be able to intercept exception events.");
4316 return 0;
4317 }
c906108c
SS
4318 }
4319 else
4320 exception_catchpoints_are_fragile = 0;
53a5351d 4321#endif
c906108c 4322
c906108c 4323 /* Now, look for the breakpointable routine in end.o */
c5aa993b 4324 /* This should also be available in the SOM symbol dict. if end.o linked in */
c906108c
SS
4325 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4326 if (msym)
4327 {
4328 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4329 hp_cxx_exception_support = 1;
c5aa993b 4330 }
c906108c
SS
4331 else
4332 {
4333 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4334 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4335 warning ("GDB will be unable to intercept exception events.");
4336 eh_break_addr = 0;
4337 return 0;
4338 }
4339
c906108c
SS
4340 /* Next look for the catch enable flag provided in end.o */
4341 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4342 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4343 if (sym) /* sometimes present in debug info */
c906108c
SS
4344 {
4345 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4346 hp_cxx_exception_support = 1;
4347 }
c5aa993b
JM
4348 else
4349 /* otherwise look in SOM symbol dict. */
c906108c
SS
4350 {
4351 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4352 if (msym)
c5aa993b
JM
4353 {
4354 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4355 hp_cxx_exception_support = 1;
4356 }
c906108c 4357 else
c5aa993b
JM
4358 {
4359 warning ("Unable to enable interception of exception catches.");
4360 warning ("Executable may not have been compiled debuggable with HP aCC.");
4361 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4362 return 0;
4363 }
c906108c
SS
4364 }
4365
c906108c
SS
4366 /* Next look for the catch enable flag provided end.o */
4367 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
c5aa993b
JM
4368 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4369 if (sym) /* sometimes present in debug info */
c906108c
SS
4370 {
4371 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4372 hp_cxx_exception_support = 1;
4373 }
c5aa993b
JM
4374 else
4375 /* otherwise look in SOM symbol dict. */
c906108c
SS
4376 {
4377 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4378 if (msym)
c5aa993b
JM
4379 {
4380 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4381 hp_cxx_exception_support = 1;
4382 }
c906108c 4383 else
c5aa993b
JM
4384 {
4385 warning ("Unable to enable interception of exception throws.");
4386 warning ("Executable may not have been compiled debuggable with HP aCC.");
4387 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4388 return 0;
4389 }
c906108c
SS
4390 }
4391
c5aa993b
JM
4392 /* Set the flags */
4393 hp_cxx_exception_support = 2; /* everything worked so far */
c906108c
SS
4394 hp_cxx_exception_support_initialized = 1;
4395 exception_support_initialized = 1;
4396
4397 return 1;
4398}
4399
4400/* Target operation for enabling or disabling interception of
4401 exception events.
4402 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4403 ENABLE is either 0 (disable) or 1 (enable).
4404 Return value is NULL if no support found;
4405 -1 if something went wrong,
4406 or a pointer to a symtab/line struct if the breakpointable
c5aa993b 4407 address was found. */
c906108c 4408
c5aa993b 4409struct symtab_and_line *
fba45db2 4410child_enable_exception_callback (enum exception_event_kind kind, int enable)
c906108c
SS
4411{
4412 char buf[4];
4413
4414 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4415 if (!initialize_hp_cxx_exception_support ())
4416 return NULL;
4417
4418 switch (hp_cxx_exception_support)
4419 {
c5aa993b
JM
4420 case 0:
4421 /* Assuming no HP support at all */
4422 return NULL;
4423 case 1:
4424 /* HP support should be present, but something went wrong */
4425 return (struct symtab_and_line *) -1; /* yuck! */
4426 /* there may be other cases in the future */
c906108c 4427 }
c5aa993b 4428
c906108c 4429 /* Set the EH hook to point to the callback routine */
c5aa993b 4430 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
c906108c 4431 /* pai: (temp) FIXME should there be a pack operation first? */
c5aa993b 4432 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
c906108c
SS
4433 {
4434 warning ("Could not write to target memory for exception event callback.");
4435 warning ("Interception of exception events may not work.");
c5aa993b 4436 return (struct symtab_and_line *) -1;
c906108c
SS
4437 }
4438 if (enable)
4439 {
c5aa993b 4440 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
39f77062 4441 if (PIDGET (inferior_ptid) > 0)
c5aa993b
JM
4442 {
4443 if (setup_d_pid_in_inferior ())
4444 return (struct symtab_and_line *) -1;
4445 }
c906108c 4446 else
c5aa993b 4447 {
104c1213
JM
4448 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4449 return (struct symtab_and_line *) -1;
c5aa993b 4450 }
c906108c 4451 }
c5aa993b 4452
c906108c
SS
4453 switch (kind)
4454 {
c5aa993b
JM
4455 case EX_EVENT_THROW:
4456 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4457 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4458 {
4459 warning ("Couldn't enable exception throw interception.");
4460 return (struct symtab_and_line *) -1;
4461 }
4462 break;
4463 case EX_EVENT_CATCH:
4464 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4465 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4466 {
4467 warning ("Couldn't enable exception catch interception.");
4468 return (struct symtab_and_line *) -1;
4469 }
4470 break;
104c1213
JM
4471 default:
4472 error ("Request to enable unknown or unsupported exception event.");
c906108c 4473 }
c5aa993b 4474
c906108c
SS
4475 /* Copy break address into new sal struct, malloc'ing if needed. */
4476 if (!break_callback_sal)
4477 {
4478 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4479 }
fe39c653 4480 init_sal (break_callback_sal);
c906108c
SS
4481 break_callback_sal->symtab = NULL;
4482 break_callback_sal->pc = eh_break_addr;
4483 break_callback_sal->line = 0;
4484 break_callback_sal->end = eh_break_addr;
c5aa993b 4485
c906108c
SS
4486 return break_callback_sal;
4487}
4488
c5aa993b 4489/* Record some information about the current exception event */
c906108c 4490static struct exception_event_record current_ex_event;
c5aa993b
JM
4491/* Convenience struct */
4492static struct symtab_and_line null_symtab_and_line =
4493{NULL, 0, 0, 0};
c906108c
SS
4494
4495/* Report current exception event. Returns a pointer to a record
4496 that describes the kind of the event, where it was thrown from,
4497 and where it will be caught. More information may be reported
c5aa993b 4498 in the future */
c906108c 4499struct exception_event_record *
fba45db2 4500child_get_current_exception_event (void)
c906108c 4501{
c5aa993b
JM
4502 CORE_ADDR event_kind;
4503 CORE_ADDR throw_addr;
4504 CORE_ADDR catch_addr;
c906108c
SS
4505 struct frame_info *fi, *curr_frame;
4506 int level = 1;
4507
c5aa993b 4508 curr_frame = get_current_frame ();
c906108c
SS
4509 if (!curr_frame)
4510 return (struct exception_event_record *) NULL;
4511
4512 /* Go up one frame to __d_eh_notify_callback, because at the
4513 point when this code is executed, there's garbage in the
4514 arguments of __d_eh_break. */
4515 fi = find_relative_frame (curr_frame, &level);
4516 if (level != 0)
4517 return (struct exception_event_record *) NULL;
4518
0f7d239c 4519 select_frame (fi);
c906108c
SS
4520
4521 /* Read in the arguments */
4522 /* __d_eh_notify_callback() is called with 3 arguments:
c5aa993b
JM
4523 1. event kind catch or throw
4524 2. the target address if known
4525 3. a flag -- not sure what this is. pai/1997-07-17 */
4526 event_kind = read_register (ARG0_REGNUM);
c906108c
SS
4527 catch_addr = read_register (ARG1_REGNUM);
4528
4529 /* Now go down to a user frame */
4530 /* For a throw, __d_eh_break is called by
c5aa993b
JM
4531 __d_eh_notify_callback which is called by
4532 __notify_throw which is called
4533 from user code.
c906108c 4534 For a catch, __d_eh_break is called by
c5aa993b
JM
4535 __d_eh_notify_callback which is called by
4536 <stackwalking stuff> which is called by
4537 __throw__<stuff> or __rethrow_<stuff> which is called
4538 from user code. */
4539 /* FIXME: Don't use such magic numbers; search for the frames */
c906108c
SS
4540 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4541 fi = find_relative_frame (curr_frame, &level);
4542 if (level != 0)
4543 return (struct exception_event_record *) NULL;
4544
0f7d239c 4545 select_frame (fi);
c906108c
SS
4546 throw_addr = fi->pc;
4547
4548 /* Go back to original (top) frame */
0f7d239c 4549 select_frame (curr_frame);
c906108c
SS
4550
4551 current_ex_event.kind = (enum exception_event_kind) event_kind;
4552 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4553 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4554
4555 return &current_ex_event;
4556}
4557
9a043c1d
AC
4558/* Instead of this nasty cast, add a method pvoid() that prints out a
4559 host VOID data type (remember %p isn't portable). */
4560
4561static CORE_ADDR
4562hppa_pointer_to_address_hack (void *ptr)
4563{
4564 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4565 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4566}
4567
c906108c 4568static void
fba45db2 4569unwind_command (char *exp, int from_tty)
c906108c
SS
4570{
4571 CORE_ADDR address;
4572 struct unwind_table_entry *u;
4573
4574 /* If we have an expression, evaluate it and use it as the address. */
4575
4576 if (exp != 0 && *exp != 0)
4577 address = parse_and_eval_address (exp);
4578 else
4579 return;
4580
4581 u = find_unwind_entry (address);
4582
4583 if (!u)
4584 {
4585 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4586 return;
4587 }
4588
ce414844 4589 printf_unfiltered ("unwind_table_entry (0x%s):\n",
9a043c1d 4590 paddr_nz (hppa_pointer_to_address_hack (u)));
c906108c
SS
4591
4592 printf_unfiltered ("\tregion_start = ");
4593 print_address (u->region_start, gdb_stdout);
4594
4595 printf_unfiltered ("\n\tregion_end = ");
4596 print_address (u->region_end, gdb_stdout);
4597
c906108c 4598#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
c906108c
SS
4599
4600 printf_unfiltered ("\n\tflags =");
4601 pif (Cannot_unwind);
4602 pif (Millicode);
4603 pif (Millicode_save_sr0);
4604 pif (Entry_SR);
4605 pif (Args_stored);
4606 pif (Variable_Frame);
4607 pif (Separate_Package_Body);
4608 pif (Frame_Extension_Millicode);
4609 pif (Stack_Overflow_Check);
4610 pif (Two_Instruction_SP_Increment);
4611 pif (Ada_Region);
4612 pif (Save_SP);
4613 pif (Save_RP);
4614 pif (Save_MRP_in_frame);
4615 pif (extn_ptr_defined);
4616 pif (Cleanup_defined);
4617 pif (MPE_XL_interrupt_marker);
4618 pif (HP_UX_interrupt_marker);
4619 pif (Large_frame);
4620
4621 putchar_unfiltered ('\n');
4622
c906108c 4623#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
c906108c
SS
4624
4625 pin (Region_description);
4626 pin (Entry_FR);
4627 pin (Entry_GR);
4628 pin (Total_frame_size);
4629}
c906108c
SS
4630
4631#ifdef PREPARE_TO_PROCEED
4632
4633/* If the user has switched threads, and there is a breakpoint
4634 at the old thread's pc location, then switch to that thread
4635 and return TRUE, else return FALSE and don't do a thread
4636 switch (or rather, don't seem to have done a thread switch).
4637
4638 Ptrace-based gdb will always return FALSE to the thread-switch
4639 query, and thus also to PREPARE_TO_PROCEED.
4640
4641 The important thing is whether there is a BPT instruction,
4642 not how many user breakpoints there are. So we have to worry
4643 about things like these:
4644
4645 o Non-bp stop -- NO
4646
4647 o User hits bp, no switch -- NO
4648
4649 o User hits bp, switches threads -- YES
4650
4651 o User hits bp, deletes bp, switches threads -- NO
4652
4653 o User hits bp, deletes one of two or more bps
c5aa993b 4654 at that PC, user switches threads -- YES
c906108c
SS
4655
4656 o Plus, since we're buffering events, the user may have hit a
c5aa993b
JM
4657 breakpoint, deleted the breakpoint and then gotten another
4658 hit on that same breakpoint on another thread which
4659 actually hit before the delete. (FIXME in breakpoint.c
4660 so that "dead" breakpoints are ignored?) -- NO
c906108c
SS
4661
4662 For these reasons, we have to violate information hiding and
4663 call "breakpoint_here_p". If core gdb thinks there is a bpt
4664 here, that's what counts, as core gdb is the one which is
e02bc4cc
DS
4665 putting the BPT instruction in and taking it out.
4666
4667 Note that this implementation is potentially redundant now that
8849f47d
JL
4668 default_prepare_to_proceed() has been added.
4669
4670 FIXME This may not support switching threads after Ctrl-C
4671 correctly. The default implementation does support this. */
c906108c 4672int
fba45db2 4673hppa_prepare_to_proceed (void)
c906108c
SS
4674{
4675 pid_t old_thread;
4676 pid_t current_thread;
4677
39f77062 4678 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
c906108c
SS
4679 if (old_thread != 0)
4680 {
4681 /* Switched over from "old_thread". Try to do
4682 as little work as possible, 'cause mostly
4683 we're going to switch back. */
4684 CORE_ADDR new_pc;
c5aa993b 4685 CORE_ADDR old_pc = read_pc ();
c906108c
SS
4686
4687 /* Yuk, shouldn't use global to specify current
4688 thread. But that's how gdb does it. */
39f77062
KB
4689 current_thread = PIDGET (inferior_ptid);
4690 inferior_ptid = pid_to_ptid (old_thread);
c906108c 4691
c5aa993b
JM
4692 new_pc = read_pc ();
4693 if (new_pc != old_pc /* If at same pc, no need */
c906108c 4694 && breakpoint_here_p (new_pc))
c5aa993b 4695 {
c906108c 4696 /* User hasn't deleted the BP.
c5aa993b 4697 Return TRUE, finishing switch to "old_thread". */
c906108c
SS
4698 flush_cached_frames ();
4699 registers_changed ();
4700#if 0
c5aa993b 4701 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
39f77062 4702 current_thread, PIDGET (inferior_ptid));
c906108c 4703#endif
c5aa993b 4704
c906108c 4705 return 1;
c5aa993b 4706 }
c906108c
SS
4707
4708 /* Otherwise switch back to the user-chosen thread. */
39f77062 4709 inferior_ptid = pid_to_ptid (current_thread);
c5aa993b 4710 new_pc = read_pc (); /* Re-prime register cache */
c906108c
SS
4711 }
4712
4713 return 0;
4714}
4715#endif /* PREPARE_TO_PROCEED */
4716
c2c6d25f 4717void
fba45db2 4718hppa_skip_permanent_breakpoint (void)
c2c6d25f
JM
4719{
4720 /* To step over a breakpoint instruction on the PA takes some
4721 fiddling with the instruction address queue.
4722
4723 When we stop at a breakpoint, the IA queue front (the instruction
4724 we're executing now) points at the breakpoint instruction, and
4725 the IA queue back (the next instruction to execute) points to
4726 whatever instruction we would execute after the breakpoint, if it
4727 were an ordinary instruction. This is the case even if the
4728 breakpoint is in the delay slot of a branch instruction.
4729
4730 Clearly, to step past the breakpoint, we need to set the queue
4731 front to the back. But what do we put in the back? What
4732 instruction comes after that one? Because of the branch delay
4733 slot, the next insn is always at the back + 4. */
4734 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4735 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4736
4737 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4738 /* We can leave the tail's space the same, since there's no jump. */
4739}
4740
1cdb71fe
JL
4741/* Copy the function value from VALBUF into the proper location
4742 for a function return.
4743
4744 Called only in the context of the "return" command. */
4745
4746void
4747hppa_store_return_value (struct type *type, char *valbuf)
4748{
4749 /* For software floating point, the return value goes into the
4750 integer registers. But we do not have any flag to key this on,
4751 so we always store the value into the integer registers.
4752
4753 If its a float value, then we also store it into the floating
4754 point registers. */
73937e03
AC
4755 deprecated_write_register_bytes (REGISTER_BYTE (28)
4756 + (TYPE_LENGTH (type) > 4
4757 ? (8 - TYPE_LENGTH (type))
4758 : (4 - TYPE_LENGTH (type))),
4759 valbuf, TYPE_LENGTH (type));
1cdb71fe 4760 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
73937e03
AC
4761 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4762 valbuf, TYPE_LENGTH (type));
1cdb71fe
JL
4763}
4764
4765/* Copy the function's return value into VALBUF.
4766
4767 This function is called only in the context of "target function calls",
4768 ie. when the debugger forces a function to be called in the child, and
4769 when the debugger forces a fucntion to return prematurely via the
4770 "return" command. */
4771
4772void
4773hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4774{
4775 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4776 memcpy (valbuf,
4777 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4778 TYPE_LENGTH (type));
4779 else
4780 memcpy (valbuf,
4781 ((char *)regbuf
4782 + REGISTER_BYTE (28)
4783 + (TYPE_LENGTH (type) > 4
4784 ? (8 - TYPE_LENGTH (type))
4785 : (4 - TYPE_LENGTH (type)))),
4786 TYPE_LENGTH (type));
4787}
4facf7e8 4788
d709c020
JB
4789int
4790hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4791{
4792 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4793 via a pointer regardless of its type or the compiler used. */
4794 return (TYPE_LENGTH (type) > 8);
4795}
4796
4797int
4798hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4799{
4800 /* Stack grows upward */
4801 return (lhs > rhs);
4802}
4803
4804CORE_ADDR
4805hppa_stack_align (CORE_ADDR sp)
4806{
4807 /* elz: adjust the quantity to the next highest value which is
4808 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4809 On hppa the sp must always be kept 64-bit aligned */
4810 return ((sp % 8) ? (sp + 7) & -8 : sp);
4811}
4812
4813int
4814hppa_pc_requires_run_before_use (CORE_ADDR pc)
4815{
4816 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4817
4818 An example of this occurs when an a.out is linked against a foo.sl.
4819 The foo.sl defines a global bar(), and the a.out declares a signature
4820 for bar(). However, the a.out doesn't directly call bar(), but passes
4821 its address in another call.
4822
4823 If you have this scenario and attempt to "break bar" before running,
4824 gdb will find a minimal symbol for bar() in the a.out. But that
4825 symbol's address will be negative. What this appears to denote is
4826 an index backwards from the base of the procedure linkage table (PLT)
4827 into the data linkage table (DLT), the end of which is contiguous
4828 with the start of the PLT. This is clearly not a valid address for
4829 us to set a breakpoint on.
4830
4831 Note that one must be careful in how one checks for a negative address.
4832 0xc0000000 is a legitimate address of something in a shared text
4833 segment, for example. Since I don't know what the possible range
4834 is of these "really, truly negative" addresses that come from the
4835 minimal symbols, I'm resorting to the gross hack of checking the
4836 top byte of the address for all 1's. Sigh. */
4837
4838 return (!target_has_stack && (pc & 0xFF000000));
4839}
4840
4841int
4842hppa_instruction_nullified (void)
4843{
4844 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4845 avoid the type cast. I'm leaving it as is for now as I'm doing
4846 semi-mechanical multiarching-related changes. */
4847 const int ipsw = (int) read_register (IPSW_REGNUM);
4848 const int flags = (int) read_register (FLAGS_REGNUM);
4849
4850 return ((ipsw & 0x00200000) && !(flags & 0x2));
4851}
4852
60e1ff27
JB
4853int
4854hppa_register_raw_size (int reg_nr)
4855{
4856 /* All registers have the same size. */
4857 return REGISTER_SIZE;
4858}
4859
d709c020
JB
4860/* Index within the register vector of the first byte of the space i
4861 used for register REG_NR. */
4862
4863int
4864hppa_register_byte (int reg_nr)
4865{
4866 return reg_nr * 4;
4867}
4868
4869/* Return the GDB type object for the "standard" data type of data
4870 in register N. */
4871
4872struct type *
4873hppa_register_virtual_type (int reg_nr)
4874{
4875 if (reg_nr < FP4_REGNUM)
4876 return builtin_type_int;
4877 else
4878 return builtin_type_float;
4879}
4880
4881/* Store the address of the place in which to copy the structure the
4882 subroutine will return. This is called from call_function. */
4883
4884void
4885hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4886{
4887 write_register (28, addr);
4888}
4889
60383d10
JB
4890CORE_ADDR
4891hppa_extract_struct_value_address (char *regbuf)
4892{
4893 /* Extract from an array REGBUF containing the (raw) register state
4894 the address in which a function should return its structure value,
4895 as a CORE_ADDR (or an expression that can be used as one). */
4896 /* FIXME: brobecker 2002-12-26.
4897 The current implementation is historical, but we should eventually
4898 implement it in a more robust manner as it relies on the fact that
4899 the address size is equal to the size of an int* _on the host_...
4900 One possible implementation that crossed my mind is to use
4901 extract_address. */
4902 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4903}
4904
d709c020
JB
4905/* Return True if REGNUM is not a register available to the user
4906 through ptrace(). */
4907
4908int
4909hppa_cannot_store_register (int regnum)
4910{
4911 return (regnum == 0
4912 || regnum == PCSQ_HEAD_REGNUM
4913 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4914 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4915
4916}
4917
4918CORE_ADDR
4919hppa_frame_args_address (struct frame_info *fi)
4920{
4921 return fi->frame;
4922}
4923
4924CORE_ADDR
4925hppa_frame_locals_address (struct frame_info *fi)
4926{
4927 return fi->frame;
4928}
4929
60383d10
JB
4930int
4931hppa_frame_num_args (struct frame_info *frame)
4932{
4933 /* We can't tell how many args there are now that the C compiler delays
4934 popping them. */
4935 return -1;
4936}
4937
d709c020
JB
4938CORE_ADDR
4939hppa_smash_text_address (CORE_ADDR addr)
4940{
4941 /* The low two bits of the PC on the PA contain the privilege level.
4942 Some genius implementing a (non-GCC) compiler apparently decided
4943 this means that "addresses" in a text section therefore include a
4944 privilege level, and thus symbol tables should contain these bits.
4945 This seems like a bonehead thing to do--anyway, it seems to work
4946 for our purposes to just ignore those bits. */
4947
4948 return (addr &= ~0x3);
4949}
4950
e6e68f1f
JB
4951static struct gdbarch *
4952hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4953{
4954 struct gdbarch *gdbarch;
59623e27
JB
4955
4956 /* Try to determine the ABI of the object we are loading. */
4be87837 4957 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
59623e27 4958 {
4be87837
DJ
4959 /* If it's a SOM file, assume it's HP/UX SOM. */
4960 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4961 info.osabi = GDB_OSABI_HPUX_SOM;
59623e27 4962 }
e6e68f1f
JB
4963
4964 /* find a candidate among the list of pre-declared architectures. */
4965 arches = gdbarch_list_lookup_by_info (arches, &info);
4966 if (arches != NULL)
4967 return (arches->gdbarch);
4968
4969 /* If none found, then allocate and initialize one. */
4970 gdbarch = gdbarch_alloc (&info, NULL);
4971
273f8429 4972 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 4973 gdbarch_init_osabi (info, gdbarch);
273f8429 4974
60383d10
JB
4975 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4976 set_gdbarch_function_start_offset (gdbarch, 0);
4977 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4978 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4979 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4980 set_gdbarch_in_solib_return_trampoline (gdbarch,
4981 hppa_in_solib_return_trampoline);
4982 set_gdbarch_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4983 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4984 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4985 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4986 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4987 set_gdbarch_register_size (gdbarch, 4);
4988 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4989 set_gdbarch_fp_regnum (gdbarch, 3);
4990 set_gdbarch_sp_regnum (gdbarch, 30);
4991 set_gdbarch_fp0_regnum (gdbarch, 64);
4992 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4993 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4994 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
4995 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
4996 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
4997 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
4998 set_gdbarch_max_register_raw_size (gdbarch, 4);
4999 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5000 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5001 set_gdbarch_store_struct_return (gdbarch, hppa_store_struct_return);
5002 set_gdbarch_deprecated_extract_return_value (gdbarch,
5003 hppa_extract_return_value);
5004 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5005 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5006 set_gdbarch_deprecated_extract_struct_value_address
5007 (gdbarch, hppa_extract_struct_value_address);
5008 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5009 set_gdbarch_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5010 set_gdbarch_frame_chain (gdbarch, hppa_frame_chain);
5011 set_gdbarch_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5012 set_gdbarch_frameless_function_invocation
5013 (gdbarch, hppa_frameless_function_invocation);
5014 set_gdbarch_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5015 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5016 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5017 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5018 set_gdbarch_frame_args_skip (gdbarch, 0);
5019 /* set_gdbarch_push_dummy_frame (gdbarch, hppa_push_dummy_frame); */
5020 set_gdbarch_pop_frame (gdbarch, hppa_pop_frame);
5021 set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5022 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5023 /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5024 set_gdbarch_push_arguments (gdbarch, hppa_push_arguments);
5025 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5026 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5027 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5028 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5029 set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
60383d10 5030
e6e68f1f
JB
5031 return gdbarch;
5032}
5033
5034static void
5035hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5036{
5037 /* Nothing to print for the moment. */
5038}
5039
4facf7e8
JB
5040void
5041_initialize_hppa_tdep (void)
5042{
5043 struct cmd_list_element *c;
5044 void break_at_finish_command (char *arg, int from_tty);
5045 void tbreak_at_finish_command (char *arg, int from_tty);
5046 void break_at_finish_at_depth_command (char *arg, int from_tty);
5047
e6e68f1f 5048 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4facf7e8
JB
5049 tm_print_insn = print_insn_hppa;
5050
5051 add_cmd ("unwind", class_maintenance, unwind_command,
5052 "Print unwind table entry at given address.",
5053 &maintenanceprintlist);
5054
5055 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5056 break_at_finish_command,
5057 concat ("Set breakpoint at procedure exit. \n\
5058Argument may be function name, or \"*\" and an address.\n\
5059If function is specified, break at end of code for that function.\n\
5060If an address is specified, break at the end of the function that contains \n\
5061that exact address.\n",
5062 "With no arg, uses current execution address of selected stack frame.\n\
5063This is useful for breaking on return to a stack frame.\n\
5064\n\
5065Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5066\n\
5067Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5068 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5069 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5070 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5071 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5072
5073 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5074 tbreak_at_finish_command,
5075"Set temporary breakpoint at procedure exit. Either there should\n\
5076be no argument or the argument must be a depth.\n"), NULL);
5077 set_cmd_completer (c, location_completer);
5078
5079 if (xdb_commands)
5080 deprecate_cmd (add_com ("bx", class_breakpoint,
5081 break_at_finish_at_depth_command,
5082"Set breakpoint at procedure exit. Either there should\n\
5083be no argument or the argument must be a depth.\n"), NULL);
5084}
5085