]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
* Enable backtracing from inside a SOM shared library back into
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
669caa9c
SS
1/* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
66a1aa07
SG
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
37#include <sys/dir.h>
38#include <signal.h>
66a1aa07
SG
39
40#ifdef COFF_ENCAPSULATE
41#include "a.out.encap.h"
42#else
66a1aa07
SG
43#endif
44#ifndef N_SET_MAGIC
45#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
46#endif
47
48/*#include <sys/user.h> After a.out.h */
49#include <sys/file.h>
50#include <sys/stat.h>
66a1aa07
SG
51#include "wait.h"
52
53#include "gdbcore.h"
54#include "gdbcmd.h"
55#include "target.h"
56#include "symfile.h"
57#include "objfiles.h"
58
669caa9c
SS
59static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60
61static int hppa_alignof PARAMS ((struct type *));
62
63CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64
c598654a 65static int prologue_inst_adjust_sp PARAMS ((unsigned long));
669caa9c 66
c598654a 67static int is_branch PARAMS ((unsigned long));
669caa9c 68
c598654a 69static int inst_saves_gr PARAMS ((unsigned long));
669caa9c 70
c598654a 71static int inst_saves_fr PARAMS ((unsigned long));
669caa9c 72
70e43abe 73static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
669caa9c 74
70e43abe 75static int pc_in_linker_stub PARAMS ((CORE_ADDR));
669caa9c
SS
76
77static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
f81eee9d 78 const struct unwind_table_entry *));
669caa9c 79
c5152d42 80static void read_unwind_info PARAMS ((struct objfile *));
669caa9c 81
c5152d42
JL
82static void internalize_unwinds PARAMS ((struct objfile *,
83 struct unwind_table_entry *,
84 asection *, unsigned int,
bfaef242 85 unsigned int, CORE_ADDR));
66a1aa07
SG
86
87\f
88/* Routines to extract various sized constants out of hppa
89 instructions. */
90
91/* This assumes that no garbage lies outside of the lower bits of
92 value. */
93
94int
95sign_extend (val, bits)
96 unsigned val, bits;
97{
98 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
99}
100
101/* For many immediate values the sign bit is the low bit! */
102
103int
104low_sign_extend (val, bits)
105 unsigned val, bits;
106{
107 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
108}
109/* extract the immediate field from a ld{bhw}s instruction */
110
111unsigned
112get_field (val, from, to)
113 unsigned val, from, to;
114{
115 val = val >> 31 - to;
116 return val & ((1 << 32 - from) - 1);
117}
118
119unsigned
120set_field (val, from, to, new_val)
121 unsigned *val, from, to;
122{
123 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
124 return *val = *val & mask | (new_val << (31 - from));
125}
126
127/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
128
129extract_3 (word)
130 unsigned word;
131{
132 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
133}
134
135extract_5_load (word)
136 unsigned word;
137{
138 return low_sign_extend (word >> 16 & MASK_5, 5);
139}
140
141/* extract the immediate field from a st{bhw}s instruction */
142
143int
144extract_5_store (word)
145 unsigned word;
146{
147 return low_sign_extend (word & MASK_5, 5);
148}
149
68c8d698
SG
150/* extract the immediate field from a break instruction */
151
152unsigned
153extract_5r_store (word)
154 unsigned word;
155{
156 return (word & MASK_5);
157}
158
159/* extract the immediate field from a {sr}sm instruction */
160
161unsigned
162extract_5R_store (word)
163 unsigned word;
164{
165 return (word >> 16 & MASK_5);
166}
167
66a1aa07
SG
168/* extract an 11 bit immediate field */
169
170int
171extract_11 (word)
172 unsigned word;
173{
174 return low_sign_extend (word & MASK_11, 11);
175}
176
177/* extract a 14 bit immediate field */
178
179int
180extract_14 (word)
181 unsigned word;
182{
183 return low_sign_extend (word & MASK_14, 14);
184}
185
186/* deposit a 14 bit constant in a word */
187
188unsigned
189deposit_14 (opnd, word)
190 int opnd;
191 unsigned word;
192{
193 unsigned sign = (opnd < 0 ? 1 : 0);
194
195 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
196}
197
198/* extract a 21 bit constant */
199
200int
201extract_21 (word)
202 unsigned word;
203{
204 int val;
205
206 word &= MASK_21;
207 word <<= 11;
208 val = GET_FIELD (word, 20, 20);
209 val <<= 11;
210 val |= GET_FIELD (word, 9, 19);
211 val <<= 2;
212 val |= GET_FIELD (word, 5, 6);
213 val <<= 5;
214 val |= GET_FIELD (word, 0, 4);
215 val <<= 2;
216 val |= GET_FIELD (word, 7, 8);
217 return sign_extend (val, 21) << 11;
218}
219
220/* deposit a 21 bit constant in a word. Although 21 bit constants are
221 usually the top 21 bits of a 32 bit constant, we assume that only
222 the low 21 bits of opnd are relevant */
223
224unsigned
225deposit_21 (opnd, word)
226 unsigned opnd, word;
227{
228 unsigned val = 0;
229
230 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
231 val <<= 2;
232 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
233 val <<= 2;
234 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
235 val <<= 11;
236 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
237 val <<= 1;
238 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
239 return word | val;
240}
241
242/* extract a 12 bit constant from branch instructions */
243
244int
245extract_12 (word)
246 unsigned word;
247{
248 return sign_extend (GET_FIELD (word, 19, 28) |
249 GET_FIELD (word, 29, 29) << 10 |
250 (word & 0x1) << 11, 12) << 2;
251}
252
253/* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256int
257extract_17 (word)
258 unsigned word;
259{
260 return sign_extend (GET_FIELD (word, 19, 28) |
261 GET_FIELD (word, 29, 29) << 10 |
262 GET_FIELD (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264}
265\f
c5152d42
JL
266
267/* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271static int
272compare_unwind_entries (a, b)
f81eee9d
JL
273 const struct unwind_table_entry *a;
274 const struct unwind_table_entry *b;
c5152d42
JL
275{
276 if (a->region_start > b->region_start)
277 return 1;
278 else if (a->region_start < b->region_start)
279 return -1;
280 else
281 return 0;
282}
283
284static void
bfaef242 285internalize_unwinds (objfile, table, section, entries, size, text_offset)
c5152d42
JL
286 struct objfile *objfile;
287 struct unwind_table_entry *table;
288 asection *section;
289 unsigned int entries, size;
bfaef242 290 CORE_ADDR text_offset;
c5152d42
JL
291{
292 /* We will read the unwind entries into temporary memory, then
293 fill in the actual unwind table. */
294 if (size > 0)
295 {
296 unsigned long tmp;
297 unsigned i;
298 char *buf = alloca (size);
299
300 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
301
302 /* Now internalize the information being careful to handle host/target
303 endian issues. */
304 for (i = 0; i < entries; i++)
305 {
306 table[i].region_start = bfd_get_32 (objfile->obfd,
307 (bfd_byte *)buf);
bfaef242 308 table[i].region_start += text_offset;
c5152d42
JL
309 buf += 4;
310 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
bfaef242 311 table[i].region_end += text_offset;
c5152d42
JL
312 buf += 4;
313 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
314 buf += 4;
315 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
316 table[i].Millicode = (tmp >> 30) & 0x1;
317 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
318 table[i].Region_description = (tmp >> 27) & 0x3;
319 table[i].reserved1 = (tmp >> 26) & 0x1;
320 table[i].Entry_SR = (tmp >> 25) & 0x1;
321 table[i].Entry_FR = (tmp >> 21) & 0xf;
322 table[i].Entry_GR = (tmp >> 16) & 0x1f;
323 table[i].Args_stored = (tmp >> 15) & 0x1;
324 table[i].Variable_Frame = (tmp >> 14) & 0x1;
325 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
326 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
327 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
328 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
329 table[i].Ada_Region = (tmp >> 9) & 0x1;
330 table[i].reserved2 = (tmp >> 5) & 0xf;
331 table[i].Save_SP = (tmp >> 4) & 0x1;
332 table[i].Save_RP = (tmp >> 3) & 0x1;
333 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
334 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
335 table[i].Cleanup_defined = tmp & 0x1;
336 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
337 buf += 4;
338 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
339 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
340 table[i].Large_frame = (tmp >> 29) & 0x1;
341 table[i].reserved4 = (tmp >> 27) & 0x3;
342 table[i].Total_frame_size = tmp & 0x7ffffff;
343 }
344 }
345}
346
347/* Read in the backtrace information stored in the `$UNWIND_START$' section of
348 the object file. This info is used mainly by find_unwind_entry() to find
349 out the stack frame size and frame pointer used by procedures. We put
350 everything on the psymbol obstack in the objfile so that it automatically
351 gets freed when the objfile is destroyed. */
352
9c842e0c 353static void
c5152d42
JL
354read_unwind_info (objfile)
355 struct objfile *objfile;
356{
357 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
358 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
359 unsigned index, unwind_entries, elf_unwind_entries;
360 unsigned stub_entries, total_entries;
bfaef242 361 CORE_ADDR text_offset;
c5152d42
JL
362 struct obj_unwind_info *ui;
363
bfaef242 364 text_offset = ANOFFSET (objfile->section_offsets, 0);
c5152d42
JL
365 ui = obstack_alloc (&objfile->psymbol_obstack,
366 sizeof (struct obj_unwind_info));
367
368 ui->table = NULL;
369 ui->cache = NULL;
370 ui->last = -1;
371
372 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
373 section in ELF at the moment. */
374 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
0fc27289 375 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
c5152d42
JL
376 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
377
378 /* Get sizes and unwind counts for all sections. */
379 if (unwind_sec)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383 }
384 else
385 {
386 unwind_size = 0;
387 unwind_entries = 0;
388 }
389
390 if (elf_unwind_sec)
391 {
392 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
393 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
394 }
f55179cb
JL
395 else
396 {
397 elf_unwind_size = 0;
398 elf_unwind_entries = 0;
399 }
c5152d42
JL
400
401 if (stub_unwind_sec)
402 {
403 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
404 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
405 }
406 else
407 {
408 stub_unwind_size = 0;
409 stub_entries = 0;
410 }
411
412 /* Compute total number of unwind entries and their total size. */
413 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
414 total_size = total_entries * sizeof (struct unwind_table_entry);
415
416 /* Allocate memory for the unwind table. */
417 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
418 ui->last = total_entries - 1;
419
420 /* Internalize the standard unwind entries. */
421 index = 0;
422 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
bfaef242 423 unwind_entries, unwind_size, text_offset);
c5152d42
JL
424 index += unwind_entries;
425 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
bfaef242 426 elf_unwind_entries, elf_unwind_size, text_offset);
c5152d42
JL
427 index += elf_unwind_entries;
428
429 /* Now internalize the stub unwind entries. */
430 if (stub_unwind_size > 0)
431 {
432 unsigned int i;
433 char *buf = alloca (stub_unwind_size);
434
435 /* Read in the stub unwind entries. */
436 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
437 0, stub_unwind_size);
438
439 /* Now convert them into regular unwind entries. */
440 for (i = 0; i < stub_entries; i++, index++)
441 {
442 /* Clear out the next unwind entry. */
443 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
444
445 /* Convert offset & size into region_start and region_end.
446 Stuff away the stub type into "reserved" fields. */
447 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
448 (bfd_byte *) buf);
449 buf += 4;
450 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
451 (bfd_byte *) buf);
452 buf += 2;
453 ui->table[index].region_end
454 = ui->table[index].region_start + 4 *
455 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
456 buf += 2;
457 }
458
459 }
460
461 /* Unwind table needs to be kept sorted. */
462 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
463 compare_unwind_entries);
464
465 /* Keep a pointer to the unwind information. */
466 objfile->obj_private = (PTR) ui;
467}
468
66a1aa07
SG
469/* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474static struct unwind_table_entry *
475find_unwind_entry(pc)
476 CORE_ADDR pc;
477{
478 int first, middle, last;
479 struct objfile *objfile;
480
481 ALL_OBJFILES (objfile)
482 {
483 struct obj_unwind_info *ui;
484
485 ui = OBJ_UNWIND_INFO (objfile);
486
487 if (!ui)
c5152d42
JL
488 {
489 read_unwind_info (objfile);
490 ui = OBJ_UNWIND_INFO (objfile);
491 }
66a1aa07
SG
492
493 /* First, check the cache */
494
495 if (ui->cache
496 && pc >= ui->cache->region_start
497 && pc <= ui->cache->region_end)
498 return ui->cache;
499
500 /* Not in the cache, do a binary search */
501
502 first = 0;
503 last = ui->last;
504
505 while (first <= last)
506 {
507 middle = (first + last) / 2;
508 if (pc >= ui->table[middle].region_start
509 && pc <= ui->table[middle].region_end)
510 {
511 ui->cache = &ui->table[middle];
512 return &ui->table[middle];
513 }
514
515 if (pc < ui->table[middle].region_start)
516 last = middle - 1;
517 else
518 first = middle + 1;
519 }
520 } /* ALL_OBJFILES() */
521 return NULL;
522}
523
98c0e047
JL
524/* start-sanitize-hpread */
525/* Return the adjustment necessary to make for addresses on the stack
526 as presented by hpread.c.
527
528 This is necessary because of the stack direction on the PA and the
529 bizarre way in which someone (?) decided they wanted to handle
530 frame pointerless code in GDB. */
531int
532hpread_adjust_stack_address (func_addr)
533 CORE_ADDR func_addr;
534{
535 struct unwind_table_entry *u;
536
537 u = find_unwind_entry (func_addr);
538 if (!u)
539 return 0;
540 else
541 return u->Total_frame_size << 3;
542}
543/* end-sanitize-hpread */
544
70e43abe
JL
545/* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548static int
549pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551{
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564}
565
5ac7f56e
JK
566/* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
5ac7f56e
JK
568
569static int
570pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572{
5ac7f56e
JK
573 int found_magic_instruction = 0;
574 int i;
08ecd8f3
JK
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
5ac7f56e 580
d08c6f4c
JK
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
5ac7f56e
JK
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
6e35b037 596 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
6e35b037 618 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634}
635
66a1aa07
SG
636static int
637find_return_regnum(pc)
638 CORE_ADDR pc;
639{
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651}
652
5ac7f56e 653/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07 654int
70e43abe 655find_proc_framesize (pc)
66a1aa07
SG
656 CORE_ADDR pc;
657{
658 struct unwind_table_entry *u;
70e43abe 659 struct minimal_symbol *msym_us;
66a1aa07 660
66a1aa07
SG
661 u = find_unwind_entry (pc);
662
663 if (!u)
5ac7f56e
JK
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
66a1aa07 671
70e43abe
JL
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
eabbe766
JK
678 return -1;
679
66a1aa07
SG
680 return u->Total_frame_size << 3;
681}
682
5ac7f56e
JK
683/* Return offset from sp at which rp is saved, or 0 if not saved. */
684static int rp_saved PARAMS ((CORE_ADDR));
685
686static int
687rp_saved (pc)
688 CORE_ADDR pc;
66a1aa07
SG
689{
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
5ac7f56e
JK
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
66a1aa07
SG
702
703 if (u->Save_RP)
5ac7f56e 704 return -20;
c7f3b703
JL
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
710 return -24;
711 case PARAMETER_RELOCATION:
712 return -8;
713 default:
714 return 0;
715 }
716 }
66a1aa07
SG
717 else
718 return 0;
719}
720\f
8fa74880
SG
721int
722frameless_function_invocation (frame)
669caa9c 723 struct frame_info *frame;
8fa74880 724{
b8ec9a79 725 struct unwind_table_entry *u;
8fa74880 726
b8ec9a79 727 u = find_unwind_entry (frame->pc);
8fa74880 728
b8ec9a79 729 if (u == 0)
7f43b9b7 730 return 0;
b8ec9a79 731
c7f3b703 732 return (u->Total_frame_size == 0 && u->stub_type == 0);
8fa74880
SG
733}
734
66a1aa07
SG
735CORE_ADDR
736saved_pc_after_call (frame)
669caa9c 737 struct frame_info *frame;
66a1aa07
SG
738{
739 int ret_regnum;
edd86fb0
JL
740 CORE_ADDR pc;
741 struct unwind_table_entry *u;
66a1aa07
SG
742
743 ret_regnum = find_return_regnum (get_frame_pc (frame));
edd86fb0
JL
744 pc = read_register (ret_regnum) & ~0x3;
745
746 /* If PC is in a linker stub, then we need to dig the address
747 the stub will return to out of the stack. */
748 u = find_unwind_entry (pc);
749 if (u && u->stub_type != 0)
750 return frame_saved_pc (frame);
751 else
752 return pc;
66a1aa07
SG
753}
754\f
755CORE_ADDR
756frame_saved_pc (frame)
669caa9c 757 struct frame_info *frame;
66a1aa07
SG
758{
759 CORE_ADDR pc = get_frame_pc (frame);
7f43b9b7 760 struct unwind_table_entry *u;
66a1aa07 761
70e43abe
JL
762 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
763 at the base of the frame in an interrupt handler. Registers within
764 are saved in the exact same order as GDB numbers registers. How
765 convienent. */
766 if (pc_in_interrupt_handler (pc))
767 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
768
769 /* Deal with signal handler caller frames too. */
770 if (frame->signal_handler_caller)
771 {
772 CORE_ADDR rp;
773 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
54b2555b 774 return rp & ~0x3;
70e43abe
JL
775 }
776
8fa74880 777 if (frameless_function_invocation (frame))
66a1aa07
SG
778 {
779 int ret_regnum;
780
781 ret_regnum = find_return_regnum (pc);
782
70e43abe
JL
783 /* If the next frame is an interrupt frame or a signal
784 handler caller, then we need to look in the saved
785 register area to get the return pointer (the values
786 in the registers may not correspond to anything useful). */
787 if (frame->next
788 && (frame->next->signal_handler_caller
789 || pc_in_interrupt_handler (frame->next->pc)))
790 {
70e43abe
JL
791 struct frame_saved_regs saved_regs;
792
54b2555b 793 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 794 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
795 {
796 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
797
798 /* Syscalls are really two frames. The syscall stub itself
799 with a return pointer in %rp and the kernel call with
800 a return pointer in %r31. We return the %rp variant
801 if %r31 is the same as frame->pc. */
802 if (pc == frame->pc)
803 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
804 }
70e43abe 805 else
7f43b9b7 806 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
807 }
808 else
7f43b9b7 809 pc = read_register (ret_regnum) & ~0x3;
66a1aa07 810 }
66a1aa07 811 else
5ac7f56e 812 {
edd86fb0 813 int rp_offset;
5ac7f56e 814
edd86fb0
JL
815restart:
816 rp_offset = rp_saved (pc);
70e43abe
JL
817 /* Similar to code in frameless function case. If the next
818 frame is a signal or interrupt handler, then dig the right
819 information out of the saved register info. */
820 if (rp_offset == 0
821 && frame->next
822 && (frame->next->signal_handler_caller
823 || pc_in_interrupt_handler (frame->next->pc)))
824 {
70e43abe
JL
825 struct frame_saved_regs saved_regs;
826
669caa9c 827 get_frame_saved_regs (frame->next, &saved_regs);
471fb8d8 828 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
54b2555b
JL
829 {
830 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
831
832 /* Syscalls are really two frames. The syscall stub itself
833 with a return pointer in %rp and the kernel call with
834 a return pointer in %r31. We return the %rp variant
835 if %r31 is the same as frame->pc. */
836 if (pc == frame->pc)
837 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
838 }
70e43abe 839 else
7f43b9b7 840 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
70e43abe
JL
841 }
842 else if (rp_offset == 0)
7f43b9b7 843 pc = read_register (RP_REGNUM) & ~0x3;
5ac7f56e 844 else
7f43b9b7 845 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 846 }
7f43b9b7
JL
847
848 /* If PC is inside a linker stub, then dig out the address the stub
849 will return to. */
850 u = find_unwind_entry (pc);
851 if (u && u->stub_type != 0)
852 goto restart;
853
854 return pc;
66a1aa07
SG
855}
856\f
857/* We need to correct the PC and the FP for the outermost frame when we are
858 in a system call. */
859
860void
861init_extra_frame_info (fromleaf, frame)
862 int fromleaf;
863 struct frame_info *frame;
864{
865 int flags;
866 int framesize;
867
192c3eeb 868 if (frame->next && !fromleaf)
66a1aa07
SG
869 return;
870
192c3eeb
JL
871 /* If the next frame represents a frameless function invocation
872 then we have to do some adjustments that are normally done by
873 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
874 if (fromleaf)
875 {
876 /* Find the framesize of *this* frame without peeking at the PC
877 in the current frame structure (it isn't set yet). */
878 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
879
880 /* Now adjust our base frame accordingly. If we have a frame pointer
881 use it, else subtract the size of this frame from the current
882 frame. (we always want frame->frame to point at the lowest address
883 in the frame). */
884 if (framesize == -1)
885 frame->frame = read_register (FP_REGNUM);
886 else
887 frame->frame -= framesize;
888 return;
889 }
890
66a1aa07
SG
891 flags = read_register (FLAGS_REGNUM);
892 if (flags & 2) /* In system call? */
893 frame->pc = read_register (31) & ~0x3;
894
192c3eeb
JL
895 /* The outermost frame is always derived from PC-framesize
896
897 One might think frameless innermost frames should have
898 a frame->frame that is the same as the parent's frame->frame.
899 That is wrong; frame->frame in that case should be the *high*
900 address of the parent's frame. It's complicated as hell to
901 explain, but the parent *always* creates some stack space for
902 the child. So the child actually does have a frame of some
903 sorts, and its base is the high address in its parent's frame. */
66a1aa07
SG
904 framesize = find_proc_framesize(frame->pc);
905 if (framesize == -1)
906 frame->frame = read_register (FP_REGNUM);
907 else
908 frame->frame = read_register (SP_REGNUM) - framesize;
66a1aa07
SG
909}
910\f
8966221d
JK
911/* Given a GDB frame, determine the address of the calling function's frame.
912 This will be used to create a new GDB frame struct, and then
913 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
914
915 This may involve searching through prologues for several functions
916 at boundaries where GCC calls HP C code, or where code which has
917 a frame pointer calls code without a frame pointer. */
8966221d 918
669caa9c 919CORE_ADDR
66a1aa07
SG
920frame_chain (frame)
921 struct frame_info *frame;
922{
8966221d
JK
923 int my_framesize, caller_framesize;
924 struct unwind_table_entry *u;
70e43abe
JL
925 CORE_ADDR frame_base;
926
927 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
928 are easy; at *sp we have a full save state strucutre which we can
929 pull the old stack pointer from. Also see frame_saved_pc for
930 code to dig a saved PC out of the save state structure. */
931 if (pc_in_interrupt_handler (frame->pc))
932 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
933 else if (frame->signal_handler_caller)
934 {
935 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
936 }
937 else
938 frame_base = frame->frame;
66a1aa07 939
8966221d
JK
940 /* Get frame sizes for the current frame and the frame of the
941 caller. */
942 my_framesize = find_proc_framesize (frame->pc);
943 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 944
8966221d
JK
945 /* If caller does not have a frame pointer, then its frame
946 can be found at current_frame - caller_framesize. */
947 if (caller_framesize != -1)
70e43abe 948 return frame_base - caller_framesize;
8966221d
JK
949
950 /* Both caller and callee have frame pointers and are GCC compiled
951 (SAVE_SP bit in unwind descriptor is on for both functions.
952 The previous frame pointer is found at the top of the current frame. */
953 if (caller_framesize == -1 && my_framesize == -1)
70e43abe 954 return read_memory_integer (frame_base, 4);
8966221d
JK
955
956 /* Caller has a frame pointer, but callee does not. This is a little
957 more difficult as GCC and HP C lay out locals and callee register save
958 areas very differently.
959
960 The previous frame pointer could be in a register, or in one of
961 several areas on the stack.
962
963 Walk from the current frame to the innermost frame examining
2f8c3639 964 unwind descriptors to determine if %r3 ever gets saved into the
8966221d 965 stack. If so return whatever value got saved into the stack.
2f8c3639 966 If it was never saved in the stack, then the value in %r3 is still
8966221d
JK
967 valid, so use it.
968
2f8c3639 969 We use information from unwind descriptors to determine if %r3
8966221d
JK
970 is saved into the stack (Entry_GR field has this information). */
971
972 while (frame)
973 {
974 u = find_unwind_entry (frame->pc);
975
976 if (!u)
977 {
01a03545
JK
978 /* We could find this information by examining prologues. I don't
979 think anyone has actually written any tools (not even "strip")
980 which leave them out of an executable, so maybe this is a moot
981 point. */
8966221d
JK
982 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
983 return 0;
984 }
985
986 /* Entry_GR specifies the number of callee-saved general registers
2f8c3639 987 saved in the stack. It starts at %r3, so %r3 would be 1. */
70e43abe
JL
988 if (u->Entry_GR >= 1 || u->Save_SP
989 || frame->signal_handler_caller
990 || pc_in_interrupt_handler (frame->pc))
8966221d
JK
991 break;
992 else
993 frame = frame->next;
994 }
995
996 if (frame)
997 {
998 /* We may have walked down the chain into a function with a frame
999 pointer. */
70e43abe
JL
1000 if (u->Save_SP
1001 && !frame->signal_handler_caller
1002 && !pc_in_interrupt_handler (frame->pc))
8966221d 1003 return read_memory_integer (frame->frame, 4);
2f8c3639 1004 /* %r3 was saved somewhere in the stack. Dig it out. */
8966221d 1005 else
c598654a 1006 {
c598654a
JL
1007 struct frame_saved_regs saved_regs;
1008
669caa9c 1009 get_frame_saved_regs (frame, &saved_regs);
c598654a
JL
1010 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1011 }
8966221d
JK
1012 }
1013 else
1014 {
2f8c3639 1015 /* The value in %r3 was never saved into the stack (thus %r3 still
8966221d 1016 holds the value of the previous frame pointer). */
2f8c3639 1017 return read_register (FP_REGNUM);
8966221d
JK
1018 }
1019}
66a1aa07 1020
66a1aa07
SG
1021\f
1022/* To see if a frame chain is valid, see if the caller looks like it
1023 was compiled with gcc. */
1024
1025int
1026frame_chain_valid (chain, thisframe)
669caa9c
SS
1027 CORE_ADDR chain;
1028 struct frame_info *thisframe;
66a1aa07 1029{
247145e6
JK
1030 struct minimal_symbol *msym_us;
1031 struct minimal_symbol *msym_start;
70e43abe 1032 struct unwind_table_entry *u, *next_u = NULL;
669caa9c 1033 struct frame_info *next;
66a1aa07
SG
1034
1035 if (!chain)
1036 return 0;
1037
b8ec9a79 1038 u = find_unwind_entry (thisframe->pc);
4b01383b 1039
70e43abe
JL
1040 if (u == NULL)
1041 return 1;
1042
247145e6
JK
1043 /* We can't just check that the same of msym_us is "_start", because
1044 someone idiotically decided that they were going to make a Ltext_end
1045 symbol with the same address. This Ltext_end symbol is totally
1046 indistinguishable (as nearly as I can tell) from the symbol for a function
1047 which is (legitimately, since it is in the user's namespace)
1048 named Ltext_end, so we can't just ignore it. */
1049 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1050 msym_start = lookup_minimal_symbol ("_start", NULL);
1051 if (msym_us
1052 && msym_start
1053 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 1054 return 0;
5ac7f56e 1055
70e43abe
JL
1056 next = get_next_frame (thisframe);
1057 if (next)
1058 next_u = find_unwind_entry (next->pc);
5ac7f56e 1059
70e43abe
JL
1060 /* If this frame does not save SP, has no stack, isn't a stub,
1061 and doesn't "call" an interrupt routine or signal handler caller,
1062 then its not valid. */
1063 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1064 || (thisframe->next && thisframe->next->signal_handler_caller)
1065 || (next_u && next_u->HP_UX_interrupt_marker))
b8ec9a79 1066 return 1;
5ac7f56e 1067
b8ec9a79
JK
1068 if (pc_in_linker_stub (thisframe->pc))
1069 return 1;
4b01383b 1070
b8ec9a79 1071 return 0;
66a1aa07
SG
1072}
1073
66a1aa07
SG
1074/*
1075 * These functions deal with saving and restoring register state
1076 * around a function call in the inferior. They keep the stack
1077 * double-word aligned; eventually, on an hp700, the stack will have
1078 * to be aligned to a 64-byte boundary.
1079 */
1080
1081int
1082push_dummy_frame ()
1083{
1084 register CORE_ADDR sp;
1085 register int regnum;
1086 int int_buffer;
1087 double freg_buffer;
1088
1089 /* Space for "arguments"; the RP goes in here. */
1090 sp = read_register (SP_REGNUM) + 48;
1091 int_buffer = read_register (RP_REGNUM) | 0x3;
1092 write_memory (sp - 20, (char *)&int_buffer, 4);
1093
1094 int_buffer = read_register (FP_REGNUM);
1095 write_memory (sp, (char *)&int_buffer, 4);
1096
1097 write_register (FP_REGNUM, sp);
1098
1099 sp += 8;
1100
1101 for (regnum = 1; regnum < 32; regnum++)
1102 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1103 sp = push_word (sp, read_register (regnum));
1104
1105 sp += 4;
1106
1107 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1108 {
1109 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1110 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1111 }
1112 sp = push_word (sp, read_register (IPSW_REGNUM));
1113 sp = push_word (sp, read_register (SAR_REGNUM));
1114 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1115 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1116 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1117 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1118 write_register (SP_REGNUM, sp);
1119}
1120
1121find_dummy_frame_regs (frame, frame_saved_regs)
1122 struct frame_info *frame;
1123 struct frame_saved_regs *frame_saved_regs;
1124{
1125 CORE_ADDR fp = frame->frame;
1126 int i;
1127
1128 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1129 frame_saved_regs->regs[FP_REGNUM] = fp;
1130 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 1131
b227992a
SG
1132 for (fp += 12, i = 3; i < 32; i++)
1133 {
1134 if (i != FP_REGNUM)
1135 {
1136 frame_saved_regs->regs[i] = fp;
1137 fp += 4;
1138 }
1139 }
66a1aa07
SG
1140
1141 fp += 4;
1142 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1143 frame_saved_regs->regs[i] = fp;
1144
1145 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
1146 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1147 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1148 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1149 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1150 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
1151}
1152
1153int
1154hppa_pop_frame ()
1155{
669caa9c 1156 register struct frame_info *frame = get_current_frame ();
66a1aa07
SG
1157 register CORE_ADDR fp;
1158 register int regnum;
1159 struct frame_saved_regs fsr;
66a1aa07
SG
1160 double freg_buffer;
1161
669caa9c
SS
1162 fp = FRAME_FP (frame);
1163 get_frame_saved_regs (frame, &fsr);
66a1aa07 1164
0a64709e 1165#ifndef NO_PC_SPACE_QUEUE_RESTORE
66a1aa07
SG
1166 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1167 restore_pc_queue (&fsr);
0a64709e 1168#endif
66a1aa07
SG
1169
1170 for (regnum = 31; regnum > 0; regnum--)
1171 if (fsr.regs[regnum])
1172 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1173
1174 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1175 if (fsr.regs[regnum])
1176 {
1177 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1178 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1179 }
1180
1181 if (fsr.regs[IPSW_REGNUM])
1182 write_register (IPSW_REGNUM,
1183 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1184
1185 if (fsr.regs[SAR_REGNUM])
1186 write_register (SAR_REGNUM,
1187 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1188
ed1a07ad 1189 /* If the PC was explicitly saved, then just restore it. */
66a1aa07
SG
1190 if (fsr.regs[PCOQ_TAIL_REGNUM])
1191 write_register (PCOQ_TAIL_REGNUM,
1192 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1193
ed1a07ad
JK
1194 /* Else use the value in %rp to set the new PC. */
1195 else
e9a3cde8 1196 target_write_pc (read_register (RP_REGNUM), 0);
ed1a07ad 1197
66a1aa07
SG
1198 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1199
1200 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1201 write_register (SP_REGNUM, fp - 48);
1202 else
1203 write_register (SP_REGNUM, fp);
1204
1205 flush_cached_frames ();
66a1aa07
SG
1206}
1207
1208/*
1209 * After returning to a dummy on the stack, restore the instruction
1210 * queue space registers. */
1211
1212static int
1213restore_pc_queue (fsr)
1214 struct frame_saved_regs *fsr;
1215{
1216 CORE_ADDR pc = read_pc ();
1217 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1218 int pid;
67ac9759 1219 struct target_waitstatus w;
66a1aa07
SG
1220 int insn_count;
1221
1222 /* Advance past break instruction in the call dummy. */
1223 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1224 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1225
1226 /*
1227 * HPUX doesn't let us set the space registers or the space
1228 * registers of the PC queue through ptrace. Boo, hiss.
1229 * Conveniently, the call dummy has this sequence of instructions
1230 * after the break:
1231 * mtsp r21, sr0
1232 * ble,n 0(sr0, r22)
1233 *
1234 * So, load up the registers and single step until we are in the
1235 * right place.
1236 */
1237
1238 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1239 write_register (22, new_pc);
1240
1241 for (insn_count = 0; insn_count < 3; insn_count++)
1242 {
8c5e0021
JK
1243 /* FIXME: What if the inferior gets a signal right now? Want to
1244 merge this into wait_for_inferior (as a special kind of
1245 watchpoint? By setting a breakpoint at the end? Is there
1246 any other choice? Is there *any* way to do this stuff with
1247 ptrace() or some equivalent?). */
66a1aa07 1248 resume (1, 0);
67ac9759 1249 target_wait (inferior_pid, &w);
66a1aa07 1250
67ac9759 1251 if (w.kind == TARGET_WAITKIND_SIGNALLED)
66a1aa07 1252 {
67ac9759 1253 stop_signal = w.value.sig;
66a1aa07 1254 terminal_ours_for_output ();
67ac9759
JK
1255 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1256 target_signal_to_name (stop_signal),
1257 target_signal_to_string (stop_signal));
199b2450 1258 gdb_flush (gdb_stdout);
66a1aa07
SG
1259 return 0;
1260 }
1261 }
8c5e0021 1262 target_terminal_ours ();
cad1498f 1263 target_fetch_registers (-1);
66a1aa07
SG
1264 return 1;
1265}
1266
1267CORE_ADDR
1268hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1269 int nargs;
4fd5eed4 1270 value_ptr *args;
66a1aa07
SG
1271 CORE_ADDR sp;
1272 int struct_return;
1273 CORE_ADDR struct_addr;
1274{
1275 /* array of arguments' offsets */
1edc5cd2 1276 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
1277 int cum = 0;
1278 int i, alignment;
1279
1280 for (i = 0; i < nargs; i++)
1281 {
1282 /* Coerce chars to int & float to double if necessary */
1283 args[i] = value_arg_coerce (args[i]);
1284
1285 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1286
1287 /* value must go at proper alignment. Assume alignment is a
1288 power of two.*/
1289 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1290 if (cum % alignment)
1291 cum = (cum + alignment) & -alignment;
1292 offset[i] = -cum;
1293 }
558f4183 1294 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
1295
1296 for (i = 0; i < nargs; i++)
1297 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1298 TYPE_LENGTH (VALUE_TYPE (args[i])));
1299
1300 if (struct_return)
1301 write_register (28, struct_addr);
1302 return sp + 32;
1303}
1304
1305/*
1306 * Insert the specified number of args and function address
1307 * into a call sequence of the above form stored at DUMMYNAME.
1308 *
1309 * On the hppa we need to call the stack dummy through $$dyncall.
1310 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1311 * real_pc, which is the location where gdb should start up the
1312 * inferior to do the function call.
1313 */
1314
1315CORE_ADDR
1316hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
f4f0d174 1317 char *dummy;
66a1aa07
SG
1318 CORE_ADDR pc;
1319 CORE_ADDR fun;
1320 int nargs;
4fd5eed4 1321 value_ptr *args;
66a1aa07
SG
1322 struct type *type;
1323 int gcc_p;
1324{
1325 CORE_ADDR dyncall_addr, sr4export_addr;
1326 struct minimal_symbol *msymbol;
6cfec929 1327 int flags = read_register (FLAGS_REGNUM);
19cd0c1f 1328 struct unwind_table_entry *u;
66a1aa07
SG
1329
1330 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1331 if (msymbol == NULL)
1332 error ("Can't find an address for $$dyncall trampoline");
1333
1334 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1335
4f915914
JL
1336 /* FUN could be a procedure label, in which case we have to get
1337 its real address and the value of its GOT/DP. */
1338 if (fun & 0x2)
1339 {
1340 /* Get the GOT/DP value for the target function. It's
1341 at *(fun+4). Note the call dummy is *NOT* allowed to
1342 trash %r19 before calling the target function. */
1343 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1344
1345 /* Now get the real address for the function we are calling, it's
1346 at *fun. */
1347 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1348 }
1349
19cd0c1f
JL
1350 /* If we are calling an import stub (eg calling into a dynamic library)
1351 then have sr4export call the magic __d_plt_call routine which is linked
1352 in from end.o. (You can't use _sr4export to call the import stub as
1353 the value in sp-24 will get fried and you end up returning to the
1354 wrong location. You can't call the import stub directly as the code
1355 to bind the PLT entry to a function can't return to a stack address.) */
1356 u = find_unwind_entry (fun);
1357 if (u && u->stub_type == IMPORT)
1358 {
1359 CORE_ADDR new_fun;
1360 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1361 if (msymbol == NULL)
1362 error ("Can't find an address for __d_plt_call trampoline");
1363
1364 /* This is where sr4export will jump to. */
1365 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1366
1367 /* We have to store the address of the stub in __shlib_funcptr. */
1368 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1369 (struct objfile *)NULL);
1370 if (msymbol == NULL)
1371 error ("Can't find an address for __shlib_funcptr");
1372
1373 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1374 fun = new_fun;
1375
1376 }
1377
1378 /* We still need sr4export's address too. */
66a1aa07
SG
1379 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1380 if (msymbol == NULL)
1381 error ("Can't find an address for _sr4export trampoline");
1382
1383 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1384
f4f0d174
JK
1385 store_unsigned_integer
1386 (&dummy[9*REGISTER_SIZE],
1387 REGISTER_SIZE,
1388 deposit_21 (fun >> 11,
1389 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1390 REGISTER_SIZE)));
1391 store_unsigned_integer
1392 (&dummy[10*REGISTER_SIZE],
1393 REGISTER_SIZE,
1394 deposit_14 (fun & MASK_11,
1395 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1396 REGISTER_SIZE)));
1397 store_unsigned_integer
1398 (&dummy[12*REGISTER_SIZE],
1399 REGISTER_SIZE,
1400 deposit_21 (sr4export_addr >> 11,
1401 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1402 REGISTER_SIZE)));
1403 store_unsigned_integer
1404 (&dummy[13*REGISTER_SIZE],
1405 REGISTER_SIZE,
1406 deposit_14 (sr4export_addr & MASK_11,
1407 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1408 REGISTER_SIZE)));
66a1aa07
SG
1409
1410 write_register (22, pc);
1411
6cfec929
JK
1412 /* If we are in a syscall, then we should call the stack dummy
1413 directly. $$dyncall is not needed as the kernel sets up the
1414 space id registers properly based on the value in %r31. In
1415 fact calling $$dyncall will not work because the value in %r22
1416 will be clobbered on the syscall exit path. */
1417 if (flags & 2)
1418 return pc;
1419 else
1420 return dyncall_addr;
1421
66a1aa07
SG
1422}
1423
d3862cae
JK
1424/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1425 bits. */
669caa9c 1426
d3862cae 1427CORE_ADDR
e9a3cde8
JL
1428target_read_pc (pid)
1429 int pid;
d3862cae
JK
1430{
1431 int flags = read_register (FLAGS_REGNUM);
1432
1433 if (flags & 2)
1434 return read_register (31) & ~0x3;
1435 return read_register (PC_REGNUM) & ~0x3;
1436}
1437
6cfec929
JK
1438/* Write out the PC. If currently in a syscall, then also write the new
1439 PC value into %r31. */
669caa9c 1440
6cfec929 1441void
e9a3cde8 1442target_write_pc (v, pid)
6cfec929 1443 CORE_ADDR v;
e9a3cde8 1444 int pid;
6cfec929
JK
1445{
1446 int flags = read_register (FLAGS_REGNUM);
1447
1448 /* If in a syscall, then set %r31. Also make sure to get the
1449 privilege bits set correctly. */
1450 if (flags & 2)
1451 write_register (31, (long) (v | 0x3));
1452
1453 write_register (PC_REGNUM, (long) v);
1454 write_register (NPC_REGNUM, (long) v + 4);
1455}
1456
66a1aa07
SG
1457/* return the alignment of a type in bytes. Structures have the maximum
1458 alignment required by their fields. */
1459
1460static int
1461hppa_alignof (arg)
1462 struct type *arg;
1463{
1464 int max_align, align, i;
1465 switch (TYPE_CODE (arg))
1466 {
1467 case TYPE_CODE_PTR:
1468 case TYPE_CODE_INT:
1469 case TYPE_CODE_FLT:
1470 return TYPE_LENGTH (arg);
1471 case TYPE_CODE_ARRAY:
1472 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1473 case TYPE_CODE_STRUCT:
1474 case TYPE_CODE_UNION:
1475 max_align = 2;
1476 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1477 {
1478 /* Bit fields have no real alignment. */
1479 if (!TYPE_FIELD_BITPOS (arg, i))
1480 {
1481 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1482 max_align = max (max_align, align);
1483 }
1484 }
1485 return max_align;
1486 default:
1487 return 4;
1488 }
1489}
1490
1491/* Print the register regnum, or all registers if regnum is -1 */
1492
1493pa_do_registers_info (regnum, fpregs)
1494 int regnum;
1495 int fpregs;
1496{
1497 char raw_regs [REGISTER_BYTES];
1498 int i;
1499
1500 for (i = 0; i < NUM_REGS; i++)
1501 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1502 if (regnum == -1)
1503 pa_print_registers (raw_regs, regnum, fpregs);
1504 else if (regnum < FP0_REGNUM)
199b2450 1505 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1506 REGISTER_BYTE (regnum)));
1507 else
1508 pa_print_fp_reg (regnum);
1509}
1510
1511pa_print_registers (raw_regs, regnum, fpregs)
1512 char *raw_regs;
1513 int regnum;
1514 int fpregs;
1515{
1516 int i;
1517
1518 for (i = 0; i < 18; i++)
199b2450 1519 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1520 reg_names[i],
1521 *(int *)(raw_regs + REGISTER_BYTE (i)),
1522 reg_names[i + 18],
1523 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1524 reg_names[i + 36],
1525 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1526 reg_names[i + 54],
1527 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1528
1529 if (fpregs)
1530 for (i = 72; i < NUM_REGS; i++)
1531 pa_print_fp_reg (i);
1532}
1533
1534pa_print_fp_reg (i)
1535 int i;
1536{
1537 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1538 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
66a1aa07 1539
eb1167c6 1540 /* Get 32bits of data. */
66a1aa07 1541 read_relative_register_raw_bytes (i, raw_buffer);
ad09cb2b 1542
eb1167c6
JL
1543 /* Put it in the buffer. No conversions are ever necessary. */
1544 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
66a1aa07 1545
199b2450 1546 fputs_filtered (reg_names[i], gdb_stdout);
eb1167c6
JL
1547 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1548 fputs_filtered ("(single precision) ", gdb_stdout);
66a1aa07 1549
199b2450 1550 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1551 1, 0, Val_pretty_default);
1552 printf_filtered ("\n");
eb1167c6
JL
1553
1554 /* If "i" is even, then this register can also be a double-precision
1555 FP register. Dump it out as such. */
1556 if ((i % 2) == 0)
1557 {
1558 /* Get the data in raw format for the 2nd half. */
1559 read_relative_register_raw_bytes (i + 1, raw_buffer);
1560
1561 /* Copy it into the appropriate part of the virtual buffer. */
1562 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1563 REGISTER_RAW_SIZE (i));
1564
1565 /* Dump it as a double. */
1566 fputs_filtered (reg_names[i], gdb_stdout);
1567 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1568 fputs_filtered ("(double precision) ", gdb_stdout);
1569
1570 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1571 1, 0, Val_pretty_default);
1572 printf_filtered ("\n");
1573 }
66a1aa07
SG
1574}
1575
de482138
JL
1576/* Figure out if PC is in a trampoline, and if so find out where
1577 the trampoline will jump to. If not in a trampoline, return zero.
66a1aa07 1578
de482138
JL
1579 Simple code examination probably is not a good idea since the code
1580 sequences in trampolines can also appear in user code.
1581
1582 We use unwinds and information from the minimal symbol table to
1583 determine when we're in a trampoline. This won't work for ELF
1584 (yet) since it doesn't create stub unwind entries. Whether or
1585 not ELF will create stub unwinds or normal unwinds for linker
1586 stubs is still being debated.
1587
1588 This should handle simple calls through dyncall or sr4export,
1589 long calls, argument relocation stubs, and dyncall/sr4export
1590 calling an argument relocation stub. It even handles some stubs
1591 used in dynamic executables. */
66a1aa07
SG
1592
1593CORE_ADDR
1594skip_trampoline_code (pc, name)
1595 CORE_ADDR pc;
1596 char *name;
1597{
de482138
JL
1598 long orig_pc = pc;
1599 long prev_inst, curr_inst, loc;
66a1aa07 1600 static CORE_ADDR dyncall = 0;
de482138 1601 static CORE_ADDR sr4export = 0;
66a1aa07 1602 struct minimal_symbol *msym;
de482138 1603 struct unwind_table_entry *u;
66a1aa07 1604
de482138
JL
1605/* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1606 new exec file */
66a1aa07
SG
1607
1608 if (!dyncall)
1609 {
1610 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1611 if (msym)
1612 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1613 else
1614 dyncall = -1;
1615 }
1616
de482138
JL
1617 if (!sr4export)
1618 {
1619 msym = lookup_minimal_symbol ("_sr4export", NULL);
1620 if (msym)
1621 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1622 else
1623 sr4export = -1;
1624 }
1625
1626 /* Addresses passed to dyncall may *NOT* be the actual address
669caa9c 1627 of the function. So we may have to do something special. */
66a1aa07 1628 if (pc == dyncall)
de482138
JL
1629 {
1630 pc = (CORE_ADDR) read_register (22);
66a1aa07 1631
de482138
JL
1632 /* If bit 30 (counting from the left) is on, then pc is the address of
1633 the PLT entry for this function, not the address of the function
1634 itself. Bit 31 has meaning too, but only for MPE. */
1635 if (pc & 0x2)
1636 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1637 }
1638 else if (pc == sr4export)
1639 pc = (CORE_ADDR) (read_register (22));
66a1aa07 1640
de482138
JL
1641 /* Get the unwind descriptor corresponding to PC, return zero
1642 if no unwind was found. */
1643 u = find_unwind_entry (pc);
1644 if (!u)
1645 return 0;
1646
1647 /* If this isn't a linker stub, then return now. */
1648 if (u->stub_type == 0)
1649 return orig_pc == pc ? 0 : pc & ~0x3;
1650
1651 /* It's a stub. Search for a branch and figure out where it goes.
1652 Note we have to handle multi insn branch sequences like ldil;ble.
1653 Most (all?) other branches can be determined by examining the contents
1654 of certain registers and the stack. */
1655 loc = pc;
1656 curr_inst = 0;
1657 prev_inst = 0;
1658 while (1)
1659 {
1660 /* Make sure we haven't walked outside the range of this stub. */
1661 if (u != find_unwind_entry (loc))
1662 {
1663 warning ("Unable to find branch in linker stub");
1664 return orig_pc == pc ? 0 : pc & ~0x3;
1665 }
1666
1667 prev_inst = curr_inst;
1668 curr_inst = read_memory_integer (loc, 4);
66a1aa07 1669
de482138
JL
1670 /* Does it look like a branch external using %r1? Then it's the
1671 branch from the stub to the actual function. */
1672 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1673 {
1674 /* Yup. See if the previous instruction loaded
1675 a value into %r1. If so compute and return the jump address. */
4cbc4bf1 1676 if ((prev_inst & 0xffe00000) == 0x20200000)
de482138
JL
1677 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1678 else
1679 {
1680 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1681 return orig_pc == pc ? 0 : pc & ~0x3;
1682 }
1683 }
1684
88b91d4a
JL
1685 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1686 branch from the stub to the actual function. */
1687 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1688 || (curr_inst & 0xffe0e000) == 0xe8000000)
de482138
JL
1689 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1690
1691 /* Does it look like bv (rp)? Note this depends on the
1692 current stack pointer being the same as the stack
1693 pointer in the stub itself! This is a branch on from the
1694 stub back to the original caller. */
1695 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1696 {
1697 /* Yup. See if the previous instruction loaded
1698 rp from sp - 8. */
1699 if (prev_inst == 0x4bc23ff1)
1700 return (read_memory_integer
1701 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1702 else
1703 {
1704 warning ("Unable to find restore of %%rp before bv (%%rp).");
1705 return orig_pc == pc ? 0 : pc & ~0x3;
1706 }
1707 }
1708
1709 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1710 the original caller from the stub. Used in dynamic executables. */
1711 else if (curr_inst == 0xe0400002)
1712 {
1713 /* The value we jump to is sitting in sp - 24. But that's
1714 loaded several instructions before the be instruction.
1715 I guess we could check for the previous instruction being
1716 mtsp %r1,%sr0 if we want to do sanity checking. */
1717 return (read_memory_integer
1718 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1719 }
1720
1721 /* Haven't found the branch yet, but we're still in the stub.
1722 Keep looking. */
1723 loc += 4;
1724 }
66a1aa07
SG
1725}
1726
c598654a
JL
1727/* For the given instruction (INST), return any adjustment it makes
1728 to the stack pointer or zero for no adjustment.
1729
1730 This only handles instructions commonly found in prologues. */
1731
1732static int
1733prologue_inst_adjust_sp (inst)
1734 unsigned long inst;
1735{
1736 /* This must persist across calls. */
1737 static int save_high21;
1738
1739 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1740 if ((inst & 0xffffc000) == 0x37de0000)
1741 return extract_14 (inst);
1742
1743 /* stwm X,D(sp) */
1744 if ((inst & 0xffe00000) == 0x6fc00000)
1745 return extract_14 (inst);
1746
1747 /* addil high21,%r1; ldo low11,(%r1),%r30)
1748 save high bits in save_high21 for later use. */
1749 if ((inst & 0xffe00000) == 0x28200000)
1750 {
1751 save_high21 = extract_21 (inst);
1752 return 0;
1753 }
1754
1755 if ((inst & 0xffff0000) == 0x343e0000)
1756 return save_high21 + extract_14 (inst);
1757
1758 /* fstws as used by the HP compilers. */
1759 if ((inst & 0xffffffe0) == 0x2fd01220)
1760 return extract_5_load (inst);
1761
1762 /* No adjustment. */
1763 return 0;
1764}
1765
1766/* Return nonzero if INST is a branch of some kind, else return zero. */
1767
1768static int
1769is_branch (inst)
1770 unsigned long inst;
1771{
1772 switch (inst >> 26)
1773 {
1774 case 0x20:
1775 case 0x21:
1776 case 0x22:
1777 case 0x23:
1778 case 0x28:
1779 case 0x29:
1780 case 0x2a:
1781 case 0x2b:
1782 case 0x30:
1783 case 0x31:
1784 case 0x32:
1785 case 0x33:
1786 case 0x38:
1787 case 0x39:
1788 case 0x3a:
1789 return 1;
1790
1791 default:
1792 return 0;
1793 }
1794}
1795
1796/* Return the register number for a GR which is saved by INST or
edd86fb0 1797 zero it INST does not save a GR. */
c598654a
JL
1798
1799static int
1800inst_saves_gr (inst)
1801 unsigned long inst;
1802{
1803 /* Does it look like a stw? */
1804 if ((inst >> 26) == 0x1a)
1805 return extract_5R_store (inst);
1806
edd86fb0 1807 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
c598654a
JL
1808 if ((inst >> 26) == 0x1b)
1809 return extract_5R_store (inst);
1810
edd86fb0
JL
1811 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1812 too. */
1813 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1814 return extract_5R_store (inst);
1815
c598654a
JL
1816 return 0;
1817}
1818
1819/* Return the register number for a FR which is saved by INST or
1820 zero it INST does not save a FR.
1821
1822 Note we only care about full 64bit register stores (that's the only
edd86fb0
JL
1823 kind of stores the prologue will use).
1824
1825 FIXME: What about argument stores with the HP compiler in ANSI mode? */
c598654a
JL
1826
1827static int
1828inst_saves_fr (inst)
1829 unsigned long inst;
1830{
edd86fb0 1831 if ((inst & 0xfc00dfc0) == 0x2c001200)
c598654a
JL
1832 return extract_5r_store (inst);
1833 return 0;
1834}
1835
66a1aa07 1836/* Advance PC across any function entry prologue instructions
c598654a 1837 to reach some "real" code.
66a1aa07 1838
c598654a
JL
1839 Use information in the unwind table to determine what exactly should
1840 be in the prologue. */
66a1aa07
SG
1841
1842CORE_ADDR
de482138 1843skip_prologue (pc)
66a1aa07
SG
1844 CORE_ADDR pc;
1845{
34df79fc 1846 char buf[4];
c598654a 1847 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
edd86fb0 1848 unsigned long args_stored, status, i;
c598654a 1849 struct unwind_table_entry *u;
66a1aa07 1850
c598654a
JL
1851 u = find_unwind_entry (pc);
1852 if (!u)
fdafbfad 1853 return pc;
c598654a 1854
de482138
JL
1855 /* If we are not at the beginning of a function, then return now. */
1856 if ((pc & ~0x3) != u->region_start)
1857 return pc;
1858
c598654a
JL
1859 /* This is how much of a frame adjustment we need to account for. */
1860 stack_remaining = u->Total_frame_size << 3;
66a1aa07 1861
c598654a
JL
1862 /* Magic register saves we want to know about. */
1863 save_rp = u->Save_RP;
1864 save_sp = u->Save_SP;
1865
edd86fb0
JL
1866 /* An indication that args may be stored into the stack. Unfortunately
1867 the HPUX compilers tend to set this in cases where no args were
1868 stored too!. */
1869 args_stored = u->Args_stored;
1870
c598654a
JL
1871 /* Turn the Entry_GR field into a bitmask. */
1872 save_gr = 0;
1873 for (i = 3; i < u->Entry_GR + 3; i++)
66a1aa07 1874 {
c598654a
JL
1875 /* Frame pointer gets saved into a special location. */
1876 if (u->Save_SP && i == FP_REGNUM)
1877 continue;
1878
1879 save_gr |= (1 << i);
1880 }
1881
1882 /* Turn the Entry_FR field into a bitmask too. */
1883 save_fr = 0;
1884 for (i = 12; i < u->Entry_FR + 12; i++)
1885 save_fr |= (1 << i);
1886
1887 /* Loop until we find everything of interest or hit a branch.
1888
1889 For unoptimized GCC code and for any HP CC code this will never ever
1890 examine any user instructions.
1891
1892 For optimzied GCC code we're faced with problems. GCC will schedule
1893 its prologue and make prologue instructions available for delay slot
1894 filling. The end result is user code gets mixed in with the prologue
1895 and a prologue instruction may be in the delay slot of the first branch
1896 or call.
1897
1898 Some unexpected things are expected with debugging optimized code, so
1899 we allow this routine to walk past user instructions in optimized
1900 GCC code. */
edd86fb0
JL
1901 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1902 || args_stored)
c598654a 1903 {
edd86fb0
JL
1904 unsigned int reg_num;
1905 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1906 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1907
1908 /* Save copies of all the triggers so we can compare them later
1909 (only for HPC). */
1910 old_save_gr = save_gr;
1911 old_save_fr = save_fr;
1912 old_save_rp = save_rp;
1913 old_save_sp = save_sp;
1914 old_stack_remaining = stack_remaining;
1915
c598654a
JL
1916 status = target_read_memory (pc, buf, 4);
1917 inst = extract_unsigned_integer (buf, 4);
edd86fb0 1918
c598654a
JL
1919 /* Yow! */
1920 if (status != 0)
1921 return pc;
1922
1923 /* Note the interesting effects of this instruction. */
1924 stack_remaining -= prologue_inst_adjust_sp (inst);
1925
1926 /* There is only one instruction used for saving RP into the stack. */
1927 if (inst == 0x6bc23fd9)
1928 save_rp = 0;
1929
1930 /* This is the only way we save SP into the stack. At this time
1931 the HP compilers never bother to save SP into the stack. */
1932 if ((inst & 0xffffc000) == 0x6fc10000)
1933 save_sp = 0;
1934
1935 /* Account for general and floating-point register saves. */
edd86fb0
JL
1936 reg_num = inst_saves_gr (inst);
1937 save_gr &= ~(1 << reg_num);
1938
1939 /* Ugh. Also account for argument stores into the stack.
1940 Unfortunately args_stored only tells us that some arguments
1941 where stored into the stack. Not how many or what kind!
1942
1943 This is a kludge as on the HP compiler sets this bit and it
1944 never does prologue scheduling. So once we see one, skip past
1945 all of them. We have similar code for the fp arg stores below.
1946
1947 FIXME. Can still die if we have a mix of GR and FR argument
1948 stores! */
1949 if (reg_num >= 23 && reg_num <= 26)
1950 {
1951 while (reg_num >= 23 && reg_num <= 26)
1952 {
1953 pc += 4;
1954 status = target_read_memory (pc, buf, 4);
1955 inst = extract_unsigned_integer (buf, 4);
1956 if (status != 0)
1957 return pc;
1958 reg_num = inst_saves_gr (inst);
1959 }
1960 args_stored = 0;
1961 continue;
1962 }
1963
1964 reg_num = inst_saves_fr (inst);
1965 save_fr &= ~(1 << reg_num);
1966
1967 status = target_read_memory (pc + 4, buf, 4);
1968 next_inst = extract_unsigned_integer (buf, 4);
1969
1970 /* Yow! */
1971 if (status != 0)
1972 return pc;
1973
1974 /* We've got to be read to handle the ldo before the fp register
1975 save. */
1976 if ((inst & 0xfc000000) == 0x34000000
1977 && inst_saves_fr (next_inst) >= 4
1978 && inst_saves_fr (next_inst) <= 7)
1979 {
1980 /* So we drop into the code below in a reasonable state. */
1981 reg_num = inst_saves_fr (next_inst);
1982 pc -= 4;
1983 }
1984
1985 /* Ugh. Also account for argument stores into the stack.
1986 This is a kludge as on the HP compiler sets this bit and it
1987 never does prologue scheduling. So once we see one, skip past
1988 all of them. */
1989 if (reg_num >= 4 && reg_num <= 7)
1990 {
1991 while (reg_num >= 4 && reg_num <= 7)
1992 {
1993 pc += 8;
1994 status = target_read_memory (pc, buf, 4);
1995 inst = extract_unsigned_integer (buf, 4);
1996 if (status != 0)
1997 return pc;
1998 if ((inst & 0xfc000000) != 0x34000000)
1999 break;
2000 status = target_read_memory (pc + 4, buf, 4);
2001 next_inst = extract_unsigned_integer (buf, 4);
2002 if (status != 0)
2003 return pc;
2004 reg_num = inst_saves_fr (next_inst);
2005 }
2006 args_stored = 0;
2007 continue;
2008 }
c598654a
JL
2009
2010 /* Quit if we hit any kind of branch. This can happen if a prologue
2011 instruction is in the delay slot of the first call/branch. */
2012 if (is_branch (inst))
2013 break;
2014
edd86fb0
JL
2015 /* What a crock. The HP compilers set args_stored even if no
2016 arguments were stored into the stack (boo hiss). This could
2017 cause this code to then skip a bunch of user insns (up to the
2018 first branch).
2019
2020 To combat this we try to identify when args_stored was bogusly
2021 set and clear it. We only do this when args_stored is nonzero,
2022 all other resources are accounted for, and nothing changed on
2023 this pass. */
2024 if (args_stored
2025 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2026 && old_save_gr == save_gr && old_save_fr == save_fr
2027 && old_save_rp == save_rp && old_save_sp == save_sp
2028 && old_stack_remaining == stack_remaining)
2029 break;
2030
c598654a
JL
2031 /* Bump the PC. */
2032 pc += 4;
66a1aa07 2033 }
66a1aa07
SG
2034
2035 return pc;
2036}
2037
c598654a
JL
2038/* Put here the code to store, into a struct frame_saved_regs,
2039 the addresses of the saved registers of frame described by FRAME_INFO.
2040 This includes special registers such as pc and fp saved in special
2041 ways in the stack frame. sp is even more special:
2042 the address we return for it IS the sp for the next frame. */
2043
2044void
2045hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
cb5f7128 2046 struct frame_info *frame_info;
c598654a
JL
2047 struct frame_saved_regs *frame_saved_regs;
2048{
2049 CORE_ADDR pc;
2050 struct unwind_table_entry *u;
2051 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2052 int status, i, reg;
2053 char buf[4];
2054 int fp_loc = -1;
2055
2056 /* Zero out everything. */
2057 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2058
2059 /* Call dummy frames always look the same, so there's no need to
2060 examine the dummy code to determine locations of saved registers;
2061 instead, let find_dummy_frame_regs fill in the correct offsets
2062 for the saved registers. */
cb5f7128
JL
2063 if ((frame_info->pc >= frame_info->frame
2064 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2065 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2066 + 6 * 4)))
2067 find_dummy_frame_regs (frame_info, frame_saved_regs);
c598654a 2068
70e43abe
JL
2069 /* Interrupt handlers are special too. They lay out the register
2070 state in the exact same order as the register numbers in GDB. */
cb5f7128 2071 if (pc_in_interrupt_handler (frame_info->pc))
70e43abe
JL
2072 {
2073 for (i = 0; i < NUM_REGS; i++)
2074 {
2075 /* SP is a little special. */
2076 if (i == SP_REGNUM)
2077 frame_saved_regs->regs[SP_REGNUM]
cb5f7128 2078 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
70e43abe 2079 else
cb5f7128 2080 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
70e43abe
JL
2081 }
2082 return;
2083 }
2084
2085 /* Handle signal handler callers. */
cb5f7128 2086 if (frame_info->signal_handler_caller)
70e43abe 2087 {
cb5f7128 2088 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
70e43abe
JL
2089 return;
2090 }
2091
c598654a 2092 /* Get the starting address of the function referred to by the PC
669caa9c 2093 saved in frame. */
cb5f7128 2094 pc = get_pc_function_start (frame_info->pc);
c598654a
JL
2095
2096 /* Yow! */
2097 u = find_unwind_entry (pc);
2098 if (!u)
2099 return;
2100
2101 /* This is how much of a frame adjustment we need to account for. */
2102 stack_remaining = u->Total_frame_size << 3;
2103
2104 /* Magic register saves we want to know about. */
2105 save_rp = u->Save_RP;
2106 save_sp = u->Save_SP;
2107
2108 /* Turn the Entry_GR field into a bitmask. */
2109 save_gr = 0;
2110 for (i = 3; i < u->Entry_GR + 3; i++)
2111 {
2112 /* Frame pointer gets saved into a special location. */
2113 if (u->Save_SP && i == FP_REGNUM)
2114 continue;
2115
2116 save_gr |= (1 << i);
2117 }
2118
2119 /* Turn the Entry_FR field into a bitmask too. */
2120 save_fr = 0;
2121 for (i = 12; i < u->Entry_FR + 12; i++)
2122 save_fr |= (1 << i);
2123
70e43abe
JL
2124 /* The frame always represents the value of %sp at entry to the
2125 current function (and is thus equivalent to the "saved" stack
2126 pointer. */
cb5f7128 2127 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
70e43abe 2128
c598654a
JL
2129 /* Loop until we find everything of interest or hit a branch.
2130
2131 For unoptimized GCC code and for any HP CC code this will never ever
2132 examine any user instructions.
2133
2134 For optimzied GCC code we're faced with problems. GCC will schedule
2135 its prologue and make prologue instructions available for delay slot
2136 filling. The end result is user code gets mixed in with the prologue
2137 and a prologue instruction may be in the delay slot of the first branch
2138 or call.
2139
2140 Some unexpected things are expected with debugging optimized code, so
2141 we allow this routine to walk past user instructions in optimized
2142 GCC code. */
2143 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2144 {
2145 status = target_read_memory (pc, buf, 4);
2146 inst = extract_unsigned_integer (buf, 4);
2147
2148 /* Yow! */
2149 if (status != 0)
2150 return;
2151
2152 /* Note the interesting effects of this instruction. */
2153 stack_remaining -= prologue_inst_adjust_sp (inst);
2154
2155 /* There is only one instruction used for saving RP into the stack. */
2156 if (inst == 0x6bc23fd9)
2157 {
2158 save_rp = 0;
cb5f7128 2159 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
c598654a
JL
2160 }
2161
70e43abe
JL
2162 /* Just note that we found the save of SP into the stack. The
2163 value for frame_saved_regs was computed above. */
c598654a 2164 if ((inst & 0xffffc000) == 0x6fc10000)
70e43abe 2165 save_sp = 0;
c598654a
JL
2166
2167 /* Account for general and floating-point register saves. */
2168 reg = inst_saves_gr (inst);
2169 if (reg >= 3 && reg <= 18
2170 && (!u->Save_SP || reg != FP_REGNUM))
2171 {
2172 save_gr &= ~(1 << reg);
2173
2174 /* stwm with a positive displacement is a *post modify*. */
2175 if ((inst >> 26) == 0x1b
2176 && extract_14 (inst) >= 0)
cb5f7128 2177 frame_saved_regs->regs[reg] = frame_info->frame;
c598654a
JL
2178 else
2179 {
2180 /* Handle code with and without frame pointers. */
2181 if (u->Save_SP)
2182 frame_saved_regs->regs[reg]
cb5f7128 2183 = frame_info->frame + extract_14 (inst);
c598654a
JL
2184 else
2185 frame_saved_regs->regs[reg]
cb5f7128 2186 = frame_info->frame + (u->Total_frame_size << 3)
c598654a
JL
2187 + extract_14 (inst);
2188 }
2189 }
2190
2191
2192 /* GCC handles callee saved FP regs a little differently.
2193
2194 It emits an instruction to put the value of the start of
2195 the FP store area into %r1. It then uses fstds,ma with
2196 a basereg of %r1 for the stores.
2197
2198 HP CC emits them at the current stack pointer modifying
2199 the stack pointer as it stores each register. */
2200
2201 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2202 if ((inst & 0xffffc000) == 0x34610000
2203 || (inst & 0xffffc000) == 0x37c10000)
2204 fp_loc = extract_14 (inst);
2205
2206 reg = inst_saves_fr (inst);
2207 if (reg >= 12 && reg <= 21)
2208 {
2209 /* Note +4 braindamage below is necessary because the FP status
2210 registers are internally 8 registers rather than the expected
2211 4 registers. */
2212 save_fr &= ~(1 << reg);
2213 if (fp_loc == -1)
2214 {
2215 /* 1st HP CC FP register store. After this instruction
2216 we've set enough state that the GCC and HPCC code are
2217 both handled in the same manner. */
cb5f7128 2218 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
c598654a
JL
2219 fp_loc = 8;
2220 }
2221 else
2222 {
2223 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
cb5f7128 2224 = frame_info->frame + fp_loc;
c598654a
JL
2225 fp_loc += 8;
2226 }
2227 }
2228
2229 /* Quit if we hit any kind of branch. This can happen if a prologue
2230 instruction is in the delay slot of the first call/branch. */
2231 if (is_branch (inst))
2232 break;
2233
2234 /* Bump the PC. */
2235 pc += 4;
2236 }
2237}
2238
63757ecd
JK
2239#ifdef MAINTENANCE_CMDS
2240
66a1aa07
SG
2241static void
2242unwind_command (exp, from_tty)
2243 char *exp;
2244 int from_tty;
2245{
2246 CORE_ADDR address;
2247 union
2248 {
2249 int *foo;
2250 struct unwind_table_entry *u;
2251 } xxx;
2252
2253 /* If we have an expression, evaluate it and use it as the address. */
2254
2255 if (exp != 0 && *exp != 0)
2256 address = parse_and_eval_address (exp);
2257 else
2258 return;
2259
2260 xxx.u = find_unwind_entry (address);
2261
2262 if (!xxx.u)
2263 {
199b2450 2264 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
2265 return;
2266 }
2267
199b2450 2268 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
2269 xxx.foo[3]);
2270}
976bb0be 2271#endif /* MAINTENANCE_CMDS */
63757ecd
JK
2272
2273void
2274_initialize_hppa_tdep ()
2275{
976bb0be 2276#ifdef MAINTENANCE_CMDS
63757ecd
JK
2277 add_cmd ("unwind", class_maintenance, unwind_command,
2278 "Print unwind table entry at given address.",
2279 &maintenanceprintlist);
63757ecd 2280#endif /* MAINTENANCE_CMDS */
976bb0be 2281}