]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/hppa-tdep.c
* configure.in: Configure gdb for alpha.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
CommitLineData
66a1aa07
SG
1/* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8This file is part of GDB.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "value.h"
28
29/* For argument passing to the inferior */
30#include "symtab.h"
31
32#ifdef USG
33#include <sys/types.h>
34#endif
35
36#include <sys/param.h>
37#include <sys/dir.h>
38#include <signal.h>
39#include <sys/ioctl.h>
40
41#ifdef COFF_ENCAPSULATE
42#include "a.out.encap.h"
43#else
44#include <a.out.h>
45#endif
46#ifndef N_SET_MAGIC
47#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48#endif
49
50/*#include <sys/user.h> After a.out.h */
51#include <sys/file.h>
52#include <sys/stat.h>
53#include <machine/psl.h>
54#include "wait.h"
55
56#include "gdbcore.h"
57#include "gdbcmd.h"
58#include "target.h"
59#include "symfile.h"
60#include "objfiles.h"
61
62static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63static int hppa_alignof PARAMS ((struct type *arg));
8966221d
JK
64static FRAME_ADDR dig_fp_from_stack PARAMS ((FRAME frame,
65 struct unwind_table_entry *u));
8fa74880 66CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
66a1aa07
SG
67
68\f
69/* Routines to extract various sized constants out of hppa
70 instructions. */
71
72/* This assumes that no garbage lies outside of the lower bits of
73 value. */
74
75int
76sign_extend (val, bits)
77 unsigned val, bits;
78{
79 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
80}
81
82/* For many immediate values the sign bit is the low bit! */
83
84int
85low_sign_extend (val, bits)
86 unsigned val, bits;
87{
88 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
89}
90/* extract the immediate field from a ld{bhw}s instruction */
91
92unsigned
93get_field (val, from, to)
94 unsigned val, from, to;
95{
96 val = val >> 31 - to;
97 return val & ((1 << 32 - from) - 1);
98}
99
100unsigned
101set_field (val, from, to, new_val)
102 unsigned *val, from, to;
103{
104 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
105 return *val = *val & mask | (new_val << (31 - from));
106}
107
108/* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
109
110extract_3 (word)
111 unsigned word;
112{
113 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
114}
115
116extract_5_load (word)
117 unsigned word;
118{
119 return low_sign_extend (word >> 16 & MASK_5, 5);
120}
121
122/* extract the immediate field from a st{bhw}s instruction */
123
124int
125extract_5_store (word)
126 unsigned word;
127{
128 return low_sign_extend (word & MASK_5, 5);
129}
130
68c8d698
SG
131/* extract the immediate field from a break instruction */
132
133unsigned
134extract_5r_store (word)
135 unsigned word;
136{
137 return (word & MASK_5);
138}
139
140/* extract the immediate field from a {sr}sm instruction */
141
142unsigned
143extract_5R_store (word)
144 unsigned word;
145{
146 return (word >> 16 & MASK_5);
147}
148
66a1aa07
SG
149/* extract an 11 bit immediate field */
150
151int
152extract_11 (word)
153 unsigned word;
154{
155 return low_sign_extend (word & MASK_11, 11);
156}
157
158/* extract a 14 bit immediate field */
159
160int
161extract_14 (word)
162 unsigned word;
163{
164 return low_sign_extend (word & MASK_14, 14);
165}
166
167/* deposit a 14 bit constant in a word */
168
169unsigned
170deposit_14 (opnd, word)
171 int opnd;
172 unsigned word;
173{
174 unsigned sign = (opnd < 0 ? 1 : 0);
175
176 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
177}
178
179/* extract a 21 bit constant */
180
181int
182extract_21 (word)
183 unsigned word;
184{
185 int val;
186
187 word &= MASK_21;
188 word <<= 11;
189 val = GET_FIELD (word, 20, 20);
190 val <<= 11;
191 val |= GET_FIELD (word, 9, 19);
192 val <<= 2;
193 val |= GET_FIELD (word, 5, 6);
194 val <<= 5;
195 val |= GET_FIELD (word, 0, 4);
196 val <<= 2;
197 val |= GET_FIELD (word, 7, 8);
198 return sign_extend (val, 21) << 11;
199}
200
201/* deposit a 21 bit constant in a word. Although 21 bit constants are
202 usually the top 21 bits of a 32 bit constant, we assume that only
203 the low 21 bits of opnd are relevant */
204
205unsigned
206deposit_21 (opnd, word)
207 unsigned opnd, word;
208{
209 unsigned val = 0;
210
211 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
214 val <<= 2;
215 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
216 val <<= 11;
217 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
218 val <<= 1;
219 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
220 return word | val;
221}
222
223/* extract a 12 bit constant from branch instructions */
224
225int
226extract_12 (word)
227 unsigned word;
228{
229 return sign_extend (GET_FIELD (word, 19, 28) |
230 GET_FIELD (word, 29, 29) << 10 |
231 (word & 0x1) << 11, 12) << 2;
232}
233
234/* extract a 17 bit constant from branch instructions, returning the
235 19 bit signed value. */
236
237int
238extract_17 (word)
239 unsigned word;
240{
241 return sign_extend (GET_FIELD (word, 19, 28) |
242 GET_FIELD (word, 29, 29) << 10 |
243 GET_FIELD (word, 11, 15) << 11 |
244 (word & 0x1) << 16, 17) << 2;
245}
246\f
66a1aa07
SG
247/* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
251
252static struct unwind_table_entry *
253find_unwind_entry(pc)
254 CORE_ADDR pc;
255{
256 int first, middle, last;
257 struct objfile *objfile;
258
259 ALL_OBJFILES (objfile)
260 {
261 struct obj_unwind_info *ui;
262
263 ui = OBJ_UNWIND_INFO (objfile);
264
265 if (!ui)
266 continue;
267
268 /* First, check the cache */
269
270 if (ui->cache
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
273 return ui->cache;
274
275 /* Not in the cache, do a binary search */
276
277 first = 0;
278 last = ui->last;
279
280 while (first <= last)
281 {
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
285 {
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
288 }
289
290 if (pc < ui->table[middle].region_start)
291 last = middle - 1;
292 else
293 first = middle + 1;
294 }
295 } /* ALL_OBJFILES() */
296 return NULL;
297}
298
5ac7f56e
JK
299/* Called when no unwind descriptor was found for PC. Returns 1 if it
300 appears that PC is in a linker stub. */
301static int pc_in_linker_stub PARAMS ((CORE_ADDR));
302
303static int
304pc_in_linker_stub (pc)
305 CORE_ADDR pc;
306{
5ac7f56e
JK
307 int found_magic_instruction = 0;
308 int i;
08ecd8f3
JK
309 char buf[4];
310
311 /* If unable to read memory, assume pc is not in a linker stub. */
312 if (target_read_memory (pc, buf, 4) != 0)
313 return 0;
5ac7f56e 314
d08c6f4c
JK
315 /* We are looking for something like
316
317 ; $$dyncall jams RP into this special spot in the frame (RP')
318 ; before calling the "call stub"
319 ldw -18(sp),rp
320
321 ldsid (rp),r1 ; Get space associated with RP into r1
322 mtsp r1,sp ; Move it into space register 0
323 be,n 0(sr0),rp) ; back to your regularly scheduled program
324 */
325
5ac7f56e
JK
326 /* Maximum known linker stub size is 4 instructions. Search forward
327 from the given PC, then backward. */
328 for (i = 0; i < 4; i++)
329 {
6e35b037 330 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
331
332 if (find_unwind_entry (pc + i * 4) != 0)
333 break;
334
335 /* Check for ldsid (rp),r1 which is the magic instruction for a
336 return from a cross-space function call. */
337 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
338 {
339 found_magic_instruction = 1;
340 break;
341 }
342 /* Add code to handle long call/branch and argument relocation stubs
343 here. */
344 }
345
346 if (found_magic_instruction != 0)
347 return 1;
348
349 /* Now look backward. */
350 for (i = 0; i < 4; i++)
351 {
6e35b037 352 /* If we hit something with an unwind, stop searching this direction. */
5ac7f56e
JK
353
354 if (find_unwind_entry (pc - i * 4) != 0)
355 break;
356
357 /* Check for ldsid (rp),r1 which is the magic instruction for a
358 return from a cross-space function call. */
359 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
360 {
361 found_magic_instruction = 1;
362 break;
363 }
364 /* Add code to handle long call/branch and argument relocation stubs
365 here. */
366 }
367 return found_magic_instruction;
368}
369
66a1aa07
SG
370static int
371find_return_regnum(pc)
372 CORE_ADDR pc;
373{
374 struct unwind_table_entry *u;
375
376 u = find_unwind_entry (pc);
377
378 if (!u)
379 return RP_REGNUM;
380
381 if (u->Millicode)
382 return 31;
383
384 return RP_REGNUM;
385}
386
5ac7f56e 387/* Return size of frame, or -1 if we should use a frame pointer. */
66a1aa07
SG
388int
389find_proc_framesize(pc)
390 CORE_ADDR pc;
391{
392 struct unwind_table_entry *u;
393
66a1aa07
SG
394 u = find_unwind_entry (pc);
395
396 if (!u)
5ac7f56e
JK
397 {
398 if (pc_in_linker_stub (pc))
399 /* Linker stubs have a zero size frame. */
400 return 0;
401 else
402 return -1;
403 }
66a1aa07 404
eabbe766
JK
405 if (u->Save_SP)
406 /* If this bit is set, it means there is a frame pointer and we should
407 use it. */
408 return -1;
409
66a1aa07
SG
410 return u->Total_frame_size << 3;
411}
412
5ac7f56e
JK
413/* Return offset from sp at which rp is saved, or 0 if not saved. */
414static int rp_saved PARAMS ((CORE_ADDR));
415
416static int
417rp_saved (pc)
418 CORE_ADDR pc;
66a1aa07
SG
419{
420 struct unwind_table_entry *u;
421
422 u = find_unwind_entry (pc);
423
424 if (!u)
5ac7f56e
JK
425 {
426 if (pc_in_linker_stub (pc))
427 /* This is the so-called RP'. */
428 return -24;
429 else
430 return 0;
431 }
66a1aa07
SG
432
433 if (u->Save_RP)
5ac7f56e 434 return -20;
66a1aa07
SG
435 else
436 return 0;
437}
438\f
8fa74880
SG
439int
440frameless_function_invocation (frame)
441 FRAME frame;
442{
b8ec9a79 443 struct unwind_table_entry *u;
8fa74880 444
b8ec9a79 445 u = find_unwind_entry (frame->pc);
8fa74880 446
b8ec9a79 447 if (u == 0)
8fa74880 448 return frameless_look_for_prologue (frame);
b8ec9a79
JK
449
450 return (u->Total_frame_size == 0);
8fa74880
SG
451}
452
66a1aa07
SG
453CORE_ADDR
454saved_pc_after_call (frame)
455 FRAME frame;
456{
457 int ret_regnum;
458
459 ret_regnum = find_return_regnum (get_frame_pc (frame));
460
461 return read_register (ret_regnum) & ~0x3;
462}
463\f
464CORE_ADDR
465frame_saved_pc (frame)
466 FRAME frame;
467{
468 CORE_ADDR pc = get_frame_pc (frame);
469
8fa74880 470 if (frameless_function_invocation (frame))
66a1aa07
SG
471 {
472 int ret_regnum;
473
474 ret_regnum = find_return_regnum (pc);
475
476 return read_register (ret_regnum) & ~0x3;
477 }
66a1aa07 478 else
5ac7f56e
JK
479 {
480 int rp_offset = rp_saved (pc);
481
482 if (rp_offset == 0)
483 return read_register (RP_REGNUM) & ~0x3;
484 else
28403b8e 485 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
5ac7f56e 486 }
66a1aa07
SG
487}
488\f
489/* We need to correct the PC and the FP for the outermost frame when we are
490 in a system call. */
491
492void
493init_extra_frame_info (fromleaf, frame)
494 int fromleaf;
495 struct frame_info *frame;
496{
497 int flags;
498 int framesize;
499
500 if (frame->next) /* Only do this for outermost frame */
501 return;
502
503 flags = read_register (FLAGS_REGNUM);
504 if (flags & 2) /* In system call? */
505 frame->pc = read_register (31) & ~0x3;
506
507 /* The outermost frame is always derived from PC-framesize */
508 framesize = find_proc_framesize(frame->pc);
509 if (framesize == -1)
510 frame->frame = read_register (FP_REGNUM);
511 else
512 frame->frame = read_register (SP_REGNUM) - framesize;
513
8fa74880 514 if (!frameless_function_invocation (frame)) /* Frameless? */
66a1aa07
SG
515 return; /* No, quit now */
516
517 /* For frameless functions, we need to look at the caller's frame */
518 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
519 if (framesize != -1)
520 frame->frame -= framesize;
521}
522\f
8966221d
JK
523/* Given a GDB frame, determine the address of the calling function's frame.
524 This will be used to create a new GDB frame struct, and then
525 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
526
527 This may involve searching through prologues for several functions
528 at boundaries where GCC calls HP C code, or where code which has
529 a frame pointer calls code without a frame pointer. */
530
531
66a1aa07
SG
532FRAME_ADDR
533frame_chain (frame)
534 struct frame_info *frame;
535{
8966221d
JK
536 int my_framesize, caller_framesize;
537 struct unwind_table_entry *u;
66a1aa07 538
8966221d
JK
539 /* Get frame sizes for the current frame and the frame of the
540 caller. */
541 my_framesize = find_proc_framesize (frame->pc);
542 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
66a1aa07 543
8966221d
JK
544 /* If caller does not have a frame pointer, then its frame
545 can be found at current_frame - caller_framesize. */
546 if (caller_framesize != -1)
547 return frame->frame - caller_framesize;
548
549 /* Both caller and callee have frame pointers and are GCC compiled
550 (SAVE_SP bit in unwind descriptor is on for both functions.
551 The previous frame pointer is found at the top of the current frame. */
552 if (caller_framesize == -1 && my_framesize == -1)
553 return read_memory_integer (frame->frame, 4);
554
555 /* Caller has a frame pointer, but callee does not. This is a little
556 more difficult as GCC and HP C lay out locals and callee register save
557 areas very differently.
558
559 The previous frame pointer could be in a register, or in one of
560 several areas on the stack.
561
562 Walk from the current frame to the innermost frame examining
563 unwind descriptors to determine if %r4 ever gets saved into the
564 stack. If so return whatever value got saved into the stack.
565 If it was never saved in the stack, then the value in %r4 is still
566 valid, so use it.
567
568 We use information from unwind descriptors to determine if %r4
569 is saved into the stack (Entry_GR field has this information). */
570
571 while (frame)
572 {
573 u = find_unwind_entry (frame->pc);
574
575 if (!u)
576 {
01a03545
JK
577 /* We could find this information by examining prologues. I don't
578 think anyone has actually written any tools (not even "strip")
579 which leave them out of an executable, so maybe this is a moot
580 point. */
8966221d
JK
581 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
582 return 0;
583 }
584
585 /* Entry_GR specifies the number of callee-saved general registers
586 saved in the stack. It starts at %r3, so %r4 would be 2. */
587 if (u->Entry_GR >= 2 || u->Save_SP)
588 break;
589 else
590 frame = frame->next;
591 }
592
593 if (frame)
594 {
595 /* We may have walked down the chain into a function with a frame
596 pointer. */
597 if (u->Save_SP)
598 return read_memory_integer (frame->frame, 4);
599 /* %r4 was saved somewhere in the stack. Dig it out. */
600 else
601 return dig_fp_from_stack (frame, u);
602 }
603 else
604 {
605 /* The value in %r4 was never saved into the stack (thus %r4 still
606 holds the value of the previous frame pointer). */
607 return read_register (4);
608 }
609}
66a1aa07 610
8966221d
JK
611/* Given a frame and an unwind descriptor return the value for %fr (aka fp)
612 which was saved into the stack. FIXME: Why can't we just use the standard
613 saved_regs stuff? */
614
615static FRAME_ADDR
616dig_fp_from_stack (frame, u)
617 FRAME frame;
618 struct unwind_table_entry *u;
619{
620 CORE_ADDR pc = u->region_start;
621
622 /* Search the function for the save of %r4. */
623 while (pc != u->region_end)
624 {
625 char buf[4];
626 unsigned long inst;
627 int status;
628
629 /* We need only look for the standard stw %r4,X(%sp) instruction,
630 the other variants (eg stwm) are only used on the first register
631 save (eg %r3). */
632 status = target_read_memory (pc, buf, 4);
633 inst = extract_unsigned_integer (buf, 4);
634
635 if (status != 0)
636 memory_error (status, pc);
637
638 /* Check for stw %r4,X(%sp). */
639 if ((inst & 0xffffc000) == 0x6bc40000)
640 {
641 /* Found the instruction which saves %r4. The offset (relative
642 to this frame) is framesize + immed14 (derived from the
643 store instruction). */
644 int offset = (u->Total_frame_size << 3) + extract_14 (inst);
645
646 return read_memory_integer (frame->frame + offset, 4);
647 }
648
649 /* Keep looking. */
650 pc += 4;
651 }
652
653 warning ("Unable to find %%r4 in stack.\n");
654 return 0;
66a1aa07 655}
8966221d 656
66a1aa07
SG
657\f
658/* To see if a frame chain is valid, see if the caller looks like it
659 was compiled with gcc. */
660
661int
662frame_chain_valid (chain, thisframe)
663 FRAME_ADDR chain;
664 FRAME thisframe;
665{
247145e6
JK
666 struct minimal_symbol *msym_us;
667 struct minimal_symbol *msym_start;
4432b9f9 668 struct unwind_table_entry *u;
66a1aa07
SG
669
670 if (!chain)
671 return 0;
672
b8ec9a79 673 u = find_unwind_entry (thisframe->pc);
4b01383b 674
247145e6
JK
675 /* We can't just check that the same of msym_us is "_start", because
676 someone idiotically decided that they were going to make a Ltext_end
677 symbol with the same address. This Ltext_end symbol is totally
678 indistinguishable (as nearly as I can tell) from the symbol for a function
679 which is (legitimately, since it is in the user's namespace)
680 named Ltext_end, so we can't just ignore it. */
681 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
682 msym_start = lookup_minimal_symbol ("_start", NULL);
683 if (msym_us
684 && msym_start
685 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
b8ec9a79 686 return 0;
5ac7f56e 687
b8ec9a79
JK
688 if (u == NULL)
689 return 1;
5ac7f56e 690
b8ec9a79
JK
691 if (u->Save_SP || u->Total_frame_size)
692 return 1;
5ac7f56e 693
b8ec9a79
JK
694 if (pc_in_linker_stub (thisframe->pc))
695 return 1;
4b01383b 696
b8ec9a79 697 return 0;
66a1aa07
SG
698}
699
66a1aa07
SG
700/*
701 * These functions deal with saving and restoring register state
702 * around a function call in the inferior. They keep the stack
703 * double-word aligned; eventually, on an hp700, the stack will have
704 * to be aligned to a 64-byte boundary.
705 */
706
707int
708push_dummy_frame ()
709{
710 register CORE_ADDR sp;
711 register int regnum;
712 int int_buffer;
713 double freg_buffer;
714
715 /* Space for "arguments"; the RP goes in here. */
716 sp = read_register (SP_REGNUM) + 48;
717 int_buffer = read_register (RP_REGNUM) | 0x3;
718 write_memory (sp - 20, (char *)&int_buffer, 4);
719
720 int_buffer = read_register (FP_REGNUM);
721 write_memory (sp, (char *)&int_buffer, 4);
722
723 write_register (FP_REGNUM, sp);
724
725 sp += 8;
726
727 for (regnum = 1; regnum < 32; regnum++)
728 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
729 sp = push_word (sp, read_register (regnum));
730
731 sp += 4;
732
733 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
734 {
735 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
736 sp = push_bytes (sp, (char *)&freg_buffer, 8);
737 }
738 sp = push_word (sp, read_register (IPSW_REGNUM));
739 sp = push_word (sp, read_register (SAR_REGNUM));
740 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
741 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
742 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
743 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
744 write_register (SP_REGNUM, sp);
745}
746
747find_dummy_frame_regs (frame, frame_saved_regs)
748 struct frame_info *frame;
749 struct frame_saved_regs *frame_saved_regs;
750{
751 CORE_ADDR fp = frame->frame;
752 int i;
753
754 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
755 frame_saved_regs->regs[FP_REGNUM] = fp;
756 frame_saved_regs->regs[1] = fp + 8;
66a1aa07 757
b227992a
SG
758 for (fp += 12, i = 3; i < 32; i++)
759 {
760 if (i != FP_REGNUM)
761 {
762 frame_saved_regs->regs[i] = fp;
763 fp += 4;
764 }
765 }
66a1aa07
SG
766
767 fp += 4;
768 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
769 frame_saved_regs->regs[i] = fp;
770
771 frame_saved_regs->regs[IPSW_REGNUM] = fp;
b227992a
SG
772 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
773 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
774 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
775 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
776 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
66a1aa07
SG
777}
778
779int
780hppa_pop_frame ()
781{
782 register FRAME frame = get_current_frame ();
783 register CORE_ADDR fp;
784 register int regnum;
785 struct frame_saved_regs fsr;
786 struct frame_info *fi;
787 double freg_buffer;
788
789 fi = get_frame_info (frame);
790 fp = fi->frame;
791 get_frame_saved_regs (fi, &fsr);
792
793 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
794 restore_pc_queue (&fsr);
795
796 for (regnum = 31; regnum > 0; regnum--)
797 if (fsr.regs[regnum])
798 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
799
800 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
801 if (fsr.regs[regnum])
802 {
803 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
804 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
805 }
806
807 if (fsr.regs[IPSW_REGNUM])
808 write_register (IPSW_REGNUM,
809 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
810
811 if (fsr.regs[SAR_REGNUM])
812 write_register (SAR_REGNUM,
813 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
814
ed1a07ad 815 /* If the PC was explicitly saved, then just restore it. */
66a1aa07
SG
816 if (fsr.regs[PCOQ_TAIL_REGNUM])
817 write_register (PCOQ_TAIL_REGNUM,
818 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
819
ed1a07ad
JK
820 /* Else use the value in %rp to set the new PC. */
821 else
822 target_write_pc (read_register (RP_REGNUM));
823
66a1aa07
SG
824 write_register (FP_REGNUM, read_memory_integer (fp, 4));
825
826 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
827 write_register (SP_REGNUM, fp - 48);
828 else
829 write_register (SP_REGNUM, fp);
830
831 flush_cached_frames ();
832 set_current_frame (create_new_frame (read_register (FP_REGNUM),
833 read_pc ()));
834}
835
836/*
837 * After returning to a dummy on the stack, restore the instruction
838 * queue space registers. */
839
840static int
841restore_pc_queue (fsr)
842 struct frame_saved_regs *fsr;
843{
844 CORE_ADDR pc = read_pc ();
845 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
846 int pid;
847 WAITTYPE w;
848 int insn_count;
849
850 /* Advance past break instruction in the call dummy. */
851 write_register (PCOQ_HEAD_REGNUM, pc + 4);
852 write_register (PCOQ_TAIL_REGNUM, pc + 8);
853
854 /*
855 * HPUX doesn't let us set the space registers or the space
856 * registers of the PC queue through ptrace. Boo, hiss.
857 * Conveniently, the call dummy has this sequence of instructions
858 * after the break:
859 * mtsp r21, sr0
860 * ble,n 0(sr0, r22)
861 *
862 * So, load up the registers and single step until we are in the
863 * right place.
864 */
865
866 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
867 write_register (22, new_pc);
868
869 for (insn_count = 0; insn_count < 3; insn_count++)
870 {
8c5e0021
JK
871 /* FIXME: What if the inferior gets a signal right now? Want to
872 merge this into wait_for_inferior (as a special kind of
873 watchpoint? By setting a breakpoint at the end? Is there
874 any other choice? Is there *any* way to do this stuff with
875 ptrace() or some equivalent?). */
66a1aa07 876 resume (1, 0);
de43d7d0 877 target_wait(inferior_pid, &w);
66a1aa07
SG
878
879 if (!WIFSTOPPED (w))
880 {
881 stop_signal = WTERMSIG (w);
882 terminal_ours_for_output ();
199b2450 883 printf_unfiltered ("\nProgram terminated with signal %d, %s\n",
66a1aa07 884 stop_signal, safe_strsignal (stop_signal));
199b2450 885 gdb_flush (gdb_stdout);
66a1aa07
SG
886 return 0;
887 }
888 }
8c5e0021 889 target_terminal_ours ();
66a1aa07
SG
890 fetch_inferior_registers (-1);
891 return 1;
892}
893
894CORE_ADDR
895hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
896 int nargs;
897 value *args;
898 CORE_ADDR sp;
899 int struct_return;
900 CORE_ADDR struct_addr;
901{
902 /* array of arguments' offsets */
1edc5cd2 903 int *offset = (int *)alloca(nargs * sizeof (int));
66a1aa07
SG
904 int cum = 0;
905 int i, alignment;
906
907 for (i = 0; i < nargs; i++)
908 {
909 /* Coerce chars to int & float to double if necessary */
910 args[i] = value_arg_coerce (args[i]);
911
912 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
913
914 /* value must go at proper alignment. Assume alignment is a
915 power of two.*/
916 alignment = hppa_alignof (VALUE_TYPE (args[i]));
917 if (cum % alignment)
918 cum = (cum + alignment) & -alignment;
919 offset[i] = -cum;
920 }
558f4183 921 sp += max ((cum + 7) & -8, 16);
66a1aa07
SG
922
923 for (i = 0; i < nargs; i++)
924 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
925 TYPE_LENGTH (VALUE_TYPE (args[i])));
926
927 if (struct_return)
928 write_register (28, struct_addr);
929 return sp + 32;
930}
931
932/*
933 * Insert the specified number of args and function address
934 * into a call sequence of the above form stored at DUMMYNAME.
935 *
936 * On the hppa we need to call the stack dummy through $$dyncall.
937 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
938 * real_pc, which is the location where gdb should start up the
939 * inferior to do the function call.
940 */
941
942CORE_ADDR
943hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
944 REGISTER_TYPE *dummy;
945 CORE_ADDR pc;
946 CORE_ADDR fun;
947 int nargs;
948 value *args;
949 struct type *type;
950 int gcc_p;
951{
952 CORE_ADDR dyncall_addr, sr4export_addr;
953 struct minimal_symbol *msymbol;
6cfec929 954 int flags = read_register (FLAGS_REGNUM);
66a1aa07
SG
955
956 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
957 if (msymbol == NULL)
958 error ("Can't find an address for $$dyncall trampoline");
959
960 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
961
962 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
963 if (msymbol == NULL)
964 error ("Can't find an address for _sr4export trampoline");
965
966 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
967
968 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
969 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
970 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
971 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
972
973 write_register (22, pc);
974
6cfec929
JK
975 /* If we are in a syscall, then we should call the stack dummy
976 directly. $$dyncall is not needed as the kernel sets up the
977 space id registers properly based on the value in %r31. In
978 fact calling $$dyncall will not work because the value in %r22
979 will be clobbered on the syscall exit path. */
980 if (flags & 2)
981 return pc;
982 else
983 return dyncall_addr;
984
66a1aa07
SG
985}
986
d3862cae
JK
987/* Get the PC from %r31 if currently in a syscall. Also mask out privilege
988 bits. */
989CORE_ADDR
990target_read_pc ()
991{
992 int flags = read_register (FLAGS_REGNUM);
993
994 if (flags & 2)
995 return read_register (31) & ~0x3;
996 return read_register (PC_REGNUM) & ~0x3;
997}
998
6cfec929
JK
999/* Write out the PC. If currently in a syscall, then also write the new
1000 PC value into %r31. */
1001void
1002target_write_pc (v)
1003 CORE_ADDR v;
1004{
1005 int flags = read_register (FLAGS_REGNUM);
1006
1007 /* If in a syscall, then set %r31. Also make sure to get the
1008 privilege bits set correctly. */
1009 if (flags & 2)
1010 write_register (31, (long) (v | 0x3));
1011
1012 write_register (PC_REGNUM, (long) v);
1013 write_register (NPC_REGNUM, (long) v + 4);
1014}
1015
66a1aa07
SG
1016/* return the alignment of a type in bytes. Structures have the maximum
1017 alignment required by their fields. */
1018
1019static int
1020hppa_alignof (arg)
1021 struct type *arg;
1022{
1023 int max_align, align, i;
1024 switch (TYPE_CODE (arg))
1025 {
1026 case TYPE_CODE_PTR:
1027 case TYPE_CODE_INT:
1028 case TYPE_CODE_FLT:
1029 return TYPE_LENGTH (arg);
1030 case TYPE_CODE_ARRAY:
1031 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1032 case TYPE_CODE_STRUCT:
1033 case TYPE_CODE_UNION:
1034 max_align = 2;
1035 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1036 {
1037 /* Bit fields have no real alignment. */
1038 if (!TYPE_FIELD_BITPOS (arg, i))
1039 {
1040 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1041 max_align = max (max_align, align);
1042 }
1043 }
1044 return max_align;
1045 default:
1046 return 4;
1047 }
1048}
1049
1050/* Print the register regnum, or all registers if regnum is -1 */
1051
1052pa_do_registers_info (regnum, fpregs)
1053 int regnum;
1054 int fpregs;
1055{
1056 char raw_regs [REGISTER_BYTES];
1057 int i;
1058
1059 for (i = 0; i < NUM_REGS; i++)
1060 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1061 if (regnum == -1)
1062 pa_print_registers (raw_regs, regnum, fpregs);
1063 else if (regnum < FP0_REGNUM)
199b2450 1064 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
66a1aa07
SG
1065 REGISTER_BYTE (regnum)));
1066 else
1067 pa_print_fp_reg (regnum);
1068}
1069
1070pa_print_registers (raw_regs, regnum, fpregs)
1071 char *raw_regs;
1072 int regnum;
1073 int fpregs;
1074{
1075 int i;
1076
1077 for (i = 0; i < 18; i++)
199b2450 1078 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
66a1aa07
SG
1079 reg_names[i],
1080 *(int *)(raw_regs + REGISTER_BYTE (i)),
1081 reg_names[i + 18],
1082 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1083 reg_names[i + 36],
1084 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1085 reg_names[i + 54],
1086 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1087
1088 if (fpregs)
1089 for (i = 72; i < NUM_REGS; i++)
1090 pa_print_fp_reg (i);
1091}
1092
1093pa_print_fp_reg (i)
1094 int i;
1095{
1096 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1097 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1098 REGISTER_TYPE val;
1099
1100 /* Get the data in raw format, then convert also to virtual format. */
1101 read_relative_register_raw_bytes (i, raw_buffer);
1102 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
1103
199b2450
TL
1104 fputs_filtered (reg_names[i], gdb_stdout);
1105 print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);
66a1aa07 1106
199b2450 1107 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
66a1aa07
SG
1108 1, 0, Val_pretty_default);
1109 printf_filtered ("\n");
1110}
1111
1112/* Function calls that pass into a new compilation unit must pass through a
1113 small piece of code that does long format (`external' in HPPA parlance)
1114 jumps. We figure out where the trampoline is going to end up, and return
1115 the PC of the final destination. If we aren't in a trampoline, we just
1116 return NULL.
1117
1118 For computed calls, we just extract the new PC from r22. */
1119
1120CORE_ADDR
1121skip_trampoline_code (pc, name)
1122 CORE_ADDR pc;
1123 char *name;
1124{
1125 long inst0, inst1;
1126 static CORE_ADDR dyncall = 0;
1127 struct minimal_symbol *msym;
1128
1129/* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
1130
1131 if (!dyncall)
1132 {
1133 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1134 if (msym)
1135 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1136 else
1137 dyncall = -1;
1138 }
1139
1140 if (pc == dyncall)
1141 return (CORE_ADDR)(read_register (22) & ~0x3);
1142
1143 inst0 = read_memory_integer (pc, 4);
1144 inst1 = read_memory_integer (pc+4, 4);
1145
1146 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1147 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1148 pc = extract_21 (inst0) + extract_17 (inst1);
1149 else
1150 pc = (CORE_ADDR)NULL;
1151
1152 return pc;
1153}
1154
1155/* Advance PC across any function entry prologue instructions
1156 to reach some "real" code. */
1157
1158/* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
1159 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
1160
1161CORE_ADDR
1162skip_prologue(pc)
1163 CORE_ADDR pc;
1164{
34df79fc
JK
1165 char buf[4];
1166 unsigned long inst;
66a1aa07
SG
1167 int status;
1168
34df79fc
JK
1169 status = target_read_memory (pc, buf, 4);
1170 inst = extract_unsigned_integer (buf, 4);
66a1aa07
SG
1171 if (status != 0)
1172 return pc;
1173
1174 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1175 {
1176 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
1177 pc += 16;
1178 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1179 pc += 8;
1180 }
1181 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1182 pc += 12;
1183 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1184 pc += 4;
1185
1186 return pc;
1187}
1188
63757ecd
JK
1189#ifdef MAINTENANCE_CMDS
1190
66a1aa07
SG
1191static void
1192unwind_command (exp, from_tty)
1193 char *exp;
1194 int from_tty;
1195{
1196 CORE_ADDR address;
1197 union
1198 {
1199 int *foo;
1200 struct unwind_table_entry *u;
1201 } xxx;
1202
1203 /* If we have an expression, evaluate it and use it as the address. */
1204
1205 if (exp != 0 && *exp != 0)
1206 address = parse_and_eval_address (exp);
1207 else
1208 return;
1209
1210 xxx.u = find_unwind_entry (address);
1211
1212 if (!xxx.u)
1213 {
199b2450 1214 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
66a1aa07
SG
1215 return;
1216 }
1217
199b2450 1218 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
66a1aa07
SG
1219 xxx.foo[3]);
1220}
976bb0be 1221#endif /* MAINTENANCE_CMDS */
63757ecd
JK
1222
1223void
1224_initialize_hppa_tdep ()
1225{
976bb0be 1226#ifdef MAINTENANCE_CMDS
63757ecd
JK
1227 add_cmd ("unwind", class_maintenance, unwind_command,
1228 "Print unwind table entry at given address.",
1229 &maintenanceprintlist);
63757ecd 1230#endif /* MAINTENANCE_CMDS */
976bb0be 1231}