]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Native support code for HPUX PA-RISC. |
b83266a0 | 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998, 1999 |
c906108c SS |
3 | Free Software Foundation, Inc. |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah (pa-gdb-bugs@cs.utah.edu). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | ||
26 | #include "defs.h" | |
27 | #include "inferior.h" | |
28 | #include "target.h" | |
29 | #include <sys/ptrace.h> | |
30 | #include "gdbcore.h" | |
31 | #include <wait.h> | |
32 | #include <signal.h> | |
33 | ||
34 | extern CORE_ADDR text_end; | |
35 | ||
36 | static void fetch_register PARAMS ((int)); | |
37 | ||
38 | void | |
39 | fetch_inferior_registers (regno) | |
40 | int regno; | |
41 | { | |
42 | if (regno == -1) | |
43 | for (regno = 0; regno < NUM_REGS; regno++) | |
44 | fetch_register (regno); | |
45 | else | |
46 | fetch_register (regno); | |
47 | } | |
48 | ||
49 | /* Store our register values back into the inferior. | |
50 | If REGNO is -1, do this for all registers. | |
51 | Otherwise, REGNO specifies which register (so we can save time). */ | |
52 | ||
53 | void | |
54 | store_inferior_registers (regno) | |
55 | int regno; | |
56 | { | |
57 | register unsigned int regaddr; | |
58 | char buf[80]; | |
c906108c SS |
59 | register int i; |
60 | unsigned int offset = U_REGS_OFFSET; | |
61 | int scratch; | |
62 | ||
63 | if (regno >= 0) | |
64 | { | |
65 | if (CANNOT_STORE_REGISTER (regno)) | |
66 | return; | |
67 | regaddr = register_addr (regno, offset); | |
68 | errno = 0; | |
69 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) | |
b83266a0 SS |
70 | { |
71 | scratch = *(int *) ®isters[REGISTER_BYTE (regno)] | 0x3; | |
72 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
73 | scratch); | |
74 | if (errno != 0) | |
75 | { | |
c906108c | 76 | /* Error, even if attached. Failing to write these two |
c5aa993b | 77 | registers is pretty serious. */ |
b83266a0 SS |
78 | sprintf (buf, "writing register number %d", regno); |
79 | perror_with_name (buf); | |
80 | } | |
81 | } | |
c906108c | 82 | else |
c5aa993b | 83 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) |
c906108c SS |
84 | { |
85 | errno = 0; | |
86 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
b83266a0 | 87 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); |
c906108c SS |
88 | if (errno != 0) |
89 | { | |
90 | /* Warning, not error, in case we are attached; sometimes the | |
91 | kernel doesn't let us at the registers. */ | |
92 | char *err = safe_strerror (errno); | |
93 | char *msg = alloca (strlen (err) + 128); | |
94 | sprintf (msg, "writing register %s: %s", | |
95 | REGISTER_NAME (regno), err); | |
96 | warning (msg); | |
97 | return; | |
98 | } | |
c5aa993b | 99 | regaddr += sizeof (int); |
c906108c SS |
100 | } |
101 | } | |
102 | else | |
103 | for (regno = 0; regno < NUM_REGS; regno++) | |
104 | store_inferior_registers (regno); | |
105 | } | |
106 | ||
107 | /* Fetch one register. */ | |
108 | ||
109 | static void | |
110 | fetch_register (regno) | |
111 | int regno; | |
112 | { | |
113 | register unsigned int regaddr; | |
114 | char buf[MAX_REGISTER_RAW_SIZE]; | |
115 | register int i; | |
116 | ||
117 | /* Offset of registers within the u area. */ | |
118 | unsigned int offset; | |
119 | ||
120 | offset = U_REGS_OFFSET; | |
121 | ||
122 | regaddr = register_addr (regno, offset); | |
123 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) | |
124 | { | |
125 | errno = 0; | |
126 | *(int *) &buf[i] = call_ptrace (PT_RUREGS, inferior_pid, | |
b83266a0 | 127 | (PTRACE_ARG3_TYPE) regaddr, 0); |
c906108c SS |
128 | regaddr += sizeof (int); |
129 | if (errno != 0) | |
130 | { | |
131 | /* Warning, not error, in case we are attached; sometimes the | |
b83266a0 | 132 | kernel doesn't let us at the registers. */ |
c906108c SS |
133 | char *err = safe_strerror (errno); |
134 | char *msg = alloca (strlen (err) + 128); | |
135 | sprintf (msg, "reading register %s: %s", REGISTER_NAME (regno), err); | |
136 | warning (msg); | |
137 | goto error_exit; | |
138 | } | |
139 | } | |
140 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) | |
141 | buf[3] &= ~0x3; | |
142 | supply_register (regno, buf); | |
c5aa993b | 143 | error_exit:; |
c906108c SS |
144 | } |
145 | ||
146 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR | |
147 | to debugger memory starting at MYADDR. Copy to inferior if | |
148 | WRITE is nonzero. | |
c5aa993b | 149 | |
c906108c SS |
150 | Returns the length copied, which is either the LEN argument or zero. |
151 | This xfer function does not do partial moves, since child_ops | |
152 | doesn't allow memory operations to cross below us in the target stack | |
153 | anyway. */ | |
154 | ||
155 | int | |
156 | child_xfer_memory (memaddr, myaddr, len, write, target) | |
157 | CORE_ADDR memaddr; | |
158 | char *myaddr; | |
159 | int len; | |
160 | int write; | |
c5aa993b | 161 | struct target_ops *target; /* ignored */ |
c906108c SS |
162 | { |
163 | register int i; | |
164 | /* Round starting address down to longword boundary. */ | |
c5aa993b | 165 | register CORE_ADDR addr = memaddr & -sizeof (int); |
c906108c SS |
166 | /* Round ending address up; get number of longwords that makes. */ |
167 | register int count | |
c5aa993b | 168 | = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); |
c906108c | 169 | |
b83266a0 SS |
170 | /* Allocate buffer of that many longwords. |
171 | Note -- do not use alloca to allocate this buffer since there is no | |
172 | guarantee of when the buffer will actually be deallocated. | |
173 | ||
174 | This routine can be called over and over with the same call chain; | |
175 | this (in effect) would pile up all those alloca requests until a call | |
176 | to alloca was made from a point higher than this routine in the | |
177 | call chain. */ | |
c906108c SS |
178 | register int *buffer = (int *) xmalloc (count * sizeof (int)); |
179 | ||
180 | if (write) | |
181 | { | |
182 | /* Fill start and end extra bytes of buffer with existing memory data. */ | |
c5aa993b | 183 | if (addr != memaddr || len < (int) sizeof (int)) |
b83266a0 SS |
184 | { |
185 | /* Need part of initial word -- fetch it. */ | |
c5aa993b | 186 | buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
b83266a0 SS |
187 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
188 | } | |
c906108c SS |
189 | |
190 | if (count > 1) /* FIXME, avoid if even boundary */ | |
191 | { | |
192 | buffer[count - 1] | |
b83266a0 SS |
193 | = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
194 | inferior_pid, | |
195 | (PTRACE_ARG3_TYPE) (addr | |
196 | + (count - 1) * sizeof (int)), | |
197 | 0); | |
c906108c SS |
198 | } |
199 | ||
200 | /* Copy data to be written over corresponding part of buffer */ | |
c906108c SS |
201 | memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); |
202 | ||
203 | /* Write the entire buffer. */ | |
c906108c SS |
204 | for (i = 0; i < count; i++, addr += sizeof (int)) |
205 | { | |
b83266a0 SS |
206 | int pt_status; |
207 | int pt_request; | |
208 | /* The HP-UX kernel crashes if you use PT_WDUSER to write into the | |
209 | text segment. FIXME -- does it work to write into the data | |
210 | segment using WIUSER, or do these idiots really expect us to | |
211 | figure out which segment the address is in, so we can use a | |
212 | separate system call for it??! */ | |
c906108c | 213 | errno = 0; |
b83266a0 | 214 | pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER; |
c906108c | 215 | pt_status = call_ptrace (pt_request, |
c5aa993b | 216 | inferior_pid, |
b83266a0 SS |
217 | (PTRACE_ARG3_TYPE) addr, |
218 | buffer[i]); | |
219 | ||
220 | /* Did we fail? Might we've guessed wrong about which | |
221 | segment this address resides in? Try the other request, | |
222 | and see if that works... */ | |
223 | if ((pt_status == -1) && errno) | |
224 | { | |
225 | errno = 0; | |
226 | pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER; | |
227 | pt_status = call_ptrace (pt_request, | |
c5aa993b | 228 | inferior_pid, |
b83266a0 SS |
229 | (PTRACE_ARG3_TYPE) addr, |
230 | buffer[i]); | |
231 | ||
232 | /* No, we still fail. Okay, time to punt. */ | |
233 | if ((pt_status == -1) && errno) | |
234 | { | |
c5aa993b | 235 | free (buffer); |
b83266a0 SS |
236 | return 0; |
237 | } | |
238 | } | |
c906108c SS |
239 | } |
240 | } | |
241 | else | |
242 | { | |
243 | /* Read all the longwords */ | |
244 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
245 | { | |
246 | errno = 0; | |
c5aa993b | 247 | buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
b83266a0 SS |
248 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
249 | if (errno) | |
250 | { | |
c5aa993b | 251 | free (buffer); |
b83266a0 SS |
252 | return 0; |
253 | } | |
c906108c SS |
254 | QUIT; |
255 | } | |
256 | ||
257 | /* Copy appropriate bytes out of the buffer. */ | |
258 | memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); | |
259 | } | |
c5aa993b | 260 | free (buffer); |
c906108c SS |
261 | return len; |
262 | } | |
263 | ||
264 | ||
265 | void | |
266 | child_post_follow_inferior_by_clone () | |
267 | { | |
b83266a0 | 268 | int status; |
c906108c SS |
269 | |
270 | /* This function is used when following both the parent and child | |
271 | of a fork. In this case, the debugger clones itself. The original | |
272 | debugger follows the parent, the clone follows the child. The | |
273 | original detaches from the child, delivering a SIGSTOP to it to | |
274 | keep it from running away until the clone can attach itself. | |
275 | ||
276 | At this point, the clone has attached to the child. Because of | |
277 | the SIGSTOP, we must now deliver a SIGCONT to the child, or it | |
278 | won't behave properly. */ | |
279 | status = kill (inferior_pid, SIGCONT); | |
280 | } | |
281 | ||
282 | ||
283 | void | |
284 | child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child) | |
b83266a0 SS |
285 | int parent_pid; |
286 | int followed_parent; | |
287 | int child_pid; | |
288 | int followed_child; | |
c906108c | 289 | { |
c906108c SS |
290 | /* Are we a debugger that followed the parent of a vfork? If so, |
291 | then recall that the child's vfork event was delivered to us | |
292 | first. And, that the parent was suspended by the OS until the | |
293 | child's exec or exit events were received. | |
294 | ||
295 | Upon receiving that child vfork, then, we were forced to remove | |
296 | all breakpoints in the child and continue it so that it could | |
297 | reach the exec or exit point. | |
298 | ||
299 | But also recall that the parent and child of a vfork share the | |
300 | same address space. Thus, removing bp's in the child also | |
301 | removed them from the parent. | |
302 | ||
303 | Now that the child has safely exec'd or exited, we must restore | |
304 | the parent's breakpoints before we continue it. Else, we may | |
305 | cause it run past expected stopping points. */ | |
306 | if (followed_parent) | |
307 | { | |
308 | reattach_breakpoints (parent_pid); | |
309 | } | |
310 | ||
311 | /* Are we a debugger that followed the child of a vfork? If so, | |
312 | then recall that we don't actually acquire control of the child | |
b83266a0 | 313 | until after it has exec'd or exited. */ |
c906108c SS |
314 | if (followed_child) |
315 | { | |
316 | /* If the child has exited, then there's nothing for us to do. | |
c5aa993b JM |
317 | In the case of an exec event, we'll let that be handled by |
318 | the normal mechanism that notices and handles exec events, in | |
319 | resume(). */ | |
c906108c SS |
320 | } |
321 | } | |
322 | ||
b83266a0 SS |
323 | /* Format a process id, given PID. Be sure to terminate |
324 | this with a null--it's going to be printed via a "%s". */ | |
c906108c | 325 | char * |
b83266a0 | 326 | hppa_pid_to_str (pid) |
c5aa993b | 327 | pid_t pid; |
c906108c | 328 | { |
c5aa993b JM |
329 | /* Static because address returned */ |
330 | static char buf[30]; | |
c906108c | 331 | |
c5aa993b JM |
332 | /* Extra NULLs for paranoia's sake */ |
333 | sprintf (buf, "process %d\0\0\0\0", pid); | |
334 | ||
335 | return buf; | |
c906108c SS |
336 | } |
337 | ||
b83266a0 SS |
338 | /* Format a thread id, given TID. Be sure to terminate |
339 | this with a null--it's going to be printed via a "%s". | |
340 | ||
341 | Note: This is a core-gdb tid, not the actual system tid. | |
c5aa993b | 342 | See infttrace.c for details. */ |
c906108c | 343 | char * |
b83266a0 | 344 | hppa_tid_to_str (tid) |
c5aa993b | 345 | pid_t tid; |
c906108c | 346 | { |
c5aa993b JM |
347 | /* Static because address returned */ |
348 | static char buf[30]; | |
349 | ||
350 | /* Extra NULLs for paranoia's sake */ | |
351 | sprintf (buf, "system thread %d\0\0\0\0", tid); | |
c906108c | 352 | |
c5aa993b | 353 | return buf; |
c906108c SS |
354 | } |
355 | ||
356 | #if !defined (GDB_NATIVE_HPUX_11) | |
357 | ||
358 | /* The following code is a substitute for the infttrace.c versions used | |
359 | with ttrace() in HPUX 11. */ | |
360 | ||
361 | /* This value is an arbitrary integer. */ | |
362 | #define PT_VERSION 123456 | |
363 | ||
364 | /* This semaphore is used to coordinate the child and parent processes | |
365 | after a fork(), and before an exec() by the child. See | |
366 | parent_attach_all for details. */ | |
367 | ||
c5aa993b JM |
368 | typedef struct |
369 | { | |
370 | int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */ | |
371 | int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */ | |
372 | } | |
373 | startup_semaphore_t; | |
c906108c SS |
374 | |
375 | #define SEM_TALK (1) | |
376 | #define SEM_LISTEN (0) | |
377 | ||
c5aa993b | 378 | static startup_semaphore_t startup_semaphore; |
c906108c SS |
379 | |
380 | extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int)); | |
381 | ||
382 | #ifdef PT_SETTRC | |
383 | /* This function causes the caller's process to be traced by its | |
384 | parent. This is intended to be called after GDB forks itself, | |
385 | and before the child execs the target. | |
386 | ||
387 | Note that HP-UX ptrace is rather funky in how this is done. | |
388 | If the parent wants to get the initial exec event of a child, | |
389 | it must set the ptrace event mask of the child to include execs. | |
390 | (The child cannot do this itself.) This must be done after the | |
391 | child is forked, but before it execs. | |
392 | ||
393 | To coordinate the parent and child, we implement a semaphore using | |
394 | pipes. After SETTRC'ing itself, the child tells the parent that | |
395 | it is now traceable by the parent, and waits for the parent's | |
396 | acknowledgement. The parent can then set the child's event mask, | |
397 | and notify the child that it can now exec. | |
398 | ||
399 | (The acknowledgement by parent happens as a result of a call to | |
400 | child_acknowledge_created_inferior.) */ | |
401 | ||
402 | int | |
403 | parent_attach_all (pid, addr, data) | |
404 | int pid; | |
405 | PTRACE_ARG3_TYPE addr; | |
406 | int data; | |
407 | { | |
408 | int pt_status = 0; | |
409 | ||
410 | /* We need a memory home for a constant. */ | |
411 | int tc_magic_child = PT_VERSION; | |
412 | int tc_magic_parent = 0; | |
413 | ||
414 | /* The remainder of this function is only useful for HPUX 10.0 and | |
415 | later, as it depends upon the ability to request notification | |
416 | of specific kinds of events by the kernel. */ | |
417 | #if defined(PT_SET_EVENT_MASK) | |
418 | ||
419 | /* Notify the parent that we're potentially ready to exec(). */ | |
420 | write (startup_semaphore.child_channel[SEM_TALK], | |
b83266a0 SS |
421 | &tc_magic_child, |
422 | sizeof (tc_magic_child)); | |
c906108c SS |
423 | |
424 | /* Wait for acknowledgement from the parent. */ | |
425 | read (startup_semaphore.parent_channel[SEM_LISTEN], | |
b83266a0 SS |
426 | &tc_magic_parent, |
427 | sizeof (tc_magic_parent)); | |
c906108c | 428 | if (tc_magic_child != tc_magic_parent) |
c5aa993b | 429 | warning ("mismatched semaphore magic"); |
c906108c SS |
430 | |
431 | /* Discard our copy of the semaphore. */ | |
432 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
433 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
434 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
435 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
436 | #endif | |
c5aa993b | 437 | |
c906108c SS |
438 | return 0; |
439 | } | |
440 | #endif | |
441 | ||
442 | int | |
443 | hppa_require_attach (pid) | |
444 | int pid; | |
445 | { | |
446 | int pt_status; | |
b83266a0 SS |
447 | CORE_ADDR pc; |
448 | CORE_ADDR pc_addr; | |
c906108c SS |
449 | unsigned int regs_offset; |
450 | ||
451 | /* Are we already attached? There appears to be no explicit way to | |
452 | answer this via ptrace, so we try something which should be | |
453 | innocuous if we are attached. If that fails, then we assume | |
454 | we're not attached, and so attempt to make it so. */ | |
455 | ||
456 | errno = 0; | |
457 | regs_offset = U_REGS_OFFSET; | |
458 | pc_addr = register_addr (PC_REGNUM, regs_offset); | |
459 | pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0); | |
460 | ||
461 | if (errno) | |
462 | { | |
463 | errno = 0; | |
464 | pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); | |
465 | ||
466 | if (errno) | |
b83266a0 | 467 | return -1; |
c906108c SS |
468 | |
469 | /* Now we really are attached. */ | |
470 | errno = 0; | |
471 | } | |
472 | attach_flag = 1; | |
473 | return pid; | |
474 | } | |
475 | ||
476 | int | |
477 | hppa_require_detach (pid, signal) | |
c5aa993b JM |
478 | int pid; |
479 | int signal; | |
c906108c SS |
480 | { |
481 | errno = 0; | |
482 | call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal); | |
c5aa993b | 483 | errno = 0; /* Ignore any errors. */ |
c906108c SS |
484 | return pid; |
485 | } | |
486 | ||
487 | /* Since ptrace doesn't support memory page-protection events, which | |
488 | are used to implement "hardware" watchpoints on HP-UX, these are | |
489 | dummy versions, which perform no useful work. */ | |
490 | ||
491 | void | |
492 | hppa_enable_page_protection_events (pid) | |
493 | int pid; | |
494 | { | |
495 | } | |
496 | ||
497 | void | |
498 | hppa_disable_page_protection_events (pid) | |
499 | int pid; | |
500 | { | |
501 | } | |
502 | ||
503 | int | |
504 | hppa_insert_hw_watchpoint (pid, start, len, type) | |
505 | int pid; | |
506 | CORE_ADDR start; | |
507 | LONGEST len; | |
508 | int type; | |
509 | { | |
510 | error ("Hardware watchpoints not implemented on this platform."); | |
511 | } | |
512 | ||
513 | int | |
514 | hppa_remove_hw_watchpoint (pid, start, len, type) | |
515 | int pid; | |
516 | CORE_ADDR start; | |
517 | LONGEST len; | |
518 | enum bptype type; | |
519 | { | |
520 | error ("Hardware watchpoints not implemented on this platform."); | |
521 | } | |
522 | ||
523 | int | |
524 | hppa_can_use_hw_watchpoint (type, cnt, ot) | |
525 | enum bptype type; | |
526 | int cnt; | |
527 | enum bptype ot; | |
528 | { | |
529 | return 0; | |
530 | } | |
531 | ||
532 | int | |
533 | hppa_range_profitable_for_hw_watchpoint (pid, start, len) | |
534 | int pid; | |
535 | CORE_ADDR start; | |
536 | LONGEST len; | |
537 | { | |
538 | error ("Hardware watchpoints not implemented on this platform."); | |
539 | } | |
540 | ||
541 | char * | |
542 | hppa_pid_or_tid_to_str (id) | |
543 | pid_t id; | |
544 | { | |
545 | /* In the ptrace world, there are only processes. */ | |
546 | return hppa_pid_to_str (id); | |
547 | } | |
548 | ||
549 | /* This function has no meaning in a non-threaded world. Thus, we | |
550 | return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in | |
551 | hppa-tdep.c. */ | |
552 | ||
553 | pid_t | |
554 | hppa_switched_threads (pid) | |
555 | pid_t pid; | |
556 | { | |
557 | return (pid_t) 0; | |
558 | } | |
559 | ||
560 | void | |
561 | hppa_ensure_vforking_parent_remains_stopped (pid) | |
562 | int pid; | |
563 | { | |
564 | /* This assumes that the vforked parent is presently stopped, and | |
565 | that the vforked child has just delivered its first exec event. | |
566 | Calling kill() this way will cause the SIGTRAP to be delivered as | |
567 | soon as the parent is resumed, which happens as soon as the | |
568 | vforked child is resumed. See wait_for_inferior for the use of | |
569 | this function. */ | |
570 | kill (pid, SIGTRAP); | |
571 | } | |
572 | ||
573 | int | |
574 | hppa_resume_execd_vforking_child_to_get_parent_vfork () | |
575 | { | |
c5aa993b | 576 | return 1; /* Yes, the child must be resumed. */ |
c906108c SS |
577 | } |
578 | ||
579 | void | |
580 | require_notification_of_events (pid) | |
b83266a0 | 581 | int pid; |
c906108c SS |
582 | { |
583 | #if defined(PT_SET_EVENT_MASK) | |
584 | int pt_status; | |
585 | ptrace_event_t ptrace_events; | |
586 | ||
587 | /* Instruct the kernel as to the set of events we wish to be | |
588 | informed of. (This support does not exist before HPUX 10.0. | |
589 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
b83266a0 | 590 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
c906108c SS |
591 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
592 | ||
593 | /* Note: By default, all signals are visible to us. If we wish | |
594 | the kernel to keep certain signals hidden from us, we do it | |
595 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
b83266a0 | 596 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
c906108c SS |
597 | sigemptyset (&ptrace_events.pe_signals); |
598 | ||
599 | ptrace_events.pe_set_event = 0; | |
600 | ||
601 | ptrace_events.pe_set_event |= PTRACE_SIGNAL; | |
602 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
603 | ptrace_events.pe_set_event |= PTRACE_FORK; | |
604 | ptrace_events.pe_set_event |= PTRACE_VFORK; | |
605 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
c5aa993b JM |
606 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
607 | */ | |
c906108c SS |
608 | |
609 | errno = 0; | |
610 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
c5aa993b JM |
611 | pid, |
612 | (PTRACE_ARG3_TYPE) & ptrace_events, | |
613 | sizeof (ptrace_events)); | |
c906108c SS |
614 | if (errno) |
615 | perror_with_name ("ptrace"); | |
616 | if (pt_status < 0) | |
617 | return; | |
618 | #endif | |
619 | } | |
620 | ||
621 | void | |
622 | require_notification_of_exec_events (pid) | |
b83266a0 | 623 | int pid; |
c906108c SS |
624 | { |
625 | #if defined(PT_SET_EVENT_MASK) | |
626 | int pt_status; | |
627 | ptrace_event_t ptrace_events; | |
628 | ||
629 | /* Instruct the kernel as to the set of events we wish to be | |
630 | informed of. (This support does not exist before HPUX 10.0. | |
631 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
b83266a0 | 632 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
c906108c SS |
633 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
634 | ||
635 | /* Note: By default, all signals are visible to us. If we wish | |
636 | the kernel to keep certain signals hidden from us, we do it | |
637 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
b83266a0 | 638 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
c906108c SS |
639 | sigemptyset (&ptrace_events.pe_signals); |
640 | ||
641 | ptrace_events.pe_set_event = 0; | |
642 | ||
643 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
644 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
c5aa993b JM |
645 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
646 | */ | |
c906108c SS |
647 | |
648 | errno = 0; | |
649 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
c5aa993b JM |
650 | pid, |
651 | (PTRACE_ARG3_TYPE) & ptrace_events, | |
652 | sizeof (ptrace_events)); | |
c906108c SS |
653 | if (errno) |
654 | perror_with_name ("ptrace"); | |
655 | if (pt_status < 0) | |
656 | return; | |
657 | #endif | |
658 | } | |
659 | ||
660 | /* This function is called by the parent process, with pid being the | |
661 | ID of the child process, after the debugger has forked. */ | |
662 | ||
663 | void | |
664 | child_acknowledge_created_inferior (pid) | |
b83266a0 | 665 | int pid; |
c906108c SS |
666 | { |
667 | /* We need a memory home for a constant. */ | |
668 | int tc_magic_parent = PT_VERSION; | |
669 | int tc_magic_child = 0; | |
670 | ||
b83266a0 SS |
671 | /* The remainder of this function is only useful for HPUX 10.0 and |
672 | later, as it depends upon the ability to request notification | |
673 | of specific kinds of events by the kernel. */ | |
674 | #if defined(PT_SET_EVENT_MASK) | |
c906108c SS |
675 | /* Wait for the child to tell us that it has forked. */ |
676 | read (startup_semaphore.child_channel[SEM_LISTEN], | |
b83266a0 | 677 | &tc_magic_child, |
c5aa993b | 678 | sizeof (tc_magic_child)); |
c906108c SS |
679 | |
680 | /* Notify the child that it can exec. | |
681 | ||
682 | In the infttrace.c variant of this function, we set the child's | |
683 | event mask after the fork but before the exec. In the ptrace | |
684 | world, it seems we can't set the event mask until after the exec. */ | |
c906108c | 685 | write (startup_semaphore.parent_channel[SEM_TALK], |
b83266a0 SS |
686 | &tc_magic_parent, |
687 | sizeof (tc_magic_parent)); | |
c906108c SS |
688 | |
689 | /* We'd better pause a bit before trying to set the event mask, | |
690 | though, to ensure that the exec has happened. We don't want to | |
691 | wait() on the child, because that'll screw up the upper layers | |
692 | of gdb's execution control that expect to see the exec event. | |
693 | ||
694 | After an exec, the child is no longer executing gdb code. Hence, | |
695 | we can't have yet another synchronization via the pipes. We'll | |
696 | just sleep for a second, and hope that's enough delay... */ | |
c906108c SS |
697 | sleep (1); |
698 | ||
699 | /* Instruct the kernel as to the set of events we wish to be | |
700 | informed of. */ | |
c906108c SS |
701 | require_notification_of_exec_events (pid); |
702 | ||
703 | /* Discard our copy of the semaphore. */ | |
704 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
705 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
706 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
707 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
b83266a0 | 708 | #endif |
c906108c SS |
709 | } |
710 | ||
711 | void | |
712 | child_post_startup_inferior (pid) | |
b83266a0 | 713 | int pid; |
c906108c SS |
714 | { |
715 | require_notification_of_events (pid); | |
716 | } | |
717 | ||
718 | void | |
719 | child_post_attach (pid) | |
b83266a0 | 720 | int pid; |
c906108c SS |
721 | { |
722 | require_notification_of_events (pid); | |
723 | } | |
724 | ||
725 | int | |
726 | child_insert_fork_catchpoint (pid) | |
b83266a0 | 727 | int pid; |
c906108c SS |
728 | { |
729 | /* This request is only available on HPUX 10.0 and later. */ | |
730 | #if !defined(PT_SET_EVENT_MASK) | |
731 | error ("Unable to catch forks prior to HPUX 10.0"); | |
732 | #else | |
733 | /* Enable reporting of fork events from the kernel. */ | |
734 | /* ??rehrauer: For the moment, we're always enabling these events, | |
b83266a0 | 735 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
736 | return 0; |
737 | #endif | |
738 | } | |
739 | ||
740 | int | |
741 | child_remove_fork_catchpoint (pid) | |
b83266a0 | 742 | int pid; |
c906108c SS |
743 | { |
744 | /* This request is only available on HPUX 10.0 and later. */ | |
745 | #if !defined(PT_SET_EVENT_MASK) | |
746 | error ("Unable to catch forks prior to HPUX 10.0"); | |
747 | #else | |
748 | /* Disable reporting of fork events from the kernel. */ | |
749 | /* ??rehrauer: For the moment, we're always enabling these events, | |
750 | and just ignoring them if there's no catchpoint to catch them. */ | |
751 | return 0; | |
752 | #endif | |
753 | } | |
754 | ||
755 | int | |
756 | child_insert_vfork_catchpoint (pid) | |
b83266a0 | 757 | int pid; |
c906108c SS |
758 | { |
759 | /* This request is only available on HPUX 10.0 and later. */ | |
760 | #if !defined(PT_SET_EVENT_MASK) | |
761 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
762 | #else | |
763 | /* Enable reporting of vfork events from the kernel. */ | |
764 | /* ??rehrauer: For the moment, we're always enabling these events, | |
765 | and just ignoring them if there's no catchpoint to catch them. */ | |
766 | return 0; | |
767 | #endif | |
768 | } | |
769 | ||
770 | int | |
771 | child_remove_vfork_catchpoint (pid) | |
b83266a0 | 772 | int pid; |
c906108c SS |
773 | { |
774 | /* This request is only available on HPUX 10.0 and later. */ | |
775 | #if !defined(PT_SET_EVENT_MASK) | |
776 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
777 | #else | |
778 | /* Disable reporting of vfork events from the kernel. */ | |
779 | /* ??rehrauer: For the moment, we're always enabling these events, | |
780 | and just ignoring them if there's no catchpoint to catch them. */ | |
781 | return 0; | |
782 | #endif | |
783 | } | |
784 | ||
785 | int | |
786 | child_has_forked (pid, childpid) | |
b83266a0 SS |
787 | int pid; |
788 | int *childpid; | |
c906108c SS |
789 | { |
790 | /* This request is only available on HPUX 10.0 and later. */ | |
791 | #if !defined(PT_GET_PROCESS_STATE) | |
792 | *childpid = 0; | |
793 | return 0; | |
794 | #else | |
795 | int pt_status; | |
c5aa993b | 796 | ptrace_state_t ptrace_state; |
c906108c SS |
797 | |
798 | errno = 0; | |
799 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 800 | pid, |
c5aa993b | 801 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 802 | sizeof (ptrace_state)); |
c906108c SS |
803 | if (errno) |
804 | perror_with_name ("ptrace"); | |
805 | if (pt_status < 0) | |
806 | return 0; | |
807 | ||
808 | if (ptrace_state.pe_report_event & PTRACE_FORK) | |
809 | { | |
810 | *childpid = ptrace_state.pe_other_pid; | |
811 | return 1; | |
812 | } | |
813 | ||
814 | return 0; | |
815 | #endif | |
816 | } | |
817 | ||
818 | int | |
819 | child_has_vforked (pid, childpid) | |
b83266a0 SS |
820 | int pid; |
821 | int *childpid; | |
c906108c SS |
822 | { |
823 | /* This request is only available on HPUX 10.0 and later. */ | |
824 | #if !defined(PT_GET_PROCESS_STATE) | |
825 | *childpid = 0; | |
826 | return 0; | |
827 | ||
828 | #else | |
829 | int pt_status; | |
c5aa993b | 830 | ptrace_state_t ptrace_state; |
c906108c SS |
831 | |
832 | errno = 0; | |
833 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 834 | pid, |
c5aa993b | 835 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 836 | sizeof (ptrace_state)); |
c906108c SS |
837 | if (errno) |
838 | perror_with_name ("ptrace"); | |
839 | if (pt_status < 0) | |
840 | return 0; | |
841 | ||
842 | if (ptrace_state.pe_report_event & PTRACE_VFORK) | |
843 | { | |
844 | *childpid = ptrace_state.pe_other_pid; | |
845 | return 1; | |
846 | } | |
847 | ||
848 | return 0; | |
849 | #endif | |
850 | } | |
851 | ||
852 | int | |
853 | child_can_follow_vfork_prior_to_exec () | |
854 | { | |
855 | /* ptrace doesn't allow this. */ | |
856 | return 0; | |
857 | } | |
858 | ||
859 | int | |
860 | child_insert_exec_catchpoint (pid) | |
b83266a0 | 861 | int pid; |
c906108c | 862 | { |
b83266a0 | 863 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
864 | #if !defined(PT_SET_EVENT_MASK) |
865 | error ("Unable to catch execs prior to HPUX 10.0"); | |
866 | ||
867 | #else | |
b83266a0 | 868 | /* Enable reporting of exec events from the kernel. */ |
c906108c | 869 | /* ??rehrauer: For the moment, we're always enabling these events, |
b83266a0 | 870 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
871 | return 0; |
872 | #endif | |
873 | } | |
874 | ||
875 | int | |
876 | child_remove_exec_catchpoint (pid) | |
b83266a0 | 877 | int pid; |
c906108c | 878 | { |
b83266a0 | 879 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
880 | #if !defined(PT_SET_EVENT_MASK) |
881 | error ("Unable to catch execs prior to HPUX 10.0"); | |
882 | ||
883 | #else | |
884 | /* Disable reporting of exec events from the kernel. */ | |
885 | /* ??rehrauer: For the moment, we're always enabling these events, | |
b83266a0 | 886 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
887 | return 0; |
888 | #endif | |
889 | } | |
890 | ||
891 | int | |
892 | child_has_execd (pid, execd_pathname) | |
b83266a0 SS |
893 | int pid; |
894 | char **execd_pathname; | |
c906108c | 895 | { |
b83266a0 | 896 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
897 | #if !defined(PT_GET_PROCESS_STATE) |
898 | *execd_pathname = NULL; | |
899 | return 0; | |
900 | ||
901 | #else | |
902 | int pt_status; | |
c5aa993b | 903 | ptrace_state_t ptrace_state; |
c906108c SS |
904 | |
905 | errno = 0; | |
906 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 907 | pid, |
c5aa993b | 908 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 909 | sizeof (ptrace_state)); |
c906108c SS |
910 | if (errno) |
911 | perror_with_name ("ptrace"); | |
912 | if (pt_status < 0) | |
913 | return 0; | |
914 | ||
915 | if (ptrace_state.pe_report_event & PTRACE_EXEC) | |
916 | { | |
c5aa993b | 917 | char *exec_file = target_pid_to_exec_file (pid); |
c906108c SS |
918 | *execd_pathname = savestring (exec_file, strlen (exec_file)); |
919 | return 1; | |
920 | } | |
921 | ||
922 | return 0; | |
923 | #endif | |
924 | } | |
925 | ||
926 | int | |
927 | child_reported_exec_events_per_exec_call () | |
928 | { | |
c5aa993b | 929 | return 2; /* ptrace reports the event twice per call. */ |
c906108c SS |
930 | } |
931 | ||
932 | int | |
933 | child_has_syscall_event (pid, kind, syscall_id) | |
934 | int pid; | |
935 | enum target_waitkind *kind; | |
936 | int *syscall_id; | |
937 | { | |
938 | /* This request is only available on HPUX 10.30 and later, via | |
939 | the ttrace interface. */ | |
940 | ||
941 | *kind = TARGET_WAITKIND_SPURIOUS; | |
942 | *syscall_id = -1; | |
943 | return 0; | |
944 | } | |
945 | ||
946 | char * | |
947 | child_pid_to_exec_file (pid) | |
b83266a0 | 948 | int pid; |
c906108c | 949 | { |
b83266a0 | 950 | static char exec_file_buffer[1024]; |
c906108c | 951 | int pt_status; |
b83266a0 SS |
952 | CORE_ADDR top_of_stack; |
953 | char four_chars[4]; | |
c906108c SS |
954 | int name_index; |
955 | int i; | |
956 | int saved_inferior_pid; | |
b83266a0 | 957 | boolean done; |
c5aa993b | 958 | |
c906108c SS |
959 | #ifdef PT_GET_PROCESS_PATHNAME |
960 | /* As of 10.x HP-UX, there's an explicit request to get the pathname. */ | |
961 | pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME, | |
b83266a0 SS |
962 | pid, |
963 | (PTRACE_ARG3_TYPE) exec_file_buffer, | |
964 | sizeof (exec_file_buffer) - 1); | |
c906108c SS |
965 | if (pt_status == 0) |
966 | return exec_file_buffer; | |
967 | #endif | |
968 | ||
969 | /* It appears that this request is broken prior to 10.30. | |
970 | If it fails, try a really, truly amazingly gross hack | |
971 | that DDE uses, of pawing through the process' data | |
972 | segment to find the pathname. */ | |
973 | ||
974 | top_of_stack = 0x7b03a000; | |
975 | name_index = 0; | |
976 | done = 0; | |
977 | ||
978 | /* On the chance that pid != inferior_pid, set inferior_pid | |
979 | to pid, so that (grrrr!) implicit uses of inferior_pid get | |
980 | the right id. */ | |
981 | ||
982 | saved_inferior_pid = inferior_pid; | |
983 | inferior_pid = pid; | |
984 | ||
985 | /* Try to grab a null-terminated string. */ | |
c5aa993b | 986 | while (!done) |
c906108c SS |
987 | { |
988 | if (target_read_memory (top_of_stack, four_chars, 4) != 0) | |
989 | { | |
990 | inferior_pid = saved_inferior_pid; | |
991 | return NULL; | |
992 | } | |
993 | for (i = 0; i < 4; i++) | |
994 | { | |
995 | exec_file_buffer[name_index++] = four_chars[i]; | |
996 | done = (four_chars[i] == '\0'); | |
997 | if (done) | |
998 | break; | |
999 | } | |
1000 | top_of_stack += 4; | |
1001 | } | |
1002 | ||
1003 | if (exec_file_buffer[0] == '\0') | |
1004 | { | |
1005 | inferior_pid = saved_inferior_pid; | |
1006 | return NULL; | |
1007 | } | |
1008 | ||
1009 | inferior_pid = saved_inferior_pid; | |
1010 | return exec_file_buffer; | |
1011 | } | |
1012 | ||
1013 | void | |
1014 | pre_fork_inferior () | |
1015 | { | |
1016 | int status; | |
1017 | ||
1018 | status = pipe (startup_semaphore.parent_channel); | |
1019 | if (status < 0) | |
1020 | { | |
1021 | warning ("error getting parent pipe for startup semaphore"); | |
1022 | return; | |
1023 | } | |
1024 | ||
1025 | status = pipe (startup_semaphore.child_channel); | |
1026 | if (status < 0) | |
1027 | { | |
1028 | warning ("error getting child pipe for startup semaphore"); | |
1029 | return; | |
1030 | } | |
1031 | } | |
c906108c | 1032 | \f |
c5aa993b | 1033 | |
c906108c SS |
1034 | /* Check to see if the given thread is alive. |
1035 | ||
1036 | This is a no-op, as ptrace doesn't support threads, so we just | |
1037 | return "TRUE". */ | |
1038 | ||
1039 | int | |
1040 | child_thread_alive (pid) | |
1041 | int pid; | |
1042 | { | |
c5aa993b | 1043 | return 1; |
c906108c SS |
1044 | } |
1045 | ||
1046 | #endif /* ! GDB_NATIVE_HPUX_11 */ |