]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ia64-linux-nat.c
RISC-V: Fixed overwritten IRELATIVE relocs in the .rel.iplt for data reloc.
[thirdparty/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
1d506c26 4 Copyright (C) 1999-2024 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d 20
16461d7d
KB
21#include "inferior.h"
22#include "target.h"
f9b11e6b 23#include "gdbarch.h"
16461d7d 24#include "gdbcore.h"
4e052eda 25#include "regcache.h"
949df321 26#include "ia64-tdep.h"
10d6c8cd 27#include "linux-nat.h"
16461d7d
KB
28
29#include <signal.h>
5826e159 30#include "nat/gdb_ptrace.h"
268a13a5 31#include "gdbsupport/gdb_wait.h"
16461d7d
KB
32#ifdef HAVE_SYS_REG_H
33#include <sys/reg.h>
34#endif
287a334e 35#include <sys/syscall.h>
16461d7d
KB
36#include <sys/user.h>
37
38#include <asm/ptrace_offsets.h>
39#include <sys/procfs.h>
40
1777feb0 41/* Prototypes for supply_gregset etc. */
c60c0f5f
MS
42#include "gregset.h"
43
bcc0c096
SM
44#include "inf-ptrace.h"
45
f6ac5f3d
PA
46class ia64_linux_nat_target final : public linux_nat_target
47{
48public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
52
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
59
f6ac5f3d
PA
60 /* Override watchpoint routines. */
61
62 /* The IA-64 architecture can step over a watch point (without
63 triggering it again) if the "dd" (data debug fault disable) bit
64 in the processor status word is set.
65
66 This PSR bit is set in
67 ia64_linux_nat_target::stopped_by_watchpoint when the code there
68 has determined that a hardware watchpoint has indeed been hit.
69 The CPU will then be able to execute one instruction without
70 triggering a watchpoint. */
c2a6c5da 71 bool have_steppable_watchpoint () override { return true; }
f6ac5f3d
PA
72
73 int can_use_hw_breakpoint (enum bptype, int, int) override;
57810aa7
PA
74 bool stopped_by_watchpoint () override;
75 bool stopped_data_address (CORE_ADDR *) override;
f6ac5f3d
PA
76 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
77 struct expression *) override;
78 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
135340af
PA
80 /* Override linux_nat_target low methods. */
81 void low_new_thread (struct lwp_info *lp) override;
82 bool low_status_is_event (int status) override;
9bf058f0
PA
83
84 void enable_watchpoints_in_psr (ptid_t ptid);
f6ac5f3d
PA
85};
86
87static ia64_linux_nat_target the_ia64_linux_nat_target;
88
16461d7d
KB
89/* These must match the order of the register names.
90
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
93
94static int u_offsets[] =
95 {
96 /* general registers */
1777feb0 97 -1, /* gr0 not available; i.e, it's always zero. */
16461d7d
KB
98 PT_R1,
99 PT_R2,
100 PT_R3,
101 PT_R4,
102 PT_R5,
103 PT_R6,
104 PT_R7,
105 PT_R8,
106 PT_R9,
107 PT_R10,
108 PT_R11,
109 PT_R12,
110 PT_R13,
111 PT_R14,
112 PT_R15,
113 PT_R16,
114 PT_R17,
115 PT_R18,
116 PT_R19,
117 PT_R20,
118 PT_R21,
119 PT_R22,
120 PT_R23,
121 PT_R24,
122 PT_R25,
123 PT_R26,
124 PT_R27,
125 PT_R28,
126 PT_R29,
127 PT_R30,
128 PT_R31,
1777feb0 129 /* gr32 through gr127 not directly available via the ptrace interface. */
16461d7d
KB
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
1777feb0 137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
16461d7d
KB
138 PT_F2,
139 PT_F3,
140 PT_F4,
141 PT_F5,
142 PT_F6,
143 PT_F7,
144 PT_F8,
145 PT_F9,
146 PT_F10,
147 PT_F11,
148 PT_F12,
149 PT_F13,
150 PT_F14,
151 PT_F15,
152 PT_F16,
153 PT_F17,
154 PT_F18,
155 PT_F19,
156 PT_F20,
157 PT_F21,
158 PT_F22,
159 PT_F23,
160 PT_F24,
161 PT_F25,
162 PT_F26,
163 PT_F27,
164 PT_F28,
165 PT_F29,
166 PT_F30,
167 PT_F31,
168 PT_F32,
169 PT_F33,
170 PT_F34,
171 PT_F35,
172 PT_F36,
173 PT_F37,
174 PT_F38,
175 PT_F39,
176 PT_F40,
177 PT_F41,
178 PT_F42,
179 PT_F43,
180 PT_F44,
181 PT_F45,
182 PT_F46,
183 PT_F47,
184 PT_F48,
185 PT_F49,
186 PT_F50,
187 PT_F51,
188 PT_F52,
189 PT_F53,
190 PT_F54,
191 PT_F55,
192 PT_F56,
193 PT_F57,
194 PT_F58,
195 PT_F59,
196 PT_F60,
197 PT_F61,
198 PT_F62,
199 PT_F63,
200 PT_F64,
201 PT_F65,
202 PT_F66,
203 PT_F67,
204 PT_F68,
205 PT_F69,
206 PT_F70,
207 PT_F71,
208 PT_F72,
209 PT_F73,
210 PT_F74,
211 PT_F75,
212 PT_F76,
213 PT_F77,
214 PT_F78,
215 PT_F79,
216 PT_F80,
217 PT_F81,
218 PT_F82,
219 PT_F83,
220 PT_F84,
221 PT_F85,
222 PT_F86,
223 PT_F87,
224 PT_F88,
225 PT_F89,
226 PT_F90,
227 PT_F91,
228 PT_F92,
229 PT_F93,
230 PT_F94,
231 PT_F95,
232 PT_F96,
233 PT_F97,
234 PT_F98,
235 PT_F99,
236 PT_F100,
237 PT_F101,
238 PT_F102,
239 PT_F103,
240 PT_F104,
241 PT_F105,
242 PT_F106,
243 PT_F107,
244 PT_F108,
245 PT_F109,
246 PT_F110,
247 PT_F111,
248 PT_F112,
249 PT_F113,
250 PT_F114,
251 PT_F115,
252 PT_F116,
253 PT_F117,
254 PT_F118,
255 PT_F119,
256 PT_F120,
257 PT_F121,
258 PT_F122,
259 PT_F123,
260 PT_F124,
261 PT_F125,
262 PT_F126,
263 PT_F127,
1777feb0 264 /* Predicate registers - we don't fetch these individually. */
16461d7d
KB
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
274 PT_B0,
275 PT_B1,
276 PT_B2,
277 PT_B3,
278 PT_B4,
279 PT_B5,
280 PT_B6,
281 PT_B7,
1777feb0 282 /* Virtual frame pointer and virtual return address pointer. */
16461d7d
KB
283 -1, -1,
284 /* other registers */
285 PT_PR,
286 PT_CR_IIP, /* ip */
287 PT_CR_IPSR, /* psr */
9ac12c35 288 PT_CFM, /* cfm */
1777feb0 289 /* kernel registers not visible via ptrace interface (?) */
16461d7d
KB
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 /* hole */
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 PT_AR_RSC,
294 PT_AR_BSP,
295 PT_AR_BSPSTORE,
296 PT_AR_RNAT,
297 -1,
1777feb0 298 -1, /* Not available: FCR, IA32 floating control register. */
16461d7d
KB
299 -1, -1,
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
307 -1,
308 PT_AR_CCV,
309 -1, -1, -1,
310 PT_AR_UNAT,
311 -1, -1, -1,
312 PT_AR_FPSR,
313 -1, -1, -1,
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 PT_AR_PFS,
318 PT_AR_LC,
4a6510ba 319 PT_AR_EC,
16461d7d
KB
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
326 -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
1777feb0 328 either rnat or unat or from memory. */
16461d7d
KB
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
345 };
346
74174d2e 347static CORE_ADDR
2685572f 348ia64_register_addr (struct gdbarch *gdbarch, int regno)
16461d7d
KB
349{
350 CORE_ADDR addr;
351
2685572f 352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
8a3fe4f8 353 error (_("Invalid register number %d."), regno);
16461d7d
KB
354
355 if (u_offsets[regno] == -1)
356 addr = 0;
357 else
358 addr = (CORE_ADDR) u_offsets[regno];
359
360 return addr;
361}
362
74174d2e 363static int
2685572f 364ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
16461d7d 365{
f57d151a 366 return regno < 0
2685572f 367 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 368 || u_offsets[regno] == -1;
16461d7d
KB
369}
370
74174d2e 371static int
2685572f 372ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
16461d7d
KB
373{
374 /* Rationale behind not permitting stores to bspstore...
375
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
381
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
390
92362027 391 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
401 back.) */
402
f57d151a 403 return regno < 0
2685572f 404 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 405 || u_offsets[regno] == -1
dda83cd7 406 || regno == IA64_BSPSTORE_REGNUM;
16461d7d
KB
407}
408
409void
7f7fe91e 410supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
16461d7d
KB
411{
412 int regi;
7f7fe91e 413 const greg_t *regp = (const greg_t *) gregsetp;
16461d7d
KB
414
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
416 {
73e1c03f 417 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
16461d7d
KB
418 }
419
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
1777feb0 421 somehow... */
16461d7d 422
73e1c03f 423 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
16461d7d
KB
424
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
426 {
73e1c03f 427 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
16461d7d
KB
428 }
429
73e1c03f
SM
430 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
431 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
432 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
433 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
434 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
435 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
436 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
437 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
438 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
439 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
440 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
441 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
442 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
16461d7d
KB
443}
444
445void
7f7fe91e 446fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
16461d7d 447{
76d689a6
KB
448 int regi;
449 greg_t *regp = (greg_t *) gregsetp;
450
451#define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
34a79281 453 regcache->raw_collect (_regi_, regp + _idx_)
76d689a6
KB
454
455 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
456 {
457 COPY_REG (regi - IA64_GR0_REGNUM, regi);
458 }
459
1777feb0 460 /* FIXME: NAT collection bits at index 32? */
76d689a6
KB
461
462 COPY_REG (33, IA64_PR_REGNUM);
463
464 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
465 {
466 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
467 }
468
469 COPY_REG (42, IA64_IP_REGNUM);
470 COPY_REG (43, IA64_CFM_REGNUM);
471 COPY_REG (44, IA64_PSR_REGNUM);
472 COPY_REG (45, IA64_RSC_REGNUM);
473 COPY_REG (46, IA64_BSP_REGNUM);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM);
475 COPY_REG (48, IA64_RNAT_REGNUM);
476 COPY_REG (49, IA64_CCV_REGNUM);
477 COPY_REG (50, IA64_UNAT_REGNUM);
478 COPY_REG (51, IA64_FPSR_REGNUM);
479 COPY_REG (52, IA64_PFS_REGNUM);
480 COPY_REG (53, IA64_LC_REGNUM);
481 COPY_REG (54, IA64_EC_REGNUM);
482}
483
484/* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
1777feb0 486 idea of the current floating point register values. */
76d689a6
KB
487
488void
7f7fe91e 489supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
76d689a6 490{
52f0bd74 491 int regi;
7f7fe91e 492 const char *from;
ca9b8b9c
PA
493 const gdb_byte f_zero[16] = { 0 };
494 const gdb_byte f_one[16] =
495 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
76d689a6 496
ca9b8b9c
PA
497 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
498 did the same. So ignore whatever might be recorded in fpregset_t
499 for fr0/fr1 and always supply their expected values. */
500
501 /* fr0 is always read as zero. */
73e1c03f 502 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
ca9b8b9c 503 /* fr1 is always read as one (1.0). */
73e1c03f 504 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
ca9b8b9c
PA
505
506 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
76d689a6 507 {
7f7fe91e 508 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
73e1c03f 509 regcache->raw_supply (regi, from);
76d689a6
KB
510 }
511}
512
513/* Given a pointer to a floating point register set in /proc format
514 (fpregset_t *), update the register specified by REGNO from gdb's idea
515 of the current floating point register set. If REGNO is -1, update
1777feb0 516 them all. */
76d689a6
KB
517
518void
7f7fe91e
UW
519fill_fpregset (const struct regcache *regcache,
520 fpregset_t *fpregsetp, int regno)
76d689a6
KB
521{
522 int regi;
76d689a6
KB
523
524 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
525 {
526 if ((regno == -1) || (regno == regi))
34a79281 527 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 528 }
16461d7d 529}
acf7b9e1
KB
530
531#define IA64_PSR_DB (1UL << 24)
532#define IA64_PSR_DD (1UL << 39)
533
9bf058f0
PA
534void
535ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1 536{
9bf058f0 537 struct regcache *regcache = get_thread_regcache (this, ptid);
7b86a1b8 538 ULONGEST psr;
acf7b9e1 539
7b86a1b8 540 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1
KB
541 if (!(psr & IA64_PSR_DB))
542 {
543 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
dda83cd7 544 watchpoints and breakpoints. */
7b86a1b8 545 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1
KB
546 }
547}
548
9f0bdab8 549static long debug_registers[8];
acf7b9e1
KB
550
551static void
39f77062 552store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
553{
554 int tid;
555
e38504b3 556 tid = ptid.lwp ();
acf7b9e1 557 if (tid == 0)
e99b03dc 558 tid = ptid.pid ();
acf7b9e1 559
c5fa4245 560 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
561}
562
acf7b9e1 563static void
1777feb0
MS
564store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
565 long *dbr_mask)
acf7b9e1
KB
566{
567 if (dbr_addr)
39f77062 568 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 569 if (dbr_mask)
39f77062 570 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
571}
572
573static int
574is_power_of_2 (int val)
575{
576 int i, onecount;
577
578 onecount = 0;
579 for (i = 0; i < 8 * sizeof (val); i++)
580 if (val & (1 << i))
581 onecount++;
582
583 return onecount <= 1;
584}
585
f6ac5f3d
PA
586int
587ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
588 enum target_hw_bp_type type,
589 struct expression *cond)
acf7b9e1
KB
590{
591 int idx;
592 long dbr_addr, dbr_mask;
593 int max_watchpoints = 4;
594
595 if (len <= 0 || !is_power_of_2 (len))
596 return -1;
597
598 for (idx = 0; idx < max_watchpoints; idx++)
599 {
9f0bdab8 600 dbr_mask = debug_registers[idx * 2 + 1];
acf7b9e1
KB
601 if ((dbr_mask & (0x3UL << 62)) == 0)
602 {
1777feb0 603 /* Exit loop if both r and w bits clear. */
acf7b9e1
KB
604 break;
605 }
606 }
607
608 if (idx == max_watchpoints)
609 return -1;
610
611 dbr_addr = (long) addr;
612 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
613 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
f486487f 614 switch (type)
acf7b9e1
KB
615 {
616 case hw_write:
617 dbr_mask |= (1L << 62); /* Set w bit */
618 break;
619 case hw_read:
620 dbr_mask |= (1L << 63); /* Set r bit */
621 break;
622 case hw_access:
623 dbr_mask |= (3L << 62); /* Set both r and w bits */
624 break;
625 default:
626 return -1;
627 }
628
9f0bdab8
DJ
629 debug_registers[2 * idx] = dbr_addr;
630 debug_registers[2 * idx + 1] = dbr_mask;
901b9821
SM
631
632 for (const lwp_info *lp : all_lwps ())
9f0bdab8 633 {
4c38200f
PA
634 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
635 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8 636 }
acf7b9e1
KB
637
638 return 0;
639}
640
f6ac5f3d
PA
641int
642ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
643 enum target_hw_bp_type type,
644 struct expression *cond)
acf7b9e1
KB
645{
646 int idx;
647 long dbr_addr, dbr_mask;
648 int max_watchpoints = 4;
649
650 if (len <= 0 || !is_power_of_2 (len))
651 return -1;
652
653 for (idx = 0; idx < max_watchpoints; idx++)
654 {
9f0bdab8
DJ
655 dbr_addr = debug_registers[2 * idx];
656 dbr_mask = debug_registers[2 * idx + 1];
acf7b9e1
KB
657 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
658 {
9f0bdab8
DJ
659 debug_registers[2 * idx] = 0;
660 debug_registers[2 * idx + 1] = 0;
acf7b9e1
KB
661 dbr_addr = 0;
662 dbr_mask = 0;
9f0bdab8 663
901b9821 664 for (const lwp_info *lp : all_lwps ())
4c38200f 665 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
9f0bdab8 666
acf7b9e1
KB
667 return 0;
668 }
669 }
670 return -1;
671}
672
c2a6c5da
TT
673void
674ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
9f0bdab8
DJ
675{
676 int i, any;
677
678 any = 0;
679 for (i = 0; i < 8; i++)
680 {
681 if (debug_registers[i] != 0)
682 any = 1;
7b50312a 683 store_debug_register (lp->ptid, i, debug_registers[i]);
9f0bdab8
DJ
684 }
685
686 if (any)
7b50312a 687 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8
DJ
688}
689
57810aa7 690bool
f6ac5f3d 691ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
acf7b9e1
KB
692{
693 CORE_ADDR psr;
f865ee35 694 siginfo_t siginfo;
9c742269 695 regcache *regcache = get_thread_regcache (inferior_thread ());
acf7b9e1 696
f865ee35 697 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
57810aa7 698 return false;
acf7b9e1 699
f865ee35
JK
700 if (siginfo.si_signo != SIGTRAP
701 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
57810aa7 702 return false;
acf7b9e1 703
7b86a1b8 704 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1 705 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
dda83cd7 706 for the next instruction. */
7b86a1b8 707 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1 708
f865ee35 709 *addr_p = (CORE_ADDR) siginfo.si_addr;
57810aa7 710 return true;
4aa7a7f5
JJ
711}
712
57810aa7 713bool
f6ac5f3d 714ia64_linux_nat_target::stopped_by_watchpoint ()
4aa7a7f5
JJ
715{
716 CORE_ADDR addr;
f6ac5f3d 717 return stopped_data_address (&addr);
74174d2e
UW
718}
719
c2a6c5da
TT
720int
721ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
722 int cnt, int othertype)
74174d2e
UW
723{
724 return 1;
725}
726
727
728/* Fetch register REGNUM from the inferior. */
729
730static void
56be3814 731ia64_linux_fetch_register (struct regcache *regcache, int regnum)
74174d2e 732{
ac7936df 733 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
734 CORE_ADDR addr;
735 size_t size;
736 PTRACE_TYPE_RET *buf;
bcc0c096
SM
737 pid_t pid;
738 int i;
74174d2e 739
5a75128f
JB
740 /* r0 cannot be fetched but is always zero. */
741 if (regnum == IA64_GR0_REGNUM)
742 {
743 const gdb_byte zero[8] = { 0 };
744
745 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
73e1c03f 746 regcache->raw_supply (regnum, zero);
5a75128f
JB
747 return;
748 }
749
ca9b8b9c
PA
750 /* fr0 cannot be fetched but is always zero. */
751 if (regnum == IA64_FR0_REGNUM)
752 {
753 const gdb_byte f_zero[16] = { 0 };
754
755 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
73e1c03f 756 regcache->raw_supply (regnum, f_zero);
ca9b8b9c
PA
757 return;
758 }
759
760 /* fr1 cannot be fetched but is always one (1.0). */
761 if (regnum == IA64_FR1_REGNUM)
762 {
763 const gdb_byte f_one[16] =
764 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
765
766 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
73e1c03f 767 regcache->raw_supply (regnum, f_one);
ca9b8b9c
PA
768 return;
769 }
770
2685572f 771 if (ia64_cannot_fetch_register (gdbarch, regnum))
74174d2e 772 {
73e1c03f 773 regcache->raw_supply (regnum, NULL);
74174d2e
UW
774 return;
775 }
776
222312d3 777 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
778
779 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 780 addr = ia64_register_addr (gdbarch, regnum);
088568da 781 size = register_size (gdbarch, regnum);
74174d2e
UW
782
783 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 784 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
785
786 /* Read the register contents from the inferior a chunk at a time. */
787 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
788 {
789 errno = 0;
790 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
791 if (errno != 0)
792 error (_("Couldn't read register %s (#%d): %s."),
088568da 793 gdbarch_register_name (gdbarch, regnum),
c9f4d572 794 regnum, safe_strerror (errno));
74174d2e
UW
795
796 addr += sizeof (PTRACE_TYPE_RET);
797 }
73e1c03f 798 regcache->raw_supply (regnum, buf);
74174d2e
UW
799}
800
801/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
802 for all registers. */
803
f6ac5f3d
PA
804void
805ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
74174d2e
UW
806{
807 if (regnum == -1)
088568da 808 for (regnum = 0;
ac7936df 809 regnum < gdbarch_num_regs (regcache->arch ());
088568da 810 regnum++)
56be3814 811 ia64_linux_fetch_register (regcache, regnum);
74174d2e 812 else
56be3814 813 ia64_linux_fetch_register (regcache, regnum);
74174d2e
UW
814}
815
816/* Store register REGNUM into the inferior. */
817
818static void
56be3814 819ia64_linux_store_register (const struct regcache *regcache, int regnum)
74174d2e 820{
ac7936df 821 struct gdbarch *gdbarch = regcache->arch ();
74174d2e
UW
822 CORE_ADDR addr;
823 size_t size;
824 PTRACE_TYPE_RET *buf;
bcc0c096
SM
825 pid_t pid;
826 int i;
74174d2e 827
2685572f 828 if (ia64_cannot_store_register (gdbarch, regnum))
74174d2e
UW
829 return;
830
222312d3 831 pid = get_ptrace_pid (regcache->ptid ());
74174d2e
UW
832
833 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 834 addr = ia64_register_addr (gdbarch, regnum);
088568da 835 size = register_size (gdbarch, regnum);
74174d2e
UW
836
837 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
bfb0d950 838 buf = (PTRACE_TYPE_RET *) alloca (size);
74174d2e
UW
839
840 /* Write the register contents into the inferior a chunk at a time. */
34a79281 841 regcache->raw_collect (regnum, buf);
74174d2e
UW
842 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
843 {
844 errno = 0;
845 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
846 if (errno != 0)
847 error (_("Couldn't write register %s (#%d): %s."),
088568da 848 gdbarch_register_name (gdbarch, regnum),
c9f4d572 849 regnum, safe_strerror (errno));
74174d2e
UW
850
851 addr += sizeof (PTRACE_TYPE_RET);
852 }
acf7b9e1 853}
287a334e 854
74174d2e
UW
855/* Store register REGNUM back into the inferior. If REGNUM is -1, do
856 this for all registers. */
857
f6ac5f3d
PA
858void
859ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
74174d2e
UW
860{
861 if (regnum == -1)
088568da 862 for (regnum = 0;
ac7936df 863 regnum < gdbarch_num_regs (regcache->arch ());
088568da 864 regnum++)
56be3814 865 ia64_linux_store_register (regcache, regnum);
74174d2e 866 else
56be3814 867 ia64_linux_store_register (regcache, regnum);
74174d2e
UW
868}
869
f6ac5f3d 870/* Implement the xfer_partial target_ops method. */
74174d2e 871
f6ac5f3d
PA
872enum target_xfer_status
873ia64_linux_nat_target::xfer_partial (enum target_object object,
874 const char *annex,
875 gdb_byte *readbuf, const gdb_byte *writebuf,
876 ULONGEST offset, ULONGEST len,
877 ULONGEST *xfered_len)
10d6c8cd 878{
475109d8
JB
879 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
880 {
d16461ae
PA
881 static long gate_table_size;
882 gdb_byte *tmp_buf;
883 long res;
884
885 /* Probe for the table size once. */
886 if (gate_table_size == 0)
dda83cd7 887 gate_table_size = syscall (__NR_getunwind, NULL, 0);
d16461ae 888 if (gate_table_size < 0)
475109d8 889 return TARGET_XFER_E_IO;
d16461ae
PA
890
891 if (offset >= gate_table_size)
475109d8 892 return TARGET_XFER_EOF;
d16461ae 893
bfb0d950 894 tmp_buf = (gdb_byte *) alloca (gate_table_size);
d16461ae
PA
895 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
896 if (res < 0)
897 return TARGET_XFER_E_IO;
898 gdb_assert (res == gate_table_size);
899
900 if (offset + len > gate_table_size)
901 len = gate_table_size - offset;
902
903 memcpy (readbuf, tmp_buf + offset, len);
904 *xfered_len = len;
905 return TARGET_XFER_OK;
475109d8 906 }
10d6c8cd 907
f6ac5f3d
PA
908 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
909 offset, len, xfered_len);
10d6c8cd
DJ
910}
911
26ab7092
JK
912/* For break.b instruction ia64 CPU forgets the immediate value and generates
913 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
914 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
915 difference for the signals here. */
916
135340af
PA
917bool
918ia64_linux_nat_target::low_status_is_event (int status)
26ab7092
JK
919{
920 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
921 || WSTOPSIG (status) == SIGILL);
922}
923
6c265988 924void _initialize_ia64_linux_nat ();
10d6c8cd 925void
6c265988 926_initialize_ia64_linux_nat ()
287a334e 927{
10d6c8cd 928 /* Register the target. */
f6ac5f3d 929 linux_target = &the_ia64_linux_nat_target;
d9f719f1 930 add_inf_child_target (&the_ia64_linux_nat_target);
287a334e 931}