]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/infrun.c
* gdb-events.sh (clear_gdb_event_hooks): New function.
[thirdparty/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
c906108c
SS
45
46/* Prototypes for local functions */
47
96baa820 48static void signals_info (char *, int);
c906108c 49
96baa820 50static void handle_command (char *, int);
c906108c 51
96baa820 52static void sig_print_info (enum target_signal);
c906108c 53
96baa820 54static void sig_print_header (void);
c906108c 55
74b7792f 56static void resume_cleanups (void *);
c906108c 57
96baa820 58static int hook_stop_stub (void *);
c906108c 59
96baa820 60static void delete_breakpoint_current_contents (void *);
c906108c 61
96baa820 62static void set_follow_fork_mode_command (char *arg, int from_tty,
488f131b 63 struct cmd_list_element *c);
7a292a7a 64
96baa820
JM
65static int restore_selected_frame (void *);
66
67static void build_infrun (void);
68
69static void follow_inferior_fork (int parent_pid, int child_pid,
70 int has_forked, int has_vforked);
71
72static void follow_fork (int parent_pid, int child_pid);
73
74static void follow_vfork (int parent_pid, int child_pid);
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
96baa820
JM
79struct execution_control_state;
80
81static int currently_stepping (struct execution_control_state *ecs);
82
83static void xdb_handle_command (char *args, int from_tty);
84
85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a
SS
104
105/* This is true for configurations that may follow through execl() and
106 similar functions. At present this is only true for HP-UX native. */
107
108#ifndef MAY_FOLLOW_EXEC
109#define MAY_FOLLOW_EXEC (0)
c906108c
SS
110#endif
111
7a292a7a
SS
112static int may_follow_exec = MAY_FOLLOW_EXEC;
113
c906108c
SS
114/* Dynamic function trampolines are similar to solib trampolines in that they
115 are between the caller and the callee. The difference is that when you
116 enter a dynamic trampoline, you can't determine the callee's address. Some
117 (usually complex) code needs to run in the dynamic trampoline to figure out
118 the callee's address. This macro is usually called twice. First, when we
119 enter the trampoline (looks like a normal function call at that point). It
120 should return the PC of a point within the trampoline where the callee's
121 address is known. Second, when we hit the breakpoint, this routine returns
122 the callee's address. At that point, things proceed as per a step resume
123 breakpoint. */
124
125#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
126#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
127#endif
128
d4f3574e
SS
129/* If the program uses ELF-style shared libraries, then calls to
130 functions in shared libraries go through stubs, which live in a
131 table called the PLT (Procedure Linkage Table). The first time the
132 function is called, the stub sends control to the dynamic linker,
133 which looks up the function's real address, patches the stub so
134 that future calls will go directly to the function, and then passes
135 control to the function.
136
137 If we are stepping at the source level, we don't want to see any of
138 this --- we just want to skip over the stub and the dynamic linker.
139 The simple approach is to single-step until control leaves the
140 dynamic linker.
141
ca557f44
AC
142 However, on some systems (e.g., Red Hat's 5.2 distribution) the
143 dynamic linker calls functions in the shared C library, so you
144 can't tell from the PC alone whether the dynamic linker is still
145 running. In this case, we use a step-resume breakpoint to get us
146 past the dynamic linker, as if we were using "next" to step over a
147 function call.
d4f3574e
SS
148
149 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
150 linker code or not. Normally, this means we single-step. However,
151 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152 address where we can place a step-resume breakpoint to get past the
153 linker's symbol resolution function.
154
155 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
156 pretty portable way, by comparing the PC against the address ranges
157 of the dynamic linker's sections.
158
159 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160 it depends on internal details of the dynamic linker. It's usually
161 not too hard to figure out where to put a breakpoint, but it
162 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
163 sanity checking. If it can't figure things out, returning zero and
164 getting the (possibly confusing) stepping behavior is better than
165 signalling an error, which will obscure the change in the
166 inferior's state. */
c906108c
SS
167
168#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
169#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
170#endif
171
d4f3574e
SS
172#ifndef SKIP_SOLIB_RESOLVER
173#define SKIP_SOLIB_RESOLVER(pc) 0
174#endif
175
c906108c
SS
176/* In some shared library schemes, the return path from a shared library
177 call may need to go through a trampoline too. */
178
179#ifndef IN_SOLIB_RETURN_TRAMPOLINE
180#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
181#endif
182
183/* This function returns TRUE if pc is the address of an instruction
184 that lies within the dynamic linker (such as the event hook, or the
185 dld itself).
186
187 This function must be used only when a dynamic linker event has
188 been caught, and the inferior is being stepped out of the hook, or
189 undefined results are guaranteed. */
190
191#ifndef SOLIB_IN_DYNAMIC_LINKER
192#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
193#endif
194
195/* On MIPS16, a function that returns a floating point value may call
196 a library helper function to copy the return value to a floating point
197 register. The IGNORE_HELPER_CALL macro returns non-zero if we
198 should ignore (i.e. step over) this function call. */
199#ifndef IGNORE_HELPER_CALL
200#define IGNORE_HELPER_CALL(pc) 0
201#endif
202
203/* On some systems, the PC may be left pointing at an instruction that won't
204 actually be executed. This is usually indicated by a bit in the PSW. If
205 we find ourselves in such a state, then we step the target beyond the
206 nullified instruction before returning control to the user so as to avoid
207 confusion. */
208
209#ifndef INSTRUCTION_NULLIFIED
210#define INSTRUCTION_NULLIFIED 0
211#endif
212
c2c6d25f
JM
213/* We can't step off a permanent breakpoint in the ordinary way, because we
214 can't remove it. Instead, we have to advance the PC to the next
215 instruction. This macro should expand to a pointer to a function that
216 does that, or zero if we have no such function. If we don't have a
217 definition for it, we have to report an error. */
488f131b 218#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
219#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
220static void
c2d11a7d 221default_skip_permanent_breakpoint (void)
c2c6d25f 222{
255e7dbf 223 error ("\
c2c6d25f
JM
224The program is stopped at a permanent breakpoint, but GDB does not know\n\
225how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 226a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
227}
228#endif
488f131b 229
c2c6d25f 230
7a292a7a
SS
231/* Convert the #defines into values. This is temporary until wfi control
232 flow is completely sorted out. */
233
234#ifndef HAVE_STEPPABLE_WATCHPOINT
235#define HAVE_STEPPABLE_WATCHPOINT 0
236#else
237#undef HAVE_STEPPABLE_WATCHPOINT
238#define HAVE_STEPPABLE_WATCHPOINT 1
239#endif
240
241#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
242#define HAVE_NONSTEPPABLE_WATCHPOINT 0
243#else
244#undef HAVE_NONSTEPPABLE_WATCHPOINT
245#define HAVE_NONSTEPPABLE_WATCHPOINT 1
246#endif
247
248#ifndef HAVE_CONTINUABLE_WATCHPOINT
249#define HAVE_CONTINUABLE_WATCHPOINT 0
250#else
251#undef HAVE_CONTINUABLE_WATCHPOINT
252#define HAVE_CONTINUABLE_WATCHPOINT 1
253#endif
254
692590c1
MS
255#ifndef CANNOT_STEP_HW_WATCHPOINTS
256#define CANNOT_STEP_HW_WATCHPOINTS 0
257#else
258#undef CANNOT_STEP_HW_WATCHPOINTS
259#define CANNOT_STEP_HW_WATCHPOINTS 1
260#endif
261
c906108c
SS
262/* Tables of how to react to signals; the user sets them. */
263
264static unsigned char *signal_stop;
265static unsigned char *signal_print;
266static unsigned char *signal_program;
267
268#define SET_SIGS(nsigs,sigs,flags) \
269 do { \
270 int signum = (nsigs); \
271 while (signum-- > 0) \
272 if ((sigs)[signum]) \
273 (flags)[signum] = 1; \
274 } while (0)
275
276#define UNSET_SIGS(nsigs,sigs,flags) \
277 do { \
278 int signum = (nsigs); \
279 while (signum-- > 0) \
280 if ((sigs)[signum]) \
281 (flags)[signum] = 0; \
282 } while (0)
283
39f77062
KB
284/* Value to pass to target_resume() to cause all threads to resume */
285
286#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
287
288/* Command list pointer for the "stop" placeholder. */
289
290static struct cmd_list_element *stop_command;
291
292/* Nonzero if breakpoints are now inserted in the inferior. */
293
294static int breakpoints_inserted;
295
296/* Function inferior was in as of last step command. */
297
298static struct symbol *step_start_function;
299
300/* Nonzero if we are expecting a trace trap and should proceed from it. */
301
302static int trap_expected;
303
304#ifdef SOLIB_ADD
305/* Nonzero if we want to give control to the user when we're notified
306 of shared library events by the dynamic linker. */
307static int stop_on_solib_events;
308#endif
309
310#ifdef HP_OS_BUG
311/* Nonzero if the next time we try to continue the inferior, it will
312 step one instruction and generate a spurious trace trap.
313 This is used to compensate for a bug in HP-UX. */
314
315static int trap_expected_after_continue;
316#endif
317
318/* Nonzero means expecting a trace trap
319 and should stop the inferior and return silently when it happens. */
320
321int stop_after_trap;
322
323/* Nonzero means expecting a trap and caller will handle it themselves.
324 It is used after attach, due to attaching to a process;
325 when running in the shell before the child program has been exec'd;
326 and when running some kinds of remote stuff (FIXME?). */
327
328int stop_soon_quietly;
329
330/* Nonzero if proceed is being used for a "finish" command or a similar
331 situation when stop_registers should be saved. */
332
333int proceed_to_finish;
334
335/* Save register contents here when about to pop a stack dummy frame,
336 if-and-only-if proceed_to_finish is set.
337 Thus this contains the return value from the called function (assuming
338 values are returned in a register). */
339
72cec141 340struct regcache *stop_registers;
c906108c
SS
341
342/* Nonzero if program stopped due to error trying to insert breakpoints. */
343
344static int breakpoints_failed;
345
346/* Nonzero after stop if current stack frame should be printed. */
347
348static int stop_print_frame;
349
350static struct breakpoint *step_resume_breakpoint = NULL;
351static struct breakpoint *through_sigtramp_breakpoint = NULL;
352
353/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
354 interactions with an inferior that is running a kernel function
355 (aka, a system call or "syscall"). wait_for_inferior therefore
356 may have a need to know when the inferior is in a syscall. This
357 is a count of the number of inferior threads which are known to
358 currently be running in a syscall. */
359static int number_of_threads_in_syscalls;
360
e02bc4cc
DS
361/* This is a cached copy of the pid/waitstatus of the last event
362 returned by target_wait()/target_wait_hook(). This information is
363 returned by get_last_target_status(). */
39f77062 364static ptid_t target_last_wait_ptid;
e02bc4cc
DS
365static struct target_waitstatus target_last_waitstatus;
366
c906108c
SS
367/* This is used to remember when a fork, vfork or exec event
368 was caught by a catchpoint, and thus the event is to be
369 followed at the next resume of the inferior, and not
370 immediately. */
371static struct
488f131b
JB
372{
373 enum target_waitkind kind;
374 struct
c906108c 375 {
488f131b
JB
376 int parent_pid;
377 int saw_parent_fork;
378 int child_pid;
379 int saw_child_fork;
380 int saw_child_exec;
c906108c 381 }
488f131b
JB
382 fork_event;
383 char *execd_pathname;
384}
c906108c
SS
385pending_follow;
386
387/* Some platforms don't allow us to do anything meaningful with a
388 vforked child until it has exec'd. Vforked processes on such
389 platforms can only be followed after they've exec'd.
390
391 When this is set to 0, a vfork can be immediately followed,
392 and an exec can be followed merely as an exec. When this is
393 set to 1, a vfork event has been seen, but cannot be followed
394 until the exec is seen.
395
39f77062 396 (In the latter case, inferior_ptid is still the parent of the
c906108c
SS
397 vfork, and pending_follow.fork_event.child_pid is the child. The
398 appropriate process is followed, according to the setting of
399 follow-fork-mode.) */
400static int follow_vfork_when_exec;
401
53904c9e
AC
402static const char follow_fork_mode_ask[] = "ask";
403static const char follow_fork_mode_both[] = "both";
404static const char follow_fork_mode_child[] = "child";
405static const char follow_fork_mode_parent[] = "parent";
406
488f131b 407static const char *follow_fork_mode_kind_names[] = {
53904c9e 408 follow_fork_mode_ask,
ef346e04
AC
409 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
410 kernel problem. It's also not terribly useful without a GUI to
411 help the user drive two debuggers. So for now, I'm disabling the
412 "both" option. */
53904c9e
AC
413 /* follow_fork_mode_both, */
414 follow_fork_mode_child,
415 follow_fork_mode_parent,
416 NULL
ef346e04 417};
c906108c 418
53904c9e 419static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
420\f
421
c906108c 422static void
96baa820
JM
423follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
424 int has_vforked)
c906108c
SS
425{
426 int followed_parent = 0;
427 int followed_child = 0;
c906108c
SS
428
429 /* Which process did the user want us to follow? */
53904c9e 430 const char *follow_mode = follow_fork_mode_string;
c906108c
SS
431
432 /* Or, did the user not know, and want us to ask? */
e28d556f 433 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 434 {
8e65ff28
AC
435 internal_error (__FILE__, __LINE__,
436 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 437 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
438 }
439
440 /* If we're to be following the parent, then detach from child_pid.
441 We're already following the parent, so need do nothing explicit
442 for it. */
53904c9e 443 if (follow_mode == follow_fork_mode_parent)
c906108c
SS
444 {
445 followed_parent = 1;
446
447 /* We're already attached to the parent, by default. */
448
449 /* Before detaching from the child, remove all breakpoints from
450 it. (This won't actually modify the breakpoint list, but will
451 physically remove the breakpoints from the child.) */
452 if (!has_vforked || !follow_vfork_when_exec)
453 {
454 detach_breakpoints (child_pid);
7a292a7a 455#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 456 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 457#endif
c906108c
SS
458 }
459
460 /* Detach from the child. */
461 dont_repeat ();
462
463 target_require_detach (child_pid, "", 1);
464 }
465
466 /* If we're to be following the child, then attach to it, detach
39f77062 467 from inferior_ptid, and set inferior_ptid to child_pid. */
53904c9e 468 else if (follow_mode == follow_fork_mode_child)
c906108c
SS
469 {
470 char child_pid_spelling[100]; /* Arbitrary length. */
471
472 followed_child = 1;
473
474 /* Before detaching from the parent, detach all breakpoints from
475 the child. But only if we're forking, or if we follow vforks
476 as soon as they happen. (If we're following vforks only when
477 the child has exec'd, then it's very wrong to try to write
478 back the "shadow contents" of inserted breakpoints now -- they
479 belong to the child's pre-exec'd a.out.) */
480 if (!has_vforked || !follow_vfork_when_exec)
481 {
482 detach_breakpoints (child_pid);
483 }
484
485 /* Before detaching from the parent, remove all breakpoints from it. */
486 remove_breakpoints ();
487
488 /* Also reset the solib inferior hook from the parent. */
7a292a7a 489#ifdef SOLIB_REMOVE_INFERIOR_HOOK
39f77062 490 SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 491#endif
c906108c
SS
492
493 /* Detach from the parent. */
494 dont_repeat ();
495 target_detach (NULL, 1);
496
497 /* Attach to the child. */
39f77062 498 inferior_ptid = pid_to_ptid (child_pid);
c906108c
SS
499 sprintf (child_pid_spelling, "%d", child_pid);
500 dont_repeat ();
501
502 target_require_attach (child_pid_spelling, 1);
503
504 /* Was there a step_resume breakpoint? (There was if the user
505 did a "next" at the fork() call.) If so, explicitly reset its
506 thread number.
507
508 step_resumes are a form of bp that are made to be per-thread.
509 Since we created the step_resume bp when the parent process
510 was being debugged, and now are switching to the child process,
511 from the breakpoint package's viewpoint, that's a switch of
512 "threads". We must update the bp's notion of which thread
513 it is for, or it'll be ignored when it triggers... */
488f131b 514 if (step_resume_breakpoint && (!has_vforked || !follow_vfork_when_exec))
c906108c
SS
515 breakpoint_re_set_thread (step_resume_breakpoint);
516
517 /* Reinsert all breakpoints in the child. (The user may've set
518 breakpoints after catching the fork, in which case those
519 actually didn't get set in the child, but only in the parent.) */
520 if (!has_vforked || !follow_vfork_when_exec)
521 {
522 breakpoint_re_set ();
523 insert_breakpoints ();
524 }
525 }
526
527 /* If we're to be following both parent and child, then fork ourselves,
528 and attach the debugger clone to the child. */
53904c9e 529 else if (follow_mode == follow_fork_mode_both)
c906108c
SS
530 {
531 char pid_suffix[100]; /* Arbitrary length. */
532
533 /* Clone ourselves to follow the child. This is the end of our
c5aa993b 534 involvement with child_pid; our clone will take it from here... */
c906108c
SS
535 dont_repeat ();
536 target_clone_and_follow_inferior (child_pid, &followed_child);
537 followed_parent = !followed_child;
538
539 /* We continue to follow the parent. To help distinguish the two
540 debuggers, though, both we and our clone will reset our prompts. */
39f77062 541 sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
c906108c
SS
542 set_prompt (strcat (get_prompt (), pid_suffix));
543 }
544
545 /* The parent and child of a vfork share the same address space.
546 Also, on some targets the order in which vfork and exec events
547 are received for parent in child requires some delicate handling
548 of the events.
549
550 For instance, on ptrace-based HPUX we receive the child's vfork
551 event first, at which time the parent has been suspended by the
552 OS and is essentially untouchable until the child's exit or second
553 exec event arrives. At that time, the parent's vfork event is
554 delivered to us, and that's when we see and decide how to follow
555 the vfork. But to get to that point, we must continue the child
556 until it execs or exits. To do that smoothly, all breakpoints
557 must be removed from the child, in case there are any set between
558 the vfork() and exec() calls. But removing them from the child
559 also removes them from the parent, due to the shared-address-space
560 nature of a vfork'd parent and child. On HPUX, therefore, we must
561 take care to restore the bp's to the parent before we continue it.
562 Else, it's likely that we may not stop in the expected place. (The
563 worst scenario is when the user tries to step over a vfork() call;
564 the step-resume bp must be restored for the step to properly stop
565 in the parent after the call completes!)
566
567 Sequence of events, as reported to gdb from HPUX:
568
c5aa993b
JM
569 Parent Child Action for gdb to take
570 -------------------------------------------------------
571 1 VFORK Continue child
572 2 EXEC
573 3 EXEC or EXIT
574 4 VFORK */
c906108c
SS
575 if (has_vforked)
576 {
577 target_post_follow_vfork (parent_pid,
488f131b 578 followed_parent, child_pid, followed_child);
c906108c
SS
579 }
580
581 pending_follow.fork_event.saw_parent_fork = 0;
582 pending_follow.fork_event.saw_child_fork = 0;
c906108c
SS
583}
584
585static void
96baa820 586follow_fork (int parent_pid, int child_pid)
c906108c
SS
587{
588 follow_inferior_fork (parent_pid, child_pid, 1, 0);
589}
590
591
592/* Forward declaration. */
96baa820 593static void follow_exec (int, char *);
c906108c
SS
594
595static void
96baa820 596follow_vfork (int parent_pid, int child_pid)
c906108c
SS
597{
598 follow_inferior_fork (parent_pid, child_pid, 0, 1);
599
600 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
39f77062
KB
601 if (pending_follow.fork_event.saw_child_exec
602 && (PIDGET (inferior_ptid) == child_pid))
c906108c
SS
603 {
604 pending_follow.fork_event.saw_child_exec = 0;
605 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 606 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 607 xfree (pending_follow.execd_pathname);
c906108c
SS
608 }
609}
c906108c 610
1adeb98a
FN
611/* EXECD_PATHNAME is assumed to be non-NULL. */
612
c906108c 613static void
96baa820 614follow_exec (int pid, char *execd_pathname)
c906108c 615{
c906108c 616 int saved_pid = pid;
7a292a7a
SS
617 struct target_ops *tgt;
618
619 if (!may_follow_exec)
620 return;
c906108c
SS
621
622 /* Did this exec() follow a vfork()? If so, we must follow the
623 vfork now too. Do it before following the exec. */
624 if (follow_vfork_when_exec &&
625 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
626 {
627 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 628 follow_vfork (PIDGET (inferior_ptid),
488f131b 629 pending_follow.fork_event.child_pid);
c906108c 630 follow_vfork_when_exec = 0;
39f77062 631 saved_pid = PIDGET (inferior_ptid);
c906108c
SS
632
633 /* Did we follow the parent? If so, we're done. If we followed
634 the child then we must also follow its exec(). */
39f77062 635 if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
c906108c
SS
636 return;
637 }
638
639 /* This is an exec event that we actually wish to pay attention to.
640 Refresh our symbol table to the newly exec'd program, remove any
641 momentary bp's, etc.
642
643 If there are breakpoints, they aren't really inserted now,
644 since the exec() transformed our inferior into a fresh set
645 of instructions.
646
647 We want to preserve symbolic breakpoints on the list, since
648 we have hopes that they can be reset after the new a.out's
649 symbol table is read.
650
651 However, any "raw" breakpoints must be removed from the list
652 (e.g., the solib bp's), since their address is probably invalid
653 now.
654
655 And, we DON'T want to call delete_breakpoints() here, since
656 that may write the bp's "shadow contents" (the instruction
657 value that was overwritten witha TRAP instruction). Since
658 we now have a new a.out, those shadow contents aren't valid. */
659 update_breakpoints_after_exec ();
660
661 /* If there was one, it's gone now. We cannot truly step-to-next
662 statement through an exec(). */
663 step_resume_breakpoint = NULL;
664 step_range_start = 0;
665 step_range_end = 0;
666
667 /* If there was one, it's gone now. */
668 through_sigtramp_breakpoint = NULL;
669
670 /* What is this a.out's name? */
671 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
672
673 /* We've followed the inferior through an exec. Therefore, the
674 inferior has essentially been killed & reborn. */
7a292a7a
SS
675
676 /* First collect the run target in effect. */
677 tgt = find_run_target ();
678 /* If we can't find one, things are in a very strange state... */
679 if (tgt == NULL)
680 error ("Could find run target to save before following exec");
681
c906108c
SS
682 gdb_flush (gdb_stdout);
683 target_mourn_inferior ();
39f77062 684 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 685 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 686 push_target (tgt);
c906108c
SS
687
688 /* That a.out is now the one to use. */
689 exec_file_attach (execd_pathname, 0);
690
691 /* And also is where symbols can be found. */
1adeb98a 692 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
693
694 /* Reset the shared library package. This ensures that we get
695 a shlib event when the child reaches "_start", at which point
696 the dld will have had a chance to initialize the child. */
7a292a7a 697#if defined(SOLIB_RESTART)
c906108c 698 SOLIB_RESTART ();
7a292a7a
SS
699#endif
700#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 701 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 702#endif
c906108c
SS
703
704 /* Reinsert all breakpoints. (Those which were symbolic have
705 been reset to the proper address in the new a.out, thanks
706 to symbol_file_command...) */
707 insert_breakpoints ();
708
709 /* The next resume of this inferior should bring it to the shlib
710 startup breakpoints. (If the user had also set bp's on
711 "main" from the old (parent) process, then they'll auto-
712 matically get reset there in the new process.) */
c906108c
SS
713}
714
715/* Non-zero if we just simulating a single-step. This is needed
716 because we cannot remove the breakpoints in the inferior process
717 until after the `wait' in `wait_for_inferior'. */
718static int singlestep_breakpoints_inserted_p = 0;
719\f
720
721/* Things to clean up if we QUIT out of resume (). */
722/* ARGSUSED */
723static void
74b7792f 724resume_cleanups (void *ignore)
c906108c
SS
725{
726 normal_stop ();
727}
728
53904c9e
AC
729static const char schedlock_off[] = "off";
730static const char schedlock_on[] = "on";
731static const char schedlock_step[] = "step";
732static const char *scheduler_mode = schedlock_off;
488f131b 733static const char *scheduler_enums[] = {
ef346e04
AC
734 schedlock_off,
735 schedlock_on,
736 schedlock_step,
737 NULL
738};
c906108c
SS
739
740static void
96baa820 741set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 742{
1868c04e
AC
743 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
744 the set command passed as a parameter. The clone operation will
745 include (BUG?) any ``set'' command callback, if present.
746 Commands like ``info set'' call all the ``show'' command
747 callbacks. Unfortunatly, for ``show'' commands cloned from
748 ``set'', this includes callbacks belonging to ``set'' commands.
749 Making this worse, this only occures if add_show_from_set() is
750 called after add_cmd_sfunc() (BUG?). */
751 if (cmd_type (c) == set_cmd)
c906108c
SS
752 if (!target_can_lock_scheduler)
753 {
754 scheduler_mode = schedlock_off;
488f131b 755 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
756 }
757}
758
759
760/* Resume the inferior, but allow a QUIT. This is useful if the user
761 wants to interrupt some lengthy single-stepping operation
762 (for child processes, the SIGINT goes to the inferior, and so
763 we get a SIGINT random_signal, but for remote debugging and perhaps
764 other targets, that's not true).
765
766 STEP nonzero if we should step (zero to continue instead).
767 SIG is the signal to give the inferior (zero for none). */
768void
96baa820 769resume (int step, enum target_signal sig)
c906108c
SS
770{
771 int should_resume = 1;
74b7792f 772 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
773 QUIT;
774
ef5cf84e
MS
775 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
776
c906108c 777
692590c1
MS
778 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
779 over an instruction that causes a page fault without triggering
780 a hardware watchpoint. The kernel properly notices that it shouldn't
781 stop, because the hardware watchpoint is not triggered, but it forgets
782 the step request and continues the program normally.
783 Work around the problem by removing hardware watchpoints if a step is
784 requested, GDB will check for a hardware watchpoint trigger after the
785 step anyway. */
786 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
787 remove_hw_watchpoints ();
488f131b 788
692590c1 789
c2c6d25f
JM
790 /* Normally, by the time we reach `resume', the breakpoints are either
791 removed or inserted, as appropriate. The exception is if we're sitting
792 at a permanent breakpoint; we need to step over it, but permanent
793 breakpoints can't be removed. So we have to test for it here. */
794 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
795 SKIP_PERMANENT_BREAKPOINT ();
796
b0ed3589 797 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
798 {
799 /* Do it the hard way, w/temp breakpoints */
c5aa993b 800 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
801 /* ...and don't ask hardware to do it. */
802 step = 0;
803 /* and do not pull these breakpoints until after a `wait' in
804 `wait_for_inferior' */
805 singlestep_breakpoints_inserted_p = 1;
806 }
807
808 /* Handle any optimized stores to the inferior NOW... */
809#ifdef DO_DEFERRED_STORES
810 DO_DEFERRED_STORES;
811#endif
812
c906108c
SS
813 /* If there were any forks/vforks/execs that were caught and are
814 now to be followed, then do so. */
815 switch (pending_follow.kind)
816 {
817 case (TARGET_WAITKIND_FORKED):
818 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 819 follow_fork (PIDGET (inferior_ptid),
488f131b 820 pending_follow.fork_event.child_pid);
c906108c
SS
821 break;
822
823 case (TARGET_WAITKIND_VFORKED):
824 {
825 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
826
827 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 828 follow_vfork (PIDGET (inferior_ptid),
488f131b 829 pending_follow.fork_event.child_pid);
c906108c
SS
830
831 /* Did we follow the child, but not yet see the child's exec event?
c5aa993b
JM
832 If so, then it actually ought to be waiting for us; we respond to
833 parent vfork events. We don't actually want to resume the child
834 in this situation; we want to just get its exec event. */
c906108c 835 if (!saw_child_exec &&
39f77062 836 (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
c906108c
SS
837 should_resume = 0;
838 }
839 break;
840
841 case (TARGET_WAITKIND_EXECD):
842 /* If we saw a vfork event but couldn't follow it until we saw
c5aa993b 843 an exec, then now might be the time! */
c906108c
SS
844 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
845 /* follow_exec is called as soon as the exec event is seen. */
846 break;
847
848 default:
849 break;
850 }
c906108c
SS
851
852 /* Install inferior's terminal modes. */
853 target_terminal_inferior ();
854
855 if (should_resume)
856 {
39f77062 857 ptid_t resume_ptid;
dfcd3bfb 858
488f131b 859 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
860
861 if ((step || singlestep_breakpoints_inserted_p) &&
862 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 863 {
ef5cf84e
MS
864 /* Stepping past a breakpoint without inserting breakpoints.
865 Make sure only the current thread gets to step, so that
866 other threads don't sneak past breakpoints while they are
867 not inserted. */
c906108c 868
ef5cf84e 869 resume_ptid = inferior_ptid;
c906108c 870 }
ef5cf84e
MS
871
872 if ((scheduler_mode == schedlock_on) ||
488f131b 873 (scheduler_mode == schedlock_step &&
ef5cf84e 874 (step || singlestep_breakpoints_inserted_p)))
c906108c 875 {
ef5cf84e 876 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 877 resume_ptid = inferior_ptid;
c906108c 878 }
ef5cf84e
MS
879
880#ifdef CANNOT_STEP_BREAKPOINT
881 /* Most targets can step a breakpoint instruction, thus executing it
488f131b
JB
882 normally. But if this one cannot, just continue and we will hit
883 it anyway. */
ef5cf84e
MS
884 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
885 step = 0;
886#endif
39f77062 887 target_resume (resume_ptid, step, sig);
c906108c
SS
888 }
889
890 discard_cleanups (old_cleanups);
891}
892\f
893
894/* Clear out all variables saying what to do when inferior is continued.
895 First do this, then set the ones you want, then call `proceed'. */
896
897void
96baa820 898clear_proceed_status (void)
c906108c
SS
899{
900 trap_expected = 0;
901 step_range_start = 0;
902 step_range_end = 0;
903 step_frame_address = 0;
5fbbeb29 904 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
905 stop_after_trap = 0;
906 stop_soon_quietly = 0;
907 proceed_to_finish = 0;
908 breakpoint_proceeded = 1; /* We're about to proceed... */
909
910 /* Discard any remaining commands or status from previous stop. */
911 bpstat_clear (&stop_bpstat);
912}
913
914/* Basic routine for continuing the program in various fashions.
915
916 ADDR is the address to resume at, or -1 for resume where stopped.
917 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 918 or -1 for act according to how it stopped.
c906108c 919 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
920 -1 means return after that and print nothing.
921 You should probably set various step_... variables
922 before calling here, if you are stepping.
c906108c
SS
923
924 You should call clear_proceed_status before calling proceed. */
925
926void
96baa820 927proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
928{
929 int oneproc = 0;
930
931 if (step > 0)
932 step_start_function = find_pc_function (read_pc ());
933 if (step < 0)
934 stop_after_trap = 1;
935
2acceee2 936 if (addr == (CORE_ADDR) -1)
c906108c
SS
937 {
938 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
939 step one instruction before inserting breakpoints
940 so that we do not stop right away (and report a second
c906108c
SS
941 hit at this breakpoint). */
942
943 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
944 oneproc = 1;
945
946#ifndef STEP_SKIPS_DELAY
947#define STEP_SKIPS_DELAY(pc) (0)
948#define STEP_SKIPS_DELAY_P (0)
949#endif
950 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
951 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
952 is slow (it needs to read memory from the target). */
c906108c
SS
953 if (STEP_SKIPS_DELAY_P
954 && breakpoint_here_p (read_pc () + 4)
955 && STEP_SKIPS_DELAY (read_pc ()))
956 oneproc = 1;
957 }
958 else
959 {
960 write_pc (addr);
c906108c
SS
961 }
962
963#ifdef PREPARE_TO_PROCEED
964 /* In a multi-threaded task we may select another thread
965 and then continue or step.
966
967 But if the old thread was stopped at a breakpoint, it
968 will immediately cause another breakpoint stop without
969 any execution (i.e. it will report a breakpoint hit
970 incorrectly). So we must step over it first.
971
972 PREPARE_TO_PROCEED checks the current thread against the thread
973 that reported the most recent event. If a step-over is required
974 it returns TRUE and sets the current thread to the old thread. */
9e086581 975 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
976 {
977 oneproc = 1;
c906108c
SS
978 }
979
980#endif /* PREPARE_TO_PROCEED */
981
982#ifdef HP_OS_BUG
983 if (trap_expected_after_continue)
984 {
985 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
986 the first instruction is executed. Force step one
987 instruction to clear this condition. This should not occur
988 if step is nonzero, but it is harmless in that case. */
c906108c
SS
989 oneproc = 1;
990 trap_expected_after_continue = 0;
991 }
992#endif /* HP_OS_BUG */
993
994 if (oneproc)
995 /* We will get a trace trap after one instruction.
996 Continue it automatically and insert breakpoints then. */
997 trap_expected = 1;
998 else
999 {
1000 int temp = insert_breakpoints ();
1001 if (temp)
1002 {
010a3cd9 1003 print_sys_errmsg ("insert_breakpoints", temp);
c906108c 1004 error ("Cannot insert breakpoints.\n\
010a3cd9
EZ
1005The same program may be running in another process,\n\
1006or you may have requested too many hardware\n\
1007breakpoints and/or watchpoints.\n");
c906108c
SS
1008 }
1009
1010 breakpoints_inserted = 1;
1011 }
1012
1013 if (siggnal != TARGET_SIGNAL_DEFAULT)
1014 stop_signal = siggnal;
1015 /* If this signal should not be seen by program,
1016 give it zero. Used for debugging signals. */
1017 else if (!signal_program[stop_signal])
1018 stop_signal = TARGET_SIGNAL_0;
1019
1020 annotate_starting ();
1021
1022 /* Make sure that output from GDB appears before output from the
1023 inferior. */
1024 gdb_flush (gdb_stdout);
1025
1026 /* Resume inferior. */
1027 resume (oneproc || step || bpstat_should_step (), stop_signal);
1028
1029 /* Wait for it to stop (if not standalone)
1030 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1031 /* Do this only if we are not using the event loop, or if the target
1032 does not support asynchronous execution. */
6426a772 1033 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
1034 {
1035 wait_for_inferior ();
1036 normal_stop ();
1037 }
c906108c
SS
1038}
1039
1040/* Record the pc and sp of the program the last time it stopped.
1041 These are just used internally by wait_for_inferior, but need
1042 to be preserved over calls to it and cleared when the inferior
1043 is started. */
1044static CORE_ADDR prev_pc;
1045static CORE_ADDR prev_func_start;
1046static char *prev_func_name;
1047\f
1048
1049/* Start remote-debugging of a machine over a serial link. */
96baa820 1050
c906108c 1051void
96baa820 1052start_remote (void)
c906108c
SS
1053{
1054 init_thread_list ();
1055 init_wait_for_inferior ();
1056 stop_soon_quietly = 1;
1057 trap_expected = 0;
43ff13b4 1058
6426a772
JM
1059 /* Always go on waiting for the target, regardless of the mode. */
1060 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1061 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1062 nothing is returned (instead of just blocking). Because of this,
1063 targets expecting an immediate response need to, internally, set
1064 things up so that the target_wait() is forced to eventually
1065 timeout. */
1066 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1067 differentiate to its caller what the state of the target is after
1068 the initial open has been performed. Here we're assuming that
1069 the target has stopped. It should be possible to eventually have
1070 target_open() return to the caller an indication that the target
1071 is currently running and GDB state should be set to the same as
1072 for an async run. */
1073 wait_for_inferior ();
1074 normal_stop ();
c906108c
SS
1075}
1076
1077/* Initialize static vars when a new inferior begins. */
1078
1079void
96baa820 1080init_wait_for_inferior (void)
c906108c
SS
1081{
1082 /* These are meaningless until the first time through wait_for_inferior. */
1083 prev_pc = 0;
1084 prev_func_start = 0;
1085 prev_func_name = NULL;
1086
1087#ifdef HP_OS_BUG
1088 trap_expected_after_continue = 0;
1089#endif
1090 breakpoints_inserted = 0;
1091 breakpoint_init_inferior (inf_starting);
1092
1093 /* Don't confuse first call to proceed(). */
1094 stop_signal = TARGET_SIGNAL_0;
1095
1096 /* The first resume is not following a fork/vfork/exec. */
1097 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1098 pending_follow.fork_event.saw_parent_fork = 0;
1099 pending_follow.fork_event.saw_child_fork = 0;
1100 pending_follow.fork_event.saw_child_exec = 0;
1101
1102 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1103 number_of_threads_in_syscalls = 0;
1104
1105 clear_proceed_status ();
1106}
1107
1108static void
96baa820 1109delete_breakpoint_current_contents (void *arg)
c906108c
SS
1110{
1111 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1112 if (*breakpointp != NULL)
1113 {
1114 delete_breakpoint (*breakpointp);
1115 *breakpointp = NULL;
1116 }
1117}
1118\f
b83266a0
SS
1119/* This enum encodes possible reasons for doing a target_wait, so that
1120 wfi can call target_wait in one place. (Ultimately the call will be
1121 moved out of the infinite loop entirely.) */
1122
c5aa993b
JM
1123enum infwait_states
1124{
cd0fc7c3
SS
1125 infwait_normal_state,
1126 infwait_thread_hop_state,
1127 infwait_nullified_state,
1128 infwait_nonstep_watch_state
b83266a0
SS
1129};
1130
11cf8741
JM
1131/* Why did the inferior stop? Used to print the appropriate messages
1132 to the interface from within handle_inferior_event(). */
1133enum inferior_stop_reason
1134{
1135 /* We don't know why. */
1136 STOP_UNKNOWN,
1137 /* Step, next, nexti, stepi finished. */
1138 END_STEPPING_RANGE,
1139 /* Found breakpoint. */
1140 BREAKPOINT_HIT,
1141 /* Inferior terminated by signal. */
1142 SIGNAL_EXITED,
1143 /* Inferior exited. */
1144 EXITED,
1145 /* Inferior received signal, and user asked to be notified. */
1146 SIGNAL_RECEIVED
1147};
1148
cd0fc7c3
SS
1149/* This structure contains what used to be local variables in
1150 wait_for_inferior. Probably many of them can return to being
1151 locals in handle_inferior_event. */
1152
c5aa993b 1153struct execution_control_state
488f131b
JB
1154{
1155 struct target_waitstatus ws;
1156 struct target_waitstatus *wp;
1157 int another_trap;
1158 int random_signal;
1159 CORE_ADDR stop_func_start;
1160 CORE_ADDR stop_func_end;
1161 char *stop_func_name;
1162 struct symtab_and_line sal;
1163 int remove_breakpoints_on_following_step;
1164 int current_line;
1165 struct symtab *current_symtab;
1166 int handling_longjmp; /* FIXME */
1167 ptid_t ptid;
1168 ptid_t saved_inferior_ptid;
1169 int update_step_sp;
1170 int stepping_through_solib_after_catch;
1171 bpstat stepping_through_solib_catchpoints;
1172 int enable_hw_watchpoints_after_wait;
1173 int stepping_through_sigtramp;
1174 int new_thread_event;
1175 struct target_waitstatus tmpstatus;
1176 enum infwait_states infwait_state;
1177 ptid_t waiton_ptid;
1178 int wait_some_more;
1179};
1180
1181void init_execution_control_state (struct execution_control_state *ecs);
1182
1183void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1184
104c1213 1185static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 1186static void step_into_function (struct execution_control_state *ecs);
d4f3574e 1187static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
1188static void stop_stepping (struct execution_control_state *ecs);
1189static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1190static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1191static void print_stop_reason (enum inferior_stop_reason stop_reason,
1192 int stop_info);
104c1213 1193
cd0fc7c3
SS
1194/* Wait for control to return from inferior to debugger.
1195 If inferior gets a signal, we may decide to start it up again
1196 instead of returning. That is why there is a loop in this function.
1197 When this function actually returns it means the inferior
1198 should be left stopped and GDB should read more commands. */
1199
1200void
96baa820 1201wait_for_inferior (void)
cd0fc7c3
SS
1202{
1203 struct cleanup *old_cleanups;
1204 struct execution_control_state ecss;
1205 struct execution_control_state *ecs;
c906108c 1206
8601f500 1207 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1208 &step_resume_breakpoint);
1209 make_cleanup (delete_breakpoint_current_contents,
1210 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1211
1212 /* wfi still stays in a loop, so it's OK just to take the address of
1213 a local to get the ecs pointer. */
1214 ecs = &ecss;
1215
1216 /* Fill in with reasonable starting values. */
1217 init_execution_control_state (ecs);
1218
c906108c 1219 /* We'll update this if & when we switch to a new thread. */
39f77062 1220 previous_inferior_ptid = inferior_ptid;
c906108c 1221
cd0fc7c3
SS
1222 overlay_cache_invalid = 1;
1223
1224 /* We have to invalidate the registers BEFORE calling target_wait
1225 because they can be loaded from the target while in target_wait.
1226 This makes remote debugging a bit more efficient for those
1227 targets that provide critical registers as part of their normal
1228 status mechanism. */
1229
1230 registers_changed ();
b83266a0 1231
c906108c
SS
1232 while (1)
1233 {
cd0fc7c3 1234 if (target_wait_hook)
39f77062 1235 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1236 else
39f77062 1237 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1238
cd0fc7c3
SS
1239 /* Now figure out what to do with the result of the result. */
1240 handle_inferior_event (ecs);
c906108c 1241
cd0fc7c3
SS
1242 if (!ecs->wait_some_more)
1243 break;
1244 }
1245 do_cleanups (old_cleanups);
1246}
c906108c 1247
43ff13b4
JM
1248/* Asynchronous version of wait_for_inferior. It is called by the
1249 event loop whenever a change of state is detected on the file
1250 descriptor corresponding to the target. It can be called more than
1251 once to complete a single execution command. In such cases we need
1252 to keep the state in a global variable ASYNC_ECSS. If it is the
1253 last time that this function is called for a single execution
1254 command, then report to the user that the inferior has stopped, and
1255 do the necessary cleanups. */
1256
1257struct execution_control_state async_ecss;
1258struct execution_control_state *async_ecs;
1259
1260void
fba45db2 1261fetch_inferior_event (void *client_data)
43ff13b4
JM
1262{
1263 static struct cleanup *old_cleanups;
1264
c5aa993b 1265 async_ecs = &async_ecss;
43ff13b4
JM
1266
1267 if (!async_ecs->wait_some_more)
1268 {
488f131b 1269 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1270 &step_resume_breakpoint);
43ff13b4 1271 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1272 &through_sigtramp_breakpoint);
43ff13b4
JM
1273
1274 /* Fill in with reasonable starting values. */
1275 init_execution_control_state (async_ecs);
1276
43ff13b4 1277 /* We'll update this if & when we switch to a new thread. */
39f77062 1278 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1279
1280 overlay_cache_invalid = 1;
1281
1282 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1283 because they can be loaded from the target while in target_wait.
1284 This makes remote debugging a bit more efficient for those
1285 targets that provide critical registers as part of their normal
1286 status mechanism. */
43ff13b4
JM
1287
1288 registers_changed ();
1289 }
1290
1291 if (target_wait_hook)
488f131b
JB
1292 async_ecs->ptid =
1293 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1294 else
39f77062 1295 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1296
1297 /* Now figure out what to do with the result of the result. */
1298 handle_inferior_event (async_ecs);
1299
1300 if (!async_ecs->wait_some_more)
1301 {
adf40b2e 1302 /* Do only the cleanups that have been added by this
488f131b
JB
1303 function. Let the continuations for the commands do the rest,
1304 if there are any. */
43ff13b4
JM
1305 do_exec_cleanups (old_cleanups);
1306 normal_stop ();
c2d11a7d
JM
1307 if (step_multi && stop_step)
1308 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1309 else
1310 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1311 }
1312}
1313
cd0fc7c3
SS
1314/* Prepare an execution control state for looping through a
1315 wait_for_inferior-type loop. */
1316
1317void
96baa820 1318init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1319{
c2d11a7d 1320 /* ecs->another_trap? */
cd0fc7c3
SS
1321 ecs->random_signal = 0;
1322 ecs->remove_breakpoints_on_following_step = 0;
1323 ecs->handling_longjmp = 0; /* FIXME */
1324 ecs->update_step_sp = 0;
1325 ecs->stepping_through_solib_after_catch = 0;
1326 ecs->stepping_through_solib_catchpoints = NULL;
1327 ecs->enable_hw_watchpoints_after_wait = 0;
1328 ecs->stepping_through_sigtramp = 0;
1329 ecs->sal = find_pc_line (prev_pc, 0);
1330 ecs->current_line = ecs->sal.line;
1331 ecs->current_symtab = ecs->sal.symtab;
1332 ecs->infwait_state = infwait_normal_state;
39f77062 1333 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1334 ecs->wp = &(ecs->ws);
1335}
1336
a0b3c4fd 1337/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1338 sanity check. There should never be more than one step-resume
1339 breakpoint per thread, so we should never be setting a new
1340 step_resume_breakpoint when one is already active. */
a0b3c4fd 1341static void
96baa820 1342check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1343{
1344 if (step_resume_breakpoint)
488f131b
JB
1345 warning
1346 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1347}
1348
e02bc4cc
DS
1349/* Return the cached copy of the last pid/waitstatus returned by
1350 target_wait()/target_wait_hook(). The data is actually cached by
1351 handle_inferior_event(), which gets called immediately after
1352 target_wait()/target_wait_hook(). */
1353
1354void
488f131b 1355get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1356{
39f77062 1357 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1358 *status = target_last_waitstatus;
1359}
1360
dd80620e
MS
1361/* Switch thread contexts, maintaining "infrun state". */
1362
1363static void
1364context_switch (struct execution_control_state *ecs)
1365{
1366 /* Caution: it may happen that the new thread (or the old one!)
1367 is not in the thread list. In this case we must not attempt
1368 to "switch context", or we run the risk that our context may
1369 be lost. This may happen as a result of the target module
1370 mishandling thread creation. */
1371
1372 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1373 { /* Perform infrun state context switch: */
dd80620e 1374 /* Save infrun state for the old thread. */
488f131b
JB
1375 save_infrun_state (inferior_ptid, prev_pc,
1376 prev_func_start, prev_func_name,
dd80620e 1377 trap_expected, step_resume_breakpoint,
488f131b
JB
1378 through_sigtramp_breakpoint, step_range_start,
1379 step_range_end, step_frame_address,
dd80620e
MS
1380 ecs->handling_longjmp, ecs->another_trap,
1381 ecs->stepping_through_solib_after_catch,
1382 ecs->stepping_through_solib_catchpoints,
1383 ecs->stepping_through_sigtramp,
488f131b 1384 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1385
1386 /* Load infrun state for the new thread. */
488f131b
JB
1387 load_infrun_state (ecs->ptid, &prev_pc,
1388 &prev_func_start, &prev_func_name,
dd80620e 1389 &trap_expected, &step_resume_breakpoint,
488f131b
JB
1390 &through_sigtramp_breakpoint, &step_range_start,
1391 &step_range_end, &step_frame_address,
dd80620e
MS
1392 &ecs->handling_longjmp, &ecs->another_trap,
1393 &ecs->stepping_through_solib_after_catch,
1394 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1395 &ecs->stepping_through_sigtramp,
1396 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1397 }
1398 inferior_ptid = ecs->ptid;
1399}
1400
1401
cd0fc7c3
SS
1402/* Given an execution control state that has been freshly filled in
1403 by an event from the inferior, figure out what it means and take
1404 appropriate action. */
c906108c 1405
cd0fc7c3 1406void
96baa820 1407handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3
SS
1408{
1409 CORE_ADDR tmp;
1410 int stepped_after_stopped_by_watchpoint;
1411
e02bc4cc 1412 /* Cache the last pid/waitstatus. */
39f77062 1413 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1414 target_last_waitstatus = *ecs->wp;
1415
488f131b
JB
1416 switch (ecs->infwait_state)
1417 {
1418 case infwait_thread_hop_state:
1419 /* Cancel the waiton_ptid. */
1420 ecs->waiton_ptid = pid_to_ptid (-1);
1421 /* Fall thru to the normal_state case. */
b83266a0 1422
488f131b
JB
1423 case infwait_normal_state:
1424 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1425 is serviced in this loop, below. */
1426 if (ecs->enable_hw_watchpoints_after_wait)
1427 {
1428 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1429 ecs->enable_hw_watchpoints_after_wait = 0;
1430 }
1431 stepped_after_stopped_by_watchpoint = 0;
1432 break;
b83266a0 1433
488f131b
JB
1434 case infwait_nullified_state:
1435 break;
b83266a0 1436
488f131b
JB
1437 case infwait_nonstep_watch_state:
1438 insert_breakpoints ();
c906108c 1439
488f131b
JB
1440 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1441 handle things like signals arriving and other things happening
1442 in combination correctly? */
1443 stepped_after_stopped_by_watchpoint = 1;
1444 break;
1445 }
1446 ecs->infwait_state = infwait_normal_state;
c906108c 1447
488f131b 1448 flush_cached_frames ();
c906108c 1449
488f131b 1450 /* If it's a new process, add it to the thread database */
c906108c 1451
488f131b
JB
1452 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1453 && !in_thread_list (ecs->ptid));
1454
1455 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1456 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1457 {
1458 add_thread (ecs->ptid);
c906108c 1459
488f131b
JB
1460 ui_out_text (uiout, "[New ");
1461 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1462 ui_out_text (uiout, "]\n");
c906108c
SS
1463
1464#if 0
488f131b
JB
1465 /* NOTE: This block is ONLY meant to be invoked in case of a
1466 "thread creation event"! If it is invoked for any other
1467 sort of event (such as a new thread landing on a breakpoint),
1468 the event will be discarded, which is almost certainly
1469 a bad thing!
1470
1471 To avoid this, the low-level module (eg. target_wait)
1472 should call in_thread_list and add_thread, so that the
1473 new thread is known by the time we get here. */
1474
1475 /* We may want to consider not doing a resume here in order
1476 to give the user a chance to play with the new thread.
1477 It might be good to make that a user-settable option. */
1478
1479 /* At this point, all threads are stopped (happens
1480 automatically in either the OS or the native code).
1481 Therefore we need to continue all threads in order to
1482 make progress. */
1483
1484 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1485 prepare_to_wait (ecs);
1486 return;
c906108c 1487#endif
488f131b 1488 }
c906108c 1489
488f131b
JB
1490 switch (ecs->ws.kind)
1491 {
1492 case TARGET_WAITKIND_LOADED:
1493 /* Ignore gracefully during startup of the inferior, as it
1494 might be the shell which has just loaded some objects,
1495 otherwise add the symbols for the newly loaded objects. */
c906108c 1496#ifdef SOLIB_ADD
488f131b
JB
1497 if (!stop_soon_quietly)
1498 {
1499 /* Remove breakpoints, SOLIB_ADD might adjust
1500 breakpoint addresses via breakpoint_re_set. */
1501 if (breakpoints_inserted)
1502 remove_breakpoints ();
c906108c 1503
488f131b
JB
1504 /* Check for any newly added shared libraries if we're
1505 supposed to be adding them automatically. Switch
1506 terminal for any messages produced by
1507 breakpoint_re_set. */
1508 target_terminal_ours_for_output ();
1509 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1510 target_terminal_inferior ();
1511
1512 /* Reinsert breakpoints and continue. */
1513 if (breakpoints_inserted)
1514 insert_breakpoints ();
1515 }
c906108c 1516#endif
488f131b
JB
1517 resume (0, TARGET_SIGNAL_0);
1518 prepare_to_wait (ecs);
1519 return;
c5aa993b 1520
488f131b
JB
1521 case TARGET_WAITKIND_SPURIOUS:
1522 resume (0, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
c5aa993b 1525
488f131b
JB
1526 case TARGET_WAITKIND_EXITED:
1527 target_terminal_ours (); /* Must do this before mourn anyway */
1528 print_stop_reason (EXITED, ecs->ws.value.integer);
1529
1530 /* Record the exit code in the convenience variable $_exitcode, so
1531 that the user can inspect this again later. */
1532 set_internalvar (lookup_internalvar ("_exitcode"),
1533 value_from_longest (builtin_type_int,
1534 (LONGEST) ecs->ws.value.integer));
1535 gdb_flush (gdb_stdout);
1536 target_mourn_inferior ();
1537 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1538 stop_print_frame = 0;
1539 stop_stepping (ecs);
1540 return;
c5aa993b 1541
488f131b
JB
1542 case TARGET_WAITKIND_SIGNALLED:
1543 stop_print_frame = 0;
1544 stop_signal = ecs->ws.value.sig;
1545 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1546
488f131b
JB
1547 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1548 reach here unless the inferior is dead. However, for years
1549 target_kill() was called here, which hints that fatal signals aren't
1550 really fatal on some systems. If that's true, then some changes
1551 may be needed. */
1552 target_mourn_inferior ();
c906108c 1553
488f131b
JB
1554 print_stop_reason (SIGNAL_EXITED, stop_signal);
1555 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1556 stop_stepping (ecs);
1557 return;
c906108c 1558
488f131b
JB
1559 /* The following are the only cases in which we keep going;
1560 the above cases end in a continue or goto. */
1561 case TARGET_WAITKIND_FORKED:
1562 stop_signal = TARGET_SIGNAL_TRAP;
1563 pending_follow.kind = ecs->ws.kind;
1564
1565 /* Ignore fork events reported for the parent; we're only
1566 interested in reacting to forks of the child. Note that
1567 we expect the child's fork event to be available if we
1568 waited for it now. */
1569 if (ptid_equal (inferior_ptid, ecs->ptid))
1570 {
1571 pending_follow.fork_event.saw_parent_fork = 1;
1572 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1573 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1574 prepare_to_wait (ecs);
1575 return;
1576 }
1577 else
1578 {
1579 pending_follow.fork_event.saw_child_fork = 1;
1580 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1581 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1582 }
c906108c 1583
488f131b
JB
1584 stop_pc = read_pc_pid (ecs->ptid);
1585 ecs->saved_inferior_ptid = inferior_ptid;
1586 inferior_ptid = ecs->ptid;
1587 /* The second argument of bpstat_stop_status is meant to help
1588 distinguish between a breakpoint trap and a singlestep trap.
1589 This is only important on targets where DECR_PC_AFTER_BREAK
1590 is non-zero. The prev_pc test is meant to distinguish between
1591 singlestepping a trap instruction, and singlestepping thru a
1592 jump to the instruction following a trap instruction. */
1593
1594 stop_bpstat = bpstat_stop_status (&stop_pc,
1595 currently_stepping (ecs) &&
1596 prev_pc !=
1597 stop_pc - DECR_PC_AFTER_BREAK);
1598 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1599 inferior_ptid = ecs->saved_inferior_ptid;
1600 goto process_event_stop_test;
1601
1602 /* If this a platform which doesn't allow a debugger to touch a
1603 vfork'd inferior until after it exec's, then we'd best keep
1604 our fingers entirely off the inferior, other than continuing
1605 it. This has the unfortunate side-effect that catchpoints
1606 of vforks will be ignored. But since the platform doesn't
1607 allow the inferior be touched at vfork time, there's really
1608 little choice. */
1609 case TARGET_WAITKIND_VFORKED:
1610 stop_signal = TARGET_SIGNAL_TRAP;
1611 pending_follow.kind = ecs->ws.kind;
1612
1613 /* Is this a vfork of the parent? If so, then give any
1614 vfork catchpoints a chance to trigger now. (It's
1615 dangerous to do so if the child canot be touched until
1616 it execs, and the child has not yet exec'd. We probably
1617 should warn the user to that effect when the catchpoint
1618 triggers...) */
1619 if (ptid_equal (ecs->ptid, inferior_ptid))
1620 {
1621 pending_follow.fork_event.saw_parent_fork = 1;
1622 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1623 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1624 }
c906108c 1625
488f131b
JB
1626 /* If we've seen the child's vfork event but cannot really touch
1627 the child until it execs, then we must continue the child now.
1628 Else, give any vfork catchpoints a chance to trigger now. */
1629 else
1630 {
1631 pending_follow.fork_event.saw_child_fork = 1;
1632 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1633 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1634 target_post_startup_inferior (pid_to_ptid
1635 (pending_follow.fork_event.
1636 child_pid));
1637 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1638 if (follow_vfork_when_exec)
1639 {
1640 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1641 prepare_to_wait (ecs);
1642 return;
1643 }
1644 }
c906108c 1645
488f131b
JB
1646 stop_pc = read_pc ();
1647 /* The second argument of bpstat_stop_status is meant to help
1648 distinguish between a breakpoint trap and a singlestep trap.
1649 This is only important on targets where DECR_PC_AFTER_BREAK
1650 is non-zero. The prev_pc test is meant to distinguish between
1651 singlestepping a trap instruction, and singlestepping thru a
1652 jump to the instruction following a trap instruction. */
1653
1654 stop_bpstat = bpstat_stop_status (&stop_pc,
1655 currently_stepping (ecs) &&
1656 prev_pc !=
1657 stop_pc - DECR_PC_AFTER_BREAK);
1658 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1659 goto process_event_stop_test;
1660
1661 case TARGET_WAITKIND_EXECD:
1662 stop_signal = TARGET_SIGNAL_TRAP;
1663
1664 /* Is this a target which reports multiple exec events per actual
1665 call to exec()? (HP-UX using ptrace does, for example.) If so,
1666 ignore all but the last one. Just resume the exec'r, and wait
1667 for the next exec event. */
1668 if (inferior_ignoring_leading_exec_events)
1669 {
1670 inferior_ignoring_leading_exec_events--;
1671 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1672 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1673 parent_pid);
1674 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1675 prepare_to_wait (ecs);
1676 return;
1677 }
1678 inferior_ignoring_leading_exec_events =
1679 target_reported_exec_events_per_exec_call () - 1;
1680
1681 pending_follow.execd_pathname =
1682 savestring (ecs->ws.value.execd_pathname,
1683 strlen (ecs->ws.value.execd_pathname));
1684
1685 /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
1686 child of a vfork exec?
1687
1688 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1689 HP-UX, events associated with a vforking inferior come in
1690 threes: a vfork event for the child (always first), followed
1691 a vfork event for the parent and an exec event for the child.
1692 The latter two can come in either order.
1693
1694 If we get the parent vfork event first, life's good: We follow
1695 either the parent or child, and then the child's exec event is
1696 a "don't care".
1697
1698 But if we get the child's exec event first, then we delay
1699 responding to it until we handle the parent's vfork. Because,
1700 otherwise we can't satisfy a "catch vfork". */
1701 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1702 {
1703 pending_follow.fork_event.saw_child_exec = 1;
1704
1705 /* On some targets, the child must be resumed before
1706 the parent vfork event is delivered. A single-step
1707 suffices. */
1708 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
1709 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1710 /* We expect the parent vfork event to be available now. */
1711 prepare_to_wait (ecs);
1712 return;
1713 }
c906108c 1714
488f131b
JB
1715 /* This causes the eventpoints and symbol table to be reset. Must
1716 do this now, before trying to determine whether to stop. */
1717 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1718 xfree (pending_follow.execd_pathname);
c906108c 1719
488f131b
JB
1720 stop_pc = read_pc_pid (ecs->ptid);
1721 ecs->saved_inferior_ptid = inferior_ptid;
1722 inferior_ptid = ecs->ptid;
1723 /* The second argument of bpstat_stop_status is meant to help
1724 distinguish between a breakpoint trap and a singlestep trap.
1725 This is only important on targets where DECR_PC_AFTER_BREAK
1726 is non-zero. The prev_pc test is meant to distinguish between
1727 singlestepping a trap instruction, and singlestepping thru a
1728 jump to the instruction following a trap instruction. */
1729
1730 stop_bpstat = bpstat_stop_status (&stop_pc,
1731 currently_stepping (ecs) &&
1732 prev_pc !=
1733 stop_pc - DECR_PC_AFTER_BREAK);
1734 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1735 inferior_ptid = ecs->saved_inferior_ptid;
1736 goto process_event_stop_test;
1737
1738 /* These syscall events are returned on HP-UX, as part of its
1739 implementation of page-protection-based "hardware" watchpoints.
1740 HP-UX has unfortunate interactions between page-protections and
1741 some system calls. Our solution is to disable hardware watches
1742 when a system call is entered, and reenable them when the syscall
1743 completes. The downside of this is that we may miss the precise
1744 point at which a watched piece of memory is modified. "Oh well."
1745
1746 Note that we may have multiple threads running, which may each
1747 enter syscalls at roughly the same time. Since we don't have a
1748 good notion currently of whether a watched piece of memory is
1749 thread-private, we'd best not have any page-protections active
1750 when any thread is in a syscall. Thus, we only want to reenable
1751 hardware watches when no threads are in a syscall.
1752
1753 Also, be careful not to try to gather much state about a thread
1754 that's in a syscall. It's frequently a losing proposition. */
1755 case TARGET_WAITKIND_SYSCALL_ENTRY:
1756 number_of_threads_in_syscalls++;
1757 if (number_of_threads_in_syscalls == 1)
1758 {
1759 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1760 }
1761 resume (0, TARGET_SIGNAL_0);
1762 prepare_to_wait (ecs);
1763 return;
c906108c 1764
488f131b
JB
1765 /* Before examining the threads further, step this thread to
1766 get it entirely out of the syscall. (We get notice of the
1767 event when the thread is just on the verge of exiting a
1768 syscall. Stepping one instruction seems to get it back
1769 into user code.)
c906108c 1770
488f131b
JB
1771 Note that although the logical place to reenable h/w watches
1772 is here, we cannot. We cannot reenable them before stepping
1773 the thread (this causes the next wait on the thread to hang).
c4093a6a 1774
488f131b
JB
1775 Nor can we enable them after stepping until we've done a wait.
1776 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1777 here, which will be serviced immediately after the target
1778 is waited on. */
1779 case TARGET_WAITKIND_SYSCALL_RETURN:
1780 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1781
1782 if (number_of_threads_in_syscalls > 0)
1783 {
1784 number_of_threads_in_syscalls--;
1785 ecs->enable_hw_watchpoints_after_wait =
1786 (number_of_threads_in_syscalls == 0);
1787 }
1788 prepare_to_wait (ecs);
1789 return;
c906108c 1790
488f131b
JB
1791 case TARGET_WAITKIND_STOPPED:
1792 stop_signal = ecs->ws.value.sig;
1793 break;
c906108c 1794
488f131b
JB
1795 /* We had an event in the inferior, but we are not interested
1796 in handling it at this level. The lower layers have already
1797 done what needs to be done, if anything. This case can
1798 occur only when the target is async or extended-async. One
1799 of the circumstamces for this to happen is when the
1800 inferior produces output for the console. The inferior has
1801 not stopped, and we are ignoring the event. */
1802 case TARGET_WAITKIND_IGNORE:
1803 ecs->wait_some_more = 1;
1804 return;
1805 }
c906108c 1806
488f131b
JB
1807 /* We may want to consider not doing a resume here in order to give
1808 the user a chance to play with the new thread. It might be good
1809 to make that a user-settable option. */
c906108c 1810
488f131b
JB
1811 /* At this point, all threads are stopped (happens automatically in
1812 either the OS or the native code). Therefore we need to continue
1813 all threads in order to make progress. */
1814 if (ecs->new_thread_event)
1815 {
1816 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1817 prepare_to_wait (ecs);
1818 return;
1819 }
c906108c 1820
488f131b
JB
1821 stop_pc = read_pc_pid (ecs->ptid);
1822
1823 /* See if a thread hit a thread-specific breakpoint that was meant for
1824 another thread. If so, then step that thread past the breakpoint,
1825 and continue it. */
1826
1827 if (stop_signal == TARGET_SIGNAL_TRAP)
1828 {
1829 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1830 ecs->random_signal = 0;
1831 else if (breakpoints_inserted
1832 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1833 {
c5aa993b 1834 ecs->random_signal = 0;
488f131b
JB
1835 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1836 ecs->ptid))
1837 {
1838 int remove_status;
1839
1840 /* Saw a breakpoint, but it was hit by the wrong thread.
1841 Just continue. */
1842 if (DECR_PC_AFTER_BREAK)
1843 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1844
1845 remove_status = remove_breakpoints ();
1846 /* Did we fail to remove breakpoints? If so, try
1847 to set the PC past the bp. (There's at least
1848 one situation in which we can fail to remove
1849 the bp's: On HP-UX's that use ttrace, we can't
1850 change the address space of a vforking child
1851 process until the child exits (well, okay, not
1852 then either :-) or execs. */
1853 if (remove_status != 0)
1854 {
1855 /* FIXME! This is obviously non-portable! */
1856 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1857 /* We need to restart all the threads now,
1858 * unles we're running in scheduler-locked mode.
1859 * Use currently_stepping to determine whether to
1860 * step or continue.
1861 */
1862 /* FIXME MVS: is there any reason not to call resume()? */
1863 if (scheduler_mode == schedlock_on)
1864 target_resume (ecs->ptid,
1865 currently_stepping (ecs), TARGET_SIGNAL_0);
1866 else
1867 target_resume (RESUME_ALL,
1868 currently_stepping (ecs), TARGET_SIGNAL_0);
1869 prepare_to_wait (ecs);
1870 return;
1871 }
1872 else
1873 { /* Single step */
1874 breakpoints_inserted = 0;
1875 if (!ptid_equal (inferior_ptid, ecs->ptid))
1876 context_switch (ecs);
1877 ecs->waiton_ptid = ecs->ptid;
1878 ecs->wp = &(ecs->ws);
1879 ecs->another_trap = 1;
1880
1881 ecs->infwait_state = infwait_thread_hop_state;
1882 keep_going (ecs);
1883 registers_changed ();
1884 return;
1885 }
1886 }
1887 }
1888 }
1889 else
1890 ecs->random_signal = 1;
c906108c 1891
488f131b
JB
1892 /* See if something interesting happened to the non-current thread. If
1893 so, then switch to that thread, and eventually give control back to
1894 the user.
1895
1896 Note that if there's any kind of pending follow (i.e., of a fork,
1897 vfork or exec), we don't want to do this now. Rather, we'll let
1898 the next resume handle it. */
1899 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1900 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1901 {
1902 int printed = 0;
1903
1904 /* If it's a random signal for a non-current thread, notify user
1905 if he's expressed an interest. */
1906 if (ecs->random_signal && signal_print[stop_signal])
1907 {
c906108c
SS
1908/* ??rehrauer: I don't understand the rationale for this code. If the
1909 inferior will stop as a result of this signal, then the act of handling
1910 the stop ought to print a message that's couches the stoppage in user
1911 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1912 won't stop as a result of the signal -- i.e., if the signal is merely
1913 a side-effect of something GDB's doing "under the covers" for the
1914 user, such as stepping threads over a breakpoint they shouldn't stop
1915 for -- then the message seems to be a serious annoyance at best.
1916
1917 For now, remove the message altogether. */
1918#if 0
488f131b
JB
1919 printed = 1;
1920 target_terminal_ours_for_output ();
1921 printf_filtered ("\nProgram received signal %s, %s.\n",
1922 target_signal_to_name (stop_signal),
1923 target_signal_to_string (stop_signal));
1924 gdb_flush (gdb_stdout);
c906108c 1925#endif
488f131b 1926 }
c906108c 1927
488f131b
JB
1928 /* If it's not SIGTRAP and not a signal we want to stop for, then
1929 continue the thread. */
c906108c 1930
488f131b
JB
1931 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1932 {
1933 if (printed)
1934 target_terminal_inferior ();
c906108c 1935
488f131b
JB
1936 /* Clear the signal if it should not be passed. */
1937 if (signal_program[stop_signal] == 0)
1938 stop_signal = TARGET_SIGNAL_0;
c906108c 1939
488f131b
JB
1940 target_resume (ecs->ptid, 0, stop_signal);
1941 prepare_to_wait (ecs);
1942 return;
1943 }
c906108c 1944
488f131b
JB
1945 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1946 and fall into the rest of wait_for_inferior(). */
c5aa993b 1947
488f131b 1948 context_switch (ecs);
c5aa993b 1949
488f131b
JB
1950 if (context_hook)
1951 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1952
488f131b
JB
1953 flush_cached_frames ();
1954 }
c906108c 1955
488f131b
JB
1956 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1957 {
1958 /* Pull the single step breakpoints out of the target. */
1959 SOFTWARE_SINGLE_STEP (0, 0);
1960 singlestep_breakpoints_inserted_p = 0;
1961 }
c906108c 1962
488f131b
JB
1963 /* If PC is pointing at a nullified instruction, then step beyond
1964 it so that the user won't be confused when GDB appears to be ready
1965 to execute it. */
c906108c 1966
488f131b
JB
1967 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1968 if (INSTRUCTION_NULLIFIED)
1969 {
1970 registers_changed ();
1971 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1972
488f131b
JB
1973 /* We may have received a signal that we want to pass to
1974 the inferior; therefore, we must not clobber the waitstatus
1975 in WS. */
c906108c 1976
488f131b
JB
1977 ecs->infwait_state = infwait_nullified_state;
1978 ecs->waiton_ptid = ecs->ptid;
1979 ecs->wp = &(ecs->tmpstatus);
1980 prepare_to_wait (ecs);
1981 return;
1982 }
c906108c 1983
488f131b
JB
1984 /* It may not be necessary to disable the watchpoint to stop over
1985 it. For example, the PA can (with some kernel cooperation)
1986 single step over a watchpoint without disabling the watchpoint. */
1987 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1988 {
1989 resume (1, 0);
1990 prepare_to_wait (ecs);
1991 return;
1992 }
c906108c 1993
488f131b
JB
1994 /* It is far more common to need to disable a watchpoint to step
1995 the inferior over it. FIXME. What else might a debug
1996 register or page protection watchpoint scheme need here? */
1997 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1998 {
1999 /* At this point, we are stopped at an instruction which has
2000 attempted to write to a piece of memory under control of
2001 a watchpoint. The instruction hasn't actually executed
2002 yet. If we were to evaluate the watchpoint expression
2003 now, we would get the old value, and therefore no change
2004 would seem to have occurred.
2005
2006 In order to make watchpoints work `right', we really need
2007 to complete the memory write, and then evaluate the
2008 watchpoint expression. The following code does that by
2009 removing the watchpoint (actually, all watchpoints and
2010 breakpoints), single-stepping the target, re-inserting
2011 watchpoints, and then falling through to let normal
2012 single-step processing handle proceed. Since this
2013 includes evaluating watchpoints, things will come to a
2014 stop in the correct manner. */
2015
2016 if (DECR_PC_AFTER_BREAK)
2017 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 2018
488f131b
JB
2019 remove_breakpoints ();
2020 registers_changed ();
2021 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 2022
488f131b
JB
2023 ecs->waiton_ptid = ecs->ptid;
2024 ecs->wp = &(ecs->ws);
2025 ecs->infwait_state = infwait_nonstep_watch_state;
2026 prepare_to_wait (ecs);
2027 return;
2028 }
2029
2030 /* It may be possible to simply continue after a watchpoint. */
2031 if (HAVE_CONTINUABLE_WATCHPOINT)
2032 STOPPED_BY_WATCHPOINT (ecs->ws);
2033
2034 ecs->stop_func_start = 0;
2035 ecs->stop_func_end = 0;
2036 ecs->stop_func_name = 0;
2037 /* Don't care about return value; stop_func_start and stop_func_name
2038 will both be 0 if it doesn't work. */
2039 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2040 &ecs->stop_func_start, &ecs->stop_func_end);
2041 ecs->stop_func_start += FUNCTION_START_OFFSET;
2042 ecs->another_trap = 0;
2043 bpstat_clear (&stop_bpstat);
2044 stop_step = 0;
2045 stop_stack_dummy = 0;
2046 stop_print_frame = 1;
2047 ecs->random_signal = 0;
2048 stopped_by_random_signal = 0;
2049 breakpoints_failed = 0;
2050
2051 /* Look at the cause of the stop, and decide what to do.
2052 The alternatives are:
2053 1) break; to really stop and return to the debugger,
2054 2) drop through to start up again
2055 (set ecs->another_trap to 1 to single step once)
2056 3) set ecs->random_signal to 1, and the decision between 1 and 2
2057 will be made according to the signal handling tables. */
2058
2059 /* First, distinguish signals caused by the debugger from signals
2060 that have to do with the program's own actions.
2061 Note that breakpoint insns may cause SIGTRAP or SIGILL
2062 or SIGEMT, depending on the operating system version.
2063 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2064 and change it to SIGTRAP. */
2065
2066 if (stop_signal == TARGET_SIGNAL_TRAP
2067 || (breakpoints_inserted &&
2068 (stop_signal == TARGET_SIGNAL_ILL
2069 || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
2070 {
2071 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2072 {
2073 stop_print_frame = 0;
2074 stop_stepping (ecs);
2075 return;
2076 }
2077 if (stop_soon_quietly)
2078 {
2079 stop_stepping (ecs);
2080 return;
2081 }
2082
2083 /* Don't even think about breakpoints
2084 if just proceeded over a breakpoint.
2085
2086 However, if we are trying to proceed over a breakpoint
2087 and end up in sigtramp, then through_sigtramp_breakpoint
2088 will be set and we should check whether we've hit the
2089 step breakpoint. */
2090 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2091 && through_sigtramp_breakpoint == NULL)
2092 bpstat_clear (&stop_bpstat);
2093 else
2094 {
2095 /* See if there is a breakpoint at the current PC. */
2096
2097 /* The second argument of bpstat_stop_status is meant to help
2098 distinguish between a breakpoint trap and a singlestep trap.
2099 This is only important on targets where DECR_PC_AFTER_BREAK
2100 is non-zero. The prev_pc test is meant to distinguish between
2101 singlestepping a trap instruction, and singlestepping thru a
2102 jump to the instruction following a trap instruction. */
2103
2104 stop_bpstat = bpstat_stop_status (&stop_pc,
2105 /* Pass TRUE if our reason for stopping is something other
2106 than hitting a breakpoint. We do this by checking that
2107 1) stepping is going on and 2) we didn't hit a breakpoint
2108 in a signal handler without an intervening stop in
2109 sigtramp, which is detected by a new stack pointer value
2110 below any usual function calling stack adjustments. */
2111 (currently_stepping (ecs)
2112 && prev_pc !=
2113 stop_pc - DECR_PC_AFTER_BREAK
2114 && !(step_range_end
2115 && INNER_THAN (read_sp (),
2116 (step_sp -
2117 16)))));
2118 /* Following in case break condition called a
2119 function. */
2120 stop_print_frame = 1;
2121 }
2122
2123 if (stop_signal == TARGET_SIGNAL_TRAP)
2124 ecs->random_signal
2125 = !(bpstat_explains_signal (stop_bpstat)
2126 || trap_expected
2127 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2128 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2129 FRAME_FP (get_current_frame ())))
2130 || (step_range_end && step_resume_breakpoint == NULL));
2131
2132 else
2133 {
2134 ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
2135 /* End of a stack dummy. Some systems (e.g. Sony
2136 news) give another signal besides SIGTRAP, so
2137 check here as well as above. */
2138 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2139 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2140 FRAME_FP
2141 (get_current_frame
2142 ()))));
2143 if (!ecs->random_signal)
2144 stop_signal = TARGET_SIGNAL_TRAP;
2145 }
2146 }
2147
2148 /* When we reach this point, we've pretty much decided
2149 that the reason for stopping must've been a random
2150 (unexpected) signal. */
2151
2152 else
2153 ecs->random_signal = 1;
2154 /* If a fork, vfork or exec event was seen, then there are two
2155 possible responses we can make:
2156
2157 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2158 then we must stop now and issue a prompt. We will resume
2159 the inferior when the user tells us to.
2160 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2161 then we must resume the inferior now and keep checking.
2162
2163 In either case, we must take appropriate steps to "follow" the
2164 the fork/vfork/exec when the inferior is resumed. For example,
2165 if follow-fork-mode is "child", then we must detach from the
2166 parent inferior and follow the new child inferior.
2167
2168 In either case, setting pending_follow causes the next resume()
2169 to take the appropriate following action. */
2170process_event_stop_test:
2171 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2172 {
2173 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2174 {
2175 trap_expected = 1;
2176 stop_signal = TARGET_SIGNAL_0;
2177 keep_going (ecs);
2178 return;
2179 }
2180 }
2181 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2182 {
2183 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2184 {
2185 stop_signal = TARGET_SIGNAL_0;
2186 keep_going (ecs);
2187 return;
2188 }
2189 }
2190 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2191 {
2192 pending_follow.kind = ecs->ws.kind;
2193 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2194 {
2195 trap_expected = 1;
2196 stop_signal = TARGET_SIGNAL_0;
2197 keep_going (ecs);
2198 return;
2199 }
2200 }
2201
2202 /* For the program's own signals, act according to
2203 the signal handling tables. */
2204
2205 if (ecs->random_signal)
2206 {
2207 /* Signal not for debugging purposes. */
2208 int printed = 0;
2209
2210 stopped_by_random_signal = 1;
2211
2212 if (signal_print[stop_signal])
2213 {
2214 printed = 1;
2215 target_terminal_ours_for_output ();
2216 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2217 }
2218 if (signal_stop[stop_signal])
2219 {
2220 stop_stepping (ecs);
2221 return;
2222 }
2223 /* If not going to stop, give terminal back
2224 if we took it away. */
2225 else if (printed)
2226 target_terminal_inferior ();
2227
2228 /* Clear the signal if it should not be passed. */
2229 if (signal_program[stop_signal] == 0)
2230 stop_signal = TARGET_SIGNAL_0;
2231
2232 /* I'm not sure whether this needs to be check_sigtramp2 or
2233 whether it could/should be keep_going.
2234
2235 This used to jump to step_over_function if we are stepping,
2236 which is wrong.
2237
2238 Suppose the user does a `next' over a function call, and while
2239 that call is in progress, the inferior receives a signal for
2240 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2241 that case, when we reach this point, there is already a
2242 step-resume breakpoint established, right where it should be:
2243 immediately after the function call the user is "next"-ing
2244 over. If we call step_over_function now, two bad things
2245 happen:
2246
2247 - we'll create a new breakpoint, at wherever the current
2248 frame's return address happens to be. That could be
2249 anywhere, depending on what function call happens to be on
2250 the top of the stack at that point. Point is, it's probably
2251 not where we need it.
2252
2253 - the existing step-resume breakpoint (which is at the correct
2254 address) will get orphaned: step_resume_breakpoint will point
2255 to the new breakpoint, and the old step-resume breakpoint
2256 will never be cleaned up.
2257
2258 The old behavior was meant to help HP-UX single-step out of
2259 sigtramps. It would place the new breakpoint at prev_pc, which
2260 was certainly wrong. I don't know the details there, so fixing
2261 this probably breaks that. As with anything else, it's up to
2262 the HP-UX maintainer to furnish a fix that doesn't break other
2263 platforms. --JimB, 20 May 1999 */
2264 check_sigtramp2 (ecs);
2265 keep_going (ecs);
2266 return;
2267 }
2268
2269 /* Handle cases caused by hitting a breakpoint. */
2270 {
2271 CORE_ADDR jmp_buf_pc;
2272 struct bpstat_what what;
2273
2274 what = bpstat_what (stop_bpstat);
2275
2276 if (what.call_dummy)
2277 {
2278 stop_stack_dummy = 1;
2279#ifdef HP_OS_BUG
2280 trap_expected_after_continue = 1;
2281#endif
c5aa993b 2282 }
c906108c 2283
488f131b 2284 switch (what.main_action)
c5aa993b 2285 {
488f131b
JB
2286 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2287 /* If we hit the breakpoint at longjmp, disable it for the
2288 duration of this command. Then, install a temporary
2289 breakpoint at the target of the jmp_buf. */
2290 disable_longjmp_breakpoint ();
2291 remove_breakpoints ();
2292 breakpoints_inserted = 0;
2293 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2294 {
488f131b 2295 keep_going (ecs);
104c1213 2296 return;
c5aa993b 2297 }
488f131b
JB
2298
2299 /* Need to blow away step-resume breakpoint, as it
2300 interferes with us */
2301 if (step_resume_breakpoint != NULL)
104c1213 2302 {
488f131b 2303 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2304 }
488f131b
JB
2305 /* Not sure whether we need to blow this away too, but probably
2306 it is like the step-resume breakpoint. */
2307 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2308 {
488f131b
JB
2309 delete_breakpoint (through_sigtramp_breakpoint);
2310 through_sigtramp_breakpoint = NULL;
c5aa993b 2311 }
c906108c 2312
488f131b
JB
2313#if 0
2314 /* FIXME - Need to implement nested temporary breakpoints */
2315 if (step_over_calls > 0)
2316 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2317 else
488f131b
JB
2318#endif /* 0 */
2319 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2320 ecs->handling_longjmp = 1; /* FIXME */
2321 keep_going (ecs);
2322 return;
c906108c 2323
488f131b
JB
2324 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2325 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2326 remove_breakpoints ();
2327 breakpoints_inserted = 0;
2328#if 0
2329 /* FIXME - Need to implement nested temporary breakpoints */
2330 if (step_over_calls
2331 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2332 step_frame_address)))
c5aa993b 2333 {
488f131b 2334 ecs->another_trap = 1;
d4f3574e
SS
2335 keep_going (ecs);
2336 return;
c5aa993b 2337 }
488f131b
JB
2338#endif /* 0 */
2339 disable_longjmp_breakpoint ();
2340 ecs->handling_longjmp = 0; /* FIXME */
2341 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2342 break;
2343 /* else fallthrough */
2344
2345 case BPSTAT_WHAT_SINGLE:
2346 if (breakpoints_inserted)
c5aa993b 2347 {
488f131b 2348 remove_breakpoints ();
c5aa993b 2349 }
488f131b
JB
2350 breakpoints_inserted = 0;
2351 ecs->another_trap = 1;
2352 /* Still need to check other stuff, at least the case
2353 where we are stepping and step out of the right range. */
2354 break;
c906108c 2355
488f131b
JB
2356 case BPSTAT_WHAT_STOP_NOISY:
2357 stop_print_frame = 1;
c906108c 2358
488f131b
JB
2359 /* We are about to nuke the step_resume_breakpoint and
2360 through_sigtramp_breakpoint via the cleanup chain, so
2361 no need to worry about it here. */
c5aa993b 2362
488f131b
JB
2363 stop_stepping (ecs);
2364 return;
c5aa993b 2365
488f131b
JB
2366 case BPSTAT_WHAT_STOP_SILENT:
2367 stop_print_frame = 0;
c5aa993b 2368
488f131b
JB
2369 /* We are about to nuke the step_resume_breakpoint and
2370 through_sigtramp_breakpoint via the cleanup chain, so
2371 no need to worry about it here. */
c5aa993b 2372
488f131b 2373 stop_stepping (ecs);
e441088d 2374 return;
c5aa993b 2375
488f131b
JB
2376 case BPSTAT_WHAT_STEP_RESUME:
2377 /* This proably demands a more elegant solution, but, yeah
2378 right...
c5aa993b 2379
488f131b
JB
2380 This function's use of the simple variable
2381 step_resume_breakpoint doesn't seem to accomodate
2382 simultaneously active step-resume bp's, although the
2383 breakpoint list certainly can.
c5aa993b 2384
488f131b
JB
2385 If we reach here and step_resume_breakpoint is already
2386 NULL, then apparently we have multiple active
2387 step-resume bp's. We'll just delete the breakpoint we
2388 stopped at, and carry on.
2389
2390 Correction: what the code currently does is delete a
2391 step-resume bp, but it makes no effort to ensure that
2392 the one deleted is the one currently stopped at. MVS */
c5aa993b 2393
488f131b
JB
2394 if (step_resume_breakpoint == NULL)
2395 {
2396 step_resume_breakpoint =
2397 bpstat_find_step_resume_breakpoint (stop_bpstat);
2398 }
2399 delete_step_resume_breakpoint (&step_resume_breakpoint);
2400 break;
2401
2402 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2403 if (through_sigtramp_breakpoint)
2404 delete_breakpoint (through_sigtramp_breakpoint);
2405 through_sigtramp_breakpoint = NULL;
2406
2407 /* If were waiting for a trap, hitting the step_resume_break
2408 doesn't count as getting it. */
2409 if (trap_expected)
2410 ecs->another_trap = 1;
2411 break;
2412
2413 case BPSTAT_WHAT_CHECK_SHLIBS:
2414 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2415#ifdef SOLIB_ADD
c906108c 2416 {
488f131b
JB
2417 /* Remove breakpoints, we eventually want to step over the
2418 shlib event breakpoint, and SOLIB_ADD might adjust
2419 breakpoint addresses via breakpoint_re_set. */
2420 if (breakpoints_inserted)
2421 remove_breakpoints ();
c5aa993b 2422 breakpoints_inserted = 0;
488f131b
JB
2423
2424 /* Check for any newly added shared libraries if we're
2425 supposed to be adding them automatically. Switch
2426 terminal for any messages produced by
2427 breakpoint_re_set. */
2428 target_terminal_ours_for_output ();
2429 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2430 target_terminal_inferior ();
2431
2432 /* Try to reenable shared library breakpoints, additional
2433 code segments in shared libraries might be mapped in now. */
2434 re_enable_breakpoints_in_shlibs ();
2435
2436 /* If requested, stop when the dynamic linker notifies
2437 gdb of events. This allows the user to get control
2438 and place breakpoints in initializer routines for
2439 dynamically loaded objects (among other things). */
2440 if (stop_on_solib_events)
d4f3574e 2441 {
488f131b 2442 stop_stepping (ecs);
d4f3574e
SS
2443 return;
2444 }
c5aa993b 2445
488f131b
JB
2446 /* If we stopped due to an explicit catchpoint, then the
2447 (see above) call to SOLIB_ADD pulled in any symbols
2448 from a newly-loaded library, if appropriate.
2449
2450 We do want the inferior to stop, but not where it is
2451 now, which is in the dynamic linker callback. Rather,
2452 we would like it stop in the user's program, just after
2453 the call that caused this catchpoint to trigger. That
2454 gives the user a more useful vantage from which to
2455 examine their program's state. */
2456 else if (what.main_action ==
2457 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2458 {
488f131b
JB
2459 /* ??rehrauer: If I could figure out how to get the
2460 right return PC from here, we could just set a temp
2461 breakpoint and resume. I'm not sure we can without
2462 cracking open the dld's shared libraries and sniffing
2463 their unwind tables and text/data ranges, and that's
2464 not a terribly portable notion.
2465
2466 Until that time, we must step the inferior out of the
2467 dld callback, and also out of the dld itself (and any
2468 code or stubs in libdld.sl, such as "shl_load" and
2469 friends) until we reach non-dld code. At that point,
2470 we can stop stepping. */
2471 bpstat_get_triggered_catchpoints (stop_bpstat,
2472 &ecs->
2473 stepping_through_solib_catchpoints);
2474 ecs->stepping_through_solib_after_catch = 1;
2475
2476 /* Be sure to lift all breakpoints, so the inferior does
2477 actually step past this point... */
2478 ecs->another_trap = 1;
2479 break;
c906108c 2480 }
c5aa993b 2481 else
c5aa993b 2482 {
488f131b 2483 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2484 ecs->another_trap = 1;
488f131b 2485 break;
c5aa993b 2486 }
488f131b
JB
2487 }
2488#endif
2489 break;
c906108c 2490
488f131b
JB
2491 case BPSTAT_WHAT_LAST:
2492 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2493
488f131b
JB
2494 case BPSTAT_WHAT_KEEP_CHECKING:
2495 break;
2496 }
2497 }
c906108c 2498
488f131b
JB
2499 /* We come here if we hit a breakpoint but should not
2500 stop for it. Possibly we also were stepping
2501 and should stop for that. So fall through and
2502 test for stepping. But, if not stepping,
2503 do not stop. */
c906108c 2504
488f131b
JB
2505 /* Are we stepping to get the inferior out of the dynamic
2506 linker's hook (and possibly the dld itself) after catching
2507 a shlib event? */
2508 if (ecs->stepping_through_solib_after_catch)
2509 {
2510#if defined(SOLIB_ADD)
2511 /* Have we reached our destination? If not, keep going. */
2512 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2513 {
2514 ecs->another_trap = 1;
2515 keep_going (ecs);
104c1213 2516 return;
488f131b
JB
2517 }
2518#endif
2519 /* Else, stop and report the catchpoint(s) whose triggering
2520 caused us to begin stepping. */
2521 ecs->stepping_through_solib_after_catch = 0;
2522 bpstat_clear (&stop_bpstat);
2523 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2524 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2525 stop_print_frame = 1;
2526 stop_stepping (ecs);
2527 return;
2528 }
c906108c 2529
488f131b
JB
2530 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2531 {
2532 /* This is the old way of detecting the end of the stack dummy.
2533 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2534 handled above. As soon as we can test it on all of them, all
2535 architectures should define it. */
2536
2537 /* If this is the breakpoint at the end of a stack dummy,
2538 just stop silently, unless the user was doing an si/ni, in which
2539 case she'd better know what she's doing. */
2540
2541 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2542 FRAME_FP (get_current_frame ()))
2543 && !step_range_end)
2544 {
c5aa993b 2545 stop_print_frame = 0;
488f131b
JB
2546 stop_stack_dummy = 1;
2547#ifdef HP_OS_BUG
2548 trap_expected_after_continue = 1;
2549#endif
104c1213
JM
2550 stop_stepping (ecs);
2551 return;
488f131b
JB
2552 }
2553 }
c906108c 2554
488f131b
JB
2555 if (step_resume_breakpoint)
2556 {
2557 /* Having a step-resume breakpoint overrides anything
2558 else having to do with stepping commands until
2559 that breakpoint is reached. */
2560 /* I'm not sure whether this needs to be check_sigtramp2 or
2561 whether it could/should be keep_going. */
2562 check_sigtramp2 (ecs);
2563 keep_going (ecs);
2564 return;
2565 }
c5aa993b 2566
488f131b
JB
2567 if (step_range_end == 0)
2568 {
2569 /* Likewise if we aren't even stepping. */
2570 /* I'm not sure whether this needs to be check_sigtramp2 or
2571 whether it could/should be keep_going. */
2572 check_sigtramp2 (ecs);
2573 keep_going (ecs);
2574 return;
2575 }
c5aa993b 2576
488f131b 2577 /* If stepping through a line, keep going if still within it.
c906108c 2578
488f131b
JB
2579 Note that step_range_end is the address of the first instruction
2580 beyond the step range, and NOT the address of the last instruction
2581 within it! */
2582 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2583 {
2584 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2585 So definately need to check for sigtramp here. */
2586 check_sigtramp2 (ecs);
2587 keep_going (ecs);
2588 return;
2589 }
c5aa993b 2590
488f131b 2591 /* We stepped out of the stepping range. */
c906108c 2592
488f131b
JB
2593 /* If we are stepping at the source level and entered the runtime
2594 loader dynamic symbol resolution code, we keep on single stepping
2595 until we exit the run time loader code and reach the callee's
2596 address. */
2597 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2598 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2599 {
2600 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
c906108c 2601
488f131b
JB
2602 if (pc_after_resolver)
2603 {
2604 /* Set up a step-resume breakpoint at the address
2605 indicated by SKIP_SOLIB_RESOLVER. */
2606 struct symtab_and_line sr_sal;
2607 INIT_SAL (&sr_sal);
2608 sr_sal.pc = pc_after_resolver;
2609
2610 check_for_old_step_resume_breakpoint ();
2611 step_resume_breakpoint =
2612 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2613 if (breakpoints_inserted)
2614 insert_breakpoints ();
c5aa993b 2615 }
c906108c 2616
488f131b
JB
2617 keep_going (ecs);
2618 return;
2619 }
c906108c 2620
488f131b
JB
2621 /* We can't update step_sp every time through the loop, because
2622 reading the stack pointer would slow down stepping too much.
2623 But we can update it every time we leave the step range. */
2624 ecs->update_step_sp = 1;
c906108c 2625
488f131b
JB
2626 /* Did we just take a signal? */
2627 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2628 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2629 && INNER_THAN (read_sp (), step_sp))
2630 {
2631 /* We've just taken a signal; go until we are back to
2632 the point where we took it and one more. */
c906108c 2633
488f131b
JB
2634 /* Note: The test above succeeds not only when we stepped
2635 into a signal handler, but also when we step past the last
2636 statement of a signal handler and end up in the return stub
2637 of the signal handler trampoline. To distinguish between
2638 these two cases, check that the frame is INNER_THAN the
2639 previous one below. pai/1997-09-11 */
c5aa993b 2640
c5aa993b 2641
c5aa993b 2642 {
488f131b 2643 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
c906108c 2644
488f131b
JB
2645 if (INNER_THAN (current_frame, step_frame_address))
2646 {
2647 /* We have just taken a signal; go until we are back to
2648 the point where we took it and one more. */
c906108c 2649
488f131b
JB
2650 /* This code is needed at least in the following case:
2651 The user types "next" and then a signal arrives (before
2652 the "next" is done). */
d4f3574e 2653
488f131b
JB
2654 /* Note that if we are stopped at a breakpoint, then we need
2655 the step_resume breakpoint to override any breakpoints at
2656 the same location, so that we will still step over the
2657 breakpoint even though the signal happened. */
d4f3574e 2658 struct symtab_and_line sr_sal;
d4f3574e 2659
488f131b
JB
2660 INIT_SAL (&sr_sal);
2661 sr_sal.symtab = NULL;
2662 sr_sal.line = 0;
2663 sr_sal.pc = prev_pc;
2664 /* We could probably be setting the frame to
2665 step_frame_address; I don't think anyone thought to
2666 try it. */
d4f3574e
SS
2667 check_for_old_step_resume_breakpoint ();
2668 step_resume_breakpoint =
2669 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2670 if (breakpoints_inserted)
2671 insert_breakpoints ();
2672 }
488f131b
JB
2673 else
2674 {
2675 /* We just stepped out of a signal handler and into
2676 its calling trampoline.
2677
2678 Normally, we'd call step_over_function from
2679 here, but for some reason GDB can't unwind the
2680 stack correctly to find the real PC for the point
2681 user code where the signal trampoline will return
2682 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2683 But signal trampolines are pretty small stubs of
2684 code, anyway, so it's OK instead to just
2685 single-step out. Note: assuming such trampolines
2686 don't exhibit recursion on any platform... */
2687 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2688 &ecs->stop_func_start,
2689 &ecs->stop_func_end);
2690 /* Readjust stepping range */
2691 step_range_start = ecs->stop_func_start;
2692 step_range_end = ecs->stop_func_end;
2693 ecs->stepping_through_sigtramp = 1;
2694 }
d4f3574e 2695 }
c906108c 2696
c906108c 2697
488f131b
JB
2698 /* If this is stepi or nexti, make sure that the stepping range
2699 gets us past that instruction. */
2700 if (step_range_end == 1)
2701 /* FIXME: Does this run afoul of the code below which, if
2702 we step into the middle of a line, resets the stepping
2703 range? */
2704 step_range_end = (step_range_start = prev_pc) + 1;
2705
2706 ecs->remove_breakpoints_on_following_step = 1;
2707 keep_going (ecs);
2708 return;
2709 }
c906108c 2710
488f131b
JB
2711 if (stop_pc == ecs->stop_func_start /* Quick test */
2712 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2713 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2714 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2715 || ecs->stop_func_name == 0)
2716 {
2717 /* It's a subroutine call. */
c906108c 2718
488f131b
JB
2719 if ((step_over_calls == STEP_OVER_NONE)
2720 || ((step_range_end == 1)
2721 && in_prologue (prev_pc, ecs->stop_func_start)))
2722 {
2723 /* I presume that step_over_calls is only 0 when we're
2724 supposed to be stepping at the assembly language level
2725 ("stepi"). Just stop. */
2726 /* Also, maybe we just did a "nexti" inside a prolog,
2727 so we thought it was a subroutine call but it was not.
2728 Stop as well. FENN */
2729 stop_step = 1;
2730 print_stop_reason (END_STEPPING_RANGE, 0);
2731 stop_stepping (ecs);
2732 return;
2733 }
c906108c 2734
488f131b 2735 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
c5aa993b 2736 {
488f131b
JB
2737 /* We're doing a "next". */
2738
2739 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2740 && INNER_THAN (step_frame_address, read_sp ()))
2741 /* We stepped out of a signal handler, and into its
2742 calling trampoline. This is misdetected as a
2743 subroutine call, but stepping over the signal
2744 trampoline isn't such a bad idea. In order to do
2745 that, we have to ignore the value in
2746 step_frame_address, since that doesn't represent the
2747 frame that'll reach when we return from the signal
2748 trampoline. Otherwise we'll probably continue to the
2749 end of the program. */
2750 step_frame_address = 0;
2751
2752 step_over_function (ecs);
2753 keep_going (ecs);
2754 return;
2755 }
c906108c 2756
488f131b
JB
2757 /* If we are in a function call trampoline (a stub between
2758 the calling routine and the real function), locate the real
2759 function. That's what tells us (a) whether we want to step
2760 into it at all, and (b) what prologue we want to run to
2761 the end of, if we do step into it. */
2762 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2763 if (tmp != 0)
2764 ecs->stop_func_start = tmp;
2765 else
2766 {
2767 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2768 if (tmp)
c5aa993b 2769 {
488f131b
JB
2770 struct symtab_and_line xxx;
2771 /* Why isn't this s_a_l called "sr_sal", like all of the
2772 other s_a_l's where this code is duplicated? */
2773 INIT_SAL (&xxx); /* initialize to zeroes */
2774 xxx.pc = tmp;
2775 xxx.section = find_pc_overlay (xxx.pc);
a0b3c4fd 2776 check_for_old_step_resume_breakpoint ();
c5aa993b 2777 step_resume_breakpoint =
488f131b
JB
2778 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2779 insert_breakpoints ();
2780 keep_going (ecs);
2781 return;
c906108c 2782 }
c906108c
SS
2783 }
2784
488f131b
JB
2785 /* If we have line number information for the function we
2786 are thinking of stepping into, step into it.
c906108c 2787
488f131b
JB
2788 If there are several symtabs at that PC (e.g. with include
2789 files), just want to know whether *any* of them have line
2790 numbers. find_pc_line handles this. */
c5aa993b 2791 {
488f131b 2792 struct symtab_and_line tmp_sal;
c906108c 2793
488f131b
JB
2794 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2795 if (tmp_sal.line != 0)
d4f3574e 2796 {
488f131b 2797 step_into_function (ecs);
d4f3574e
SS
2798 return;
2799 }
488f131b 2800 }
c5aa993b 2801
488f131b
JB
2802 /* If we have no line number and the step-stop-if-no-debug
2803 is set, we stop the step so that the user has a chance to
2804 switch in assembly mode. */
2805 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
c5aa993b 2806 {
488f131b
JB
2807 stop_step = 1;
2808 print_stop_reason (END_STEPPING_RANGE, 0);
2809 stop_stepping (ecs);
2810 return;
c906108c 2811 }
5fbbeb29 2812
488f131b
JB
2813 step_over_function (ecs);
2814 keep_going (ecs);
2815 return;
c906108c 2816
488f131b 2817 }
c906108c 2818
488f131b 2819 /* We've wandered out of the step range. */
c906108c 2820
488f131b 2821 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2822
488f131b
JB
2823 if (step_range_end == 1)
2824 {
2825 /* It is stepi or nexti. We always want to stop stepping after
2826 one instruction. */
2827 stop_step = 1;
2828 print_stop_reason (END_STEPPING_RANGE, 0);
2829 stop_stepping (ecs);
2830 return;
2831 }
c906108c 2832
488f131b
JB
2833 /* If we're in the return path from a shared library trampoline,
2834 we want to proceed through the trampoline when stepping. */
2835 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2836 {
2837 CORE_ADDR tmp;
c906108c 2838
488f131b
JB
2839 /* Determine where this trampoline returns. */
2840 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2841
488f131b
JB
2842 /* Only proceed through if we know where it's going. */
2843 if (tmp)
2844 {
2845 /* And put the step-breakpoint there and go until there. */
2846 struct symtab_and_line sr_sal;
2847
2848 INIT_SAL (&sr_sal); /* initialize to zeroes */
2849 sr_sal.pc = tmp;
2850 sr_sal.section = find_pc_overlay (sr_sal.pc);
2851 /* Do not specify what the fp should be when we stop
2852 since on some machines the prologue
2853 is where the new fp value is established. */
2854 check_for_old_step_resume_breakpoint ();
2855 step_resume_breakpoint =
2856 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2857 if (breakpoints_inserted)
2858 insert_breakpoints ();
c906108c 2859
488f131b
JB
2860 /* Restart without fiddling with the step ranges or
2861 other state. */
2862 keep_going (ecs);
2863 return;
2864 }
2865 }
c906108c 2866
488f131b
JB
2867 if (ecs->sal.line == 0)
2868 {
2869 /* We have no line number information. That means to stop
2870 stepping (does this always happen right after one instruction,
2871 when we do "s" in a function with no line numbers,
2872 or can this happen as a result of a return or longjmp?). */
2873 stop_step = 1;
2874 print_stop_reason (END_STEPPING_RANGE, 0);
2875 stop_stepping (ecs);
2876 return;
2877 }
c906108c 2878
488f131b
JB
2879 if ((stop_pc == ecs->sal.pc)
2880 && (ecs->current_line != ecs->sal.line
2881 || ecs->current_symtab != ecs->sal.symtab))
2882 {
2883 /* We are at the start of a different line. So stop. Note that
2884 we don't stop if we step into the middle of a different line.
2885 That is said to make things like for (;;) statements work
2886 better. */
2887 stop_step = 1;
2888 print_stop_reason (END_STEPPING_RANGE, 0);
2889 stop_stepping (ecs);
2890 return;
2891 }
c906108c 2892
488f131b 2893 /* We aren't done stepping.
c906108c 2894
488f131b
JB
2895 Optimize by setting the stepping range to the line.
2896 (We might not be in the original line, but if we entered a
2897 new line in mid-statement, we continue stepping. This makes
2898 things like for(;;) statements work better.) */
c906108c 2899
488f131b 2900 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2901 {
488f131b
JB
2902 /* If this is the last line of the function, don't keep stepping
2903 (it would probably step us out of the function).
2904 This is particularly necessary for a one-line function,
2905 in which after skipping the prologue we better stop even though
2906 we will be in mid-line. */
2907 stop_step = 1;
2908 print_stop_reason (END_STEPPING_RANGE, 0);
2909 stop_stepping (ecs);
2910 return;
c5aa993b 2911 }
488f131b
JB
2912 step_range_start = ecs->sal.pc;
2913 step_range_end = ecs->sal.end;
2914 step_frame_address = FRAME_FP (get_current_frame ());
2915 ecs->current_line = ecs->sal.line;
2916 ecs->current_symtab = ecs->sal.symtab;
2917
2918 /* In the case where we just stepped out of a function into the middle
2919 of a line of the caller, continue stepping, but step_frame_address
2920 must be modified to current frame */
2921 {
2922 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2923 if (!(INNER_THAN (current_frame, step_frame_address)))
2924 step_frame_address = current_frame;
2925 }
c906108c 2926
488f131b 2927 keep_going (ecs);
104c1213
JM
2928}
2929
2930/* Are we in the middle of stepping? */
2931
2932static int
2933currently_stepping (struct execution_control_state *ecs)
2934{
2935 return ((through_sigtramp_breakpoint == NULL
2936 && !ecs->handling_longjmp
2937 && ((step_range_end && step_resume_breakpoint == NULL)
2938 || trap_expected))
2939 || ecs->stepping_through_solib_after_catch
2940 || bpstat_should_step ());
2941}
c906108c 2942
104c1213
JM
2943static void
2944check_sigtramp2 (struct execution_control_state *ecs)
2945{
2946 if (trap_expected
d7bd68ca
AC
2947 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2948 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
104c1213
JM
2949 && INNER_THAN (read_sp (), step_sp))
2950 {
2951 /* What has happened here is that we have just stepped the
488f131b
JB
2952 inferior with a signal (because it is a signal which
2953 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2954
488f131b
JB
2955 So we need to set a step_resume_break_address breakpoint and
2956 continue until we hit it, and then step. FIXME: This should
2957 be more enduring than a step_resume breakpoint; we should
2958 know that we will later need to keep going rather than
2959 re-hitting the breakpoint here (see the testsuite,
2960 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2961
2962 struct symtab_and_line sr_sal;
2963
2964 INIT_SAL (&sr_sal); /* initialize to zeroes */
2965 sr_sal.pc = prev_pc;
2966 sr_sal.section = find_pc_overlay (sr_sal.pc);
2967 /* We perhaps could set the frame if we kept track of what the
488f131b 2968 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213
JM
2969 through_sigtramp_breakpoint =
2970 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2971 if (breakpoints_inserted)
2972 insert_breakpoints ();
cd0fc7c3 2973
104c1213
JM
2974 ecs->remove_breakpoints_on_following_step = 1;
2975 ecs->another_trap = 1;
2976 }
2977}
2978
c2c6d25f
JM
2979/* Subroutine call with source code we should not step over. Do step
2980 to the first line of code in it. */
2981
2982static void
2983step_into_function (struct execution_control_state *ecs)
2984{
2985 struct symtab *s;
2986 struct symtab_and_line sr_sal;
2987
2988 s = find_pc_symtab (stop_pc);
2989 if (s && s->language != language_asm)
2990 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2991
2992 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2993 /* Use the step_resume_break to step until the end of the prologue,
2994 even if that involves jumps (as it seems to on the vax under
2995 4.2). */
2996 /* If the prologue ends in the middle of a source line, continue to
2997 the end of that source line (if it is still within the function).
2998 Otherwise, just go to end of prologue. */
2999#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3000 /* no, don't either. It skips any code that's legitimately on the
3001 first line. */
3002#else
3003 if (ecs->sal.end
3004 && ecs->sal.pc != ecs->stop_func_start
3005 && ecs->sal.end < ecs->stop_func_end)
3006 ecs->stop_func_start = ecs->sal.end;
3007#endif
3008
3009 if (ecs->stop_func_start == stop_pc)
3010 {
3011 /* We are already there: stop now. */
3012 stop_step = 1;
488f131b 3013 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3014 stop_stepping (ecs);
3015 return;
3016 }
3017 else
3018 {
3019 /* Put the step-breakpoint there and go until there. */
3020 INIT_SAL (&sr_sal); /* initialize to zeroes */
3021 sr_sal.pc = ecs->stop_func_start;
3022 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3023 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3024 some machines the prologue is where the new fp value is
3025 established. */
c2c6d25f
JM
3026 check_for_old_step_resume_breakpoint ();
3027 step_resume_breakpoint =
3028 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3029 if (breakpoints_inserted)
3030 insert_breakpoints ();
3031
3032 /* And make sure stepping stops right away then. */
3033 step_range_end = step_range_start;
3034 }
3035 keep_going (ecs);
3036}
d4f3574e
SS
3037
3038/* We've just entered a callee, and we wish to resume until it returns
3039 to the caller. Setting a step_resume breakpoint on the return
3040 address will catch a return from the callee.
3041
3042 However, if the callee is recursing, we want to be careful not to
3043 catch returns of those recursive calls, but only of THIS instance
3044 of the call.
3045
3046 To do this, we set the step_resume bp's frame to our current
3047 caller's frame (step_frame_address, which is set by the "next" or
3048 "until" command, before execution begins). */
3049
3050static void
3051step_over_function (struct execution_control_state *ecs)
3052{
3053 struct symtab_and_line sr_sal;
3054
488f131b 3055 INIT_SAL (&sr_sal); /* initialize to zeros */
d4f3574e
SS
3056 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3057 sr_sal.section = find_pc_overlay (sr_sal.pc);
3058
3059 check_for_old_step_resume_breakpoint ();
3060 step_resume_breakpoint =
3061 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3062
d41707c8 3063 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
d4f3574e
SS
3064 step_resume_breakpoint->frame = step_frame_address;
3065
3066 if (breakpoints_inserted)
3067 insert_breakpoints ();
3068}
3069
104c1213
JM
3070static void
3071stop_stepping (struct execution_control_state *ecs)
3072{
c906108c
SS
3073 if (target_has_execution)
3074 {
3075 /* Are we stopping for a vfork event? We only stop when we see
3076 the child's event. However, we may not yet have seen the
39f77062 3077 parent's event. And, inferior_ptid is still set to the
104c1213
JM
3078 parent's pid, until we resume again and follow either the
3079 parent or child.
c906108c 3080
39f77062 3081 To ensure that we can really touch inferior_ptid (aka, the
c906108c
SS
3082 parent process) -- which calls to functions like read_pc
3083 implicitly do -- wait on the parent if necessary. */
3084 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3085 && !pending_follow.fork_event.saw_parent_fork)
3086 {
39f77062 3087 ptid_t parent_ptid;
c906108c
SS
3088
3089 do
3090 {
3091 if (target_wait_hook)
39f77062 3092 parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
c906108c 3093 else
39f77062 3094 parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
c906108c 3095 }
488f131b 3096 while (!ptid_equal (parent_ptid, inferior_ptid));
c906108c
SS
3097 }
3098
c906108c 3099 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
3100 time, just like we did above if we didn't break out of the
3101 loop. */
c906108c 3102 prev_pc = read_pc ();
cd0fc7c3
SS
3103 prev_func_start = ecs->stop_func_start;
3104 prev_func_name = ecs->stop_func_name;
c906108c 3105 }
104c1213 3106
cd0fc7c3
SS
3107 /* Let callers know we don't want to wait for the inferior anymore. */
3108 ecs->wait_some_more = 0;
3109}
3110
d4f3574e
SS
3111/* This function handles various cases where we need to continue
3112 waiting for the inferior. */
3113/* (Used to be the keep_going: label in the old wait_for_inferior) */
3114
3115static void
3116keep_going (struct execution_control_state *ecs)
3117{
3118 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3119 vforked child between its creation and subsequent exit or call to
3120 exec(). However, I had big problems in this rather creaky exec
3121 engine, getting that to work. The fundamental problem is that
3122 I'm trying to debug two processes via an engine that only
3123 understands a single process with possibly multiple threads.
3124
3125 Hence, this spot is known to have problems when
3126 target_can_follow_vfork_prior_to_exec returns 1. */
3127
3128 /* Save the pc before execution, to compare with pc after stop. */
488f131b 3129 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
3130 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3131 BREAK is defined, the
3132 original pc would not have
3133 been at the start of a
3134 function. */
3135 prev_func_name = ecs->stop_func_name;
3136
3137 if (ecs->update_step_sp)
3138 step_sp = read_sp ();
3139 ecs->update_step_sp = 0;
3140
3141 /* If we did not do break;, it means we should keep running the
3142 inferior and not return to debugger. */
3143
3144 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3145 {
3146 /* We took a signal (which we are supposed to pass through to
488f131b
JB
3147 the inferior, else we'd have done a break above) and we
3148 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
3149 resume (currently_stepping (ecs), stop_signal);
3150 }
3151 else
3152 {
3153 /* Either the trap was not expected, but we are continuing
488f131b
JB
3154 anyway (the user asked that this signal be passed to the
3155 child)
3156 -- or --
3157 The signal was SIGTRAP, e.g. it was our signal, but we
3158 decided we should resume from it.
d4f3574e 3159
488f131b 3160 We're going to run this baby now!
d4f3574e 3161
488f131b
JB
3162 Insert breakpoints now, unless we are trying to one-proceed
3163 past a breakpoint. */
d4f3574e 3164 /* If we've just finished a special step resume and we don't
488f131b 3165 want to hit a breakpoint, pull em out. */
d4f3574e
SS
3166 if (step_resume_breakpoint == NULL
3167 && through_sigtramp_breakpoint == NULL
3168 && ecs->remove_breakpoints_on_following_step)
3169 {
3170 ecs->remove_breakpoints_on_following_step = 0;
3171 remove_breakpoints ();
3172 breakpoints_inserted = 0;
3173 }
3174 else if (!breakpoints_inserted &&
3175 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3176 {
3177 breakpoints_failed = insert_breakpoints ();
3178 if (breakpoints_failed)
3179 {
3180 stop_stepping (ecs);
3181 return;
3182 }
3183 breakpoints_inserted = 1;
3184 }
3185
3186 trap_expected = ecs->another_trap;
3187
3188 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3189 specifies that such a signal should be delivered to the
3190 target program).
3191
3192 Typically, this would occure when a user is debugging a
3193 target monitor on a simulator: the target monitor sets a
3194 breakpoint; the simulator encounters this break-point and
3195 halts the simulation handing control to GDB; GDB, noteing
3196 that the break-point isn't valid, returns control back to the
3197 simulator; the simulator then delivers the hardware
3198 equivalent of a SIGNAL_TRAP to the program being debugged. */
3199
3200 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3201 stop_signal = TARGET_SIGNAL_0;
3202
3203#ifdef SHIFT_INST_REGS
3204 /* I'm not sure when this following segment applies. I do know,
488f131b
JB
3205 now, that we shouldn't rewrite the regs when we were stopped
3206 by a random signal from the inferior process. */
d4f3574e 3207 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
488f131b 3208 (this is only used on the 88k). */
d4f3574e
SS
3209
3210 if (!bpstat_explains_signal (stop_bpstat)
488f131b 3211 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
d4f3574e
SS
3212 SHIFT_INST_REGS ();
3213#endif /* SHIFT_INST_REGS */
3214
3215 resume (currently_stepping (ecs), stop_signal);
3216 }
3217
488f131b 3218 prepare_to_wait (ecs);
d4f3574e
SS
3219}
3220
104c1213
JM
3221/* This function normally comes after a resume, before
3222 handle_inferior_event exits. It takes care of any last bits of
3223 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3224
104c1213
JM
3225static void
3226prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3227{
104c1213
JM
3228 if (ecs->infwait_state == infwait_normal_state)
3229 {
3230 overlay_cache_invalid = 1;
3231
3232 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3233 target_wait because they can be loaded from the target while
3234 in target_wait. This makes remote debugging a bit more
3235 efficient for those targets that provide critical registers
3236 as part of their normal status mechanism. */
104c1213
JM
3237
3238 registers_changed ();
39f77062 3239 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3240 ecs->wp = &(ecs->ws);
3241 }
3242 /* This is the old end of the while loop. Let everybody know we
3243 want to wait for the inferior some more and get called again
3244 soon. */
3245 ecs->wait_some_more = 1;
c906108c 3246}
11cf8741
JM
3247
3248/* Print why the inferior has stopped. We always print something when
3249 the inferior exits, or receives a signal. The rest of the cases are
3250 dealt with later on in normal_stop() and print_it_typical(). Ideally
3251 there should be a call to this function from handle_inferior_event()
3252 each time stop_stepping() is called.*/
3253static void
3254print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3255{
3256 switch (stop_reason)
3257 {
3258 case STOP_UNKNOWN:
3259 /* We don't deal with these cases from handle_inferior_event()
3260 yet. */
3261 break;
3262 case END_STEPPING_RANGE:
3263 /* We are done with a step/next/si/ni command. */
3264 /* For now print nothing. */
fb40c209 3265 /* Print a message only if not in the middle of doing a "step n"
488f131b 3266 operation for n > 1 */
fb40c209 3267 if (!step_multi || !stop_step)
9dc5e2a9 3268 if (ui_out_is_mi_like_p (uiout))
fb40c209 3269 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
3270 break;
3271 case BREAKPOINT_HIT:
3272 /* We found a breakpoint. */
3273 /* For now print nothing. */
3274 break;
3275 case SIGNAL_EXITED:
3276 /* The inferior was terminated by a signal. */
8b93c638 3277 annotate_signalled ();
9dc5e2a9 3278 if (ui_out_is_mi_like_p (uiout))
fb40c209 3279 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3280 ui_out_text (uiout, "\nProgram terminated with signal ");
3281 annotate_signal_name ();
488f131b
JB
3282 ui_out_field_string (uiout, "signal-name",
3283 target_signal_to_name (stop_info));
8b93c638
JM
3284 annotate_signal_name_end ();
3285 ui_out_text (uiout, ", ");
3286 annotate_signal_string ();
488f131b
JB
3287 ui_out_field_string (uiout, "signal-meaning",
3288 target_signal_to_string (stop_info));
8b93c638
JM
3289 annotate_signal_string_end ();
3290 ui_out_text (uiout, ".\n");
3291 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3292 break;
3293 case EXITED:
3294 /* The inferior program is finished. */
8b93c638
JM
3295 annotate_exited (stop_info);
3296 if (stop_info)
3297 {
9dc5e2a9 3298 if (ui_out_is_mi_like_p (uiout))
fb40c209 3299 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3300 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3301 ui_out_field_fmt (uiout, "exit-code", "0%o",
3302 (unsigned int) stop_info);
8b93c638
JM
3303 ui_out_text (uiout, ".\n");
3304 }
3305 else
3306 {
9dc5e2a9 3307 if (ui_out_is_mi_like_p (uiout))
fb40c209 3308 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3309 ui_out_text (uiout, "\nProgram exited normally.\n");
3310 }
11cf8741
JM
3311 break;
3312 case SIGNAL_RECEIVED:
3313 /* Signal received. The signal table tells us to print about
3314 it. */
8b93c638
JM
3315 annotate_signal ();
3316 ui_out_text (uiout, "\nProgram received signal ");
3317 annotate_signal_name ();
84c6c83c
KS
3318 if (ui_out_is_mi_like_p (uiout))
3319 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3320 ui_out_field_string (uiout, "signal-name",
3321 target_signal_to_name (stop_info));
8b93c638
JM
3322 annotate_signal_name_end ();
3323 ui_out_text (uiout, ", ");
3324 annotate_signal_string ();
488f131b
JB
3325 ui_out_field_string (uiout, "signal-meaning",
3326 target_signal_to_string (stop_info));
8b93c638
JM
3327 annotate_signal_string_end ();
3328 ui_out_text (uiout, ".\n");
11cf8741
JM
3329 break;
3330 default:
8e65ff28
AC
3331 internal_error (__FILE__, __LINE__,
3332 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3333 break;
3334 }
3335}
c906108c 3336\f
43ff13b4 3337
c906108c
SS
3338/* Here to return control to GDB when the inferior stops for real.
3339 Print appropriate messages, remove breakpoints, give terminal our modes.
3340
3341 STOP_PRINT_FRAME nonzero means print the executing frame
3342 (pc, function, args, file, line number and line text).
3343 BREAKPOINTS_FAILED nonzero means stop was due to error
3344 attempting to insert breakpoints. */
3345
3346void
96baa820 3347normal_stop (void)
c906108c 3348{
c906108c
SS
3349 /* As with the notification of thread events, we want to delay
3350 notifying the user that we've switched thread context until
3351 the inferior actually stops.
3352
3353 (Note that there's no point in saying anything if the inferior
3354 has exited!) */
488f131b 3355 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
7a292a7a 3356 && target_has_execution)
c906108c
SS
3357 {
3358 target_terminal_ours_for_output ();
c3f6f71d 3359 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3360 target_pid_or_tid_to_str (inferior_ptid));
3361 previous_inferior_ptid = inferior_ptid;
c906108c 3362 }
c906108c
SS
3363
3364 /* Make sure that the current_frame's pc is correct. This
3365 is a correction for setting up the frame info before doing
3366 DECR_PC_AFTER_BREAK */
3367 if (target_has_execution && get_current_frame ())
3368 (get_current_frame ())->pc = read_pc ();
3369
3370 if (breakpoints_failed)
3371 {
3372 target_terminal_ours_for_output ();
010a3cd9 3373 print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
c906108c 3374 printf_filtered ("Stopped; cannot insert breakpoints.\n\
010a3cd9
EZ
3375The same program may be running in another process,\n\
3376or you may have requested too many hardware breakpoints\n\
3377and/or watchpoints.\n");
c906108c
SS
3378 }
3379
3380 if (target_has_execution && breakpoints_inserted)
3381 {
3382 if (remove_breakpoints ())
3383 {
3384 target_terminal_ours_for_output ();
3385 printf_filtered ("Cannot remove breakpoints because ");
3386 printf_filtered ("program is no longer writable.\n");
3387 printf_filtered ("It might be running in another process.\n");
3388 printf_filtered ("Further execution is probably impossible.\n");
3389 }
3390 }
3391 breakpoints_inserted = 0;
3392
3393 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3394 Delete any breakpoint that is to be deleted at the next stop. */
3395
3396 breakpoint_auto_delete (stop_bpstat);
3397
3398 /* If an auto-display called a function and that got a signal,
3399 delete that auto-display to avoid an infinite recursion. */
3400
3401 if (stopped_by_random_signal)
3402 disable_current_display ();
3403
3404 /* Don't print a message if in the middle of doing a "step n"
3405 operation for n > 1 */
3406 if (step_multi && stop_step)
3407 goto done;
3408
3409 target_terminal_ours ();
3410
5913bcb0
AC
3411 /* Look up the hook_stop and run it (CLI internally handles problem
3412 of stop_command's pre-hook not existing). */
3413 if (stop_command)
3414 catch_errors (hook_stop_stub, stop_command,
3415 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3416
3417 if (!target_has_stack)
3418 {
3419
3420 goto done;
3421 }
3422
3423 /* Select innermost stack frame - i.e., current frame is frame 0,
3424 and current location is based on that.
3425 Don't do this on return from a stack dummy routine,
3426 or if the program has exited. */
3427
3428 if (!stop_stack_dummy)
3429 {
0f7d239c 3430 select_frame (get_current_frame ());
c906108c
SS
3431
3432 /* Print current location without a level number, if
c5aa993b
JM
3433 we have changed functions or hit a breakpoint.
3434 Print source line if we have one.
3435 bpstat_print() contains the logic deciding in detail
3436 what to print, based on the event(s) that just occurred. */
c906108c 3437
488f131b 3438 if (stop_print_frame && selected_frame)
c906108c
SS
3439 {
3440 int bpstat_ret;
3441 int source_flag;
917317f4 3442 int do_frame_printing = 1;
c906108c
SS
3443
3444 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3445 switch (bpstat_ret)
3446 {
3447 case PRINT_UNKNOWN:
3448 if (stop_step
3449 && step_frame_address == FRAME_FP (get_current_frame ())
3450 && step_start_function == find_pc_function (stop_pc))
488f131b 3451 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3452 else
488f131b 3453 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3454 break;
3455 case PRINT_SRC_AND_LOC:
488f131b 3456 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3457 break;
3458 case PRINT_SRC_ONLY:
c5394b80 3459 source_flag = SRC_LINE;
917317f4
JM
3460 break;
3461 case PRINT_NOTHING:
488f131b 3462 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3463 do_frame_printing = 0;
3464 break;
3465 default:
488f131b 3466 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3467 }
fb40c209 3468 /* For mi, have the same behavior every time we stop:
488f131b 3469 print everything but the source line. */
9dc5e2a9 3470 if (ui_out_is_mi_like_p (uiout))
fb40c209 3471 source_flag = LOC_AND_ADDRESS;
c906108c 3472
9dc5e2a9 3473 if (ui_out_is_mi_like_p (uiout))
39f77062 3474 ui_out_field_int (uiout, "thread-id",
488f131b 3475 pid_to_thread_id (inferior_ptid));
c906108c
SS
3476 /* The behavior of this routine with respect to the source
3477 flag is:
c5394b80
JM
3478 SRC_LINE: Print only source line
3479 LOCATION: Print only location
3480 SRC_AND_LOC: Print location and source line */
917317f4
JM
3481 if (do_frame_printing)
3482 show_and_print_stack_frame (selected_frame, -1, source_flag);
c906108c
SS
3483
3484 /* Display the auto-display expressions. */
3485 do_displays ();
3486 }
3487 }
3488
3489 /* Save the function value return registers, if we care.
3490 We might be about to restore their previous contents. */
3491 if (proceed_to_finish)
72cec141
AC
3492 /* NB: The copy goes through to the target picking up the value of
3493 all the registers. */
3494 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3495
3496 if (stop_stack_dummy)
3497 {
3498 /* Pop the empty frame that contains the stack dummy.
3499 POP_FRAME ends with a setting of the current frame, so we
c5aa993b 3500 can use that next. */
c906108c
SS
3501 POP_FRAME;
3502 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3503 Can't rely on restore_inferior_status because that only gets
3504 called if we don't stop in the called function. */
c906108c 3505 stop_pc = read_pc ();
0f7d239c 3506 select_frame (get_current_frame ());
c906108c
SS
3507 }
3508
c906108c
SS
3509done:
3510 annotate_stopped ();
3511}
3512
3513static int
96baa820 3514hook_stop_stub (void *cmd)
c906108c 3515{
5913bcb0 3516 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3517 return (0);
3518}
3519\f
c5aa993b 3520int
96baa820 3521signal_stop_state (int signo)
c906108c
SS
3522{
3523 return signal_stop[signo];
3524}
3525
c5aa993b 3526int
96baa820 3527signal_print_state (int signo)
c906108c
SS
3528{
3529 return signal_print[signo];
3530}
3531
c5aa993b 3532int
96baa820 3533signal_pass_state (int signo)
c906108c
SS
3534{
3535 return signal_program[signo];
3536}
3537
488f131b
JB
3538int
3539signal_stop_update (signo, state)
d4f3574e
SS
3540 int signo;
3541 int state;
3542{
3543 int ret = signal_stop[signo];
3544 signal_stop[signo] = state;
3545 return ret;
3546}
3547
488f131b
JB
3548int
3549signal_print_update (signo, state)
d4f3574e
SS
3550 int signo;
3551 int state;
3552{
3553 int ret = signal_print[signo];
3554 signal_print[signo] = state;
3555 return ret;
3556}
3557
488f131b
JB
3558int
3559signal_pass_update (signo, state)
d4f3574e
SS
3560 int signo;
3561 int state;
3562{
3563 int ret = signal_program[signo];
3564 signal_program[signo] = state;
3565 return ret;
3566}
3567
c906108c 3568static void
96baa820 3569sig_print_header (void)
c906108c
SS
3570{
3571 printf_filtered ("\
3572Signal Stop\tPrint\tPass to program\tDescription\n");
3573}
3574
3575static void
96baa820 3576sig_print_info (enum target_signal oursig)
c906108c
SS
3577{
3578 char *name = target_signal_to_name (oursig);
3579 int name_padding = 13 - strlen (name);
96baa820 3580
c906108c
SS
3581 if (name_padding <= 0)
3582 name_padding = 0;
3583
3584 printf_filtered ("%s", name);
488f131b 3585 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3586 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3587 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3588 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3589 printf_filtered ("%s\n", target_signal_to_string (oursig));
3590}
3591
3592/* Specify how various signals in the inferior should be handled. */
3593
3594static void
96baa820 3595handle_command (char *args, int from_tty)
c906108c
SS
3596{
3597 char **argv;
3598 int digits, wordlen;
3599 int sigfirst, signum, siglast;
3600 enum target_signal oursig;
3601 int allsigs;
3602 int nsigs;
3603 unsigned char *sigs;
3604 struct cleanup *old_chain;
3605
3606 if (args == NULL)
3607 {
3608 error_no_arg ("signal to handle");
3609 }
3610
3611 /* Allocate and zero an array of flags for which signals to handle. */
3612
3613 nsigs = (int) TARGET_SIGNAL_LAST;
3614 sigs = (unsigned char *) alloca (nsigs);
3615 memset (sigs, 0, nsigs);
3616
3617 /* Break the command line up into args. */
3618
3619 argv = buildargv (args);
3620 if (argv == NULL)
3621 {
3622 nomem (0);
3623 }
7a292a7a 3624 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3625
3626 /* Walk through the args, looking for signal oursigs, signal names, and
3627 actions. Signal numbers and signal names may be interspersed with
3628 actions, with the actions being performed for all signals cumulatively
3629 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3630
3631 while (*argv != NULL)
3632 {
3633 wordlen = strlen (*argv);
3634 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3635 {;
3636 }
3637 allsigs = 0;
3638 sigfirst = siglast = -1;
3639
3640 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3641 {
3642 /* Apply action to all signals except those used by the
3643 debugger. Silently skip those. */
3644 allsigs = 1;
3645 sigfirst = 0;
3646 siglast = nsigs - 1;
3647 }
3648 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3649 {
3650 SET_SIGS (nsigs, sigs, signal_stop);
3651 SET_SIGS (nsigs, sigs, signal_print);
3652 }
3653 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3654 {
3655 UNSET_SIGS (nsigs, sigs, signal_program);
3656 }
3657 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3658 {
3659 SET_SIGS (nsigs, sigs, signal_print);
3660 }
3661 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3662 {
3663 SET_SIGS (nsigs, sigs, signal_program);
3664 }
3665 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3666 {
3667 UNSET_SIGS (nsigs, sigs, signal_stop);
3668 }
3669 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3670 {
3671 SET_SIGS (nsigs, sigs, signal_program);
3672 }
3673 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3674 {
3675 UNSET_SIGS (nsigs, sigs, signal_print);
3676 UNSET_SIGS (nsigs, sigs, signal_stop);
3677 }
3678 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3679 {
3680 UNSET_SIGS (nsigs, sigs, signal_program);
3681 }
3682 else if (digits > 0)
3683 {
3684 /* It is numeric. The numeric signal refers to our own
3685 internal signal numbering from target.h, not to host/target
3686 signal number. This is a feature; users really should be
3687 using symbolic names anyway, and the common ones like
3688 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3689
3690 sigfirst = siglast = (int)
3691 target_signal_from_command (atoi (*argv));
3692 if ((*argv)[digits] == '-')
3693 {
3694 siglast = (int)
3695 target_signal_from_command (atoi ((*argv) + digits + 1));
3696 }
3697 if (sigfirst > siglast)
3698 {
3699 /* Bet he didn't figure we'd think of this case... */
3700 signum = sigfirst;
3701 sigfirst = siglast;
3702 siglast = signum;
3703 }
3704 }
3705 else
3706 {
3707 oursig = target_signal_from_name (*argv);
3708 if (oursig != TARGET_SIGNAL_UNKNOWN)
3709 {
3710 sigfirst = siglast = (int) oursig;
3711 }
3712 else
3713 {
3714 /* Not a number and not a recognized flag word => complain. */
3715 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3716 }
3717 }
3718
3719 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3720 which signals to apply actions to. */
c906108c
SS
3721
3722 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3723 {
3724 switch ((enum target_signal) signum)
3725 {
3726 case TARGET_SIGNAL_TRAP:
3727 case TARGET_SIGNAL_INT:
3728 if (!allsigs && !sigs[signum])
3729 {
3730 if (query ("%s is used by the debugger.\n\
488f131b 3731Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3732 {
3733 sigs[signum] = 1;
3734 }
3735 else
3736 {
3737 printf_unfiltered ("Not confirmed, unchanged.\n");
3738 gdb_flush (gdb_stdout);
3739 }
3740 }
3741 break;
3742 case TARGET_SIGNAL_0:
3743 case TARGET_SIGNAL_DEFAULT:
3744 case TARGET_SIGNAL_UNKNOWN:
3745 /* Make sure that "all" doesn't print these. */
3746 break;
3747 default:
3748 sigs[signum] = 1;
3749 break;
3750 }
3751 }
3752
3753 argv++;
3754 }
3755
39f77062 3756 target_notice_signals (inferior_ptid);
c906108c
SS
3757
3758 if (from_tty)
3759 {
3760 /* Show the results. */
3761 sig_print_header ();
3762 for (signum = 0; signum < nsigs; signum++)
3763 {
3764 if (sigs[signum])
3765 {
3766 sig_print_info (signum);
3767 }
3768 }
3769 }
3770
3771 do_cleanups (old_chain);
3772}
3773
3774static void
96baa820 3775xdb_handle_command (char *args, int from_tty)
c906108c
SS
3776{
3777 char **argv;
3778 struct cleanup *old_chain;
3779
3780 /* Break the command line up into args. */
3781
3782 argv = buildargv (args);
3783 if (argv == NULL)
3784 {
3785 nomem (0);
3786 }
7a292a7a 3787 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3788 if (argv[1] != (char *) NULL)
3789 {
3790 char *argBuf;
3791 int bufLen;
3792
3793 bufLen = strlen (argv[0]) + 20;
3794 argBuf = (char *) xmalloc (bufLen);
3795 if (argBuf)
3796 {
3797 int validFlag = 1;
3798 enum target_signal oursig;
3799
3800 oursig = target_signal_from_name (argv[0]);
3801 memset (argBuf, 0, bufLen);
3802 if (strcmp (argv[1], "Q") == 0)
3803 sprintf (argBuf, "%s %s", argv[0], "noprint");
3804 else
3805 {
3806 if (strcmp (argv[1], "s") == 0)
3807 {
3808 if (!signal_stop[oursig])
3809 sprintf (argBuf, "%s %s", argv[0], "stop");
3810 else
3811 sprintf (argBuf, "%s %s", argv[0], "nostop");
3812 }
3813 else if (strcmp (argv[1], "i") == 0)
3814 {
3815 if (!signal_program[oursig])
3816 sprintf (argBuf, "%s %s", argv[0], "pass");
3817 else
3818 sprintf (argBuf, "%s %s", argv[0], "nopass");
3819 }
3820 else if (strcmp (argv[1], "r") == 0)
3821 {
3822 if (!signal_print[oursig])
3823 sprintf (argBuf, "%s %s", argv[0], "print");
3824 else
3825 sprintf (argBuf, "%s %s", argv[0], "noprint");
3826 }
3827 else
3828 validFlag = 0;
3829 }
3830 if (validFlag)
3831 handle_command (argBuf, from_tty);
3832 else
3833 printf_filtered ("Invalid signal handling flag.\n");
3834 if (argBuf)
b8c9b27d 3835 xfree (argBuf);
c906108c
SS
3836 }
3837 }
3838 do_cleanups (old_chain);
3839}
3840
3841/* Print current contents of the tables set by the handle command.
3842 It is possible we should just be printing signals actually used
3843 by the current target (but for things to work right when switching
3844 targets, all signals should be in the signal tables). */
3845
3846static void
96baa820 3847signals_info (char *signum_exp, int from_tty)
c906108c
SS
3848{
3849 enum target_signal oursig;
3850 sig_print_header ();
3851
3852 if (signum_exp)
3853 {
3854 /* First see if this is a symbol name. */
3855 oursig = target_signal_from_name (signum_exp);
3856 if (oursig == TARGET_SIGNAL_UNKNOWN)
3857 {
3858 /* No, try numeric. */
3859 oursig =
bb518678 3860 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3861 }
3862 sig_print_info (oursig);
3863 return;
3864 }
3865
3866 printf_filtered ("\n");
3867 /* These ugly casts brought to you by the native VAX compiler. */
3868 for (oursig = TARGET_SIGNAL_FIRST;
3869 (int) oursig < (int) TARGET_SIGNAL_LAST;
3870 oursig = (enum target_signal) ((int) oursig + 1))
3871 {
3872 QUIT;
3873
3874 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3875 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3876 sig_print_info (oursig);
3877 }
3878
3879 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3880}
3881\f
7a292a7a
SS
3882struct inferior_status
3883{
3884 enum target_signal stop_signal;
3885 CORE_ADDR stop_pc;
3886 bpstat stop_bpstat;
3887 int stop_step;
3888 int stop_stack_dummy;
3889 int stopped_by_random_signal;
3890 int trap_expected;
3891 CORE_ADDR step_range_start;
3892 CORE_ADDR step_range_end;
3893 CORE_ADDR step_frame_address;
5fbbeb29 3894 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3895 CORE_ADDR step_resume_break_address;
3896 int stop_after_trap;
3897 int stop_soon_quietly;
72cec141 3898 struct regcache *stop_registers;
7a292a7a
SS
3899
3900 /* These are here because if call_function_by_hand has written some
3901 registers and then decides to call error(), we better not have changed
3902 any registers. */
72cec141 3903 struct regcache *registers;
7a292a7a 3904
101dcfbe
AC
3905 /* A frame unique identifier. */
3906 struct frame_id selected_frame_id;
3907
7a292a7a
SS
3908 int breakpoint_proceeded;
3909 int restore_stack_info;
3910 int proceed_to_finish;
3911};
3912
7a292a7a 3913void
96baa820
JM
3914write_inferior_status_register (struct inferior_status *inf_status, int regno,
3915 LONGEST val)
7a292a7a 3916{
c5aa993b 3917 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3918 void *buf = alloca (size);
3919 store_signed_integer (buf, size, val);
0818c12a 3920 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3921}
3922
c906108c
SS
3923/* Save all of the information associated with the inferior<==>gdb
3924 connection. INF_STATUS is a pointer to a "struct inferior_status"
3925 (defined in inferior.h). */
3926
7a292a7a 3927struct inferior_status *
96baa820 3928save_inferior_status (int restore_stack_info)
c906108c 3929{
72cec141 3930 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3931
c906108c
SS
3932 inf_status->stop_signal = stop_signal;
3933 inf_status->stop_pc = stop_pc;
3934 inf_status->stop_step = stop_step;
3935 inf_status->stop_stack_dummy = stop_stack_dummy;
3936 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3937 inf_status->trap_expected = trap_expected;
3938 inf_status->step_range_start = step_range_start;
3939 inf_status->step_range_end = step_range_end;
3940 inf_status->step_frame_address = step_frame_address;
3941 inf_status->step_over_calls = step_over_calls;
3942 inf_status->stop_after_trap = stop_after_trap;
3943 inf_status->stop_soon_quietly = stop_soon_quietly;
3944 /* Save original bpstat chain here; replace it with copy of chain.
3945 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3946 hand them back the original chain when restore_inferior_status is
3947 called. */
c906108c
SS
3948 inf_status->stop_bpstat = stop_bpstat;
3949 stop_bpstat = bpstat_copy (stop_bpstat);
3950 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3951 inf_status->restore_stack_info = restore_stack_info;
3952 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3953
72cec141 3954 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3955
72cec141 3956 inf_status->registers = regcache_dup (current_regcache);
c906108c 3957
101dcfbe 3958 get_frame_id (selected_frame, &inf_status->selected_frame_id);
7a292a7a 3959 return inf_status;
c906108c
SS
3960}
3961
c906108c 3962static int
96baa820 3963restore_selected_frame (void *args)
c906108c 3964{
488f131b 3965 struct frame_id *fid = (struct frame_id *) args;
c906108c 3966 struct frame_info *frame;
c906108c 3967
101dcfbe 3968 frame = frame_find_by_id (*fid);
c906108c
SS
3969
3970 /* If inf_status->selected_frame_address is NULL, there was no
3971 previously selected frame. */
101dcfbe 3972 if (frame == NULL)
c906108c
SS
3973 {
3974 warning ("Unable to restore previously selected frame.\n");
3975 return 0;
3976 }
3977
0f7d239c 3978 select_frame (frame);
c906108c
SS
3979
3980 return (1);
3981}
3982
3983void
96baa820 3984restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3985{
3986 stop_signal = inf_status->stop_signal;
3987 stop_pc = inf_status->stop_pc;
3988 stop_step = inf_status->stop_step;
3989 stop_stack_dummy = inf_status->stop_stack_dummy;
3990 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3991 trap_expected = inf_status->trap_expected;
3992 step_range_start = inf_status->step_range_start;
3993 step_range_end = inf_status->step_range_end;
3994 step_frame_address = inf_status->step_frame_address;
3995 step_over_calls = inf_status->step_over_calls;
3996 stop_after_trap = inf_status->stop_after_trap;
3997 stop_soon_quietly = inf_status->stop_soon_quietly;
3998 bpstat_clear (&stop_bpstat);
3999 stop_bpstat = inf_status->stop_bpstat;
4000 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4001 proceed_to_finish = inf_status->proceed_to_finish;
4002
72cec141
AC
4003 /* FIXME: Is the restore of stop_registers always needed. */
4004 regcache_xfree (stop_registers);
4005 stop_registers = inf_status->stop_registers;
c906108c
SS
4006
4007 /* The inferior can be gone if the user types "print exit(0)"
4008 (and perhaps other times). */
4009 if (target_has_execution)
72cec141
AC
4010 /* NB: The register write goes through to the target. */
4011 regcache_cpy (current_regcache, inf_status->registers);
4012 regcache_xfree (inf_status->registers);
c906108c 4013
c906108c
SS
4014 /* FIXME: If we are being called after stopping in a function which
4015 is called from gdb, we should not be trying to restore the
4016 selected frame; it just prints a spurious error message (The
4017 message is useful, however, in detecting bugs in gdb (like if gdb
4018 clobbers the stack)). In fact, should we be restoring the
4019 inferior status at all in that case? . */
4020
4021 if (target_has_stack && inf_status->restore_stack_info)
4022 {
c906108c 4023 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4024 walking the stack might encounter a garbage pointer and
4025 error() trying to dereference it. */
488f131b
JB
4026 if (catch_errors
4027 (restore_selected_frame, &inf_status->selected_frame_id,
4028 "Unable to restore previously selected frame:\n",
4029 RETURN_MASK_ERROR) == 0)
c906108c
SS
4030 /* Error in restoring the selected frame. Select the innermost
4031 frame. */
0f7d239c 4032 select_frame (get_current_frame ());
c906108c
SS
4033
4034 }
c906108c 4035
72cec141 4036 xfree (inf_status);
7a292a7a 4037}
c906108c 4038
74b7792f
AC
4039static void
4040do_restore_inferior_status_cleanup (void *sts)
4041{
4042 restore_inferior_status (sts);
4043}
4044
4045struct cleanup *
4046make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4047{
4048 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4049}
4050
c906108c 4051void
96baa820 4052discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4053{
4054 /* See save_inferior_status for info on stop_bpstat. */
4055 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
4056 regcache_xfree (inf_status->registers);
4057 regcache_xfree (inf_status->stop_registers);
4058 xfree (inf_status);
7a292a7a
SS
4059}
4060
ca6724c1
KB
4061/* Oft used ptids */
4062ptid_t null_ptid;
4063ptid_t minus_one_ptid;
4064
4065/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4066
ca6724c1
KB
4067ptid_t
4068ptid_build (int pid, long lwp, long tid)
4069{
4070 ptid_t ptid;
4071
4072 ptid.pid = pid;
4073 ptid.lwp = lwp;
4074 ptid.tid = tid;
4075 return ptid;
4076}
4077
4078/* Create a ptid from just a pid. */
4079
4080ptid_t
4081pid_to_ptid (int pid)
4082{
4083 return ptid_build (pid, 0, 0);
4084}
4085
4086/* Fetch the pid (process id) component from a ptid. */
4087
4088int
4089ptid_get_pid (ptid_t ptid)
4090{
4091 return ptid.pid;
4092}
4093
4094/* Fetch the lwp (lightweight process) component from a ptid. */
4095
4096long
4097ptid_get_lwp (ptid_t ptid)
4098{
4099 return ptid.lwp;
4100}
4101
4102/* Fetch the tid (thread id) component from a ptid. */
4103
4104long
4105ptid_get_tid (ptid_t ptid)
4106{
4107 return ptid.tid;
4108}
4109
4110/* ptid_equal() is used to test equality of two ptids. */
4111
4112int
4113ptid_equal (ptid_t ptid1, ptid_t ptid2)
4114{
4115 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4116 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4117}
4118
4119/* restore_inferior_ptid() will be used by the cleanup machinery
4120 to restore the inferior_ptid value saved in a call to
4121 save_inferior_ptid(). */
ce696e05
KB
4122
4123static void
4124restore_inferior_ptid (void *arg)
4125{
4126 ptid_t *saved_ptid_ptr = arg;
4127 inferior_ptid = *saved_ptid_ptr;
4128 xfree (arg);
4129}
4130
4131/* Save the value of inferior_ptid so that it may be restored by a
4132 later call to do_cleanups(). Returns the struct cleanup pointer
4133 needed for later doing the cleanup. */
4134
4135struct cleanup *
4136save_inferior_ptid (void)
4137{
4138 ptid_t *saved_ptid_ptr;
4139
4140 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4141 *saved_ptid_ptr = inferior_ptid;
4142 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4143}
c5aa993b 4144\f
488f131b 4145
7a292a7a 4146static void
96baa820 4147build_infrun (void)
7a292a7a 4148{
72cec141 4149 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 4150}
c906108c 4151
c906108c 4152void
96baa820 4153_initialize_infrun (void)
c906108c
SS
4154{
4155 register int i;
4156 register int numsigs;
4157 struct cmd_list_element *c;
4158
0f71a2f6
JM
4159 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4160 register_gdbarch_swap (NULL, 0, build_infrun);
4161
c906108c
SS
4162 add_info ("signals", signals_info,
4163 "What debugger does when program gets various signals.\n\
4164Specify a signal as argument to print info on that signal only.");
4165 add_info_alias ("handle", "signals", 0);
4166
4167 add_com ("handle", class_run, handle_command,
4168 concat ("Specify how to handle a signal.\n\
4169Args are signals and actions to apply to those signals.\n\
4170Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4171from 1-15 are allowed for compatibility with old versions of GDB.\n\
4172Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4173The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4174used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4175\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4176Stop means reenter debugger if this signal happens (implies print).\n\
4177Print means print a message if this signal happens.\n\
4178Pass means let program see this signal; otherwise program doesn't know.\n\
4179Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4180Pass and Stop may be combined.", NULL));
4181 if (xdb_commands)
4182 {
4183 add_com ("lz", class_info, signals_info,
4184 "What debugger does when program gets various signals.\n\
4185Specify a signal as argument to print info on that signal only.");
4186 add_com ("z", class_run, xdb_handle_command,
4187 concat ("Specify how to handle a signal.\n\
4188Args are signals and actions to apply to those signals.\n\
4189Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4190from 1-15 are allowed for compatibility with old versions of GDB.\n\
4191Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4192The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4193used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4194\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4195nopass), \"Q\" (noprint)\n\
4196Stop means reenter debugger if this signal happens (implies print).\n\
4197Print means print a message if this signal happens.\n\
4198Pass means let program see this signal; otherwise program doesn't know.\n\
4199Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4200Pass and Stop may be combined.", NULL));
4201 }
4202
4203 if (!dbx_commands)
488f131b
JB
4204 stop_command =
4205 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
4206This allows you to set a list of commands to be run each time execution\n\
4207of the program stops.", &cmdlist);
4208
4209 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4210 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4211 signal_print = (unsigned char *)
4212 xmalloc (sizeof (signal_print[0]) * numsigs);
4213 signal_program = (unsigned char *)
4214 xmalloc (sizeof (signal_program[0]) * numsigs);
4215 for (i = 0; i < numsigs; i++)
4216 {
4217 signal_stop[i] = 1;
4218 signal_print[i] = 1;
4219 signal_program[i] = 1;
4220 }
4221
4222 /* Signals caused by debugger's own actions
4223 should not be given to the program afterwards. */
4224 signal_program[TARGET_SIGNAL_TRAP] = 0;
4225 signal_program[TARGET_SIGNAL_INT] = 0;
4226
4227 /* Signals that are not errors should not normally enter the debugger. */
4228 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4229 signal_print[TARGET_SIGNAL_ALRM] = 0;
4230 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4231 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4232 signal_stop[TARGET_SIGNAL_PROF] = 0;
4233 signal_print[TARGET_SIGNAL_PROF] = 0;
4234 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4235 signal_print[TARGET_SIGNAL_CHLD] = 0;
4236 signal_stop[TARGET_SIGNAL_IO] = 0;
4237 signal_print[TARGET_SIGNAL_IO] = 0;
4238 signal_stop[TARGET_SIGNAL_POLL] = 0;
4239 signal_print[TARGET_SIGNAL_POLL] = 0;
4240 signal_stop[TARGET_SIGNAL_URG] = 0;
4241 signal_print[TARGET_SIGNAL_URG] = 0;
4242 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4243 signal_print[TARGET_SIGNAL_WINCH] = 0;
4244
cd0fc7c3
SS
4245 /* These signals are used internally by user-level thread
4246 implementations. (See signal(5) on Solaris.) Like the above
4247 signals, a healthy program receives and handles them as part of
4248 its normal operation. */
4249 signal_stop[TARGET_SIGNAL_LWP] = 0;
4250 signal_print[TARGET_SIGNAL_LWP] = 0;
4251 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4252 signal_print[TARGET_SIGNAL_WAITING] = 0;
4253 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4254 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4255
c906108c
SS
4256#ifdef SOLIB_ADD
4257 add_show_from_set
4258 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4259 (char *) &stop_on_solib_events,
4260 "Set stopping for shared library events.\n\
4261If nonzero, gdb will give control to the user when the dynamic linker\n\
4262notifies gdb of shared library events. The most common event of interest\n\
488f131b 4263to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4264#endif
4265
4266 c = add_set_enum_cmd ("follow-fork-mode",
4267 class_run,
488f131b 4268 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4269/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4270 kernel problem. It's also not terribly useful without a GUI to
4271 help the user drive two debuggers. So for now, I'm disabling
4272 the "both" option. */
c5aa993b
JM
4273/* "Set debugger response to a program call of fork \
4274 or vfork.\n\
4275 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4276 parent - the original process is debugged after a fork\n\
4277 child - the new process is debugged after a fork\n\
4278 both - both the parent and child are debugged after a fork\n\
4279 ask - the debugger will ask for one of the above choices\n\
4280 For \"both\", another copy of the debugger will be started to follow\n\
4281 the new child process. The original debugger will continue to follow\n\
4282 the original parent process. To distinguish their prompts, the\n\
4283 debugger copy's prompt will be changed.\n\
4284 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4285 By default, the debugger will follow the parent process.",
4286 */
c906108c
SS
4287 "Set debugger response to a program call of fork \
4288or vfork.\n\
4289A fork or vfork creates a new process. follow-fork-mode can be:\n\
4290 parent - the original process is debugged after a fork\n\
4291 child - the new process is debugged after a fork\n\
4292 ask - the debugger will ask for one of the above choices\n\
4293For \"parent\" or \"child\", the unfollowed process will run free.\n\
488f131b 4294By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4295 add_show_from_set (c, &showlist);
4296
488f131b 4297 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4298 &scheduler_mode, /* current mode */
c906108c
SS
4299 "Set mode for locking scheduler during execution.\n\
4300off == no locking (threads may preempt at any time)\n\
4301on == full locking (no thread except the current thread may run)\n\
4302step == scheduler locked during every single-step operation.\n\
4303 In this mode, no other thread may run during a step command.\n\
488f131b 4304 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4305
9f60d481 4306 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4307 add_show_from_set (c, &showlist);
5fbbeb29
CF
4308
4309 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4310 var_boolean, (char *) &step_stop_if_no_debug,
4311 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4312function without debug line information will stop at the first\n\
4313instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4314the step command stops at a different source line.", &setlist);
5fbbeb29 4315 add_show_from_set (c, &showlist);
ca6724c1
KB
4316
4317 /* ptid initializations */
4318 null_ptid = ptid_build (0, 0, 0);
4319 minus_one_ptid = ptid_build (-1, 0, 0);
4320 inferior_ptid = null_ptid;
4321 target_last_wait_ptid = minus_one_ptid;
c906108c 4322}