]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/lm32-tdep.c
Delegate opcodes to select disassembler in GDB
[thirdparty/binutils-gdb.git] / gdb / lm32-tdep.c
CommitLineData
c28c63d8
JB
1/* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
61baf725 4 Copyright (C) 2009-2017 Free Software Foundation, Inc.
c28c63d8
JB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "frame.h"
23#include "frame-unwind.h"
24#include "frame-base.h"
25#include "inferior.h"
26#include "dis-asm.h"
27#include "symfile.h"
28#include "remote.h"
29#include "gdbcore.h"
30#include "gdb/sim-lm32.h"
31#include "gdb/callback.h"
32#include "gdb/remote-sim.h"
33#include "sim-regno.h"
34#include "arch-utils.h"
35#include "regcache.h"
36#include "trad-frame.h"
37#include "reggroups.h"
38#include "opcodes/lm32-desc.h"
325fac50 39#include <algorithm>
c28c63d8 40
c28c63d8
JB
41/* Macros to extract fields from an instruction. */
42#define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43#define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44#define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45#define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46#define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
47
48struct gdbarch_tdep
49{
1777feb0 50 /* gdbarch target dependent data here. Currently unused for LM32. */
c28c63d8
JB
51};
52
53struct lm32_frame_cache
54{
55 /* The frame's base. Used when constructing a frame ID. */
56 CORE_ADDR base;
57 CORE_ADDR pc;
58 /* Size of frame. */
59 int size;
60 /* Table indicating the location of each and every register. */
61 struct trad_frame_saved_reg *saved_regs;
62};
63
64/* Add the available register groups. */
65
66static void
67lm32_add_reggroups (struct gdbarch *gdbarch)
68{
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
72}
73
74/* Return whether a given register is in a given group. */
75
76static int
77lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
79{
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
87}
88
89/* Return a name that corresponds to the given register number. */
90
91static const char *
92lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93{
a121b7c1 94 static const char *register_names[] = {
c28c63d8
JB
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100 };
101
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103 return NULL;
104 else
105 return register_names[reg_nr];
106}
107
108/* Return type of register. */
109
110static struct type *
111lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112{
df4df182 113 return builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
114}
115
116/* Return non-zero if a register can't be written. */
117
118static int
119lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120{
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122}
123
124/* Analyze a function's prologue. */
125
126static CORE_ADDR
e17a4113
UW
127lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
c28c63d8
JB
129 struct lm32_frame_cache *info)
130{
e17a4113 131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
132 unsigned long instruction;
133
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
136 info->size = 0;
137 for (; pc < limit; pc += 4)
138 {
139
140 /* Read an instruction. */
e17a4113 141 instruction = read_memory_integer (pc, 4, byte_order);
c28c63d8
JB
142
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 {
1777feb0 146 /* Any stack displaced store is likely part of the prologue.
c28c63d8
JB
147 Record that the register is being saved, and the offset
148 into the stack. */
149 info->saved_regs[LM32_REG1 (instruction)].addr =
150 LM32_IMM16 (instruction);
151 }
152 else if ((LM32_OPCODE (instruction) == OP_ADDI)
153 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
154 {
1777feb0 155 /* An add to the SP is likely to be part of the prologue.
c28c63d8
JB
156 Adjust stack size by whatever the instruction adds to the sp. */
157 info->size -= LM32_IMM16 (instruction);
158 }
159 else if ( /* add fp,fp,sp */
160 ((LM32_OPCODE (instruction) == OP_ADD)
161 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
164 /* mv fp,imm */
165 || ((LM32_OPCODE (instruction) == OP_ADDI)
166 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
167 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
168 {
169 /* Likely to be in the prologue for functions that require
170 a frame pointer. */
171 }
172 else
173 {
1777feb0
MS
174 /* Any other instruction is likely not to be part of the
175 prologue. */
c28c63d8
JB
176 break;
177 }
178 }
179
180 return pc;
181}
182
183/* Return PC of first non prologue instruction, for the function at the
184 specified address. */
185
186static CORE_ADDR
187lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
188{
189 CORE_ADDR func_addr, limit_pc;
c28c63d8
JB
190 struct lm32_frame_cache frame_info;
191 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
192
193 /* See if we can determine the end of the prologue via the symbol table.
194 If so, then return either PC, or the PC after the prologue, whichever
195 is greater. */
196 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
197 {
d80b854b
UW
198 CORE_ADDR post_prologue_pc
199 = skip_prologue_using_sal (gdbarch, func_addr);
c28c63d8 200 if (post_prologue_pc != 0)
325fac50 201 return std::max (pc, post_prologue_pc);
c28c63d8
JB
202 }
203
204 /* Can't determine prologue from the symbol table, need to examine
205 instructions. */
206
207 /* Find an upper limit on the function prologue using the debug
208 information. If the debug information could not be used to provide
209 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 210 limit_pc = skip_prologue_using_sal (gdbarch, pc);
c28c63d8
JB
211 if (limit_pc == 0)
212 limit_pc = pc + 100; /* Magic. */
213
214 frame_info.saved_regs = saved_regs;
e17a4113 215 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
c28c63d8
JB
216}
217
218/* Create a breakpoint instruction. */
04180708 219constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
c28c63d8 220
04180708 221typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
c28c63d8 222
c28c63d8
JB
223
224/* Setup registers and stack for faking a call to a function in the
225 inferior. */
226
227static CORE_ADDR
228lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
229 struct regcache *regcache, CORE_ADDR bp_addr,
230 int nargs, struct value **args, CORE_ADDR sp,
231 int struct_return, CORE_ADDR struct_addr)
232{
e17a4113 233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
234 int first_arg_reg = SIM_LM32_R1_REGNUM;
235 int num_arg_regs = 8;
236 int i;
237
238 /* Set the return address. */
239 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
240
241 /* If we're returning a large struct, a pointer to the address to
242 store it at is passed as a first hidden parameter. */
243 if (struct_return)
244 {
245 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
246 first_arg_reg++;
247 num_arg_regs--;
248 sp -= 4;
249 }
250
251 /* Setup parameters. */
252 for (i = 0; i < nargs; i++)
253 {
254 struct value *arg = args[i];
255 struct type *arg_type = check_typedef (value_type (arg));
256 gdb_byte *contents;
c28c63d8
JB
257 ULONGEST val;
258
259 /* Promote small integer types to int. */
260 switch (TYPE_CODE (arg_type))
261 {
262 case TYPE_CODE_INT:
263 case TYPE_CODE_BOOL:
264 case TYPE_CODE_CHAR:
265 case TYPE_CODE_RANGE:
266 case TYPE_CODE_ENUM:
267 if (TYPE_LENGTH (arg_type) < 4)
268 {
df4df182 269 arg_type = builtin_type (gdbarch)->builtin_int32;
c28c63d8
JB
270 arg = value_cast (arg_type, arg);
271 }
272 break;
273 }
274
275 /* FIXME: Handle structures. */
276
277 contents = (gdb_byte *) value_contents (arg);
744a8059
SP
278 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
279 byte_order);
c28c63d8
JB
280
281 /* First num_arg_regs parameters are passed by registers,
282 and the rest are passed on the stack. */
283 if (i < num_arg_regs)
284 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
285 else
286 {
4666fec3
SM
287 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
288 val);
c28c63d8
JB
289 sp -= 4;
290 }
291 }
292
293 /* Update stack pointer. */
294 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
295
296 /* Return adjusted stack pointer. */
297 return sp;
298}
299
300/* Extract return value after calling a function in the inferior. */
301
302static void
303lm32_extract_return_value (struct type *type, struct regcache *regcache,
304 gdb_byte *valbuf)
305{
e17a4113
UW
306 struct gdbarch *gdbarch = get_regcache_arch (regcache);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8
JB
308 ULONGEST l;
309 CORE_ADDR return_buffer;
310
311 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
312 && TYPE_CODE (type) != TYPE_CODE_UNION
313 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
314 {
315 /* Return value is returned in a single register. */
316 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
e17a4113 317 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
c28c63d8
JB
318 }
319 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
320 {
321 /* 64-bit values are returned in a register pair. */
322 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
323 memcpy (valbuf, &l, 4);
324 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
325 memcpy (valbuf + 4, &l, 4);
326 }
327 else
328 {
1777feb0
MS
329 /* Aggregate types greater than a single register are returned
330 in memory. FIXME: Unless they are only 2 regs?. */
c28c63d8
JB
331 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
332 return_buffer = l;
333 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
334 }
335}
336
337/* Write into appropriate registers a function return value of type
338 TYPE, given in virtual format. */
339static void
340lm32_store_return_value (struct type *type, struct regcache *regcache,
341 const gdb_byte *valbuf)
342{
e17a4113
UW
343 struct gdbarch *gdbarch = get_regcache_arch (regcache);
344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c28c63d8 345 ULONGEST val;
bad43aa5 346 int len = TYPE_LENGTH (type);
c28c63d8 347
bad43aa5 348 if (len <= 4)
c28c63d8 349 {
bad43aa5 350 val = extract_unsigned_integer (valbuf, len, byte_order);
c28c63d8
JB
351 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
352 }
bad43aa5 353 else if (len <= 8)
c28c63d8 354 {
e17a4113 355 val = extract_unsigned_integer (valbuf, 4, byte_order);
c28c63d8 356 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
bad43aa5 357 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
c28c63d8
JB
358 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
359 }
360 else
361 error (_("lm32_store_return_value: type length too large."));
362}
363
364/* Determine whether a functions return value is in a register or memory. */
365static enum return_value_convention
6a3a010b 366lm32_return_value (struct gdbarch *gdbarch, struct value *function,
c28c63d8
JB
367 struct type *valtype, struct regcache *regcache,
368 gdb_byte *readbuf, const gdb_byte *writebuf)
369{
370 enum type_code code = TYPE_CODE (valtype);
371
372 if (code == TYPE_CODE_STRUCT
373 || code == TYPE_CODE_UNION
374 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
375 return RETURN_VALUE_STRUCT_CONVENTION;
376
377 if (readbuf)
378 lm32_extract_return_value (valtype, regcache, readbuf);
379 if (writebuf)
380 lm32_store_return_value (valtype, regcache, writebuf);
381
382 return RETURN_VALUE_REGISTER_CONVENTION;
383}
384
385static CORE_ADDR
386lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
387{
388 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
389}
390
391static CORE_ADDR
392lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
393{
394 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
395}
396
397static struct frame_id
398lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
399{
400 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
401
402 return frame_id_build (sp, get_frame_pc (this_frame));
403}
404
405/* Put here the code to store, into fi->saved_regs, the addresses of
406 the saved registers of frame described by FRAME_INFO. This
407 includes special registers such as pc and fp saved in special ways
408 in the stack frame. sp is even more special: the address we return
409 for it IS the sp for the next frame. */
410
411static struct lm32_frame_cache *
412lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
413{
c28c63d8
JB
414 CORE_ADDR current_pc;
415 ULONGEST prev_sp;
416 ULONGEST this_base;
417 struct lm32_frame_cache *info;
c28c63d8 418 int i;
c28c63d8
JB
419
420 if ((*this_prologue_cache))
9a3c8263 421 return (struct lm32_frame_cache *) (*this_prologue_cache);
c28c63d8
JB
422
423 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
424 (*this_prologue_cache) = info;
425 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
426
427 info->pc = get_frame_func (this_frame);
428 current_pc = get_frame_pc (this_frame);
e17a4113
UW
429 lm32_analyze_prologue (get_frame_arch (this_frame),
430 info->pc, current_pc, info);
c28c63d8
JB
431
432 /* Compute the frame's base, and the previous frame's SP. */
433 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
434 prev_sp = this_base + info->size;
435 info->base = this_base;
436
437 /* Convert callee save offsets into addresses. */
438 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
439 {
440 if (trad_frame_addr_p (info->saved_regs, i))
441 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
442 }
443
444 /* The call instruction moves the caller's PC in the callee's RA register.
445 Since this is an unwind, do the reverse. Copy the location of RA register
446 into PC (the address / regnum) so that a request for PC will be
447 converted into a request for the RA register. */
448 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
449
1777feb0
MS
450 /* The previous frame's SP needed to be computed. Save the computed
451 value. */
c28c63d8
JB
452 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
453
454 return info;
455}
456
457static void
458lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
459 struct frame_id *this_id)
460{
461 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
462
463 /* This marks the outermost frame. */
464 if (cache->base == 0)
465 return;
466
467 (*this_id) = frame_id_build (cache->base, cache->pc);
468}
469
470static struct value *
471lm32_frame_prev_register (struct frame_info *this_frame,
472 void **this_prologue_cache, int regnum)
473{
474 struct lm32_frame_cache *info;
475
476 info = lm32_frame_cache (this_frame, this_prologue_cache);
477 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
478}
479
480static const struct frame_unwind lm32_frame_unwind = {
481 NORMAL_FRAME,
8fbca658 482 default_frame_unwind_stop_reason,
c28c63d8
JB
483 lm32_frame_this_id,
484 lm32_frame_prev_register,
485 NULL,
486 default_frame_sniffer
487};
488
489static CORE_ADDR
490lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
491{
492 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
493
494 return info->base;
495}
496
497static const struct frame_base lm32_frame_base = {
498 &lm32_frame_unwind,
499 lm32_frame_base_address,
500 lm32_frame_base_address,
501 lm32_frame_base_address
502};
503
504static CORE_ADDR
505lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
506{
507 /* Align to the size of an instruction (so that they can safely be
508 pushed onto the stack. */
509 return sp & ~3;
510}
511
512static struct gdbarch *
513lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
514{
515 struct gdbarch *gdbarch;
516 struct gdbarch_tdep *tdep;
517
518 /* If there is already a candidate, use it. */
519 arches = gdbarch_list_lookup_by_info (arches, &info);
520 if (arches != NULL)
521 return arches->gdbarch;
522
523 /* None found, create a new architecture from the information provided. */
70ba0933 524 tdep = XNEW (struct gdbarch_tdep);
c28c63d8
JB
525 gdbarch = gdbarch_alloc (&info, tdep);
526
527 /* Type sizes. */
528 set_gdbarch_short_bit (gdbarch, 16);
529 set_gdbarch_int_bit (gdbarch, 32);
530 set_gdbarch_long_bit (gdbarch, 32);
531 set_gdbarch_long_long_bit (gdbarch, 64);
532 set_gdbarch_float_bit (gdbarch, 32);
533 set_gdbarch_double_bit (gdbarch, 64);
534 set_gdbarch_long_double_bit (gdbarch, 64);
535 set_gdbarch_ptr_bit (gdbarch, 32);
536
537 /* Register info. */
538 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
539 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
540 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
541 set_gdbarch_register_name (gdbarch, lm32_register_name);
542 set_gdbarch_register_type (gdbarch, lm32_register_type);
543 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
544
545 /* Frame info. */
546 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
547 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
548 set_gdbarch_decr_pc_after_break (gdbarch, 0);
549 set_gdbarch_frame_args_skip (gdbarch, 0);
550
551 /* Frame unwinding. */
552 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
553 frame_base_set_default (gdbarch, &lm32_frame_base);
554 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
555 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
556 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
557 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
558
559 /* Breakpoints. */
04180708
YQ
560 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
561 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
c28c63d8
JB
562 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
563
564 /* Calling functions in the inferior. */
565 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
566 set_gdbarch_return_value (gdbarch, lm32_return_value);
567
c28c63d8
JB
568 lm32_add_reggroups (gdbarch);
569 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
570
571 return gdbarch;
572}
573
693be288
JK
574/* -Wmissing-prototypes */
575extern initialize_file_ftype _initialize_lm32_tdep;
576
c28c63d8
JB
577void
578_initialize_lm32_tdep (void)
579{
580 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
581}