]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/m68k-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / m68k-tdep.c
CommitLineData
748894bf 1/* Target-dependent code for the Motorola 68000 series.
c6f0559b 2
0b302171 3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
3f244638 21#include "dwarf2-frame.h"
c906108c 22#include "frame.h"
8de307e0
AS
23#include "frame-base.h"
24#include "frame-unwind.h"
e6bb342a 25#include "gdbtypes.h"
c906108c
SS
26#include "symtab.h"
27#include "gdbcore.h"
28#include "value.h"
29#include "gdb_string.h"
8de307e0 30#include "gdb_assert.h"
7a292a7a 31#include "inferior.h"
4e052eda 32#include "regcache.h"
5d3ed2e3 33#include "arch-utils.h"
55809acb 34#include "osabi.h"
a89aa300 35#include "dis-asm.h"
8ed86d01 36#include "target-descriptions.h"
32eeb91a
AS
37
38#include "m68k-tdep.h"
c906108c 39\f
c5aa993b 40
89c3b6d3
PDM
41#define P_LINKL_FP 0x480e
42#define P_LINKW_FP 0x4e56
43#define P_PEA_FP 0x4856
8de307e0
AS
44#define P_MOVEAL_SP_FP 0x2c4f
45#define P_ADDAW_SP 0xdefc
46#define P_ADDAL_SP 0xdffc
47#define P_SUBQW_SP 0x514f
48#define P_SUBQL_SP 0x518f
49#define P_LEA_SP_SP 0x4fef
50#define P_LEA_PC_A5 0x4bfb0170
51#define P_FMOVEMX_SP 0xf227
52#define P_MOVEL_SP 0x2f00
53#define P_MOVEML_SP 0x48e7
89c3b6d3 54
025bb325 55/* Offset from SP to first arg on stack at first instruction of a function. */
103a1597
GS
56#define SP_ARG0 (1 * 4)
57
103a1597
GS
58#if !defined (BPT_VECTOR)
59#define BPT_VECTOR 0xf
60#endif
61
f5cf7aa1 62static const gdb_byte *
67d57894
MD
63m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
103a1597 65{
f5cf7aa1 66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
103a1597
GS
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69}
4713453b
AS
70\f
71
4713453b 72/* Construct types for ISA-specific registers. */
209bd28e
UW
73static struct type *
74m68k_ps_type (struct gdbarch *gdbarch)
4713453b 75{
209bd28e
UW
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
e9bb382b 82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
209bd28e
UW
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
4713453b 100}
103a1597 101
27067745
UW
102static struct type *
103m68881_ext_type (struct gdbarch *gdbarch)
104{
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
e9bb382b 109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
27067745
UW
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113}
114
d85fe7f7
AS
115/* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
5d3ed2e3
GS
122
123static struct type *
8de307e0 124m68k_register_type (struct gdbarch *gdbarch, int regnum)
5d3ed2e3 125{
c984b7ff 126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
03dac896 127
8ed86d01
VP
128 if (tdep->fpregs_present)
129 {
c984b7ff
UW
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
8ed86d01
VP
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
27067745 136 return m68881_ext_type (gdbarch);
8ed86d01
VP
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
0dfff4cb 140 return builtin_type (gdbarch)->builtin_func_ptr;
8ed86d01
VP
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
df4df182 143 return builtin_type (gdbarch)->builtin_int32;
8ed86d01
VP
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
df4df182 148 return builtin_type (gdbarch)->builtin_int0;
8ed86d01 149 }
03dac896 150
c984b7ff 151 if (regnum == gdbarch_pc_regnum (gdbarch))
0dfff4cb 152 return builtin_type (gdbarch)->builtin_func_ptr;
03dac896 153
32eeb91a 154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
0dfff4cb 155 return builtin_type (gdbarch)->builtin_data_ptr;
03dac896 156
4713453b 157 if (regnum == M68K_PS_REGNUM)
209bd28e 158 return m68k_ps_type (gdbarch);
4713453b 159
df4df182 160 return builtin_type (gdbarch)->builtin_int32;
5d3ed2e3
GS
161}
162
8ed86d01 163static const char *m68k_register_names[] = {
5d3ed2e3
GS
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
8ed86d01 168 "fpcontrol", "fpstatus", "fpiaddr"
5d3ed2e3
GS
169 };
170
8ed86d01 171/* Function: m68k_register_name
025bb325 172 Returns the name of the standard m68k register regnum. */
8ed86d01
VP
173
174static const char *
d93859e2 175m68k_register_name (struct gdbarch *gdbarch, int regnum)
8ed86d01
VP
176{
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
5d3ed2e3 178 internal_error (__FILE__, __LINE__,
025bb325
MS
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
86443c3e
MK
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
5d3ed2e3 184 else
8ed86d01 185 return m68k_register_names[regnum];
5d3ed2e3 186}
e47577ab
MK
187\f
188/* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191static int
025bb325
MS
192m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
e47577ab 194{
0abe36f5 195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
8ed86d01 196 return 0;
83acabca 197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
3c1ac6e7 198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
e47577ab
MK
199}
200
201/* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
8dccd430 204static int
e47577ab 205m68k_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
e47577ab 208{
f5cf7aa1 209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
e47577ab
MK
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
8a3fe4f8
AC
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
8dccd430
PA
218 *optimizedp = *unavailablep = 0;
219 return 0;
e47577ab
MK
220 }
221
83acabca 222 /* Convert to TYPE. */
8dccd430
PA
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
8ed86d01 229 convert_typed_floating (from, fpreg_type, to, type);
8dccd430
PA
230 *optimizedp = *unavailablep = 0;
231 return 1;
e47577ab
MK
232}
233
234/* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237static void
238m68k_value_to_register (struct frame_info *frame, int regnum,
f5cf7aa1 239 struct type *type, const gdb_byte *from)
e47577ab 240{
f5cf7aa1 241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
e47577ab
MK
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
8a3fe4f8
AC
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
e47577ab
MK
250 return;
251 }
252
83acabca 253 /* Convert from TYPE. */
8ed86d01 254 convert_typed_floating (from, type, to, fpreg_type);
e47577ab
MK
255 put_frame_register (frame, regnum, to);
256}
257
8de307e0 258\f
f595cb19
MK
259/* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288/* Read a function return value of TYPE from REGCACHE, and copy that
8de307e0 289 into VALBUF. */
942dc0e9
GS
290
291static void
8de307e0 292m68k_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 293 gdb_byte *valbuf)
942dc0e9 294{
8de307e0 295 int len = TYPE_LENGTH (type);
f5cf7aa1 296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
942dc0e9 297
8de307e0
AS
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
f5cf7aa1 307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
308 }
309 else
310 internal_error (__FILE__, __LINE__,
e2e0b3e5 311 _("Cannot extract return value of %d bytes long."), len);
942dc0e9
GS
312}
313
942dc0e9 314static void
f595cb19 315m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 316 gdb_byte *valbuf)
942dc0e9 317{
f5cf7aa1 318 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
c984b7ff
UW
319 struct gdbarch *gdbarch = get_regcache_arch (regcache);
320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
942dc0e9 321
8ed86d01 322 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
8de307e0 323 {
c984b7ff 324 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f595cb19 325 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
8ed86d01 326 convert_typed_floating (buf, fpreg_type, valbuf, type);
8de307e0 327 }
354ecfd5 328 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
329 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
330 else
331 m68k_extract_return_value (type, regcache, valbuf);
332}
333
334/* Write a function return value of TYPE from VALBUF into REGCACHE. */
335
336static void
337m68k_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 338 const gdb_byte *valbuf)
f595cb19
MK
339{
340 int len = TYPE_LENGTH (type);
942dc0e9 341
8de307e0
AS
342 if (len <= 4)
343 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
344 else if (len <= 8)
345 {
f595cb19 346 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
8de307e0 347 len - 4, valbuf);
f5cf7aa1 348 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
8de307e0
AS
349 }
350 else
351 internal_error (__FILE__, __LINE__,
e2e0b3e5 352 _("Cannot store return value of %d bytes long."), len);
8de307e0 353}
942dc0e9 354
f595cb19
MK
355static void
356m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
f5cf7aa1 357 const gdb_byte *valbuf)
942dc0e9 358{
c984b7ff
UW
359 struct gdbarch *gdbarch = get_regcache_arch (regcache);
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8de307e0 361
8ed86d01 362 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
f595cb19 363 {
c984b7ff 364 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
f5cf7aa1 365 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
8ed86d01 366 convert_typed_floating (valbuf, type, buf, fpreg_type);
f595cb19
MK
367 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
368 }
354ecfd5 369 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
f595cb19
MK
370 {
371 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
372 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
373 }
374 else
375 m68k_store_return_value (type, regcache, valbuf);
942dc0e9
GS
376}
377
108fb0f7
AS
378/* Return non-zero if TYPE, which is assumed to be a structure, union or
379 complex type, should be returned in registers for architecture
f595cb19
MK
380 GDBARCH. */
381
c481dac7 382static int
f595cb19 383m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
c481dac7 384{
f595cb19
MK
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386 enum type_code code = TYPE_CODE (type);
387 int len = TYPE_LENGTH (type);
c481dac7 388
108fb0f7
AS
389 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
390 || code == TYPE_CODE_COMPLEX);
f595cb19
MK
391
392 if (tdep->struct_return == pcc_struct_return)
393 return 0;
394
395 return (len == 1 || len == 2 || len == 4 || len == 8);
c481dac7
AS
396}
397
f595cb19
MK
398/* Determine, for architecture GDBARCH, how a return value of TYPE
399 should be returned. If it is supposed to be returned in registers,
400 and READBUF is non-zero, read the appropriate value from REGCACHE,
401 and copy it into READBUF. If WRITEBUF is non-zero, write the value
402 from WRITEBUF into REGCACHE. */
403
404static enum return_value_convention
6a3a010b 405m68k_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
406 struct type *type, struct regcache *regcache,
407 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
408{
409 enum type_code code = TYPE_CODE (type);
410
1c845060 411 /* GCC returns a `long double' in memory too. */
108fb0f7
AS
412 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
413 || code == TYPE_CODE_COMPLEX)
1c845060
MK
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
416 {
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
f595cb19 420
1c845060
MK
421 if (readbuf)
422 {
423 ULONGEST addr;
424
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
427 }
428
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
430 }
f595cb19
MK
431
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
436
437 return RETURN_VALUE_REGISTER_CONVENTION;
438}
439
440static enum return_value_convention
6a3a010b 441m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
f595cb19
MK
444{
445 enum type_code code = TYPE_CODE (type);
446
108fb0f7
AS
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
448 || code == TYPE_CODE_COMPLEX)
f595cb19 449 && !m68k_reg_struct_return_p (gdbarch, type))
51da707a
MK
450 {
451 /* The System V ABI says that:
452
453 "A function returning a structure or union also sets %a0 to
454 the value it finds in %a0. Thus when the caller receives
455 control again, the address of the returned object resides in
456 register %a0."
457
458 So the ABI guarantees that we can always find the return
459 value just after the function has returned. */
460
461 if (readbuf)
462 {
463 ULONGEST addr;
464
465 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
466 read_memory (addr, readbuf, TYPE_LENGTH (type));
467 }
468
469 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
470 }
f595cb19
MK
471
472 /* This special case is for structures consisting of a single
473 `float' or `double' member. These structures are returned in
474 %fp0. For these structures, we call ourselves recursively,
475 changing TYPE into the type of the first member of the structure.
476 Since that should work for all structures that have only one
477 member, we don't bother to check the member's type here. */
478 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
479 {
480 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 481 return m68k_svr4_return_value (gdbarch, function, type, regcache,
f595cb19
MK
482 readbuf, writebuf);
483 }
484
485 if (readbuf)
486 m68k_svr4_extract_return_value (type, regcache, readbuf);
487 if (writebuf)
488 m68k_svr4_store_return_value (type, regcache, writebuf);
489
490 return RETURN_VALUE_REGISTER_CONVENTION;
491}
492\f
392a587b 493
9bb47d95
NS
494/* Always align the frame to a 4-byte boundary. This is required on
495 coldfire and harmless on the rest. */
496
497static CORE_ADDR
498m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
499{
500 /* Align the stack to four bytes. */
501 return sp & ~3;
502}
503
8de307e0 504static CORE_ADDR
7d9b040b 505m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8de307e0
AS
506 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
507 struct value **args, CORE_ADDR sp, int struct_return,
508 CORE_ADDR struct_addr)
7f8e7424 509{
f595cb19 510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f5cf7aa1 512 gdb_byte buf[4];
8de307e0
AS
513 int i;
514
515 /* Push arguments in reverse order. */
516 for (i = nargs - 1; i >= 0; i--)
517 {
4754a64e 518 struct type *value_type = value_enclosing_type (args[i]);
c481dac7 519 int len = TYPE_LENGTH (value_type);
8de307e0 520 int container_len = (len + 3) & ~3;
c481dac7
AS
521 int offset;
522
523 /* Non-scalars bigger than 4 bytes are left aligned, others are
524 right aligned. */
525 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
526 || TYPE_CODE (value_type) == TYPE_CODE_UNION
527 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
528 && len > 4)
529 offset = 0;
530 else
531 offset = container_len - len;
8de307e0 532 sp -= container_len;
46615f07 533 write_memory (sp + offset, value_contents_all (args[i]), len);
8de307e0
AS
534 }
535
c481dac7 536 /* Store struct value address. */
8de307e0
AS
537 if (struct_return)
538 {
e17a4113 539 store_unsigned_integer (buf, 4, byte_order, struct_addr);
f595cb19 540 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
8de307e0
AS
541 }
542
543 /* Store return address. */
544 sp -= 4;
e17a4113 545 store_unsigned_integer (buf, 4, byte_order, bp_addr);
8de307e0
AS
546 write_memory (sp, buf, 4);
547
548 /* Finally, update the stack pointer... */
e17a4113 549 store_unsigned_integer (buf, 4, byte_order, sp);
8de307e0
AS
550 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
551
552 /* ...and fake a frame pointer. */
553 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
554
555 /* DWARF2/GCC uses the stack address *before* the function call as a
556 frame's CFA. */
557 return sp + 8;
7f8e7424 558}
6dd0fba6
NS
559
560/* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
561
562static int
d3f73121 563m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
6dd0fba6
NS
564{
565 if (num < 8)
566 /* d0..7 */
567 return (num - 0) + M68K_D0_REGNUM;
568 else if (num < 16)
569 /* a0..7 */
570 return (num - 8) + M68K_A0_REGNUM;
d3f73121 571 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
6dd0fba6
NS
572 /* fp0..7 */
573 return (num - 16) + M68K_FP0_REGNUM;
574 else if (num == 25)
575 /* pc */
576 return M68K_PC_REGNUM;
577 else
d3f73121 578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
6dd0fba6
NS
579}
580
8de307e0
AS
581\f
582struct m68k_frame_cache
583{
584 /* Base address. */
585 CORE_ADDR base;
586 CORE_ADDR sp_offset;
587 CORE_ADDR pc;
7f8e7424 588
8de307e0
AS
589 /* Saved registers. */
590 CORE_ADDR saved_regs[M68K_NUM_REGS];
591 CORE_ADDR saved_sp;
7f8e7424 592
8de307e0
AS
593 /* Stack space reserved for local variables. */
594 long locals;
595};
c906108c 596
8de307e0
AS
597/* Allocate and initialize a frame cache. */
598
599static struct m68k_frame_cache *
600m68k_alloc_frame_cache (void)
c906108c 601{
8de307e0
AS
602 struct m68k_frame_cache *cache;
603 int i;
c906108c 604
8de307e0 605 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
c906108c 606
8de307e0
AS
607 /* Base address. */
608 cache->base = 0;
609 cache->sp_offset = -4;
610 cache->pc = 0;
c906108c 611
8de307e0
AS
612 /* Saved registers. We initialize these to -1 since zero is a valid
613 offset (that's where %fp is supposed to be stored). */
614 for (i = 0; i < M68K_NUM_REGS; i++)
615 cache->saved_regs[i] = -1;
616
617 /* Frameless until proven otherwise. */
618 cache->locals = -1;
619
620 return cache;
c906108c
SS
621}
622
8de307e0
AS
623/* Check whether PC points at a code that sets up a new stack frame.
624 If so, it updates CACHE and returns the address of the first
625 instruction after the sequence that sets removes the "hidden"
626 argument from the stack or CURRENT_PC, whichever is smaller.
627 Otherwise, return PC. */
c906108c 628
8de307e0 629static CORE_ADDR
e17a4113
UW
630m68k_analyze_frame_setup (struct gdbarch *gdbarch,
631 CORE_ADDR pc, CORE_ADDR current_pc,
8de307e0 632 struct m68k_frame_cache *cache)
c906108c 633{
e17a4113 634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0
AS
635 int op;
636
637 if (pc >= current_pc)
638 return current_pc;
c906108c 639
e17a4113 640 op = read_memory_unsigned_integer (pc, 2, byte_order);
8de307e0
AS
641
642 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
c906108c 643 {
8de307e0
AS
644 cache->saved_regs[M68K_FP_REGNUM] = 0;
645 cache->sp_offset += 4;
646 if (op == P_LINKW_FP)
647 {
648 /* link.w %fp, #-N */
649 /* link.w %fp, #0; adda.l #-N, %sp */
e17a4113 650 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0
AS
651
652 if (pc + 4 < current_pc && cache->locals == 0)
653 {
e17a4113 654 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
8de307e0
AS
655 if (op == P_ADDAL_SP)
656 {
e17a4113 657 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
8de307e0
AS
658 return pc + 10;
659 }
660 }
661
662 return pc + 4;
663 }
664 else if (op == P_LINKL_FP)
c906108c 665 {
8de307e0 666 /* link.l %fp, #-N */
e17a4113 667 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0
AS
668 return pc + 6;
669 }
670 else
671 {
672 /* pea (%fp); movea.l %sp, %fp */
673 cache->locals = 0;
674
675 if (pc + 2 < current_pc)
676 {
e17a4113 677 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
678
679 if (op == P_MOVEAL_SP_FP)
680 {
681 /* move.l %sp, %fp */
682 return pc + 4;
683 }
684 }
685
686 return pc + 2;
c906108c
SS
687 }
688 }
8de307e0 689 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
c906108c 690 {
8de307e0
AS
691 /* subq.[wl] #N,%sp */
692 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
693 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
694 if (pc + 2 < current_pc)
c906108c 695 {
e17a4113 696 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
697 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
698 {
699 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
700 return pc + 4;
701 }
c906108c 702 }
8de307e0
AS
703 return pc + 2;
704 }
705 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
706 {
707 /* adda.w #-N,%sp */
708 /* lea (-N,%sp),%sp */
e17a4113 709 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
8de307e0 710 return pc + 4;
c906108c 711 }
8de307e0 712 else if (op == P_ADDAL_SP)
c906108c 713 {
8de307e0 714 /* adda.l #-N,%sp */
e17a4113 715 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
8de307e0 716 return pc + 6;
c906108c 717 }
8de307e0
AS
718
719 return pc;
c906108c 720}
c5aa993b 721
8de307e0
AS
722/* Check whether PC points at code that saves registers on the stack.
723 If so, it updates CACHE and returns the address of the first
724 instruction after the register saves or CURRENT_PC, whichever is
725 smaller. Otherwise, return PC. */
c906108c 726
8de307e0 727static CORE_ADDR
be8626e0
MD
728m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
729 CORE_ADDR current_pc,
8de307e0
AS
730 struct m68k_frame_cache *cache)
731{
e17a4113
UW
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
733
8de307e0
AS
734 if (cache->locals >= 0)
735 {
736 CORE_ADDR offset;
737 int op;
738 int i, mask, regno;
c906108c 739
8de307e0
AS
740 offset = -4 - cache->locals;
741 while (pc < current_pc)
742 {
e17a4113 743 op = read_memory_unsigned_integer (pc, 2, byte_order);
8ed86d01 744 if (op == P_FMOVEMX_SP
be8626e0 745 && gdbarch_tdep (gdbarch)->fpregs_present)
8de307e0
AS
746 {
747 /* fmovem.x REGS,-(%sp) */
e17a4113 748 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
749 if ((op & 0xff00) == 0xe000)
750 {
751 mask = op & 0xff;
752 for (i = 0; i < 16; i++, mask >>= 1)
753 {
754 if (mask & 1)
755 {
756 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
757 offset -= 12;
758 }
759 }
760 pc += 4;
761 }
762 else
763 break;
764 }
0ba5a932 765 else if ((op & 0177760) == P_MOVEL_SP)
8de307e0
AS
766 {
767 /* move.l %R,-(%sp) */
0ba5a932 768 regno = op & 017;
8de307e0
AS
769 cache->saved_regs[regno] = offset;
770 offset -= 4;
771 pc += 2;
772 }
773 else if (op == P_MOVEML_SP)
774 {
775 /* movem.l REGS,-(%sp) */
e17a4113 776 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
8de307e0
AS
777 for (i = 0; i < 16; i++, mask >>= 1)
778 {
779 if (mask & 1)
780 {
781 cache->saved_regs[15 - i] = offset;
782 offset -= 4;
783 }
784 }
785 pc += 4;
786 }
787 else
788 break;
789 }
790 }
791
792 return pc;
793}
c906108c 794
c906108c 795
8de307e0
AS
796/* Do a full analysis of the prologue at PC and update CACHE
797 accordingly. Bail out early if CURRENT_PC is reached. Return the
798 address where the analysis stopped.
c906108c 799
8de307e0 800 We handle all cases that can be generated by gcc.
c906108c 801
8de307e0 802 For allocating a stack frame:
c906108c 803
8de307e0
AS
804 link.w %a6,#-N
805 link.l %a6,#-N
806 pea (%fp); move.l %sp,%fp
807 link.w %a6,#0; add.l #-N,%sp
808 subq.l #N,%sp
809 subq.w #N,%sp
810 subq.w #8,%sp; subq.w #N-8,%sp
811 add.w #-N,%sp
812 lea (-N,%sp),%sp
813 add.l #-N,%sp
c906108c 814
8de307e0 815 For saving registers:
c906108c 816
8de307e0
AS
817 fmovem.x REGS,-(%sp)
818 move.l R1,-(%sp)
819 move.l R1,-(%sp); move.l R2,-(%sp)
820 movem.l REGS,-(%sp)
c906108c 821
8de307e0 822 For setting up the PIC register:
c906108c 823
8de307e0 824 lea (%pc,N),%a5
c906108c 825
8de307e0 826 */
c906108c 827
eb2e12d7 828static CORE_ADDR
be8626e0
MD
829m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
830 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
c906108c 831{
e17a4113 832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 833 unsigned int op;
c906108c 834
e17a4113 835 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
be8626e0 836 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
8de307e0
AS
837 if (pc >= current_pc)
838 return current_pc;
c906108c 839
8de307e0 840 /* Check for GOT setup. */
e17a4113 841 op = read_memory_unsigned_integer (pc, 4, byte_order);
8de307e0 842 if (op == P_LEA_PC_A5)
c906108c 843 {
8de307e0 844 /* lea (%pc,N),%a5 */
e4d8bc08 845 return pc + 8;
c906108c 846 }
8de307e0
AS
847
848 return pc;
c906108c
SS
849}
850
8de307e0 851/* Return PC of first real instruction. */
7f8e7424 852
8de307e0 853static CORE_ADDR
6093d2eb 854m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 855{
8de307e0
AS
856 struct m68k_frame_cache cache;
857 CORE_ADDR pc;
c906108c 858
8de307e0 859 cache.locals = -1;
be8626e0 860 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
8de307e0
AS
861 if (cache.locals < 0)
862 return start_pc;
863 return pc;
864}
c906108c 865
8de307e0
AS
866static CORE_ADDR
867m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
868{
f5cf7aa1 869 gdb_byte buf[8];
7f8e7424 870
c984b7ff 871 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 872 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
8de307e0
AS
873}
874\f
875/* Normal frames. */
7f8e7424 876
8de307e0 877static struct m68k_frame_cache *
f36bf22c 878m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
8de307e0 879{
e17a4113
UW
880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8de307e0 882 struct m68k_frame_cache *cache;
f5cf7aa1 883 gdb_byte buf[4];
8de307e0
AS
884 int i;
885
886 if (*this_cache)
887 return *this_cache;
888
889 cache = m68k_alloc_frame_cache ();
890 *this_cache = cache;
891
892 /* In principle, for normal frames, %fp holds the frame pointer,
893 which holds the base address for the current stack frame.
894 However, for functions that don't need it, the frame pointer is
895 optional. For these "frameless" functions the frame pointer is
896 actually the frame pointer of the calling frame. Signal
897 trampolines are just a special case of a "frameless" function.
898 They (usually) share their frame pointer with the frame that was
899 in progress when the signal occurred. */
900
f36bf22c 901 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
e17a4113 902 cache->base = extract_unsigned_integer (buf, 4, byte_order);
8de307e0
AS
903 if (cache->base == 0)
904 return cache;
905
906 /* For normal frames, %pc is stored at 4(%fp). */
907 cache->saved_regs[M68K_PC_REGNUM] = 4;
908
f36bf22c 909 cache->pc = get_frame_func (this_frame);
8de307e0 910 if (cache->pc != 0)
f36bf22c
AS
911 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
912 get_frame_pc (this_frame), cache);
8de307e0
AS
913
914 if (cache->locals < 0)
915 {
916 /* We didn't find a valid frame, which means that CACHE->base
917 currently holds the frame pointer for our calling frame. If
918 we're at the start of a function, or somewhere half-way its
919 prologue, the function's frame probably hasn't been fully
920 setup yet. Try to reconstruct the base address for the stack
921 frame by looking at the stack pointer. For truly "frameless"
922 functions this might work too. */
923
f36bf22c 924 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
e17a4113
UW
925 cache->base = extract_unsigned_integer (buf, 4, byte_order)
926 + cache->sp_offset;
8de307e0 927 }
7f8e7424 928
8de307e0
AS
929 /* Now that we have the base address for the stack frame we can
930 calculate the value of %sp in the calling frame. */
931 cache->saved_sp = cache->base + 8;
7f8e7424 932
8de307e0
AS
933 /* Adjust all the saved registers such that they contain addresses
934 instead of offsets. */
935 for (i = 0; i < M68K_NUM_REGS; i++)
936 if (cache->saved_regs[i] != -1)
937 cache->saved_regs[i] += cache->base;
c906108c 938
8de307e0
AS
939 return cache;
940}
c906108c 941
8de307e0 942static void
f36bf22c 943m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
8de307e0
AS
944 struct frame_id *this_id)
945{
f36bf22c 946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
c906108c 947
8de307e0
AS
948 /* This marks the outermost frame. */
949 if (cache->base == 0)
950 return;
c5aa993b 951
8de307e0
AS
952 /* See the end of m68k_push_dummy_call. */
953 *this_id = frame_id_build (cache->base + 8, cache->pc);
954}
c5aa993b 955
f36bf22c
AS
956static struct value *
957m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
958 int regnum)
8de307e0 959{
f36bf22c 960 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
961
962 gdb_assert (regnum >= 0);
963
964 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
f36bf22c 965 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
8de307e0
AS
966
967 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
f36bf22c
AS
968 return frame_unwind_got_memory (this_frame, regnum,
969 cache->saved_regs[regnum]);
8de307e0 970
f36bf22c 971 return frame_unwind_got_register (this_frame, regnum, regnum);
8de307e0
AS
972}
973
974static const struct frame_unwind m68k_frame_unwind =
975{
976 NORMAL_FRAME,
8fbca658 977 default_frame_unwind_stop_reason,
8de307e0 978 m68k_frame_this_id,
f36bf22c
AS
979 m68k_frame_prev_register,
980 NULL,
981 default_frame_sniffer
8de307e0 982};
8de307e0 983\f
8de307e0 984static CORE_ADDR
f36bf22c 985m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
8de307e0 986{
f36bf22c 987 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
8de307e0
AS
988
989 return cache->base;
990}
991
992static const struct frame_base m68k_frame_base =
993{
994 &m68k_frame_unwind,
995 m68k_frame_base_address,
996 m68k_frame_base_address,
997 m68k_frame_base_address
998};
999
1000static struct frame_id
f36bf22c 1001m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
8de307e0 1002{
8de307e0 1003 CORE_ADDR fp;
c906108c 1004
f36bf22c 1005 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
c906108c 1006
8de307e0 1007 /* See the end of m68k_push_dummy_call. */
f36bf22c 1008 return frame_id_build (fp + 8, get_frame_pc (this_frame));
8de307e0
AS
1009}
1010\f
c906108c 1011
c906108c
SS
1012/* Figure out where the longjmp will land. Slurp the args out of the stack.
1013 We expect the first arg to be a pointer to the jmp_buf structure from which
1014 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
025bb325 1015 This routine returns true on success. */
c906108c 1016
c34d127c 1017static int
60ade65d 1018m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1019{
f5cf7aa1 1020 gdb_byte *buf;
c906108c 1021 CORE_ADDR sp, jb_addr;
c984b7ff 1022 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
eb2e12d7
AS
1025
1026 if (tdep->jb_pc < 0)
1027 {
1028 internal_error (__FILE__, __LINE__,
e2e0b3e5 1029 _("m68k_get_longjmp_target: not implemented"));
eb2e12d7
AS
1030 return 0;
1031 }
c906108c 1032
c984b7ff
UW
1033 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1034 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
c906108c 1035
025bb325 1036 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c984b7ff 1037 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
c906108c
SS
1038 return 0;
1039
c984b7ff 1040 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1041 / TARGET_CHAR_BIT, byte_order);
c906108c 1042
eb2e12d7 1043 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
e17a4113
UW
1044 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1045 byte_order)
c906108c
SS
1046 return 0;
1047
c984b7ff 1048 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
e17a4113 1049 / TARGET_CHAR_BIT, byte_order);
c906108c
SS
1050 return 1;
1051}
f595cb19
MK
1052\f
1053
18648a37
YQ
1054/* This is the implementation of gdbarch method
1055 return_in_first_hidden_param_p. */
1056
1057static int
1058m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1059 struct type *type)
1060{
1061 return 0;
1062}
1063
f595cb19
MK
1064/* System V Release 4 (SVR4). */
1065
1066void
1067m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1068{
1069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1070
1071 /* SVR4 uses a different calling convention. */
1072 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1073
1074 /* SVR4 uses %a0 instead of %a1. */
1075 tdep->struct_value_regnum = M68K_A0_REGNUM;
1076}
1077\f
c906108c 1078
152d9db6
GS
1079/* Function: m68k_gdbarch_init
1080 Initializer function for the m68k gdbarch vector.
025bb325 1081 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
152d9db6
GS
1082
1083static struct gdbarch *
1084m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1085{
1086 struct gdbarch_tdep *tdep = NULL;
1087 struct gdbarch *gdbarch;
8ed86d01
VP
1088 struct gdbarch_list *best_arch;
1089 struct tdesc_arch_data *tdesc_data = NULL;
1090 int i;
1091 enum m68k_flavour flavour = m68k_no_flavour;
1092 int has_fp = 1;
1093 const struct floatformat **long_double_format = floatformats_m68881_ext;
1094
1095 /* Check any target description for validity. */
1096 if (tdesc_has_registers (info.target_desc))
1097 {
1098 const struct tdesc_feature *feature;
1099 int valid_p;
152d9db6 1100
8ed86d01
VP
1101 feature = tdesc_find_feature (info.target_desc,
1102 "org.gnu.gdb.m68k.core");
8ed86d01
VP
1103
1104 if (feature == NULL)
1105 {
1106 feature = tdesc_find_feature (info.target_desc,
1107 "org.gnu.gdb.coldfire.core");
1108 if (feature != NULL)
1109 flavour = m68k_coldfire_flavour;
1110 }
1111
1112 if (feature == NULL)
1113 {
1114 feature = tdesc_find_feature (info.target_desc,
1115 "org.gnu.gdb.fido.core");
1116 if (feature != NULL)
1117 flavour = m68k_fido_flavour;
1118 }
1119
1120 if (feature == NULL)
1121 return NULL;
1122
1123 tdesc_data = tdesc_data_alloc ();
1124
1125 valid_p = 1;
1126 for (i = 0; i <= M68K_PC_REGNUM; i++)
1127 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1128 m68k_register_names[i]);
1129
1130 if (!valid_p)
1131 {
1132 tdesc_data_cleanup (tdesc_data);
1133 return NULL;
1134 }
1135
1136 feature = tdesc_find_feature (info.target_desc,
1137 "org.gnu.gdb.coldfire.fp");
1138 if (feature != NULL)
1139 {
1140 valid_p = 1;
1141 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1142 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1143 m68k_register_names[i]);
1144 if (!valid_p)
1145 {
1146 tdesc_data_cleanup (tdesc_data);
1147 return NULL;
1148 }
1149 }
1150 else
1151 has_fp = 0;
1152 }
1153
1154 /* The mechanism for returning floating values from function
1155 and the type of long double depend on whether we're
025bb325 1156 on ColdFire or standard m68k. */
8ed86d01 1157
4ed77933 1158 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
8ed86d01
VP
1159 {
1160 const bfd_arch_info_type *coldfire_arch =
1161 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1162
1163 if (coldfire_arch
4ed77933
AS
1164 && ((*info.bfd_arch_info->compatible)
1165 (info.bfd_arch_info, coldfire_arch)))
8ed86d01
VP
1166 flavour = m68k_coldfire_flavour;
1167 }
1168
1169 /* If there is already a candidate, use it. */
1170 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1171 best_arch != NULL;
1172 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1173 {
1174 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1175 continue;
1176
1177 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1178 continue;
1179
1180 break;
1181 }
152d9db6 1182
0c85e18e
MK
1183 if (best_arch != NULL)
1184 {
1185 if (tdesc_data != NULL)
1186 tdesc_data_cleanup (tdesc_data);
1187 return best_arch->gdbarch;
1188 }
1189
1390fcc2 1190 tdep = xzalloc (sizeof (struct gdbarch_tdep));
eb2e12d7 1191 gdbarch = gdbarch_alloc (&info, tdep);
8ed86d01
VP
1192 tdep->fpregs_present = has_fp;
1193 tdep->flavour = flavour;
152d9db6 1194
8ed86d01
VP
1195 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1196 long_double_format = floatformats_ieee_double;
1197 set_gdbarch_long_double_format (gdbarch, long_double_format);
1198 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
5d3ed2e3 1199
5d3ed2e3 1200 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
103a1597 1201 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
5d3ed2e3 1202
025bb325 1203 /* Stack grows down. */
5d3ed2e3 1204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9bb47d95 1205 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
6300c360
GS
1206
1207 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8ed86d01
VP
1208 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1209 set_gdbarch_decr_pc_after_break (gdbarch, 2);
942dc0e9 1210
6300c360 1211 set_gdbarch_frame_args_skip (gdbarch, 8);
6dd0fba6 1212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
942dc0e9 1213
8de307e0 1214 set_gdbarch_register_type (gdbarch, m68k_register_type);
5d3ed2e3 1215 set_gdbarch_register_name (gdbarch, m68k_register_name);
6dd0fba6 1216 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
32eeb91a 1217 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
32eeb91a
AS
1218 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1219 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
e47577ab
MK
1220 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1221 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1222 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
a2c6a6d5 1223
8ed86d01
VP
1224 if (has_fp)
1225 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1226
1227 /* Try to figure out if the arch uses floating registers to return
1228 floating point values from functions. */
1229 if (has_fp)
1230 {
1231 /* On ColdFire, floating point values are returned in D0. */
1232 if (flavour == m68k_coldfire_flavour)
1233 tdep->float_return = 0;
1234 else
1235 tdep->float_return = 1;
1236 }
1237 else
1238 {
1239 /* No floating registers, so can't use them for returning values. */
1240 tdep->float_return = 0;
1241 }
1242
025bb325 1243 /* Function call & return. */
8de307e0 1244 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
f595cb19 1245 set_gdbarch_return_value (gdbarch, m68k_return_value);
18648a37
YQ
1246 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1247 m68k_return_in_first_hidden_param_p);
6c0e89ed 1248
8ed86d01 1249
650fcc91
AS
1250 /* Disassembler. */
1251 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1252
eb2e12d7
AS
1253#if defined JB_PC && defined JB_ELEMENT_SIZE
1254 tdep->jb_pc = JB_PC;
1255 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1256#else
1257 tdep->jb_pc = -1;
1258#endif
f595cb19 1259 tdep->struct_value_regnum = M68K_A1_REGNUM;
66894781 1260 tdep->struct_return = reg_struct_return;
8de307e0
AS
1261
1262 /* Frame unwinder. */
f36bf22c 1263 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
8de307e0 1264 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
3f244638
AS
1265
1266 /* Hook in the DWARF CFI frame unwinder. */
f36bf22c 1267 dwarf2_append_unwinders (gdbarch);
3f244638 1268
8de307e0 1269 frame_base_set_default (gdbarch, &m68k_frame_base);
eb2e12d7 1270
55809acb
AS
1271 /* Hook in ABI-specific overrides, if they have been registered. */
1272 gdbarch_init_osabi (info, gdbarch);
1273
eb2e12d7
AS
1274 /* Now we have tuned the configuration, set a few final things,
1275 based on what the OS ABI has told us. */
1276
1277 if (tdep->jb_pc >= 0)
1278 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1279
f36bf22c 1280 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
8de307e0 1281
8ed86d01 1282 if (tdesc_data)
7cc46491 1283 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8ed86d01 1284
152d9db6
GS
1285 return gdbarch;
1286}
1287
1288
1289static void
c984b7ff 1290m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
152d9db6 1291{
c984b7ff 1292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
152d9db6 1293
eb2e12d7
AS
1294 if (tdep == NULL)
1295 return;
152d9db6 1296}
2acceee2 1297
a78f21af
AC
1298extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1299
c906108c 1300void
fba45db2 1301_initialize_m68k_tdep (void)
c906108c 1302{
152d9db6 1303 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
c906108c 1304}